
MySQL Reference Manual

Copyright c© 1997-2003 MySQL AB

i

Table of Contents

1 General Information . 1
1.1 About This Manual . 2

1.1.1 Conventions Used in This Manual 2
1.2 Overview of the MySQL Database Management System 3

1.2.1 History of MySQL . 5
1.2.2 The Main Features of MySQL 5
1.2.3 Stability of MySQL . 8
1.2.4 How Big MySQL Tables Can Be 9
1.2.5 Year 2000 Compliance . 10

1.3 Overview of MySQL AB . 11
1.3.1 The Business Model and Services of MySQL AB . . 12

1.3.1.1 Support . 12
1.3.1.2 Training and Certification 13
1.3.1.3 Consulting . 13
1.3.1.4 Commercial Licenses 13
1.3.1.5 Partnering . 14

1.3.2 Contact Information . 14
1.4 MySQL Support and Licensing . 15

1.4.1 Support Offered by MySQL AB. 15
1.4.2 Copyrights and Licenses Used by MySQL. 16
1.4.3 MySQL Licenses . 17

1.4.3.1 Using the MySQL Software Under a
Commercial License . 17

1.4.3.2 Using the MySQL Software for Free Under
GPL . 18

1.4.4 MySQL AB Logos and Trademarks 18
1.4.4.1 The Original MySQL Logo. 19
1.4.4.2 MySQL Logos that may be Used Without

Written Permission . 19
1.4.4.3 When You Need Written Permission to Use

MySQL Logos . 19
1.4.4.4 MySQL AB Partnership Logos 19
1.4.4.5 Using the word MySQL in Printed Text or

Presentations . 20
1.4.4.6 Using the word MySQL in Company and

Product Names . 20
1.5 MySQL Development Roadmap . 20

1.5.1 MySQL 4.0 in a Nutshell . 20
1.5.1.1 Features Available in MySQL 4.0 21
1.5.1.2 Embedded MySQL Server 22

1.5.2 MySQL 4.1 in a Nutshell . 22
1.5.2.1 Features Available in MySQL 4.1 22
1.5.2.2 Stepwise Rollout . 24

ii

1.5.2.3 Ready for Immediate Development Use
. 24

1.5.3 MySQL 5.0, The Next Development Release 24
1.6 MySQL Information Sources . 24

1.6.1 MySQL Mailing Lists . 24
1.6.1.1 The MySQL Mailing Lists 24
1.6.1.2 Asking Questions or Reporting Bugs. . . . 27
1.6.1.3 How to Report Bugs or Problems 27
1.6.1.4 Guidelines for Answering Questions on the

Mailing List . 32
1.6.2 MySQL Community Support on IRC (Internet Relay

Chat) . 32
1.7 MySQL Standards Compliance . 32

1.7.1 What Standards MySQL Follows 33
1.7.2 Running MySQL in ANSI Mode 33
1.7.3 MySQL Extensions to the SQL-92 Standard 34
1.7.4 MySQL Differences Compared to SQL-92 36

1.7.4.1 Subqueries . 36
1.7.4.2 SELECT INTO TABLE 37
1.7.4.3 Transactions and Atomic Operations . . . 37
1.7.4.4 Stored Procedures and Triggers 39
1.7.4.5 Foreign Keys . 40
1.7.4.6 Views . 41
1.7.4.7 ‘--’ as the Start of a Comment 41

1.7.5 How MySQL deals with constraints 42
1.7.5.1 Constraint PRIMARY KEY / UNIQUE

. 42
1.7.5.2 Constraint NOT NULL and DEFAULT values

. 43
1.7.5.3 Constraint ENUM and SET 43

1.7.6 Known Errors and Design Deficiencies in MySQL
. 44

1.7.6.1 Errors in 3.23 Fixed in a Later MySQL
Version. 44

1.7.6.2 Open Bugs / Design Deficiencies in MySQL
. 44

1.8 MySQL and the Future (The TODO) . 49
1.8.1 New Features Planned For 4.1 49
1.8.2 New Features Planned For 5.0 49
1.8.3 New Features Planned For 5.1 50
1.8.4 New Features Planned for the Near Future 51
1.8.5 New Features Planned for the Mid-Term Future . . 53
1.8.6 New Features We Don’t Plan to Do 55

iii

2 Installing MySQL . 56
2.1 Quick Standard MySQL Installation . 56

2.1.1 Installing MySQL on Windows 56
2.1.1.1 Windows System Requirements 56
2.1.1.2 Installing a Windows Binary Distribution

. 57
2.1.1.3 Preparing the Windows MySQL

Environment . 58
2.1.1.4 Selecting a Windows Server 59
2.1.1.5 Starting the Server for the First Time . . 59
2.1.1.6 Starting MySQL on Windows 95, 98, or Me

. 60
2.1.1.7 Starting MySQL on Windows NT, 2000, or

XP . 61
2.1.1.8 Running MySQL on Windows 63

2.1.2 Installing MySQL on Linux . 64
2.1.3 Installing MySQL on Mac OS X 66
2.1.4 Installing MySQL on NetWare 68

2.1.4.1 Installing the MySQL for NetWare Binaries
. 69

2.2 General Installation Issues . 70
2.2.1 How to Get MySQL . 70
2.2.2 Verifying Package Integrity Using MD5 Checksums or

GnuPG . 70
2.2.3 Operating Systems Supported by MySQL 73
2.2.4 Which MySQL Version to Use 75
2.2.5 Installation Layouts . 77
2.2.6 How and When Updates Are Released. 78
2.2.7 Release Philosophy - No Known Bugs in Releases

. 79
2.2.8 MySQL Binaries Compiled by MySQL AB. 80
2.2.9 Installing a MySQL Binary Distribution 85

2.3 Installing a MySQL Source Distribution 87
2.3.1 Quick Installation Overview . 88
2.3.2 Applying Patches . 91
2.3.3 Typical configure Options . 91
2.3.4 Installing from the Development Source Tree. 94
2.3.5 Dealing With Problems Compiling MySQL 96
2.3.6 MIT-pthreads Notes . 99
2.3.7 Installing MySQL from Source on Windows. 100

2.4 Post-installation Setup and Testing . 101
2.4.1 Problems Running mysql_install_db 105
2.4.2 Problems Starting the MySQL Server 106
2.4.3 Starting and Stopping MySQL Automatically . . . 108

2.5 Upgrading/Downgrading MySQL . 110
2.5.1 Upgrading From Version 4.0 to 4.1 110
2.5.2 Upgrading From Version 3.23 to 4.0 113
2.5.3 Upgrading From Version 3.22 to 3.23 116

iv

2.5.4 Upgrading from Version 3.21 to 3.22 118
2.5.5 Upgrading from Version 3.20 to 3.21 118
2.5.6 Upgrading the Grant Tables 119
2.5.7 Upgrading to Another Architecture 120
2.5.8 Upgrading MySQL under Windows 121

2.6 Operating System Specific Notes . 122
2.6.1 Windows Notes . 122

2.6.1.1 Connecting to MySQL Remotely from
Windows with SSH . 122

2.6.1.2 Distributing Data Across Different Disks on
Windows . 122

2.6.1.3 Compiling MySQL Clients on Windows
. 123

2.6.1.4 MySQL on Windows Compared to MySQL
on Unix . 123

2.6.2 Linux Notes (All Linux Versions) 126
2.6.2.1 Linux Notes for Binary Distributions . . 129
2.6.2.2 Linux x86 Notes . 131
2.6.2.3 Linux SPARC Notes 131
2.6.2.4 Linux Alpha Notes 132
2.6.2.5 Linux PowerPC Notes 132
2.6.2.6 Linux MIPS Notes 132
2.6.2.7 Linux IA-64 Notes 133

2.6.3 Solaris Notes . 133
2.6.3.1 Solaris 2.7/2.8 Notes 136
2.6.3.2 Solaris x86 Notes . 136

2.6.4 BSD Notes . 137
2.6.4.1 FreeBSD Notes . 137
2.6.4.2 NetBSD Notes . 139
2.6.4.3 OpenBSD 2.5 Notes 139
2.6.4.4 OpenBSD 2.8 Notes 139
2.6.4.5 BSD/OS Version 2.x Notes 139
2.6.4.6 BSD/OS Version 3.x Notes 139
2.6.4.7 BSD/OS Version 4.x Notes 140

2.6.5 Mac OS X Notes . 140
2.6.5.1 Mac OS X 10.x . 140
2.6.5.2 Mac OS X Server 1.2 (Rhapsody) 141

2.6.6 Other Unix Notes . 141
2.6.6.1 HP-UX Notes for Binary Distributions

. 141
2.6.6.2 HP-UX Version 10.20 Notes. 142
2.6.6.3 HP-UX Version 11.x Notes. 142
2.6.6.4 IBM-AIX notes . 143
2.6.6.5 SunOS 4 Notes . 145
2.6.6.6 Alpha-DEC-UNIX Notes (Tru64) 145
2.6.6.7 Alpha-DEC-OSF/1 Notes 147
2.6.6.8 SGI Irix Notes . 148
2.6.6.9 SCO Notes . 149

v

2.6.6.10 SCO UnixWare Version 7.1.x Notes . . 151
2.6.7 OS/2 Notes . 151
2.6.8 Novell NetWare Notes . 152
2.6.9 BeOS Notes . 152

2.7 Perl Installation Comments . 152
2.7.1 Installing Perl on Unix . 152
2.7.2 Installing ActiveState Perl on Windows 153
2.7.3 Problems Using the Perl DBI/DBD Interface 154

3 MySQL Tutorial . 157
3.1 Connecting to and Disconnecting from the Server 157
3.2 Entering Queries . 158
3.3 Creating and Using a Database. 161

3.3.1 Creating and Selecting a Database 162
3.3.2 Creating a Table . 163
3.3.3 Loading Data into a Table . 164
3.3.4 Retrieving Information from a Table 165

3.3.4.1 Selecting All Data 166
3.3.4.2 Selecting Particular Rows 166
3.3.4.3 Selecting Particular Columns 168
3.3.4.4 Sorting Rows . 169
3.3.4.5 Date Calculations . 170
3.3.4.6 Working with NULL Values 173
3.3.4.7 Pattern Matching . 174
3.3.4.8 Counting Rows . 176
3.3.4.9 Using More Than one Table 179

3.4 Getting Information About Databases and Tables 180
3.5 Using mysql in Batch Mode . 181
3.6 Examples of Common Queries . 183

3.6.1 The Maximum Value for a Column 183
3.6.2 The Row Holding the Maximum of a Certain

Column . 184
3.6.3 Maximum of Column per Group 184
3.6.4 The Rows Holding the Group-wise Maximum of a

Certain Field . 185
3.6.5 Using User Variables . 186
3.6.6 Using Foreign Keys . 186
3.6.7 Searching on Two Keys . 188
3.6.8 Calculating Visits Per Day . 188
3.6.9 Using AUTO_INCREMENT. 189

3.7 Queries from the Twin Project . 190
3.7.1 Find All Non-distributed Twins. 191
3.7.2 Show a Table of Twin Pair Status 193

3.8 Using MySQL with Apache . 194

vi

4 Database Administration 195
4.1 Configuring MySQL . 195

4.1.1 mysqld Command-line Options 195
4.1.2 ‘my.cnf’ Option Files . 203

4.2 Running Multiple MySQL Servers on the Same Machine . . 206
4.2.1 Running Multiple Servers on Windows 207

4.2.1.1 Starting Multiple Windows Servers at the
Command Line . 208

4.2.1.2 Starting Multiple Windows Servers as
Services . 209

4.2.2 Running Multiple Servers on Unix 211
4.2.3 Using Client Programs in a Multiple-Server

Environment . 212
4.3 General Security Issues and the MySQL Access Privilege

System. 213
4.3.1 General Security Guidelines 213
4.3.2 How to Make MySQL Secure Against Crackers . . 215
4.3.3 Startup Options for mysqld Concerning Security

. 217
4.3.4 Security issues with LOAD DATA LOCAL 218
4.3.5 What the Privilege System Does 218
4.3.6 How the Privilege System Works 218
4.3.7 Privileges Provided by MySQL 222
4.3.8 Connecting to the MySQL Server 224
4.3.9 Access Control, Stage 1: Connection Verification

. 225
4.3.10 Access Control, Stage 2: Request Verification . . 228
4.3.11 Password Hashing in MySQL 4.1 230
4.3.12 Causes of Access denied Errors 235

4.4 MySQL User Account Management . 239
4.4.1 GRANT and REVOKE Syntax . 239
4.4.2 MySQL User Names and Passwords 243
4.4.3 When Privilege Changes Take Effect 244
4.4.4 Setting Up the Initial MySQL Privileges. 245
4.4.5 Adding New Users to MySQL 246
4.4.6 Deleting Users from MySQL 249
4.4.7 Limiting user resources . 249
4.4.8 Setting Up Passwords . 250
4.4.9 Keeping Your Password Secure 251
4.4.10 Using Secure Connections . 252

4.4.10.1 Basics . 252
4.4.10.2 Requirements . 253
4.4.10.3 Setting Up SSL Certificates for MySQL

. 253
4.4.10.4 SSL GRANT Options 257
4.4.10.5 SSL Command-line Options 258

4.5 Disaster Prevention and Recovery . 259
4.5.1 Database Backups . 259

vii

4.5.2 BACKUP TABLE Syntax . 261
4.5.3 RESTORE TABLE Syntax . 261
4.5.4 CHECK TABLE Syntax . 262
4.5.5 REPAIR TABLE Syntax . 263
4.5.6 Using myisamchk for Table Maintenance and Crash

Recovery . 264
4.5.6.1 myisamchk Invocation Syntax 265
4.5.6.2 General Options for myisamchk 266
4.5.6.3 Check Options for myisamchk 267
4.5.6.4 Repair Options for myisamchk 268
4.5.6.5 Other Options for myisamchk 269
4.5.6.6 myisamchk Memory Usage 270
4.5.6.7 Using myisamchk for Crash Recovery . . 270
4.5.6.8 How to Check Tables for Errors 271
4.5.6.9 How to Repair Tables 272
4.5.6.10 Table Optimisation 274

4.5.7 Setting Up a Table Maintenance Regimen 275
4.5.8 Getting Information About a Table 276

4.6 Database Administration Language Reference 280
4.6.1 OPTIMIZE TABLE Syntax . 280
4.6.2 ANALYZE TABLE Syntax . 281
4.6.3 CHECKSUM TABLE Syntax . 282
4.6.4 FLUSH Syntax . 282
4.6.5 RESET Syntax . 283
4.6.6 PURGE MASTER LOGS Syntax . 283
4.6.7 KILL Syntax . 284
4.6.8 SHOW Syntax . 284

4.6.8.1 Retrieving information about Database,
Tables, Columns, and Indexes 285

4.6.8.2 SHOW TABLE STATUS 286
4.6.8.3 SHOW STATUS . 287
4.6.8.4 SHOW VARIABLES . 290
4.6.8.5 SHOW [BDB] LOGS . 301
4.6.8.6 SHOW PROCESSLIST 301
4.6.8.7 SHOW GRANTS . 303
4.6.8.8 SHOW CREATE TABLE 303
4.6.8.9 SHOW WARNINGS | ERRORS 303
4.6.8.10 SHOW TABLE TYPES 305
4.6.8.11 SHOW PRIVILEGES 305

4.7 MySQL Localisation and International Usage 306
4.7.1 The Character Set Used for Data and Sorting . . . 306

4.7.1.1 German character set 307
4.7.2 Non-English Error Messages 307
4.7.3 Adding a New Character Set 308
4.7.4 The Character Definition Arrays 309
4.7.5 String Collating Support . 310
4.7.6 Multi-byte Character Support 310
4.7.7 Problems With Character Sets 310

viii

4.8 MySQL Server-Side Scripts and Utilities 311
4.8.1 Overview of the Server-Side Scripts and Utilities

. 311
4.8.2 mysqld_safe, The Wrapper Around mysqld 311
4.8.3 mysqld_multi, A Program for Managing Multiple

MySQL Servers . 313
4.8.4 myisampack, The MySQL Compressed Read-only

Table Generator . 317
4.8.5 mysqld-max, An Extended mysqld Server 323

4.9 MySQL Client-Side Scripts and Utilities 325
4.9.1 Overview of the Client-Side Scripts and Utilities

. 325
4.9.2 mysql, The Command-line Tool. 326
4.9.3 mysqladmin, Administrating a MySQL Server . . 334
4.9.4 mysqlbinlog, Executing the queries from a binary

log. 336
4.9.5 Using mysqlcheck for Table Maintenance and Crash

Recovery . 337
4.9.6 mysqldump, Dumping Table Structure and Data

. 339
4.9.7 mysqlhotcopy, Copying MySQL Databases and

Tables . 343
4.9.8 mysqlimport, Importing Data from Text Files . . 345
4.9.9 mysqlshow, Showing Databases, Tables, and

Columns . 347
4.9.10 mysql_config, Get compile options for compiling

clients . 348
4.9.11 perror, Explaining Error Codes 348
4.9.12 How to Run SQL Commands from a Text File . . 349

4.10 The MySQL Log Files . 349
4.10.1 The Error Log . 350
4.10.2 The General Query Log . 350
4.10.3 The Update Log . 350
4.10.4 The Binary Log . 351
4.10.5 The Slow Query Log . 354
4.10.6 Log File Maintenance . 354

4.11 Replication in MySQL . 355
4.11.1 Introduction . 355
4.11.2 Replication Implementation Overview 356
4.11.3 Replication Implementation Details 357
4.11.4 How to Set Up Replication 362
4.11.5 Replication Features and Known Problems 366
4.11.6 Replication Startup Options 368
4.11.7 SQL Statements for Controlling Master Servers

. 376
4.11.7.1 PURGE MASTER LOGS 376
4.11.7.2 RESET MASTER . 377
4.11.7.3 SET SQL_LOG_BIN 377

ix

4.11.7.4 SHOW BINLOG EVENTS 377
4.11.7.5 SHOW MASTER STATUS 377
4.11.7.6 SHOW MASTER LOGS 377
4.11.7.7 SHOW SLAVE HOSTS 377

4.11.8 SQL Statements for Controlling Slave Servers . . 378
4.11.8.1 CHANGE MASTER TO 378
4.11.8.2 LOAD DATA FROM MASTER 380
4.11.8.3 LOAD TABLE tbl_name FROM MASTER . . . 381
4.11.8.4 MASTER_POS_WAIT() 381
4.11.8.5 RESET SLAVE . 381
4.11.8.6 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

. 382
4.11.8.7 SHOW SLAVE STATUS 382
4.11.8.8 START SLAVE . 385
4.11.8.9 STOP SLAVE . 386

4.11.9 Replication FAQ . 386
4.11.10 Troubleshooting Replication 391
4.11.11 Reporting Replication Bugs 392

5 MySQL Optimisation . 394
5.1 Optimisation Overview . 394

5.1.1 MySQL Design Limitations/Tradeoffs 394
5.1.2 Portability . 395
5.1.3 What We Have Used MySQL For 396
5.1.4 The MySQL Benchmark Suite 397
5.1.5 Using Your Own Benchmarks 398

5.2 Optimising SELECTs and Other Queries 398
5.2.1 EXPLAIN Syntax (Get Information About a SELECT)

. 399
5.2.2 Estimating Query Performance 406
5.2.3 Speed of SELECT Queries . 406
5.2.4 How MySQL Optimises WHERE Clauses 407
5.2.5 How MySQL Optimises IS NULL 408
5.2.6 How MySQL Optimises DISTINCT. 409
5.2.7 How MySQL Optimises LEFT JOIN and RIGHT JOIN

. 409
5.2.8 How MySQL Optimises ORDER BY 410
5.2.9 How MySQL Optimises LIMIT 412
5.2.10 Speed of INSERT Queries . 412
5.2.11 Speed of UPDATE Queries . 414
5.2.12 Speed of DELETE Queries . 415
5.2.13 Other Optimisation Tips . 415

5.3 Locking Issues . 417
5.3.1 How MySQL Locks Tables . 418
5.3.2 Table Locking Issues . 418

5.4 Optimising Database Structure . 420
5.4.1 Design Choices . 420
5.4.2 Get Your Data as Small as Possible 420

x

5.4.3 How MySQL Uses Indexes . 421
5.4.4 Column Indexes . 423
5.4.5 Multiple-Column Indexes . 424
5.4.6 How MySQL Counts Open Tables 425
5.4.7 How MySQL Opens and Closes Tables 425
5.4.8 Drawbacks to Creating Large Numbers of Tables in

the Same Database . 426
5.5 Optimising the MySQL Server . 426

5.5.1 System/Compile Time and Startup Parameter
Tuning . 426

5.5.2 Tuning Server Parameters . 427
5.5.3 How Compiling and Linking Affects the Speed of

MySQL . 429
5.5.4 How MySQL Uses Memory . 431
5.5.5 How MySQL uses DNS . 432
5.5.6 SET Syntax . 432

5.6 Disk Issues . 437
5.6.1 Using Symbolic Links . 438

5.6.1.1 Using Symbolic Links for Databases . . . 438
5.6.1.2 Using Symbolic Links for Tables 438

6 MySQL Language Reference 441
6.1 Language Structure . 441

6.1.1 Literals: How to Write Strings and Numbers 441
6.1.1.1 Strings . 441
6.1.1.2 Numbers . 443
6.1.1.3 Hexadecimal Values 443
6.1.1.4 NULL Values . 443

6.1.2 Database, Table, Index, Column, and Alias Names
. 444

6.1.3 Case Sensitivity in Names . 445
6.1.4 User Variables . 446
6.1.5 System Variables . 447
6.1.6 Comment Syntax . 450
6.1.7 Treatment of Reserved Words in MySQL 451

6.2 Column Types . 453
6.2.1 Numeric Types . 458
6.2.2 Date and Time Types . 460

6.2.2.1 Y2K Issues and Date Types. 461
6.2.2.2 The DATETIME, DATE, and TIMESTAMP Types

. 462
6.2.2.3 The TIME Type . 466
6.2.2.4 The YEAR Type . 467

6.2.3 String Types . 467
6.2.3.1 The CHAR and VARCHAR Types 467
6.2.3.2 The BLOB and TEXT Types 468
6.2.3.3 The ENUM Type . 469
6.2.3.4 The SET Type . 470

xi

6.2.4 Choosing the Right Type for a Column 471
6.2.5 Using Column Types from Other Database Engines

. 472
6.2.6 Column Type Storage Requirements 472

6.3 Functions for Use in SELECT and WHERE Clauses 474
6.3.1 Non-Type-Specific Operators and Functions 474

6.3.1.1 Parentheses . 474
6.3.1.2 Comparison Operators 475
6.3.1.3 Logical Operators . 478
6.3.1.4 Control Flow Functions 480

6.3.2 String Functions . 481
6.3.2.1 String Comparison Functions 489
6.3.2.2 Case-Sensitivity . 491

6.3.3 Numeric Functions. 492
6.3.3.1 Arithmetic Operations 492
6.3.3.2 Mathematical Functions 493

6.3.4 Date and Time Functions . 499
6.3.5 Cast Functions . 512
6.3.6 Other Functions . 514

6.3.6.1 Bit Functions . 514
6.3.6.2 Miscellaneous Functions 515

6.3.7 Functions and Modifiers for Use with GROUP BY
Clauses . 524

6.3.7.1 GROUP BY Functions 524
6.3.7.2 GROUP BY Modifiers 526
6.3.7.3 GROUP BY with Hidden Fields 529

6.4 Data Manipulation: SELECT, INSERT, UPDATE, DELETE 530
6.4.1 SELECT Syntax . 530

6.4.1.1 JOIN Syntax . 535
6.4.1.2 UNION Syntax . 537

6.4.2 Subquery Syntax . 537
6.4.2.1 The Subquery as Scalar Operand 538
6.4.2.2 Comparisons Using Subqueries 539
6.4.2.3 Subqueries with ANY, IN, and SOME 539
6.4.2.4 Subqueries with ALL 540
6.4.2.5 Correlated Subqueries 540
6.4.2.6 EXISTS and NOT EXISTS 541
6.4.2.7 Row Subqueries . 541
6.4.2.8 Subqueries in the FROM clause 542
6.4.2.9 Subquery Errors . 543
6.4.2.10 Optimising Subqueries 544
6.4.2.11 Rewriting Subqueries for Earlier MySQL

Versions . 545
6.4.3 INSERT Syntax . 546

6.4.3.1 INSERT ... SELECT Syntax 549
6.4.3.2 INSERT DELAYED Syntax 549

6.4.4 UPDATE Syntax . 551
6.4.5 DELETE Syntax . 552

xii

6.4.6 TRUNCATE Syntax . 554
6.4.7 REPLACE Syntax . 554
6.4.8 LOAD DATA INFILE Syntax . 555
6.4.9 HANDLER Syntax . 561
6.4.10 DO Syntax . 563

6.5 Data Definition: CREATE, DROP, ALTER 563
6.5.1 CREATE DATABASE Syntax . 563
6.5.2 DROP DATABASE Syntax . 563
6.5.3 CREATE TABLE Syntax . 564

6.5.3.1 Silent Column Specification Changes . . 572
6.5.4 ALTER TABLE Syntax . 573
6.5.5 RENAME TABLE Syntax . 576
6.5.6 DROP TABLE Syntax . 577
6.5.7 CREATE INDEX Syntax . 577
6.5.8 DROP INDEX Syntax . 578

6.6 Basic MySQL User Utility Commands 578
6.6.1 USE Syntax . 578
6.6.2 DESCRIBE Syntax (Get Information About Columns)

. 579
6.7 MySQL Transactional and Locking Commands 579

6.7.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
. 579

6.7.2 Statements That Cannot Be Rolled Back 580
6.7.3 Statements That Cause an Implicit Commit 580
6.7.4 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax

. 581
6.7.5 LOCK TABLES and UNLOCK TABLES Syntax 581
6.7.6 SET TRANSACTION Syntax . 583

6.8 MySQL Full-text Search . 583
6.8.1 Full-text Restrictions . 587
6.8.2 Fine-tuning MySQL Full-text Search 587
6.8.3 Full-text Search TODO . 588

6.9 MySQL Query Cache . 589
6.9.1 How the Query Cache Operates 589
6.9.2 Query Cache Configuration . 590
6.9.3 Query Cache Options in SELECT 591
6.9.4 Query Cache Status and Maintenance 591

xiii

7 MySQL Table Types . 593
7.1 MyISAM Tables . 593

7.1.1 Space Needed for Keys . 596
7.1.2 MyISAM Table Formats . 596

7.1.2.1 Static (Fixed-length) Table Characteristics
. 597

7.1.2.2 Dynamic Table Characteristics 597
7.1.2.3 Compressed Table Characteristics 598

7.1.3 MyISAM Table Problems . 598
7.1.3.1 Corrupted MyISAM Tables 599
7.1.3.2 Clients is using or hasn’t closed the table

properly. 599
7.2 MERGE Tables . 600

7.2.1 MERGE Table Problems . 602
7.3 ISAM Tables. 603
7.4 HEAP Tables. 603
7.5 InnoDB Tables . 604

7.5.1 InnoDB Tables Overview . 605
7.5.2 InnoDB in MySQL Version 3.23 605
7.5.3 InnoDB Startup Options . 606
7.5.4 Creating InnoDB Tablespace 612

7.5.4.1 If Something Goes Wrong in Database
Creation . 613

7.5.5 Creating InnoDB Tables . 613
7.5.5.1 Converting MyISAM Tables to InnoDB

. 614
7.5.5.2 FOREIGN KEY Constraints 614

7.5.6 Adding and Removing InnoDB Data and Log Files
. 617

7.5.7 Backing up and Recovering an InnoDB Database
. 617

7.5.7.1 Forcing recovery . 618
7.5.7.2 Checkpoints . 619

7.5.8 Moving an InnoDB Database to Another Machine
. 620

7.5.9 InnoDB Transaction Model and Locking 620
7.5.9.1 InnoDB and SET ... TRANSACTION

ISOLATION LEVEL ... 621
7.5.9.2 Consistent Non-Locking Read 622
7.5.9.3 Locking Reads SELECT ... FOR UPDATE and

SELECT ... LOCK IN SHARE MODE 622
7.5.9.4 Next-key Locking: Avoiding the Phantom

Problem. 623
7.5.9.5 Locks Set by Different SQL Statements in

InnoDB . 624
7.5.9.6 Deadlock Detection and Rollback. 625
7.5.9.7 An Example of How the Consistent Read

Works in InnoDB . 625

xiv

7.5.9.8 How to Cope With Deadlocks 626
7.5.10 Performance Tuning Tips . 627

7.5.10.1 SHOW INNODB STATUS and the InnoDB
Monitors . 628

7.5.11 Implementation of Multi-versioning 630
7.5.12 Table and Index Structures 631

7.5.12.1 Physical Structure of an Index 632
7.5.12.2 Insert Buffering . 632
7.5.12.3 Adaptive Hash Indexes 632
7.5.12.4 Physical Record Structure 633
7.5.12.5 How an AUTO_INCREMENT Column Works

in InnoDB . 633
7.5.13 File Space Management and Disk I/O 634

7.5.13.1 Disk I/O . 634
7.5.13.2 File Space Management 635
7.5.13.3 Defragmenting a Table 635

7.5.14 Error Handling . 636
7.5.15 Restrictions on InnoDB Tables 636
7.5.16 InnoDB Change History. 637

7.5.16.1 MySQL/InnoDB-4.0.14, July 22, 2003
. 637

7.5.16.2 MySQL/InnoDB-3.23.57, June 20, 2003
. 638

7.5.16.3 MySQL/InnoDB-4.0.13, May 20, 2003
. 639

7.5.16.4 MySQL/InnoDB-4.1.0, April 3, 2003 . . 640
7.5.16.5 MySQL/InnoDB-3.23.56, March 17, 2003

. 640
7.5.16.6 MySQL/InnoDB-4.0.12, March 18, 2003

. 640
7.5.16.7 MySQL/InnoDB-4.0.11, February 25, 2003

. 640
7.5.16.8 MySQL/InnoDB-4.0.10, February 4, 2003

. 641
7.5.16.9 MySQL/InnoDB-3.23.55, January 24, 2003

. 641
7.5.16.10 MySQL/InnoDB-4.0.9, January 14, 2003

. 642
7.5.16.11 MySQL/InnoDB-4.0.8, January 7, 2003

. 642
7.5.16.12 MySQL/InnoDB-4.0.7, December 26,

2002 . 643
7.5.16.13 MySQL/InnoDB-4.0.6, December 19,

2002 . 643
7.5.16.14 MySQL/InnoDB-3.23.54, December 12,

2002 . 643
7.5.16.15 MySQL/InnoDB-4.0.5, November 18,

2002 . 643

xv

7.5.16.16 MySQL/InnoDB-3.23.53, October 9, 2002
. 644

7.5.16.17 MySQL/InnoDB-4.0.4, October 2, 2002
. 645

7.5.16.18 MySQL/InnoDB-4.0.3, August 28, 2002
. 646

7.5.16.19 MySQL/InnoDB-3.23.52, August 16,
2002 . 646

7.5.16.20 MySQL/InnoDB-4.0.2, July 10, 2002
. 648

7.5.16.21 MySQL/InnoDB-3.23.51, June 12, 2002
. 648

7.5.16.22 MySQL/InnoDB-3.23.50, April 23, 2002
. 648

7.5.16.23 MySQL/InnoDB-3.23.49, February 17,
2002 . 649

7.5.16.24 MySQL/InnoDB-3.23.48, February 9,
2002 . 649

7.5.16.25 MySQL/InnoDB-3.23.47, December 28,
2001 . 650

7.5.16.26 MySQL/InnoDB-4.0.1, December 23,
2001 . 650

7.5.16.27 MySQL/InnoDB-3.23.46, November 30,
2001 . 651

7.5.16.28 MySQL/InnoDB-3.23.45, November 23,
2001 . 651

7.5.16.29 MySQL/InnoDB-3.23.44, November 2,
2001 . 651

7.5.16.30 MySQL/InnoDB-3.23.43, October 4, 2001
. 652

7.5.16.31 MySQL/InnoDB-3.23.42, September 9,
2001 . 652

7.5.16.32 MySQL/InnoDB-3.23.41, August 13,
2001 . 652

7.5.16.33 MySQL/InnoDB-3.23.40, July 16, 2001
. 652

7.5.16.34 MySQL/InnoDB-3.23.39, June 13, 2001
. 652

7.5.16.35 MySQL/InnoDB-3.23.38, May 12, 2001
. 653

7.5.17 InnoDB Contact Information 653
7.6 BDB or BerkeleyDB Tables . 653

7.6.1 Overview of BDB Tables . 653
7.6.2 Installing BDB . 654
7.6.3 BDB Startup Options . 654
7.6.4 Characteristics of BDB Tables 655
7.6.5 Things We Need to Fix for BDB in the Near Future

. 656

xvi

7.6.6 Operating Systems Supported by BDB 656
7.6.7 Restrictions on BDB Tables . 657
7.6.8 Errors That May Occur When Using BDB Tables

. 657

8 Introduction to MaxDB 658
8.1 History of MaxDB . 658
8.2 Licensing and Support . 658
8.3 Basic Concepts of MaxDB . 658
8.4 Feature Differences between MaxDB and MySQL 658
8.5 Interoperability Features between MaxDB and MySQL . . . 659
8.6 MaxDB-related Links . 659
8.7 Reserved Words in MaxDB . 660
8.8 Functions . 662
8.9 Column Types . 662

9 National Character Sets and Unicode 664
9.1 Character Sets and Collations in General. 664
9.2 Character Sets and Collations in MySQL 665
9.3 Determining the Default Character Set and Collation 665

9.3.1 Server Character Set and Collation 665
9.3.2 Database Character Set and Collation 666
9.3.3 Table Character Set and Collation 666
9.3.4 Column Character Set and Collation 667
9.3.5 Examples of Character Set and Collation Assignment

. 667
9.3.6 Connection Character Sets and Collations 669
9.3.7 Character String Literal Character Set and Collation

. 669
9.3.8 COLLATE Clause in Various Parts of an SQL Query

. 670
9.3.9 COLLATE Clause Precedence 671
9.3.10 BINARY Operator . 671
9.3.11 Some Special Cases Where the Collation

Determination is Tricky . 671
9.3.12 Collations Must Be for the Right Character Set

. 672
9.3.13 An example of the Effect of Collation 672

9.4 Operations Affected by Character Set Support 673
9.4.1 Result Strings . 673
9.4.2 CONVERT() . 674
9.4.3 CAST() . 674
9.4.4 SHOW CHARACTER SET . 674
9.4.5 SHOW COLLATION . 675
9.4.6 SHOW CREATE DATABASE . 675
9.4.7 SHOW FULL COLUMNS . 676

9.5 Unicode Support . 676
9.6 UTF8 for Metadata . 677

xvii

9.7 Compatibility with Other DBMSs . 677
9.8 New Character Set Configuration File format 678
9.9 National Character Set . 678
9.10 Upgrading from MySQL 4.0. 678

9.10.1 4.0 Character Sets and Corresponding 4.1
Character Set/Collation Pairs. 679

9.11 The Character Sets and Collations that MySQL Supports
. 680

9.11.1 The Unicode Character Sets 681
9.11.2 Platform Specific Character Sets 681
9.11.3 Character Sets for South Europe and Middle East

. 681
9.11.4 The Asian Character Sets . 681
9.11.5 The Baltic Character Sets . 682
9.11.6 The Cyrillic Character Sets. 682
9.11.7 The Central European Character Sets 683
9.11.8 The West European Character Sets 684

10 Spatial Extensions in MySQL 686
10.1 Introduction . 686
10.2 The OpenGIS Geometry Model . 686

10.2.1 The Geometry Class Hierarchy 687
10.2.2 Class Geometry. 688
10.2.3 Class Point . 689
10.2.4 Class Curve . 689
10.2.5 Class LineString . 690
10.2.6 Class Surface . 690
10.2.7 Class Polygon . 690
10.2.8 Class GeometryCollection 691
10.2.9 Class MultiPoint . 691
10.2.10 Class MultiCurve . 691
10.2.11 Class MultiLineString . 692
10.2.12 Class MultiSurface . 692
10.2.13 Class MultiPolygon . 692

10.3 Supported Spatial Data Formats . 693
10.3.1 Well-Known Text (WKT) Format 693
10.3.2 Well-Known Binary (WKB) Format. 694

10.4 Creating a Spatially Enabled MySQL Database. 694
10.4.1 MySQL Spatial Datatypes 695
10.4.2 Creating Spatial Values . 695

10.4.2.1 Creating Geometry Values Using WKT
Functions . 695

10.4.2.2 Creating Geometry Values Using WKB
Functions . 696

10.4.2.3 Creating Geometry Values Using
MySQL-Specific Functions 697

10.4.3 Creating Spatial Columns . 698
10.4.4 Populating Spatial Columns 698

xviii

10.4.5 Fetching Spatial Data . 700
10.4.5.1 Fetching Spatial Data in Internal Format

. 700
10.4.5.2 Fetching Spatial Data in WKT Format

. 700
10.4.5.3 Fetching Spatial Data in WKB Format

. 700
10.5 Analysing Spatial Information . 700

10.5.1 Functions to Convert Geometries Between Formats
. 701

10.5.2 Geometry Property Analysis Functions 701
10.5.2.1 General Geometry Property Analysis

Functions . 701
10.5.2.2 Point Property Analysis Functions . . . 703
10.5.2.3 LineString Property Analysis Functions

. 703
10.5.2.4 MultiLineString Property Analysis

Functions . 705
10.5.2.5 Polygon Property Analysis Functions

. 705
10.5.2.6 MultiPolygon Property Analysis

Functions . 706
10.5.2.7 GeometryCollection Property Analysis

Functions . 707
10.5.3 Functions That Create New Geometries From

Existing Ones . 707
10.5.3.1 Geometry Functions That Produce New

Geometries . 707
10.5.3.2 Spatial Operators 708

10.5.4 Functions For Testing Spatial Relations Between
Geometric Objects . 708

10.5.5 Relations On Geometry Minimal Bounding
Rectangles (MBRs) . 708

10.5.6 Functions That Test Spatial Relationships Between
Geometries . 709

10.6 Optimising Spatial Analysis . 710
10.6.1 Creating Spatial Indexes . 711
10.6.2 Using a Spatial Index . 712

10.7 MySQL Conformance and Compatibility 714
10.7.1 GIS Features That Are Not Yet Implemented . . 714

xix

11 MySQL APIs. 715
11.1 MySQL C API . 715

11.1.1 C API Datatypes . 715
11.1.2 C API Function Overview . 718
11.1.3 C API Function Descriptions 722

11.1.3.1 mysql_affected_rows() 722
11.1.3.2 mysql_change_user() 723
11.1.3.3 mysql_character_set_name(). 724
11.1.3.4 mysql_close() . 725
11.1.3.5 mysql_connect() 725
11.1.3.6 mysql_create_db() 726
11.1.3.7 mysql_data_seek() 727
11.1.3.8 mysql_debug() . 727
11.1.3.9 mysql_drop_db() 728
11.1.3.10 mysql_dump_debug_info() 728
11.1.3.11 mysql_eof() . 729
11.1.3.12 mysql_errno() . 730
11.1.3.13 mysql_error() . 731
11.1.3.14 mysql_escape_string() 731
11.1.3.15 mysql_fetch_field() 732
11.1.3.16 mysql_fetch_fields() 732
11.1.3.17 mysql_fetch_field_direct() 733
11.1.3.18 mysql_fetch_lengths() 734
11.1.3.19 mysql_fetch_row() 735
11.1.3.20 mysql_field_count() 736
11.1.3.21 mysql_field_seek() 737
11.1.3.22 mysql_field_tell() 738
11.1.3.23 mysql_free_result() 738
11.1.3.24 mysql_get_client_info() 738
11.1.3.25 mysql_get_server_version() 739
11.1.3.26 mysql_get_host_info() 739
11.1.3.27 mysql_get_proto_info() 740
11.1.3.28 mysql_get_server_info() 740
11.1.3.29 mysql_info() . 740
11.1.3.30 mysql_init() . 741
11.1.3.31 mysql_insert_id() 741
11.1.3.32 mysql_kill() . 742
11.1.3.33 mysql_list_dbs() 743
11.1.3.34 mysql_list_fields() 743
11.1.3.35 mysql_list_processes() 744
11.1.3.36 mysql_list_tables() 745
11.1.3.37 mysql_num_fields() 745
11.1.3.38 mysql_num_rows() 747
11.1.3.39 mysql_options() 747
11.1.3.40 mysql_ping() . 749
11.1.3.41 mysql_query() . 750
11.1.3.42 mysql_real_connect() 750
11.1.3.43 mysql_real_escape_string() 753

xx

11.1.3.44 mysql_real_query() 754
11.1.3.45 mysql_reload() 755
11.1.3.46 mysql_row_seek() 756
11.1.3.47 mysql_row_tell() 756
11.1.3.48 mysql_select_db() 756
11.1.3.49 mysql_sqlstate() 757
11.1.3.50 mysql_shutdown() 758
11.1.3.51 mysql_stat() . 758
11.1.3.52 mysql_store_result() 759
11.1.3.53 mysql_thread_id() 760
11.1.3.54 mysql_use_result() 760
11.1.3.55 mysql_commit() 761
11.1.3.56 mysql_rollback() 762
11.1.3.57 mysql_autocommit() 762
11.1.3.58 mysql_more_results() 762
11.1.3.59 mysql_next_result() 763

11.1.4 C API Prepared Statements 763
11.1.5 C API Prepared Statement Datatypes. 764
11.1.6 C API Prepared Statement Function Overview

. 766
11.1.7 C API Prepared Statement Function Descriptions

. 768
11.1.7.1 mysql_prepare() 769
11.1.7.2 mysql_param_count() 770
11.1.7.3 mysql_get_metadata() 770
11.1.7.4 mysql_bind_param() 771
11.1.7.5 mysql_execute() 772
11.1.7.6 mysql_stmt_affected_rows(). 776
11.1.7.7 mysql_bind_result() 777
11.1.7.8 mysql_stmt_store_result() 778
11.1.7.9 mysql_stmt_data_seek() 779
11.1.7.10 mysql_stmt_row_seek() 779
11.1.7.11 mysql_stmt_row_tell() 780
11.1.7.12 mysql_stmt_num_rows() 780
11.1.7.13 mysql_fetch() . 780
11.1.7.14 mysql_send_long_data() 786
11.1.7.15 mysql_stmt_close() 788
11.1.7.16 mysql_stmt_errno() 788
11.1.7.17 mysql_stmt_error() 789
11.1.7.18 mysql_stmt_sqlstate() 789

11.1.8 C API Handling of Multiple Query Execution . . 790
11.1.9 C API Handling of Date and Time Values 791
11.1.10 C API Threaded Function Descriptions 792

11.1.10.1 my_init() . 792
11.1.10.2 mysql_thread_init() 792
11.1.10.3 mysql_thread_end() 793
11.1.10.4 mysql_thread_safe() 793

xxi

11.1.11 C API Embedded Server Function Descriptions
. 793

11.1.11.1 mysql_server_init() 793
11.1.11.2 mysql_server_end() 795

11.1.12 Common questions and problems when using the
C API . 795

11.1.12.1 Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns
Success . 795

11.1.12.2 What Results You Can Get from a Query
. 795

11.1.12.3 How to Get the Unique ID for the Last
Inserted Row . 796

11.1.12.4 Problems Linking with the C API . . . 796
11.1.13 Building Client Programs 797
11.1.14 How to Make a Threaded Client 797
11.1.15 libmysqld, the Embedded MySQL Server Library

. 799
11.1.15.1 Overview of the Embedded MySQL

Server Library . 799
11.1.15.2 Compiling Programs with libmysqld

. 799
11.1.15.3 Restrictions when using the Embedded

MySQL Server . 799
11.1.15.4 Using Option Files with the Embedded

Server. 800
11.1.15.5 Things left to do in Embedded Server

(TODO) . 800
11.1.15.6 A Simple Embedded Server Example

. 800
11.1.15.7 Licensing the Embedded Server 804

11.2 MySQL ODBC Support . 804
11.2.1 How to Install MyODBC . 804
11.2.2 How to Fill in the Various Fields in the ODBC

Administrator Program . 805
11.2.3 Connect parameters for MyODBC 806
11.2.4 How to Report Problems with MyODBC 807
11.2.5 Programs Known to Work with MyODBC 808
11.2.6 How to Get the Value of an AUTO_INCREMENT

Column in ODBC. 812
11.2.7 Reporting Problems with MyODBC. 813

11.3 MySQL Java Connectivity (JDBC) . 814
11.4 MySQL PHP API . 814

11.4.1 Common Problems with MySQL and PHP 814
11.5 MySQL Perl API . 814

11.5.1 DBI with DBD::mysql . 815
11.5.2 The DBI Interface. 815
11.5.3 More DBI/DBD Information 821

xxii

11.6 MySQL C++ API . 821
11.6.1 Borland C++ . 821

11.7 MySQL Python API . 821
11.8 MySQL Tcl API . 822
11.9 MySQL Eiffel Wrapper . 822

12 Error Handling in MySQL 823
12.1 Error Returns. 823

13 Extending MySQL . 830
13.1 MySQL Internals. 830

13.1.1 MySQL Threads. 830
13.1.2 MySQL Test Suite . 830

13.1.2.1 Running the MySQL Test Suite 831
13.1.2.2 Extending the MySQL Test Suite 831
13.1.2.3 Reporting Bugs in the MySQL Test Suite

. 832
13.2 Adding New Functions to MySQL . 833

13.2.1 CREATE FUNCTION/DROP FUNCTION Syntax 833
13.2.2 Adding a New User-definable Function 834

13.2.2.1 UDF Calling Sequences for simple
functions . 836

13.2.2.2 UDF Calling Sequences for aggregate
functions . 837

13.2.2.3 Argument Processing 838
13.2.2.4 Return Values and Error Handling . . . 839
13.2.2.5 Compiling and Installing User-definable

Functions . 840
13.2.3 Adding a New Native Function 841

13.3 Adding New Procedures to MySQL . 843
13.3.1 Procedure Analyse . 843
13.3.2 Writing a Procedure . 843

Appendix A Problems and Common Errors . . 844
A.1 How to Determine What Is Causing Problems 844
A.2 Common Errors When Using MySQL 845

A.2.1 Access denied Error . 845
A.2.2 MySQL server has gone away Error 845
A.2.3 Can’t connect to [local] MySQL server Error

. 846
A.2.4 Client does not support authentication

protocol error . 848
A.2.5 Host ’...’ is blocked Error 848
A.2.6 Too many connections Error 849
A.2.7 Some non-transactional changed tables

couldn’t be rolled back Error 849
A.2.8 Out of memory Error . 849

xxiii

A.2.9 Packet too large Error . 850
A.2.10 Communication Errors / Aborted Connection

. 850
A.2.11 The table is full Error . 851
A.2.12 Can’t create/write to file Error 852
A.2.13 Commands out of sync Error in Client 852
A.2.14 Ignoring user Error . 853
A.2.15 Table ’xxx’ doesn’t exist Error 853
A.2.16 Can’t initialize character set xxx error . . 853
A.2.17 File Not Found . 854

A.3 Installation Related Issues . 855
A.3.1 Problems When Linking with the MySQL Client

Library . 855
A.3.2 How to Run MySQL As a Normal User 855
A.3.3 Problems with File Permissions 856

A.4 Administration Related Issues . 857
A.4.1 What To Do If MySQL Keeps Crashing 857
A.4.2 How to Reset a Forgotten Root Password 859
A.4.3 How MySQL Handles a Full Disk. 860
A.4.4 Where MySQL Stores Temporary Files 860
A.4.5 How to Protect or Change the MySQL Socket File

‘/tmp/mysql.sock’ . 861
A.4.6 Time Zone Problems . 862

A.5 Query Related Issues. 862
A.5.1 Case-Sensitivity in Searches 862
A.5.2 Problems Using DATE Columns 862
A.5.3 Problems with NULL Values 864
A.5.4 Problems with alias . 865
A.5.5 Deleting Rows from Related Tables 865
A.5.6 Solving Problems with No Matching Rows 865
A.5.7 Problems with Floating-Point Comparison 866

A.6 Optimiser Related Issues . 868
A.6.1 How to avoid table scan,,, . 868

A.7 Table Definition Related Issues . 869
A.7.1 Problems with ALTER TABLE. 869
A.7.2 How To Change the Order of Columns in a Table

. 869
A.7.3 TEMPORARY TABLE problems 870

Appendix B Contributed Programs 871
B.1 APIs. 871
B.2 Converters . 873
B.3 Utilities . 874

Appendix C Credits. 876
C.1 Developers at MySQL AB . 876
C.2 Contributors to MySQL . 879
C.3 Supporters to MySQL . 885

xxiv

Appendix D MySQL Change History 886
D.1 Changes in release 5.0.0 (Development) 886
D.2 Changes in release 4.1.x (Alpha) . 886

D.2.1 Changes in release 4.1.1 (to be released soon) . . 887
D.2.2 Changes in release 4.1.0 (03 Apr 2003: Alpha) . . 890

D.3 Changes in release 4.0.x (Production) 892
D.3.1 Changes in release 4.0.17 (not released yet) 893
D.3.2 Changes in release 4.0.16 (17 Oct 2003) 894
D.3.3 Changes in release 4.0.15 (03 Sep 2003) 896
D.3.4 Changes in release 4.0.14 (18 Jul 2003) 900
D.3.5 Changes in release 4.0.13 (16 May 2003) 903
D.3.6 Changes in release 4.0.12 (15 Mar 2003: Production)

. 907
D.3.7 Changes in release 4.0.11 (20 Feb 2003) 908
D.3.8 Changes in release 4.0.10 (29 Jan 2003) 909
D.3.9 Changes in release 4.0.9 (09 Jan 2003) 910
D.3.10 Changes in release 4.0.8 (07 Jan 2003) 911
D.3.11 Changes in release 4.0.7 (20 Dec 2002) 911
D.3.12 Changes in release 4.0.6 (14 Dec 2002: Gamma)

. 912
D.3.13 Changes in release 4.0.5 (13 Nov 2002) 913
D.3.14 Changes in release 4.0.4 (29 Sep 2002) 915
D.3.15 Changes in release 4.0.3 (26 Aug 2002: Beta) . . 917
D.3.16 Changes in release 4.0.2 (01 Jul 2002) 919
D.3.17 Changes in release 4.0.1 (23 Dec 2001) 922
D.3.18 Changes in release 4.0.0 (Oct 2001: Alpha). . . . 923

D.4 Changes in release 3.23.x (Recent; still supported). 925
D.4.1 Changes in release 3.23.59 (not released yet) . . . 925
D.4.2 Changes in release 3.23.58 (11 Sep 2003) 926
D.4.3 Changes in release 3.23.57 (06 Jun 2003) 926
D.4.4 Changes in release 3.23.56 (13 Mar 2003) 927
D.4.5 Changes in release 3.23.55 (23 Jan 2003) 928
D.4.6 Changes in release 3.23.54 (05 Dec 2002) 929
D.4.7 Changes in release 3.23.53 (09 Oct 2002) 930
D.4.8 Changes in release 3.23.52 (14 Aug 2002) 931
D.4.9 Changes in release 3.23.51 (31 May 2002) 931
D.4.10 Changes in release 3.23.50 (21 Apr 2002) 932
D.4.11 Changes in release 3.23.49 933
D.4.12 Changes in release 3.23.48 (07 Feb 2002) 933
D.4.13 Changes in release 3.23.47 (27 Dec 2001) 934
D.4.14 Changes in release 3.23.46 (29 Nov 2001) 934
D.4.15 Changes in release 3.23.45 (22 Nov 2001) 935
D.4.16 Changes in release 3.23.44 (31 Oct 2001) 935
D.4.17 Changes in release 3.23.43 (04 Oct 2001) 936
D.4.18 Changes in release 3.23.42 (08 Sep 2001) 937
D.4.19 Changes in release 3.23.41 (11 Aug 2001) 938
D.4.20 Changes in release 3.23.40 938
D.4.21 Changes in release 3.23.39 (12 Jun 2001) 939

xxv

D.4.22 Changes in release 3.23.38 (09 May 2001) 939
D.4.23 Changes in release 3.23.37 (17 Apr 2001) 940
D.4.24 Changes in release 3.23.36 (27 Mar 2001) 941
D.4.25 Changes in release 3.23.35 (15 Mar 2001) 941
D.4.26 Changes in release 3.23.34a 942
D.4.27 Changes in release 3.23.34 (10 Mar 2001) 942
D.4.28 Changes in release 3.23.33 (09 Feb 2001) 943
D.4.29 Changes in release 3.23.32 (22 Jan 2001:

Production) . 944
D.4.30 Changes in release 3.23.31 (17 Jan 2001) 944
D.4.31 Changes in release 3.23.30 (04 Jan 2001) 945
D.4.32 Changes in release 3.23.29 (16 Dec 2000) 946
D.4.33 Changes in release 3.23.28 (22 Nov 2000: Gamma)

. 947
D.4.34 Changes in release 3.23.27 (24 Oct 2000) 949
D.4.35 Changes in release 3.23.26 (18 Oct 2000) 949
D.4.36 Changes in release 3.23.25 (29 Sep 2000) 950
D.4.37 Changes in release 3.23.24 (08 Sep 2000) 951
D.4.38 Changes in release 3.23.23 (01 Sep 2000) 952
D.4.39 Changes in release 3.23.22 (31 Jul 2000) 953
D.4.40 Changes in release 3.23.21 953
D.4.41 Changes in release 3.23.20 954
D.4.42 Changes in release 3.23.19 954
D.4.43 Changes in release 3.23.18 955
D.4.44 Changes in release 3.23.17 955
D.4.45 Changes in release 3.23.16 956
D.4.46 Changes in release 3.23.15 (May 2000: Beta) . . 956
D.4.47 Changes in release 3.23.14 957
D.4.48 Changes in release 3.23.13 958
D.4.49 Changes in release 3.23.12 (07 Mar 2000) 958
D.4.50 Changes in release 3.23.11 959
D.4.51 Changes in release 3.23.10 959
D.4.52 Changes in release 3.23.9 . 959
D.4.53 Changes in release 3.23.8 (02 Jan 2000) 960
D.4.54 Changes in release 3.23.7 (10 Dec 1999) 961
D.4.55 Changes in release 3.23.6 . 961
D.4.56 Changes in release 3.23.5 (20 Oct 1999) 962
D.4.57 Changes in release 3.23.4 (28 Sep 1999) 963
D.4.58 Changes in release 3.23.3 . 963
D.4.59 Changes in release 3.23.2 (09 Aug 1999) 964
D.4.60 Changes in release 3.23.1 . 965
D.4.61 Changes in release 3.23.0 (05 Aug 1999: Alpha)

. 965
D.5 Changes in release 3.22.x (Old; discontinued) 967

D.5.1 Changes in release 3.22.35 . 967
D.5.2 Changes in release 3.22.34 . 967
D.5.3 Changes in release 3.22.33 . 967
D.5.4 Changes in release 3.22.32 (14 Feb 2000) 967

xxvi

D.5.5 Changes in release 3.22.31 . 968
D.5.6 Changes in release 3.22.30 . 968
D.5.7 Changes in release 3.22.29 (02 Jan 2000) 968
D.5.8 Changes in release 3.22.28 (20 Oct 1999) 968
D.5.9 Changes in release 3.22.27 . 968
D.5.10 Changes in release 3.22.26 (16 Sep 1999) 969
D.5.11 Changes in release 3.22.25 969
D.5.12 Changes in release 3.22.24 (05 Jul 1999) 969
D.5.13 Changes in release 3.22.23 (08 Jun 1999) 969
D.5.14 Changes in release 3.22.22 (30 Apr 1999) 970
D.5.15 Changes in release 3.22.21 970
D.5.16 Changes in release 3.22.20 (18 Mar 1999) 970
D.5.17 Changes in release 3.22.19 (Mar 1999: Production)

. 970
D.5.18 Changes in release 3.22.18 970
D.5.19 Changes in release 3.22.17 971
D.5.20 Changes in release 3.22.16 (Feb 1999: Gamma)

. 971
D.5.21 Changes in release 3.22.15 971
D.5.22 Changes in release 3.22.14 972
D.5.23 Changes in release 3.22.13 972
D.5.24 Changes in release 3.22.12 972
D.5.25 Changes in release 3.22.11 973
D.5.26 Changes in release 3.22.10 973
D.5.27 Changes in release 3.22.9 . 974
D.5.28 Changes in release 3.22.8 . 974
D.5.29 Changes in release 3.22.7 (Sep 1998: Beta) 975
D.5.30 Changes in release 3.22.6 . 975
D.5.31 Changes in release 3.22.5 . 976
D.5.32 Changes in release 3.22.4 . 977
D.5.33 Changes in release 3.22.3 . 978
D.5.34 Changes in release 3.22.2 . 978
D.5.35 Changes in release 3.22.1 (Jun 1998: Alpha) . . 979
D.5.36 Changes in release 3.22.0 . 979

D.6 Changes in release 3.21.x . 981
D.6.1 Changes in release 3.21.33 . 981
D.6.2 Changes in release 3.21.32 . 981
D.6.3 Changes in release 3.21.31 . 981
D.6.4 Changes in release 3.21.30 . 982
D.6.5 Changes in release 3.21.29 . 982
D.6.6 Changes in release 3.21.28 . 982
D.6.7 Changes in release 3.21.27 . 983
D.6.8 Changes in release 3.21.26 . 983
D.6.9 Changes in release 3.21.25 . 983
D.6.10 Changes in release 3.21.24 984
D.6.11 Changes in release 3.21.23 984
D.6.12 Changes in release 3.21.22 984
D.6.13 Changes in release 3.21.21a 985

xxvii

D.6.14 Changes in release 3.21.21 985
D.6.15 Changes in release 3.21.20 985
D.6.16 Changes in release 3.21.19 986
D.6.17 Changes in release 3.21.18 986
D.6.18 Changes in release 3.21.17 986
D.6.19 Changes in release 3.21.16 987
D.6.20 Changes in release 3.21.15 987
D.6.21 Changes in release 3.21.14b 988
D.6.22 Changes in release 3.21.14a 988
D.6.23 Changes in release 3.21.13 988
D.6.24 Changes in release 3.21.12 989
D.6.25 Changes in release 3.21.11 989
D.6.26 Changes in release 3.21.10 990
D.6.27 Changes in release 3.21.9 . 990
D.6.28 Changes in release 3.21.8 . 990
D.6.29 Changes in release 3.21.7 . 991
D.6.30 Changes in release 3.21.6 . 991
D.6.31 Changes in release 3.21.5 . 991
D.6.32 Changes in release 3.21.4 . 992
D.6.33 Changes in release 3.21.3 . 992
D.6.34 Changes in release 3.21.2 . 993
D.6.35 Changes in release 3.21.0 . 993

D.7 Changes in release 3.20.x . 994
D.7.1 Changes in release 3.20.18 . 994
D.7.2 Changes in release 3.20.17 . 995
D.7.3 Changes in release 3.20.16 . 996
D.7.4 Changes in release 3.20.15 . 996
D.7.5 Changes in release 3.20.14 . 996
D.7.6 Changes in release 3.20.13 . 997
D.7.7 Changes in release 3.20.11 . 997
D.7.8 Changes in release 3.20.10 . 998
D.7.9 Changes in release 3.20.9 . 998
D.7.10 Changes in release 3.20.8 . 998
D.7.11 Changes in release 3.20.7 . 998
D.7.12 Changes in release 3.20.6 . 999
D.7.13 Changes in release 3.20.3 1000
D.7.14 Changes in release 3.20.0 1001

D.8 Changes in release 3.19.x . 1001
D.8.1 Changes in release 3.19.5 . 1001
D.8.2 Changes in release 3.19.4 . 1002
D.8.3 Changes in release 3.19.3 . 1002

xxviii

Appendix E Porting to Other Systems 1003
E.1 Debugging a MySQL server. 1004

E.1.1 Compiling MYSQL for Debugging 1004
E.1.2 Creating Trace Files . 1005
E.1.3 Debugging mysqld under gdb 1006
E.1.4 Using a Stack Trace . 1007
E.1.5 Using Log Files to Find Cause of Errors in mysqld

. 1008
E.1.6 Making a Test Case If You Experience Table

Corruption . 1009
E.2 Debugging a MySQL client . 1009
E.3 The DBUG Package . 1010
E.4 Locking methods . 1011
E.5 Comments about RTS threads . 1012
E.6 Differences between different thread packages 1014

Appendix F Environment Variables 1016

Appendix G MySQL Regular Expressions . . 1017

Appendix H GNU General Public License . . 1020

Appendix I GNU Lesser General Public License
. 1026

SQL command, type and function index 1035

Concept Index . 1044

Chapter 1: General Information 1

1 General Information

The MySQL R© software delivers a very fast, multi-threaded, multi-user, and robust SQL
(Structured Query Language) database server. MySQL Server is intended for mission-
critical, heavy-load production systems as well as for embedding into mass-deployed soft-
ware. MySQL is a trademark of MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an
Open Source/Free Software product under the terms of the GNU General Public License
(http://www.gnu.org/licenses/) or can purchase a standard commercial license from
MySQL AB. See Section 1.4 [Licensing and Support], page 15.

The MySQL web site (http://www.mysql.com/) provides the latest information about the
MySQL software.

The following list describes some sections of particular interest in this manual:

• For information about the company behind the MySQL Database Server, see Section 1.3
[MySQL AB Overview], page 11.

• For a discussion about the capabilities of the MySQL Database Server, see Section 1.2.2
[Features], page 5.

• For installation instructions, see Chapter 2 [Installing], page 56.

• For tips on porting the MySQL Database Software to new architectures or operating
systems, see Appendix E [Porting], page 1003.

• For information about upgrading from a Version 4.0 release, see Section 2.5.1
[Upgrading-from-4.0], page 110.

• For information about upgrading from a Version 3.23 release, see Section 2.5.2
[Upgrading-from-3.23], page 113.

• For information about upgrading from a Version 3.22 release, see Section 2.5.3
[Upgrading-from-3.22], page 116.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3 [Tutorial],
page 157.

• For examples of SQL and benchmarking information, see the benchmarking directory
(‘sql-bench’ in the distribution).

• For a history of new features and bug fixes, see Appendix D [News], page 886.

• For a list of currently known bugs and misfeatures, see Section 1.7.6 [Bugs], page 44.

• For future plans, see Section 1.8 [TODO], page 49.

• For a list of all the contributors to this project, see Appendix C [Credits], page 876.

Important:

Reports of errors (often called bugs), as well as questions and comments, should be sent
to the general MySQL mailing list. See Section 1.6.1.1 [Mailing-list], page 25. See Sec-
tion 1.6.1.3 [Bug reports], page 27.

The mysqlbug script should be used to generate bug reports on Unix. (Windows distribu-
tions contain a file ‘mysqlbug.txt’ in the base directory that can be used as a template for
a bug report.)

2 MySQL Technical Reference for Version 4.1.1-alpha

For source distributions, the mysqlbug script can be found in the ‘scripts’ directory. For
binary distributions, mysqlbug can be found in the ‘bin’ directory (‘/usr/bin’ for the
MySQL-server RPM package).
If you have found a sensitive security bug in MySQL Server, you should send an e-mail to
security@mysql.com.

1.1 About This Manual

This is the MySQL reference manual; it documents MySQL up to Version 4.1.1-alpha. Func-
tional changes are always indicated with reference to the version, so this manual is also suit-
able if you are using an older version of the MySQL software (such as 3.23 or 4.0-production).
There are also references for version 5.0 (development).
Being a reference manual, it does not provide general instruction on SQL or relational
database concepts.
As the MySQL Database Software is under constant development, the manual is
also updated frequently. The most recent version of this manual is available at
http://www.mysql.com/documentation/ in many different formats, including HTML,
PDF, and Windows HLP versions.
The primary document is the Texinfo file. The HTML version is produced automatically
using a modified version of texi2html. The plain text and Info versions are produced
with makeinfo. The PostScript version is produced using texi2dvi and dvips. The PDF
version is produced with pdftex.
If you have a hard time finding information in the manual, you can try our searchable
version at http://www.mysql.com/doc/.
If you have any suggestions concerning additions or corrections to this manual, please send
them to the documentation team at docs@mysql.com.
This manual was initially written by David Axmark and Michael (Monty) Widenius. It
is now maintained by the MySQL Documentation Team, consisting of Arjen Lentz, Paul
DuBois and Stefan Hinz. For the many other contributors, see Appendix C [Credits],
page 876.
The copyright (2003) to this manual is owned by the Swedish company MySQL AB. See
Section 1.4.2 [Copyright], page 16.

1.1.1 Conventions Used in This Manual

This manual uses certain typographical conventions:

constant Constant-width font is used for command names and options; SQL statements;
database, table, and column names; C and Perl code; and environment vari-
ables. Example: “To see how mysqladmin works, invoke it with the --help
option.”

‘filename’
Constant-width font with surrounding quotes is used for filenames and path-
names. Example: “The distribution is installed under the ‘/usr/local/’ direc-
tory.”

Chapter 1: General Information 3

‘c’ Constant-width font with surrounding quotes is also used to indicate character
sequences. Example: “To specify a wildcard, use the ‘%’ character.”

italic Italic font is used for emphasis, like this.

boldface Boldface font is used in table headings and to convey especially strong emphasis.

When commands are shown that are meant to be executed by a particular program, the
program is indicated by a prompt shown before the command. For example, shell> indi-
cates a command that you execute from your login shell, and mysql> indicates a command
that you execute from the mysql client program:

shell> type a shell command here
mysql> type a mysql command here

Shell commands are shown using Bourne shell syntax. If you are using a csh-style shell,
you may need to issue commands slightly differently. For example, the sequence to set an
environment variable and run a command looks like this in Bourne shell syntax:

shell> VARNAME=value some_command

For csh, you would execute the sequence like this:

shell> setenv VARNAME value
shell> some_command

Database, table, and column names must often be substituted into commands. To indicate
that such substitution is necessary, this manual uses db_name, tbl_name, and col_name.
For example, you might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own
database, table, and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case-sensitive and may be written in uppercase or lowercase. This
manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) are used to indicate optional words or
clauses. For example, in the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by
vertical bars (‘|’). When one member from a set of choices may be chosen, the alternatives
are listed within square brackets (‘[’ and ‘]’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within
braces (‘{’ and ‘}’):

{DESCRIBE | DESC} tbl_name {col_name | wild}

4 MySQL Technical Reference for Version 4.1.1-alpha

1.2 Overview of the MySQL Database Management System

MySQL, the most popular Open Source SQL database management system, is developed,
distributed, and supported by MySQL AB. MySQL AB is a commercial company, founded
by the MySQL developers, that builds its business providing services around the MySQL
database management system. See Section 1.3 [MySQL AB Overview], page 11.
The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
software and MySQL AB.

MySQL is a database management system.
A database is a structured collection of data. It may be anything from a simple
shopping list to a picture gallery or the vast amounts of information in a corpo-
rate network. To add, access, and process data stored in a computer database,
you need a database management system such as MySQL Server. Since com-
puters are very good at handling large amounts of data, database management
systems play a central role in computing, as stand-alone utilities or as parts of
other applications.

MySQL is a relational database management system.
A relational database stores data in separate tables rather than putting all the
data in one big storeroom. This adds speed and flexibility. The SQL part of
“MySQL” stands for “Structured Query Language”. SQL is the most common
standardised language used to access databases and is defined by the ANSI/ISO
SQL Standard.(The SQL standard has been evolving since 1986 and several
versions exist. In this manual, ”SQL-92” refers to the standard released in
1992, ”SQL-99” refers to the standard released in 1999, and ”SQL:2003” refers
to the version of the standard that is expected to be released in mid-2003.We use
the term ”the SQL standard” to mean the current version of the SQL Standard
at any time.)

MySQL software is Open Source.
Open Source means that it is possible for anyone to use and modify the software.
Anybody can download the MySQL software from the Internet and use it without
paying anything. If you wish, you may study the source code and change it
to suit your needs. The MySQL software uses the GPL (GNU General Public
License), http://www.gnu.org/licenses/, to define what you may and may
not do with the software in different situations. If you feel uncomfortable with
the GPL or need to embed MySQL code into a commercial application you can buy
a commercially licensed version from us. See Section 1.4.3 [MySQL licenses],
page 17.

Why use the MySQL Database Server?
The MySQL Database Server is very fast, reliable, and easy to use. If that is
what you are looking for, you should give it a try. MySQL Server also has a
practical set of features developed in close cooperation with our users. You can
find a performance comparison of MySQL Server with other database managers
on our benchmark page. See Section 5.1.4 [MySQL Benchmarks], page 397.
MySQL Server was originally developed to handle large databases much faster
than existing solutions and has been successfully used in highly demanding pro-

Chapter 1: General Information 5

duction environments for several years. Though under constant development,
MySQL Server today offers a rich and useful set of functions. Its connectivity,
speed, and security make MySQL Server highly suited for accessing databases
on the Internet.

The technical features of MySQL Server
For advanced technical information, see Chapter 6 [Reference], page 441. The
MySQL Database Software is a client/server system that consists of a multi-
threaded SQL server that supports different backends, several different client
programs and libraries, administrative tools, and a wide range of programming
interfaces (APIs).
We also provide MySQL Server as a multi-threaded library which you can link
into your application to get a smaller, faster, easier-to-manage product.

There is a large amount of contributed MySQL software available.
It is very likely that you will find that your favorite application or language
already supports the MySQL Database Server.

The official way to pronounce MySQL is “My Ess Que Ell” (not “my sequel”), but we don’t
mind if you pronounce it as “my sequel” or in some other localised way.

1.2.1 History of MySQL

We started out with the intention of using mSQL to connect to our tables using our own
fast low-level (ISAM) routines. However, after some testing we came to the conclusion that
mSQL was not fast enough nor flexible enough for our needs. This resulted in a new SQL
interface to our database but with almost the same API interface as mSQL. This API was
chosen to ease porting of third-party code.
The derivation of the name MySQL is not clear. Our base directory and a large number of
our libraries and tools have had the prefix “my” for well over 10 years. However, co-founder
Monty Widenius’s daughter (some years younger) is also named My. Which of the two gave
its name to MySQL is still a mystery, even for us.
The name of the MySQL Dolphin (our logo) is Sakila. Sakila was chosen by the founders
of MySQL AB from a huge list of names suggested by users in our "Name the Dolphin"
contest. The winning name was submitted by Ambrose Twebaze, an open source software
developer from Swaziland, Africa. According to Ambrose, the name Sakila has its roots
in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha,
Tanzania, near Ambrose’s country of origin, Uganda.

1.2.2 The Main Features of MySQL

The following list describes some of the important characteristics of the MySQL Database
Software. See Section 1.5.1 [MySQL 4.0 Nutshell], page 20.

Internals and Portability
• Written in C and C++. Tested with a broad range of different compilers.
• Works on many different platforms. See Section 2.2.3 [Which OS], page 73.
• Uses GNU Automake, Autoconf, and Libtool for portability.

6 MySQL Technical Reference for Version 4.1.1-alpha

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl. See
Chapter 11 [Clients], page 715.

• Fully multi-threaded using kernel threads. This means it can easily use
multiple CPUs if available.

• Transactional and non-transactional storage engines.
• Very fast B-tree disk tables (MyISAM) with index compression.
• Relatively easy to add another storage engine. This is useful if you want

to add an SQL interface to an in-house database.
• A very fast thread-based memory allocation system.
• Very fast joins using an optimised one-sweep multi-join.
• In-memory hash tables which are used as temporary tables.
• SQL functions are implemented through a highly optimised class library

and should be as fast as possible. Usually there isn’t any memory allocation
at all after query initialisation.

• The MySQL code gets tested with Purify (a commercial mem-
ory leakage detector) as well as with Valgrind, a GPL tool
(http://developer.kde.org/~sewardj/).

• Available as client/server or embedded (linked) version.

Column Types
• Many column types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes

long, FLOAT, DOUBLE, CHAR, VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME,
TIMESTAMP, YEAR, SET, and ENUM types. See Section 6.2 [Column types],
page 453.

• Fixed-length and variable-length records.

Commands and Functions
• Full operator and function support in the SELECT and WHERE clauses of

queries. For example:
mysql> SELECT CONCAT(first_name, " ", last_name)

-> FROM tbl_name
-> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group
functions (COUNT(), COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(),
MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard
SQL and ODBC syntax.

• Support for aliases on tables and columns as required by SQL-92.
• DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were

changed (affected). It is possible to return the number of rows matched
instead by setting a flag when connecting to the server.

• The MySQL-specific SHOW command can be used to retrieve information
about databases, tables, and indexes. The EXPLAIN command can be used
to determine how the optimiser resolves a query.

Chapter 1: General Information 7

• Function names do not clash with table or column names. For example,
ABS is a valid column name. The only restriction is that for a function call,
no spaces are allowed between the function name and the ‘(’ that follows
it. See Section 6.1.7 [Reserved words], page 451.

• You can mix tables from different databases in the same query (as of Ver-
sion 3.22).

Security
• A privilege and password system that is very flexible and secure, and allows

host-based verification. Passwords are secure because all password traffic
is encrypted when you connect to a server.

Scalability and Limits
• Handles large databases. We use MySQL Server with databases that con-

tain 50 million records. We also know of users that use MySQL Server with
60,000 tables and about 5,000,000,000 rows.

• Up to 32 indexes per table are allowed. Each index may consist of 1 to
16 columns or parts of columns. The maximum index width is 500 bytes
(this may be changed when compiling MySQL Server). An index may use
a prefix of a CHAR or VARCHAR field.

Connectivity
• Clients may connect to the MySQL server using TCP/IP Sockets, Unix Sock-

ets (Unix), or Named Pipes (NT).
• ODBC (Open-DataBase-Connectivity) support for Win32 (with source).

All ODBC 2.5 functions are supported, as are many others. For example,
you can use MS Access to connect to your MySQL server. See Section 11.2
[ODBC], page 804.

Localisation
• The server can provide error messages to clients in many languages. See

Section 4.7.2 [Languages], page 307.
• Full support for several different character sets, including ISO-8859-1

(Latin1), german, big5, ujis, and more. For example, the Scandinavian
characters ‘â’, ‘ä’ and ‘ö’ are allowed in table and column names.

• All data is saved in the chosen character set. All comparisons for normal
string columns are case-insensitive.

• Sorting is done according to the chosen character set (the Swedish way by
default). It is possible to change this when the MySQL server is started. To
see an example of very advanced sorting, look at the Czech sorting code.
MySQL Server supports many different character sets that can be specified
at compile and runtime.

Clients and Tools
• Includes myisamchk, a very fast utility for table checking, optimisation,

and repair. All of the functionality of myisamchk is also available through
the SQL interface. See Chapter 4 [MySQL Database Administration],
page 195.

8 MySQL Technical Reference for Version 4.1.1-alpha

• All MySQL programs can be invoked with the --help or -? options to obtain
online assistance.

1.2.3 Stability of MySQL

This section addresses the questions “How stable is MySQL Server?” and “Can I depend
on MySQL Server in this project?” We will try to clarify these issues and answer some
important questions that concern many potential users. The information in this section is
based on data gathered from the mailing list, which is very active in identifying problems
as well as reporting types of use.

Original code stems back from the early ’80s, providing a stable code base, and the ISAM ta-
ble format remains backward-compatible. At TcX, the predecessor of MySQL AB, MySQL code
has worked in projects since mid-1996, without any problems. When the MySQL Database
Software was released to a wider public, our new users quickly found some pieces of
“untested code”. Each new release since then has had fewer portability problems (even
though each new release has also had many new features).

Each release of the MySQL Server has been usable. Problems have occurred only when
users try code from the “gray zones.” Naturally, new users don’t know what the gray zones
are; this section therefore attempts to document those areas that are currently known.
The descriptions mostly deal with Version 3.23 and 4.0 of MySQL Server. All known and
reported bugs are fixed in the latest version, with the exception of those listed in the bugs
section, which are things that are design-related. See Section 1.7.6 [Bugs], page 44.

The MySQL Server design is multi-layered with independent modules. Some of the newer
modules are listed here with an indication of how well-tested each of them is:

Replication — Gamma
Large server clusters using replication are in production use, with good results.
Work on enhanced replication features is continuing in MySQL 4.x.

InnoDB tables — Stable (in 3.23 from 3.23.49)
The InnoDB transactional storage engine has been declared stable in the MySQL
3.23 tree, starting from version 3.23.49. InnoDB is being used in large, heavy-
load production systems.

BDB tables — Gamma
The Berkeley DB code is very stable, but we are still improving the BDB trans-
actional storage engine interface in MySQL Server, so it will take some time
before this is as well tested as the other table types.

FULLTEXT — Beta
Full-text search works but is not yet widely used. Important enhancements
have been implemented in MySQL 4.0.

MyODBC 3.51 (uses ODBC SDK 3.51) — Stable
In wide production use. Some issues brought up appear to be application-
related and independent of the ODBC driver or underlying database server.

Chapter 1: General Information 9

Automatic recovery of MyISAM tables — Gamma
This status applies only to the new code in the MyISAM storage engine that
checks if the table was closed properly on open and executes an automatic
check/repair of the table if it wasn’t.

Bulk-insert — Alpha
New feature in MyISAM tables in MySQL 4.0 for faster insert of many rows.

Locking — Gamma
This is very system-dependent. On some systems there are big problems using
standard OS locking (fcntl()). In these cases, you should run mysqld with the
--skip-external-locking flag. Problems are known to occur on some Linux
systems, and on SunOS when using NFS-mounted filesystems.

MySQL AB provides high-quality support for paying customers, and the MySQL mailing list
usually provides answers to common questions. Bugs are usually fixed right away with a
patch; for serious bugs, there is almost always a new release.

1.2.4 How Big MySQL Tables Can Be

MySQL Version 3.22 had a 4 GB (4 gigabyte) limit on table size. With the MyISAM table
type in MySQL Version 3.23, the maximum table size was pushed up to 8 million terabytes
(2 ^ 63 bytes).

In effect, then, the table size for MySQL databases is normally limited by the operating
system.

Note, however, that operating systems have their own file-size limits. Here are some exam-
ples:

Operating System File-Size Limit
Linux-Intel 32 bit 2 GB, much more when using LFS
Linux-Alpha 8 TB (?)
Solaris 2.5.1 2 GB (possible 4GB with patch)
Solaris 2.6 4 GB (can be changed with flag)
Solaris 2.7 Intel 4 GB
Solaris 2.7 UltraSPARC 512 GB

On Linux 2.2 you can get tables larger than 2 GB in size by using the LFS patch for the ext2
filesystem. On Linux 2.4 patches also exist for ReiserFS to get support for big files. Most
current distributions are based on kernel 2.4 and already include all the required Large File
Support (LFS) patches. However, the maximum available file size still depends on several
factors, one of them being the file system used to store MySQL tables.

For a very detailed overview about LFS in Linux, have a look at Andreas Jaeger’s "Large
File Support in Linux" page at http://www.suse.de/~aj/linux_lfs.html.

By default, MySQL tables have a maximum size of about 4 GB. You can check the maximum
table size for a table with the SHOW TABLE STATUS command or with the myisamchk -dv
table_name. See Section 4.6.8 [SHOW], page 284.

If you need a table that will be larger than 4 GB in size (and your operating system supports
it), set the AVG_ROW_LENGTH and MAX_ROWS parameters accordingly when you create your

10 MySQL Technical Reference for Version 4.1.1-alpha

table. See Section 6.5.3 [CREATE TABLE], page 564. You can also set these parameters
later, with ALTER TABLE. See Section 6.5.4 [ALTER TABLE], page 573.
If your big table is a read-only table, you could use myisampack to merge and compress
many tables into one. myisampack usually compresses a table by at least 50%, so you can
have, in effect, much bigger tables. See Section 4.8.4 [myisampack], page 317.
You can get around the operating system file limit for MyISAM datafiles using the RAID
option. See Section 6.5.3 [CREATE TABLE], page 564.
Another solution can be the included MERGE library, which allows you to handle a collection
of identical tables as one. See Section 7.2 [MERGE tables], page 600.

1.2.5 Year 2000 Compliance

The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:
• MySQL Server uses Unix time functions and has no problems with dates until 2069.

All 2-digit years are considered to be in the range 1970 to 2069, which means that if
you store 01 in a YEAR column, MySQL Server treats it as 2001.

• All MySQL date functions are stored in one file, ‘sql/time.cc’, and are coded very
carefully to be year 2000-safe.

• In MySQL Version 3.22 and later, the YEAR column type can store years 0 and 1901 to
2155 in one byte and display them using two or four digits.

You may run into problems with applications that use MySQL Server in a way that is not
Y2K-safe. For example, many old applications store or manipulate years using 2-digit values
(which are ambiguous) rather than 4-digit values. This problem may be compounded by
applications that use values such as 00 or 99 as “missing” value indicators.
Unfortunately, these problems may be difficult to fix because different applications may be
written by different programmers, each of whom may use a different set of conventions and
date-handling functions.
Here is a simple demonstration illustrating that MySQL Server doesn’t have any problems
with dates until the year 2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE y2k (date DATE,
-> date_time DATETIME,
-> time_stamp TIMESTAMP);

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO y2k VALUES
-> ("1998-12-31","1998-12-31 23:59:59",19981231235959),
-> ("1999-01-01","1999-01-01 00:00:00",19990101000000),
-> ("1999-09-09","1999-09-09 23:59:59",19990909235959),
-> ("2000-01-01","2000-01-01 00:00:00",20000101000000),
-> ("2000-02-28","2000-02-28 00:00:00",20000228000000),
-> ("2000-02-29","2000-02-29 00:00:00",20000229000000),

Chapter 1: General Information 11

-> ("2000-03-01","2000-03-01 00:00:00",20000301000000),
-> ("2000-12-31","2000-12-31 23:59:59",20001231235959),
-> ("2001-01-01","2001-01-01 00:00:00",20010101000000),
-> ("2004-12-31","2004-12-31 23:59:59",20041231235959),
-> ("2005-01-01","2005-01-01 00:00:00",20050101000000),
-> ("2030-01-01","2030-01-01 00:00:00",20300101000000),
-> ("2050-01-01","2050-01-01 00:00:00",20500101000000);

Query OK, 13 rows affected (0.01 sec)
Records: 13 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM y2k;
+------------+---------------------+----------------+
| date | date_time | time_stamp |
+------------+---------------------+----------------+
1998-12-31	1998-12-31 23:59:59	19981231235959
1999-01-01	1999-01-01 00:00:00	19990101000000
1999-09-09	1999-09-09 23:59:59	19990909235959
2000-01-01	2000-01-01 00:00:00	20000101000000
2000-02-28	2000-02-28 00:00:00	20000228000000
2000-02-29	2000-02-29 00:00:00	20000229000000
2000-03-01	2000-03-01 00:00:00	20000301000000
2000-12-31	2000-12-31 23:59:59	20001231235959
2001-01-01	2001-01-01 00:00:00	20010101000000
2004-12-31	2004-12-31 23:59:59	20041231235959
2005-01-01	2005-01-01 00:00:00	20050101000000
2030-01-01	2030-01-01 00:00:00	20300101000000
2050-01-01	2050-01-01 00:00:00	00000000000000
+------------+---------------------+----------------+
13 rows in set (0.00 sec)

This example shows that the DATE and DATETIME datatypes will not give any problems with
future dates (they handle dates until the year 9999).
The TIMESTAMP datatype, which is used to store the current time, supports values that
range from 19700101000000 to 20300101000000 on 32-bit machines (signed value). On
64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).
Even though MySQL Server is Y2K-compliant, it is your responsibility to provide unambigu-
ous input. See Section 6.2.2.1 [Y2K issues], page 461 for MySQL Server’s rules for dealing
with ambiguous date input data (data containing 2-digit year values).

1.3 Overview of MySQL AB

MySQL AB is the company of the MySQL founders and main developers. MySQL AB was origi-
nally established in Sweden by David Axmark, Allan Larsson, and Michael Monty Widenius.
The developers of the MySQL server are all employed by the company. We are a virtual or-
ganisation with people in a dozen countries around the world. We communicate extensively
over the Net every day with one another and with our users, supporters, and partners.

12 MySQL Technical Reference for Version 4.1.1-alpha

We are dedicated to developing the MySQL software and spreading our database to new users.
MySQL AB owns the copyright to the MySQL source code, the MySQL logo and trademark, and
this manual. See Section 1.2 [MySQL DBMS Overview], page 4.
The MySQL core values show our dedication to MySQL and Open Source.
We want the MySQL Database Software to be:
• The best and the most widely used database in the world.
• Available to, and affordable by all.
• Easy to use.
• Continuously improving while remaining fast and safe.
• Fun to use and improve.
• Free from bugs.

MySQL AB and the people at MySQL AB:
• Promote Open Source philosophy and support the Open Source community.
• Aim to be good citizens.
• Prefer partners that share our values and mind-set.
• Answer e-mail and provide support.
• Are a virtual company, networking with others.
• Work against software patents.

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.
By the way, the “AB” part of the company name is the acronym for the Swedish “aktiebo-
lag”, or “stock company.” It translates to “MySQL, Inc.” In fact, MySQL Inc. and MySQL
GmbH are examples of MySQL AB subsidiaries. They are located in the US and Germany,
respectively.

1.3.1 The Business Model and Services of MySQL AB

One of the most common questions we encounter is: “How can you make a living from
something you give away for free?” This is how.
MySQL AB makes money on support, services, commercial licenses, and royalties. We use
these revenues to fund product development and to expand the MySQL business.
The company has been profitable since its inception. In October 2001, we accepted ven-
ture financing from leading Scandinavian investors and a handful of business angels. This
investment is used to solidify our business model and build a basis for sustainable growth.

1.3.1.1 Support

MySQL AB is run and owned by the founders and main developers of the MySQL database. The
developers are committed to giving support to customers and other users in order to stay
in touch with their needs and problems. All our support is given by qualified developers.
Really tricky questions are answered by Michael Monty Widenius, principal author of the
MySQL Server. See Section 1.4.1 [Support], page 16.

Chapter 1: General Information 13

For more information and ordering support at various levels, see http://www.mysql.com/support/
or contact our sales staff at sales@mysql.com.

1.3.1.2 Training and Certification

MySQL AB delivers MySQL and related training worldwide. We offer both open courses and
in-house courses tailored to the specific needs of your company. MySQL Training is also
available through our partners, the Authorised MySQL Training Centers.

Our training material uses the same example databases used in our documentation and
our sample applications, and is always updated to reflect the latest MySQL version. Our
trainers are backed by the development team to guarantee the quality of the training and
the continuous development of the course material. This also ensures that no questions
raised during the courses remain unanswered.

Attending our training courses will enable you to achieve your MySQL application goals. You
will also:

• Save time.
• Improve the performance of your application(s).

• Reduce or eliminate the need for additional hardware, decreasing cost.

• Enhance security.
• Increase customers’ and co-workers’ satisfaction.

• Prepare yourself for MySQL Certification.

If you are interested in our training as a potential participant or as a training partner,
please visit the training section at http://www.mysql.com/training/ or contact us at:
training@mysql.com.

For details about the MySQL Certification Program, please see http://www.mysql.com/certification/.

1.3.1.3 Consulting

MySQL AB and its Authorised Partners offer consulting services to users of MySQL Server
and to those who embed MySQL Server in their own software, all over the world.

Our consultants can help you design and tune your databases, construct efficient queries,
tune your platform for optimal performance, resolve migration issues, set up replication,
build robust transactional applications, and more. We also help customers embed MySQL
Server in their products and applications for large-scale deployment.

Our consultants work in close collaboration with our development team, which ensures the
technical quality of our professional services. Consulting assignments range from 2-day
power-start sessions to projects that span weeks and months. Our expertise not only covers
MySQL Server—it also extends into programming and scripting languages such as PHP,
Perl, and more.

If you are interested in our consulting services or want to become a consulting partner,
please visit the consulting section of our web site at http://www.mysql.com/consulting/
or contact our consulting staff at consulting@mysql.com.

14 MySQL Technical Reference for Version 4.1.1-alpha

1.3.1.4 Commercial Licenses

The MySQL database is released under the GNU General Public License (GPL). This means
that the MySQL software can be used free of charge under the GPL. If you do not want
to be bound by the GPL terms (such as the requirement that your application must also
be GPL, you may purchase a commercial license for the same product from MySQL AB; see
http://www.mysql.com/products/pricing.html. Since MySQL AB owns the copyright to
the MySQL source code, we are able to employ Dual Licensing, which means that the same
product is available under GPL and under a commercial license. This does not in any way
affect the Open Source commitment of MySQL AB. For details about when a commercial
license is required, please see Section 1.4.3 [MySQL licenses], page 17.
We also sell commercial licenses of third-party Open Source GPL software that adds value
to MySQL Server. A good example is the InnoDB transactional storage engine that offers
ACID support, row-level locking, crash recovery, multi-versioning, foreign key support, and
more. See Section 7.5 [InnoDB], page 605.

1.3.1.5 Partnering

MySQL AB has a worldwide partner programme that covers training courses, consulting and
support, publications, plus reselling and distributing MySQL and related products. MySQL AB
Partners get visibility on the http://www.mysql.com/ web site and the right to use special
versions of the MySQL trademarks to identify their products and promote their business.
If you are interested in becoming a MySQL AB Partner, please e-mail partner@mysql.com.
The word MySQL and the MySQL dolphin logo are trademarks of MySQL AB. See Section 1.4.4
[MySQL AB Logos and Trademarks], page 18. These trademarks represent a significant
value that the MySQL founders have built over the years.
The MySQL web site (http://www.mysql.com/) is popular among developers and users. In
October 2001, we served 10 million page views. Our visitors represent a group that makes
purchase decisions and recommendations for both software and hardware. Twelve percent of
our visitors authorise purchase decisions, and only nine percent are not involved in purchase
decisions at all. More than 65% have made one or more online business purchases within
the last half-year, and 70% plan to make one in the next few months.

1.3.2 Contact Information

The MySQL web site (http://www.mysql.com/) provides the latest information about MySQL
and MySQL AB.
For press services and inquiries not covered in our News releases (http://www.mysql.com/news/),
please send an e-mail to press@mysql.com.
If you have a valid support contract with MySQL AB, you will get timely, precise answers to
your technical questions about the MySQL software. For more information, see Section 1.4.1
[Support], page 16. On our web site, see http://www.mysql.com/support/, or send an
e-mail to sales@mysql.com.
For information about MySQL training, please visit the training section at
http://www.mysql.com/training/. If you have restricted access to the Internet, please

Chapter 1: General Information 15

contact the MySQL AB training staff via e-mail at training@mysql.com. See Section 1.3.1.2
[Business Services Training], page 13.
For information on the MySQL Certification Program, please see http://www.mysql.com/certification/.
See Section 1.3.1.2 [Business Services Training], page 13.
If you’re interested in consulting, please visit the consulting section of our web site at
http://www.mysql.com/consulting/. If you have restricted access to the Internet, please
contact the MySQL AB consulting staff via e-mail at consulting@mysql.com. See Sec-
tion 1.3.1.3 [Business Services Consulting], page 13.
Commercial licenses may be purchased online at https://order.mysql.com/. There you
will also find information on how to fax your purchase order to MySQL AB. More information
about licensing can be found at http://www.mysql.com/products/pricing.html. If you
have questions regarding licensing or you want a quote for a high-volume license deal,
please fill in the contact form on our web site (http://www.mysql.com/) or send an e-mail
message to licensing@mysql.com (for licensing questions) or to sales@mysql.com (for
sales inquiries). See Section 1.4.3 [MySQL licenses], page 17.
If you represent a business that is interested in partnering with MySQL AB, please send an
e-mail to partner@mysql.com. See Section 1.3.1.5 [Business Services Partnering], page 14.
For more information on the MySQL trademark policy, refer to http://www.mysql.com/company/trademark.html
or send an e-mail to trademark@mysql.com. See Section 1.4.4 [MySQL AB Logos and
Trademarks], page 18.
If you are interested in any of the MySQL AB jobs listed in our jobs section
(http://www.mysql.com/company/jobs/), please send an e-mail to jobs@mysql.com.
Please do not send your CV as an attachment, but rather as plain text at the end of your
e-mail message.
For general discussion among our many users, please direct your attention to the appropriate
mailing list. See Section 1.6.1 [Questions], page 24.
Reports of errors (often called bugs), as well as questions and comments, should be sent to
the general MySQL mailing list. See Section 1.6.1.1 [Mailing-list], page 25. If you have found
a sensitive security bug in the MySQL Server, please send an e-mail to security@mysql.com.
See Section 1.6.1.3 [Bug reports], page 27.
If you have benchmark results that we can publish, please contact us via e-mail at
benchmarks@mysql.com.
If you have suggestions concerning additions or corrections to this manual, please send them
to the manual team via e-mail at docs@mysql.com.
For questions or comments about the workings or content of the MySQL web site
(http://www.mysql.com/), please send an e-mail to webmaster@mysql.com.
MySQL AB has a privacy policy, which can be read at http://www.mysql.com/company/privacy.html.
For any queries regarding this policy, please send an e-mail to privacy@mysql.com.
For all other inquires, please send an e-mail to info@mysql.com.

1.4 MySQL Support and Licensing

This section describes MySQL support and licensing arrangements.

16 MySQL Technical Reference for Version 4.1.1-alpha

1.4.1 Support Offered by MySQL AB

Technical support from MySQL AB means individualised answers to your unique problems
direct from the software engineers who code the MySQL database engine.
We try to take a broad and inclusive view of technical support. Almost any problem
involving MySQL software is important to us if it’s important to you. Typically customers
seek help on how to get different commands and utilities to work, remove performance
bottlenecks, restore crashed systems, understand operating system or networking impacts
on MySQL, set up best practices for backup and recovery, utilise APIs, and so on. Our
support covers only the MySQL server and our own utilities, not third-party products that
access the MySQL server, though we try to help with these where we can.
Detailed information about our various support options is given at http://www.mysql.com/support/,
where support contracts can also be ordered online. If you have restricted access to the
Internet, please contact our sales staff via e-mail at sales@mysql.com.
Technical support is like life insurance. You can live happily without it for years, but when
your hour arrives it becomes critically important, yet it’s too late to buy it. If you use
MySQL Server for important applications and encounter sudden difficulties, it may be too
time consuming to figure out all the answers yourself. You may need immediate access to
the most experienced MySQL troubleshooters available, those employed by MySQL AB.

1.4.2 Copyrights and Licenses Used by MySQL

MySQL AB owns the copyright to the MySQL source code, the MySQL logos and trademarks
and this manual. See Section 1.3 [MySQL AB Overview], page 11. Several different licenses
are relevant to the MySQL distribution:
1. All the MySQL-specific source in the server, the mysqlclient library and the client, as

well as the GNU readline library is covered by the GNU General Public License. See
Appendix H [GPL license], page 1020. The text of this license can be found as the file
‘COPYING’ in the distribution.

2. The GNU getopt library is covered by the GNU Lesser General Public License. See
Appendix I [LGPL license], page 1026.

3. Some parts of the source (the regexp library) are covered by a Berkeley-style copyright.
4. Older versions of MySQL (3.22 and earlier) are subject to a stricter license

(http://www.mysql.com/products/mypl.html). See the documentation of the
specific version for information.

5. The MySQL reference manual is currently not distributed under a GPL-style license. Use
of the manual is subject to the following terms:
• Conversion to other formats is allowed, but the actual content may not be altered

or edited in any way.
• You may create a printed copy for your own personal use.
• For all other uses, such as selling printed copies or using (parts of) the manual in

another publication, prior written agreement from MySQL AB is required.

Please send an e-mail to docs@mysql.com for more information or if you are interested
in doing a translation.

Chapter 1: General Information 17

For information about how the MySQL licenses work in practice, please refer to Section 1.4.3
[MySQL licenses], page 17. Also see Section 1.4.4 [MySQL AB Logos and Trademarks],
page 18.

1.4.3 MySQL Licenses

The MySQL software is released under the GNU General Public License (GPL),
which is probably the best known Open Source license. The formal terms of
the GPL license can be found at http://www.gnu.org/licenses/. See also
http://www.gnu.org/licenses/gpl-faq.html and http://www.gnu.org/philosophy/enforcing-gpl.html.
Since the MySQL software is released under the GPL, it may often be used for free, but
for certain uses you may want or need to buy commercial licenses from MySQL AB at
https://order.mysql.com/. See http://www.mysql.com/products/licensing.html for
more information.
Older versions of MySQL (3.22 and earlier) are subject to a stricter license
(http://www.mysql.com/products/mypl.html). See the documentation of the specific
version for information.
Please note that the use of the MySQL software under commercial license, GPL, or the old
MySQL license does not automatically give you the right to use MySQL AB trademarks. See
Section 1.4.4 [MySQL AB Logos and Trademarks], page 18.

1.4.3.1 Using the MySQL Software Under a Commercial License

The GPL license is contagious in the sense that when a program is linked to a GPL program
all the source code for all the parts of the resulting product must also be released under
the GPL. If you do not follow this GPL requirement, you break the license terms and forfeit
your right to use the GPL program altogether. You also risk damages.
You need a commercial license:
• When you link a program with any GPL code from the MySQL software and don’t want

the resulting product to be licensed under GPL, perhaps because you want to build a
commercial product or keep the added non-GPL code closed source for other reasons.
When purchasing commercial licenses, you are not using the MySQL software under GPL
even though it’s the same code.

• When you distribute a non-GPL application that only works with the MySQL software
and ship it with the MySQL software. This type of solution is considered to be linking
even if it’s done over a network.

• When you distribute copies of the MySQL software without providing the source code
as required under the GPL license.

• When you want to support the further development of the MySQL database even if you
don’t formally need a commercial license. Purchasing support directly from MySQL AB
is another good way of contributing to the development of the MySQL software, with
immediate advantages for you. See Section 1.4.1 [Support], page 16.

If you require a license, you will need one for each installation of the MySQL software. This
covers any number of CPUs on a machine, and there is no artificial limit on the number of
clients that connect to the server in any way.

18 MySQL Technical Reference for Version 4.1.1-alpha

For commercial licenses, please visit our website at http://www.mysql.com/products/licensing.html.
For support contracts, see http://www.mysql.com/support/. If you have special needs
or you have restricted access to the Internet, please contact our sales staff via e-mail at
sales@mysql.com.

1.4.3.2 Using the MySQL Software for Free Under GPL

You can use the MySQL software for free under the GPL if you adhere to the
conditions of the GPL. For additional details, including answers to common ques-
tions about the GPL, see the generic FAQ from the Free Software Foundation at
http://www.gnu.org/licenses/gpl-faq.html. Common uses of the GPL include:
• When you distribute both your own application and the MySQL source code under the

GPL with your product.
• When you distribute the MySQL source code bundled with other programs that are not

linked to or dependent on the MySQL system for their functionality even if you sell the
distribution commercially. This is called mere aggregation in the GPL license.

• When you are not distributing any part of the MySQL system, you can use it for free.
• When you are an Internet Service Provider (ISP), offering web hosting with MySQL

servers for your customers. We encourage people to use ISPs that have MySQL support,
as this will give them the confidence that their ISP will, in fact, have the resources to
solve any problems they may experience with the MySQL installation. Even if an ISP
does not have a commercial license for MySQL Server, their customers should at least
be given read access to the source of the MySQL installation so that the customers can
verify that it is correctly patched.

• When you use the MySQL database software in conjunction with a web server, you do
not need a commercial license (so long as it is not a product you distribute). This is
true even if you run a commercial web server that uses MySQL Server, because you are
not distributing any part of the MySQL system. However, in this case we would like you
to purchase MySQL support because the MySQL software is helping your enterprise.

If your use of MySQL database software does not require a commercial license, we encourage
you to purchase support from MySQL AB anyway. This way you contribute toward MySQL
development and also gain immediate advantages for yourself. See Section 1.4.1 [Support],
page 16.
If you use the MySQL database software in a commercial context such that you profit by its
use, we ask that you further the development of the MySQL software by purchasing some
level of support. We feel that if the MySQL database helps your business, it is reasonable to
ask that you help MySQL AB. (Otherwise, if you ask us support questions, you are not only
using for free something into which we’ve put a lot a work, you’re asking us to provide free
support, too.)

1.4.4 MySQL AB Logos and Trademarks

Many users of the MySQL database want to display the MySQL AB dolphin logo
on their web sites, books, or boxed products. We welcome and encourage this,
although it should be noted that the word MySQL and the MySQL dolphin logo are

Chapter 1: General Information 19

trademarks of MySQL AB and may only be used as stated in our trademark policy at
http://www.mysql.com/company/trademark.html.

1.4.4.1 The Original MySQL Logo

The MySQL dolphin logo was designed by the Finnish advertising agency Priority in 2001.
The dolphin was chosen as a suitable symbol for the MySQL database since it is a smart, fast,
and lean animal, effortlessly navigating oceans of data. We also happen to like dolphins.
The original MySQL logo may only be used by representatives of MySQL AB and by those
having a written agreement allowing them to do so.

1.4.4.2 MySQL Logos that may be Used Without Written
Permission

We have designed a set of special Conditional Use logos that may be downloaded from
our web site at http://www.mysql.com/press/logos.html and used on third-party web
sites without written permission from MySQL AB. The use of these logos is not entirely
unrestricted but, as the name implies, subject to our trademark policy that is also available
on our web site. You should read through the trademark policy if you plan to use them.
The requirements are basically as follows:
• Use the logo you need as displayed on the http://www.mysql.com/ site. You may

scale it to fit your needs, but may not change colours or design, or alter the graphics
in any way.

• Make it evident that you, and not MySQL AB, are the creator and owner of the site that
displays the MySQL trademark.

• Don’t use the trademark in a way that is detrimental to MySQL AB or to the value of
MySQL AB trademarks. We reserve the right to revoke the right to use the MySQL AB
trademark.

• If you use the trademark on a web site, make it clickable, leading directly to
http://www.mysql.com/.

• If you are use the MySQL database under GPL in an application, your application must
be Open Source and must be able to connect to a MySQL server.

Contact us via e-mail at trademark@mysql.com to inquire about special arrangements to
fit your needs.

1.4.4.3 When You Need Written Permission to Use MySQL Logos

You need written permission from MySQL AB before using MySQL logos in the following cases:
• When displaying any MySQL AB logo anywhere except on your web site.
• When displaying any MySQL AB logo except the Conditional Use logos mentioned pre-

viously on web sites or elsewhere.

Due to legal and commercial reasons we monitor the use of MySQL trademarks on prod-
ucts, books, and other items. We usually require a fee for displaying MySQL AB logos on
commercial products, since we think it is reasonable that some of the revenue is returned
to fund further development of the MySQL database.

20 MySQL Technical Reference for Version 4.1.1-alpha

1.4.4.4 MySQL AB Partnership Logos

MySQL partnership logos may be used only by companies and persons having a written
partnership agreement with MySQL AB. Partnerships include certification as a MySQL trainer
or consultant. For more information, please see Section 1.3.1.5 [Partnering], page 14.

1.4.4.5 Using the word MySQL in Printed Text or Presentations

MySQL AB welcomes references to the MySQL database, but it should be noted that the word
MySQL is a trademark of MySQL AB. Because of this, you must append the trademark symbol
(TM) to the first or most prominent use of the word MySQL in a text and, where appropriate,
state that MySQL is a trademark of MySQL AB. For more information, please refer to our
trademark policy at http://www.mysql.com/company/trademark.html.

1.4.4.6 Using the word MySQL in Company and Product Names

Use of the word MySQL in product or company names or in Internet domain names is not
allowed without written permission from MySQL AB.

1.5 MySQL Development Roadmap

This section provides a snapshot of the MySQL development roadmap, including major
features implemented or planned for MySQL 4.0, 4.1, 5.0, and 5.1 The following sections
provide information for each release. Plans for some of the most requested features are
summarized in the following table.

Feature MySQL version
Unions 4.0
Subqueries 4.1
R-trees 4.1 (for MyISAM tables)
Stored procedures 5.0
Views 5.0 or 5.1
Cursors 5.0
Foreign keys 5.1 (3.23 with InnoDB)
Triggers 5.1
Full outer join 5.1
Constraints 5.1

1.5.1 MySQL 4.0 in a Nutshell

Long promised by MySQL AB and long awaited by our users, MySQL Server 4.0 is now
available in production version.

MySQL 4.0 is available for download from http://www.mysql.com/ and from our mirrors.
MySQL 4.0 has been tested by a large number of users and is in production use at many
large sites.

Chapter 1: General Information 21

The major new features of MySQL Server 4.0 are geared toward our existing business and
community users, enhancing the MySQL database software as the solution for mission-
critical, heavy-load database systems. Other new features target the users of embedded
databases.
MySQL Version 4.0.12 was declared stable for production use in March 2003. This means
that, in future, only bug fixes will be done for the 4.0 release series and only critical bug fixes
will be done for the older 3.23 series. See Section 2.5.2 [Upgrading-from-3.23], page 113.
New features to the MySQL software are being added to MySQL 4.1 which is now also
available (alpha version). See Section 1.5.2 [MySQL 4.1 Nutshell], page 22.

1.5.1.1 Features Available in MySQL 4.0

Speed enhancements
• MySQL 4.0 has a query cache that can give a huge speed boost to appli-

cations with repetitive queries. See Section 6.9 [Query Cache], page 589.
• Version 4.0 further increases the speed of MySQL Server in a number

of areas, such as bulk INSERTs, searching on packed indexes, creation of
FULLTEXT indexes, and COUNT(DISTINCT).

Embedded MySQL Server introduced
• The new Embedded Server library (instead of client/server) can easily be

used in standalone and embedded applications. See Section 1.5.1.2 [Nut-
shell Embedded MySQL], page 22.

InnoDB storage engine as standard
• The InnoDB storage engine is now offered as a standard feature of the

MySQL server. This means full support for ACID transactions, foreign keys
with cascading UPDATE/DELETE, and row-level locking are now stan-
dard features. See Section 7.5 [InnoDB], page 605.

New functionality
• The enhanced FULLTEXT search properties of MySQL Server 4.0 enables

FULLTEXT indexing of large text masses with both binary and natural-
language searching logic. You can customise minimal word length and
define your own stop word lists in any human language, enabling a new
set of applications to be built on MySQL Server. See Section 6.8 [Fulltext
Search], page 583.

Standards compliance, portability, and migration
• Features to simplify migration from other database systems to MySQL

Server include TRUNCATE TABLE (as in Oracle).
• Many users will also be happy to learn that MySQL Server now supports

the UNION statement, a long-awaited standard SQL feature.
• MySQL can now run natively on the Novell NetWare 6.0 platform. See

Section 2.6.8 [Novell NetWare], page 152.

Internationalisation
• Our German, Austrian, and Swiss users will note that MySQL now supports

a new character set, latin1_de, which ensures that the German sorting

22 MySQL Technical Reference for Version 4.1.1-alpha

order sorts words with umlauts in the same order as do German telephone
books.

Usability enhancements
In the process of building features for new users, we have not forgotten requests
from our community of loyal users.
• Most mysqld parameters (startup options) can now be set without taking

down the servers. This is a convenient feature for Database Administrators
(DBAs). See Section 5.5.6 [SET OPTION], page 432.

• Multi-table DELETE and UPDATE statements have been added..
• Support has been added for symbolic linking to MyISAM at the table

level (and not just the database level as before) and for enabling symlink
handling by default on Windows.

• SQL_CALC_FOUND_ROWS and FOUND_ROWS() are new functions that make it
possible to find out the number of rows a SELECT query that includes a
LIMIT clause would have returned without that clause.

The news section of this manual includes a more in-depth list of features. See Section D.3
[News-4.0.x], page 893.

1.5.1.2 Embedded MySQL Server

libmysqld makes MySQL Server suitable for a vastly expanded realm of applications. Using
the embedded MySQL server library, one can embed MySQL Server into various applications
and electronics devices, where the end user has no knowledge of there actually being an
underlying database. Embedded MySQL Server is ideal for use behind the scenes in Internet
appliances, public kiosks, turnkey hardware/software combination units, high performance
Internet servers, self-contained databases distributed on CD-ROM, and so on.
Many users of libmysqld will benefit from the MySQL Dual Licensing. For those not
wishing to be bound by the GPL, the software is also made available under a commercial
license. The embedded MySQL library uses the same interface as the normal client library,
so it is convenient and easy to use. See Section 11.1.15 [libmysqld], page 799.

1.5.2 MySQL 4.1 in a Nutshell

MySQL Server 4.0 laid the foundation for new features such as subqueries and Unicode
(implemented in version 4.1) and for the work on SQL-99 stored procedures being done for
version 5.0. These features come at the top of the wish list of many of our customers.
With these additions, critics of the MySQL Database Server have to be more imaginative
than ever in pointing out deficiencies in the MySQL Database Management System. Already
well-known for its stability, speed, and ease of use, MySQL Server will be able to fulfill the
requirement checklists of very demanding buyers.

1.5.2.1 Features Available in MySQL 4.1

The features listed in this section are implemented in MySQL 4.1. A few other features are
still planned for MySQL 4.1. See Section 1.8.1 [TODO MySQL 4.1], page 49.

Chapter 1: General Information 23

Most new features being coded, such as stored procedures, will be available in MySQL 5.0.
See Section 1.8.2 [TODO MySQL 5.0], page 49.

Support for subqueries and derived tables
• A subquery is a SELECT statement nested within another statement. A

derived table (unnamed view) is a subquery in the FROM clause of another
statement. See Section 6.4.2 [Subqueries], page 537.

Speed enhancements
• Faster binary protocol with prepared statements and parameter binding.

See Section 11.1.4 [C API Prepared statements], page 763.
• BTREE indexing is now supported for HEAP tables, significantly improving

response time for non-exact searches.

New functionality
• CREATE TABLE table LIKE table allows you to create a new table with the

exact structure of an existing table, using a single command.
• Support for OpenGIS spatial types (geographical data). See Chapter 10

[Spatial extensions in MySQL], page 686.
• Replication can be done over SSL connections.

Standards compliance, portability, and migration
• The new client/server protocol adds the ability to pass multiple warnings

to the client, rather than only a single result. This makes jobs such as bulk
loading of data much easier to track. SHOW WARNINGS shows warnings for
the last command. See Section 4.6.8.9 [SHOW WARNINGS], page 303.

Internationalisation
• To support our ever expanding user base using local languages in applica-

tions, the MySQL software now offers extensive Unicode (UTF8) support.
• Character sets can now be defined per column, table, and database. This

allows for a high degree of flexibility in application design, particularly for
multi-language web sites.

• For documentation for this improved character set support, see Chapter 9
[Charset], page 664.

Usability enhancements
• In response to popular demand, we have added a server-based HELP

command that can be used in the mysql command line client (and other
clients) to get help for SQL commands. The advantage of having this
information on the server side is that the information is always applicable
for that particular server version.

• In the new client/server protocol, multi-line queries can now be enabled.
This allows you to issue several queries in a single call and then read all the
results in one go. See Section 11.1.8 [C API multiple queries], page 790.

• A new INSERT ... ON DUPLICATE KEY UPDATE ... syntax has been imple-
mented. This allows you to UPDATE an existing row if the INSERT would
have caused a duplicate in a PRIMARY or UNIQUE key (index). See Sec-
tion 6.4.3 [INSERT], page 546.

24 MySQL Technical Reference for Version 4.1.1-alpha

• We have designed a new aggregate function GROUP_CONCAT(), adding the
extremely useful capability of concatenating columns from grouped rows
into a single result string. See Section 6.3.7 [Group by functions and mod-
ifiers], page 524.

• The new client/server protocol supports multiple result sets.

The news section in this manual includes a more in-depth list of features. See Section D.2
[News-4.1.x], page 886.

1.5.2.2 Stepwise Rollout

New features are being added to MySQL 4.1, which is already available for download (alpha
version). See Section 1.5.2.3 [Nutshell Ready for Immediate Use], page 24.
The set of features that are being added to version 4.1 is mostly fixed. Additional devel-
opment is already ongoing for version 5.0. MySQL 4.1 will go through the steps of Alpha
(during which time new features might still be added/changed), Beta (when we have feature
freeze and only bug corrections will be done), and Gamma (indicating that a production
release is just weeks ahead). At the end of this process, MySQL 4.1 will become the new
production release.

1.5.2.3 Ready for Immediate Development Use

MySQL 4.1 is currently in the alpha stage, and binaries are available for download at
http://www.mysql.com/downloads/mysql-4.1.html. All binary releases pass our exten-
sive test suite without any errors on the platforms on which we test. See Section D.2
[News-4.1.x], page 886.
For those wishing to use the most recent development source for MySQL 4.1, we have made
our 4.1 BitKeeper repository publicly available. See Section 2.3.4 [Installing source tree],
page 94.

1.5.3 MySQL 5.0, The Next Development Release

New development for MySQL is focused on the 5.0 release, featuring Stored Procedures and
other new features. See Section 1.8.2 [TODO MySQL 5.0], page 49.
For those wishing to take a look at the bleeding edge of MySQL development, we have
made our BitKeeper repository for MySQL version 5.0 publicly available. See Section 2.3.4
[Installing source tree], page 94.

1.6 MySQL Information Sources

1.6.1 MySQL Mailing Lists

This section introduces you to the MySQL mailing lists and gives some guidelines as to how
the lists should be used. When you subscribe to a mailing list, you will receive, as e-mail
messages, all postings to the list. You will also be able to send your own questions and
answers to the list.

Chapter 1: General Information 25

1.6.1.1 The MySQL Mailing Lists

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit
http://lists.mysql.com/. Please do not send messages about subscribing or unsubscrib-
ing to any of the mailing lists, because such messages are distributed automatically to
thousands of other users.
Your local site may have many subscribers to a MySQL mailing list. If so, the site may
have a local mailing list, so that messages sent from lists.mysql.com to your site are
propagated to the local list. In such cases, please contact your system administrator to be
added to or dropped from the local MySQL list.
If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set
up a filter based on the message headers. You can use either the List-ID: or Delivered-
To: headers to identify list messages.
The MySQL mailing lists are as follows:

announce This list is for announcements of new versions of MySQL and related programs.
This is a low-volume list to which all MySQL users should subscribe.

mysql This is the main list for general MySQL discussion. Please note that some
topics are better discussed on the more-specialised lists. If you post to the
wrong list, you may not get an answer.

mysql-digest
This is the mysql list in digest form. Subscribing to this list means you will get
all list messages, sent as one large mail message once a day.

bugs This list will be of interest to you if you want to stay informed about issues
reported since the last release of MySQL or if you want to be actively involved
in the process of bug hunting and fixing. See Section 1.6.1.3 [Bug reports],
page 27.

bugs-digest
This is the bugs list in digest form.

internals
This list is for people who work on the MySQL code. This is also the forum for
discussions on MySQL development and post patches.

internals-digest
This is the internals list in digest form.

mysqldoc This list is for people who work on the MySQL documentation: people from
MySQL AB, translators, and other community members.

mysqldoc-digest
This is the mysqldoc list in digest form.

benchmarks
This list is for anyone interested in performance issues. Discussions concentrate
on database performance (not limited to MySQL) but also include broader
categories such as performance of the kernel, file system, disk system, and so
on.

26 MySQL Technical Reference for Version 4.1.1-alpha

benchmarks-digest
This is the benchmarks list in digest form.

packagers
This list is for discussions on packaging and distributing MySQL. This is the
forum used by distribution maintainers to exchange ideas on packaging MySQL
and on ensuring that MySQL looks and feels as similar as possible on all sup-
ported platforms and operating systems.

packagers-digest
This is the packagers list in digest form.

java This list is for discussions about the MySQL server and Java.It is mostly used
to discuss JDBC drivers, including MySQL Connector/J.

java-digest
This is the java list in digest form.

win32 This list is for all things concerning the MySQL software on Microsoft operating
systems, such as Windows 9x/Me/NT/2000/XP.

win32-digest
This is the win32 list in digest form.

myodbc This list is for all things concerning connecting to the MySQL server with
ODBC.

myodbc-digest
This is the myodbc list in digest form.

mysqlcc This list is for all things concerning the MySQL Control Center graphical client.

mysqlcc-digest
This is the mysqlcc list in digest form.

plusplus This list is for all things concerning programming with the C++ API to MySQL.

plusplus-digest
This is the plusplus list in digest form.

msql-mysql-modules
This list is for all things concerning the Perl support for MySQL with msql-
mysql-modules, which is now named DBD-mysql.

msql-mysql-modules-digest
This is the msql-mysql-modules list in digest form.

If you’re unable to get an answer to your question(s) from a MySQL mailing list, one option
is to pay for support from MySQL AB. This will put you in direct contact with MySQL
developers. See Section 1.4.1 [Support], page 16.
The following table shows some MySQL mailing lists in languages other than English. These
lists are not operated by MySQL AB, so we can’t guarantee their quality.

mysql-france-subscribe@yahoogroups.com A French mailing list
list@tinc.net A Korean mailing list

E-mail subscribe mysql your@e-mail.address to this list.

Chapter 1: General Information 27

mysql-de-request@lists.4t2.com A German mailing list
E-mail subscribe mysql-de your@e-mail.address to this list. You can find
information about this mailing list at http://www.4t2.com/mysql/.

mysql-br-request@listas.linkway.com.br A Portuguese mailing list
E-mail subscribe mysql-br your@e-mail.address to this list.

mysql-alta@elistas.net A Spanish mailing list
E-mail subscribe mysql your@e-mail.address to this list.

1.6.1.2 Asking Questions or Reporting Bugs

Before posting a bug report or question, please do the following:
• Start by searching the MySQL online manual at:

http://www.mysql.com/doc/
We try to keep the manual up to date by updating it frequently with
solutions to newly found problems. The change history appendix
(http://www.mysql.com/doc/en/News.html) can be particularly useful since
it is quite possible that a newer version already contains a solution to your problem.

• Search in the bugs database at http://bugs.mysql.com/ to see whether the bug has
already been reported/solved.

• Search the MySQL mailing list archives:
http://lists.mysql.com/

• You can also use http://www.mysql.com/search/ to search all the web pages (includ-
ing the manual) that are located at http://www.mysql.com/.

If you can’t find an answer in the manual or the archives, check with your local MySQL
expert. If you still can’t find an answer to your question, please follow the guidelines on
sending mail to a MySQL mailing list, outlined in the next section, before contacting us.

1.6.1.3 How to Report Bugs or Problems

Our bugs database is public, and can be browsed and searched by anyone at
http://bugs.mysql.com/. If you log into the system, you will also be able to enter new
reports.
Writing a good bug report takes patience, but doing it right the first time saves time both
for us and for yourself. A good bug report, containing a full test case for the bug, makes
it very likely that we will fix the bug in the next release. This section will help you write
your report correctly so that you don’t waste your time doing things that may not help us
much or at all.
We encourage everyone to use the mysqlbug script to generate a bug report (or a report
about any problem). mysqlbug can be found in the ‘scripts’ directory (source distribution)
and in the ‘bin’ directory under your MySQL installation directory (binary distribution).
If you are unable to use mysqlbug (for instance, if you are running on Windows), it is still
vital that you include all the necessary information noted in this section (most importantly
a description of the operating system and the MySQL version).

28 MySQL Technical Reference for Version 4.1.1-alpha

The mysqlbug script helps you generate a report by determining much of the following
information automatically, but if something important is missing, please include it with
your message. Please read this section carefully and make sure that all the information
described here is included in your report.

Preferably, you should test the problem using the latest production or development version
of MySQL Server before posting. Anyone should be able to repeat the bug by just using
’mysql test < script’ on the included test case or run the shell or Perl script that is
included in the bug report.

All bugs posted in the bugs database at http://bugs.mysql.com/ will be corrected or
documented in the next MySQL release. If only minor code changes are needed to correct
a problem, we will also post a patch that fixes the problem.

The normal place to report bugs is http://bugs.mysql.com/.

If you have found a sensitive security bug in MySQL, please send an e-mail to
security@mysql.com.

If you have a repeatable bug report, please report this into the bugs database at
http://bugs.mysql.com/. Note that even in this case it’s good to run the mysqlbug
script first to find information about your system. Any bug that we are able to repeat has
a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much informa-
tion, but not to one containing too little. People often omit facts because they think they
know the cause of a problem and assume that some details don’t matter. A good principle
is: if you are in doubt about stating something, state it. It is a thousand times faster and
less troublesome to write a couple of lines more in your report than to be forced to ask
again and wait for the answer because you didn’t include enough information the first time.

The most common errors made in bug reports are (a) not including the version number of
the MySQL distribution used and (b) not fully describing the platform on which the MySQL
server is installed (including the platform type and version number). This is highly relevant
information, and in 99 cases out of 100 the bug report is useless without it. Very often we
get questions like, “Why doesn’t this work for me?” Then we find that the feature requested
wasn’t implemented in that MySQL version, or that a bug described in a report has already
been fixed in newer MySQL versions. Sometimes the error is platform-dependent; in such
cases, it is next to impossible for us to fix anything without knowing the operating system
and the version number of the platform.

Remember also to provide information about your compiler, if it is related to the problem.
Often people find bugs in compilers and think the problem is MySQL-related. Most compil-
ers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you use.
Note that every compiling problem should be regarded as a bug and reported accordingly.

It is most helpful when a good description of the problem is included in the bug report.
That is, give a good example of all the things you did that led to the problem and describe,
in exact detail, the problem itself. The best reports are those that include a full example
showing how to reproduce the bug or problem. See Section E.1.6 [Reproduceable test case],
page 1009.

Chapter 1: General Information 29

If a program produces an error message, it is very important to include the message in your
report. If we try to search for something from the archives using programs, it is better that
the error message reported exactly matches the one that the program produces. (Even the
case should be observed.) You should never try to remember what the error message was;
instead, copy and paste the entire message into your report.
If you have a problem with MyODBC, please try to generate a MyODBC trace file and
send it with your report. See Section 11.2.7 [MyODBC bug report], page 813.
Please remember that many of the people who will read your report will do so using an
80-column display. When generating reports or examples using the mysql command-line
tool, you should therefore use the --vertical option (or the \G statement terminator) for
output that would exceed the available width for such a display (for example, with the
EXPLAIN SELECT statement; see the example later in this section).
Please include the following information in your report:
• The version number of the MySQL distribution you are using (for example, MySQL Ver-

sion 4.0.12). You can find out which version you are running by executing mysqladmin
version. mysqladmin can be found in the ‘bin’ directory under your MySQL instal-
lation directory.

• The manufacturer and model of the machine on which you experience the problem.
• The operating system name and version. For most operating systems, you can get this

information by executing the Unix command uname -a. If you work with Windows, you
can usually get the name and version number by double-clicking your ”My Computer”
icon and pulling down the ”Help/About Windows” menu.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include
these values.

• If you are using a source distribution of the MySQL software, the name and version
number of the compiler used is needed. If you have a binary distribution, the distribu-
tion name is needed.

• If the problem occurs during compilation, include the exact error message(s) and also
a few lines of context around the offending code in the file where the error occurrs.

• If mysqld died, you should also report the query that crashed mysqld. You can usually
find this out by running mysqld with logging enabled. See Section E.1.5 [Using log
files], page 1008.

• If a database table is related to the problem, include the output from mysqldump --
no-data db_name tbl_name1 tbl_name2 This is very easy to do and is a powerful
way to get information about any table in a database. The information will help us
create a situation matching the one you have.

• For speed-related bugs or problems with SELECT statements, you should always include
the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT
statement produces. You should also include the output from SHOW CREATE TABLE tbl_
name for each involved table. The more information you give about your situation, the
more likely it is that someone can help you. The following is an example of a very good
bug report (it should of course be posted with the mysqlbug script).
Example run using the mysql command-line tool (note the use of the \G statement
terminator for statements whose output width would otherwise exceed that of an 80-
column display device):

30 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G

<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G

<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;

<A short version of the output from SELECT,
including the time taken to run the query>

mysql> SHOW STATUS;
<output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that
will reproduce the anomaly. This script should include any necessary source files. The
more closely the script can reproduce your situation, the better. If you can make a
reproducible test case, you should post it on http://bugs.mysql.com/ for high-priority
treatment.
If you can’t provide a script, you should at least include the output from mysqladmin
variables extended-status processlist in your mail to provide some information
on how your system is performing.

• If you can’t produce a test case with only a few rows, or if the test table is too big to
be mailed to the mailing list (more than 10 rows), you should dump your tables using
mysqldump and create a ‘README’ file that describes your problem.
Create a compressed archive of your files using tar and gzip or zip, and use ftp to
transfer the archive to ftp://support.mysql.com/pub/mysql/secret/. Then enter
the problem into our bugs database at http://bugs.mysql.com/.

• If you think that the MySQL server produces a strange result from a query, include
not only the result, but also your opinion of what the result should be, and an account
describing the basis for your opinion.

• When giving an example of the problem, it’s better to use the variable names, table
names, etc., that exist in your actual situation than to come up with new names. The
problem could be related to the name of a variable or table. These cases are rare,
perhaps, but it is better to be safe than sorry. After all, it should be easier for you to
provide an example that uses your actual situation, and it is by all means better for us.
In case you have data you don’t want to show to others, you can use ftp to transfer
it to ftp://support.mysql.com/pub/mysql/secret/. If the data is really top secret
and you don’t want to show it even to us, then go ahead and provide an example using
other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate
the options that you use when you start the mysqld daemon as well as the options that
you use to run any MySQL client programs. The options to programs like mysqld and
mysql, and to the configure script, are often keys to answers and are very relevant.
It is never a bad idea to include them. If you use any modules, such as Perl or PHP,
please include the version number(s) of those as well.

• If your question is related to the privilege system, please include the output of
mysqlaccess, the output of mysqladmin reload, and all the error messages you

Chapter 1: General Information 31

get when trying to connect. When you test your privileges, you should first run
mysqlaccess. After this, execute mysqladmin reload version and try to connect
with the program that gives you trouble. mysqlaccess can be found in the ‘bin’
directory under your MySQL installation directory.

• If you have a patch for a bug, do include it. But don’t assume the patch is all we need,
or that we will use it, if you don’t provide some necessary information such as test
cases showing the bug that your patch fixes. We might find problems with your patch
or we might not understand it at all; if so, we can’t use it.
If we can’t verify exactly what the patch is meant for, we won’t use it. Test cases will
help us here. Show that the patch will handle all the situations that may occur. If we
find a borderline case (even a rare one) where the patch won’t work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually
wrong. Even the MySQL team can’t guess such things without first using a debugger
to determine the real cause of a bug.

• Indicate in your bug report that you have checked the reference manual and mail archive
so that others know you have tried to solve the problem yourself.

• If you get a parse error, please check your syntax closely. If you can’t find something
wrong with it, it’s extremely likely that your current version of MySQL Server doesn’t
support the syntax you are using. If you are using the current version and the manual at
http://www.mysql.com/doc/ doesn’t cover the syntax you are using, MySQL Server
doesn’t support your query. In this case, your only options are to implement the syntax
yourself or e-mail licensing@mysql.com and ask for an offer to implement it.
If the manual covers the syntax you are using, but you have an older version of MySQL
Server, you should check the MySQL change history to see when the syntax was imple-
mented. In this case, you have the option of upgrading to a newer version of MySQL
Server. See Appendix D [News], page 886.

• If your problem is that your data appears corrupt or you get errors when you ac-
cess a particular table, you should first check and then try repairing your tables with
myisamchk or CHECK TABLE and REPAIR TABLE. See Chapter 4 [MySQL Database Ad-
ministration], page 195.

• If you often get corrupted tables you should try to find out when and why this happens.
In this case, the ‘mysql-data-directory/’hostname’.err’ file may contain some in-
formation about what happened. See Section 4.10.1 [Error log], page 350. Please
include any relevant information from this file in your bug report. Normally mysqld
should never crash a table if nothing killed it in the middle of an update. If you can
find the cause of mysqld dying, it’s much easier for us to provide you with a fix for the
problem. See Section A.1 [What is crashing], page 844.

• If possible, download and install the most recent version of MySQL Server and check
whether it solves your problem. All versions of the MySQL software are thoroughly
tested and should work without problems. We believe in making everything as
backward-compatible as possible, and you should be able to switch MySQL versions
without difficulty. See Section 2.2.4 [Which version], page 75.

If you are a support customer, please cross-post the bug report to mysql-support@mysql.com
for higher-priority treatment, as well as to the appropriate mailing list to see if someone
else has experienced (and perhaps solved) the problem.

32 MySQL Technical Reference for Version 4.1.1-alpha

For information on reporting bugs in MyODBC, see Section 11.2.4 [ODBC Problems], page 807.
For solutions to some common problems, see Appendix A [Problems], page 844.
When answers are sent to you individually and not to the mailing list, it is considered good
etiquette to summarise the answers and send the summary to the mailing list so that others
may have the benefit of responses you received that helped you solve your problem.

1.6.1.4 Guidelines for Answering Questions on the Mailing List

If you consider your answer to have broad interest, you may want to post it to the mailing
list instead of replying directly to the individual who asked. Try to make your answer
general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.
Try to summarise the essential part of the question in your reply; don’t feel obliged to quote
the entire original message.
Please don’t post mail messages from your browser with HTML mode turned on. Many
users don’t read mail with a browser.

1.6.2 MySQL Community Support on IRC (Internet Relay Chat)

In addition to the various MySQL mailing lists, you can find experienced community people
on IRC (Internet Relay Chat). These are the best networks/channels currently known to
us:
• freenode (see http://www.freenode.net/ for servers)

• #mysql Primarily MySQL questions but other database and SQL questions wel-
come.

• #mysqlphp Questions about MySQL+PHP, a popular combination.
• #mysqlperl Questions about MySQL+Perl, another popular combination.

• EFnet (see http://www.efnet.org/ for servers)
• #mysql MySQL questions.

If you are looking for IRC client software to connect to an IRC network, take a look at
X-Chat (http://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as
for Windows platforms.

1.7 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server
has many extensions to the SQL standard, and here you will find out what they are and
how to use them. You will also find information about functionality missing from MySQL
Server, and how to work around some differences.
Our goal is to not, without a very good reason, restrict MySQL Server usability for any
usage. Even if we don’t have the resources to do development for every possible use, we are
always willing to help and offer suggestions to people who are trying to use MySQL Server
in new territories.

Chapter 1: General Information 33

One of our main goals with the product is to continue to work toward compliance with
the SQL-99 standard, but without sacrificing speed or reliability. We are not afraid to add
extensions to SQL or support for non-SQL features if this greatly increases the usability of
MySQL Server for a big part of our users. (The new HANDLER interface in MySQL Server
4.0 is an example of this strategy. See Section 6.4.9 [HANDLER], page 562.)

We will continue to support transactional and non-transactional databases to satisfy both
heavy web/logging usage and mission-critical 24/7 usage.

MySQL Server was designed from the start to work with medium size databases (10-100
million rows, or about 100 MB per table) on small computer systems. We will continue
to extend MySQL Server to work even better with terabyte-size databases, as well as to
make it possible to compile a reduced MySQL version that is more suitable for hand-held
devices and embedded usage. The compact design of the MySQL server makes both of these
directions possible without any conflicts in the source tree.

We are currently not targeting realtime support or clustered databases (even if you can
already do a lot of things with our replication services).

We are looking at providing XML support in the database server.

1.7.1 What Standards MySQL Follows

Entry-level SQL-92. ODBC levels 0-3.51.

We are aiming toward supporting the full SQL-99 standard, but without concessions to
speed and quality of the code.

1.7.2 Running MySQL in ANSI Mode

If you start mysqld with the --ansi or --sql-mode=ANSI option, the following behaviours
of MySQL Server change:

• || is a string concatenation operator rather than a synonym for OR.
• ‘"’ is treated as an identifier quote character (like the MySQL Server ‘‘’ quote character)

and not as a string quote character. You can still use ‘‘’ to quote identifers in ANSI
mode. An implication of this is that you cannot use double quotes to quote a literal
string, because it will be intepreted as an identifier.

• You can have any number of spaces between a function name and the ‘(’ character.
This forces all function names to be treated as reserved words. As a result, if you want
to access any database, table, or column name that is a reserved word, you must quote
it. For example, because there is a USER() function, the name of the user table in the
mysql database and the User column in that table become reserved, so you must quote
them:

SELECT "User" FROM mysql."user";

• REAL is a synonym for FLOAT instead of a synonym for DOUBLE.
• The default transaction isolation level is SERIALIZABLE. See Section 6.7.6 [SET

TRANSACTION], page 583.
• You can use a field/expression in GROUP BY that is not in the field list.

34 MySQL Technical Reference for Version 4.1.1-alpha

Running the server in ANSI mode is the same as starting it with these options:
--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY
--transaction-isolation=SERIALIZABLE

In MySQL 4.1, you can achieve the same effect with these two statements:
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode =
"REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY";

In MySQL 4.1.1, the sql_mode options shown can be also be set with:
SET GLOBAL sql_mode="ansi";

In this case, the value of the sql_mode variable will be set to all options that are relevant
for ANSI mode. You can check the result by doing:

mysql> SET GLOBAL sql_mode="ansi";
mysql> SELECT @@GLOBAL.sql_mode;

-> "REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI"

1.7.3 MySQL Extensions to the SQL-92 Standard

MySQL Server includes some extensions that you probably will not find in other SQL
databases. Be warned that if you use them, your code will not be portable to other SQL
servers. In some cases, you can write code that includes MySQL extensions, but is still
portable, by using comments of the form /*! ... */. In this case, MySQL Server will
parse and execute the code within the comment as it would any other MySQL statement,
but other SQL servers will ignore the extensions. For example:

SELECT /*! STRAIGHT_JOIN */ col_name FROM table1,table2 WHERE ...

If you add a version number after the ’!’, the syntax will be executed only if the MySQL
version is equal to or newer than the used version number:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

This means that if you have Version 3.23.02 or newer, MySQL Server will use the TEMPORARY
keyword.
The following is a list of MySQL extensions:
• The field types MEDIUMINT, SET, ENUM, and the different BLOB and TEXT types.
• The field attributes AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.
• All string comparisons are case-insensitive by default, with sort ordering determined

by the current character set (ISO-8859-1 Latin1 by default). If you don’t like this, you
should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done according to the ASCII order used on the MySQL server
host.

• MySQL Server maps each database to a directory under the MySQL data directory,
and tables within a database to filenames in the database directory.
This has a few implications:
− Database names and table names are case-sensitive in MySQL Server on oper-

ating systems that have case-sensitive filenames (like most Unix systems). See
Section 6.1.3 [Name case sensitivity], page 445.

Chapter 1: General Information 35

− Database, table, index, column, or alias names may begin with a digit (but may
not consist solely of digits).

− You can use standard system commands to back up, rename, move, delete, and
copy tables. For example, to rename a table, rename the ‘.MYD’, ‘.MYI’, and ‘.frm’
files to which the table corresponds.

• In SQL statements, you can access tables from different databases with the
db_name.tbl_name syntax. Some SQL servers provide the same functionality but call
this User space. MySQL Server doesn’t support tablespaces as in: create table
ralph.my_table...IN my_tablespace.

• LIKE is allowed on numeric columns.
• Use of INTO OUTFILE and STRAIGHT_JOIN in a SELECT statement. See Section 6.4.1

[SELECT], page 530.
• The SQL_SMALL_RESULT option in a SELECT statement.
• EXPLAIN SELECT to get a description of how tables are joined.
• Use of index names, indexes on a prefix of a field, and use of INDEX or KEY in a CREATE

TABLE statement. See Section 6.5.3 [CREATE TABLE], page 564.
• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.
• Use of COUNT(DISTINCT list) where list has more than one element.
• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in an

ALTER TABLE statement. See Section 6.5.4 [ALTER TABLE], page 573.
• Use of RENAME TABLE. See Section 6.5.5 [RENAME TABLE], page 576.
• Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.
• Use of DROP TABLE with the keywords IF EXISTS.
• You can drop multiple tables with a single DROP TABLE statement.
• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.
• INSERT INTO ... SET col_name = ... syntax.
• The DELAYED clause of the INSERT and REPLACE statements.
• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.
• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle’s LOAD

DATA INFILE. See Section 6.4.8 [LOAD DATA], page 555.
• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.
• The SHOW statement. See Section 4.6.8 [SHOW], page 284.
• Strings may be enclosed by either ‘"’ or ‘’’, not just by ‘’’.
• Use of the escape ‘\’ character.
• The SET statement. See Section 5.5.6 [SET], page 432.
• You don’t need to name all selected columns in the GROUP BY part. This gives better

performance for some very specific, but quite normal queries. See Section 6.3.7 [Group
by functions and modifiers], page 524.

• One can specify ASC and DESC with GROUP BY.
• To make it easier for users who come from other SQL environments, MySQL Server

supports aliases for many functions. For example, all string functions support both
standard SQL syntax and ODBC syntax.

36 MySQL Technical Reference for Version 4.1.1-alpha

• MySQL Server understands the || and && operators to mean logical OR and AND, as
in the C programming language. In MySQL Server, || and OR are synonyms, as are
&& and AND. Because of this nice syntax, MySQL Server doesn’t support the standard
SQL-99 || operator for string concatenation; use CONCAT() instead. Because CONCAT()
takes any number of arguments, it’s easy to convert use of the || operator to MySQL
Server.

• CREATE DATABASE or DROP DATABASE. See Section 6.5.1 [CREATE DATABASE], page 563.
• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is

supported for C programmers and for compatibility with PostgreSQL.
• The =, <>, <= ,<, >=,>, <<, >>, <=>, AND, OR, or LIKE operators may be used in column

comparisons to the left of the FROM in SELECT statements. For example:
mysql> SELECT col1=1 AND col2=2 FROM tbl_name;

• The LAST_INSERT_ID() function. See Section 11.1.3.31 [mysql_insert_id()],
page 742.

• The REGEXP and NOT REGEXP extended regular expression operators.
• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL

Server, these functions can take any number of arguments.)
• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(),

ENCRYPT(), MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(),
or WEEKDAY() functions.

• Use of TRIM() to trim substrings. SQL-99 supports removal of single characters only.
• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and

GROUP_CONCAT(). See Section 6.3.7 [Group by functions and modifiers], page 524.
• Use of REPLACE instead of DELETE + INSERT. See Section 6.4.7 [REPLACE], page 554.
• The FLUSH, RESET and DO statements.
• The ability to set variables in a statement with :=:

SELECT @a:=SUM(total),@b=COUNT(*),@a/@b AS avg FROM test_table;
SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

1.7.4 MySQL Differences Compared to SQL-92

We try to make MySQL Server follow the ANSI SQL standard (SQL-92/SQL-99) and the
ODBC SQL standard, but in some cases MySQL Server does things differently:
• For VARCHAR columns, trailing spaces are removed when the value is stored. See Sec-

tion 1.7.6 [Bugs], page 44.
• In some cases, CHAR columns are silently changed to VARCHAR columns. See Sec-

tion 6.5.3.1 [Silent column changes], page 572.
• Privileges for a table are not automatically revoked when you delete a table. You must

explicitly issue a REVOKE to revoke privileges for a table. See Section 4.4.1 [GRANT],
page 239.

For a prioritised list indicating when new extensions will be added to MySQL Server, you
should consult the online MySQL TODO list at http://www.mysql.com/doc/en/TODO.html.
That is the latest version of the TODO list in this manual. See Section 1.8 [TODO],
page 49.

Chapter 1: General Information 37

1.7.4.1 Subqueries

MySQL Version 4.1 supports subqueries and derived tables (unnamed views). See Sec-
tion 6.4.2 [Subqueries], page 537.
For MySQL versions prior to 4.1, most subqueries can be successfully rewritten using joins
and and other methods. See Section 6.4.2.11 [Rewriting subqueries], page 545.

1.7.4.2 SELECT INTO TABLE

MySQL Server doesn’t yet support the Oracle SQL extension: SELECT ... INTO TABLE
Instead, MySQL Server supports the SQL-99 syntax INSERT INTO ... SELECT ..., which
is basically the same thing. See Section 6.4.3.1 [INSERT SELECT], page 549.

INSERT INTO tblTemp2 (fldID)
SELECT tblTemp1.fldOrder_ID
FROM tblTemp1 WHERE tblTemp1.fldOrder_ID > 100;

Alternatively, you can use SELECT INTO OUTFILE... or CREATE TABLE ... SELECT.

1.7.4.3 Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions
with the InnoDB and BDB Transactional storage engines. InnoDB provides full ACID
compliance. See Chapter 7 [Table types], page 593.
The other non-transactional table types (such as MyISAM) in MySQL Server follow a different
paradigm for data integrity called “Atomic Operations.” In transactional terms, MyISAM
tables effectively always operate in AUTOCOMMIT=1 mode. Atomic operations often offer
comparable integrity with higher performance.
With MySQL Server supporting both paradigms, the user is able to decide if he needs the
speed of atomic operations or if he needs to use transactional features in his applications.
This choice can be made on a per-table basis.
As noted, the trade off for transactional vs. non-transactional table types lies mostly in
performance. Transactional tables have significantly higher memory and diskspace require-
ments, and more CPU overhead. That said, transactional table types such as InnoDB do of
course offer many unique features. MySQL Server’s modular design allows the concurrent
use of all these different storage engines to suit different requirements and deliver optimum
performance in all situations.
But how does one use the features of MySQL Server to maintain rigorous integrity even
with the non-transactional MyISAM tables, and how do these features compare with the
transactional table types?
1. In the transactional paradigm, if your applications are written in a way that is depen-

dent on the calling of ROLLBACK instead of COMMIT in critical situations, transactions
are more convenient. Transactions also ensure that unfinished updates or corrupting
activities are not committed to the database; the server is given the opportunity to do
an automatic rollback and your database is saved.
MySQL Server, in almost all cases, allows you to resolve potential problems by including
simple checks before updates and by running simple scripts that check the databases

38 MySQL Technical Reference for Version 4.1.1-alpha

for inconsistencies and automatically repair or warn if such an inconsistency occurs.
Note that just by using the MySQL log or even adding one extra log, one can normally
fix tables perfectly with no data integrity loss.

2. More often than not, critical transactional updates can be rewritten to be atomic.
Generally speaking, all integrity problems that transactions solve can be done with
LOCK TABLES or atomic updates, ensuring that you never will get an automatic abort
from the server, which is a common problem with transactional database systems.

3. Even a transactional system can lose data if the server goes down. The difference
between different systems lies in just how small the time-lap is where they could lose
data. No system is 100% secure, only “secure enough.” Even Oracle, reputed to be
the safest of transactional database systems, is reported to sometimes lose data in such
situations.
To be safe with MySQL Server, whether using transactional tables or not, you only
need to have backups and have the binary logging turned on. With this you can recover
from any situation that you could with any other transactional database system. It
is, of course, always good to have backups, independent of which database system you
use.

The transactional paradigm has its benefits and its drawbacks. Many users and application
developers depend on the ease with which they can code around problems where an abort
appears to be, or is necessary. However, even if you are new to the atomic operations
paradigm, or more familiar with transactions, do consider the speed benefit that non-
transactional tables can offer on the order of three to five times the speed of the fastest and
most optimally tuned transactional tables.
In situations where integrity is of highest importance, MySQL Server offers transaction-
level reliability and integrity even for non-transactional tables. If you lock tables with LOCK
TABLES, all updates will stall until any integrity checks are made. If you only obtain a
read lock (as opposed to a write lock), reads and inserts are still allowed to happen. The
new inserted records will not be seen by any of the clients that have a read lock until they
release their read locks. With INSERT DELAYED you can queue inserts into a local queue,
until the locks are released, without having the client wait for the insert to complete. See
Section 6.4.3.2 [INSERT DELAYED], page 549.
“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can
be sure that while each specific update is running, no other user can interfere with it, and
there will never be an automatic rollback (which can happen with transactional tables if
you are not very careful). MySQL Server also guarantees that there will not be any dirty
reads.
Following are some techniques for working with non-transactional tables:
• Loops that need transactions normally can be coded with the help of LOCK TABLES, and

you don’t need cursors to update records on the fly.
• To avoid using ROLLBACK, you can use the following strategy:

1. Use LOCK TABLES ... to lock all the tables you want to access.
2. Test conditions.
3. Update if everything is okay.
4. Use UNLOCK TABLES to release your locks.

Chapter 1: General Information 39

This is usually a much faster method than using transactions with possible ROLLBACKs,
although not always. The only situation this solution doesn’t handle is when someone
kills the threads in the middle of an update. In this case, all locks will be released but
some of the updates may not have been executed.

• You can also use functions to update records in a single operation. You can get a very
efficient application by using the following techniques:
• Modify fields relative to their current value.
• Update only those fields that actually have changed.

For example, when we are doing updates to some customer information, we update
only the customer data that has changed and test only that none of the changed data,
or data that depends on the changed data, has changed compared to the original row.
The test for changed data is done with the WHERE clause in the UPDATE statement. If
the record wasn’t updated, we give the client a message: ”Some of the data you have
changed has been changed by another user.” Then we show the old row versus the new
row in a window, so the user can decide which version of the customer record he should
use.
This gives us something that is similar to column locking but is actually even better
because we only update some of the columns, using values that are relative to their
current values. This means that typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer
SET
customer_date=’current_date’,
address=’new address’,
phone=’new phone’,
money_he_owes_us=money_he_owes_us-125

WHERE
customer_id=id AND address=’old address’ AND phone=’old phone’;

As you can see, this is very efficient and works even if another client has changed the
values in the pay_back or money_he_owes_us columns.

• In many cases, users have wanted ROLLBACK and/or LOCK TABLES for the purpose of
managing unique identifiers for some tables. This can be handled much more efficiently
by using an AUTO_INCREMENT column and either the SQL function LAST_INSERT_ID()
or the C API function mysql_insert_id(). See Section 11.1.3.31 [mysql_insert_
id()], page 742.
You can generally code around row-level locking. Some situations really need it, and
InnoDB tables support row-level locking. With MyISAM, you can use a flag column in
the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag
wasn’t already 1 in the original row.
You can think of it as though MySQL Server changed the preceding query to:

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

40 MySQL Technical Reference for Version 4.1.1-alpha

1.7.4.4 Stored Procedures and Triggers

Stored procedures are being implemented in our version 5.0 development tree. See Sec-
tion 2.3.4 [Installing source tree], page 94.

This effort is based on SQL-99, which has a basic syntax similar (but not identical) to
Oracle PL/SQL. In addition to this, we are implementing the SQL-99 framework to hook
in external languages.

A stored procedure is a set of SQL commands that can be compiled and stored in the server.
Once this has been done, clients don’t need to keep re-issuing the entire query but can refer
to the stored procedure. This provides better overall performance because the query has
to be parsed only once, and less information needs to be sent between the server and the
client. You can also raise the conceptual level by having libraries of functions in the server.
However, stored procedures of course do increase the load on the database server system,
as more of the work is done on the server side and less on the client (application) side.

Triggers are scheduled for implementation in MySQL version 5.1. A trigger is effectively a
type of stored procedure, one that is invoked when a particular event occurs. For example,
you could set up a stored procedure that is triggered each time a record is deleted from
a transactional table and that stored procedure automatically deletes the corresponding
customer from a customer table when all their transactions are deleted.

1.7.4.5 Foreign Keys

In MySQL Server 3.23.44 and up, InnoDB tables support checking of foreign key constraints,
including CASCADE, ON DELETE, and ON UPDATE. See Section 7.5.5.2 [InnoDB foreign key
constraints], page 614.

For other table types, MySQL Server currently only parses the FOREIGN KEY syntax in
CREATE TABLE commands, but does not use/store this info. In the near future this imple-
mentation will be extended so that the information is stored in the table specification file
and may be retrieved by mysqldump and ODBC. At a later stage, foreign key constraints
will be implemented for MyISAM tables as well.

Note that foreign keys in SQL are not used to join tables, but are used for checking and
enforcing referential integrity (foreign key constraints). If you want to get results from
multiple tables from a SELECT statement, you do this by joining tables:

SELECT * FROM table1,table2 WHERE table1.id = table2.id;

See Section 6.4.1.1 [JOIN], page 535. See Section 3.6.6 [example-Foreign keys], page 186.

When used as a constraint, FOREIGN KEYs don’t need to be used if the application inserts
rows into MyISAM tables in the proper order.

For MyISAM tables, you can work around the lack of ON DELETE by adding the appropriate
DELETE statement to an application when you delete records from a table that has a foreign
key. In practice this is as quick (in some cases quicker) and much more portable than using
foreign keys.

In MySQL Server 4.0 you can use multi-table delete to delete rows from many tables with
one command. See Section 6.4.5 [DELETE], page 552.

Chapter 1: General Information 41

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to
produce automatic WHERE clauses.

Do keep in mind that foreign keys are often misused, which can cause severe problems.
Even when used properly, it is not a magic solution for the referential integrity problem,
although it can make things easier.

Some advantages of foreign key enforcement:

• Assuming proper design of the relations, foreign key constraints will make it more
difficult for a programmer to introduce an inconsistency into the database.

• Using cascading updates and deletes can simplify the client code.

• Properly designed foreign key rules aid in documenting relations between tables.

Disadvantages:

• Mistakes, which are easy to make in designing key relations, can cause severe
problems—for example, circular rules, or the wrong combination of cascading deletes.

• Additional checking on the database level affects performance, for this reason some
major commercial applications have coded this logic on the application level.

• It is not uncommon for a DBA to make such a complex topology of relations that it
becomes very difficult, and in some cases impossible, to back up or restore individual
tables.

1.7.4.6 Views

Views are currently being implemented, and will appear in the 5.0 or 5.1 version of MySQL
Server.

Historically, MySQL Server has been most used in applications and on web systems where
the application writer has full control over database usage. Of course, usage has shifted over
time, and so we find that an increasing number of users now regard views as an important
aspect.

Unnamed views (derived tables, a subquery in the FROM clause of a SELECT) are already
implemented in version 4.1.

Views are useful for allowing users to access a set of relations (tables) as if it were a single
table, and limiting their access to just that. Views can also be used to restrict access to rows
(a subset of a particular table). One does not require views to restrict access to columns,
as MySQL Server has a sophisticated privilege system. See Section 4.3 [Privilege system],
page 213.

Many DBMS don’t allow updates to a view, instead you have to perform the updates on
the individual tables. In designing our implementation of views, we aim toward (as fully
as possible within the confines of SQL) compliance with “Codd’s Rule #6” for relational
database systems: all views that are theoretically updatable, should in practice also be
updatable.

42 MySQL Technical Reference for Version 4.1.1-alpha

1.7.4.7 ‘--’ as the Start of a Comment

Some other SQL databases use ‘--’ to start comments. MySQL Server has ‘#’ as the start
comment character. You can also use the C comment style /* this is a comment */ with
MySQL Server. See Section 6.1.6 [Comments], page 450.
MySQL Server Version 3.23.3 and above support the ‘--’ comment style, provided the
comment is followed by a space (or by a control character such as a newline). This is
because this comment style has caused many problems with automatically generated SQL
queries that have used something like the following code, where we automatically insert the
value of the payment for !payment!:

UPDATE tbl_name SET credit=credit-!payment!

Think about what happens if the value of payment is negative. Because 1--1 is legal in
SQL, the consequences of allowing comments to start with ‘--’ are terrible.
Using our implementation of this method of commenting in MySQL Server Version 3.23.3
and up, 1-- This is a comment is actually safe.
Another safe feature is that the mysql command-line client removes all lines that start with
‘--’.
The following information is relevant only if you are running a MySQL version earlier than
3.23.3:
If you have an SQL program in a text file that contains ‘--’ comments you should use:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql database

instead of the usual:
shell> mysql database < text-file-with-funny-comments.sql

You can also edit the command file “in place” to change the ‘--’ comments to ‘#’ comments:
shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:
shell> replace " #" " --" -- text-file-with-funny-comments.sql

1.7.5 How MySQL deals with constraints

As MySQL allows you to work with both transactional and non-transactional tables
(which don’t allow rollback), constraint handling is a bit different in MySQL than in other
databases.
We have to handle the case when you have updated a lot of rows with a non-transactional
table which can’t rollback on errors.
The basic philosophy is to try to give an error for anything that we can detect on compile
time but try to recover from any errors we get run time. We do this in most cases, but not
yet for all. See Section 1.8.4 [TODO future], page 51.
The basic options MySQL has is to stop the statement in the middle or do its best to recover
from the problem and continue.
Here follows what happens with the different types of constraints.

Chapter 1: General Information 43

1.7.5.1 Constraint PRIMARY KEY / UNIQUE

Normally you will get an error when you try to INSERT / UPDATE a row that causes a
primary key, unique key or foreign key violation. If you are using a transactional storage
engine, like InnoDB, MySQL will automatically roll back the transaction. If you are using
a non-transactional storage engine MySQL will stop at the wrong row and leave the rest of
the rows unprocessed.

To make life easier MySQL has added support for the IGNORE directive to most commands
that can cause a key violation (like INSERT IGNORE ...). In this case MySQL will ignore any
key violation and continue with processing the next row. You can get information of what
MySQL did with the mysql_info() API function and in later MySQL 4.1 version with the
SHOW WARNINGS command. See Section 11.1.3.29 [mysql info], page 740. See Section 4.6.8.9
[SHOW WARNINGS], page 303.

Note that for the moment only InnoDB tables support foreign keys. See Section 7.5.5.2 [Inn-
oDB foreign key constraints], page 614. Foreign key support in MyISAM tables is scheduled
for inclusion in the MySQL 5.0 source tree.

1.7.5.2 Constraint NOT NULL and DEFAULT values

To be able to support easy handling of non-transactional tables all fields in MySQL have
default values.

If you insert a ’wrong’ value in a column like a NULL in a NOT NULL column or a too big
numerical value in a numerical column, MySQL will instead of giving an error instead set
the column to the ’best possible value’. For numerical values this is 0, the smallest possible
values or the largest possible value. For strings this is either the empty string or the longest
possible string that can be in the column.

This means that if you try to store NULL into a column that doesn’t take NULL values,
MySQL Server will store 0 or ’’ (empty string) in it instead. This last behaviour can, for
single row inserts, be changed with the -DDONT_USE_DEFAULT_FIELDS compile option.) See
Section 2.3.3 [configure options], page 91. This causes INSERT statements to generate an
error unless you explicitly specify values for all columns that require a non-NULL value.

The reason for the above rules is that we can’t check these conditions before the query starts
to execute. If we encounter a problem after updating a few rows, we can’t just rollback as
the table type may not support this. The option to stop is not that good as in this case
the update would be ’half done’ which is probably the worst possible scenario. In this case
it’s better to ’do the best you can’ and then continue as if nothing happened. In MySQL
5.0 we plan to improve this by providing warnings for automatic field conversions, plus an
option to let you roll back statements that only use transactional tables in case one such
statement does a field assignment that is not allowed.

The above means that one should generally not use MySQL to check field content, but
instead handle this in the application.

44 MySQL Technical Reference for Version 4.1.1-alpha

1.7.5.3 Constraint ENUM and SET

In MySQL 4.x ENUM is not a real constrain but a more efficient way to store fields that can
only contain a given set of values. This is because of the same reasons NOT NULL is not
honoured. See Section 1.7.5.2 [constraint NOT NULL], page 43.
If you insert an wrong value in an ENUM field, it will be set to the reserved enum number 0,
which will be displayed as an empty string in string context. See Section 6.2.3.3 [ENUM],
page 469.
If you insert an wrong option in a SET field, the wrong value will be ignored. See Sec-
tion 6.2.3.4 [SET], page 470.

1.7.6 Known Errors and Design Deficiencies in MySQL

1.7.6.1 Errors in 3.23 Fixed in a Later MySQL Version

The following known errors/bugs are not fixed in MySQL 3.23 because fixing them would
involves changing a lot of code which could introduce other even worse bugs. The bugs are
also classified as ’not fatal’ or ’bearable’.
• One can get a deadlock when doing LOCK TABLE on multiple tables and then in the

same connection doing a DROP TABLE on one of them while another thread is trying to
lock the table. One can however do a KILL on any of the involved threads to resolve
this. Fixed in 4.0.12.

• SELECT MAX(key_column) FROM t1,t2,t3... where one of the tables are empty
doesn’t return NULL but instead the maximum value for the column. Fixed in 4.0.11.

• DELETE FROM heap_table without a WHERE doesn’t work on a locked HEAP table.

1.7.6.2 Open Bugs / Design Deficiencies in MySQL

The following problems are known and fixing them is a high priority:
• FLUSH TABLES WITH READ LOCK does not block CREATE TABLE or COMMIT, which make

cause a problem with the binary log position when doing a full backup of tables and
the binary log.

• ANALYZE TABLE on a BDB table may in some cases make the table unusable until one
has restarted mysqld. When this happens you will see errors like the following in the
MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

• MySQL accepts parentheses in the FROM part, but silently ignores them. The reason
for not giving an error is that many clients that automatically generate queries add
parentheses in the FROM part even where they are not needed.

• Concatenating many RIGHT JOINS or combining LEFT and RIGHT join in the same query
may not give a correct answer as MySQL only generates NULL rows for the table pre-
ceding a LEFT or before a RIGHT join. This will be fixed in 5.0 at the same time we add
support for parentheses in the FROM part.

Chapter 1: General Information 45

• Don’t execute ALTER TABLE on a BDB table on which you are running multi-statement
transactions until all those transactions complete. (The transaction will probably be
ignored.)

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

• Doing a LOCK TABLE ... and FLUSH TABLES ... doesn’t guarantee that there isn’t a
half-finished transaction in progress on the table.

• BDB tables are a bit slow to open. If you have many BDB tables in a database, it will
take a long time to use the mysql client on the database if you are not using the -A
option or if you are using rehash. This is especially notable when you have a big table
cache.

• Replication uses query-level logging: the master writes the executed queries to the
binary log. This is a very fast, compact, and efficient logging method that works
perfectly in most cases. Though we have never heard of it actually occurring, it is
theoretically possible for the data on the master and slave to become different if a
query is designed in such a way that the data modification is non-deterministic, that
is, left to the will of the query optimiser (which generally is not a good practice, even
outside of replication!). For example:
− CREATE ... SELECT or INSERT ... SELECT which feeds zeros or NULLs into an

auto_increment column.
− DELETE if you are deleting rows from a table which has foreign keys with ON DELETE

CASCADE properties.
− REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values

in the inserted data.

IF and only if all these queries have NO ORDER BY clause guaranteeing a deterministic
order.
Indeed, for example for INSERT ... SELECT with no ORDER BY, the SELECT may return
rows in a different order (which will result in a row having different ranks, hence getting
a different number in the auto_increment column), depending on the choices made by
the optimisers on the master and slave. A query will be optimised differently on the
master and slave only if:
− The files used by the two queries are not exactly the same; for example OPTIMIZE

TABLE was run on the master tables and not on the slave tables (to fix this, since
MySQL 4.1.1, OPTIMIZE, ANALYZE and REPAIR are written to the binary log).

− The table is stored in a different storage engine on the master than on the slave
(one can run with different storage engines on the slave and master: for example
InnoDB on the master and MyISAM on the slave, if the slave has less available
disk space).

− The MySQL buffers’ sizes (key_buffer_size etc) are different on the master and
slave.

− The master and slave run different MySQL versions, and the optimiser code is
different between these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

46 MySQL Technical Reference for Version 4.1.1-alpha

The easiest way to avoid this problem in all cases is add an ORDER BY clause to such
non-deterministic queries to ensure that the rows are always stored/modified in the
same order. In future MySQL versions we will automatically add an ORDER BY clause
when needed.

The following problems are known and will be fixed in due time:
• LIKE is not multi-byte character safe. Comparison is done character by character.
•

When using RPAD function, or any other string function that ends up adding blanks to
the right, in a query that has to use temporary table to be resolved, then all resulting
strings will be RTRIM’ed. This is an example of the query:
SELECT RPAD(t1.field1, 50, ’ ’) AS f2, RPAD(t2.field2, 50, ’ ’) AS f1
FROM table1 as t1 LEFT JOIN table2 AS t2 ON t1.record=t2.joinID ORDER BY
t2.record;

Final result of this bug is that use will not be able to get blanks on the right side of
the resulting field.
The above behaviour exists in all versions of MySQL.
The reason for this is due to the fact that HEAP tables, which are used first for
temporary tables, are not capable of handling VARCHAR columns.
This behaviour will be fixed in one of the 4.1 series releases.

• Because of how table definitions files are stored one can’t use character 255 (CHAR(255))
in table names, column names or enums. This is scheduled to be fixed in version 5.1
when we have new table definition format files.

• When using SET CHARACTER SET, one can’t use translated characters in database, table,
and column names.

• One can’t use _ or % with ESCAPE in LIKE ... ESCAPE.
• If you have a DECIMAL column with a number stored in different formats (+01.00, 1.00,

01.00), GROUP BY may regard each value as a different value.
• DELETE FROM merge_table used without a WHERE will only clear the mapping for the

table, not delete everything in the mapped tables.
• You cannot build the server in another directory when using MIT-pthreads. Because

this requires changes to MIT-pthreads, we are not likely to fix this. See Section 2.3.6
[MIT-pthreads], page 99.

• BLOB values can’t “reliably” be used in GROUP BY or ORDER BY or DISTINCT. Only
the first max_sort_length bytes (default 1024) are used when comparing BLOBs in
these cases. This can be changed with the -O max_sort_length option to mysqld. A
workaround for most cases is to use a substring: SELECT DISTINCT LEFT(blob,2048)
FROM tbl_name.

• Calculation is done with BIGINT or DOUBLE (both are normally 64 bits long). It depends
on the function which precision one gets. The general rule is that bit functions are done
with BIGINT precision, IF, and ELT() with BIGINT or DOUBLE precision and the rest
with DOUBLE precision. One should try to avoid using unsigned long long values if they
resolve to be bigger than 63 bits (9223372036854775807) for anything else than bit
fields. MySQL Server 4.0 has better BIGINT handling than 3.23.

Chapter 1: General Information 47

• All string columns, except BLOB and TEXT columns, automatically have all trailing
spaces removed when retrieved. For CHAR types this is okay, and may be regarded as a
feature according to SQL-92. The bug is that in MySQL Server, VARCHAR columns are
treated the same way.

• You can only have up to 255 ENUM and SET columns in one table.
• In MIN(), MAX() and other aggregate functions, MySQL currently compares ENUM and

SET columns by their string value rather than by the string’s relative position in the
set.

• mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with
this is that if you execute mysqladmin refresh to close and reopen the log, stdout and
stderr are still redirected to the old log. If you use --log extensively, you should edit
mysqld_safe to log to ‘’hostname’.err’ instead of ‘’hostname’.log’ so you can easily
reclaim the space for the old log by deleting the old one and executing mysqladmin
refresh.

• In the UPDATE statement, columns are updated from left to right. If you refer to an
updated column, you will get the updated value instead of the original value. For
example:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

This will update KEY with 2 instead of with 1.
• You can refer to multiple temporary tables in the same query, but you cannot refer to

any given temporary table more than once. For example, the following doesn’t work:
mysql> SELECT * FROM temporary_table, temporary_table AS t2;

• RENAME doesn’t work with TEMPORARY tables or tables used in a MERGE table.
• The optimiser may handle DISTINCT differently if you are using ’hidden’ columns in a

join or not. In a join, hidden columns are counted as part of the result (even if they are
not shown) while in normal queries hidden columns don’t participate in the DISTINCT
comparison. We will probably change this in the future to never compare the hidden
columns when executing DISTINCT.
An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and
SELECT DISTINCT band_downloads.mp3id

FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case you may in MySQL Server 3.23.x get two identical rows in the result
set (because the hidden id column may differ).
Note that this happens only for queries where you don’t have the ORDER BY columns
in the result, something that you are not allowed to do in SQL-92.

• Because MySQL Server allows you to work with table types that don’t support transac-
tions, and thus can’t rollback data, some things behave a little differently in MySQL

48 MySQL Technical Reference for Version 4.1.1-alpha

Server than in other SQL servers. This is just to ensure that MySQL Server never
needs to do a rollback for an SQL command. This may be a little awkward at times
as column values must be checked in the application, but this will actually give you a
nice speed increase as it allows MySQL Server to do some optimisations that otherwise
would be very hard to do.
If you set a column to an incorrect value, MySQL Server will, instead of doing a
rollback, store the best possible value in the column:
− If you try to store a value outside the range in a numerical column, MySQL Server

will instead store the smallest or biggest possible value in the column.
− If you try to store a string that doesn’t start with a number into a numerical

column, MySQL Server will store 0 into it.
− If you try to store NULL into a column that doesn’t take NULL values, MySQL Server

will store 0 or ’’ (empty string) in it instead. (This behaviour can, however, be
changed with the -DDONT USE DEFAULT FIELDS compile option.)

− MySQL allows you to store some wrong date values into DATE and DATETIME
columns (like 2000-02-31 or 2000-02-00). The idea is that it’s not the SQL server
job to validate date. If MySQL can store a date and retrieve exactly the same
date, then MySQL will store the date. If the date is totally wrong (outside the
server’s ability to store it), then the special date value 0000-00-00 will be stored
in the column.

− If you set an ENUM column to an unsupported value, it will be set to the error value
empty string, with numeric value 0.

− If you set a SET column to an unsupported value, the value will be ignored.
• If you execute a PROCEDURE on a query that returns an empty set, in some cases the

PROCEDURE will not transform the columns.
• Creation of a table of type MERGE doesn’t check if the underlying tables are of compatible

types.
• MySQL Server can’t yet handle NaN, -Inf, and Inf values in double. Using these will

cause problems when trying to export and import data. We should as an intermediate
solution change NaN to NULL (if possible) and -Inf and Inf to the minimum respective
maximum possible double value.

• LIMIT on negative numbers are treated as big positive numbers.
• If you use ALTER TABLE to first add a UNIQUE index to a table used in a MERGE table

and then use ALTER TABLE to add a normal index on the MERGE table, the key order
will be different for the tables if there was an old key that was not unique in the table.
This is because ALTER TABLE puts UNIQUE keys before normal keys to be able to detect
duplicate keys as early as possible.

The following are known bugs in earlier versions of MySQL:
• You can get a hung thread if you do a DROP TABLE on a table that is one among many

tables that is locked with LOCK TABLES.
• In the following case you can get a core dump:

− Delayed insert handler has pending inserts to a table.
− LOCK table with WRITE.

Chapter 1: General Information 49

− FLUSH TABLES.
• Before MySQL Server Version 3.23.2 an UPDATE that updated a key with a WHERE on

the same key may have failed because the key was used to search for records and the
same row may have been found multiple times:

UPDATE tbl_name SET KEY=KEY+1 WHERE KEY > 100;

A workaround is to use:
mysql> UPDATE tbl_name SET KEY=KEY+1 WHERE KEY+0 > 100;

This will work because MySQL Server will not use an index on expressions in the WHERE
clause.

• Before MySQL Server Version 3.23, all numeric types were treated as fixed-point fields.
That means you had to specify how many decimals a floating-point field shall have.
All results were returned with the correct number of decimals.

For platform-specific bugs, see the sections about compiling and porting.

1.8 MySQL and the Future (The TODO)

This section summarises the features that we plan to implement in MySQL Server. The lists
are broken up per version, and the items are approximately in the order they will be done.
Note: If you are an enterprise level user with an urgent need for a particular feature, please
contact sales@mysql.com to discuss sponsoring options. Targeted financing by one or more
companies allows us to allocate additional resources for that specific purpose. One example
of a feature sponsored in the past is replication.

1.8.1 New Features Planned For 4.1

The features below are not yet implemented in MySQL 4.1, but are planned for implemen-
tation before MySQL 4.1 moves into its beta phase. For a list what is already done in
MySQL 4.1, see Section 1.5.2.1 [Nutshell 4.1 features], page 22.
• Stable OpenSSL support (MySQL 4.0 supports rudimentary, not 100% tested, support

for OpenSSL).
• Character set casts and syntax for handling multiple character sets.
• More testing of prepared statements and multiple characters sets for one table.

Development of other things has already shifted to the 5.0 tree.

1.8.2 New Features Planned For 5.0

The following features are planned for inclusion into MySQL 5.0. Note that because we have
many developers that are working on different projects, there will also be many additional
features. There is also a small chance that some of these features will be added to MySQL
4.1. For a list what is already done in MySQL 4.1, see Section 1.5.2.1 [Nutshell 4.1 features],
page 22.
For those wishing to take a look at the bleeding edge of MySQL development, we have
made our BitKeeper repository for MySQL version 5.0 publicly available. See Section 2.3.4
[Installing source tree], page 94.

50 MySQL Technical Reference for Version 4.1.1-alpha

Stored Procedures
• Stored procedures are currently being implemented. This effort is based

on SQL-99, which has a basic syntax similar (but not identical) to Oracle
PL/SQL. We will also implement the SQL-99 framework to hook in external
languages, and (where possible) compatibility with, for example, PL/SQL
and T-SQL.

New functionality
• Elementary cursor support.
• Visible RTREE index for MyISAM tables. In 4.1 RTREE indexes are used

internally for geometrical data, but not directly usable.
• Dynamic length rows for HEAP tables.

Standards compliance, portability and migration
• Add true VARCHAR support (there is already support for this in MyISAM).

Speed enhancements
• SHOW COLUMNS FROM table_name (used by mysql client to allow expansions

of column names) should not open the table, only the definition file. This
will require less memory and be much faster.

• Allow DELETE on MyISAM tables to use the record cache. To do this, we
need to update the threads record cache when we update the ‘.MYD’ file.

• Better in-memory (HEAP) tables:
• Dynamic size rows.
• Faster row handling (less copying).

Internationalisation
• When using SET CHARACTER SET we should translate the whole query at

once and not only strings. This will enable users to use the translated
characters in database, table, and column names.

Usability enhancements
• Resolving the issue of RENAME TABLE on a table used in an active MERGE

table possibly corrupting the table.

1.8.3 New Features Planned For 5.1

New functionality
• FOREIGN KEY support for all table types.
• Column-level constraints.
• Fail-safe replication.
• Online backup with very low performance penalty. The online backup will

make it easy to add a new replication slave without taking down the master.

Speed enhancements
• New text based table definition file format (‘.frm’ files) and a table cache

for table definitions. This will enable us to do faster queries of table struc-
tures and do more efficient foreign key support.

Chapter 1: General Information 51

• Optimise BIT type to take 1 bit (now BIT takes 1 char).

Usability enhancements
• Add options to the client/server protocol to get progress notes for long

running commands.
• Implement RENAME DATABASE. To make this safe for all storage engines, it

should work as follows:
• Create the new database.
• For every table do a rename of the table to another database, as we

do with the RENAME command.
• Drop the old database.

• New internal file interface change. This will make all file handling much
more general and make it easier to add extensions like RAID. (The current
implementation is a hack.)

1.8.4 New Features Planned for the Near Future

New functionality
• Oracle-like CONNECT BY PRIOR ... to search tree-like (hierarchical) struc-

tures.
• Add all missing SQL-92 and ODBC 3.0 types.
• Add SUM(DISTINCT).
• INSERT SQL_CONCURRENT and mysqld --concurrent-insert to do a con-

current insert at the end of the file if the file is read-locked.
• Allow update of variables in UPDATE statements. For example: UPDATE

TABLE foo SET @a=a+b,a=@a, b=@a+c.
• Change when user variables are updated so that one can use them with

GROUP BY, as in the following example: SELECT id, @a:=COUNT(*),
SUM(sum_col)/@a FROM table_name GROUP BY id.

• Add an IMAGE option to LOAD DATA INFILE to not update TIMESTAMP and
AUTO_INCREMENT fields.

• Added LOAD DATA INFILE ... UPDATE syntax.
• For tables with primary keys, if the data contains the primary key,

entries matching that primary key are updated from the remainder of
the columns. However, columns missing from the incoming data feed
are not touched.

• For tables with primary keys that are missing some part of the key
in the incoming data stream, or that have no primary key, the feed is
treated as a LOAD DATA INFILE ... REPLACE INTO now.

• Make LOAD DATA INFILE understand syntax like:
LOAD DATA INFILE ’file_name.txt’ INTO TABLE tbl_name

TEXT_FIELDS (text_field1, text_field2, text_field3)
SET table_field1=CONCAT(text_field1, text_field2),

table_field3=23

52 MySQL Technical Reference for Version 4.1.1-alpha

IGNORE text_field3

This can be used to skip over extra columns in the text file, or update
columns based on expressions of the read data.

• New functions for working with SET type columns:

• ADD_TO_SET(value,set)

• REMOVE_FROM_SET(value,set)

• If you abort mysql in the middle of a query, you should open another
connection and kill the old running query. Alternatively, an attempt should
be made to detect this in the server.

• Add a storage engine interface for table information so that you can use it
as a system table. This would be a bit slow if you requested information
about all tables, but very flexible. SHOW INFO FROM tbl_name for basic
table information should be implemented.

• Allow SELECT a FROM crash_me LEFT JOIN crash_me2 USING (a); in this
case a is assumed to come from the crash_me table.

• DELETE and REPLACE options to the UPDATE statement (this will delete rows
when one gets a duplicate key error while updating).

• Change the format of DATETIME to store fractions of seconds.

• Make it possible to use the new GNU regexp library instead of the current
one (the GNU library should be much faster than the old one).

Standards compliance, portability and migration
• Don’t add automatic DEFAULT values to columns. Give an error when using

an INSERT that doesn’t contain a column that doesn’t have a DEFAULT.

• Add ANY(), EVERY(), and SOME() group functions. In standard SQL these
work only on boolean columns, but we can extend these to work on any
columns/expressions by applying: value == 0 -> FALSE and value <> 0 ->
TRUE.

• Fix that the type for MAX(column) is the same as the column type:

mysql> CREATE TABLE t1 (a DATE);
mysql> INSERT INTO t1 VALUES (NOW());
mysql> CREATE TABLE t2 SELECT MAX(a) FROM t1;
mysql> SHOW COLUMNS FROM t2;

Speed enhancements
• Don’t allow more than a defined number of threads to run MyISAM recover

at the same time.

• Change INSERT ... SELECT to optionally use concurrent inserts.

• Add an option to periodically flush key pages for tables with delayed keys
if they haven’t been used in a while.

• Allow join on key parts (optimisation issue).

• Add simulation of pread()/pwrite() on Windows to enable concurrent
inserts.

Chapter 1: General Information 53

• A logfile analyser that could parse out information about which tables are
hit most often, how often multi-table joins are executed, etc. It should
help users identify areas or table design that could be optimised to execute
much more efficient queries.

Internationalisation

Usability enhancements
• Return the original field types() when doing SELECT MIN(column) ...

GROUP BY.

• Make it possible to specify long_query_time with a granularity in mi-
croseconds.

• Link the myisampack code into the server, enabling a PACK or COM-
PRESS command on the server.

• Add a temporary key buffer cache during INSERT/DELETE/UPDATE so that
we can gracefully recover if the index file gets full.

• If you perform an ALTER TABLE on a table that is symlinked to another
disk, create temporary tables on this disk.

• Implement a DATE/DATETIME type that handles time zone information prop-
erly so that dealing with dates in different time zones is easier.

• Fix configure so that one can compile all libraries (like MyISAM) without
threads.

• Allow SQL variables in LIMIT, like in LIMIT @a,@b.

• Automatic output from mysql to a web browser.

• LOCK DATABASES (with various options).

• Many more variables for SHOW STATUS. Records reads and updates. Selects
on 1 table and selects with joins. Mean number of tables in select. Number
of ORDER BY and GROUP BY queries.

• mysqladmin copy database new-database; requires COPY command to be
added to mysqld.

• Processlist should show number of queries/threads.

• SHOW HOSTS for printing information about the hostname cache.

• Change table names from empty strings to NULL for calculated columns.

• Don’t use Item_copy_string on numerical values to avoid number->string-
>number conversion in case of: SELECT COUNT(*)*(id+0) FROM table_
name GROUP BY id

• Change so that ALTER TABLE doesn’t abort clients that execute INSERT
DELAYED.

• Fix so that when columns are referenced in an UPDATE clause, they contain
the old values from before the update started.

New operating systems
• Port of the MySQL clients to LynxOS.

54 MySQL Technical Reference for Version 4.1.1-alpha

1.8.5 New Features Planned for the Mid-Term Future

• Implement function: get_changed_tables(timeout,table1,table2,...).
• Change reading through tables to use memmap when possible. Now only compressed

tables use memmap.
• Make the automatic timestamp code nicer. Add timestamps to the update log with

SET TIMESTAMP=#;.
• Use read/write mutex in some places to get more speed.
• Simple views (stepwise implementation up to full functionality). See Section 1.7.4.6

[ANSI diff Views], page 41.
• Automatically close some tables if a table, temporary table, or temporary files gets

error 23 (not enough open files).
• When one finds a field=#, change all occurrences of field to #. Now this is only done

for some simple cases.
• Change all const expressions with calculated expressions if possible.
• Optimise key = expression. At the moment only key = field or key = constant are

optimised.
• Join some of the copy functions for nicer code.
• Change ‘sql_yacc.yy’ to an inline parser to reduce its size and get better error mes-

sages (5 days).
• Change the parser to use only one rule per different number of arguments in function.
• Use of full calculation names in the order part (for ACCESS97).
• MINUS, INTERSECT, and FULL OUTER JOIN. (Currently UNION [in 4.0] and LEFT|RIGHT

OUTER JOIN are supported.)
• SQL_OPTION MAX_SELECT_TIME=# to put a time limit on a query.
• Make the update log write to a database.
• Enhance LIMIT to allow retrieval of data from the end of a result set.
• Alarm around client connect/read/write functions.
• Please note the changes to mysqld_safe: according to FSSTND (which Debian tries

to follow) PID files should go into ‘/var/run/<progname>.pid’ and log files into
‘/var/log’. It would be nice if you could put the "DATADIR" in the first decla-
ration of "pidfile" and "log", so the placement of these files can be changed with a
single statement.

• Allow a client to request logging.
• Add use of zlib() for gzip-ed files to LOAD DATA INFILE.
• Fix sorting and grouping of BLOB columns (partly solved now).
• Change to use semaphores when counting threads. One should first implement a

semaphore library to MIT-pthreads.
• Don’t assign a new AUTO_INCREMENT value when one sets a column to 0. Use NULL

instead.
• Add full support for JOIN with parentheses.

Chapter 1: General Information 55

• As an alternative for one thread/connection manage a pool of threads to handle the
queries.

• Allow one to get more than one lock with GET_LOCK. When doing this, one must also
handle the possible deadlocks this change will introduce.

Time is given according to amount of work, not real time.

1.8.6 New Features We Don’t Plan to Do

• Nothing; we aim toward full compliance with SQL-92/SQL-99.

56 MySQL Technical Reference for Version 4.1.1-alpha

2 Installing MySQL

This chapter describes how to obtain and install MySQL:
• For a list of sites from which you can obtain MySQL, see Section 2.2.1 [Getting MySQL],

page 70.
• To see which platforms are supported, see Section 2.2.3 [Which OS], page 73. Please

note that not all supported systems are equally good for running MySQL on them. On
some it is much more robust and efficient than others—see Section 2.2.3 [Which OS],
page 73 for details.

• Several versions of MySQL are available in both binary and source distributions. We
also provide public access to our current source tree for those who want to see our most
recent developments and help us test new code. To determine which version and type
of distribution you should use, see Section 2.2.4 [Which version], page 75. When in
doubt, use a binary distribution.

• Installation instructions for binary and source distributions are described in
Section 2.2.9 [Installing binary], page 85, and Section 2.3 [Installing source], page 88.
Each set of instructions includes a section on system-specific problems you may run
into.

• For post-installation procedures, see Section 2.4 [Post-installation], page 101. These
procedures apply whether you install MySQL using a binary or source distribution.

2.1 Quick Standard MySQL Installation

This chapter covers the installation of MySQL on platforms where we offer packages using
the native packaging format of the respective platform. However, binary distributions of
MySQL are available for many other platforms as well, see Section 2.2.9 [Installing binary],
page 85 for generic installation instructions for these packages that apply to all platforms.
See Section 2.2 [General Installation Issues], page 70 for more information on what other
binary distributions are available and how to obtain them.

2.1.1 Installing MySQL on Windows

The installation process for MySQL on Windows has the following steps:
1. Install the distribution.
2. Set up an option file if necessary.
3. Select the server you want to use.
4. Start the server.

MySQL for Windows is available in two distribution formats:
• The binary distribution contains a setup program that installs everything you need so

that you can start the server immediately.
• The source distribution contains all the code and support files for building the executa-

bles using the VC++ 6.0 compiler. See Section 2.3.7 [Windows source build], page 100.

Generally speaking, you should use the binary distribution. It’s simpler, and you need no
additional tools to get MySQL up and running.

Chapter 2: Installing MySQL 57

2.1.1.1 Windows System Requirements

To run MySQL on Windows, you will need the following:
• A 32-bit Windows operating system such as 9x, Me, NT, 2000, or XP. The NT family

(Windows NT, 2000, and XP) permits you to run the MySQL server as a service. See
Section 2.1.1.7 [NT start], page 61.

• TCP/IP protocol support.
• A copy of the MySQL binary distribution for Windows, which can be downloaded from

http://www.mysql.com/downloads/.
Note: The distribution files are supplied with a zipped format and we recommend the
use of an adequate FTP client with resume feature to avoid corruption of files during
the download process.

• A ZIP program to unpack the distribution file.
• Enough space on the hard drive to unpack, install, and create the databases in accor-

dance with your requirements.
• If you plan to connect to the MySQL server via ODBC, you will also need the MyODBC

driver. See Section 11.2 [ODBC], page 804.
• If you need tables with a size larger than 4 GB, install MySQL on an NTFS or newer

filesystem. Don’t forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables.
See Section 6.5.3 [CREATE TABLE], page 564.

2.1.1.2 Installing a Windows Binary Distribution

To install MySQL on Windows using a binary distribution, follow this procedure:
1. If you are working on a Windows NT, 2000, or XP machine, make sure you have logged

in as a user with administrator privileges.
2. If you are doing an upgrade of an earlier MySQL installation, it is necessary to stop

the current server. On Windows NT, 2000, or XP machines, if you are running the
server as a Windows service, stop it as follows from the command prompt:

C:\> NET STOP MySQL

If you plan to use a different server after the upgrade (for example, if you want to run
mysqld-max rather than mysqld), remove the existing service:

C:\mysql\bin> mysqld --remove

You can reinstall the service to use the proper server after upgrading.
If you are not running the MySQL server as a service, stop it like this:

C:\mysql\bin> mysqladmin -u root shutdown

3. Exit the WinMySQLAdmin program if it is running.
4. Unzip the distribution file to a temporary directory.
5. Run the setup.exe program to begin the installation process. If you want to install

MySQL into a location other than the default directory (‘C:\mysql’), use the Browse
button to specify your preferred directory. If you do not install MySQL into the default
location, you will need to specify the location whenever you start the server. The easiest

58 MySQL Technical Reference for Version 4.1.1-alpha

way to do this is to use an option file, as described in Section 2.1.1.3 [Windows prepare
environment], page 58.

6. Finish the install process.

2.1.1.3 Preparing the Windows MySQL Environment

If you need to specify startup options when you run the server, you can indicate them on the
command line or place them in an option file. For options that will be used every time the
server starts, you will find it most convenient to use an option file to specify your MySQL
configuration. This is true particularly under the following circumstances:
• The installation or data directory locations are different from the default locations

(‘C:\mysql’ and ‘C:\mysql\data’).
• You need to tune the server settings. For example, to use the InnoDB transactional

tables in MySQL version 3.23, you must manually create two new directories to hold
the InnoDB data and log files—such as, ‘C:\ibdata’ and ‘C:\iblogs’. You will also
need to add some extra lines to the option file, as described in Section 7.5.3 [InnoDB
start], page 606. (As of MySQL 4.0, InnoDB creates its datafiles and log files in the
data directory by default. This means you need not configure InnoDB explicitly. You
may still do so if you wish, and an option file will be useful in this case, too.)

On Windows, the MySQL installer places the data directory directly under the directory
where you install MySQL. If you would like to use a data directory in a different loca-
tion, you should copy the entire contents of the ‘data’ directory to the new location. For
example, by default, the installer places MySQL in ‘C:\mysql’ and the data directory in
‘C:\mysql\data’. If you want to use a data directory of ‘E:\mydata’, you must do two
things:
• Move the data directory from ‘C:\mysql\data’ to ‘E:\mydata’.
• Use a --datadir option to specify the new data directory location each time you start

the server.

When the MySQL server starts on Windows, it looks for options in two files: The ‘my.ini’
file in the Windows directory, and the ‘C:\my.cnf’ file. The Windows directory typically
is named something like ‘C:\WINDOWS’ or ‘C:\WinNT’. You can determine its exact location
from the value of the WINDIR environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the ‘my.ini’ file, then in the ‘my.cnf’ file. However, to
avoid confusion, it’s best if you use only one file. If your PC uses a boot loader where the
C: drive isn’t the boot drive, your only option is to use the ‘my.ini’ file. Whichever one
you use, it must be a plain text file.
An option file can be created and modified with any text editor, such as the Notepad
program. For example, if MySQL is installed at ‘D:\mysql’ and the data directory is
located as ‘D:\mydata\data’, you can create the option file and set up a [mysqld] section
to specify values for the basedir and datadir parameters:

[mysqld]
set basedir to your installation path
basedir=D:/mysql

Chapter 2: Installing MySQL 59

set datadir to the location of your data directory
datadir=D:/mydata/data

Note that Windows pathnames are specified in option files using forward slashes rather than
backslashes. If you do use backslashes, you must double them.
Another way to manage an option file is to use the the WinMySQLAdmin tool. You can
find WinMySQLAdmin in the ‘bin’ directory of your MySQL installation, as well as a help
file containing instructions for using it. WinMySQLAdmin has the capability of editing your
option file, but note these points:
• WinMySQLAdmin uses only the ‘my.ini’ file.
• If WinMySQLAdmin finds a ‘C:\my.cnf’ file, it will in fact rename it to ‘C:\my_cnf.bak’

to disable it.

Now you are ready to test starting the server.

2.1.1.4 Selecting a Windows Server

Starting with MySQL 3.23.38, the Windows distribution includes both the normal and the
MySQL-Max server binaries. Here is a list of the different MySQL servers from which you
can choose:
Binary Description
mysqld Compiled with full debugging and automatic memory allocation check-

ing, symbolic links, and InnoDB and BDB tables.
mysqld-opt Optimised binary. From version 4.0 on, InnoDB is enabled. Before 4.0,

this server includes no transactional table support.
mysqld-nt Optimised binary for NT/2000/XP with support for named pipes.
mysqld-max Optimised binary with support for symbolic links, and InnoDB and BDB

tables.
mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.
All of the preceding binaries are optimised for modern Intel processors but should work on
any Intel i386-class or higher processor.
The mysqld-nt or mysqld-max-nt server support named pipe connections. If you use either
of these servers, named pipe use is subject to these conditions:
• The server must be run on a version of Windows that supports named pipes (NT, 2000,

XP).
• Starting from 3.23.50, named pipes are enabled only if you start the server with the

--enable-named-pipe option.
• These servers can be run on Windows 98 or Me, but only if TCP/IP is installed; named

pipe connections cannot be used.
• On Windows 95, these servers cannot be used.

2.1.1.5 Starting the Server for the First Time

On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP/IP. On
NT-based systems such as Windows NT, 2000, or XP, clients have two options. They can
use TCP/IP, or they can use a named pipe if the server supports named pipe connections.

60 MySQL Technical Reference for Version 4.1.1-alpha

For information about which server binary to run, see Section 2.1.1.3 [Windows prepare
environment], page 58.

This section gives a general overview of starting the MySQL server. The following sections
provide more specific information for particular versions of Windows.

The examples in these sections assume that MySQL is installed under the default location
of ‘C:\mysql’. Adjust the pathnames shown in the examples if you have MySQL installed
in a different location.

Testing is best done from a command prompt in a console window (a “DOS window”). This
way you can have the server display status messages in the window where they are easy to
see. If something is wrong with your configuration, these messages will make it easier for
you to identify and fix any problems.

Make sure you are in the directory where the server is located, then enter this command:

shell> mysqld --console

For servers that include InnoDB support, you should see the following messages as the server
starts up:

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which
indicates that the server is ready to service client connections::

mysqld: ready for connections
Version: ’4.0.14-log’ socket: ’’ port: 3306

The server will continue to write to the console any further diagnostic output it produces.
You can open a new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in
the data directory. The error log is the file with the ‘.err’ extension.

2.1.1.6 Starting MySQL on Windows 95, 98, or Me

On Windows 95, 98, or Me, MySQL uses TCP/IP to connect a client to a server. (This will
allow any machine on your network to connect to your MySQL server.) Because of this, you

Chapter 2: Installing MySQL 61

must make sure that TCP/IP support is installed on your machine before starting MySQL.
You can find TCP/IP on your Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it’s likely that
you have an old Winsock package; MySQL requires Winsock 2! You can get the newest
Winsock from http://www.microsoft.com/. Windows 98 has the new Winsock 2 library,
so it is unnecessary to update the library.

To start the mysqld server, you should start a console window (a “DOS” window) and enter
this command:

shell> C:\mysql\bin\mysqld

This will start mysqld in the background. That is, after the server starts up, you should
see another command prompt. (Note that if you start the server this way on Windows NT,
2000, or XP, the server will run in the foreground and no command prompt will appear
until the server exits. Because of this, you should open another console window to run client
programs while the server is running.

You can stop the MySQL server by executing this command:

shell> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and
tell it to shut down. The command connects as root, which is the default administrative
account in the MySQL grant system. Please note that users in the MySQL grant system
are wholly independent from any login users under Windows.

If mysqld doesn’t start, check the error log to see if the server wrote any messages there
to indicate the cause of the problem. The error log is located in the ‘C:\mysql\data’
directory. It is the file with a suffix of ‘.err’. You can also try to start the server as mysqld
--console; in this case, you may get some useful information on the screen that may help
solve the problem.

The last option is to start mysqld with --standalone --debug. In this case mysqld will
write a log file ‘C:\mysqld.trace’ that should contain the reason why mysqld doesn’t start.
See Section E.1.2 [Making trace files], page 1005.

Use mysqld --help to display all the options that mysqld understands!

2.1.1.7 Starting MySQL on Windows NT, 2000, or XP

On the NT family (Windows NT, 2000, or XP), the recommended way to run MySQL
is to install it as a Windows service. Then Windows starts and stops the MySQL server
automatically when Windows starts and stops. A server installed as a service can also be
controlled from the command line using NET commands, or with the graphical Services
utility.

The Services utility (the Windows Service Control Manager) can be found in the Win-
dows Control Panel (under Administrative Tools on Windows 2000). It is advisable to
close the Services utility while performing server installation or removal operations from
this command line. This prevents some odd errors.

To get MySQL to work with TCP/IP on Windows NT 4, you must install service pack 3
(or newer)!

62 MySQL Technical Reference for Version 4.1.1-alpha

Before installing MySQL as a Windows service, you should first stop the current server if
it is running by using the following command:

shell> C:\mysql\bin\mysqladmin -u root shutdown

This invokes the MySQL administrative utility mysqladmin to connect to the server and
tell it to shut down. The command connects as root, which is the default administrative
account in the MySQL grant system. Please note that users in the MySQL grant system
are wholly independent from any login users under Windows.
Now install the server as a service:

shell> mysqld --install

If you have problems installing mysqld as a service using just the server name, try installing
it using its full pathname:

shell> C:\mysql\bin\mysqld --install

As of MySQL 4.0.2, you can specify a specific service name after the --install option. As
of MySQL 4.0.3, you can in addition specify a --defaults-file option after the service
name to indicate where the server should obtain options when it starts up. The rules that
determine the service name and option files the server uses are as follows:
• If you specify no service name, the server uses the default service name of MySQL and

the server reads options from the [mysqld] group in the standard option files.
• If you specify a service name after the --install option, the server ignores the

[mysqld] option group and instead reads options from the group that has the same
name as the service. The server reads options from the standard option files.

• If you specify a --defaults-file option after the service name, the server ignores the
standard option files and reads options only from the [mysqld] group of the named
file.

In the usual case that you install the server with --install but no service name, the server
is installed with a service name of MySQL.
As a more complex example, consider the following command:

shell> C:\mysql\bin\mysqld --install mysql --defaults-file=C:\my-opts.cnf

Here, a service name is given after the --install option. If no --defaults-file option
had been given, this command would have the effect of causing the server to read the
[mysql] group from the standard option files. (This would be a bad idea, because that
option group is for use by the mysql client program.) However, because the --defaults-
file option is present, the server reads options only from the named file, and only from
the [mysqld] option group.
You can also specify options as “Start parameters” in the Windows Services utility
before you start the MySQL service.
Once a MySQL server is installed as a service, Windows will start the service automatically
whenever Windows starts. The service also can be started immediately from the Services
utility, or by using the command NET START MYSQL. The NET command is not case sensitive.
Please note that when run as a service, mysqld has no access to a console window, so no
messages can be seen there. If mysqld doesn’t start, check the error log to see if the server
wrote any messages there to indicate the cause of the problem. The error log is located in
the ‘C:\mysql\data’ directory. It is the file with a suffix of ‘.err’.

Chapter 2: Installing MySQL 63

When mysqld is running as a service, it can be stopped by using the Services utility,
the command NET STOP MYSQL, or the command mysqladmin shutdown. If the service is
running when Windows shuts down, Windows will stop the server automatically.

From MySQL version 3.23.44, you have the choice of installing the server as a Manual service
if you don’t wish the service to be started automatically during the boot process. To do
this, use the --install-manual option rather than the --install option:

shell> C:\mysql\bin\mysqld --install-manual

To remove a server that is installed as a service, first stop it if it is running. Then use the
--remove option to remove it:

shell> mysqld --remove

One problem with automatic MySQL service shutdown is that, for MySQL versions older
than 3.23.49, Windows waited only for a few seconds for the shutdown to complete, then
killed the database server process if the time limit was exceeded. This had the potential
to cause problems. (For example, the InnoDB storage engine had to perform crash recovery
at the next startup.) Starting from MySQL version 3.23.49, Windows waits longer for
the MySQL server shutdown to complete. If you notice this still is not enough for your
installation, it is safest not to run the MySQL server as a service. Instead, start it from the
command-line prompt, and stop it with mysqladmin shutdown.

The change to tell Windows to wait longer when stopping the MySQL server
works for Windows 2000 and XP, but not for Windows NT. On NT, Windows
waits only 20 seconds for a service to shut down, and after that kills the ser-
vice process. You can increase this default by opening the Registry Editor
‘\winnt\system32\regedt32.exe’ and editing the value of WaitToKillServiceTimeout
at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control in the Registry tree.
Specify the new larger value in milliseconds (for example, the value 120000 tells Windows
NT to wait up to 120 seconds).

If you don’t want to start mysqld as a service, you can start it from the command line
the same way as for versions of Windows that are not based on NT. For instructions, see
Section 2.1.1.6 [Win95 start], page 60.

2.1.1.8 Running MySQL on Windows

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt
servers support named pipes on NT, 2000, and XP. However, the default is to use TCP/IP
regardless of the platform:

• Named pipes are actually slower than TCP/IP in many Windows configurations.
• Some users have experienced problems shutting down the MySQL server when named

pipes are used.

Starting from 3.23.50, named pipes are enabled for mysqld-nt and mysql-max-nt only if
they are started with the --enable-named-pipe option.

You can force a MySQL client to use named pipes by specifying the --pipe option or by
specifying . (period) as the host name. Use the --socket option to specify the name of
the pipe. In MySQL 4.1, you should use the --protocol=PIPE option.

64 MySQL Technical Reference for Version 4.1.1-alpha

You can test whether the MySQL server is working by executing any of the following
commands:

C:\> C:\mysql\bin\mysqlshow
C:\> C:\mysql\bin\mysqlshow -u root mysql
C:\> C:\mysql\bin\mysqladmin version status proc
C:\> C:\mysql\bin\mysql test

If mysqld is slow to answer to connections on Windows 9x/Me, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use
only localhost and IP numbers in the Host column of the MySQL grant tables.
There are two versions of the MySQL command-line tool:
Binary Description
mysql Compiled on native Windows, offering limited text editing capabilities.
mysqlc Compiled with the Cygnus GNU compiler and libraries, which offers

readline editing.
If you want to use mysqlc, you must have a copy of the ‘cygwinb19.dll’ library installed
somewhere that mysqlc can find it. Current distributions of MySQL include this library in
the same directory as mysqlc (the ‘bin’ directory under the base directory of your MySQL
installation). If your distribution does not have the cygwinb19.dll library in the ‘bin’
directory, look for it in the lib directory and copy it to your Windows system directory
(‘\Windows\system’ or similar place).
The default privileges on Windows give all local users full privileges to all databases without
specifying a password. To make MySQL more secure, you should set a password for all users
and remove the row in the mysql.user table that has Host=’localhost’ and User=’’.
You should also add a password for the root user. The following example starts by removing
the anonymous user that has all privileges, then sets a root user password:

C:\> C:\mysql\bin\mysql mysql
mysql> DELETE FROM user WHERE Host=’localhost’ AND User=’’;
mysql> FLUSH PRIVILEGES;
mysql> QUIT
C:\> C:\mysql\bin\mysqladmin -u root password your_password

After you’ve set the password, if you want to shut down the mysqld server, you can do so
using this command:

C:\> mysqladmin --user=root --password=your_password shutdown

If you are using a server from an old Windows shareware distribution of MySQL Version
3.21, the mysqladmin command to set the password will fail with an error: parse error
near ’SET password’. The solution to this problem is to upgrade to a newer version of
MySQL.
With the current MySQL versions you can easily add new users and change privileges with
GRANT and REVOKE commands. See Section 4.4.1 [GRANT], page 239.

2.1.2 Installing MySQL on Linux

The recommended way to install MySQL on Linux is by using the RPM packages. The
MySQL RPMs are currently built on a SuSE Linux 7.3 system but should work on most
versions of Linux that support rpm and use glibc.

Chapter 2: Installing MySQL 65

If you have problems with an RPM file (for example, if you receive the error “Sorry, the
host ’xxxx’ could not be looked up”), see Section 2.6.2.1 [Binary notes-Linux], page 130.
In most cases, you only need to install the MySQL-server and MySQL-client packages to
get a functional MySQL installation. The other packages are not required for a standard
installation. If you want to run a MySQL Max server that has additional capabilities,
you should install the MySQL-Max RPM after installing the MySQL-server RPM. See Sec-
tion 4.8.5 [mysqld-max], page 323.
If you get a dependency failure when trying to install the MySQL 4.0 packages (for example,
“error: removing these packages would break dependencies: libmysqlclient.so.10
is needed by ...”), you should also install the package MySQL-shared-compat, which
includes both the shared libraries for backward compatibility (libmysqlclient.so.12 for
MySQL 4.0 and libmysqlclient.so.10 for MySQL 3.23).
Many Linux distributions still ship with MySQL 3.23 and they usually link applications
dynamically to save disk space. If these shared libraries are in a separate package (for
example, MySQL-shared), it is sufficient to simply leave this package installed and just
upgrade the MySQL server and client packages (which are statically linked and do not
depend on the shared libraries). For distributions that include the shared libraries in the
same package as the MySQL server (for example, Red Hat Linux), you could either install
our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead.
The following RPM packages are available:
• MySQL-server-VERSION.i386.rpm

The MySQL server. You will need this unless you only want to connect to a MySQL
server running on another machine. Please note that this package was called MySQL-
VERSION.i386.rpm before MySQL 4.0.10.

• MySQL-Max-VERSION.i386.rpm

The MySQL Max server. This server has additional capabilities that the one in the
MySQL-server RPM does not. You must install the MySQL-server RPM first, because
the MySQL-Max RPM depends on it.

• MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to install this pack-
age.

• MySQL-bench-VERSION.i386.rpm

Tests and benchmarks. Requires Perl and the DBD-mysql module.
• MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL
clients, such as the Perl modules.

• MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain lan-
guages and applications need to dynamically load and use MySQL.

• MySQL-shared-compat-VERSION.i386.rpm

This package includes the shared libraries for both MySQL 3.23 and MySQL 4.0. Install
this package instead of MySQL-shared, if you have applications installed that are dy-
namically linked against MySQL 3.23 but you want to upgrade to MySQL 4.0 without
breaking the library dependencies. This package is available since MySQL 4.0.13.

66 MySQL Technical Reference for Version 4.1.1-alpha

• MySQL-embedded-VERSION.i386.rpm

The embedded MySQL server library (from MySQL 4.0).
• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to
rebuild the RPMs on other architectures (for example, Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server RPM), run:
shell> rpm -qpl MySQL-server-VERSION.i386.rpm

To perform a standard minimal installation, run:
shell> rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

To install just the client package, run:
shell> rpm -i MySQL-client-VERSION.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing
them. If you would like to learn more about this feature please see Section 2.2.2 [Verifying
Package Integrity], page 70.
The server RPM places data under the ‘/var/lib/mysql’ directory. The RPM also creates
the appropriate entries in ‘/etc/init.d/’ to start the server automatically at boot time.
(This means that if you have performed a previous installation and have made changes to
its startup script, you may want to make a copy of the script so you don’t lose it when you
install a newer RPM.) See Section 2.4.3 [Automatic start], page 108 for more information
on how MySQL can be started automatically on system startup.
If you want to install the MySQL RPM on older Linux distributions that do not support
initialisation scripts in ‘/etc/init.d’ (directly or via a symlink), you should create a sym-
bolic link that points to the location where your initialisation scripts actually are installed.
For example, if that location is ‘/etc/rc.d/init.d’, use these commands before installing
the RPM to create ‘/etc/init.d’ as a symbolic link that points there:

shell> cd /etc; ln -s rc.d/init.d .

However, all current major Linux distributions should already support the new directory
layout that uses ‘/etc/init.d’, because it is required for LSB (Linux Standard Base)
compliance.
If the RPM files that you install include MySQL-server, the mysqld daemon should be
up and running after installation. You should now be able to start using MySQL. See
Section 2.4 [Post-installation], page 101.
If something goes wrong, you can find more information in the binary installation chapter.
See Section 2.2.9 [Installing binary], page 85.

2.1.3 Installing MySQL on Mac OS X

Beginning with MySQL 4.0.11, you can install MySQL on Mac OS X 10.2 (“Jaguar”) using
a Mac OS X PKG binary package instead of the binary tarball distribution. Please note that
older versions of Mac OS X (for example, 10.1.x) are not supported by this package.
The package is located inside a disk image (.dmg) file, that you first need to mount by
double-clicking its icon in the Finder. It should then mount the image and display its
contents.

Chapter 2: Installing MySQL 67

NOTE: Before proceeding with the installation, be sure to shut down all running MySQL
server instances by either using the MySQL Manager Application (on Mac OS X Server) or
via mysqladmin shutdown on the command line.
To actually install the MySQL PKG, double click on the package icon. This launches the
Mac OS Package Installer, which will guide you through the installation of MySQL.
The Mac OS X PKG of MySQL will install itself into ‘/usr/local/mysql-<version>’
and will also install a symbolic link ‘/usr/local/mysql’, pointing to the new location.
If a directory named ‘/usr/local/mysql’ already exists, it will be renamed to
‘/usr/local/mysql.bak’ first. Additionally, it will install the grant tables in the mysql
database by executing mysql_install_db after the installation.
The installation layout is similar to the one of the binary distribution; all MySQL binaries
are located in the directory ‘/usr/local/mysql/bin’. The MySQL socket file is created as
‘/tmp/mysql.sock’ by default. See Section 2.2.5 [Installation layouts], page 77.
MySQL installation requires a Mac OS X user account named mysql (a user account with
this name should exist by default on Mac OS X 10.2 and up).
If you are running Mac OS X Server, you already have a version of MySQL installed:
• Mac OS X Server 10.2-10.2.2 come with MySQL 3.23.51 installed
• Mac OS X Server 10.2.3-10.2.6 ship with MySQL 3.23.53
• Mac OS X Server 10.3 ships with MySQL 4.0.14

This manual section covers the installation of the official MySQL Mac OS X PKG only.
Make sure to read Apple’s help about installing MySQL (Run the “Help View” application,
select “Mac OS X Server” help, and do a search for “MySQL” and read the item entitled
“Installing MySQL”).
Especially note that the pre-installed version of MySQL on Mac OS X Server is started
with the command safe_mysqld instead of mysqld_safe.
If you previously used Marc Liyanage’s MySQL packages for Mac OS X from
http://www.entropy.ch, you can simply follow the update instructions for packages using
the binary installation layout as given on his pages.
If you are upgrading from Marc’s 3.23.xx versions or from the Mac OS X Server version of
MySQL to the official MySQL PKG, you also need to convert the existing MySQL privilege
tables to the current format, because some new security privileges have been added. See
Section 2.5.6 [Upgrading-grant-tables], page 119.
If you would like to automatically start up MySQL during system bootup, you also need
to install the MySQL Startup Item. Starting with MySQL 4.0.15, it is part of the Mac
OS X installation disk images as a separate installation package. Simply double-click the
MySQLStartupItem.pkg icon and follow the instructions to install it.
Note that this only has to be done once! There is no need to install the Startup Item every
time you upgrade the MySQL package.
The Startup Item will be installed into ‘/Library/StartupItems/MySQL’. It adds a variable
MYSQLCOM=-YES- to the system configuration file ‘/etc/hostconfig’. If you would like to
disable the automatic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.
On Mac OS X Server, the Startup Item installation script will automatically disable
the startup of the default MySQL installation by changing the variable MYSQL in

68 MySQL Technical Reference for Version 4.1.1-alpha

‘/etc/hostconfig’ to MYSQL=-NO-. This is to avoid conflicts on bootup. However, it does
not shut down an already running MySQL server.

After the installation, you can start up MySQL by running the following commands in a
terminal window. Please note that you need to have administrator privileges to perform
this task.

If you have installed the Startup Item:

shell> sudo /Library/StartupItems/MySQL/MySQL start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you don’t use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should now be able to connect to the MySQL server, for example, by running
‘/usr/local/mysql/bin/mysql’.

If you installed MySQL for the first time, please remember to set a password for the MySQL
root user!

This is done with the following two commands:

/usr/local/mysql/bin/mysqladmin -u root password <password>
/usr/local/mysql/bin/mysqladmin -u root -h ‘hostname‘ password <password>

Please make sure that the hostname command in the second line is enclosed by backticks
(‘), so the shell can replace it with the output of this command (the host name of this
system)!

You might want to also add aliases to your shell’s resource file to access mysql and
mysqladmin from the command line:

alias mysql ’/usr/local/mysql/bin/mysql’
alias mysqladmin ’/usr/local/mysql/bin/mysqladmin’

Alternatively, you could simply add /usr/local/mysql/bin to your PATH environment
variable, for example, by adding the following to ‘$HOME/.tcshrc’:

setenv PATH ${PATH}:/usr/local/mysql/bin

Please note that installing a new MySQL PKG does not remove the directory of an older
installation. Unfortunately, the Mac OS X Installer does not yet offer the functionality
required to properly upgrade previously installed packages.

After you have copied over the MySQL database files from the previous version and have
successfully started the new version, you should consider removing the old installation files
to save disk space. Additionally, you should also remove older versions of the Package
Receipt directories located in ‘/Library/Receipts/mysql-<version>.pkg’.

Chapter 2: Installing MySQL 69

2.1.4 Installing MySQL on NetWare

As of version 4.0.11, the MySQL server is available for Novell NetWare in binary package
form. In order to host MySQL, the NetWare server must meet these requirements:
• NetWare version 6.5, or NetWare 6.0 with Support Pack 3 installed (You can obtain

this at http://support.novell.com/filefinder/13659/index.html). The system
must meet Novell’s minimum requirements to run the respective version of NetWare.

• MySQL data, as well as the binaries themselves, must be installed on an NSS volume;
traditional volumes are not supported.

The binary package for NetWare can be obtained at http://www.mysql.com/downloads/.
If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-
external-locking option on the command line. It will also be neccesary to use CHECK
TABLE and REPAIR TABLE instead of myisamchk, because myisamchk makes use of external
locking. External locking is known to have problems on NetWare 6.0; the problem has been
eliminated in NetWare 6.5.

2.1.4.1 Installing the MySQL for NetWare Binaries

1. If you are upgrading from a prior installation, stop the MySQL server. This is done
from the server console, using:

SERVER: mysqladmin -u root shutdown

2. Log on to the target server from a client machine with access to the location where you
will install MySQL.

3. Extract the binary package zip file onto the server. Be sure to allow the paths in the
zip file to be used. It is safe to simply extract the file to ‘SYS:\’.
If you are upgrading from a prior installation, you may need to copy the data directory
(for example, ‘SYS:MYSQL\DATA’) now, as well as ‘my.cnf’ if you have customised it.
You can then delete the old copy of MySQL.

4. You may wish to rename the directory to something more consistent and easy to use.
We recommend using ‘SYS:MYSQL’; examples in the manual will use this to refer to the
installation directory in general.

5. At the server console, add a search path for the directory containing the MySQL NLMs.
For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Install the initial database, if needed, by executing mysql_install_db at the server
console.

7. Start the MySQL server using mysqld_safe at the server console.
8. To finish the installation, you should also add the following commands to

autoexec.ncf. For example, if your MySQL installation is in ‘SYS:MYSQL’ and you
want MySQL to start automatically, you could add these lines:

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are using NetWare 6.0, you should add the --skip-external-locking flag:

70 MySQL Technical Reference for Version 4.1.1-alpha

#Starts the MySQL 4.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

If there was an existing installation of MySQL on the server, be sure to check for existing
MySQL startup commands in autoexec.ncf, and edit or delete them as necessary.

2.2 General Installation Issues

2.2.1 How to Get MySQL

Check the MySQL homepage (http://www.mysql.com/) for information about the current
version and for downloading instructions.
Our main mirror is located at http://mirrors.sunsite.dk/mysql/.
For a complete up-to-date list of MySQL web/download mirrors, see http://www.mysql.com/downloads/mirrors.html.
There you will also find information about becoming a MySQL mirror site and how to
report a bad or out-of-date mirror.

2.2.2 Verifying Package Integrity Using MD5 Checksums or GnuPG

After you have downloaded the MySQL package that suits your needs and before you
attempt to install it, you should make sure it is intact and has not been tampered with.
MySQL AB offers two means of integrity checking: MD5 checksums and cryptographic sig-
natures using GnuPG, the GNU Privacy Guard.

Verifying the MD5 Checksum

After you have downloaded the package, you should check, if the MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum,
that you can verify with the following command:

shell> md5sum <package>

Note, that not all operating systems support the md5sum command - on some it is simply
called md5, others do not ship it at all. On Linux, it is part of the GNU Text Utilities
package, which is available for a wide range of platforms. You can download the source
code from http://www.gnu.org/software/textutils/ as well. If you have OpenSSL in-
stalled, you can also use the command openssl md5 <package> instead. A DOS/Windows
implementation of the md5 command is available from http://www.fourmilab.ch/md5/.
Example:

shell> md5sum mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz
155836a7ed8c93aee6728a827a6aa153

mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz

You should check, if the resulting checksum matches the one printed on the download page
right below the respective package.

Chapter 2: Installing MySQL 71

Signature Checking Using GnuPG

A more reliable method of verifying the integrity of a package is using cryptographic
signatures. MySQL AB uses the GNU Privacy Guard (GnuPG), an Open Source alternative
to the very well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See
http://www.gnupg.org/ and http://www.openpgp.org/ for more information about
OpenPGP/GnuPG and how to obtain and install GnuPG on your system. Most Linux
distributions already ship with GnuPG installed by default.
Beginning with MySQL 4.0.10 (February 2003), MySQL AB has started signing their down-
loadable packages with GnuPG. Cryptographic signatures are a much more reliable method
of verifying the integrity and authenticity of a file.
To verify the signature for a specific package, you first need to obtain a copy of MySQL
AB’s public GPG build key build@mysql.com. You can either cut and paste it directly
from here, or obtain it from http://www.keyserver.net/.

Key ID:
pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysql.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

Public Key (ASCII-armored):

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l
xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi
Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm
Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p
/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq

72 MySQL Technical Reference for Version 4.1.1-alpha

a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf
anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW
I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ
Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==
=YJkx
-----END PGP PUBLIC KEY BLOCK-----

You can import this key into your public GPG keyring by using gpg --import. See the GPG
documentation for more info on how to work with public keys.

After you have downloaded and imported the public build key, now download your
desired MySQL package and the corresponding signature, which is also available from
the download page. The signature has the file name extension ‘.asc’. For example,
the signature for ‘mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz’ would be
‘mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz.asc’. Make sure that both
files are stored in the same directory and then run the following command to verify the
signature for this file:

shell> gpg --verify <package>.asc

Example:

shell> gpg --verify mysql-standard-4.0.10-gamma-pc-linux-i686.tar.gz.asc
gpg: Warning: using insecure memory!
gpg: Signature made Mon 03 Feb 2003 08:50:39 PM MET using DSA key ID 5072E1F5
gpg: Good signature from

"MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The "Good signature" message indicates that everything is all right.

Signature Checking Using RPM

For RPM packages, there is no separate signature - RPM packages actually have a built-in GPG
signature and MD5 checksum. You can verify them by running the following command:

shell> rpm --checksig <package>.rpm

Example:

shell> rpm --checksig MySQL-server-4.0.10-0.i386.rpm
MySQL-server-4.0.10-0.i386.rpm: md5 gpg OK

Note: If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS:
GPG#5072e1f5) (even though you have imported it into your GPG public keyring), you
need to import the key into the RPM keyring first. RPM 4.1 no longer uses your GPG
keyring (and GPG itself), but rather maintains its own keyring (because it’s a system wide
application and the GPG public keyring is user-specific file). To import the MySQL public
key into the RPM keyring, please use the following command:

Chapter 2: Installing MySQL 73

shell> rpm --import <pubkey>

Example:

shell> rpm --import mysql_pubkey.asc

In case you notice that the MD5 checksum or GPG signatures do not match, first try to
download the respective package one more time, maybe from another mirror site. If you
repeatedly can not successfully verify the integrity of the package, please notify us about
such incidents including the full package name and the download site you have been using
at webmaster@mysql.com or build@mysql.com.

2.2.3 Operating Systems Supported by MySQL

We use GNU Autoconf, so it is possible to port MySQL to all modern systems with working
Posix threads and a C++ compiler. (To compile only the client code, a C++ compiler is
required but not threads.) We use and develop the software ourselves primarily on Linux
(SuSE and Red Hat), FreeBSD and Sun Solaris (Versions 8 and 9).
Note that for many operating systems, the native thread support works only in the latest
versions. MySQL has been reported to compile successfully on the following operating
system/thread package combinations:
• AIX 4.x, 5.x with native threads. See Section 2.6.6.4 [IBM-AIX], page 144.
• Amiga.
• BSDI 2.x with the MIT-pthreads package. See Section 2.6.4.5 [BSDI], page 139.
• BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.6.4.5 [BSDI], page 139.
• SCO OpenServer with a recent port of the FSU Pthreads package. See Section 2.6.6.9

[SCO], page 149.
• SCO UnixWare 7.1.x. See Section 2.6.6.10 [SCO UnixWare], page 151.
• DEC Unix 4.x with native threads. See Section 2.6.6.6 [Alpha-DEC-UNIX], page 146.
• FreeBSD 2.x with the MIT-pthreads package. See Section 2.6.4.1 [FreeBSD], page 137.
• FreeBSD 3.x and 4.x with native threads. See Section 2.6.4.1 [FreeBSD], page 137.
• FreeBSD 4.x with Linuxthreads. See Section 2.6.4.1 [FreeBSD], page 137.
• HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.6.6.2

[HP-UX 10.20], page 142.
• HP-UX 11.x with the native threads. See Section 2.6.6.3 [HP-UX 11.x], page 142.
• Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+. See Section 2.6.2 [Linux],

page 126.
• Mac OS X. See Section 2.6.5 [Mac OS X], page 140.
• NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (Requires GNU make). See Section 2.6.4.2

[NetBSD], page 139.
• Novell NetWare 6.0. See Section 2.6.8 [Novell NetWare], page 152.
• OpenBSD > 2.5 with native threads. OpenBSD < 2.5 with the MIT-pthreads package.

See Section 2.6.4.3 [OpenBSD], page 139.

74 MySQL Technical Reference for Version 4.1.1-alpha

• OS/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.6.7 [OS/2],
page 151.

• SGI Irix 6.x with native threads. See Section 2.6.6.8 [SGI-Irix], page 148.
• Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.6.3 [So-

laris], page 133.
• SunOS 4.x with the MIT-pthreads package. See Section 2.6.3 [Solaris], page 133.
• Tru64 Unix
• Windows 9x, Me, NT, 2000 and XP. See Section 2.6.1 [Windows], page 122.

Note that not all platforms are suited equally well for running MySQL. How well a cer-
tain platform is suited for a high-load mission-critical MySQL server is determined by the
following factors:
• General stability of the thread library. A platform may have excellent reputation

otherwise, but if the thread library is unstable in the code that is called by MySQL,
even if everything else is perfect, MySQL will be only as stable as the thread library.

• The ability of the kernel and/or thread library to take advantage of SMP on multi-
processor systems. In other words, when a process creates a thread, it should be
possible for that thread to run on a different CPU than the original process.

• The ability of the kernel and/or the thread library to run many threads which ac-
quire/release a mutex over a short critical region frequently without excessive context
switches. In other words, if the implementation of pthread_mutex_lock() is too anx-
ious to yield CPU time, this will hurt MySQL tremendously. If this issue is not taken
care of, adding extra CPUs will actually make MySQL slower.

• General filesystem stability/performance.
• Ability of the filesystem to deal with large files at all and deal with them efficiently, if

your tables are big.
• Our level of expertise here at MySQL AB with the platform. If we know a platform

well, we introduce platform-specific optimisations/fixes enabled at compile time. We
can also provide advice on configuring your system optimally for MySQL.

• The amount of testing of similar configurations we have done internally.
• The number of users that have successfully run MySQL on that platform in similar

configurations. If this number is high, the chances of hitting some platform-specific
surprises are much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are
x86 with SuSE Linux 8.2, 2.4 kernel, and ReiserFS (or any similar Linux distribution) and
SPARC with Solaris (2.7-9). FreeBSD comes third, but we really hope it will join the top
club once the thread library is improved. We also hope that at some point we will be
able to include all other platforms on which MySQL compiles, runs okay, but not quite
with the same level of stability and performance, into the top category. This will require
some effort on our part in cooperation with the developers of the OS/library components
MySQL depends upon. If you are interested in making one of those components better,
are in a position to influence their development, and need more detailed instructions on
what MySQL needs to run better, send an e-mail to the MySQL internals mailing list. See
Section 1.6.1.1 [Mailing-list], page 25.

Chapter 2: Installing MySQL 75

Please note that the preceding comparison is not to say that one OS is better or worse
than the other in general. We are talking about choosing a particular OS for a dedicated
purpose—running MySQL, and compare platforms in that regard only. With this in mind,
the result of this comparison would be different if we included more issues into it. And in
some cases, the reason one OS is better than the other could simply be that we have put
forth more effort into testing on and optimising for that particular platform. We are just
stating our observations to help you decide on which platform to use MySQL on in your
setup.

2.2.4 Which MySQL Version to Use

The first decision to make is whether you want to use the latest development release or the
last production (stable) release:
• Normally, if you are beginning to use MySQL for the first time or trying to port it to

some system for which there is no binary distribution, we recommend going with the
production release (currently version 4.0). Note that all MySQL releases are checked
with the MySQL benchmarks and an extensive test suite before each release (even the
development releases).

• Otherwise, if you are running an old system and want to upgrade, but don’t want to
take chances with a non-seamless upgrade, you should upgrade to the latest in the same
branch you are using (where only the last version number is newer than yours). We
have tried to fix only fatal bugs and make small, relatively safe changes to that version.

The second decision to make is whether you want to use a source distribution or a binary
distribution. In most cases you should probably use a binary distribution, if one exists for
your platform, as this generally will be easier to install than a source distribution.
In the following cases you probably will be better off with a source installation:
• If you want to install MySQL at some explicit location. (The standard binary distribu-

tions are “ready to run” at any place, but you may want to get even more flexibility).
• To be able to satisfy different user requirements, we are providing two different binary

versions: one compiled with the non-transactional storage engines (a small, fast binary),
and one configured with the most important extended options like transaction-safe
tables. Both versions are compiled from the same source distribution. All native MySQL
clients can connect to both MySQL versions.
The extended MySQL binary distribution is marked with the -max suffix and is config-
ured with the same options as mysqld-max. See Section 4.8.5 [mysqld-max], page 323.
If you want to use the MySQL-Max RPM, you must first install the standard MySQL-
server RPM.

• If you want to configure mysqld with some extra features that are not in the standard
binary distributions. Here is a list of the most common extra options that you may
want to use:
• --with-innodb (default for MySQL 4.0 and onwards)
• --with-berkeley-db (not available on all platforms)
• --with-raid

• --with-libwrap

76 MySQL Technical Reference for Version 4.1.1-alpha

• --with-named-z-libs (This is done for some of the binaries)

• --with-debug[=full]

• The default binary distribution is normally compiled with support for all character sets
and should work on a variety of processors from the same processor family.

If you want a faster MySQL server you may want to recompile it with support for only
the character sets you need, use a better compiler (like pgcc), or use compiler options
that are better optimised for your processor.

• If you have found a bug and reported it to the MySQL development team you will
probably receive a patch that you need to apply to the source distribution to get the
bug fixed.

• If you want to read (and/or modify) the C and C++ code that makes up MySQL,
you should get a source distribution. The source code is always the ultimate manual.
Source distributions also contain more tests and examples than binary distributions.

The MySQL naming scheme uses release numbers that consist of three numbers and a suffix.
For example, a release name like mysql-4.1.0-alpha is interpreted like this:

• The first number (4) is the major version and also describes the file format. All Version
4 releases have the same file format.

• The second number (1) is the release level.

• The third number (0) is the version number within the release level. This is incremented
for each new distribution. Usually you want the latest version for the release level you
have chosen.

• The suffix (alpha) indicates the stability level of the release. The possible suffixes are:

− alpha indicates that the release contains some large section of new code that hasn’t
been 100% tested. Known bugs (usually there are none) should be documented
in the News section. See Appendix D [News], page 886. There are also new
commands and extensions in most alpha releases. Active development that may
involve major code changes can occur on an alpha release, but everything will be
tested before doing a release. There should be no known bugs in any MySQL
release.

− beta means that all new code has been tested. No major new features that could
cause corruption on old code are added. There should be no known bugs. A
version changes from alpha to beta when there haven’t been any reported fatal
bugs within an alpha version for at least a month and we don’t plan to add any
features that could make any old command more unreliable.

− gamma is a beta that has been around a while and seems to work fine. Only minor
fixes are added. This is what many other companies call a release.

− If there is no suffix, it means that the version has been run for a while at many
different sites with no reports of bugs other than platform-specific bugs. Only
critical bug fixes are applied to the release. This is what we call a production
(stable) release.

In the MySQL development process, multiple versions co-exist and are at a different stage.
Naturally, relevant bugfixes from an earlier series also propagate upward.

Chapter 2: Installing MySQL 77

• For the old stable/production series 3.23, new versions are only released for critical
bugs.

• The current series 4.0) is stable/production quality, with new versions released for
bugfixes. No new features are added that could influence the code stability.

• In the alpha branch 4.1 major new features are added. Sources and binaries are
available for use and testing on development systems.

• The development branch 5.0 is only available from the BitKeeper tree.

All versions of MySQL are run through our standard tests and benchmarks to ensure that
they are relatively safe to use. Because the standard tests are extended over time to check
for all previously found bugs, the test suite keeps getting better.
Note that all releases have been tested at least with:

An internal test suite
This is part of a production system for a customer. It has many tables with
hundreds of megabytes of data.

The MySQL benchmark suite
This runs a range of common queries. It is also a test to see whether the latest
batch of optimisations actually made the code faster. See Section 5.1.4 [MySQL
Benchmarks], page 397.

The crash-me test
This tries to determine what features the database supports and what its capa-
bilities and limitations are. See Section 5.1.4 [MySQL Benchmarks], page 397.

Another test is that we use the newest MySQL version in our internal production environ-
ment, on at least one machine. We have more than 100 gigabytes of data to work with.

2.2.5 Installation Layouts

This section describes the default layout of the directories created by installing binary and
source distributions.
A binary distribution is installed by unpacking it at the installation location you choose
(typically ‘/usr/local/mysql’) and creates the following directories in that location:
Directory Contents of directory
‘bin’ Client programs and the mysqld server
‘data’ Log files, databases
‘docs’ Documentation, ChangeLog
‘include’ Include (header) files
‘lib’ Libraries
‘scripts’ mysql_install_db
‘share/mysql’ Error message files
‘sql-bench’ Benchmarks
A source distribution is installed after you configure and compile it. By default, the instal-
lation step installs files under ‘/usr/local’, in the following subdirectories:
Directory Contents of directory
‘bin’ Client programs and scripts

78 MySQL Technical Reference for Version 4.1.1-alpha

‘include/mysql’Include (header) files
‘info’ Documentation in Info format
‘lib/mysql’ Libraries
‘libexec’ The mysqld server
‘share/mysql’ Error message files
‘sql-bench’ Benchmarks and crash-me test
‘var’ Databases and log files
Within an installation directory, the layout of a source installation differs from that of a
binary installation in the following ways:
• The mysqld server is installed in the ‘libexec’ directory rather than in the ‘bin’

directory.
• The data directory is ‘var’ rather than ‘data’.
• mysql_install_db is installed in the ‘/usr/local/bin’ directory rather than in

‘/usr/local/mysql/scripts’.
• The header file and library directories are ‘include/mysql’ and ‘lib/mysql’ rather

than ‘include’ and ‘lib’.

You can create your own binary installation from a compiled source distribution by executing
the script ‘scripts/make_binary_distribution’.

2.2.6 How and When Updates Are Released

MySQL is evolving quite rapidly here at MySQL AB and we want to share this with other
MySQL users. We try to make a release when we have very useful features that others seem
to have a need for.
We also try to help out users who request features that are easy to implement. We take note
of what our licensed users want to have, and we especially take note of what our extended
e-mail supported customers want and try to help them out.
No one has to download a new release. The News section will tell you if the new release
has something you really want. See Appendix D [News], page 886.
We use the following policy when updating MySQL:
• For each minor update, the last number in the version string is incremented. When

there are major new features or minor incompatibilities with previous versions, the
second number in the version string is incremented. When the file format changes, the
first number is increased.

• Production (stable-tested) releases are meant to appear about 1-2 times a year, but if
small bugs are found, a release with only bug fixes will be released.

• Working releases/bug fixes to old releases are meant to appear about every 1-8 weeks.
• Binary distributions for some platforms will be made by us for major releases. Other

people may make binary distributions for other systems but probably less frequently.
• We usually make patches available as soon as we have located and fixed small bugs.

They usually are immediately available from our public BitKeeper repositories. They
will also be included in the next release.

• Non-critical but annoying bugs will be added to the MySQL source repository and they
will be fixed in the next release.

Chapter 2: Installing MySQL 79

• If there is, by any chance, a fatal bug in a release we will make a new release as soon
as possible. We would like other companies to do this, too.

The current production release is Version 4.0; we have already moved active development
to Version 4.1 and 5.0. Bugs will still be fixed in the 4.0 version, and critical bugs also in
the 3.23 series. We don’t believe in a complete freeze, as this also leaves out bug fixes and
things that “must be done.” “Somewhat frozen” means that we may add small things that
“almost surely will not affect anything that’s already working.”
MySQL uses a slightly different naming scheme from most other products. In general it’s
relatively safe to use any version that has been out for a couple of weeks without being
replaced with a new version. See Section 2.2.4 [Which version], page 75.

2.2.7 Release Philosophy - No Known Bugs in Releases

We put a lot of time and effort into making our releases bug free. To our knowledge, we
have not released a single MySQL version with any known ’fatal’ repeatable bugs.
A fatal bug is something that crashes MySQL under normal usage, gives wrong answers for
normal queries, or has a security problem.
We have documented all open problems, bugs and things that are dependent on design
decisions. See Section 1.7.6 [Bugs], page 44.
Our aim is to fix everything that is fixable, but without risking making a stable MySQL
version less stable. In certain cases, this means we can fix an issue in the development
version(s), but not in the stable (production) version. Naturally, we document such issues
so that users are aware.
Here is a description of how our build process works:
• We monitor bugs from our customer support list, the MySQL external mailing lists

and the bugs database at http://bugs.mysql.com/.
• All reported bugs for live versions are entered into the bugs database.
• When we fix a bug, we always try to make a test case of it and include this into our

test system to ensure that the bug will never come back. (About 90% of all fixed bugs
have a test case.)

• We also create test cases for all new features we add to MySQL.
• Before we start to build a new MySQL release, we ensure that all reported repeatable

bugs for the MySQL version (3.23.x, 4.0.x, etc) are fixed. If something is impossible to
fix (because some internal design decision in MySQL) we document this in the manual.
See Section 1.7.6 [Bugs], page 44.

• We do a build on all platforms for which we support binaries (15+ platforms) and run
our test suite and benchmark suite on all of them.

• We will not publish a binary for a platform for which the test or benchmark suite fails.
If it’s a general error in the source, we fix this and do the build plus tests on all systems
again, from scratch.

• If we, during the build and test process (which takes 2-3 days), receive a report regard-
ing a fatal bug (for example, one that causes a core dump), we fix this and restart the
build process.

80 MySQL Technical Reference for Version 4.1.1-alpha

• After publishing the binaries on http://www.mysql.com/, we send out an announce
email on the mysql and announce mailing lists. See Section 1.6.1.1 [Mailing-list],
page 25. The announcement message contains a list of all changes to the release and
any known problems with the release. (The ’known problems’ section in the release
notes has only been needed in a handful of releases.)

• To quickly give our users access to the latest MySQL features, we do a new MySQL
release every 4-5 weeks.

• If we, after the release is done, get any bug reports that there was (after all) anything
critically wrong with the build on a specific platform, we will fix this at once and build
a new ’a’ release for that platform. Thanks to our large user base, problems are found
quickly.

• Our track record for making good releases is quite good. In the last 150 releases, we
had to do a new build for less than 10 releases (in 3 of these cases, the bug was a faulty
glibc library on one of our build machines that took us a long time to track down).

2.2.8 MySQL Binaries Compiled by MySQL AB

As a service, we at MySQL AB provide a set of binary distributions of MySQL that are
compiled at our site or at sites where customers kindly have given us access to their ma-
chines.

In addition to the binaries provided in platform-specific package formats (see Section 2.1
[Quick Standard Installation], page 56), we do offer binary distributions for a number of
platforms by means of compressed tar archives (.tar.gz).

These distributions are generated using the script Build-tools/Do-compile which com-
piles the source code and creates the binary tar.gz archive using scripts/make_binary_
distribution These binaries are configured and built with the following compilers and
options.

Binaries built on MySQL AB development systems:

Linux 2.4.xx x86 with gcc 2.95.3
CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -
mcpu=pentiumpro -felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared --with-
client-ldflags=-all-static --with-mysqld-ldflags=-all-static

Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0)
CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc CXXFLAGS="-O2
-tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile

Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0)
CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure --
prefix=/usr/local/mysql --with-extra-charsets=complex --enable-
thread-safe-client --enable-local-infile

Chapter 2: Installing MySQL 81

Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006)
CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-
fast -arch generic -noexceptions -nortti" ./configure -
-prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-
mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared
--disable-shared

Linux 2.4.xx s390 with gcc 2.95.3
CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors"
./configure --prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-
static

Linux 2.4.xx x86 64 (AMD64) with gcc 3.2.1
CXX=gcc ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--disable-shared

Sun Solaris 8 x86 with gcc 3.2.3
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-
O3 -fno-omit-frame-pointer -felide-constructors -fno-
exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql --
localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

Sun Solaris 8 sparc with gcc 3.2
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--enable-assembler --with-named-z-libs=no --with-named-curses-
libs=-lcurses --disable-shared

Sun Solaris 8 sparc 64bit with gcc 3.2
CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc
CXXFLAGS="-O3 -m64 -fno-omit-frame-pointer -felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

Sun Solaris 9 sparc with gcc 2.95.3
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--enable-assembler --with-named-curses-libs=-lcurses --disable-
shared

82 MySQL Technical Reference for Version 4.1.1-alpha

Sun Solaris 9 sparc with cc-5.0 (Sun Forte 5.0)
CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst
-mt -D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_
-xarch=v9" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--enable-assembler --with-named-z-libs=no --enable-thread-safe-
client --disable-shared

IBM AIX 4.3.2 ppc with gcc 3.2.3
CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--with-named-z-libs=no --disable-shared

IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0)
CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-
libs=no --disable-shared --with-innodb

IBM AIX 5.1.0 ppc with gcc 3.3
CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --with-server-suffix="-pro" --enable-thread-
safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared

HP-UX 10.20 pa-risc1.1 with gcc 3.1
CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc CXXFLAGS="-
DHPUX -I/opt/dce /include -felide-constructors -fno-exceptions
-fno-rtti -O3 -fPIC" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client --
enable-local-infile --with-pthread --with-named-thread-libs=-ldce
--with-lib-ccflags=-fPIC --disable-shared

HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33)
CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --
prefix=/usr/local/mysql --with-extra-charsets=complex --enable-
thread-safe-client --enable-local-infile --disable-shared

HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33)
CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-innodb

Chapter 2: Installing MySQL 83

Apple Mac OS X 10.2 powerpc with gcc 3.1
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--disable-shared

FreeBSD 4.7 i386 with gcc 2.95.4
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=not-
used --disable-shared

QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by
other users. Please note that these are only provided as a courtesy. Since MySQL AB
does not have full control over these systems, we can only provide limited support for the
binaries built on these systems.

SCO Unix 3.2v5.0.6 i386 with gcc 2.95.3
CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -
mpentium -felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-
client --disable-shared

SCO OpenUnix 8.0.0 i386 with CC 3.2
CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-
client --disable-shared

Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL
C++ V6.1-027)

CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -
inline speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4
-ansi_alias -fast -inline speed -speculate all -noexceptions
-nortti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--with-prefix=/usr/local/mysql --with-named-thread-libs="-
lpthread -lmach -lexc -lc" --disable-shared --with-mysqld-ldflags=-
all-static

84 MySQL Technical Reference for Version 4.1.1-alpha

SGI Irix 6.5 IP32 with gcc 3.0.1
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--disable-shared

FreeBSD 5.0 sparc64 with gcc 3.2.1
CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages MySQL AB used to
provide in the past. These binaries are no longer being updated, but the compile options
are kept here for reference purposes.

Linux 2.2.xx sparc with egcs 1.1.2
CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql --with-extra-
charsets=complex --enable-thread-safe-client --enable-local-infile
--enable-assembler --disable-shared

Linux 2.2.x with x686 with gcc 2.95.2
CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro
-felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler --with-mysqld-
ldflags=-all-static --disable-shared --with-extra-charsets=complex

SunOS 4.1.4 2 sun4c with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure
--prefix=/usr/local/mysql --disable-shared --with-extra-
charsets=complex --enable-assembler

SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or gcc 2.95.2 and newer
CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex --enable-assembler

SunOS 5.6 i86pc with gcc 2.8.1
CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1
CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

BSDI BSD/OS 2.1 i386 with gcc 2.7.2
CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

Chapter 2: Installing MySQL 85

AIX 2 4 with gcc 2.7.2.2
CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

Anyone who has more optimal options for any of the preceding configurations listed can
always mail them to the MySQL internals s mailing list. See Section 1.6.1.1 [Mailing-list],
page 25.
RPM distributions prior to MySQL Version 3.22 are user-contributed. Beginning with
Version 3.22, the RPMs are generated by us at MySQL AB.
If you want to compile a debug version of MySQL, you should add --with-debug or --
with-debug=full to the preceding configure lines and remove any -fomit-frame-pointer
options.
For the Windows distribution, please see Section 2.1.1 [Windows installation], page 56.

2.2.9 Installing a MySQL Binary Distribution

This chapter covers the installation of MySQL binary distributions (.tar.gz Archives) for
various platforms (see Section 2.2.8 [MySQL binaries], page 80 for a detailed list).
In addition to these generic packages, we also offer binaries in platform-specific package
formats for selected platforms. See Section 2.1 [Quick Standard Installation], page 56 for
more information on how to install these.
The generic MySQL binary distributions are packaged as gzip-compressed GNU tar archives
(.tar.gz). You need the following tools to install a MySQL binary distribution:
• GNU gunzip to uncompress the distribution.
• A reasonable tar to unpack the distribution. GNU tar is known to work. Some tar

implementations that come pre-installed with the operating system (e.g. Sun tar) are
known to have problems (with long file names, for example). In that case, you should
install GNU tar first.

If you run into problems, please always use mysqlbug when posting questions to a MySQL
mailing list. Even if the problem isn’t a bug, mysqlbug gathers system information that
will help others solve your problem. By not using mysqlbug, you lessen the likelihood of
getting a solution to your problem. You will find mysqlbug in the ‘bin’ directory after you
unpack the distribution. See Section 1.6.1.3 [Bug reports], page 27.
The basic commands you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db
shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

86 MySQL Technical Reference for Version 4.1.1-alpha

If your version of MySQL is older than 4.0, substitute bin/safe_mysqld for bin/mysqld_
safe in the final command.

You can add new users using the bin/mysql_setpermission script if you install the DBI
and DBD-mysql Perl modules.

A more detailed description follows.

To install a binary distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 101, for post-installation setup and testing:

1. Pick the directory under which you want to unpack the distribution, and move into it.
In the following example, we unpack the distribution under ‘/usr/local’ (The following
instructions, therefore, assume you have permission to create files and directories in
‘/usr/local’. If that directory is protected, you will need to perform the installation
as root.)

2. Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 70.
MySQL binary distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION-OS.tar.gz’, where VERSION is a number (for example, 3.21.15),
and OS indicates the type of operating system for which the distribution is intended (for
example, pc-linux-gnu-i586). Note that all binaries are built from the same MySQL
source distribution.

3. Add a user and group for mysqld to run as:
shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.

4. Change into the intended installation directory:
shell> cd /usr/local

5. Unpack the distribution, which will create the installation directory. Then create a
symbolic link to that directory:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql

Using GNU tar, you can also replace the first line with the following alternative com-
mand to decompress and extract the distribution in one go:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

The first command creates a directory named ‘mysql-VERSION-OS’. The second com-
mand makes a symbolic link to that directory. This lets you refer more easily to the
installation directory as ‘/usr/local/mysql’.

6. Change into the installation directory:
shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important
for installation purposes are the ‘bin’ and ‘scripts’ subdirectories.

Chapter 2: Installing MySQL 87

‘bin’ This directory contains client programs and the server You should add the
full pathname of this directory to your PATH environment variable so that
your shell finds the MySQL programs properly. See Appendix F [Environ-
ment variables], page 1016.

‘scripts’ This directory contains the mysql_install_db script used to initialise the
mysql database containing the grant tables that store the server access
permissions.

7. If you would like to use mysqlaccess and have the MySQL distribution in some non-
standard place, you must change the location where mysqlaccess expects to find the
mysql client. Edit the ‘bin/mysqlaccess’ script at approximately line 18. Search for
a line that looks like this:

$MYSQL = ’/usr/local/bin/mysql’; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system.
If you do not do this, you will get a Broken pipe error when you run mysqlaccess.

8. Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):

shell> scripts/mysql_install_db

Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true.

9. Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql/.
shell> chown -R mysql /usr/local/mysql/data
shell> chgrp -R mysql /usr/local/mysql/.

The first command changes the owner attribute of the files to the root user, the second
one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

10. If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support], page 152.

11. If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 108.

After everything has been unpacked and installed, you should initialise and test your dis-
tribution.

You can start the MySQL server with the following command:

shell> bin/mysqld_safe --user=mysql &

If your version of MySQL is older than 4.0, substitute bin/safe_mysqld for bin/mysqld_
safe in the command.

Now proceed to Section 4.8.2 [mysqld_safe], page 312, and See Section 2.4
[Post-installation], page 101.

88 MySQL Technical Reference for Version 4.1.1-alpha

2.3 Installing a MySQL Source Distribution

Before you proceed with the source installation, check first to see if our binary is available
for your platform and if it will work for you. We put a lot of effort into making sure that
our binaries are built with the best possible options.
You need the following tools to build and install MySQL from source:
• GNU gunzip to uncompress the distribution.
• A reasonable tar to unpack the distribution. GNU tar is known to work. Some tar

implementations that come pre-installed with the operating system (e.g. Sun tar) are
known to have problems (with long file names, for example). In that case, you should
install GNU tar first.

• A working ANSI C++ compiler. gcc >= 2.95.2, egcs >= 1.0.2 or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work. libg++ is
not needed when using gcc. gcc 2.7.x has a bug that makes it impossible to compile
some perfectly legal C++ files, such as ‘sql/sql_base.cc’. If you only have gcc 2.7.x,
you must upgrade your gcc to be able to compile MySQL. gcc 2.8.1 is also known to
have problems on some platforms, so it should be avoided if a new compiler exists for
the platform.
gcc >= 2.95.2 is recommended when compiling MySQL Version 3.23.x.

• A good make program. GNU make is always recommended and is sometimes required.
If you have problems, we recommend trying GNU make 3.75 or newer.

If you are using a recent version of gcc, recent enough to understand the -fno-exceptions
option, it is very important that you use it. Otherwise, you may compile a binary that
crashes randomly. We also recommend that you use -felide-constructors and -fno-
rtti along with -fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions \
-fno-rtti" ./configure --prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems this will give you a fast and stable binary.
If you run into problems, please always use mysqlbug when posting questions to a MySQL
mailing list. Even if the problem isn’t a bug, mysqlbug gathers system information that
will help others solve your problem. By not using mysqlbug, you lessen the likelihood of
getting a solution to your problem. You will find mysqlbug in the ‘scripts’ directory after
you unpack the distribution. See Section 1.6.1.3 [Bug reports], page 27.

2.3.1 Quick Installation Overview

The basic commands you must execute to install a MySQL source distribution are:
shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION

Chapter 2: Installing MySQL 89

shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> scripts/mysql_install_db
shell> chown -R root /usr/local/mysql
shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If your version of MySQL is older than 4.0, substitute bin/safe_mysqld for bin/mysqld_
safe in the final command.

If you want to have support for InnoDB tables, you should edit the /etc/my.cnf file and
remove the # character before the parameter that starts with innodb_.... See Section 4.1.2
[Option files], page 203, and Section 7.5.3 [InnoDB start], page 606.

If you start from a source RPM, do the following:

shell> rpm --rebuild --clean MySQL-VERSION.src.rpm

This will make a binary RPM that you can install.

You can add new users using the bin/mysql_setpermission script if you install the DBI
and DBD-mysql Perl modules.

A more detailed description follows.

To install a source distribution, follow these steps, then proceed to Section 2.4 [Post-
installation], page 101, for post-installation initialisation and testing:

1. Pick the directory under which you want to unpack the distribution, and move into it.

2. Obtain a distribution file from one of the sites listed in Section 2.2.1 [Getting MySQL],
page 70.

3. If you are interested in using Berkeley DB tables with MySQL, you will need to obtain
a patched version of the Berkeley DB source code. Please read the chapter on Berkeley
DB tables before proceeding. See Section 7.6 [BDB], page 653.

MySQL source distributions are provided as compressed tar archives and have names
like ‘mysql-VERSION.tar.gz’, where VERSION is a number like 4.1.1-alpha.

4. Add a user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd
and groupadd may differ slightly on different versions of Unix. They may also be
called adduser and addgroup. You may wish to call the user and group something else
instead of mysql.

5. Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

This command creates a directory named ‘mysql-VERSION’.

6. Change into the top-level directory of the unpacked distribution:

90 MySQL Technical Reference for Version 4.1.1-alpha

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory.
You cannot build it in a different directory.

7. Configure the release and compile everything:
shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify some options. Run ./configure
--help for a list of options. Section 2.3.3 [configure options], page 91, discusses some
of the more useful options.
If configure fails, and you are going to send mail to a MySQL mailing list to ask
for assistance, please include any lines from ‘config.log’ that you think can help
solve the problem. Also include the last couple of lines of output from configure if
configure aborts. Post the bug report using the mysqlbug script. See Section 1.6.1.3
[Bug reports], page 27.
If the compile fails, see Section 2.3.5 [Compilation problems], page 96, for help with a
number of common problems.

8. Install everything:
shell> make install

You might need to run this command as root.
9. Create the MySQL grant tables (necessary only if you haven’t installed MySQL before):

shell> scripts/mysql_install_db

Note that MySQL versions older than Version 3.22.10 started the MySQL server when
you run mysql_install_db. This is no longer true.

10. Change ownership of binaries to root and ownership of the data directory to the user
that you will run mysqld as:

shell> chown -R root /usr/local/mysql
shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql

The first command changes the owner attribute of the files to the root user, the second
one changes the owner attribute of the data directory to the mysql user, and the third
one changes the group attribute to the mysql group.

11. If you want to install support for the Perl DBI/DBD interface, see Section 2.7 [Perl
support], page 152.

12. If you would like MySQL to start automatically when you boot your machine, you can
copy support-files/mysql.server to the location where your system has its startup
files. More information can be found in the support-files/mysql.server script itself
and in Section 2.4.3 [Automatic start], page 108.

After everything has been installed, you should initialise and test your distribution using
this command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If your version of MySQL is older than 4.0, substitute safe_mysqld for mysqld_safe in the
command.

Chapter 2: Installing MySQL 91

If that command fails immediately with mysqld daemon ended, you can find some informa-
tion in the file ‘mysql-data-directory/’hostname’.err’. The likely reason is that you
already have another mysqld server running. See Section 4.2 [Multiple servers], page 206.
Now proceed to Section 2.4 [Post-installation], page 101.

2.3.2 Applying Patches

Sometimes patches appear on the mailing list or are placed in the patches area of the
MySQL web site (http://www.mysql.com/downloads/patches.html).
To apply a patch from the mailing list, save the message in which the patch appears in a file,
change into the top-level directory of your MySQL source tree, and run these commands:

shell> patch -p1 < patch-file-name
shell> rm config.cache
shell> make clean

Patches from the FTP site are distributed as plain text files or as files compressed with
gzip. Apply a plain patch as shown previously for mailing list patches. To apply a com-
pressed patch, change into the top-level directory of your MySQL source tree and run these
commands:

shell> gunzip < patch-file-name.gz | patch -p1
shell> rm config.cache
shell> make clean

After applying a patch, follow the instructions for a normal source install, beginning with
the ./configure step. After running the make install step, restart your MySQL server.
You may need to bring down any currently running server before you run make install.
(Use mysqladmin shutdown to do this.) Some systems do not allow you to install a new
version of a program if it replaces the version that is currently executing.

2.3.3 Typical configure Options

The configure script gives you a great deal of control over how you configure your MySQL
distribution. Typically you do this using options on the configure command-line. You can
also affect configure using certain environment variables. See Appendix F [Environment
variables], page 1016. For a list of options supported by configure, run this command:

shell> ./configure --help

Some of the more commonly-used configure options are described here:
• To compile just the MySQL client libraries and client programs and not the server, use

the --without-server option:
shell> ./configure --without-server

If you don’t have a C++ compiler, mysql will not compile (it is the one client program
that requires C++). In this case, you can remove the code in configure that tests
for the C++ compiler and then run ./configure with the --without-server option.
The compile step will still try to build mysql, but you can ignore any warnings about
‘mysql.cc’. (If make stops, try make -k to tell it to continue with the rest of the build
even if errors occur.)

92 MySQL Technical Reference for Version 4.1.1-alpha

• If you want to get an embedded MySQL library (libmysqld.a) you should use the
--with-embedded-server option.

• If you don’t want your log files and database directories located under
‘/usr/local/var’, use a configure command, something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \

--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under
‘/usr/local/mysql’ rather than the default of ‘/usr/local’. The second command
preserves the default installation prefix, but overrides the default location for database
directories (normally ‘/usr/local/var’) and changes it to /usr/local/mysql/data.
After you have compiled MySQL, you can change these options with option files. See
Section 4.1.2 [Option files], page 203.

• If you are using Unix and you want the MySQL socket located somewhere other than
the default location (normally in the directory ‘/tmp’ or ‘/var/run’) use a configure
command like this:

shell> ./configure --with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

Note that the given file must be an absolute pathname. You can also later change the
location ‘mysql.sock’ by using the MySQL option files. See Section A.4.5 [Problems
with mysql.sock], page 861.

• If you want to compile statically linked programs (for example, to make a binary
distribution, to get more speed, or to work around problems with some Red Hat Linux
distributions), run configure like this:

shell> ./configure --with-client-ldflags=-all-static \
--with-mysqld-ldflags=-all-static

• If you are using gcc and don’t have libg++ or libstdc++ installed, you can tell
configure to use gcc as your C++ compiler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it will not attempt to link in libg++ or
libstdc++. This may be a good idea to do even if you have the above libraries installed,
as some versions of these libraries have caused strange problems for MySQL users in
the past.
Here are some common environment variables to set depending on the compiler you
are using:
Compiler Recommended options
gcc 2.7.2.1 CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"
egcs 1.0.3a CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-

exceptions -fno-rtti"
gcc 2.95.2 CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -

mpentiumpro \ -felide-constructors -fno-exceptions -fno-rtti"
pgcc 2.90.29 or
newer

CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc
\ CXXFLAGS="-O3 -mpentiumpro -mstack-align-double
-felide-constructors \ -fno-exceptions -fno-rtti"

In most cases you can get a reasonably optimal MySQL binary by using the options
from the preceding table and adding the following options to the configure line:

Chapter 2: Installing MySQL 93

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all
recent gcc versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The binaries we provide on the MySQL web site at http://www.mysql.com/ are all
compiled with full optimisation and should be perfect for most users. See Section 2.2.8
[MySQL binaries], page 80. There are some things you can tweak to make an even
faster binary, but this is only for advanced users. See Section 5.5.3 [Compile and link
options], page 429.
If the build fails and produces errors about your compiler or linker not being able to
create the shared library ‘libmysqlclient.so.#’ (‘#’ is a version number), you can
work around this problem by giving the --disable-shared option to configure. In
this case, configure will not build a shared ‘libmysqlclient.so.#’ library.

• You can configure MySQL not to use DEFAULT column values for non-NULL columns
(that is, columns that are not allowed to be NULL). See Section 1.7.5.2 [constraint
NOT NULL], page 43.

shell> CXXFLAGS=-DDONT_USE_DEFAULT_FIELDS ./configure

• By default, MySQL uses the ISO-8859-1 (Latin1) character set. To change the default
set, use the --with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of big5, cp1251, cp1257, czech, danish, dec8, dos, euc_kr,
gb2312, gbk, german1, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latin1, latin2,
sjis, swe7, tis620, ujis, usa7, or win1251ukr. See Section 4.7.1 [Character sets],
page 306.
If you want to convert characters between the server and the client, you should take a
look at the SET CHARACTER SET command. See Section 5.5.6 [SET], page 432.
Warning: If you change character sets after having created any tables, you will have
to run myisamchk -r -q --set-character-set=charset on every table. Your indexes
may be sorted incorrectly otherwise. (This can happen if you install MySQL, create
some tables, then reconfigure MySQL to use a different character set and reinstall it.)
With the option --with-extra-charsets=LIST you can define which additional char-
acter sets should be compiled into the server.
Here LIST is either a list of character sets separated with spaces, complex to include all
characters that can’t be dynamically loaded, or all to include all character sets into
the binaries.

• To configure MySQL with debugging code, use the --with-debug option:
shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and
that provides output about what is happening. See Section E.1 [Debugging server],
page 1004.

94 MySQL Technical Reference for Version 4.1.1-alpha

• If your client programs are using threads, you need to also compile a thread-safe ver-
sion of the MySQL client library with the --enable-thread-safe-client configure
options. This will create a libmysqlclient_r library with which you should link your
threaded applications. See Section 11.1.14 [Threaded clients], page 797.

• Options that pertain to particular systems can be found in the system-specific section
of this manual. See Section 2.6 [Operating System Specific Notes], page 122.

2.3.4 Installing from the Development Source Tree

Caution: You should read this section only if you are interested in helping us test our new
code. If you just want to get MySQL up and running on your system, you should use a
standard release distribution (either a source or binary distribution will do).
To obtain our most recent development source tree, use these instructions:
1. Download BitKeeper from http://www.bitmover.com/cgi-bin/download.cgi. You

will need Bitkeeper 3.0 or newer to access our repository.
2. Follow the instructions to install it.
3. After BitKeeper is installed, first go to the directory you want to work from, and then

use one of the following commands to clone the MySQL version branch of your choice:
To clone the 3.23 (old) branch, use this command:

shell> bk clone bk://mysql.bkbits.net/mysql-3.23 mysql-3.23

To clone the 4.0 (stable/production) branch, use this command:
shell> bk clone bk://mysql.bkbits.net/mysql-4.0 mysql-4.0

To clone the 4.1 alpha branch, use this command:
shell> bk clone bk://mysql.bkbits.net/mysql-4.1 mysql-4.1

To clone the 5.0 development branch, use this command:
shell> bk clone bk://mysql.bkbits.net/mysql-5.0 mysql-5.0

In the preceding examples the source tree will be set up in the ‘mysql-3.23/’,
‘mysql-4.0/’, ‘mysql-4.1/’, or ‘mysql-5.0/’ subdirectory of your current directory.
If you are behind a firewall and can only initiate HTTP connections, you can also use
BitKeeper via HTTP.
If you are required to use a proxy server, simply set the environment variable http_
proxy to point to your proxy:

shell> export http_proxy="http://your.proxy.server:8080/"

Now, simply replace the bk:// with http:// when doing a clone. Example:
shell> bk clone http://mysql.bkbits.net/mysql-4.1 mysql-4.1

The initial download of the source tree may take a while, depending on the speed of
your connection - please be patient.

4. You will need GNU make, autoconf 2.53 (or newer), automake 1.5, libtool 1.4,
and m4 to run the next set of commands. Even though many operating system already
come with their own implementation of make, chances are high that the compilation
fails with strange error messages. Therefore it is highly recommended to use GNU
make (sometimes also named gmake) by all means.

Chapter 2: Installing MySQL 95

Fortunately, a large number of operating systems already ship with the GNU toolchain
preinstalled or supply installable packages of these. In any case, they can also be
downloaded from the following locations:
• http://www.gnu.org/software/autoconf/

• http://www.gnu.org/software/automake/

• http://www.gnu.org/software/libtool/

• http://www.gnu.org/software/make/

If you are trying to configure MySQL 4.1, you will also need GNU bison 1.75. Older
versions of bison may report this error: sql_yacc.yy:#####: fatal error: maximum
table size (32767) exceeded. Note: the maximum table size is not actually ex-
ceeded, the error is caused by bugs in these earlier bison versions.
Versions of MySQL before version 4.1 may also compile with other yacc implementa-
tions (e.g. BSD yacc 91.7.30). For later versions, GNU bison is a requirement.
The typical command to do in a shell is:

cd mysql-4.0
bk -r edit
aclocal; autoheader; autoconf; automake
(cd innobase; aclocal; autoheader; autoconf; automake) # for InnoDB
(cd bdb/dist; sh s_all) # for Berkeley DB
./configure # Add your favorite options here
make

If you get some strange error during this stage, check that you really have libtool
installed.
A collection of our standard configure scripts is located in the ‘BUILD/’ subdirectory. If
you are lazy, you can use ‘BUILD/compile-pentium-debug’. To compile on a different
architecture, modify the script by removing flags that are Pentium-specific.

5. When the build is done, run make install. Be careful with this on a production
machine; the command may overwrite your live release installation. If you have another
installation of MySQL, we recommend that you run ./configure with different values
for the prefix, with-tcp-port, and unix-socket-path options than those used for
your production server.

6. Play hard with your new installation and try to make the new features crash. Start by
running make test. See Section 13.1.2 [MySQL test suite], page 830.

7. If you have gotten to the make stage and the distribution does not compile, please report
it in our bugs database at http://bugs.mysql.com/. If you have installed the latest
versions of the required GNU tools, and they crash trying to process our configuration
files, please report that also. However, if you execute aclocal and get a command not
found error or a similar problem, do not report it. Instead, make sure all the necessary
tools are installed and that your PATH variable is set correctly so that your shell can
find them.

8. After the initial bk clone operation to get the source tree, you should run bk pull
periodically to get the updates.

9. You can examine the change history for the tree with all the diffs by using bk sccstool.
If you see some funny diffs or code that you have a question about, do not hesitate

96 MySQL Technical Reference for Version 4.1.1-alpha

to send e-mail to the MySQL internals mailing list. See Section 1.6.1.1 [Mailing-list],
page 25. Also, if you think you have a better idea on how to do something, send an
e-mail to the same address with a patch. bk diffs will produce a patch for you after
you have made changes to the source. If you do not have the time to code your idea,
just send a description.

10. BitKeeper has a nice help utility that you can access via bk helptool.
11. Please note that any commits (bk ci or bk citool) will trigger the posting of a message

with the changeset to our internals mailing list, as well as the usual openlogging.org
submission with just the changeset comments. Generally, you wouldn’t need to use
commit (since the public tree will not allow bk push), but rather use the bk diffs
method described previously.

You can also browse changesets, comments and sourcecode online by browsing to for exam-
ple, http://mysql.bkbits.net:8080/mysql-4.1 For MySQL 4.1.
The manual is in a separate tree which can be cloned with:

shell> bk clone bk://mysql.bkbits.net/mysqldoc mysqldoc

There are also public BitKeeper trees for MySQL Control Center and Connector/ODBC.
They can be cloned respectively as follows.
To clone MySQL Control center, use this command:

shell> bk clone http://mysql.bkbits.net/mysqlcc mysqlcc

To clone Connector/ODBC, use this command:
shell> bk clone http://mysql.bkbits.net/myodbc3 myodbc3

2.3.5 Dealing With Problems Compiling MySQL

All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using
gcc. On other systems, warnings may occur due to differences in system include files.
See Section 2.3.6 [MIT-pthreads], page 99 for warnings that may occur when using MIT-
pthreads. For other problems, check the following list.
The solution to many problems involves reconfiguring. If you do need to reconfigure, take
note of the following:
• If configure is run after it already has been run, it may use information that was

gathered during its previous invocation. This information is stored in ‘config.cache’.
When configure starts up, it looks for that file and reads its contents if it exists, on
the assumption that the information is still correct. That assumption is invalid when
you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you
may want to remove old object files from previous builds first because they were com-
piled using different configuration options.

To prevent old configuration information or object files from being used, run these com-
mands before rerunning configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

Chapter 2: Installing MySQL 97

The following list describes some of the problems when compiling MySQL that have been
found to occur most often:
• If you get errors when compiling ‘sql_yacc.cc’, such as the ones shown here, you have

probably run out of memory or swap space:
Internal compiler error: program cc1plus got fatal signal 11
or

Out of virtual memory
or

Virtual memory exhausted

The problem is that gcc requires huge amounts of memory to compile ‘sql_yacc.cc’
with inline functions. Try running configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc
and -O0 if you are using something else. You should try the --with-low-memory option
even if you have so much memory and swap space that you think you can’t possibly
have run out. This problem has been observed to occur even on systems with generous
hardware configurations, and the --with-low-memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++.
If you are using gcc, that behaviour can cause problems during configuration such as
this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or
libstdc++.
One cause of these problems is that you may not have g++, or you may have g++ but
not libg++, or libstdc++. Take a look at the ‘config.log’ file. It should contain the
exact reason why your C++ compiler didn’t work. To work around these problems, you
can use gcc as your C++ compiler. Try setting the environment variable CXX to "gcc
-O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ sources as well as g++ does, but does not link in
libg++ or libstdc++ by default.
Another way to fix these problems, of course, is to install g++, libg++, and libstdc++.
We would however like to recommend you to not use libg++ or libstdc++ with MySQL
as this will only increase the binary size of mysqld without giving you any benefits.
Some versions of these libraries have also caused strange problems for MySQL users in
the past.
Using gcc as the C++ compiler is also required, if you want to compile MySQL with
RAID functionality (see Section 6.5.3 [CREATE TABLE], page 564 for more info on
RAID table type) and you are using GNU gcc version 3 and above. If you get errors
like the ones below during the linking stage when you configure MySQL to compile
with the option --with-raid, try to use gcc as your C++ compiler by defining the
above mentioned environment variable CXX:

gcc -O3 -DDBUG_OFF -rdynamic -o isamchk isamchk.o sort.o libnisam.a

98 MySQL Technical Reference for Version 4.1.1-alpha

../mysys/libmysys.a ../dbug/libdbug.a ../strings/libmystrings.a -lpthread
-lz -lcrypt -lnsl -lm -lpthread
../mysys/libmysys.a(raid.o)(.text+0x79): In function ‘my_raid_create’:
: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o)(.text+0xdd): In function ‘my_raid_create’:
: undefined reference to ‘operator delete(void*)’
../mysys/libmysys.a(raid.o)(.text+0x129): In function ‘my_raid_open’:
: undefined reference to ‘operator new(unsigned)’
../mysys/libmysys.a(raid.o)(.text+0x189): In function ‘my_raid_open’:
: undefined reference to ‘operator delete(void*)’
../mysys/libmysys.a(raid.o)(.text+0x64b): In function ‘my_raid_close’:
: undefined reference to ‘operator delete(void*)’
collect2: ld returned 1 exit status

• If your compile fails with errors, such as any of the following, you must upgrade your
version of make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment
or

make: file ‘Makefile’ line 18: Must be a separator (:
or

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.
GNU make Version 3.75 is known to work.

• If you want to define flags to be used by your C or C++ compilers, do so by adding
the flags to the CFLAGS and CXXFLAGS environment variables. You can also specify the
compiler names this way using CC and CXX. For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

See Section 2.2.8 [MySQL binaries], page 80, for a list of flag definitions that have been
found to be useful on various systems.

• If you get an error message like this, you need to upgrade your gcc compiler:
client/libmysql.c:273: parse error before ‘__attribute__’

gcc 2.8.1 is known to work, but we recommend using gcc 2.95.2 or egcs 1.0.3a instead.
• If you get errors such as those shown here when compiling mysqld, configure didn’t

correctly detect the type of the last argument to accept(), getsockname(), or
getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ’’length’’ is ’’unsigned long’’, which
is not compatible with ’’int’’.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

Chapter 2: Installing MySQL 99

To fix this, edit the ‘config.h’ file (which is generated by configure). Look for these
lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (Note that you
will have to do this each time you run configure because configure regenerates
‘config.h’.)

• The ‘sql_yacc.cc’ file is generated from ‘sql_yacc.yy’. Normally the build process
doesn’t need to create ‘sql_yacc.cc’, because MySQL comes with an already generated
copy. However, if you do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison
(the GNU version of yacc) and use that instead.

• If you need to debug mysqld or a MySQL client, run configure with the --with-
debug option, then recompile and link your clients with the new client library. See
Section E.2 [Debugging client], page 1009.

• If you get a compilation error on Linux (e.g. SuSE Linux 8.1 or Red Hat Linux 7.3)
similar to the following one:

libmysql.c:1329: warning: passing arg 5 of ‘gethostbyname_r’ from incompatible pointer type
libmysql.c:1329: too few arguments to function ‘gethostbyname_r’
libmysql.c:1329: warning: assignment makes pointer from integer without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of argu-
ments by using g++ the GNU C++ compiler. This test yields wrong results, if g++ is
not installed. There are two ways to work around this problem:
• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the

required package is called gpp, on others it is named gcc-c++.
• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

Please note that you need to run configure again afterwards.

2.3.6 MIT-pthreads Notes

This section describes some of the issues involved in using MIT-pthreads.
Note that on Linux you should not use MIT-pthreads but use the installed LinuxThreads
implementation instead. See Section 2.6.2 [Linux], page 126.
If your system does not provide native thread support, you will need to build MySQL using
the MIT-pthreads package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4
and earlier, and some others. See Section 2.2.3 [Which OS], page 73.
Note, that beginning with MySQL 4.0.2 MIT-pthreads are no longer part of the source
distribution. If you require this package, you need to download it separately from
http://www.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source
directory. It will create a new subdirectory mit-pthreads.

100 MySQL Technical Reference for Version 4.1.1-alpha

• On most systems, you can force MIT-pthreads to be used by running configure with
the --with-mit-threads option:

shell> ./configure --with-mit-threads

Building in a non-source directory is not supported when using MIT-pthreads because
we want to minimise our changes to this code.

• The checks that determine whether to use MIT-pthreads occur only during the part
of the configuration process that deals with the server code. If you have configured
the distribution using --without-server to build only the client code, clients will not
know whether MIT-pthreads is being used and will use Unix socket connections by
default. Because Unix sockets do not work under MIT-pthreads on some platforms,
this means you will need to use -h or --host when you run client programs.

• When MySQL is compiled using MIT-pthreads, system locking is disabled by default
for performance reasons. You can tell the server to use system locking with the --
external-locking option. This is only needed if you want to be able to run two
MySQL servers against the same datafiles (not recommended).

• Sometimes the pthread bind() command fails to bind to a socket without any error
message (at least on Solaris). The result is that all connections to the server fail. For
example:

shell> mysqladmin version
mysqladmin: connect to server at ’’ failed;
error: ’Can’t connect to mysql server on localhost (146)’

The solution to this is to kill the mysqld server and restart it. This has only happened
to us when we have forced down the server and done a restart immediately.

• With MIT-pthreads, the sleep() system call isn’t interruptible with SIGINT (break).
This is only noticeable when you run mysqladmin --sleep. You must wait for the
sleep() call to terminate before the interrupt is served and the process stops.

• When linking, you may receive warning messages like these (at least on Solaris); they
can be ignored:

ld: warning: symbol ‘_iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

ld: warning: symbol ‘__iob’ has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

• Some other warnings also can be ignored:
implicit declaration of function ‘int strtoll(...)’
implicit declaration of function ‘int strtoul(...)’

• We haven’t gotten readline to work with MIT-pthreads. (This isn’t needed, but may
be interesting for someone.)

2.3.7 Installing MySQL from Source on Windows

To install MySQL on Windows using a source distribution, you will need the following:

Chapter 2: Installing MySQL 101

• VC++ 6.0 compiler (updated with 4 or 5 SP and Pre-processor package) The
Pre-processor package is necessary for the macro assembler. More details at:
http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/faq.aspx.

• The MySQL source distribution for Windows, which can be downloaded from
http://www.mysql.com/downloads/.

Follow this procedure to build MySQL:
1. Create a work directory (for example, ‘workdir’).
2. Unpack the source distribution in the aforementioned directory.
3. Start the VC++ 6.0 compiler.
4. In the File menu, select Open Workspace.
5. Open the ‘mysql.dsw’ workspace you find on the work directory.
6. From the Build menu, select the Set Active Configuration menu.
7. Click over the screen selecting mysqld - Win32 Debug and click OK.
8. Press F7 to begin the build of the debug server, libraries, and some client applications.
9. When the compilation finishes, copy the libraries and the executables to a separate

directory.
10. Compile the release versions that you want, in the same way.
11. Create the directory into which to install the MySQL stuff (for example, ‘c:\mysql’).
12. From the ‘workdir’ directory copy into the c:\mysql directory the following directories:

• ‘Data’
• ‘Docs’
• ‘Share’

13. Create the directory ‘c:\mysql\bin’ and copy into it all the servers and clients that
you just compiled.

14. If you want, also create the ‘c:\mysql\lib’ directory and copy the libraries that you
just compiled.

15. Do a clean using Visual Studio.

Set up and start the server in the same way as for the binary Windows distribution. See
Section 2.1.1.3 [Windows prepare environment], page 58.

2.4 Post-installation Setup and Testing

Once you’ve installed MySQL (from either a binary or source distribution), you need to
initialise the grant tables, start the server, and make sure that the server works okay. You
may also wish to arrange for the server to be started and stopped automatically when your
system starts up and shuts down.
Normally you install the grant tables and start the server like this for installation from a
source distribution:

shell> ./scripts/mysql_install_db
shell> cd mysql_installation_directory
shell> ./bin/mysqld_safe --user=mysql &

For a binary distribution (not RPM or pkg packages), do this:

102 MySQL Technical Reference for Version 4.1.1-alpha

shell> cd mysql_installation_directory
shell> ./scripts/mysql_install_db
shell> ./bin/mysqld_safe --user=mysql &

The mysql_install_db script creates the mysql database which will hold all database
privileges, the test database which you can use to test MySQL, and also privilege entries
for the user that runs mysql_install_db and a root user. The entries are created without
passwords. The mysqld_safe script starts the mysqld server. (If your version of MySQL
is older than 4.0, use safe_mysqld rather than mysqld_safe.)

mysql_install_db will not overwrite any old privilege tables, so it should be safe to run
in any circumstances. If you don’t want to have the test database you can remove it with
mysqladmin -u root drop test after starting the server.

Testing is most easily done from the top-level directory of the MySQL distribution.
For a binary distribution, this is your installation directory (typically something like
‘/usr/local/mysql’). For a source distribution, this is the main directory of your MySQL
source tree.

In the commands shown in this section and in the following subsections, BINDIR is the
path to the location in which programs like mysqladmin and mysqld_safe are installed.
For a binary distribution, this is the ‘bin’ directory within the distribution. For a source
distribution, BINDIR is probably ‘/usr/local/bin’, unless you specified an installation
directory other than ‘/usr/local’ when you ran configure. EXECDIR is the location in
which the mysqld server is installed. For a binary distribution, this is the same as BINDIR.
For a source distribution, EXECDIR is probably ‘/usr/local/libexec’.

Testing is described in detail:

1. If necessary, start the mysqld server and set up the initial MySQL grant tables con-
taining the privileges that determine how users are allowed to connect to the server.
This is normally done with the mysql_install_db script:

shell> scripts/mysql_install_db

Typically, mysql_install_db needs to be run only the first time you install MySQL.
Therefore, if you are upgrading an existing installation, you can skip this step. (How-
ever, mysql_install_db is quite safe to use and will not update any tables that already
exist, so if you are unsure of what to do, you can always run mysql_install_db.)

mysql_install_db creates six tables (user, db, host, tables_priv, columns_priv,
and func) in the mysql database. A description of the initial privileges is given in
Section 4.4.4 [Default privileges], page 245. Briefly, these privileges allow the MySQL
root user to do anything, and allow anybody to create or use databases with a name
of test or starting with test_.

If you don’t set up the grant tables, the following error will appear in the log file when
you start the server:

mysqld: Can’t find file: ’host.frm’

This may also happen with a binary MySQL distribution if you don’t start MySQL by
executing exactly ./bin/mysqld_safe. See Section 4.8.2 [mysqld_safe], page 312.

You might need to run mysql_install_db as root. However, if you prefer, you can
run the MySQL server as an unprivileged (non-root) user, provided that the user can

Chapter 2: Installing MySQL 103

read and write files in the database directory. Instructions for running MySQL as an
unprivileged user are given in Section A.3.2 [Changing MySQL user], page 856.
If you have problems with mysql_install_db, see Section 2.4.1 [mysql_install_db],
page 105.
There are some alternatives to running the mysql_install_db script as it is provided
in the MySQL distribution:
• You may want to edit mysql_install_db before running it, to change the initial

privileges that are installed into the grant tables. This is useful if you want to
install MySQL on a lot of machines with the same privileges. In this case you
probably should need only to add a few extra INSERT statements to the mysql.user
and mysql.db tables.

• If you want to change things in the grant tables after installing them, you can run
mysql_install_db, then use mysql -u root mysql to connect to the grant tables
as the MySQL root user and issue SQL statements to modify the grant tables
directly.

• It is possible to re-create the grant tables completely after they have already been
created. You might want to do this if you’ve already installed the tables but then
want to re-create them after editing mysql_install_db.

For more information about these alternatives, see Section 4.4.4 [Default privileges],
page 245.

2. Start the MySQL server like this:
shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If your version of MySQL is older than 4.0, substitute bin/safe_mysqld for
bin/mysqld_safe in the final command.
If you have problems starting the server, see Section 2.4.2 [Starting server], page 107.

3. Use mysqladmin to verify that the server is running. The following commands provide
a simple test to check that the server is up and responding to connections:

shell> BINDIR/mysqladmin version
shell> BINDIR/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and
version of MySQL, but should be similar to that shown here:

shell> BINDIR/mysqladmin version
mysqladmin Ver 8.14 Distrib 3.23.32, for linux on i586
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license.

Server version 3.23.32-debug
Protocol version 10
Connection Localhost via Unix socket
TCP port 3306
UNIX socket /tmp/mysql.sock
Uptime: 16 sec

104 MySQL Technical Reference for Version 4.1.1-alpha

Threads: 1 Questions: 9 Slow queries: 0
Opens: 7 Flush tables: 2 Open tables: 0
Queries per second avg: 0.000
Memory in use: 132K Max memory used: 16773K

To get a feeling for what else you can do with BINDIR/mysqladmin, invoke it with the
--help option.

4. Verify that you can shut down the server:
shell> BINDIR/mysqladmin -u root shutdown

5. Verify that you can restart the server. Do this using mysqld_safe or by invoking
mysqld directly. For example:

shell> BINDIR/mysqld_safe --log &

If mysqld_safe fails, try running it from the MySQL installation directory (if you are
not already there). If that doesn’t work, see Section 2.4.2 [Starting server], page 107.

6. Run some simple tests to verify that the server is working. The output should be
similar to what is shown here:

shell> BINDIR/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
+-----------+

shell> BINDIR/mysqlshow mysql
Database: mysql
+--------------+
| Tables |
+--------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+--------------+

shell> BINDIR/mysql -e "SELECT host,db,user FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

There is also a benchmark suite in the ‘sql-bench’ directory (under the MySQL in-
stallation directory) that you can use to compare how MySQL performs on different

Chapter 2: Installing MySQL 105

platforms. The benchmark suite is written in Perl, using the Perl DBI module to
provide a database-independent interface to the various databases. The following ad-
ditional Perl modules are required to run the benchmark suite:

DBI
DBD-mysql
Data-Dumper
Data-ShowTable

These modules can be obtained from CPAN http://www.cpan.org/. See Section 2.7.1
[Perl installation], page 153.
The ‘sql-bench/Results’ directory contains the results from many runs against dif-
ferent databases and platforms. To run all tests, execute these commands:

shell> cd sql-bench
shell> run-all-tests

If you don’t have the ‘sql-bench’ directory, you are probably using an RPM for a binary
distribution. (Source distribution RPMs include the benchmark directory.) In this case,
you must first install the benchmark suite before you can use it. Beginning with MySQL
Version 3.22, there are benchmark RPM files named ‘mysql-bench-VERSION-i386.rpm’
that contain benchmark code and data.
If you have a source distribution, you can also run the tests in the ‘tests’ subdirectory.
For example, to run ‘auto_increment.tst’, do this:

shell> BINDIR/mysql -vvf test < ./tests/auto_increment.tst

The expected results are shown in the ‘./tests/auto_increment.res’ file.

2.4.1 Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables.
It will not affect any other data. It will also not do anything if you already have MySQL
privilege tables installed.
If you want to re-create your privilege tables, you should take down the mysqld server, if
it’s running, and then do something like:

mv mysql-data-directory/mysql mysql-data-directory/mysql-old
mysql_install_db

This section lists problems you might encounter when you run mysql_install_db:

mysql_install_db doesn’t install the grant tables
You may find that mysql_install_db fails to install the grant tables and ter-
minates after displaying the following messages:

starting mysqld daemon with databases from XXXXXX
mysql daemon ended

In this case, you should examine the log file very carefully. The log should
be located in the directory ‘XXXXXX’ named by the error message, and should
indicate why mysqld didn’t start. If you don’t understand what happened,
include the log when you post a bug report using mysqlbug. See Section 1.6.1.3
[Bug reports], page 27.

106 MySQL Technical Reference for Version 4.1.1-alpha

There is already a mysqld daemon running
In this case, you probably don’t have to run mysql_install_db at all. You
have to run mysql_install_db only once, when you install MySQL the first
time.

Installing a second mysqld daemon doesn’t work when one daemon is running
This can happen when you already have an existing MySQL installation, but
want to put a new installation in a different place (for example, for testing,
or perhaps you simply want to run two installations at the same time). Gen-
erally the problem that occurs when you try to run the second server is that
it tries to use the same socket and port as the old one. In this case you will
get the error message: Can’t start server: Bind on TCP/IP port: Address
already in use or Can’t start server: Bind on unix socket.... See Sec-
tion 4.2 [Multiple servers], page 206.

You don’t have write access to ‘/tmp’
If you don’t have write access to create a socket file at the default place (in
‘/tmp’) or permission to create temporary files in ‘/tmp,’ you will get an error
when running mysql_install_db or when starting or using mysqld.

You can specify a different socket and temporary directory as follows:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysqld.sock
shell> export TMPDIR MYSQL_UNIX_PORT

See Section A.4.5 [Problems with mysql.sock], page 861.

‘some_tmp_dir’ should be the path to some directory for which you have write
permission. See Appendix F [Environment variables], page 1016.

After this you should be able to run mysql_install_db and start the server
with these commands:

shell> scripts/mysql_install_db
shell> BINDIR/mysqld_safe &

mysqld crashes immediately
If you are running Red Hat Version 5.0 with a version of glibc older than
2.0.7-5, you should make sure you have installed all glibc patches. There
is a lot of information about this in the MySQL mail archives. Links to the
mail archives are available online at http://lists.mysql.com/. Also, see Sec-
tion 2.6.2 [Linux], page 126.

You can also start mysqld manually using the --skip-grant-tables option
and add the privilege information yourself using mysql:

shell> BINDIR/mysqld_safe --skip-grant-tables &
shell> BINDIR/mysql -u root mysql

From mysql, manually execute the SQL commands in mysql_install_db.
Make sure you run mysqladmin flush-privileges or mysqladmin reload af-
terward to tell the server to reload the grant tables.

Chapter 2: Installing MySQL 107

2.4.2 Problems Starting the MySQL Server

If you are going to use tables that support transactions (InnoDB, BDB), you should first
create a ‘my.cnf’ file and set startup options for the table types you plan to use. See
Chapter 7 [Table types], page 593.
Generally, you start the mysqld server in one of these ways:
• By invoking mysql.server. This script is used primarily at system startup and shut-

down, and is described more fully in Section 2.4.3 [Automatic start], page 108.
• By invoking mysqld_safe, which tries to determine the proper options for mysqld and

then runs it with those options. See Section 4.8.2 [mysqld_safe], page 312.
• For Windows NT/2000/XP, please see Section 2.1.1.7 [NT start], page 61.
• By invoking mysqld directly.

When the mysqld daemon starts up, it changes the directory to the data directory. This is
where it expects to write log files and the pid (process ID) file, and where it expects to find
databases.
The data directory location is hardwired in when the distribution is compiled. However, if
mysqld expects to find the data directory somewhere other than where it really is on your
system, it will not work properly. If you have problems with incorrect paths, you can find
out what options mysqld allows and what the default path settings are by invoking mysqld
with the --help option. You can override the defaults by specifying the correct pathnames
as command-line arguments to mysqld. (These options can be used with mysqld_safe as
well.)
Normally you should need to tell mysqld only the base directory under which MySQL is
installed. You can do this with the --basedir option. You can also use --help to check the
effect of changing path options (note that --help must be the final option of the mysqld
command). For example:

shell> EXECDIR/mysqld --basedir=/usr/local --help

Once you determine the path settings you want, start the server without the --help option.
Whichever method you use to start the server, if it fails to start up correctly, check the
log file to see if you can find out why. Log files are located in the data directory (typi-
cally ‘/usr/local/mysql/data’ for a binary distribution, ‘/usr/local/var’ for a source
distribution, and ‘\mysql\data\mysql.err’ on Windows). Look in the data directory for
files with names of the form ‘host_name.err’ and ‘host_name.log’ where host_name is the
name of your server host. Then check the last few lines of these files:

shell> tail host_name.err
shell> tail host_name.log

Look for something like the following in the log file:
000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/t1.db: No such file or directory
000729 14:50:10 Can’t init databases

This means that you didn’t start mysqld with --bdb-no-recover and Berkeley DB found
something wrong with its log files when it tried to recover your databases. To be able to
continue, you should move away the old Berkeley DB log file from the database directory to

108 MySQL Technical Reference for Version 4.1.1-alpha

some other place, where you can later examine it. The log files are named ‘log.0000000001’,
where the number will increase over time.
If you are running mysqld with BDB table support and mysqld core dumps at start this
could be because of some problems with the BDB recover log. In this case you can try
starting mysqld with --bdb-no-recover. If this helps, then you should remove all ‘log.*’
files from the data directory and try starting mysqld again.
If you get the following error, it means that some other program (or another mysqld server)
is already using the TCP/IP port or socket mysqld is trying to use:

Can’t start server: Bind on TCP/IP port: Address already in use
or

Can’t start server: Bind on unix socket...

Use ps to make sure that you don’t have another mysqld server running. If you can’t
find another server running, you can try to execute the command telnet your-host-name
tcp-ip-port-number and press Enter a couple of times. If you don’t get an error message
like telnet: Unable to connect to remote host: Connection refused, something is us-
ing the TCP/IP port mysqld is trying to use. See Section 2.4.1 [mysql install db], page 105
and Section 4.2 [Multiple servers], page 206.
If mysqld is currently running, you can find out what path settings it is using by executing
this command:

shell> mysqladmin variables

or
shell> mysqladmin -h ’your-host-name’ variables

If you get Errcode 13, which means Permission denied, when starting mysqld this means
that you didn’t have the right to read/create files in the MySQL database or log directory.
In this case you should either start mysqld as the root user or change the permissions for
the involved files and directories so that you have the right to use them.
If mysqld_safe starts the server but you can’t connect to it, you should make sure you
have an entry in ‘/etc/hosts’ that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that don’t have a working thread library and for which
MySQL must be configured to use MIT-pthreads.
If you can’t get mysqld to start you can try to make a trace file to find the problem. See
Section E.1.2 [Making trace files], page 1005.
If you are using InnoDB tables, refer to the InnoDB-specific startup options. See Sec-
tion 7.5.3 [InnoDB start], page 606.
If you are using BDB (Berkeley DB) tables, you should familiarise yourself with the different
BDB-specific startup options. See Section 7.6.3 [BDB start], page 654.

2.4.3 Starting and Stopping MySQL Automatically

The mysql.server and mysqld_safe scripts can be used to start the server automatically
at system startup time. mysql.server can also be used to stop the server.
The mysql.server script can be used to start or stop the server by invoking it with start
or stop arguments:

Chapter 2: Installing MySQL 109

shell> mysql.server start
shell> mysql.server stop

mysql.server can be found in the ‘share/mysql’ directory under the MySQL installation
directory or in the ‘support-files’ directory of the MySQL source tree.
Note that if you use the Linux RPM package (MySQL-server-VERSION.rpm), the
mysql.server script has already been installed as ‘/etc/init.d/mysql’ - you don’t have
to install it manually. See Section 2.1.2 [Linux-RPM], page 64 for more information on the
Linux RPM packages.
On Mac OS X, you can install a separate MySQL Startup Item package to enable the
automatic startup of MySQL on system bootup. See Section 2.1.3 [Mac OS X installation],
page 66 for details.
Before mysql.server starts the server, it changes the directory to the MySQL installation
directory, then invokes mysqld_safe. You might need to edit mysql.server if you have a
binary distribution that you’ve installed in a non-standard location. Modify it to cd into
the proper directory before it runs mysqld_safe. If you want the server to run as some
specific user, add an appropriate user line to the ‘/etc/my.cnf’ file, as shown later in this
section.
mysql.server stop brings down the server by sending a signal to it. You can also take
down the server manually by executing mysqladmin shutdown.
You need to add these start and stop commands to the appropriate places in your ‘/etc/rc*’
files when you want to start up MySQL automatically on your server.
On most current Linux distributions, it is sufficient to copy the file mysql.server into the
‘/etc/init.d’ directory (or ‘/etc/rc.d/init.d’ on older Red Hat systems). Afterwards,
run the following command to enable the startup of MySQL on system bootup:

shell> chkconfig --add mysql.server

On FreeBSD startup scripts generally should go in ‘/usr/local/etc/rc.d/’. The rc(8)
manual page also states that scripts in this directory are only executed, if their basename
matches the shell globbing pattern *.sh. Any other files or directories present within
the directory are silently ignored. In other words, on FreeBSD you should install the file
‘mysql.server’ as ‘/usr/local/etc/rc.d/mysql.server.sh’ to enable automatic startup.
As an alternative to the above, some operating systems also use ‘/etc/rc.local’ or
‘/etc/init.d/boot.local’ to start additional services on bootup. To start up MySQL
using this method, you could append something like the following to it:

/bin/sh -c ’cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &’

You can also add options for mysql.server in a global ‘/etc/my.cnf’ file. A typical
‘/etc/my.cnf’ file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

110 MySQL Technical Reference for Version 4.1.1-alpha

The mysql.server script understands the following options: datadir, basedir, and pid-
file.

The following table shows which option groups each startup script reads from option files:

Script Option groups
mysqld [mysqld], [server] and [mysqld-major-version]
mysql.server [mysql.server], [mysqld], and [server]
mysqld_safe [mysqld], [server], and [mysqld_safe]

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead.

See Section 4.1.2 [Option files], page 203.

2.5 Upgrading/Downgrading MySQL

Before you do an upgrade, you should back up your old databases.

You can always move the MySQL format files and datafiles between different versions on
the same architecture as long as you have the same base version of MySQL. The current
base version is 4. If you change the character set when running MySQL, you must run
myisamchk -r -q --set-character-set=charset on all tables. Otherwise, your indexes
may not be ordered correctly, because changing the character set may also change the sort
order.

If you are afraid of new versions, you can always rename your old mysqld to something like
mysqld-old-version-number. If your new mysqld then does something unexpected, you
can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as
Commands out of sync or unexpected core dumps, you probably have used an old header
or library file when compiling your programs. In this case you should check the date for
your ‘mysql.h’ file and ‘libmysqlclient.a’ library to verify that they are from the new
MySQL distribution. If not, please recompile your programs.

If problems occur, such as that the new mysqld server doesn’t want to start or that you
can’t connect without a password, check that you don’t have some old ‘my.cnf’ file from
your old installation. You can check this with: program-name --print-defaults. If this
outputs anything other than the program name, you have an active ‘my.cnf’ file that will
affect things.

It is a good idea to rebuild and reinstall the Perl DBD-mysql module whenever you install
a new release of MySQL. The same applies to other MySQL interfaces as well, such as the
Python MySQLdb module.

2.5.1 Upgrading From Version 4.0 to 4.1

Several visible things have changed between MySQL 4.0 and MySQL 4.1 to fix some critical
bugs and make MySQL more compatible with the ANSI SQL standard. These changes may
affect your applications.

Chapter 2: Installing MySQL 111

Some of the 4.1 behaviours can be tested in 4.0 before performing a full upgrade to 4.1.
We have added to later MySQL 4.0 releases (from 4.0.12 on) a --new startup option for
mysqld.
This option gives you the 4.1 behaviour for the most critical changes. You can also enable
these behaviours for a given client connection with the SET @@new=1 command, or turn
them off if they are on with SET @@new=0.
If you believe that some of the 4.1 changes will affect you, we recommend that before
upgrading to 4.1, you download the latest MySQL 4.0 version and run it with the --new
option by adding the following to your config file:

[mysqld-4.0]
new

That way you can test the new behaviors in 4.0 to make sure that your applications work
with them. This will help you have a smooth painless transition when you perform a full
upgrade to 4.1 later. Doing it the above way will ensure that you don’t accidently later run
the 4.1 version with the --new option.
The following list describes changes that may affect applications and that you should watch
out for when upgrading to version 4.1:
• TIMESTAMP is now returned as a string in ’YYYY-MM-DD HH:MM:SS’ format. (The --new

option can be used from 4.0.12 on to make a 4.0 server behave as 4.1 in this respect.)
If you want to have the value returned as a number (like Version 4.0 does) you should
add +0 to TIMESTAMP columns when you retrieve them:

mysql> SELECT ts_col + 0 FROM tbl_name;

Display widths for TIMESTAMP columns are no longer supported. For example, if you
declare a column as TIMESTAMP(10), the (10) is ignored.
These changes were necessary for SQL standards compliance. In a future version, a
further change will be made (backward compatible with this change), allowing the
timestamp length to indicate the desired number of digits for fractions of a second.

• Binary values such as 0xFFDF now are assumed to be strings instead of numbers. This
fixes some problems with character sets where it’s convenient to input a string as a
binary value. With this change, you should use CAST() if you want to compare binary
values numerically as integers:

mysql> SELECT CAST(0xFEFF AS UNSIGNED INTEGER) < CAST(0xFF AS UNSIGNED INTEGER);
-> 0

If you don’t use CAST(), a lexical string comparison will be done:
mysql> SELECT 0xFEFF < 0xFF;

-> 1

Using binary items in a numeric context or comparing them using the = operator should
work as before. (The --new option can be used from 4.0.13 on to make a 4.0 server
behave as 4.1 in this respect.)

• For functions that produce a DATE, DATETIME, or TIME value, the result returned to the
client now is fixed up to have a temporal type. For example, in MySQL 4.1, you get
this result:

mysql> SELECT CAST("2001-1-1" as DATETIME);

112 MySQL Technical Reference for Version 4.1.1-alpha

-> ’2001-01-01 00:00:00’

In MySQL 4.0, the result is different:

mysql> SELECT CAST("2001-1-1" as DATETIME);
-> ’2001-01-01’

• DEFAULT values no longer can be specified for AUTO_INCREMENT columns. (In 4.0, a
DEFAULT value is silently ignored; in 4.1, an error occurs).

• SERIALIZE is no longer a valid option value for the sql_mode variable.
You should use SET TRANSACTION ISOLATION LEVEL SERIALIZABLE instead.
SERIALIZE is no longer valid for the --sql-mode option for mysqld, either. Use
--transaction-isolation=SERIALIZABLE instead.

• All tables and string columns now have a character set. See Chapter 9 [Charset],
page 664. Character set information is displayed by SHOW CREATE TABLE and
mysqldump. (MySQL versions 4.0.6 and above can read the new dump files; older
versions cannot.)

• The table definition format used in ‘.frm’ files has changed slightly in 4.1. MySQL
4.0 versions from 4.0.11 on can read the new ‘.frm’ format directly, but older versions
cannot. If you need to move tables from 4.1 to a version earlier than 4.0.11, you should
use mysqldump. See Section 4.9.6 [mysqldump], page 339.

• If you are running multiple servers on the same Windows machine, you should use a
different --shared_memory_base_name option on all machines.

• The interface to aggregated UDF functions has changed a bit. You must now declare
a clear() function for each aggregate function.

In general, upgrading to 4.1 from an earlier MySQL version involves the following steps:

• Check the changes listed earlier in this section to see if there are any that may affect
your applications.

• Read the 4.1 news items to see what significant new features you can use in 4.1. See
Section D.2 [News-4.1.x], page 886.

• If you are running MySQL Server on Windows, please also see Section 2.5.8 [Windows
upgrading], page 121.

• After upgrading, update the grant tables to generate the new longer Password column
that is needed for secure handling of passwords. The procedure uses mysql_fix_
privilege_tables and is described in Section 2.5.6 [Upgrading-grant-tables], page 119.

The password hashing mechanism has changed in 4.1 to provide better security, but this
may cause compatibility problems if you still have clients that use the client library from
4.0 or earlier. (It is very likely that you will have 4.0 clients in situations where clients
connect from remote hosts that have not yet upgraded to 4.1). The following list indicates
some possible upgrade strategies. They represent various tradeoffs between the goal of
compatibility with old clients and the goal of security.

• Don’t upgrade to 4.1. No behaviour will change, but of course you cannot use any of
the new features provided by the 4.1 client/server protocol, either. (MySQL 4.1 has
an extended client/server protocol that offers such features as prepared statements and
multiple result sets.) See Section 11.1.4 [C API Prepared statements], page 763.

Chapter 2: Installing MySQL 113

• Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table so that it can hold long password hashes. But run
the server with the --old-passwords option to provide backward compatibility that
allows pre-4.1 clients to continue to connect to their short-hash accounts. Eventually,
when all your clients are upgraded to 4.1, you can stop using the --old-passwords
server option. You can also change the passwords for your MySQL accounts to use
the new more secure format.

• Upgrade to 4.1 and run the mysql_fix_privilege_tables script to widen the
Password column in the user table. If you know that all clients also have been
upgraded to 4.1, don’t run the server with the --old-passwords option. Instead,
change the passwords on all existing accounts so that they have the new format. A
pure-4.1 installation is the most secure.

Further background on password hashing with respect to client authentication and
password-changing operations may be found in Section 4.3.11 [Password hashing],
page 230.

2.5.2 Upgrading From Version 3.23 to 4.0

In general, you should do the following when upgrading to 4.0 from an earlier MySQL
version:

• After upgrading, update the grant tables to add new privileges and features. The pro-
cedure uses the mysql_fix_privilege_tables script and is described in Section 2.5.6
[Upgrading-grant-tables], page 119.

• Edit any MySQL startup scripts or configure files to not use any of the deprecated
options described later in this section.

• Convert your old ISAM files to MyISAM files with the mysql_convert_table_format
database script. (This is a Perl script; it requires that DBI be installed.) To convert
the tables in a given database, use this command:

shell> mysql_convert_table_format database db_name

Note that this should only be used if all tables in the given database are ISAM or MyISAM
tables. To avoid converting tables of other types to MyISAM, you can explicitly list the
names of your ISAM tables after the database name on the command line. You can
also issue a ALTER TABLE table_name TYPE=MyISAM statement for each ISAM table to
convert it to MyISAM.
To find out the table type for a given table, use this statement:

mysql> SHOW TABLE STATUS LIKE ’tbl_name’;

• Ensure that you don’t have any MySQL clients that use shared libraries (like the Perl
DBD-mysql mode). If you do, you should recompile them, because the data struc-
tures used in ‘libmysqlclient.so’ have changed. The same applies to other MySQL
interfaces as well, such as the Python MySQLdb module.

MySQL 4.0 will work even if you don’t do the above, but you will not be able to use the new
security privileges that MySQL 4.0 and you may run into problems when upgrading later
to MySQL 4.1 or newer. The ISAM file format still works in MySQL 4.0 but it’s deprecated

114 MySQL Technical Reference for Version 4.1.1-alpha

and will be disabled (not compiled in by default) in MySQL 4.1. MyISAM tables should be
used instead.
Old clients should work with a Version 4.0 server without any problems.
Even if you do the above, you can still downgrade to MySQL 3.23.52 or newer if you run
into problems with the MySQL 4.0 series. In this case, you must use mysqldump to dump
any tables that use full-text indexes and reload the dump file into the 3.23 server. This is
necessary because 4.0 uses a new format for full-text indexing.
The following is a more complete list that tells what you must watch out for when upgrading
to version 4.0:
• MySQL 4.0 has a lot of new privileges in the mysql.user table. See Section 4.4.1

[GRANT], page 239.
To get these new privileges to work, you must update the grant tables. The proce-
dure is described in Section 2.5.6 [Upgrading-grant-tables], page 119. Until you do
this, all users have the SHOW DATABASES, CREATE TEMPORARY TABLES, and LOCK TABLES
privileges. SUPER and EXECUTE privileges take their value from PROCESS. REPLICATION
SLAVE and REPLICATION CLIENT take their values from FILE.
If you have any scripts that create new users, you may want to change them to use the
new privileges. If you are not using GRANT commands in the scripts, this is a good time
to change your scripts to use GRANT instead of modifying the grant tables directly..
From version 4.0.2 on, the option --safe-show-database is deprecated (and no longer
does anything). See Section 4.3.3 [Privileges options], page 217.
If you get Access denied errors for new users in version 4.0.2 and up, you should check
if you need some of the new grants that you didn’t need before. In particular, you will
need REPLICATION SLAVE (instead of FILE) for new slaves.

• ‘safe_mysqld’ is renamed to ‘mysqld_safe’. For backward compatibility, binary dis-
tributions will for some time include safe_mysqld as a symlink to mysqld_safe.

• InnoDB support is now included by default in binary distributions. If you build MySQL
from source, InnoDB is configured in by default. If you do not use InnoDB and want
to save memory when running a server that has InnoDB support enabled, use the --
skip-innodb server startup option. To compile MySQL without InnoDB support, run
configure with the --without-innodb option.

• The startup parameters myisam_max_extra_sort_file_size and myisam_max_
extra_sort_file_size are now given in bytes (they were given in megabytes before
4.0.3).

• External system locking of MyISAM/ISAM files is now turned off by default. Your can
turn this on by doing --external-locking. (However, this is never needed for most
users.)

• The following startup variables/options have been renamed:
Old Name New Name
myisam_bulk_insert_tree_size bulk_insert_buffer_size
query_cache_startup_type query_cache_type
record_buffer read_buffer_size
record_rnd_buffer read_rnd_buffer_size
sort_buffer sort_buffer_size

Chapter 2: Installing MySQL 115

warnings log-warnings
--err-log --log-error (for mysqld_safe)
The startup options record_buffer, sort_buffer and warnings will still work in
MySQL 4.0 but are deprecated.

• The following SQL variables have changed name.
Old Name New Name
SQL_BIG_TABLES BIG_TABLES
SQL_LOW_PRIORITY_UPDATES LOW_PRIORITY_UPDATES
SQL_MAX_JOIN_SIZE MAX_JOIN_SIZE
SQL_QUERY_CACHE_TYPE QUERY_CACHE_TYPE

The old names still work in MySQL 4.0 but are deprecated.
• You have to use SET GLOBAL SQL_SLAVE_SKIP_COUNTER=# instead of SET SQL_SLAVE_

SKIP_COUNTER=#.
• The mysqld startup options --skip-locking and --enable-locking were renamed

to --skip-external-locking and --external-locking.
• SHOW MASTER STATUS now returns an empty set if binary logging is not enabled.
• SHOW SLAVE STATUS now returns an empty set if slave is not initialised.
• mysqld now has the option --temp-pool enabled by default as this gives better per-

formance with some operating systems (most notably Linux).
• DOUBLE and FLOAT columns now honour the UNSIGNED flag on storage (before, UNSIGNED

was ignored for these columns).
• ORDER BY col_name DESC sorts NULL values last, as of MySQL 4.0.11. In 3.23 and in

earlier 4.0 versions, this was not always consistent.
• SHOW INDEX has two more columns (Null and Index_type) than it had in 3.23.
• CHECK, SIGNED, LOCALTIME and LOCALTIMESTAMP are now reserved words.
• The result of all bitwise operators (|, &, <<, >>, and ~)) is now unsigned. This may

cause problems if you are using them in a context where you want a signed result. See
Section 6.3.5 [Cast Functions], page 513.

• Note: when you use subtraction between integer values where one is of type UNSIGNED,
the result will be unsigned. In other words, before upgrading to MySQL 4.0, you
should check your application for cases where you are subtracting a value from an
unsigned entity and want a negative answer or subtracting an unsigned value from
an integer column. You can disable this behaviour by using the --sql-mode=NO_
UNSIGNED_SUBTRACTION option when starting mysqld. See Section 6.3.5 [Cast Func-
tions], page 513.

• To use MATCH ... AGAINST (... IN BOOLEAN MODE) with your tables, you need to re-
build them with REPAIR TABLE table_name USE_FRM.

• LOCATE() and INSTR() are case-sensitive if one of the arguments is a binary string.
Otherwise they are case-insensitive.

• STRCMP() now uses the current character set when doing comparisons, which means
that the default comparison behaviour now is case-insensitive.

• HEX(string) now returns the characters in string converted to hexadecimal. If you
want to convert a number to hexadecimal, you should ensure that you call HEX() with
a numeric argument.

116 MySQL Technical Reference for Version 4.1.1-alpha

• In 3.23, INSERT INTO ... SELECT always had IGNORE enabled. In 4.0.1, MySQL will
stop (and possibly roll back) by default in case of an error unless you specify IGNORE.

• The old C API functions mysql_drop_db(), mysql_create_db(), and
mysql_connect() are no longer supported unless you compile MySQL with
CFLAGS=-DUSE_OLD_FUNCTIONS. However, it is preferable to change client programs
to use the new 4.0 API instead.

• In the MYSQL_FIELD structure, length and max_length have changed from unsigned
int to unsigned long. This should not cause any problems, except that they may
generate warning messages when used as arguments in the printf() class of functions.

• You should use TRUNCATE TABLE when you want to delete all rows from a table and you
don’t need to obtain a count of the number of rows that were deleted. (DELETE FROM
table_name returns a row count in 4.0, and TRUNCATE TABLE is faster.)

• You will get an error if you have an active LOCK TABLES or transaction when trying to
execute TRUNCATE TABLE or DROP DATABASE.

• You should use integers to store values in BIGINT columns (instead of using strings,
as you did in MySQL 3.23). Using strings will still work, but using integers is more
efficient.

• The format of SHOW OPEN TABLES has changed.

• Multi-threaded clients should use mysql_thread_init() and mysql_thread_end().
See Section 11.1.14 [Threaded clients], page 797.

• If you want to recompile the Perl DBD::mysql module, you must get DBD-mysql version
1.2218 or newer because older DBD modules used the deprecated mysql_drop_db()
call. Version 2.1022 or newer is recommended.

• RAND(seed) returns a different random number series in 4.0 than in 3.23; this was done
to further differentiate RAND(seed) and RAND(seed+1).

• The default type returned by IFNULL(A,B) is now set to be the more ’general’ of the
types of A and B. (The general-to-specific order is string, REAL or INTEGER).

If you are running MySQL Server on Windows, please also see Section 2.5.8 [Windows
upgrading], page 121. If you are using replication, please also see Section 4.11.2 [Replication
Implementation], page 356.

2.5.3 Upgrading From Version 3.22 to 3.23

MySQL Version 3.23 supports tables of the new MyISAM type and the old ISAM type. You
don’t have to convert your old tables to use these with Version 3.23. By default, all new
tables will be created with type MyISAM (unless you start mysqld with the --default-
table-type=isam option). You can convert an ISAM table to MyISAM format with ALTER
TABLE table_name TYPE=MyISAM or the Perl script mysql_convert_table_format.

Version 3.22 and 3.21 clients will work without any problems with a Version 3.23 server.

The following list tells what you have to watch out for when upgrading to Version 3.23:

• All tables that use the tis620 character set must be fixed with myisamchk -r or REPAIR
TABLE.

Chapter 2: Installing MySQL 117

• If you do a DROP DATABASE on a symbolically-linked database, both the link and the
original database are deleted. (This didn’t happen in 3.22 because configure didn’t
detect the availability of the readlink() system call.)

• OPTIMIZE TABLE now works only for MyISAM tables. For other table types, you can use
ALTER TABLE to optimise the table. During OPTIMIZE TABLE, the table is now locked
to prevent it from being used by other threads.

• The MySQL client mysql is now by default started with the option --no-named-
commands (-g). This option can be disabled with --enable-named-commands (-G).
This may cause incompatibility problems in some cases—for example, in SQL scripts
that use named commands without a semicolon. Long format commands still work
from the first line.

• Date functions that work on parts of dates (like MONTH()) will now return 0 for 0000-
00-00 dates. (In MySQL 3.22, these functions returned NULL.)

• If you are using the german character sort order for ISAM tables, you must repair them
with isamchk -r, because we have made some changes in the sort order.

• The default return type of IF() now depends on both arguments and not only the first
argument.

• AUTO_INCREMENT columns should not be used to store negative numbers. The reason for
this is that negative numbers caused problems when wrapping from -1 to 0. You should
not store 0 in AUTO_INCREMENT columns, either; CHECK TABLE will complain about 0
values because they may change if you dump and restore the table. AUTO_INCREMENT
for MyISAM tables is now handled at a lower level and is much faster than before. In
addition, for MyISAM tables, old numbers are no longer reused, even if you delete rows
from the table.

• CASE, DELAYED, ELSE, END, FULLTEXT, INNER, RIGHT, THEN, and WHEN are now reserved
words.

• FLOAT(X) is now a true floating-point type and not a value with a fixed number of
decimals.

• When declaring columns using a DECIMAL(length,dec) type, the length argument no
longer includes a place for the sign or the decimal point.

• A TIME string must now be of one of the following formats: [[[DAYS]
[H]H:]MM:]SS[.fraction] or [[[[[H]H]H]H]MM]SS[.fraction].

• LIKE now compares strings using the same character comparison rules as for the = op-
erator. If you require the old behaviour, you can compile MySQL with the CXXFLAGS=-
DLIKE_CMP_TOUPPER flag.

• REGEXP is now case-insensitive if neither of the strings are binary strings.

• When you check or repair MyISAM (‘.MYI’) tables, you should use the CHECK TABLE
statement or the myisamchk command. For ISAM (‘.ISM’) tables, use the isamchk
command.

• If you want your mysqldump files to be compatible between MySQL Version 3.22 and
Version 3.23, you should not use the --opt or --all option to mysqldump.

• Check all your calls to DATE_FORMAT() to make sure there is a ‘%’ before each format
character. (MySQL Version 3.22 and later already allowed this syntax.)

118 MySQL Technical Reference for Version 4.1.1-alpha

• mysql_fetch_fields_direct() is now a function (it used to be a macro) and it returns
a pointer to a MYSQL_FIELD instead of a MYSQL_FIELD.

• mysql_num_fields() can no longer be used on a MYSQL* object (it’s now a function
that takes a MYSQL_RES* value as an argument). With a MYSQL* object, you should
now use mysql_field_count() instead.

• In MySQL Version 3.22, the output of SELECT DISTINCT ... was almost always sorted.
In Version 3.23, you must use GROUP BY or ORDER BY to obtain sorted output.

• SUM() now returns NULL instead of 0 if there are no matching rows. This is required
by SQL-99.

• An AND or OR with NULL values will now return NULL instead of 0. This mostly affects
queries that use NOT on an AND/OR expression as NOT NULL = NULL.

• LPAD() and RPAD() now shorten the result string if it’s longer than the length argument.

2.5.4 Upgrading from Version 3.21 to 3.22

Nothing that affects compatibility has changed between versions 3.21 and 3.22. The only
pitfall is that new tables that are created with DATE type columns will use the new way to
store the date. You can’t access these new columns from an old version of mysqld.

After installing MySQL Version 3.22, you should start the new server and then run the
mysql_fix_privilege_tables script. This will add the new privileges that you need to
use the GRANT command. If you forget this, you will get Access denied when you try to use
ALTER TABLE, CREATE INDEX, or DROP INDEX. The procedure for updating the grant tables
is described in Section 2.5.6 [Upgrading-grant-tables], page 119.

The C API interface to mysql_real_connect() has changed. If you have an old client
program that calls this function, you must place a 0 for the new db argument (or recode
the client to send the db element for faster connections). You must also call mysql_init()
before calling mysql_real_connect(). This change was done to allow the new mysql_
options() function to save options in the MYSQL handler structure.

The mysqld variable key_buffer has been renamed to key_buffer_size, but you can still
use the old name in your startup files.

2.5.5 Upgrading from Version 3.20 to 3.21

If you are running a version older than Version 3.20.28 and want to switch to Version 3.21,
you need to do the following:

You can start the mysqld Version 3.21 server with the --old-protocol option to use it with
clients from a Version 3.20 distribution. In this case, the new client function mysql_errno()
will not return any server error, only CR_UNKNOWN_ERROR (but it works for client errors),
and the server uses the old pre-3.21 password() checking rather than the new method.

If you are not using the --old-protocol option to mysqld, you will need to make the
following changes:

• All client code must be recompiled. If you are using ODBC, you must get the new
MyODBC 2.x driver.

Chapter 2: Installing MySQL 119

• The script scripts/add_long_password must be run to convert the Password field in
the mysql.user table to CHAR(16).

• All passwords must be reassigned in the mysql.user table (to get 62-bit rather than
31-bit passwords).

• The table format hasn’t changed, so you don’t have to convert any tables.

MySQL Version 3.20.28 and above can handle the new user table format without affecting
clients. If you have a MySQL version earlier than Version 3.20.28, passwords will no longer
work with it if you convert the user table. So to be safe, you should first upgrade to at
least Version 3.20.28 and then upgrade to Version 3.21.
The new client code works with a 3.20.x mysqld server, so if you experience problems with
3.21.x, you can use the old 3.20.x server without having to recompile the clients again.
If you are not using the --old-protocol option to mysqld, old clients will be unable to
connect and will issue the following error message:

ERROR: Protocol mismatch. Server Version = 10 Client Version = 9

The new Perl DBI/DBD interface also supports the old mysqlperl interface. The only change
you have to make if you use mysqlperl is to change the arguments to the connect()
function. The new arguments are: host, database, user, and password (note that the
user and password arguments have changed places). See Section 11.5.2 [Perl DBI Class],
page 815.
The following changes may affect queries in old applications:
• HAVING must now be specified before any ORDER BY clause.
• The parameters to LOCATE() have been swapped.
• There are some new reserved words. The most notable are DATE, TIME, and TIMESTAMP.

2.5.6 Upgrading the Grant Tables

Some releases introduce changes to the structure of the grant tables (the tables in the mysql
database) to add new privileges or features. To make sure that your grant tables are current
when you update to a new version of MySQL, you should update your grant tables as well.
On Unix or Unix-like systems, update the grant tables by running the mysql_fix_
privilege_tables script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server
running on the local host as root. If your root account requires a password, indicate the
password on the command line. For MySQL 4.1 and up, specify the password like this:

shell> mysql_fix_privilege_tables --password=root_password

Prior to MySQL 4.1, specify the password like this:
shell> mysql_fix_privilege_tables root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your
grant tables to the current format. You may see some Duplicate column name warnings as
it runs; they can be ignored.
After running the script, stop the server and restart it.

120 MySQL Technical Reference for Version 4.1.1-alpha

On Windows systems, there isn’t an easy way to update the grant tables until MySQL 4.0.15.
From version 4.0.15 on, MySQL distributions include a mysql_fix_privilege_tables.sql
SQL script that you can run using the mysql client. If your MySQL installation is located
at ‘C:\mysql’, the command looks like this (enter it all on one line):

shell> C:\mysql\bin\mysql -f -u root -p mysql
< C:\mysql\scripts\mysql_fix_privilege_tables.sql

If your installation is located in some other directory, adjust the pathnames appropriately.
The command will prompt you for the root password; enter it when prompted.
As with the Unix procedure, you may see some Duplicate column name warnings as mysql
processes the statements in the mysql_fix_privilege_tables.sql script; they can be
ignored.
After running the script, stop the server and restart it.

2.5.7 Upgrading to Another Architecture

If you are using MySQL Version 3.23, you can copy the ‘.frm’, ‘.MYI’, and ‘.MYD’ files for
MyISAM tables between different architectures that support the same floating-point format.
(MySQL takes care of any byte-swapping issues.) See Section 7.1 [MyISAM Tables], page 594.
The MySQL ISAM data and index files (‘.ISD’ and ‘*.ISM’, respectively) are architecture-
dependent and in some cases OS-dependent. If you want to move your applications to
another machine that has a different architecture or OS than your current machine, you
should not try to move a database by simply copying the files to the other machine. Use
mysqldump instead.
By default, mysqldump will create a file containing SQL statements. You can then transfer
the file to the other machine and feed it as input to the mysql client.
Try mysqldump --help to see what options are available. If you are moving the data to a
newer version of MySQL, you should use mysqldump --opt with the newer version to get a
fast, compact dump.
The easiest (although not the fastest) way to move a database between two machines is to
run the following commands on the machine on which the database is located:

shell> mysqladmin -h ’other hostname’ create db_name
shell> mysqldump --opt db_name \

| mysql -h ’other hostname’ db_name

If you want to copy a database from a remote machine over a slow network, you can use:
shell> mysqladmin create db_name
shell> mysqldump -h ’other hostname’ --opt --compress db_name \

| mysql db_name

You can also store the result in a file, then transfer the file to the target machine and load
the file into the database there. For example, you can dump a database to a file on the
source machine like this:

shell> mysqldump --quick db_name | gzip > db_name.contents.gz

(The file created in this example is compressed.) Transfer the file containing the database
contents to the target machine and run these commands there:

Chapter 2: Installing MySQL 121

shell> mysqladmin create db_name
shell> gunzip < db_name.contents.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For big tables,
this is much faster than simply using mysqldump. In the following commands, DUMPDIR
represents the full pathname of the directory you use to store the output from mysqldump.
First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the
target machine and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Also, don’t forget to copy the mysql database because that’s where the grant tables (user,
db, host) are stored. You may have to run commands as the MySQL root user on the new
machine until you have the mysql database in place.
After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.5.8 Upgrading MySQL under Windows

When upgrading MySQL under Windows, please follow these steps:
1. Download the latest Windows distribution of MySQL.
2. Choose a time of day with low usage, where a maintenance break is acceptable.
3. Alert the users that still are active about the maintenance break.
4. Stop the running MySQL Server (for example, with NET STOP mysql or with the

Services utility if you are running MySQL as a service, or with mysqladmin
shutdown otherwise).

5. Exit the WinMySQLAdmin program if it is running.
6. Run the installation script of the Windows distribution, by clicking the "Install" button

in WinZip and following the installation steps of the script.
7. You may either overwrite your old MySQL installation (usually located at ‘C:\mysql’),

or install it into a different directory, such as C:\mysql4. Overwriting the old installa-
tion is recommended.

8. Restart the server (for example, with NET START mysql if you run MYSQL as a service,
or by invoking mysqld directly otherwise).

9. Update the grant tables. The procedure is described in Section 2.5.6 [Upgrading-grant-
tables], page 119.

Possible error situations:
A system error has occurred.
System error 1067 has occurred.
The process terminated unexpectedly.

122 MySQL Technical Reference for Version 4.1.1-alpha

This error means that your ‘my.cnf’ file (by default ‘C:\my.cnf’) contains an option that
cannot be recognised by MySQL. You can verify that this is the case by trying to restart
MySQL with the ‘my.cnf’ file renamed, for example, to ‘my_cnf.old’ to prevent the server
from using it. Once you have verified it, you need to identify which option is the culprit.
Create a new ‘my.cnf’ file and move parts of the old file to it (restarting the server after
you move each part) until you determine which option causes server startup to fail.

2.6 Operating System Specific Notes

2.6.1 Windows Notes

This section describes issues specific to using MySQL on Windows.

2.6.1.1 Connecting to MySQL Remotely from Windows with SSH

Here is a note about how to connect to get a secure connection to remote MySQL server
with SSH (by David Carlson dcarlson@mplcomm.com):
1. Install an SSH client on your Windows machine. As a user, the best non-free one

I’ve found is from SecureCRT from http://www.vandyke.com/. Another option is
f-secure from http://www.f-secure.com/. You can also find some free ones on
Google at http://directory.google.com/Top/Computers/Security/Products_
and_Tools/Cryptography/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value may not be the same
as the username of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_
host: yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set
port: 3306, host: localhost, remote port: 3306).

4. Save everything, otherwise you’ll have to redo it the next time.
5. Log in to your server with the SSH session you just created.
6. On your Windows machine, start some ODBC application (such as Access).
7. Create a new file in Windows and link to MySQL using the ODBC driver the same

way you normally do, except type in localhost for the MySQL host server—not
yourmysqlservername.

You should now have an ODBC connection to MySQL, encrypted using SSH.

2.6.1.2 Distributing Data Across Different Disks on Windows

Beginning with MySQL Version 3.23.16, the mysqld-max and mysql-max-nt servers in the
MySQL distribution are compiled with the -DUSE_SYMDIR option. This allows you to put a
database directory on a different disk by setting up a symbolic link to it. This is similar to
the way that symbolic links work on Unix, though the procedure for setting up the link is
different.

Chapter 2: Installing MySQL 123

On Windows, you make a symbolic link to a MySQL database by creating a file that contains
the path to the destination directory. Save the file in the data directory using the filename
‘db_name.sym’, where db_name is the database name.

For example, if the MySQL data directory is ‘C:\mysql\data’ and you want to have
database foo located at ‘D:\data\foo’, you should create the file ‘C:\mysql\data\foo.sym’
that contains the pathname D:\data\foo\. After that, all tables created in the database
foo will be created in ‘D:\data\foo’. The ‘D:\data\foo’ directory must exist for this to
work. Also, note that the symbolic link will not be used if a directory with the database
name exists in the MySQL data directory. This means that if you already have a database
directory named ‘foo’ in the data directory, you must move it to ‘D:\data’ before the sym-
bolic link will be effective. (To avoid problems, the server should not be running when you
move the database directory.)

Note that because of the speed penalty you get when opening every table, we have not
enabled this by default even if you have compiled MySQL with support for this. To enable
symlinks you should put in your ‘my.cnf’ or ‘my.ini’ file the following entry:

[mysqld]
symbolic-links

In MySQL 4.0, symbolic links are enabled by default. If you don’t need them, you can
disable them with the skip-symbolic-links option.

2.6.1.3 Compiling MySQL Clients on Windows

In your source files, you should include ‘my_global.h’ before ‘mysql.h’:

#include <my_global.h>
#include <mysql.h>

‘my_global.h’ includes any other files needed for Windows compatibility (such as
‘windows.h’) if you compile your program on Windows.

You can either link your code with the dynamic ‘libmysql.lib’ library, which is just a
wrapper to load in ‘libmysql.dll’ on demand, or link with the static ‘mysqlclient.lib’
library.

Note that because the MySQL client libraries are compiled as threaded libraries, you should
also compile your code to be multi-threaded!

2.6.1.4 MySQL on Windows Compared to MySQL on Unix

MySQL for Windows has by now proven itself to be very stable. The Windows version
of MySQL has the same features as the corresponding Unix version, with the following
exceptions:

Windows 95 and threads
Windows 95 leaks about 200 bytes of main memory for each thread creation.
Each connection in MySQL creates a new thread, so you shouldn’t run mysqld
for an extended time on Windows 95 if your server handles many connections!
Other versions of Windows don’t suffer from this bug.

124 MySQL Technical Reference for Version 4.1.1-alpha

Concurrent reads
MySQL depends on the pread() and pwrite() calls to be able to mix INSERT
and SELECT. Currently we use mutexes to emulate pread()/pwrite(). We
will, in the long run, replace the file level interface with a virtual interface so
that we can use the readfile()/writefile() interface on NT/2000/XP to
get more speed. The current implementation limits the number of open files
MySQL can use to 1024, which means that you will not be able to run as many
concurrent threads on NT/2000/XP as on Unix.

Blocking read
MySQL uses a blocking read for each connection, which has the following im-
plications:
• A connection will not be disconnected automatically after 8 hours, as hap-

pens with the Unix version of MySQL.
• If a connection hangs, it’s impossible to break it without killing MySQL.
• mysqladmin kill will not work on a sleeping connection.
• mysqladmin shutdown can’t abort as long as there are sleeping connections.

We plan to fix this problem when our Windows developers have figured out a
nice workaround.

DROP DATABASE
You can’t drop a database that is in use by some thread.

Killing MySQL from the task manager
You can’t kill MySQL from the task manager or with the shutdown utility in
Windows 95. You must take it down with mysqladmin shutdown.

Case-insensitive names
Filenames are not case sensitive on Windows, so MySQL database and table
names are also not case sensitive on Windows. The only restriction is that
database and table names must be specified using the same case throughout a
given statement. See Section 6.1.3 [Name case sensitivity], page 445.

The ‘\’ directory character
Pathname components in Windows 95 are separated by the ‘\’ character, which
is also the escape character in MySQL. If you are using LOAD DATA INFILE or
SELECT ... INTO OUTFILE, use Unix style filenames with ‘/’ characters:

mysql> LOAD DATA INFILE "C:/tmp/skr.txt" INTO TABLE skr;
mysql> SELECT * INTO OUTFILE ’C:/tmp/skr.txt’ FROM skr;

Alternatively, you must double the ‘\’ character:
mysql> LOAD DATA INFILE "C:\\tmp\\skr.txt" INTO TABLE skr;
mysql> SELECT * INTO OUTFILE ’C:\\tmp\\skr.txt’ FROM skr;

Problems with pipes.
Pipes doesn’t work reliably in the Windows command-line prompt. If the pipe
includes the character ^Z / CHAR(24), Windows will think it has encountered
end-of-file and abort the program.
This is mainly a problem when you try to apply a binary log as follows:

Chapter 2: Installing MySQL 125

mysqlbinlog binary-log-name | mysql --user=root

If you get a problem applying the log and suspect it’s because of an ^Z /
CHAR(24) character you can use the following workaround:

mysqlbinlog binary-log-file --result-file=/tmp/bin.sql
mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may
contain binary data.

Can’t open named pipe error
If you use a MySQL Version 3.22 server on NT with the newest MySQL client
programs, you will get the following error:

error 2017: can’t open named pipe to host: . pipe...

This is because the release version of MySQL uses named pipes on NT by
default. You can avoid this error by using the --host=localhost option to
the new MySQL clients or create an option file ‘C:\my.cnf’ that contains the
following information:

[client]
host = localhost

Starting from 3.23.50, named pipes are enabled only if mysqld-nt or mysqld-
max-nt is started with --enable-named-pipe.

Access denied for user error
If you attempt to run a MySQL client program to connect to a server run-
ning on the same machine, but get the error Access denied for user: ’some-
user@unknown’ to database ’mysql’, this means that MySQL can’t resolve
your host name properly.
To fix this, you should create a file ‘\windows\hosts’ with the following infor-
mation:

127.0.0.1 localhost

ALTER TABLE
While you are executing an ALTER TABLE statement, the table is locked from
being used by other threads. This has to do with the fact that on Windows,
you can’t delete a file that is in use by another threads. In the future, we may
find some way to work around this problem.

DROP TABLE
DROP TABLE on a table that is in use by a MERGE table will not work on Windows
because the MERGE handler does the table mapping hidden from the upper layer
of MySQL. Because Windows doesn’t allow you to drop files that are open, you
first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table
before dropping the table. We will fix this at the same time we introduce views.

DATA DIRECTORY and INDEX DIRECTORY
The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ig-
nored on Windows, because Windows doesn’t support symbolic links.

Here are some open issues for anyone who might want to help us improve MySQL on
Windows:

126 MySQL Technical Reference for Version 4.1.1-alpha

• Add some nice start and shutdown icons to the MySQL installation.
• It would be really nice to be able to kill mysqld from the task manager. For the

moment, you must use mysqladmin shutdown.
• Port readline to Windows for use in the mysql command-line tool.
• GUI versions of the standard MySQL clients (mysql, mysqlshow, mysqladmin, and

mysqldump) would be nice.
• It would be nice if the socket read and write functions in ‘net.c’ were interruptible.

This would make it possible to kill open threads with mysqladmin kill on Windows.
• Add macros to use the faster thread-safe increment/decrement methods provided by

Windows.

2.6.2 Linux Notes (All Linux Versions)

The following notes regarding glibc apply only to the situation when you build MySQL
yourself. If you are running Linux on an x86 machine, in most cases it is much better for you
to just use our binary. We link our binaries against the best patched version of glibc we
can come up with and with the best compiler options, in an attempt to make it suitable for
a high-load server. For a typical user, even for setups with a lot of concurrent connections
and/or tables exceeding the 2G limit, our binary in most cases is the best choice. So if you
read the following text, and are in doubt about what you should do, try our binary first to
see if it meets your needs, and worry about your own build only after you have discovered
that our binary is not good enough. In that case, we would appreciate a note about it, so
we can build a better binary next time.
MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn’t
have glibc2, you must install LinuxThreads before trying to compile MySQL. You can get
LinuxThreads at http://www.mysql.com/downloads/os-linux.html.
Note: we have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems.
If you have a SMP system, we recommend you upgrade to Linux 2.4 as soon as possible.
Your system will be faster and more stable.
Note that glibc versions before and including Version 2.1.1 have a fatal bug in pthread_
mutex_timedwait handling, which is used when you issue INSERT DELAYED statements. We
recommend that you not use INSERT DELAYED before upgrading glibc.
If you plan to have 1000+ concurrent connections, you will need to make some changes to
LinuxThreads, recompile it, and relink MySQL against the new ‘libpthread.a’. Increase
PTHREAD_THREADS_MAX in ‘sysdeps/unix/sysv/linux/bits/local_lim.h’ to 4096 and de-
crease STACK_SIZE in ‘linuxthreads/internals.h’ to 256 KB. The paths are relative to
the root of glibc Note that MySQL will not be stable with around 600-1000 connections
if STACK_SIZE is the default of 2 MB.
If MySQL can’t open enough files, or connections, it may be that you haven’t configured
Linux to handle enough files.
In Linux 2.2 and onward, you can check the number of allocated file handles by doing:

cat /proc/sys/fs/file-max
cat /proc/sys/fs/dquot-max
cat /proc/sys/fs/super-max

Chapter 2: Installing MySQL 127

If you have more than 16 MB of memory, you should add something like the following to
your init scripts (for example, ‘/etc/init.d/boot.local’ on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the preceding commands from the command-line as root, but these settings
will be lost the next time your computer reboots.
Alternatively, you can set these parameters on bootup by using the sysctl tool, which is
used by many Linux distributions (SuSE has added it as well, beginning with SuSE Linux
8.0). Just put the following values into a file named ‘/etc/sysctl.conf’:

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to ‘/etc/my.cnf’:
[mysqld_safe]
open-files-limit=8192

This should allow MySQL to create up to 8192 connections + files.
The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the
address space. It needs to be large enough so that there will be plenty of room for the
stack of each individual thread, but small enough to keep the stack of some threads from
running into the global mysqld data. Unfortunately, the Linux implementation of mmap(),
as we have experimentally discovered, will successfully unmap an already mapped region if
you ask it to map out an address already in use, zeroing out the data on the entire page,
instead of returning an error. So, the safety of mysqld or any other threaded application
depends on the "gentleman" behaviour of the code that creates threads. The user must
take measures to make sure the number of running threads at any time is sufficiently low
for thread stacks to stay away from the global heap. With mysqld, you should enforce this
"gentleman" behaviour by setting a reasonable value for the max_connections variable.
If you build MySQL yourself and do not want to mess with patching LinuxThreads, you
should set max_connections to a value no higher than 500. It should be even less if you
have a large key buffer, large heap tables, or some other things that make mysqld allocate a
lot of memory, or if you are running a 2.2 kernel with a 2G patch. If you are using our binary
or RPM version 3.23.25 or later, you can safely set max_connections at 1500, assuming
no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE in
LinuxThreads the more threads you can safely create. We recommend the values between
128K and 256K.
If you use a lot of concurrent connections, you may suffer from a "feature" in the 2.2
kernel that penalises a process for forking or cloning a child in an attempt to prevent a
fork bomb attack. This will cause MySQL not to scale well as you increase the number
of concurrent clients. On single-CPU systems, we have seen this manifested in a very
slow thread creation, which means it may take a long time to connect to MySQL (as
long as 1 minute), and it may take just as long to shut it down. On multiple-CPU sys-
tems, we have observed a gradual drop in query speed as the number of clients increases.
In the process of trying to find a solution, we have received a kernel patch from one of

128 MySQL Technical Reference for Version 4.1.1-alpha

our users, who claimed it made a lot of difference for his site. The patch is available
at http://www.mysql.com/Downloads/Patches/linux-fork.patch. We have now done
rather extensive testing of this patch on both development and production systems. It
has significantly improved MySQL performance without causing any problems and we now
recommend it to our users who are still running high-load servers on 2.2 kernels. This issue
has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of
your system, rather than patching your 2.2 kernel, it might be easier to just upgrade to 2.4,
which will also give you a nice SMP boost in addition to fixing this fairness bug.
We have tested MySQL on the 2.4 kernel on a 2-CPU machine and found MySQL scales
much better—there was virtually no slowdown on queries throughput all the way up to 1000
clients, and the MySQL scaling factor (computed as the ratio of maximum throughput to
the throughput with one client) was 180%. We have observed similar results on a 4-CPU
system—virtually no slowdown as the number of clients was increased up to 1000, and 300%
scaling factor. So for a high-load SMP server we would definitely recommend the 2.4 kernel
at this point. We have discovered that it is essential to run mysqld process with the highest
possible priority on the 2.4 kernel to achieve maximum performance. This can be done
by adding renice -20 $$ command to mysqld_safe. In our testing on a 4-CPU machine,
increasing the priority gave 60% increase in throughput with 400 clients.
We are currently also trying to collect more information on how well MySQL performs on 2.4
kernel on 4-way and 8-way systems. If you have access such a system and have done some
benchmarks, please send a mail to docs@mysql.com with the results - we will include them
in the manual.
There is another issue that greatly hurts MySQL performance, especially on SMP
systems. The implementation of mutex in LinuxThreads in glibc-2.1 is very bad
for programs with many threads that only hold the mutex for a short time. On an
SMP system, ironic as it is, if you link MySQL against unmodified LinuxThreads,
removing processors from the machine improves MySQL performance in many
cases. We have made a patch available for glibc 2.1.3 to correct this behaviour
(http://www.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).
With glibc-2.2.2 MySQL version 3.23.36 will use the adaptive mutex, which is much bet-
ter than even the patched one in glibc-2.1.3. Be warned, however, that under some condi-
tions, the current mutex code in glibc-2.2.2 overspins, which hurts MySQL performance.
The chance of this condition can be reduced by renicing mysqld process to the highest
priority. We have also been able to correct the overspin behaviour with a patch, available
at http://www.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It combines
the correction of overspin, maximum number of threads, and stack spacing all in one. You
will need to apply it in the linuxthreads directory with patch -p0 </tmp/linuxthreads-
2.2.2.patch. We hope it will be included in some form in to the future releases of glibc-
2.2. In any case, if you link against glibc-2.2.2 you still need to correct STACK_SIZE
and PTHREAD_THREADS_MAX. We hope that the defaults will be corrected to some more
acceptable values for high-load MySQL setup in the future, so that your own build can be
reduced to ./configure; make; make install.
We recommend that you use the above patches to build a special static version of
libpthread.a and use it only for statically linking against MySQL. We know that the
patches are safe for MySQL and significantly improve its performance, but we cannot say
anything about other applications. If you link other applications against the patched

Chapter 2: Installing MySQL 129

version of the library, or build a patched shared version and install it on your system,
you are doing it at your own risk with regard to other applications that depend on
LinuxThreads.

If you experience any strange problems during the installation of MySQL, or with some
common utilities hanging, it is very likely that they are either library or compiler related.
If this is the case, using our binary will resolve them.

One known problem with the binary distribution is that with older Linux systems that use
libc (like Red Hat 4.x or Slackware), you will get some non-fatal problems with hostname
resolution. See Section 2.6.2.1 [Binary notes-Linux], page 130.

When using LinuxThreads you will see a minimum of three processes running. These are in
fact threads. There will be one thread for the LinuxThreads manager, one thread to handle
connections, and one thread to handle alarms and signals.

Note that the Linux kernel and the LinuxThread library can by default only have 1024
threads. This means that you can only have up to 1021 connections to MySQL on an
unpatched system. The page http://www.volano.com/linuxnotes.html contains infor-
mation how to go around this limit.

If you see a dead mysqld daemon process with ps, this usually means that you have found
a bug in MySQL or you have a corrupted table. See Section A.4.1 [Crashing], page 857.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld
with the --core-file option. Note that you also probably need to raise the core file
size by adding ulimit -c 1000000 to mysqld_safe or starting mysqld_safe with --core-
file-size=1000000. See Section 4.8.2 [mysqld_safe], page 312.

If you are linking your own MySQL client and get the error:

ld.so.1: ./my: fatal: libmysqlclient.so.4:
open failed: No such file or directory

When executing them, the problem can be avoided by one of the following methods:

• Link the client with the following flag (instead of -Lpath): -Wl,r/path-
libmysqlclient.so.

• Copy libmysqclient.so to ‘/usr/lib’.

• Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_
RUN_PATH environment variable before running your client.

If you are using the Fujitsu compiler (fcc / FCC) you will have some problems compiling
MySQL because the Linux header files are very gcc oriented.

The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" CXX=FCC CXXFLAGS="-O -K fast -K lib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE -DCONST=const \
-Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
’-D_EXTERN_INLINE=static __inline’" ./configure --prefix=/usr/local/mysql \
--enable-assembler --with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

130 MySQL Technical Reference for Version 4.1.1-alpha

2.6.2.1 Linux Notes for Binary Distributions

MySQL needs at least Linux Version 2.0.

Warning: We have reports from some MySQL users that they have got serious stability
problems with MySQL with Linux kernel 2.2.14. If you are using this kernel you should
upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you have a multi-cpu box, then you
should seriously consider using 2.4 as this will give you a significant speed boost.

The binary release is linked with -static, which means you do not normally need to worry
about which version of the system libraries you have. You need not install LinuxThreads,
either. A program linked with -static is slightly bigger than a dynamically linked program
but also slightly faster (3-5%). One problem, however, is that you can’t use user-definable
functions (UDFs) with a statically linked program. If you are going to write or use UDFs
(this is something for C or C++ programmers only), you must compile MySQL yourself,
using dynamic linking.

If you are using a libc-based system (instead of a glibc2 system), you will probably get
some problems with hostname resolving and getpwnam() with the binary release. (This
is because glibc unfortunately depends on some external libraries to resolve hostnames
and getpwent(), even when compiled with -static). In this case you probably get the
following error message when you run mysql_install_db:

Sorry, the host ’xxxx’ could not be looked up

or the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

You can solve this problem in one of the following ways:

• Get a MySQL source distribution (an RPM or the tar.gz distribution) and install this
instead.

• Execute mysql_install_db --force; this will not execute the resolveip test in
mysql_install_db. The downside is that you can’t use host names in the grant
tables; you must use IP numbers instead (except for localhost). If you are using an
old MySQL release that doesn’t support --force, you have to remove the resolveip
test in mysql_install with an editor.

• Start mysqld with su instead of using --user.

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible
speed. We are always trying to use the fastest stable compiler available.

MySQL Perl support requires Version Perl 5.004 03 or newer.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable
when you do a lot of new connections to a mysqld server over TCP/IP.

The problem is that Linux has a delay between when you close a TCP/IP socket and until
this is actually freed by the system. As there is only room for a finite number of TCP/IP
slots, you will get the above error if you try to do too many new TCP/IP connections during
a small time, like when you run the MySQL ‘test-connect’ benchmark over TCP/IP.

We have mailed about this problem a couple of times to different Linux mailing lists but
have never been able to resolve this properly.

Chapter 2: Installing MySQL 131

The only known ’fix’ to this problem is to use persistent connections in your clients or use
sockets, if you are running the database server and clients on the same machine. We hope
that the Linux 2.4 kernel will fix this problem in the future.

2.6.2.2 Linux x86 Notes

MySQL requires libc Version 5.4.12 or newer. It’s known to work with libc 5.4.46. glibc
Version 2.0.6 and later should also work. There have been some problems with the glibc
RPMs from Red Hat, so if you have problems, check whether there are any updates. The
glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you should start mysqld with
the option --thread-stack=192K. (Use -O thread_stack=192K before MySQL 4.) If you
don’t do this, mysqld will die in gethostbyaddr() because the new glibc library requires
a stack size greater than 128K for this call. This stack size is now the default on MySQL
4.0.10 and above.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3
library before compiling MySQL; if you don’t do this, you will get an error about a missing
__cxa_pure_virtual symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the /usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says and add an extra underscore to the _P macro that has
only one underscore, then try again.

You may get some warnings when compiling; those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function ‘void init_signals()’:
mysqld.cc:315: warning: assignment of negative value ‘-1’ to
‘long unsigned int’
mysqld.cc: In function ‘void * signal_hand(void *)’:
mysqld.cc:346: warning: assignment of negative value ‘-1’ to
‘long unsigned int’

mysql.server can be found in the ‘share/mysql’ directory under the MySQL installation
directory or in the ‘support-files’ directory of the MySQL source tree.

If mysqld always core dumps when it starts up, the problem may be that you have an old
‘/lib/libc.a’. Try renaming it, then remove ‘sql/mysqld’ and do a new make install
and try again. This problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your ‘libg++.a’ is not
installed correctly:

/usr/lib/libc.a(putc.o): In function ‘_IO_putc’:
putc.o(.text+0x0): multiple definition of ‘_IO_putc’

You can avoid using ‘libg++.a’ by running configure like this:

shell> CXX=gcc ./configure

132 MySQL Technical Reference for Version 4.1.1-alpha

2.6.2.3 Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that SHOW DATABASES al-
ways returns an empty set. This can be fixed by removing HAVE_READDIR_R from ‘config.h’
after configuring and before compiling.

2.6.2.4 Linux Alpha Notes

MySQL Version 3.23.12 is the first MySQL version that is tested on Linux-Alpha. If you
plan to use MySQL on Linux-Alpha, you should ensure that you have this version or newer.

We have tested MySQL on Alpha with our benchmarks and test suite, and it appears to
work nicely.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-
SMP, Compaq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq
DS20 machine with an Alpha EV6 processor.

You can find the above compilers at http://www.support.compaq.com/alpha-tools/. By
using these compilers, instead of gcc, we get about 9-14% better performance with MySQL.

Note that until MySQL version 3.23.52 and 4.0.2 we optimised the binary for the current
CPU only (by using the -fast compile option); this meant that you could only use our
binaries if you had an Alpha EV6 processor.

Starting with all following releases we added the -arch generic flag to our compile options,
which makes sure the binary runs on all Alpha processors. We also compile statically to
avoid library problems.

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \
--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

If you want to use egcs the following configure line worked for us:

CFLAGS="-O3 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--disable-shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL will not work with gdb 4.18. You should
download and use gdb 5.1 instead!

• If you try linking mysqld statically when using gcc, the resulting image will core dump
at start. In other words, don’t use --with-mysqld-ldflags=-all-static with gcc.

2.6.2.5 Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

Chapter 2: Installing MySQL 133

2.6.2.6 Linux MIPS Notes

To get MySQL to work on Qube2, (Linux Mips), you need the newest glibc libraries
(glibc-2.0.7-29C2 is known to work). You must also use the egcs C++ compiler (egcs-
1.0.2-9, gcc 2.95.2 or newer).

2.6.2.7 Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following compile line: Using gcc-
2.96:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
"--with-comment=Official MySQL binary" --with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you in-
stall our binary distribution in some other place than ‘/usr/local/mysql’ you need to
add the path of the directory where you have ‘libmysqlclient.so’ installed either to the
‘/etc/ld.so.conf’ file or to the value of your LD_LIBRARY_PATH environment variable.
See Section A.3.1 [Link errors], page 855.

2.6.3 Solaris Notes

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked!
Solaris tar can’t handle long file names, so you may see an error like this when you unpack
MySQL:

x mysql-3.22.12-beta/bench/Results/ATIS-mysql_odbc-NT_4.0-cmp-db2,\
informix,ms-sql,mysql,oracle,solid,sybase, 0 bytes, 0 tape blocks
tar: directory checksum error

In this case, you must use GNU tar (gtar) to unpack the distribution. You can find a
precompiled copy for Solaris at http://www.mysql.com/downloads/os-solaris.html.
Sun native threads only work on Solaris 2.5 and higher. For Version 2.4 and earlier, MySQL
will automatically use MIT-pthreads. See Section 2.3.6 [MIT-pthreads], page 99.
If you get the following error from configure:

checking for restartable system calls... configure: error can not run test
programs while cross compiling

This means that you have something wrong with your compiler installation! In this case
you should upgrade your compiler to a newer version. You may also be able to solve this
problem by inserting the following row into the ‘config.cache’ file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls=’no’}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You
can find this at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 don’t work
reliably on SPARC!
The recommended configure line when using gcc 2.95.2 is:

134 MySQL Technical Reference for Version 4.1.1-alpha

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory --enable-assembler

If you have an UltraSPARC, you can get 4% more performance by adding "-mcpu=v8
-Wa,-xarch=v8plusa" to CFLAGS and CXXFLAGS.

If you have Sun’s Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

You can create a 64 bit binary using Sun’s Forte compiler with the following compile flags:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS. Note that
this only works with MySQL 4.0 and up - MySQL 3.23 does not include the required
modifications to support this.

In the MySQL benchmarks, we got a 4% speedup on an UltraSPARC when using Forte 5.0
in 32 bit mode compared to using gcc 3.2 with -mcpu flags.

If you create a 64 bit binary, it’s 4 % slower than the 32 bit binary, but mysqld can instead
handle more treads and memory.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt
to the configure line

The following paragraph is only relevant for older compilers than WorkShop 5.3:

You may also have to edit the configure script to change this line:

#if !defined(__STDC__) || __STDC__ != 1

to this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can’t compile with the
Solaris ‘pthread.h’ header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the error message shown here when you run it, you have tried to compile
MySQL with the Sun compiler without enabling the multi-thread option (-mt):

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and try again.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add
‘/opt/sfw/lib’ to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems.
You should recompile gcc and GNU binutils on the machine you will be running them from
to avoid any problems.

If you get the following error when compiling MySQL with gcc, it means that your gcc is
not configured for your version of Solaris:

Chapter 2: Installing MySQL 135

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function ‘signal_hand’:
./thr_alarm.c:556: too many arguments to function ‘sigwait’

The proper thing to do in this case is to get the newest version of gcc and compile it with
your current gcc compiler! At least for Solaris 2.5, almost all binary versions of gcc have
old, unusable include files that will break all programs that use threads (and possibly other
programs)!
Solaris doesn’t provide static versions of all system libraries (libpthreads and libdl), so
you can’t compile MySQL with --static. If you try to do so, you will get the error:

ld: fatal: library -ldl: not found

or

undefined reference to ‘dlopen’

or

cannot find -lrt

If too many processes try to connect very rapidly to mysqld, you will see this error in the
MySQL log:

Error in accept: Protocol error

You might try starting the server with the --set-variable back_log=50 option as a
workaround for this. Please note that --set-variable is deprecated since MySQL 4.0,
just use --back_log=50 on its own. See Section 4.1.1 [Command-line options], page 195.
If you are linking your own MySQL client, you might get the following error when you try
to execute it:

ld.so.1: ./my: fatal: libmysqlclient.so.#:
open failed: No such file or directory

The problem can be avoided by one of the following methods:
• Link the client with the following flag (instead of -Lpath): -Wl,r/full-path-to-

libmysqlclient.so.
• Copy ‘libmysqclient.so’ to ‘/usr/lib’.
• Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_

RUN_PATH environment variable before running your client.

If you have problems with configure trying to link with -lz and you don’t have zlib
installed, you have two options:
• If you want to be able to use the compressed communication protocol, you need to get

and install zlib from ftp.gnu.org.
• Configure with --with-named-z-libs=no.

If you are using gcc and have problems with loading user defined functions (UDFs) into
MySQL, try adding -lgcc to the link line for the UDF.
If you would like MySQL to start automatically, you can copy ‘support-files/mysql.server’
to ‘/etc/init.d’ and create a symbolic link to it named ‘/etc/rc3.d/S99mysql.server’.

136 MySQL Technical Reference for Version 4.1.1-alpha

As Solaris doesn’t support core files for setuid() applications, you can’t get a core file from
mysqld if you are using the --user option.

2.6.3.1 Solaris 2.7/2.8 Notes

You can normally use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6
issues also apply for Solaris 2.7 and 2.8.

Note that MySQL Version 3.23.4 and above should be able to autodetect new versions of
Solaris and enable workarounds for the following problems!

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when
you use gcc:

/usr/include/widec.h:42: warning: ‘getwc’ redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can do the following to fix the problem:

Copy /usr/include/widec.h to .../lib/gcc-lib/os/gcc-version/include and change
line 41 from:

#if !defined(lint) && !defined(__lint)

to

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit ‘/usr/include/widec.h’ directly. Either way, after you make
the fix, you should remove ‘config.cache’ and run configure again!

If you get errors like this when you run make, it’s because configure didn’t detect the
‘curses.h’ file (probably because of the error in ‘/usr/include/widec.h’):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before ‘,’
/usr/include/term.h:1081: syntax error before ‘;’

The solution to this is to do one of the following:

• Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.
• Edit ‘/usr/include/widec.h’ as indicted above and rerun configure.
• Remove the #define HAVE_TERM line from ‘config.h’ file and run make again.

If you get a problem that your linker can’t find -lz when linking your client program, the
problem is probably that your ‘libz.so’ file is installed in ‘/usr/local/lib’. You can fix
this by one of the following methods:

• Add ‘/usr/local/lib’ to LD_LIBRARY_PATH.
• Add a link to ‘libz.so’ from ‘/lib’.
• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD

distribution.
• Configure MySQL with the --with-named-z-libs=no option.

Chapter 2: Installing MySQL 137

2.6.3.2 Solaris x86 Notes

On Solaris 8 on x86, mysqld will dump core if you remove the debug symbols using strip.
If you are using gcc or egcs on Solaris x86 and you experience problems with core dumps
under load, you should use the following configure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors -fno-exceptions \
-fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This will avoid problems with the libstdc++ library and with C++ exceptions.
If this doesn’t help, you should compile a debug version and run it with a trace file or under
gdb. See Section E.1.3 [Using gdb on mysqld], page 1006.

2.6.4 BSD Notes

This section provides information for the various BSD flavours, as well as specific versions
within those.

2.6.4.1 FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL since the thread package is much
more integrated.
The easiest and therefore the preferred way to install is to use the mysql-server and mysql-
client ports available on http://www.freebsd.org/.
Using these gives you:
• A working MySQL with all optimisations known to work on your version of FreeBSD

enabled.
• Automatic configuration and build.
• Startup scripts installed in /usr/local/etc/rc.d.
• Ability to see which files that are installed with pkg info -L. And to remove them all

with pkg delete if you no longer want MySQL on that machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x and native threads on Versions
3 and up. It is possible to run with native threads on some late 2.2.x versions but you may
encounter problems shutting down mysqld.
Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe, most notably
the gethostbyname() function, which is used by MySQL to convert host names into IP
addresses. Under certain circumstances, the mysqld process will suddenly cause 100% CPU
load and will be unresponsive. If you encounter this, try to start up MySQL using the
--skip-name-resolve option.
Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library,
which avoids a few of the problems that the native FreeBSD thread implementation
has. For a very good comparison of LinuxThreads vs. native threads have a look

138 MySQL Technical Reference for Version 4.1.1-alpha

at Jeremy Zawodny’s article "FreeBSD or Linux for your MySQL Server?" at
http://jeremy.zawodny.com/blog/archives/000697.html

The known problems when using LinuxThreads on FreeBSD are:

• wait_timeout is not working (probably signal handling problem in
FreeBSD/LinuxThreads). This is supposed to get fixed in FreeBSD 5.0.
The symptom is that persistent connections can hang for a long time without getting
closed done.

The MySQL ‘Makefile’s require GNU make (gmake) to work. If you want to compile
MySQL you need to install GNU make first.

Be sure to have your name resolver setup correct. Otherwise, you may experience resolver
delays or failures when connecting to mysqld.

Make sure that the localhost entry in the ‘/etc/hosts’ file is correct (otherwise, you will
have problems connecting to the database). The ‘/etc/hosts’ file should start with a line:

127.0.0.1 localhost localhost.your.domain

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up)
is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions -felide-constructors \
-fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler
gmake
gmake install
./scripts/mysql_install_db
cd /usr/local/mysql
./bin/mysqld_safe &

If you notice that configure will use MIT-pthreads, you should read the MIT-pthreads
notes. See Section 2.3.6 [MIT-pthreads], page 99.

If you get an error from make install that it can’t find ‘/usr/include/pthreads’,
configure didn’t detect that you need MIT-pthreads. This is fixed by executing these
commands:

shell> rm config.cache
shell> ./configure --with-mit-threads

FreeBSD is also known to have a very low default file handle limit. See Section A.2.17
[Not enough file handles], page 854. Uncomment the ulimit -n section in mysqld_safe
or raise the limits for the mysqld user in /etc/login.conf (and rebuild it with cap mkdb
/etc/login.conf). Also be sure you set the appropriate class for this user in the password
file if you are not using the default (use: chpass mysqld-user-name). See Section 4.8.2
[mysqld_safe], page 312.

If you have a lot of memory you should consider rebuilding the kernel to allow MySQL to
take more than 512M of RAM. Take a look at option MAXDSIZ in the LINT config file for
more info.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix F [Environment variables], page 1016.

Chapter 2: Installing MySQL 139

To get a secure and stable system you should only use FreeBSD kernels that are marked
-RELEASE.

2.6.4.2 NetBSD Notes

To compile on NetBSD you need GNU make. Otherwise, the compile will crash when make
tries to run lint on C++ files.

2.6.4.3 OpenBSD 2.5 Notes

On OpenBSD Version 2.5, you can compile MySQL with native threads with the following
options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.6.4.4 OpenBSD 2.8 Notes

Our users have reported that OpenBSD 2.8 has a threading bug which causes problems
with MySQL. The OpenBSD Developers have fixed the problem, but as of January 25th,
2001, it’s only available in the “-current” branch. The symptoms of this threading bug are:
slow response, high load, high CPU usage, and crashes.

If you get an error like Error in accept:: Bad file descriptor or error 9 when trying to
open tables or directories, the problem is probably that you haven’t allocated enough file
descriptors for MySQL.

In this case, try starting mysqld_safe as root with the following options:

shell> mysqld_safe --user=mysql --open-files-limit=2048 &

2.6.4.5 BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory
is too low:

item_func.h: In method ‘Item_func_ge::Item_func_ge(const Item_func_ge &)’:
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn’t work and you are using
bash, try switching to csh or sh; some BSDI users have reported problems with bash and
ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for
configure to be able to compile ‘sql_yacc.cc’.

If you get problems with the current date in MySQL, setting the TZ variable will probably
help. See Appendix F [Environment variables], page 1016.

140 MySQL Technical Reference for Version 4.1.1-alpha

2.6.4.6 BSD/OS Version 3.x Notes

Upgrade to BSD/OS Version 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

shell> env CXX=shlicc++ CC=shlicc2 \
./configure \

--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

shell> env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \

--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying
any locations.

If you have problems with performance under heavy load, try using the --skip-thread-
priority option to mysqld! This will run all threads with the same priority; on BSDI
Version 3.1, this gives better performance (at least until BSDI fixes their thread scheduler).

If you get the error virtual memory exhausted while compiling, you should try using
ulimit -v 80000 and run make again. If this doesn’t work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

2.6.4.7 BSD/OS Version 4.x Notes

BSDI Version 4.x has some thread-related bugs. If you want to use MySQL on this, you
should install all thread-related patches. At least M400-023 should be installed.

On some BSDI Version 4.x systems, you may get problems with shared libraries. The
symptom is that you can’t execute any client programs, for example, mysqladmin. In this
case you need to reconfigure not to use shared libraries with the --disable-shared option
to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while
can’t open tables. This is because some library/system related bug causes mysqld to change
current directory without asking for this!

The fix is to either upgrade to 3.23.34 or after running configure remove the line #define
HAVE_REALPATH from config.h before running make.

Note that the above means that you can’t symbolic link a database directories to another
database directory or symbolic link a table to another database on BSDI! (Making a sym-
bolic link to another disk is okay).

2.6.5 Mac OS X Notes

Chapter 2: Installing MySQL 141

2.6.5.1 Mac OS X 10.x

MySQL should work without any problems on Mac OS X 10.x (Darwin). You don’t need
the pthread patches for this OS!
This also applies to Mac OS X 10.x Server. Compiling for the Server platform is the same
as for the client version of Mac OS X. However please note that MySQL comes preinstalled
on the Server!
Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.1.3 [Mac OS X installation], page 66.

2.6.5.2 Mac OS X Server 1.2 (Rhapsody)

Before trying to configure MySQL on Mac OS X Server 1.2 (aka Rhapsody) you must first
install the pthread package from http://www.prnet.de/RegEx/mysql.html.
See Section 2.1.3 [Mac OS X installation], page 66.

2.6.6 Other Unix Notes

2.6.6.1 HP-UX Notes for Binary Distributions

Some of the binary distributions of MySQL for HP-UX are distributed as an HP depot file
and as a tar file. To use the depot file you must be running at least HP-UX 10.x to have
access to HP’s software depot tools.
The HP version of MySQL was compiled on an HP 9000/8xx server under HP-UX 10.20,
and uses MIT-pthreads. It is known to work well under this configuration. MySQL Version
3.22.26 and newer can also be built with HP’s native thread package.
Other configurations that may work:
• HP 9000/7xx running HP-UX 10.20+
• HP 9000/8xx running HP-UX 10.30

The following configurations almost definitely won’t work:
• HP 9000/7xx or 8xx running HP-UX 10.x where x < 2
• HP 9000/7xx or 8xx running HP-UX 9.x

To install the distribution, use one of the commands here, where /path/to/depot is the
full pathname of the depot file:
• To install everything, including the server, client and development tools:

shell> /usr/sbin/swinstall -s /path/to/depot mysql.full

142 MySQL Technical Reference for Version 4.1.1-alpha

• To install only the server:

shell> /usr/sbin/swinstall -s /path/to/depot mysql.server

• To install only the client package:

shell> /usr/sbin/swinstall -s /path/to/depot mysql.client

• To install only the development tools:

shell> /usr/sbin/swinstall -s /path/to/depot mysql.developer

The depot places binaries and libraries in ‘/opt/mysql’ and data in ‘/var/opt/mysql’. The
depot also creates the appropriate entries in ‘/etc/init.d’ and ‘/etc/rc2.d’ to start the
server automatically at boot time. Obviously, this entails being root to install.

To install the HP-UX tar.gz distribution, you must have a copy of GNU tar.

2.6.6.2 HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend
that you use gcc instead of the HP-UX native compiler, because gcc produces better code!

We recommend using gcc 2.95 on HP-UX. Don’t use high optimisation flags (like -O6) as
this may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" CXX=gcc ./configure --with-pthread \
--with-named-thread-libs=’-ldce’ --prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti -O3 -fPIC" ./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
--disable-shared

2.6.6.3 HP-UX Version 11.x Notes

For HP-UX Version 11.x, we recommend MySQL Version 3.23.15 or later.

Because of some critical bugs in the standard HP-UX libraries, you should install the fol-
lowing patches before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This will solve the problem of getting EWOULDBLOCK from recv() and EBADF from accept()
in threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you will get the error:

Chapter 2: Installing MySQL 143

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:

/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,

from mysql_priv.h:158,
from item.cc:19:

The problem is that HP-UX doesn’t define pthreads_atfork() consis-
tently. It has conflicting prototypes in ‘/usr/include/sys/unistd.h’:184 and
‘/usr/include/sys/pthread.h’:440 (details below).

One solution is to copy ‘/usr/include/sys/unistd.h’ into ‘mysql/include’ and edit
‘unistd.h’ and change it to match the definition in ‘pthread.h’. Here’s the diff:

183,184c183,184
< extern int pthread_atfork(void (*prepare)(), void (*parent)(),
< void (*child)());

> extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
> void (*child)(void));

After this, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using MySQL 4.0.5 with the HP-UX compiler you can use: (tested with cc
B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure --with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: ‘-3’: use +help for online documentation

If you get the following error from configure

checking for cc option to accept ANSI C... no
configure: error: MySQL requires a ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Check that you don’t have the path to the K&R compiler before the path to the HP-UX C
and C++ compiler.

Another reason for not beeing able to compile is that you didn’t define the +DD64 flags
above.

Another possibility for HP-UX 11 is to use MySQL binaries for HP-UX 10.20. We have
received reports from some users that these binaries work fine on HP-UX 11.00. If you
encounter problems, be sure to check your HP-UX patch level.

144 MySQL Technical Reference for Version 4.1.1-alpha

2.6.6.4 IBM-AIX notes

Automatic detection of xlC is missing from Autoconf, so a configure command something
like this is needed when compiling MySQL (This example uses the IBM compiler):

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
--localstatedir=/var/mysql \
--sysconfdir=/etc/mysql \
--sbindir=’/usr/local/bin’ \
--libexecdir=’/usr/local/bin’ \
--enable-thread-safe-client \
--enable-large-files

Above are the options used to compile the MySQL distribution that can be found at
http://www-frec.bull.com/.

If you change the -O3 to -O2 in the above configure line, you must also remove the -qstrict
option (this is a limitation in the IBM C compiler).

If you are using gcc or egcs to compile MySQL, you must use the -fno-exceptions flag,
as the exception handling in gcc/egcs is not thread-safe! (This is tested with egcs 1.1.)
There are also some known problems with IBM’s assembler, which may cause it to generate
bad code when used with gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many is necessary for the compile to be successful. IBM is aware of this problem
but is in to hurry to fix it because of the workaround available. We don’t know if the
-fno-exceptions is required with gcc 2.95, but as MySQL doesn’t use exceptions and the
above option generates faster code, we recommend that you should always use this option
with egcs / gcc.

If you get a problem with assembler code try changing the -mcpu=xxx to match your CPU.
Typically power2, power, or powerpc may need to be used, alternatively you might need
to use 604 or 604e. I’m not positive but I would think using "power" would likely be safe
most of the time, even on a power2 machine.

If you don’t know what your CPU is then do a "uname -m", this will give you back a
string that looks like "000514676700", with a format of xxyyyyyymmss where xx and ss are
always 0’s, yyyyyy is a unique system ID and mm is the ID of the CPU Planar. A chart of
these values can be found at http://publib.boulder.ibm.com/doc_link/en_US/a_doc_

Chapter 2: Installing MySQL 145

lib/cmds/aixcmds5/uname.htm. This will give you a machine type and a machine model
you can use to determine what type of CPU you have.

If you have problems with signals (MySQL dies unexpectedly under high load) you may
have found an OS bug with threads and signals. In this case you can tell MySQL not to
use signals by configuring with:

shell> CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug --with-low-memory

This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill
clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.
Instead, the client will die when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname core dump. This
is an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc you have to do the following changes.

After configuring, edit ‘config.h’ and ‘include/my_config.h’ and change the line that
says

#define HAVE_SNPRINTF 1

to

#undef HAVE_SNPRINTF

And finally, in ‘mysqld.cc’ you need to add a prototype for initgoups.

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it’s not enough to just set
’ulimit -d unlimited’. You may also have to set in mysqld_safe something like:

export LDR_CNTRL=’MAXDATA=0x80000000’

You can find more about using a lot of memory at: http://publib16.boulder.ibm.com/pseries/en_
US/aixprggd/genprogc/lrg_prg_support.htm.

2.6.6.5 SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL, which in turn means you will
need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use
the following configure line to avoid this problem:

shell> ./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These may be
ignored.

When compiling mysqld, there will be some implicit declaration of function warnings.
These may be ignored.

146 MySQL Technical Reference for Version 4.1.1-alpha

2.6.6.6 Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, as egcs on
DEC has some serious bugs!
When compiling threaded programs under Digital Unix, the documentation recommends
using the -pthread option for cc and cxx and the libraries -lmach -lexc (in addition to
-lpthread). You should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:
mysqld.cc: In function void handle_connections()’:
mysqld.cc:626: passing long unsigned int *’ as argument 3 of
accept(int,sockadddr *, int *)’

You can safely ignore these warnings. They occur because configure can detect only errors,
not warnings.
If you start the server directly from the command-line, you may have problems with it dying
when you log out. (When you log out, your outstanding processes receive a SIGHUP signal.)
If so, try starting the server like this:

shell> nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal.
Alternatively, start the server by running mysqld_safe, which invokes mysqld using nohup
for you. See Section 4.8.2 [mysqld_safe], page 312.
If you get a problem when compiling mysys/get opt.c, just remove the line #define
NO PROTO from the start of that file!

If you are using Compaq’s CC compiler, the following configure line should work:
CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed all -arch host \
-noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \
--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-lpthread -lmach -lexc -lc"
gnumake

If you get a problem with libtool, when compiling with shared libraries as above, when
linking mysql, you should be able to get around this by issuing:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \
-O4 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \

Chapter 2: Installing MySQL 147

-o mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.libs/libmysqlclient.so -lm
cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.6.6.7 Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure
like this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the ‘c_asm.h’ file, you can create and use a ’dummy’ ‘c_asm.h’
file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the
latest DEC (Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.
On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)" the
compiler had some strange behaviour (undefined asm symbols). /bin/ld also appears to
be broken (problems with _exit undefined errors occurring while linking mysqld). On
this system, we have managed to compile MySQL with the following configure line, after
replacing /bin/ld with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029", the following should work:
CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed -speculate all \

-arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed -speculate all \

-arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql --with-mysqld-ldflags=-all-static \

--disable-shared --with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line
in ‘config.h’ that defines ’HAVE_ALLOCA’.
The alloca() function also may have an incorrect prototype in /usr/include/alloca.h.
This warning resulting from this can be ignored.
configure will use the following thread libraries automatically: --with-named-thread-
libs="-lpthread -lmach -lexc -lc".

148 MySQL Technical Reference for Version 4.1.1-alpha

When using gcc, you can also try running configure like this:
shell> CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may
have found an OS bug with threads and signals. In this case you can tell MySQL not to
use signals by configuring with:

shell> CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This doesn’t affect the performance of MySQL, but has the side effect that you can’t kill
clients that are “sleeping” on a connection with mysqladmin kill or mysqladmin shutdown.
Instead, the client will die when it issues its next command.
With gcc 2.95.2, you will probably run into the following compile error:

sql_acl.cc:1456: Internal compiler error in ‘scan_region’, at except.c:2566
Please submit a full bug report.

To fix this you should change to the sql directory and do a “cut and paste” of the last gcc
line, but change -O3 to -O0 (or add -O0 immediately after gcc if you don’t have any -O
option on your compile line). After this is done you can just change back to the top-level
directly and run make again.

2.6.6.8 SGI Irix Notes

If you are using Irix Version 6.5.3 or newer mysqld will only be able to create threads if you
run it as a user with CAP_SCHED_MGT privileges (like root) or give the mysqld server this
privilege with the following shell command:

shell> chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some things in ‘config.h’ after running configure and before
compiling.
In some Irix implementations, the alloca() function is broken. If the mysqld server dies
on some SELECT statements, remove the lines from ‘config.h’ that define HAVE_ALLOC and
HAVE_ALLOCA_H. If mysqladmin create doesn’t work, remove the line from ‘config.h’ that
defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.
SGI recommends that you install all of the patches on this page as a set:
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and
the latest libc rollup.
You definitely need all the POSIX patches on this page, for pthreads support:
http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling ‘mysql.cc’:
"/usr/include/curses.h", line 82: error(1084): invalid combination of type

Type the following in the top-level directory of your MySQL source tree:
shell> extra/replace bool curses_bool < /usr/include/curses.h \
> include/curses.h
shell> make

Chapter 2: Installing MySQL 149

There have also been reports of scheduling problems. If only one thread is running, things
go slow. Avoid this by starting another client. This may lead to a 2-to-10-fold increase in
execution speed thereafter for the other thread. This is a poorly understood problem with
Irix threads; you may have to improvise to find solutions until this can be fixed.
If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \
--with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported
to work

CC=cc CXX=CC CFLAGS=’-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib’ CXXFLAGS=’-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib’ ./configure \
--prefix=/usr/local/mysql --with-innodb --with-berkeley-db \
--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

2.6.6.9 SCO Notes

The current port is tested only on “sco3.2v5.0.5”, “sco3.2v5.0.6” and “sco3.2v5.0.7” systems.
There has also been a lot of progress on a port to “sco 3.2v4.2”.
For the moment the recommended compiler on OpenServer is gcc 2.95.2. With this you
should be able to compile MySQL with just:

CC=gcc CXX=gcc ./configure ... (options)

1. For OpenServer 5.0.x you need to use gcc-2.95.2p1 or newer from the Skunkware.
http://www.sco.com/skunkware/ and choose browser OpenServer packages or by ftp
to ftp2.caldera.com in the pub/skunkware/osr5/devtools/gcc directory.

2. You need the port of GCC 2.5.x for this product and the Development system. They
are required on this version of SCO Unix. You cannot just use the GCC Dev system.

3. You should get the FSU Pthreads package and install it first. This can be found at
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can
also get a precompiled package from http://www.mysql.com/Downloads/SCO/FSU-threads-3.5c.tar.gz.

4. FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip. Or OpenServer 3.0
or Open Desktop 3.0 (OS 3.0 ODT 3.0), with the SCO Development System installed
using a good port of GCC 2.5.x ODT or OS 3.0 you will need a good port of GCC 2.5.x
There are a lot of problems without a good port. The port for this product requires
the SCO Unix Development system. Without it, you are missing the libraries and the
linker that is needed.

5. To build FSU Pthreads on your system, do the following:
1. Run ./configure in the ‘threads/src’ directory and select the SCO OpenServer

option. This command copies ‘Makefile.SCO5’ to ‘Makefile’.
2. Run make.
3. To install in the default ‘/usr/include’ directory, login as root, then cd to the

‘thread/src’ directory, and run make install.

150 MySQL Technical Reference for Version 4.1.1-alpha

6. Remember to use GNU make when making MySQL.
7. If you don’t start mysqld_safe as root, you probably will get only the default 110

open files per process. mysqld will write a note about this in the log file.
8. With SCO 3.2V5.0.5, you should use FSU Pthreads version 3.5c or newer. You should

also use gcc 2.95.2 or newer!
The following configure command should work:

shell> ./configure --prefix=/usr/local/mysql --disable-shared

9. With SCO 3.2V4.2, you should use FSU Pthreads version 3.5c or newer. The following
configure command should work:

shell> CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \

--prefix=/usr/local/mysql \
--with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-lcurses"

You may get some problems with some include files. In this case, you can find new SCO-
specific include files at http://www.mysql.com/Downloads/SCO/SCO-3.2v4.2-includes.tar.gz.
You should unpack this file in the ‘include’ directory of your MySQL source tree.

SCO development notes:
• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads

-lsocket -lgthreads.
• The SCO development libraries are re-entrant in FSU Pthreads. SCO claim’s that its

libraries’ functions are re-entrant, so they must be reentrant with FSU Pthreads. FSU
Pthreads on OpenServer tries to use the SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at http://www.mysql.com/) comes linked with
GNU malloc. If you encounter problems with memory usage, make sure that
‘gmalloc.o’ is included in ‘libgthreads.a’ and ‘libgthreads.so’.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(),
getmsg(), connect(), accept(), select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr remap se-
curity patch (version 2.0.0) breaks FSU threads and makes mysqld unstable. You have
to remove this one if you want to run mysqld on an OpenServer 5.0.6 machine.

• SCO provides Operating Systems Patches at ftp://ftp.sco.com/pub/openserver5
for OpenServer 5.0.x

• SCO provides secruity fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer
and ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x

• pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/openserver/
or ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as
both libsocket.so.2 and libresolv.so.1 with instructions for installing on pre-OSR506
systems.
It’s probably a good idea to install the above patches before trying to compile/use
MySQL.

If you want to install DBI on SCO, you have to edit the ‘Makefile’ in DBI-xxx and each
subdirectory.

Chapter 2: Installing MySQL 151

Note that the following assumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib

LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

This is because the Perl dynaloader will not load the DBI modules if they were compiled
with icc or cc.

Perl works best when compiled with cc.

2.6.6.10 SCO UnixWare Version 7.1.x Notes

You must use a version of MySQL at least as recent as Version 3.22.13 and of UnixWare
7.1.0 because these version fixes some portability and OS problems under UnixWare.

We have been able to compile MySQL with the following configure command on UnixWare
Version 7.1.x:

CC=cc CXX=CC ./configure --prefix=/usr/local/mysql

If you want to use gcc, you must use gcc 2.95.2 or newer.

CC=gcc CXX=g++ ./configure --prefix=/usr/local/mysql

1. SCO provides Operating Systems Patches at ftp://ftp.sco.com/pub/unixware7 for
UnixWare 7.1.1 and 7.1.3 ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0

2. SCO provides information about Security Fixes at ftp://ftp.sco.com/pub/security/OpenUNIX
for OpenUNIX ftp://ftp.sco.com/pub/security/UnixWare for UnixWare

2.6.7 OS/2 Notes

MySQL uses quite a few open files. Because of this, you should add something like the
following to your ‘CONFIG.SYS’ file:

SET EMXOPT=-c -n -h1024

If you don’t do this, you will probably run into the following error:

152 MySQL Technical Reference for Version 4.1.1-alpha

File ’xxxx’ not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp
4, FixPack 4 or above is required. This is a requirement of the Pthreads library. MySQL
must be installed in a partition that supports long filenames such as HPFS, FAT32, etc.

The ‘INSTALL.CMD’ script must be run from OS/2’s own ‘CMD.EXE’ and may not work with
replacement shells such as ‘4OS2.EXE’.

The ‘scripts/mysql-install-db’ script has been renamed. It is now called ‘install.cmd’
and is a REXX script, which will set up the default MySQL security settings and create
the WorkPlace Shell icons for MySQL.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be
compiled using the Pthreads run-time library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
-o example udf_example.cc -L../lib -lmysqlclient udf_example.def

mv example.dll example.udf

Note: Due to limitations in OS/2, UDF module name stems must not exceed 8 characters.
Modules are stored in the ‘/mysql2/udf’ directory; the safe-mysqld.cmd script will put this
directory in the BEGINLIBPATH environment variable. When using UDF modules, specified
extensions are ignored—it is assumed to be ‘.udf’. For example, in Unix, the shared module
might be named ‘example.so’ and you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "example.so";

In OS/2, the module would be named ‘example.udf’, but you would not specify the module
extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "example";

2.6.8 Novell NetWare Notes

Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers will be
pleased to note that NetWare 6.5 will ship with bundled MySQL binaries, complete with
an automatic commercial use license for all servers running that version of NetWare.

See Section 2.1.4 [NetWare installation], page 69.

MySQL for NetWare is compiled using a combination of Metrowerks Codewarrior for
NetWare and special cross-compilation versions of the GNU autotools. Check back here in
the future for more information on building and optimising MySQL for NetWare.

2.6.9 BeOS Notes

We have in the past talked with some BeOS developers that have said that MySQL is 80%
ported to BeOS, but we haven’t heard from them in a while.

2.7 Perl Installation Comments

Chapter 2: Installing MySQL 153

2.7.1 Installing Perl on Unix

Perl support for MySQL is provided by means of the DBI/DBD client interface. See Sec-
tion 11.5 [Perl], page 815. The Perl DBD/DBI client code requires Perl Version 5.004 or later.
The interface will not work if you have an older version of Perl.
MySQL Perl support also requires that you’ve installed MySQL client programming sup-
port. If you installed MySQL from RPM files, client programs are in the client RPM, but
client programming support is in the developer RPM. Make sure you’ve installed the latter
RPM.
As of Version 3.22.8, Perl support is distributed separately from the main MySQL distri-
bution. If you want to install Perl support, the files you will need can be obtained from
http://www.mysql.com/downloads/api-dbi.html.
The Perl distributions are provided as compressed tar archives and have names like
‘MODULE-VERSION.tar.gz’, where MODULE is the module name and VERSION is the version
number. You should get the Data-Dumper, DBI, and DBD-mysql distributions and install
them in that order. The installation procedure is shown here. The example shown is for
the Data-Dumper module, but the procedure is the same for all three distributions:
1. Unpack the distribution into the current directory:

shell> gunzip < Data-Dumper-VERSION.tar.gz | tar xvf -

This command creates a directory named ‘Data-Dumper-VERSION’.
2. Change into the top-level directory of the unpacked distribution:

shell> cd Data-Dumper-VERSION

3. Build the distribution and compile everything:
shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note
that when you run that command during the DBD-mysql installation to exercise the interface
code, the MySQL server must be running or the test will fail.
It is a good idea to rebuild and reinstall the DBD-mysql distribution whenever you install
a new release of MySQL, particularly if you notice symptoms such as all your DBI scripts
dumping core after you upgrade MySQL.
If you don’t have the right to install Perl modules in the system directory or if you to install
local Perl modules, the following reference may help you:

http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading Installing New Modules that Require Locally Installed
Modules.

2.7.2 Installing ActiveState Perl on Windows

To install the MySQL DBD module with ActiveState Perl on Windows, you should do the
following:

154 MySQL Technical Reference for Version 4.1.1-alpha

• Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/
and install it.

• Open a DOS shell.
• If required, set the HTTP proxy variable. For example, you might try:

set HTTP_proxy=my.proxy.com:3128

• Start the PPM program:
C:\> c:\perl\bin\ppm.pl

• If you have not already done so, install DBI:
ppm> install DBI

• If this succeeds, run the following command:
install \
ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd

The above should work at least with ActiveState Perl Version 5.6.
If you can’t get the above to work, you should instead install the MyODBC driver and connect
to MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn","$user","$password") ||
die "Got error $DBI::errstr when connecting to $dsn\n";

2.7.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it can’t find the ‘../mysql/mysql.so’ module, then the problem is
probably that Perl can’t locate the shared library ‘libmysqlclient.so’.
You can fix this by any of the following methods:
• Compile the DBD-mysql distribution with perl Makefile.PL -static -config rather

than perl Makefile.PL.
• Copy ‘libmysqlclient.so’ to the directory where your other shared libraries are lo-

cated (probably ‘/usr/lib’ or ‘/lib’).
• On Linux you can add the pathname of the directory where ‘libmysqlclient.so’ is

located to the ‘/etc/ld.so.conf’ file.
• Add the pathname of the directory where ‘libmysqlclient.so’ is located to the LD_

RUN_PATH environment variable.

If you get the following errors from DBD-mysql, you are probably using gcc (or using an old
binary compiled with gcc):

/usr/bin/perl: can’t resolve symbol ’__moddi3’
/usr/bin/perl: can’t resolve symbol ’__divdi3’

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the ‘mysql.so’ library
gets built (check the output from make for ‘mysql.so’ when you compile the Perl client).
The -L option should specify the pathname of the directory where ‘libgcc.a’ is located on
your system.
Another cause of this problem may be that Perl and MySQL aren’t both compiled with
gcc. In this case, you can solve the mismatch by compiling both with gcc.

Chapter 2: Installing MySQL 155

If you get the following error from DBD-mysql when you run the tests:
t/00base............install_driver(mysql) failed:
Can’t load ’../blib/arch/auto/DBD/mysql/mysql.so’ for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

it means that you need to include the compression library, -lz, to the link line. This can be
doing the following change in the file ‘lib/DBD/mysql/Install.pm’:

$sysliblist .= " -lm";

to

$sysliblist .= " -lm -lz";

After this, you must run ’make realclean’ and then proceed with the installation from the
beginning.
If you want to use the Perl module on a system that doesn’t support dynamic linking (like
SCO) you can generate a static version of Perl that includes DBI and DBD-mysql. The way
this works is that you generate a version of Perl with the DBI code linked in and install it
on top of your current Perl. Then you use that to build a version of Perl that additionally
has the DBD code linked in, and install that.
On SCO, you must have the following environment variables set:

shell> LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib
or
shell> LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib
shell> LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib
shell> MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI by running these commands in the
directory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl will indicate the exact make
command you will need to execute to perform the installation. On SCO, this is make -f
Makefile.aperl inst_perl MAP_TARGET=perl.
Next, use the just-created Perl to create another Perl that also includes a statically-linked
DBD::mysql by running these commands in the directory where your DBD-mysql distribution
is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

156 MySQL Technical Reference for Version 4.1.1-alpha

Finally, you should install this new Perl. Again, the output of make perl indicates the
command to use.

Chapter 3: MySQL Tutorial 157

3 MySQL Tutorial

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql
client program to create and use a simple database. mysql (sometimes referred to as the
“terminal monitor” or just “monitor”) is an interactive program that allows you to connect
to a MySQL server, run queries, and view the results. mysql may also be used in batch
mode: you place your queries in a file beforehand, then tell mysql to execute the contents
of the file. Both ways of using mysql are covered here.
To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is
available to which you can connect. If this is not true, contact your MySQL administrator.
(If you are the administrator, you will need to consult other sections of this manual.)
This chapter describes the entire process of setting up and using a database. If you are
interested only in accessing an already-existing database, you may want to skip over the
sections that describe how to create the database and the tables it contains.
Because this chapter is tutorial in nature, many details are necessarily omitted. Consult
the relevant sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you’ll usually need to provide a MySQL user name when you
invoke mysql and, most likely, a password. If the server runs on a machine other than the
one where you log in, you’ll also need to specify a hostname. Contact your administrator
to find out what connection parameters you should use to connect (that is, what host, user
name, and password to use). Once you know the proper parameters, you should be able to
connect like this:

shell> mysql -h host -u user -p
Enter password: ********

The ******** represents your password; enter it when mysql displays the Enter password:
prompt.
If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 4.0.14-log

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

The prompt tells you that mysql is ready for you to enter commands.
Some MySQL installations allow users to connect as the anonymous (unnamed) user to the
server running on the local host. If this is the case on your machine, you should be able to
connect to that server by invoking mysql without any options:

158 MySQL Technical Reference for Version 4.1.1-alpha

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q)
at the mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control-D.
Most examples in the following sections assume you are connected to the server. They
indicate this by the mysql> prompt.

3.2 Entering Queries

Make sure you are connected to the server, as discussed in the previous section. Doing so
will not in itself select any database to work with, but that’s okay. At this point, it’s more
important to find out a little about how to issue queries than to jump right in creating
tables, loading data into them, and retrieving data from them. This section describes the
basic principles of entering commands, using several queries you can try out to familiarise
yourself with how mysql works.
Here’s a simple command that asks the server to tell you its version number and the current
date. Type it in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+--------------+--------------+
| VERSION() | CURRENT_DATE |
+--------------+--------------+
| 3.22.20a-log | 1999-03-19 |
+--------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:
• A command normally consists of an SQL statement followed by a semicolon. (There

are some exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is
one of them. We’ll get to others later.)

• When you issue a command, mysql sends it to the server for execution and displays
the results, then prints another mysql> prompt to indicate that it is ready for another
command.

• mysql displays query output in tabular form (rows and columns). The first row contains
labels for the columns. The rows following are the query results. Normally, column
labels are the names of the columns you fetch from database tables. If you’re retrieving
the value of an expression rather than a table column (as in the example just shown),
mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute,
which gives you a rough idea of server performance. These values are imprecise because
they represent wall clock time (not CPU or machine time), and because they are affected
by factors such as server load and network latency. (For brevity, the “rows in set” line
is not shown in the remaining examples in this chapter.)

Chapter 3: MySQL Tutorial 159

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here’s another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+-------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+-------------+---------+
| 0.707107 | 25 |
+-------------+---------+

The queries shown thus far have been relatively short, single-line statements. You can even
enter multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+--------------+
| VERSION() |
+--------------+
| 3.22.20a-log |
+--------------+

+---------------------+
| NOW() |
+---------------------+
| 1999-03-19 00:15:33 |
+---------------------+

A command need not be given all on a single line, so lengthy commands that require several
lines are not a problem. mysql determines where your statement ends by looking for the
terminating semicolon, not by looking for the end of the input line. (In other words, mysql
accepts free-format input: it collects input lines but does not execute them until it sees the
semicolon.)

Here’s a simple multiple-line statement:

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

+--------------------+--------------+
| USER() | CURRENT_DATE |
+--------------------+--------------+
| joesmith@localhost | 1999-03-18 |
+--------------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first
line of a multiple-line query. This is how mysql indicates that it hasn’t seen a complete
statement and is waiting for the rest. The prompt is your friend, because it provides valuable
feedback. If you use that feedback, you will always be aware of what mysql is waiting for.

160 MySQL Technical Reference for Version 4.1.1-alpha

If you decide you don’t want to execute a command that you are in the process of entering,
cancel it by typing \c:

mysql> SELECT
-> USER()
-> \c

mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing
feedback to indicate that mysql is ready for a new command.
The following table shows each of the prompts you may see and summarises what they
mean about the state that mysql is in:
Prompt Meaning
mysql> Ready for new command.

-> Waiting for next line of multiple-line command.
’> Waiting for next line, collecting a string that begins with a single quote

(‘’’).
"> Waiting for next line, collecting a string that begins with a double

quote (‘"’).
‘> Waiting for next line, collecting an identifier that begins with a backtick

(‘‘’).
Multiple-line statements commonly occur by accident when you intend to issue a command
on a single line, but forget the terminating semicolon. In this case, mysql waits for more
input:

mysql> SELECT USER()
->

If this happens to you (you think you’ve entered a statement but the only response is a
-> prompt), most likely mysql is waiting for the semicolon. If you don’t notice what the
prompt is telling you, you might sit there for a while before realising what you need to do.
Enter a semicolon to complete the statement, and mysql will execute it:

mysql> SELECT USER()
-> ;

+--------------------+
| USER() |
+--------------------+
| joesmith@localhost |
+--------------------+

The ’> and "> prompts occur during string collection. In MySQL, you can write strings
surrounded by either ‘’’ or ‘"’ characters (for example, ’hello’ or "goodbye"), and mysql
lets you enter strings that span multiple lines. When you see a ’> or "> prompt, it means
that you’ve entered a line containing a string that begins with a ‘’’ or ‘"’ quote character,
but have not yet entered the matching quote that terminates the string. That’s fine if you
really are entering a multiple-line string, but how likely is that? Not very. More often,
the ’> and "> prompts indicate that you’ve inadvertantly left out a quote character. For
example:

mysql> SELECT * FROM my_table WHERE name = "Smith AND age < 30;
">

Chapter 3: MySQL Tutorial 161

If you enter this SELECT statement, then press Enter and wait for the result, nothing will
happen. Instead of wondering why this query takes so long, notice the clue provided by the
"> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do
you see the error in the statement? The string "Smith is missing the second quote.)

At this point, what do you do? The simplest thing is to cancel the command. However,
you cannot just type \c in this case, because mysql interprets it as part of the string that
it is collecting! Instead, enter the closing quote character (so mysql knows you’ve finished
the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = "Smith AND age < 30;
"> "\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The ‘> prompt is similar to th ’> and "> prompts, but indicates that you have begun but
not completed a backtick-quoted identifier.

It’s important to know what the ’>, ">, and ‘> prompts signify, because if you mistakenly
enter an unterminated string, any further lines you type will appear to be ignored by
mysql—including a line containing QUIT! This can be quite confusing, especially if you
don’t know that you need to supply the terminating quote before you can cancel the current
command.

3.3 Creating and Using a Database

Now that you know how to enter commands, it’s time to access a database.

Suppose you have several pets in your home (your menagerie) and you’d like to keep track
of various types of information about them. You can do so by creating tables to hold your
data and loading them with the desired information. Then you can answer different sorts
of questions about your animals by retrieving data from the tables. This section shows you
how to:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database will be simple (deliberately), but it is not difficult to think
of real-world situations in which a similar type of database might be used. For
example, a database like this could be used by a farmer to keep track of livestock,
or by a veterinarian to keep track of patient records. A menagerie distribution
containing some of the queries and sample data used in the following sections can be
obtained from the MySQL web site. It’s available in either compressed tar format
(http://www.mysql.com/Downloads/Contrib/Examples/menagerie.tar.gz) or Zip
format (http://www.mysql.com/Downloads/Contrib/Examples/menagerie.zip).

Use the SHOW statement to find out what databases currently exist on the server:

162 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The list of databases is probably different on your machine, but the mysql and test
databases are likely to be among them. The mysql database is required because it de-
scribes user access privileges. The test database is often provided as a workspace for users
to try things out.
Note that you may not see all databases if you don’t have the SHOW DATABASES privilege.
See Section 4.4.1 [GRANT], page 239.
If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements
with a semicolon if you like; it does no harm.) The USE statement is special in another way,
too: it must be given on a single line.
You can use the test database (if you have access to it) for the examples that follow, but
anything you create in that database can be removed by anyone else with access to it. For
this reason, you should probably ask your MySQL administrator for permission to use a
database of your own. Suppose you want to call yours menagerie. The administrator needs
to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO ’your_mysql_name’@’your_client_host’;

where your_mysql_name is the MySQL user name assigned to you and your_client_host
is the host from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you
can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always
refer to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant.
This is also true for table names. (Under Windows, this restriction does not apply, although
you must refer to databases and tables using the same lettercase throughout a given query.)
Creating a database does not select it for use; you must do that explicitly. To make
menagerie the current database, use this command:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you
begin a mysql session. You can do this by issuing a USE statement as shown in the example.

Chapter 3: MySQL Tutorial 163

Alternatively, you can select the database on the command-line when you invoke mysql.
Just specify its name after any connection parameters that you might need to provide. For
example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie is not your password on the command just shown. If you want to
supply your password on the command-line after the -p option, you must do so with no
intervening space (for example, as -pmypassword, not as -p mypassword). However, putting
your password on the command-line is not recommended, because doing so exposes it to
snooping by other users logged in on your machine.

3.3.2 Creating a Table

Creating the database is the easy part, but at this point it’s empty, as SHOW TABLES will
tell you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you
will need and what columns will be in each of them.

You’ll want a table that contains a record for each of your pets. This can be called the pet
table, and it should contain, as a bare minimum, each animal’s name. Because the name
by itself is not very interesting, the table should contain other information. For example,
if more than one person in your family keeps pets, you might want to list each animal’s
owner. You might also want to record some basic descriptive information such as species
and sex.

How about age? That might be of interest, but it’s not a good thing to store in a database.
Age changes as time passes, which means you’d have to update your records often. Instead,
it’s better to store a fixed value such as date of birth. Then, whenever you need age, you can
calculate it as the difference between the current date and the birth date. MySQL provides
functions for doing date arithmetic, so this is not difficult. Storing birth date rather than
age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet
birthdays. (If you think this type of query is somewhat silly, note that it is the same
question you might ask in the context of a business database to identify clients to whom
you’ll soon need to send out birthday greetings, for that computer-assisted personal
touch.)

• You can calculate age in relation to dates other than the current date. For example, if
you store death date in the database, you can easily calculate how old a pet was when
it died.

You can probably think of other types of information that would be useful in the pet table,
but the ones identified so far are sufficient for now: name, owner, species, sex, birth, and
death.

Use a CREATE TABLE statement to specify the layout of your table:

164 MySQL Technical Reference for Version 4.1.1-alpha

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column
values will vary in length. The lengths of those columns need not all be the same, and
need not be 20. You can pick any length from 1 to 255, whatever seems most reasonable to
you. (If you make a poor choice and it turns out later that you need a longer field, MySQL
provides an ALTER TABLE statement.)
Several types of values can be chosen to represent sex in animal records, such as "m" and
"f", or perhaps "male" and "female". It’s simplest to use the single characters "m" and
"f".
The use of the DATE datatype for the birth and death columns is a fairly obvious choice.
Now that you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:
mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in
your table or what types they have.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements
are useful for this.
Suppose your pet records can be described as shown here. (Observe that MySQL expects
dates in ’YYYY-MM-DD’ format; this may be different from what you are used to.)
name owner species sex birth death
Fluffy Harold cat f 1993-02-04
Claws Gwen cat m 1994-03-17
Buffy Harold dog f 1989-05-13
Fang Benny dog m 1990-08-27

Chapter 3: MySQL Tutorial 165

Bowser Diane dog m 1979-08-31 1995-07-29
Chirpy Gwen bird f 1998-09-11
Whistler Gwen bird 1997-12-09
Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a
text file containing a row for each of your animals, then load the contents of the file into
the table with a single statement.

You could create a text file ‘pet.txt’ containing one record per line, with values separated
by tabs, and given in the order in which the columns were listed in the CREATE TABLE
statement. For missing values (such as unknown sexes or death dates for animals that are
still living), you can use NULL values. To represent these in your text file, use \N (backslash,
capital-N). For example, the record for Whistler the bird would look like this (where the
whitespace between values is a single tab character):

name owner species sex birth death
Whistler Gwen bird \N 1997-12-09 \N

To load the text file ‘pet.txt’ into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE "pet.txt" INTO TABLE pet;

You can specify the column value separator and end of line marker explicitly in the LOAD
DATA statement if you wish, but the defaults are tab and linefeed. These are sufficient for
the statement to read the file ‘pet.txt’ properly.

If the statement fails, it is likely that your MySQL installation does not have local file
capability enabled by default. See Section 4.3.4 [LOAD DATA LOCAL], page 218 for information
on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its
simplest form, you supply values for each column, in the order in which the columns were
listed in the CREATE TABLE statement. Suppose Diane gets a new hamster named Puffball.
You could add a new record using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES (’Puffball’,’Diane’,’hamster’,’f’,’1999-03-30’,NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT,
you can insert NULL directly to represent a missing value. You do not use \N like you do
with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved
to load your records initially using several INSERT statements rather than a single LOAD DATA
statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the
statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

166 MySQL Technical Reference for Version 4.1.1-alpha

what_to_select indicates what you want to see. This can be a list of columns, or * to
indicate “all columns.” which_table indicates the table from which you want to retrieve
data. The WHERE clause is optional. If it’s present, conditions_to_satisfy specifies
conditions that rows must satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:
mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for instance, after
you’ve just loaded it with your initial dataset. For example, you may happen to think
that the birth date for Bowser doesn’t seem quite right. Consulting your original pedigree
papers, you find that the correct birth year should be 1989, not 1979.
There are least a couple of ways to fix this:
• Edit the file ‘pet.txt’ to correct the error, then empty the table and reload it using

DELETE and LOAD DATA:
mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE "pet.txt" INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.
• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = "1989-08-31" WHERE name = "Bowser";

The UPDATE changes only the record in question and does not require you to reload the
table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE
clause from the SELECT statement. But typically you don’t want to see the entire table,
particularly when it becomes large. Instead, you’re usually more interested in answering
a particular question, in which case you specify some constraints on the information you
want. Let’s look at some selection queries in terms of questions about your pets that they
answer.

Chapter 3: MySQL Tutorial 167

You can select only particular rows from your table. For example, if you want to verify the
change that you made to Bowser’s birth date, select Bowser’s record like this:

mysql> SELECT * FROM pet WHERE name = "Bowser";
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded now as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as "bowser",
"BOWSER", etc. The query result will be the same.

You can specify conditions on any column, not just name. For example, if you want to know
which animals were born after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= "1998-1-1";
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = "dog" AND sex = "f";
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = "snake" OR species = "bird";
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, though AND has higher precedence than OR. If you use both
operators, it’s a good idea to use parentheses to indicate explicitly how conditions should
be grouped:

mysql> SELECT * FROM pet WHERE (species = "cat" AND sex = "m")
-> OR (species = "dog" AND sex = "f");

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+

168 MySQL Technical Reference for Version 4.1.1-alpha

| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you don’t want to see entire rows from your table, just name the columns in which you’re
interested, separated by commas. For example, if you want to know when your animals
were born, select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

However, notice that the query simply retrieves the owner field from each record, and some
of them appear more than once. To minimise the output, retrieve each unique output record
just once by adding the keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+

Chapter 3: MySQL Tutorial 169

| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example,
to get birth dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = "dog" OR species = "cat";

+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no
particular order. It’s often easier to examine query output when the rows are sorted in
some meaningful way. To sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally per-
formed in a case-insensitive fashion. This means that the order will be undefined for columns
that are identical except for their case. You can force a case-sensitive sort for a column by
using the BINARY cast: ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending)
order, add the DESC keyword to the name of the column you are sorting by:

170 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal
type in descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

Note that the DESC keyword applies only to the column name immediately preceding it
(birth); it does not affect the species column sort order.

3.3.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for
example, to calculate ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year
part of the current date and the birth date, then subtract one if the current date occurs
earlier in the calendar year than the birth date. The following query shows, for each pet,
the birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))

Chapter 3: MySQL Tutorial 171

-> AS age
-> FROM pet;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five char-
acters that represent the MM-DD (calendar year) part of the date. The part of the expression
that compares the MM-DD values evaluates to 1 or 0, which adjusts the year difference down
a year if CURDATE() occurs earlier in the year than birth. The full expression is somewhat
ungainly, so an alias (age) is used to make the output column label more meaningful.
The query works, but the result could be scanned more easily if the rows were presented
in some order. This can be done by adding an ORDER BY name clause to sort the output by
name:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY name;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:
mysql> SELECT name, birth, CURDATE(),

-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age

172 MySQL Technical Reference for Version 4.1.1-alpha

-> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You
determine which animals these are by checking whether the death value is NULL. Then, for
those with non-NULL values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed
later. See Section 3.3.4.6 [Working with NULL], page 173.
What if you want to know which animals have birthdays next month? For this type of
calculation, year and day are irrelevant; you simply want to extract the month part of the
birth column. MySQL provides several date-part extraction functions, such as YEAR(),
MONTH(), and DAYOFMONTH(). MONTH() is the appropriate function here. To see how it
works, run a simple query that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4

Chapter 3: MySQL Tutorial 173

| Puffball | 1999-03-30 | 3 |
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is easy, too. Suppose the current
month is April. Then the month value is 4 and you look for animals born in May (month
5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December, of course. You don’t just
add one to the month number (12) and look for animals born in month 13, because there
is no such month. Instead, you look for animals born in January (month 1).
You can even write the query so that it works no matter what the current month is. That
way you don’t have to use a particular month number in the query. DATE_ADD() allows you
to add a time interval to a given date. If you add a month to the value of CURDATE(), then
extract the month part with MONTH(), the result produces the month in which to look for
birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(), INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the
current one (after using the modulo function (MOD) to wrap around the month value to 0 if
it is currently 12):

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH returns a number between 1 and 12. And MOD(something,12) returns a
number between 0 and 11. So the addition has to be after the MOD(), otherwise we would
go from November (11) to January (1).

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means missing
value or unknown value and it is treated somewhat differently than other values. To test
for NULL, you cannot use the arithmetic comparison operators such as =, <, or <>. To
demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT
NULL operators instead:

174 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default
truth value from a boolean operation is 1.
This special treatment of NULL is why, in the previous section, it was necessary to determine
which animals are no longer alive using death IS NOT NULL instead of death <> NULL.
Two NULL values are regarded as equal in a GROUP BY.
When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and
last if you do ORDER BY ... DESC.
Note that MySQL 4.0.2 to 4.0.10 incorrectly always sorts NULL values first regardless of the
sort direction.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching
based on extended regular expressions similar to those used by Unix utilities such as vi,
grep, and sed.
SQL pattern matching allows you to use ‘_’ to match any single character and ‘%’ to match
an arbitrary number of characters (including zero characters). In MySQL, SQL patterns
are case-insensitive by default. Some examples are shown here. Note that you do not use =
or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.
To find names beginning with ‘b’:

mysql> SELECT * FROM pet WHERE name LIKE "b%";
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with ‘fy’:
mysql> SELECT * FROM pet WHERE name LIKE "%fy";
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a ‘w’:
mysql> SELECT * FROM pet WHERE name LIKE "%w%";
+----------+-------+---------+------+------------+------------+

Chapter 3: MySQL Tutorial 175

| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use fives instances of the ‘_’ pattern
character:

mysql> SELECT * FROM pet WHERE name LIKE "_____";
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions.
When you test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators
(or RLIKE and NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

• ‘.’ matches any single character.
• A character class ‘[...]’ matches any character within the brackets. For example,

‘[abc]’ matches ‘a’, ‘b’, or ‘c’. To name a range of characters, use a dash. ‘[a-z]’
matches any letter, whereas ‘[0-9]’ matches any digit.

• ‘*’ matches zero or more instances of the thing preceding it. For example, ‘x*’ matches
any number of ‘x’ characters, ‘[0-9]*’ matches any number of digits, and ‘.*’ matches
any number of anything.

• A REGEXP pattern match succeed if the pattern matches anywhere in the value being
tested. (This differs from a LIKE pattern match, which succeeds only if the pattern
matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being
tested, use ‘^’ at the beginning or ‘$’ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously
are rewritten here to use REGEXP.

To find names beginning with ‘b’, use ‘^’ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP "^b";
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

Prior to MySQL Version 3.23.4, REGEXP is case-sensitive, and the previous query will return
no rows. In this case, to match either lowercase or uppercase ‘b’, use this query instead:

176 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT * FROM pet WHERE name REGEXP "^[bB]";

From MySQL 3.23.4 on, if you really want to force a REGEXP comparison to be case-sensitive,
use the BINARY keyword to make one of the strings a binary string. This query will match
only lowercase ‘b’ at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY "^b";

To find names ending with ‘fy’, use ‘$’ to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP "fy$";
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a ‘w’, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP "w";
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not
necessary in the previous query to put a wildcard on either side of the pattern to get it to
match the entire value like it would be if you used an SQL pattern.

To find names containing exactly five characters, use ‘^’ and ‘$’ to match the beginning and
end of the name, and five instances of ‘.’ in between:

mysql> SELECT * FROM pet WHERE name REGEXP "^.....$";
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the ‘{n}’ “repeat-n-times” operator:

mysql> SELECT * FROM pet WHERE name REGEXP "^.{5}$";
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Chapter 3: MySQL Tutorial 177

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data
occur in a table?” For example, you might want to know how many pets you have, or how
many pets each owner has, or you might want to perform various kinds of census operations
on your animals.
Counting the total number of animals you have is the same question as “How many rows
are in the pet table?” because there is one record per pet. COUNT(*) counts the number of
rows, so the query to count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you
want to find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

Note the use of GROUP BY to group together all records for each owner. Without it, all you
get is an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140: Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT() and GROUP BY are useful for characterising your data in various ways. The following
examples show different ways to perform animal census operations.
Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

178 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous
query, when performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE species = "dog" OR species = "cat"
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for known-sex animals:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
| bird | f | 1 |
| cat | f | 1 |

Chapter 3: MySQL Tutorial 179

cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information
about them, such as events in their lives like visits to the vet or when litters are born, you
need another table. What should this table look like? It needs:
• To contain the pet name so you know which animal each event pertains to.
• A date so you know when the event occurred.
• A field to describe the event.
• An event type field, if you want to be able to categorise events.

Given these considerations, the CREATE TABLE statement for the event table might look like
this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it’s easiest to load the initial records by creating a tab-delimited text
file containing the information:
name date type remark
Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male
Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male
Buffy 1994-06-19 litter 3 puppies, 3 female
Chirpy 1999-03-21 vet needed beak straightened
Slim 1997-08-03 vet broken rib
Bowser 1991-10-12 kennel
Fang 1991-10-12 kennel
Fang 1998-08-28 birthday Gave him a new chew toy
Claws 1998-03-17 birthday Gave him a new flea collar
Whistler 1998-12-09 birthday First birthday
Load the records like this:

mysql> LOAD DATA LOCAL INFILE "event.txt" INTO TABLE event;

Based on what you’ve learned from the queries you’ve run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same.
But when is the event table by itself insufficient to answer questions you might ask?
Suppose you want to find out the ages at which each pet had its litters. We saw earlier how
to calculate ages from two dates. The litter date of the mother is in the event table, but
to calculate her age on that date you need her birth date, which is stored in the pet table.
This means the query requires both tables:

mysql> SELECT pet.name,

180 MySQL Technical Reference for Version 4.1.1-alpha

-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet, event
-> WHERE pet.name = event.name AND type = "litter";

+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:
• The FROM clause lists two tables because the query needs to pull information from both

of them.
• When combining (joining) information from multiple tables, you need to specify how

records in one table can be matched to records in the other. This is easy because they
both have a name column. The query uses WHERE clause to match up records in the two
tables based on the name values.

• Because the name column occurs in both tables, you must be specific about which table
you mean when referring to the column. This is done by prepending the table name to
the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a
table to itself, if you want to compare records in a table to other records in that same table.
For example, to find breeding pairs among your pets, you can join the pet table with itself
to produce candidate pairs of males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
-> FROM pet AS p1, pet AS p2
-> WHERE p1.species = p2.species AND p1.sex = "f" AND p2.sex = "m";

+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name in order to refer to the columns and
keep straight which instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables

What if you forget the name of a database or table, or what the structure of a given table is
(for example, what its columns are called)? MySQL addresses this problem through several
statements that provide information about the databases and tables it supports.
You have already seen SHOW DATABASES, which lists the databases managed by the server.
To find out which database is currently selected, use the DATABASE() function:

Chapter 3: MySQL Tutorial 181

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you haven’t selected any database yet, the result is NULL (or the empty string before
MySQL 4.1.1).
To find out what tables the current database contains (for example, when you’re not sure
about the name of a table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| event |
| pet |
+---------------------+

If you want to find out about the structure of a table, the DESCRIBE command is useful; it
displays information about each of a table’s columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the datatype for the column, NULL indicates
whether the column can contain NULL values, Key indicates whether the column is indexed,
and Default specifies the column’s default value.
If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about
them.

3.5 Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter queries and view the results.
You can also run mysql in batch mode. To do this, put the commands you want to run in
a file, then tell mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that
cause problems, you can do this:

182 MySQL Technical Reference for Version 4.1.1-alpha

dos> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might
look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.
If you want the script to continue even if some of the statements in it produce errors, you
should use the --force command-line option.
Why use a script? Here are a few reasons:
• If you run a query repeatedly (say, every day or every week), making it a script allows

you to avoid retyping it each time you execute it.
• You can generate new queries from existing ones that are similar by copying and editing

script files.
• Batch mode can also be useful while you’re developing a query, particularly for multiple-

line commands or multiple-statement sequences of commands. If you make a mistake,
you don’t have to retype everything. Just edit your script to correct the error, then
tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a
pager rather than watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:
shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so they can run the commands, too.
• Some situations do not allow for interactive use, for example, when you run a query

from a cron job. In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode
than when you use it interactively. For example, the output of SELECT DISTINCT species
FROM pet looks like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:
species
bird
cat
dog
hamster

Chapter 3: MySQL Tutorial 183

snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to
the output the commands that are executed, use mysql -vvv.
You can also use scripts from the mysql prompt by using the source command:

mysql> source filename;

3.6 Examples of Common Queries

Here are examples of how to solve some common problems with MySQL.
Some of the examples use the table shop to hold the price of each article (item number)
for certain traders (dealers). Supposing that each trader has a single fixed price per article,
then (article, dealer) is a primary key for the records.
Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database name test).
You can create and populate the example table with these statements:

mysql> CREATE TABLE shop (
-> article INT(4) UNSIGNED ZEROFILL DEFAULT ’0000’ NOT NULL,
-> dealer CHAR(20) DEFAULT ’’ NOT NULL,
-> price DOUBLE(16,2) DEFAULT ’0.00’ NOT NULL,
-> PRIMARY KEY(article, dealer));

mysql> INSERT INTO shop VALUES
-> (1,’A’,3.45),(1,’B’,3.99),(2,’A’,10.99),(3,’B’,1.45),(3,’C’,1.69),
-> (3,’D’,1.25),(4,’D’,19.95);

After issuing the statements, the table should have the following contents:
mysql> SELECT * FROM shop;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What’s the highest item number?”
SELECT MAX(article) AS article FROM shop;

184 MySQL Technical Reference for Version 4.1.1-alpha

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

“Find number, dealer, and price of the most expensive article.”

In SQL-99 (and MySQL Version 4.1) this is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

In MySQL versions prior to 4.1, just do it in two steps:

1. Get the maximum price value from the table with a SELECT statement.
mysql> SELECT MAX(price) FROM shop;
+------------+
| MAX(price) |
+------------+
| 19.95 |
+------------+

2. Using the value 19.95 shown by the previous query to be the maximum article price,
write a query to locate and display the corresponding record:

mysql> SELECT article, dealer, price
-> FROM shop
-> WHERE price=19.95;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to sort all rows descending by price and only get the first row using the
MySQL-specific LIMIT clause:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

NOTE: If there were several most expensive articles, each with a price of 19.95, the LIMIT
solution would show only one of them!

3.6.3 Maximum of Column per Group

“What’s the highest price per article?”

Chapter 3: MySQL Tutorial 185

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain
Field

“For each article, find the dealer(s) with the most expensive price.”
In SQL-99 (and MySQL Version 4.1 or greater), the problem can be solved with a subquery
like this:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)

FROM shop s2
WHERE s1.article = s2.article);

In MySQL versions prior to 4.1, it’s best do it in several steps:
1. Get the list of (article,maxprice) pairs.
2. For each article, get the corresponding rows that have the stored maximum price.

This can easily be done with a temporary table and a join:
CREATE TEMPORARY TABLE tmp (

article INT(4) UNSIGNED ZEROFILL DEFAULT ’0000’ NOT NULL,
price DOUBLE(16,2) DEFAULT ’0.00’ NOT NULL);

LOCK TABLES shop READ;

INSERT INTO tmp SELECT article, MAX(price) FROM shop GROUP BY article;

SELECT shop.article, dealer, shop.price FROM shop, tmp
WHERE shop.article=tmp.article AND shop.price=tmp.price;

UNLOCK TABLES;

DROP TABLE tmp;

If you don’t use a TEMPORARY table, you must also lock the tmp table.
“Can it be done with a single query?”
Yes, but only by using a quite inefficient trick called the “MAX-CONCAT trick”:

186 MySQL Technical Reference for Version 4.1.1-alpha

SELECT article,
SUBSTRING(MAX(CONCAT(LPAD(price,6,’0’),dealer)), 7) AS dealer,

0.00+LEFT(MAX(CONCAT(LPAD(price,6,’0’),dealer)), 6) AS price
FROM shop
GROUP BY article;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The last example can, of course, be made a bit more efficient by doing the splitting of the
concatenated column in the client.

3.6.5 Using User Variables

You can use MySQL user variables to remember results without having to store them in
temporary variables in the client. See Section 6.1.4 [Variables], page 446.
For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

3.6.6 Using Foreign Keys

In MySQL 3.23.44 and up, InnoDB tables support checking of foreign key constraints. See
Section 7.5 [InnoDB], page 605. See also Section 1.7.4.5 [ANSI diff Foreign Keys], page 40.
You don’t actually need foreign keys to join 2 tables. For table types other than InnoDB),
the only things MySQL currently doesn’t do are 1) CHECK to make sure that the keys you
use really exist in the table or tables you’re referencing and 2) automatically delete rows
from a table with a foreign key definition. Using your keys to join tables will work just fine:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

);

Chapter 3: MySQL Tutorial 187

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t-shirt’, ’polo’, ’dress’) NOT NULL,
colour ENUM(’red’, ’blue’, ’orange’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO person VALUES (NULL, ’Antonio Paz’);

INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’blue’, LAST_INSERT_ID());

INSERT INTO person VALUES (NULL, ’Lilliana Angelovska’);

INSERT INTO shirt VALUES
(NULL, ’dress’, ’orange’, LAST_INSERT_ID()),
(NULL, ’polo’, ’red’, LAST_INSERT_ID()),
(NULL, ’dress’, ’blue’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’white’, LAST_INSERT_ID());

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | colour | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

188 MySQL Technical Reference for Version 4.1.1-alpha

SELECT s.* FROM person p, shirt s
WHERE p.name LIKE ’Lilliana%’
AND s.owner = p.id
AND s.colour <> ’white’;

+----+-------+--------+-------+
| id | style | colour | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

3.6.7 Searching on Two Keys

MySQL doesn’t yet optimise when you search on two different keys combined with OR
(searching on one key with different OR parts is optimised quite well):

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = ’1’ OR field2_index = ’1’

The reason is that we haven’t yet had time to come up with an efficient way to handle this
in the general case. (The AND handling is, in comparison, now completely general and works
very well.)

In MySQL 4.0 and up, you can solve this problem efficiently by using a UNION that combines
the output of two separate SELECT statements. See Section 6.4.1.2 [UNION], page 537. Each
SELECT searches only one key and can be optimised:

SELECT field1_index, field2_index FROM test_table WHERE field1_index = ’1’
UNION
SELECT field1_index, field2_index FROM test_table WHERE field2_index = ’1’;

Prior to MySQL 4.0, you can achieve the same effect by using a TEMPORARY table and
separate SELECT statements. This type of optimisation is also very good if you are using
very complicated queries where the SQL server does the optimisations in the wrong order.

CREATE TEMPORARY TABLE tmp
SELECT field1_index, field2_index FROM test_table WHERE field1_index = ’1’;
INSERT INTO tmp
SELECT field1_index, field2_index FROM test_table WHERE field2_index = ’1’;
SELECT * from tmp;
DROP TABLE tmp;

The above way to solve this query is in effect a UNION of two queries.

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the
number of days per month a user has visited a web page.

Chapter 3: MySQL Tutorial 189

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page.
To determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
GROUP BY year,month;

Which returns:
+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month
combination, with automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:
CREATE TABLE animals (

id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES ("dog"),("cat"),("penguin"),
("lax"),("whale"),("ostrich");

SELECT * FROM animals;

Which returns:
+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. Note: For a multiple-row insert, LAST_
INSERT_ID()/mysql_insert_id() will actually return the AUTO_INCREMENT key from the
first of the inserted rows. This allows multiple-row inserts to be reproduced correctly on
other servers in a replication setup.

190 MySQL Technical Reference for Version 4.1.1-alpha

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a
multiple-column index. In this case, the generated value for the AUTO_INCREMENT column
is calculated as MAX(auto_increment_column)+1) WHERE prefix=given-prefix. This is
useful when you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM(’fish’,’mammal’,’bird’) NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)
);

INSERT INTO animals (grp,name) VALUES("mammal","dog"),("mammal","cat"),
("bird","penguin"),("fish","lax"),("mammal","whale"),
("bird","ostrich");

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column
index), AUTO_INCREMENT values will be reused if you delete the row with the biggest AUTO_
INCREMENT value in any group. This happens even for MyISAM tables, for which AUTO_
INCREMENT values normally are not reused.)

3.7 Queries from the Twin Project

At Analytikerna and Lentus, we have been doing the systems and field work for a big
research project. This project is a collaboration between the Institute of Environmental
Medicine at Karolinska Institutet Stockholm and the Section on Clinical Research in Aging
and Psychology at the University of Southern California.

The project involves a screening part where all twins in Sweden older than 65 years are
interviewed by telephone. Twins who meet certain criteria are passed on to the next stage.
In this latter stage, twins who want to participate are visited by a doctor/nurse team.
Some of the examinations include physical and neuropsychological examination, laboratory
testing, neuroimaging, psychological status assessment, and family history collection. In
addition, data are collected on medical and environmental risk factors.

More information about Twin studies can be found at: http://www.mep.ki.se/twinreg/index_
en.html

Chapter 3: MySQL Tutorial 191

The latter part of the project is administered with a web interface written using Perl and
MySQL.

Each night all data from the interviews is moved into a MySQL database.

3.7.1 Find All Non-distributed Twins

The following query is used to determine who goes into the second part of the project:

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, " ", p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = "Aborted", "A", " ") AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
/* For Twin 1 */
LEFT JOIN twin_data AS td ON tp.id = td.id

AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id

AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id

AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id

AND tp.tvab = l.tvab
/* For Twin 2 */
LEFT JOIN twin_data AS td2 ON p2.id = td2.id

AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id

AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id

192 MySQL Technical Reference for Version 4.1.1-alpha

AND p2.tvab = h2.tvab
LEFT JOIN lentus AS l2 ON p2.id = l2.id

AND p2.tvab = l2.tvab,
person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
/* p1 gets main twin and p2 gets his/her twin. */
/* ptvab is a field inverted from tvab */
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
/* Just the sceening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) */
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))

AND
(
/* Twin is suspect */
(td.future_contact = ’Yes’ AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = ’Yes’ AND td.suspect = 1

AND id.suspect = 1) OR
/* No twin - Informant is Blessed */
(ISNULL(td.suspect) AND id.suspect = 1

AND id.future_contact = ’Yes’) OR
/* Twin broken off - Informant is Blessed */
(td.participation = ’Aborted’
AND id.suspect = 1 AND id.future_contact = ’Yes’) OR

/* Twin broken off - No inform - Have partner */
(td.participation = ’Aborted’ AND ISNULL(id.suspect)

AND p2.dead = 0))
AND
l.event = ’Finished’
/* Get at area code */
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = ’Refused’ OR h.status = ’Aborted’
OR h.status = ’Died’ OR h.status = ’Other’)

ORDER BY
tvid;

Chapter 3: MySQL Tutorial 193

Some explanations:

CONCAT(p1.id, p1.tvab) + 0 AS tvid
We want to sort on the concatenated id and tvab in numerical order. Adding
0 to the result causes MySQL to treat the result as a number.

column id This identifies a pair of twins. It is a key in all tables.

column tvab
This identifies a twin in a pair. It has a value of 1 or 2.

column ptvab
This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists
to save typing and to make it easier for MySQL to optimise the query.

This query demonstrates, among other things, how to do lookups on a table from the same
table with a join (p1 and p2). In the example, this is used to check whether a twin’s partner
died before the age of 65. If so, the row is not returned.
All of the above exist in all tables with twin-related information. We have a key on both
id,tvab (all tables), and id,ptvab (person_data) to make queries faster.
On our production machine (A 200MHz UltraSPARC), this query returns about 150-200
rows and takes less than one second.
The current number of records in the tables used above:
Table Rows
person_data 71074
lentus 5291
twin_project 5286
twin_data 2012
informant_data 663
harmony 381
postal_groups 100

3.7.2 Show a Table of Twin Pair Status

Each interview ends with a status code called event. The query shown here is used to
display a table over all twin pairs combined by event. This indicates in how many pairs
both twins are finished, in how many pairs one twin is finished and the other refused, and
so on.

SELECT
t1.event,
t2.event,
COUNT(*)

FROM
lentus AS t1,
lentus AS t2,
twin_project AS tp

WHERE
/* We are looking at one pair at a time */

194 MySQL Technical Reference for Version 4.1.1-alpha

t1.id = tp.id
AND t1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the sceening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab=’1’ AND t2.tvab=’2’

GROUP BY
t1.event, t2.event;

3.8 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also
let you write your log files into a MySQL table.
You can change the Apache logging format to be easily readable by MySQL by putting the
following into the Apache configuration file:

LogFormat \
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:
LOAD DATA INFILE ’/local/access_log’ INTO TABLE table_name
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’ ESCAPED BY ’\\’

The named table should be created to have columns that correspond to those that the
LogFormat line writes to the log file.

Chapter 4: Database Administration 195

4 Database Administration

4.1 Configuring MySQL

4.1.1 mysqld Command-line Options

In most cases you should manage mysqld options through option files. See Section 4.1.2
[Option files], page 203.
mysqld and mysqld.server read options from the mysqld and server groups. mysqld_
safe read options from the mysqld, server, mysqld_safe and safe_mysqld groups. An
embedded MySQL server usually reads options from the server, embedded and xxxxx_
SERVER, where xxxxx is the name of the application.
mysqld accepts a lot of command-line options. Here follows some of the most common ones.
For a full list execute mysqld --help. Options used for replication are listed in a separate
section, see Section 4.11.6 [Replication Options], page 369.

--ansi Use SQL-99 syntax instead of MySQL syntax. See Section 1.7.2 [ANSI mode],
page 33.

-b, --basedir=path
Path to installation directory. All paths are usually resolved relative to this.

--big-tables
Allow big result sets by saving all temporary sets on file. It solves most ’ta-
ble full’ errors, but also slows down the queries where in-memory tables would
suffice. Since Version 3.23.2, MySQL is able to solve it automatically by using
memory for small temporary tables and switching to disk tables where neces-
sary.

--bind-address=IP
IP address to bind to.

--console
Write the error log messages to stderr/stdout even if --log-error is specified.
On Windows, mysqld will not close the console screen if this option is used.

--character-sets-dir=path
Directory where character sets are. See Section 4.7.1 [Character sets], page 306.

--chroot=path
Put mysqld daemon in chroot environment at startup. Recommended security
measure since MySQL 4.0 (MySQL 3.23 is not able to provide 100% closed ch-
root jail). It somewhat limits LOAD DATA INFILE and SELECT ... INTO OUTFILE
though.

--core-file
Write a core file if mysqld dies. For some systems you must also specify --
core-file-size to mysqld_safe. See Section 4.8.2 [mysqld_safe], page 312.
Note that on some systems, like Solaris, you will not get a core file if you are
also using the --user option.

196 MySQL Technical Reference for Version 4.1.1-alpha

-h, --datadir=path
Path to the database root.

--debug[...]=
If MySQL is configured with --with-debug, you can use this option to get
a trace file of what mysqld is doing. See Section E.1.2 [Making trace files],
page 1005.

--default-character-set=charset
Set the default character set. See Section 4.7.1 [Character sets], page 306.

--default-table-type=type
Set the default table type for tables. See Chapter 7 [Table types], page 593.

--delay-key-write[= OFF | ON | ALL]
How MyISAM DELAYED KEYS should be used. See Section 5.5.2 [Server param-
eters], page 427.

--delay-key-write-for-all-tables; In MySQL 4.0.3 you should use
--delay-key-write=ALL instead.

Don’t flush key buffers between writes for any MyISAM table. See Section 5.5.2
[Server parameters], page 427.

--des-key-file=filename
Read the default keys used by DES_ENCRYPT() and DES_DECRYPT() from this
file.

--enable-external-locking (was --enable-locking)
Enable system locking. Note that if you use this option on a system on which
lockd does not fully work (as on Linux), you will easily get mysqld to deadlock.

--enable-named-pipe
Enable support for named pipes (only on NT/Win2000/XP).

-T, --exit-info
This is a bit mask of different flags one can use for debugging the mysqld server;
one should not use this option if one doesn’t know exactly what it does!

--flush Flush all changes to disk after each SQL command. Normally MySQL only does
a write of all changes to disk after each SQL command and lets the operating
system handle the syncing to disk. See Section A.4.1 [Crashing], page 857.

-?, --help
Display short help and exit.

--init-file=file
Read SQL commands from this file at startup.

-L, --language=...
Client error messages in given language. May be given as a full path. See
Section 4.7.2 [Languages], page 307.

-l, --log[=file]
Log connections and queries to file. See Section 4.10.2 [Query log], page 350.

Chapter 4: Database Administration 197

--log-bin=[file]
Log all queries that change data to the file. Used for backup and replication.
See Section 4.10.4 [Binary log], page 351.

--log-bin-index[=file]
Index file for binary log file names. See Section 4.10.4 [Binary log], page 351.

--log-error[=file]
Log errors and startup messages to this file. See Section 4.10.1 [Error log],
page 350.

--log-isam[=file]
Log all ISAM/MyISAM changes to file (only used when debugging
ISAM/MyISAM).

--log-long-format
Log some extra information to the logfiles (update log, binary update log, and
slow queries log, whatever log has been activated). For example, username and
timestamp are logged for queries. If you are using --log-slow-queries and
--log-long-format, then also queries that are not using indexes are logged to
the slow query log. Note that --log-long-format is deprecated as of MySQL
version 4.1, when --log-short-format was introduced (the long log format is
the default setting since version 4.1). Also note that starting with MySQL 4.1
the --log-queries-not-using-indexes option is available for the purpose of
logging queries that do not use indexes to the slow queries log.

--log-queries-not-using-indexes
If you are using this option with --log-slow-queries, then also queries that
are not using indexes are logged to the slow query log. This option is available
as of MySQL 4.1. See Section 4.10.5 [Slow query log], page 354.

--log-short-format
Log less information to the logfiles (update log, binary update log, and slow
queries log, whatever log has been activated). For example, username and
timestamp are not logged for queries. This options was introduced in MySQL
4.1.

--log-slow-queries[=file]
Log all queries that have taken more than long_query_time seconds to execute
to file. Note that the default for the amount of information logged has changed
in MySQL 4.1. See the --log-long-format and --log-long-format options
for details. See Section 4.10.5 [Slow query log], page 354.

--log-update[=file]
Log updates to file.# where # is a unique number if not given. See Sec-
tion 4.10.3 [Update log], page 351. The update log is deprecated and will be
removed in MySQL 5.0; you should use the binary log instead (--log-bin).
See Section 4.10.4 [Binary log], page 351. Starting from version 5.0, using
--log-update will just turn on the binlog instead.

--low-priority-updates
Table-modifying operations (INSERT/DELETE/UPDATE) will have lower priority
than selects. It can also be done via {INSERT | REPLACE | UPDATE | DELETE}

198 MySQL Technical Reference for Version 4.1.1-alpha

LOW_PRIORITY ... to lower the priority of only one query, or by SET LOW_
PRIORITY_UPDATES=1 to change the priority in one thread. See Section 5.3.2
[Table locking], page 419.

--memlock
Lock the mysqld process in memory. This works only if your system supports
the mlockall() system call (like Solaris). This may help if you have a problem
where the operating system is causing mysqld to swap on disk. Note that use
of this option requires that you run the server as root, which is normally not
a good idea for security reasons.

--myisam-recover [=option[,option...]]]
Option is any combination of DEFAULT, BACKUP, FORCE or QUICK. You can also
set this explicitly to "" if you want to disable this option. If this option is
used, mysqld will on open check if the table is marked as crashed or if the table
wasn’t closed properly. (The last option only works if you are running with
--skip-external-locking.) If this is the case mysqld will run check on the
table. If the table was corrupted, mysqld will attempt to repair it.
The following options affects how the repair works.
Option Description
DEFAULT The same as not giving any option to --myisam-recover.
BACKUP If the data table was changed during recover,

save a backup of the ‘table_name.MYD’ datafile as
‘table_name-datetime.BAK’.

FORCE Run recover even if we will lose more than one row from the
.MYD file.

QUICK Don’t check the rows in the table if there aren’t any delete
blocks.

Before a table is automatically repaired, MySQL will add a note about this in
the error log. If you want to be able to recover from most things without user
intervention, you should use the options BACKUP,FORCE. This will force a repair
of a table even if some rows would be deleted, but it will keep the old datafile
as a backup so that you can later examine what happened.

--new From version 4.0.12, the --new option can be used to make the server behave
as 4.1 in certain aspects, easing a 4.0 to 4.1 upgrade:
• TIMESTAMP is returned as a string with the format ’YYYY-MM-DD

HH:MM:SS’. See Section 6.2 [Column types], page 453.

--pid-file=path
Path to pid file used by mysqld_safe.

-P, --port=...
Port number to listen for TCP/IP connections.

-o, --old-protocol
Use the 3.20 protocol for compatibility with some very old clients. See Sec-
tion 2.5.5 [Upgrading-from-3.20], page 118.

--one-thread
Only use one thread (for debugging under Linux). See Section E.1 [Debugging
server], page 1004.

Chapter 4: Database Administration 199

--open-files-limit=
To change the number of file descriptors available to mysqld. If this is not set
or set to 0, then mysqld will use this value to reserve file descriptors to use with
setrlimit(). If this value is 0 then mysqld will reserve max_connections*5 or
max_connections + table_cache*2 (whichever is larger) number of files. You
should try increasing this if mysqld gives you the error ’Too many open files’.

-O, --set-variable var=option
Give a variable a value. --help lists variables. You can find a full description for
all variables in the SHOW VARIABLES section in this manual. See Section 4.6.8.4
[SHOW VARIABLES], page 290. The tuning server parameters section includes
information of how to optimise these. Please note that --set-variable is dep-
recated since MySQL 4.0, just use --var=option on its own. See Section 5.5.2
[Server parameters], page 427.

In MySQL 4.0.2 one can set a variable directly with --variable-name=option
and set-variable is no longer needed in option files.

If you want to restrict the maximum value a startup option can be set to with
SET, you can define this by using the --maximum-variable-name command line
option. See Section 5.5.6 [SET OPTION], page 432.

Note that when setting a variable to a value, MySQL may automatically correct
it to stay within a given range and also adjusts the value a little to fix for the
used algorithm.

--safe-mode
Skip some optimise stages.

--safe-show-database
With this option, the SHOW DATABASES command returns only those databases
for which the user has some kind of privilege. From version 4.0.2 this option
is deprecated and doesn’t do anything (the option is enabled by default) as we
now have the SHOW DATABASES privilege. See Section 4.4.1 [GRANT], page 239.

--safe-user-create
If this is enabled, a user can’t create new users with the GRANT command, if
the user doesn’t have INSERT privilege to the mysql.user table or any column
in this table.

--skip-bdb
Disable usage of BDB tables. This will save memory and may speed up some
things.

--skip-concurrent-insert
Turn off the ability to select and insert at the same time on MyISAM tables.
(This is only to be used if you think you have found a bug in this feature.)

--skip-delay-key-write
In MySQL 4.0.3 you should use –delay-key-write=OFF instead. Ignore the
DELAY_KEY_WRITE option for all tables. See Section 5.5.2 [Server parameters],
page 427.

200 MySQL Technical Reference for Version 4.1.1-alpha

--skip-grant-tables
This option causes the server not to use the privilege system at all. This gives
everyone full access to all databases! (You can tell a running server to start
using the grant tables again by executing mysqladmin flush-privileges or
mysqladmin reload.)

--skip-host-cache
Never use host name cache for faster name-ip resolution, but query DNS server
on every connect instead. See Section 5.5.5 [DNS], page 432.

--skip-innodb
Disable usage of Innodb tables. This will save memory and disk space and
speed up some things.

--skip-external-locking (was --skip-locking)
Don’t use system locking. To use isamchk or myisamchk you must shut down
the server. See Section 1.2.3 [Stability], page 8. Note that in MySQL Version
3.23 you can use REPAIR and CHECK to repair/check MyISAM tables.

--skip-name-resolve
Hostnames are not resolved. All Host column values in the grant tables must
be IP numbers or localhost. See Section 5.5.5 [DNS], page 432.

--skip-networking
Don’t listen for TCP/IP connections at all. All interaction with mysqld must
be made via named pipes or Unix sockets. This option is highly recommended
for systems where only local requests are allowed. See Section 5.5.5 [DNS],
page 432.

--skip-new
Don’t use new, possibly wrong routines.

--skip-symlink
Deprecated option in 4.0.13; use --skip-symbolic-links instead.

--symbolic-links, --skip-symbolic-links
Enable or disable symbolic link support. This option has different effects on
Windows and Unix.
On Windows, enabling symbolic links allows you to establish a symbolic link to
a database directory by creating a directory.sym file that contains the path
to the real directory. See Section 2.6.1.2 [Windows symbolic links], page 122.
On Unix, enabling symbolic links means that you can link a MyISAM index file
or datafile to another directory with the INDEX DIRECTORY or DATA DIRECTORY
options of the CREATE TABLE statement. If you delete or rename the table, the
files that its symbolic links point to also will be deleted or renamed.

--skip-safemalloc
If MySQL is configured with --with-debug=full, all programs check memory
for overruns for every memory allocation and memory freeing operations. This
checking is very slow, so for the server you can avoid it when you don’t need it
by using the --skip-safemalloc option.

Chapter 4: Database Administration 201

--skip-show-database
Don’t allow the SHOW DATABASES command, unless the user has the SHOW
DATABASES privilege.

--skip-stack-trace
Don’t write stack traces. This option is useful when you are running mysqld
under a debugger. On some systems, you also must use this option to get a
core file. See Section E.1 [Debugging server], page 1004.

--skip-thread-priority
Disable using thread priorities for faster response time.

--socket=path
On Unix, the socket file to use for local connections (default
‘/tmp/mysql.sock’). On Windows, the pipe name to use for local
connections that use a named pipe (default MySQL).

--sql-mode=value[,value[,value...]]
The option values can be any combination of: REAL_AS_FLOAT,
PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, ONLY_FULL_GROUP_BY,
NO_UNSIGNED_SUBTRACTION, NO_AUTO_VALUE_ON_ZERO, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS, NO_KEY_OPTIONS, NO_DIR_IN_CREATE, MYSQL323,
MYSQL40, DB2, MAXDB, MSSQL, ORACLE, POSTGRESQL, or ANSI. The value also
can be empty (--sql-mode="") if you want to reset it.
NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Nor-
mally, you generate the next sequence number for the column by inserting
either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO suppresses this behaviour for
0 so that only NULL generates the next sequence number. This mode can be
useful if 0 has been stored in a table’s AUTO_INCREMENT column (this is not rec-
ommended, by the way). For example, if you dump the table with mysqldump
and then reload it, normally MySQL will generate new sequence numbers when
it encounters the 0 values, resulting in a table with different contents than the
one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO before reloading the
dump file solves this problem. (As of MySQL 4.1.1, when this option value
became available, mysqldump automatically includes dump output to enable
NO_AUTO_VALUE_ON_ZERO.)
Several of the option values are used for compatibility with other servers. If
specified, they cause the server to omit from the output of SHOW CREATE TABLE
those parts of the statement that are not understood by earlier versions of
MySQL or other database servers. Using these option values results in CREATE
TABLE statements that are more portable for use with other servers:
• The NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_DIR_IN_CREATE, and NO_

KEY_OPTIONS values cause omission of table options, or options pertaining
to column or index definitions.

• The values MYSQL323 and MYSQL40 are for compatibility with MySQL 3.23
and MySQL 4.0.

• The values used for compatibility with other servers are DB2, MAXDB, MSSQL,
ORACLE, and POSTGRESQL.

202 MySQL Technical Reference for Version 4.1.1-alpha

These options also affect the output of mysqldump, because that program uses
SHOW CREATE TABLE to obtain the table-creation statements that it includes in
its own output.
Several of the option values have a complex effect because they are shorthand
for a group or set of values. For example, you can tell the server to run in ANSI
mode by using the --sql-mode=ANSI (or --ansi) option, which is equivalent
to specifying both of the following command-line options:

--sql-mode=REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY
--transaction-isolation=SERIALIZABLE

Note that specifying ANSI mode in this way also has the effect of setting the
transaction isolation level. For more information about running the server in
ANSI mode, see Section 1.7.2 [ANSI mode], page 33.
Other “group” values are DB2, MAXDB, MSSQL, ORACLE, and POSTGRESQL. Specify-
ing any of them turns on the PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, and NO_KEY_OPTIONS values.
The --sql-mode option was added in MySQL 3.23.41. The NO_UNSIGNED_
SUBTRACTION value was added in 4.0.0. NO_DIR_IN_CREATE was added in
4.0.15. NO_AUTO_VALUE_ON_ZERO, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS,
NO_KEY_OPTIONS, MYSQL323, MYSQL40, DB2, MAXDB, MSSQL, ORACLE,
POSTGRESQL, and ANSI were added in 4.1.1.

--temp-pool
Using this option will cause most temporary files created by the server to use a
small set of names, rather than a unique name for each new file. This is to work
around a problem in the Linux kernel dealing with creating many new files with
different names. With the old behaviour, Linux seems to “leak” memory, as it’s
being allocated to the directory entry cache rather than to the disk cache.

--transaction-isolation={ READ-UNCOMMITTED | READ-COMMITTED | REPEATABLE-READ
| SERIALIZABLE }

Sets the default transaction isolation level. See Section 6.7.6 [SET
TRANSACTION], page 583.

-t, --tmpdir=path
Path of the directory to use for creating temporary files. It may be useful if your
default /tmp directory resides on a partition that is too small to hold temporary
tables. Starting from MySQL 4.1, this option accepts several paths that are
used in round-robin fashion. Paths should be separated by colon characters
(‘:’) on Unix and semicolon characters (‘;’) on Windows. It is possible to set
tmpdir to point to a memory-based filesystem, except if the MySQL server is
a slave. If it is a slave, it needs some of its temporary files (for replication
of temporary tables or of LOAD DATA INFILE) to survive a machine’s reboot,
so a memory-based tmpdir which is cleared when the machine reboots is not
suitable; a disk-based tmpdir is necessary.

-u, --user={user_name | user_id}
Run the mysqld server as the user having the name user_name or numeric user
ID user_id. (“User” in this context refers to a system login account, not a
MySQL user listed in the grant tables.)

Chapter 4: Database Administration 203

This option is mandatory when starting mysqld as root. The server will change
its user ID during its startup sequence, causing it to run as that particular user
rather than as root. See Section 4.3.2 [Security], page 215.
Starting from MySQL 3.23.56 and 4.0.12: To avoid a possible security hole
where a user adds a --user=root option to some ‘my.cnf’ file (thus causing
the server to run as root), mysqld uses only the first --user option speci-
fied and produces a warning if there are multiple --user options. Options in
‘/etc/my.cnf’ and ‘datadir/my.cnf’ are processed before command-line op-
tions, so it is recommended that you put a --user option in ‘/etc/my.cnf’ and
specify a value other than root. The option in ‘/etc/my.cnf’ will be found
before any other --user options, which ensures that the server runs as a user
other than root, and that a warning results if any other --user option is found.

-V, --version
Display version information and exit.

-W, --log-warnings
Print out warnings like Aborted connection... to the ‘.err’ file. Enabling
this option is recommended, for example, if you use replication (you will get
more information about what is happening, such as messages about network fail-
ures and reconnections). See Section A.2.10 [Communication errors], page 851.
This option used to be called --warnings.

You can change most values for a running server with the SET command. See Section 5.5.6
[SET OPTION], page 432.

4.1.2 ‘my.cnf’ Option Files

MySQL can, since Version 3.22, read default startup options for the server and for clients
from option files.
On Windows, MySQL reads default options from the following files:
Filename Purpose
windows-directory\my.ini Global options
C:\my.cnf Global options
windows-directory is the location of your Windows directory.
On Unix, MySQL reads default options from the following files:
Filename Purpose
/etc/my.cnf Global options
DATADIR/my.cnf Server-specific options
defaults-extra-file The file specified with --defaults-extra-

file=path
~/.my.cnf User-specific options
DATADIR is the MySQL data directory (typically ‘/usr/local/mysql/data’ for a binary
installation or ‘/usr/local/var’ for a source installation). Note that this is the directory
that was specified at configuration time, not the one specified with --datadir when mysqld
starts up! (--datadir has no effect on where the server looks for option files, because the
server looks for files before it processes any command-line arguments.)

204 MySQL Technical Reference for Version 4.1.1-alpha

Note that on Windows you should specify all paths in option files with ‘/’ instead of ‘\’. If
you use ‘\’, you need to specify it twice, because ‘\’ is the escape character in MySQL.
MySQL tries to read option files in the order listed above. If multiple option files exist, an
option specified in a file read later takes precedence over the same option specified in a file
read earlier. Options specified on the command-line take precedence over options specified
in any option file. Some options can be specified using environment variables. Options
specified on the command-line or in option files take precedence over environment variable
values. See Appendix F [Environment variables], page 1016.
The following programs support option files: mysql, mysqladmin, mysqld, mysqld_safe,
mysql.server, mysqldump, mysqlimport, mysqlshow, mysqlcheck, myisamchk, and
myisampack.
Since Version 4.0.2, you can use the loose prefix for command-line options (or options in
my.cnf). If an option is prefixed by loose, the program reading it will not exit with an
error if an option is unknown, but will rather only issue a warning:

shell> mysql --loose-no-such-option

Any long option that may be given on the command-line when running a MySQL program
can be given in an option file as well (without the leading double dash). Run the program
with the --help option to get a list of available options.
An option file can contain lines of the following forms:

#comment Comment lines start with ‘#’ or ‘;’. Comment can start from a middle of a line
too. Empty lines are ignored.

[group] group is the name of the program or group for which you want to set options.
After a group line, any option or set-variable lines apply to the named group
until the end of the option file or another group line is given.

option This is equivalent to --option on the command-line.

option=value
This is equivalent to --option=value on the command-line. Please note that
you must quote an argument using double quotes, if the argument for an option
contains a comment character.

set-variable = variable=value
This is equivalent to --set-variable variable=value on the command-line.
Please note that --set-variable is deprecated since MySQL 4.0; as of that
version, program variable names can be used as option names. On the command
line, just use --variable=value. In an option file, use variable=value.

The [client] group allows you to specify options that apply to all MySQL clients (not
mysqld). This is the perfect group to use to specify the password that you use to connect
to the server. (But make sure the option file is readable and writable only by yourself.)
If you want to create options that should only be read by one specific mysqld server version
you can do this with [mysqld-4.0], [mysqld-4.1] etc:

[mysqld-4.0]
new

The above new option will only be used with MySQL server versions 4.0.x.

Chapter 4: Database Administration 205

Note that for options and values, all leading and trailing blanks are automatically deleted.
You may use the escape sequences ‘\b’, ‘\t’, ‘\n’, ‘\r’, ‘\\’, and ‘\s’ in your value string
(‘\s’ == blank).

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
set-variable = key_buffer_size=16M
set-variable = max_allowed_packet=1M

[mysqldump]
quick

Here is typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
set-variable = connect_timeout=2

[mysqlhotcopy]
interactive-timeout

If you have a source distribution, you will find sample configuration files named
‘my-xxxx.cnf’ in the ‘support-files’ directory. If you have a binary distribution,
look in the ‘DIR/support-files’ directory, where DIR is the pathname to the MySQL
installation directory (typically ‘C:\mysql’ or ‘/usr/local/mysql’). Currently there are
sample configuration files for small, medium, large, and very large systems. You can copy
‘my-xxxx.cnf’ to your home directory (rename the copy to ‘.my.cnf’) to experiment with
this.

All MySQL programs that support option files support the following options:

Option Description
--no-defaults Don’t read any option files.
--print-defaults Print the program name and all options that it

will get.
--defaults-file=full-path-to-
default-file

Only use the given configuration file.

--defaults-extra-file=full-path-
to-default-file

Read this configuration file after the global con-
figuration file but before the user configuration
file.

206 MySQL Technical Reference for Version 4.1.1-alpha

Note that the options just shown must be first on the command line to work, with the
exception that --print-defaults may be used immediately after --defaults-file or
--defaults-extra-file.
Note for developers: Option file handling is implemented simply by processing all matching
options (that is, options in the appropriate group) before any command-line arguments.
This works nicely for programs that use the last instance of an option that is specified
multiple times. If you have an old program that handles multiply specified options this way
but doesn’t read option files, you need add only two lines to give it that capability. Check
the source code of any of the standard MySQL clients to see how to do this.
In shell scripts, you can use the my_print_defaults command to parse the option files.
The following example shows the output that my_print_defaults might produce when
asked to show the options found in the [client] and [mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

4.2 Running Multiple MySQL Servers on the Same Machine

In some cases you might want to run multiple mysqld servers on the same machine. You
might want to test a new MySQL release while leaving your existing production setup
undisturbed. Or you may want to give different users access to different mysqld servers
that they manage themselves. (For example, you might be an Internet service provider that
wants to provide independent MySQL installations for different customers.)
To run multiple servers on a single machine, each server must have unique values for sev-
eral operating parameters. These can be set on the command line or in option files. See
Section 4.1.1 [Command-line options], page 195, and Section 4.1.2 [Option files], page 203.
At least the following options must be different for each server:
• --port=port_num

• --socket=path

• --shared-memory-base-name=name (Windows only; new in MySQL 4.1)
• --pid-file=path (Unix only)

--port controls the port number for TCP/IP connections. --socket controls the socket file
path on Unix and the name of the named pipe on Windows. (It’s necessary to specify distinct
pipe names on Windows only for those servers that support named pipe connections.) --
shared-memory-base-name designates the shared memory name used by a Windows server
to allow clients to connect via shared memory. --pid-file indicates the name of the file
in which a Unix server writes its process ID.
If you use the following options, they must be different for each server:
• --log=path

• --log-bin=path

• --log-update=path

Chapter 4: Database Administration 207

• --log-error=path

• --log-isam=path

• --bdb-logdir=path

If you want more performance, you can also specify the following options differently for
each server, to spread load between several physical disks:
• --tmpdir=path

• --bdb-tmpdir=path

Having different temporary directories like above is also recommended because it will be
easier for you in case you want to know to which MySQL server a certain temporary file
belongs.
Generally, each server should also use a different data directory, which is specified using the
--datadir=path option.
Warning: Normally you should never have two servers that update data in the same
databases! This may lead to unpleasant surprises if your operating system doesn’t sup-
port fault-free system locking! If (despite this warning) you run multiple servers using the
same data directory and they have logging enabled, you must use the appropriate options
to specify log file names that are unique to each server. Otherwise, the servers will try to
log to the same files.
This warning against sharing a data directory among servers also applies in an NFS envi-
ronment. Allowing multiple MySQL servers to access a common data directory over NFS
is a bad idea!
• The primary problem is that NFS will become the speed bottleneck. It is not meant

for such use.
• Another risk with NFS is that you will have to come up with a way to make sure

that two or more servers do not interfere with each other. Usually NFS file locking
is handled by the lockd daemon, but at the moment there is no platform that will
perform locking 100% reliably in every situation.

Make it easy for yourself: Forget about sharing a data directory among servers over NFS.
A better solution is to have one computer that contains several CPUs and use an operating
system that handles threads efficiently.
If you have multiple MySQL installations in different locations, normally you can specify
the base installation directory for each server with the --basedir=path option to cause
each server to use a different data directory, log files, and PID file. (The defaults for all
these values are determined relative to the base directory.) In that case, the only other
options you need to specify are the --socket and --port options. For example, suppose
you install different versions of MySQL using ‘.tar’ file binary distributions. These will
install in different locations, so you can start the server for each installation using the
command ./bin/mysqld_safe under its corresponding base directory. mysqld_safe will
determine the proper --basedir option to pass to mysqld, and you need specify only the
--socket and --port options to mysqld_safe.
As discussed in the following sections, it is possible to start additional servers by setting
environment variables or by specifying appropriate command-line options. However, if you
need to run multiple servers on a more permanent basis, it will be more convenient to use
option files to specify for each server those option values that must be unique to it.

208 MySQL Technical Reference for Version 4.1.1-alpha

4.2.1 Running Multiple Servers on Windows

You can run multiple servers on Windows by starting them manually from the command
line, each with appropriate operating parameters. On Windows NT-based systems, you also
have the option of installing several servers as Windows services and running them that way.
General instructions for running MySQL servers from the command line or as services are
given in Section 2.6.1 [Windows], page 122. This section describes how to make sure you
start each server with different values for those startup options that must be unique per
server, such as the data directory. (These options are described in Section 4.2 [Multiple
servers], page 206.)

4.2.1.1 Starting Multiple Windows Servers at the Command Line

To start multiple servers manually from the command line, you can specify the appropriate
options on the command line or in an option file. It’s more convenient to place the options
in an option file, but it’s necessary to make sure that each server gets its own set of options.
To do this, create an option file for each server and tell the server the filename with a
--defaults-file option when you run it.
Suppose you want to run mysqld on port 3307 with a data directory of ‘C:\mydata1’, and
mysqld-max on port 3308 with a data directory of ‘C:\mydata2’. To accomplish this, create
two option files. For example, create one file named ‘C:\my-opts1.cnf’ that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named ‘C:\my-opts2.cnf’ that looks like this:
[mysqld]
datadir = C:/mydata2
port = 3308

Then start each server with its own option file:
shell> mysqld --defaults-file=C:\my-opts1.cnf
shell> mysqld-max --defaults-file=C:\my-opts2.cnf

(On NT, the servers will start in the foreground, so you’ll need to issue those two commands
in separate console windows.)
To shut down the servers, you must connect to the appropriate port number:

shell> mysqladmin --port=3307 shutdown
shell> mysqladmin --port=3308 shutdown

Servers configured as just described will allow clients to connect over TCP/IP. If you
also want to allow named pipe connections, use the mysqld-nt or mysqld-max-nt servers
and specify options that enable the named pipe and specify its name. (Each server
that supports named pipe connections must use a unique pipe name.) For example, the
‘C:\my-opts1.cnf’ file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Chapter 4: Database Administration 209

enable-named-pipe
socket = mypipe1

Then start the server this way:
shell> mysqld-nt --defaults-file=C:\my-opts1.cnf

‘C:\my-opts2.cnf’ would be modified similarly for use by the second server.

4.2.1.2 Starting Multiple Windows Servers as Services

On NT-based systems, a MySQL server can be run as a Windows service. The procedures for
installing, controlling, and removing a single MySQL service are described in Section 2.1.1.7
[NT start], page 61.
As of MySQL 4.0.2, you can install multiple servers as services. In this case, you must make
sure that each server uses a different service name in addition to all the other parameters
that must be unique per server.
For the following instructions, assume that you want to run the mysqld-nt server from two
different versions of MySQL that are installed at ‘C:\mysql-4.0.8’ and ‘C:\mysql-4.0.17’,
respectively. (This might be the case if you’re running 4.0.8 as your production server, but
want to test 4.0.17 before upgrading to it.)
The following principles are relevant when installing a MySQL service with the --install
option:
• If you specify no service name, the server uses the default service name of MySQL and

the server reads options from the [mysqld] group in the standard option files.
• If you specify a service name after the --install option, the server ignores the

[mysqld] option group and instead reads options from the group that has the same
name as the service. The server reads options from the standard option files.

• If you specify a --defaults-file option after the service name, the server ignores the
standard option files and reads options only from the [mysqld] group of the named
file.

These principles also apply if you install a server using the --install-manual option.
Based on the preceding information, you have several ways to set up multiple services. The
following instructions describe some examples. Before trying any of them, be sure you shut
down and remove any existing MySQL services first.
• Specify the options for all services in one of the standard option files. To do this, use

a different service name for each server. Suppose you want to run the 4.0.8 mysqld-nt
using the service name of mysqld1 and the 4.0.17 mysqld-nt using the service name
mysqld2. In this case, you can use the [mysqld1] group for 4.0.8 and the [mysqld2]
group for 4.0.17. For example, you can set up ‘C:\my.cnf’ like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-4.0.8
port = 3307
enable-named-pipe
socket = mypipe1

210 MySQL Technical Reference for Version 4.1.1-alpha

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-4.0.17
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server pathnames to ensure that Windows
registers the correct executable program for each service:

shell> C:\mysql-4.0.8\bin\mysqld-nt --install mysqld1
shell> C:\mysql-4.0.17\bin\mysqld-nt --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate
service names:

shell> NET START mysqld1
shell> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate
service names:

shell> NET STOP mysqld1
shell> NET STOP mysqld2

Note: Before MySQL 4.0.17, only a server installed using the default service name
(MySQL) or one installed explicitly with a service name of mysqld will read the [mysqld]
group in the standard option files. As of 4.0.17, all servers read the [mysqld group
if they read the standard option files, even if they are installed using another service
name. This allows you to use the [mysqld] group for options that should be used by
all MySQL services, and an option group named after each service for use by the server
installed with that service name.

• Specify options for each server in separate files and use --defaults-file when you
install the services to tell each server what file to use. In this case, each file should list
options using a [mysqld] group.
With this approach, to specify options for the 4.0.8 mysqld-nt, create a file
‘C:\my-opts1.cnf’ that looks like this:

[mysqld]
basedir = C:/mysql-4.0.8
port = 3307
enable-named-pipe
socket = mypipe1

For the 4.0.17 mysqld-nt, create a file ‘C:\my-opts2.cnf’ that looks like this:
[mysqld]
basedir = C:/mysql-4.0.17
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):
shell> C:\mysql-4.0.8\bin\mysqld-nt --install mysqld1

Chapter 4: Database Administration 211

--defaults-file=C:\my-opts1.cnf
shell> C:\mysql-4.0.17\bin\mysqld-nt --install mysqld2

--defaults-file=C:\my-opts2.cnf

To use a --defaults-file option when you install a MySQL server as a service, you
must precede the option with the service name.
After installing the services, start and stop them the same way as in the preceding
example.

To remove multiple services, use mysqld --remove for each one, specifying a service name
following the --remove option if the service to remove has a name different than the default.

4.2.2 Running Multiple Servers on Unix

The easiest way is to run multiple servers on Unix is to compile them with different TCP/IP
ports and socket files so that each one is listening on different network interfaces. Also, by
compiling in different base directories for each installation, that automatically results in
different compiled-in data directory, log file, and PID file locations for each of your servers.
Assume an existing server is configured for the default port number and socket file. To
configure a new server to have different operating parameters, use a configure command
something like this:

shell> ./configure --with-tcp-port=port_number \
--with-unix-socket-path=file_name \
--prefix=/usr/local/mysql-4.0.17

Here port_number and file_name should be different from the default port number and
socket file pathname, and the --prefix value should specify an installation directory dif-
ferent than the one under which the existing MySQL installation is located.
If you have a MySQL server listening on a given port number, you can use the following com-
mand to find out what operating parameters it is using for several important configurable
variables, including the base directory and socket name:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to
use when configuring an additional server.
Note that if you specify “localhost” as a hostname, mysqladmin will default to using
a Unix socket connection rather than TCP/IP. In MySQL 4.1, you can explicitly specify
the connection protocol to use by using the --protocol={TCP | SOCKET | PIPE | MEMORY}
option.
You don’t have to compile a new MySQL server just to start with a different socket file and
TCP/IP port number. It is also possible to specify those values at runtime. One way to do
so is by using command-line options:

shell> /path/to/mysqld_safe --socket=file_name --port=port_number

To use another database directory for the second server, pass a --datadir=path option to
mysqld_safe.
Another way to achieve a similar effect is to use environment variables to set the socket
name and port number:

212 MySQL Technical Reference for Version 4.1.1-alpha

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> scripts/mysql_install_db
shell> bin/mysqld_safe &

This is a quick way of starting a second server to use for testing. The nice thing about this
method is that the environment variable settings will apply to any client programs that
you invoke from the above shell. Thus, connections for those clients automatically will be
directed to the second server!
Appendix F [Environment variables], page 1016 includes a list of other environment variables
you can use to affect mysqld.
For automatic server execution, your startup script that is executed at boot time should
execute the following command once for each server with an appropriate option file path
for each command:

mysqld_safe --defaults-file=path-to-option-file

Each option file should contain option values specific to a given server.
On Unix, the mysqld_multi script is another way to start multiple servers. See Section 4.8.3
[mysqld_multi], page 313.

4.2.3 Using Client Programs in a Multiple-Server Environment

When you want to connect with a client program to a MySQL server that is listening to
different network interfaces than those compiled into your client, you can use one of the
following methods:
• Start the client with --host=host_name --port=port_number to connect via TCP/IP

to a remote host, or with --host=localhost --socket=file_name to connect to a
local host via a Unix socket or a Windows named pipe.

• As of MySQL 4.1, start the client with --protocol=tcp to connect via TCP/IP, -
-protocol=socket to connect via a Unix socket, --protocol=pipe to connect via
a named pipe, or --protocol=memory to connect via shared memory. For TCP/IP
connections, you may also need to specify --host and --port options. For the other
types of connections, you may need to specify a --socket option to specify a socket
or named pipe name, or a --shared-memory-base-name option to specify the shared
memory name.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to
point to the Unix socket and TCP/IP port before you start your clients. If you nor-
mally use a specific socket or port, you can place commands to set these environment
variables in your ‘.login’ file so that they apply each time you log in. See Appendix F
[Environment variables], page 1016.

• Specify the default socket and TCP/IP port in the [client] group of an option file.
Foe example, you can use ‘C:\my.cnf’ on Windows, or the ‘.my.cnf’ file in your home
directory on Unix. See Section 4.1.2 [Option files], page 203.

• In a C program, you can specify the port or socket arguments in the mysql_real_
connect() call. You can also have the program read option files by calling mysql_
options(). See Section 11.1.3 [C API functions], page 722.

Chapter 4: Database Administration 213

• If you are using the Perl DBD::mysql module, you can read the options from the MySQL
option files. For example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
. "mysql_read_default_file=/usr/local/mysql/data/my.cnf";

$dbh = DBI->connect($dsn, $user, $password);

See Section 11.5.2 [Perl DBI Class], page 815.

4.3 General Security Issues and the MySQL Access
Privilege System

MySQL has an advanced but non-standard security/privilege system. This section describes
how it works.

4.3.1 General Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to
avoid the most common security mistakes.

In discussing security, we emphasise the necessity of fully protecting the entire server host
(not simply the MySQL server) against all types of applicable attacks: eavesdropping,
altering, playback, and denial of service. We do not cover all aspects of availability and
fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries,
and other operations that a user may attempt to perform. There is also some support
for SSL-encrypted connections between MySQL clients and servers. Many of the concepts
discussed here are not specific to MySQL at all; the same general ideas apply to almost all
applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except the mysql root user) access to the user table in
the mysql database! This is critical. The encrypted password is the real password in
MySQL. Anyone who knows the password which is listed in the user table and has
access to the host listed for the account can easily log in as that user.

• Learn the MySQL access privilege system. The GRANT and REVOKE commands are used
for controlling access to MySQL. Do not grant any more privileges than necessary.
Never grant privileges to all hosts.

Checklist:

− Try mysql -u root. If you are able to connect successfully to the server without
being asked for a password, you have problems. Anyone can connect to your
MySQL server as the MySQL root user with full privileges! Review the MySQL
installation instructions, paying particular attention to the item about setting a
root password.

− Use the command SHOW GRANTS and check to see who has access to what. Remove
those privileges that are not necessary using the REVOKE command.

214 MySQL Technical Reference for Version 4.1.1-alpha

• Do not keep any plain-text passwords in your database. When your computer becomes
compromised, the intruder can take the full list of passwords and use them. Instead
use MD5(), SHA1() or another one-way hashing function.

• Do not choose passwords from dictionaries. There are special programs to break them.
Even passwords like “xfish98” are very bad. Much better is “duag98” which contains
the same word “fish” but typed one key to the left on a standard QWERTY keyboard.
Another method is to use “Mhall” which is taken from the first characters of each word
in the sentence “Mary had a little lamb.” This is easy to remember and type, but
difficult to guess for someone who does not know it.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any
software. Put MySQL behind the firewall or in a demilitarised zone (DMZ).
Checklist:
− Try to scan your ports from the Internet using a tool such as nmap. MySQL

uses port 3306 by default. This port should be inaccessible from untrusted hosts.
Another simple way to check whether or not your MySQL port is open is to try
the following command from some remote machine, where server_host is the
hostname of your MySQL server:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should
be closed on your firewall or router, unless you really have a good reason to keep
it open. If telnet just hangs or the connection is refused, everything is OK; the
port is blocked.

• Do not trust any data entered by your users. They can try to trick your code by entering
special or escaped character sequences in web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something
like “; DROP DATABASE mysql;”. This is an extreme example, but large security leaks
and data loss may occur as a result of hackers using similar techniques, if you do not
prepare for them.
Also remember to check numeric data. A common mistake is to protect only strings.
Sometimes people think that if a database contains only publicly available data that it
need not be protected. This is incorrect. At least denial-of-service type attacks can be
performed on such databases. The simplest way to protect from this type of attack is to
use apostrophes around the numeric constants: SELECT * FROM table WHERE ID=’234’
rather than SELECT * FROM table WHERE ID=234. MySQL automatically converts this
string to a number and strips all non-numeric symbols from it.
Checklist:
− All web applications:

• Try to enter ‘’’ and ‘"’ in all your web forms. If you get any kind of MySQL
error, investigate the problem right away.

• Try to modify any dynamic URLs by adding %22 (‘"’), %23 (‘#’), and %27 (‘’’)
in the URL.

• Try to modify datatypes in dynamic URLs from numeric ones to character
ones containing characters from previous examples. Your application should
be safe against this and similar attacks.

Chapter 4: Database Administration 215

• Try to enter characters, spaces, and special symbols instead of numbers in
numeric fields. Your application should remove them before passing them
to MySQL or your application should generate an error. Passing unchecked
values to MySQL is very dangerous!

• Check data sizes before passing them to MySQL.
• Consider having your application connect to the database using a different

user name than the one you use for administrative purposes. Do not give
your applications any more access privileges than they need.

− Users of PHP:
• Check out the addslashes() function. As of PHP 4.0.3, a mysql_escape_

string() function is available that is based on the function of the same name
in the MySQL C API.

− Users of MySQL C API:
• Check out the mysql_real_escape_string() API call.

− Users of MySQL++:
• Check out the escape and quote modifiers for query streams.

− Users of Perl DBI:
• Check out the quote() method or use placeholders.

− Users of Java JDBC:
• Use a PreparedStatement object and placeholders.

• Do not transmit plain (unencrypted) data over the Internet. These data are accessible
to everyone who has the time and ability to intercept it and use it for their own
purposes. Instead, use an encrypted protocol such as SSL or SSH. MySQL supports
internal SSL connections as of Version 4.0.0. SSH port-forwarding can be used to create
an encrypted (and compressed) tunnel for the communication.

• Learn to use the tcpdump and strings utilities. For most cases, you can check whether
MySQL data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

(This works under Linux and should work with small modifications under other sys-
tems.) Warning: If you do not see data this doesn’t always actually mean that it is
encrypted. If you need high security, you should consult with a security expert.

4.3.2 How to Make MySQL Secure Against Crackers

When you connect to a MySQL server, you normally should use a password. The password
is not transmitted in clear text over the connection, however the encryption algorithm is
not very strong, and with some effort a clever attacker can crack the password if he is able
to sniff the traffic between the client and the server. If the connection between the client
and the server goes through an untrusted network, you should use an SSH tunnel to encrypt
the communication.
All other information is transferred as text that can be read by anyone who is able to
watch the connection. If you are concerned about this, you can use the compressed
protocol (in MySQL Version 3.22 and above) to make things much harder. To make

216 MySQL Technical Reference for Version 4.1.1-alpha

things even more secure you should use ssh. You can find an Open Source ssh client at
http://www.openssh.org/, and a commercial ssh client at http://www.ssh.com/. With
this, you can get an encrypted TCP/IP connection between a MySQL server and a MySQL
client.
If you are using MySQL 4.0, you can also use internal OpenSSL support. See Section 4.4.10
[Secure connections], page 252.
To make a MySQL system secure, you should strongly consider the following suggestions:
• Use passwords for all MySQL users. Remember that anyone can log in as any other

person as simply as mysql -u other_user db_name if other_user has no password. It
is common behaviour with client/server applications that the client may specify any
user name. You can change the password of all users by editing the mysql_install_db
script before you run it, or only the password for the MySQL root user like this:

shell> mysql -u root mysql
mysql> UPDATE user SET Password=PASSWORD(’new_password’)

-> WHERE user=’root’;
mysql> FLUSH PRIVILEGES;

• Don’t run the MySQL daemon as the Unix root user. This is very dangerous, because
any user with the FILE privilege will be able to create files as root (for example,
~root/.bashrc). To prevent this, mysqld will refuse to run as root unless it is specified
directly using a --user=root option.
mysqld can be run as an ordinary unprivileged user instead. You can also create a new
Unix user mysql to make everything even more secure. If you run mysqld as another
Unix user, you don’t need to change the root user name in the user table, because
MySQL user names have nothing to do with Unix user names. To start mysqld as
another Unix user, add a user line that specifies the user name to the [mysqld] group
of the ‘/etc/my.cnf’ option file or the ‘my.cnf’ option file in the server’s data directory.
For example:

[mysqld]
user=mysql

This will cause the server to start as the designated user whether you start it manu-
ally or by using mysqld_safe or mysql.server. For more details, see Section A.3.2
[Changing MySQL user], page 856.

• Don’t support symlinks to tables (this can be disabled with the --skip-symlink op-
tion). This is especially important if you run mysqld as root as anyone that has write
access to the mysqld data directories could then delete any file in the system! See
Section 5.6.1.2 [Symbolic links to tables], page 439.

• Check that the Unix user that mysqld runs as is the only user with read/write privileges
in the database directories.

• Don’t give the PROCESS privilege to all users. The output of mysqladmin processlist
shows the text of the currently executing queries, so any user who is allowed to ex-
ecute that command might be able to see if another user issues an UPDATE user SET
password=PASSWORD(’not_secure’) query.
mysqld reserves an extra connection for users who have the PROCESS privilege, so that
a MySQL root user can log in and check things even if all normal connections are in
use.

Chapter 4: Database Administration 217

• Don’t give the FILE privilege to all users. Any user that has this privilege can write a
file anywhere in the filesystem with the privileges of the mysqld daemon! To make this
a bit safer, all files generated with SELECT ... INTO OUTFILE are writeable by everyone,
and you cannot overwrite existing files.
The FILE privilege may also be used to read any world readable file that is accessible
to the Unix user that the server runs as. One can also read any file to the current
database (which the user need some privilege for). This could be abused, for example,
by using LOAD DATA to load ‘/etc/passwd’ into a table, which can then be read with
SELECT.

• If you don’t trust your DNS, you should use IP numbers instead of hostnames in the
grant tables. In any case, you should be very careful about creating grant table entries
using hostname values that contain wildcards!

• If you want to restrict the number of connections for a single user, you can do this by
setting the max_user_connections variable in mysqld.

4.3.3 Startup Options for mysqld Concerning Security

The following mysqld options affect security:

--local-infile[=(0|1)]
If one uses --local-infile=0 then one can’t use LOAD DATA LOCAL INFILE.

--safe-show-database
With this option, the SHOW DATABASES command returns only those databases
for which the user has some kind of privilege. From version 4.0.2 this option
is deprecated and doesn’t do anything (the option is enabled by default) as we
now have the SHOW DATABASES privilege. See Section 4.4.1 [GRANT], page 239.

--safe-user-create
If this is enabled, an user can’t create new users with the GRANT command, if
the user doesn’t have the INSERT privilege for the mysql.user table. If you
want to give a user access to just create new users with those privileges that
the user has right to grant, you should give the user the following privilege:

mysql> GRANT INSERT(user) ON mysql.user TO ’user’@’hostname’;

This will ensure that the user can’t change any privilege columns directly, but
has to use the GRANT command to give privileges to other users.

--skip-grant-tables
This option causes the server not to use the privilege system at all. This gives
everyone full access to all databases! (You can tell a running server to start
using the grant tables again by executing mysqladmin flush-privileges or
mysqladmin reload.)

--skip-name-resolve
Hostnames are not resolved. All Host column values in the grant tables must
be IP numbers or localhost.

--skip-networking
Don’t allow TCP/IP connections over the network. All connections to mysqld
must be made via Unix sockets. This option is unsuitable when using a MySQL

218 MySQL Technical Reference for Version 4.1.1-alpha

version prior to 3.23.27 with the MIT-pthreads package, because Unix sockets
were not supported by MIT-pthreads at that time.

--skip-show-database
Don’t allow SHOW DATABASES command, unless the user has the SHOW DATABASES
privilege. From version 4.0.2 you should no longer need this option, since access
can now be granted specifically with the SHOW DATABASES privilege.

4.3.4 Security issues with LOAD DATA LOCAL

In MySQL 3.23.49 and MySQL 4.0.2, we added some new options to deal with possible
security issues when it comes to LOAD DATA LOCAL.

There are two possible problems with supporting this command:

As the reading of the file is initiated from the server, one could theoretically create a patched
MySQL server that could read any file on the client machine that the current user has read
access to, when the client issues a query against the table.

In a web environment where the clients are connecting from a web server, a user could use
LOAD DATA LOCAL to read any files that the web server process has read access to (assuming
a user could run any command against the SQL server).

There are two separate fixes for this:

If you don’t configure MySQL with --enable-local-infile, then LOAD DATA LOCAL will
be disabled by all clients, unless one calls mysql_options(... MYSQL_OPT_LOCAL_INFILE,
0) in the client. See Section 11.1.3.39 [mysql_options()], page 747.

For the mysql command-line client, LOAD DATA LOCAL can be enabled by specifying the
option --local-infile[=1], or disabled with --local-infile=0.

By default, all MySQL clients and libraries are compiled with --enable-local-infile, to
be compatible with MySQL 3.23.48 and before.

One can disable all LOAD DATA LOCAL commands in the MySQL server by starting mysqld
with --local-infile=0.

In the case that LOAD DATA LOCAL INFILE is disabled in the server or the client, you will get
the error message (1148):

The used command is not allowed with this MySQL version

4.3.5 What the Privilege System Does

The primary function of the MySQL privilege system is to authenticate a user connecting
from a given host, and to associate that user with privileges on a database such as SELECT,
INSERT, UPDATE and DELETE.

Additional functionality includes the ability to have an anonymous user and to grant priv-
ileges for MySQL-specific functions such as LOAD DATA INFILE and administrative opera-
tions.

Chapter 4: Database Administration 219

4.3.6 How the Privilege System Works

The MySQL privilege system ensures that all users may do exactly the things that they
are supposed to be allowed to do. When you connect to a MySQL server, your identity
is determined by the host from which you connect and the user name you specify. The
system grants privileges according to your identity and what you want to do.

MySQL considers both your hostname and user name in identifying you because there is
little reason to assume that a given user name belongs to the same person everywhere on
the Internet. For example, the user joe who connects from office.com need not be the
same person as the user joe who connects from elsewhere.com. MySQL handles this by
allowing you to distinguish users on different hosts that happen to have the same name:
you can grant joe one set of privileges for connections from office.com, and a different
set of privileges for connections from elsewhere.com.

MySQL access control involves two stages:

• Stage 1: The server checks whether you are even allowed to connect.
• Stage 2: Assuming you can connect, the server checks each request you issue to see

whether you have sufficient privileges to perform it. For example, if you try to select
rows from a table in a database or drop a table from the database, the server makes
sure you have the SELECT privilege for the table or the DROP privilege for the database.

Note that if your privileges are changed (either by yourself or someone else) while you are
connected, those changes will not necessarily take effect with your next query or queries.
See Section 4.4.3 [Privilege changes], page 244 for details.

The server uses the user, db, and host tables in the mysql database at both stages of access
control. The fields in these grant tables are shown here:

Table name user db host

Scope fields Host Host Host
User Db Db
Password User

Privilege fields Select_priv Select_priv Select_priv
Insert_priv Insert_priv Insert_priv
Update_priv Update_priv Update_priv
Delete_priv Delete_priv Delete_priv
Index_priv Index_priv Index_priv
Alter_priv Alter_priv Alter_priv
Create_priv Create_priv Create_priv
Drop_priv Drop_priv Drop_priv
Grant_priv Grant_priv Grant_priv

References_
priv

References_
priv

References_
priv

Reload_priv
Shutdown_
priv
Process_priv
File_priv

220 MySQL Technical Reference for Version 4.1.1-alpha

Show_db_priv
Super_priv
Create_tmp_
table_priv

Create_tmp_
table_priv

Create_tmp_
table_priv

Lock_tables_
priv

Lock_tables_
priv

Lock_tables_
priv

Execute_priv
Repl_slave_
priv
Repl_client_
priv
ssl_type
ssl_cypher
x509_issuer
x509_cubject
max_
questions
max_updates
max_
connections

For the second stage of access control (request verification), the server may, if the request
involves tables, additionally consult the tables_priv and columns_priv tables. The fields
in these tables are shown here:

Table name tables priv columns priv

Scope fields Host Host
Db Db
User User
Table_name Table_name

Column_name

Privilege fields Table_priv Column_priv
Column_priv

Other fields Timestamp Timestamp
Grantor

Each grant table contains scope fields and privilege fields.

Scope fields determine the scope of each entry in the tables, that is, the context in
which the entry applies. For example, a user table entry with Host and User values
of ’thomas.loc.gov’ and ’bob’ would be used for authenticating connections made
to the server by bob from the host thomas.loc.gov. Similarly, a db table entry with
Host, User, and Db fields of ’thomas.loc.gov’, ’bob’ and ’reports’ would be used
when bob connects from the host thomas.loc.gov to access the reports database.
The tables_priv and columns_priv tables contain scope fields indicating tables or
table/column combinations to which each entry applies.

For access-checking purposes, comparisons of Host values are case-insensitive. User,
Password, Db, and Table_name values are case-sensitive. Column_name values are
case-insensitive in MySQL Version 3.22.12 or later.

Chapter 4: Database Administration 221

Privilege fields indicate the privileges granted by a table entry, that is, what operations
can be performed. The server combines the information in the various grant tables to form
a complete description of a user’s privileges. The rules used to do this are described in
Section 4.3.10 [Request access], page 228.

Scope fields are strings, declared as shown here; the default value for each is the empty
string:

Field name Type Notes
Host CHAR(60)
User CHAR(16)
Password CHAR(16)
Db CHAR(64) (CHAR(60) for the tables_priv and columns_priv

tables)
Table_name CHAR(60)
Column_name CHAR(60)

In the user, db and host tables, all privilege fields are declared as ENUM(’N’,’Y’)—each
can have a value of ’N’ or ’Y’, and the default value is ’N’.

In the tables_priv and columns_priv tables, the privilege fields are declared as SET fields:

Table name Field name Possible set elements
tables_priv Table_

priv
’Select’, ’Insert’, ’Update’, ’Delete’,
’Create’, ’Drop’, ’Grant’, ’References’,
’Index’, ’Alter’

tables_priv Column_
priv

’Select’, ’Insert’, ’Update’,
’References’

columns_
priv

Column_
priv

’Select’, ’Insert’, ’Update’,
’References’

Briefly, the server uses the grant tables like this:

• The user table scope fields determine whether to allow or reject incoming connections.
For allowed connections, any privileges granted in the user table indicate the user’s
global (superuser) privileges. These privileges apply to all databases on the server.

• The db and host tables are used together:

− The db table scope fields determine which users can access which databases from
which hosts. The privilege fields determine which operations are allowed.

− The host table is used as an extension of the db table when you want a given db
table entry to apply to several hosts. For example, if you want a user to be able to
use a database from several hosts in your network, leave the Host value empty in
the user’s db table entry, then populate the host table with an entry for each of
those hosts. This mechanism is described more detail in Section 4.3.10 [Request
access], page 228.

• The tables_priv and columns_priv tables are similar to the db table, but are more
fine-grained: they apply at the table and column levels rather than at the database
level.

Note that administrative privileges (RELOAD, SHUTDOWN, etc.) are specified only in the user
table. This is because administrative operations are operations on the server itself and are
not database-specific, so there is no reason to list such privileges in the other grant tables.

222 MySQL Technical Reference for Version 4.1.1-alpha

In fact, only the user table need be consulted to determine whether you can perform an
administrative operation.
The FILE privilege is specified only in the user table, too. It is not an administrative
privilege as such, but your ability to read or write files on the server host is independent of
the database you are accessing.
The mysqld server reads the contents of the grant tables once, when it starts up. Changes
to the grant tables take effect as indicated in Section 4.4.3 [Privilege changes], page 244.
When you modify the contents of the grant tables, it is a good idea to make sure that
your changes set up privileges the way you want. For help in diagnosing problems, see
Section 4.3.12 [Access denied], page 235. For advice on security issues, see Section 4.3.2
[Security], page 215.
A useful diagnostic tool is the mysqlaccess script, which Yves Carlier has provided for the
MySQL distribution. Invoke mysqlaccess with the --help option to find out how it works.
Note that mysqlaccess checks access using only the user, db and host tables. It does not
check table- or column-level privileges.

4.3.7 Privileges Provided by MySQL

Information about user privileges is stored in the user, db, host, tables_priv, and
columns_priv tables in the mysql database (that is, in the database named mysql). The
MySQL server reads the contents of these tables when it starts up and under the circum-
stances indicated in Section 4.4.3 [Privilege changes], page 244.
The names used in this manual to refer to the privileges provided by MySQL version 4.0.2
are shown here, along with the table column name associated with each privilege in the
grant tables and the context in which the privilege applies. Further information about the
meaning of each privilege may be found at Section 4.4.1 [GRANT], page 239.
Privilege Column Context
ALTER Alter_priv tables
DELETE Delete_priv tables
INDEX Index_priv tables
INSERT Insert_priv tables
SELECT Select_priv tables
UPDATE Update_priv tables
CREATE Create_priv databases, tables, or indexes
DROP Drop_priv databases or tables
GRANT Grant_priv databases or tables
REFERENCES References_

priv
databases or tables

CREATE
TEMPORARY
TABLES

Create_tmp_
table_priv

server administration

EXECUTE Execute_priv server administration
FILE File_priv file access on server
LOCK TABLES Lock_tables_

priv
server administration

PROCESS Process_priv server administration

Chapter 4: Database Administration 223

RELOAD Reload_priv server administration
REPLICATION
CLIENT

Repl_client_
priv

server administration

REPLICATION
SLAVE

Repl_slave_
priv

server administration

SHOW
DATABASES

Show_db_priv server administration

SHUTDOWN Shutdown_
priv

server administration

SUPER Super_priv server administration
The SELECT, INSERT, UPDATE, and DELETE privileges allow you to perform operations on
rows in existing tables in a database.
SELECT statements require the SELECT privilege only if they actually retrieve rows from a
table. You can execute certain SELECT statements even without permission to access any
of the databases on the server. For example, you could use the mysql client as a simple
calculator:

mysql> SELECT 1+1;
mysql> SELECT PI()*2;

The INDEX privilege allows you to create or drop (remove) indexes.
The ALTER privilege allows you to use ALTER TABLE.
The CREATE and DROP privileges allow you to create new databases and tables, or to drop
(remove) existing databases and tables.
Note that if you grant the DROP privilege for the mysql database to a user, that user can
drop the database in which the MySQL access privileges are stored!
The GRANT privilege allows you to give to other users those privileges you yourself possess.
The FILE privilege gives you permission to read and write files on the server using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements. Any user to whom this privilege
is granted can read any world readable file accessable by the MySQL server and create a
new world readable file in any directory where the MySQL server can write. The user can
also read any file in the current database directory. The user can however not change any
existing file.
The remaining privileges are used for administrative operations, which are performed us-
ing the mysqladmin program. The table here shows which mysqladmin commands each
administrative privilege allows you to execute:
Privilege Commands permitted to privilege holders
RELOAD reload, refresh, flush-privileges, flush-hosts, flush-

logs, and flush-tables
SHUTDOWN shutdown
PROCESS processlist
SUPER kill

The reload command tells the server to re-read the grant tables. The refresh command
flushes all tables and opens and closes the log files. flush-privileges is a synonym for
reload. The other flush-* commands perform functions similar to refresh but are more
limited in scope, and may be preferable in some instances. For example, if you want to
flush just the log files, flush-logs is a better choice than refresh.

224 MySQL Technical Reference for Version 4.1.1-alpha

The shutdown command shuts down the server.
The processlist command displays information about the threads executing within the
server. The kill command kills server threads. You can always display or kill your own
threads, but you need the PROCESS privilege to display and SUPER privilege to kill threads
initiated by other users. See Section 4.6.7 [KILL], page 284.
It is a good idea in general to grant privileges only to those users who need them, but you
should exercise particular caution in granting certain privileges:
• The GRANT privilege allows users to give away their privileges to other users. Two users

with different privileges and with the GRANT privilege are able to combine privileges.
• The ALTER privilege may be used to subvert the privilege system by renaming tables.
• The FILE privilege can be abused to read any world-readable file on the server or any

file in the current database directory on the server into a database table, the contents
of which can then be accessed using SELECT.

• The SHUTDOWN privilege can be abused to deny service to other users entirely, by ter-
minating the server.

• The PROCESS privilege can be used to view the plain text of currently executing queries,
including queries that set or change passwords.

• Privileges on the mysql database can be used to change passwords and other access
privilege information. (Passwords are stored encrypted, so a malicious user cannot
simply read them to know the plain text password.) If they can access the mysql.user
password column, they can use it to log into the MySQL server for the given user.
(With sufficient privileges, the same user can replace a password with a different one.)

There are some things that you cannot do with the MySQL privilege system:
• You cannot explicitly specify that a given user should be denied access. That is, you

cannot explicitly match a user and then refuse the connection.
• You cannot specify that a user has privileges to create or drop tables in a database but

not to create or drop the database itself.

4.3.8 Connecting to the MySQL Server

MySQL client programs generally require that you specify connection parameters when you
want to access a MySQL server: the host you want to connect to, your user name, and your
password. For example, the mysql client can be started like this (optional arguments are
enclosed between ‘[’ and ‘]’):

shell> mysql [-h host_name] [-u user_name] [-pyour_pass]

Alternate forms of the -h, -u, and -p options are --host=host_name, --user=user_name,
and --password=your_pass. Note that there is no space between -p or --password= and
the password following it.
Note: Specifying a password on the command-line is not secure! Any user on your system
may then find out your password by typing a command like: ps auxww. See Section 4.1.2
[Option files], page 203.
mysql uses default values for connection parameters that are missing from the command-
line:

Chapter 4: Database Administration 225

• The default hostname is localhost.
• The default user name is your Unix login name.
• No password is supplied if -p is missing.

Thus, for a Unix user joe, the following commands are equivalent:
shell> mysql -h localhost -u joe
shell> mysql -h localhost
shell> mysql -u joe
shell> mysql

Other MySQL clients behave similarly.
On Unix systems, you can specify different default values to be used when you make a
connection, so that you need not enter them on the command-line each time you invoke a
client program. This can be done in a couple of ways:
• You can specify connection parameters in the [client] section of the ‘.my.cnf’ con-

figuration file in your home directory. The relevant section of the file might look like
this:

[client]
host=host_name
user=user_name
password=your_pass

See Section 4.1.2 [Option files], page 203.
• You can specify connection parameters using environment variables. The host can

be specified for mysql using MYSQL_HOST. The MySQL user name can be specified
using USER (this is for Windows only). The password can be specified using MYSQL_PWD
(but this is insecure; see the next section). See Appendix F [Environment variables],
page 1016.

4.3.9 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the con-
nection based on your identity and whether you can verify your identity by supplying the
correct password. If not, the server denies access to you completely. Otherwise, the server
accepts the connection, then enters Stage 2 and waits for requests.
Your identity is based on two pieces of information:
• The host from which you connect
• Your MySQL user name

Identity checking is performed using the three user table scope fields (Host, User, and
Password). The server accepts the connection only if a user table entry matches your
hostname and user name, and you supply the correct password.
Values in the user table scope fields may be specified as follows:
• A Host value may be a hostname or an IP number, or ’localhost’ to indicate the

local host.
• You can use the wildcard characters ‘%’ and ‘_’ in the Host field.

226 MySQL Technical Reference for Version 4.1.1-alpha

• A Host value of ’%’ matches any hostname.
• A blank Host value means that the privilege should be anded with the entry in the

host table that matches the given host name. You can find more information about
this in the next chapter.

• As of MySQL Version 3.23, for Host values specified as IP numbers, you can specify a
netmask indicating how many address bits to use for the network number. For example:

mysql> GRANT ALL PRIVILEGES ON db.*
-> TO david@’192.58.197.0/255.255.255.0’;

This will allow everyone to connect from an IP where the following is true:
user_ip & netmask = host_ip.

In the above example all IP:s in the interval 192.58.197.0 - 192.58.197.255 can connect
to the MySQL server.

• Wildcard characters are not allowed in the User field, but you can specify a blank
value, which matches any name. If the user table entry that matches an incoming
connection has a blank user name, the user is considered to be the anonymous user
(the user with no name), rather than the name that the client actually specified. This
means that a blank user name is used for all further access checking for the duration
of the connection (that is, during Stage 2).

• The Password field can be blank. This does not mean that any password matches, it
means the user must connect without specifying a password.

Non-blank Password values represent encrypted passwords. MySQL does not store pass-
words in plaintext form for anyone to see. Rather, the password supplied by a user who
is attempting to connect is encrypted (using the PASSWORD() function). The encrypted
password is then used when the client/server is checking if the password is correct. (This is
done without the encrypted password ever traveling over the connection.) Note that from
MySQL’s point of view the encrypted password is the REAL password, so you should not
give anyone access to it! In particular, don’t give normal users read access to the tables
in the mysql database! From version 4.1, MySQL employs a different password and login
mechanism that is secure even if TCP/IP packets are sniffed and/or the mysql database is
captured.
The examples here show how various combinations of Host and User values in user table
entries apply to incoming connections:
Host value User value Connections matched by entry
’thomas.loc.gov’ ’fred’ fred, connecting from thomas.loc.gov
’thomas.loc.gov’ ’’ Any user, connecting from

thomas.loc.gov
’%’ ’fred’ fred, connecting from any host
’%’ ’’ Any user, connecting from any host
’%.loc.gov’ ’fred’ fred, connecting from any host in the

loc.gov domain
’x.y.%’ ’fred’ fred, connecting from x.y.net,

x.y.com,x.y.edu, etc. (this is probably
not useful)

’144.155.166.177’ ’fred’ fred, connecting from the host with IP ad-
dress 144.155.166.177

Chapter 4: Database Administration 227

’144.155.166.%’ ’fred’ fred, connecting from any host in the
144.155.166 class C subnet

’144.155.166.0/255.255.255.0’’fred’ Same as previous example
Because you can use IP wildcard values in the Host field (for example, ’144.155.166.%’ to
match every host on a subnet), there is the possibility that someone might try to exploit this
capability by naming a host 144.155.166.somewhere.com. To foil such attempts, MySQL
disallows matching on hostnames that start with digits and a dot. Thus, if you have a
host named something like 1.2.foo.com, its name will never match the Host column of the
grant tables. Only an IP number can match an IP wildcard value.
An incoming connection may be matched by more than one entry in the user table. For
example, a connection from thomas.loc.gov by fred would be matched by several of the
entries shown in the preceding table. How does the server choose which entry to use if more
than one matches? The server resolves this question by sorting the user table after reading
it at startup time, then looking through the entries in sorted order when a user attempts
to connect. The first matching entry is the one that is used.
user table sorting works as follows. Suppose the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads in the table, it orders the entries with the most-specific Host values
first (’%’ in the Host column means “any host” and is least specific). Entries with the same
Host value are ordered with the most-specific User values first (a blank User value means
“any user” and is least specific). The resulting sorted user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a connection is attempted, the server looks through the sorted entries and uses
the first match found. For a connection from localhost by jeffrey, the entries with
’localhost’ in the Host column match first. Of those, the entry with the blank user name
matches both the connecting hostname and user name. (The ’%’/’jeffrey’ entry would
have matched, too, but it is not the first match in the table.)
Here is another example. Suppose the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-

228 MySQL Technical Reference for Version 4.1.1-alpha

| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:
+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection from thomas.loc.gov by jeffrey is matched by the first entry, whereas a
connection from whitehouse.gov by jeffrey is matched by the second.
A common misconception is to think that for a given user name, all entries that explicitly
name that user will be used first when the server attempts to find a match for the connection.
This is simply not true. The previous example illustrates this, where a connection from
thomas.loc.gov by jeffrey is first matched not by the entry containing ’jeffrey’ as the
User field value, but by the entry with no user name!
If you have problems connecting to the server, print out the user table and sort it by hand
to see where the first match is being made. If connection was successful, but your privileges
are not what you expected you may use CURRENT_USER() function (new in version 4.0.6)
to see what user/host combination your connection actually matched. See Section 6.3.6.2
[CURRENT_USER()], page 515.

4.3.10 Access Control, Stage 2: Request Verification

Once you establish a connection, the server enters Stage 2. For each request that comes in
on the connection, the server checks whether you have sufficient privileges to perform it,
based on the type of operation you wish to perform. This is where the privilege fields in
the grant tables come into play. These privileges can come from any of the user, db, host,
tables_priv, or columns_priv tables. The grant tables are manipulated with GRANT and
REVOKE commands. See Section 4.4.1 [GRANT], page 239. (You may find it helpful to refer
to Section 4.3.6 [Privileges], page 219, which lists the fields present in each of the grant
tables.)
The user table grants privileges that are assigned to you on a global basis and that apply no
matter what the current database is. For example, if the user table grants you the DELETE
privilege, you can delete rows from any database on the server host! In other words, user
table privileges are superuser privileges. It is wise to grant privileges in the user table only
to superusers such as server or database administrators. For other users, you should leave
the privileges in the user table set to ’N’ and grant privileges on a database-specific basis
only, using the db and host tables.
The db and host tables grant database-specific privileges. Values in the scope fields may
be specified as follows:
• The wildcard characters ‘%’ and ‘_’ can be used in the Host and Db fields of either table.

If you wish to use for instance a ‘_’ character as part of a database name, specify it as
‘_’ in the GRANT command.

Chapter 4: Database Administration 229

• A ’%’ Host value in the db table means “any host.” A blank Host value in the db
table means “consult the host table for further information.”

• A ’%’ or blank Host value in the host table means “any host.”

• A ’%’ or blank Db value in either table means “any database.”

• A blank User value in either table matches the anonymous user.

The db and host tables are read in and sorted when the server starts up (at the same time
that it reads the user table). The db table is sorted on the Host, Db, and User scope fields,
and the host table is sorted on the Host and Db scope fields. As with the user table, sorting
puts the most-specific values first and least-specific values last, and when the server looks
for matching entries, it uses the first match that it finds.

The tables_priv and columns_priv tables grant table- and column-specific privileges.
Values in the scope fields may be specified as follows:

• The wildcard characters ‘%’ and ‘_’ can be used in the Host field of either table.

• A ’%’ or blank Host value in either table means “any host.”

• The Db, Table_name and Column_name fields cannot contain wildcards or be blank in
either table.

The tables_priv and columns_priv tables are sorted on the Host, Db, and User fields.
This is similar to db table sorting, although the sorting is simpler because only the Host
field may contain wildcards.

The request verification process is described here. (If you are familiar with the access-
checking source code, you will notice that the description here differs slightly from the
algorithm used in the code. The description is equivalent to what the code actually does;
it differs only to make the explanation simpler.)

For administrative requests (SHUTDOWN, RELOAD, etc.), the server checks only the user table
entry, because that is the only table that specifies administrative privileges. Access is
granted if the entry allows the requested operation and denied otherwise. For example, if
you want to execute mysqladmin shutdown but your user table entry doesn’t grant the
SHUTDOWN privilege to you, access is denied without even checking the db or host tables.
(They contain no Shutdown_priv column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, etc.), the server first checks the user’s global
(superuser) privileges by looking in the user table entry. If the entry allows the requested
operation, access is granted. If the global privileges in the user table are insufficient, the
server determines the user’s database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User fields. The
Host and User fields are matched to the connecting user’s hostname and MySQL user
name. The Db field is matched to the database the user wants to access. If there is no
entry for the Host and User, access is denied.

2. If there is a matching db table entry and its Host field is not blank, that entry defines
the user’s database-specific privileges.

3. If the matching db table entry’s Host field is blank, it signifies that the host table
enumerates which hosts should be allowed access to the database. In this case, a
further lookup is done in the host table to find a match on the Host and Db fields. If

230 MySQL Technical Reference for Version 4.1.1-alpha

no host table entry matches, access is denied. If there is a match, the user’s database-
specific privileges are computed as the intersection (not the union!) of the privileges
in the db and host table entries, that is, the privileges that are ’Y’ in both entries.
(This way you can grant general privileges in the db table entry and then selectively
restrict them on a host-by-host basis using the host table entries.)

After determining the database-specific privileges granted by the db and host table entries,
the server adds them to the global privileges granted by the user table. If the result allows
the requested operation, access is granted. Otherwise, the server checks the user’s table
and column privileges in the tables_priv and columns_priv tables and adds those to the
user’s privileges. Access is allowed or denied based on the result.
Expressed in boolean terms, the preceding description of how a user’s privileges are calcu-
lated may be summarised like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges

It may not be apparent why, if the global user entry privileges are initially found to be
insufficient for the requested operation, the server adds those privileges to the database-,
table-, and column-specific privileges later. The reason is that a request might require more
than one type of privilege. For example, if you execute an INSERT ... SELECT statement,
you need both INSERT and SELECT privileges. Your privileges might be such that the user
table entry grants one privilege and the db table entry grants the other. In this case, you
have the necessary privileges to perform the request, but the server cannot tell that from
either table by itself; the privileges granted by the entries in both tables must be combined.
The host table can be used to maintain a list of secure servers.
At TcX, the host table contains a list of all machines on the local network. These are
granted all privileges.
You can also use the host table to indicate hosts that are not secure. Suppose you have
a machine public.your.domain that is located in a public area that you do not consider
secure. You can allow access to all hosts on your network except that machine by using
host table entries like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to ’N’)
| %.your.domain | % | ... (all privileges set to ’Y’)
+--------------------+----+-

Naturally, you should always test your entries in the grant tables (for example, using
mysqlaccess) to make sure your access privileges are actually set up the way you think
they are.

4.3.11 Password Hashing in MySQL 4.1

MySQL user accounts are listed in the user table of the mysql database. Each MySQL
account is assigned a password, although what is stored in the Password column of the

Chapter 4: Database Administration 231

user table is not the plaintext version of the password, but a hash value computed from it.
Password hash values are computed by the PASSWORD() function.
MySQL uses passwords in two phases of client/server communication:
• First, when a client attempts to connect to the server, there is an initial authentication

step in which the client must present a password that matches the hash value stored
in the user table for the account that the client wants to use.

• Second, after the client connects, it may set or change the password hashes for accounts
listed in the user table (if it has sufficient privileges). The client may do this by using
the PASSWORD() function to generate a password hash, or by using the GRANT or
SET PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts
to connect. The server generates hash values if a connected client invokes the PASSWORD()
function or uses a GRANT or SET PASSWORD statement to set or change a password.
The password hashing mechanism was updated in MySQL 4.1 to provide better security and
to reduce the risk of passwords being stolen. However, this new mechanism is understood
only by the 4.1 server and 4.1 clients, which can result in some compatibility problems. A
4.1 client can connect to a pre-4.1 server, because the client understands both the old and
new password hashing mechanisms. However, a pre-4.1 client that attempts to connect to
a 4.1 server may run into difficulties. For example, a 4.0 mysql client that attempts to
connect to a 4.1 server may fail with the following error message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

The following discussion describes the differences between the old and new password mech-
anisms, and what you should do if you upgrade your server to 4.1 but need to maintain
backward compatibility with pre-4.1 clients.
Note: This discussion contrasts 4.1 behaviour with pre-4.1 behaviour, but the 4.1 behaviour
described here actually begins with 4.1.1. MySQL 4.1.0 is an “odd” release because it has
a slightly different mechanism than that implemented in 4.1.1 and up. Differences between
4.1.0 and more recent versions are described later.
Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes
long. Such hashes look like this:

mysql> SELECT PASSWORD(’mypass’);
+--------------------+
| PASSWORD(’mypass’) |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes
long before MySQL 4.1.
As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte
hash value:

mysql> SELECT PASSWORD(’mypass’);
+---+

232 MySQL Technical Reference for Version 4.1.1-alpha

| PASSWORD(’mypass’) |
+---+
| *43c8aa34cdc98eddd3de1fe9a9c2c2a9f92bb2098d75 |
+---+

Accordingly, the Password column in the user table also must be 41 bytes long to store
these values:
• If you perform a new installation of MySQL 4.1, the Password column will be made

41 bytes long automatically.
• If you upgrade an older installation to 4.1, you should run the mysql_fix_privilege_

tables script to update the length of the Password column from 16 to 41 bytes. (The
script does not change existing password values, which remain 16 bytes long.)

A widened Password column can store password hashes in both the old and new formats.
The format of any given password hash value can be determined two ways:
• The obvious difference is the length (16 bytes versus 41 bytes)
• A second difference is that password hashes in the new format always begin with a ‘*’

character, whereas passwords in the old format never do

The longer password hash format has better cryptographic properties, and client authenti-
cation based on long hashes is more secure than that based on the older short hashes.
The differences between short and long password hashes are relevant both for how the
server uses passwords during authentication and for how it generates password hashes for
connected clients that perform password-changing operations.
The way in which the server uses password hashes during authentication is affected by the
width of the Password column:
• If the column is narrow, only short-hash authentication is used.
• If the column is wide, it can hold either short or long hashes, and the server can use

either format:
• Pre-4.1 clients can connect, though because they know only about the old hashing

mechanism, they can authenticate only for accounts that have short hashes.
• 4.1 clients can authenticate for accounts that have short or long hashes.

For short-hash accounts, the authentication process is actually a bit more secure for 4.1
clients than for older clients. In terms of security, the gradient from least to most secure is:
• Pre-4.1 client authenticating for account with short password hash
• 4.1 client authenticating for account with short password hash
• 4.1 client authenticating for account with long password hash

The way in which the server generates password hashes for connected clients is affected
by the width of the Password column and by the --old-passwords option. A 4.1 server
generates long hashes only if certain conditions are met: The Password column must be
wide enough to hold long values and the --old-passwords option must not be given. These
conditions apply as follows:
• The Password column must be wide enough to hold long hashes (41 bytes). If the

column has not been updated and still has the pre-4.1 width (16 bytes), the server
notices that long hashes cannot fit into it and generates only short hashes when a client

Chapter 4: Database Administration 233

performs password-changing operations using PASSWORD(), GRANT, or SET PASSWORD.
(This behaviour occurs if you have upgraded to 4.1 but have not run the mysql_fix_
privilege_tables script to widen the Password column.)

• If the Password column is wide, it can store either short or long password hashes. In
this case, PASSWORD(), GRANT, and SET PASSWORD will generate long hashes unless the
server was started with the --old-passwords option. This option forces the server to
generate short passsword hashes instead.

The purpose of the --old-passwords option is to allow you to maintain backward compat-
ibility with pre-4.1 clients under circumstances where the server would otherwise generate
long password hashes. It doesn’t affect authentication (4.1 clients can still use accounts
that have long password hashes), but it does prevent creation of a long password hash in
the user table as the result of a password-changing operation. Were that to occur, the
account no longer could be used by pre-4.1 clients. Without the --old-passwords option,
the following scenario is possible:
• An old client connects to an account that has a short password hash.
• The client changes the account’s password. Without --old-passwords, this results in

the account having a long password hash.
• The next time the old client attempts to connect to the account, it cannot, because

the account now requires the new hashing mechanism during authentication. (Once an
account has a long password hash in the user table, only 4.1 clients can authenticate
for it, because pre-4.1 clients do not understand long hashes.)

This scenario illustrates that it is dangerous to run a 4.1 server without using the --old-
passwords option if you must support older pre-4.1 clients. By running the server with
--old-passwords, password-changing operations will not generate long password hashes
and thus do not cause accounts to become inaccessible to older clients. (Those clients
cannot inadvertently lock themselves out by changing their password and ending up with a
long password hash.)
The downside of the --old-passwords option is that any passwords you create or change
will use short hashes, even for 4.1 clients. Thus, you lose the additional security provided by
long password hashes. If you want to create an account that has a long hash (for example,
for use by 4.1 clients), you must do so while running the server without --old-passwords.
The following scenarios are possible for running a 4.1 server:
Scenario 1) Narrow Password column in user table
• Only short hashes can be stored in the Password column.
• The server uses only short hashes during client authentication.
• For connected clients, password hash-generating operations involving PASSWORD(),

GRANT, or SET PASSWORD use short hashes exclusively. Any change to an account’s
password results in that account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a narrow
Password column, the server will be generating short password hashes anyway.

Scenario 2) Long Password column; server not started with --old-passwords option
• Short or long hashes can be stored in the Password column.
• 4.1 clients can authenticate for accounts that have short or long hashes.

234 MySQL Technical Reference for Version 4.1.1-alpha

• Pre-4.1 clients can authenticate only for accounts that have short hashes.
• For connected clients, password hash-generating operations involving PASSWORD(),

GRANT, or SET PASSWORD use long hashes exclusively. Any change to an account’s
password results in that account having a long password hash.

• OLD_PASSWORD() may be used to explicitly generate a short hash. For example, to
assign an account a short password, use UPDATE as follows:

mysql> UPDATE user SET Password = OLD_PASSWORD(’mypass’)
-> WHERE Host = ’some_host’ AND User = ’some_user’;

mysql> FLUSH PRIVILEGES;

As indicated earlier, a danger in this scenario is that it is possible for accounts that have
a short password hash to become inaccessible to pre-4.1 clients. Any change to such an
account’s password made via GRANT, SET PASSWORD, or PASSWORD() results in the account
being given a long password hash, and from that point on, no pre-4.1 client can authenticate
to that account until the client upgrades to 4.1.
Scenario 3) Long Password column; server started with --old-passwords option
• Short or long hashes can be stored in the Password column.
• 4.1 clients can authenticate for accounts that have short or long hashes (but note that

it is possible to create long hashes only when the server is started without --old-
passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.
• For connected clients, password hash-generating operations involving PASSWORD(),

GRANT, or SET PASSWORD use short hashes exclusively. Any change to an account’s
password results in that account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because --
old-passwords prevents generation of long hashes. Also, if you create an account with a
long hash before using the --old-passwords option, changing the account’s password while
--old-passwords is in effect results in the account being given a short password, causing
it to lose the security benefits of a longer hash.
The disadvantages for these scenarios may be summarized as follows:
Scenario 1) You cannot take advantage of longer hashes that provide more secure authen-
tication.
Scenario 2) Accounts with short hashes become inaccessible to pre-4.1 clients if you change
their passwords without explicitly using OLD_PASSWORD().
Scenario 3) --old-passwords prevents accounts with short hashes from becoming inacces-
sible, but password-changing operations cause accounts with long hashes to revert to short
hashes, and you cannot change them back to long hashes while --old-passwords is in
effect.

Implications of Password Hashing Changes for Application
Programs

An upgrade to MySQL 4.1 can cause a compatibility issue for applications that use
PASSWORD() to generate passwords for their own purposes. (Applications really should

Chapter 4: Database Administration 235

not do this, because PASSWORD() should be used only to manage passwords for MySQL
accounts. But some applications use PASSWORD() for their own purposes anyway.) If you
upgrade to 4.1 and run the server under conditions where it generates long password
hashes, an application that uses PASSWORD() for its own passwords will break. The
recommended course of action is to modify the application to use another function such
as SHA1() or MD5() to produce hashed values. If that is not possible, you can use the
OLD_PASSWORD() function, which is provided to generate short hashes in the old format.
(But note that OLD_PASSWORD() may one day no longer be supported.)
If the server is running under circumstances where it generates short hashes,
OLD_PASSWORD() is available but is equivalent to PASSWORD().
Password hashing in MySQL 4.1.0 differs from hashing in 4.1.1 and up. The 4.1.0 differences
are:
• Password hashes are 45 bytes long rather than 41 bytes.
• The PASSWORD() function is non-repeatable. That is, with a given argument X, succes-

sive calls to PASSWORD(X) generate different results.

4.3.12 Causes of Access denied Errors

If you encounter Access denied errors when you try to connect to the MySQL server, the
following list indicates some courses of action you can take to correct the problem:
• After installing MySQL, did you run the mysql_install_db script to set up the initial

grant table contents? If not, do so. See Section 4.4.4 [Default privileges], page 245.
Test the initial privileges by executing this command:

shell> mysql -u root test

The server should let you connect without error. You should also make sure
you have a file ‘user.MYD’ in the MySQL database directory. Ordinarily, this is
‘PATH/var/mysql/user.MYD’, where PATH is the pathname to the MySQL installation
root.

• After a fresh installation, you should connect to the server and set up your users and
their access permissions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password
initially. That is also a security risk, so setting the root password is something you
should do while you’re setting up your other MySQL users.
If you try to connect as root and get this error:

Access denied for user: ’@unknown’ to database mysql

this means that you don’t have an entry in the user table with a User column value of
’root’ and that mysqld cannot resolve the hostname for your client. In this case,
you must restart the server with the --skip-grant-tables option and edit your
‘/etc/hosts’ or ‘\windows\hosts’ file to add an entry for your host.

• If you get an error like the following:
shell> mysqladmin -u root -pxxxx ver
Access denied for user: ’root@localhost’ (Using password: YES)

236 MySQL Technical Reference for Version 4.1.1-alpha

It means that you are using an incorrect password. See Section 4.4.8 [Passwords],
page 250.

If you have forgot the root password, you can restart mysqld with --skip-grant-
tables to change the password. See Section A.4.2 [Resetting permissions], page 859.

If you get the above error even if you haven’t specified a password, this means that
you have an incorrect password in some my.ini file. See Section 4.1.2 [Option files],
page 203. You can avoid using option files with the --no-defaults option, as follows:

shell> mysqladmin --no-defaults -u root ver

• If you updated an existing MySQL installation from a version earlier than Version
3.22.11 to Version 3.22.11 or later, did you run the mysql_fix_privilege_tables
script? If not, do so. The structure of the grant tables changed with MySQL Version
3.22.11 when the GRANT statement became functional. See Section 2.5.6 [Upgrading-
grant-tables], page 119.

• If your privileges seem to have changed in the middle of a session, it may be that a
superuser has changed them. Reloading the grant tables affects new client connections,
but it also affects existing connections as indicated in Section 4.4.3 [Privilege changes],
page 244.

• If you can’t get your password to work, remember that you must use the PASSWORD()
function if you set the password with the INSERT, UPDATE, or SET PASSWORD state-
ments. The PASSWORD() function is unnecessary if you specify the password using
the GRANT ... IDENTIFIED BY statement or the mysqladmin password command. See
Section 4.4.8 [Passwords], page 250.

• localhost is a synonym for your local hostname, and is also the default host to
which clients try to connect if you specify no host explicitly. However, connections
to localhost do not work if you are using a MySQL version prior to 3.23.27 that uses
MIT-pthreads (localhost connections are made using Unix sockets, which were not
supported by MIT-pthreads at that time). To avoid this problem on such systems,
you should use the --host option to name the server host explicitly. This will make
a TCP/IP connection to the mysqld server. In this case, you must have your real
hostname in user table entries on the server host. (This is true even if you are running
a client program on the same host as the server.)

• If you get an Access denied error when trying to connect to the database with mysql
-u user_name db_name, you may have a problem with the user table. Check this by
executing mysql -u root mysql and issuing this SQL statement:

mysql> SELECT * FROM user;

The result should include an entry with the Host and User columns matching your
computer’s hostname and your MySQL user name.

• The Access denied error message will tell you who you are trying to log in as, the
host from which you are trying to connect, and whether or not you were using a
password. Normally, you should have one entry in the user table that exactly matches
the hostname and user name that were given in the error message. For example if you
get an error message that contains Using password: NO, this means that you tried to
login without an password.

Chapter 4: Database Administration 237

• If you get the following error when you try to connect from a different host than the
one on which the MySQL server is running, then there is no row in the user table that
matches that host:

Host ... is not allowed to connect to this MySQL server

You can fix this by using the command-line tool mysql (on the server host!) to add
a row to the user, db, or host table for the user/hostname combination from which
you are trying to connect and then execute mysqladmin flush-privileges. If you are
not running MySQL Version 3.22 and you don’t know the IP number or hostname of
the machine from which you are connecting, you should put an entry with ’%’ as the
Host column value in the user table and restart mysqld with the --log option on the
server machine. After trying to connect from the client machine, the information in
the MySQL log will indicate how you really did connect. (Then replace the ’%’ in the
user table entry with the actual hostname that shows up in the log. Otherwise, you’ll
have a system that is insecure.)
Another reason for this error on Linux is that you are using a binary MySQL version
that is compiled with a different glibc version than the one you are using. In this case
you should either upgrade your OS/glibc or download the source MySQL version and
compile this yourself. A source RPM is normally trivial to compile and install, so this
isn’t a big problem.

• If you get an error message where the hostname is not shown or where the hostname
is an IP, even if you try to connect with a hostname:

shell> mysqladmin -u root -pxxxx -h some-hostname ver
Access denied for user: ’root@’ (Using password: YES)

This means that MySQL got some error when trying to resolve the IP to a hostname.
In this case you can execute mysqladmin flush-hosts to reset the internal DNS cache.
See Section 5.5.5 [DNS], page 432.
Some permanent solutions are:
− Try to find out what is wrong with your DNS server and fix this.
− Specify IPs instead of hostnames in the MySQL privilege tables.
− Start mysqld with --skip-name-resolve.
− Start mysqld with --skip-host-cache.
− Connect to localhost if you are running the server and the client on the same

machine.
− Put the client machine names in /etc/hosts.

• If mysql -u root test works but mysql -h your_hostname -u root test results in
Access denied, then you may not have the correct name for your host in the user ta-
ble. A common problem here is that the Host value in the user table entry specifies an
unqualified hostname, but your system’s name resolution routines return a fully quali-
fied domain name (or vice-versa). For example, if you have an entry with host ’tcx’ in
the user table, but your DNS tells MySQL that your hostname is ’tcx.subnet.se’,
the entry will not work. Try adding an entry to the user table that contains the IP
number of your host as the Host column value. (Alternatively, you could add an entry
to the user table with a Host value that contains a wildcard—for example, ’tcx.%’.
However, use of hostnames ending with ‘%’ is insecure and is not recommended!)

238 MySQL Technical Reference for Version 4.1.1-alpha

• If mysql -u user_name test works but mysql -u user_name other_db_name doesn’t
work, you don’t have an entry for other_db_name listed in the db table.

• If mysql -u user_name db_name works when executed on the server machine, but mysql
-h host_name -u user_name db_name doesn’t work when executed on another client
machine, you don’t have the client machine listed in the user table or the db table.

• If you can’t figure out why you get Access denied, remove from the user table all
entries that have Host values containing wildcards (entries that contain ‘%’ or ‘_’). A
very common error is to insert a new entry with Host=’%’ and User=’some user’,
thinking that this will allow you to specify localhost to connect from the same ma-
chine. The reason that this doesn’t work is that the default privileges include an
entry with Host=’localhost’ and User=’’. Because that entry has a Host value
’localhost’ that is more specific than ’%’, it is used in preference to the new en-
try when connecting from localhost! The correct procedure is to insert a second
entry with Host=’localhost’ and User=’some_user’, or to remove the entry with
Host=’localhost’ and User=’’.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make
sure there are one or more corresponding entries in the host table specifying which
hosts the db table entry applies to.

If you get the error when using the SQL commands SELECT ... INTO OUTFILE or LOAD
DATA INFILE, your entry in the user table probably doesn’t have the FILE privilege
enabled.

• Remember that client programs will use connection parameters specified in configura-
tion files or environment variables. See Appendix F [Environment variables], page 1016.
If a client seems to be sending the wrong default connection parameters when you don’t
specify them on the command-line, check your environment and the ‘.my.cnf’ file in
your home directory. You might also check the system-wide MySQL configuration files,
though it is far less likely that client connection parameters will be specified there. See
Section 4.1.2 [Option files], page 203. If you get Access denied when you run a client
without any options, make sure you haven’t specified an old password in any of your
option files! See Section 4.1.2 [Option files], page 203.

• If you make changes to the grant tables directly (using an INSERT or UPDATE state-
ment) and your changes seem to be ignored, remember that you must issue a FLUSH
PRIVILEGES statement or execute a mysqladmin flush-privileges command to cause
the server to re-read the privilege tables. Otherwise, your changes have no effect until
the next time the server is restarted. Remember that after you set the root pass-
word with an UPDATE command, you won’t need to specify it until after you flush the
privileges, because the server won’t know you’ve changed the password yet!

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to con-
nect to the server with mysql -u user_name db_name or mysql -u user_name -pyour_
pass db_name. If you are able to connect using the mysql client, there is a problem
with your program and not with the access privileges. (Note that there is no space
between -p and the password; you can also use the --password=your_pass syntax to

Chapter 4: Database Administration 239

specify the password. If you use the -p option alone, MySQL will prompt you for the
password.)

• For testing, start the mysqld daemon with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the mysqlaccess script to check
whether your modifications have the desired effect. When you are satisfied with your
changes, execute mysqladmin flush-privileges to tell the mysqld server to start
using the new grant tables. Note: reloading the grant tables overrides the --skip-
grant-tables option. This allows you to tell the server to begin using the grant tables
again without bringing it down and restarting it.

• If everything else fails, start the mysqld daemon with a debugging option (for ex-
ample, --debug=d,general,query). This will print host and user information about
attempted connections, as well as information about each command issued. See Sec-
tion E.1.2 [Making trace files], page 1005.

• If you have any other problems with the MySQL grant tables and feel you must post
the problem to the mailing list, always provide a dump of the MySQL grant tables.
You can dump the tables with the mysqldump mysql command. As always, post your
problem using the mysqlbug script. See Section 1.6.1.3 [Bug reports], page 27. In some
cases you may need to restart mysqld with --skip-grant-tables to run mysqldump.

4.4 MySQL User Account Management

4.4.1 GRANT and REVOKE Syntax

GRANT priv_type [(column_list)] [, priv_type [(column_list)] ...]
ON {tbl_name | * | *.* | db_name.*}
TO user_name [IDENTIFIED BY [PASSWORD] ’password’]

[, user_name [IDENTIFIED BY [PASSWORD] ’password’] ...]
[REQUIRE

NONE |
[{SSL| X509}]
[CIPHER cipher [AND]]
[ISSUER issuer [AND]]
[SUBJECT subject]]

[WITH [GRANT OPTION | MAX_QUERIES_PER_HOUR # |
MAX_UPDATES_PER_HOUR # |
MAX_CONNECTIONS_PER_HOUR #]]

REVOKE priv_type [(column_list)] [, priv_type [(column_list)] ...]
ON {tbl_name | * | *.* | db_name.*}
FROM user_name [, user_name ...]

GRANT is implemented in MySQL Version 3.22.11 or later. For earlier MySQL versions, the
GRANT statement does nothing.

The GRANT and REVOKE commands allow system administrators to create users and grant
and revoke rights to MySQL users at four privilege levels:

240 MySQL Technical Reference for Version 4.1.1-alpha

Global level
Global privileges apply to all databases on a given server. These privileges are
stored in the mysql.user table. GRANT ALL ON *.* and REVOKE ALL ON *.* will
grant and revoke only global privileges.

Database level
Database privileges apply to all tables in a given database. These privileges
are stored in the mysql.db and mysql.host tables. GRANT ALL ON db.* and
REVOKE ALL ON db.* will grant and revoke only database privileges.

Table level
Table privileges apply to all columns in a given table. These privileges are
stored in the mysql.tables_priv table. GRANT ALL ON db.table and REVOKE
ALL ON db.table will grant and revoke only table privileges.

Column level
Column privileges apply to single columns in a given table. These privileges
are stored in the mysql.columns_priv table. When using REVOKE you must
specify the same columns that were granted.

For the GRANT and REVOKE statements, priv_type may be specified as any of the following:

ALL [PRIVILEGES] Sets all simple privileges except WITH GRANT OPTION
ALTER Allows usage of ALTER TABLE
CREATE Allows usage of CREATE TABLE
CREATE TEMPORARY TABLES Allows usage of CREATE TEMPORARY TABLE
DELETE Allows usage of DELETE
DROP Allows usage of DROP TABLE.
EXECUTE Allows the user to run stored procedures (MySQL 5.0)
FILE Allows usage of SELECT ... INTO OUTFILE and LOAD DATA

INFILE.
INDEX Allows usage of CREATE INDEX and DROP INDEX
INSERT Allows usage of INSERT
LOCK TABLES Allows usage of LOCK TABLES on tables for which one has the

SELECT privilege.
PROCESS Allows usage of SHOW FULL PROCESSLIST
REFERENCES For the future
RELOAD Allows usage of FLUSH
REPLICATION CLIENT Gives the right to the user to ask where the slaves/masters

are.
REPLICATION SLAVE Needed for the replication slaves (to read binlogs from

master).
SELECT Allows usage of SELECT
SHOW DATABASES SHOW DATABASES shows all databases.
SHUTDOWN Allows usage of mysqladmin shutdown
SUPER Allows one connect (once) even if max connections is

reached and execute commands CHANGE MASTER, KILL
thread, mysqladmin debug, PURGE MASTER LOGS and SET
GLOBAL

UPDATE Allows usage of UPDATE
USAGE Synonym for “no privileges.”

Chapter 4: Database Administration 241

GRANT OPTION Synonym for WITH GRANT OPTION

USAGE can be used when you want to create a user that has no privileges.
The privileges CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICATION ..., SHOW
DATABASES and SUPER are new for in version 4.0.2. To use these new privileges after upgrad-
ing to 4.0.2, you have to run the mysql_fix_privilege_tables script. See Section 2.5.6
[Upgrading-grant-tables], page 119.
In older MySQL versions, the PROCESS privilege gives the same rights as the new SUPER
privilege.
To revoke the GRANT privilege from a user, use a priv_type value of GRANT OPTION:

mysql> REVOKE GRANT OPTION ON ... FROM ...;

The only priv_type values you can specify for a table are SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, GRANT OPTION, INDEX, and ALTER.
The only priv_type values you can specify for a column (that is, when you use a column_
list clause) are SELECT, INSERT, and UPDATE.
MySQL allows you to create database level privileges even if the database doesn’t exist, to
make it easy to prepare for database usage. Currently MySQL does however not allow one
to create table level grants if the table doesn’t exist. MySQL will not automatically revoke
any privileges even if you drop a table or drop a database.
You can set global privileges by using ON *.* syntax. You can set database privileges by
using ON db_name.* syntax. If you specify ON * and you have a current database, you will
set the privileges for that database. (Warning: if you specify ON * and you don’t have a
current database, you will affect the global privileges!)
Please note: the ‘_’ and ‘%’ wildcards are allowed when specifying database names in GRANT
commands. This means that if you wish to use for instance a ‘_’ character as part of a
database name, you should specify it as ‘_’ in the GRANT command, to prevent the user
from being able to access additional databases matching the wildcard pattern, for example,
GRANT ... ON ‘foo_bar‘.* TO
In order to accommodate granting rights to users from arbitrary hosts, MySQL supports
specifying the user_name value in the form user@host. If you want to specify a user string
containing special characters (such as ‘-’), or a host string containing special characters
or wildcard characters (such as ‘%’), you can quote the user or host name (for example,
’test-user’@’test-hostname’).
You can specify wildcards in the hostname. For example, user@’%.loc.gov’ applies to
user for any host in the loc.gov domain, and user@’144.155.166.%’ applies to user for
any host in the 144.155.166 class C subnet.
The simple form user is a synonym for user@"%".
MySQL doesn’t support wildcards in user names. Anonymous users are defined by inserting
entries with User=’’ into the mysql.user table or creating an user with an empty name
with the GRANT command.
Note: if you allow anonymous users to connect to the MySQL server, you should also grant
privileges to all local users as user@localhost because otherwise the anonymous user entry
for the local host in the mysql.user table will be used when the user tries to log into the
MySQL server from the local machine!
You can verify if this applies to you by executing this query:

242 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT Host,User FROM mysql.user WHERE User=’’;

For the moment, GRANT only supports host, table, database, and column names up to 60
characters long. A user name can be up to 16 characters.

The privileges for a table or column are formed from the logical OR of the privileges at
each of the four privilege levels. For example, if the mysql.user table specifies that a user
has a global SELECT privilege, this can’t be denied by an entry at the database, table, or
column level.

The privileges for a column can be calculated as follows:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges

In most cases, you grant rights to a user at only one of the privilege levels, so life isn’t
normally as complicated as above. The details of the privilege-checking procedure are
presented in Section 4.3 [Privilege system], page 213.

If you grant privileges for a user/hostname combination that does not exist in the
mysql.user table, an entry is added and remains there until deleted with a DELETE
command. In other words, GRANT may create user table entries, but REVOKE will not
remove them; you must do that explicitly using DELETE.

In MySQL Version 3.22.12 or later, if a new user is created or if you have global grant
privileges, the user’s password will be set to the password specified by the IDENTIFIED BY
clause, if one is given. If the user already had a password, it is replaced by the new one.

If you don’t want to send the password in clear text you can use the PASSWORD option
followed by a scrambled password from SQL function PASSWORD() or the C API function
make_scrambled_password(char *to, const char *password).

Warning: if you create a new user but do not specify an IDENTIFIED BY clause, the user
has no password. This is insecure.

Passwords can also be set with the SET PASSWORD command. See Section 5.5.6 [SET],
page 432.

If you grant privileges for a database, an entry in the mysql.db table is created if needed.
When all privileges for the database have been removed with REVOKE, this entry is deleted.

If a user doesn’t have any privileges on a table, the table is not displayed when the user
requests a list of tables (for example, with a SHOW TABLES statement). The same is true for
SHOW DATABASES.

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges
the user has at the specified privilege level. You should be careful to whom you give the
GRANT privilege, as two users with different privileges may be able to join privileges!

MAX_QUERIES_PER_HOUR #, MAX_UPDATES_PER_HOUR # and MAX_CONNECTIONS_PER_HOUR #
are new in MySQL version 4.0.2. These options limit the number of queries/updates and
logins the user can do during one hour. If # is 0 (default), then this means that there are no
limitations for that user. See Section 4.4.7 [User resources], page 249. Note: to specify any
of these options for an existing user without adding other additional privileges, use GRANT
USAGE ON *.* ... WITH MAX_....

Chapter 4: Database Administration 243

You cannot grant another user a privilege you don’t have yourself; the GRANT privilege allows
you to give away only those privileges you possess.
Be aware that when you grant a user the GRANT privilege at a particular privilege level,
any privileges the user already possesses (or is given in the future!) at that level are also
grantable by that user. Suppose you grant a user the INSERT privilege on a database. If
you then grant the SELECT privilege on the database and specify WITH GRANT OPTION, the
user can give away not only the SELECT privilege, but also INSERT. If you then grant the
UPDATE privilege to the user on the database, the user can give away the INSERT, SELECT
and UPDATE.
You should not grant ALTER privileges to a normal user. If you do that, the user can try to
subvert the privilege system by renaming tables!
Note that if you are using table or column privileges for even one user, the server examines
table and column privileges for all users and this will slow down MySQL a bit.
When mysqld starts, all privileges are read into memory. Database, table, and column priv-
ileges take effect at once, and user-level privileges take effect the next time the user connects.
Modifications to the grant tables that you perform using GRANT or REVOKE are noticed by the
server immediately. If you modify the grant tables manually (using INSERT, UPDATE, etc.),
you should execute a FLUSH PRIVILEGES statement or run mysqladmin flush-privileges
to tell the server to reload the grant tables. See Section 4.4.3 [Privilege changes], page 244.
The biggest differences between the SQL standard and MySQL versions of GRANT are:
• In MySQL privileges are given for an username + hostname combination and not only

for an username.
• SQL-99 doesn’t have global or database-level privileges, nor does it support all the

privilege types that MySQL supports. MySQL doesn’t support the SQL-99 TRIGGER
or UNDER privileges.

• SQL-99 privileges are structured in a hierarchal manner. If you remove an user, all
privileges the user has granted are revoked. In MySQL the granted privileges are not
automatically revoked, but you have to revoke these yourself if needed.

• In MySQL, if you have the INSERT privilege on only some of the columns in a table,
you can execute INSERT statements on the table; the columns for which you don’t have
the INSERT privilege will be set to their default values. SQL-99 requires you to have
the INSERT privilege on all columns.

• With SQL99, when you drop a table, all privileges for the table are revoked. With
SQL-99, when you revoke a privilege, all privileges that were granted based on the
privilege are also revoked. In MySQL, privileges can be dropped only with explicit
REVOKE commands or by manipulating the MySQL grant tables.

For a description of using REQUIRE, see Section 4.4.10 [Secure connections], page 252.

4.4.2 MySQL User Names and Passwords

There are several distinctions between the way user names and passwords are used by
MySQL and the way they are used by Unix or Windows:
• User names, as used by MySQL for authentication purposes, have nothing to do with

Unix user names (login names) or Windows user names. Most MySQL clients by default

244 MySQL Technical Reference for Version 4.1.1-alpha

try to log in using the current Unix user name as the MySQL user name, but that is
for convenience only. Client programs allow a different name to be specified with the
-u or --user options. This means that you can’t make a database secure in any way
unless all MySQL user names have passwords. Anyone may attempt to connect to the
server using any name, and they will succeed if they specify any name that doesn’t
have a password.

• MySQL user names can be up to 16 characters long; Unix user names typically are
limited to 8 characters.

• MySQL passwords have nothing to do with Unix passwords. There is no necessary
connection between the password you use to log in to a Unix machine and the password
you use to access a database on that machine.

• MySQL encrypts passwords using a different algorithm than the one used during the
Unix login process. See the descriptions of the PASSWORD() and ENCRYPT() functions
in Section 6.3.6.2 [Miscellaneous functions], page 515. Note that even if the password
is stored ’scrambled’, and knowing your ’scrambled’ password is enough to be able to
connect to the MySQL server! From version 4.1, MySQL employs a different password
and login mechanism that is secure even if TCP/IP packets are sniffed and/or the
mysql database is captured.

MySQL users and their privileges are normally created with the GRANT command. See
Section 4.4.1 [GRANT], page 239.
When you login to a MySQL server with a command-line client you should specify the
password with --password=your-password. See Section 4.3.8 [Connecting], page 224.

mysql --user=monty --password=guess database_name

If you want the client to prompt for a password, you should use --password without any
argument

mysql --user=monty --password database_name

or the short form:
mysql -u monty -p database_name

Note that in the last example the password is not ’database name’.
If you want to use the -p option to supply a password you should do so like this:

mysql -u monty -pguess database_name

On some systems, the library call that MySQL uses to prompt for a password will auto-
matically cut the password to 8 characters. Internally MySQL doesn’t have any limit for
the length of the password.

4.4.3 When Privilege Changes Take Effect

When mysqld starts, all grant table contents are read into memory and become effective at
that point.
Modifications to the grant tables that you perform using GRANT, REVOKE, or SET PASSWORD
are noticed by the server immediately.
If you modify the grant tables manually (using INSERT, UPDATE, etc.), you should exe-
cute a FLUSH PRIVILEGES statement or run mysqladmin flush-privileges or mysqladmin

Chapter 4: Database Administration 245

reload to tell the server to reload the grant tables. Otherwise, your changes will have
no effect until you restart the server. If you change the grant tables manually but forget
to reload the privileges, you will be wondering why your changes don’t seem to make any
difference!

When the server notices that the grant tables have been changed, existing client connections
are affected as follows:

• Table and column privilege changes take effect with the client’s next request.
• Database privilege changes take effect at the next USE db_name command.
• Global privilege changes and password changes take effect the next time the client

connects.

4.4.4 Setting Up the Initial MySQL Privileges

After installing MySQL, you set up the initial access privileges by running scripts/mysql_
install_db. See Section 2.3.1 [Quick install], page 88. The mysql_install_db script
starts up the mysqld server, then initialises the grant tables to contain the following set of
privileges:

• The MySQL root user is created as a superuser who can do anything. Connections
must be made from the local host.
Note: The initial root password is empty, so anyone can connect as root without a
password and be granted all privileges.

• An anonymous user is created that can do anything with databases that have a name of
’test’ or starting with ’test_’. Connections must be made from the local host. This
means any local user can connect without a password and be treated as the anonymous
user.

• Other privileges are denied. For example, normal users can’t use mysqladmin shutdown
or mysqladmin processlist.

Note: the default privileges are different for Windows. See Section 2.1.1.8 [Windows run-
ning], page 63.

Because your installation is initially wide open, one of the first things you should do is
specify a password for the MySQL root user. You can do this as follows (note that you
specify the password using the PASSWORD() function):

shell> mysql -u root mysql
mysql> SET PASSWORD FOR root@localhost=PASSWORD(’new_password’);

Replace ’new_password’ with the password that you want to use.

If you know what you are doing, you can also directly manipulate the privilege tables:

shell> mysql -u root mysql
mysql> UPDATE user SET Password=PASSWORD(’new_password’)

-> WHERE user=’root’;
mysql> FLUSH PRIVILEGES;

Another way to set the password is by using the mysqladmin command:

shell> mysqladmin -u root password new_password

246 MySQL Technical Reference for Version 4.1.1-alpha

Only users with write/update access to the mysql database can change the password for
other users. All normal users (not anonymous ones) can only change their own password
with either of the above commands or with SET PASSWORD=PASSWORD(’new_password’).
Note that if you update the password in the user table directly using UPDATE, you must tell
the server to re-read the grant tables (with FLUSH PRIVILEGES), because the change will go
unnoticed otherwise.
Once the root password has been set, thereafter you must supply that password when you
connect to the server as root.
You may wish to leave the root password blank so that you don’t need to specify it while you
perform additional setup or testing. However, be sure to set it before using your installation
for any real production work.
See the scripts/mysql_install_db script to see how it sets up the default privileges. You
can use this as a basis to see how to add other users.
If you want the initial privileges to be different from those just described above, you can
modify mysql_install_db before you run it.
To re-create the grant tables completely, remove all the ‘.frm’, ‘.MYI’, and ‘.MYD’ files in
the directory containing the mysql database. (This is the directory named ‘mysql’ under
the database directory, which is listed when you run mysqld --help.) Then run the mysql_
install_db script, possibly after editing it first to have the privileges you want.
Note: for MySQL versions older than Version 3.22.10, you should not delete the ‘.frm’
files. If you accidentally do this, you should copy them back from your MySQL distribution
before running mysql_install_db.

4.4.5 Adding New Users to MySQL

You can add users two different ways: by using GRANT statements or by manipulating the
MySQL grant tables directly. The preferred method is to use GRANT statements, because
they are more concise and less error-prone. See Section 4.4.1 [GRANT], page 239.
There are also several contributed programs (such as phpMyAdmin) that can be used to
create and administrate users.
The following examples show how to use the mysql client to set up new users. These exam-
ples assume that privileges are set up according to the defaults described in the previous
section. This means that to make changes, you must be on the same machine where mysqld
is running, you must connect as the MySQL root user, and the root user must have the
INSERT privilege for the mysql database and the RELOAD administrative privilege. Also, if
you have changed the root user password, you must specify it for the mysql commands
here.
First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

Then you can add new users by issuing GRANT statements:
mysql> GRANT ALL PRIVILEGES ON *.* TO monty@localhost

-> IDENTIFIED BY ’some_pass’ WITH GRANT OPTION;
mysql> GRANT ALL PRIVILEGES ON *.* TO monty@’%’

-> IDENTIFIED BY ’some_pass’ WITH GRANT OPTION;

Chapter 4: Database Administration 247

mysql> GRANT RELOAD,PROCESS ON *.* TO admin@localhost;
mysql> GRANT USAGE ON *.* TO dummy@localhost;

These GRANT statements set up three new users:

monty A full superuser who can connect to the server from anywhere, but who must use
a password ’some_pass’ to do so. Note that we must issue GRANT statements
for both monty@localhost and monty@"%". If we don’t add the entry with
localhost, the anonymous user entry for localhost that is created by mysql_
install_db takes precedence when we connect from the local host, because it
has a more specific Host field value and thus comes earlier in the user table
sort order.

admin A user who can connect from localhost without a password and who is granted
the RELOAD and PROCESS administrative privileges. This allows the user to exe-
cute the mysqladmin reload, mysqladmin refresh, and mysqladmin flush-*
commands, as well as mysqladmin processlist . No database-level privileges
are granted. (They can be granted later by issuing additional GRANT state-
ments.)

dummy A user who can connect without a password, but only from the local host. No
privileges are granted—the USAGE privilege type allows you to create a user
with no privileges. It has the effect of setting all the global privileges to ’N’.
It is assumed that you will grant specific privileges to the account later.

You can also add the same user access information directly by issuing INSERT statements
and then telling the server to reload the grant tables:

shell> mysql --user=root mysql
mysql> INSERT INTO user VALUES(’localhost’,’monty’,PASSWORD(’some_pass’),

-> ’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’);
mysql> INSERT INTO user VALUES(’%’,’monty’,PASSWORD(’some_pass’),

-> ’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’);
mysql> INSERT INTO user SET Host=’localhost’,User=’admin’,

-> Reload_priv=’Y’, Process_priv=’Y’;
mysql> INSERT INTO user (Host,User,Password)

-> VALUES(’localhost’,’dummy’,’’);
mysql> FLUSH PRIVILEGES;

Depending on your MySQL version, you may have to use a different number of ’Y’ values
above. (Versions prior to Version 3.22.11 have fewer privilege columns, and versions from
4.0.2 on have more.) For the admin user, the more readable extended INSERT syntax using
SET that is available starting with Version 3.22.11 is used.
Note that to set up a superuser, you need only create a user table entry with the privilege
fields set to ’Y’. No db or host table entries are necessary.
In the last INSERT statement (for the dummy user), only the Host, User, and Password
columns in the user table record are assigned values. None of the privilege columns are set
explicitly, so MySQL assigns them all the default value of ’N’. This is the same thing that
GRANT USAGE does.
The following example adds a user custom who can access the bankaccount database only
from the local host, the expenses database only from the host whitehouse.gov, and the

248 MySQL Technical Reference for Version 4.1.1-alpha

customer database only from the host server.domain. He wants to use the password
obscure from all three hosts.

To set up this user’s privileges using GRANT statements, run these commands:

shell> mysql --user=root mysql
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO custom@localhost
-> IDENTIFIED BY ’obscure’;

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON expenses.*
-> TO custom@’whitehouse.gov’
-> IDENTIFIED BY ’obscure’;

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON customer.*
-> TO custom@’server.domain’
-> IDENTIFIED BY ’obscure’;

To set up the user’s privileges by modifying the grant tables directly, run these commands
(note the FLUSH PRIVILEGES at the end):

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES(’localhost’,’custom’,PASSWORD(’obscure’));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES(’whitehouse.gov’,’custom’,PASSWORD(’obscure’));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES(’server.domain’,’custom’,PASSWORD(’obscure’));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,Update_priv,Delete_priv,
-> Create_priv,Drop_priv)
-> VALUES
-> (’localhost’,’bankaccount’,’custom’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’);

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,Update_priv,Delete_priv,
-> Create_priv,Drop_priv)
-> VALUES
-> (’whitehouse.gov’,’expenses’,’custom’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’);

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,Update_priv,Delete_priv,
-> Create_priv,Drop_priv)
-> VALUES(’server.domain’,’customer’,’custom’,’Y’,’Y’,’Y’,’Y’,’Y’,’Y’);

mysql> FLUSH PRIVILEGES;

As in the preceding example that used INSERT statements, you may need to use a different
number of ’Y’ values, depending on your version of MySQL.

The first three INSERT statements add user table entries that allow user custom to con-
nect from the various hosts with the given password, but grant no permissions to him (all
privileges are set to the default value of ’N’). The next three INSERT statements add db

Chapter 4: Database Administration 249

table entries that grant privileges to custom for the bankaccount, expenses, and customer
databases, but only when accessed from the proper hosts. As usual, after you modify the
grant tables directly , you must tell the server to reload them (with FLUSH PRIVILEGES) so
that the privilege changes take effect.

If you want to give a specific user access from any machine in a given domain (for example,
mydomain.com), you can issue a GRANT statement like the following:

mysql> GRANT ...
-> ON *.*
-> TO myusername@’%.mydomain.com’
-> IDENTIFIED BY ’mypassword’;

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user VALUES (’%.mydomain.com’, ’myusername’,
-> PASSWORD(’mypassword’),...);

mysql> FLUSH PRIVILEGES;

4.4.6 Deleting Users from MySQL

DROP USER user_name

This command was added to MySQL 4.1.1.

It deletes a user that doesn’t have any privileges.

To delete a user from MySQL you should do things in the following order:

1. Check which privileges the user has with SHOW PRIVILEGES. See Section 4.6.8.11
[SHOW PRIVILEGES], page 306.

2. Delete all privileges from the user with REVOKE. See Section 4.4.1 [GRANT], page 239.

3. Delete the user with DROP USER.

If you are using and older MySQL version you should first revoke the privileges and then
delete the user with:

DELETE FROM mysql.user WHERE user=’username’ and host=’hostname’;
FLUSH PRIVILEGES;

4.4.7 Limiting user resources

Starting from MySQL 4.0.2 one can limit certain resources per user.

So far, the only available method of limiting usage of MySQL server resources has been
setting the max_user_connections startup variable to a non-zero value. But this method
is strictly global and does not allow for management of individual users, which could be of
particular interest to Internet Service Providers.

Therefore, management of three resources is introduced on the individual user level:

• Number of all queries per hour: All commands that could be run by a user.

• Number of all updates per hour: Any command that changes any table or database.

• Number of connections made per hour: New connections opened per hour.

250 MySQL Technical Reference for Version 4.1.1-alpha

A user in the aforementioned context is a single entry in the user table, which is uniquely
identified by its user and host columns.

All users are by default not limited in using the above resources, unless the limits are granted
to them. These limits can be granted only via global GRANT (*.*), using this syntax:

GRANT ... WITH MAX_QUERIES_PER_HOUR N1
MAX_UPDATES_PER_HOUR N2
MAX_CONNECTIONS_PER_HOUR N3;

One can specify any combination of the above resources. N1, N2, and N3 are integers and
represent counts per hour.

If a user reaches the limit on number of connections within one hour, no further connections
will be accepted until that hour is up. Similarly, if the user reaches the limit on number of
queries or updates, further queries or updates will be rejected until the hour is up. In all
cases, an appropriate error message shall be issued.

Current usage values for a particular user can be flushed (set to zero) by issuing a GRANT
statement with any of the above clauses, including a GRANT statement with the current
values.

Also, current values for all users will be flushed if privileges are reloaded (in the server or
using mysqladmin reload) or if the FLUSH USER_RESOURCES command is issued.

The feature is enabled as soon as a single user is granted with any of the limiting GRANT
clauses.

As a prerequisite for enabling this feature, the user table in the mysql database must
contain the additional columns, as defined in the table creation scripts mysql_install_db
and mysql_install_db.sh in ‘scripts’ subdirectory.

4.4.8 Setting Up Passwords

In most cases you should use GRANT to set up your users/passwords, so the following only
applies for advanced users. See Section 4.4.1 [GRANT], page 239.

The examples in the preceding sections illustrate an important principle: when you store
a non-empty password using INSERT or UPDATE statements, you must use the PASSWORD()
function to encrypt it. This is because the user table stores passwords in encrypted form,
not as plaintext. If you forget that fact, you are likely to attempt to set passwords like this:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES(’%’,’jeffrey’,’biscuit’);
mysql> FLUSH PRIVILEGES;

The result is that the plaintext value ’biscuit’ is stored as the password in the user
table. When the user jeffrey attempts to connect to the server using this password, the
mysql client encrypts it with PASSWORD(), generates an authentification vector based on
encrypted password and a random number, obtained from server, and sends the result to
the server. The server uses the password value in the user table (that is not encrypted
value ’biscuit’) to perform the same calculations, and compares results. The comparison
fails and the server rejects the connection:

Chapter 4: Database Administration 251

shell> mysql -u jeffrey -pbiscuit test
Access denied

Passwords must be encrypted when they are inserted in the user table, so the INSERT
statement should have been specified like this instead:

mysql> INSERT INTO user (Host,User,Password)
-> VALUES(’%’,’jeffrey’,PASSWORD(’biscuit’));

You must also use the PASSWORD() function when you use SET PASSWORD statements:
mysql> SET PASSWORD FOR jeffrey@"%" = PASSWORD(’biscuit’);

If you set passwords using the GRANT ... IDENTIFIED BY statement or the mysqladmin
password command, the PASSWORD() function is unnecessary. They both take care of
encrypting the password for you, so you would specify a password of ’biscuit’ like this:

mysql> GRANT USAGE ON *.* TO jeffrey@"%" IDENTIFIED BY ’biscuit’;

or
shell> mysqladmin -u jeffrey password biscuit

Note: PASSWORD() is different from Unix password encryption. See Section 4.4.2 [User
names], page 243.

4.4.9 Keeping Your Password Secure

It is inadvisable to specify your password in a way that exposes it to discovery by other
users. The methods you can use to specify your password when you run client programs
are listed here, along with an assessment of the risks of each method:
• Never give a normal user access to the mysql.user table. Knowing the encrypted

password for a user makes it possible to login as this user. The passwords are only
scrambled so that one shouldn’t be able to see the real password you used (if you
happen to use a similar password with your other applications).

• Use a -pyour_pass or --password=your_pass option on the command line. This
is convenient but insecure, because your password becomes visible to system status
programs (such as ps) that may be invoked by other users to display command-lines.
(MySQL clients typically overwrite the command-line argument with zeroes during
their initialisation sequence, but there is still a brief interval during which the value is
visible.)

• Use a -p or --password option (with no your_pass value specified). In this case, the
client program solicits the password from the terminal:

shell> mysql -u user_name -p
Enter password: ********

The ‘*’ characters represent your password.
It is more secure to enter your password this way than to specify it on the command-line
because it is not visible to other users. However, this method of entering a password
is suitable only for programs that you run interactively. If you want to invoke a client
from a script that runs non-interactively, there is no opportunity to enter the password
from the terminal. On some systems, you may even find that the first line of your
script is read and interpreted (incorrectly) as your password!

252 MySQL Technical Reference for Version 4.1.1-alpha

• Store your password in a configuration file. For example, you can list your password
in the [client] section of the ‘.my.cnf’ file in your home directory:

[client]
password=your_pass

If you store your password in ‘.my.cnf’, the file should not be group or world readable
or writable. Make sure the file’s access mode is 400 or 600.
See Section 4.1.2 [Option files], page 203.

• You can store your password in the MYSQL_PWD environment variable, but this method
must be considered extremely insecure and should not be used. Some versions of ps
include an option to display the environment of running processes; your password will
be in plain sight for all to see if you set MYSQL_PWD. Even on systems without such
a version of ps, it is unwise to assume there is no other method to observe process
environments. See Appendix F [Environment variables], page 1016.

All in all, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected ‘.my.cnf’ file.

4.4.10 Using Secure Connections

4.4.10.1 Basics

Beginning with version 4.0.0, MySQL has support for SSL encrypted connections. To
understand how MySQL uses SSL, it’s necessary to explain some basic SSL and X509
concepts. People who are already familiar with them can skip this part.
By default, MySQL uses unencrypted connections between the client and the server. This
means that someone could watch all your traffic and look at the data being sent or received.
They could even change the data while it is in transit between client and server. Sometimes
you need to move information over public networks in a secure fashion; in such cases, using
an unencrypted connection is unacceptable.
SSL is a protocol that uses different encryption algorithms to ensure that data received over
a public network can be trusted. It has mechanisms to detect any change, loss or replay of
data. SSL also incorporates algorithms to recognise and provide identity verification using
the X509 standard.
Encryption is the way to make any kind of data unreadable. In fact, today’s practice requires
many additional security elements from encryption algorithms. They should resist many
kind of known attacks like just messing with the order of encrypted messages or replaying
data twice.
X509 is a standard that makes it possible to identify someone on the Internet. It is most
commonly used in e-commerce applications. In basic terms, there should be some company
(called a “Certificate Authority”) that assigns electronic certificates to anyone who needs
them. Certificates rely on asymmetric encryption algorithms that have two encryption keys
(a public key and a secret key). A certificate owner can prove his identity by showing
his certificate to other party. A certificate consists of its owner’s public key. Any data
encrypted with this public key can be decrypted only using the corresponding secret key,
which is held by the owner of the certificate.

Chapter 4: Database Administration 253

MySQL doesn’t use encrypted connections by default, because doing so would make the
client/server protocol much slower. Any kind of additional functionality requires the com-
puter to do additional work and encrypting data is a CPU-intensive operation that requires
time and can delay MySQL main tasks. By default MySQL is tuned to be fast as possible.
If you need more information about SSL, X509, or encryption, you should use your favourite
Internet search engine and search for keywords in which you are interested.

4.4.10.2 Requirements

To get secure connections to work with MySQL you must do the following:
1. Install the OpenSSL library. We have tested MySQL with OpenSSL 0.9.6.

http://www.openssl.org/.
2. Configure MySQL with --with-vio --with-openssl.
3. If you are using an old MySQL installation, you have to update your mysql.user table

with some new SSL-related columns. This is necessary if your grant tables date from a
version prior to MySQL 4.0.0. The procedure is described in Section 2.5.6 [Upgrading-
grant-tables], page 119.

4. You can check if a running mysqld server supports OpenSSL by examining if SHOW
VARIABLES LIKE ’have_openssl’ returns YES.

4.4.10.3 Setting Up SSL Certificates for MySQL

Here is an example for setting up SSL certificates for MySQL:
DIR=‘pwd‘/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem \
-config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf

254 MySQL Technical Reference for Version 4.1.1-alpha

Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to ’/home/monty/openssl/private/cakey.pem’
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to ’/home/monty/openssl/server-key.pem’
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:

Chapter 4: Database Administration 255

Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key (optional)
#

openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’FI’
organizationName :PRINTABLE:’MySQL AB’
commonName :PRINTABLE:’MySQL admin’
Certificate is to be certified until Sep 13 14:22:46 2003 GMT (365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf

256 MySQL Technical Reference for Version 4.1.1-alpha

Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to ’/home/monty/openssl/client-key.pem’
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove a passphrase from the key (optional)
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -policy policy_anything -out $DIR/client-cert.pem \
-config $DIR/openssl.cnf -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’FI’
organizationName :PRINTABLE:’MySQL AB’

Chapter 4: Database Administration 257

commonName :PRINTABLE:’MySQL user’
Certificate is to be certified until Sep 13 16:45:17 2003 GMT (365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"
cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " ’
’ > $DIR/my.cnf

#
To test MySQL

mysqld --defaults-file=$DIR/my.cnf &

mysql --defaults-file=$DIR/my.cnf

You can also test your setup by modifying the above ‘my.cnf’ file to refer to the demo
certificates in the mysql-source-dist/SSL direcory.

4.4.10.4 SSL GRANT Options

MySQL can check X509 certificate attributes in addition to the normal username/password
scheme. All the usual options are still required (username, password, IP address mask,
database/table name).

There are different possibilities to limit connections:

• Without any SSL or X509 options, all kind of encrypted/unencrypted connections are
allowed if the username and password are valid.

• REQUIRE SSL option limits the server to allow only SSL encrypted connections. Note
that this option can be omitted if there are any ACL records which allow non-SSL
connections.

258 MySQL Technical Reference for Version 4.1.1-alpha

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’ REQUIRE SSL;

• REQUIRE X509 means that the client should have a valid certificate but we do not care
about the exact certificate, issuer or subject. The only restriction is that it should be
possible to verify its signature with one of the CA certificates.

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’ REQUIRE X509;

• REQUIRE ISSUER ’issuer’ places a restriction on connection attempts: The client must
present a valid X509 certificate issued by CA ’issuer’. Using X509 certificates always
implies encryption, so the SSL option is unneccessary.

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’
-> REQUIRE ISSUER ’C=FI, ST=Some-State, L=Helsinki,
’> O=MySQL Finland AB, CN=Tonu Samuel/Email=tonu@mysql.com’;

• REQUIRE SUBJECT ’subject’ requires clients to have valid X509 certificate with subject
’subject’ on it. If the client presents a certificate that is valid but has a different
’subject’, the connection is disallowed.

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’
-> REQUIRE SUBJECT ’C=EE, ST=Some-State, L=Tallinn,
’> O=MySQL demo client certificate,
’> CN=Tonu Samuel/Email=tonu@mysql.com’;

• REQUIRE CIPHER ’cipher’ is needed to assure enough strong ciphers and keylengths
will be used. SSL itself can be weak if old algorithms with short encryption keys are
used. Using this option, we can ask for some exact cipher method to allow a connection.

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’
-> REQUIRE CIPHER ’EDH-RSA-DES-CBC3-SHA’;

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like
this:

mysql> GRANT ALL PRIVILEGES ON test.* TO root@localhost
-> IDENTIFIED BY ’goodsecret’
-> REQUIRE SUBJECT ’C=EE, ST=Some-State, L=Tallinn,
’> O=MySQL demo client certificate,
’> CN=Tonu Samuel/Email=tonu@mysql.com’
-> AND ISSUER ’C=FI, ST=Some-State, L=Helsinki,
’> O=MySQL Finland AB, CN=Tonu Samuel/Email=tonu@mysql.com’
-> AND CIPHER ’EDH-RSA-DES-CBC3-SHA’;

Starting from MySQL 4.0.4 the AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

Chapter 4: Database Administration 259

4.4.10.5 SSL Command-line Options

The following table lists options that are used for specifying the use of SSL, certificate files,
and key files. These options are available beginning with MySQL 4.0. They may be given
on the command line or in option files.

--ssl For the server, specifies that the server allows SSL connections. For a client
program, allows the client to connect to the server using SSL. This option itself
is not sufficient to cause an SSL connection to be used. You must also specify
the --ssl-ca, --ssl-cert, and --ssl-key options.
Note that this option doesn’t require an SSL connection. For example, if the
server or client are compiled without SSL support, a normal unencrypted con-
nection will be used.
The secure way to ensure that a SSL connection will be used is to create an
account on the server that includes a REQUIRE SSL clause in the GRANT state-
ment. Then use this account to connect to the server, with both a server and
client that have SSL support enabled.
You can use this option to indicate that the connection should not use SSL. Do
this by specifying the option as --skip-ssl or --ssl=0.

--ssl-ca=file_name
The path to a file with a list of trusted SSL CAs.

--ssl-capath=directory_name
The path to a directory which contains trusted SSL CA certificates in pem
format.

--ssl-cert=file_name
The name of the SSL certificate file to use used for establishing a secure con-
nection.

--ssl-cipher=cipher_list
A list of allowable ciphers to use for SSL encryption. cipher_list has the
same format as the openssl ciphers command.
Example: --ssl-cipher=ALL:-AES:-EXP

--ssl-key=file_name
The name of the SSL key file to use used for establishing a secure connection.

4.5 Disaster Prevention and Recovery

4.5.1 Database Backups

Because MySQL tables are stored as files, it is easy to do a backup. To get a consistent
backup, do a LOCK TABLES on the relevant tables followed by FLUSH TABLES for the tables.
See Section 6.7.5 [LOCK TABLES], page 581. See Section 4.6.4 [FLUSH], page 282. You only
need a read lock; this allows other threads to continue to query the tables while you are

260 MySQL Technical Reference for Version 4.1.1-alpha

making a copy of the files in the database directory. The FLUSH TABLE is needed to ensure
that the all active index pages is written to disk before you start the backup.

Starting from 3.23.56 and 4.0.12 BACKUP TABLE will not allow you to overwrite existing files
as this would be a security risk.

If you want to make an SQL level backup of a table, you can use SELECT INTO OUTFILE
or BACKUP TABLE. See Section 6.4.1 [SELECT], page 530. See Section 4.5.2 [BACKUP
TABLE], page 261.

Another way to back up a database is to use the mysqldump program or the mysqlhotcopy
script. See Section 4.9.6 [mysqldump], page 339. See Section 4.9.7 [mysqlhotcopy],
page 344.

1. Do a full backup of your database:

shell> mysqldump --tab=/path/to/some/dir --opt db_name

or

shell> mysqlhotcopy db_name /path/to/some/dir

You can also simply copy all table files (‘*.frm’, ‘*.MYD’, and ‘*.MYI’ files) as long as
the server isn’t updating anything. The script mysqlhotcopy does use this method.
(But note that these methods will not work if your database contains InnoDB tables.
InnoDB does not store table contents in database directories, and mysqlhotcopy works
only for MyISAM and ISAM tables.)

2. Stop mysqld if it’s running, then start it with the --log-bin[=file_name] option.
See Section 4.10.4 [Binary log], page 351. The binary log file(s) provide you with the
information you need to replicate changes to the database that are made subsequent
to the point at which you executed mysqldump.

If your MySQL server is a slave, whatever backup method you choose, when you backup
your slave’s data, you should also backup the ‘master.info’ and ‘relay-log.info’ files
which are always needed to resume replication after you restore the slave’s data. If your
slave is subject to replicating LOAD DATA INFILE commands, you should also backup the
‘SQL-LOAD*’ files which may exist in the ‘slave-load-tmpdir’ (which is ‘tmpdir’ by default)
directory. The slave will need these files to resume replication of any interrupted LOAD DATA
INFILE.

If you have to restore something, try to recover your tables using REPAIR TABLE or
myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, try the
following procedure (this will only work if you have started MySQL with --log-bin, see
Section 4.10.4 [Binary log], page 351):

1. Restore the original mysqldump backup, or binary backup.

2. Execute the following command to re-run the updates in the binary log:

shell> mysqlbinlog hostname-bin.[0-9]* | mysql

In your case you may want to re-run only certain binlogs, from certain positions (usually
you want to re-run all binlogs from the date of the restored backup, possibly excepted
some wrong queries). See Section 4.9.4 [mysqlbinlog], page 336 for more information
on the mysqlbinlog utility and how to use it.

Chapter 4: Database Administration 261

If you are using the update log (which will be removed in MySQL 5.0) you can execute
the content of the update log like this:

shell> ls -1 -t -r hostname.[0-9]* | xargs cat | mysql

ls is used to get all the update log files in the right order.

You can also do selective backups with SELECT * INTO OUTFILE ’file_name’ FROM tbl_
name and restore with LOAD DATA INFILE ’file_name’ REPLACE ... To avoid duplicate
records, you need a PRIMARY KEY or a UNIQUE key in the table. The REPLACE keyword
causes old records to be replaced with new ones when a new record duplicates an old record
on a unique key value.

If you get performance problems in making backups on your system, you can solve this
by setting up replication and do the backups on the slave instead of on the master. See
Section 4.11.1 [Replication Intro], page 355.

If you are using a Veritas filesystem, you can do:

1. From a client (or Perl), execute: FLUSH TABLES WITH READ LOCK.
2. From another shell, execute: mount vxfs snapshot.
3. From the first client, execute: UNLOCK TABLES.
4. Copy files from snapshot.
5. Unmount snapshot.

4.5.2 BACKUP TABLE Syntax

BACKUP TABLE tbl_name[,tbl_name...] TO ’/path/to/backup/directory’

Copies to the backup directory the minimum number of table files needed to restore the
table, after flushing any buffered changes to disk. Currently works only for MyISAM tables.
For MyISAM tables, copies ‘.frm’ (definition) and ‘.MYD’ (data) files. The index file can be
rebuilt from those two.

Before using this command, please see Section 4.5.1 [Backup], page 259.

During the backup, a read lock will be held for each table, one at time, as they are being
backed up. If you want to back up several tables as a snapshot, you must first issue LOCK
TABLES obtaining a read lock for each table in the group.

The command returns a table with the following columns:

Column Value
Table Table name
Op Always backup
Msg type One of status, error, info, or

warning
Msg text The message

Note that BACKUP TABLE is only available in MySQL version 3.23.25 and later.

4.5.3 RESTORE TABLE Syntax

RESTORE TABLE tbl_name[,tbl_name...] FROM ’/path/to/backup/directory’

262 MySQL Technical Reference for Version 4.1.1-alpha

Restores the table or tables from the backup that was made with BACKUP TABLE. Existing
tables will not be overwritten; if you try to restore over an existing table, you will get an
error. Restoring will take longer than backing up due to the need to rebuild the index. The
more keys you have, the longer it will take. Just as BACKUP TABLE, RESTORE TABLE currently
works only for MyISAM tables.

The command returns a table with the following columns:

Column Value
Table Table name
Op Always restore
Msg type One of status, error, info, or

warning
Msg text The message

4.5.4 CHECK TABLE Syntax

CHECK TABLE tbl_name[,tbl_name...] [option [option...]]

option = QUICK | FAST | MEDIUM | EXTENDED | CHANGED

CHECK TABLE works only on MyISAM and InnoDB tables. On MyISAM tables, it’s the same
thing as running myisamchk --medium-check table_name on the table.

If you don’t specify any option, MEDIUM is used.

Checks the table or tables for errors. For MyISAM tables, the key statistics are updated. The
command returns a table with the following columns:

Column Value
Table Table name
Op Always check
Msg type One of status, error, info, or

warning
Msg text The message

Note that the statement may produce many rows of information for each checked table.
The last row will be of Msg_type status and should normally be OK. If you don’t get
OK, or Table is already up to date you should normally run a repair of the table. See
Section 4.5.6 [Table maintenance], page 264. Table is already up to date means that the
storage manager for the table indicated that there was no need to check the table.

The different check types are as follows:

Type Meaning
QUICK Don’t scan the rows to check for incorrect links.
FAST Only check tables that haven’t been closed properly.
CHANGED Only check tables that have been changed since the last check or haven’t

been closed properly.
MEDIUM Scan rows to verify that deleted links are okay. This also calculates a key

checksum for the rows and verifies this with a calculated checksum for the
keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table
is 100% consistent, but will take a long time!

Chapter 4: Database Administration 263

For dynamically sized MyISAM tables, a started check will always do a MEDIUM check. For
statically sized rows, we skip the row scan for QUICK and FAST as the rows are very seldom
corrupted.
You can combine check options, as in the following example that does a quick check on the
table to see whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note: that in some cases CHECK TABLE will change the table! This happens if the table is
marked as ’corrupted’ or ’not closed properly’ but CHECK TABLE didn’t find any problems
in the table. In this case, CHECK TABLE will mark the table as okay.
If a table is corrupted, then it’s most likely that the problem is in the indexes and not in
the data part. All of the above check types checks the indexes thoroughly and should thus
find most errors.
If you just want to check a table that you assume is okay, you should use no check options
or the QUICK option. The latter should be used when you are in a hurry and can take the
very small risk that QUICK didn’t find an error in the datafile. (In most cases MySQL should
find, under normal usage, any error in the datafile. If this happens then the table will be
marked as ’corrupted’, in which case the table can’t be used until it’s repaired.)
FAST and CHANGED are mostly intended to be used from a script (for example to be executed
from cron) if you want to check your table from time to time. In most cases, FAST is to
be prefered over CHANGED. (The only case when it isn’t is when you suspect that you have
found a bug in the MyISAM code.)
EXTENDED is only to be used after you have run a normal check but still get strange errors
from a table when MySQL tries to update a row or find a row by key (this is very unlikely
if a normal check has succeeded!).
Some things reported by CHECK TABLE can’t be corrected automatically:
• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column
contains the value 0. (It’s possible to create a row where the AUTO_INCREMENT column
is 0 by explicitly setting the column to 0 with an UPDATE statement.)
This isn’t an error in itself, but could cause trouble if you decide to dump the table
and restore it or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT
column will change value, according to the rules of AUTO_INCREMENT columns, which
could cause problems such as a duplicate key error.
To get rid of the warning, just execute an UPDATE statement to set the column to some
other value than 0.

4.5.5 REPAIR TABLE Syntax

REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name...] [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE works only on MyISAM tables and is the same as running myisamchk -r
table_name on the table.
Normally you should never have to run this command, but if disaster strikes you are very
likely to get back all your data from a MyISAM table with REPAIR TABLE. If your tables
get corrupted a lot, you should try to find the reason for it, to eliminate the need to use

264 MySQL Technical Reference for Version 4.1.1-alpha

REPAIR TABLE. See Section A.4.1 [Crashing], page 857. See Section 7.1.3 [MyISAM table
problems], page 599.
REPAIR TABLE repairs a possibly corrupted table. The command returns a table with the
following columns:
Column Value
Table Table name
Op Always repair
Msg type One of status, error, info, or

warning
Msg text The message
Note that the statement may produce many rows of information for each repaired table.
The last one row will be of Msg_type status and should normally be OK. If you don’t get
OK, you should try repairing the table with myisamchk --safe-recover, as REPAIR TABLE
does not yet implement all the options of myisamchk. In the near future, we will make it
more flexible.
If QUICK is given, REPAIR TABLE tries to repair only the index tree.
If you use EXTENDED, MySQL will create the index row by row instead of creating one index
at a time with sorting; this may be better than sorting on fixed-length keys if you have
long CHAR keys that compress very well. This type of repair is like that done by myisamchk
--safe-recover.
As of MySQL 4.0.2, there is a USE_FRM mode for REPAIR. Use it if the ‘.MYI’ file is missing
or if its header is corrupted. In this mode MySQL will recreate the table, using information
from the ‘.frm’ file. This kind of repair cannot be done with myisamchk.
Warning: If mysqld dies during a REPAIR TABLE, it’s essential that you do at once another
REPAIR on the table before executing any other commands on it. (It’s of course always
good to start with a backup). In the worst case you can have a new clean index file without
information about the datafile and when the next command you do may overwrite the
datafile. This is not a likely, but possible scenario.
Before MySQL 4.1.1, REPAIR commands are not written to the binary log. Since MySQL
4.1.1 they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword
(or its alias LOCAL) was used.

4.5.6 Using myisamchk for Table Maintenance and Crash Recovery

Starting with MySQL Version 3.23.13, you can check MyISAM tables with the CHECK TABLE
command. See Section 4.5.4 [CHECK TABLE], page 262. You can repair tables with the
REPAIR TABLE command. See Section 4.5.5 [REPAIR TABLE], page 263.
To check/repair MyISAM tables (‘.MYI’ and ‘.MYD’) you should use the myisamchk utility.
To check/repair ISAM tables (‘.ISM’ and ‘.ISD’) you should use the isamchk utility. See
Chapter 7 [Table types], page 593.
In the following text we will talk about myisamchk, but everything also applies to the old
isamchk.
You can use the myisamchk utility to get information about your database tables, check and
repair them, or optimise them. The following sections describe how to invoke myisamchk

Chapter 4: Database Administration 265

(including a description of its options), how to set up a table maintenance schedule, and
how to use myisamchk to perform its various functions.
You can, in most cases, also use the command OPTIMIZE TABLES to optimise and repair
tables, but this is not as fast or reliable (in case of real fatal errors) as myisamchk. On the
other hand, OPTIMIZE TABLE is easier to use and you don’t have to worry about flushing
tables. See Section 4.6.1 [OPTIMIZE TABLE], page 281.
Even though the repair in myisamchk is quite secure, it’s always a good idea to make a
backup before doing a repair (or anything that could make a lot of changes to a table)

4.5.6.1 myisamchk Invocation Syntax

myisamchk is invoked like this:
shell> myisamchk [options] tbl_name

The options specify what you want myisamchk to do. They are described here. (You can
also get a list of options by invoking myisamchk --help.) With no options, myisamchk
simply checks your table. To get more information or to tell myisamchk to take corrective
action, specify options as described here and in the following sections.
tbl_name is the database table you want to check/repair. If you run myisamchk some-
where other than in the database directory, you must specify the path to the file, because
myisamchk has no idea where your database is located. Actually, myisamchk doesn’t care
whether the files you are working on are located in a database directory; you can copy
the files that correspond to a database table into another location and perform recovery
operations on them there.
You can name several tables on the myisamchk command-line if you wish. You can also
specify a name as an index file name (with the ‘.MYI’ suffix), which allows you to specify
all tables in a directory by using the pattern ‘*.MYI’. For example, if you are in a database
directory, you can check all the tables in the directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the
path to the directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the
MySQL data directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all tables is:
myisamchk --silent --fast /path/to/datadir/*/*.MYI
isamchk --silent /path/to/datadir/*/*.ISM

If you want to check all tables and repair all tables that are corrupted, you can use the
following line:

myisamchk --silent --force --fast --update-state -O key_buffer=64M \
-O sort_buffer=64M -O read_buffer=1M -O write_buffer=1M \
/path/to/datadir/*/*.MYI

isamchk --silent --force -O key_buffer=64M -O sort_buffer=64M \

266 MySQL Technical Reference for Version 4.1.1-alpha

-O read_buffer=1M -O write_buffer=1M /path/to/datadir/*/*.ISM

The above assumes that you have more than 64 M free.

Note that if you get an error like:

myisamchk: warning: 1 clients is using or hasn’t closed the table properly

This means that you are trying to check a table that has been updated by another program
(like the mysqld server) that hasn’t yet closed the file or that has died without closing the
file properly.

If mysqld is running, you must force a sync/close of all tables with FLUSH TABLES and ensure
that no one is using the tables while you are running myisamchk. In MySQL Version 3.23
the easiest way to avoid this problem is to use CHECK TABLE instead of myisamchk to check
tables.

4.5.6.2 General Options for myisamchk

myisamchk supports the following options.

-# or --debug=debug_options
Output debug log. The debug_options string often is ’d:t:o,filename’.

-? or --help
Display a help message and exit.

-O var=option, --set-variable var=option
Set the value of a variable. Please note that --set-variable is deprecated since
MySQL 4.0, just use --var=option on its own. The possible variables and their
default values for myisamchk can be examined with myisamchk --help:

Variable Value
key buffer size 523264
read buffer size 262136
write buffer size 262136
sort buffer size 2097144
sort key blocks 16
decode bits 9

sort_buffer_size is used when the keys are repaired by sorting keys, which
is the normal case when you use --recover.

key_buffer_size is used when you are checking the table with --extended-
check or when the keys are repaired by inserting key row by row in to the table
(like when doing normal inserts). Repairing through the key buffer is used in
the following cases:

• If you use --safe-recover.

• If the temporary files needed to sort the keys would be more than twice as
big as when creating the key file directly. This is often the case when you
have big CHAR, VARCHAR or TEXT keys as the sort needs to store the whole
keys during sorting. If you have lots of temporary space and you can force
myisamchk to repair by sorting you can use the --sort-recover option.

Chapter 4: Database Administration 267

Reparing through the key buffer takes much less disk space than using sorting,
but is also much slower.
If you want a faster repair, set the above variables to about 1/4 of your available
memory. You can set both variables to big values, as only one of the above
buffers will be used at a time.

-s or --silent
Silent mode. Write output only when errors occur. You can use -s twice (-ss)
to make myisamchk very silent.

-v or --verbose
Verbose mode. Print more information. This can be used with -d and -e. Use
-v multiple times (-vv, -vvv) for more verbosity!

-V or --version
Print the myisamchk version and exit.

-w or, --wait
Instead of giving an error if the table is locked, wait until the table is unlocked
before continuing. Note that if you are running mysqld on the table with --
skip-external-locking, the table can only be locked by another myisamchk
command.

4.5.6.3 Check Options for myisamchk

-c or --check
Check table for errors. This is the default operation if you are not giving
myisamchk any options that override this.

-e or --extend-check
Check the table very thoroughly (which is quite slow if you have many indexes).
This option should only be used in extreme cases. Normally, myisamchk or
myisamchk --medium-check should, in most cases, be able to find out if there
are any errors in the table.
If you are using --extended-check and have much memory, you should increase
the value of key_buffer_size a lot!

-F or --fast
Check only tables that haven’t been closed properly.

-C or --check-only-changed
Check only tables that have changed since the last check.

-f or --force
Restart myisamchk with -r (repair) on the table, if myisamchk finds any errors
in the table.

-i or --information
Print informational statistics about the table that is checked.

-m or --medium-check
Faster than extended-check, but only finds 99.99% of all errors. Should, how-
ever, be good enough for most cases.

268 MySQL Technical Reference for Version 4.1.1-alpha

-U or --update-state
Store in the ‘.MYI’ file when the table was checked and if the table crashed.
This should be used to get full benefit of the --check-only-changed option,
but you shouldn’t use this option if the mysqld server is using the table and
you are running mysqld with --skip-external-locking.

-T or --read-only
Don’t mark table as checked. This is useful if you use myisamchk to check a
table that is in use by some other application that doesn’t use locking (like
mysqld --skip-external-locking).

4.5.6.4 Repair Options for myisamchk

The following options are used if you start myisamchk with -r or -o:

-B or --backup
Make a backup of the ‘.MYD’ file as ‘filename-time.BAK’

--correct-checksum
Correct checksum information for table.

-D # or --data-file-length=#
Max length of datafile (when re-creating datafile when it’s ’full’).

-e or --extend-check
Try to recover every possible row from the datafile. Normally this will also find
a lot of garbage rows. Don’t use this option if you are not totally desperate.

-f or --force
Overwrite old temporary files (‘table_name.TMD’) instead of aborting.

-k # or --keys-used=#
If you are using ISAM, tells the ISAM storage engine to update only the first #
indexes. If you are using MyISAM, tells which keys to use, where each binary bit
stands for one key (first key is bit 0). This can be used to get faster inserts!
Deactivated indexes can be reactivated by using myisamchk -r.

-l or --no-symlinks
Do not follow symbolic links. Normally myisamchk repairs the table a symlink
points at. This option doesn’t exist in MySQL 4.0, as MySQL 4.0 will not
remove symlinks during repair.

-p or --parallel-recover
Uses the same technique as -r and -n, but creates all the keys in parallel, in
different threads. This option was added in MySQL 4.0.2. This is alpha code.
Use at your own risk!

-r or --recover
Can fix almost anything except unique keys that aren’t unique (which is an
extremely unlikely error with ISAM/MyISAM tables). If you want to recover a
table, this is the option to try first. Only if myisamchk reports that the table
can’t be recovered by -r, you should then try -o. (Note that in the unlikely

Chapter 4: Database Administration 269

case that -r fails, the datafile is still intact.) If you have lots of memory, you
should increase the size of sort_buffer_size!

-o or --safe-recover
Uses an old recovery method (reads through all rows in order and updates all
index trees based on the found rows); this is an order of magnitude slower than
-r, but can handle a couple of very unlikely cases that -r cannot handle. This
recovery method also uses much less disk space than -r. Normally one should
always first repair with -r, and only if this fails use -o.
If you have lots of memory, you should increase the size of key_buffer_size!

-n or --sort-recover
Force myisamchk to use sorting to resolve the keys even if the temporary files
should be very big.

--character-sets-dir=...
Directory where character sets are stored.

--set-character-set=name
Change the character set used by the index

-t or --tmpdir=path
Path for storing temporary files. If this is not set, myisamchk will use the
environment variable TMPDIR for this. Starting from MySQL 4.1, tmpdir can
be set to a list of paths separated by colon : (semicolon ; on Windows). They
will be used in round-robin fashion.

-q or --quick
Faster repair by not modifying the datafile. One can give a second -q to force
myisamchk to modify the original datafile in case of duplicate keys

-u or --unpack
Unpack file packed with myisampack.

4.5.6.5 Other Options for myisamchk

Other actions that myisamchk can do, besides repair and check tables:

-a or --analyze
Analyse the distribution of keys. This improves join performance by enabling
the join optimiser to better choose in which order it should join the tables and
which keys it should use: myisamchk --describe --verbose table_name’ or
using SHOW KEYS in MySQL.

-d or --description
Prints some information about table.

-A or --set-auto-increment[=value]
Force AUTO_INCREMENT to start at this or higher value. If no value is given,
then sets the next AUTO_INCREMENT value to the highest used value for the auto
key + 1.

270 MySQL Technical Reference for Version 4.1.1-alpha

-S or --sort-index
Sort the index tree blocks in high-low order. This will optimise seeks and will
make table scanning by key faster.

-R or --sort-records=#
Sorts records according to an index. This makes your data much more localised
and may speed up ranged SELECT and ORDER BY operations on this index. (It
may be very slow to do a sort the first time!) To find out a table’s index
numbers, use SHOW INDEX, which shows a table’s indexes in the same order that
myisamchk sees them. Indexes are numbered beginning with 1.

4.5.6.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory
than you specify with the -O options. If you are going to use myisamchk on very large files,
you should first decide how much memory you want it to use. The default is to use only
about 3M to fix things. By using larger values, you can get myisamchk to operate faster.
For example, if you have more than 32M RAM, you could use options such as these (in
addition to any other options you might specify):

shell> myisamchk -O sort=16M -O key=16M -O read=1M -O write=1M ...

Using -O sort=16M should probably be enough for most cases.
Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory
filesystem, you may easily get out of memory errors. If this happens, set TMPDIR to point
at some directory with more space and restart myisamchk.
When repairing, myisamchk will also need a lot of disk space:
• Double the size of the record file (the original one and a copy). This space is not needed

if one does a repair with --quick, as in this case only the index file will be re-created.
This space is needed on the same disk as the original record file!

• Space for the new index file that replaces the old one. The old index file is truncated
at start, so one usually ignore this space. This space is needed on the same disk as the
original index file!

• When using --recover or --sort-recover (but not when using --safe-recover), you
will need space for a sort buffer for: (largest_key + row_pointer_length)*number_
of_rows * 2. You can check the length of the keys and the row pointer length with
myisamchk -dv table. This space is allocated on the temporary disk (specified by
TMPDIR or --tmpdir=#).

If you have a problem with disk space during repair, you can try to use --safe-recover
instead of --recover.

4.5.6.7 Using myisamchk for Crash Recovery

If you run mysqld with --skip-external-locking (which is the default on some systems,
like Linux), you can’t reliably use myisamchk to check a table when mysqld is using the
same table. If you can be sure that no one is accessing the tables through mysqld while you
run myisamchk, you only have to do mysqladmin flush-tables before you start checking

Chapter 4: Database Administration 271

the tables. If you can’t guarantee the above, then you must take down mysqld while you
check the tables. If you run myisamchk while mysqld is updating the tables, you may get
a warning that a table is corrupt even if it isn’t.

If you are not using --skip-external-locking, you can use myisamchk to check tables
at any time. While you do this, all clients that try to update the table will wait until
myisamchk is ready before continuing.

If you use myisamchk to repair or optimise tables, you must always ensure that the mysqld
server is not using the table (this also applies if you are using --skip-external-locking).
If you don’t take down mysqld you should at least do a mysqladmin flush-tables before
you run myisamchk. Your tables may be corrupted if the server and myisamchk access the
tables simultaneously.

This chapter describes how to check for and deal with data corruption in MySQL databases.
If your tables get corrupted frequently you should try to find the reason for this! See
Section A.4.1 [Crashing], page 857.

The MyISAM table section contains reason for why a table could be corrupted. See Sec-
tion 7.1.3 [MyISAM table problems], page 599.

When performing crash recovery, it is important to understand that each table tbl_name
in a database corresponds to three files in the database directory:

File Purpose
‘tbl_name.frm’ Table definition (form)

file
‘tbl_name.MYD’ Datafile
‘tbl_name.MYI’ Index file

Each of these three file types is subject to corruption in various ways, but problems occur
most often in datafiles and index files.

myisamchk works by creating a copy of the ‘.MYD’ (data) file row by row. It ends the repair
stage by removing the old ‘.MYD’ file and renaming the new file to the original file name. If
you use --quick, myisamchk does not create a temporary ‘.MYD’ file, but instead assumes
that the ‘.MYD’ file is correct and only generates a new index file without touching the ‘.MYD’
file. This is safe, because myisamchk automatically detects if the ‘.MYD’ file is corrupt and
aborts the repair in this case. You can also give two --quick options to myisamchk. In
this case, myisamchk does not abort on some errors (like duplicate key) but instead tries
to resolve them by modifying the ‘.MYD’ file. Normally the use of two --quick options is
useful only if you have too little free disk space to perform a normal repair. In this case
you should at least make a backup before running myisamchk.

4.5.6.8 How to Check Tables for Errors

To check a MyISAM table, use the following commands:

myisamchk tbl_name
This finds 99.99% of all errors. What it can’t find is corruption that involves
only the datafile (which is very unusual). If you want to check a table, you
should normally run myisamchk without options or with either the -s or --
silent option.

272 MySQL Technical Reference for Version 4.1.1-alpha

myisamchk -m tbl_name
This finds 99.999% of all errors. It checks first all index entries for errors and
then it reads through all rows. It calculates a checksum for all keys in the rows
and verifies that they checksum matches the checksum for the keys in the index
tree.

myisamchk -e tbl_name
This does a complete and thorough check of all data (-e means “extended
check”). It does a check-read of every key for each row to verify that they
indeed point to the correct row. This may take a long time on a big table
with many keys. myisamchk will normally stop after the first error it finds. If
you want to obtain more information, you can add the --verbose (-v) option.
This causes myisamchk to keep going, up through a maximum of 20 errors. In
normal usage, a simple myisamchk (with no arguments other than the table
name) is sufficient.

myisamchk -e -i tbl_name
Like the previous command, but the -i option tells myisamchk to print some
informational statistics, too.

4.5.6.9 How to Repair Tables

In the following section we only talk about using myisamchk on MyISAM tables (extensions
‘.MYI’ and ‘.MYD’). If you are using ISAM tables (extensions ‘.ISM’ and ‘.ISD’), you should
use isamchk instead.
Starting with MySQL Version 3.23.14, you can repair MyISAM tables with the REPAIR
TABLE command. See Section 4.5.5 [REPAIR TABLE], page 263.
The symptoms of a corrupted table include queries that abort unexpectedly and observable
errors such as these:
• ‘tbl_name.frm’ is locked against change
• Can’t find file ‘tbl_name.MYI’ (Errcode: ###)
• Unexpected end of file
• Record file is crashed
• Got error ### from table handler

To get more information about the error you can run perror ###. Here is the most
common errors that indicates a problem with the table:

shell> perror 126 127 132 134 135 136 141 144 145
126 = Index file is crashed / Wrong file format
127 = Record-file is crashed
132 = Old database file
134 = Record was already deleted (or record file crashed)
135 = No more room in record file
136 = No more room in index file
141 = Duplicate unique key or constraint on write or update
144 = Table is crashed and last repair failed
145 = Table was marked as crashed and should be repaired

Chapter 4: Database Administration 273

Note that error 135 (no more room in record file), is not an error that can be fixed by
a simple repair. In this case you have to do:

ALTER TABLE table MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

You can also use this technique for error 136 (no more room in index file).

In the other cases, you must repair your tables. myisamchk can usually detect and fix most
things that go wrong.
The repair process involves up to four stages, described here. Before you begin, you should
cd to the database directory and check the permissions of the table files. Make sure they are
readable by the Unix user that mysqld runs as (and to you, because you need to access the
files you are checking). If it turns out you need to modify files, they must also be writable
by you.
If you are using MySQL Version 3.23.16 and above, you can (and should) use the CHECK and
REPAIR commands to check and repair MyISAM tables. See Section 4.5.4 [CHECK TABLE],
page 262. See Section 4.5.5 [REPAIR TABLE], page 263.
The manual section about table maintenance includes the options to isamchk/myisamchk.
See Section 4.5.6 [Table maintenance], page 264.
The following section is for the cases where the above command fails or if you want to use
the extended features that isamchk/myisamchk provides.
If you are going to repair a table from the command-line, you must first take down the
mysqld server. Note that when you do mysqladmin shutdown on a remote server, the
mysqld server will still be alive for a while after mysqladmin returns, until all queries are
stopped and all keys have been flushed to disk.
Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent)
option to suppress unnecessary information.
If the mysqld server is done you should use the –update option to tell myisamchk to mark
the table as ’checked’.
You have to repair only those tables for which myisamchk announces an error. For such
tables, proceed to Stage 2.
If you get weird errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.
Stage 2: Easy safe repair

Note: If you want repairing to go much faster, you should add: -O sort_buffer=# -O
key_buffer=# (where # is about 1/4 of the available memory) to all isamchk/myisamchk
commands.
First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This will
attempt to repair the index file without touching the datafile. If the datafile contains
everything that it should and the delete links point at the correct locations within the
datafile, this should work, and the table is fixed. Start repairing the next table. Otherwise,
use the following procedure:
1. Make a backup of the datafile before continuing.
2. Use myisamchk -r tbl_name (-r means “recovery mode”). This will remove incorrect

records and deleted records from the datafile and reconstruct the index file.

274 MySQL Technical Reference for Version 4.1.1-alpha

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery
mode uses an old recovery method that handles a few cases that regular recovery mode
doesn’t (but is slower).

If you get weird errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.
Stage 3: Difficult repair

You should only reach this stage if the first 16K block in the index file is destroyed or
contains incorrect information, or if the index file is missing. In this case, it’s necessary to
create a new index file. Do so as follows:
1. Move the datafile to some safe place.
2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET AUTOCOMMIT=1;
mysql> TRUNCATE TABLE table_name;
mysql> quit

If your SQL version doesn’t have TRUNCATE TABLE, use DELETE FROM table_name in-
stead.

3. Copy the old datafile back onto the newly created datafile. (Don’t just move the old
file back onto the new file; you want to retain a copy in case something goes wrong.)

Go back to Stage 2. myisamchk -r -q should work now. (This shouldn’t be an endless
loop.)
As of MySQL 4.0.2 you can also use REPAIR ... USE_FRM which performs the whole procedure
automatically.
Stage 4: Very difficult repair

You should reach this stage only if the description file has also crashed. That should never
happen, because the description file isn’t changed after the table is created:
1. Restore the description file from a backup and go back to Stage 3. You can also

restore the index file and go back to Stage 2. In the latter case, you should start with
myisamchk -r.

2. If you don’t have a backup but know exactly how the table was created, create a copy
of the table in another database. Remove the new datafile, then move the description
and index files from the other database to your crashed database. This gives you new
description and index files, but leaves the datafile alone. Go back to Stage 2 and
attempt to reconstruct the index file.

4.5.6.10 Table Optimisation

To coalesce fragmented records and eliminate wasted space resulting from deleting or up-
dating records, run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimise a table in the same way using the SQL OPTIMIZE TABLE statement.
OPTIMIZE TABLE does a repair of the table and a key analysis, and also sorts the index
tree to give faster key lookups. There is also no possibility of unwanted interaction between

Chapter 4: Database Administration 275

a utility and the server, because the server does all the work when you use OPTIMIZE TABLE.
See Section 4.6.1 [OPTIMIZE TABLE], page 281.
myisamchk also has a number of other options you can use to improve the performance of
a table:
• -S, --sort-index
• -R index_num, --sort-records=index_num
• -a, --analyze

For a full description of the option. See Section 4.5.6.1 [myisamchk syntax], page 265.

4.5.7 Setting Up a Table Maintenance Regimen

Starting with MySQL Version 3.23.13, you can check MyISAM tables with the CHECK TABLE
command. See Section 4.5.4 [CHECK TABLE], page 262. You can repair tables with the
REPAIR TABLE command. See Section 4.5.5 [REPAIR TABLE], page 263.
It is a good idea to perform table checks on a regular basis rather than waiting for problems
to occur. For maintenance purposes, you can use myisamchk -s to check tables. The -s
option (short for --silent) causes myisamchk to run in silent mode, printing messages only
when errors occur.
It’s also a good idea to check tables when the server starts up. For example, whenever the
machine has done a reboot in the middle of an update, you usually need to check all the
tables that could have been affected. (This is an “expected crashed table”.) You could add
a test to mysqld_safe that runs myisamchk to check all tables that have been modified
during the last 24 hours if there is an old ‘.pid’ (process ID) file left after a reboot. (The
‘.pid’ file is created by mysqld when it starts up and removed when it terminates normally.
The presence of a ‘.pid’ file at system startup time indicates that mysqld terminated
abnormally.)
An even better test would be to check any table whose last-modified time is more recent
than that of the ‘.pid’ file.
You should also check your tables regularly during normal system operation. At MySQL
AB, we run a cron job to check all our important tables once a week, using a line like this
in a ‘crontab’ file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so we can examine and repair them when
needed.
As we haven’t had any unexpectedly crashed tables (tables that become corrupted for
reasons other than hardware trouble) for a couple of years now (this is really true), once a
week is more than enough for us.
We recommend that to start with, you execute myisamchk -s each night on all tables that
have been updated during the last 24 hours, until you come to trust MySQL as much as we
do.
Normally you don’t need to maintain MySQL tables that much. If you are changing tables
with dynamic size rows (tables with VARCHAR, BLOB or TEXT columns) or have tables with
many deleted rows you may want to from time to time (once a month?) defragment/reclaim
space from the tables.

276 MySQL Technical Reference for Version 4.1.1-alpha

You can do this by using OPTIMIZE TABLE on the tables in question or if you can take down
the mysqld server for a while do:

isamchk -r --silent --sort-index -O sort_buffer_size=16M */*.ISM
myisamchk -r --silent --sort-index -O sort_buffer_size=16M */*.MYI

4.5.8 Getting Information About a Table

To get a description of a table or statistics about it, use the commands shown here. We
explain some of the information in more detail later:

• myisamchk -d tbl name Runs myisamchk in “describe mode” to produce a description of
your table. If you start the MySQL server using the --skip-external-locking option,
myisamchk may report an error for a table that is updated while it runs. However,
because myisamchk doesn’t change the table in describe mode, there isn’t any risk of
destroying data.

• myisamchk -d -v tbl name To produce more information about what myisamchk is
doing, add -v to tell it to run in verbose mode.

• myisamchk -eis tbl name Shows only the most important information from a table. It
is slow because it must read the whole table.

• myisamchk -eiv tbl name This is like -eis, but tells you what is being done.

Example of myisamchk -d output:

MyISAM file: company.MYI
Record format: Fixed length
Data records: 1403698 Deleted blocks: 0
Recordlength: 226

table description:
Key Start Len Index Type
1 2 8 unique double
2 15 10 multip. text packed stripped
3 219 8 multip. double
4 63 10 multip. text packed stripped
5 167 2 multip. unsigned short
6 177 4 multip. unsigned long
7 155 4 multip. text
8 138 4 multip. unsigned long
9 177 4 multip. unsigned long

193 1 text

Example of myisamchk -d -v output:

MyISAM file: company
Record format: Fixed length
File-version: 1
Creation time: 1999-10-30 12:12:51
Recover time: 1999-10-31 19:13:01
Status: checked

Chapter 4: Database Administration 277

Data records: 1403698 Deleted blocks: 0
Datafile parts: 1403698 Deleted data: 0
Datafilepointer (bytes): 3 Keyfile pointer (bytes): 3
Max datafile length: 3791650815 Max keyfile length: 4294967294
Recordlength: 226

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 8 unique double 1 15845376 1024
2 15 10 multip. text packed stripped 2 25062400 1024
3 219 8 multip. double 73 40907776 1024
4 63 10 multip. text packed stripped 5 48097280 1024
5 167 2 multip. unsigned short 4840 55200768 1024
6 177 4 multip. unsigned long 1346 65145856 1024
7 155 4 multip. text 4995 75090944 1024
8 138 4 multip. unsigned long 87 85036032 1024
9 177 4 multip. unsigned long 178 96481280 1024

193 1 text

Example of myisamchk -eis output:
Checking MyISAM file: company
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 98% Packed: 17%

Records: 1403698 M.recordlength: 226
Packed: 0%
Recordspace used: 100% Empty space: 0%
Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

User time 1626.51, System time 232.36
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 627, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 639, Involuntary context switches 28966

Example of myisamchk -eiv output:
Checking MyISAM file: company

278 MySQL Technical Reference for Version 4.1.1-alpha

Data records: 1403698 Deleted blocks: 0
- check file-size
- check delete-chain
block_size 1024:
index 1:
index 2:
index 3:
index 4:
index 5:
index 6:
index 7:
index 8:
index 9:
No recordlinks
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 2
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
- check data record references index: 3
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
- check data record references index: 5
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 6
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 7
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 8
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 9
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 9% Packed: 17%

- check records and index references
[LOTS OF ROW NUMBERS DELETED]

Records: 1403698 M.recordlength: 226 Packed: 0%
Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

User time 1639.63, System time 251.61
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 10580, Swaps 0

Chapter 4: Database Administration 279

Blocks in 4 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 10604, Involuntary context switches 122798

Here are the sizes of the data and index files for the table used in the preceding examples:
-rw-rw-r-- 1 monty tcx 317235748 Jan 12 17:30 company.MYD
-rw-rw-r-- 1 davida tcx 96482304 Jan 12 18:35 company.MYM

Explanations for the types of information myisamchk produces are given here. The “keyfile”
is the index file. “Record” and “row” are synonymous:
• ISAM file Name of the ISAM (index) file.
• Isam-version Version of ISAM format. Currently always 2.
• Creation time When the datafile was created.
• Recover time When the index/datafile was last reconstructed.
• Data records How many records are in the table.
• Deleted blocks How many deleted blocks still have reserved space. You can optimise

your table to minimise this space. See Section 4.5.6.10 [Optimisation], page 274.
• Data file: Parts For dynamic record format, this indicates how many data blocks there

are. For an optimised table without fragmented records, this is the same as Data
records.

• Deleted data How many bytes of non-reclaimed deleted data there are. You can opti-
mise your table to minimise this space. See Section 4.5.6.10 [Optimisation], page 274.

• Data file pointer The size of the datafile pointer, in bytes. It is usually 2, 3, 4, or 5
bytes. Most tables manage with 2 bytes, but this cannot be controlled from MySQL
yet. For fixed tables, this is a record address. For dynamic tables, this is a byte address.

• Keyfile pointer The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes.
Most tables manage with 2 bytes, but this is calculated automatically by MySQL. It
is always a block address.

• Max datafile length How long the table’s datafile (‘.MYD’ file) can become, in bytes.
• Max keyfile length How long the table’s key file (‘.MYI’ file) can become, in bytes.
• Recordlength How much space each record takes, in bytes.
• Record format The format used to store table rows. The preceding examples use Fixed

length. Other possible values are Compressed and Packed.
• table description A list of all keys in the table. For each key, some low-level information

is presented:
− Key This key’s number.
− Start Where in the record this index part starts.
− Len How long this index part is. For packed numbers, this should always be the

full length of the column. For strings, it may be shorter than the full length of the
indexed column, because you can index a prefix of a string column.

− Index unique or multip. (multiple). Indicates whether one value can exist multi-
ple times in this index.

− Type What data-type this index part has. This is an ISAM data-type with the
options packed, stripped or empty.

− Root Address of the root index block.

280 MySQL Technical Reference for Version 4.1.1-alpha

− Blocksize The size of each index block. By default this is 1024, but the value may
be changed at compile time.

− Rec/key This is a statistical value used by the optimiser. It tells how many records
there are per value for this key. A unique key always has a value of 1. This may
be updated after a table is loaded (or greatly changed) with myisamchk -a. If this
is not updated at all, a default value of 30 is given.

• In the first example above, the 9th key is a multi-part key with two parts.
• Keyblocks used What percentage of the keyblocks are used. Because the table used in

the examples had just been reorganised with myisamchk, the values are very high (very
near the theoretical maximum).

• Packed MySQL tries to pack keys with a common suffix. This can only be used for
CHAR/VARCHAR/DECIMAL keys. For long strings like names, this can significantly reduce
the space used. In the third example above, the 4th key is 10 characters long and a
60% reduction in space is achieved.

• Max levels How deep the B-tree for this key is. Large tables with long keys get high
values.

• Records How many rows are in the table.
• M.recordlength The average record length. For tables with fixed-length records, this is

the exact record length.
• Packed MySQL strips spaces from the end of strings. The Packed value indicates the

percentage of savings achieved by doing this.
• Recordspace used What percentage of the datafile is used.
• Empty space What percentage of the datafile is unused.
• Blocks/Record Average number of blocks per record (that is, how many links a frag-

mented record is composed of). This is always 1.0 for fixed-format tables. This value
should stay as close to 1.0 as possible. If it gets too big, you can reorganise the table
with myisamchk. See Section 4.5.6.10 [Optimisation], page 274.

• Recordblocks How many blocks (links) are used. For fixed format, this is the same as
the number of records.

• Deleteblocks How many blocks (links) are deleted.
• Recorddata How many bytes in the datafile are used.
• Deleted data How many bytes in the datafile are deleted (unused).
• Lost space If a record is updated to a shorter length, some space is lost. This is the

sum of all such losses, in bytes.
• Linkdata When the dynamic table format is used, record fragments are linked with

pointers (4 to 7 bytes each). Linkdata is the sum of the amount of storage used by all
such pointers.

If a table has been compressed with myisampack, myisamchk -d prints additional informa-
tion about each table column. See Section 4.8.4 [myisampack], page 317, for an example of
this information and a description of what it means.

4.6 Database Administration Language Reference

Chapter 4: Database Administration 281

4.6.1 OPTIMIZE TABLE Syntax

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name]...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have
made many changes to a table with variable-length rows (tables that have VARCHAR, BLOB,
or TEXT columns). Deleted records are maintained in a linked list and subsequent INSERT
operations reuse old record positions. You can use OPTIMIZE TABLE to reclaim the unused
space and to defragment the datafile.
In most setups you don’t have to run OPTIMIZE TABLE at all. Even if you do a lot of updates
to variable length rows it’s not likely that you need to do this more than once a month/week
and only on certain tables.
For the moment, OPTIMIZE TABLE works only on MyISAM and BDB tables. For BDB tables,
OPTIMIZE TABLE is currently mapped to ANALYZE TABLE. See Section 4.6.2 [ANALYZE TABLE],
page 281.
You can get OPTIMIZE TABLE to work on other table types by starting mysqld with --skip-
new or --safe-mode, but in this case OPTIMIZE TABLE is just mapped to ALTER TABLE.
OPTIMIZE TABLE works the following way:
• If the table has deleted or split rows, repair the table.
• If the index pages are not sorted, sort them.
• If the statistics are not up to date (and the repair couldn’t be done by sorting the

index), update them.

Note that the table is locked during the time OPTIMIZE TABLE is running!
Before MySQL 4.1.1, OPTIMIZE commands are not written to the binary log. Since MySQL
4.1.1 they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword
(or its alias LOCAL) was used.

4.6.2 ANALYZE TABLE Syntax

ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name[,tbl_name...]

Analyse and store the key distribution for the table. During the analysis, the table is locked
with a read lock. This works on MyISAM and BDB tables.
This is equivalent to running myisamchk -a on the table.
MySQL uses the stored key distribution to decide in which order tables should be joined
when one does a join on something else than a constant.
The command returns a table with the following columns:
Column Value
Table Table name
Op Always analyze
Msg type One of status, error, info, or

warning
Msg text The message
You can check the stored key distribution with the SHOW INDEX command. See
Section 4.6.8.1 [Show database info], page 285.

282 MySQL Technical Reference for Version 4.1.1-alpha

If the table hasn’t changed since the last ANALYZE TABLE command, the table will not be
analysed again.

Before MySQL 4.1.1, ANALYZE commands are not written to the binary log. Since MySQL
4.1.1 they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword
(or its alias LOCAL) was used.

4.6.3 CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name[,tbl_name ...] [QUICK | EXTENDED]

Reports a table checksum. If QUICK is specified, live table checksum is reported, or NULL if
the table does not support live checksum. This is very fast. In EXTENDED mode the whole
table is read row by row and the checksum is calculated. This can be very slow for large
tables. By default - with neither QUICK nor EXTENDED - MySQL returns live checksum if
the table support it and scans the table otherwise.

This command is implemented in MySQL 4.1.1.

4.6.4 FLUSH Syntax

FLUSH [LOCAL | NO_WRITE_TO_BINLOG] flush_option [,flush_option] ...

You should use the FLUSH command if you want to clear some of the internal caches MySQL
uses. To execute FLUSH, you must have the RELOAD privilege.

flush_option can be any of the following:

Option Description

HOSTS Empties the host cache tables. You should flush the host tables
if some of your hosts change IP number or if you get the error
message Host ... is blocked. When more than max_connect_
errors errors occur in a row for a given host while connection
to the MySQL server, MySQL assumes something is wrong and
blocks the host from further connection requests. Flushing the
host tables allows the host to attempt to connect again. See Sec-
tion A.2.5 [Blocked host], page 848. You can start mysqld with
-O max_connect_errors=999999999 to avoid this error message.

DES_KEY_FILE Reloads the DES keys from the file that was specified with the
--des-key-file option at server startup time.

LOGS Closes and reopens all log files. If you have specified an update log
file or a binary log file without an extension, the extension number
of the log file will be incremented by one relative to the previous
file. If you have used an extension in the file name, MySQL will
close and reopen the update log file. See Section 4.10.3 [Update
log], page 351. This is the same thing as sending the SIGHUP signal
to the mysqld server.

PRIVILEGES Reloads the privileges from the grant tables in the mysql database.

Chapter 4: Database Administration 283

QUERY CACHE Defragment the query cache to better utilise its memory. This
command will not remove any queries from the cache, unlike RESET
QUERY CACHE.

TABLES Closes all open tables and force all tables in use to be closed. This
also flushes the query cache.

[TABLE | TABLES]
tbl_name [,tbl_
name...]

Flushes only the given tables.

TABLES WITH READ
LOCK

Closes all open tables and locks all tables for all databases with
a read lock until you execute UNLOCK TABLES. This is very con-
venient way to get backups if you have a filesystem, like Veritas,
that can take snapshots in time.

STATUS Resets most status variables to zero. This is something one should
only use when debugging a query.

USER_RESOURCES Resets all user resources to zero. This will enable blocked users to
login again. See Section 4.4.7 [User resources], page 249.

Before MySQL 4.1.1, FLUSH commands are not written to the binary log. Since MySQL
4.1.1 they are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword
(or its alias LOCAL) was used, or unless the command contained one of these arguments:
LOGS, MASTER, SLAVE, TABLES WITH READ LOCK, because any of these arguments may cause
problems if replicated to a slave.

You can also access some of the commands shown above with the mysqladmin utility,
using the flush-hosts, flush-logs, flush-privileges, flush-status or flush-tables
commands.

Take also a look at the RESET command used with replication. See Section 4.6.5 [RESET],
page 283.

4.6.5 RESET Syntax

RESET reset_option [,reset_option] ...

The RESET command is used to clear things. It also acts as an stronger version of the FLUSH
command. See Section 4.6.4 [FLUSH], page 282.

To execute RESET, you must have the RELOAD privilege.

Option Description

MASTER Deletes all binary logs listed in the index file, resetting the binlog
index file to be empty. Previously named FLUSH MASTER. See
Section 4.11.7 [Replication Master SQL], page 376.

SLAVE Makes the slave forget its replication position in the master bin-
logs. Previously named FLUSH SLAVE. See Section 4.11.8 [Replica-
tion Slave SQL], page 378.

QUERY CACHE Removes all query results from the query cache.

284 MySQL Technical Reference for Version 4.1.1-alpha

4.6.6 PURGE MASTER LOGS Syntax

PURGE {MASTER|BINARY} LOGS TO binlog_name
PURGE {MASTER|BINARY} LOGS BEFORE date

This command is used to delete all binary logs strictly prior to the specified binlog or date.
See Section 4.11.7 [Replication Master SQL], page 376.
PURGE BINARY LOGS is available as a synonym for PURGE MASTER LOGS as of MySQL 4.1.1.

4.6.7 KILL Syntax

KILL thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are
running with the SHOW PROCESSLIST command and kill a thread with the KILL thread_id
command.
If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege,
you can kill all threads. Otherwise, you can only see and kill your own threads.
You can also use the mysqladmin processlist and mysqladmin kill commands to exam-
ine and kill threads.
Note: You currently cannot use KILL with the Embedded MySQL Server library, because
the embedded server merely runs inside the threads of the host application, it does not
create connection threads of its own.
When you do a KILL, a thread-specific kill flag is set for the thread.
In most cases it may take some time for the thread to die as the kill flag is only checked at
specific intervals.
• In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of

rows. If the kill flag is set, the statement is aborted.
• When doing an ALTER TABLE the kill flag is checked before each block of rows are

read from the original table. If the kill flag was set the command is aborted and the
temporary table is deleted.

• When doing an UPDATE or DELETE, the kill flag is checked after each block read and
after each updated or deleted row. If the kill flag is set, the statement is aborted. Note
that if you are not using transactions, the changes will not be rolled back!

• GET_LOCK() will abort with NULL.
• An INSERT DELAYED thread will quickly flush all rows it has in memory and die.
• If the thread is in the table lock handler (state: Locked), the table lock will be quickly

aborted.
• If the thread is waiting for free disk space in a write call, the write is aborted with an

disk full error message.

4.6.8 SHOW Syntax

SHOW DATABASES [LIKE wild]
or SHOW [OPEN] TABLES [FROM db_name] [LIKE wild]

Chapter 4: Database Administration 285

or SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE wild]
or SHOW INDEX FROM tbl_name [FROM db_name]
or SHOW TABLE STATUS [FROM db_name] [LIKE wild]
or SHOW STATUS [LIKE wild]
or SHOW VARIABLES [LIKE wild]
or SHOW [BDB] LOGS
or SHOW [FULL] PROCESSLIST
or SHOW GRANTS FOR user
or SHOW CREATE TABLE table_name
or SHOW MASTER STATUS
or SHOW MASTER LOGS
or SHOW SLAVE STATUS
or SHOW WARNINGS [LIMIT row_count]
or SHOW ERRORS [LIMIT row_count]
or SHOW TABLE TYPES

SHOW provides information about databases, tables, columns, or status information about
the server. If the LIKE wild part is used, the wild string can be a string that uses the SQL
‘%’ and ‘_’ wildcard characters.

4.6.8.1 Retrieving information about Database, Tables, Columns,
and Indexes

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax.
These two statements are equivalent:

mysql> SHOW INDEX FROM mytable FROM mydb;
mysql> SHOW INDEX FROM mydb.mytable;

SHOW DATABASES lists the databases on the MySQL server host. You can also get this list
using the mysqlshow command line tool. In version 4.0.2 you will only see those databases
for which you have some kind of privilege, if you don’t have the global SHOW DATABASES
privilege.

SHOW TABLES lists the tables in a given database. You can also get this list using the
mysqlshow db_name command.

Note: if a user doesn’t have any privileges for a table, the table will not show up in the
output from SHOW TABLES or mysqlshow db_name.

SHOW OPEN TABLES lists the tables that are currently open in the table cache. See Sec-
tion 5.4.7 [Table cache], page 425. The Comment field tells how many times the table is
cached and in_use.

SHOW COLUMNS lists the columns in a given table. If you specify the FULL option, you will
also get the privileges you have for each column. If the column types are different from what
you expect them to be based on a CREATE TABLE statement, note that MySQL sometimes
changes column types. See Section 6.5.3.1 [Silent column changes], page 572. As of MySQL
4.1, the FULL keyword also causes any per-column comments to be displayed.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 6.6.2
[DESCRIBE], page 579.

286 MySQL Technical Reference for Version 4.1.1-alpha

SHOW FIELDS is a synonym for SHOW COLUMNS, and SHOW KEYS is a synonym for SHOW INDEX.
You can also list a table’s columns or indexes with mysqlshow db_name tbl_name or
mysqlshow -k db_name tbl_name.

SHOW INDEX returns the index information in a format that closely resembles the
SQLStatistics call in ODBC. The following columns are returned:

Column Meaning
Table Name of the table.
Non_unique 0 if the index can’t contain duplicates, 1 if it

can.
Key_name Name of the index.
Seq_in_
index

Column sequence number in index, starting
with 1.

Column_name Column name.
Collation How the column is sorted in the index. In

MySQL, this can have values ‘A’ (Ascending)
or NULL (Not sorted).

Cardinality Number of unique values in the index. This is
updated by running isamchk -a.

Sub_part Number of indexed characters if the column is
only partly indexed. NULL if the entire key is
indexed.

Null Contains ’YES’ if the column may contain NULL.
Index_type Index method used.
Comment Various remarks. For now, it tells in MySQL <

4.0.2 whether index is FULLTEXT or not.
Note that as the Cardinality is counted based on statistics stored as integers, it’s not
necessarily accurate for small tables.

The Null and Index_type columns were added in MySQL 4.0.2.

4.6.8.2 SHOW TABLE STATUS

SHOW TABLE STATUS [FROM db_name] [LIKE wild]

SHOW TABLE STATUS (new in Version 3.23) works likes SHOW STATUS, but provides a lot of
information about each table. You can also get this list using the mysqlshow --status
db_name command. The following columns are returned:

Column Meaning
Name Name of the table.
Type Type of table. See Chapter 7 [Table types], page 593.
Row_format The row storage format (Fixed, Dynamic, or Compressed).
Rows Number of rows.
Avg_row_length Average row length.
Data_length Length of the datafile.
Max_data_length Max length of the datafile. For fixed row formats, this is the

max number of rows in the table. For dynamic row formats,
this is the total number of data bytes that can be stored in
the table, given the data pointer size used.

Index_length Length of the index file.

Chapter 4: Database Administration 287

Data_free Number of allocated but not used bytes.
Auto_increment Next autoincrement value.
Create_time When the table was created.
Update_time When the datafile was last updated.
Check_time When the table was last checked.
Collation Table’s character set and collation. (new 4.1.1)
Checksum Live checksum value (if any). (new in 4.1.1)
Create_options Extra options used with CREATE TABLE.
Comment The comment used when creating the table (or some informa-

tion why MySQL couldn’t access the table information).
InnoDB tables will report the free space in the tablespace in the table comment.

4.6.8.3 SHOW STATUS

SHOW STATUS provides server status information (like mysqladmin extended-status). The
output resembles that shown here, though the format and numbers probably differ:

+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
Delayed_insert_threads	0
Delayed_writes	0
Delayed_errors	0
Flush_commands	1
Handler_delete	462604
Handler_read_first	105881
Handler_read_key	27820558
Handler_read_next	390681754
Handler_read_prev	6022500
Handler_read_rnd	30546748
Handler_read_rnd_next	246216530
Handler_update	16945404
Handler_write	60356676
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
Max_used_connections	0

288 MySQL Technical Reference for Version 4.1.1-alpha

Not_flushed_key_blocks	0
Not_flushed_delayed_rows	0
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
Select_full_join	0
Select_full_range_join	0
Select_range	99646
Select_range_check	0
Select_scan	30802
Slave_running	OFF
Slave_open_temp_tables	0
Slow_launch_threads	0
Slow_queries	0
Sort_merge_passes	30
Sort_range	500
Sort_rows	30296250
Sort_scan	4650
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

The status variables listed above have the following meaning:

Variable Meaning
Aborted_clients Number of connections aborted because the client died with-

out closing the connection properly. See Section A.2.10 [Com-
munication errors], page 851.

Aborted_connects Number of tries to connect to the MySQL server that failed.
See Section A.2.10 [Communication errors], page 851.

Bytes_received Number of bytes received from all clients.
Bytes_sent Number of bytes sent to all clients.
Com_xxx Number of times each xxx command has been executed.
Connections Number of connection attempts to the MySQL server.
Created_tmp_disk_
tables

Number of implicit temporary tables on disk created while
executing statements.

Created_tmp_tables Number of implicit temporary tables in memory created while
executing statements.

Created_tmp_files How many temporary files mysqld has created.
Delayed_insert_threads Number of delayed insert handler threads in use.
Delayed_writes Number of rows written with INSERT DELAYED.

Chapter 4: Database Administration 289

Delayed_errors Number of rows written with INSERT DELAYED for which some
error occurred (probably duplicate key).

Flush_commands Number of executed FLUSH commands.
Handler_commit Number of internal COMMIT commands.
Handler_delete Number of times a row was deleted from a table.
Handler_read_first Number of times the first entry was read from an index. If

this is high, it suggests that the server is doing a lot of full
index scans, for example, SELECT col1 FROM foo, assuming
that col1 is indexed.

Handler_read_key Number of requests to read a row based on a key. If this is
high, it is a good indication that your queries and tables are
properly indexed.

Handler_read_next Number of requests to read next row in key order. This will
be incremented if you are querying an index column with a
range constraint. This also will be incremented if you are
doing an index scan.

Handler_read_prev Number of requests to read previous row in key order. This
is mainly used to optimise ORDER BY ... DESC.

Handler_read_rnd Number of requests to read a row based on a fixed position.
This will be high if you are doing a lot of queries that require
sorting of the result.

Handler_read_rnd_next Number of requests to read the next row in the datafile. This
will be high if you are doing a lot of table scans. Generally
this suggests that your tables are not properly indexed or that
your queries are not written to take advantage of the indexes
you have.

Handler_rollback Number of internal ROLLBACK commands.
Handler_update Number of requests to update a row in a table.
Handler_write Number of requests to insert a row in a table.
Key_blocks_used The number of used blocks in the key cache.
Key_read_requests The number of requests to read a key block from the cache.
Key_reads The number of physical reads of a key block from disk.
Key_write_requests The number of requests to write a key block to the cache.
Key_writes The number of physical writes of a key block to disk.
Max_used_connections The maximum number of connections in use simultaneously.
Not_flushed_key_blocks Keys blocks in the key cache that has changed but hasn’t yet

been flushed to disk.
Not_flushed_delayed_
rows

Number of rows waiting to be written in INSERT DELAY
queues.

Open_tables Number of tables that are open.
Open_files Number of files that are open.
Open_streams Number of streams that are open (used mainly for logging).
Opened_tables Number of tables that have been opened.
Rpl_status Status of failsafe replication. (Not yet in use).
Select_full_join Number of joins without keys (If this is not 0, you should

carefully check the indexes of your tables).
Select_full_range_join Number of joins where we used a range search on reference

table.

290 MySQL Technical Reference for Version 4.1.1-alpha

Select_range Number of joins where we used ranges on the first table. (It’s
normally not critical even if this is big.)

Select_scan Number of joins where we did a full scan of the first table.
Select_range_check Number of joins without keys where we check for key usage

after each row (If this is not 0, you should carefully check the
indexes of your tables).

Questions Number of queries sent to the server.
Slave_open_temp_tables Number of temporary tables currently open by the slave

thread
Slave_running Is ON if this is a slave that is connected to a master.
Slow_launch_threads Number of threads that have taken more than slow_launch_

time to create.
Slow_queries Number of queries that have taken more than long_query_

time seconds. See Section 4.10.5 [Slow query log], page 354.
Sort_merge_passes Number of merges passes the sort algoritm have had to do.

If this value is large you should consider increasing sort_
buffer.

Sort_range Number of sorts that were done with ranges.
Sort_rows Number of sorted rows.
Sort_scan Number of sorts that were done by scanning the table.
ssl_xxx Variables used by SSL; Not yet implemented.
Table_locks_immediate Number of times a table lock was acquired immediately.

Available after 3.23.33.
Table_locks_waited Number of times a table lock could not be acquired imme-

diately and a wait was needed. If this is high, and you have
performance problems, you should first optimise your queries,
and then either split your table or tables or use replication.
Available after 3.23.33.

Threads_cached Number of threads in the thread cache.
Threads_connected Number of currently open connections.
Threads_created Number of threads created to handle connections.
Threads_running Number of threads that are not sleeping.
Uptime How many seconds the server has been up.

Some comments about the above:

• If Opened_tables is big, then your table_cache variable is probably too small.

• If Key_reads is big, then your key_buffer_size variable is probably too small. The
cache miss rate can be calculated with Key_reads/Key_read_requests.

• If Handler_read_rnd is big, then you probably have a lot of queries that require MySQL
to scan whole tables or you have joins that don’t use keys properly.

• If Threads_created is big, you may want to increase the thread_cache_size variable.
The cache hit rate can be calculated with Threads_created/Connections.

• If Created_tmp_disk_tables is big, you may want to increase the tmp_table_size
variable to get the temporary tables memory-based instead of disk based.

4.6.8.4 SHOW VARIABLES

SHOW [GLOBAL | SESSION] VARIABLES [LIKE wild]

Chapter 4: Database Administration 291

SHOW VARIABLES shows the values of some MySQL system variables. The options GLOBAL
and SESSION are new in MySQL 4.0.3. With GLOBAL you will get the variables that will
be used for new connections to MySQL. With SESSION you will get the values that are in
effect for the current connection. If you are not using either option, SESSION is used.

If the default values are unsuitable, you can set most of these variables using command-line
options when mysqld starts up. See Section 4.1.1 [Command-line options], page 195. It
is also possible to change most variables with the SET statement. See Section 5.5.6 [SET],
page 432.

The output from SHOW VARIABLES resembles that shown in the following list, though the
format and numbers may differ somewhat. You can also get this information using the
mysqladmin variables command.

+---------------------------------+------------------------------+
| Variable_name | Value |
+---------------------------------+------------------------------|
back_log	50	
basedir	/usr/local/mysql	
bdb_cache_size	8388572	
bdb_log_buffer_size	32768	
bdb_home	/usr/local/mysql	
bdb_max_lock	10000	
bdb_logdir		
bdb_shared_data	OFF	
bdb_tmpdir	/tmp/	
bdb_version	Sleepycat Software: ...	
binlog_cache_size	32768	
bulk_insert_buffer_size	8388608	
character_set	latin1	
character_sets	latin1 big5 czech euc_kr	
concurrent_insert	ON	
connect_timeout	5	
convert_character_set		
datadir	/usr/local/mysql/data/	
delay_key_write	ON	
delayed_insert_limit	100	
delayed_insert_timeout	300	
delayed_queue_size	1000	
flush	OFF	
flush_time	0	
ft_boolean_syntax	+ -><()~*:""&	
ft_min_word_len	4	
ft_max_word_len	254	
ft_max_word_len_for_sort	20	
ft_stopword_file	(built-in)	
have_bdb	YES	
have_innodb	YES	
have_isam	YES	

292 MySQL Technical Reference for Version 4.1.1-alpha

have_raid	NO
have_symlink	DISABLED
have_openssl	YES
have_query_cache	YES
init_file	
innodb_additional_mem_pool_size	1048576
innodb_buffer_pool_size	8388608
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
innodb_file_io_threads	4
innodb_force_recovery	0
innodb_thread_concurrency	8
innodb_flush_log_at_trx_commit	1
innodb_fast_shutdown	ON
innodb_flush_method	
innodb_lock_wait_timeout	50
innodb_log_arch_dir	
innodb_log_archive	OFF
innodb_log_buffer_size	1048576
innodb_log_file_size	5242880
innodb_log_files_in_group	2
innodb_log_group_home_dir	./
innodb_mirrored_log_groups	1
interactive_timeout	28800
join_buffer_size	131072
key_buffer_size	16773120
language	/usr/local/mysql/share/...
large_files_support	ON
local_infile	ON
locked_in_memory	OFF
log	OFF
log_update	OFF
log_bin	OFF
log_slave_updates	OFF
log_slow_queries	OFF
log_warnings	OFF
long_query_time	10
low_priority_updates	OFF
lower_case_table_names	OFF
max_allowed_packet	1047552
max_binlog_cache_size	4294967295
max_binlog_size	1073741824
max_connections	100
max_connect_errors	10
max_delayed_threads	20
max_heap_table_size	16777216
max_join_size	4294967295

Chapter 4: Database Administration 293

max_relay_log_size	0
max_sort_length	1024
max_user_connections	0
max_tmp_tables	32
max_write_lock_count	4294967295
myisam_max_extra_sort_file_size	268435456
myisam_repair_threads	1
myisam_max_sort_file_size	2147483647
myisam_recover_options	force
myisam_sort_buffer_size	8388608
net_buffer_length	16384
net_read_timeout	30
net_retry_count	10
net_write_timeout	60
open_files_limit	1024
pid_file	/usr/local/mysql/name.pid
port	3306
protocol_version	10
query_cache_limit	1048576
query_cache_size	0
query_cache_type	ON
read_buffer_size	131072
read_rnd_buffer_size	262144
rpl_recovery_rank	0
safe_show_database	OFF
server_id	0
slave_net_timeout	3600
skip_external_locking	ON
skip_networking	OFF
skip_show_database	OFF
slow_launch_time	2
socket	/tmp/mysql.sock
sort_buffer_size	2097116
sql_mode	
table_cache	64
table_type	MYISAM
thread_cache_size	3
thread_stack	131072
tx_isolation	READ-COMMITTED
timezone	EEST
tmp_table_size	33554432
tmpdir	/tmp/:/mnt/hd2/tmp/
version	4.0.4-beta
wait_timeout	28800
+---------------------------------+------------------------------+

294 MySQL Technical Reference for Version 4.1.1-alpha

Each option is described here. Values for buffer sizes, lengths, and stack sizes are given in
bytes. You can specify values with a suffix of ‘K’ or ‘M’ to indicate kilobytes or megabytes.
For example, 16M indicates 16 megabytes. The case of suffix letters does not matter; 16M
and 16m are equivalent:
• ansi_mode. Is ON if mysqld was started with --ansi. See Section 1.7.2 [ANSI mode],

page 33.
• back_log The number of outstanding connection requests MySQL can have. This

comes into play when the main MySQL thread gets very many connection requests in
a very short time. It then takes some time (although very little) for the main thread
to check the connection and start a new thread. The back_log value indicates how
many requests can be stacked during this short time before MySQL momentarily stops
answering new requests. You need to increase this only if you expect a large number
of connections in a short period of time.
In other words, this value is the size of the listen queue for incoming TCP/IP connec-
tions. Your operating system has its own limit on the size of this queue. The manual
page for the Unix listen(2) system call should have more details. Check your OS
documentation for the maximum value for this variable. Attempting to set back_log
higher than your operating system limit will be ineffective.

• basedir The value of the --basedir option.
• bdb_cache_size The buffer that is allocated to cache index and rows for BDB tables.

If you don’t use BDB tables, you should start mysqld with --skip-bdb to not waste
memory for this cache.

• bdb_log_buffer_size The buffer that is allocated to cache index and rows for BDB
tables. If you don’t use BDB tables, you should set this to 0 or start mysqld with
--skip-bdb to not waste memory for this cache.

• bdb_home The value of the --bdb-home option.
• bdb_max_lock The maximum number of locks (10,000 by default) you can have ac-

tive on a BDB table. You should increase this if you get errors of type bdb: Lock
table is out of available locks or Got error 12 from ... when you have do long
transactions or when mysqld has to examine a lot of rows to calculate the query.

• bdb_logdir The value of the --bdb-logdir option.
• bdb_shared_data Is ON if you are using --bdb-shared-data.
• bdb_tmpdir The value of the --bdb-tmpdir option.
• binlog_cache_size. The size of the cache to hold the SQL statements for the binary

log during a transaction. If you often use big, multi-statement transactions you can
increase this to get more performance. See Section 6.7.1 [COMMIT], page 579.

• bulk_insert_buffer_size (was myisam_bulk_insert_tree_size) MyISAM uses
special tree-like cache to make bulk inserts (that is, INSERT ... SELECT, INSERT ...
VALUES (...), (...), ..., and LOAD DATA INFILE) faster. This variable limits the
size of the cache tree in bytes per thread. Setting it to 0 will disable this optimisation.
Note: this cache is only used when adding data to non-empty table. Default value is
8 MB.

• character_set The default character set.
• character_sets The supported character sets.

Chapter 4: Database Administration 295

• concurrent_inserts If ON (the default), MySQL will allow you to use INSERT on
MyISAM tables at the same time as you run SELECT queries on them. You can turn this
option off by starting mysqld with --safe or --skip-new.

• connect_timeout The number of seconds the mysqld server is waiting for a connect
packet before responding with Bad handshake.

• datadir The value of the --datadir option.
• delay_key_write Option for MyISAM tables. Can have one of the following values:

OFF All CREATE TABLE ... DELAYED_KEY_WRITE are ignored.
ON (default) MySQL will honor the DELAY_KEY_WRITE option for

CREATE TABLE.
ALL All new opened tables are treated as if they were created with

the DELAY_KEY_WRITE option.
If DELAY_KEY_WRITE is enabled this means that the key buffer for tables with this option
will not get flushed on every index update, but only when a table is closed. This will
speed up writes on keys a lot, but you should add automatic checking of all tables with
myisamchk --fast --force if you use this.

• delayed_insert_limit After inserting delayed_insert_limit rows, the INSERT
DELAYED handler will check if there are any SELECT statements pending. If so, it
allows these to execute before continuing.

• delayed_insert_timeout How long a INSERT DELAYED thread should wait for INSERT
statements before terminating.

• delayed_queue_size What size queue (in rows) should be allocated for handling
INSERT DELAYED. If the queue becomes full, any client that does INSERT DELAYED will
wait until there is room in the queue again.

• flush This is ON if you have started MySQL with the --flush option.
• flush_time If this is set to a non-zero value, then every flush_time seconds all tables

will be closed (to free up resources and sync things to disk). We only recommend this
option on Windows 9x/Me, or on systems where you have very little resources.

• ft_boolean_syntax List of operators supported by MATCH ... AGAINST(... IN
BOOLEAN MODE). See Section 6.8 [Fulltext Search], page 583.

• ft_min_word_len The minimum length of the word to be included in a FULLTEXT
index. Note: FULLTEXT indexes must be rebuilt after changing this variable. (This
option is new for MySQL 4.0.)

• ft_max_word_len The maximum length of the word to be included in a FULLTEXT
index. Note: FULLTEXT indexes must be rebuilt after changing this variable. (This
option is new for MySQL 4.0.)

• ft_query_expansion_limit Number of top matches to use for query expansion (in
MATCH ... AGAINST (... WITH QUERY EXPANSION). (This option is new for MySQL
4.1.1)

• ft_stopword_file The file from which to read the list of stopwords for full-text
searches. All the words from the file will be used; comments are not honored. By
default, built-in list of stopwords is used (as defined in ‘myisam/ft_static.c’). Set-
ting this parameter to an empty string ("") will disable stopword filtering. Note:
FULLTEXT indexes must be rebuilt after changing this variable. (This option is new for
MySQL 4.0.10)

296 MySQL Technical Reference for Version 4.1.1-alpha

• have_innodb YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is
used.

• have_bdb YES if mysqld supports Berkeley DB tables. DISABLED if --skip-bdb is used.
• have_raid YES if mysqld supports the RAID option.
• have_openssl YES if mysqld supports SSL (encryption) on the client/server protocol.
• init_file The name of the file specified with the --init-file option when you start

the server. This is a file of SQL statements you want the server to execute when it
starts.

• interactive_timeout The number of seconds the server waits for activity on an inter-
active connection before closing it. An interactive client is defined as a client that uses
the CLIENT_INTERACTIVE option to mysql_real_connect(). See also wait_timeout.

• join_buffer_size The size of the buffer that is used for full joins (joins that do not use
indexes). The buffer is allocated one time for each full join between two tables. Increase
this value to get a faster full join when adding indexes is not possible. (Normally the
best way to get fast joins is to add indexes.)

• key_buffer_size Index blocks are buffered and are shared by all threads. key_
buffer_size is the size of the buffer used for index blocks.
Increase this to get better index handling (for all reads and multiple writes) to as
much as you can afford; 64M on a 256M machine that mainly runs MySQL is quite
common. If you, however, make this too big (for instance more than 50% of your total
memory) your system may start to page and become extremely slow. Remember that
because MySQL does not cache data reads, you will have to leave some room for the
OS filesystem cache.
You can check the performance of the key buffer by doing SHOW STATUS and exam-
ine the variables Key_read_requests, Key_reads, Key_write_requests, and Key_
writes. The Key_reads/Key_read_request ratio should normally be < 0.01. The Key_
write/Key_write_requests is usually near 1 if you are using mostly updates/deletes
but may be much smaller if you tend to do updates that affect many at the same time
or if you are using DELAY_KEY_WRITE. See Section 4.6.8 [SHOW], page 284.
To get even more speed when writing many rows at the same time, use LOCK TABLES.
See Section 6.7.5 [LOCK TABLES], page 581.

• language The language used for error messages.
• large_file_support If mysqld was compiled with options for big file support.
• locked_in_memory If mysqld was locked in memory with --memlock

• log If logging of all queries is enabled.
• log_update If the update log is enabled.
• log_bin If the binary log is enabled.
• log_slave_updates If the updates from the slave should be logged.
• long_query_time If a query takes longer than this (in seconds), the Slow_queries

counter will be incremented. If you are using --log-slow-queries, the query will be
logged to the slow query logfile. This value is measured in real time, not CPU time, so
a query that may be under the threshold on a lightly loaded system may be above the
threshold on a heavily loaded one. See Section 4.10.5 [Slow query log], page 354.

Chapter 4: Database Administration 297

• lower_case_table_names If set to 1 table names are stored in lowercase on disk and
table name comparisons will be case-insensitive. From version 4.0.2, this option also
applies to database names. From 4.1.1 this option also applies to table alias. See
Section 6.1.3 [Name case sensitivity], page 445.

• max_allowed_packet The maximum size of one packet. The message buffer is ini-
tialised to net_buffer_length bytes, but can grow up to max_allowed_packet bytes
when needed. This value by default is small, to catch big (possibly wrong) packets.
You must increase this value if you are using big BLOB columns. It should be as big
as the biggest BLOB you want to use. The protocol limits for max_allowed_packet is
16M in MySQL 3.23 and 1G in MySQL 4.0.

• max_binlog_cache_size If a multi-statement transaction requires more than this
amount of memory, one will get the error "Multi-statement transaction required more
than ’max binlog cache size’ bytes of storage".

• max_binlog_size Available after 3.23.33. If a write to the binary (replication) log
exceeds the given value, rotate the logs. You cannot set it to less than 4096 bytes
(1024 in MySQL versions older than 4.0.14), or more than 1 GB. Default is 1 GB.
Note if you are using transactions: a transaction is written in one chunk to the binary
log, hence it is never split between several binary logs. Therefore, if you have big
transactions, you may see binlogs bigger than max_binlog_size. If max_relay_log_
size (available starting from MySQL 4.0.14) is 0, then max_binlog_size will apply
to relay logs as well.

• max_connections The number of simultaneous clients allowed. Increasing this value
increases the number of file descriptors that mysqld requires. See below for comments
on file descriptor limits. See Section A.2.6 [Too many connections], page 849.

• max_connect_errors If there is more than this number of interrupted connections from
a host this host will be blocked from further connections. You can unblock a host with
the command FLUSH HOSTS.

• max_delayed_threads Don’t start more than this number of threads to handle INSERT
DELAYED statements. If you try to insert data into a new table after all INSERT DELAYED
threads are in use, the row will be inserted as if the DELAYED attribute wasn’t specified.
If you set this to 0, MySQL will never create a max delayed thread.

• max_heap_table_size Don’t allow creation of heap tables bigger than this.
• max_join_size Joins that are probably going to read more than max_join_size

records return an error. Set this value if your users tend to perform joins that lack a
WHERE clause, that take a long time, and that return millions of rows.

• max_relay_log_size Available starting from 4.0.14. If a write to the relay log (a
kind of log used by replication slaves, see Section 4.11.3 [Replication Implementation
Details], page 357) exceeds the given value, rotate the relay log. This variable enables
you to put different size constraints on relay logs and binary logs. However, setting the
variable to 0 will make MySQL use max_binlog_size for both binary logs and relay
logs. You have to set max_relay_log_size to 0 or more than 4096, and less than 1
GB. Default is 0.

• max_seeks_for_key Limit assumed max number of seeks when looking up rows based
on a key. The MySQL optimiser will assume that when searching after matching rows
in a table through scanning a key, we will not cause more than this number of key seeks

298 MySQL Technical Reference for Version 4.1.1-alpha

independent of the cardinality of the key. By setting this to a low value (100 ?) you
can force MySQL to prefer keys instead of table scans.

• max_sort_length The number of bytes to use when sorting BLOB or TEXT values (only
the first max_sort_length bytes of each value are used; the rest are ignored).

• max_user_connections The maximum number of active connections for a single user
(0 = no limit).

• max_tmp_tables (This option doesn’t yet do anything.) Maximum number of tempo-
rary tables a client can keep open at the same time.

• max_write_lock_count After this many write locks, allow some read locks to run in
between.

• myisam_recover_options The value of the --myisam-recover option.
• myisam_sort_buffer_size The buffer that is allocated when sorting the index when

doing a REPAIR or when creating indexes with CREATE INDEX or ALTER TABLE.
• myisam_max_extra_sort_file_size. If the temporary file used for fast index creation

would be bigger than using the key cache by the amount specified here, then prefer the
key cache method. This is mainly used to force long character keys in large tables to
use the slower key cache method to create the index. Note that this parameter is given
in megabytes before 4.0.3 and in bytes beginning with this version.

• myisam_repair_threads. If this value is greater than one, MyISAM table indexes
during Repair by sorting process will be created in parallel - each index in its own
thread. Note: multi-threaded repair is still alpha quality code.

• myisam_max_sort_file_size The maximum size of the temporary file MySQL is al-
lowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA
INFILE. If the file-size would be bigger than this, the index will be created through
the key cache (which is slower). Note that this parameter is given in megabytes before
4.0.3 and in bytes beginning with this version.

• net_buffer_length The communication buffer is reset to this size between queries.
This should not normally be changed, but if you have very little memory, you can set
it to the expected size of a query. (That is, the expected length of SQL statements
sent by clients. If statements exceed this length, the buffer is automatically enlarged,
up to max_allowed_packet bytes.)

• net_read_timeout Number of seconds to wait for more data from a connection before
aborting the read. Note that when we don’t expect data from a connection, the timeout
is defined by write_timeout. See also slave_net_timeout.

• net_retry_count If a read on a communication port is interrupted, retry this many
times before giving up. This value should be quite high on FreeBSD as internal inter-
rupts are sent to all threads.

• net_write_timeout Number of seconds to wait for a block to be written to a connection
before aborting the write.

• open_files_limit Number of files the system allows mysqld to open. This is the real
value given for the system and may be different from the value you gave mysqld as a
startup parameter. This is 0 on systems where MySQL can’t change the number of
open files.

• pid_file The value of the --pid-file option.

Chapter 4: Database Administration 299

• port The value of the --port option.
• protocol_version The protocol version used by the MySQL server.
• range_alloc_block_size Size of blocks that are allocated when doing range optimiza-

tion.
• read_buffer_size (was record_buffer) Each thread that does a sequential scan al-

locates a buffer of this size for each table it scans. If you do many sequential scans,
you may want to increase this value.

• read_rnd_buffer_size (was record_rnd_buffer) When reading rows in sorted order
after a sort, the rows are read through this buffer to avoid a disk seeks. Can improve
ORDER BY by a lot if set to a high value. As this is a thread-specific variable, one should
not set this big globally, but just change this when running some specific big queries.

• query_alloc_block_size Size of memory allocation blocks that are allocated for ob-
jects created during query parsing and execution. If you have problem with memory
fragmentation it may help increasing this a bit.

• query_cache_limit Don’t cache results that are bigger than this. (Default 1M).
• query_cache_size The memory allocated to store results from old queries. If this is

0, the query cache is disabled (default).
• query_cache_type This may be set (only numeric) to

Value Alias Comment
0 OFF Don’t cache or retrieve results.
1 ON Cache all results except SELECT SQL_NO_CACHE ... queries.
2 DEMAND Cache only SELECT SQL_CACHE ... queries.

• query_prealloc_size Persistent buffer for query parsing and execution. This one is
not freed between queries. In theory, by making this “big enough”, make MySQL run
queries without having to do a single malloc() call.

• safe_show_database Don’t show databases for which the user doesn’t have
any database or table privileges. This can improve security if you’re concerned
about people being able to see what databases other users have. See also
skip_show_database.

• server_id The value of the --server-id option.
• skip_locking Is OFF if mysqld uses external locking.
• skip_networking Is ON if we only allow local (socket) connections.
• skip_show_database This prevents people from doing SHOW DATABASES if they don’t

have the PROCESS privilege. This can improve security if you’re concerned about people
being able to see what databases other users have. See also safe_show_database.

• slave_net_timeout Number of seconds to wait for more data from a master/slave
connection before aborting the read.

• slow_launch_time If creating the thread takes longer than this value (in seconds), the
Slow_launch_threads counter will be incremented.

• socket The Unix socket used by the server.
• sort_buffer_size Each thread that needs to do a sort allocates a buffer of this size.

Increase this value for faster ORDER BY or GROUP BY operations. See Section A.4.4 [Tem-
porary files], page 861.

300 MySQL Technical Reference for Version 4.1.1-alpha

• table_cache The number of open tables for all threads. Increasing this value increases
the number of file descriptors that mysqld requires. You can check if you need to
increase the table cache by checking the Opened_tables variable. See Section 4.6.8.3
[Opened_tables], page 287. If this variable is big and you don’t do FLUSH TABLES a
lot (which just forces all tables to be closed and reopenend), then you should increase
the value of this variable.
For more information about the table cache, see Section 5.4.7 [Table cache], page 425.

• table_type The default table type.
• thread_cache_size How many threads we should keep in a cache for reuse. When a

client disconnects, the client’s threads are put in the cache if there aren’t more than
thread_cache_size threads from before. All new threads are first taken from the
cache, and only when the cache is empty is a new thread created. This variable can be
increased to improve performance if you have a lot of new connections. (Normally this
doesn’t give a notable performance improvement if you have a good thread implemen-
tation.) By examing the difference between the Connections and Threads_created
status variables (see Section 4.6.8.3 [SHOW STATUS], page 287 for details) you can see
how efficient thread cache is.

• thread_concurrency On Solaris, mysqld will call thr_setconcurrency() with this
value. thr_setconcurrency() permits the application to give the threads system a
hint for the desired number of threads that should be run at the same time.

• thread_stack The stack size for each thread. Many of the limits detected by the
crash-me test are dependent on this value. The default is large enough for normal
operation. See Section 5.1.4 [MySQL Benchmarks], page 397.

• timezone The timezone for the server.
• tmp_table_size If an in-memory temporary table exceeds this size, MySQL will auto-

matically convert it to an on-disk MyISAM table. Increase the value of tmp_table_size
if you do many advanced GROUP BY queries and you have lots of memory.

• tmpdir The directory used for temporary files and temporary tables. Starting from
MySQL 4.1, it can be set to a list of paths separated by colon : (semicolon ; on
Windows). They will be used in round-robin fashion. This feature can be used to
spread load between several physical disks. It is possible to set tmpdir to point to
a memory-based filesystem, except if the MySQL server is a slave. If it is a slave, it
needs some of its temporary files (for replication of temporary tables or of LOAD DATA
INFILE) to survive a machine’s reboot, so a memory-based tmpdir which is cleared
when the machine reboots is not suitable; a disk-based tmpdir is necessary.

• transaction_alloc_block_size Size of memory allocation blocks that are allocated
for storing queries that are part of a transaction that are to be stored in the binary log
when doing a commit.

• transaction_prealloc_block_size Persistent buffer for transaction_alloc_
blocks. that are not freed between queries. By making this “big enough” to fit all
queries in a common transaction you can avoid a lot of malloc() calls.

• version The version number for the server.
• wait_timeout The number of seconds the server waits for activity on a not interactive

connection before closing it.

Chapter 4: Database Administration 301

On thread startup SESSION.WAIT_TIMEOUT is initialised from GLOBAL.WAIT_TIMEOUT
or GLOBAL.INTERACTIVE_TIMEOUT depending on the type of client (as defined by the
CLIENT_INTERACTIVE connect option). See also interactive_timeout.

The manual section that describes tuning MySQL contains some information of how to tune
the above variables. See Section 5.5.2 [Server parameters], page 427.

4.6.8.5 SHOW [BDB] LOGS

SHOW LOGS shows you status information about existing log files. It currently only displays
information about Berkeley DB log files, so an alias for it (available as of MySQL 4.1.1) is
SHOW BDB LOGS.

• File shows the full path to the log file

• Type shows the type of the log file (BDB for Berkeley DB log files)

• Status shows the status of the log file (FREE if the file can be removed, or IN USE if
the file is needed by the transaction subsystem)

4.6.8.6 SHOW PROCESSLIST

SHOW [FULL] PROCESSLIST shows you which threads are running. You can also get this
information using the mysqladmin processlist command. If you have the SUPER privilege,
you can see all threads. Otherwise, you can see only your own threads. See Section 4.6.7
[KILL], page 284. If you don’t use the FULL option, then only the first 100 characters of
each query will be shown.

Starting from 4.0.12, MySQL reports the hostname for TCP/IP connections in
hostname:client_port format to make it easier to find out which client is doing what.

This command is very useful if you get the ’too many connections’ error message and want
to find out what’s going on. MySQL reserves one extra connection for a client with the
SUPER privilege to ensure that you should always be able to login and check the system
(assuming you are not giving this privilege to all your users).

Some states commonly seen in mysqladmin processlist

• Checking table The thread is performing [automatic] checking of the table.

• Closing tables Means that the thread is flushing the changed table data to disk and
closing the used tables. This should be a fast operation. If not, then you should check
that you don’t have a full disk or that the disk is not in very heavy use.

• Connect Out Slave connecting to master.

• Copying to tmp table on disk The temporary result set was larger than tmp_table_
size and the thread is now changing the in memory-based temporary table to a disk
based one to save memory.

• Creating tmp table The thread is creating a temporary table to hold a part of the
result for the query.

• deleting from main table When executing the first part of a multi-table delete and
we are only deleting from the first table.

302 MySQL Technical Reference for Version 4.1.1-alpha

• deleting from reference tables When executing the second part of a multi-table
delete and we are deleting the matched rows from the other tables.

• Flushing tables The thread is executing FLUSH TABLES and is waiting for all threads
to close their tables.

• Killed Someone has sent a kill to the thread and it should abort next time it checks
the kill flag. The flag is checked in each major loop in MySQL, but in some cases it
may still take a short time for the thread to die. If the thread is locked by some other
thread, the kill will take effect as soon as the other thread releases its lock.

• Sending data The thread is processing rows for a SELECT statement and is also sending
data to the client.

• Sorting for group The thread is doing a sort to satisfy a GROUP BY.
• Sorting for order The thread is doing a sort to satisfy a ORDER BY.
• Opening tables This simply means that the thread is trying to open a table. This

is should be very fast procedure, unless something prevents opening. For example
an ALTER TABLE or a LOCK TABLE can prevent opening a table until the command is
finished.

• Removing duplicates The query was using SELECT DISTINCT in such a way that
MySQL couldn’t optimise that distinct away at an early stage. Because of this MySQL
has to do an extra stage to remove all duplicated rows before sending the result to the
client.

• Reopen table The thread got a lock for the table, but noticed after getting the lock
that the underlying table structure changed. It has freed the lock, closed the table and
is now trying to reopen it.

• Repair by sorting The repair code is using sorting to create indexes.
• Repair with keycache The repair code is using creating keys one by one through the

key cache. This is much slower than Repair by sorting.
• Searching rows for update The thread is doing a first phase to find all matching rows

before updating them. This has to be done if the UPDATE is changing the index that is
used to find the involved rows.

• Sleeping The thread is wating for the client to send a new command to it.
• System lock The thread is waiting for getting to get a external system lock for the

table. If you are not using multiple mysqld servers that are accessing the same tables,
you can disable system locks with the --skip-external-locking option.

• Upgrading lock The INSERT DELAYED handler is trying to get a lock for the table to
insert rows.

• Updating The thread is searching for rows to update and updating them.
• User Lock The thread is waiting on a GET_LOCK().
• Waiting for tables The thread got a notification that the underlying structure for a

table has changed and it needs to reopen the table to get the new structure. To be
able to reopen the table it must however wait until all other threads have closed the
table in question.
This notification happens if another thread has used FLUSH TABLES or one of the fol-
lowing commands on the table in question: FLUSH TABLES table_name, ALTER TABLE,
RENAME TABLE, REPAIR TABLE, ANALYZE TABLE or OPTIMIZE TABLE.

Chapter 4: Database Administration 303

• waiting for handler insert The INSERT DELAYED handler has processed all inserts
and are waiting to get new ones.

Most states are very quick operations. If threads last in any of these states for many seconds,
there may be a problem around that needs to be investigated.
There are some other states that are not mentioned previously, but most of these are only
useful to find bugs in mysqld.

4.6.8.7 SHOW GRANTS

SHOW GRANTS FOR user lists the grant commands that must be issued to duplicate the grants
for a user.

mysql> SHOW GRANTS FOR root@localhost;
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO ’root’@’localhost’ WITH GRANT OPTION |
+---+

To list grants for the current session one may use CURRENT_USER() function (new in version
4.0.6) to find out what user the session was authenticated as. See Section 6.3.6.2 [CURRENT_
USER()], page 515.

4.6.8.8 SHOW CREATE TABLE

Shows a CREATE TABLE statement that will create the given table:
mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************

Table: t
Create Table: CREATE TABLE t (
id INT(11) default NULL auto_increment,
s char(60) default NULL,
PRIMARY KEY (id)

) TYPE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the SQL_
QUOTE_SHOW_CREATE option. Section 5.5.6 [SET SQL_QUOTE_SHOW_CREATE], page 432.

4.6.8.9 SHOW WARNINGS | ERRORS

SHOW WARNINGS [LIMIT row_count]
SHOW ERRORS [LIMIT row_count]

This command is implemented in MySQL 4.1.0.
It shows the errors, warnings and notes that one got for the last command. The er-
rors/warnings are reset for each new command that uses a table.
The MySQL server sends back the total number of warnings and errors you got for the last
commend; This can be retrieved by calling mysql_warning_count().

304 MySQL Technical Reference for Version 4.1.1-alpha

Up to max_error_count messages are stored (Global and thread specific variable).
You can retrieve the number of errors from @error_count and warnings from @warning_
count.
SHOW WARNINGS shows all errors, warnings and notes you got for the last command while
SHOW ERRORS only shows you the errors.

mysql> DROP TABLE IF EXISTS no_such_table;
mysql> SHOW WARNINGS;

+-------+------+-------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------+
| Note | 1051 | Unknown table ’no_such_table’ |
+-------+------+-------------------------------+

Note that in MySQL 4.1.0 we have just added the frame work for warnings and not many
MySQL command do yet generate warnings. 4.1.1 supports all kind of warnings for LOAD
DATA INFILE and DML statements such as INSERT, UPDATE and ALTER commands.
For example, here is a simple case which produces conversion warnings for a insert statement.

mysql> create table t1(a tinyint NOT NULL, b char(4));
Query OK, 0 rows affected (0.00 sec)

mysql> insert into t1 values(10,’mysql’),(NULL,’test’),(300,’open source’);
Query OK, 3 rows affected, 4 warnings (0.15 sec)
Records: 3 Duplicates: 0 Warnings: 4

mysql> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1263	Data truncated for column ’b’ at row 1
Warning	1261	Data truncated, NULL supplied to NOT NULL column ’a’ at row 2
Warning	1262	Data truncated, out of range for column ’a’ at row 3
Warning	1263	Data truncated for column ’b’ at row 3
+---------+------+---+
4 rows in set (0.00 sec)

Maximum number of warnings can be specified using the server variable ’max_error_
count’, SET max_error_count=[count]; By default it is 64. In case to disable warnings,
simply reset this variable to ’0’. In case if max_error_count is 0, then still the warning
count represents how many warnings have occurred, but none of the messages are stored.
For example, consider the following ALTER table statement for the above example, which
returns only one warning message even though total warnings occurred is 3 when you set
max error count=1.

mysql> show variables like ’max_error_count’;
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+

Chapter 4: Database Administration 305

| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> set max_error_count=1;
Query OK, 0 rows affected (0.00 sec)

mysql> alter table t1 modify b char;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column ’b’ at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql>

4.6.8.10 SHOW TABLE TYPES

SHOW TABLE TYPES

This command is implemented in MySQL 4.1.0.

SHOW TABLE TYPES shows you status information about the table types. This is particulary
useful for checking if a table type is supported; or to see what is the default table type is.

mysql> SHOW TABLE TYPES;

+--------+---------+---+
| Type | Support | Comment |
+--------+---------+---+
MyISAM	DEFAULT	Default type from 3.23 with great performance
HEAP	YES	Hash based, stored in memory, useful for temporary tables
MERGE	YES	Collection of identical MyISAM tables
ISAM	YES	Obsolete table type; Is replaced by MyISAM
InnoDB	YES	Supports transactions, row-level locking and foreign keys
BDB	NO	Supports transactions and page-level locking
+--------+---------+---+
6 rows in set (0.00 sec)

The ’Support’ option DEFAULT indicates whether the particular table type is supported, and
which is the default type. If the server is started with --default-table-type=InnoDB, then
the InnoDB ’Support’ field will have the value DEFAULT.

306 MySQL Technical Reference for Version 4.1.1-alpha

4.6.8.11 SHOW PRIVILEGES

SHOW PRIVILEGES

This command is implemented in MySQL 4.1.0.
SHOW PRIVILEGES shows the list of system privileges that the underlying MySQL server
supports.

mysql> show privileges;
+------------+--------------------------+---+
| Privilege | Context | Comment |
+------------+--------------------------+---+
Select	Tables	To retrieve rows from table
Insert	Tables	To insert data into tables
Update	Tables	To update existing rows
Delete	Tables	To delete existing rows
Index	Tables	To create or drop indexes
Alter	Tables	To alter the table
Create	Databases,Tables,Indexes	To create new databases and tables
Drop	Databases,Tables	To drop databases and tables
Grant	Databases,Tables	To give to other users those privileges you possess
References	Databases,Tables	To have references on tables
Reload	Server Admin	To reload or refresh tables, logs and privileges
Shutdown	Server Admin	To shutdown the server
Process	Server Admin	To view the plain text of currently executing queries
File	File access on server	To read and write files on the server
+------------+--------------------------+---+
14 rows in set (0.00 sec)

4.7 MySQL Localisation and International Usage

4.7.1 The Character Set Used for Data and Sorting

By default, MySQL uses the ISO-8859-1 (Latin1) character set with sorting according to
Swedish/Finnish. This is the character set suitable in the USA and western Europe.
All standard MySQL binaries are compiled with --with-extra-charsets=complex. This
will add code to all standard programs to be able to handle latin1 and all multi-byte
character sets within the binary. Other character sets will be loaded from a character-set
definition file when needed.
The character set determines what characters are allowed in names and how things are
sorted by the ORDER BY and GROUP BY clauses of the SELECT statement.
You can change the character set with the --default-character-set option when you start
the server. The character sets available depend on the --with-charset=charset and --
with-extra-charsets= list-of-charset | complex | all | none options to configure,
and the character set configuration files listed in ‘SHAREDIR/charsets/Index’. See Sec-
tion 2.3.3 [configure options], page 91.

Chapter 4: Database Administration 307

If you change the character set when running MySQL (which may also change the sort
order), you must run myisamchk -r -q --set-character-set=charset on all tables. Oth-
erwise, your indexes may not be ordered correctly.
When a client connects to a MySQL server, the server sends the default character set in
use to the client. The client will switch to use this character set for this connection.
One should use mysql_real_escape_string() when escaping strings for an SQL query.
mysql_real_escape_string() is identical to the old mysql_escape_string() function,
except that it takes the MYSQL connection handle as the first parameter.
If the client is compiled with different paths than where the server is installed and the user
who configured MySQL didn’t include all character sets in the MySQL binary, one must
specify for the client where it can find the additional character sets it will need if the server
runs with a different character set than the client.
One can specify this by putting in a MySQL option file:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

where the path points to the directory in which the dynamic MySQL character sets are
stored.
One can force the client to use specific character set by specifying:

[client]
default-character-set=character-set-name

but normally this is never needed.

4.7.1.1 German character set

To get German sorting order, you should start mysqld with --default-character-
set=latin1_de. This will give you the following characteristics.
When sorting and comparing strings, the following mapping is done on the strings before
doing the comparison:

ä -> ae
ö -> oe
ü -> ue
ß -> ss

All accented characters, are converted to their un-accented uppercase counterpart. All
letters are converted to uppercase.
When comparing strings with LIKE the one -> two character mapping is not done. All
letters are converted to uppercase. Accent are removed from all letters except: Ü, ü, Ö, ö, Ä
and ä.

4.7.2 Non-English Error Messages

mysqld can issue error messages in the following languages: Czech, Danish, Dutch, English
(the default), Estonian, French, German, Greek, Hungarian, Italian, Japanese, Korean,
Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, and
Swedish.

308 MySQL Technical Reference for Version 4.1.1-alpha

To start mysqld with a particular language, use either the --language=lang or -L lang
options. For example:

shell> mysqld --language=swedish

or:
shell> mysqld --language=/usr/local/share/swedish

Note that all language names are specified in lowercase.
The language files are located (by default) in ‘mysql_base_dir/share/LANGUAGE/’.
To update the error message file, you should edit the ‘errmsg.txt’ file and execute the
following command to generate the ‘errmsg.sys’ file:

shell> comp_err errmsg.txt errmsg.sys

If you upgrade to a newer version of MySQL, remember to repeat your changes with the
new ‘errmsg.txt’ file.

4.7.3 Adding a New Character Set

To add another character set to MySQL, use the following procedure.
Decide if the set is simple or complex. If the character set does not need to use special
string collating routines for sorting and does not need multi-byte character support, it is
simple. If it needs either of those features, it is complex.
For example, latin1 and danish are simple charactersets while big5 or czech are complex
character sets.
In the following section, we have assumed that you name your character set MYSET.
For a simple character set do the following:
1. Add MYSET to the end of the ‘sql/share/charsets/Index’ file Assign a unique

number to it.
2. Create the file ‘sql/share/charsets/MYSET.conf’. (You can use

‘sql/share/charsets/latin1.conf’ as a base for this.)
The syntax for the file is very simple:
• Comments start with a ’#’ character and proceed to the end of the line.
• Words are separated by arbitrary amounts of whitespace.
• When defining the character set, every word must be a number in hexadecimal

format
• The ctype array takes up the first 257 words. The to_lower[], to_upper[] and

sort_order[] arrays take up 256 words each after that.

See Section 4.7.4 [Character arrays], page 309.
3. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS lists

in configure.in.
4. Reconfigure, recompile, and test.

For a complex character set do the following:
1. Create the file ‘strings/ctype-MYSET.c’ in the MySQL source distribution.

Chapter 4: Database Administration 309

2. Add MYSET to the end of the ‘sql/share/charsets/Index’ file. Assign a unique
number to it.

3. Look at one of the existing ‘ctype-*.c’ files to see what needs to be defined, for
example ‘strings/ctype-big5.c’. Note that the arrays in your file must have names
like ctype_MYSET, to_lower_MYSET, and so on. This corresponds to the arrays in the
simple character set. See Section 4.7.4 [Character arrays], page 309.

4. Near the top of the file, place a special comment like this:
/*
* This comment is parsed by configure to create ctype.c,
* so don’t change it unless you know what you are doing.
*
* .configure. number_MYSET=MYNUMBER
* .configure. strxfrm_multiply_MYSET=N
* .configure. mbmaxlen_MYSET=N
*/

The configure program uses this comment to include the character set into the MySQL
library automatically.
The strxfrm multiply and mbmaxlen lines will be explained in the following sections.
Only include these if you need the string collating functions or the multi-byte character
set functions, respectively.

5. You should then create some of the following functions:
• my_strncoll_MYSET()

• my_strcoll_MYSET()

• my_strxfrm_MYSET()

• my_like_range_MYSET()

See Section 4.7.5 [String collating], page 310.
6. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS lists

in configure.in.
7. Reconfigure, recompile, and test.

The file ‘sql/share/charsets/README’ includes some more instructions.
If you want to have the character set included in the MySQL distribution, mail a patch to
the MySQL internals mailing list. See Section 1.6.1.1 [Mailing-list], page 25.

4.7.4 The Character Definition Arrays

to_lower[] and to_upper[] are simple arrays that hold the lowercase and uppercase char-
acters corresponding to each member of the character set. For example:

to_lower[’A’] should contain ’a’
to_upper[’a’] should contain ’A’

sort_order[] is a map indicating how characters should be ordered for comparison and
sorting purposes. Quite often (but not for all character sets) this is the same as to_upper[]
(which means sorting will be case-insensitive). MySQL will sort characters based on the

310 MySQL Technical Reference for Version 4.1.1-alpha

value of sort_order[character]. For more complicated sorting rules, see the discussion
of string collating below. See Section 4.7.5 [String collating], page 310.

ctype[] is an array of bit values, with one element for one character. (Note that to_
lower[], to_upper[], and sort_order[] are indexed by character value, but ctype[] is
indexed by character value + 1. This is an old legacy to be able to handle EOF.)

You can find the following bitmask definitions in ‘m_ctype.h’:

#define _U 01 /* Uppercase */
#define _L 02 /* Lowercase */
#define _N 04 /* Numeral (digit) */
#define _S 010 /* Spacing character */
#define _P 020 /* Punctuation */
#define _C 040 /* Control character */
#define _B 0100 /* Blank */
#define _X 0200 /* heXadecimal digit */

The ctype[] entry for each character should be the union of the applicable bitmask values
that describe the character. For example, ’A’ is an uppercase character (_U) as well as a
hexadecimal digit (_X), so ctype[’A’+1] should contain the value:

_U + _X = 01 + 0200 = 0201

4.7.5 String Collating Support

If the sorting rules for your language are too complex to be handled with the simple sort_
order[] table, you need to use the string collating functions.

Right now the best documentation on this is the character sets that are already imple-
mented. Look at the big5, czech, gbk, sjis, and tis160 character sets for examples.

You must specify the strxfrm_multiply_MYSET=N value in the special comment at the top
of the file. N should be set to the maximum ratio the strings may grow during my_strxfrm_
MYSET (it must be a positive integer).

4.7.6 Multi-byte Character Support

If your want to add support for a new character set that includes multi-byte characters,
you need to use the multi-byte character functions.

Right now the best documentation on this is the character sets that are already imple-
mented. Look at the euc_kr, gb2312, gbk, sjis, and ujis character sets for examples.
These are implemented in the ‘ctype-’charset’.c’ files in the ‘strings’ directory.

You must specify the mbmaxlen_MYSET=N value in the special comment at the top of the
source file. N should be set to the size in bytes of the largest character in the set.

4.7.7 Problems With Character Sets

If you try to use a character set that is not compiled into your binary, you can run into a
couple of different problems:

Chapter 4: Database Administration 311

• Your program has a wrong path to where the character sets are stored. (Default
‘/usr/local/mysql/share/mysql/charsets’). This can be fixed by using the --
character-sets-dir option to the program in question.

• The character set is a multi-byte character set that can’t be loaded dynamically. In
this case you have to recompile the program with the support for the character set.

• The character set is a dynamic character set, but you don’t have a configure file for
it. In this case you should install the configure file for the character set from a new
MySQL distribution.

• Your ‘Index’ file doesn’t contain the name for the character set.
ERROR 1105: File ’/usr/local/share/mysql/charsets/?.conf’ not found
(Errcode: 2)

In this case you should either get a new Index file or add by hand the name of any
missing character sets.

For MyISAM tables, you can check the character set name and number for a table with
myisamchk -dvv table_name.

4.8 MySQL Server-Side Scripts and Utilities

4.8.1 Overview of the Server-Side Scripts and Utilities

All MySQL programs take many different options. However, every MySQL program pro-
vides a --help option that you can use to get a full description of the program’s different
options. For example, try mysql --help.

You can override default options for all standard programs with an option file. Section 4.1.2
[Option files], page 203.

The following list briefly describes the server-side MySQL programs:

myisamchk
Utility to describe, check, optimise, and repair MySQL tables. Because
myisamchk has many functions, it is described in its own chapter. See
Chapter 4 [MySQL Database Administration], page 195.

make_binary_distribution
Makes a binary release of a compiled MySQL. This could be sent by FTP to
‘/pub/mysql/Incoming’ on support.mysql.com for the convenience of other
MySQL users.

mysqlbug The MySQL bug report script. This script should always be used when filing a
bug report to the MySQL list.

mysqld The SQL daemon. This should always be running.

mysql_install_db
Creates the MySQL grant tables with default privileges. This is usually exe-
cuted only once, when first installing MySQL on a system.

312 MySQL Technical Reference for Version 4.1.1-alpha

4.8.2 mysqld_safe, The Wrapper Around mysqld

mysqld_safe is the recommended way to start a mysqld daemon on Unix. mysqld_safe
adds some safety features such as restarting the server when an error occurs and logging
run-time information to a log file.

Note: Before MySQL 4.0, mysqld_safe is named safe_mysqld. To preserve backward
compatibility, MySQL binary distributions for some time will include safe_mysqld as a
symbolic link to mysqld_safe.

If you don’t use --mysqld=# or --mysqld-version=# mysqld_safe will use an executable
named mysqld-max if it exists. If not, mysqld_safe will start mysqld. This makes it very
easy to test to use mysqld-max instead of mysqld; just copy mysqld-max to where you have
mysqld and it will be used.

Normally one should never edit the mysqld_safe script, but instead put the options to
mysqld_safe in the [mysqld_safe] section in the ‘my.cnf’ file. mysqld_safe reads all
options from the [mysqld], [server] and [mysqld_safe] sections from the option files.
(For backward compatibility, it also reads the [safe_mysqld] sections.) See Section 4.1.2
[Option files], page 203.

Note that all options on the command-line to mysqld_safe are passed to mysqld. If you
wants to use any options in mysqld_safe that mysqld doesn’t support, you must specify
these in the option file.

Most of the options to mysqld_safe are the same as the options to mysqld. See Section 4.1.1
[Command-line options], page 195.

mysqld_safe supports the following options:

--basedir=path
--core-file-size=#

Size of the core file mysqld should be able to create. Passed to ulimit -c.

--datadir=path
--defaults-extra-file=path
--defaults-file=path
--err-log=path (this is marked obsolete in 4.0; Use --log-error instead)
--log-error=path

Write the error log to the above file. See Section 4.10.1 [Error log], page 350.

--ledir=path
Path to mysqld

--log=path
--mysqld=mysqld-version

Name of the mysqld version in the ledir directory you want to start.

--mysqld-version=version
Similar to --mysqld= but here you only give the suffix for mysqld. For example
if you use --mysqld-version=max, mysqld_safe will start the ledir/mysqld-
max version. If the argument to --mysqld-version is empty, ledir/mysqld
will be used.

Chapter 4: Database Administration 313

--nice=# (added in MySQL 4.0.14)
--no-defaults
--open-files-limit=#

Number of files mysqld should be able to open. Passed to ulimit -n. Note
that you need to start mysqld_safe as root for this to work properly!

--pid-file=path
--port=#

--socket=path
--timezone=#

Set the timezone (the TZ) variable to the value of this parameter.

--user=#

The mysqld_safe script is written so that it normally is able to start a server that was
installed from either a source or a binary version of MySQL, even if these install the server
in slightly different locations. mysqld_safe expects one of these conditions to be true:

• The server and databases can be found relative to the directory from which mysqld_
safe is invoked. mysqld_safe looks under its working directory for ‘bin’ and ‘data’
directories (for binary distributions) or for ‘libexec’ and ‘var’ directories (for source
distributions). This condition should be met if you execute mysqld_safe from your
MySQL installation directory (for example, ‘/usr/local/mysql’ for a binary distribu-
tion).

• If the server and databases cannot be found relative to the working directory,
mysqld_safe attempts to locate them by absolute pathnames. Typical locations are
‘/usr/local/libexec’ and ‘/usr/local/var’. The actual locations are determined
when the distribution was built from which mysqld_safe comes. They should be
correct if MySQL was installed in a standard location.

Because mysqld_safe will try to find the server and databases relative to its own working
directory, you can install a binary distribution of MySQL anywhere, as long as you start
mysqld_safe from the MySQL installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can
modify it to use the path to mysqld and the pathname options that are correct for your
system. Note that if you upgrade MySQL in the future, your modified version of mysqld_
safe will be overwritten, so you should make a copy of your edited version that you can
reinstall.

4.8.3 mysqld_multi, A Program for Managing Multiple MySQL
Servers

mysqld_multi is meant for managing several mysqld processes that listen for connections
on different Unix sockets and TCP/IP ports.

The program will search for groups named [mysqld#] from ‘my.cnf’ (or the file named
by the --config-file=... option), where # can be any positive number starting from 1.

314 MySQL Technical Reference for Version 4.1.1-alpha

This number is referred to in the following discussion as the option group number, or GNR.
Group numbers distinquish option groups from one another and are used as arguments to
mysqld_multi to specify which servers you want to start, stop, or obtain status for. Options
listed in these groups should be the same as you would use in the usual [mysqld] group
used for starting mysqld. (See, for example, Section 2.4.3 [Automatic start], page 108.)
However, for mysqld_multi, be sure that each group includes options for values such as the
port, socket, etc., to be used for each individual mysqld process.
mysqld_multi is invoked using the following syntax:

Usage: mysqld_multi [OPTIONS] {start|stop|report} [GNR,GNR,GNR...]
or mysqld_multi [OPTIONS] {start|stop|report} [GNR-GNR,GNR,GNR-GNR,...]

Each GNR represents an option group number. You can start, stop or report any GNR, or
several of them at the same time. For an example of how you might set up an option file,
use this command:

shell> mysqld_multi --example

The GNR values in the list can be comma-separated or combined with a dash; in the latter
case, all the GNRs between GNR1-GNR2 will be affected. With no GNR argument, all
groups listed in the option file will be either started, stopped, or reported. Note that you
must not have any white spaces in the GNR list. Anything after a white space is ignored.
mysqld_multi supports the following options:

--config-file=...
Alternative config file. Note: This will not affect this program’s own options
(group [mysqld_multi]), but only groups [mysqld#]. Without this option,
everything will be searched from the ordinary ‘my.cnf’ file.

--example
Display an example option file.

--help Print this help and exit.

--log=...
Log file. Full path to and the name for the log file. Note: If the file exists,
everything will be appended.

--mysqladmin=...
mysqladmin binary to be used for a server shutdown.

--mysqld=...
mysqld binary to be used. Note that you can give mysqld_safe to this option
also. The options are passed to mysqld. Just make sure you have mysqld in
your environment variable PATH or fix mysqld_safe.

--no-log Print to stdout instead of the log file. By default the log file is turned on.

--password=...
Password for user for mysqladmin.

--tcp-ip Connect to the MySQL server(s) via the TCP/IP port instead of the Unix
socket. This affects stopping and reporting. If a socket file is missing, the
server may still be running, but can be accessed only via the TCP/IP port. By
default, connections are made using the Unix socket.

Chapter 4: Database Administration 315

--user=...
MySQL user for mysqladmin.

--version
Print the version number and exit.

Some notes about mysqld_multi:
• Make sure that the MySQL user, who is stopping the mysqld services (e.g using the

mysqladmin program) have the same password and username for all the data directories
accessed (to the mysql database) And make sure that the user has the SHUTDOWN
privilege! If you have many data directories and many different mysql databases with
different passwords for the MySQL root user, you may want to create a common
multi_admin user for each using the same password (see below). Example how to do
it:

shell> mysql -u root -S /tmp/mysql.sock -proot_password -e
"GRANT SHUTDOWN ON *.* TO multi_admin@localhost IDENTIFIED BY ’multipass’"

See Section 4.3.6 [Privileges], page 219. You will have to do the above for each mysqld
running in each data directory, that you have (just change the socket, -S=...).

• pid-file is very important, if you are using mysqld_safe to start mysqld (for example,
--mysqld=mysqld_safe) Every mysqld should have its own pid-file. The advantage
using mysqld_safe instead of mysqld directly here is, that mysqld_safe “guards”
every mysqld process and will restart it, if a mysqld process terminates due to a signal
sent using kill -9, or for other reasons such as a segmentation fault (which MySQL
should never do, of course;). Please note that the mysqld_safe script may require that
you start it from a certain place. This means that you may have to cd to a certain
directory, before you start the mysqld_multi. If you have problems starting, please
see the mysqld_safe script. Check especially the lines:

--
MY_PWD=‘pwd‘ Check if we are starting this relative (for the binary
release) if test -d /data/mysql -a -f ./share/mysql/english/errmsg.sys
-a -x ./bin/mysqld
--

See Section 4.8.2 [mysqld_safe], page 312. The above test should be successful, or you
may encounter problems.

• Beware of the dangers starting multiple mysqlds in the same data directory. Use
separate data directories, unless you know what you are doing!

• The socket file and the TCP/IP port must be different for every mysqld.
• The first and fifth mysqld group were intentionally left out from the example. You

may have ’gaps’ in the config file. This gives you more flexibility. The order in which
the mysqlds are started or stopped depends on the order in which they appear in the
config file.

• When you want to refer to a certain group using GNR with this program, just use
the number in the end of the group name. For example, the GNR for a group named
[mysqld17] is 17.

• You may want to use option --user for mysqld, but in order to do this you need to
run the mysqld_multi script as the Unix root user. Having the option in the config

316 MySQL Technical Reference for Version 4.1.1-alpha

file doesn’t matter; you will just get a warning, if you are not the superuser and the
mysqlds are started under your Unix account. Important: Make sure that the pid-
file and the data directory are read+write(+execute for the latter one) accessible for
that Unix user, who the specific mysqld process is started as. Do not use the Unix root
account for this, unless you know what you are doing!

• Most important: Make sure that you understand the meanings of the options that are
passed to the mysqlds and why one would want to have separate mysqld processes.
Starting multiple mysqlds in one data directory will not give you extra performance in
a threaded system!

See Section 4.2 [Multiple servers], page 206.
This is an example of the config file on behalf of mysqld_multi.

This file should probably be in your home dir (~/.my.cnf) or /etc/my.cnf
Version 2.1 by Jani Tolonen

[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john

[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu

[mysqld6]
socket = /tmp/mysql.sock6

Chapter 4: Database Administration 317

port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani

See Section 4.1.2 [Option files], page 203.

4.8.4 myisampack, The MySQL Compressed Read-only Table
Generator

myisampack is used to compress MyISAM tables, and pack_isam is used to compress ISAM
tables. Because ISAM tables are deprecated, we will only discuss myisampack here, but
everything said about myisampack should also be true for pack_isam.

myisampack works by compressing each column in the table separately. The information
needed to decompress columns is read into memory when the table is opened. This results
in much better performance when accessing individual records, because you only have to
uncompress exactly one record, not a much larger disk block as when using Stacker on
MS-DOS. Usually, myisampack packs the datafile 40%-70%.

MySQL uses memory mapping (mmap()) on compressed tables and falls back to normal
read/write file usage if mmap() doesn’t work.

Please note the following:

• After packing, the table is read-only. This is generally intended (such as when accessing
packed tables on a CD). Also allowing writes to a packed table is on our TODO list
but with low priority.

• myisampack can also pack BLOB or TEXT columns. The older pack_isam (for ISAM
tables) can not do this.

myisampack is invoked like this:

shell> myisampack [options] filename ...

Each filename should be the name of an index (‘.MYI’) file. If you are not in the database
directory, you should specify the pathname to the file. It is permissible to omit the ‘.MYI’
extension.

myisampack supports the following options:

-b, --backup
Make a backup of the table as tbl_name.OLD.

-#, --debug=debug_options
Output debug log. The debug_options string often is ’d:t:o,filename’.

-f, --force
Force packing of the table even if it becomes bigger or if the temporary file exists.
myisampack creates a temporary file named ‘tbl_name.TMD’ while it compresses
the table. If you kill myisampack, the ‘.TMD’ file may not be deleted. Normally,
myisampack exits with an error if it finds that ‘tbl_name.TMD’ exists. With
--force, myisampack packs the table anyway.

318 MySQL Technical Reference for Version 4.1.1-alpha

-?, --help
Display a help message and exit.

-j big_tbl_name, --join=big_tbl_name
Join all tables named on the command-line into a single table big_tbl_name.
All tables that are to be combined must be identical (same column names and
types, same indexes, etc.).

-p #, --packlength=#
Specify the record length storage size, in bytes. The value should be 1, 2, or 3.
(myisampack stores all rows with length pointers of 1, 2, or 3 bytes. In most
normal cases, myisampack can determine the right length value before it begins
packing the file, but it may notice during the packing process that it could have
used a shorter length. In this case, myisampack will print a note that the next
time you pack the same file, you could use a shorter record length.)

-s, --silent
Silent mode. Write output only when errors occur.

-t, --test
Don’t actually pack table, just test packing it.

-T dir_name, --tmp_dir=dir_name
Use the named directory as the location in which to write the temporary table.

-v, --verbose
Verbose mode. Write information about progress and packing result.

-V, --version
Display version information and exit.

-w, --wait
Wait and retry if table is in use. If the mysqld server was invoked with the
--skip-external-locking option, it is not a good idea to invoke myisampack
if the table might be updated during the packing process.

The sequence of commands shown here illustrates a typical table compression session:
shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile: Parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431

Chapter 4: Database Administration 319

Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4

320 MySQL Technical Reference for Version 4.1.1-alpha

39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile: Parts: 1192 Deleted data: 0
Datafilepointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

Chapter 4: Database Administration 321

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9

322 MySQL Technical Reference for Version 4.1.1-alpha

41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

The information printed by myisampack is described here:

normal The number of columns for which no extra packing is used.

empty-space
The number of columns containing values that are only spaces; these will occupy
1 bit.

empty-zero
The number of columns containing values that are only binary 0’s; these will
occupy 1 bit.

empty-fill
The number of integer columns that don’t occupy the full byte range of their
type; these are changed to a smaller type (for example, an INTEGER column
may be changed to MEDIUMINT).

pre-space
The number of decimal columns that are stored with leading spaces. In this
case, each value will contain a count for the number of leading spaces.

end-space
The number of columns that have a lot of trailing spaces. In this case, each
value will contain a count for the number of trailing spaces.

table-lookup
The column had only a small number of different values, which were converted
to an ENUM before Huffman compression.

zero The number of columns for which all values are zero.

Original trees
The initial number of Huffman trees.

Chapter 4: Database Administration 323

After join
The number of distinct Huffman trees left after joining trees to save some header
space.

After a table has been compressed, myisamchk -dvv prints additional information about
each field:

Type The field type may contain the following descriptors:

constant All rows have the same value.

no endspace
Don’t store endspace.

no endspace, not_always
Don’t store endspace and don’t do end space compression for all
values.

no endspace, no empty
Don’t store endspace. Don’t store empty values.

table-lookup
The column was converted to an ENUM.

zerofill(n)
The most significant n bytes in the value are always 0 and are not
stored.

no zeros Don’t store zeros.

always zero
0 values are stored in 1 bit.

Huff tree The Huffman tree associated with the field.

Bits The number of bits used in the Huffman tree.

After you have run pack_isam/myisampack you must run isamchk/myisamchk to re-create
the index. At this time you can also sort the index blocks and create statistics needed for
the MySQL optimiser to work more efficiently:

myisamchk -rq --analyze --sort-index table_name.MYI
isamchk -rq --analyze --sort-index table_name.ISM

After you have installed the packed table into the MySQL database directory you should
do mysqladmin flush-tables to force mysqld to start using the new table.
If you want to unpack a packed table, you can do this with the --unpack option to isamchk
or myisamchk.

4.8.5 mysqld-max, An Extended mysqld Server

mysqld-max is the MySQL server (mysqld) configured with the following configure options:
Option Comment
–with-server-suffix=-max Add a suffix to the mysqld version string
–with-innodb Support for InnoDB tables (MySQL 3.23 only)

324 MySQL Technical Reference for Version 4.1.1-alpha

–with-bdb Support for Berkeley DB (BDB) tables
CFLAGS=-
DUSE SYMDIR

Symbolic link support for Windows

The option for enabling InnoDB support is needed only in MySQL 3.23. In MySQL 4 and
up, InnoDB is included by default.

You can find the MySQL-Max binaries at http://www.mysql.com/downloads/mysql-max-4.0.html.

The Windows MySQL binary distributions includes both the standard mysqld.exe binary
and the mysqld-max.exe binary. http://www.mysql.com/downloads/mysql-4.0.html.
See Section 2.1.1 [Windows installation], page 56.

Note that as BerkeleyDB (BDB) is not available for all platforms, so some of the Max binaries
may not have support for it. You can check which table types are supported by doing the
following query:

mysql> SHOW VARIABLES LIKE "have_%";
+------------------+----------+
| Variable_name | Value |
+------------------+----------+
have_bdb	NO
have_crypt	YES
have_innodb	YES
have_isam	YES
have_raid	NO
have_symlink	DISABLED
have_openssl	NO
have_query_cache	YES
+------------------+----------+

The meanings of the values in the second column are:

Value Meaning
YES The option is activated and usable.
NO MySQL is not compiled with support for this option.
DISABLED The xxxx option is disabled because one started mysqld with --skip-xxxx

or because one didn’t start mysqld with all needed options to enable the op-
tion. In this case the hostname.err file should contain a reason indicating
why the option is disabled.

Note: To be able to create InnoDB tables in MySQL version 3.23 you must edit your startup
options to include at least the innodb_data_file_path option. See Section 7.5.2 [InnoDB
in MySQL 3.23], page 605.

To get better performance for BDB tables, you should add some configuration options for
these, too. See Section 7.6.3 [BDB start], page 654.

mysqld_safe automatically tries to start any mysqld binary with the -max suffix. This
makes it very easy to test out another mysqld binary in an existing installation. Just run
configure with the options you want and then install the new mysqld binary as mysqld-
max in the same directory where your old mysqld binary is. See Section 4.8.2 [mysqld_safe],
page 312.

Chapter 4: Database Administration 325

On Linux, the MySQL-Max RPM uses the above mentioned mysqld_safe feature. (It just
installs the mysqld-max executable, so mysqld_safe automatically uses this executable
when mysqld_safe is restarted.)
The following table shows which table types our MySQL-Max binaries include:
System BDB InnoDB
Windows/NT Y Y
AIX 4.3 N Y
HP-UX 11.0 N Y
Linux-Alpha N Y
Linux-Intel Y Y
Linux-IA-64 N Y
Solaris-Intel N Y
Solaris-
SPARC

Y Y

SCO OSR5 Y Y
UnixWare Y Y
Mac OS X N Y
Note that as of MySQL 4, you do not need a MySQL Max server for InnoDB, because
InnoDB is included by default.

4.9 MySQL Client-Side Scripts and Utilities

4.9.1 Overview of the Client-Side Scripts and Utilities

All MySQL clients that communicate with the server using the mysqlclient library use
the following environment variables:
Name Description
MYSQL_UNIX_PORT The default socket; used for connections to

localhost
MYSQL_TCP_PORT The default TCP/IP port
MYSQL_PWD The default password
MYSQL_DEBUG Debug-trace options when debugging
TMPDIR The directory where temporary tables/files are

created
Use of MYSQL_PWD is insecure. See Section 4.3.8 [Connecting], page 224.
On Unix, the ‘mysql’ client uses the file named in the MYSQL_HISTFILE environment
variable to save the command-line history. The default value for the history file is
‘$HOME/.mysql_history’, where $HOME is the value of the HOME environment variable. See
Appendix F [Environment variables], page 1016.
If you do not want to maintain a file that contains a record of your queries, first remove
‘.mysql_history’ if it exists, then use either of the following techniques:
• Set the MYSQL_HISTFILE variable to ‘/dev/null’. To cause this setting to take effect

each time you log in, put the setting in one of your shell’s startup files.
• Create ‘.mysql_histfile’ as a symbolic link to ‘/dev/null’:

326 MySQL Technical Reference for Version 4.1.1-alpha

shell> ln -s /dev/null $HOME/.mysql_history

You need do this only once.

All MySQL programs take many different options. However, every MySQL program pro-
vides a --help option that you can use to get a full description of the program’s different
options. For example, try mysql --help.

You can override default options for all standard client programs with an option file. Sec-
tion 4.1.2 [Option files], page 203.

The following list briefly describes the client-side MySQL programs:

msql2mysql
A shell script that converts mSQL programs to MySQL. It doesn’t handle all
cases, but it gives a good start when converting.

mysql The command-line tool for interactively entering queries or executing queries
from a file in batch mode. See Section 4.9.2 [mysql], page 327.

mysqlaccess
A script that checks the access privileges for a host, user, and database combi-
nation.

mysqladmin
Utility for performing administrative operations, such as creating or dropping
databases, reloading the grant tables, flushing tables to disk, and reopening
log files. mysqladmin can also be used to retrieve version, process, and status
information from the server. See Section 4.9.3 [mysqladmin], page 334.

mysqlbinlog
Utility for reading queries from a binary log. Can be used to recover from a
crash with an old backup. See Section 4.9.4 [mysqlbinlog], page 336.

mysqldump
Dumps a MySQL database into a file as SQL statements or as tab-separated
text files. Enhanced freeware originally by Igor Romanenko. See Section 4.9.6
[mysqldump], page 339.

mysqlimport
Imports text files into their respective tables using LOAD DATA INFILE. See
Section 4.9.8 [mysqlimport], page 345.

mysqlshow
Displays information about databases, tables, columns, and indexes.

replace A utility program that is used by msql2mysql, but that has more general ap-
plicability as well. replace changes strings in place in files or on the standard
input. Uses a finite state machine to match longer strings first. Can be used to
swap strings. For example, this command swaps a and b in the given files:

shell> replace a b b a -- file1 file2 ...

Chapter 4: Database Administration 327

4.9.2 mysql, The Command-line Tool

mysql is a simple SQL shell (with GNU readline capabilities). It supports interactive and
non-interactive use. When used interactively, query results are presented in an ASCII-table
format. When used non-interactively (for example, as a filter), the result is presented in
tab-separated format. (The output format can be changed using command-line options.)
You can run scripts simply like this:

shell> mysql database < script.sql > output.tab

If you have problems due to insufficient memory in the client, use the --quick option! This
forces mysql to use mysql_use_result() rather than mysql_store_result() to retrieve
the result set.

Using mysql is very easy. Just start it as follows: mysql database or mysql --user=user_
name --password=your_password database. Type an SQL statement, end it with ‘;’, ‘\g’,
or ‘\G’ and press Enter.

mysql supports the following options:

-?, --help
Display this help and exit.

-A, --no-auto-rehash
No automatic rehashing. One has to use ’rehash’ to get table and field comple-
tion. This gives a quicker start of mysql.

--prompt=...
Set the mysql prompt to specified format.

-b, --no-beep
Turn off beep-on-error.

-B, --batch
Print results with a tab as separator, each row on a new line. Doesn’t use
history file.

--character-sets-dir=...
Directory where character sets are located.

-C, --compress
Use compression in server/client protocol.

-#, --debug[=...]
Debug log. Default is ’d:t:o,/tmp/mysql.trace’.

-D, --database=...
Database to use. This is mainly useful in the ‘my.cnf’ file.

--default-character-set=...
Set the default character set.

-e, --execute=...
Execute command and quit. (Output like with –batch)

328 MySQL Technical Reference for Version 4.1.1-alpha

-E, --vertical
Print the output of a query (rows) vertically. Without this option you can also
force this output by ending your statements with \G.

-f, --force
Continue even if we get an SQL error.

-g, --no-named-commands
Named commands are disabled. Use * form only, or use named commands
only in the beginning of a line ending with a semicolon (‘;’). Since Version
10.9, the client now starts with this option enabled by default! With the -g
option, long format commands will still work from the first line, however.

-G, --enable-named-commands
Named commands are enabled. Long format commands are allowed as well as
shortened * commands.

-i, --ignore-space
Ignore space after function names.

-h, --host=...
Connect to the given host.

-H, --html
Produce HTML output.

-X, --xml Produce XML output.

-L, --skip-line-numbers
Don’t write line number for errors. Useful when one wants to compare result
files that includes error messages

--no-pager
Disable pager and print to stdout. See interactive help (\h) also.

--no-tee Disable outfile. See interactive help (\h) also.

-n, --unbuffered
Flush buffer after each query.

-N, --skip-column-names
Don’t write column names in results.

-O, --set-variable var=option
Give a variable a value. --help lists variables. Please note that --set-
variable is deprecated since MySQL 4.0, just use --var=option on its own.

-o, --one-database
Only update the default database. This is useful for skipping updates to other
database in the binary log.

--pager[=...]
Output type. Default is your ENV variable PAGER. Valid pagers are less, more,
cat [> filename], etc. See interactive help (\h) also. This option does not work
in batch mode. Pager works only in Unix.

Chapter 4: Database Administration 329

-p[password], --password[=...]
Password to use when connecting to server. If a password is not given on the
command-line, you will be prompted for it. Note that if you use the short form
-p you can’t have a space between the option and the password.

-P port_num, --port=port_num
TCP/IP port number to use for connection.

--protocol=(TCP | SOCKET | PIPE | MEMORY)
To specify the connect protocol to use. New in MySQL 4.1.

-q, --quick
Don’t cache result, print it row-by-row. This may slow down the server if the
output is suspended. Doesn’t use history file.

-r, --raw Write column values without escape conversion. Used with --batch

--reconnect
If the connection is lost, automatically try to reconnect to the server (but only
once).

-s, --silent
Be more silent.

-S --socket=...
Socket file to use for connection.

-t --table
Output in table format. This is default in non-batch mode.

-T, --debug-info
Print some debug information at exit.

--tee=...
Append everything into outfile. See interactive help (\h) also. Does not work
in batch mode.

-u, --user=#
User for login if not current user.

-U, --safe-updates[=#], --i-am-a-dummy[=#]
Only allow UPDATE and DELETE that uses keys. See below for more information
about this option. You can reset this option if you have it in your ‘my.cnf’ file
by using --safe-updates=0.

-v, --verbose
More verbose output (-v -v -v gives the table output format).

-V, --version
Output version information and exit.

-w, --wait
Wait and retry if connection is down instead of aborting.

You can also set the following variables with -O or --set-variable; please note that --
set-variable is deprecated since MySQL 4.0, just use --var=option on its own:

330 MySQL Technical Reference for Version 4.1.1-alpha

Variable Name Default Description
connect timeout 0 Number of seconds before timeout connection.
max allowed packet 16777216Max packetlength to send/receive from to server
net buffer length 16384 Buffer for TCP/IP and socket communication
select limit 1000 Automatic limit for SELECT when using –i-am-a-

dummy
max join size 1000000 Automatic limit for rows in a join when using –i-am-a-

dummy.
If the mysql client loses connection to the server while sending it a query, it will immediately
and automatically try to reconnect once to the server and send the query again. Note that
even if it succeeds in reconnecting, as your first connection has ended, all your previous
session objects are lost: temporary tables, user and session variables. Therefore, the above
behaviour may be dangerous for you, as in this example where the server was shut down
and restarted without you knowing it:

mysql> set @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> insert into t values(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> select * from t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is
undefined. To protect from this risk, you can start the mysql client with the --disable-
reconnect option.

If you type ’help’ on the command-line, mysql will print out the commands that it supports:

mysql> help

MySQL commands:
help (\h) Display this text.
? (\h) Synonym for ‘help’.
clear (\c) Clear command.
connect (\r) Reconnect to the server.

Optional arguments are db and host.
delimiter (\d) Set query delimiter.
edit (\e) Edit command with $EDITOR.

Chapter 4: Database Administration 331

ego (\G) Send command to mysql server,
display result vertically.

exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don’t write into outfile.
pager (\P) Set PAGER [to_pager].

Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file.

Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile].

Append everything into given outfile.
use (\u) Use another database.

Takes database name as argument.

The edit, nopager, pager, and system commands work only in Unix.
The status command gives you some information about the connection and the server you
are using. If you are running in the --safe-updates mode, status will also print the
values for the mysql variables that affect your queries.
A useful startup option for beginners (introduced in MySQL Version 3.23.11) is --safe-
updates (or --i-am-a-dummy for users that once may have done a DELETE FROM table_name
but forgot the WHERE clause). When using this option, mysql sends the following command
to the MySQL server when opening the connection:

SET SQL_SAFE_UPDATES=1,SQL_SELECT_LIMIT=#select_limit#,
SQL_MAX_JOIN_SIZE=#max_join_size#"

where #select_limit# and #max_join_size# are variables that can be set from the mysql
command-line. See Section 5.5.6 [SET OPTION], page 432.
The effect of the above is:
• You are not allowed to do an UPDATE or DELETE statement if you don’t have a key

constraint in the WHERE part. One can, however, force an UPDATE/DELETE by using
LIMIT:

UPDATE table_name SET not_key_column=# WHERE not_key_column=# LIMIT 1;

• All big results are automatically limited to #select_limit# rows.
• SELECTs that will probably need to examine more than #max_join_size row combina-

tions will be aborted.

Some useful hints about the mysql client:
Some data is much more readable when displayed vertically, instead of the usual horizontal
box type output. For example longer text, which includes new lines, is often much easier
to be read with vertical output.

332 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 lIMIT 300,1\G
*************************** 1. row ***************************
msg_nro: 3068

date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty

reply: monty@no.spam.com
mail_to: "Thimble Smith" <tim@no.spam.com>

sbj: UTF-8
txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar with UTF-8
Thimble> or Unicode? Otherwise, I’ll put this on my TODO list and see what
Thimble> happens.

Yes, please do that.

Regards,
Monty

file: inbox-jani-1
hash: 190402944

1 row in set (0.09 sec)

For logging, you can use the tee option. The tee can be started with option --tee=...,
or from the command-line interactively with command tee. All the data displayed on the
screen will also be appended into a given file. This can be very useful for debugging purposes
also. The tee can be disabled from the command-line with command notee. Executing tee
again starts logging again. Without a parameter the previous file will be used. Note that
tee will flush the results into the file after each command, just before the command-line
appears again waiting for the next command.

Browsing, or searching the results in the interactive mode in Unix less, more, or any other
similar program, is now possible with option --pager[=...]. Without argument, mysql
client will look for the PAGER environment variable and set pager to that. pager can
be started from the interactive command-line with command pager and disabled with
command nopager. The command takes an argument optionally and the pager will be set
to that. Command pager can be called without an argument, but this requires that the
option --pager was used, or the pager will default to stdout. pager works only in Unix,
since it uses the popen() function, which doesn’t exist in Windows. In Windows, the tee
option can be used instead, although it may not be as handy as pager can be in some
situations.

A few tips about pager:

• You can use it to write to a file:
mysql> pager cat > /tmp/log.txt

and the results will only go to a file. You can also pass any options for the programs
that you want to use with the pager:

mysql> pager less -n -i -S

Chapter 4: Database Administration 333

• From the above do note the option -S. You may find it very useful when browsing the
results; try the option with horizontal output (end commands with \g, or ‘;’) and with
vertical output (end commands with \G). Sometimes a very wide result set is hard to
be read from the screen, with option -S to less you can browse the results within the
interactive less from left to right, preventing lines longer than your screen from being
continued to the next line. This can make the result set much more readable. You can
switch the mode between on and off within the interactive less with -S. See the ’h’
for more help about less.

• You can combine very complex ways to handle the results, for example the following
would send the results to two files in two different directories, on two different hard-
disks mounted on /dr1 and /dr2, yet let the results still be seen on the screen via
less:

mysql> pager cat | tee /dr1/tmp/res.txt | \
tee /dr2/tmp/res2.txt | less -n -i -S

You can also combine the two functions above; have the tee enabled, pager set to ’less’
and you will be able to browse the results in Unix ’less’ and still have everything appended
into a file the same time. The difference between Unix tee used with the pager and the
mysql client in-built tee, is that the in-built tee works even if you don’t have the Unix
tee available. The in-built tee also logs everything that is printed on the screen, where the
Unix tee used with pager doesn’t log quite that much. Last, but not least, the interactive
tee is more handy to switch on and off, when you want to log something into a file, but
want to be able to turn the feature off sometimes.
From MySQL version 4.0.2 it is possible to change the prompt in the mysql command-line
client.
You can use the following prompt options:
Option Description
\v mysqld version
\d database in use
\h host connected to
\p port connected on
\u username
\U full username@host
\\ ‘\’
\n new line break
\t tab
\ space
\ space
\R military hour time (0-23)
\r standard hour time (1-12)
\m minutes
\y two digit year
\Y four digit year
\D full date format
\s seconds
\w day of the week in three letter format (Mon,

Tue, ...)

334 MySQL Technical Reference for Version 4.1.1-alpha

\P am/pm
\o month in number format
\O month in three letter format (Jan, Feb, ...)
\c counter that counts up for each command

you do
‘\’ followed by any other letter just becomes that letter.
You may set the prompt in the following places:

Environment Variable
You may set the MYSQL_PS1 environment variable to a prompt string. For
example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

‘my.cnf’

‘.my.cnf’ You may set the prompt option in any MySQL configuration file, in the mysql
group. For example:

[mysql]
prompt=(\u@\h) [\d]>_

Command Line
You may set the --prompt option on the command line to mysql. For example:

shell> mysql --prompt="(\u@\h) [\d]> "

(user@host) [database]>

Interactively
You may also use the prompt (or \R) command to change your prompt inter-
actively. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to ’(\u@\h) [\d]>_’
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.9.3 mysqladmin, Administrating a MySQL Server

A utility for performing administrative operations. The syntax is:
shell> mysqladmin [OPTIONS] command [command-option] command ...

You can get a list of the options your version of mysqladmin supports by executing
mysqladmin --help.
The current mysqladmin supports the following commands:

create databasename
Create a new database.

drop databasename
Delete a database and all its tables.

Chapter 4: Database Administration 335

extended-status
Gives an extended status message from the server.

flush-hosts
Flush all cached hosts.

flush-logs
Flush all logs.

flush-tables
Flush all tables.

flush-privileges
Reload grant tables (same as reload).

kill id,id,...
Kill mysql threads.

password Set a new password. Change old password to new-password.

ping Check if mysqld is alive.

processlist
Show list of active threads in server, as with the SHOW PROCESSLIST state-
ment. If the --verbose option is given, the output is like that of SHOW FULL
PROCESSLIST.

reload Reload grant tables.

refresh Flush all tables and close and open logfiles.

shutdown Take down the server.

slave-start
Start slave replication thread.

slave-stop
Stop slave replication thread.

status Gives a short status message from the server.

variables
Prints variables available.

version Get version information from server.

All commands can be shortened to their unique prefix. For example:
shell> mysqladmin proc stat
+----+-------+-----------+----+-------------+------+-------+------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+-------------+------+-------+------+
| 6 | monty | localhost | | Processlist | 0 | | |
+----+-------+-----------+----+-------------+------+-------+------+
Uptime: 10077 Threads: 1 Questions: 9 Slow queries: 0
Opens: 6 Flush tables: 1 Open tables: 2
Memory in use: 1092K Max memory used: 1116K

336 MySQL Technical Reference for Version 4.1.1-alpha

The mysqladmin status command result has the following columns:
Column Description
Uptime Number of seconds the MySQL server has been up.
Threads Number of active threads (clients).
Questions Number of questions from clients since mysqld was

started.
Slow queries Queries that have taken more than long_query_time

seconds. See Section 4.10.5 [Slow query log], page 354.
Opens How many tables mysqld has opened.
Flush tables Number of flush ..., refresh, and reload commands.

Open tables Number of tables that are open now.
Memory in use Memory allocated directly by the mysqld code (only

available when MySQL is compiled with –with-
debug=full).

Max memory used Maximum memory allocated directly by the mysqld code
(only available when MySQL is compiled with –with-
debug=full).

If you do mysqladmin shutdown on a socket (in other words, on a the computer where
mysqld is running), mysqladmin will wait until the MySQL pid-file is removed to ensure
that the mysqld server has stopped properly.

4.9.4 mysqlbinlog, Executing the queries from a binary log

You can examine the binary log file (see Section 4.10.4 [Binary log], page 351) with the
mysqlbinlog utility.

shell> mysqlbinlog hostname-bin.001

will print all queries contained in binlog ‘hostname-bin.001’, together with information
(time the query took, ID of the thread which issued it, timestamp when it was issued etc).
You can pipe the output of mysqlbinlog into a mysql client; this is used to recover from a
crash when you have an old backup (see Section 4.5.1 [Backup], page 259):

shell> mysqlbinlog hostname-bin.001 | mysql

or
shell> mysqlbinlog hostname-bin.[0-9]* | mysql

You can also redirect the output of mysqlbinlog to a text file instead, modify this text file
(to cut queries you don’t want to execute for some reason), then execute the queries from
the text file into mysql.
mysqlbinlog has the position=# options which will print only queries whose offset in the
binlog is greater or equal to #.
If you have more than one binary log to execute on the MySQL server, the safe method is
to do it in one unique MySQL connection. Here is what may be UNsafe:

shell> mysqlbinlog hostname-bin.001 | mysql # DANGER!!
shell> mysqlbinlog hostname-bin.002 | mysql # DANGER!!

It will cause problems if the first binlog contains a CREATE TEMPORARY TABLE and the second
one contains a query which uses this temporary table: when the first mysql terminates, it

Chapter 4: Database Administration 337

will drop the temporary table, so the second mysql will report “unknown table”. This is
why you should run all binlogs you want in one unique connection, especially if you use
temporary tables. Here are two possible ways:

shell> mysqlbinlog hostname-bin.001 hostname-bin.002 | mysql

shell> mysqlbinlog hostname-bin.001 > /tmp/queries.sql
shell> mysqlbinlog hostname-bin.002 >> /tmp/queries.sql
shell> mysql -e "source /tmp/queries.sql"

Starting from MySQL 4.0.14, mysqlbinlog can prepare suitable input for mysql to execute
a LOAD DATA INFILE from a binlog. As the binlog contains the data to load (this is true
for MySQL 4.0; MySQL 3.23 did not write the loaded data into the binlog, so the original
file was needed when one wanted to execute the content of the binlog), mysqlbinlog will
copy this data to a temporary file and print a LOAD DATA INFILE command for mysql to
load this temporary file. The location where the temporary file is created is by default the
temporary directory; it can be changed with the local-load option of mysqlbinlog.

Before MySQL 4.1, mysqlbinlog could not prepare suitable output for mysql when the
binary log contained queries from different threads using temporary tables of the same
name, if these queries were interlaced. This is solved in MySQL 4.1.

You can also use mysqlbinlog --read-from-remote-server to read the binary log directly
from a remote MySQL server. However, this is something that is deprecated as we instead
want to make it easy to to apply binary logs to a running MySQL server.

mysqlbinlog --help will give you more information.

4.9.5 Using mysqlcheck for Table Maintenance and Crash Recovery

Since MySQL version 3.23.38 you will be able to use a new checking and repairing tool for
MyISAM tables. The difference to myisamchk is that mysqlcheck should be used when the
mysqld server is running, whereas myisamchk should be used when it is not. The benefit is
that you no longer have to take down the server for checking or repairing your tables.

mysqlcheck uses MySQL server commands CHECK, REPAIR, ANALYZE and OPTIMIZE in a
convenient way for the user.

There are three alternative ways to invoke mysqlcheck:

shell> mysqlcheck [OPTIONS] database [tables]
shell> mysqlcheck [OPTIONS] --databases DB1 [DB2 DB3...]
shell> mysqlcheck [OPTIONS] --all-databases

So it can be used in a similar way as mysqldump when it comes to what databases and
tables you want to choose.

mysqlcheck does have a special feature compared to the other clients; the default behaviour,
checking tables (-c), can be changed by renaming the binary. So if you want to have a tool
that repairs tables by default, you should just copy mysqlcheck to your harddrive with a
new name, mysqlrepair, or alternatively make a symbolic link to mysqlrepair and name
the symbolic link as mysqlrepair. If you invoke mysqlrepair now, it will repair tables by
default.

The names that you can use to change mysqlcheck default behaviour are here:

338 MySQL Technical Reference for Version 4.1.1-alpha

mysqlrepair: The default option will be -r
mysqlanalyze: The default option will be -a
mysqloptimize: The default option will be -o

The options available for mysqlcheck are listed here, please check what your version sup-
ports with mysqlcheck --help.

-A, --all-databases
Check all the databases. This will be same as –databases with all databases
selected

-1, --all-in-1
Instead of making one query for each table, execute all queries in 1 query
separately for each database. Table names will be in a comma separated list.

-a, --analyze
Analyse given tables.

--auto-repair
If a checked table is corrupted, automatically fix it. Repairing will be done
after all tables have been checked, if corrupted ones were found.

-#, --debug=...
Output debug log. Often this is ’d:t:o,filename’

--character-sets-dir=...
Directory where character sets are

-c, --check
Check table for errors

-C, --check-only-changed
Check only tables that have changed since last check or haven’t been closed
properly.

--compress
Use compression in server/client protocol.

-?, --help
Display this help message and exit.

-B, --databases
To check several databases. Note the difference in usage; in this case no tables
are given. All name arguments are regarded as database names.

--default-character-set=...
Set the default character set

-F, --fast
Check only tables that hasn’t been closed properly

-f, --force
Continue even if we get an sql-error.

-e, --extended
If you are using this option with CHECK TABLE, it will ensure that the table
is 100 percent consistent, but will take a long time.

Chapter 4: Database Administration 339

If you are using this option with REPAIR TABLE, it will run an extended
repair on the table, which may not only take a long time to execute, but may
produce a lot of garbage rows also!

-h, --host=...
Connect to host.

-m, --medium-check
Faster than extended-check, but only finds 99.99 percent of all errors. Should
be good enough for most cases.

-o, --optimize
Optimise table

-p, --password[=...]
Password to use when connecting to server. If password is not given it’s solicited
on the tty.

-P, --port=...
Port number to use for TCP/IP connections.

--protocol=(TCP | SOCKET | PIPE | MEMORY)
To specify the connect protocol to use. New in MySQL 4.1.

-q, --quick
If you are using this option with CHECK TABLE, it prevents the check from
scanning the rows to check for wrong links. This is the fastest check.
If you are using this option with REPAIR TABLE, it will try to repair only the
index tree. This is the fastest repair method for a table.

-r, --repair
Can fix almost anything except unique keys that aren’t unique.

-s, --silent
Print only error messages.

-S, --socket=...
Socket file to use for connection.

--tables Overrides option –databases (-B).

-u, --user=#
User for login if not current user.

-v, --verbose
Print information about the various stages.

-V, --version
Output version information and exit.

4.9.6 mysqldump, Dumping Table Structure and Data

Utility to dump a database or a collection of database for backup or for transferring the
data to another SQL server (not necessarily a MySQL server). The dump will contain SQL
statements to create the table and/or populate the table.

340 MySQL Technical Reference for Version 4.1.1-alpha

If you are doing a backup on the server, you should consider using the mysqlhotcopy
instead. See Section 4.9.7 [mysqlhotcopy], page 344.

shell> mysqldump [OPTIONS] database [tables]
OR mysqldump [OPTIONS] --databases [OPTIONS] DB1 [DB2 DB3...]
OR mysqldump [OPTIONS] --all-databases [OPTIONS]

If you don’t give any tables or use the --databases or --all-databases, the whole
database(s) will be dumped.
You can get a list of the options your version of mysqldump supports by executing mysqldump
--help.
Note that if you run mysqldump without --quick or --opt, mysqldump will load the whole
result set into memory before dumping the result. This will probably be a problem if you
are dumping a big database.
Note that if you are using a new copy of the mysqldump program and you are going to do
a dump that will be read into a very old MySQL server, you should not use the --opt or
-e options.
mysqldump supports the following options:

--add-locks
Add LOCK TABLES before and UNLOCK TABLE after each table dump. (To get
faster inserts into MySQL.)

--add-drop-table
Add a drop table before each create statement.

-A, --all-databases
Dump all the databases. This will be same as --databases with all databases
selected.

-a, --all Include all MySQL-specific create options.

--allow-keywords
Allow creation of column names that are keywords. This works by prefixing
each column name with the table name.

-c, --complete-insert
Use complete insert statements (with column names).

-C, --compress
Compress all information between the client and the server if both support
compression.

-B, --databases
To dump several databases. Note the difference in usage. In this case no tables
are given. All name arguments are regarded as database names. USE db_name;
will be included in the output before each new database.

--delayed
Insert rows with the INSERT DELAYED command.

-e, --extended-insert
Use the new multiline INSERT syntax. (Gives more compact and faster inserts
statements.)

Chapter 4: Database Administration 341

-#, --debug[=option_string]
Trace usage of the program (for debugging).

--help Display a help message and exit.

--fields-terminated-by=...
--fields-enclosed-by=...
--fields-optionally-enclosed-by=...
--fields-escaped-by=...
--lines-terminated-by=...

These options are used with the -T option and have the same meaning as the
corresponding clauses for LOAD DATA INFILE. See Section 6.4.8 [LOAD DATA],
page 555.

-F, --flush-logs
Flush log file in the MySQL server before starting the dump.

-f, --force,
Continue even if we get an SQL error during a table dump.

-h, --host=..
Dump data from the MySQL server on the named host. The default host is
localhost.

-l, --lock-tables.
Lock all tables before starting the dump. The tables are locked with READ
LOCAL to allow concurrent inserts in the case of MyISAM tables.
Please note that when dumping multiple databases, --lock-tables will lock
tables for each database separately. So using this option will not guarantee
your tables will be logically consistent between databases. Tables in different
databases may be dumped in completely different states.

-K, --disable-keys
/*!40000 ALTER TABLE tb_name DISABLE KEYS */; and /*!40000 ALTER
TABLE tb_name ENABLE KEYS */; will be put in the output. This will make
loading the data into a MySQL 4.0 server faster as the indexes are created
after all data are inserted.

-n, --no-create-db
CREATE DATABASE /*!32312 IF NOT EXISTS*/ db_name; will not be put in the
output. The above line will be added otherwise, if a --databases or --all-
databases option was given.

-t, --no-create-info
Don’t write table creation information (the CREATE TABLE statement).

-d, --no-data
Don’t write any row information for the table. This is very useful if you just
want to get a dump of the structure for a table!

--opt Same as --quick --add-drop-table --add-locks --extended-insert
--lock-tables. Should give you the fastest possible dump for reading into a
MySQL server.

342 MySQL Technical Reference for Version 4.1.1-alpha

-pyour_pass, --password[=your_pass]
The password to use when connecting to the server. If you specify no
‘=your_pass’ part, mysqldump you will be prompted for a password.

-P, --port=...
Port number to use for TCP/IP connections.

--protocol=(TCP | SOCKET | PIPE | MEMORY)
To specify the connect protocol to use. New in MySQL 4.1.

-q, --quick
Don’t buffer query, dump directly to stdout. Uses mysql_use_result() to do
this.

-Q, --quote-names
Quote table and column names within ‘‘’ characters.

-r, --result-file=...
Direct output to a given file. This option should be used in MSDOS, because
it prevents new line ‘\n’ from being converted to ‘\n\r’ (new line + carriage
return).

--single-transaction
This option issues a BEGIN SQL command before dumping data from server. It
is mostly useful with InnoDB tables and READ_COMMITTED transaction isolation
level, as in this mode it will dump the consistent state of the database at the
time then BEGIN was issued without blocking any applications.
When using this option you should keep in mind that only transactional tables
will be dumped in a consistent state, for example, any MyISAM or HEAP tables
dumped while using this option may still change state.
The --single-transaction option was added in version 4.0.2. This option
is mutually exclusive with the --lock-tables option as LOCK TABLES already
commits a previous transaction internally.

-S /path/to/socket, --socket=/path/to/socket
The socket file to use when connecting to localhost (which is the default host).

--tables Overrides option –databases (-B).

-T, --tab=path-to-some-directory
Creates a table_name.sql file, that contains the SQL CREATE commands,
and a table_name.txt file, that contains the data, for each give table. The
format of the ‘.txt’ file is made according to the --fields-xxx and --lines-
-xxx options. Note: This option only works if mysqldump is run on the same
machine as the mysqld daemon. You must use a MySQL account that has the
FILE privilege, and the login user/group that mysqld is running as (normally
user mysql, group mysql) must have permission to create/write a file at the
location you specify.

-u user_name, --user=user_name
The MySQL user name to use when connecting to the server. The default value
is your Unix login name.

Chapter 4: Database Administration 343

-O var=option, --set-variable var=option
Set the value of a variable. The possible variables are listed below. Please note
that --set-variable is deprecated since MySQL 4.0, just use --var=option
on its own.

-v, --verbose
Verbose mode. Print out more information on what the program does.

-V, --version
Print version information and exit.

-w, --where=’where-condition’
Dump only selected records. Note that quotes are mandatory:

"--where=user=’jimf’" "-wuserid>1" "-wuserid<1"

-X, --xml Dumps a database as well formed XML

-x, --first-slave
Locks all tables across all databases.

--master-data
Like --first-slave, but also prints some CHANGE MASTER TO commands which
will later make your slave start from the right position in the master’s binlogs,
if you have set up your slave using this SQL dump of the master.

-O net_buffer_length=#, where # < 16M
When creating multi-row-insert statements (as with option --extended-insert
or --opt), mysqldump will create rows up to net_buffer_length length. If you
increase this variable, you should also ensure that the max_allowed_packet
variable in the MySQL server is bigger than the net_buffer_length.

The most normal use of mysqldump is probably for making a backup of whole databases.
See Section 4.5.1 [Backup], page 259.

mysqldump --opt database > backup-file.sql

You can read this back into MySQL with:

mysql database < backup-file.sql

or

mysql -e "source /path-to-backup/backup-file.sql" database

However, it’s also very useful to populate another MySQL server with information from a
database:

mysqldump --opt database | mysql ---host=remote-host -C database

It is possible to dump several databases with one command:

mysqldump --databases database1 [database2 ...] > my_databases.sql

If all the databases are wanted, one can use:

mysqldump --all-databases > all_databases.sql

344 MySQL Technical Reference for Version 4.1.1-alpha

4.9.7 mysqlhotcopy, Copying MySQL Databases and Tables

mysqlhotcopy is a Perl script that uses LOCK TABLES, FLUSH TABLES and cp or scp to
quickly make a backup of a database. It’s the fastest way to make a backup of the database
or single tables, but it can only be run on the same machine where the database directories
are. mysqlhotcopy works only on Unix, and it works only for MyISAM and ISAM tables.

mysqlhotcopy db_name [/path/to/new_directory]

mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

mysqlhotcopy db_name./regex/

mysqlhotcopy supports the following options:

-?, --help
Display a help screen and exit

-u, --user=#
User for database login

-p, --password=#
Password to use when connecting to server

-P, --port=#
Port to use when connecting to local server

-S, --socket=#
Socket to use when connecting to local server

--allowold
Don’t abort if target already exists (rename it old)

--keepold
Don’t delete previous (now renamed) target when done

--noindices
Don’t include full index files in copy to make the backup smaller and faster The
indexes can later be reconstructed with myisamchk -rq..

--method=#
Method for copy (cp or scp).

-q, --quiet
Be silent except for errors

--debug Enable debug

-n, --dryrun
Report actions without doing them

--regexp=#
Copy all databases with names matching regexp

--suffix=#
Suffix for names of copied databases

Chapter 4: Database Administration 345

--checkpoint=#
Insert checkpoint entry into specified db.table

--flushlog
Flush logs once all tables are locked.

--tmpdir=#
Temporary directory (instead of /tmp).

You can use perldoc mysqlhotcopy to get more complete documentation for
mysqlhotcopy.
mysqlhotcopy reads the groups [client] and [mysqlhotcopy] from the option files.
To be able to execute mysqlhotcopy you need write access to the backup directory, the
SELECT privilege for the tables you are about to copy and the MySQL RELOAD privilege (to
be able to execute FLUSH TABLES).

4.9.8 mysqlimport, Importing Data from Text Files

mysqlimport provides a command-line interface to the LOAD DATA INFILE SQL statement.
Most options to mysqlimport correspond directly to the same options to LOAD DATA INFILE.
See Section 6.4.8 [LOAD DATA], page 555.
mysqlimport is invoked like this:

shell> mysqlimport [options] database textfile1 [textfile2 ...]

For each text file named on the command-line, mysqlimport strips any extension from the
filename and uses the result to determine which table to import the file’s contents into. For
example, files named ‘patient.txt’, ‘patient.text’, and ‘patient’ would all be imported
into a table named patient.
mysqlimport supports the following options:

-c, --columns=...
This option takes a comma-separated list of field names as an argument. The
field list is used to create a proper LOAD DATA INFILE command, which is then
passed to MySQL. See Section 6.4.8 [LOAD DATA], page 555.

-C, --compress
Compress all information between the client and the server if both support
compression.

-#, --debug[=option_string]
Trace usage of the program (for debugging).

-d, --delete
Empty the table before importing the text file.

--fields-terminated-by=...
--fields-enclosed-by=...
--fields-optionally-enclosed-by=...
--fields-escaped-by=...
--lines-terminated-by=...

These options have the same meaning as the corresponding clauses for LOAD
DATA INFILE. See Section 6.4.8 [LOAD DATA], page 555.

346 MySQL Technical Reference for Version 4.1.1-alpha

-f, --force
Ignore errors. For example, if a table for a text file doesn’t exist, continue
processing any remaining files. Without --force, mysqlimport exits if a table
doesn’t exist.

--help Display a help message and exit.

-h host_name, --host=host_name
Import data to the MySQL server on the named host. The default host is
localhost.

-i, --ignore
See the description for the --replace option.

--ignore-lines=n
Ignore first n lines of the datafile.

-l, --lock-tables
Lock all tables for writing before processing any text files. This ensures that
all tables are synchronised on the server.

-L, --local
Read input files from the client. By default, text files are assumed to be on the
server if you connect to localhost (which is the default host).

-pyour_pass, --password[=your_pass]
The password to use when connecting to the server. If you specify no
‘=your_pass’ part, mysqlimport you will be prompted for a password.

-P port_num, --port=port_num
TCP/IP port number to use for connection.

--protocol=(TCP | SOCKET | PIPE | MEMORY)
To specify the connect protocol to use. New in MySQL 4.1.

-r, --replace
The --replace and --ignore options control handling of input records that
duplicate existing records on unique key values. If you specify --replace, new
rows replace existing rows that have the same unique key value. If you specify
--ignore, input rows that duplicate an existing row on a unique key value are
skipped. If you don’t specify either option, an error occurs when a duplicate
key value is found, and the rest of the text file is ignored.

-s, --silent
Silent mode. Write output only when errors occur.

-S /path/to/socket, --socket=/path/to/socket
The socket file to use when connecting to localhost (which is the default host).

-u user_name, --user=user_name
The MySQL user name to use when connecting to the server. The default value
is your Unix login name.

-v, --verbose
Verbose mode. Print out more information what the program does.

Chapter 4: Database Administration 347

-V, --version
Print version information and exit.

Here is a sample run using mysqlimport:

$ mysql --version
mysql Ver 9.33 Distrib 3.22.25, for pc-linux-gnu (i686)
$ uname -a
Linux xxx.com 2.2.5-15 #1 Mon Apr 19 22:21:09 EDT 1999 i586 unknown
$ mysql -e ’CREATE TABLE imptest(id INT, n VARCHAR(30))’ test
$ ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
$ od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
$ mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
$ mysql -e ’SELECT * FROM imptest’ test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.9.9 mysqlshow, Showing Databases, Tables, and Columns

mysqlshow can be used to quickly look at which databases exist, their tables, and the table’s
columns.

With the mysql program you can get the same information with the SHOW commands. See
Section 4.6.8 [SHOW], page 284.

mysqlshow is invoked like this:

shell> mysqlshow [OPTIONS] [database [table [column]]]

• If no database is given, all matching databases are shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

Note that in newer MySQL versions, you only see those database/tables/columns for which
you have some privileges.

348 MySQL Technical Reference for Version 4.1.1-alpha

If the last argument contains a shell or SQL wildcard (*, ?, % or _) then only what’s matched
by the wildcard is shown. If a database contains underscore(s), those should be escaped
with backslash (some Unix shells will require two), in order to get tables / columns properly.
’*’ are converted into SQL ’%’ wildcard and ’?’ into SQL ’ ’ wildcard. This may cause
some confusion when you try to display the columns for a table with a _ as in this case
mysqlshow only shows you the table names that match the pattern. This is easily fixed by
adding an extra % last on the command-line (as a separate argument).

4.9.10 mysql_config, Get compile options for compiling clients

mysql_config provides you with useful information how to compile your MySQL client and
connect it to MySQL.
mysql_config supports the following options:

--cflags Compiler flags to find include files and critical ccompiler flags and defines used
when compiling the libmysqlclient library.

--include
Compiler options to find MySQL include files. (Normally one would use --
cflags instead of this)

--libs Libraries and options required to link with the MySQL client library.

--libs_r Libraries and options required to link with the thread-safe MySQL client library.

--socket The default socket name, defined when configuring MySQL.

--port The default port number, defined when configuring MySQL.

--version
Version number and version for the MySQL distribution.

--libmysqld-libs or --embedded
Libraries and options required to link with the MySQL embedded server.

If you execute mysql_config without any options it will print all options it supports plus
the value of all options:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [OPTIONS]
Options:

--cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
--include [-I/usr/local/mysql/include/mysql]
--libs [-L/usr/local/mysql/lib/mysql -lmysqlclient -lz -lcrypt -lnsl -lm -L/usr/lib -lssl -lcrypto]
--libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r -lpthread -lz -lcrypt -lnsl -lm -lpthread]
--socket [/tmp/mysql.sock]
--port [3306]
--version [4.0.16]
--libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld -lpthread -lz -lcrypt -lnsl -lm -lpthread -lrt]

You can use this to compile a MySQL client by as follows:
CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname ‘$CFG --cflags‘ progname.c ‘$CFG --libs‘"

Chapter 4: Database Administration 349

4.9.11 perror, Explaining Error Codes

For most system errors MySQL will, in addition to a internal text message, also print the
system error code in one of the following styles: message ... (errno: #) or message ...
(Errcode: #).
You can find out what the error code means by either examining the documentation for
your system or use the perror utility.
perror prints a description for a system error code, or an MyISAM/ISAM storage engine
(table handler) error code.
perror is invoked like this:

shell> perror [OPTIONS] [ERRORCODE [ERRORCODE...]]

Example:

shell> perror 13 64
Error code 13: Permission denied
Error code 64: Machine is not on the network

Note that the error messages are mostly system dependent!

4.9.12 How to Run SQL Commands from a Text File

The mysql client typically is used interactively, like this:
shell> mysql database

However, it’s also possible to put your SQL commands in a file and tell mysql to read its
input from that file. To do so, create a text file ‘text_file’ that contains the commands
you wish to execute. Then invoke mysql as shown here:

shell> mysql database < text_file

You can also start your text file with a USE db_name statement. In this case, it is unnecessary
to specify the database name on the command line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source
command:

mysql> source filename;

For more information about batch mode, Section 3.5 [Batch mode], page 181.

4.10 The MySQL Log Files

MySQL has several different log files that can help you find out what’s going on inside
mysqld:
Log file Description
The error log Problems encountering starting, running or stopping mysqld.
The isam log Logs all changes to the ISAM tables. Used only for debugging the isam

code.

350 MySQL Technical Reference for Version 4.1.1-alpha

The query log Established connections and executed queries.
The update log Deprecated: Stores all statements that changes data
The binary log Stores all statements that changes something. Used also for replication
The slow log Stores all queries that took more than long_query_time seconds to

execute or didn’t use indexes.
All logs can be found in the mysqld data directory. You can force mysqld to reopen the
log files (or in some cases switch to a new log) by executing FLUSH LOGS. See Section 4.6.4
[FLUSH], page 282.

4.10.1 The Error Log

The error log file contains information indicating when mysqld was started and stopped
and also any critical errors found when running.
If mysqld dies unexpectedly and mysqld_safe needs to restart mysqld, mysqld_safe will
write a restarted mysqld row in this file. This log also holds a warning if mysqld notices
a table that needs to be automatically checked or repaired.
On some operating systems, the error log will contain a stack trace for where mysqld died.
This can be used to find out where mysqld died. See Section E.1.4 [Using stack trace],
page 1007.
Beginning with MySQL 4.0.10 you can specify where mysqld stores the error log file with
the option --log-error[=filename]. If no file name is given mysqld will use mysql-data-
dir/’hostname’.err on Unix and ‘\mysql\data\mysql.err’ on Windows. If you execute
flush logs the old file will be prefixed with --old and mysqld will create a new empty log
file.
In older MySQL versions the error log handling was done by mysqld_safe which redirected
the error file to ’hostname’.err. One could change this file name with the option --err-
log=filename.
If you don’t specify --log-error or if you use the --console option the errors will be
written to stderr (the terminal).
On Windows, the output is always written to the .err file if --console is not given.

4.10.2 The General Query Log

If you want to know what happens within mysqld, you should start it with --log[=file].
This will log all connections and queries to the log file (by default named ‘’hostname’.log’).
This log can be very useful when you suspect an error in a client and want to know exactly
what mysqld thought the client sent to it.
Older versions of the mysql.server script (from MySQL 3.23.4 to 3.23.8) pass safe_mysqld
a --log option (enable general query log). If you need better performance when you
start using MySQL in a production environment, you can remove the --log option from
mysql.server or change it to --log-bin. See Section 4.10.4 [Binary log], page 351.
The entries in this log are written as mysqld receives the questions. This may be different
from the order in which the statements are executed. This is in contrast to the update log
and the binary log which are written after the query is executed, but before any locks are
released.

Chapter 4: Database Administration 351

4.10.3 The Update Log

Note: the update log has been deprecated and replaced by the binary log. See Section 4.10.4
[Binary log], page 351. The binary log can do anything the old update log could do, and
more. The update log will be removed in MySQL 5.0.

When started with the --log-update[=file_name] option, mysqld writes a log file con-
taining all SQL commands that update data. If no filename is given, it defaults to the name
of the host machine. If a filename is given, but it doesn’t contain a path, the file is written
in the data directory. If ‘file_name’ doesn’t have an extension, mysqld will create log file
names like so: ‘file_name.###’, where ### is a number that is incremented each time you
execute mysqladmin refresh, execute mysqladmin flush-logs, execute the FLUSH LOGS
statement, or restart the server.

Note: for the above scheme to work, you must not create your own files with the same
filename as the update log + some extensions that may be regarded as a number, in the
directory used by the update log!

If you use the --log or -l options, mysqld writes a general log with a filename of
‘hostname.log’, and restarts and refreshes do not cause a new log file to be generated
(although it is closed and reopened). In this case you can copy it (on Unix) by doing:

mv hostname.log hostname-old.log
mysqladmin flush-logs
cp hostname-old.log to-backup-directory
rm hostname-old.log

Update logging is smart because it logs only statements that really update data. So an
UPDATE or a DELETE with a WHERE that finds no rows is not written to the log. It even skips
UPDATE statements that set a column to the value it already has.

The update logging is done immediately after a query completes but before any locks are
released or any commit is done. This ensures that the log will be logged in the execution
order.

If you want to update a database from update log files, you could do the following (assuming
your update logs have names of the form ‘file_name.###’):

shell> ls -1 -t -r file_name.[0-9]* | xargs cat | mysql

ls is used to get all the log files in the right order.

This can be useful if you have to revert to backup files after a crash and you want to redo
the updates that occurred between the time of the backup and the crash.

4.10.4 The Binary Log

The binary log has replaced the old update log. The update log will be removed in MySQL
5.0. The binary log contains all information that is available in the update log in a more
efficient format and in a manner that is transactionally safe.

The binary log, like the old update log, only logs statements that really update data. So
an UPDATE or a DELETE with a WHERE that finds no rows is not written to the log. It even
skips UPDATE statements that set a column to the value it already has.

352 MySQL Technical Reference for Version 4.1.1-alpha

The primary purpose of the binary log is to be able to update the database during a restore
operation as fully as possible, as the binary log would contain all updates done after a
backup was made.

The binary log is also used when you are replicating a slave from a master. See Section 4.11
[Replication], page 355.

The binary log also contains information about how long each query took that updated the
database. It doesn’t contain queries that don’t modify any data. If you want to log all
queries (for example to find a problem query) you should use the general query log. See
Section 4.10.2 [Query log], page 350.

When started with the --log-bin[=file_name] option, mysqld writes a log file containing
all SQL commands that update data. If no file name is given, it defaults to the name of
the host machine followed by -bin. If file name is given, but it doesn’t contain a path, the
file is written in the data directory.

If you supply an extension to --log-bin=filename.extension, the extension will be silenty
removed.

To the binary log filename mysqld will append an extension that is a number that is in-
cremented each time you execute mysqladmin refresh, execute mysqladmin flush-logs,
execute the FLUSH LOGS statement or restart the server. A new binary log will also auto-
matically be created when the current one’s size reaches max_binlog_size. Note if you
are using transactions: a transaction is written in one chunk to the binary log, hence it is
never split between several binary logs. Therefore, if you have big transactions, you may
see binlogs bigger than max_binlog_size.

You can delete all binary log files with the RESET MASTER command (see Section 4.6.5
[RESET], page 283), or only some of them with PURGE MASTER LOGS (see Section 4.11.7 [Repli-
cation Master SQL], page 376).

You can use the following options to mysqld to affect what is logged to the binary log
(please make sure to read the notes which follow this table):

Option Description

binlog-do-db=database_name Tells the master that it should log updates to the bi-
nary log if the current database (that is, the one se-
lected by USE) database is ’database name’. All oth-
ers databases which are not explicitly mentioned are
ignored. Note that if you use this you should ensure
that you only do updates in the current database. (Ex-
ample: binlog-do-db=some_database)
Example of what does not work as you could expect

it: if the server is started with binlog-do-db=sales,
and you do USE prices; UPDATE sales.january SET
amount=amount+1000;, this query will not be written
into the binary log.

Chapter 4: Database Administration 353

binlog-ignore-db=database_
name

Tells the master that updates where the current
database (that is, the one selected by USE) is
’database name’ should not be stored in the binary
log. Note that if you use this you should ensure that
you only do updates in the current database. (Exam-
ple: binlog-ignore-db=some_database)
Example of what does not work as you could

expect it: if the server is started with binlog-
ignore-db=sales, and you do USE prices; UPDATE
sales.january SET amount=amount+1000;, this
query will be written into the binary log.

The rules are evaluated in the following order, to decide if the query should be written to
the binary log or not:
1. Are there binlog-do-db or binlog-ignore-db rules?

• No: write the query to the binlog and exit.
• Yes: go to step below.

2. So there are some rules (binlog-do-db or binlog-ignore-db or both). Is there a
current database (has any database been selected by USE?)?
• No: do NOT write the query, and exit.
• Yes: go to step below.

3. There is a current database. Are there some binlog-do-db rules?
• Yes: Does the current database match any of the binlog-do-db rules?

• Yes: write the query and exit.
• No: do NOT write the query, and exit.

• No: go to step below.
4. There are some binlog-ignore-db rules. Does the current database match any of the

binlog-ignore-db rules?
• Yes: do not write the query, and exit.
• No: write the query and exit.

So for example, a slave running with only binlog-do-db=sales will not write to the binlog
any query whose current database is different from sales (in other words, binlog-do-db
can sometimes mean “ignore other databases”).
To be able to know which different binary log files have been used, mysqld will also create
a binary log index file that contains the name of all used binary log files. By default this
has the same name as the binary log file, with the extension ’.index’. You can change
the name of the binary log index file with the --log-bin-index=[filename] option. You
should not manually edit this file while mysqld is running; doing this would confuse mysqld.
If you are using replication, you should not delete old binary log files until you are sure that
no slave will ever need to use them. One way to do this is to do mysqladmin flush-logs
once a day and then remove any logs that are more than 3 days old. You can remove them
manually, or preferably using PURGE MASTER LOGS (see Section 4.11.7 [Replication Master
SQL], page 376) which will also safely update the binary log index file for you (and which
can take a date argument since MySQL 4.1)

354 MySQL Technical Reference for Version 4.1.1-alpha

A connection with the SUPER privilege can disable the binary logging of its queries using
SET SQL_LOG_BIN=0. See Section 4.11.7 [Replication Master SQL], page 376.

You can examine the binary log file with the mysqlbinlog utility. For example, you can
update a MySQL server from the binary log as follows:

shell> mysqlbinlog log-file | mysql -h server_name

See Section 4.9.4 [mysqlbinlog], page 336 for more information on the mysqlbinlog utility
and how to use it.

If you are using BEGIN [WORK] or SET AUTOCOMMIT=0, you must use the MySQL binary log
for backups instead of the old update log, which will be removed in MySQL 5.0.

The binary logging is done immediately after a query completes but before any locks are
released or any commit is done. This ensures that the log will be logged in the execution
order.

Updates to non-transactional tables are stored in the binary log immediately after execution.
For transactional tables such as BDB or InnoDB tables, all updates (UPDATE, DELETE or
INSERT) that change tables are cached until a COMMIT command is sent to the server. At
this point mysqld writes the whole transaction to the binary log before the COMMIT is
executed. Every thread will, on start, allocate a buffer of binlog_cache_size to buffer
queries. If a query is bigger than this, the thread will open a temporary file to store the
transaction. The temporary file will be deleted when the thread ends.

The max_binlog_cache_size (default 4G) can be used to restrict the total size used to
cache a multi-query transaction. If a transaction is bigger than this it will fail and roll
back.

If you are using the update or binary log, concurrent inserts will be converted to normal
inserts when using CREATE ... SELECT or INSERT ... SELECT. This is to ensure that you
can recreate an exact copy of your tables by applying the log on a backup.

4.10.5 The Slow Query Log

When started with the --log-slow-queries[=file_name] option, mysqld writes a log file
containing all SQL commands that took more than long_query_time seconds to execute.
The time to get the initial table locks are not counted as execution time.

The slow query log is logged after the query is executed and after all locks has been released.
This may be different from the order in which the statements are executed.

If no file name is given, it defaults to the name of the host machine suffixed with -slow.log.
If a filename is given, but doesn’t contain a path, the file is written in the data directory.

The slow query log can be used to find queries that take a long time to execute and are
thus candidates for optimisation. With a large log, that can become a difficult task. You
can pipe the slow query log through the mysqldumpslow command to get a summary of the
queries which appear in the log.

You are using --log-long-format then also queries that are not using indexes are printed.
See Section 4.1.1 [Command-line options], page 195.

Chapter 4: Database Administration 355

4.10.6 Log File Maintenance

The MySQL Server can create a number of different log files, which make it easy to see
what is going on. See Section 4.10 [Log Files], page 349. However, you must clean up these
files regularly, to ensure that the logs don’t take up too much disk space.
When using MySQL with log files, you will want to remove/backup old log files from time
to time and tell MySQL to start logging to new files. See Section 4.5.1 [Backup], page 259.
On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If
you installed MySQL from an RPM distribution, the script should have been installed
automatically. Note that you should be careful with this script if you are using the binary
log for replication!
On other systems you must install a short script yourself that you start from cron to handle
log files.
You can force MySQL to start using new log files by using mysqladmin flush-logs or by
using the SQL command FLUSH LOGS. If you are using MySQL Version 3.21, you must use
mysqladmin refresh.
The above command does the following:
• If standard logging (--log) or slow query logging (--log-slow-queries) is used, closes

and reopens the log file (‘mysql.log’ and ‘‘hostname‘-slow.log’ as default).
• If update logging (--log-update) is used, closes the update log and opens a new log

file with a higher sequence number.

If you are using only an update log, you only have to flush the logs and then move away the
old update log files to a backup. If you are using the normal logging, you can do something
like:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mysqladmin flush-logs

and then take a backup and remove ‘mysql.old’.

4.11 Replication in MySQL

Replication capabilities allowing the databases on one MySQL server to be duplicated on
another were introduced in MySQL version 3.23.15. This section describes the various repli-
cation features in MySQL. It serves as a reference to the options available with replication.
You will be introduced to replication and learn how to implement it. Toward that end,
there are some frequently asked questions, descriptions of problems, and how to solve them.
We suggest that you visit our website at http://www.mysql.com/ often and read updates to
this section. Replication is constantly being improved, and we update the manual frequently
with the most current information.

4.11.1 Introduction

Starting in Version 3.23.15, MySQL supports one-way replication internally. One server
acts as the master, while one or more other servers act as slaves. The master server keeps a

356 MySQL Technical Reference for Version 4.1.1-alpha

binary log of updates (see Section 4.10.4 [Binary log], page 351). It also maintains an index
file of the binary logs to keep track of log rotation. Each slave, upon connecting, informs
the master where it left off since the last successfully propagated update, catches up any
updates that have occurred since then, and then blocks and waits for the master to notify
it of new updates.
A slave can also serve as a master if you set up chained replication servers.
Note that when you are using replication, all updates to the tables that are replicated
should be performed on the master server. Otherwise, you must always be careful to avoid
conflicts between updates that users make to tables on the master and updates that they
make to tables on the slave.
One-way replication has benefits for robustness, speed, and system administration:
• Robustness is increased with a master/slave setup. In the event of problems with the

master, you can switch to the slave as a backup.
• The extra speed is achieved by splitting the load for processing client queries between

the master and slave servers, resulting in better client response time. SELECT queries
may be sent to the slave to reduce query processing load of the master. Queries that
modify data should still be sent to the master so that the master and slave to not get
out of sync. This load-balancing strategy if effective if non-updating queries dominate,
but that is the normal case.

• Another benefit of using replication is that one can get non-disturbing backups of the
system by doing a backup on a slave instead of doing it on the master. See Section 4.5.1
[Backup], page 259.

4.11.2 Replication Implementation Overview

MySQL replication is based on the master server keeping track of all changes to your
database (updates, deletes, etc) in the binary log (see Section 4.10.4 [Binary log], page 351).
Each slave server receives from the master the saved queries that the master has recorded
in its binary log, so that the slave can execute the same queries on its copy of the data.
It is very important to realise that the binary log is simply a record starting from a fixed
point in time (the moment you enable binary logging). Any slaves that you set up will need
copies of the databases on your master as they existed at the moment you enabled binary
logging on the master. If you start your slaves with data that is not the same as what was
on the master when the binary log was started, your slaves may fail.
The following table indicates master/slave replication compatibility between different ver-
sions of MySQL.

Master Master Master Master
3.23.33
and up

4.0.0 4.0.1 4.0.3 and
up

Slave 3.23.33
and up

yes no no no

Slave 4.0.0 no yes no no
Slave 4.0.1 yes no yes no
Slave 4.0.3 and

up
yes no no yes

Chapter 4: Database Administration 357

As a general rule, it’s always recommended to use recent MySQL versions, because replica-
tion capabilities are continually being improved. With regard to version 4.0, we recommend
using same version for both the master and the slave, with the exception that MySQL 4.0.2
is not recommended for replication.
Note that when you upgrade a master from MySQL 3.23 to MySQL 4.0 (or 4.1) you should
not restart replication using old 3.23 binary logs, because this will unfortunately confuse
the 4.0 slave. The upgrade can safely be done this way, assuming you have a 3.23 master
to upgrade and you have 4.0 slaves:
1. Block all updates on the master (FLUSH TABLES WITH READ LOCK).
2. Wait until all the slaves have caught up all changes from the master (use SHOW MASTER

STATUS on the master, and SELECT MASTER_POS_WAIT() on the slaves). Then run STOP
SLAVE on the slaves.

3. Shut down MySQL on the master and upgrade the master to MySQL 4.0.
4. Restart MySQL on the master. Record the name ‘<name>’ of the master’s newly created

binary log. You can obtain the name of the file by issuing SHOW MASTER STATUS on the
master. Then issue these commands on each slave:

mysql> CHANGE MASTER TO MASTER_LOG_FILE=’<name>’, MASTER_LOG_POS=4;
mysql> START SLAVE;

If you also must upgrade your slaves from 3.23 to 4.0, you should first upgrade your slaves:
Shut down each one, upgrade it, and restart it. Then upgrade the master as just described.
Starting from 4.0.0, you can use LOAD DATA FROM MASTER to set up a slave. Be aware that
LOAD DATA FROM MASTER currently works only if all the tables on the master are MyISAM type.
Also, this statement acquires a global read lock, so no writes are possible while the tables
are being transferred from the master. When we implement lock-free hot table backup (in
MySQL 5.0), this global read lock will no longer be necessary.
Due to these limitations, we recommend that at this point you use LOAD DATA FROM MASTER
only if the dataset on the master is relatively small, or if a prolonged read lock on the master
is acceptable. While the actual speed of LOAD DATA FROM MASTER may vary from system to
system, a good rule of thumb for how long it is going to take is 1 second per 1 MB of the
datafile. You will get close to the estimate if both master and slave are equivalent to 700
MHz Pentium and are connected through a 100 MBit/s network. Of course, this is only a
rough estimate.
Once a slave is properly configured and running, it will simply connect to the master and
wait for updates to process. If the master goes away or the slave loses connectivity with your
master, it will keep trying to connect periodically until it is able to reconnect and resume
listening for updates. The retry interval is controlled by the --master-connect-retry
option. The default is 60 seconds.
Each slave keeps track of where it left off. The master server has no knowledge of how many
slaves there are or which ones are up-to-date at any given time.

4.11.3 Replication Implementation Details

Three threads are involved in replication: one on the master and two on the slave. When
START SLAVE is issued, the I/O thread is created on the slave. It connects to the master

358 MySQL Technical Reference for Version 4.1.1-alpha

and asks it to send the queries recorded in its binlogs. Then one thread is created on the
master to send these binlogs. This thread is identified by Binlog Dump in SHOW PROCESSLIST
output on the master. The I/O thread reads what the master Binlog Dump thread sends
and simply copies it to some local files in the slave’s data directory called relay logs. The
last thread, the SQL thread, is created on the slave; it reads the relay logs and executes the
queries it contains.

Note that the master has one thread for each currently connected slave server.

With SHOW PROCESSLIST you can know what is happening on the master and on the slave
as regards replication.

The following example illustrates how the three threads show up in SHOW PROCESSLIST.
The output format is that used by SHOW PROCESSLIST as of MySQL version 4.0.15, when
the content of the State column was changed to be more meaningful compared to earlier
versions.

On the master server, the output looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 2
User: root
Host: localhost:32931
db: NULL

Command: Binlog Dump
Time: 94
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL

On the slave server, the output looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 10
User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Waiting for master to send event
Info: NULL

*************************** 2. row ***************************
Id: 11

User: system user
Host:
db: NULL

Command: Connect
Time: 11
State: Has read all relay log; waiting for the I/O slave thread to update it
Info: NULL

Chapter 4: Database Administration 359

Here thread 2 is on the master. Thread 10 is the I/O thread on the slave. Thread 11 is the
SQL thread on the slave; note that the value in the Time column can tell how late the slave
is compared to the master (see Section 4.11.9 [Replication FAQ], page 386).

The following list shows the most common states you will see in the State column for the
master’s Binlog Dump thread. If you don’t see this thread on a master server, replication
is not running.

Sending binlog event to slave
Binlogs consist of events, where an event is usually a query plus some other
information. The thread has read an event from the binlog and is sending it to
the slave.

Finished reading one binlog; switching to next binlog
The thread has finished reading a binlog file and is opening the next one to
send to the slave.

Has sent all binlog to slave; waiting for binlog to be updated
The thread has read all binary log files and is idle. It is waiting for new events
to appear in the binary log as a result of new update queries being executed on
the master.

Waiting to finalize termination
A very brief state that happens as the thread is stopping.

Here are the most common states you will see in the State column for the I/O thread of a
slave server. Beginning with MySQL 4.1.1, this state also appears in the Slave_IO_State
column of SHOW SLAVE STATUS output. This means that you can get a good view of what is
happening by using only SHOW SLAVE STATUS.

Connecting to master
The thread is attempting to connect to the master.

Checking master version
A very brief state that happens just after the connection to the master is es-
tablished.

Registering slave on master
A very brief state that happens just after the connection to the master is es-
tablished.

Requesting binlog dump
A very brief state that happens just after the connection to the master is estab-
lished. The thread sends to the master a request for the contents of its binlogs,
starting from the requested binlog filename and position.

Waiting to reconnect after a failed binlog dump request
If the binlog dump request failed (due to disconnection), the thread goes into
this state while it sleeps. The thread sleeps for master-connect-retry seconds
before retrying.

Reconnecting after a failed binlog dump request
Then the thread tries to reconnect to the master.

360 MySQL Technical Reference for Version 4.1.1-alpha

Waiting for master to send event
The thread has connected and is waiting for binlog events to arrive. This can
last for a long time if the master is idle. If the wait lasts for slave_read_
timeout seconds, a timeout will occur. At that point, the thread will consider
the connection to be broken and make an attempt to reconnect.

Queueing master event to the relay log
The thread has read an event and is copying it to the relay log so the SQL
thread can process it.

Waiting to reconnect after a failed master event read
An error occurred while reading (due to disconnection). The thread is sleeping
for master-connect-retry seconds before attempting to reconnect.

Reconnecting after a failed master event read
Then the thread tries to reconnect. When connection is established again, the
state will become Waiting for master to send event.

Waiting for the SQL slave thread to free enough relay log space
You are using a non-zero relay_log_space_limit value, and the relay logs
have grown so much that their combined size exceeds this value. The I/O
thread is waiting until the SQL thread frees enough space by processing relay
log contents so that it can delete some relay log files.

Waiting for slave mutex on exit
A very brief state that happens as the thread is stopping.

Here are the most common states you will see in the State column for the SQL thread of
a slave server:

Reading event from the relay log
The thread has read an event from the relay log so that it can process it.

Has read all relay log; waiting for the I/O slave thread to update it
The thread has processed all events in the relay log files and is waiting for the
I/O thread to write new events to the relay log.

Waiting for slave mutex on exit
A very brief state that happens as the thread is stopping.

The State column for the I/O thread may also show a query string. This indicates that the
thread has read an event from the relay log, extracted the query from it and is executing
the query.
Before MySQL 4.0.2, the slave I/O and SQL threads were combined as a single thread, and
no relay log files were used. The advantage of using two threads is that it separates query
reading and query execution into two independent tasks, so the task of reading queries is
not slowed down if query execution is slow. For example, if the slave server has not been
running for a while, its I/O thread can quickly fetch all the binlog contents from the master
when the slave starts, even if the SQL thread lags far behind and may take hours to catch
up. If the slave stops before the SQL thread has executed all the fetched queries, the I/O
thread has at least fetched everything so that a safe copy of the queries is locally stored in
the slave’s relay logs for execution when next the slave starts. This allows the binlogs to be
purged on the master, because it no longer need wait for the slave to fetch their contents.

Chapter 4: Database Administration 361

By default, relay logs are named using filenames of the form ‘host_name-relay-bin.nnn’,
where host_name is the name of the slave server host, and nnn is a sequence number.
Successive relay log files are created using successive sequence numbers, beginning with
001. The slave keeps track of relay logs currently in use in an index file. The default relay
log index filename is ‘host_name-relay-bin.index’. By default these files are created in
the slave’s data directory. The default filenames may be overridden with the --relay-log
and --relay-log-index server options.
Relay logs have the same format as binary logs, so they can be read with mysqlbinlog. A
relay log is automatically deleted by the SQL thread as soon as it no longer needs it (that
is, as soon as it has executed all its events). There is no command to delete relay logs,
because the SQL thread takes care of doing so. However, from MySQL 4.0.14, FLUSH LOGS
rotates relay logs, which will influence when the SQL thread deletes them.
A new relay log is created under the following conditions:
• The first time the I/O thread starts after the slave server starts. (In MySQL 5.0, a

new relay log will be created each time the I/O thread starts, not just the first time.)
• A FLUSH LOGS statement is issued (4.0.14 and up only).
• The size of the current relay log file becomes too big. The meaning of “too big” is

determined as follows:
− max_relay_log_size, if max_relay_log_size > 0
− max_binlog_size, if max_relay_log_size = 0 or MySQL is older than 4.0.14

A slave replication server creates additional two small files in the data directory. These
files are named ‘master.info’ and ‘relay-log.info’ by default. They contain information
like that shown in the output of the SHOW SLAVE STATUS statement (see Section 4.11.8
[Replication Slave SQL], page 378 for a description of this command). As disk files they
survive slave’s shutdown. The next time the slave starts up, it can read these files to know
how far it has proceeded in reading binlogs from the master and in processing its own relay
logs.
The ‘master.info’ file is updated by the I/O thread. The correspondance between the
lines in the file and the columns displayed by SHOW SLAVE STATUS is as follows:
Line Description
1 Master_Log_File
2 Read_Master_Log_Pos
3 Master_Host
4 Master_User
5 Password (not shown by SHOW SLAVE STATUS)
6 Master_Port
7 Connect_Retry

The ‘relay-log.info’ file is updated by the SQL thread. The correspondance between the
lines in the file and the columns displayed by SHOW SLAVE STATUS is as follows:
Line Description
1 Relay_Log_File
2 Relay_Log_Pos
3 Relay_Master_Log_File
4 Exec_master_log_pos

362 MySQL Technical Reference for Version 4.1.1-alpha

When you back up your slave’s data, you should back up these 2 small files as well, along
with the relay log files. because they are needed to resume replication after you restore the
slave’s data. If you lose the relay logs but still have the ‘relay-log.info’ file, you can
check it to determine how far the SQL thread has executed in the master binlogs. Then you
can use CHANGE MASTER TO with the MASTER_RELAY_LOG and MASTER_RELAY_POS options to
tell the slave to re-read the binlogs from that point. This requires that the binlogs still exist
on the master server, of course.
If your slave is subject to replicating LOAD DATA INFILE statements, you should also backup
the ‘SQL-LOAD*’ files that may exist in the directory that the slave uses for this purpose.
The slave needs these files to resume replication of any interrupted LOAD DATA INFILE state-
ments. (The directory location is specified using the ‘--slave-load-tmpdir’ option. Its
default value if not specified is the value of the tmpdir variable.)

4.11.4 How to Set Up Replication

Here is a quick description of how to set up complete replication on your current MySQL
server. It assumes you want to replicate all your databases and have not configured repli-
cation before. You will need to shut down your master server briefly to complete the steps
outlined here.
The procedure is written in terms of setting up a single slave, but you can use it to set up
multiple slaves.
While this method is the most straightforward way to set up a slave, it is not the only one.
For example, if you already have a snapshot of the master’s data, and the master already
has its server ID set and binary logging enabled, you can set up a slave without shutting
down the master or even blocking updates to it. For more details, please see Section 4.11.9
[Replication FAQ], page 386.
If you want to administer a MySQL replication setup, we suggest that you read this entire
chapter through and try all commands mentioned in Section 4.11.7 [Replication Master
SQL], page 376 ans Section 4.11.8 [Replication Slave SQL], page 378. You should also
familiarise yourself with replication startup options in ‘my.cnf’ in Section 4.11.6 [Replication
Options], page 369.
Note that this procedure and some of the replication SQL statements in later sections refer
to the SUPER privilege. Prior to MySQL 4.0.2, use the PROCESS privilege instead.
1. Make sure you have a recent version of MySQL installed on the master and slave(s),

and that these versions are compatible according to the table shown in Section 4.11.2
[Replication Implementation], page 356.
Please do not report bugs until you have verified that the problem is present in the
latest release.

2. Set up an account on the master server that the slave server can use to connnect. This
account must be given the REPLICATION SLAVE privilege. (If MySQL versions older
than 4.0.2, give the account the FILE privilege instead.) If the account is only for
replication (which is recommended), you don’t need to grant any additional privileges.
The hostname in the account name should be such that each of the slave servers can
use the account to connect to the master. For example, to create a user named repl
which can access your master from any host, you might use this command:

Chapter 4: Database Administration 363

mysql> GRANT REPLICATION SLAVE ON *.* TO repl@’%’ IDENTIFIED BY ’<password>’;

For MySQL versions older than 4.0.2, use this command instead:
mysql> GRANT FILE ON *.* TO repl@’%’ IDENTIFIED BY ’<password>’;

If you plan to use the LOAD TABLE FROM MASTER or LOAD DATA FROM MASTER statements
from the slave host, you will need to grant this account additional privileges:
• Grant to the account the SUPER and RELOAD global privileges.
• Grant the SELECT privilege for all tables that you want to load. Any master tables

from which the account cannot SELECT will be ignored by LOAD DATA FROM MASTER.
3. If you are using MyISAM tables, flush all the tables and block write queries by executing

FLUSH TABLES WITH READ LOCK command.
mysql> FLUSH TABLES WITH READ LOCK;

and then take a snapshot of the data on your master server.
The easiest way to create a snapshot is to simply use an archiving program (tar on
Unix, PowerArchiver, WinRAR, WinZIP or any similar software on Windows) to produce
an archive of the databases in your master’s data directory. For example, to use tar to
create an archive that includes all databases, change location into the master server’s
data directory, then execute this command:

shell> tar -cvf /tmp/mysql-snapshot.tar .

If you want the archive to include only a database called this_db, use this command
instead:

shell> tar -cvf /tmp/mysql-snapshot.tar ./this_db

Then copy the archive file to the ‘/tmp’ directory on the slave server host. On that
machine, change location into the slave’s data directory, and unpack the archive file
using this command:

shell> tar -xvf /tmp/mysql-snapshot.tar

You may not want to replicate the mysql database. If not, you can exclude it from the
archive. You also need not include any log files in the archive, or the ‘master.info’ or
‘relay-log.info’ files.
While the read lock placed by FLUSH TABLES WITH READ LOCK is in effect, read the value
of the current binary log name and offset on the master:

mysql > SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_do_db | Binlog_ignore_db |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test,bar | foo,manual,mysql |
+---------------+----------+--------------+------------------+
1 row in set (0.06 sec)

The File column shows the name of the log, while Position shows the offset. In the
above example, the binary log value is mysql-bin.003 and the offset is 73. Record the
values. You will need to use them later when you are setting up the slave.
Once you have taken the snapshot and recorded the log name and offset, you can
re-enable write activity on the master:

364 MySQL Technical Reference for Version 4.1.1-alpha

mysql> UNLOCK TABLES;

If you are using InnoDB tables, ideally you should use the InnoDB Hot Backup tool
that is available to those who purchase MySQL commercial licenses, support, or the
backup tool itself. It takes a consistent snapshot without acquiring any locks on
the master server, and records the log name and offset corresponding to the snap-
shot to be later used on the slave. More information about the tool is avalaible at
http://www.innodb.com/hotbackup.html.

Without the Hot Backup tool, the quickest way to take a snapshot of InnoDB tables is
to shut down the master server and copy the InnoDB datafiles and logs, and the table
definition files (.frm). To record the current log file name and offset, you should do
the following before you shut down the server:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

And then record the log name and the offset from the output of SHOW MASTER STATUS
as was shown earlier. Once you have recorded the log name and the offset, shut down
the server without unlocking the tables to make sure it goes down with the snapshot
corresponding to the current log file and offset:

shell> mysqladmin -uroot shutdown

An alternative for both MyISAM and InnoDB tables is to take an SQL dump of the
master instead of a binary copy like above; for this you can use mysqldump --master-
data on your master and later run this SQL dump into your slave. However, this is
slower than doing a binary copy.

If the master has been previously running without --log-bin enabled, the log name
and position values displayed by SHOW MASTER STATUS or mysqldump will be empty. In
that case, record empty string (”) for the log name, and 4 for the offset.

4. Make sure the [mysqld] section of the ‘my.cnf’ file on the master host includes a
log-bin option. The section should also have a server-id=master_id option, where
master_id must be an integer value from 1 to 2^32 - 1. For example:

[mysqld]
log-bin
server-id=1

If those options are not present, add them and restart the server.

5. Stop the server that is to be used as a slave server and add the following to its ‘my.cnf’
file:

[mysqld]
server-id=slave_id

The slave_id value, like the master_id value, must be an integer value from 1 to 2^32
- 1. In addition, it is very important that the ID of the slave be different than the ID
of the master. For example:

[mysqld]
server-id=2

If you are setting up multiple slaves, each one must have a server-id value that differs
from that of the master and from each of the other slaves. Think of server-id values

Chapter 4: Database Administration 365

as something similar to IP addresses: These IDs uniquely identify each server instance
in the community of replication partners.
If you don’t specify a server-id value, it will be set to 1 if you have not defined
master-host, else it will be set to 2. Note that in the case of server-id omission, a
master will refuse connections from all slaves, and a slave will refuse to connect to a
master. Thus, omitting server-id is only good for backup with a binary log.

6. If you made a binary backup of the master server’s data, copy it to the slave server’s
data directory before starting the slave. Make sure that the privileges on the files and
directories are correct. The user which MySQL runs as needs to be able to read from
and write to them, just as on the master.
If you made a backup using mysqldump, start the slave first (see next step).

7. Start the slave server. If it has been replicating previously, start the slave server with
the --skip-slave-start option. You also may want to start the slave server with the
--log-warnings option. That way, you will get more messages about problems (for
example, network or connection problems).

8. If you made a backup of the master server’s data using mysqldump, load the dump file
into the slave server:

shell> mysql -u root -p < dump_file.sql

9. Execute the following command on the slave, replacing the values within <> with the
actual values relevant to your system:

mysql> CHANGE MASTER TO
-> MASTER_HOST=’<master host name>’,
-> MASTER_USER=’<replication user name>’,
-> MASTER_PASSWORD=’<replication password>’,
-> MASTER_LOG_FILE=’<recorded log file name>’,
-> MASTER_LOG_POS=<recorded log offset>;

The following table lists the maximum string length for these variables:
MASTER_HOST 60
MASTER_USER 16
MASTER_PASSWORD 32
MASTER_LOG_FILE 255

10. Start the slave threads:
mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch
up on any updates that have occurred since the snapshot was taken.
If you have forgotten to set server-id for the master, slaves will not be able to connect to
it.
If you have forgotten to set server-id for the slave, you will get the following error in its
error log:

Warning: one should set server_id to a non-0 value if master_host is set.
The server will not act as a slave.

You will also find error messages in the slave’s error log if it is not able to replicate for any
other reason.

366 MySQL Technical Reference for Version 4.1.1-alpha

Once a slave is replicating, you will find in its data directory one file called ‘master.info’
and another called ‘relay-log.info’. The slave uses these two files to keep track of how
much of the master’s binary log it has processed. Do not remove or edit these files, unless
you really know what you are doing and understand the implications. Even in that case, it
is preferred that you use CHANGE MASTER TO command.

NOTE: The content of ‘master.info’ overrides some options specified on the command-line
or in ‘my.cnf’ See Section 4.11.6 [Replication Options], page 369 for more details.

Once you have a snapshot, you can use it to set up other slaves by following the slave
portion of the procedure just described. You do not need to take another snapshot of the
master.

4.11.5 Replication Features and Known Problems

Here is an explanation of what is supported and what is not:

• Replication will be done correctly with AUTO_INCREMENT, LAST_INSERT_ID(), and
TIMESTAMP values.

• The USER() and LOAD_FILE() functions are replicated without changes and will thus
not work reliably on the slave. This is also true for CONNECTION_ID() in slave versions
older than 4.1.1. The new PASSWORD() function in MySQL 4.1, is well replicated since
4.1.1 masters; your slaves must be 4.1.0 or above to replicate it. If you have older slaves
and need to replicate PASSWORD() from your 4.1.x master, you must start your master
with option --old-password.

• The SQL_MODE, UNIQUE_CHECKS, SQL_SELECT_LIMIT, SQL_AUTO_IS_NULL and TABLE_
TYPE variables are not replicated yet. FOREIGN_KEY_CHECKS is replicated since version
4.0.14.

• You must use the same character set (--default-character-set) on the master and
the slave. Otherwise, you may get duplicate key errors on the slave, because a key
that is regarded as unique in the master character set may not be unique in the slave
character set.

• If you are using transactional tables on the master and non-transactional tables (for
the same tables) on the slave, you will get problems if the slave is stopped in the middle
of a BEGIN/COMMIT block, as the slave will later start at the beginning of the BEGIN
block. This issue is on our TODO and will be fixed in the near future.

• Update queries that use user variables are badly replicated in 3.23 and 4.0. This is
fixed in 4.1. Note that user variable names are case insensitive starting from version
5.0, so you should take this into account when setting up replication between 5.0 and
a previous version.

• The slave can connect to the master using SSL, if the master and slave are both 4.1.1
or newer.

• Though we have never heard of it actually occurring, it is theoretically possible for the
data on the master and slave to become different if a query is designed in such a way
that the data modification is non-deterministic, that is, left to the will of the query
optimiser (which generally is not a good practice, even outside of replication!). For a
detailed explanation, see Section 1.7.6.2 [Open bugs], page 44.

Chapter 4: Database Administration 367

• Before MySQL 4.1.1, FLUSH, ANALYZE, OPTIMIZE, REPAIR commands are not stored
in the binary log and thus are not replicated to the slaves. This is not normally a
problem as these commands don’t change anything. However, it does mean that if
you update the MySQL privilege tables directly without using the GRANT statement
and you replicate the mysql privilege database, you must do a FLUSH PRIVILEGES on
your slaves to put the new privileges into effect. Also if you use FLUSH TABLES when
renaming a MyISAM table involved in a MERGE table, you will have to issue FLUSH TABLES
manually on the slave. Since MySQL 4.1.1, these commands are written to the binary
log (except FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, FLUSH TABLES WITH READ LOCK)
unless you specify NO_WRITE_TO_BINLOG (or its alias LOCAL). For a syntax example,
see Section 4.6.4 [FLUSH], page 282.

• MySQL only supports one master and many slaves. Later we will add a voting algo-
rithm to automatically change master if something goes wrong with the current master.
We will also introduce “agent” processes to help do load balancing by sending SELECT
queries to different slaves.

• Temporary tables are replicated with the exception of the case that you shut down slave
server (not just slave thread) and you have some replicated temporary tables that are
used in update statements that have not yet been executed on the slave. (If you shut
down the slave, the temporary tables needed by those updates no longer are available
when the slave starts again.) To avoid this problem, do not shut down the slave while
it has temporary tables open. Instead, use this procedure:

1. Issue a STOP SLAVE statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is 0, issue a mysqladmin shutdown command to shut down the slave.

4. If the value is not 0, restart the slave threads with START SLAVE.

5. Repeat the procedure later to see if you have better luck next time.

We have plans to fix this problem in the near future.

• It is safe to connect servers in a circular master/slave relationship with log-slave-
updates enabled. Note, however, that many queries will not work correctly in this
kind of setup unless your client code is written to take care of the potential problems
that can happen from updates that occur in different sequence on different servers.

This means that you can do a setup like the following:

A -> B -> C -> A

Server IDs are encoded in the binary log events. A will know when an event it reads
had originally been created by A, so A will not execute it and there will be no infinite
loop. But this circular setup will work only if you only if you perform no conflicting
updates between the tables. In other words, if you insert data in A and C, you should
never insert a row in A that may have a conflicting key with a row insert in C. You
should also not update the same rows on two servers if the order in which the updates
are applied matters.

• If a query on the slave gets an error, the slave SQL thread will terminate, and a message
will appear in the slave error log. You should then connect to the slave manually, fix
the cause of the error (for example, non-existent table), and then run START SLAVE.

368 MySQL Technical Reference for Version 4.1.1-alpha

• If the connection to the master is lost, the slave will try to reconnect immediately.
If that fails, the slave will retry every master-connect-retry seconds (default 60).
Because of this, it is safe to shut down the master, and then restart it after a while.
The slave will also be able to deal with network connectivity outages. However, the
slave will notice the network outage only after receiving no data from the master for
slave_net_timeout seconds. So if your outages are short, you may want to decrease
slave_net_timeout. See Section 4.6.8.4 [SHOW VARIABLES], page 290.

• Shutting down the slave (cleanly) is also safe, as it keeps track of where it left off.
Unclean shutdowns might produce problems, especially if disk cache was not synced
before the system died. Your system fault tolerance will be greatly increased if you
have a good UPS.

• Due to the non-transactional nature of MyISAM tables, it is possible to have a query
that will only partially update a table and return an error code. This can happen, for
example, on a multi-row insert that has one row violating a key constraint, or if a long
update query is killed after updating some of the rows. If that happens on the master,
the slave thread will exit and wait for the DBA to decide what to do about it unless
the error code is legitimate and the query execution results in the same error code. If
this error code validation behaviour is not desirable, some (or all) errors can be masked
out (ignored) with the --slave-skip-errors option. This option is available starting
with MySQL Version 3.23.47.

• If you update transactional tables from non-transactional tables inside a BEGIN/COMMIT
segment, updates to the binary log may be out of sync if some thread changes the non-
transactional table before the transaction commits. This is because the transaction is
written to the binary log only when it’s commited.

• Before version 4.0.15, any update to a non-transactional table is written to the binary
log at once when the update is made while transactional updates are written on COMMIT
or not written at all if you use ROLLBACK; you have to take this into account when
updating both transactional tables and non-transactional tables in the same transaction
if you are using binary logging for backups or replication. In version 4.0.15, we changed
the logging behaviour for transactions that mix updates to transactional and non-
transactional tables, which solves the problems (order of queries is good in binlog, and
all needed queries are written to the binlog even in case of ROLLBACK). The problem
which remains is when a second connection updates the non-transactional table while
the first connection’s transaction is not finished yet (wrong order can still occur, because
the second connection’s update will be written immediately after it is done).

The following table lists problems in MySQL 3.23 that are fixed in MySQL 4.0:

• LOAD DATA INFILE is handled properly, as long as the data file still resides on the master
server at the time of update propagation.

• LOAD LOCAL DATA INFILE will be skipped.

• In 3.23 RAND() in updates does not replicate properly. Use RAND(some_non_rand_
expr) if you are replicating updates with RAND(). You can, for example, use UNIX_
TIMESTAMP() for the argument to RAND(). This is fixed in 4.0.

Chapter 4: Database Administration 369

4.11.6 Replication Startup Options

On both the master and the slave you need to use the server-id option to establish a
unique replication ID for each server. You should pick a unique integer in the range from 1
to 2^32 - 1 for each master and slave. Example: server-id=3
The options that you can use on the master server for controlling binary logging are all
described in Section 4.10.4 [Binary log], page 351.
The following table describes the options you can use on slave servers. You can specify
them on the command line or in an option file.
NOTE: Replication handles the following options in a special way:
• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

If no ‘master.info’ file exists when the slave server starts, it uses values for those options
that are specified in option files or on the command line. This will occur when you start
the server as a replication slave for the very first time, or you have run RESET SLAVE and
shut down and restarted the slave server.
However, if the ‘master.info’ file exists when the slave server starts, it uses the values
in the file and IGNORES any values specified for those options in option files or on the
command line.
Suppose you specify this option in your ‘my.cnf’ file:

[mysqld]
master-host=this_host

The first time you start the server as a replication slave, it will read and use that option
from the ‘my.cnf’ file. The server will then record that value in the ‘master.info’ file. The
next time you start the server, it will read the master host value from the ‘master.info’
file only. If you modify the ‘my.cnf’ file to specify a different master host, it will have no
effect. You must use CHANGE MASTER TO instead.
As of MySQL 4.1.1, the following options also are handled specially:
• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

The ‘master.info’ file includes the values corresponding to those options. In addition, the
4.1.1 file format includes as its first line the number of lines in the file. If you upgrade an
older server to 4.1.1, the ‘master.info’ will be upgraded to the new format automatically
when the new server starts. (If you downgrade a 4.1.1 or newer server to a version older

370 MySQL Technical Reference for Version 4.1.1-alpha

than 4.1.1, you should manually remove the first line before starting the older server for the
first time.)

Because the server gives an existing ‘master.info’ file precedence over the startup options
just described, you might prefer not to use startup options for these values at all, and in-
stead specify them by using the CHANGE MASTER TO statement. See Section 4.11.8.1 [CHANGE
MASTER TO], page 378.

This example shows a more extensive use of startup options to configure a slave server:

[mysqld]
server-id=2
master-host=db-master.mycompany.com
master-port=3306
master-user=pertinax
master-password=freitag
master-connect-retry=60
report-host=db-slave.mycompany.com

The following list describes startup options for controlling replication:

--log-slave-updates
Tells the slave to log the updates performed by its SQL thread to the slave’s
own binary log. Off by default. Of course, for this option to have any effect,
the slave must be started with binary logging enabled (--log-bin option). -
-log-slave-updates is used when you want to chain replication servers. For
example, you might want a setup like this:

A -> B -> C

That is, A serves as the master for the slave B, and B serves as the master for
the slave C. For this to work, where B is both a master and a slave, you must
start B with the --log-slave-updates option. A and B must both be started
with binary logging enabled.

--log-warnings
Makes the slave print more messages about what it is doing. For example,
it will warn you that it succeeded in reconnecting after a network/connection
failure, and warn you about how each slave thread started.
This option is not limited to replication use only. It produces warnings across
a spectrum of server activities.

--master-host=host
Specify the hostname or IP address of the master replication server. If
this option is not given, the slave thread will not be started. The value in
‘master.info’ takes precedence if it can be read. Probably a better name for
this options would have been something like --bootstrap-master-host, but
it is too late to change now.

--master-user=username
The username of the account that the slave thread uses for authentication when
connecting to the master. The account must have the REPLICATION SLAVE
privilege (prior to MySQL 4.0.2, it must have the FILE privilege instead). If

Chapter 4: Database Administration 371

the master user is not set, user test is assumed. The value in ‘master.info’
takes precedence if it can be read.

--master-password=password
The password of the account that the slave thread uses for authentication when
connecting to the master. If not set, an empty password is assumed. The value
in ‘master.info’ takes precedence if it can be read.

--master-port=port_number
The port the master is listening on. If not set, the compiled setting of MYSQL_
PORT is assumed. If you have not tinkered with configure options, this should
be 3306. The value in ‘master.info’ takes precedence if it can be read.

--master-connect-retry=seconds
The number of seconds the slave thread sleeps before retrying to connect to the
master in case the master goes down or the connection is lost. Default is 60.
The value in ‘master.info’ takes precedence if it can be read.

--master-info-file=filename
Specifies the name to use for the file in which the slave records information
about the master. The default name is ‘mysql.info’ in the data directory.

--master-ssl
--master-ssl-ca=file_name
--master-ssl-capath=directory_name
--master-ssl-cert=file_name
--master-ssl-cipher=cipher_list
--master-ssl-key=file_name

These options are used for setting up a secure replication connection to the
master server using SSL. Their meanings are the same as the corresponding
--ssl, --ssl-ca, --ssl-capath, --ssl-cert, --ssl-cipher, --ssl-key op-
tions described in Section 4.4.10.5 [SSL options], page 259.
These options are operational as of MySQL 4.1.1.

--max-relay-log-size=#
To rotate the relay log automatically. See Section 4.6.8.4 [SHOW VARIABLES],
page 290.

--relay-log=filename
To specify the location and name that should be used for relay logs. You can
use this to have hostname-independant relay log names, or if your relay logs
tend to be big (and you don’t want to decrease max_relay_log_size) and you
need to put them on some area different from the data directory, or if you want
to increase speed by balancing load between disks.

--relay-log-index=filename
To specify the location and name that should be used for the relay logs index
file.

--relay-log-info-file=filename
To give ‘relay-log.info’ another name and/or to put it in another directory
than the data directory.

372 MySQL Technical Reference for Version 4.1.1-alpha

--relay-log-purge=0|1
Disables/enables automatic purging of relay logs as soon as they are not needed
any more. This is a global variable that can be dynamically changed with SET
GLOBAL RELAY_LOG_PURGE=0|1. The default value is 1.

This option is available as of MySQL 4.1.1.

--relay-log-space-limit=#
To put an upper limit on the total size of all relay logs on the slave (a value
of 0 means “unlimited”). This is useful if you have a small hard disk on your
slave machine. When the limit is reached, the I/O thread pauses (does not read
the master’s binlog) until the SQL thread has caught up and deleted some now
unused relay logs. Note that this limit is not absolute: there are cases where
the SQL thread needs more events to be able to delete; in that case the I/O
thread will overgo the limit until deletion becomes possible. Not doing so would
cause a deadlock (which happens before MySQL 4.0.13). Users should not set
--relay-log-space-limit to less than twice the value of --max-relay-log-
size (or --max-binlog-size if --max-relay-log-size is 0) because in that
case there are chances that when the I/O thread waits for free space because --
relay-log-space-limit is exceeded, the SQL thread has no relay log to purge
and so cannot satisfy the I/O thread, forcing the I/O thread to temporarily
ignore --relay-log-space-limit.

--replicate-do-table=db_name.table_name
Tells the slave thread to restrict replication to the specified table. To specify
more than one table, use the directive multiple times, once for each table. This
will work for cross-database updates, in contrast to --replicate-do-db. Please
read the notes that follow this option list.

--replicate-ignore-table=db_name.table_name
Tells the slave thread to not replicate any command that updates the specified
table (even if any other tables may be update by the same command). To
specify more than one table to ignore, use the directive multiple times, once
for each table. This will work for cross-database updates, in contrast to --
replicate-ignore-db. Please read the notes that follow this option list.

--replicate-wild-do-table=db_name.table_name
Tells the slave thread to restrict replication to queries where any of the updated
tables match the specified wildcard pattern. To specify more than one table,
use the directive multiple times, once for each table. This will work for cross-
database updates. Please read the notes that follow this option list.

Example: --replicate-wild-do-table=foo%.bar% will replicate only updates
that uses a table in any databases that start with foo and whose table names
start with bar.

Note that if you do --replicate-wild-do-table=foo%.% then the rule will be
propagated to CREATE DATABASE and DROP DATABASE, that is, these two state-
ments will be replicated if the database name matches the database pattern
(foo% here) (this magic is triggered by % being the table pattern).

Chapter 4: Database Administration 373

--replicate-wild-ignore-table=db_name.table_name
Tells the slave thread to not replicate a query where any table matches the given
wildcard pattern. To specify more than one table to ignore, use the directive
multiple times, once for each table. This will work for cross-database updates.
Please read the notes that follow this option list.

Example: --replicate-wild-ignore-table=foo%.bar% will not do updates
to tables in databases that start with foo and whose table names start with
bar.

Note that if you do --replicate-wild-ignore-table=foo%.% then the rule
will be propagated to CREATE DATABASE and DROP DATABASE, that is, these two
statements will not be replicated if the database name matches the database
pattern (foo% here) (this magic is triggered by % being the table pattern).

--replicate-do-db=database_name
Tells the slave to restrict replication to commands where the current database
(that is, the one selected by USE) is database_name. To specify more than one
database, use the directive multiple times, once for each database. Note that
this will not replicate cross-database queries such as UPDATE some_db.some_
table SET foo=’bar’ while having selected a different or no database. If you
need cross database updates to work, make sure you have 3.23.28 or later,
and use --replicate-wild-do-table=db_name.%. Please read the notes that
follow this option list.

Example of what does not work as you could expect it: if the slave is started with
--replicate-do-db=sales, and you do USE prices; UPDATE sales.january
SET amount=amount+1000;, this query will not be replicated.

If you need cross database updates to work, use --replicate-wild-do-
table=db_name.% instead.

The main reason for this “just-check-the-current-database” behaviour is that
it’s hard from the command alone to know if a query should be replicated or not;
for example if you are using multi-table-delete or multi-table-update commands
that go across multiple databases. It’s also very fast to just check the current
database.

--replicate-ignore-db=database_name
Tells the slave to not replicate any command where the current database (that
is, the one selected by USE) is database_name. To specify more than one
database to ignore, use the directive multiple times, once for each database.
You should not use this directive if you are using cross table updates and you
don’t want these update to be replicated. Please read the notes that follow this
option list.

Example of what does not work as you could expect it: if the slave is started
with --replicate-ignore-db=sales, and you do USE prices; UPDATE
sales.january SET amount=amount+1000;, this query will be replicated.

If you need cross database updates to work, use --replicate-wild-ignore-
table=db_name.% instead.

374 MySQL Technical Reference for Version 4.1.1-alpha

--replicate-rewrite-db=from_name->to_name
Tells the slave to translate the current database (that is, the one selected by
USE) to to_name if it was from_name on the master. Only statements involving
tables may be affected (CREATE DATABASE, DROP DATABASE won’t), and only
if from_name was the current database on the master. This will not work for
cross-database updates. Note that the translation is done before --replicate-
* rules are tested.

Example: replicate-rewrite-db=master_db_name->slave_db_name

--report-host=host
The hostname or IP number of the slave to be reported to the master during
slave registration. Will appear in the output of SHOW SLAVE HOSTS. Leave unset
if you do not want the slave to register itself with the master. Note that it is
not sufficient for the master to simply read the IP number of the slave from the
TCP/IP socket once the slave connects. Due to NAT and other routing issues,
that IP may not be valid for connecting to the slave from the master or other
hosts.

This option is available as of MySQL 4.0.0.

--report-port=port_number
Port for connecting to slave reported to the master during slave registration.
Set it only if the slave is listening on a non-default port or if you have a special
tunnel from the master or other clients to the slave. If not sure, leave this
option unset.

This option is available as of MySQL 4.0.0.

--skip-slave-start
Tells the slave server not to start the slave threads on server startup. The user
can start them later with START SLAVE.

--slave_compressed_protocol=#
If 1, then use compression on the slave/client protocol if both slave and master
support this.

--slave-load-tmpdir=filename
This option is by default equal to the value of the tmpdir variable. When
the slave SQL thread replicates a LOAD DATA INFILE command, it extracts the
to-be-loaded file from the relay log into temporary files, then loads these into
the table. If the file loaded on the master was huge, the temporary files on the
slave will be huge, too; therefore you may wish/have to tell the slave to put
the temporary files on some large disk different from tmpdir, using this option.
In that case, you may also use the --relay-log option, as relay logs will be
huge, too. --slave-load-tmpdir should point to a disk-based filesystem; not a
memory-based one. Because the slave needs the temporary files used to replicate
LOAD DATA INFILE) to survive a machine’s reboot.

--slave-net-timeout=#
Number of seconds to wait for more data from the master before aborting the
read, considering the connection broken and retrying to connect. The first retry

Chapter 4: Database Administration 375

occurs immediately after timeout. The interval between retries is controlled by
the --master-connect-retry option.

--slave-skip-errors= [err_code1,err_code2,... | all]
Tells the slave SQL thread to continue replication when a query returns an
error from the provided list. Normally, replication will discontinue when an
error is encountered, giving the user a chance to resolve the inconsistency in
the data manually. Do not use this option unless you fully understand why you
are getting the errors. If there are no bugs in your replication setup and client
programs, and no bugs in MySQL itself, you should never get an abort with
error. Indiscriminate use of this option will result in slaves being hopelessly out
of sync with the master and you having no idea how the problem happened.
For error codes, you should use the numbers provided by the error message in
your slave error log and in the output of SHOW SLAVE STATUS. A full list of error
messages can be found in the source distribution in ‘Docs/mysqld_error.txt’.
The server error codes also are listed at Section 12.1 [Error-returns], page 823.
You can (but should not) also use a very non-recommended value of all which
will ignore all error messages and keep barging along regardless. Needless to
say, if you use it, we make no promises regarding your data integrity. Please
do not complain if your data on the slave is not anywhere close to what it is on
the master in this case — you have been warned.
Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

Some of these options, like all --replicate-* options, can only be set at the slave server’s
startup, not on-the-fly. We plan to fix this.
Here is the order of evaluation of the r--eplicate-* rules, to decide if the query is going
to be executed by the slave or ignored by it:
1. Are there some --replicate-do-db or --replicate-ignore-db rules?

• Yes: test them like for --binlog-do-db and --binlog-ignore-db (see
Section 4.10.4 [Binary log], page 351). What is the result of the test?
• ignore the query: ignore it and exit.
• execute the query: don’t execute it immediately, defer the decision, go to step

below.
• No: go to step below.

2. Are there some --replicate-*-table rules?
• No: execute the query and exit.
• Yes: go to step below. Only tables which are to be updated will be compared to

rules (INSERT INTO sales SELECT * from prices: only sales will be compared
to rules). If several tables are to be updated (multi-table statement), the first
matching table (matching “do” or “ignore”) wins (that is, the first table is com-
pared to rules, then if no decision could be taken the second table is compared to
rules, etc).

3. Are there some --replicate-do-table rules?

376 MySQL Technical Reference for Version 4.1.1-alpha

• Yes: does the table match any of them?
• Yes: execute the query and exit.
• No: go to step below.

• No: go to step below.
4. Are there some --replicate-ignore-table rules?

• Yes: does the table match any of them?
• Yes: ignore the query and exit.
• No: go to step below.

• No: go to step below.
5. Are there some --replicate-wild-do-table rules?

• Yes: does the table match any of them?
• Yes: execute the query and exit.
• No: go to step below.

• No: go to step below.
6. Are there some --replicate-wild-ignore-table rules?

• Yes: does the table match any of them?
• Yes: ignore the query and exit.
• No: go to step below.

• No: go to step below.
7. No --replicate-*-table rule was matched. Is there another table to test against

these rules?
• Yes: loop.
• No: we have tested all tables to be updated, could not match any rule. Are there

--replicate-do-table or --replicate-wild-do-table rules ?
• Yes: ignore the query and exit.
• No: execute the query and exit.

4.11.7 SQL Statements for Controlling Master Servers

Replication can be controlled through the SQL interface. This section discusses statements
for managing master replication servers. Section 4.11.8 [Replication Slave SQL], page 378
discusses statements for managing slave servers.

4.11.7.1 PURGE MASTER LOGS

PURGE {MASTER|BINARY} LOGS TO ’log_name’
PURGE {MASTER|BINARY} LOGS BEFORE ’date’

Deletes all the binary logs listed in the log index that are strictly prior to the specified log
or date. The logs also are removed from this list recorded in the log index file, so that the
given log now becomes the first.
Example:

Chapter 4: Database Administration 377

PURGE MASTER LOGS TO ’mysql-bin.010’;
PURGE MASTER LOGS BEFORE ’2003-04-02 22:46:26’;

The BEFORE variant is available in MySQL 4.1; its date argument can be in ’YYYY-MM-DD
hh:mm:ss’ format. MASTER and BINARY are synonyms, though BINARY can be used only as
of MySQL 4.1.1.
If you have an active slave that is currently reading one of the logs you are trying to delete,
this command does nothing and fails with an error. However, if you have a dormant slave,
and happen to purge one of the logs it wants to read, the slave will be unable to replicate
once it comes up. The command is safe to run while slaves are replicating. You do not need
to stop them.
You must first check all the slaves with SHOW SLAVE STATUS to see which log they are
reading, then do a listing of the logs on the master with SHOW MASTER LOGS, find the earliest
log among all the slaves (if all the slaves are up to date, this will be the last log on the list),
backup all the logs you are about to delete (optional) and purge up to the target log.

4.11.7.2 RESET MASTER

RESET MASTER

Deletes all binary logs listed in the index file, resetting the binlog index file to be empty.
This statement was named FLUSH MASTER before MySQL 3.23.26.

4.11.7.3 SET SQL_LOG_BIN

SET SQL_LOG_BIN = {0|1}

Disables or enables binary logging for the current connection (SQL_LOG_BIN is a session
variable) if the client connects using an account that has the SUPER privilege. The statement
is ignored if the client does not have that privilege.

4.11.7.4 SHOW BINLOG EVENTS

SHOW BINLOG EVENTS [IN ’log_name’] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify ’log_name’, the first binary log
will be displayed.
This statement is available as of MySQL 4.0

4.11.7.5 SHOW MASTER STATUS

SHOW MASTER STATUS

Provides status information on the binlog of the master.

4.11.7.6 SHOW MASTER LOGS

SHOW MASTER LOGS

Lists the binary logs on the master. You should use this command before using PURGE
MASTER LOGS to find out how far you should go.

378 MySQL Technical Reference for Version 4.1.1-alpha

4.11.7.7 SHOW SLAVE HOSTS

SHOW SLAVE HOSTS

Displays a list of slaves currently registered with the master. Note that slaves not started
with the --report-host=slave_name option will not be visible in that list.

4.11.8 SQL Statements for Controlling Slave Servers

Replication can be controlled through the SQL interface. This section discusses statements
for managing slave replication servers. Section 4.11.7 [Replication Master SQL], page 376
discusses statements for managing master servers.

4.11.8.1 CHANGE MASTER TO

CHANGE MASTER TO master_def [, master_def] ...

master_def =
MASTER_HOST = ’host_name’

| MASTER_USER = ’user_name’
| MASTER_PASSWORD = ’password’
| MASTER_PORT = port_num
| MASTER_CONNECT_RETRY = count
| MASTER_LOG_FILE = ’master_log_name’
| MASTER_LOG_POS = master_log_pos
| RELAY_LOG_FILE = ’relay_log_name’
| RELAY_LOG_POS = relay_log_pos
| MASTER_SSL = {0|1}
| MASTER_SSL_CA = ’ca_file_name’
| MASTER_SSL_CAPATH = ’ca_directory_name’
| MASTER_SSL_CERT = ’cert_file_name’
| MASTER_SSL_KEY = ’key_file_name’
| MASTER_SSL_CIPHER = ’cipher_list’

CHANGE MASTER is a “brutal” command. Before using it in production, you should read this
entire description.

Changes the parameters that the slave server uses for connecting to and communicating
with the master server. The possible master_def values are shown above.

The relay log options (RELAY_LOG_FILE and RELAY_LOG_POS) are available beginning with
MySQL 4.0.

The SSL options (MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH, MASTER_SSL_CERT,
MASTER_SSL_KEY, and MASTER_SSL_CIPHER) are available beginning with MySQL 4.1.1.
You can change these options even on slaves that are compiled without SSL support. They
will be saved to the ‘master.info’ file but ignored until you use a server that has SSL
support enabled.

For example:

Chapter 4: Database Administration 379

mysql> CHANGE MASTER TO
-> MASTER_HOST=’master2.mycompany.com’,
-> MASTER_USER=’replication’,
-> MASTER_PASSWORD=’bigs3cret’,
-> MASTER_PORT=3306,
-> MASTER_LOG_FILE=’master2-bin.001’,
-> MASTER_LOG_POS=4,
-> MASTER_CONNECT_RETRY=10;

mysql> CHANGE MASTER TO
-> RELAY_LOG_FILE=’slave-relay-bin.006’,
-> RELAY_LOG_POS=4025;

You need to specify only the values that you want to change. The values that you omit
will stay the same, with the exception that if you specify the master host or port, the slave
will assume that the master server is different than before. (This is true even if you specify
a host or port value value that is the same as the current value.) In this case, the old
values of master binlog name and position are considered no longer applicable, so if you do
not specify MASTER_LOG_FILE and MASTER_LOG_POS in the command, MASTER_LOG_FILE=’’
and MASTER_LOG_POS=4 are silently appended to it.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread
should begin reading from the master the next time the thread starts. Because CHANGE
MASTER deletes relay logs (see below), these are also the coordinates from which the slave
SQL thread will begin executing the next time it starts.

CHANGE MASTER deletes all relay logs (and starts a new one), unless you specified RELAY_
LOG_FILE or RELAY_LOG_POS (in that case relay logs will be kept; since MySQL 4.1.1 the
RELAY_LOG_PURGE global variable will silently be set to 0). CHANGE MASTER TO updates
‘master.info’ and ‘relay-log.info’.

Note: If the slave SQL thread is late by one or more queries compared to the I/O thread just
before you issue CHANGE MASTER (a very common case when replication is running in high-
load environments), then as CHANGE MASTER deletes relay logs containing these non-executed
queries, and so replication then restarts from the coordinates of the I/O thread, the SQL
thread will have “leapt” over the non-executed queries. Therefore, unless these queries
were not important, you should do one of the following before issuing CHANGE MASTER:

• Ensure that the slave SQL thread has read all existing relay logs. You can achieve
this by stopping only the slave I/O thread (STOP SLAVE IO_THREAD), then monitoring
the progress of the running slave SQL thread with SHOW SLAVE STATUS and SELECT
MASTER_POS_WAIT(), until it has caught up. This way there will be no leap for the
slave SQL thread.

• Run STOP SLAVE, check where the slave SQL thread is in the master’s binlog (using
SHOW SLAVE STATUS, columns Relay_Master_Log_File and Exec_master_log_pos),
and add a specification of these coordinates to the CHANGE MASTER command (MASTER_
LOG_FILE=..., MASTER_LOG_POS=...). This way, you will instruct the slave I/O
thread to start replication from the former coordinates of the slave SQL thread, so
there will be no leap for the slave SQL thread.

380 MySQL Technical Reference for Version 4.1.1-alpha

If you don’t take care of this issue, even a simple STOP SLAVE; CHANGE MASTER TO MASTER_
USER=’repl’; START SLAVE; run in the middle of a highly-loaded replication could break
this replication and spoil the slave’s data.

CHANGE MASTER is useful for setting up a slave when you have the snapshot of the master
and have recorded the log and the offset on the master that the snapshot corresponds to.
You can run CHANGE MASTER TO MASTER_LOG_FILE=’log_name_on_master’, MASTER_LOG_
POS=log_offset_on_master on the slave after restoring the snapshot.

The first example above (CHANGE MASTER TO MASTER_HOST=’master2.mycompany.com’
etc) changes the master and master’s binlog coordinates. This is when you want the
slave to replicate the master. The second example, less frequently used, is when the
slave has relay logs which, for some reason, you want the slave to execute again; to do
this the master needn’t be reachable, you just have to do CHANGE MASTER TO and start
the SQL thread (START SLAVE SQL_THREAD). You can even use this out of a replication
setup, on a standalone, slave-of-nobody server, to recover after a crash. Suppose your
server has crashed and you have restored a backup. You want to replay the server’s
own binlogs (not relay logs, but regular binary logs), supposedly named ‘myhost-bin.*’.
First make a backup copy of these binlogs in some safe place, in case you don’t exactly
follow the procedure below and accidentally have the server purge the binlogs. If using
MySQL 4.1.1 or newer, do SET GLOBAL RELAY_LOG_PURGE=0 for additional safety. Then
start the server without log-bin, with a new (different from before) server ID, with
relay-log=myhost-bin (to make the server believe that these regular binlogs are relay
logs) and skip-slave-start, then issue these statements:

mysql> CHANGE MASTER TO
-> RELAY_LOG_FILE=’myhost-bin.153’,
-> RELAY_LOG_POS=410,
-> MASTER_HOST=’some_dummy_string’;

mysql> START SLAVE SQL_THREAD;

Then the server will read and execute its own binlogs, thus achieving crash recovery. Once
the recovery is finished, run STOP SLAVE, shutdown the server, delete ‘master.info’ and
‘relay-log.info’, and restart the server with its original options. For the moment, spec-
ifying MASTER_HOST (even with a dummy value) is compulsory to make the server think it
is a slave, and giving the server a new, different from before, server ID is also compulsory
otherwise the server will see events with its ID and think it is in a circular replication setup
and skip the events, which is unwanted. In the future we plan to add options to get rid of
these small constraints.

4.11.8.2 LOAD DATA FROM MASTER

LOAD DATA FROM MASTER

Takes a snapshot of the master and copies it to the slave. Updates the values of MASTER_LOG_
FILE and MASTER_LOG_POS so that the slave will start replicating from the correct position.
Will honor table and database exclusion rules specified with replicate-* options.

Use of this statement is subject to the following conditions:

• It works only with MyISAM tables.

Chapter 4: Database Administration 381

• It acquires a global read lock on the master while taking the snapshot, which prevents
updates on the master during the load operation.

In the future, it is planned to make this statement work with InnoDB tables and to remove
the need for global read lock by using the non-blocking online backup feature.
If you are loading big tables, you may have to increase the values of net_read_timeout and
net_write_timeout on both your master and slave. See Section 4.6.8.4 [SHOW VARIABLES],
page 290.
Note that LOAD DATA FROM MASTER does NOT copy any tables from the mysql database.
This is to make it easy to have different users and privileges on the master and the slave.
This statement requires that the replication account that is used to connect to the master
have RELOAD and SUPER privileges on the master, SELECT privileges on all master’s tables you
want to load. All master’s tables on which the user has no SELECT privilege will be ignored
by LOAD DATA FROM MASTER; this is because the master will hide them to the user: LOAD
DATA FROM MASTER calls SHOW DATABASES to know the master databases to load, but SHOW
DATABASES returns only databases on which the user has some privilege. See Section 4.6.8.1
[Show database info], page 285. On the slave’s side, the user which issues LOAD DATA FROM
MASTER should have grants to drop and create the involved databases and tables.

4.11.8.3 LOAD TABLE tbl_name FROM MASTER

LOAD TABLE tbl_name FROM MASTER

Downloads a copy of the table from master to the slave. This statement is mplemented
mainly for debugging of LOAD DATA FROM MASTER. Requires that the account used for con-
necting to the master server have RELOAD and SUPER privileges on the master, and SELECT
on the master table to load. On the slave’s side, the user which issues LOAD TABLE FROM
MASTER should have grants to drop and create the table. Please read the timeout notes in
the description of LOAD DATA FROM MASTER above; they apply here, too. Please also read
the limitations of LOAD DATA FROM MASTER above, they apply too (for example, LOAD TABLE
FROM MASTER only works for MyISAM tables).

4.11.8.4 MASTER_POS_WAIT()

SELECT MASTER_POS_WAIT(’master_log_file’, master_log_pos)

This is a function, not a command. It is used to ensure that the slave has reached (read and
executed up to) a given position in the master’s binlog. See Section 6.3.6.2 [Miscellaneous
functions], page 515 for a full description.

4.11.8.5 RESET SLAVE

RESET SLAVE

Makes the slave forget its replication position in the master’s binlogs. This statement is
meant to be used for a clean start: it deletes the ‘master.info’ and ‘relay-log.info’ files,
all the relay logs, and starts a new relay log. Note: All relay logs are deleted, even if they
had not been totally executed by the slave SQL thread. (This is a condition likely to exist
on a replication slave that is highly-loaded, or if you have issued a STOP SLAVE statement.)

382 MySQL Technical Reference for Version 4.1.1-alpha

Connection information stored in the ‘master.info’ file is immediately reset to the values
specified in the corresponding startup options, if they were specified. This information
includes values such as master host, master port, master user, and master password. If the
slave SQL thread was in the middle of replicating temporary tables when it was stopped,
and RESET SLAVE is issued, these replicated temporary tables are deleted on the slave.

This statement was named FLUSH SLAVE before MySQL 3.23.26.

4.11.8.6 SET GLOBAL SQL_SLAVE_SKIP_COUNTER

SET GLOBAL SQL_SLAVE_SKIP_COUNTER = n

Skip the next n events from the master. This is useful for recovering from replication stops
caused by a statement.

This statement is valid only when the slave thread is not running. Otherwise, it produces
an error.

Before MySQL 4.0, omit the GLOBAL keyword from the statement.

4.11.8.7 SHOW SLAVE STATUS

SHOW SLAVE STATUS

Provides status information on essential parameters of the slave threads. If you issue this
statement using the mysql client, you can use a \G statement terminator rather than semi-
colon to get a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: root
Master_Port: 3306

Connect_retry: 3
Master_Log_File: gbichot-bin.005

Read_Master_Log_Pos: 79
Relay_Log_File: gbichot-relay-bin.005
Relay_Log_Pos: 548

Relay_Master_Log_File: gbichot-bin.005
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_do_db:

Replicate_ignore_db:
Last_errno: 0
Last_error:

Skip_counter: 0
Exec_master_log_pos: 79

Relay_log_space: 552
Until_condition: None
Until_Log_File:

Chapter 4: Database Administration 383

Until_Log_pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:

Master_SSL_Cert:
Master_SSL_Cipher:

Master_SSL_Key:
Seconds_behind_master: 8

Depending on your version of MySQL, you may not see all the fields just shown. In partic-
ular, several fields are present only as of MySQL 4.1.1.
The fields displayed by SHOW SLAVE STATUS have the following meanings:

Slave_IO_State
A copy of the State column of the output of SHOW PROCESSLIST for the slave
I/O thread; will tell you if this thread is trying to connect to the master, waiting
for events from the master, reconnecting to the master, etc. Possible states are
listed in Section 4.11.2 [Replication Implementation], page 356. Looking at
this column is necessary because, for example, the thread can be running but
unsuccessfully trying to connect to the master: only this column will make you
aware of the connection problem. On the opposite, the state of the SQL thread
is not copied, because things are simpler for this thread: if it’s running, there
is no problem; if it’s not, you will find the error in the Last_error column
(described below).
This field is present beginning with MySQL 4.1.1.

Master_Host
The current master host.

Master_User
The current user used to connect to the master.

Master_Port
The current master port.

Connect_Retry
The current value of master-connect-retry.

Master_Log_File
The name of the master’s binlog file from which the I/O thread is currently
reading.

Read_Master_Log_Pos
The position which the I/O thread has read up to in this master’s binlog.

Relay_Log_File
The name of the relay log file from which the SQL thread is currently reading
and executing.

Relay_Log_Pos
The position which the SQL thread has read and executed up to in this relay
log.

384 MySQL Technical Reference for Version 4.1.1-alpha

Relay_Master_Log_File
The name of the master’s binlog file that contains the last event executed by
the SQL thread.

Slave_IO_Running
Tells whether or not the I/O thread is started.

Slave_SQL_Running
Tells whether or not the SQL thread is started.

Replicate_do_db, Replicate_ignore_db
The lists of the databases that were specified with the --replicate-do-db and
--replicate-ignore-db options, if any

Replicate_do_table, Replicate_ignore_table, Replicate_wild_do_table,
Replicate_wild_ignore_table

The lists of tables that were specified with the --replicate-do-table, --
replicate-ignore-table, --replicate-wild-do-table, and --replicate-
wild-ignore_table options, if any
These fields are present beginning with MySQL 4.1.1.

Last_errno
The error number returned by the most recently executed query. A value of 0
means “no error”.

Last_error
The error message returned by the most recently executed query. For example:

Last_errno: 1051
Last_error: error ’Unknown table ’z’’ on query ’drop table z’

The message indicates that the table z existed on the master and was dropped
there, but it did not exist on the slave, so DROP TABLE failed on the slave.
(This might occur if you forgot to copy the table to the slave when setting up
replication.)
The empty string means “no error”. If the Last_error value is not empty, it
will also appear as a message in the slave’s error log.

Skip_counter
The last used value for SQL_SLAVE_SKIP_COUNTER.

Exec_master_log_pos
The position in the master’s binlog (Relay_Master_Log_File) of the last event
executed by the SQL thread. ((Relay_Master_Log_File,Exec_master_log_
pos) in the master’s binlog corresponds to (Relay_Log_File,Relay_Log_Pos)
in the relay log).

Relay_log_space
The total combined size of all existing relay logs.

Until_condition, Until_Log_File, Until_Log_pos
The values specified in the UNTIL clause of the START SLAVE statement.
Until_condition has these values:

Chapter 4: Database Administration 385

• None if no UNTIL clause was specified
• Master if the slave is reading until a given position in the master’s binlogs

• Relay if the slave is reading until a given position in its relay logs

Until_Log_File and Until_Log_pos indicate the log filename and position
values that define the point at which the SQL thread will stop executing.

These fields are present beginning with MySQL 4.1.1.

Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_Key

These fields show the The SSL parameters used by the slave to connect to the
master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is allowed

• No if an SSL connection to the master is not allowed
• Ignored if an SSL connection is allowed by the slave server does not have

SSL support enabled

The values of the other fields correspond to the values of the --master-ca,
--master-capath, --master-cert, --master-cipher, and --master-key op-
tions.
These fields are present beginning with MySQL 4.1.1.

Seconds_behind_master
The number of seconds that have elapsed since the timestamp of the last mas-
ter’s event executed by the slave SQL thread. Will be NULL when no event has
been executed yet, or after CHANGE MASTER and RESET SLAVE. This column can
be used to know how “late” your slave is. It will work even though your master
and slave don’t have identical clocks.

This field is present beginning with MySQL 4.1.1.

4.11.8.8 START SLAVE

START SLAVE [thread_name [, thread_name] ...]
START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = ’log_name’, MASTER_LOG_POS = log_pos
START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = ’log_name’, RELAY_LOG_POS = log_pos

thread_name = IO_THREAD | SQL_THREAD

START SLAVE with no options starts both of the slave threads. The I/O thread reads queries
from the master server and stores them in the relay log. The SQL thread reads the relay log
and executes the queries. Note that if START SLAVE succeeds in starting the slave threads
it will return without any error. But even in that case it might be that slave threads start
and then later stop (because they don’t manage to connect to the master or read his binlogs
or any other problem). START SLAVE will not warn you about this. You must check your

386 MySQL Technical Reference for Version 4.1.1-alpha

slave’s error log for error messages generated by the slave threads, or check that these are
running fine with SHOW SLAVE STATUS.
As of MySQL 4.0.2, you can add IO_THREAD or SQL_THREAD options to the statement to
name which of the threads to start.
As of MySQL 4.1.1, an UNTIL clause may be added to specify that the slave should start
until the SQL thread reaches a given point in the master binlogs or in the slave relay logs.
When the SQL thread reaches that point, it stops. If the SQL_THREAD option is specified
in the statement, it starts only the SQL thread. Otherwise, it starts both slave threads. If
the SQL thread is already running, the UNTIL clause is ignored and a warning is issued.
With an UNTIL clause, you must specify both a log filename and position. Do not mix
master and relay log options.
Any UNTIL condition is reset by a subsequent STOP SLAVE statement, or a START SLAVE
statement that includes no UNTIL clause, or a server restart.
The UNTIL clause can be useful for debugging replication, or to cause replication to proceed
until just before the point where you want to avoid having the slave replicated a statement.
For example, if an unwise DROP TABLE statement was executed on the master, you can use
UNTIL to tell the slave to execute up to that point but no farther. To find what the event
is, use mysqlbinlog with the master logs or relay logs, or by using a SHOW BINLOG EVENTS
statement.
If you are using UNTIL to have the slave process replicated queries in sections, it is rec-
ommended that you start the slave with the --skip-slave-start option to prevent the
SQL thread from running when the slave starts. It’s probably best to use this option in an
option file rather than on the command line, so that an unexpected server restart does not
cause it to be forgotten.
The SHOW SLAVE STATUS statement includes output fields that display the current values of
the UNTIL condition.
This command is called SLAVE START before MySQL 4.0.5. For the moment, SLAVE START
is still accepted for backward compatibility, but is deprecated.

4.11.8.9 STOP SLAVE

STOP SLAVE [thread_name [, thread_name] ...]

thread_name = IO_THREAD | SQL_THREAD

Stops the slave threads. Like START SLAVE, this statement may be used with the IO_THREAD
and SQL_THREAD options to name the thread or threads to stop.
This command is called SLAVE STOP before MySQL 4.0.5. For the moment, SLAVE STOP is
still accepted for backward compatibility, but is deprecated.

4.11.9 Replication FAQ

Q: How do I configure a slave if the master is already running and I do not want to stop it?
A: There are several options. If you have taken a backup of the master at some point and
recorded the binlog name and offset (from the output of SHOW MASTER STATUS) correspond-
ing to the snapshot, do the following:

Chapter 4: Database Administration 387

1. Make sure the slave is assigned a unique server ID.
2. Execute the following statement on the slave, filling in appropriate values for each

parameter:
mysql> CHANGE MASTER TO

-> MASTER_HOST=’master_host-name’,
-> MASTER_USER=’master_user_name’,
-> MASTER_PASSWORD=’master_pass’,
-> MASTER_LOG_FILE=’recorded_log_name’,
-> MASTER_LOG_POS=recorded_log_pos;

3. Execute START SLAVE on the slave.

If you do not have a backup of the master already, here is a quick way to do it consistently:
1. FLUSH TABLES WITH READ LOCK

2. gtar zcf /tmp/backup.tar.gz /var/lib/mysql (or a variation of this)
3. SHOW MASTER STATUS - make sure to record the output - you will need it later
4. UNLOCK TABLES

An alternative is taking an SQL dump of the master instead of a binary copy like above; for
this you can use mysqldump --master-data on your master and later run this SQL dump
into your slave. However, this is slower than makeing a binary copy.
No matter which of the two methods you use, afterwards follow the instructions for the
case when you have a snapshot and have recorded the log name and offset. You can use
the same snapshot to set up several slaves. As long as the binary logs of the master are left
intact, you can wait as long as several days or in some cases maybe a month to set up a
slave once you have the snapshot of the master. In theory the waiting gap can be infinite.
The two practical limitations is the diskspace of the master getting filled with old logs, and
the amount of time it will take the slave to catch up.
You can also use LOAD DATA FROM MASTER. This is a convenient command that takes a
snapshot, restores it to the slave, and adjusts the log name and offset on the slave all at
once. In the future, LOAD DATA FROM MASTER will be the recommended way to set up a
slave. Be warned, howerver, that the read lock may be held for a long time if you use
this command. It is not yet implemented as efficiently as we would like to have it. If you
have large tables, the preferred method at this time is still with a local tar snapshot after
executing FLUSH TABLES WITH READ LOCK.
Q: Does the slave need to be connected to the master all the time?
A: No, it does not. The slave can go down or stay disconnected for hours or even days,
then reconnect and catch up on the updates. For example, you can set up a master/slave
relationship over a dial-up link where the link is up only sporadically and for short periods
of time. The implication of this is that at any given time the slave is not guaranteed to be
in sync with the master unless you take some special measures. In the future, we will have
the option to block the master until at least one slave is in sync.
Q: How do I know how late a slave is compared to the master? In other words, how do I
know the date of the last query replicated by the slave?
A: If the slave is 4.1.1 or newer, read the Seconds_behind_master column in SHOW SLAVE
STATUS. For older versions, the following applies. This is possible only if the slave SQL

388 MySQL Technical Reference for Version 4.1.1-alpha

thread exists (that is, if it shows up in SHOW PROCESSLIST, see Section 4.11.3 [Replication
Implementation Details], page 357) (in MySQL 3.23: if the slave thread exists, that is, shows
up in SHOW PROCESSLIST), and if it has executed at least one event from the master. Indeed,
when the slave SQL thread executes an event read from the master, this thread modifies
its own time to the event’s timestamp (this is why TIMESTAMP is well replicated). So in the
Time column in the output of SHOW PROCESSLIST, the number of seconds displayed for the
slave SQL thread is the number of seconds between the timestamp of the last replicated
event and the real time of the slave machine. You can use this to determine the date of
the last replicated event. Note that if your slave has been disconnected from the master
for one hour, then reconnects, you may immediately see Time values like 3600 for the slave
SQL thread in SHOW PROCESSLIST... This would be because the slave is executing queries
that are one hour old.
Q: How do I force the master to block updates until the slave catches up?
A: Use the following procedure:
1. On the master, execute these commands:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the log name and the offset from the output of the SHOW statement.
2. On the slave, issue this command, where the replication coordinates that are the ar-

guments to the MASTER_POS_WAIT() function are the values recorded in the previous
step:

mysql> SELECT MASTER_POS_WAIT(’log_name’, log_offset);

The SELECT statement will block until the slave reaches the specified log file and offset.
At that point, the slave will be in sync with the master and the statement will return.

3. On the master, issue the following statement to allow the master to begin processing
updates again:

mysql> UNLOCK TABLES;

Q: What issues should I be aware of when setting up two-way replication?
A: MySQL replication currently does not support any locking protocol between master and
slave to guarantee the atomicity of a distributed (cross-server) update. In other words, it
is possible for client A to make an update to co-master 1, and in the meantime, before it
propagates to co-master 2, client B could make an update to co-master 2 that will make the
update of client A work differently than it did on co-master 1. Thus, when the update of
client A will make it to co-master 2, it will produce tables that are different than what you
have on co-master 1, even after all the updates from co-master 2 have also propagated. So
you should not co-chain two servers in a two-way replication relationship, unless you are sure
that your updates can safely happen in any order, or unless you take care of mis-ordered
updates somehow in the client code.
You must also realise that two-way replication actually does not improve performance very
much (if at all), as far as updates are concerned. Both servers need to do the same amount
of updates each, as you would have one server do. The only difference is that there will
be a little less lock contention, because the updates originating on another server will be
serialised in one slave thread. Even so, this benefit might be offset by network delays.
Q: How can I use replication to improve performance of my system?

Chapter 4: Database Administration 389

A: You should set up one server as the master and direct all writes to it. Then configure as
many slaves as you have the money and rackspace for, and distribute the reads among the
master and the slaves. You can also start the slaves with --skip-bdb, --low-priority-
updates and --delay-key-write=ALL to get speed improvements for the slave. In this case
the slave will use non-transactional MyISAM tables instead of BDB tables to get more speed.

Q: What should I do to prepare client code in my own applications to use performance-
enhancing replication?

A: If the part of your code that is responsible for database access has been properly ab-
stracted/modularised, converting it to run with a replicated setup should be very smooth
and easy. Just change the implementation of your database access to send all writes the
the master, and to send reads to either the master or a slave. If your code does not have
this level of abstraction, setting up a replicated system will give you the opportunity and
motivation to it clean up. You should start by creating a wrapper library or module with
the following functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_query()

• safe_writer_query()

safe_ in each function name means that the function will take care of handling all the error
conditions. You can, of course, use different names for the functions. The important thing
is to have a unified interface for connecting for reads, connecting for writes, doing a read,
and doing a write.

You should then convert your client code to use the wrapper library. This may be a painful
and scary process at first, but it will pay off in the long run. All applications that use
the approach just described will be able to take advantage of a master/slave configuration,
even one involving multiple slaves. The code will be a lot easier to maintain, and adding
troubleshooting options will be trivial. You will just need to modify one or two functions,
for example, to log how long each query took, or which query, among your many thousands,
gave you an error.

If you have written a lot of code already, you may want to automate the conversion task
by using the replace utility that comes with the standard distribution of MySQL, or just
write your own Perl script. Hopefully, your code follows some recognisable pattern. If not,
then you are probably better off rewriting it anyway, or at least going through and manually
beating it into a pattern.

Q: When and how much can MySQL replication improve the performance of my system?

A: MySQL replication is most beneficial for a system with frequent reads and infrequent
writes. In theory, by using a single-master/multiple-slave setup, you can scale the system
by adding more slaves until you either run out of network bandwidth, or your update load
grows to the point that the master cannot handle it.

In order to determine how many slaves you can get before the added benefits begin to
level out, and how much you can improve performance of your site, you need to know your
query patterns, and empirically (by benchmarking) determine the relationship between the
throughput on reads (reads per second, or max_reads) and on writes (max_writes) on a

390 MySQL Technical Reference for Version 4.1.1-alpha

typical master and a typical slave. The example here will show you a rather simplified
calculation of what you can get with replication for a hypothetical system.
Let’s say that system load consists of 10% writes and 90% reads, and we have determined
max_reads to be 1200 - 2 * max_writes. In other words, the system can do 1200 reads per
second with no writes, the average write is twice as slow as average read, and the relationship
is linear. Let us suppose that the master and each slave have the same capacity, and that
we have 1 master and N slaves. Then we have for each server (master or slave):
reads = 1200 - 2 * writes (from benchmarks)
reads = 9* writes / (N + 1) (reads split, but writes go to all servers)
9*writes/(N+1) + 2 * writes = 1200

writes = 1200/(2 + 9/(N+1)

This analysis yields the following conclusions:
• If N = 0 (which means we have no replication), our system can handle 1200/11, about

109 writes per second (which means we will have 9 times as many reads due to the
nature of our application).

• If N = 1, we can get up to 184 writes per second.
• If N = 8, we get up to 400.
• If N = 17, 480 writes.
• Eventually, as N approaches infinity (and our budget negative infinity), we can get very

close to 600 writes per second, increasing system throughput about 5.5 times. However,
with only 8 servers, we increased it almost 4 times already.

Note that these computations assume infinite network bandwidth and neglect several other
factors that could turn out to be significant on your system. In many cases, you may not
be able to perform a computation similar to the one above that will accurately predict
what will happen on your system if you add N replication slaves. However, answering the
following questions should help you decide whether and how much replication will improve
the performance of your system:
• What is the read/write ratio on your system?
• How much more write load can one server handle if you reduce the reads?
• How many slaves do you have bandwidth available for on your network?

Q: How can I use replication to provide redundancy/high availability?
A: With the currently available features, you would have to set up a master and a slave (or
several slaves), and write a script that will monitor the master to see if it is up, and instruct
your applications and the slaves of the master change in case of failure. Some suggestions:
• To tell a slave to change the master, use the CHANGE MASTER TO command.
• A good way to keep your applications informed as to the location of the master is by

having a dynamic DNS entry for the master. With bind you can use ‘nsupdate’ to
dynamically update your DNS.

• You should run your slaves with the --log-bin option and without --log-slave-
updates. This way the slave will be ready to become a master as soon as you issue
STOP SLAVE; RESET MASTER, and CHANGE MASTER TO on the other slaves. For example,
consider you have the following setup (“M” means the master, “S” the slaves, “WC”

Chapter 4: Database Administration 391

the clients that issue database writes and reads; clients that issue only database reads
are not represented, because they need not switch):

WC
\
v

WC----> M
/ | \

/ | \
v v v

S1 S2 S3

S1 (like S2 and S3) is a slave running with --log-bin and without --log-slave-
updates. As the only writes executed on S1 are those replicated from M, the binary
log on S1 is empty (remember, S1 runs without --log-slave-updates). Then, for
some reason, M becomes unavailable, and you want S1 to become the new master
(that is, direct all WC to S1, and make S2 and S3 replicate S1). No WC accesses M.
Instruct all WC to direct their queries to S1. From now on, all queries sent by WC
to S1 are written to the binary log of S1. The binary log of S1 contains exactly every
writing query sent to S1 since M died. On S2 (and S3) do STOP SLAVE, CHANGE MASTER
TO MASTER_HOST=’S1’ (where ’S1’ is replaced by the real hostname of S1). To CHANGE
MASTER, add all information about how to connect to S1 from S2 or S3 (user, password,
port). In CHANGE MASTER, no need to specify the name of S1’s binary log or binary log
position to read from: we know it is the first binary log, from position 4, and these are
the defaults of CHANGE MASTER. Finally do START SLAVE on S2 and S3, and now you
have this:

WC
/
|

WC | M(unavailable)
\ |
\ |
v v
S1<--S2 S3
^ |
+-------+

When M is up again, you just have to issue on it the same CHANGE MASTER as the one
issued on S2 and S3, so that M becomes a slave of S1 and picks all the WC writes it
has missed while it was down. Now to make M a master again (because it is the most
powerful machine, for example), follow the preceding procedure as if S1 was unavailable
and M was to be the new master; then during the procedure don’t forget to run RESET
MASTER on M before making S1, S2, S3 slaves of M, or they may pick old WC writes
from before M’s unavailibility.

We are currently working on integrating an automatic master election system into MySQL,
but until it is ready, you will have to create your own monitoring tools.

392 MySQL Technical Reference for Version 4.1.1-alpha

4.11.10 Troubleshooting Replication

If you have followed the instructions, and your replication setup is not working, first check
the following:

• Check the error log for messages. Many users have lost time by not doing this early
enough.

• Is the master logging to the binary log? Check with SHOW MASTER STATUS. If it is,
Position will be non-zero. If not, verify that you have given the master log-bin
option and have set server-id.

• Is the slave running? Do SHOW SLAVE STATUS and check that the Slave_IO_Running
and Slave_SQL_Running values are both Yes. If not, verify slave options

• If the slave is running, did it establish a connection with the master? Do SHOW
PROCESSLIST, find the I/O and SQL threads (see Section 4.11.3 [Replication Imple-
mentation Details], page 357 to see how they display), and check their State column.
If it says Connecting to master, verify the privileges for the replication user on the
master, master host name, your DNS setup, whether the master is actually running,
whether it is reachable from the slave.

• If the slave was running before but now has stopped, the reason usually is that some
query that succeeded on the master failed on the slave. This should never happen if
you have taken a proper snapshot of the master, and never modify the data on the
slave outside of the slave thread. If it does, it is a bug; read below on how to report it.

• If a query on that succeeded on the master refuses to run on the slave, and it does not
feasible to do a full database resync (that is, to delete the slave’s database and copy a
new snapshot from the master), try the following:

− First see if the slave’s table was different from the master’s. Understand how it
happened (it may be a bug: read the Changelogs in the online MySQL manual as
http://www.mysql.com/documentation to check if this is a known bug and if it
is fixed yet). Then make the slave’s table identical to the master’s and run START
SLAVE.

− If the above does not work or does not apply, try to understand if it would be safe
to make the update manually (if needed) and then ignore the next query from the
master.

− If you have decided you can skip the next query, issue the following statements:

mysql> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = n;
mysql> START SLAVE;

The value of n should be 1 if the query does not use AUTO_INCREMENT or LAST_
INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2
for queries that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two
events in the binary log of the master.

− Make sure you are not running into an old bug by upgrading to the most recent
version.

− If you are sure the slave started out perfectly in sync with the master, and no one
has updated the tables involved outside of slave thread, report the bug.

Chapter 4: Database Administration 393

4.11.11 Reporting Replication Bugs

When you have determined that there is no user error involved, and replication still either
does not work at all or is unstable, it is time to send us a bug report. We need to get as
much information as possible from you to be able to track down the bug. Please do spend
some time and effort preparing a good bug report.
If you have a repeatable way to demonstrate the bug, please enter it into our bugs database
at http://bugs.mysql.com/. If you have a phantom problem (one that you cannot dupli-
cate “at will”), use the following procedure:
1. Verify that no user error is involved. For example, if you update the slave outside of the

slave thread, the data will go out of sync, and you can have unique key violations on
updates. In this case, the slave thread will stop and wait for you to clean up the tables
manually to bring them in sync. This is not a replication problem; it is a problem of
outside interference that causes replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. They will cause
the slave to log the updates that it receives in its own binlogs.

3. Save all evidence before resetting the replication state. If we have no information
or only sketchy information, it will take us longer to track down the problem. The
evidence you should collect is:
• All binary logs from the master
• All binary logs from the slave
• The output of SHOW MASTER STATUS from the master at the time you have discov-

ered the problem
• The output of SHOW SLAVE STATUS from the master at the time you have discovered

the problem
• Error logs from the master and on the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find
the trouble query, for example:

mysqlbinlog -j pos_from_slave_status /path/to/log_from_slave_status | head

Once you have collected the evidence for the phantom problem, try hard to isolate
it into a separate test case first. Then enter the problem into our bugs database at
http://bugs.mysql.com/ with as much information as possible.

394 MySQL Technical Reference for Version 4.1.1-alpha

5 MySQL Optimisation

Optimisation is a complicated task because it ultimately requires understanding of the whole
system. While it may be possible to do some local optimisations with small knowledge of
your system or application, the more optimal you want your system to become the more
you will have to know about it.
This chapter will try to explain and give some examples of different ways to optimise
MySQL. Remember, however, that there are always some (increasingly harder) additional
ways to make the system even faster.

5.1 Optimisation Overview

The most important part for getting a system fast is of course the basic design. You also
need to know what kinds of things your system will be doing, and what your bottlenecks
are.
The most common bottlenecks are:
• Disk seeks. It takes time for the disk to find a piece of data. With modern disks in

1999, the mean time for this is usually lower than 10ms, so we can in theory do about
100 seeks a second. This time improves slowly with new disks and is very hard to
optimise for a single table. The way to optimise this is to spread the data on more
than one disk.

• Disk reading/writing. When the disk is at the correct position we need to read the
data. With modern disks in 1999, one disk delivers something like 10-20 MB. This is
easier to optimise than seeks because you can read in parallel from multiple disks.

• CPU cycles. When we have the data in main memory (or if it already were there) we
need to process it to get to our result. Having small tables compared to the memory
is the most common limiting factor. But then, with small tables speed is usually not
the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache
the main memory bandwidth becomes a bottleneck. This is an uncommon bottleneck
for most systems, but one should be aware of it.

5.1.1 MySQL Design Limitations/Tradeoffs

When using the MyISAM storage engine, MySQL uses extremely fast table locking (multiple
readers / single writers). The biggest problem with this table type is a if you have a mix of a
steady stream of updates and slow selects on the same table. If this is a problem with some
tables, you can use another table type for these. See Chapter 7 [Table types], page 593.
MySQL can work with both transactional and non-transactional tables. To be able to work
smoothly with non-transactional tables (which can’t rollback if something goes wrong),
MySQL has the following rules:
• All columns have default values.
• If you insert a ’wrong’ value in a column like a NULL in a NOT NULL column or a too big

numerical value in a numerical column, MySQL will instead of giving an error instead

Chapter 5: MySQL Optimisation 395

set the column to the ’best possible value’. For numerical values this is 0, the smallest
possible values or the largest possible value. For strings this is either the empty string
or the longest possible string that can be in the column.

• All calculated expressions returns a value that can be used instead of signaling an error
condition. For example 1/0 returns NULL

For more information about this, see See Section 1.7.5 [Constraints], page 42.
The above means that one should not use MySQL to check fields content, but one should
do this in the application.

5.1.2 Portability

Because all SQL servers implement different parts of SQL, it takes work to write portable
SQL applications. For very simple selects/inserts it is very easy, but the more you need the
harder it gets. If you want an application that is fast with many databases it becomes even
harder!
To make a complex application portable you need to choose a number of SQL servers that
it should work with.
You can use the MySQL crash-me program/web-page http://www.mysql.com/information/crash-me.php
to find functions, types, and limits you can use with a selection of database servers.
Crash-me now tests far from everything possible, but it is still comprehensive with about
450 things tested.
For example, you shouldn’t have column names longer than 18 characters if you want to be
able to use Informix or DB2.
Both the MySQL benchmarks and crash-me programs are very database-independent. By
taking a look at how we have handled this, you can get a feeling for what you have to do
to write your application database-independent. The benchmarks themselves can be found
in the ‘sql-bench’ directory in the MySQL source distribution. They are written in Perl
with DBI database interface (which solves the access part of the problem).
See http://www.mysql.com/information/benchmarks.html for the results from this
benchmark.
As you can see in these results, all databases have some weak points. That is, they have
different design compromises that lead to different behaviour.
If you strive for database independence, you need to get a good feeling for each SQL server’s
bottlenecks. MySQL is very fast in retrieving and updating things, but will have a problem
in mixing slow readers/writers on the same table. Oracle, on the other hand, has a big
problem when you try to access rows that you have recently updated (until they are flushed
to disk). Transaction databases in general are not very good at generating summary tables
from log tables, as in this case row locking is almost useless.
To get your application really database-independent, you need to define an easy extendable
interface through which you manipulate your data. As C++ is available on most systems, it
makes sense to use a C++ classes interface to the databases.
If you use some specific feature for some database (like the REPLACE command in MySQL),
you should code a method for the other SQL servers to implement the same feature (but
slower). With MySQL you can use the /*! */ syntax to add MySQL-specific keywords to

396 MySQL Technical Reference for Version 4.1.1-alpha

a query. The code inside /**/ will be treated as a comment (ignored) by most other SQL
servers.
If high performance is more important than exactness, as in some web applications, it
is possibile to create an application layer that caches all results to give you even higher
performance. By letting old results ’expire’ after a while, you can keep the cache reasonably
fresh. This provides a method to handle high load spikes, in which case you can dynamically
increase the cache and set the expire timeout higher until things get back to normal.
In this case the table creation information should contain information of the initial size of
the cache and how often the table should normally be refreshed.

5.1.3 What We Have Used MySQL For

During MySQL initial development, the features of MySQL were made to fit our largest
customer. They handle data warehousing for a couple of the biggest retailers in Sweden.
From all stores, we get weekly summaries of all bonus card transactions, and we are expected
to provide useful information for the store owners to help them find how their advertisement
campaigns are affecting their customers.
The data is quite huge (about 7 million summary transactions per month), and we have
data for 4-10 years that we need to present to the users. We got weekly requests from the
customers that they want to get ’instant’ access to new reports from this data.
We solved this by storing all information per month in compressed ’transaction’ tables. We
have a set of simple macros (script) that generates summary tables grouped by different
criteria (product group, customer id, store ...) from the transactional tables. The reports
are web pages that are dynamically generated by a small Perl script that parses a web page,
executes the SQL statements in it, and inserts the results. We would have used PHP or
mod perl instead but they were not available at that time.
For graphical data we wrote a simple tool in C that can produce GIFs based on the result
of an SQL query (with some processing of the result). This is also dynamically executed
from the Perl script that parses the HTML files.
In most cases a new report can simply be done by copying an existing script and modifying
the SQL query in it. In some cases, we will need to add more fields to an existing summary
table or generate a new one, but this is also quite simple, as we keep all transactions tables
on disk. (Currently we have at least 50G of transactions tables and 200G of other customer
data.)
We also let our customers access the summary tables directly with ODBC so that the
advanced users can themselves experiment with the data.
We haven’t had any problems handling this with quite modest Sun Ultra SPARCstation
(2x200 Mhz). We recently upgraded one of our servers to a 2 CPU 400 Mhz UltraSPARC,
and we are now planning to start handling transactions on the product level, which would
mean a ten-fold increase of data. We think we can keep up with this by just adding more
disk to our systems.
We are also experimenting with Intel-Linux to be able to get more CPU power cheaper.
Now that we have the binary portable database format (new in Version 3.23), we will start
to use this for some parts of the application.

Chapter 5: MySQL Optimisation 397

Our initial feelings are that Linux will perform much better on low-to-medium load and
Solaris will perform better when you start to get a high load because of extreme disk IO,
but we don’t yet have anything conclusive about this. After some discussion with a Linux
Kernel developer, this might be a side effect of Linux giving so much resources to the batch
job that the interactive performance gets very low. This makes the machine feel very slow
and unresponsive while big batches are going. Hopefully this will be better handled in
future Linux Kernels.

5.1.4 The MySQL Benchmark Suite

This should contain a technical description of the MySQL benchmark suite (and crash-
me), but that description is not written yet. Currently, you can get a good idea of the
benchmark by looking at the code and results in the ‘sql-bench’ directory in any MySQL
source distributions.

This benchmark suite is meant to be a benchmark that will tell any user what things a
given SQL implementation performs well or poorly at.

Note that this benchmark is single threaded, so it measures the minimum time for the
operations. We plan to in the future add a lot of multi-threaded tests to the benchmark
suite.

For example, (run on the same NT 4.0 machine):

Reading 2000000 rows by index Seconds Seconds
mysql 367 249
mysql odbc 464
db2 odbc 1206
informix odbc 121126
ms-sql odbc 1634
oracle odbc 20800
solid odbc 877
sybase odbc 17614

Inserting (350768) rows Seconds Seconds
mysql 381 206
mysql odbc 619
db2 odbc 3460
informix odbc 2692
ms-sql odbc 4012
oracle odbc 11291
solid odbc 1801
sybase odbc 4802

In the above test MySQL was run with a 8M index cache.

We have gathered some more benchmark results at http://www.mysql.com/information/benchmarks.html.

Note that Oracle is not included because they asked to be removed. All Oracle benchmarks
have to be passed by Oracle! We believe that makes Oracle benchmarks very biased because
the above benchmarks are supposed to show what a standard installation can do for a single
client.

398 MySQL Technical Reference for Version 4.1.1-alpha

To run the benchmark suite, you have to download a MySQL source distribution, install
the Perl DBI driver, the Perl DBD driver for the database you want to test and then do:

cd sql-bench
perl run-all-tests --server=#

where # is one of supported servers. You can get a list of all options and supported servers
by doing run-all-tests --help.

crash-me tries to determine what features a database supports and what its capabilities
and limitations are by actually running queries. For example, it determines:

• What column types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

We can find the result from crash-me on a lot of different databases at
http://www.mysql.com/information/crash-me.php.

5.1.5 Using Your Own Benchmarks

You should definitely benchmark your application and database to find out where the bot-
tlenecks are. By fixing it (or by replacing the bottleneck with a ’dummy module’) you
can then easily identify the next bottleneck (and so on). Even if the overall performance
for your application is sufficient, you should at least make a plan for each bottleneck, and
decide how to solve it if someday you really need the extra performance.

For an example of portable benchmark programs, look at the MySQL benchmark suite. See
Section 5.1.4 [MySQL Benchmarks], page 397. You can take any program from this suite
and modify it for your needs. By doing this, you can try different solutions to your problem
and test which is really the fastest solution for you.

Another free benchmark suite is the Open Source Database Benchmark which may be found
at http://osdb.sourceforge.net/.

It is very common that some problems only occur when the system is very heavily loaded.
We have had many customers who contact us when they have a (tested) system in production
and have encountered load problems. In every one of these cases so far, it has been problems
with basic design (table scans are not good at high load) or OS/Library issues. Most of
this would be a lot easier to fix if the systems were not already in production.

To avoid problems like this, you should put some effort into benchmarking your whole appli-
cation under the worst possible load! You can use Super Smack for this, and it is available
at: http://www.mysql.com/Downloads/super-smack/super-smack-1.0.tar.gz. As the
name suggests, it can bring your system down to its knees if you ask it, so make sure to use
it only on your development systems.

Chapter 5: MySQL Optimisation 399

5.2 Optimising SELECTs and Other Queries

First, one thing that affects all queries: The more complex permission system setup you
have, the more overhead you get.
If you do not have any GRANT statements done, MySQL will optimise the permission checking
somewhat. So if you have a very high volume it may be worth the time to avoid grants.
Otherwise, more permission check results in a larger overhead.
If your problem is with some explicit MySQL function, you can always time this in the
MySQL client:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

The above shows that MySQL can execute 1,000,000 + expressions in 0.32 seconds on a
PentiumII 400MHz.
All MySQL functions should be very optimised, but there may be some exceptions, and the
BENCHMARK(loop_count,expression) is a great tool to find out if this is a problem with
your query.

5.2.1 EXPLAIN Syntax (Get Information About a SELECT)

EXPLAIN tbl_name
or EXPLAIN SELECT select_options

EXPLAIN tbl_name is a synonym for DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name.
When you precede a SELECT statement with the keyword EXPLAIN, MySQL explains how it
would process the SELECT, providing information about how tables are joined and in which
order.
With the help of EXPLAIN, you can see when you must add indexes to tables to get a faster
SELECT that uses indexes to find the records.
You should frequently run ANALYZE TABLE to update table statistics such as cardinality
of keys which can affect the choices the optimiser makes. See Section 4.6.2 [ANALYZE
TABLE], page 281.
You can also see if the optimiser joins the tables in an optimal order. To force the optimiser
to use a specific join order for a SELECT statement, add a STRAIGHT_JOIN clause.
For non-simple joins, EXPLAIN returns a row of information for each table used in the SELECT
statement. The tables are listed in the order they would be read. MySQL resolves all joins
using a single-sweep multi-join method. This means that MySQL reads a row from the first
table, then finds a matching row in the second table, then in the third table and so on.
When all tables are processed, it outputs the selected columns and backtracks through the
table list until a table is found for which there are more matching rows. The next row is
read from this table and the process continues with the next table.

400 MySQL Technical Reference for Version 4.1.1-alpha

In MySQL version 4.1 the EXPLAIN output was changed to work better with constructs like
UNIONs, subqueries and derived tables. Most notable is the addition of two new columns:
id and select_type.

Output from EXPLAIN consists of the following columns:

id SELECT identifier, the sequential number of this SELECT within the query.

select_type
Type of SELECT clause, which can be any of the following:

SIMPLE Simple SELECT (without UNIONs or subqueries).

PRIMARY Outermost SELECT.

UNION Second and further UNION SELECTs.

DEPENDENT UNION
Second and further UNION SELECTSs, dependent on outer subquery.

SUBQUERY First SELECT in subquery.

DEPENDENT SUBQUERY
First SELECT, dependent on outer subquery.

DERIVED Derived table SELECT (subquery in FROM clause).

table The table to which the row of output refers.

type The join type. The different join types are listed here, ordered from best to
worst type:

system The table has only one row (= system table). This is a special case
of the const join type.

const The table has at most one matching row, which will be read at the
start of the query. Because there is only one row, values from the
column in this row can be regarded as constants by the rest of the
optimiser. const tables are very fast as they are read only once!

const is used when you compare all parts of a PRIMARY/UNIQUE
key with constants:

SELECT * FROM const_table WHERE primary_key=1;

SELECT * FROM const_table WHERE primary_key_part1=1 and primary_key_part2=2;

eq_ref One row will be read from this table for each combination of rows
from the previous tables. This is the best possible join type, other
than the const types. It is used when all parts of an index are used
by the join and the index is UNIQUE or a PRIMARY KEY.

eq_ref can be used for indexed columns that is compared with =.
The compared item may be a constant or an expression that uses
columns from tables that are read before this table.

In the following examples, ref_table will be able to use eq_ref

Chapter 5: MySQL Optimisation 401

SELECT * FROM ref_table,other_table WHERE
ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table WHERE
ref_table.key_column_part1=other_table.column AND
ref_table.key_column_part2=1;

ref All rows with matching index values will be read from this table
for each combination of rows from the previous tables. ref is used
if the join uses only a leftmost prefix of the key, or if the key is
not UNIQUE or a PRIMARY KEY (in other words, if the join cannot
select a single row based on the key value). If the key that is used
matches only a few rows, this join type is good.

ref can be used for indexed columns that is compared with =.

In the following examples, ref_table will be able to use ref

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table WHERE
ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table WHERE
ref_table.key_column_part1=other_table.column AND
ref_table.key_column_part2=1;

ref_or_null
Like ref, but with the addition that we will do an extra search
for rows with NULL. See Section 5.2.5 [IS NULL optimisation],
page 408.

SELECT * FROM ref_table WHERE key_column=expr OR key_column IS NULL;

This optimisation is new for MySQL 4.1.1 and is mostly used when
resolving sub queries.

range Only rows that are in a given range will be retrieved, using an index
to select the rows. The key column indicates which index is used.
The key_len contains the longest key part that was used. The ref
column will be NULL for this type.

range can be used for when an key column is compared to a con-
stant with =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN and IN.

SELECT * FROM range_table WHERE key_column = 10;

SELECT * FROM range_table WHERE key_column BETWEEN 10 and 20;

SELECT * FROM range_table WHERE key_column IN (10,20,30);

SELECT * FROM range_table WHERE key_part1= 10 and key_part2 IN (10,20,30);

402 MySQL Technical Reference for Version 4.1.1-alpha

index This is the same as ALL, except that only the index tree is scanned.
This is usually faster than ALL, as the index file is usually smaller
than the datafile.

This can be used when the query only uses columns that are part
of one index.

ALL A full table scan will be done for each combination of rows from the
previous tables. This is normally not good if the table is the first
table not marked const, and usually very bad in all other cases.
You normally can avoid ALL by adding more indexes, so that the
row can be retrieved based on constant values or column values
from earlier tables.

possible_keys
The possible_keys column indicates which indexes MySQL could use to find
the rows in this table. Note that this column is totally independent of the order
of the tables. That means that some of the keys in possible_keys may not be
usable in practice with the generated table order.

If this column is empty, there are no relevant indexes. In this case, you may be
able to improve the performance of your query by examining the WHERE clause
to see if it refers to some column or columns that would be suitable for indexing.
If so, create an appropriate index and check the query with EXPLAIN again. See
Section 6.5.4 [ALTER TABLE], page 573.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

key The key column indicates the key (index) that MySQL actually decided to use.
The key is NULL if no index was chosen. To force MySQL to use an key listed
in the possible_keys column, use USE KEY/IGNORE KEY in your query. See
Section 6.4.1 [SELECT], page 530.

Also, running myisamchk --analyze (see Section 4.5.6.1 [myismchk syntax],
page 265) or ANALYZE TABLE (see Section 4.6.2 [ANALYZE TABLE], page 281) on
the table will help the optimiser choose better indexes.

key_len The key_len column indicates the length of the key that MySQL decided to
use. The length is NULL if the key is NULL. Note that this tells us how many
parts of a multi-part key MySQL will actually use.

ref The ref column shows which columns or constants are used with the key to
select rows from the table.

rows The rows column indicates the number of rows MySQL believes it must examine
to execute the query.

Extra This column contains additional information of how MySQL will resolve the
query. Here is an explanation of the different text strings that can be found in
this column:

Distinct MySQL will not continue searching for more rows for the current
row combination after it has found the first matching row.

Chapter 5: MySQL Optimisation 403

Not exists
MySQL was able to do a LEFT JOIN optimisation on the query and
will not examine more rows in this table for the previous row com-
bination after it finds one row that matches the LEFT JOIN criteria.
Here is an example for this:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

Assume that t2.id is defined with NOT NULL. In this case MySQL
will scan t1 and look up the rows in t2 through t1.id. If MySQL
finds a matching row in t2, it knows that t2.id can never be NULL,
and will not scan through the rest of the rows in t2 that has the
same id. In other words, for each row in t1, MySQL only needs to
do a single lookup in t2, independent of how many matching rows
there are in t2.

range checked for each record (index map: #)
MySQL didn’t find a real good index to use. It will, instead, for
each row combination in the preceding tables, do a check on which
index to use (if any), and use this index to retrieve the rows from
the table. This isn’t very fast but is faster than having to do a join
without an index.

Using filesort
MySQL will need to do an extra pass to find out how to retrieve
the rows in sorted order. The sort is done by going through all
rows according to the join type and storing the sort key + pointer
to the row for all rows that match the WHERE. Then the keys are
sorted. Finally the rows are retrieved in sorted order.

Using index
The column information is retrieved from the table using only in-
formation in the index tree without having to do an additional seek
to read the actual row. This can be done when all the used columns
for the table are part of the same index.

Using temporary
To resolve the query MySQL will need to create a temporary table
to hold the result. This typically happens if you do an ORDER BY
on a different column set than you did a GROUP BY on.

Using where
A WHERE clause will be used to restrict which rows will be matched
against the next table or sent to the client. If you don’t have this in-
formation and the table is of type ALL or index, you may have some-
thing wrong in your query (if you don’t intend to fetch/examine all
rows from the table).

If you want to get your queries as fast as possible, you should look out for Using
filesort and Using temporary.

You can get a good indication of how good a join is by multiplying all values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must

404 MySQL Technical Reference for Version 4.1.1-alpha

examine to execute the query. This number is also used when you restrict queries with the
max_join_size variable. See Section 5.5.2 [Server parameters], page 427.
The following example shows how a JOIN can be optimised progressively using the informa-
tion provided by EXPLAIN.
Suppose you have the SELECT statement shown here, that you examine using EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
tt.ProjectReference, tt.EstimatedShipDate,
tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitiveID,
tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
et_1.COUNTRY, do.CUSTNAME

FROM tt, et, et AS et_1, do
WHERE tt.SubmitTime IS NULL

AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et_1.EMPLOYID
AND tt.ClientID = do.CUSTNMBR;

For this example, assume that:
• The columns being compared have been declared as follows:

Table Column Column
type

tt ActualPC CHAR(10)
tt AssignedPC CHAR(10)
tt ClientID CHAR(10)
et EMPLOYID CHAR(15)
do CUSTNMBR CHAR(15)

• The tables have the indexes shown here:
Table Index
tt ActualPC
tt AssignedPC
tt ClientID
et EMPLOYID (primary key)
do CUSTNMBR (primary key)

• The tt.ActualPC values aren’t evenly distributed.

Initially, before any optimisations have been performed, the EXPLAIN statement produces
the following information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC,ClientID,ActualPC NULL NULL NULL 3872

range checked for each record (key map: 35)

Because type is ALL for each table, this output indicates that MySQL is generating a
Cartesian product of all the tables! This will take quite a long time, as the product of the

Chapter 5: MySQL Optimisation 405

number of rows in each table must be examined! For the case at hand, this is 74 * 2135
* 74 * 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how
long it would take.

One problem here is that MySQL can’t (yet) use indexes on columns efficiently if they are
declared differently. In this context, VARCHAR and CHAR are the same unless they are declared
as different lengths. Because tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is
declared as CHAR(15), there is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from
10 characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN state-
ment again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC,ClientID,ActualPC NULL NULL NULL 3872 Using where
do ALL PRIMARY NULL NULL NULL 2135

range checked for each record (key map: 1)
et_1 ALL PRIMARY NULL NULL NULL 74

range checked for each record (key map: 1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better (the product of the rows values is now less by a
factor of 74). This version is executed in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the
tt.AssignedPC = et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
-> MODIFY ClientID VARCHAR(15);

Now EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using where

ClientID,
ActualPC

et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

This is almost as good as it can get.

The remaining problem is that, by default, MySQL assumes that values in the tt.ActualPC
column are evenly distributed, and that isn’t the case for the tt table. Fortunately, it is
easy to tell MySQL about this:

shell> myisamchk --analyze PATH_TO_MYSQL_DATABASE/tt
shell> mysqladmin refresh

Now the join is perfect, and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using where

ClientID,

406 MySQL Technical Reference for Version 4.1.1-alpha

ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Note that the rows column in the output from EXPLAIN is an educated guess from the
MySQL join optimiser. To optimise a query, you should check if the numbers are even
close to the truth. If not, you may get better performance by using STRAIGHT_JOIN in your
SELECT statement and trying to list the tables in a different order in the FROM clause.

5.2.2 Estimating Query Performance

In most cases you can estimate the performance by counting disk seeks. For small tables,
you can usually find the row in 1 disk seek (as the index is probably cached). For bigger
tables, you can estimate that (using B++ tree indexes) you will need: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1 seeks
to find a row.
In MySQL an index block is usually 1024 bytes and the data pointer is usually 4
bytes. A 500,000 row table with an index length of 3 (medium integer) gives you:
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.
As the above index would require about 500,000 * 7 * 3/2 = 5.2M, (assuming that the
index buffers are filled to 2/3, which is typical) you will probably have much of the index
in memory and you will probably only need 1-2 calls to read data from the OS to find the
row.
For writes, however, you will need 4 seek requests (as above) to find where to place the new
index and normally 2 seeks to update the index and write the row.
Note that the above doesn’t mean that your application will slowly degenerate by log N! As
long as everything is cached by the OS or SQL server things will only go marginally slower
while the table gets bigger. After the data gets too big to be cached, things will start to
go much slower until your applications is only bound by disk-seeks (which increase by log
N). To avoid this, increase the index cache as the data grows. See Section 5.5.2 [Server
parameters], page 427.

5.2.3 Speed of SELECT Queries

In general, when you want to make a slow SELECT ... WHERE faster, the first thing to
check is whether you can add an index. See Section 5.4.3 [MySQL indexes], page 421. All
references between different tables should usually be done with indexes. You can use the
EXPLAIN command to determine which indexes are used for a SELECT. See Section 5.2.1
[EXPLAIN], page 399.
Some general tips:
• To help MySQL optimise queries better, run myisamchk --analyze on a table after

it has been loaded with relevant data. This updates a value for each index part that
indicates the average number of rows that have the same value. (For unique indexes,
this is always 1, of course.) MySQL will use this to decide which index to choose
when you connect two tables with ’a non-constant expression’. You can check the

Chapter 5: MySQL Optimisation 407

result from the analyze run by doing SHOW INDEX FROM table_name and examining
the Cardinality column.

• To sort an index and data according to an index, use myisamchk --sort-index --
sort-records=1 (if you want to sort on index 1). If you have a unique index from
which you want to read all records in order according to that index, this is a good way
to make that faster. Note, however, that this sorting isn’t written optimally and will
take a long time for a large table!

5.2.4 How MySQL Optimises WHERE Clauses

The WHERE optimisations are put in the SELECT part here because they are mostly used with
SELECT, but the same optimisations apply for WHERE in DELETE and UPDATE statements.

Also note that this section is incomplete. MySQL does many optimisations, and we have
not had time to document them all.

Some of the optimisations performed by MySQL are listed here:

• Removal of unnecessary parentheses:

((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

(a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table in-
formation for MyISAM and HEAP tables. This is also done for any NOT NULL expression
when used with only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some
SELECT statements are impossible and returns no rows.

• HAVING is merged with WHERE if you don’t use GROUP BY or group functions (COUNT(),
MIN()...).

• For each sub-join, a simpler WHERE is constructed to get a fast WHERE evaluation for
each sub-join and also to skip records as soon as possible.

• All constant tables are read first, before any other tables in the query. A constant table
is:

− An empty table or a table with 1 row.

− A table that is used with a WHERE clause on a UNIQUE index, or a PRIMARY KEY,
where all index parts are used with constant expressions and the index parts are
defined as NOT NULL.

All the following tables are used as constant tables:

408 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT * FROM t WHERE primary_key=1;
mysql> SELECT * FROM t1,t2

-> WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination to join the tables is found by trying all possibilities. If all
columns in ORDER BY and in GROUP BY come from the same table, then this table is
preferred first when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or
GROUP BY contains columns from tables other than the first table in the join queue, a
temporary table is created.

• If you use SQL_SMALL_RESULT, MySQL will use an in-memory temporary table.
• Each table index is queried, and the best index that spans fewer than 30% of the rows

is used. If no such index can be found, a quick table scan is used.
• In some cases, MySQL can read rows from the index without even consulting the

datafile. If all columns used from the index are numeric, then only the index tree is
used to resolve the query.

• Before each record is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

mysql> SELECT COUNT(*) FROM tbl_name;
mysql> SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;
mysql> SELECT MAX(key_part2) FROM tbl_name

-> WHERE key_part_1=constant;
mysql> SELECT ... FROM tbl_name

-> ORDER BY key_part1,key_part2,... LIMIT 10;
mysql> SELECT ... FROM tbl_name

-> ORDER BY key_part1 DESC,key_part2 DESC,... LIMIT 10;

The following queries are resolved using only the index tree (assuming the indexed columns
are numeric):

mysql> SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;
mysql> SELECT COUNT(*) FROM tbl_name

-> WHERE key_part1=val1 AND key_part2=val2;
mysql> SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate
sorting pass:

mysql> SELECT ... FROM tbl_name
-> ORDER BY key_part1,key_part2,... ;

mysql> SELECT ... FROM tbl_name
-> ORDER BY key_part1 DESC,key_part2 DESC,... ;

5.2.5 How MySQL Optimises IS NULL

MySQL can do the same optimisation on column IS NULL as it can do with column =
constant_value. For example, MySQL can use indexes and ranges to search for NULL
with IS NULL.

Chapter 5: MySQL Optimisation 409

SELECT * FROM table_name WHERE key_col IS NULL;

SELECT * FROM table_name WHERE key_col <=> NULL;

SELECT * FROM table_name WHERE key_col=# OR key_col=# OR key_col IS NULL

If you use column_name IS NULL on a NOT NULL in a WHERE clause on table that is not
used OUTER JOIN that expression will be optimised away.

MySQL 4.1.1 can additionally optimise the combination column = expr AND column IS
NULL, an form that is common in resolved sub queries. EXPLAIN will show ref_or_null
when this optimisation is used.

This optimisation can handle one IS NULL for any key part.

Some examples of queries that are optimised (assuming key on t2 (a,b)):

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1,t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1,t2 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1,t2 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1,t2 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...) OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key and after that a separate
search after rows with NULL key.

Note that the optimisation can only handle one IS NULL level.

SELECT * FROM t1,t2 where (t1.a=t2.a AND t2.a IS NULL) OR (t1.b=t2.b AND t2.b IS NULL);

Int the above case MySQL will only use key lookups on the part (t1.a=t2.a AND t2.a IS
NULL) and not be able to use the key part on b.

5.2.6 How MySQL Optimises DISTINCT

DISTINCT combined with ORDER BY will in many cases need a temporary table.

Note that as DISTINCT may use GROUP BY, you should be aware of how MySQL works with
in fields in ORDER BY or HAVING that are not part of the selected fields. See Section 6.3.7.3
[GROUP-BY-hidden-fields], page 529.

When combining LIMIT row_count with DISTINCT, MySQL will stop as soon as it finds
row_count unique rows.

If you don’t use columns from all used tables, MySQL will stop the scanning of the not
used tables as soon as it has found the first match.

SELECT DISTINCT t1.a FROM t1,t2 where t1.a=t2.a;

In the case, assuming t1 is used before t2 (check with EXPLAIN), then MySQL will stop
reading from t2 (for that particular row in t1) when the first row in t2 is found.

410 MySQL Technical Reference for Version 4.1.1-alpha

5.2.7 How MySQL Optimises LEFT JOIN and RIGHT JOIN

A LEFT JOIN B join_condition in MySQL is implemented as follows:

• The table B is set to be dependent on table A and all tables that A is dependent on.
• The table A is set to be dependent on all tables (except B) that are used in the LEFT

JOIN condition.
• The LEFT JOIN condition is used to decide how we should retrieve rows from table B.

(In other words, any condition in the WHERE clause is not used).
• All standard join optimisations are done, with the exception that a table is always read

after all tables it is dependent on. If there is a circular dependence then MySQL will
issue an error.

• All standard WHERE optimisations are done.
• If there is a row in A that matches the WHERE clause, but there wasn’t any row in B

that matched the ON condition, then an extra B row is generated with all columns set
to NULL.

• If you use LEFT JOIN to find rows that don’t exist in some table and you have the fol-
lowing test: column_name IS NULL in the WHERE part, where column name is a column
that is declared as NOT NULL, then MySQL will stop searching after more rows (for a
particular key combination) after it has found one row that matches the LEFT JOIN
condition.

RIGHT JOIN is implemented analogously to LEFT JOIN.

The table read order forced by LEFT JOIN and STRAIGHT JOIN will help the join optimiser
(which calculates in which order tables should be joined) to do its work much more quickly,
as there are fewer table permutations to check.

Note that the above means that if you do a query of type:

SELECT * FROM a,b LEFT JOIN c ON (c.key=a.key) LEFT JOIN d (d.key=a.key)
WHERE b.key=d.key

MySQL will do a full scan on b as the LEFT JOIN will force it to be read before d.

The fix in this case is to change the query to:

SELECT * FROM b,a LEFT JOIN c ON (c.key=a.key) LEFT JOIN d (d.key=a.key)
WHERE b.key=d.key

Starting from 4.0.14 MySQL does the following left join optimisation:

If the WHERE condition is always be false for the generated NULL row, the LEFT JOIN is
changed to a normal join.

For example, in the following query the WHERE clause would be false if t2.column would be
NULL so it’s safe to convert to a normal join.

SELECT * FROM t1 LEFT t2 ON (column) WHERE t2.column2 =5;
->
SELECT * FROM t1,t2 WHERE t2.column2=5 AND t1.column=t2.column;

this can be made faster as MySQL can now use table t2 before table t1 if this would result
in a better query plan. To force a specific table order one should use STRAIGHT JOIN.

Chapter 5: MySQL Optimisation 411

5.2.8 How MySQL Optimises ORDER BY

In some cases MySQL can uses index to satisfy an ORDER BY or GROUP BY request without
doing any extra sorting.
The index can also be used even if the ORDER BY doesn’t match the index exactly, as long
as all the unused index parts and all the extra are ORDER BY columns are constants in the
WHERE clause. The following queries will use the index to resolve the ORDER BY / GROUP BY
part:

SELECT * FROM t1 ORDER BY key_part1,key_part2,...
SELECT * FROM t1 WHERE key_part1=constant ORDER BY key_part2
SELECT * FROM t1 WHERE key_part1=constant GROUP BY key_part2
SELECT * FROM t1 ORDER BY key_part1 DESC,key_part2 DESC
SELECT * FROM t1 WHERE key_part1=1 ORDER BY key_part1 DESC,key_part2 DESC

Some cases where MySQL can not use indexes to resolve the ORDER BY: (Note that MySQL
will still use indexes to find the rows that matches the WHERE clause):
• You are doing an ORDER BY on different keys:

SELECT * FROM t1 ORDER BY key1,key2

• You are doing an ORDER BY using non-consecutive key parts.
SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2

• You are mixing ASC and DESC.
SELECT * FROM t1 ORDER BY key_part1 DESC,key_part2 ASC

• The key used to fetch the rows are not the same one that is used to do the ORDER BY:
SELECT * FROM t1 WHERE key2=constant ORDER BY key1

• You are joining many tables and the columns you are doing an ORDER BY on are not all
from the first not-const table that is used to retrieve rows (This is the first table in
the EXPLAIN output which doesn’t use a const row fetch method).

• You have different ORDER BY and GROUP BY expressions.
• The used table index is an index type that doesn’t store rows in order. (Like the HASH

index in HEAP tables).

In the cases where MySQL have to sort the result, it uses the following algorithm:
• Read all rows according to key or by table scanning. Rows that don’t match the WHERE

clause are skipped.
• Store the sort-key in a buffer (of size sort_buffer).
• When the buffer gets full, run a qsort on it and store the result in a temporary file.

Save a pointer to the sorted block. (In the case where all rows fits into the sort buffer,
no temporary file is created)

• Repeat the above until all rows have been read.
• Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary

file. Repeat until all blocks from the first file are in the second file.
• Repeat the following until there is less than MERGEBUFF2 (15) blocks left.
• On the last multi-merge, only the pointer to the row (last part of the sort-key) is

written to a result file.

412 MySQL Technical Reference for Version 4.1.1-alpha

• Now the code in ‘sql/records.cc’ will be used to read through them in sorted order
by using the row pointers in the result file. To optimise this, we read in a big block of
row pointers, sort these and then we read the rows in the sorted order into a row buffer
(read_rnd_buffer_size) .

You can with EXPLAIN SELECT ... ORDER BY check if MySQL can use indexes to resolve the
query. If you get Using filesort in the extra column, then MySQL can’t use indexes to
resolve the ORDER BY. See Section 5.2.1 [EXPLAIN], page 399.
If you want to have a higher ORDER BY speed, you should first see if you can get MySQL to
use indexes instead of having to do an extra sorting phase. If this is not possible, then you
can do:
• Increase the size of the sort_buffer_size variable.
• Increase the size of the read_rnd_buffer_size variable.
• Change tmpdir to point to a dedicated disk with lots of empty space. If you use MySQL

4.1 or later you can spread load between several physical disks by setting tmpdir to
a list of paths separated by colon : (semicolon ; on Windows). They will be used in
round-robin fashion. Note: These paths should end up on different physical disks, not
different partitions of the same disk.

By default, MySQL sorts all GROUP BY x,y[,...] queries as if you specified ORDER BY
x,y[,...] in the query as well. If you include the ORDER BY clause explicitly, MySQL
optimises it away without any speed penalty, though the sorting still occurs. If a query
includes GROUP BY but you want to avoid the overhead of sorting the result, you can supress
sorting by specifying ORDER BY NULL:

INSERT INTO foo SELECT a,COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

5.2.9 How MySQL Optimises LIMIT

In some cases MySQL will handle the query differently when you are using LIMIT row_count
and not using HAVING:
• If you are selecting only a few rows with LIMIT, MySQL will use indexes in some cases

when it normally would prefer to do a full table scan.
• If you use LIMIT row_count with ORDER BY, MySQL will end the sorting as soon as it

has found the first row_count lines instead of sorting the whole table.
• When combining LIMIT row_count with DISTINCT, MySQL will stop as soon as it finds

row_count unique rows.
• In some cases a GROUP BY can be resolved by reading the key in order (or do a sort on

the key) and then calculate summaries until the key value changes. In this case LIMIT
row_count will not calculate any unnecessary GROUP BYs.

• As soon as MySQL has sent the first # rows to the client, it will abort the query (if
you are not using SQL_CALC_FOUND_ROWS).

• LIMIT 0 will always quickly return an empty set. This is useful to check the query and
to get the column types of the result columns.

• When the server uses temporary tables to resolve the query, the LIMIT row_count is
used to calculate how much space is required.

Chapter 5: MySQL Optimisation 413

5.2.10 Speed of INSERT Queries

The time to insert a record consists approximately of:

• Connect: (3)
• Sending query to server: (2)
• Parsing query: (2)
• Inserting record: (1 x size of record)
• Inserting indexes: (1 x number of indexes)
• Close: (1)

where the numbers are somewhat proportional to the overall time. This does not take into
consideration the initial overhead to open tables (which is done once for each concurrently
running query).

The size of the table slows down the insertion of indexes by log N (B-trees).

Some ways to speed up inserts:

• If you are inserting many rows from the same client at the same time, use multiple value
lists INSERT statements. This is much faster (many times in some cases) than using
separate INSERT statements. If you are adding data to non-empty table, you may tune
up the bulk_insert_buffer_size variable to make it even faster. See Section 4.6.8.4
[bulk_insert_buffer_size], page 290.

• If you are inserting a lot of rows from different clients, you can get higher speed by
using the INSERT DELAYED statement. See Section 6.4.3 [INSERT], page 546.

• Note that with MyISAM tables you can insert rows at the same time SELECTs are running
if there are no deleted rows in the tables.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times
faster than using a lot of INSERT statements. See Section 6.4.8 [LOAD DATA], page 555.

• It is possible with some extra work to make LOAD DATA INFILE run even faster when
the table has many indexes. Use the following procedure:
1. Optionally create the table with CREATE TABLE. For example, using mysql or Perl-

DBI.
2. Execute a FLUSH TABLES statement or the shell command mysqladmin flush-

tables.
3. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name. This will remove all

usage of all indexes from the table.
4. Insert data into the table with LOAD DATA INFILE. This will not update any indexes

and will therefore be very fast.
5. If you are going to only read the table in the future, run myisampack on it to make

it smaller. See Section 7.1.2.3 [Compressed format], page 598.
6. Re-create the indexes with myisamchk -r -q /path/to/db/tbl_name. This will

create the index tree in memory before writing it to disk, which is much faster
because it avoids lots of disk seeks. The resulting index tree is also perfectly
balanced.

414 MySQL Technical Reference for Version 4.1.1-alpha

7. Execute a FLUSH TABLES statement or the shell command mysqladmin flush-
tables.

Note that LOAD DATA INFILE also does the above optimisation if you insert into an
empty table; the main difference with the above procedure is that you can let myisamchk
allocate much more temporary memory for the index creation that you may want
MySQL to allocate for every index recreation.

Since MySQL 4.0 you can also use ALTER TABLE tbl_name DISABLE KEYS instead of
myisamchk --keys-used=0 -rq /path/to/db/tbl_name and ALTER TABLE tbl_name
ENABLE KEYS instead of myisamchk -r -q /path/to/db/tbl_name. This way you can
also skip FLUSH TABLES steps.

• You can speed up insertions that is done over multiple statements by locking your
tables:

mysql> LOCK TABLES a WRITE;
mysql> INSERT INTO a VALUES (1,23),(2,34),(4,33);
mysql> INSERT INTO a VALUES (8,26),(6,29);
mysql> UNLOCK TABLES;

The main speed difference is that the index buffer is flushed to disk only once, after
all INSERT statements have completed. Normally there would be as many index buffer
flushes as there are different INSERT statements. Locking is not needed if you can insert
all rows with a single statement.

For transactional tables, you should use BEGIN/COMMIT instead of LOCK TABLES to get
a speedup.

Locking will also lower the total time of multi-connection tests, but the maximum wait
time for some threads will go up (because they wait for locks). For example:

thread 1 does 1000 inserts
thread 2, 3, and 4 does 1 insert
thread 5 does 1000 inserts

If you don’t use locking, 2, 3, and 4 will finish before 1 and 5. If you use locking, 2, 3,
and 4 probably will not finish before 1 or 5, but the total time should be about 40%
faster.

As INSERT, UPDATE, and DELETE operations are very fast in MySQL, you will obtain
better overall performance by adding locks around everything that does more than
about 5 inserts or updates in a row. If you do very many inserts in a row, you could do
a LOCK TABLES followed by an UNLOCK TABLES once in a while (about each 1000 rows)
to allow other threads access to the table. This would still result in a nice performance
gain.

Of course, LOAD DATA INFILE is much faster for loading data.

To get some more speed for both LOAD DATA INFILE and INSERT, enlarge the key buffer.
See Section 5.5.2 [Server parameters], page 427.

Chapter 5: MySQL Optimisation 415

5.2.11 Speed of UPDATE Queries

Update queries are optimised as a SELECT query with the additional overhead of a write.
The speed of the write is dependent on the size of the data that is being updated and the
number of indexes that are updated. Indexes that are not changed will not be updated.
Also, another way to get fast updates is to delay updates and then do many updates in a
row later. Doing many updates in a row is much quicker than doing one at a time if you
lock the table.
Note that, with dynamic record format, updating a record to a longer total length may split
the record. So if you do this often, it is very important to OPTIMIZE TABLE sometimes. See
Section 4.6.1 [OPTIMIZE TABLE], page 281.

5.2.12 Speed of DELETE Queries

If you want to delete all rows in the table, you should use TRUNCATE TABLE table_name.
See Section 6.4.6 [TRUNCATE], page 554.
The time to delete a record is exactly proportional to the number of indexes. To delete
records more quickly, you can increase the size of the index cache. See Section 5.5.2 [Server
parameters], page 427.

5.2.13 Other Optimisation Tips

Unsorted tips for faster systems:
• Use persistent connections to the database to avoid the connection overhead. If you

can’t use persistent connections and you are doing a lot of new connections to the
database, you may want to change the value of the thread_cache_size variable. See
Section 5.5.2 [Server parameters], page 427.

• Always check that all your queries really use the indexes you have created in the tables.
In MySQL you can do this with the EXPLAIN command. See Section 5.2.1 [Explain],
page 399.

• Try to avoid complex SELECT queries on MyISAM tables that are updated a lot. This is
to avoid problems with table locking.

• The new MyISAM tables can insert rows in a table without deleted rows at the same
time another table is reading from it. If this is important for you, you should consider
methods where you don’t have to delete rows or run OPTIMIZE TABLE after you have
deleted a lot of rows.

• Use ALTER TABLE ... ORDER BY expr1,expr2... if you mostly retrieve rows in
expr1,expr2... order. By using this option after big changes to the table, you may
be able to get higher performance.

• In some cases it may make sense to introduce a column that is ’hashed’ based on
information from other columns. If this column is short and reasonably unique it may
be much faster than a big index on many columns. In MySQL it’s very easy to use this
extra column: SELECT * FROM table_name WHERE hash=MD5(CONCAT(col1,col2))
AND col_1=’constant’ AND col_2=’constant’

416 MySQL Technical Reference for Version 4.1.1-alpha

• For tables that change a lot you should try to avoid all VARCHAR or BLOB columns. You
will get dynamic row length as soon as you are using a single VARCHAR or BLOB column.
See Chapter 7 [Table types], page 593.

• It’s not normally useful to split a table into different tables just because the rows gets
’big’. To access a row, the biggest performance hit is the disk seek to find the first byte
of the row. After finding the data most new disks can read the whole row fast enough
for most applications. The only cases where it really matters to split up a table is if it’s
a dynamic row size table (see above) that you can change to a fixed row size, or if you
very often need to scan the table and don’t need most of the columns. See Chapter 7
[Table types], page 593.

• If you very often need to calculate things based on information from a lot of rows
(like counts of things), it’s probably much better to introduce a new table and update
the counter in real time. An update of type UPDATE table SET count=count+1 WHERE
index_column=constant is very fast!
This is really important when you use MySQL table types like MyISAM and ISAM
that only have table locking (multiple readers / single writers). This will also give
better performance with most databases, as the row locking manager in this case will
have less to do.

• If you need to collect statistics from big log tables, use summary tables instead of
scanning the whole table. Maintaining the summaries should be much faster than
trying to do statistics ’live’. It’s much faster to regenerate new summary tables from
the logs when things change (depending on business decisions) than to have to change
the running application!

• If possible, one should classify reports as ’live’ or ’statistical’, where data needed for
statistical reports are only generated based on summary tables that are generated from
the actual data.

• Take advantage of the fact that columns have default values. Insert values explicitly
only when the value to be inserted differs from the default. This reduces the parsing
that MySQL need to do and improves the insert speed.

• In some cases it’s convenient to pack and store data into a blob. In this case you have
to add some extra code in your application to pack/unpack things in the blob, but this
may save a lot of accesses at some stage. This is practical when you have data that
doesn’t conform to a static table structure.

• Normally you should try to keep all data non-redundant (what is called 3rd normal
form in database theory), but you should not be afraid of duplicating things or creating
summary tables if you need these to gain more speed.

• Stored procedures or UDF (user-defined functions) may be a good way to get more
performance. In this case you should, however, always have a way to do this some
other (slower) way if you use some database that doesn’t support this.

• You can always gain something by caching queries/answers in your application and
trying to do many inserts/updates at the same time. If your database supports lock
tables (like MySQL and Oracle), this should help to ensure that the index cache is only
flushed once after all updates.

• Use INSERT /*! DELAYED */ when you do not need to know when your data is written.
This speeds things up because many records can be written with a single disk write.

Chapter 5: MySQL Optimisation 417

• Use INSERT /*! LOW_PRIORITY */ when you want your selects to be more important.

• Use SELECT /*! HIGH_PRIORITY */ to get selects that jump the queue. That is, the
select is done even if there is somebody waiting to do a write.

• Use the multi-line INSERT statement to store many rows with one SQL command (many
SQL servers supports this).

• Use LOAD DATA INFILE to load bigger amounts of data. This is faster than normal
inserts and will be even faster when myisamchk is integrated in mysqld.

• Use AUTO_INCREMENT columns to make unique values.

• Use OPTIMIZE TABLE once in a while to avoid fragmentation when using a dynamic
table format. See Section 4.6.1 [OPTIMIZE TABLE], page 281.

• Use HEAP tables to get more speed when possible. See Chapter 7 [Table types], page 593.

• When using a normal web server setup, images should be stored as files. That is, store
only a file reference in the database. The main reason for this is that a normal web
server is much better at caching files than database contents. So it it’s much easier to
get a fast system if you are using files.

• Use in memory tables for non-critical data that are accessed often (like information
about the last shown banner for users that don’t have cookies).

• Columns with identical information in different tables should be declared identical and
have identical names. Before Version 3.23 you got slow joins otherwise.

Try to keep the names simple (use name instead of customer_name in the customer
table). To make your names portable to other SQL servers you should keep them
shorter than 18 characters.

• If you need really high speed, you should take a look at the low-level interfaces for data
storage that the different SQL servers support! For example, by accessing the MySQL
MyISAM directly, you could get a speed increase of 2-5 times compared to using the SQL
interface. To be able to do this the data must be on the same server as the application,
and usually it should only be accessed by one process (because external file locking is
really slow). One could eliminate the above problems by introducing low-level MyISAM
commands in the MySQL server (this could be one easy way to get more performance
if needed). By carefully designing the database interface, it should be quite easy to
support this types of optimisation.

• In many cases it’s faster to access data from a database (using a live connection) than
accessing a text file, just because the database is likely to be more compact than the
text file (if you are using numerical data), and this will involve fewer disk accesses.
You will also save code because you don’t have to parse your text files to find line and
column boundaries.

• You can also use replication to speed things up. See Section 4.11 [Replication], page 355.

• Declaring a table with DELAY_KEY_WRITE=1 will make the updating of indexes faster,
as these are not logged to disk until the file is closed. The downside is that you should
run myisamchk on these tables before you start mysqld to ensure that they are okay if
something killed mysqld in the middle. As the key information can always be generated
from the data, you should not lose anything by using DELAY_KEY_WRITE.

418 MySQL Technical Reference for Version 4.1.1-alpha

5.3 Locking Issues

5.3.1 How MySQL Locks Tables

You can find a discussion about different locking methods in the appendix. See Section E.4
[Locking methods], page 1011.

All locking in MySQL is deadlock-free, except for InnoDB and BDB type tables. This is
managed by always requesting all needed locks at once at the beginning of a query and
always locking the tables in the same order.

InnoDB type tables automatically acquire their row locks and BDB type tables their page
locks during the processing of SQL statements, not at the start of the transaction.

The locking method MySQL uses for WRITE locks works as follows:

• If there are no locks on the table, put a write lock on it.

• Otherwise, put the lock request in the write lock queue.

The locking method MySQL uses for READ locks works as follows:

• If there are no write locks on the table, put a read lock on it.

• Otherwise, put the lock request in the read lock queue.

When a lock is released, the lock is made available to the threads in the write lock queue,
then to the threads in the read lock queue.

This means that if you have many updates on a table, SELECT statements will wait until
there are no more updates.

To work around this for the case where you want to do many INSERT and SELECT operations
on a table, you can insert rows in a temporary table and update the real table with the
records from the temporary table once in a while.

This can be done with the following code:

mysql> LOCK TABLES real_table WRITE, insert_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM insert_table;
mysql> TRUNCATE TABLE insert_table;
mysql> UNLOCK TABLES;

You can use the LOW_PRIORITY options with INSERT, UPDATE or DELETE or HIGH_PRIORITY
with SELECT if you want to prioritise retrieval in some specific cases. You can also start
mysqld with --low-priority-updates to get the same behaveour.

Using SQL_BUFFER_RESULT can also help making table locks shorter. See Section 6.4.1
[SELECT], page 530.

You could also change the locking code in ‘mysys/thr_lock.c’ to use a single queue. In
this case, write locks and read locks would have the same priority, which might help some
applications.

Chapter 5: MySQL Optimisation 419

5.3.2 Table Locking Issues

The table locking code in MySQL is deadlock free.

MySQL uses table locking (instead of row locking or column locking) on all table types,
except InnoDB and BDB tables, to achieve a very high lock speed. For large tables, table
locking is much better than row locking for most applications, but there are, of course, some
pitfalls.

For InnoDB and BDB tables, MySQL only uses table locking if you explicitly lock the table
with LOCK TABLES. For these table types we recommend you to not use LOCK TABLES at all,
because InnoDB uses automatic row level locking and BDB uses page level locking to ensure
transaction isolation.

In MySQL Version 3.23.7 and above, you can insert rows into MyISAM tables at the same
time other threads are reading from the table. Note that currently this only works if there
are no holes after deleted rows in the table at the time the insert is made. When all holes
has been filled with new data, concurrent inserts will automatically be enabled again.

Table locking enables many threads to read from a table at the same time, but if a thread
wants to write to a table, it must first get exclusive access. During the update, all other
threads that want to access this particular table will wait until the update is ready.

As updates on tables normally are considered to be more important than SELECT, all state-
ments that update a table have higher priority than statements that retrieve information
from a table. This should ensure that updates are not ’starved’ because one issues a lot of
heavy queries against a specific table. (You can change this by using LOW_PRIORITY with
the statement that does the update or HIGH_PRIORITY with the SELECT statement.)

Starting from MySQL Version 3.23.7 one can use the max_write_lock_count variable to
force MySQL to temporary give all SELECT statements, that wait for a table, a higher
priority after a specific number of inserts on a table.

Table locking is, however, not very good under the following senario:

• A client issues a SELECT that takes a long time to run.

• Another client then issues an UPDATE on a used table. This client will wait until the
SELECT is finished.

• Another client issues another SELECT statement on the same table. As UPDATE has
higher priority than SELECT, this SELECT will wait for the UPDATE to finish. It will also
wait for the first SELECT to finish!

• A thread is waiting for something like full disk, in which case all threads that wants
to access the problem table will also be put in a waiting state until more disk space is
made available.

Some possible solutions to this problem are:

• Try to get the SELECT statements to run faster. You may have to create some summary
tables to do this.

• Start mysqld with --low-priority-updates. This will give all statements that update
(modify) a table lower priority than a SELECT statement. In this case the last SELECT
statement in the previous scenario would execute before the INSERT statement.

420 MySQL Technical Reference for Version 4.1.1-alpha

• You can give a specific INSERT, UPDATE, or DELETE statement lower priority with the
LOW_PRIORITY attribute.

• Start mysqld with a low value for max_write_lock_count to give READ locks after a
certain number of WRITE locks.

• You can specify that all updates from a specific thread should be done with low priority
by using the SQL command: SET LOW_PRIORITY_UPDATES=1. See Section 5.5.6 [SET],
page 432.

• You can specify that a specific SELECT is very important with the HIGH_PRIORITY
attribute. See Section 6.4.1 [SELECT], page 530.

• If you have problems with INSERT combined with SELECT, switch to use the new MyISAM
tables as these support concurrent SELECTs and INSERTs.

• If you mainly mix INSERT and SELECT statements, the DELAYED attribute to INSERT
will probably solve your problems. See Section 6.4.3 [INSERT], page 546.

• If you have problems with SELECT and DELETE, the LIMIT option to DELETE may help.
See Section 6.4.5 [DELETE], page 552.

5.4 Optimising Database Structure

5.4.1 Design Choices

MySQL keeps row data and index data in separate files. Many (almost all) other databases
mix row and index data in the same file. We believe that the MySQL choice is better for a
very wide range of modern systems.

Another way to store the row data is to keep the information for each column in a separate
area (examples are SDBM and Focus). This will cause a performance hit for every query
that accesses more than one column. Because this degenerates so quickly when more than
one column is accessed, we believe that this model is not good for general purpose databases.

The more common case is that the index and data are stored together (as in Oracle/Sybase
et al). In this case you will find the row information at the leaf page of the index. The good
thing with this layout is that it, in many cases, depending on how well the index is cached,
saves a disk read. The bad things with this layout are:

• Table scanning is much slower because you have to read through the indexes to get at
the data.

• You can’t use only the index table to retrieve data for a query.

• You lose a lot of space, as you must duplicate indexes from the nodes (as you can’t
store the row in the nodes).

• Deletes will degenerate the table over time (as indexes in nodes are usually not updated
on delete).

• It’s harder to cache only the index data.

Chapter 5: MySQL Optimisation 421

5.4.2 Get Your Data as Small as Possible

One of the most basic optimisation is to get your data (and indexes) to take as little space on
the disk (and in memory) as possible. This can give huge improvements because disk reads
are faster and normally less main memory will be used. Indexing also takes less resources
if done on smaller columns.
MySQL supports a lot of different table types and row formats. Choosing the right table
format may give you a big performance gain. See Chapter 7 [Table types], page 593.
You can get better performance on a table and minimise storage space using the techniques
listed here:
• Use the most efficient (smallest) types possible. MySQL has many specialised types

that save disk space and memory.
• Use the smaller integer types if possible to get smaller tables. For example, MEDIUMINT

is often better than INT.
• Declare columns to be NOT NULL if possible. It makes everything faster and you save

one bit per column. Note that if you really need NULL in your application you should
definitely use it. Just avoid having it on all columns by default.

• If you don’t have any variable-length columns (VARCHAR, TEXT, or BLOB columns), a
fixed-size record format is used. This is faster but unfortunately may waste some
space. See Section 7.1.2 [MyISAM table formats], page 596.

• The primary index of a table should be as short as possible. This makes identification
of one row easy and efficient.

• For each table, you have to decide which storage/index method to use. See Chapter 7
[Table types], page 593.

• Only create the indexes that you really need. Indexes are good for retrieval but bad
when you need to store things fast. If you mostly access a table by searching on a
combination of columns, make an index on them. The first index part should be the
most used column. If you are always using many columns, you should use the column
with more duplicates first to get better compression of the index.

• If it’s very likely that a column has a unique prefix on the first number of characters,
it’s better to only index this prefix. MySQL supports an index on a part of a character
column. Shorter indexes are faster not only because they take less disk space but also
because they will give you more hits in the index cache and thus fewer disk seeks. See
Section 5.5.2 [Server parameters], page 427.

• In some circumstances it can be beneficial to split into two a table that is scanned very
often. This is especially true if it is a dynamic format table and it is possible to use a
smaller static format table that can be used to find the relevant rows when scanning
the table.

5.4.3 How MySQL Uses Indexes

Indexes are used to find rows with a specific value of one column fast. Without an index
MySQL has to start with the first record and then read through the whole table until it
finds the relevant rows. The bigger the table, the more this costs. If the table has an index

422 MySQL Technical Reference for Version 4.1.1-alpha

for the columns in question, MySQL can quickly get a position to seek to in the middle of
the datafile without having to look at all the data. If a table has 1000 rows, this is at least
100 times faster than reading sequentially. Note that if you need to access almost all 1000
rows it is faster to read sequentially because we then avoid disk seeks.
All MySQL indexes (PRIMARY, UNIQUE, and INDEX) are stored in B-trees. Strings are auto-
matically prefix- and end-space compressed. See Section 6.5.7 [CREATE INDEX], page 577.
Indexes are used to:
• Quickly find the rows that match a WHERE clause.
• Retrieve rows from other tables when performing joins.
• Find the MAX() or MIN() value for a specific indexed column. This is optimised by a

preprocessor that checks if you are using WHERE key part # = constant on all key parts
< N. In this case MySQL will do a single key lookup and replace the MIN() expression
with a constant. If all expressions are replaced with constants, the query will return at
once:

SELECT MIN(key_part2),MAX(key_part2) FROM table_name where key_part1=10

• Sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable
key (for example, ORDER BY key_part_1,key_part_2). The key is read in reverse
order if all key parts are followed by DESC. See Section 5.2.8 [ORDER BY optimisation],
page 411.

• In some cases a query can be optimised to retrieve values without consulting the
datafile. If all used columns for some table are numeric and form a leftmost prefix
for some key, the values may be retrieved from the index tree for greater speed:

SELECT key_part3 FROM table_name WHERE key_part1=1

Suppose you issue the following SELECT statement:
mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched
directly. If separate single-column indexes exist on col1 and col2, the optimiser tries to
find the most restrictive index by deciding which index will find fewer rows and using that
index to fetch the rows.
If the table has a multiple-column index, any leftmost prefix of the index can be used
by the optimiser to find rows. For example, if you have a three-column index on
(col1,col2,col3), you have indexed search capabilities on (col1), (col1,col2), and
(col1,col2,col3).
MySQL can’t use a partial index if the columns don’t form a leftmost prefix of the index.
Suppose you have the SELECT statements shown here:

mysql> SELECT * FROM tbl_name WHERE col1=val1;
mysql> SELECT * FROM tbl_name WHERE col2=val2;
mysql> SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1,col2,col3), only the first of the preceding queries uses
the index. The second and third queries do involve indexed columns, but (col2) and
(col2,col3) are not leftmost prefixes of (col1,col2,col3).
MySQL also uses indexes for LIKE comparisons if the argument to LIKE is a constant string
that doesn’t start with a wildcard character. For example, the following SELECT statements
use indexes:

Chapter 5: MySQL Optimisation 423

mysql> SELECT * FROM tbl_name WHERE key_col LIKE "Patrick%";
mysql> SELECT * FROM tbl_name WHERE key_col LIKE "Pat%_ck%";

In the first statement, only rows with "Patrick" <= key_col < "Patricl" are considered.
In the second statement, only rows with "Pat" <= key_col < "Pau" are considered.
The following SELECT statements will not use indexes:

mysql> SELECT * FROM tbl_name WHERE key_col LIKE "%Patrick%";
mysql> SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second
statement, the LIKE value is not a constant.
MySQL 4.0 does another optimisation on LIKE. If you use ... LIKE "%string%" and
string is longer than 3 characters, MySQL will use the Turbo Boyer-Moore algorithm
to initialise the pattern for the string and then use this pattern to perform the search
quicker.
Searching using column_name IS NULL will use indexes if column name is an index.
MySQL normally uses the index that finds the least number of rows. An index is used for
columns that you compare with the following operators: =, >, >=, <, <=, BETWEEN, and a
LIKE with a non-wildcard prefix like ’something%’.
Any index that doesn’t span all AND levels in the WHERE clause is not used to optimise the
query. In other words: To be able to use an index, a prefix of the index must be used in
every AND group.
The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

... WHERE index=1 OR A=10 AND index=2 /* index = 1 OR index = 2 */

... WHERE index_part1=’hello’ AND index_part_3=5
/* optimised like "index_part1=’hello’" */

... WHERE index1=1 and index2=2 or index1=3 and index3=3;
/* Can use index on index1 but not on index2 or index 3 */

These WHERE clauses do NOT use indexes:
... WHERE index_part2=1 AND index_part3=2 /* index_part_1 is not used */
... WHERE index=1 OR A=10 /* Index is not used in

both AND parts */
... WHERE index_part1=1 OR index_part2=10 /* No index spans all rows */

Note that in some cases MySQL will not use an index, even if one would be available. Some
of the cases where this happens are:
• If the use of the index would require MySQL to access more than 30% of the rows in

the table. (In this case a table scan is probably much faster, as this will require us to
do much fewer seeks.) Note that if such a query uses LIMIT to only retrieve part of the
rows, MySQL will use an index anyway, as it can much more quickly find the few rows
to return in the result.

5.4.4 Column Indexes

All MySQL column types can be indexed. Use of indexes on the relevant columns is the
best way to improve the performance of SELECT operations.

424 MySQL Technical Reference for Version 4.1.1-alpha

The maximum number of keys and the maximum index length is defined per storage engine.
See Chapter 7 [Table types], page 593. You can with all storage engines have at least 16
keys and a total index length of at least 256 bytes.
For CHAR and VARCHAR columns, you can index a prefix of a column. This is much faster and
requires less disk space than indexing the whole column. The syntax to use in the CREATE
TABLE statement to index a column prefix looks like this:

KEY index_name (col_name(length))

The example here creates an index for the first 10 characters of the name column:
mysql> CREATE TABLE test (

-> name CHAR(200) NOT NULL,
-> KEY index_name (name(10)));

For BLOB and TEXT columns, you must index a prefix of the column. The prefix may be up
to 255 bytes long.
In MySQL Version 3.23.23 or later, you can also create special FULLTEXT indexes. They
are used for full-text search. Only the MyISAM table type supports FULLTEXT indexes. They
can be created only from CHAR, VARCHAR, and TEXT columns. Indexing always happens over
the entire column and partial indexing is not supported. See Section 6.8 [Fulltext Search],
page 583 for details.

5.4.5 Multiple-Column Indexes

MySQL can create indexes on multiple columns. An index may consist of up to 15 columns.
(On CHAR and VARCHAR columns you can also use a prefix of the column as a part of an
index.)
A multiple-column index can be considered a sorted array containing values that are created
by concatenating the values of the indexed columns.
MySQL uses multiple-column indexes in such a way that queries are fast when you specify
a known quantity for the first column of the index in a WHERE clause, even if you don’t
specify values for the other columns.
Suppose a table is created using the following specification:

mysql> CREATE TABLE test (
-> id INT NOT NULL,
-> last_name CHAR(30) NOT NULL,
-> first_name CHAR(30) NOT NULL,
-> PRIMARY KEY (id),
-> INDEX name (last_name,first_name));

Then the index name is an index over last_name and first_name. The index will be used
for queries that specify values in a known range for last_name, or for both last_name and
first_name. Therefore, the name index will be used in the following queries:

mysql> SELECT * FROM test WHERE last_name="Widenius";

mysql> SELECT * FROM test WHERE last_name="Widenius"
-> AND first_name="Michael";

Chapter 5: MySQL Optimisation 425

mysql> SELECT * FROM test WHERE last_name="Widenius"
-> AND (first_name="Michael" OR first_name="Monty");

mysql> SELECT * FROM test WHERE last_name="Widenius"
-> AND first_name >="M" AND first_name < "N";

However, the name index will NOT be used in the following queries:
mysql> SELECT * FROM test WHERE first_name="Michael";

mysql> SELECT * FROM test WHERE last_name="Widenius"
-> OR first_name="Michael";

For more information on the manner in which MySQL uses indexes to improve query per-
formance, see Section 5.4.3 [MySQL indexes], page 421.

5.4.6 How MySQL Counts Open Tables

When you run mysqladmin status, you’ll see something like this:
Uptime: 426 Running threads: 1 Questions: 11082 Reloads: 1 Open tables: 12

This can be somewhat perplexing if you only have 6 tables.
MySQL is multi-threaded, so it may have many queries on the same table simultaneously.
To minimise the problem with two threads having different states on the same file, the
table is opened independently by each concurrent thread. This takes some memory but will
normally increase performance. With ISAM and MyISAM tables this also requires one extra
file descriptor for the datafile. With these table types the index file descriptor is shared
between all threads.
You can read more about this topic in the next section. See Section 5.4.7 [Table cache],
page 425.

5.4.7 How MySQL Opens and Closes Tables

table_cache, max_connections, and max_tmp_tables affect the maximum number of files
the server keeps open. If you increase one or both of these values, you may run up against a
limit imposed by your operating system on the per-process number of open file descriptors.
However, you can increase the limit on many systems. Consult your OS documentation
to find out how to do this, because the method for changing the limit varies widely from
system to system.
table_cache is related to max_connections. For example, for 200 concurrent running
connections, you should have a table cache of at least 200 * n, where n is the maximum
number of tables in a join. You also need to reserve some extra file descriptors for temporary
tables and files.
Make sure that your operating system can handle the number of open file descriptors implied
by the table_cache setting. If table_cache is set too high, MySQL may run out of file
descriptors and refuse connections, fail to perform queries, and be very unreliable. You
also have to take into account that the MyISAM storage engine needs two file descriptors
for each unique open table. You can in increase the number of file descriptors available for

426 MySQL Technical Reference for Version 4.1.1-alpha

MySQL with the --open-files-limit=# startup option. See Section A.2.17 [Not enough
file handles], page 854.

The cache of open tables will be kept at a level of table_cache entries. The default value is
64; this can be changed with the -O table_cache=# option to mysqld). Note that MySQL
may temporarily open even more tables to be able to execute queries.

A not used table is closed and removed from the table cache under the following circum-
stances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_cache entries and a thread is no longer
using a table.

• When someone executes mysqladmin refresh or mysqladmin flush-tables.

• When someone executes a FLUSH TABLES statement.

When the table cache fills up, the server uses the following procedure to locate a cache
entry to use:

• Tables that are not currently in use are released, in least-recently-used order.

• If the cache is full and no tables can be released, but a new table needs to be opened,
the cache is temporarily extended as necessary.

• If the cache is in a temporarily extended state and a table goes from in-use to not-in-use
state, the table is closed and released from the cache.

A table is opened for each concurrent access. This means that if you have two threads
accessing the same table or access the table twice in the same query (with AS) the table
needs to be opened twice. The first open of any table takes two file descriptors; each
additional use of the table takes only one file descriptor. The extra descriptor for the first
open is used for the index file; this descriptor is shared among all threads.

If you are opening a table with the HANDLER table_name OPEN statement, a dedicated table
object is allocated for the thread. This table object is not shared by other threads an will
not be closed until the thread calls HANDLER table_name CLOSE or the thread dies. See
Section 6.4.9 [HANDLER], page 562. When this happens, the table is put back in the table
cache (if it isn’t full).

You can check if your table cache is too small by checking the mysqld variable Opened_
tables. If this is quite big, even if you haven’t done a lot of FLUSH TABLES, you should
increase your table cache. See Section 4.6.8.3 [Opened_tables], page 287.

5.4.8 Drawbacks to Creating Large Numbers of Tables in the
Same Database

If you have many files in a directory, open, close, and create operations will be slow. If you
execute SELECT statements on many different tables, there will be a little overhead when the
table cache is full, because for every table that has to be opened, another must be closed.
You can reduce this overhead by making the table cache larger.

Chapter 5: MySQL Optimisation 427

5.5 Optimising the MySQL Server

5.5.1 System/Compile Time and Startup Parameter Tuning

We start with the system level things since some of these decisions have to be made very
early. In other cases a fast look at this part may suffice because it not that important for
the big gains. However, it is always nice to have a feeling about how much one could gain
by changing things at this level.
The default OS to use is really important! To get the most use of multiple-CPU machines one
should use Solaris (because the threads works really nice) or Linux (because the 2.2 kernel
has really good SMP support). Also on 32-bit machines Linux has a 2G file-size limit by
default. Hopefully this will be fixed soon when new filesystems are released (XFS/Reiserfs).
If you have a desperate need for files bigger than 2G on Linux-intel 32 bit, you should get
the LFS patch for the ext2 filesystem.
Because we have not run MySQL in production on that many platforms, we advice you to
test your intended platform before choosing it, if possible.
Other tips:
• If you have enough RAM, you could remove all swap devices. Some operating systems

will use a swap device in some contexts even if you have free memory.
• Use the --skip-external-locking MySQL option to avoid external locking. Note

that this will not impact MySQL’s functionality as long as you only run one server. Just
remember to take down the server (or lock relevant parts) before you run myisamchk.
On some system this switch is mandatory because the external locking does not work
in any case.
The --skip-external-locking option is on by default when compiling with MIT-
pthreads, because flock() isn’t fully supported by MIT-pthreads on all platforms.
It’s also on default for Linux as Linux file locking are not yet safe.
The only case when you can’t use --skip-external-locking is if you run multiple
MySQL servers (not clients) on the same data, or run myisamchk on the table without
first flushing and locking the mysqld server tables first.
You can still use LOCK TABLES/UNLOCK TABLES even if you are using --skip-external-
locking

5.5.2 Tuning Server Parameters

You can get the default buffer sizes used by the mysqld server with this command:
shell> mysqld --help

This command produces a list of all mysqld options and configurable variables. The output
includes the default values and looks something like this:

Possible variables for option --set-variable (-O) are:
back_log current value: 5
bdb_cache_size current value: 1048540
binlog_cache_size current value: 32768

428 MySQL Technical Reference for Version 4.1.1-alpha

connect_timeout current value: 5
delayed_insert_timeout current value: 300
delayed_insert_limit current value: 100
delayed_queue_size current value: 1000
flush_time current value: 0
interactive_timeout current value: 28800
join_buffer_size current value: 131072
key_buffer_size current value: 1048540
lower_case_table_names current value: 0
long_query_time current value: 10
max_allowed_packet current value: 1048576
max_binlog_cache_size current value: 4294967295
max_connections current value: 100
max_connect_errors current value: 10
max_delayed_threads current value: 20
max_heap_table_size current value: 16777216
max_join_size current value: 4294967295
max_sort_length current value: 1024
max_tmp_tables current value: 32
max_write_lock_count current value: 4294967295
myisam_sort_buffer_size current value: 8388608
net_buffer_length current value: 16384
net_retry_count current value: 10
net_read_timeout current value: 30
net_write_timeout current value: 60
read_buffer_size current value: 131072
read_rnd_buffer_size current value: 262144
slow_launch_time current value: 2
sort_buffer current value: 2097116
table_cache current value: 64
thread_concurrency current value: 10
tmp_table_size current value: 1048576
thread_stack current value: 131072
wait_timeout current value: 28800

Please note that --set-variable is deprecated since MySQL 4.0, just use --var=option
on its own.
If there is a mysqld server currently running, you can see what values it actually is using
for the variables by executing this command:

shell> mysqladmin variables

You can find a full description for all variables in the SHOW VARIABLES section in this manual.
See Section 4.6.8.4 [SHOW VARIABLES], page 290.
You can also see some statistics from a running server by issuing the command SHOW STATUS.
See Section 4.6.8.3 [SHOW STATUS], page 287.
MySQL uses algorithms that are very scalable, so you can usually run with very little
memory. If you, however, give MySQL more memory, you will normally also get better
performance.

Chapter 5: MySQL Optimisation 429

When tuning a MySQL server, the two most important variables to use are key_buffer_
size and table_cache. You should first feel confident that you have these right before
trying to change any of the other variables.

If you have much memory (>=256M) and many tables and want maximum performance
with a moderate number of clients, you should use something like this:

shell> mysqld_safe -O key_buffer=64M -O table_cache=256 \
-O sort_buffer=4M -O read_buffer_size=1M &

If you have only 128M and only a few tables, but you still do a lot of sorting, you can use
something like:

shell> mysqld_safe -O key_buffer=16M -O sort_buffer=1M

If you have little memory and lots of connections, use something like this:

shell> mysqld_safe -O key_buffer=512k -O sort_buffer=100k \
-O read_buffer_size=100k &

or even:

shell> mysqld_safe -O key_buffer=512k -O sort_buffer=16k \
-O table_cache=32 -O read_buffer_size=8k -O net_buffer_length=1K &

If you are doing a GROUP BY or ORDER BY on files that are much bigger than your available
memory you should increase the value of read_rnd_buffer_size to speed up the reading
of rows after the sorting is done.

When you have installed MySQL, the ‘support-files’ directory will contain some
different ‘my.cnf’ example files, ‘my-huge.cnf’, ‘my-large.cnf’, ‘my-medium.cnf’, and
‘my-small.cnf’, you can use as a base to optimise your system.

If there are very many connections, “swapping problems” may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if
you have enough memory for all connections, of course.

Note that if you change an option to mysqld, it remains in effect only for that instance of
the server.

To see the effects of a parameter change, do something like this:

shell> mysqld -O key_buffer=32m --help

Make sure that the --help option is last; otherwise, the effect of any options listed after it
on the command-line will not be reflected in the output.

5.5.3 How Compiling and Linking Affects the Speed of MySQL

Most of the following tests are done on Linux with the MySQL benchmarks, but they should
give some indication for other operating systems and workloads.

You get the fastest executable when you link with -static.

On Linux, you will get the fastest code when compiling with pgcc and -O3. To compile
‘sql_yacc.cc’ with these options, you need about 200M memory because gcc/pgcc needs
a lot of memory to make all functions inline. You should also set CXX=gcc when configuring
MySQL to avoid inclusion of the libstdc++ library (it is not needed). Note that with some
versions of pgcc, the resulting code will only run on true Pentium processors, even if you

430 MySQL Technical Reference for Version 4.1.1-alpha

use the compiler option that you want the resulting code to be working on all x586 type
processors (like AMD).
By just using a better compiler and/or better compiler options you can get a 10-30% speed
increase in your application. This is particularly important if you compile the SQL server
yourself!
We have tested both the Cygnus CodeFusion and Fujitsu compilers, but when we tested
them, neither was sufficiently bug free to allow MySQL to be compiled with optimisations
on.
When you compile MySQL you should only include support for the character sets that you
are going to use. (Option --with-charset=xxx.) The standard MySQL binary distribu-
tions are compiled with support for all character sets.
Here is a list of some measurements that we have done:
• If you use pgcc and compile everything with -O6, the mysqld server is 1% faster than

with gcc 2.95.2.
• If you link dynamically (without -static), the result is 13% slower on Linux. Note

that you still can use a dynamic linked MySQL library. It is only the server that is
critical for performance.

• If you strip your mysqld binary with strip libexec/mysqld, the resulting binary can
be up to 4% faster.

• If you connect using TCP/IP rather than Unix sockets, the result is 7.5% slower on
the same computer. (If you are connection to localhost, MySQL will, by default, use
sockets.)

• If you connect using TCP/IP from another computer over a 100M Ethernet, things will
be 8-11% slower.

• When running our benchmark tests using secure connections (all data encrypted with
internal SSL support) things were 55% slower.

• If you compile with --with-debug=full, you will lose 20% for most queries. Some
queries may take substantially longer (for example, the MySQL benchmarks ran 35%
slower). If you use --with-debug, then you will only lose 15%. For a mysqld version
that has been compiled with --with-debug=full, you can disable memory checking
at runtime by starting it with the --skip-safemalloc option. The end result in this
case should be close to when configuring with --with-debug.

• On a Sun UltraSPARC-IIe, Forte 5.0 is 4% faster than gcc 3.2
• On a Sun UltraSPARC-IIe, Forte 5.0 is 4% faster in 32 bit mode than in 64 bit mode.
• Compiling with gcc 2.95.2 for UltraSPARC with the option -mcpu=v8

-Wa,-xarch=v8plusa gives 4% more performance.
• On Solaris 2.5.1, MIT-pthreads is 8-12% slower than Solaris native threads on a single

processor. With more load/CPUs the difference should get bigger.
• Running with --log-bin makes mysqld 1% slower.
• Compiling on Linux-x86 using gcc without frame pointers -fomit-frame-pointer or

-fomit-frame-pointer -ffixed-ebp makes mysqld 1-4% faster.

The MySQL-Linux distribution provided by MySQL AB used to be compiled with pgcc,
but we had to go back to regular gcc because of a bug in pgcc that would generate the

Chapter 5: MySQL Optimisation 431

code that does not run on AMD. We will continue using gcc until that bug is resolved. In
the meantime, if you have a non-AMD machine, you can get a faster binary by compiling
with pgcc. The standard MySQL Linux binary is linked statically to get it faster and more
portable.

5.5.4 How MySQL Uses Memory

The following list indicates some of the ways that the mysqld server uses memory. Where
applicable, the name of the server variable relevant to the memory use is given:

• The key buffer (variable key_buffer_size) is shared by all threads; other buffers used
by the server are allocated as needed. See Section 5.5.2 [Server parameters], page 427.

• Each connection uses some thread-specific space: A stack (default 64K, variable
thread_stack), a connection buffer (variable net_buffer_length), and a result
buffer (variable net_buffer_length). The connection buffer and result buffer are
dynamically enlarged up to max_allowed_packet when needed. When a query is
running, a copy of the current query string is also allocated.

• All threads share the same base memory.
• Only the compressed ISAM / MyISAM tables are memory mapped. This is because the

32-bit memory space of 4 GB is not large enough for most big tables. When systems
with a 64-bit address space become more common we may add general support for
memory mapping.

• Each request doing a sequential scan over a table allocates a read buffer (variable
record_buffer).

• When reading rows in ’random’ order (for example after a sort) a random-read buffer
is allocated to avoid disk seeks. (variable read_rnd_buffer_size).

• All joins are done in one pass, and most joins can be done without even using a
temporary table. Most temporary tables are memory-based (HEAP) tables. Temporary
tables with a big record length (calculated as the sum of all column lengths) or that
contain BLOB columns are stored on disk.
One problem in MySQL versions before Version 3.23.2 is that if a HEAP table exceeds
the size of tmp_table_size, you get the error The table tbl_name is full. In newer
versions this is handled by automatically changing the in-memory (HEAP) table to a disk-
based (MyISAM) table as necessary. To work around this problem, you can increase the
temporary table size by setting the tmp_table_size option to mysqld, or by setting
the SQL option BIG_TABLES in the client program. See Section 5.5.6 [SET Syntax],
page 432. In MySQL Version 3.20, the maximum size of the temporary table was
record_buffer*16, so if you are using this version, you have to increase the value of
record_buffer. You can also start mysqld with the --big-tables option to always
store temporary tables on disk. However, this will affect the speed of many complicated
queries.

• Most requests doing a sort allocates a sort buffer and 0-2 temporary files depending on
the result set size. See Section A.4.4 [Temporary files], page 861.

• Almost all parsing and calculating is done in a local memory store. No memory over-
head is needed for small items and the normal slow memory allocation and freeing is

432 MySQL Technical Reference for Version 4.1.1-alpha

avoided. Memory is allocated only for unexpectedly large strings (this is done with
malloc() and free()).

• Each index file is opened once and the datafile is opened once for each concurrently
running thread. For each concurrent thread, a table structure, column structures for
each column, and a buffer of size 3 * n is allocated (where n is the maximum row
length, not counting BLOB columns). A BLOB uses 5 to 8 bytes plus the length of the
BLOB data. The ISAM/MyISAM storage engines will use one extra row buffer for internal
usage.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger
BLOB values. If you scan a table, a buffer as large as the largest BLOB value is allocated.

• Storage engines for all in-use tables are saved in a cache and managed as a FIFO.
Normally the cache has 64 entries. If a table has been used by two running threads at
the same time, the cache contains two entries for the table. See Section 5.4.7 [Table
cache], page 425.

• A mysqladmin flush-tables command closes all tables that are not in use and marks
all in-use tables to be closed when the currently executing thread finishes. This will
effectively free most in-use memory.

ps and other system status programs may report that mysqld uses a lot of memory. This
may be caused by thread-stacks on different memory addresses. For example, the Solaris
version of ps counts the unused memory between stacks as used memory. You can verify
this by checking available swap with swap -s. We have tested mysqld with commercial
memory-leakage detectors, so there should be no memory leaks.

5.5.5 How MySQL uses DNS

When a new thread connects to mysqld, mysqld will spawn a new thread to handle the
request. This thread will first check if the hostname is in the hostname cache. If not the
thread will call gethostbyaddr_r() and gethostbyname_r() to resolve the hostname.
If the operating system doesn’t support the above thread-safe calls, the thread will lock a
mutex and call gethostbyaddr() and gethostbyname() instead. Note that in this case no
other thread can resolve other hostnames that is not in the hostname cache until the first
thread is ready.
You can disable DNS host lookup by starting mysqld with --skip-name-resolve. In this
case you can however only use IP names in the MySQL privilege tables.
If you have a very slow DNS and many hosts, you can get more performance by either
disabling DNS lookop with --skip-name-resolve or by increasing the HOST_CACHE_SIZE
define (default: 128) and recompile mysqld.
You can disable the hostname cache with --skip-host-cache. You can clear the hostname
cache with FLUSH HOSTS or mysqladmin flush-hosts.
If you don’t want to allow connections over TCP/IP, you can do this by starting mysqld
with --skip-networking.

5.5.6 SET Syntax

SET [GLOBAL | SESSION] sql_variable=expression,

Chapter 5: MySQL Optimisation 433

[[GLOBAL | SESSION] sql_variable=expression] ...

SET sets various options that affect the operation of the server or your client.
The following examples shows the different syntaxes one can use to set variables:
In old MySQL versions we allowed the use of the SET OPTION syntax, but this syntax is now
deprecated.
In MySQL 4.0.3 we added the GLOBAL and SESSION options and access to most important
startup variables.
LOCAL can be used as a synonym for SESSION.
If you set several variables on the same command line, the last used GLOBAL | SESSION
mode is used.

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@variable_name syntax is supported to make MySQL syntax compatible with some
other databases.
The different system variables one can set are described in the system variable section of
this manual. See Section 6.1.5 [System Variables], page 447.
If you are using SESSION (the default) the option you set remains in effect until the current
session ends, or until you set the option to a different value. If you use GLOBAL, which
require the SUPER privilege, the option is remembered and used for new connections until
the server restarts. If you want to make an option permanent, you should set it in one of
the MySQL option files. See Section 4.1.2 [Option files], page 203.
To avoid incorrect usage, MySQL will produce an error if you use SET GLOBAL with a variable
that can only be used with SET SESSION or if you are not using SET GLOBAL with a global
variable.
If you want to set a SESSION variable to the GLOBAL value or a GLOBAL value to the MySQL
default value, you can set it to DEFAULT.

SET max_join_size=DEFAULT;

This is identical to:
SET @@session.max_join_size=@@global.max_join_size;

If you want to restrict the maximum value a startup option can be set to with the SET
command, you can specify this by using the --maximum-variable-name command line
option. See Section 4.1.1 [Command-line options], page 195.
You can get a list of most variables with SHOW VARIABLES. See Section 4.6.8.4
[SHOW VARIABLES], page 290. You can get the value for a specific value with the
@@[global.|local.]variable_name syntax:

SHOW VARIABLES like "max_join_size";
SHOW GLOBAL VARIABLES like "max_join_size";
SELECT @@max_join_size, @@global.max_join_size;

Here follows a description of the variables that uses a the variables that uses a non-standard
SET syntax and some of the other variables. The other variable definitions can be found

434 MySQL Technical Reference for Version 4.1.1-alpha

in the system variable section, among the startup options or in the description of SHOW
VARIABLES. See Section 6.1.5 [System Variables], page 447. See Section 4.1.1 [Command-
line options], page 195. See Section 4.6.8.4 [SHOW VARIABLES], page 290.

CHARACTER SET character_set_name | DEFAULT
This maps all strings from and to the client with the given mapping. Currently
the only option for character_set_name is cp1251_koi8, but you can easily
add new mappings by editing the ‘sql/convert.cc’ file in the MySQL source
distribution. The default mapping can be restored by using a character_set_
name value of DEFAULT.
Note that the syntax for setting the CHARACTER SET option differs from the
syntax for setting the other options.

PASSWORD = PASSWORD(’some password’)
Set the password for the current user. Any non-anonymous user can change his
own password!

PASSWORD FOR user = PASSWORD(’some password’)
Set the password for a specific user on the current server host. Only a user
with access to the mysql database can do this. The user should be given in
user@hostname format, where user and hostname are exactly as they are listed
in the User and Host columns of the mysql.user table entry. For example, if
you had an entry with User and Host fields of ’bob’ and ’%.loc.gov’, you
would write:

mysql> SET PASSWORD FOR bob@"%.loc.gov" = PASSWORD("newpass");

Which is equivalent to:
mysql> UPDATE mysql.user SET password=PASSWORD("newpass")

-> WHERE user="bob" AND host="%.loc.gov";

SQL_AUTO_IS_NULL = 0 | 1
If set to 1 (default) then one can find the last inserted row for a table
with an AUTO_INCREMENT column with the following construct: WHERE
auto_increment_column IS NULL. This is used by some ODBC programs like
Access.

AUTOCOMMIT= 0 | 1
If set to 1 all changes to a table will be done at once. To start a multi-command
transaction, you have to use the BEGIN statement. See Section 6.7.1 [COMMIT],
page 579. If set to 0 you have to use COMMIT / ROLLBACK to accept/revoke that
transaction. See Section 6.7.1 [COMMIT], page 579. Note that when you
change from not AUTOCOMMIT mode to AUTOCOMMIT mode, MySQL will do an
automatic COMMIT on any open transactions.

BIG_TABLES = 0 | 1
If set to 1, all temporary tables are stored on disk rather than in memory.
This will be a little slower, but you will not get the error The table tbl_name
is full for big SELECT operations that require a large temporary table. The
default value for a new connection is 0 (that is, use in-memory temporary
tables). This option was before named SQL_BIG_TABLES. In MySQL 4.0 you

Chapter 5: MySQL Optimisation 435

should normally never need this flag as MySQL will automatically convert in
memory tables to disk based ones if need.

SQL_BIG_SELECTS = 0 | 1
If set to 0, MySQL will abort if a SELECT is attempted that probably will take a
very long time, which is defined as if the number of examined rows is probably
going to be bigger than MAX_JOIN_SIZE. This is useful when an inadvisable
WHERE statement has been issued. A big query is defined as a SELECT that
probably will have to examine more than max_join_size rows. The default
value for a new connection is 1 (which will allow all SELECT statements).

If you set MAX_JOIN_SIZE to another value than DEFAULT SQL_BIG_SELECTS
will be set to 0.

SQL_BUFFER_RESULT = 0 | 1
SQL_BUFFER_RESULT will force the result from SELECTs to be put into a tem-
porary table. This will help MySQL free the table locks early and will help in
cases where it takes a long time to send the result set to the client.

LOW_PRIORITY_UPDATES = 0 | 1
If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait
until there is no pending SELECT or LOCK TABLE READ on the affected table. This
option was before named SQL_LOW_PRIORITY_UPDATES.

MAX_JOIN_SIZE = value | DEFAULT
Don’t allow SELECTs that will probably need to examine more than value row
combinations or is likely to do more than value disk seeks. By setting this
value, you can catch SELECTs where keys are not used properly and that would
probably take a long time. Setting this to a value other than DEFAULT will reset
the SQL_BIG_SELECTS flag. If you set the SQL_BIG_SELECTS flag again, the
SQL_MAX_JOIN_SIZE variable will be ignored. You can set a default value for
this variable by starting mysqld with -O max_join_size=#. This option was
before named SQL_MAX_JOIN_SIZE.

Note that if the result of the query is already in the query cache, the above
check will not be made. Instead, MySQL will send the result to the client.
Since the query result is already computed and it will not burden the server to
send the result to the client.

QUERY_CACHE_TYPE = OFF | ON | DEMAND
QUERY_CACHE_TYPE = 0 | 1 | 2

Set query cache setting for this thread.

Option Description
0 or OFF Don’t cache or retrieve results.
1 or ON Cache all results except SELECT SQL_NO_CACHE ... queries.
2 or DEMAND Cache only SELECT SQL_CACHE ... queries.

SQL_SAFE_UPDATES = 0 | 1
If set to 1, MySQL will abort if an UPDATE or DELETE is attempted that doesn’t
use a key or LIMIT in the WHERE clause. This makes it possible to catch wrong
updates when creating SQL commands by hand.

436 MySQL Technical Reference for Version 4.1.1-alpha

SQL_SELECT_LIMIT = value | DEFAULT
The maximum number of records to return from SELECT statements. If a SELECT
has a LIMIT clause, the LIMIT takes precedence over the value of SQL_SELECT_
LIMIT. The default value for a new connection is “unlimited.” If you have
changed the limit, the default value can be restored by using a SQL_SELECT_
LIMIT value of DEFAULT.

SQL_LOG_OFF = 0 | 1
If set to 1, no logging is done to the standard log for this client, if the client
has the SUPER privilege.

SQL_LOG_BIN = 0 | 1
If set to 0, no logging is done to the binary log for the client, if the client has
the SUPER privilege.

SQL_LOG_UPDATE = 0 | 1
If set to 0, no logging is done to the update log for the client, if the client has
the SUPER privilege. This variable is deprecated starting from version 5.0.

SQL_QUOTE_SHOW_CREATE = 0 | 1
If set to 1, SHOW CREATE TABLE quotes table and column names. This is on
by default, for replication of tables with fancy column names to work. Sec-
tion 4.6.8.8 [SHOW CREATE TABLE], page 303.

TIMESTAMP = timestamp_value | DEFAULT
Set the time for this client. This is used to get the original timestamp if you
use the binary log to restore rows. timestamp_value should be a Unix epoch
timestamp, not a MySQL timestamp.

LAST_INSERT_ID = #
Set the value to be returned from LAST_INSERT_ID(). This is stored in the
binary log when you use LAST_INSERT_ID() in a command that updates a
table.

INSERT_ID = #
Set the value to be used by the following INSERT or ALTER TABLE command
when inserting an AUTO_INCREMENT value. This is mainly used with the binary
log.

DATE_FORMAT = format_str
Determines how the server converts DATE values to strings. This variable
is available as a global, local, or command-line option. format_str can be
specified conveniently using the GET_FORMAT() function. See See Section 6.3.4
[Date and time functions], page 499.

TIME_FORMAT = format_str
Determines how the server converts TIME values to strings. This variable
is available as a global, local, or command-line option. format_str can be
specified conveniently using the GET_FORMAT() function. See See Section 6.3.4
[Date and time functions], page 499.

Chapter 5: MySQL Optimisation 437

DATETIME_FORMAT = format_str
Determines how the server converts DATETIME values to strings. This variable
is available as a global, local, or command-line option. format_str can be
specified conveniently using the GET_FORMAT() function. See See Section 6.3.4
[Date and time functions], page 499.

5.6 Disk Issues

• As mentioned before, disks seeks are a big performance bottleneck. This problems gets
more and more apparent when the data starts to grow so large that effective caching
becomes impossible. For large databases, where you access data more or less randomly,
you can be sure that you will need at least one disk seek to read and a couple of disk
seeks to write things. To minimise this problem, use disks with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead)
by either symlink files to different disks or striping the disks.

Using symbolic links
This means that you symlink the index and/or datafile(s) from the normal
data directory to another disk (that may also be striped). This makes both
the seek and read times better (if the disks are not used for other things).
See Section 5.6.1 [Symbolic links], page 438.

Striping Striping means that you have many disks and put the first block on the
first disk, the second block on the second disk, and the Nth on the (N
mod number of disks) disk, and so on. This means if your normal data
size is less than the stripe size (or perfectly aligned) you will get much
better performance. Note that striping is very dependent on the OS and
stripe-size. So benchmark your application with different stripe-sizes. See
Section 5.1.5 [Custom Benchmarks], page 398.
Note that the speed difference for striping is very dependent on the pa-
rameters. Depending on how you set the striping parameters and number
of disks you may get a difference in orders of magnitude. Note that you
have to choose to optimise for random or sequential access.

• For reliability you may want to use RAID 0+1 (striping + mirroring), but in this case
you will need 2*N drives to hold N drives of data. This is probably the best option
if you have the money for it! You may, however, also have to invest in some volume-
management software to handle it efficiently.

• A good option is to have semi-important data (that can be regenerated) on RAID 0
disk while storing really important data (like host information and logs) on a RAID
0+1 or RAID N disk. RAID N can be a problem if you have many writes because of
the time to update the parity bits.

• You may also set the parameters for the filesystem that the database uses. One easy
change is to mount the filesystem with the noatime option. That makes it skip the
updating of the last access time in the inode and by this will avoid some disk seeks.

• On Linux, you can get much more performance (up to 100% under load is not uncom-
mon) by using hdparm to configure your disk’s interface! The following should be quite
good hdparm options for MySQL (and probably many other applications):

438 MySQL Technical Reference for Version 4.1.1-alpha

hdparm -m 16 -d 1

Note that the performance/reliability when using the above depends on your hardware,
so we strongly suggest that you test your system thoroughly after using hdparm! Please
consult the hdparm man page for more information! If hdparm is not used wisely,
filesystem corruption may result. Backup everything before experimenting!

• On many operating systems you can mount the disks with the -o async option to set
the filesystem to be updated asynchronously. If your computer is reasonably stable,
this should give you more performance without sacrificing too much reliability. (This
flag is on by default on Linux.)

• If you don’t need to know when a file was last accessed (which is not really useful on
a database server), you can mount your filesystems with the -o noatime option.

5.6.1 Using Symbolic Links

You can move tables and databases from the database directory to other locations and
replace them with symbolic links to the new locations. You might want to do this, for
example, to move a database to a file system with more free space or increase the speed of
your system by spreading your tables to different disk.

The recommended way to do this, is to just symlink databases to a different disk and only
symlink tables as a last resort.

5.6.1.1 Using Symbolic Links for Databases

The way to symlink a database is to first create a directory on some disk where you have
free space and then create a symlink to it from the MySQL database directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test mysqld-datadir

MySQL doesn’t support that you link one directory to multiple databases. Replacing a
database directory with a symbolic link will work fine as long as you don’t make a symbolic
link between databases. Suppose you have a database db1 under the MySQL data directory,
and then make a symlink db2 that points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

Now, for any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one
thread updates db1.tbl_a and another thread updates db2.tbl_a, there will be problems.

If you really need this, you must change the following code in ‘mysys/mf_format.c’:

if (flag & 32 || (!lstat(to,&stat_buff) && S_ISLNK(stat_buff.st_mode)))

to

if (1)

On Windows you can use internal symbolic links to directories by compiling MySQL with
-DUSE_SYMDIR. This allows you to put different databases on different disks. See Sec-
tion 2.6.1.2 [Windows symbolic links], page 122.

Chapter 5: MySQL Optimisation 439

5.6.1.2 Using Symbolic Links for Tables

Before MySQL 4.0 you should not symlink tables, if you are not very careful with them. The
problem is that if you run ALTER TABLE, REPAIR TABLE or OPTIMIZE TABLE on a symlinked
table, the symlinks will be removed and replaced by the original files. This happens because
the above command works by creating a temporary file in the database directory and when
the command is complete, replace the original file with the temporary file.

You should not symlink tables on systems that don’t have a fully working realpath() call.
(At least Linux and Solaris support realpath())

In MySQL 4.0 symlinks are fully supported only for MyISAM tables. For other table types
you will probably get strange problems when doing any of the above mentioned commands.

The handling of symbolic links in MySQL 4.0 works the following way (this is mostly
relevant only for MyISAM tables).

• In the data directory you will always have the table definition file and the data and
index files.

• You can symlink the index file and the datafile to different directories independently
of the other.

• The symlinking can be done from the operating system (if mysqld is not running)
or with the INDEX/DATA DIRECTORY="path-to-dir" command in CREATE TABLE. See
Section 6.5.3 [CREATE TABLE], page 564.

• myisamchk will not replace a symlink with the data or index file but work directly on
the file the symlink points to. Any temporary files will be created in the same directory
where the data or index file is located.

• When you drop a table that is using symlinks, both the symlink and the file the symlink
points to are dropped. This is a good reason to why you should not run mysqld as
root or allow persons to have write access to the MySQL database directories.

• If you rename a table with ALTER TABLE RENAME and you don’t move the table to
another database, the symlinks in the database directory will be renamed to the new
names and the data and index files will be renamed accordingly.

• If you use ALTER TABLE RENAME to move a table to another database, the table will be
moved to the other database directory and the old symlinks and the files they pointed
to will be deleted. (In other words, the new table will not be symlinked.)

• If you are not using symlinks, you should use the --skip-symlink option to mysqld
to ensure that no one can drop or rename a file outside of the mysqld data directory.

Things that are not yet supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.
• CREATE TABLE doesn’t report if the table has symbolic links.
• mysqldump doesn’t include the symbolic link information in the output.
• BACKUP TABLE and RESTORE TABLE don’t respect symbolic links.
• The frm file must never be a symbolic link (as said previously, only the data and index

files can be symbolic links). Doing this (for example to make synonyms), will produce
wrong results. Suppose you have a database db1 under the MySQL data directory, a

440 MySQL Technical Reference for Version 4.1.1-alpha

table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that
points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Now if one thread reads db1.tbl1 and another thread updates db1.tbl2, there will be
problems: the query cache will be fooled (it will believe tbl1 has not been updated so
will return out-of-date results), the ALTER commands on tbl2 will also fail.

Chapter 6: MySQL Language Reference 441

6 MySQL Language Reference

MySQL has a very complex, but intuitive and easy to learn SQL interface. This chapter
describes the various commands, types, and functions you will need to know in order to use
MySQL efficiently and effectively. This chapter also serves as a reference to all functionality
included in MySQL. In order to use this chapter effectively, you may find it useful to refer
to the various indexes.

6.1 Language Structure

6.1.1 Literals: How to Write Strings and Numbers

This section describes the various ways to write strings and numbers in MySQL. It also
covers the various nuances and “gotchas” that you may run into when dealing with these
basic types in MySQL.

6.1.1.1 Strings

A string is a sequence of characters, surrounded by either single quote (‘’’) or double quote
(‘"’) characters (only the single quote if you run in ANSI mode). Examples:

’a string’
"another string"

Within a string, certain sequences have special meaning. Each of these sequences begins
with a backslash (‘\’), known as the escape character. MySQL recognises the following
escape sequences:

\0 An ASCII 0 (NUL) character.

\’ A single quote (‘’’) character.

\" A double quote (‘"’) character.

\b A backspace character.

\n A newline character.

\r A carriage return character.

\t A tab character.

\z ASCII(26) (Control-Z). This character can be encoded to allow you to work
around the problem that ASCII(26) stands for END-OF-FILE on Windows.
(ASCII(26) will cause problems if you try to use mysql database < filename.)

\\ A backslash (‘\’) character.

\% A ‘%’ character. This is used to search for literal instances of ‘%’ in contexts
where ‘%’ would otherwise be interpreted as a wildcard character. See Sec-
tion 6.3.2.1 [String comparison functions], page 489.

442 MySQL Technical Reference for Version 4.1.1-alpha

_ A ‘_’ character. This is used to search for literal instances of ‘_’ in contexts
where ‘_’ would otherwise be interpreted as a wildcard character. See Sec-
tion 6.3.2.1 [String comparison functions], page 489.

Note that if you use ‘\%’ or ‘_’ in some string contexts, these will return the strings ‘\%’
and ‘_’ and not ‘%’ and ‘_’.

There are several ways to include quotes within a string:

• A ‘’’ inside a string quoted with ‘’’ may be written as ‘’’’.

• A ‘"’ inside a string quoted with ‘"’ may be written as ‘""’.

• You can precede the quote character with an escape character (‘\’).

• A ‘’’ inside a string quoted with ‘"’ needs no special treatment and need not be doubled
or escaped. In the same way, ‘"’ inside a string quoted with ‘’’ needs no special
treatment.

The SELECT statements shown here demonstrate how quoting and escaping work:

mysql> SELECT ’hello’, ’"hello"’, ’""hello""’, ’hel’’lo’, ’\’hello’;
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel’lo | ’hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "’hello’", "’’hello’’", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | ’hello’ | ’’hello’’ | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "This\nIs\nFour\nlines";
+--------------------+
| This
Is
Four
lines |
+--------------------+

If you want to insert binary data into a string column (such as a BLOB), the following
characters must be represented by escape sequences:

NUL ASCII 0. You should represent this by ‘\0’ (a backslash and an ASCII ‘0’
character).

\ ASCII 92, backslash. Represent this by ‘\\’.

’ ASCII 39, single quote. Represent this by ‘\’’.

" ASCII 34, double quote. Represent this by ‘\"’.

If you write C code, you can use the C API function mysql_real_escape_string() to
escape characters for the INSERT statement. See Section 11.1.2 [C API function overview],
page 718. In Perl, you can use the quote method of the DBI package to convert special
characters to the proper escape sequences. See Section 11.5.2 [Perl DBI Class], page 815.

Chapter 6: MySQL Language Reference 443

You should use an escape function on any string that might contain any of the special
characters listed above!

Alternatively, many MySQL APIs provide some sort of placeholder capability that allows
you to insert special markers into a query string, and then bind data values to them when
you issue the query. In this case, the API takes case of escaping special characters in the
values for you automatically.

6.1.1.2 Numbers

Integers are represented as a sequence of digits. Floats use ‘.’ as a decimal separator. Either
type of number may be preceded by ‘-’ to indicate a negative value.

Examples of valid integers:

1221
0
-32

Examples of valid floating-point numbers:

294.42
-32032.6809e+10
148.00

An integer may be used in a floating-point context; it is interpreted as the equivalent
floating-point number.

From version 4.1.0, the constant TRUE evaluates to 1 and the constant FALSE evaluates to
0.

6.1.1.3 Hexadecimal Values

MySQL supports hexadecimal values. In numeric context these act like an integer (64-bit
precision). In string context these act like a binary string where each pair of hex digits is
converted to a character:

mysql> SELECT x’4D7953514C’;
-> MySQL

mysql> SELECT 0xa+0;
-> 10

mysql> SELECT 0x5061756c;
-> Paul

In MySQL 4.1 (and in MySQL 4.0 when using the --new option) the default type of of a
hexadecimal value is a string. If you want to be sure that the string is threated as a number,
you can use CAST(... AS UNSIGNED) on the hexadecimal value.

The x’hexstring’ syntax (new in 4.0) is based on standard SQL and the 0x syntax is
based on ODBC. Hexadecimal strings are often used by ODBC to supply values for BLOB
columns. You can convert a string or a number to string in hexadecimal format with the
HEX() function.

444 MySQL Technical Reference for Version 4.1.1-alpha

6.1.1.4 NULL Values

The NULL value means “no data” and is different from values such as 0 for numeric types
or the empty string for string types. See Section A.5.3 [Problems with NULL], page 864.

NULL may be represented by \N when using the text file import or export formats (LOAD
DATA INFILE, SELECT ... INTO OUTFILE). See Section 6.4.8 [LOAD DATA], page 555.

6.1.2 Database, Table, Index, Column, and Alias Names

Database, table, index, column, and alias names all follow the same rules in MySQL.

Note that the rules changed starting with MySQL Version 3.23.6 when we introduced quot-
ing of identifiers (database, table, and column names) with ‘‘’. ‘"’ will also work to quote
identifiers if you run in ANSI mode. See Section 1.7.2 [ANSI mode], page 33.

Identifier Max
length
(bytes)

Allowed characters

Database 64 Any character that is allowed in a directory name except ‘/’,
‘\’ or ‘.’.

Table 64 Any character that is allowed in a file name, except ‘/’ or ‘.’.
Column 64 All characters.
Alias 255 All characters.

Note that in addition to the above, you can’t have ASCII(0) or ASCII(255) or the quoting
character in an identifier.

You may, however, enclose table names with quoting characters, if you are running MySQL
in MAXDB or ANSI_QUOTES mode:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax. (...)
mysql> SET SQL_MODE="ANSI_QUOTES";
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

See Section 4.1.1 [Command-line options], page 195.

Note that if the identifier is a restricted word or contains special characters you must always
quote it with a ‘ (backtick) when you use it:

mysql> SELECT * FROM ‘select‘ WHERE ‘select‘.id > 100;

See Section 6.1.7 [Reserved words], page 451.

In MySQL versions prior to 3.23.6, the name rules are as follows:

• A name may consist of alphanumeric characters from the current character set and also
‘_’ and ‘$’. The default character set is ISO-8859-1 Latin1; this may be changed with
the --default-character-set option to mysqld. See Section 4.7.1 [Character sets],
page 306.

• A name may start with any character that is legal in a name. In particular, a name
may start with a digit (this differs from many other database systems!). However, a
name cannot consist only of digits.

Chapter 6: MySQL Language Reference 445

• You cannot use the ‘.’ character in names because it is used to extend the format by
which you can refer to columns (see immediately below).

It is recommended that you do not use names like 1e, because an expression like 1e+1 is
ambiguous. It may be interpreted as the expression 1e + 1 or as the number 1e+1.

In MySQL you can refer to a column using any of the following forms:

Column reference Meaning
col_name Column col_name from whichever table used in the query

contains a column of that name.
tbl_name.col_name Column col_name from table tbl_name of the current

database.
db_name.tbl_name.col_
name

Column col_name from table tbl_name of the database db_
name. This form is available in MySQL Version 3.22 or later.

‘column_name‘ A column that is a keyword or contains special characters.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a
statement unless the reference would be ambiguous. For example, suppose tables t1 and
t2 each contain a column c, and you retrieve c in a SELECT statement that uses both t1
and t2. In this case, c is ambiguous because it is not unique among the tables used in the
statement, so you must indicate which table you mean by writing t1.c or t2.c. Similarly,
if you are retrieving from a table t in database db1 and from a table t in database db2, you
must refer to columns in those tables as db1.t.col_name and db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the current database. This syntax is
accepted for ODBC compatibility, because some ODBC programs prefix table names with
a ‘.’ character.

6.1.3 Case Sensitivity in Names

In MySQL, databases and tables correspond to directories and files within those directo-
ries. Consequently, the case-sensitivity of the underlying operating system determines the
case-sensitivity of database and table names. This means database and table names are
case-insensitive in Windows, and case-sensitive in most varieties of Unix. One prominent
exception here is Mac OS X, when the default HFS+ file system is being used. However
Mac OS X also supports UFS volumes, those are case sensitive on Mac OS X just like they
are on any Unix. See Section 1.7.3 [Extensions to ANSI], page 34.

Note: although database and table names are case-insensitive for Windows, you should not
refer to a given database or table using different cases within the same query. The following
query would not work because it refers to a table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column names and column aliases are case-insensitive in all cases.

Aliases on tables are case-sensitive. The following query would not work because it refers
to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
-> WHERE a.col_name = 1 OR A.col_name = 2;

If you have trouble remembering the lettercase for database and table names, adopt a
consistent convention, such as always creating databases and tables using lowercase names.

446 MySQL Technical Reference for Version 4.1.1-alpha

One way to avoid this problem is to start mysqld with -O lower_case_table_names=1. By
default this option is 1 on Windows and 0 on Unix.

If lower_case_table_names is 1 MySQL will convert all table names to lowercase on storage
and lookup. (From version 4.0.2, this option also applies to database names. From 4.1.1
this also applies for table alias).

Note that if you change this option, you need to first convert your old table names to lower
case before starting mysqld.

If you move MyISAM files from a Windows to a Unix disk, you may in some cases
need to use the ‘mysql_fix_extensions’ tool to fix-up the case of the file extensions
in each specified database directory (lowercase ‘.frm’, uppercase ‘.MYI’ and ‘.MYD’).
‘mysql_fix_extensions’ can be found in the ‘scripts’ subdirectory.

6.1.4 User Variables

MySQL supports connection-specific user variables with the @variablename syntax. A
variable name may consist of alphanumeric characters from the current character set and
also ‘_’, ‘$’, and ‘.’ . The default character set is ISO-8859-1 Latin1; this may be changed
with the --default-character-set option to mysqld. See Section 4.7.1 [Character sets],
page 306. User variable names are case insensitive in versions >= 5.0, case sensitive in
versions < 5.0.

Variables don’t have to be initialised. They contain NULL by default and can store an
integer, real, or string value. All variables for a thread are automatically freed when the
thread exits.

You can set a variable with the SET syntax:

SET @variable= { integer expression | real expression | string expression }
[,@variable= ...].

You can also assign a value to a variable in statements other than SET. However, in this
case the assignment operator is := rather than =, because = is reserved for comparisons in
non-SET statements:

mysql> SET @t1=0, @t2=0, @t3=0;
mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;
+----------------------+------+------+------+
| @t1:=(@t2:=1)+@t3:=4 | @t1 | @t2 | @t3 |
+----------------------+------+------+------+
| 5 | 5 | 1 | 4 |
+----------------------+------+------+------+

User variables may be used where expressions are allowed. Note that this does not currently
include contexts where a number is explicitly required, such as in the LIMIT clause of a
SELECT statement, or the IGNORE number LINES clause of a LOAD DATA statement.

Note: in a SELECT statement, each expression is evaluated only when it’s sent to the client.
This means that in the HAVING, GROUP BY, or ORDER BY clause, you can’t refer to an ex-
pression that involves variables that are set in the SELECT part. For example, the following
statement will NOT work as expected:

Chapter 6: MySQL Language Reference 447

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM table_name HAVING b=5;

The reason is that @aa will not contain the value of the current row, but the value of id for
the previous accepted row.
The general rule is to never assign and use the same variable in the same statement.
Another issue with setting a variable and using it in the same statement is that the default
result type of a variable is based on the type of the variable at the start of the statement.
(A not assigned variable is assumed to have value NULL and to be of type STRING). The
following example illustrates this:

mysql> SET @a="test";
mysql> SELECT @a,(@a:=20) FROM table_name;

In this case MySQL will report to the client that column 1 is a string and convert all accesses
of @a to strings, even if @a will be set to a number for the second row. After the statement
is executed @a will be regarded as a number.
If you have any problems with this, either avoid to set and use the same variable in the
same statement or set the variable to 0, 0.0 or "" before you use it.

6.1.5 System Variables

Starting from MySQL 4.0.3 we provide better access to a lot of system and connection
variables. One can change most of them without having to take down the server.
There are two kind of system variables: Thread-specific (or connection-specific) variables
that are unique to the current connection and global variables that are used to configure
global events. Global variables also are used to set up the initial values of the corresponding
thread-specific variables for new connections.
When mysqld starts, all global variables are initialised from command line arguments and
option files. You can change the value with the SET GLOBAL command. When a new thread
is created, the thread-specific variables are initialised from the global variables and they
will not change even if you issue a new SET GLOBAL command.
To set the value for a GLOBAL variable, you should use one of the following syntaxes: (Here
we use sort_buffer_size as an example variable)

SET GLOBAL sort_buffer_size=value;
SET @@global.sort_buffer_size=value;

To set the value for a SESSION variable, you can use one of the following syntaxes:
SET SESSION sort_buffer_size=value;
SET @@session.sort_buffer_size=value;
SET sort_buffer_size=value;

If you don’t specify GLOBAL or SESSION then SESSION is used. See Section 5.5.6 [SET
OPTION], page 432.
LOCAL is a synonym for SESSION.
To retrieve the value for a GLOBAL variable you can use one of the following commands:

SELECT @@global.sort_buffer_size;
SHOW GLOBAL VARIABLES like ’sort_buffer_size’;

To retrieve the value for a SESSION variable you can use one of the following commands:

448 MySQL Technical Reference for Version 4.1.1-alpha

SELECT @@session.sort_buffer_size;
SHOW SESSION VARIABLES like ’sort_buffer_size’;

When you retrieve a variable value with the @@variable_name syntax and you don’t specify
GLOBAL or SESSION then MySQL will return the thread-specific (SESSION) value if it exists.
If not, MySQL will return the global value.
The reason for requiring GLOBAL for setting GLOBAL only variables but not for retrieving
them is to ensure that we don’t later run into problems if we later would introduce a
thread-specific variable with the same name or remove a thread-specific variable. In this
case, you could accidentally change the state for the server as a whole, rather than just for
your own connection.
The following is a full list of all variables that you change and retrieve and if you can use
GLOBAL or SESSION with them.
Variable name Value type Type
autocommit bool SESSION
big tables bool SESSION
binlog cache size num GLOBAL
bulk insert buffer size num GLOBAL |

SESSION
concurrent insert bool GLOBAL
connect timeout num GLOBAL
convert character set string SESSION
delay key write OFF | ON | ALL GLOBAL
delayed insert limit num GLOBAL
delayed insert timeout num GLOBAL
delayed queue size num GLOBAL
error count num SESSION
flush bool GLOBAL
flush time num GLOBAL
foreign key checks bool SESSION
identity num SESSION
insert id bool SESSION
interactive timeout num GLOBAL |

SESSION
join buffer size num GLOBAL |

SESSION
key buffer size num GLOBAL
last insert id bool SESSION
local infile bool GLOBAL
log warnings bool GLOBAL
long query time num GLOBAL |

SESSION
low priority updates bool GLOBAL |

SESSION
max allowed packet num GLOBAL |

SESSION
max binlog cache size num GLOBAL
max binlog size num GLOBAL
max connect errors num GLOBAL

Chapter 6: MySQL Language Reference 449

max connections num GLOBAL
max error count num GLOBAL |

SESSION
max delayed threads num GLOBAL
max heap table size num GLOBAL |

SESSION
max join size num GLOBAL |

SESSION
max relay log size num GLOBAL
max sort length num GLOBAL |

SESSION
max tmp tables num GLOBAL
max user connections num GLOBAL
max write lock count num GLOBAL
myisam max extra sort file size num GLOBAL |

SESSION
myisam repair threads num GLOBAL |

SESSION
myisam max sort file size num GLOBAL |

SESSION
myisam sort buffer size num GLOBAL |

SESSION
net buffer length num GLOBAL |

SESSION
net read timeout num GLOBAL |

SESSION
net retry count num GLOBAL |

SESSION
net write timeout num GLOBAL |

SESSION
query cache limit num GLOBAL
query cache size num GLOBAL
query cache type enum GLOBAL
read buffer size num GLOBAL |

SESSION
read rnd buffer size num GLOBAL |

SESSION
rpl recovery rank num GLOBAL
safe show database bool GLOBAL
server id num GLOBAL
slave compressed protocol bool GLOBAL
slave net timeout num GLOBAL
slow launch time num GLOBAL
sort buffer size num GLOBAL |

SESSION
sql auto is null bool SESSION
sql big selects bool SESSION
sql big tables bool SESSION
sql buffer result bool SESSION
sql log binlog bool SESSION
sql log off bool SESSION
sql log update bool SESSION

450 MySQL Technical Reference for Version 4.1.1-alpha

sql low priority updates bool GLOBAL |
SESSION

sql max join size num GLOBAL |
SESSION

sql quote show create bool SESSION
sql safe updates bool SESSION
sql select limit bool SESSION
sql slave skip counter num GLOBAL
sql warnings bool SESSION
table cache num GLOBAL
table type enum GLOBAL |

SESSION
thread cache size num GLOBAL
timestamp bool SESSION
tmp table size enum GLOBAL |

SESSION
tx isolation enum GLOBAL |

SESSION
wait timeout num GLOBAL |

SESSION
warning count num SESSION
unique checks bool SESSION
Variables that are marked with num can be given a numerical value. Variables that are
marked with bool can be set to 0, 1, ON or OFF. Variables that are of type enum should
normally be set to one of the available values for the variable, but can also be set to the
number that correspond to the enum value. (The first enum value is 0).
Here is a description of some of the variables:
Variable Description
identity Alias for last insert id (Sybase compatiblity)
sql low priority updates Alias for low priority updates
sql max join size Alias for max join size
version Alias for VERSION() (Sybase (?) compatability)
A description of the other variable definitions can be found in the startup options section,
the description of SHOW VARIABLES and in the SET section. See Section 4.1.1 [Command-line
options], page 195. See Section 4.6.8.4 [SHOW VARIABLES], page 290. See Section 5.5.6
[SET OPTION], page 432.

6.1.6 Comment Syntax

The MySQL server supports the # to end of line, -- to end of line and /* in-line or
multiple-line */ comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment

Chapter 6: MySQL Language Reference 451

*/
1;

Note that the -- (double-dash) comment style requires you to have at least one space after
the second dash!

Although the server understands the comment syntax just described, there are some limi-
tations on the way that the mysql client parses /* ... */ comments:

• Single-quote and double-quote characters are taken to indicate the beginning of a
quoted string, even within a comment. If the quote is not matched by a second quote
within the comment, the parser doesn’t realise the comment has ended. If you are
running mysql interactively, you can tell that it has gotten confused like this because
the prompt changes from mysql> to ’> or ">.

• A semicolon is taken to indicate the end of the current SQL statement and anything
following it to indicate the beginning of the next statement.

These limitations apply both when you run mysql interactively and when you put commands
in a file and tell mysql to read its input from that file with mysql < some-file.

MySQL supports the ‘--’ SQL-99 comment style only if the second dash is followed by a
space. See Section 1.7.4.7 [ANSI diff comments], page 42.

6.1.7 Treatment of Reserved Words in MySQL

A common problem stems from trying to create a table with column names that use the
names of datatypes or functions built into MySQL, such as TIMESTAMP or GROUP. You’re
allowed to do it (for example, ABS is allowed as a column name). However, by default, in
function invocations no whitespace is allowed between the function name and the following
‘(’ character, so that a function call can be distinguished from a reference to a column
name.

If you start the server with the --ansi or --sql-mode=IGNORE_SPACE option, the server
allows function invocations to have whitespace between a function name and the following ‘(’
character. This causes function names to be treated as reserved words; as a result, column
names that are the same as function names must be quoted as described in Section 6.1.2
[Legal names], page 444.

The following words are explicitly reserved in MySQL. Most of them are forbidden by SQL-
92 as column and/or table names (for example, GROUP). A few are reserved because MySQL
needs them and is (currently) using a yacc parser:

Word Word Word
ADD ALL ALTER
ANALYZE AND AS
ASC ASENSITIVE AUTO_INCREMENT
BDB BEFORE BERKELEYDB
BETWEEN BIGINT BINARY
BLOB BOTH BTREE
BY CALL CASCADE
CASE CHANGE CHAR
CHARACTER CHECK COLLATE

452 MySQL Technical Reference for Version 4.1.1-alpha

COLUMN COLUMNS CONNECTION
CONSTRAINT CREATE CROSS
CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP
CURSOR DATABASE DATABASES
DAY_HOUR DAY_MICROSECOND DAY_MINUTE
DAY_SECOND DEC DECIMAL
DECLARE DEFAULT DELAYED
DELETE DESC DESCRIBE
DISTINCT DISTINCTROW DIV
DOUBLE DROP ELSE
ELSEIF ENCLOSED ERRORS
ESCAPED EXISTS EXPLAIN
FALSE FIELDS FLOAT
FOR FORCE FOREIGN
FROM FULLTEXT GRANT
GROUP HASH HAVING
HIGH_PRIORITY HOUR_MICROSECOND HOUR_MINUTE
HOUR_SECOND IF IGNORE
IN INDEX INFILE
INNER INNODB INOUT
INSENSITIVE INSERT INT
INTEGER INTERVAL INTO
IO_THREAD IS ITERATE
JOIN KEY KEYS
KILL LEADING LEAVE
LEFT LIKE LIMIT
LINES LOAD LOCALTIME
LOCALTIMESTAMP LOCK LONG
LONGBLOB LONGTEXT LOOP
LOW_PRIORITY MASTER_SERVER_ID MATCH
MEDIUMBLOB MEDIUMINT MEDIUMTEXT
MIDDLEINT MINUTE_MICROSECOND MINUTE_SECOND
MOD MRG_MYISAM NATURAL
NOT NO_WRITE_TO_BINLOG NULL
NUMERIC ON OPTIMIZE
OPTION OPTIONALLY OR
ORDER OUT OUTER
OUTFILE PRECISION PRIMARY
PRIVILEGES PROCEDURE PURGE
READ REAL REFERENCES
REGEXP RENAME REPEAT
REPLACE REQUIRE RESTRICT
RETURN RETURNS REVOKE
RIGHT RLIKE RTREE
SECOND_MICROSECOND SELECT SENSITIVE
SEPARATOR SET SHOW
SMALLINT SOME SONAME

Chapter 6: MySQL Language Reference 453

SPATIAL SPECIFIC SQL_BIG_RESULT
SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT SSL
STARTING STRAIGHT_JOIN STRIPED
TABLE TABLES TERMINATED
THEN TINYBLOB TINYINT
TINYTEXT TO TRAILING
TRUE TYPES UNION
UNIQUE UNLOCK UNSIGNED
UNTIL UPDATE USAGE
USE USER_RESOURCES USING
UTC_DATE UTC_TIME UTC_TIMESTAMP
VALUES VARBINARY VARCHAR
VARCHARACTER VARYING WARNINGS
WHEN WHERE WHILE
WITH WRITE XOR
YEAR_MONTH ZEROFILL

The following symbols (from the table above) are disallowed by SQL-99 but allowed by
MySQL as column/table names. This is because some of these names are very natural
names and a lot of people have already used them.
• ACTION

• BIT

• DATE

• ENUM

• NO

• TEXT

• TIME

• TIMESTAMP

6.2 Column Types

MySQL supports a number of column types, which may be grouped into three categories:
numeric types, date and time types, and string (character) types. This section first gives
an overview of the types available and summarises the storage requirements for each col-
umn type, then provides a more detailed description of the properties of the types in each
category. The overview is intentionally brief. The more detailed descriptions should be
consulted for additional information about particular column types, such as the allowable
formats in which you can specify values.
The column types supported by MySQL are listed below. The following code letters are
used in the descriptions:

M Indicates the maximum display size. The maximum legal display size is 255.

D Applies to floating-point types and indicates the number of digits following the
decimal point. The maximum possible value is 30, but should be no greater
than M-2.

454 MySQL Technical Reference for Version 4.1.1-alpha

Square brackets (‘[’ and ‘]’) indicate parts of type specifiers that are optional.

Note that if you specify ZEROFILL for a column, MySQL will automatically add the
UNSIGNED attribute to the column.

Warning: you should be aware that when you use subtraction between integer values where
one is of type UNSIGNED, the result will be unsigned! See Section 6.3.5 [Cast Functions],
page 513.

TINYINT[(M)] [UNSIGNED] [ZEROFILL]
A very small integer. The signed range is -128 to 127. The unsigned range is
0 to 255.

BIT
BOOL
BOOLEAN These are synonyms for TINYINT(1). The BOOLEAN synonym was added in

version 4.1.0
Full boolean type handling will be introduced in accordance with SQL-99.

SMALLINT[(M)] [UNSIGNED] [ZEROFILL]
A small integer. The signed range is -32768 to 32767. The unsigned range is
0 to 65535.

MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]
A medium-size integer. The signed range is -8388608 to 8388607. The un-
signed range is 0 to 16777215.

INT[(M)] [UNSIGNED] [ZEROFILL]
A normal-size integer. The signed range is -2147483648 to 2147483647. The
unsigned range is 0 to 4294967295.

INTEGER[(M)] [UNSIGNED] [ZEROFILL]
This is a synonym for INT.

BIGINT[(M)] [UNSIGNED] [ZEROFILL]
A large integer. The signed range is -9223372036854775808 to
9223372036854775807. The unsigned range is 0 to 18446744073709551615.
Some things you should be aware of with respect to BIGINT columns:
• All arithmetic is done using signed BIGINT or DOUBLE values, so you

shouldn’t use unsigned big integers larger than 9223372036854775807 (63
bits) except with bit functions! If you do that, some of the last digits in
the result may be wrong because of rounding errors when converting the
BIGINT to a DOUBLE.
MySQL 4.0 can handle BIGINT in the following cases:
• Use integers to store big unsigned values in a BIGINT column.
• In MIN(big_int_column) and MAX(big_int_column).
• When using operators (+, -, *, etc.) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it
as a string. In this case, MySQL will perform a string-to-number conversion
that involves no intermediate double representation.

Chapter 6: MySQL Language Reference 455

• ‘-’, ‘+’, and ‘*’ will use BIGINT arithmetic when both arguments are integer
values! This means that if you multiply two big integers (or results from
functions that return integers) you may get unexpected results when the
result is larger than 9223372036854775807.

FLOAT(precision) [UNSIGNED] [ZEROFILL]
A floating-point number. precision can be <=24 for a single-precision floating-
point number and between 25 and 53 for a double-precision floating-point num-
ber. These types are like the FLOAT and DOUBLE types described immediately
below. FLOAT(X) has the same range as the corresponding FLOAT and DOUBLE
types, but the display size and number of decimals are undefined.

In MySQL Version 3.23, this is a true floating-point value. In earlier MySQL
versions, FLOAT(precision) always has 2 decimals.

Note that using FLOAT may give you some unexpected problems as all calcula-
tions in MySQL are done with double precision. See Section A.5.6 [No matching
rows], page 865.

This syntax is provided for ODBC compatibility.

FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]
A small (single-precision) floating-point number. Allowable values are
-3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38 to
3.402823466E+38. If UNSIGNED is specified, negative values are disallowed.
The M is the display width and D is the number of decimals. FLOAT
without arguments or FLOAT(X) where X <= 24 stands for a single-precision
floating-point number.

DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]
A normal-size (double-precision) floating-point number. Allowable values
are -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. If UNSIGNED is
specified, negative values are disallowed. The M is the display width and D is
the number of decimals. DOUBLE without arguments or FLOAT(X) where 25 <=
X <= 53 stands for a double-precision floating-point number.

DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL]
REAL[(M,D)] [UNSIGNED] [ZEROFILL]

These are synonyms for DOUBLE.

DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]
An unpacked floating-point number. Behaves like a CHAR column: “unpacked”
means the number is stored as a string, using one character for each digit of
the value. The decimal point and, for negative numbers, the ‘-’ sign, are not
counted in M (but space for these is reserved). If D is 0, values will have no
decimal point or fractional part. The maximum range of DECIMAL values is the
same as for DOUBLE, but the actual range for a given DECIMAL column may be
constrained by the choice of M and D. If UNSIGNED is specified, negative values
are disallowed.

If D is omitted, the default is 0. If M is omitted, the default is 10.

456 MySQL Technical Reference for Version 4.1.1-alpha

Prior to MySQL Version 3.23, the M argument must include the space needed
for the sign and the decimal point.

DEC[(M[,D])] [UNSIGNED] [ZEROFILL]
NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL]
FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These are synonyms for DECIMAL.
The FIXED alias was added in version 4.1.0 for compatibility with other servers.

DATE

A date. The supported range is ’1000-01-01’ to ’9999-12-31’. MySQL
displays DATE values in ’YYYY-MM-DD’ format, but allows you to assign values
to DATE columns using either strings or numbers. See Section 6.2.2.2 [DATE-
TIME], page 462.

DATETIME

A date and time combination. The supported range is ’1000-01-01 00:00:00’
to ’9999-12-31 23:59:59’. MySQL displays DATETIME values in ’YYYY-MM-DD
HH:MM:SS’ format, but allows you to assign values to DATETIME columns using
either strings or numbers. See Section 6.2.2.2 [DATETIME], page 462.

TIMESTAMP[(M)]
A timestamp. The range is ’1970-01-01 00:00:00’ to sometime in the year
2037.
In MySQL 4.0 and earlier, TIMESTAMP values are displayed in YYYYMMDDHHMMSS,
YYMMDDHHMMSS, YYYYMMDD, or YYMMDD format, depending on whether M is 14 (or
missing), 12, 8, or 6, but allows you to assign values to TIMESTAMP columns
using either strings or numbers.
From MySQL 4.1, TIMESTAMP is returned as a string with the format ’YYYY-
MM-DD HH:MM:SS’. If you want to have this as a number you should add +0 to
the timestamp column. Different timestamp lengths are not supported. From
version 4.0.12, the --new option can be used to make the server behave as in
version 4.1.
A TIMESTAMP column is useful for recording the date and time of an INSERT or
UPDATE operation because it is automatically set to the date and time of the
most recent operation if you don’t give it a value yourself. You can also set it
to the current date and time by assigning it a NULL value. See Section 6.2.2
[Date and time types], page 460.
The M argument affects only how a TIMESTAMP column is displayed; its values
always are stored using 4 bytes each.
Note that TIMESTAMP(M) columns where M is 8 or 14 are reported to be numbers
while other TIMESTAMP(M) columns are reported to be strings. This is just to
ensure that one can reliably dump and restore the table with these types! See
Section 6.2.2.2 [DATETIME], page 462.

TIME

A time. The range is ’-838:59:59’ to ’838:59:59’. MySQL displays TIME
values in ’HH:MM:SS’ format, but allows you to assign values to TIME columns
using either strings or numbers. See Section 6.2.2.3 [TIME], page 466.

Chapter 6: MySQL Language Reference 457

YEAR[(2|4)]
A year in 2- or 4-digit format (default is 4-digit). The allowable values are 1901
to 2155, 0000 in the 4-digit year format, and 1970-2069 if you use the 2-digit
format (70-69). MySQL displays YEAR values in YYYY format, but allows you
to assign values to YEAR columns using either strings or numbers. (The YEAR
type is unavailable prior to MySQL Version 3.22.) See Section 6.2.2.4 [YEAR],
page 467.

[NATIONAL] CHAR(M) [BINARY | ASCII | UNICODE]
A fixed-length string that is always right-padded with spaces to the specified
length when stored. The range of M is 0 to 255 characters (1 to 255 prior to
MySQL Version 3.23). Trailing spaces are removed when the value is retrieved.
CHAR values are sorted and compared in case-insensitive fashion according to
the default character set unless the BINARY keyword is given.

From version 4.1.0, if the M value specified is greater than 255, the column type
is converted to TEXT. This is a compatibility feature.

NATIONAL CHAR (or its equivalent short form, NCHAR) is the SQL-99 way to
define that a CHAR column should use the default CHARACTER set. This is
the default in MySQL.

CHAR is a shorthand for CHARACTER.

From version 4.1.0, the ASCII attribute can be specified which assigns the
latin1 character set to a CHAR column.

From version 4.1.1, the UNICODE attribute can be specified which assigns the
ucs2 character set to a CHAR column.

MySQL allows you to create a column of type CHAR(0). This is mainly useful
when you have to be compliant with some old applications that depend on the
existence of a column but that do not actually use the value. This is also quite
nice when you need a column that only can take 2 values: A CHAR(0), that is
not defined as NOT NULL, will occupy only one bit and can take only 2 values:
NULL or "". See Section 6.2.3.1 [CHAR], page 467.

CHAR This is a synonym for CHAR(1).

[NATIONAL] VARCHAR(M) [BINARY]
A variable-length string. Note: trailing spaces are removed when the value is
stored (this differs from the SQL-99 specification). The range of M is 0 to 255
characters (1 to 255 prior to MySQL Version 4.0.2). VARCHAR values are sorted
and compared in case-insensitive fashion unless the BINARY keyword is given.
See Section 6.5.3.1 [Silent column changes], page 572.

From version 4.1.0, if the M value specified is greater than 255, the column type
is converted to TEXT. This is a compatibility feature.

VARCHAR is a shorthand for CHARACTER VARYING. See Section 6.2.3.1 [CHAR],
page 467.

TINYBLOB
TINYTEXT

458 MySQL Technical Reference for Version 4.1.1-alpha

A BLOB or TEXT column with a maximum length of 255 (2^8 - 1) characters. See
Section 6.5.3.1 [Silent column changes], page 572. See Section 6.2.3.2 [BLOB],
page 468.

BLOB
TEXT

A BLOB or TEXT column with a maximum length of 65535 (2^16 - 1) charac-
ters. See Section 6.5.3.1 [Silent column changes], page 572. See Section 6.2.3.2
[BLOB], page 468.

MEDIUMBLOB
MEDIUMTEXT

A BLOB or TEXT column with a maximum length of 16777215 (2^24 - 1) charac-
ters. See Section 6.5.3.1 [Silent column changes], page 572. See Section 6.2.3.2
[BLOB], page 468.

LONGBLOB
LONGTEXT

A BLOB or TEXT column with a maximum length of 4294967295 or 4G (2^32
- 1) characters. See Section 6.5.3.1 [Silent column changes], page 572. Up to
MySQL version 3.23 the server/client protocol and MyISAM tables had a limit
of 16M per communication packet / table row, from version 4.x the maximum
allowed length of LONGTEXT or LONGBLOB columns depends on the configured
maximum packet size in the client/server protocol and available memory. See
Section 6.2.3.2 [BLOB], page 468.

ENUM(’value1’,’value2’,...)
An enumeration. A string object that can have only one value, chosen from
the list of values ’value1’, ’value2’, ..., NULL or the special "" error value.
An ENUM can have a maximum of 65535 distinct values. See Section 6.2.3.3
[ENUM], page 469.

SET(’value1’,’value2’,...)
A set. A string object that can have zero or more values, each of which must
be chosen from the list of values ’value1’, ’value2’, ... A SET can have a
maximum of 64 members. See Section 6.2.3.4 [SET], page 470.

6.2.1 Numeric Types

MySQL supports all of the SQL-92 numeric datatypes. These types include the exact
numeric datatypes (NUMERIC, DECIMAL, INTEGER, and SMALLINT), as well as the approximate
numeric datatypes (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym
for INTEGER, and the keyword DEC is a synonym for DECIMAL.

The NUMERIC and DECIMAL types are implemented as the same type by MySQL, as permitted
by the SQL-92 standard. They are used for values for which it is important to preserve
exact precision, for example with monetary data. When declaring a column of one of these
types the precision and scale can be (and usually is) specified; for example:

salary DECIMAL(5,2)

Chapter 6: MySQL Language Reference 459

In this example, 5 (precision) represents the number of significant decimal digits that
will be stored for values, and 2 (scale) represents the number of digits that will be stored
following the decimal point. In this case, therefore, the range of values that can be stored
in the salary column is from -99.99 to 99.99. (MySQL can actually store numbers up to
999.99 in this column because it doesn’t have to store the sign for positive numbers)

In SQL-92, the syntax DECIMAL(p) is equivalent to DECIMAL(p,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(p,0), where the implementation is allowed to decide
the value of p. MySQL does not currently support either of these variant forms of the
DECIMAL/NUMERIC datatypes. This is not generally a serious problem, as the principal
benefits of these types derive from the ability to control both precision and scale explicitly.

DECIMAL and NUMERIC values are stored as strings, rather than as binary floating-point
numbers, in order to preserve the decimal precision of those values. One character is used
for each digit of the value, the decimal point (if scale > 0), and the ‘-’ sign (for negative
numbers). If scale is 0, DECIMAL and NUMERIC values contain no decimal point or fractional
part.

The maximum range of DECIMAL and NUMERIC values is the same as for DOUBLE, but the
actual range for a given DECIMAL or NUMERIC column can be constrained by the precision
or scale for a given column. When such a column is assigned a value with more digits
following the decimal point than are allowed by the specified scale, the value is rounded
to that scale. When a DECIMAL or NUMERIC column is assigned a value whose magnitude
exceeds the range implied by the specified (or defaulted) precision and scale, MySQL
stores the value representing the corresponding end point of that range.

As an extension to the SQL-92 standard, MySQL also supports the integer types TINYINT,
MEDIUMINT, and BIGINT as listed in the tables above. Another extension is supported by
MySQL for optionally specifying the display width of an integer value in parentheses follow-
ing the base keyword for the type (for example, INT(4)). This optional width specification
is used to left-pad the display of values whose width is less than the width specified for the
column, but does not constrain the range of values that can be stored in the column, nor
the number of digits that will be displayed for values whose width exceeds that specified
for the column. When used in conjunction with the optional extension attribute ZEROFILL,
the default padding of spaces is replaced with zeroes. For example, for a column declared
as INT(5) ZEROFILL, a value of 4 is retrieved as 00004. Note that if you store larger values
than the display width in an integer column, you may experience problems when MySQL
generates temporary tables for some complicated joins, as in these cases MySQL trusts that
the data did fit into the original column width.

All integer types can have an optional (non-standard) attribute UNSIGNED. Unsigned values
can be used when you want to allow only positive numbers in a column and you need a
little bigger numeric range for the column.

As of MySQL 4.0.2, floating-point types also can be UNSIGNED. As with integer types,
this attribute prevents negative values from being stored in the column. Unlike the integer
types, the upper range of column values remains the same.

The FLOAT type is used to represent approximate numeric datatypes. The SQL-92 standard
allows an optional specification of the precision (but not the range of the exponent) in bits
following the keyword FLOAT in parentheses. The MySQL implementation also supports this
optional precision specification. When the keyword FLOAT is used for a column type without

460 MySQL Technical Reference for Version 4.1.1-alpha

a precision specification, MySQL uses four bytes to store the values. A variant syntax is
also supported, with two numbers given in parentheses following the FLOAT keyword. With
this option, the first number continues to represent the storage requirements for the value
in bytes, and the second number specifies the number of digits to be stored and displayed
following the decimal point (as with DECIMAL and NUMERIC). When MySQL is asked to
store a number for such a column with more decimal digits following the decimal point
than specified for the column, the value is rounded to eliminate the extra digits when the
value is stored.

The REAL and DOUBLE PRECISION types do not accept precision specifications. As an ex-
tension to the SQL-92 standard, MySQL recognises DOUBLE as a synonym for the DOUBLE
PRECISION type. In contrast with the standard’s requirement that the precision for REAL be
smaller than that used for DOUBLE PRECISION, MySQL implements both as 8-byte double-
precision floating-point values (when not running in “ANSI mode”). For maximum portabil-
ity, code requiring storage of approximate numeric data values should use FLOAT or DOUBLE
PRECISION with no specification of precision or number of decimal points.

When asked to store a value in a numeric column that is outside the column type’s allowable
range, MySQL clips the value to the appropriate endpoint of the range and stores the
resulting value instead.

For example, the range of an INT column is -2147483648 to 2147483647. If you try to insert
-9999999999 into an INT column, the value is clipped to the lower endpoint of the range,
and -2147483648 is stored instead. Similarly, if you try to insert 9999999999, 2147483647
is stored instead.

If the INT column is UNSIGNED, the size of the column’s range is the same but its endpoints
shift up to 0 and 4294967295. If you try to store -9999999999 and 9999999999, the values
stored in the column become 0 and 4294967296.

Conversions that occur due to clipping are reported as “warnings” for ALTER TABLE, LOAD
DATA INFILE, UPDATE, and multi-row INSERT statements.

Type Bytes From To
TINYINT 1 -128 127
SMALLINT 2 -32768 32767
MEDIUMINT 3 -8388608 8388607
INT 4 -2147483648 2147483647
BIGINT 8 -9223372036854775808 9223372036854775807

6.2.2 Date and Time Types

The date and time types are DATETIME, DATE, TIMESTAMP, TIME, and YEAR. Each of these
has a range of legal values, as well as a “zero” value that is used when you specify a really
illegal value. Note that MySQL allows you to store certain ’not strictly’ legal date values,
for example 1999-11-31. The reason for this is that we think it’s the responsibility of the
application to handle date checking, not the SQL servers. To make the date checking ’fast’,
MySQL only checks that the month is in the range of 0-12 and the day is in the range of
0-31. The above ranges are defined this way because MySQL allows you to store, in a DATE
or DATETIME column, dates where the day or month-day is zero. This is extremely useful
for applications that need to store a birth-date for which you don’t know the exact date.

Chapter 6: MySQL Language Reference 461

In this case you simply store the date like 1999-00-00 or 1999-01-00. (You cannot expect
to get a correct value from functions like DATE_SUB() or DATE_ADD for dates like these.)

Here are some general considerations to keep in mind when working with date and time
types:

• MySQL retrieves values for a given date or time type in a standard format, but it
attempts to interpret a variety of formats for values that you supply (for example,
when you specify a value to be assigned to or compared to a date or time type).
Nevertheless, only the formats described in the following sections are supported. It is
expected that you will supply legal values, and unpredictable results may occur if you
use values in other formats.

• Although MySQL tries to interpret values in several formats, it always expects the year
part of date values to be leftmost. Dates must be given in year-month-day order (for
example, ’98-09-04’), rather than in the month-day-year or day-month-year orders
commonly used elsewhere (for example, ’09-04-98’, ’04-09-98’).

• MySQL automatically converts a date or time type value to a number if the value is
used in a numeric context, and vice versa.

• When MySQL encounters a value for a date or time type that is out of range or
otherwise illegal for the type (see the start of this section), it converts the value to the
“zero” value for that type. (The exception is that out-of-range TIME values are clipped
to the appropriate endpoint of the TIME range.) The following table shows the format
of the “zero” value for each type:
Column type “Zero” value
DATETIME ’0000-00-00 00:00:00’
DATE ’0000-00-00’
TIMESTAMP 00000000000000 (length depends on display

size)
TIME ’00:00:00’
YEAR 0000

• The “zero” values are special, but you can store or refer to them explicitly using the
values shown in the table. You can also do this using the values ’0’ or 0, which are
easier to write.

• “Zero” date or time values used through MyODBC are converted automatically to NULL
in MyODBC Version 2.50.12 and above, because ODBC can’t handle such values.

6.2.2.1 Y2K Issues and Date Types

MySQL itself is Y2K-safe (see Section 1.2.5 [Year 2000 compliance], page 10), but input
values presented to MySQL may not be. Any input containing 2-digit year values is am-
biguous, because the century is unknown. Such values must be interpreted into 4-digit form
because MySQL stores years internally using four digits.

For DATETIME, DATE, TIMESTAMP, and YEAR types, MySQL interprets dates with ambiguous
year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.
• Year values in the range 70-99 are converted to 1970-1999.

462 MySQL Technical Reference for Version 4.1.1-alpha

Remember that these rules provide only reasonable guesses as to what your data mean.
If the heuristics used by MySQL don’t produce the correct values, you should provide
unambiguous input containing 4-digit year values.
ORDER BY will sort 2-digit YEAR/DATE/DATETIME types properly.
Note also that some functions like MIN() and MAX() will convert a TIMESTAMP/DATE to a
number. This means that a timestamp with a 2-digit year will not work properly with these
functions. The fix in this case is to convert the TIMESTAMP/DATE to 4-digit year format or
use something like MIN(DATE_ADD(timestamp,INTERVAL 0 DAYS)).

6.2.2.2 The DATETIME, DATE, and TIMESTAMP Types

The DATETIME, DATE, and TIMESTAMP types are related. This section describes their char-
acteristics, how they are similar, and how they differ.
The DATETIME type is used when you need values that contain both date and time infor-
mation. MySQL retrieves and displays DATETIME values in ’YYYY-MM-DD HH:MM:SS’ for-
mat. The supported range is ’1000-01-01 00:00:00’ to ’9999-12-31 23:59:59’. (“Sup-
ported” means that although earlier values might work, there is no guarantee that they
will.)
The DATE type is used when you need only a date value, without a time part. MySQL
retrieves and displays DATE values in ’YYYY-MM-DD’ format. The supported range is ’1000-
01-01’ to ’9999-12-31’.
The TIMESTAMP column type has varying properties and behaviour, depending on the
MySQL version and the SQL mode the server is running in.

TIMESTAMP behaviour when running in MAXDB mode

When MySQL is running in MAXDB mode, TIMESTAMP behaves like DATETIME. No automatic
updating of TIMESTAMP columns occurs, as described in the following paragraphs. MySQL
can be run in MAXDB mode as of version 4.1.1. See Section 4.1.1 [Command-line options],
page 195.

TIMESTAMP behaviour when not running in MAXDB mode

The TIMESTAMP column type provides a type that you can use to automatically mark INSERT
or UPDATE operations with the current date and time. If you have multiple TIMESTAMP
columns, only the first one is updated automatically.
Automatic updating of the first TIMESTAMP column occurs under any of the following con-
ditions:
• The column is not specified explicitly in an INSERT or LOAD DATA INFILE statement.
• The column is not specified explicitly in an UPDATE statement and some other column

changes value. (Note that an UPDATE that sets a column to the value it already has
will not cause the TIMESTAMP column to be updated, because if you set a column to its
current value, MySQL ignores the update for efficiency.)

• You explicitly set the TIMESTAMP column to NULL.

Chapter 6: MySQL Language Reference 463

TIMESTAMP columns other than the first may also be set to the current date and time. Just
set the column to NULL or to NOW().
You can set any TIMESTAMP column to a value different from the current date and time by
setting it explicitly to the desired value. This is true even for the first TIMESTAMP column.
You can use this property if, for example, you want a TIMESTAMP to be set to the current
date and time when you create a row, but not to be changed whenever the row is updated
later:
• Let MySQL set the column when the row is created. This will initialise it to the current

date and time.
• When you perform subsequent updates to other columns in the row, set the TIMESTAMP

column explicitly to its current value.

On the other hand, you may find it just as easy to use a DATETIME column that you initialise
to NOW() when the row is created and leave alone for subsequent updates.

TIMESTAMP properties when running in MAXDB mode

When MySQL is running in MAXDB mode, TIMESTAMP is identical with DATETIME. It uses
the same format to store and display values, and it has the same range. MySQL can be run
in MAXDB mode as of version 4.1.1. See Section 4.1.1 [Command-line options], page 195.

TIMESTAMP properties as of MySQL 4.1 when not running in

MAXDB mode
In MySQL 4.1.0, TIMESTAMP columns are stored and displayed in the same format as
DATETIME columns. This also means that they cannot be narrowed or widened in the
ways described in the following paragraphs. In other words, you cannot use TIMESTAMP(2),
TIMESTAMP(4), etc. Other than that, the properties are the same as in previous MySQL
versions.

TIMESTAMP properties prior to MySQL 4.1

TIMESTAMP values may range from the beginning of 1970 to sometime in the year 2037, with
a resolution of one second. Values are displayed as numbers.
The format in which MySQL retrieves and displays TIMESTAMP values depends on the display
size, as illustrated by the following table. The ‘full’ TIMESTAMP format is 14 digits, but
TIMESTAMP columns may be created with shorter display sizes:
Column type Display format
TIMESTAMP(14) YYYYMMDDHHMMSS
TIMESTAMP(12) YYMMDDHHMMSS
TIMESTAMP(10) YYMMDDHHMM
TIMESTAMP(8) YYYYMMDD
TIMESTAMP(6) YYMMDD
TIMESTAMP(4) YYMM
TIMESTAMP(2) YY

464 MySQL Technical Reference for Version 4.1.1-alpha

All TIMESTAMP columns have the same storage size, regardless of display size. The most
common display sizes are 6, 8, 12, and 14. You can specify an arbitrary display size at table
creation time, but values of 0 or greater than 14 are coerced to 14. Odd-valued sizes in the
range from 1 to 13 are coerced to the next higher even number.

Note: From version 4.1, TIMESTAMP is returned as a string with the format ’YYYY-MM-DD
HH:MM:SS’ and different timestamp lengths are no longer supported.

You can specify DATETIME, DATE, and TIMESTAMP values using any of a common set of
formats:

• As a string in either ’YYYY-MM-DD HH:MM:SS’ or ’YY-MM-DD HH:MM:SS’ format. A
“relaxed” syntax is allowed—any punctuation character may be used as the delimiter
between date parts or time parts. For example, ’98-12-31 11:30:45’, ’98.12.31
11+30+45’, ’98/12/31 11*30*45’, and ’98@12@31 11^30^45’ are equivalent.

• As a string in either ’YYYY-MM-DD’ or ’YY-MM-DD’ format. A “relaxed” syntax is al-
lowed here, too. For example, ’98-12-31’, ’98.12.31’, ’98/12/31’, and ’98@12@31’
are equivalent.

• As a string with no delimiters in either ’YYYYMMDDHHMMSS’ or ’YYMMDDHHMMSS’ format,
provided that the string makes sense as a date. For example, ’19970523091528’ and
’970523091528’ are interpreted as ’1997-05-23 09:15:28’, but ’971122129015’ is
illegal (it has a nonsensical minute part) and becomes ’0000-00-00 00:00:00’.

• As a string with no delimiters in either ’YYYYMMDD’ or ’YYMMDD’ format, provided
that the string makes sense as a date. For example, ’19970523’ and ’970523’ are
interpreted as ’1997-05-23’, but ’971332’ is illegal (it has nonsensical month and
day parts) and becomes ’0000-00-00’.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the
number makes sense as a date. For example, 19830905132800 and 830905132800 are
interpreted as ’1983-09-05 13:28:00’.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes
sense as a date. For example, 19830905 and 830905 are interpreted as ’1983-09-05’.

• As the result of a function that returns a value that is acceptable in a DATETIME, DATE,
or TIMESTAMP context, such as NOW() or CURRENT_DATE.

Illegal DATETIME, DATE, or TIMESTAMP values are converted to the “zero” value of the ap-
propriate type (’0000-00-00 00:00:00’, ’0000-00-00’, or 00000000000000).

For values specified as strings that include date part delimiters, it is not necessary to specify
two digits for month or day values that are less than 10. ’1979-6-9’ is the same as ’1979-
06-09’. Similarly, for values specified as strings that include time part delimiters, it is not
necessary to specify two digits for hour, minute, or second values that are less than 10.
’1979-10-30 1:2:3’ is the same as ’1979-10-30 01:02:03’.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If the number is 8 or 14
digits long, it is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year
is given by the first 4 digits. If the number is 6 or 12 digits long, it is assumed to be in
YYMMDD or YYMMDDHHMMSS format and that the year is given by the first 2 digits. Numbers
that are not one of these lengths are interpreted as though padded with leading zeros to
the closest length.

Chapter 6: MySQL Language Reference 465

Values specified as non-delimited strings are interpreted using their length as given. If the
string is 8 or 14 characters long, the year is assumed to be given by the first 4 characters.
Otherwise, the year is assumed to be given by the first 2 characters. The string is interpreted
from left to right to find year, month, day, hour, minute, and second values, for as many
parts as are present in the string. This means you should not use strings that have fewer
than 6 characters. For example, if you specify ’9903’, thinking that will represent March,
1999, you will find that MySQL inserts a “zero” date into your table. This is because the
year and month values are 99 and 03, but the day part is completely missing, so the value
is not a legal date. However, as of MySQL 3.23, you can explicitly specify a value of zero
to represent missing month or day parts. For example, you can use ’990300’ to insert the
value ’1999-03-00’.

TIMESTAMP columns store legal values using the full precision with which the value was
specified, regardless of the display size. This has several implications:

• Always specify year, month, and day, even if your column types are TIMESTAMP(4) or
TIMESTAMP(2). Otherwise, the value will not be a legal date and 0 will be stored.

• If you use ALTER TABLE to widen a narrow TIMESTAMP column, information will be
displayed that previously was “hidden”.

• Similarly, narrowing a TIMESTAMP column does not cause information to be lost, except
in the sense that less information is shown when the values are displayed.

• Although TIMESTAMP values are stored to full precision, the only function that operates
directly on the underlying stored value is UNIX_TIMESTAMP(). Other functions operate
on the formatted retrieved value. This means you cannot use functions such as HOUR()
or SECOND() unless the relevant part of the TIMESTAMP value is included in the formatted
value. For example, the HH part of a TIMESTAMP column is not displayed unless the
display size is at least 10, so trying to use HOUR() on shorter TIMESTAMP values produces
a meaningless result.

You can to some extent assign values of one date type to an object of a different date type.
However, there may be some alteration of the value or loss of information:

• If you assign a DATE value to a DATETIME or TIMESTAMP object, the time part of the
resulting value is set to ’00:00:00’, because the DATE value contains no time informa-
tion.

• If you assign a DATETIME or TIMESTAMP value to a DATE object, the time part of the
resulting value is deleted, because the DATE type stores no time information.

• Remember that although DATETIME, DATE, and TIMESTAMP values all can be specified
using the same set of formats, the types do not all have the same range of values. For
example, TIMESTAMP values cannot be earlier than 1970 or later than 2037. This means
that a date such as ’1968-01-01’, while legal as a DATETIME or DATE value, is not a
valid TIMESTAMP value and will be converted to 0 if assigned to such an object.

Be aware of certain pitfalls when specifying date values:

• The relaxed format allowed for values specified as strings can be deceiving. For example,
a value such as ’10:11:12’ might look like a time value because of the ‘:’ delimiter,
but if used in a date context will be interpreted as the year ’2010-11-12’. The value
’10:45:15’ will be converted to ’0000-00-00’ because ’45’ is not a legal month.

466 MySQL Technical Reference for Version 4.1.1-alpha

• The MySQL server only performs basic checking on the validity of a date: days 00-31,
months 00-12, years 1000-9999. Any date not within this range will revert to 0000-
00-00. Please note that this still allows you to store invalid dates such as 2002-04-31.
It allows web applications to store data from a form without further checking. To
ensure a date is valid, perform a check in your application.

• Year values specified as two digits are ambiguous, because the century is unknown.
MySQL interprets 2-digit year values using the following rules:
− Year values in the range 00-69 are converted to 2000-2069.
− Year values in the range 70-99 are converted to 1970-1999.

6.2.2.3 The TIME Type

MySQL retrieves and displays TIME values in ’HH:MM:SS’ format (or ’HHH:MM:SS’ format
for large hours values). TIME values may range from ’-838:59:59’ to ’838:59:59’. The
reason the hours part may be so large is that the TIME type may be used not only to
represent a time of day (which must be less than 24 hours), but also elapsed time or a time
interval between two events (which may be much greater than 24 hours, or even negative).
You can specify TIME values in a variety of formats:
• As a string in ’D HH:MM:SS.fraction’ format. (Note that MySQL doesn’t yet store

the fraction for the time column.) One can also use one of the following “relaxed”
syntax:
HH:MM:SS.fraction, HH:MM:SS, HH:MM, D HH:MM:SS, D HH:MM, D HH or SS. Here D is
days between 0-33.

• As a string with no delimiters in ’HHMMSS’ format, provided that it makes sense as a
time. For example, ’101112’ is understood as ’10:11:12’, but ’109712’ is illegal (it
has a nonsensical minute part) and becomes ’00:00:00’.

• As a number in HHMMSS format, provided that it makes sense as a time. For exam-
ple, 101112 is understood as ’10:11:12’. The following alternative formats are also
understood: SS, MMSS,HHMMSS, HHMMSS.fraction. Note that MySQL doesn’t yet store
the fraction part.

• As the result of a function that returns a value that is acceptable in a TIME context,
such as CURRENT_TIME.

For TIME values specified as strings that include a time part delimiter, it is not necessary
to specify two digits for hours, minutes, or seconds values that are less than 10. ’8:3:2’
is the same as ’08:03:02’.
Be careful about assigning “short” TIME values to a TIME column. Without colons, MySQL
interprets values using the assumption that the rightmost digits represent seconds. (MySQL
interprets TIME values as elapsed time rather than as time of day.) For example, you
might think of ’1112’ and 1112 as meaning ’11:12:00’ (12 minutes after 11 o’clock), but
MySQL interprets them as ’00:11:12’ (11 minutes, 12 seconds). Similarly, ’12’ and 12
are interpreted as ’00:00:12’. TIME values with colons, by contrast, are always treated as
time of the day. That is ’11:12’ will mean ’11:12:00’, not ’00:11:12’.
Values that lie outside the TIME range but are otherwise legal are clipped to the appropriate
endpoint of the range. For example, ’-850:00:00’ and ’850:00:00’ are converted to ’-
838:59:59’ and ’838:59:59’.

Chapter 6: MySQL Language Reference 467

Illegal TIME values are converted to ’00:00:00’. Note that because ’00:00:00’ is itself
a legal TIME value, there is no way to tell, from a value of ’00:00:00’ stored in a table,
whether the original value was specified as ’00:00:00’ or whether it was illegal.

6.2.2.4 The YEAR Type

The YEAR type is a 1-byte type used for representing years.
MySQL retrieves and displays YEAR values in YYYY format. The range is 1901 to 2155.
You can specify YEAR values in a variety of formats:
• As a four-digit string in the range ’1901’ to ’2155’.
• As a four-digit number in the range 1901 to 2155.
• As a two-digit string in the range ’00’ to ’99’. Values in the ranges ’00’ to ’69’

and ’70’ to ’99’ are converted to YEAR values in the ranges 2000 to 2069 and 1970
to 1999.

• As a two-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to
99 are converted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999. Note
that the range for two-digit numbers is slightly different from the range for two-digit
strings, because you cannot specify zero directly as a number and have it be interpreted
as 2000. You must specify it as a string ’0’ or ’00’ or it will be interpreted as 0000.

• As the result of a function that returns a value that is acceptable in a YEAR context,
such as NOW().

Illegal YEAR values are converted to 0000.

6.2.3 String Types

The string types are CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET. This section describes how
these types work, their storage requirements, and how to use them in your queries.
Type Max.size Bytes
TINYTEXT or TINYBLOB 2^8-1 255
TEXT or BLOB 2^16-1 (64K-1) 65535
MEDIUMTEXT or MEDIUMBLOB 2^24-1 (16M-1) 16777215
LONGBLOB 2^32-1 (4G-1) 4294967295

6.2.3.1 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved.
The length of a CHAR column is fixed to the length that you declare when you create the
table. The length can be any value between 1 and 255. (As of MySQL Version 3.23, the
length of CHAR may be 0 to 255.) When CHAR values are stored, they are right-padded with
spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed.
Values in VARCHAR columns are variable-length strings. You can declare a VARCHAR column
to be any length between 1 and 255, just as for CHAR columns. However, in contrast to CHAR,
VARCHAR values are stored using only as many characters as are needed, plus one byte to

468 MySQL Technical Reference for Version 4.1.1-alpha

record the length. Values are not padded; instead, trailing spaces are removed when values
are stored. (This space removal differs from the SQL-99 specification.) No case conversion
takes place during storage or retrieval.

If you assign a value to a CHAR or VARCHAR column that exceeds the column’s maximum
length, the value is truncated to fit.

The following table illustrates the differences between the two types of columns by showing
the result of storing various string values into CHAR(4) and VARCHAR(4) columns:

Value CHAR(4) Storage
required

VARCHAR(4) Storage
required

’’ ’ ’ 4 bytes ’’ 1 byte
’ab’ ’ab ’ 4 bytes ’ab’ 3 bytes
’abcd’ ’abcd’ 4 bytes ’abcd’ 5 bytes
’abcdefgh’ ’abcd’ 4 bytes ’abcd’ 5 bytes

The values retrieved from the CHAR(4) and VARCHAR(4) columns will be the same in each
case, because trailing spaces are removed from CHAR columns upon retrieval.

Values in CHAR and VARCHAR columns are sorted and compared in case-insensitive fashion,
unless the BINARY attribute was specified when the table was created. The BINARY attribute
means that column values are sorted and compared in case-sensitive fashion according to
the ASCII order of the machine where the MySQL server is running. BINARY doesn’t affect
how the column is stored or retrieved.

From version 4.1.0, column type CHAR BYTE is an alias for CHAR BINARY. This is a compati-
bility feature.

The BINARY attribute is sticky. This means that if a column marked BINARY is used in an
expression, the whole expression is compared as a BINARY value.

MySQL may silently change the type of a CHAR or VARCHAR column at table creation time.
See Section 6.5.3.1 [Silent column changes], page 572.

6.2.3.2 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB
types TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB differ only in the maximum length of
the values they can hold. See Section 6.2.6 [Storage requirements], page 472.

The four TEXT types TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT correspond to the four
BLOB types and have the same maximum lengths and storage requirements. The only
difference between BLOB and TEXT types is that sorting and comparison is performed in
case-sensitive fashion for BLOB values and case-insensitive fashion for TEXT values. In other
words, a TEXT is a case-insensitive BLOB. No case conversion takes place during storage or
retrieval.

If you assign a value to a BLOB or TEXT column that exceeds the column type’s maximum
length, the value is truncated to fit.

In most respects, you can regard a TEXT column as a VARCHAR column that can be as big
as you like. Similarly, you can regard a BLOB column as a VARCHAR BINARY column. The
differences are:

Chapter 6: MySQL Language Reference 469

• You can have indexes on BLOB and TEXT columns with MySQL Version 3.23.2 and
newer. Older versions of MySQL did not support this.

• There is no trailing-space removal for BLOB and TEXT columns when values are stored,
as there is for VARCHAR columns.

• BLOB and TEXT columns cannot have DEFAULT values.

From version 4.1.0, LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a
compatibility feature.
MyODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.
Because BLOB and TEXT values may be extremely long, you may run up against some con-
straints when using them:
• If you want to use GROUP BY or ORDER BY on a BLOB or TEXT column, you must convert

the column value into a fixed-length object. The standard way to do this is with the
SUBSTRING function. For example:

mysql> SELECT comment FROM tbl_name,SUBSTRING(comment,20) AS substr
-> ORDER BY substr;

If you don’t do this, only the first max_sort_length bytes of the column are used when
sorting. The default value of max_sort_length is 1024; this value can be changed
using the -O option when starting the mysqld server. You can group on an expression
involving BLOB or TEXT values by specifying the column position or by using an alias:

mysql> SELECT id,SUBSTRING(blob_col,1,100) FROM tbl_name GROUP BY 2;
mysql> SELECT id,SUBSTRING(blob_col,1,100) AS b FROM tbl_name GROUP BY b;

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest
value you can actually transmit between the client and server is determined by the
amount of available memory and the size of the communications buffers. You can
change the message buffer size (max_allowed_packet), but you must do so on both
the server and client ends. See Section 5.5.2 [Server parameters], page 427.

Note that each BLOB or TEXT value is represented internally by a separately allocated object.
This is in contrast to all other column types, for which storage is allocated once per column
when the table is opened.

6.2.3.3 The ENUM Type

An ENUM is a string object whose value normally is chosen from a list of allowed values that
are enumerated explicitly in the column specification at table creation time.
The value may also be the empty string ("") or NULL under certain circumstances:
• If you insert an invalid value into an ENUM (that is, a string not present in the list

of allowed values), the empty string is inserted instead as a special error value. This
string can be distinguished from a ’normal’ empty string by the fact that this string
has the numerical value 0. More about this later.

• If an ENUM is declared NULL, NULL is also a legal value for the column, and the default
value is NULL. If an ENUM is declared NOT NULL, the default value is the first element of
the list of allowed values.

Each enumeration value has an index:

470 MySQL Technical Reference for Version 4.1.1-alpha

• Values from the list of allowable elements in the column specification are numbered
beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the
following SELECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

For example, a column specified as ENUM("one", "two", "three") can have any of the
values shown here. The index of each value is also shown:
Value Index
NULL NULL
"" 0
"one" 1
"two" 2
"three" 3
An enumeration can have a maximum of 65535 elements.
Starting from 3.23.51 trailing spaces are automatically deleted from ENUM values when the
table is created.
Lettercase is irrelevant when you assign values to an ENUM column. However, values retrieved
from the column later have lettercase matching the values that were used to specify the
allowable values at table creation time.
If you retrieve an ENUM in a numeric context, the column value’s index is returned. For
example, you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM, the number is treated as an index, and the value stored
is the enumeration member with that index. (However, this will not work with LOAD DATA,
which treats all input as strings.) It’s not advisable to store numbers in an ENUM string
because it will make things confusing.
ENUM values are sorted according to the order in which the enumeration members were listed
in the column specification. (In other words, ENUM values are sorted according to their index
numbers.) For example, "a" sorts before "b" for ENUM("a", "b"), but "b" sorts before "a"
for ENUM("b", "a"). The empty string sorts before non-empty strings, and NULL values sort
before all other enumeration values. To prevent unexpected results, specify the ENUM list
in alphabetical order. You can also use GROUP BY CONCAT(col) to make sure the column is
sorted alphabetically rather than by index number.
If you want to get all possible values for an ENUM column, you should use: SHOW COLUMNS
FROM table_name LIKE enum_column_name and parse the ENUM definition in the second col-
umn.

6.2.3.4 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen
from a list of allowed values specified when the table is created. SET column values that
consist of multiple set members are specified with members separated by commas (‘,’). A
consequence of this is that SET member values cannot themselves contain commas.

Chapter 6: MySQL Language Reference 471

For example, a column specified as SET("one", "two") NOT NULL can have any of these
values:

""
"one"
"two"
"one,two"

A SET can have a maximum of 64 different members.
Starting from 3.23.51 trailing spaces are automatically deleted from SET values when the
table is created.
MySQL stores SET values numerically, with the low-order bit of the stored value corre-
sponding to the first set member. If you retrieve a SET value in a numeric context, the value
retrieved has bits set corresponding to the set members that make up the column value.
For example, you can retrieve numeric values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of
the number determine the set members in the column value. Suppose a column is specified
as SET("a","b","c","d"). Then the members have the following bit values:
SET member Decimal value Binary value
a 1 0001
b 2 0010
c 4 0100
d 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET
value members "a" and "d" are selected and the resulting value is "a,d".
For a value containing more than one SET element, it does not matter what order the ele-
ments are listed in when you insert the value. It also does not matter how many times a
given element is listed in the value. When the value is retrieved later, each element in the
value will appear once, with elements listed according to the order in which they were speci-
fied at table creation time. For example, if a column is specified as SET("a","b","c","d"),
then "a,d", "d,a", and "d,a,a,d,d" will all appear as "a,d" when retrieved.
If you set a SET column to an unsupported value, the value will be ignored.
SET values are sorted numerically. NULL values sort before non-NULL SET values.
Normally, you perform a SELECT on a SET column using the LIKE operator or the FIND_IN_
SET() function:

mysql> SELECT * FROM tbl_name WHERE set_col LIKE ’%value%’;
mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET(’value’,set_col)>0;

But the following will also work:
mysql> SELECT * FROM tbl_name WHERE set_col = ’val1,val2’;
mysql> SELECT * FROM tbl_name WHERE set_col & 1;

The first of these statements looks for an exact match. The second looks for values con-
taining the first set member.
If you want to get all possible values for a SET column, you should use: SHOW COLUMNS FROM
table_name LIKE set_column_name and parse the SET definition in the second column.

472 MySQL Technical Reference for Version 4.1.1-alpha

6.2.4 Choosing the Right Type for a Column

For the most efficient use of storage, try to use the most precise type in all cases. For
example, if an integer column will be used for values in the range between 1 and 99999,
MEDIUMINT UNSIGNED is the best type.
Accurate representation of monetary values is a common problem. In MySQL, you should
use the DECIMAL type. This is stored as a string, so no loss of accuracy should occur. If
accuracy is not too important, the DOUBLE type may also be good enough.
For high precision, you can always convert to a fixed-point type stored in a BIGINT. This
allows you to do all calculations with integers and convert results back to floating-point
values only when necessary.

6.2.5 Using Column Types from Other Database Engines

To make it easier to use code written for SQL implementations from other vendors, MySQL
maps column types as shown in the following table. These mappings make it easier to move
table definitions from other database engines to MySQL:
Other vendor type MySQL type
BINARY(NUM) CHAR(NUM) BINARY
CHAR VARYING(NUM) VARCHAR(NUM)
FLOAT4 FLOAT
FLOAT8 DOUBLE
INT1 TINYINT
INT2 SMALLINT
INT3 MEDIUMINT
INT4 INT
INT8 BIGINT
LONG VARBINARY MEDIUMBLOB
LONG VARCHAR MEDIUMTEXT
MIDDLEINT MEDIUMINT
VARBINARY(NUM) VARCHAR(NUM) BINARY

Column type mapping occurs at table creation time. If you create a table with types used
by other vendors and then issue a DESCRIBE tbl_name statement, MySQL reports the table
structure using the equivalent MySQL types.

6.2.6 Column Type Storage Requirements

The storage requirements for each of the column types supported by MySQL are listed by
category.

Storage Requirements for Numeric Types

Column type Storage required
TINYINT 1 byte
SMALLINT 2 bytes

Chapter 6: MySQL Language Reference 473

MEDIUMINT 3 bytes
INT 4 bytes
INTEGER 4 bytes
BIGINT 8 bytes
FLOAT(X) 4 if X <= 24 or 8 if 25 <= X <= 53
FLOAT 4 bytes
DOUBLE 8 bytes
DOUBLE PRECISION 8 bytes
REAL 8 bytes
DECIMAL(M,D) M+2 bytes if D > 0, M+1 bytes if D = 0 (D+2, if M < D)
NUMERIC(M,D) M+2 bytes if D > 0, M+1 bytes if D = 0 (D+2, if M < D)

Storage Requirements for Date and Time Types

Column type Storage required
DATE 3 bytes
DATETIME 8 bytes
TIMESTAMP 4 bytes
TIME 3 bytes
YEAR 1 byte

Storage Requirements for String Types

Column type Storage required
CHAR(M) M bytes, 1 <= M <= 255
VARCHAR(M) L+1 bytes, where L <= M and 1 <= M <= 255
TINYBLOB, TINYTEXT L+1 bytes, where L < 2^8
BLOB, TEXT L+2 bytes, where L < 2^16
MEDIUMBLOB, MEDIUMTEXT L+3 bytes, where L < 2^24
LONGBLOB, LONGTEXT L+4 bytes, where L < 2^32
ENUM(’value1’,’value2’,...) 1 or 2 bytes, depending on the number of enumeration

values (65535 values maximum)
SET(’value1’,’value2’,...) 1, 2, 3, 4 or 8 bytes, depending on the number of set

members (64 members maximum)
VARCHAR and the BLOB and TEXT types are variable-length types, for which the storage re-
quirements depend on the actual length of column values (represented by L in the preceding
table), rather than on the type’s maximum possible size. For example, a VARCHAR(10) col-
umn can hold a string with a maximum length of 10 characters. The actual storage required
is the length of the string (L), plus 1 byte to record the length of the string. For the string
’abcd’, L is 4 and the storage requirement is 5 bytes.

The BLOB and TEXT types require 1, 2, 3, or 4 bytes to record the length of the column
value, depending on the maximum possible length of the type. See Section 6.2.3.2 [BLOB],
page 468.

If a table includes any variable-length column types, the record format will also be variable-
length. Note that when a table is created, MySQL may, under certain conditions, change a

474 MySQL Technical Reference for Version 4.1.1-alpha

column from a variable-length type to a fixed-length type, or vice-versa. See Section 6.5.3.1
[Silent column changes], page 572.

The size of an ENUM object is determined by the number of different enumeration values.
One byte is used for enumerations with up to 255 possible values. Two bytes are used for
enumerations with up to 65535 values. See Section 6.2.3.3 [ENUM], page 469.

The size of a SET object is determined by the number of different set members. If the set
size is N, the object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can
have a maximum of 64 members. See Section 6.2.3.4 [SET], page 470.

The maximum size of a row in a MyISAM table is 65534 bytes. Each BLOB and TEXT column
accounts for only 5-9 bytes toward this size.

6.3 Functions for Use in SELECT and WHERE Clauses

A select_expression or where_definition in an SQL statement can consist of any ex-
pression using the functions described below.

An expression that contains NULL always produces a NULL value unless otherwise indicated
in the documentation for the operators and functions involved in the expression.

Note: there must be no whitespace between a function name and the parentheses following
it. This helps the MySQL parser distinguish between function calls and references to tables
or columns that happen to have the same name as a function. Spaces around arguments
are permitted, though.

You can force MySQL to accept spaces after the function name by starting mysqld with --
ansi or using the CLIENT_IGNORE_SPACE to mysql_connect(), but in this case all function
names will become reserved words. See Section 1.7.2 [ANSI mode], page 33.

For the sake of brevity, examples display the output from the mysql program in abbreviated
form. So this:

mysql> SELECT MOD(29,9);
1 rows in set (0.00 sec)

+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+

is displayed like this:

mysql> SELECT MOD(29,9);
-> 2

6.3.1 Non-Type-Specific Operators and Functions

Chapter 6: MySQL Language Reference 475

6.3.1.1 Parentheses

(...)

Use parentheses to force the order of evaluation in an expression. For example:

mysql> SELECT 1+2*3;
-> 7

mysql> SELECT (1+2)*3;
-> 9

6.3.1.2 Comparison Operators

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These functions
work for both numbers and strings. Strings are automatically converted to numbers and
numbers to strings as needed (as in Perl).

MySQL performs comparisons using the following rules:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the
<=> operator.

• If both arguments in a comparison operation are strings, they are compared as strings.
• If both arguments are integers, they are compared as integers.
• Hexadecimal values are treated as binary strings if not compared to a number.
• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a

constant, the constant is converted to a timestamp before the comparison is performed.
This is done to be more ODBC-friendly.

• In all other cases, the arguments are compared as floating-point (real) numbers.

By default, string comparisons are done in case-independent fashion using the current char-
acter set (ISO-8859-1 Latin1 by default, which also works excellently for English).

If you are comparing case-insensitive strings with any of the standard operators (=, <>...,
but not LIKE) trailing whitespace (spaces, tabs and newlines) will be ignored.

mysql> SELECT "a" ="A \n";
-> 1

The following examples illustrate conversion of strings to numbers for comparison opera-
tions:

mysql> SELECT 1 > ’6x’;
-> 0

mysql> SELECT 7 > ’6x’;
-> 1

mysql> SELECT 0 > ’x6’;
-> 0

mysql> SELECT 0 = ’x6’;
-> 1

Note that when you are comparing a string column with a number, MySQL can’t use index
to quickly look up the value:

476 MySQL Technical Reference for Version 4.1.1-alpha

SELECT * FROM table_name WHERE string_key=1

The reason for this is that there is many different strings that may return the value 1: "1",
" 1", "1a" ...

= Equal:

mysql> SELECT 1 = 0;
-> 0

mysql> SELECT ’0’ = 0;
-> 1

mysql> SELECT ’0.0’ = 0;
-> 1

mysql> SELECT ’0.01’ = 0;
-> 0

mysql> SELECT ’.01’ = 0.01;
-> 1

<>
!= Not equal:

mysql> SELECT ’.01’ <> ’0.01’;
-> 1

mysql> SELECT .01 <> ’0.01’;
-> 0

mysql> SELECT ’zapp’ <> ’zappp’;
-> 1

<= Less than or equal:

mysql> SELECT 0.1 <= 2;
-> 1

< Less than:

mysql> SELECT 2 < 2;
-> 0

>= Greater than or equal:

mysql> SELECT 2 >= 2;
-> 1

> Greater than:

mysql> SELECT 2 > 2;
-> 0

<=> NULL-safe equal:

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
-> 1 1 0

IS NULL
IS NOT NULL

Test whether a value is or is not NULL:

Chapter 6: MySQL Language Reference 477

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
-> 0 0 1

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
-> 1 1 0

To be able to work well with other programs, MySQL supports the following
extra features when using IS NULL:
• You can find the last inserted row with:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This can be disabled by setting SQL_AUTO_IS_NULL=0. See Section 5.5.6
[SET OPTION], page 432.

• For NOT NULL DATE and DATETIME columns you can find the special date
0000-00-00 by using:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work (as ODBC doesn’t
support a 0000-00-00 date)

expr BETWEEN min AND max
If expr is greater than or equal to min and expr is less than or equal to max,
BETWEEN returns 1, otherwise it returns 0. This is equivalent to the expression
(min <= expr AND expr <= max) if all the arguments are of the same type. Oth-
erwise type conversion takes place, according to the rules above, but applied to
all the three arguments. Note that before 4.0.5 arguments were converted to
the type of expr instead.

mysql> SELECT 1 BETWEEN 2 AND 3;
-> 0

mysql> SELECT ’b’ BETWEEN ’a’ AND ’c’;
-> 1

mysql> SELECT 2 BETWEEN 2 AND ’3’;
-> 1

mysql> SELECT 2 BETWEEN 2 AND ’x-3’;
-> 0

expr NOT BETWEEN min AND max
Same as NOT (expr BETWEEN min AND max).

expr IN (value,...)
Returns 1 if expr is any of the values in the IN list, else returns 0. If all values
are constants, then all values are evaluated according to the type of expr and
sorted. The search for the item is then done using a binary search. This means
IN is very quick if the IN value list consists entirely of constants. If expr is
a case-sensitive string expression, the string comparison is performed in case-
sensitive fashion:

mysql> SELECT 2 IN (0,3,5,’wefwf’);
-> 0

mysql> SELECT ’wefwf’ IN (0,3,5,’wefwf’);
-> 1

478 MySQL Technical Reference for Version 4.1.1-alpha

The number of values in the IN list is only limited by the max_allowed_packet
value.
From 4.1 (to comply with the SQL-99 standard), IN returns NULL not only if
the expression on the left hand side is NULL, but also if no match is found in
the list and one of the expressions in the list is NULL.
From MySQL version 4.1, an IN() clause may also contain a subquery. See
Section 6.4.2.3 [ANY IN SOME subqueries], page 539.

expr NOT IN (value,...)
Same as NOT (expr IN (value,...)).

ISNULL(expr)
If expr is NULL, ISNULL() returns 1, otherwise it returns 0:

mysql> SELECT ISNULL(1+1);
-> 0

mysql> SELECT ISNULL(1/0);
-> 1

Note that a comparison of NULL values using = will always be false!

COALESCE(list)
Returns first non-NULL element in list:

mysql> SELECT COALESCE(NULL,1);
-> 1

mysql> SELECT COALESCE(NULL,NULL,NULL);
-> NULL

INTERVAL(N,N1,N2,N3,...)
Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are
treated as integers. It is required that N1 < N2 < N3 < ... < Nn for this function
to work correctly. This is because a binary search is used (very fast):

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
-> 3

mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
-> 2

mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
-> 0

6.3.1.3 Logical Operators

In SQL, all logical operators evaluate to TRUE, FALSE or NULL (UNKNOWN). In MySQL,
this is implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common between
different SQL databases, however some may return any non-zero value for TRUE.

NOT
! Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero,

and NOT NULL returns NULL.
mysql> SELECT NOT 10;

-> 0

Chapter 6: MySQL Language Reference 479

mysql> SELECT NOT 0;
-> 1

mysql> SELECT NOT NULL;
-> NULL

mysql> SELECT ! (1+1);
-> 0

mysql> SELECT ! 1+1;
-> 1

The last example produces 1 because the expression evaluates the same way as
(!1)+1.

AND
&& Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if

one or more operands are 0, otherwise NULL is returned.
mysql> SELECT 1 && 1;

-> 1
mysql> SELECT 1 && 0;

-> 0
mysql> SELECT 1 && NULL;

-> NULL
mysql> SELECT 0 && NULL;

-> 0
mysql> SELECT NULL && 0;

-> 0

Please note that MySQL versions prior to 4.0.5 stop evaluation when a NULL is
encountered, rather than continuing the process to check for possible 0s. This
means that in these versions, SELECT (NULL AND 0) returns NULL instead of 0.
In 4.0.5 the code has been re-engineered so that the result will always be as
prescribed by the SQL standards while still using the optimisation wherever
possible.

OR
|| Logical OR. Evaluates to 1 if any operand is non-zero, to NULL if any operand

is NULL, otherwise 0 is returned.
mysql> SELECT 1 || 1;

-> 1
mysql> SELECT 1 || 0;

-> 1
mysql> SELECT 0 || 0;

-> 0
mysql> SELECT 0 || NULL;

-> NULL
mysql> SELECT 1 || NULL;

-> 1

XOR Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands,
evaluates to 1 if an odd number of operands is non-zero, otherwise 0 is returned.

example_for_help_topic XOR

480 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT 1 XOR 1;
-> 0

mysql> SELECT 1 XOR 0;
-> 1

mysql> SELECT 1 XOR NULL;
-> NULL

mysql> SELECT 1 XOR 1 XOR 1;
-> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).
XOR was added in version 4.0.2.

6.3.1.4 Control Flow Functions

IFNULL(expr1,expr2)
If expr1 is not NULL, IFNULL() returns expr1, else it returns expr2. IFNULL()
returns a numeric or string value, depending on the context in which it is used:

mysql> SELECT IFNULL(1,0);
-> 1

mysql> SELECT IFNULL(NULL,10);
-> 10

mysql> SELECT IFNULL(1/0,10);
-> 10

mysql> SELECT IFNULL(1/0,’yes’);
-> ’yes’

In 4.0.6 and above the default result value of IFNULL(expr1,expr2) is the more
’general’ of the two expressions, in the order STRING, REAL or INTEGER. The
difference to earlier MySQL versions are mostly notable when you create a table
based on expressions or MySQL has to internally store a value from IFNULL()
in a temporary table.

CREATE TABLE foo SELECT IFNULL(1,"test") as test;

In MySQL 4.0.6 the type for column ’test’ is CHAR(4) while in earlier versions
you would get BIGINT.

NULLIF(expr1,expr2)
If expr1 = expr2 is true, return NULL else return expr1. This is the same as
CASE WHEN x = y THEN NULL ELSE x END:

mysql> SELECT NULLIF(1,1);
-> NULL

mysql> SELECT NULLIF(1,2);
-> 1

Note that expr1 is evaluated twice in MySQL if the arguments are not equal.

IF(expr1,expr2,expr3)
If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2,
else it returns expr3. IF() returns a numeric or string value, depending on the
context in which it is used:

Chapter 6: MySQL Language Reference 481

mysql> SELECT IF(1>2,2,3);
-> 3

mysql> SELECT IF(1<2,’yes’,’no’);
-> ’yes’

mysql> SELECT IF(STRCMP(’test’,’test1’),’no’,’yes’);
-> ’no’

If expr2 or expr3 is explicitely NULL then the result type of the IF() function
is the type of the not NULL column. (This behaviour is new in MySQL 4.0.3).

expr1 is evaluated as an integer value, which means that if you are testing
floating-point or string values, you should do so using a comparison operation:

mysql> SELECT IF(0.1,1,0);
-> 0

mysql> SELECT IF(0.1<>0,1,0);
-> 1

In the first case above, IF(0.1) returns 0 because 0.1 is converted to an integer
value, resulting in a test of IF(0). This may not be what you expect. In the
second case, the comparison tests the original floating-point value to see whether
it is non-zero. The result of the comparison is used as an integer.

The default return type of IF() (which may matter when it is stored into a
temporary table) is calculated in MySQL Version 3.23 as follows:

Expression Return value
expr2 or expr3 returns string string
expr2 or expr3 returns a floating-point value floating-point
expr2 or expr3 returns an integer integer

If expr2 and expr3 are strings, then the result is case-insensitive if both strings
are case-insensitive. (Starting from 3.23.51)

CASE value WHEN [compare-value] THEN result [WHEN [compare-value] THEN result
...] [ELSE result] END
CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first version returns the result where value=compare-value. The second
version returns the result for the first condition, which is true. If there was no
matching result value, then the result after ELSE is returned. If there is no ELSE
part then NULL is returned:

mysql> SELECT CASE 1 WHEN 1 THEN "one"
WHEN 2 THEN "two" ELSE "more" END;

-> "one"
mysql> SELECT CASE WHEN 1>0 THEN "true" ELSE "false" END;

-> "true"
mysql> SELECT CASE BINARY "B" WHEN "a" THEN 1 WHEN "b" THEN 2 END;

-> NULL

The type of the return value (INTEGER, DOUBLE or STRING) is the same as the type of the
first returned value (the expression after the first THEN).

482 MySQL Technical Reference for Version 4.1.1-alpha

6.3.2 String Functions

String-valued functions return NULL if the length of the result would be greater than the
max_allowed_packet server parameter. See Section 5.5.2 [Server parameters], page 427.
For functions that operate on string positions, the first position is numbered 1.

ASCII(str)
Returns the ASCII code value of the leftmost character of the string str. Re-
turns 0 if str is the empty string. Returns NULL if str is NULL:

mysql> SELECT ASCII(’2’);
-> 50

mysql> SELECT ASCII(2);
-> 50

mysql> SELECT ASCII(’dx’);
-> 100

See also the ORD() function.

ORD(str) If the leftmost character of the string str is a multi-byte character, returns the
code for that character, calculated from the ASCII code values of its constituent
characters using this formula: ((first byte ASCII code)*256+(second byte
ASCII code))[*256+third byte ASCII code...]. If the leftmost character is
not a multi-byte character, returns the same value that the ASCII() function
does:

mysql> SELECT ORD(’2’);
-> 50

CONV(N,from_base,to_base)
Converts numbers between different number bases. Returns a string repre-
sentation of the number N, converted from base from_base to base to_base.
Returns NULL if any argument is NULL. The argument N is interpreted as an
integer, but may be specified as an integer or a string. The minimum base is 2
and the maximum base is 36. If to_base is a negative number, N is regarded as
a signed number. Otherwise, N is treated as unsigned. CONV works with 64-bit
precision:

mysql> SELECT CONV("a",16,2);
-> ’1010’

mysql> SELECT CONV("6E",18,8);
-> ’172’

mysql> SELECT CONV(-17,10,-18);
-> ’-H’

mysql> SELECT CONV(10+"10"+’10’+0xa,10,10);
-> ’40’

BIN(N) Returns a string representation of the binary value of N, where N is a longlong
(BIGINT) number. This is equivalent to CONV(N,10,2). Returns NULL if N is
NULL:

mysql> SELECT BIN(12);
-> ’1100’

Chapter 6: MySQL Language Reference 483

OCT(N) Returns a string representation of the octal value of N, where N is a longlong
number. This is equivalent to CONV(N,10,8). Returns NULL if N is NULL:

mysql> SELECT OCT(12);
-> ’14’

HEX(N_or_S)
If N OR S is a number, returns a string representation of the hexadecimal
value of N, where N is a longlong (BIGINT) number. This is equivalent to
CONV(N,10,16).
If N OR S is a string, returns a hexadecimal string of N OR S where each
character in N OR S is converted to 2 hexadecimal digits. This is the inverse
of the 0xff strings.

mysql> SELECT HEX(255);
-> ’FF’

mysql> SELECT HEX("abc");
-> 616263

mysql> SELECT 0x616263;
-> "abc"

CHAR(N,...)
CHAR() interprets the arguments as integers and returns a string consisting of
the characters given by the ASCII code values of those integers. NULL values
are skipped:

mysql> SELECT CHAR(77,121,83,81,’76’);
-> ’MySQL’

mysql> SELECT CHAR(77,77.3,’77.3’);
-> ’MMM’

CONCAT(str1,str2,...)
Returns the string that results from concatenating the arguments. Returns
NULL if any argument is NULL. May have more than 2 arguments. A numeric
argument is converted to its equivalent string form:

mysql> SELECT CONCAT(’My’, ’S’, ’QL’);
-> ’MySQL’

mysql> SELECT CONCAT(’My’, NULL, ’QL’);
-> NULL

mysql> SELECT CONCAT(14.3);
-> ’14.3’

CONCAT_WS(separator, str1, str2,...)
CONCAT_WS() stands for CONCAT With Separator and is a special form of
CONCAT(). The first argument is the separator for the rest of the arguments.
The separator is added between the strings to be concatenated: The separator
can be a string as can the rest of the arguments. If the separator is NULL, the
result is NULL. The function skips any NULL values after the separator argument.

mysql> SELECT CONCAT_WS(",","First name","Second name","Last Name");
-> ’First name,Second name,Last Name’

mysql> SELECT CONCAT_WS(",","First name",NULL,"Last Name");

484 MySQL Technical Reference for Version 4.1.1-alpha

-> ’First name,Last Name’

Before MySQL 4.1.1, CONCAT_WS() skips empty strings as well as NULL values.

LENGTH(str)
OCTET_LENGTH(str)
CHAR_LENGTH(str)
CHARACTER_LENGTH(str)

Returns the length of the string str:

mysql> SELECT LENGTH(’text’);
-> 4

mysql> SELECT OCTET_LENGTH(’text’);
-> 4

LENGTH() and OCTET_LENGTH() are synonyms, and measure string length in
bytes (octets). A multi-byte character counts as multiple bytes. CHAR_LENGTH()
and CHARACTER_LENGTH() are synonyms, and measure string length in charac-
ters. A multiple-byte character counts as a single character. This means that
for a string containing five two-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

BIT_LENGTH(str)
Returns the length of the string str in bits:

mysql> SELECT BIT_LENGTH(’text’);
-> 32

LOCATE(substr,str)
POSITION(substr IN str)

Returns the position of the first occurrence of substring substr in string str.
Returns 0 if substr is not in str:

mysql> SELECT LOCATE(’bar’, ’foobarbar’);
-> 4

mysql> SELECT LOCATE(’xbar’, ’foobar’);
-> 0

This function is multi-byte safe. In MySQL 3.23 this function is case sensitive,
while in 4.0 it’s only case-sensitive if either argument is a binary string.

LOCATE(substr,str,pos)
Returns the position of the first occurrence of substring substr in string str,
starting at position pos. Returns 0 if substr is not in str:

mysql> SELECT LOCATE(’bar’, ’foobarbar’,5);
-> 7

This function is multi-byte safe. In MySQL 3.23 this function is case sensitive,
while in 4.0 it’s only case-sensitive if either argument is a binary string.

INSTR(str,substr)
Returns the position of the first occurrence of substring substr in string str.
This is the same as the two-argument form of LOCATE(), except that the argu-
ments are swapped:

Chapter 6: MySQL Language Reference 485

mysql> SELECT INSTR(’foobarbar’, ’bar’);
-> 4

mysql> SELECT INSTR(’xbar’, ’foobar’);
-> 0

This function is multi-byte safe. In MySQL 3.23 this function is case sensitive,
while in 4.0 it’s only case-sensitive if either argument is a binary string.

LPAD(str,len,padstr)
Returns the string str, left-padded with the string padstr to a length of len
characters. If str is longer than len, the return value is shortened to len
characters.

mysql> SELECT LPAD(’hi’,4,’??’);
-> ’??hi’

RPAD(str,len,padstr)
Returns the string str, right-padded with the string padstr to a length of len
characters. If str is longer than len, the return value is shortened to len
characters.

mysql> SELECT RPAD(’hi’,5,’?’);
-> ’hi???’

LEFT(str,len)
Returns the leftmost len characters from the string str:

mysql> SELECT LEFT(’foobarbar’, 5);
-> ’fooba’

This function is multi-byte safe.

RIGHT(str,len)
Returns the rightmost len characters from the string str:

mysql> SELECT RIGHT(’foobarbar’, 4);
-> ’rbar’

This function is multi-byte safe.

SUBSTRING(str,pos,len)
SUBSTRING(str FROM pos FOR len)
MID(str,pos,len)

Returns a substring len characters long from string str, starting at position
pos. The variant form that uses FROM is SQL-92 syntax:

mysql> SELECT SUBSTRING(’Quadratically’,5,6);
-> ’ratica’

This function is multi-byte safe.

SUBSTRING(str,pos)
SUBSTRING(str FROM pos)

Returns a substring from string str starting at position pos:
mysql> SELECT SUBSTRING(’Quadratically’,5);

-> ’ratically’
mysql> SELECT SUBSTRING(’foobarbar’ FROM 4);

486 MySQL Technical Reference for Version 4.1.1-alpha

-> ’barbar’

This function is multi-byte safe.

SUBSTRING_INDEX(str,delim,count)
Returns the substring from string str before count occurrences of the delimiter
delim. If count is positive, everything to the left of the final delimiter (counting
from the left) is returned. If count is negative, everything to the right of the
final delimiter (counting from the right) is returned:

mysql> SELECT SUBSTRING_INDEX(’www.mysql.com’, ’.’, 2);
-> ’www.mysql’

mysql> SELECT SUBSTRING_INDEX(’www.mysql.com’, ’.’, -2);
-> ’mysql.com’

This function is multi-byte safe.

LTRIM(str)
Returns the string str with leading space characters removed:

mysql> SELECT LTRIM(’ barbar’);
-> ’barbar’

RTRIM(str)
Returns the string str with trailing space characters removed:

mysql> SELECT RTRIM(’barbar ’);
-> ’barbar’

This function is multi-byte safe.

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)
Returns the string str with all remstr prefixes and/or suffixes removed. If
none of the specifiers BOTH, LEADING or TRAILING are given, BOTH is assumed.
If remstr is not specified, spaces are removed:

mysql> SELECT TRIM(’ bar ’);
-> ’bar’

mysql> SELECT TRIM(LEADING ’x’ FROM ’xxxbarxxx’);
-> ’barxxx’

mysql> SELECT TRIM(BOTH ’x’ FROM ’xxxbarxxx’);
-> ’bar’

mysql> SELECT TRIM(TRAILING ’xyz’ FROM ’barxxyz’);
-> ’barx’

This function is multi-byte safe.

SOUNDEX(str)
Returns a soundex string from str. Two strings that sound almost the same
should have identical soundex strings. A standard soundex string is 4 characters
long, but the SOUNDEX() function returns an arbitrarily long string. You can
use SUBSTRING() on the result to get a standard soundex string. All non-
alphanumeric characters are ignored in the given string. All international alpha
characters outside the A-Z range are treated as vowels:

mysql> SELECT SOUNDEX(’Hello’);
-> ’H400’

Chapter 6: MySQL Language Reference 487

mysql> SELECT SOUNDEX(’Quadratically’);
-> ’Q36324’

SPACE(N) Returns a string consisting of N space characters:
mysql> SELECT SPACE(6);

-> ’ ’

REPLACE(str,from_str,to_str)
Returns the string str with all occurrences of the string from_str replaced by
the string to_str:

mysql> SELECT REPLACE(’www.mysql.com’, ’w’, ’Ww’);
-> ’WwWwWw.mysql.com’

This function is multi-byte safe.

REPEAT(str,count)
Returns a string consisting of the string str repeated count times. If count
<= 0, returns an empty string. Returns NULL if str or count are NULL:

mysql> SELECT REPEAT(’MySQL’, 3);
-> ’MySQLMySQLMySQL’

REVERSE(str)
Returns the string str with the order of the characters reversed:

mysql> SELECT REVERSE(’abc’);
-> ’cba’

This function is multi-byte safe.

INSERT(str,pos,len,newstr)
Returns the string str, with the substring beginning at position pos and len
characters long replaced by the string newstr:

mysql> SELECT INSERT(’Quadratic’, 3, 4, ’What’);
-> ’QuWhattic’

This function is multi-byte safe.

ELT(N,str1,str2,str3,...)
Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less
than 1 or greater than the number of arguments. ELT() is the complement of
FIELD():

mysql> SELECT ELT(1, ’ej’, ’Heja’, ’hej’, ’foo’);
-> ’ej’

mysql> SELECT ELT(4, ’ej’, ’Heja’, ’hej’, ’foo’);
-> ’foo’

FIELD(str,str1,str2,str3,...)
Returns the index of str in the str1, str2, str3, ... list. Returns 0 if str is
not found. FIELD() is the complement of ELT():

mysql> SELECT FIELD(’ej’, ’Hej’, ’ej’, ’Heja’, ’hej’, ’foo’);
-> 2

mysql> SELECT FIELD(’fo’, ’Hej’, ’ej’, ’Heja’, ’hej’, ’foo’);
-> 0

488 MySQL Technical Reference for Version 4.1.1-alpha

FIND_IN_SET(str,strlist)
Returns a value 1 to N if the string str is in the list strlist consisting of N
substrings. A string list is a string composed of substrings separated by ‘,’
characters. If the first argument is a constant string and the second is a column
of type SET, the FIND_IN_SET() function is optimised to use bit arithmetic!
Returns 0 if str is not in strlist or if strlist is the empty string. Returns
NULL if either argument is NULL. This function will not work properly if the
first argument contains a comma ‘,’:

mysql> SELECT FIND_IN_SET(’b’,’a,b,c,d’);
-> 2

MAKE_SET(bits,str1,str2,...)
Returns a set (a string containing substrings separated by ‘,’ characters) con-
sisting of the strings that have the corresponding bit in bits set. str1 corre-
sponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, ... are not
appended to the result:

mysql> SELECT MAKE_SET(1,’a’,’b’,’c’);
-> ’a’

mysql> SELECT MAKE_SET(1 | 4,’hello’,’nice’,’world’);
-> ’hello,world’

mysql> SELECT MAKE_SET(0,’a’,’b’,’c’);
-> ’’

EXPORT_SET(bits,on,off,[separator,[number_of_bits]])
Returns a string where for every bit set in ’bit’, you get an ’on’ string and for
every reset bit you get an ’off’ string. Each string is separated with ’separator’
(default ’,’) and only ’number of bits’ (default 64) of ’bits’ is used:

mysql> SELECT EXPORT_SET(5,’Y’,’N’,’,’,4)
-> Y,N,Y,N

LCASE(str)
LOWER(str)

Returns the string str with all characters changed to lowercase according to
the current character set mapping (the default is ISO-8859-1 Latin1):

mysql> SELECT LCASE(’QUADRATICALLY’);
-> ’quadratically’

This function is multi-byte safe.

UCASE(str)
UPPER(str)

Returns the string str with all characters changed to uppercase according to
the current character set mapping (the default is ISO-8859-1 Latin1):

mysql> SELECT UCASE(’Hej’);
-> ’HEJ’

This function is multi-byte safe.

LOAD_FILE(file_name)
Reads the file and returns the file contents as a string. The file must be on
the server, you must specify the full pathname to the file, and you must have

Chapter 6: MySQL Language Reference 489

the FILE privilege. The file must be readable by all and be smaller than max_
allowed_packet.
If the file doesn’t exist or can’t be read due to one of the above reasons, the
function returns NULL:

mysql> UPDATE tbl_name
SET blob_column=LOAD_FILE("/tmp/picture")
WHERE id=1;

If you are not using MySQL Version 3.23, you have to do the reading
of the file inside your application and create an INSERT statement
to update the database with the file information. One way to
do this, if you are using the MySQL++ library, can be found at
http://www.mysql.com/documentation/mysql++/mysql++-examples.html.

QUOTE(str)
Quotes a string to produce a result that can be used as a properly escaped data
value in an SQL statement. The string is returned surrounded by single quotes
and with each instance of single quote (‘’’), backslash (‘\’), ASCII NUL, and
Control-Z preceded by a backslash. If the argument is NULL, the return value
is the word “NULL” without surrounding single quotes. The QUOTE() function
was added in MySQL version 4.0.3.

mysql> SELECT QUOTE("Don’t");
-> ’Don\’t!’

mysql> SELECT QUOTE(NULL);
-> NULL

6.3.2.1 String Comparison Functions

MySQL automatically converts numbers to strings as necessary, and vice-versa:
mysql> SELECT 1+"1";

-> 2
mysql> SELECT CONCAT(2,’ test’);

-> ’2 test’

If you want to convert a number to a string explicitly, pass it as the argument to CONCAT().
If a string function is given a binary string as an argument, the resulting string is also a
binary string. A number converted to a string is treated as a binary string. This only affects
comparisons.
Normally, if any expression in a string comparison is case-sensitive, the comparison is per-
formed in case-sensitive fashion.

expr LIKE pat [ESCAPE ’escape-char’]
Pattern matching using SQL simple regular expression comparison. Returns
1 (TRUE) or 0 (FALSE). With LIKE you can use the following two wildcard
characters in the pattern:
Char Description
% Matches any number of characters, even zero

characters

490 MySQL Technical Reference for Version 4.1.1-alpha

_ Matches exactly one character
mysql> SELECT ’David!’ LIKE ’David_’;

-> 1
mysql> SELECT ’David!’ LIKE ’%D%v%’;

-> 1

To test for literal instances of a wildcard character, precede the character with
the escape character. If you don’t specify the ESCAPE character, ‘\’ is assumed:
String Description
\% Matches one % character
_ Matches one _ character

mysql> SELECT ’David!’ LIKE ’David_’;
-> 0

mysql> SELECT ’David_’ LIKE ’David_’;
-> 1

To specify a different escape character, use the ESCAPE clause:
mysql> SELECT ’David_’ LIKE ’David|_’ ESCAPE ’|’;

-> 1

The following two statements illustrate that string comparisons are
case-insensitive unless one of the operands is a binary string:

mysql> SELECT ’abc’ LIKE ’ABC’;
-> 1

mysql> SELECT ’abc’ LIKE BINARY ’ABC’;
-> 0

LIKE is allowed on numeric expressions! (This is a MySQL extension to the
SQL-99 LIKE.)

mysql> SELECT 10 LIKE ’1%’;
-> 1

Note: Because MySQL uses the C escape syntax in strings (for example, ‘\n’),
you must double any ‘\’ that you use in your LIKE strings. For example, to
search for ‘\n’, specify it as ‘\\n’. To search for ‘\’, specify it as ‘\\\\’ (the
backslashes are stripped once by the parser and another time when the pattern
match is done, leaving a single backslash to be matched).
Note: Currently LIKE is not multi-byte character safe. Comparison is done
character by character.

expr NOT LIKE pat [ESCAPE ’escape-char’]
Same as NOT (expr LIKE pat [ESCAPE ’escape-char’]).

expr SOUNDS LIKE expr
Same as SOUNDEX(expr)=SOUNDEX(expr) (available only in version 4.1 or later).

expr REGEXP pat
expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat.
The pattern can be an extended regular expression. See Appendix G [Regexp],
page 1017. Returns 1 if expr matches pat, otherwise returns 0. RLIKE is a

Chapter 6: MySQL Language Reference 491

synonym for REGEXP, provided for mSQL compatibility. Note: Because MySQL
uses the C escape syntax in strings (for example, ‘\n’), you must double any
‘\’ that you use in your REGEXP strings. As of MySQL Version 3.23.4, REGEXP
is case-insensitive for normal (not binary) strings:

mysql> SELECT ’Monty!’ REGEXP ’m%y%%’;
-> 0

mysql> SELECT ’Monty!’ REGEXP ’.*’;
-> 1

mysql> SELECT ’new*\n*line’ REGEXP ’new*.*line’;
-> 1

mysql> SELECT "a" REGEXP "A", "a" REGEXP BINARY "A";
-> 1 0

mysql> SELECT "a" REGEXP "^[a-d]";
-> 1

REGEXP and RLIKE use the current character set (ISO-8859-1 Latin1 by default)
when deciding the type of a character.

expr NOT REGEXP pat
expr NOT RLIKE pat

Same as NOT (expr REGEXP pat).

STRCMP(expr1,expr2)
STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller
than the second according to the current sort order, and 1 otherwise:

mysql> SELECT STRCMP(’text’, ’text2’);
-> -1

mysql> SELECT STRCMP(’text2’, ’text’);
-> 1

mysql> SELECT STRCMP(’text’, ’text’);
-> 0

MATCH (col1,col2,...) AGAINST (expr)
MATCH (col1,col2,...) AGAINST (expr IN BOOLEAN MODE)

MATCH ... AGAINST() is used for full-text search and returns relevance - sim-
ilarity measure between the text in columns (col1,col2,...) and the query
expr. Relevance is a positive floating-point number. Zero relevance means no
similarity. MATCH ... AGAINST() is available in MySQL version 3.23.23 or later.
IN BOOLEAN MODE extension was added in version 4.0.1. For details and usage
examples, see Section 6.8 [Fulltext Search], page 583.

6.3.2.2 Case-Sensitivity

BINARY The BINARY operator casts the string following it to a binary string. This is an
easy way to force a column comparison to be case-sensitive even if the column
isn’t defined as BINARY or BLOB:

mysql> SELECT "a" = "A";
-> 1

492 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT BINARY "a" = "A";
-> 0

BINARY string is a shorthand for CAST(string AS BINARY). See Section 6.3.5
[Cast Functions], page 513. BINARY was introduced in MySQL Version 3.23.0.

Note that in some context MySQL will not be able to use the index efficiently
when you cast an indexed column to BINARY.

If you want to compare a blob case-insensitively you can always convert the blob to upper
case before doing the comparison:

SELECT ’A’ LIKE UPPER(blob_col) FROM table_name;

We plan to soon introduce casting between different character sets to make string compar-
ison even more flexible.

6.3.3 Numeric Functions

6.3.3.1 Arithmetic Operations

The usual arithmetic operators are available. Note that in the case of ‘-’, ‘+’, and ‘*’, the
result is calculated with BIGINT (64-bit) precision if both arguments are integers! If one of
the argument is an unsigned integer, and the other argument is also an integer, the result
will be an unsigned integer. See Section 6.3.5 [Cast Functions], page 513.

+ Addition:

mysql> SELECT 3+5;
-> 8

- Subtraction:

mysql> SELECT 3-5;
-> -2

* Multiplication:

mysql> SELECT 3*5;
-> 15

mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0

mysql> SELECT 18014398509481984*18014398509481984;
-> 0

The result of the last expression is incorrect because the result of the integer
multiplication exceeds the 64-bit range of BIGINT calculations.

/ Division:

mysql> SELECT 3/5;
-> 0.60

Division by zero produces a NULL result:

Chapter 6: MySQL Language Reference 493

mysql> SELECT 102/(1-1);
-> NULL

A division will be calculated with BIGINT arithmetic only if performed in a
context where its result is converted to an integer!

6.3.3.2 Mathematical Functions

All mathematical functions return NULL in case of an error.

- Unary minus. Changes the sign of the argument:

mysql> SELECT - 2;
-> -2

Note that if this operator is used with a BIGINT, the return value is a BIGINT!
This means that you should avoid using - on integers that may have the value
of -2^63!

ABS(X) Returns the absolute value of X:

mysql> SELECT ABS(2);
-> 2

mysql> SELECT ABS(-32);
-> 32

This function is safe to use with BIGINT values.

SIGN(X) Returns the sign of the argument as -1, 0, or 1, depending on whether X is
negative, zero, or positive:

mysql> SELECT SIGN(-32);
-> -1

mysql> SELECT SIGN(0);
-> 0

mysql> SELECT SIGN(234);
-> 1

MOD(N,M)
% Modulo (like the % operator in C). Returns the remainder of N divided by M:

mysql> SELECT MOD(234, 10);
-> 4

mysql> SELECT 253 % 7;
-> 1

mysql> SELECT MOD(29,9);
-> 2

mysql> SELECT 29 MOD 9;
-> 2

This function is safe to use with BIGINT values. The last example only works
in MySQL 4.1

FLOOR(X) Returns the largest integer value not greater than X:

494 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT FLOOR(1.23);
-> 1

mysql> SELECT FLOOR(-1.23);
-> -2

Note that the return value is converted to a BIGINT!

CEILING(X)
CEIL(X) Returns the smallest integer value not less than X:

mysql> SELECT CEILING(1.23);
-> 2

mysql> SELECT CEIL(-1.23);
-> -1

The CEIL() alias was added in version 4.0.6.
Note that the return value is converted to a BIGINT!

ROUND(X)
ROUND(X,D)

Returns the argument X, rounded to the nearest integer. With two arguments
rounded to a number to D decimals.

mysql> SELECT ROUND(-1.23);
-> -1

mysql> SELECT ROUND(-1.58);
-> -2

mysql> SELECT ROUND(1.58);
-> 2

mysql> SELECT ROUND(1.298, 1);
-> 1.3

mysql> SELECT ROUND(1.298, 0);
-> 1

mysql> SELECT ROUND(23.298, -1);
-> 20

Note that the behaviour of ROUND() when the argument is half way between two
integers depends on the C library implementation. Some round to the nearest
even number, always up, always down, or always toward zero. If you need one
kind of rounding, you should use a well-defined function like TRUNCATE() or
FLOOR() instead.

DIV Integer division. Similar to FLOOR() but safe with BIGINT values.
mysql> SELECT 5 DIV 2

-> 2

DIV is new in MySQL 4.1.0.

EXP(X) Returns the value of e (the base of natural logarithms) raised to the power of
X:

mysql> SELECT EXP(2);
-> 7.389056

mysql> SELECT EXP(-2);
-> 0.135335

Chapter 6: MySQL Language Reference 495

LN(X) Returns the natural logarithm of X:
mysql> SELECT LN(2);

-> 0.693147
mysql> SELECT LN(-2);

-> NULL

This function was added in MySQL version 4.0.3. It is synonymous with LOG(X)
in MySQL.

LOG(X)
LOG(B,X) If called with one parameter, this function returns the natural logarithm of X:

mysql> SELECT LOG(2);
-> 0.693147

mysql> SELECT LOG(-2);
-> NULL

If called with two parameters, this function returns the logarithm of X for an
arbitary base B:

mysql> SELECT LOG(2,65536);
-> 16.000000

mysql> SELECT LOG(1,100);
-> NULL

The arbitrary base option was added in MySQL version 4.0.3. LOG(B,X) is
equivalent to LOG(X)/LOG(B).

LOG2(X) Returns the base-2 logarithm of X:
mysql> SELECT LOG2(65536);

-> 16.000000
mysql> SELECT LOG2(-100);

-> NULL

LOG2() is useful for finding out how many bits a number would require for
storage. This function was added in MySQL version 4.0.3. In earlier versions,
you can use LOG(X)/LOG(2) instead.

LOG10(X) Returns the base-10 logarithm of X:
mysql> SELECT LOG10(2);

-> 0.301030
mysql> SELECT LOG10(100);

-> 2.000000
mysql> SELECT LOG10(-100);

-> NULL

POW(X,Y)
POWER(X,Y)

Returns the value of X raised to the power of Y:
mysql> SELECT POW(2,2);

-> 4.000000
mysql> SELECT POW(2,-2);

-> 0.250000

496 MySQL Technical Reference for Version 4.1.1-alpha

SQRT(X) Returns the non-negative square root of X:

mysql> SELECT SQRT(4);
-> 2.000000

mysql> SELECT SQRT(20);
-> 4.472136

PI() Returns the value of PI. The default shown number of decimals is 5, but MySQL
internally uses the full double precession for PI.

mysql> SELECT PI();
-> 3.141593

mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116

COS(X) Returns the cosine of X, where X is given in radians:

mysql> SELECT COS(PI());
-> -1.000000

SIN(X) Returns the sine of X, where X is given in radians:

mysql> SELECT SIN(PI());
-> 0.000000

TAN(X) Returns the tangent of X, where X is given in radians:

mysql> SELECT TAN(PI()+1);
-> 1.557408

ACOS(X) Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL
if X is not in the range -1 to 1:

mysql> SELECT ACOS(1);
-> 0.000000

mysql> SELECT ACOS(1.0001);
-> NULL

mysql> SELECT ACOS(0);
-> 1.570796

ASIN(X) Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X
is not in the range -1 to 1:

mysql> SELECT ASIN(0.2);
-> 0.201358

mysql> SELECT ASIN(’foo’);
-> 0.000000

ATAN(X) Returns the arc tangent of X, that is, the value whose tangent is X:

mysql> SELECT ATAN(2);
-> 1.107149

mysql> SELECT ATAN(-2);
-> -1.107149

Chapter 6: MySQL Language Reference 497

ATAN(Y,X)
ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating
the arc tangent of Y / X, except that the signs of both arguments are used to
determine the quadrant of the result:

mysql> SELECT ATAN(-2,2);
-> -0.785398

mysql> SELECT ATAN2(PI(),0);
-> 1.570796

COT(X) Returns the cotangent of X:

mysql> SELECT COT(12);
-> -1.57267341

mysql> SELECT COT(0);
-> NULL

CRC32(expr)
Computes a cyclic redundancy check value and returns a 32-bit unsigned value.
The result is NULL if the argument is NULL. The argument is expected be a
string and will be treated as one if it is not.

mysql> SELECT CRC32(’MySQL’);
-> 3259397556

CRC32() is available as of MySQL 4.1.0.

RAND()
RAND(N) Returns a random floating-point value in the range 0 to 1.0. If an integer

argument N is specified, it is used as the seed value (producing a repeatable
sequence):

mysql> SELECT RAND();
-> 0.9233482386203

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND();
-> 0.63553050033332

mysql> SELECT RAND();
-> 0.70100469486881

You can’t use a column with RAND() values in an ORDER BY clause, because
ORDER BY would evaluate the column multiple times. From version 3.23 you
can do: SELECT * FROM table_name ORDER BY RAND()

This is useful to get a random sample of a set SELECT * FROM table1,table2
WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000.

Note that a RAND() in a WHERE clause will be re-evaluated every time the WHERE
is executed.

498 MySQL Technical Reference for Version 4.1.1-alpha

RAND() is not meant to be a perfect random generator, but instead a fast way
to generate ad hoc random numbers that will be portable between platforms
for the same MySQL version.

LEAST(X,Y,...)
With two or more arguments, returns the smallest (minimum-valued) argument.
The arguments are compared using the following rules:
• If the return value is used in an INTEGER context, or all arguments are

integer-valued, they are compared as integers.
• If the return value is used in a REAL context, or all arguments are real-

valued, they are compared as reals.
• If any argument is a case-sensitive string, the arguments are compared as

case-sensitive strings.
• In other cases, the arguments are compared as case-insensitive strings:

mysql> SELECT LEAST(2,0);
-> 0

mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
-> 3.0

mysql> SELECT LEAST("B","A","C");
-> "A"

In MySQL versions prior to Version 3.22.5, you can use MIN() instead of LEAST.

GREATEST(X,Y,...)
Returns the largest (maximum-valued) argument. The arguments are compared
using the same rules as for LEAST:

mysql> SELECT GREATEST(2,0);
-> 2

mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
-> 767.0

mysql> SELECT GREATEST("B","A","C");
-> "C"

In MySQL versions prior to Version 3.22.5, you can use MAX() instead of
GREATEST.

DEGREES(X)
Returns the argument X, converted from radians to degrees:

mysql> SELECT DEGREES(PI());
-> 180.000000

RADIANS(X)
Returns the argument X, converted from degrees to radians:

mysql> SELECT RADIANS(90);
-> 1.570796

TRUNCATE(X,D)
Returns the number X, truncated to D decimals. If D is 0, the result will have
no decimal point or fractional part:

Chapter 6: MySQL Language Reference 499

mysql> SELECT TRUNCATE(1.223,1);
-> 1.2

mysql> SELECT TRUNCATE(1.999,1);
-> 1.9

mysql> SELECT TRUNCATE(1.999,0);
-> 1

mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9

Starting from MySQL 3.23.51, all numbers are rounded toward zero.
If D is negative, then the whole part of the number is zeroed out:

mysql> SELECT TRUNCATE(122,-2);
-> 100

Note that as decimal numbers are normally not stored as exact numbers in
computers, but as double-precision values, you may be fooled by the following
result:

mysql> SELECT TRUNCATE(10.28*100,0);
-> 1027

The above happens because 10.28 is actually stored as something like
10.2799999999999999.

6.3.4 Date and Time Functions

This section describes the functions that can be used to manipulate temporal values. See
Section 6.2.2 [Date and time types], page 460 for a description of the range of values each
date and time type has and the valid formats in which values may be specified.
Here is an example that uses date functions. The following query selects all records with a
date_col value from within the last 30 days:

mysql> SELECT something FROM tbl_name
WHERE TO_DAYS(NOW()) - TO_DAYS(date_col) <= 30;

(Note that the query will also select records with dates that lie in the future.)
Functions that expect date values usually will accept datetime values and ignore the time
part. Functions that expect time values usually will accept datetime values and ignore the
date part.
Functions that return the current date or time each are evaluated only once per query at
the start of query execution. This means that multiple references to a function such as
NOW() within a single query will always produce the same result. This principle also applies
to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and any of their
synonyms.
The return value ranges in the following function descriptions apply for complete dates. If
a date is a “zero” value or an incomplete date such as ’2001-11-00’, functions that extract
a part of a date may return 0. For example, DAYOFMONTH(’2001-11-00’) returns 0.

DATE(expr)
Extracts the date part of the date or datetime expression expr.

500 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT DATE(’2003-12-31 01:02:03’);
-> ’2003-12-31’

DATE() is available as of MySQL 4.1.1.

TIME(expr)
Extracts the time part of the time or datetime expression expr.

mysql> SELECT TIME(’2003-12-31 01:02:03’);
-> ’01:02:03’

mysql> SELECT TIME(’2003-12-31 01:02:03.000123’);
-> ’01:02:03.000123’

TIME() is available as of MySQL 4.1.1.

TIMESTAMP(expr)
TIMESTAMP(expr,expr2)

With one argument, returns the date or datetime expression expr as a datetime
value. With two arguments, adds the time expression expr2 to the date or
datetime expression expr and returns a datetime value.

mysql> SELECT TIMESTAMP(’2003-12-31’);
-> ’2003-12-31 00:00:00’

mysql> SELECT TIMESTAMP(’2003-12-31 12:00:00’,’12:00:00’);
-> ’2004-01-01 00:00:00’

TIMESTAMP() is available as of MySQL 4.1.1.

DAYOFWEEK(date)
Returns the weekday index for date (1 = Sunday, 2 = Monday, ... 7 = Satur-
day). These index values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK(’1998-02-03’);
-> 3

WEEKDAY(date)
Returns the weekday index for date (0 = Monday, 1 = Tuesday, ... 6 = Sunday):

mysql> SELECT WEEKDAY(’1998-02-03 22:23:00’);
-> 1

mysql> SELECT WEEKDAY(’1997-11-05’);
-> 2

DAYOFMONTH(date)
Returns the day of the month for date, in the range 1 to 31:

mysql> SELECT DAYOFMONTH(’1998-02-03’);
-> 3

DAY(date)
DAY() is a synonym for DAYOFMONTH(). It is available as of MySQL 4.1.1.

DAYOFYEAR(date)
Returns the day of the year for date, in the range 1 to 366:

mysql> SELECT DAYOFYEAR(’1998-02-03’);
-> 34

Chapter 6: MySQL Language Reference 501

MONTH(date)
Returns the month for date, in the range 1 to 12:

mysql> SELECT MONTH(’1998-02-03’);
-> 2

DAYNAME(date)
Returns the name of the weekday for date:

mysql> SELECT DAYNAME(’1998-02-05’);
-> ’Thursday’

MONTHNAME(date)
Returns the name of the month for date:

mysql> SELECT MONTHNAME(’1998-02-05’);
-> ’February’

QUARTER(date)
Returns the quarter of the year for date, in the range 1 to 4:

mysql> SELECT QUARTER(’98-04-01’);
-> 2

WEEK(date)
WEEK(date,start)

With a single argument, returns the week for date, in the range 0 to 53 (yes,
there may be the beginnings of a week 53), for locations where Sunday is the
first day of the week. The two-argument form of WEEK() allows you to specify
whether the week starts on Sunday or Monday and whether the return value
should be in the range 0-53 or 1-52.
The following table demonstrates how the start argument works:
Value Meaning
0 Week starts on Sunday; return value range is 0 to 53
1 Week starts on Monday; return value range is 0 to 53
2 Week starts on Sunday; return value range is 1 to 53
3 Week starts on Monday; return value range is 1 to 53 (ISO

8601)
The start value of 3 can be used as of MySQL 4.0.5.

mysql> SELECT WEEK(’1998-02-20’);
-> 7

mysql> SELECT WEEK(’1998-02-20’,0);
-> 7

mysql> SELECT WEEK(’1998-02-20’,1);
-> 8

mysql> SELECT WEEK(’1998-12-31’,1);
-> 53

For MySQL 3.23 and 4.0, the default value for the start argument is 0. In
MySQL 4.1, you can control the default value of the start argument by using
the default_week_format variable. The syntax for setting default_week_
format is:

502 MySQL Technical Reference for Version 4.1.1-alpha

SET [SESSION | GLOBAL] default_week_format = {0|1|2|3};

Note: In Version 4.0, WEEK(date,0) was changed to match the calendar in
the USA. Before that, WEEK() was calculated incorrectly for dates in USA. (In
effect, WEEK(date) and WEEK(date,0) was incorrect for all cases.)
Note that if a date falls in the last week of the previous year, MySQL will return
0 if you don’t use 2 or 3 as the optional start argument:

mysql> SELECT YEAR(’2000-01-01’), WEEK(’2000-01-01’,0);
-> 2000, 0

One might argue that MySQL should return 52 for the WEEK() function, because
the given date actually occurs in the 52nd week of 1999. We decided to return
0 instead as we want the function to return “the week number in the given
year.” This makes the usage of the WEEK() function reliable when combined
with other functions that extract a date part from a date.
If you would prefer the result to be evaluated with respect to the year that
contains the first day of the week for the given date, you should use 2 or 3 as
the optional start argument.

mysql> SELECT WEEK(’2000-01-01’,2);
-> 52

Alternatively, use the YEARWEEK() function:
mysql> SELECT YEARWEEK(’2000-01-01’);

-> 199952
mysql> SELECT MID(YEARWEEK(’2000-01-01’),5,2);

-> ’52’

WEEKOFYEAR(date)
Returns the calendar week of the date as a number in the range from 1 to 53.

mysql> SELECT WEEKOFYEAR(’1998-02-20’);
-> 8

WEEKOFYEAR() is available as of MySQL 4.1.1.

YEAR(date)
Returns the year for date, in the range 1000 to 9999:

mysql> SELECT YEAR(’98-02-03’);
-> 1998

YEARWEEK(date)
YEARWEEK(date,start)

Returns year and week for a date. The start argument works exactly like the
start argument to WEEK(). Note that the year in the result may be different
from the year in the date argument for the first and the last week of the year:

mysql> SELECT YEARWEEK(’1987-01-01’);
-> 198653

Note that the week number is different from what the WEEK() function would
return (0) for optional arguments 0 or 1, as WEEK() then returns the week in
the context of the given year.

Chapter 6: MySQL Language Reference 503

HOUR(time)
Returns the hour for time. The range of the return value will be 0 to 23 for
time-of-day values:

mysql> SELECT HOUR(’10:05:03’);
-> 10

However, the range of TIME values actually is much larger, so HOUR can return
values greater than 23:

mysql> SELECT HOUR(’272:59:59’);
-> 272

MINUTE(time)
Returns the minute for time, in the range 0 to 59:

mysql> SELECT MINUTE(’98-02-03 10:05:03’);
-> 5

SECOND(time)
Returns the second for time, in the range 0 to 59:

mysql> SELECT SECOND(’10:05:03’);
-> 3

MICROSECOND(expr)
Returns the microseconds from the time or datetime expression expr as a num-
ber in the range from 0 to 999999.

mysql> SELECT MICROSECOND(’12:00:00.123456’);
-> 123456

mysql> SELECT MICROSECOND(’1997-12-31 23:59:59.000010’);
-> 10

MICROSECOND() is available as of MySQL 4.1.1.

PERIOD_ADD(P,N)
Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in
the format YYYYMM.
Note that the period argument P is not a date value:

mysql> SELECT PERIOD_ADD(9801,2);
-> 199803

PERIOD_DIFF(P1,P2)
Returns the number of months between periods P1 and P2. P1 and P2 should
be in the format YYMM or YYYYMM.
Note that the period arguments P1 and P2 are not date values:

mysql> SELECT PERIOD_DIFF(9802,199703);
-> 11

DATE_ADD(date,INTERVAL expr type)
DATE_SUB(date,INTERVAL expr type)

These functions perform date arithmetic.

504 MySQL Technical Reference for Version 4.1.1-alpha

As of MySQL Version 3.23, INTERVAL expr type is allowed on either side of the
+ operator if the expression on the other side is a date or datetime value. For
the - operator, INTERVAL expr type is allowed only on the right side, because
it makes no sense to subtract a date or datetime value from an interval. (See
examples below.)
date is a DATETIME or DATE value specifying the starting date. expr is an
expression specifying the interval value to be added or subtracted from the
starting date. expr is a string; it may start with a ‘-’ for negative intervals.
type is a keyword indicating how the expression should be interpreted.
The following table shows how the type and expr arguments are related:
type Value Expected expr Format
SECOND SECONDS
MINUTE MINUTES
HOUR HOURS
DAY DAYS
MONTH MONTHS
YEAR YEARS
MINUTE_SECOND ’MINUTES:SECONDS’
HOUR_MINUTE ’HOURS:MINUTES’
DAY_HOUR ’DAYS HOURS’
YEAR_MONTH ’YEARS-MONTHS’
HOUR_SECOND ’HOURS:MINUTES:SECONDS’
DAY_MINUTE ’DAYS HOURS:MINUTES’
DAY_SECOND ’DAYS HOURS:MINUTES:SECONDS’
DAY_MICROSECOND ’DAYS.MICROSECONDS’
HOUR_MICROSECOND ’HOURS.MICROSECONDS’
MINUTE_MICROSECOND ’MINUTES.MICROSECONDS’
SECOND_MICROSECOND ’SECONDS.MICROSECONDS’
MICROSECOND ’MICROSECONDS’

The type values DAY_MICROSECOND, HOUR_MICROSECOND, MINUTE_MICROSECOND,
SECOND_MICROSECOND, and MICROSECOND are allowed as of MySQL 4.1.1.
MySQL allows any punctuation delimiter in the expr format. Those shown in
the table are the suggested delimiters. If the date argument is a DATE value
and your calculations involve only YEAR, MONTH, and DAY parts (that is, no time
parts), the result is a DATE value. Otherwise, the result is a DATETIME value:

mysql> SELECT ’1997-12-31 23:59:59’ + INTERVAL 1 SECOND;
-> ’1998-01-01 00:00:00’

mysql> SELECT INTERVAL 1 DAY + ’1997-12-31’;
-> ’1998-01-01’

mysql> SELECT ’1998-01-01’ - INTERVAL 1 SECOND;
-> ’1997-12-31 23:59:59’

mysql> SELECT DATE_ADD(’1997-12-31 23:59:59’,
-> INTERVAL 1 SECOND);

-> ’1998-01-01 00:00:00’
mysql> SELECT DATE_ADD(’1997-12-31 23:59:59’,

-> INTERVAL 1 DAY);

Chapter 6: MySQL Language Reference 505

-> ’1998-01-01 23:59:59’
mysql> SELECT DATE_ADD(’1997-12-31 23:59:59’,

-> INTERVAL ’1:1’ MINUTE_SECOND);
-> ’1998-01-01 00:01:00’

mysql> SELECT DATE_SUB(’1998-01-01 00:00:00’,
-> INTERVAL ’1 1:1:1’ DAY_SECOND);

-> ’1997-12-30 22:58:59’
mysql> SELECT DATE_ADD(’1998-01-01 00:00:00’,

-> INTERVAL ’-1 10’ DAY_HOUR);
-> ’1997-12-30 14:00:00’

mysql> SELECT DATE_SUB(’1998-01-02’, INTERVAL 31 DAY);
-> ’1997-12-02’

mysql> SELECT DATE_ADD(’1992-12-31 23:59:59.000002’,
-> INTERVAL ’1.999999’ SECOND_MICROSECOND);

-> ’1993-01-01 00:00:01.000001’

If you specify an interval value that is too short (does not include all the interval
parts that would be expected from the type keyword), MySQL assumes you
have left out the leftmost parts of the interval value. For example, if you
specify a type of DAY_SECOND, the value of expr is expected to have days,
hours, minutes, and seconds parts. If you specify a value like ’1:10’, MySQL
assumes that the days and hours parts are missing and the value represents
minutes and seconds. In other words, ’1:10’ DAY_SECOND is interpreted in
such a way that it is equivalent to ’1:10’ MINUTE_SECOND. This is analogous
to the way that MySQL interprets TIME values as representing elapsed time
rather than as time of day.
Note that if you add to or subtract from a date value something that contains
a time part, the result is automatically converted to a datetime value:

mysql> SELECT DATE_ADD(’1999-01-01’, INTERVAL 1 DAY);
-> ’1999-01-02’

mysql> SELECT DATE_ADD(’1999-01-01’, INTERVAL 1 HOUR);
-> ’1999-01-01 01:00:00’

If you use really malformed dates, the result is NULL. If you add MONTH, YEAR_
MONTH, or YEAR and the resulting date has a day that is larger than the maximum
day for the new month, the day is adjusted to the maximum days in the new
month:

mysql> SELECT DATE_ADD(’1998-01-30’, interval 1 month);
-> ’1998-02-28’

Note from the preceding example that the keyword INTERVAL and the type
specifier are not case-sensitive.

ADDDATE(date,INTERVAL expr type)
SUBDATE(date,INTERVAL expr type)
ADDDATE(expr,days)
SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() and
SUBDATE() are synonyms for DATE_ADD() and DATE_SUB().

506 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT DATE_ADD(’1998-01-02’, INTERVAL 31 DAY);
-> ’1998-02-02’

mysql> SELECT ADDDATE(’1998-01-02’, INTERVAL 31 DAY);
-> ’1998-02-02’

mysql> SELECT DATE_SUB(’1998-01-02’, INTERVAL 31 DAY);
-> ’1997-12-02’

mysql> SELECT SUBDATE(’1998-01-02’, INTERVAL 31 DAY);
-> ’1997-12-02’

As of MySQL 4.1.1, the second syntax is allowed, where expr is a date or
datetime expression and days is the number of days to be added to or subtracted
from expr.

mysql> SELECT ADDDATE(’1998-01-02’, 31);
-> ’1998-02-02’

mysql> SELECT SUBDATE(’1998-01-02 12:00:00’, 31);
-> ’1997-12-02 12:00:00’

ADDTIME(expr,expr2)
SUBTIME(expr,expr2)

expr is a date or datetime expression, and expr2 is a time expression.

ADDTIME() adds expr2 to expr and returns the result. SUBTIME() subtracts
expr2 from expr and returns the result.

mysql> SELECT ADDTIME("1997-12-31 23:59:59.999999", "1 1:1:1.000002");
-> ’1998-01-02 01:01:01.000001’

mysql> SELECT SUBTIME("1997-12-31 23:59:59.999999", "1 1:1:1.000002");
-> ’1997-12-30 22:58:58.999997’

mysql> SELECT ADDTIME("01:00:00.999999", "02:00:00.999998");
-> ’03:00:01.999997’

mysql> SELECT SUBTIME("01:00:00.999999", "02:00:00.999998");
-> ’-00:59:59.999999’

ADDTIME() and SUBTIME() were added in MySQL 4.1.1.

EXTRACT(type FROM date)
The EXTRACT() function uses the same kinds of interval type specifiers as DATE_
ADD() or DATE_SUB(), but extracts parts from the date rather than performing
date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM "1999-07-02");
-> 1999

mysql> SELECT EXTRACT(YEAR_MONTH FROM "1999-07-02 01:02:03");
-> 199907

mysql> SELECT EXTRACT(DAY_MINUTE FROM "1999-07-02 01:02:03");
-> 20102

mysql> SELECT EXTRACT(MICROSECOND FROM "2003-01-02 10:30:00.00123");
-> 123

Chapter 6: MySQL Language Reference 507

DATEDIFF(expr,expr2)
TIMEDIFF(expr,expr2)

DATEDIFF() returns the number of days between the start date expr and the
end date expr2. expr and expr2 are date or date-and-time expressions. Only
the date parts of the values are used in the calculation.
TIMEDIFF() returns the time between the start time expr and the end time
expr2. expr and expr2 are time or date-and-time expressions, but both must
be of the same type.

mysql> SELECT DATEDIFF(’1997-12-31 23:59:59’,’1997-12-30’);
-> 1

mysql> SELECT DATEDIFF(’1997-11-31 23:59:59’,’1997-12-31’);
-> -30

mysql> SELECT TIMEDIFF(’2000:01:01 00:00:00’, ’2000:01:01 00:00:00.000001’);
-> ’-00:00:00.000001’

mysql> SELECT TIMEDIFF(’1997-12-31 23:59:59.000001’,’1997-12-30 01:01:01.000002’);
-> ’46:58:57.999999’

DATEDIFF() and TIMEDIFF() were added in MySQL 4.1.1.

TO_DAYS(date)
Given a date date, returns a daynumber (the number of days since year 0):

mysql> SELECT TO_DAYS(950501);
-> 728779

mysql> SELECT TO_DAYS(’1997-10-07’);
-> 729669

TO_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it doesn’t take into account the days that
were lost when the calendar was changed.

FROM_DAYS(N)
Given a daynumber N, returns a DATE value:

mysql> SELECT FROM_DAYS(729669);
-> ’1997-10-07’

FROM_DAYS() is not intended for use with values that precede the advent of the
Gregorian calendar (1582), because it doesn’t take into account the days that
were lost when the calendar was changed.

DATE_FORMAT(date,format)
Formats the date value according to the format string. The following specifiers
may be used in the format string:
Specifier Description
%M Month name (January..December)
%W Weekday name (Sunday..Saturday)
%D Day of the month with English suffix (0th, 1st, 2nd, 3rd,

etc.)
%Y Year, numeric, 4 digits
%y Year, numeric, 2 digits
%X Year for the week where Sunday is the first day of the

week, numeric, 4 digits; used with %V

508 MySQL Technical Reference for Version 4.1.1-alpha

%x Year for the week, where Monday is the first day of the
week, numeric, 4 digits; used with %v

%a Abbreviated weekday name (Sun..Sat)
%d Day of the month, numeric (00..31)
%e Day of the month, numeric (0..31)
%m Month, numeric (00..12)
%c Month, numeric (0..12)
%b Abbreviated month name (Jan..Dec)
%j Day of year (001..366)
%H Hour (00..23)
%k Hour (0..23)
%h Hour (01..12)
%I Hour (01..12)
%l Hour (1..12)
%i Minutes, numeric (00..59)
%r Time, 12-hour (hh:mm:ss followed by AM or PM)
%T Time, 24-hour (hh:mm:ss)
%S Seconds (00..59)
%s Seconds (00..59)
%f Microseconds (000000..999999)
%p AM or PM
%w Day of the week (0=Sunday..6=Saturday)
%U Week (00..53), where Sunday is the first day of the week
%u Week (00..53), where Monday is the first day of the week
%V Week (01..53), where Sunday is the first day of the week;

used with %X
%v Week (01..53), where Monday is the first day of the week;

used with %x
%% A literal ‘%’.

All other characters are just copied to the result without interpretation.

The %f format specifier is available as of MySQL 4.1.1.

As of MySQL Version 3.23, the ‘%’ character is required before format specifier
characters. In earlier versions of MySQL, ‘%’ was optional.

The reason the ranges for the month and day specifiers begin with zero is
that MySQL allows incomplete dates such as ’2004-00-00’ to be stored as of
MySQL 3.23.

mysql> SELECT DATE_FORMAT(’1997-10-04 22:23:00’, ’%W %M %Y’);
-> ’Saturday October 1997’

mysql> SELECT DATE_FORMAT(’1997-10-04 22:23:00’, ’%H:%i:%s’);
-> ’22:23:00’

mysql> SELECT DATE_FORMAT(’1997-10-04 22:23:00’,
’%D %y %a %d %m %b %j’);

-> ’4th 97 Sat 04 10 Oct 277’
mysql> SELECT DATE_FORMAT(’1997-10-04 22:23:00’,

’%H %k %I %r %T %S %w’);
-> ’22 22 10 10:23:00 PM 22:23:00 00 6’

Chapter 6: MySQL Language Reference 509

mysql> SELECT DATE_FORMAT(’1999-01-01’, ’%X %V’);
-> ’1998 52’

STR_TO_DATE(str,format)
This is the reverse function of the DATE_FORMAT() function. It takes a string
str, and a format string format, and returns a DATETIME value. The date,
time, or datetime values contained in str should be given in the format indi-
cated by format. For the specifiers that can be used in format, see the table
in the DATE_FORMAT() function description. All other characters are just taken
verbatim, thus not being interpreted. If str contains an illegal date, time, or
datetime value, STR_TO_DATE() returns NULL.

mysql> SELECT STR_TO_DATE(’2003-10-03’)
-> 2003-10-03 00:00:00

mysql> SELECT STR_TO_DATE(’03.10.2003 09.20’, ’%d.%m.%Y %H.%i’)
-> 2003-10-03 09:20:00

mysql> SELECT STR_TO_DATE(’10rap’, ’%crap’)
-> 0000-10-00 00:00:00

mysql> SELECT STR_TO_DATE(’2003-15-10 00:00:00’, ’%Y-%m-%d %H:%i:%s’)
-> NULL

STR_TO_DATE() is available as of MySQL 4.1.1.

GET_FORMAT(DATE | TIME | TIMESTAMP, ’EUR’ | ’USA’ | ’JIS’ | ’ISO’ | ’INTERNAL’)
Returns a format string. This function is useful in combination with the DATE_
FORMAT() and the STR_TO_DATE() functions, and when setting the server vari-
ables DATE_FORMAT, TIME_FORMAT, and DATETIME_FORMAT. The three possible
values for the first argument and the five possible values for the second argu-
ment result in 15 possible format strings (for the specifiers used, see the table
in the DATE_FORMAT() function description):
Function call Result
GET_FORMAT(DATE,’USA’) ’%m.%d.%Y’
GET_FORMAT(DATE,’JIS’) ’%Y-%m-%d’
GET_FORMAT(DATE,’ISO’) ’%Y-%m-%d’
GET_FORMAT(DATE,’EUR’) ’%d.%m.%Y’
GET_FORMAT(DATE,’INTERNAL’) ’%Y%m%d’
GET_FORMAT(TIMESTAMP,’USA’) ’%Y-%m-%d-%H.%i.%s’
GET_FORMAT(TIMESTAMP,’JIS’) ’%Y-%m-%d %H:%i:%s’
GET_FORMAT(TIMESTAMP,’ISO’) ’%Y-%m-%d %H:%i:%s’
GET_FORMAT(TIMESTAMP,’EUR’) ’%Y-%m-%d-%H.%i.%s’
GET_FORMAT(TIMESTAMP,’INTERNAL’) ’%Y%m%d%H%i%s’
GET_FORMAT(TIME,’USA’) ’%h:%i:%s %p’
GET_FORMAT(TIME,’JIS’) ’%H:%i:%s’
GET_FORMAT(TIME,’ISO’) ’%H:%i:%s’
GET_FORMAT(TIME,’EUR’) ’%H.%i.%S’
GET_FORMAT(TIME,’INTERNAL’) ’%H%i%s’

ISO format is ISO 9075, not ISO 8601.
mysql> SELECT DATE_FORMAT(’2003-10-03’, GET_FORMAT(DATE, ’EUR’)

-> ’03.10.2003’

510 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT STR_TO_DATE(’10.31.2003’, GET_FORMAT(DATE, ’USA’))
-> 2003-10-31

mysql> SET DATE_FORMAT=GET_FORMAT(DATE, ’USA’); SELECT ’2003-10-31’;
-> 10-31-2003

GET_FORMAT() is available as of MySQL 4.1.1. See See Section 5.5.6 [SET
OPTION], page 432.

TIME_FORMAT(time,format)
This is used like the DATE_FORMAT() function above, but the format string may
contain only those format specifiers that handle hours, minutes, and seconds.
Other specifiers produce a NULL value or 0.
If the time value contains an hour part that is greater than 23, the %H and %k
hour format specifiers produce a value larger than the usual range of 0..23.
The other hour format specifiers produce the hour value modulo 12:

mysql> SELECT TIME_FORMAT(’100:00:00’, ’%H %k %h %I %l’);
-> ’100 100 04 04 4’

MAKEDATE(year,dayofyear)
Returns a date, given year and day-of-year values. dayofyear must be greater
than 0 or the result will NULL.

mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);
-> ’2001-01-31’, ’2001-02-01’

mysql> SELECT MAKEDATE(2001,365), MAKEDATE(2004,365);
-> ’2001-12-31’, ’2004-12-30’

mysql> SELECT MAKEDATE(2001,0);
-> NULL

MAKEDATE() is available as of MySQL 4.1.1.

MAKETIME(hour,minute,second)
Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
-> ’12:15:30’

MAKETIME() is available as of MySQL 4.1.1.

CURDATE()
CURRENT_DATE
CURRENT_DATE()

Returns the current date as a value in ’YYYY-MM-DD’ or YYYYMMDD format,
depending on whether the function is used in a string or numeric context:

mysql> SELECT CURDATE();
-> ’1997-12-15’

mysql> SELECT CURDATE() + 0;
-> 19971215

CURTIME()
CURRENT_TIME
CURRENT_TIME()

Returns the current time as a value in ’HH:MM:SS’ or HHMMSS format, depending
on whether the function is used in a string or numeric context:

Chapter 6: MySQL Language Reference 511

mysql> SELECT CURTIME();
-> ’23:50:26’

mysql> SELECT CURTIME() + 0;
-> 235026

NOW()
SYSDATE()
CURRENT_TIMESTAMP
CURRENT_TIMESTAMP()
LOCALTIME
LOCALTIME()
LOCALTIMESTAMP
LOCALTIMESTAMP()

Returns the current date and time as a value in ’YYYY-MM-DD HH:MM:SS’ or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string
or numeric context:

mysql> SELECT NOW();
-> ’1997-12-15 23:50:26’

mysql> SELECT NOW() + 0;
-> 19971215235026

UNIX_TIMESTAMP()
UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since ’1970-
01-01 00:00:00’ GMT) as an unsigned integer. If UNIX_TIMESTAMP() is called
with a date argument, it returns the value of the argument as seconds since
’1970-01-01 00:00:00’ GMT. date may be a DATE string, a DATETIME string,
a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD in local time:

mysql> SELECT UNIX_TIMESTAMP();
-> 882226357

mysql> SELECT UNIX_TIMESTAMP(’1997-10-04 22:23:00’);
-> 875996580

When UNIX_TIMESTAMP is used on a TIMESTAMP column, the function returns the
internal timestamp value directly, with no implicit “string-to-Unix-timestamp”
conversion. If you pass an out-of-range date to UNIX_TIMESTAMP() it returns 0,
but please note that only basic checking is performed (year 1970-2037, month
01-12, day 01-31).
If you want to subtract UNIX_TIMESTAMP() columns, you may want to cast the
result to signed integers. See Section 6.3.5 [Cast Functions], page 513.

FROM_UNIXTIME(unix_timestamp)
FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in ’YYYY-
MM-DD HH:MM:SS’ or YYYYMMDDHHMMSS format, depending on whether the func-
tion is used in a string or numeric context:

mysql> SELECT FROM_UNIXTIME(875996580);
-> ’1997-10-04 22:23:00’

mysql> SELECT FROM_UNIXTIME(875996580) + 0;

512 MySQL Technical Reference for Version 4.1.1-alpha

-> 19971004222300

If format is given, the result is formatted according to the format string.
format may contain the same specifiers as those listed in the entry for the
DATE_FORMAT() function:

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
-> ’%Y %D %M %h:%i:%s %x’);

-> ’2003 6th August 06:22:58 2003’

SEC_TO_TIME(seconds)
Returns the seconds argument, converted to hours, minutes, and seconds, as a
value in ’HH:MM:SS’ or HHMMSS format, depending on whether the function is
used in a string or numeric context:

mysql> SELECT SEC_TO_TIME(2378);
-> ’00:39:38’

mysql> SELECT SEC_TO_TIME(2378) + 0;
-> 3938

TIME_TO_SEC(time)
Returns the time argument, converted to seconds:

mysql> SELECT TIME_TO_SEC(’22:23:00’);
-> 80580

mysql> SELECT TIME_TO_SEC(’00:39:38’);
-> 2378

UTC_DATE
UTC_DATE()

Returns the current UTC date as a value in ’YYYY-MM-DD’ or YYYYMMDD format,
depending on whether the function is used in a string or numeric context:

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
-> ’2003-08-14’, 20030814

UTC_DATE() is available as of MySQL 4.1.1.

UTC_TIME
UTC_TIME()

Returns the current UTC time as a value in ’HH:MM:SS’ or HHMMSS format,
depending on whether the function is used in a string or numeric context:

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
-> ’18:07:53’, 180753

UTC_TIME() is available as of MySQL 4.1.1.

UTC_TIMESTAMP
UTC_TIMESTAMP()

Returns the current UTC date and time as a value in ’YYYY-MM-DD HH:MM:SS’
or YYYYMMDDHHMMSS format, depending on whether the function is used in a
string or numeric context:

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
-> ’2003-08-14 18:08:04’, 20030814180804

UTC_TIMESTAMP() is available as of MySQL 4.1.1.

Chapter 6: MySQL Language Reference 513

6.3.5 Cast Functions

The CAST() and CONVERT() functions may be used to take a value of one type and produce
a value of another type. Their syntax is:

CAST(expression AS type)
CONVERT(expression,type)
CONVERT(expr USING transcoding_name)

The type value can be one of the following:
• BINARY

• CHAR

• DATE

• DATETIME

• SIGNED {INTEGER}

• TIME

• UNSIGNED {INTEGER}

CAST() and CONVERT() are available as of MySQL 4.0.2. The CHAR conversion type is
available as of 4.0.6. The USING form of CONVERT() is available as of 4.1.0.
CAST() and CONVERT(... USING ...) are SQL-99 syntax. The non-USING form of
CONVERT() is ODBC syntax.
The cast functions are useful when you want to create a column with a specific type in a
CREATE ... SELECT statement:

CREATE TABLE new_table SELECT CAST(’2000-01-01’ AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally sorting
of ENUM columns occurs using the internal numeric values. Casting the values to CHAR results
in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(string AS BINARY) is the same thing as BINARY string. CAST(expr AS CHAR) treats
the expression as a string with the default character set.
NOTE: In MysQL 4.0 the CAST() to DATE, DATETIME, or TIME only marks the column to
be a specific type but doesn’t change the value of the column.
In MySQL 4.1.0 the value is converted to the correct column type when it’s sent to the user
(this is a feature of how the new protocol in 4.1 sends date information to the client):

mysql> SELECT CAST(NOW() AS DATE);
-> 2003-05-26

In later MySQL versions (probably 4.1.2 or 5.0) we will fix that CAST also changes the result
if you use it as part of a more complex expression, like CONCAT("Date: ",CAST(NOW() AS
DATE)).
You should not use CAST() to extract data in different formats but instead use string
functions like LEFT or EXTRACT(). See Section 6.3.4 [Date and time functions], page 499.
To cast a string to a numeric value, you don’t normally have to do anything; just use the
string value as it would be a number:

514 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT 1+’1’;
-> 2

If you use a number in string context, the number will automatically be converted to a
BINARY string.

mysql> SELECT CONCAT("hello you ",2);
-> "hello you 2"

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using
numerical operations (like +) and one of the operands is unsigned integer, the result will
be unsigned. You can override this by using the SIGNED and UNSIGNED cast operators to
cast the operation to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)
-> 18446744073709551615

mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
-> -1

Note that if either operand is a floating-point value, the result is a floating-point value
and is not affected by the above rule. (In this context, DECIMAL values are regarded as
floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
-> -1.0

If you are using a string in an arithmetic operation, this is converted to a floating-point
number.
The handing of unsigned values was changed in MySQL 4.0 to be able to support BIGINT
values properly. If you have some code that you want to run in both MySQL 4.0 and
3.23 (in which case you probably can’t use the CAST() function), you can use the following
technique to get a signed result when subtracting two unsigned integer columns:

SELECT (unsigned_column_1+0.0)-(unsigned_column_2+0.0);

The idea is that the columns are converted to floating-point values before the subtraction
occurs.
If you get a problem with UNSIGNED columns in your old MySQL application when porting to
MySQL 4.0, you can use the --sql-mode=NO_UNSIGNED_SUBTRACTION option when starting
mysqld. Note however that as long as you use this, you will not be able to make efficient
use of the BIGINT UNSIGNED column type.
CONVERT() with USING is used to convert data between different character sets. In MySQL,
transcoding names are the same as the corresponding character set names. For example, this
statement converts the string ’abc’ in the server’s default character set to the corresponding
string in the utf8 character set:

SELECT CONVERT(’abc’ USING utf8);

6.3.6 Other Functions

6.3.6.1 Bit Functions

MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a max-
imum range of 64 bits.

Chapter 6: MySQL Language Reference 515

| Bitwise OR
mysql> SELECT 29 | 15;

-> 31

The result is an unsigned 64-bit integer.

& Bitwise AND
mysql> SELECT 29 & 15;

-> 13

The result is an unsigned 64-bit integer.

^ Bitwise XOR
mysql> SELECT 1 ^ 1;

-> 0
mysql> SELECT 1 ^ 0;

-> 1
mysql> SELECT 11 ^ 3;

-> 8

The result is an unsigned 64-bit integer.
XOR was added in version 4.0.2.

<< Shifts a longlong (BIGINT) number to the left:
mysql> SELECT 1 << 2;

-> 4

The result is an unsigned 64-bit integer.

>> Shifts a longlong (BIGINT) number to the right:
mysql> SELECT 4 >> 2;

-> 1

The result is an unsigned 64-bit integer.

~ Invert all bits:
mysql> SELECT 5 & ~1;

-> 4

The result is an unsigned 64-bit integer.

BIT_COUNT(N)
Returns the number of bits that are set in the argument N:

mysql> SELECT BIT_COUNT(29);
-> 4

6.3.6.2 Miscellaneous Functions

DATABASE()
Returns the current database name:

mysql> SELECT DATABASE();
-> ’test’

If there is no current database, DATABASE() returns NULL as of MySQL 4.1.1,
and the empty string before that.

516 MySQL Technical Reference for Version 4.1.1-alpha

USER()
SYSTEM_USER()
SESSION_USER()

Returns the current MySQL username and hostname:

mysql> SELECT USER();
-> ’davida@localhost’

The value indicates the username you specified when connecting to the server,
and the client host from which you connected. (Prior to MySQL Version 3.22.11,
the function value does not include the client hostname.)

You can extract just the username part, regardless of whether the value includes
a hostname part, like this:

mysql> SELECT SUBSTRING_INDEX(USER(),"@",1);
-> ’davida’

CURRENT_USER()
Returns the username and hostname that the current session was authenticated
as. This value corresponds to the account that is used for assessing your access
privileges. It may be different than the value of USER().

mysql> SELECT USER();
-> ’davida@localhost’

mysql> SELECT * FROM mysql.user;
-> ERROR 1044: Access denied for user: ’@localhost’ to database ’mysql’

mysql> SELECT CURRENT_USER();
-> ’@localhost’

The example illustrates that although the client specified a username of davida
(as indicated by the value of the USER() function), the server authenticated the
client using an anonymous user account (as seen by the empty username part
of the CURRENT_USER() value). One way this might occur is that there is no
account listed in the grant tables for davida.

PASSWORD(str)
OLD_PASSWORD(str)

Calculates a password string from the plaintext password str. This is the func-
tion that is used for encrypting MySQL passwords for storage in the Password
column of the user grant table:

mysql> SELECT PASSWORD(’badpwd’);
-> ’7f84554057dd964b’

PASSWORD() encryption is non-reversible.

PASSWORD() does not perform password encryption in the same way that Unix
passwords are encrypted. See ENCRYPT().

Note: The PASSWORD() function is used by the authentication system in MySQL
Server, you should NOT use it in your own applications. For that purpose,
use MD5() or SHA1() instead. Also see RFC-2195 for more information about
handling passwords and authentication securely in your application.

Chapter 6: MySQL Language Reference 517

ENCRYPT(str[,salt])
Encrypt str using the Unix crypt() system call. The salt argument should
be a string with two characters. (As of MySQL Version 3.22.16, salt may be
longer than two characters.)

mysql> SELECT ENCRYPT("hello");
-> ’VxuFAJXVARROc’

ENCRYPT() ignores all but the first 8 characters of str, at least on some systems.
This behaviour is determined by the implementation of the underlying crypt()
system call.

If crypt() is not available on your system, ENCRYPT() always returns NULL.
Because of this we recommend that you use MD5() or SHA1() instead; these two
functions exist on all platforms.

ENCODE(str,pass_str)
Encrypt str using pass_str as the password. To decrypt the result, use
DECODE().

The results is a binary string of the same length as string. If you want to save
it in a column, use a BLOB column type.

DECODE(crypt_str,pass_str)
Descrypts the encrypted string crypt_str using pass_str as the password.
crypt_str should be a string returned from ENCODE().

MD5(string)
Calculates an MD5 128-bit checksum for the string. The value is returned as a
32-digit hex number that may, for example, be used as a hash key:

mysql> SELECT MD5("testing");
-> ’ae2b1fca515949e5d54fb22b8ed95575’

This is the "RSA Data Security, Inc. MD5 Message-Digest Algorithm".

SHA1(string)
SHA(string)

Calculates an SHA1 160-bit checksum for the string, as described in RFC 3174
(Secure Hash Algorithm). The value is returned as a 40-digit hex number, or
NULL in case the input argument was NULL. One of the possible uses for this
function is as a hash key. You can also use it as cryptographically safe function
for storing passwords.

mysql> SELECT SHA1("abc");
-> ’a9993e364706816aba3e25717850c26c9cd0d89d’

SHA1() was added in version 4.0.2, and can be considered a cryptographically
more secure equivalent of MD5(). SHA() is synonym for SHA1().

AES_ENCRYPT(string,key_string)
AES_DECRYPT(string,key_string)

These functions allow encryption/decryption of data using the official AES (Ad-
vanced Encryption Standard) algorithm, previously known as Rijndael. Encod-
ing with a 128-bit key length is used, but you can extend it up to 256 bits by

518 MySQL Technical Reference for Version 4.1.1-alpha

modifying the source. We chose 128 bits because it is much faster and it is
usually secure enough.
The input arguments may be any length. If either argument is NULL, the result
of this function is also NULL.
As AES is a block-level algorithm, padding is used to encode uneven
length strings and so the result string length may be calculated as
16*(trunc(string length/16)+1).
If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL.
However, it is possible for AES_DECRYPT() to return a non-NULL value (possibly
garbage) if the input data or the key are invalid.
You can use the AES functions to store data in an encrypted form by modifying
your queries:

INSERT INTO t VALUES (1,AES_ENCRYPT(’text’,’password’));

You can get even more security by not transferring the key over the connection
for each query, which can be accomplished by storing it in a server side variable
at connection time:

SELECT @password:=’my password’;
INSERT INTO t VALUES (1,AES_ENCRYPT(’text’,@password));

AES_ENCRYPT() and AES_DECRYPT() were added in version 4.0.2, and can be
considered the most cryptographically secure encryption functions currently
available in MySQL.

DES_ENCRYPT(string_to_encrypt [, (key_number | key_string)])
Encrypts the string with the given key using the Triple-DES algorithm.
Note that this function only works if MySQL has been configured with SSL
support. See Section 4.4.10 [Secure connections], page 252.
The encryption key to use is chosen the following way:
Argument Description
Only one argument The first key from des-key-file is used.
key number The given key (0-9) from the des-key-file is used.
string The given key_string will be used to crypt string_to_

encrypt.
The return string will be a binary string where the first character will be
CHAR(128 | key_number).
The 128 is added to make it easier to recognise an encrypted key. If you use a
string key, key_number will be 127.
On error, this function returns NULL.
The string length for the result will be new_length= org_length + (8-(org_
length % 8))+1.
The des-key-file has the following format:

key_number des_key_string
key_number des_key_string

Each key_number must be a number in the range from 0 to 9. Lines in the
file may be in any order. des_key_string is the string that will be used to

Chapter 6: MySQL Language Reference 519

encrypt the message. Between the number and the key there should be at least
one space. The first key is the default key that will be used if you don’t specify
any key argument to DES_ENCRYPT()

You can tell MySQL to read new key values from the key file with the FLUSH
DES_KEY_FILE command. This requires the Reload_priv privilege.
One benefit of having a set of default keys is that it gives applications a way
to check for the existence of encrypted column values, without giving the end
user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table WHERE
crypted_credit_card = DES_ENCRYPT("credit_card_number");

DES_DECRYPT(string_to_decrypt [, key_string])
Decrypts a string encrypted with DES_ENCRYPT().
Note that this function only works if MySQL has been configured with SSL
support. See Section 4.4.10 [Secure connections], page 252.
If no key_string argument is given, DES_DECRYPT() examines the first byte of
the encrypted string to determine the DES key number that was used to encrypt
the original string, then reads the key from the des-key-file to decrypt the
message. For this to work the user must have the SUPER privilege.
If you pass this function a key_string argument, that string is used as the key
for decrypting the message.
If the string_to_decrypt doesn’t look like an encrypted string, MySQL will
return the given string_to_decrypt.
On error, this function returns NULL.

COMPRESS(string_to_compress)
Compresses a string.

mysql> SELECT LENGTH(COMPRESS(REPEAT("a",1000)));
-> 21

mysql> SELECT LENGTH(COMPRESS(""));
-> 0

mysql> SELECT LENGTH(COMPRESS("a"));
-> 13

mysql> SELECT LENGTH(COMPRESS(REPEAT("a",16)));
-> 15

COMPRESS() was added in MySQL version 4.1.1. If requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return
value is always NULL.

UNCOMPRESS(string_to_uncompress)
Uncompresses a string compressed by the COMPRESS() function.

mysql> SELECT UNCOMPRESS(COMPRESS("any string"));
-> ’any string’

UNCOMPRESS() was added in MySQL version 4.1.1. If requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return
value is always NULL.

520 MySQL Technical Reference for Version 4.1.1-alpha

UNCOMPRESSED_LENGTH(compressed_string)
Returns the length of a compressed string before compressing.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT("a",30)));
-> 30

UNCOMPRESSED_LENGTH() was added in MySQL version 4.1.1.

LAST_INSERT_ID([expr])
Returns the last automatically generated value that was inserted into an AUTO_
INCREMENT column.

mysql> SELECT LAST_INSERT_ID();
-> 195

The last ID that was generated is maintained in the server on a per-connection
basis. This means the value the function returns to a given client is the most
recent AUTO_INCREMENT value generated by that client. The value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their
own. This behaviour ensures that you can retrieve your own ID without concern
for the activity of other clients, and without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you update the
AUTO_INCREMENT column of a row with a non-magic value (that is, a value
that is not NULL and not 0).

If you insert many rows at the same time with an insert statement, LAST_
INSERT_ID() returns the value for the first inserted row. The reason for this
is to make it possible to easily reproduce the same INSERT statement against
some other server.

If expr is given as an argument to LAST_INSERT_ID(), then the value of the
argument is returned by the function, and is set as the next value to be returned
by LAST_INSERT_ID(). This can be used to simulate sequences:

First create the table:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

Then the table can be used to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);

You can generate sequences without calling LAST_INSERT_ID(), but the utility
of using the function this way is that the ID value is maintained in the server
as the last automatically generated value (multi-user safe). You can retrieve
the new ID as you would read any normal AUTO_INCREMENT value in MySQL.
For example, LAST_INSERT_ID() (without an argument) will return the new
ID. The C API function mysql_insert_id() can also be used to get the value.

Note that as mysql_insert_id() is only updated after INSERT and UPDATE
statements, so you can’t use the C API function to retrieve the value for LAST_
INSERT_ID(expr) after executing other SQL statements like SELECT or SET.
See Section 11.1.3.31 [mysql_insert_id()], page 742.

Chapter 6: MySQL Language Reference 521

FORMAT(X,D)
Formats the number X to a format like ’#,###,###.##’, rounded to D decimals,
and returns the result as a string. If D is 0, the result will have no decimal point
or fractional part:

mysql> SELECT FORMAT(12332.123456, 4);
-> ’12,332.1235’

mysql> SELECT FORMAT(12332.1,4);
-> ’12,332.1000’

mysql> SELECT FORMAT(12332.2,0);
-> ’12,332’

VERSION()
Returns a string indicating the MySQL server version:

mysql> SELECT VERSION();
-> ’3.23.13-log’

Note that if your version ends with -log this means that logging is enabled.

CONNECTION_ID()
Returns the connection ID (thread ID) for the connection. Every connection
has its own unique ID:

mysql> SELECT CONNECTION_ID();
-> 23786

GET_LOCK(str,timeout)
Tries to obtain a lock with a name given by the string str, with a timeout
of timeout seconds. Returns 1 if the lock was obtained successfully, 0 if the
attempt timed out (for example, because another client has already locked the
name), or NULL if an error occurred (such as running out of memory or the
thread was killed with mysqladmin kill). A lock is released when you execute
RELEASE_LOCK(), execute a new GET_LOCK(), or the thread terminates (either
normally or abnormally).
This function can be used to implement application locks or to simulate record
locks. Names are locked on a server-wide basis. If a name has been locked by
one client, GET_LOCK() blocks any request by another client for a lock with the
same name. This allows clients that agree on a given lock name to use the name
to perform cooperative advisory locking:

mysql> SELECT GET_LOCK("lock1",10);
-> 1

mysql> SELECT IS_FREE_LOCK("lock2");
-> 1

mysql> SELECT GET_LOCK("lock2",10);
-> 1

mysql> SELECT RELEASE_LOCK("lock2");
-> 1

mysql> SELECT RELEASE_LOCK("lock1");
-> NULL

Note that the second RELEASE_LOCK() call returns NULL because the lock
"lock1" was automatically released by the second GET_LOCK() call.

522 MySQL Technical Reference for Version 4.1.1-alpha

RELEASE_LOCK(str)
Releases the lock named by the string str that was obtained with GET_LOCK().
Returns 1 if the lock was released, 0 if the lock wasn’t locked by this thread (in
which case the lock is not released), and NULL if the named lock didn’t exist.
(The lock will not exist if it was never obtained by a call to GET_LOCK() or if
it already has been released.)
The DO statement is convinient to use with RELEASE_LOCK(). See Section 6.4.10
[DO], page 563.

IS_FREE_LOCK(str)
Checks if the lock named str is free to use (that is, not locked). Returns 1 if
the lock is free (no one is using the lock), 0 if the lock is in use, and NULL on
errors (such as incorrect arguments).

BENCHMARK(count,expr)
The BENCHMARK() function executes the expression expr repeatedly count
times. It may be used to time how fast MySQL processes the expression. The
result value is always 0. The intended use is in the mysql client, which reports
query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE("hello","goodbye"));
+--+
| BENCHMARK(1000000,ENCODE("hello","goodbye")) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server
end. It may be advisable to execute BENCHMARK() several times, and interpret
the result with regard to how heavily loaded the server machine is.

INET_NTOA(expr)
Given a numeric network address (4 or 8 byte), returns the dotted-quad repre-
sentation of the address as a string:

mysql> SELECT INET_NTOA(3520061480);
-> "209.207.224.40"

INET_ATON(expr)
Given the dotted-quad representation of a network address as a string, returns
an integer that represents the numeric value of the address. Addresses may be
4 or 8 byte addresses:

mysql> SELECT INET_ATON("209.207.224.40");
-> 3520061480

The generated number is always in network byte order; for example the above
number is calculated as 209*256^3 + 207*256^2 + 224*256 +40.

MASTER_POS_WAIT(log_name, log_pos [, timeout])
Blocks until the slave reaches (that is, has read and applied all updates up to)
the specified position in the master log. If master information is not initialised,

Chapter 6: MySQL Language Reference 523

or if the arguments are incorrect, returns NULL. If the slave is not running, will
block and wait until it is started and goes to or past the specified position. If
the slave is already past the specified position, returns immediately.

If timeout (new in 4.0.10) is specified, will give up waiting when timeout
seconds have elapsed. timeout must be greater than 0; a zero or negative
timeout means no timeout. The return value is the number of log events it
had to wait to get to the specified position, or NULL in case of error, or -1 if
the timeout has been exceeded.

This command is useful for control of master/slave synchronisation.

FOUND_ROWS()
A SELECT statement may include a LIMIT clause to restrict the number of
rows the server returns to the client. In some cases, it is desirable to know
how many rows the statement would have returned without the LIMIT, but
without running the statement again. To get this row count, include a SQL_
CALC_FOUND_ROWS option in the SELECT statement, then invoke FOUND_ROWS()
afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
WHERE id > 100 LIMIT 10;

mysql> SELECT FOUND_ROWS();

The second SELECT will return a number indicating how many rows the first
SELECT would have returned had it been written without the LIMIT clause. (If
the preceding SELECT statement does not include the SQL_CALC_FOUND_ROWS
option, then FOUND_ROWS() may return a different result when LIMIT is used
than when it is not.)

Note that if you are using SELECT SQL_CALC_FOUND_ROWS ... MySQL has to
calculate how many rows are in the full result set. However, this is faster than
running the query again without LIMIT, because the result set need not be sent
to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you
want to restrict the number of rows that a query returns, but also determine
the number of rows in the full result set without running the query again. An
example is a web script that presents a paged display containing links to the
pages that show other sections of a search result. Using FOUND_ROWS() allows
you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION
queries than for simple SELECT statements, because LIMIT may occur at multiple
places in a UNION. It may be applied to individual SELECT statements in the
UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row
count that would be returned without a global LIMIT. The conditions for use
of SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the
UNION.

524 MySQL Technical Reference for Version 4.1.1-alpha

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION
without ALL is used, duplicate removal occurs and the value of FOUND_
ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and
returns the number of rows in the temporary table that is created to process
the UNION.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() are available starting at MySQL ver-
sion 4.0.0.

6.3.7 Functions and Modifiers for Use with GROUP BY Clauses

6.3.7.1 GROUP BY Functions

If you use a group function in a statement containing no GROUP BY clause, it is equivalent
to grouping on all rows.

COUNT(expr)
Returns a count of the number of non-NULL values in the rows retrieved by a
SELECT statement:

mysql> SELECT student.student_name,COUNT(*)
-> FROM student,course
-> WHERE student.student_id=course.student_id
-> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows
retrieved, whether or not they contain NULL values.
COUNT(*) is optimised to return very quickly if the SELECT retrieves from one
table, no other columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimisation applies only to MyISAM and ISAM tables only, because an exact
record count is stored for these table types and can be accessed very quickly.
For transactional storage engines (InnodB, BDB), storing an exact row count
is more problematic because multiple transactions may be occurring, each of
which may affect the count.

COUNT(DISTINCT expr,[expr...])
Returns a count of the number of different non-NULL values:

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL you can get the number of distinct expression combinations that
don’t contain NULL by giving a list of expressions. In SQL-99 you would have
to do a concatenation of all expressions inside COUNT(DISTINCT ...).

AVG(expr)
Returns the average value of expr:

Chapter 6: MySQL Language Reference 525

mysql> SELECT student_name, AVG(test_score)
-> FROM student
-> GROUP BY student_name;

MIN(expr)
MAX(expr)

Returns the minimum or maximum value of expr. MIN() and MAX() may take
a string argument; in such cases they return the minimum or maximum string
value. See Section 5.4.3 [MySQL indexes], page 421.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;

In MIN(), MAX() and other aggregate functions, MySQL currently compares
ENUM and SET columns by their string value rather than by the string’s relative
position in the set. This will be rectified.

SUM(expr)
Returns the sum of expr. Note that if the return set has no rows, it returns
NULL!

GROUP_CONCAT(expr)
Full syntax:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] [,col ...]]
[SEPARATOR str_val])

This function was added in MySQL version 4.1. It returns a string result with
the concatenated values from a group:

mysql> SELECT student_name,
-> GROUP_CONCAT(test_score)
-> FROM student
-> GROUP BY student_name;

or
mysql> SELECT student_name,

-> GROUP_CONCAT(DISTINCT test_score
-> ORDER BY test_score DESC SEPARATOR " ")
-> FROM student
-> GROUP BY student_name;

In MySQL you can get the concatenated values of expression combinations.
You can eliminate duplicate values by using DISTINCT. If you want to sort
values in the result you should use ORDER BY clause. To sort in reverse order,
add the DESC (descending) keyword to the name of the column you are sorting
by in the ORDER BY clause. The default is ascending order; this may be specified
explicitly using the ASC keyword. SEPARATOR is the string value which should
be inserted between values of result. The default is a comma (‘","’). You can
remove the separator altogether by specifying SEPARATOR "".
You can set a maximum allowed length with the variable group_concat_max_
len in your configuration. The syntax to do this at runtime is:

526 MySQL Technical Reference for Version 4.1.1-alpha

SET [SESSION | GLOBAL] group_concat_max_len = unsigned_integer;

If a maximum length has been set, the result is truncated to this maximum
length.
The GROUP_CONCAT() function is an enhanced implementation of the basic
LIST() function supported by Sybase SQL Anywhere. GROUP_CONCAT() is back-
ward compatible with the extremely limited functionality of LIST(), if only one
column and no other options are specified. LIST() does have a default sorting
order.

VARIANCE(expr)
Returns the standard variance of expr (considering rows as the whole popula-
tion, not as a sample; so it has the number of rows as denominator). This is an
extension to SQL-99 (available only in version 4.1 or later).

STD(expr)
STDDEV(expr)

Returns the standard deviation of expr (the square root of VARIANCE(). This
is an extension to SQL-99. The STDDEV() form of this function is provided for
Oracle compatibility.

BIT_OR(expr)
Returns the bitwise OR of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision.
Function returns 0 if there was no matching rows.

BIT_XOR(expr)
Returns the bitwise XOR of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision.
Function returns 0 if there was no matching rows.
This function is available as of MySQL 4.1.1.

BIT_AND(expr)
Returns the bitwise AND of all bits in expr. The calculation is performed with
64-bit (BIGINT) precision.
Function returns -1 if there was no matching rows.

6.3.7.2 GROUP BY Modifiers

As of MySQL 4.1.1, the GROUP BY clause allows a WITH ROLLUP modifier that causes extra
rows to be added to the summary output. These rows represent higher-level (or super-
aggregate) summary operations. ROLLUP thus allows you to answer questions at multiple
levels of analysis with a single query. It can be used, for example, to provide support for
OLAP (Online Analytical Processing) operations.
As an illustration, suppose that a table named sales has year, country, product, and
profit columns for recording sales profitability:

CREATE TABLE sales
(

year INT NOT NULL,

Chapter 6: MySQL Language Reference 527

country VARCHAR(20) NOT NULL,
product VARCHAR(32) NOT NULL,
profit INT

);

The table’s contents can be summarized per year with a simple GROUP BY like this:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total
profit summed over all years, you must add up the individual values yourself or run an
additional query.
Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding
a WITH ROLLUP modifier to the GROUP BY clause causes the query to produce another row
that shows the grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.
ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case,
each time there is a “break” (change in value) in any but the last grouping column, the
query produces an extra super-aggregate summary row.
For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10

528 MySQL Technical Reference for Version 4.1.1-alpha

2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis.
When ROLLUP is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four
levels of analysis, not just one. Here’s how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row
is produced showing the total for all products. These rows have the product column
set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing
the total for all countries and products. These rows have the country and products
columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand
total for all years, countries, and products. This row has the year, country, and
products columns set to NULL.

Other Considerations When using ROLLUP

The following items list some behaviours specific to the MySQL implementation of ROLLUP:

Chapter 6: MySQL Language Reference 529

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. (In
other words, ROLLUP and ORDER BY are mutually exclusive.) However, you still have some
control over sort order. GROUP BY in MySQL sorts results, and you can use explicit ASC and
DESC keywords with columns named in the GROUP BY list to specify sort order for individual
columns. (The higher-level summary rows added by ROLLUP still appear after the rows from
which they are calculated, regardless of the sort order.)
LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied
after ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP
-> LIMIT 5;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Note that using LIMIT with ROLLUP may produce results that are more difficult to interpret,
because you have less context for understanding the super-aggregate rows.
The NULL indicators in each super-aggregate row are produced when the row is sent to the
client. The server looks at the columns named in the GROUP BY clause following the leftmost
one that has changed value. For any column in the result set with a name that is a lexical
match to any of those names, its value is set to NULL. (If you specify grouping columns by
column number, the server identifies which columns to set to NULL by number.)
Because the NULL values in the super-aggregate rows are placed into the result set at such a
late stage in query processing, you cannot test them as NULL values within the query itself.
For example, you cannot add HAVING product IS NULL to the query to eliminate from the
output all but the super-aggregate rows.
On the other hand, the NULL values do appear as NULL on the client side and can be tested
as such using any MySQL client programming interface.

6.3.7.3 GROUP BY with Hidden Fields

MySQL has extended the use of GROUP BY. You can use columns or calculations in the
SELECT expressions that don’t appear in the GROUP BY part. This stands for any possible
value for this group. You can use this to get better performance by avoiding sorting and
grouping on unnecessary items. For example, you don’t need to group on customer.name
in the following query:

mysql> SELECT order.custid,customer.name,MAX(payments)
-> FROM order,customer
-> WHERE order.custid = customer.custid

530 MySQL Technical Reference for Version 4.1.1-alpha

-> GROUP BY order.custid;

In standard SQL, you would have to add customer.name to the GROUP BY clause. In MySQL,
the name is redundant if you don’t run in ANSI mode.

Don’t use this feature if the columns you omit from the GROUP BY part aren’t unique in the
group! You will get unpredictable results.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it
isn’t unique. The following gives the value of column from the row containing the smallest
value in the sort column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,’ ’),column)),7)

See Section 3.6.4 [example-Maximum-column-group-row], page 185.

Note that if you are using MySQL Version 3.22 (or earlier) or if you are trying to follow
SQL-99, you can’t use expressions in GROUP BY or ORDER BY clauses. You can work around
this limitation by using an alias for the expression:

mysql> SELECT id,FLOOR(value/100) AS val FROM tbl_name
-> GROUP BY id,val ORDER BY val;

In MySQL Version 3.23 you can do:

mysql> SELECT id,FLOOR(value/100) FROM tbl_name ORDER BY RAND();

6.4 Data Manipulation: SELECT, INSERT, UPDATE, DELETE

6.4.1 SELECT Syntax

SELECT [STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY]
[DISTINCT | DISTINCTROW | ALL]

select_expression,...
[INTO {OUTFILE | DUMPFILE} ’file_name’ export_options]
[FROM table_references
[WHERE where_definition]
[GROUP BY {unsigned_integer | col_name | formula} [ASC | DESC], ...
[WITH ROLLUP]]

[HAVING where_definition]
[ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] ,...]
[LIMIT [offset,] row_count | row_count OFFSET offset]
[PROCEDURE procedure_name(argument_list)]
[FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables. Each select_expression
indicates a column you want to retrieve. SELECT may also be used to retrieve rows computed
without reference to any table. For example:

mysql> SELECT 1 + 1;
-> 2

Chapter 6: MySQL Language Reference 531

All clauses used must be given in exactly the order shown in the syntax description. For
example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY
clause.
• A SELECT expression may be given an alias using AS alias_name. The alias is used as

the expression’s column name and can be used with ORDER BY or HAVING clauses. For
example:

mysql> SELECT CONCAT(last_name,’, ’,first_name) AS full_name
FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a SELECT expression. The preceding example
could have been written like this:

mysql> SELECT CONCAT(last_name,’, ’,first_name) full_name
FROM mytable ORDER BY full_name;

Because the AS is optional, a subtle problem can occur if you forget the comma be-
tween two SELECT expressions: MySQL will interpret the second as an alias name. For
example, in the following statement, columnb is treated as an alias name:

mysql> SELECT columna columnb FROM mytable;

• It is not allowed to use a column alias in a WHERE clause, because the column value may
not yet be determined when the WHERE clause is executed. See Section A.5.4 [Problems
with alias], page 865.

• The FROM table_references clause indicates the tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on
join syntax, see Section 6.4.1.1 [JOIN], page 535. For each table specified, you may
optionally specify an alias.

table_name [[AS] alias] [[USE INDEX (key_list)] | [IGNORE INDEX (key_list)] | FORCE INDEX (key_list)]]

As of MySQL Version 3.23.12, you can give hints about which index MySQL should
use when retrieving information from a table. This is useful if EXPLAIN shows that
MySQL is using the wrong index from the list of possible indexes. By specifying USE
INDEX (key_list), you can tell MySQL to use only one of the possible indexes to find
rows in the table. The alternative syntax IGNORE INDEX (key_list) can be used to
tell MySQL to not use some particular index.
In MySQL 4.0.9 you can also use FORCE INDEX. This acts likes USE INDEX (key_list)
but with the addition that a table scan is assumed to be VERY expensive. In other
words a table scan will only be used if there is no way to use one of the given index to
find rows in the table.
USE/IGNORE/FORCE KEY are synonyms for USE/IGNORE/FORCE INDEX.
Note: USE/IGNORE/FORCE INDEX only affects which indexes are used when MySQL
decides how to find rows in the table and how to do the join. It doesn’t affect whether
an index will be used when resolving an ORDER BY or GROUP BY.
In MySQL 4.0.14 you can use SET MAX_SEEKS_FOR_KEY=# as an alternative way to force
MySQL to prefer key scans instead of table scans.

• You can refer to a table as tbl_name (within the current database), or as dbname.tbl_
name to explicitly specify a database. You can refer to a column as col_name, tbl_
name.col_name, or db_name.tbl_name.col_name. You need not specify a tbl_name
or db_name.tbl_name prefix for a column reference in a SELECT statement unless the

532 MySQL Technical Reference for Version 4.1.1-alpha

reference would be ambiguous. See Section 6.1.2 [Legal names], page 444, for examples
of ambiguity that require the more explicit column reference forms.

• From version 4.1.0, you are allowed to specify DUAL as a dummy table name, in situa-
tions where no tables are referenced. This is purely compatibility feature, some other
servers require this syntax.

mysql> SELECT 1 + 1 FROM DUAL;
-> 2

• A table reference may be aliased using tbl_name [AS] alias_name:
mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2

-> WHERE t1.name = t2.name;
mysql> SELECT t1.name, t2.salary FROM employee t1, info t2

-> WHERE t1.name = t2.name;

• Columns selected for output may be referred to in ORDER BY and GROUP BY clauses using
column names, column aliases, or column positions. Column positions begin with 1:

mysql> SELECT college, region, seed FROM tournament
-> ORDER BY region, seed;

mysql> SELECT college, region AS r, seed AS s FROM tournament
-> ORDER BY r, s;

mysql> SELECT college, region, seed FROM tournament
-> ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column
in the ORDER BY clause that you are sorting by. The default is ascending order; this
may be specified explicitly using the ASC keyword.

• In the WHERE clause, you can use any of the functions that MySQL supports, except
for aggregate (summary) functions. See Section 6.3 [Functions], page 474.

• The HAVING clause can refer to any column or alias named in the select_expression.
It is applied nearly last, just before items are sent to the client, with no optimisation.
(LIMIT is applied after HAVING.) Don’t use HAVING for items that should be in the
WHERE clause. For example, do not write this:

mysql> SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:
mysql> SELECT col_name FROM tbl_name WHERE col_name > 0;

In MySQL Version 3.22.5 or later, you can also write queries like this:
mysql> SELECT user,MAX(salary) FROM users

-> GROUP BY user HAVING MAX(salary)>10;

In older MySQL versions, you can write this instead:
mysql> SELECT user,MAX(salary) AS sum FROM users

-> group by user HAVING sum>10;

• The options DISTINCT, DISTINCTROW and ALL specify whether duplicate rows should
be returned. The default is (ALL), all matching rows are returned. DISTINCT and
DISTINCTROW are synonyms and specify that duplicate rows in the result set should be
removed.

• STRAIGHT_JOIN, HIGH_PRIORITY, and options beginning with SQL_ are MySQL exten-
sions to SQL-99.

Chapter 6: MySQL Language Reference 533

• STRAIGHT_JOIN forces the optimiser to join the tables in the order in which they
are listed in the FROM clause. You can use this to speed up a query if the optimiser
joins the tables in non-optimal order. See Section 5.2.1 [EXPLAIN], page 399.

• HIGH_PRIORITY will give the SELECT higher priority than a statement that updates
a table. You should only use this for queries that are very fast and must be done
at once. A SELECT HIGH_PRIORITY query will run if the table is locked for read
even if there is an update statement that is waiting for the table to be free.

• SQL_BIG_RESULT can be used with GROUP BY or DISTINCT to tell the optimiser that
the result set will have many rows. In this case, MySQL will directly use disk-
based temporary tables if needed. MySQL will also, in this case, prefer sorting to
doing a temporary table with a key on the GROUP BY elements.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps
MySQL free the table locks early and helps in cases where it takes a long time to
send the result set to the client.

• SQL_SMALL_RESULT, a MySQL-specific option, can be used with GROUP BY or
DISTINCT to tell the optimiser that the result set will be small. In this case,
MySQL uses fast temporary tables to store the resulting table instead of using
sorting. In MySQL Version 3.23 this shouldn’t normally be needed.

• SQL_CALC_FOUND_ROWS (version 4.0.0 and up) tells MySQL to calculate how many
rows there would be in the result set, disregarding any LIMIT clause. The number
of rows can then be retrieved with SELECT FOUND_ROWS(). See Section 6.3.6.2
[Miscellaneous functions], page 515.
Please note that in versions prior to 4.1.0 this does not work with LIMIT 0, which
is optimised to return instantly (resulting in a row count of 0). See Section 5.2.9
[LIMIT optimisation], page 412.

• SQL_CACHE tells MySQL to store the query result in the query cache if you are
using QUERY_CACHE_TYPE=2 (DEMAND). See Section 6.9 [Query Cache], page 589.
In case of query with UNIONs and/or subqueries this option will take effect to be
used in any SELECT of the query.

• SQL_NO_CACHE tells MySQL not to store the query result in the query cache. See
Section 6.9 [Query Cache], page 589. In case of query with UNIONs and/or sub-
queries this option will take effect to be used in any SELECT of the query.

• If you use GROUP BY, the output rows will be sorted according to the GROUP BY as if you
had an ORDER BY over all the fields in the GROUP BY. MySQL has extended the GROUP
BY clause so that you can also specify ASC and DESC after columns named in the clause:

SELECT a,COUNT(b) FROM test_table GROUP BY a DESC

• MySQL has extended the use of GROUP BY to allow you to select fields that are not
mentioned in the GROUP BY clause. If you are not getting the results you expect from
your query, please read the GROUP BY description. See Section 6.3.7 [Group by functions
and modifiers], page 524.

• As of MySQL 4.1.1, GROUP BY allows a WITH ROLLUP modifier. See Section 6.3.7.2 [GROUP
BY Modifiers], page 526.

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT
statement. LIMIT takes one or two numeric arguments, which must be integer constants.

534 MySQL Technical Reference for Version 4.1.1-alpha

With one argument, the value specifies the number of rows to return from the beginning
of the result set. With two arguments, the first specifies the offset of the first row to
return, the second specifies the maximum number of rows to return. The offset of the
initial row is 0 (not 1):
To be compatible with PostgreSQL MySQL also supports the syntax: LIMIT row_count
OFFSET offset.

mysql> SELECT * FROM table LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use -1
for the second parameter:

mysql> SELECT * FROM table LIMIT 95,-1; # Retrieve rows 96-last.

If one argument is given, it indicates the maximum number of rows to return:
mysql> SELECT * FROM table LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT n is equivalent to LIMIT 0,n.
• The SELECT ... INTO OUTFILE ’file_name’ form of SELECT writes the selected rows

to a file. The file is created on the server host and cannot already exist (among
other things, this prevents database tables and files such as ‘/etc/passwd’ from being
destroyed). You must have the FILE privilege on the server host to use this form of
SELECT.
The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly
dump a table on the server machine. If you want to create the resulting file on some
other host than the server host, you can’t use SELECT ... INTO OUTFILE. In this case
you should instead use some client program like mysqldump --tab or mysql -e "SELECT
..." > outfile to generate the file.
SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE; the syntax for the
export_options part of the statement consists of the same FIELDS and LINES clauses
that are used with the LOAD DATA INFILE statement. See Section 6.4.8 [LOAD DATA],
page 555.
In the resulting text file, only the following characters are escaped by the ESCAPED BY
character:
• The ESCAPED BY character
• The first character in FIELDS TERMINATED BY

• The first character in LINES TERMINATED BY

Additionally, ASCII 0 is converted to ESCAPED BY followed by 0 (ASCII 48).
The reason for the above is that you must escape any FIELDS TERMINATED BY, ESCAPED
BY, or LINES TERMINATED BY characters to reliably be able to read the file back. ASCII
0 is escaped to make it easier to view with some pagers.
As the resulting file doesn’t have to conform to the SQL syntax, nothing else need be
escaped.
Here follows an example of getting a file in the format used by many old programs.

SELECT a,b,a+b INTO OUTFILE "/tmp/result.text"
FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’"’
LINES TERMINATED BY "\n"
FROM test_table;

Chapter 6: MySQL Language Reference 535

• If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL will only write one row into
the file, without any column or line terminations and without performing any escape
processing. This is useful if you want to store a BLOB value in a file.

• Note that any file created by INTO OUTFILE and INTO DUMPFILE will be writeable by all
users on the server host! The reason is that the MySQL server can’t create a file that
is owned by anyone else than the user it’s running as (you should never run mysqld as
root). The file thus must be world-writeable so that you can manipulate its contents.

• A PROCEDURE clause names a procedure that should process the data in the result set.
For an example, see Section 13.3.1 [procedure analyse], page 843.

• If you use FOR UPDATE on a storage engine with page or row locks, the examined rows
are write locked until the end of the current transaction.

6.4.1.1 JOIN Syntax

MySQL supports the following JOIN syntaxes for use in SELECT statements:

table_reference, table_reference
table_reference [INNER | CROSS] JOIN table_reference [join_condition]
table_reference STRAIGHT_JOIN table_reference
table_reference LEFT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [LEFT [OUTER]] JOIN table_reference
{ OJ table_reference LEFT OUTER JOIN table_reference ON conditional_expr }
table_reference RIGHT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

Where table_reference is defined as:

table_name [[AS] alias] [[USE INDEX (key_list)] | [IGNORE INDEX (key_list)] | [FORCE INDEX (key_list)]]

and join_condition is defined as:

ON conditional_expr |
USING (column_list)

You should generally not have any conditions in the ON part that are used to restrict which
rows you want in the result set, but rather specify these conditions in the WHERE clause.
There are exceptions to this rule.

Note that in versions before Version 3.23.17, the INNER JOIN didn’t take a join_condition!

The last LEFT OUTER JOIN syntax shown in the preceding list exists only for compatibility
with ODBC:

• A table reference may be aliased using tbl_name AS alias_name or tbl_name alias_
name:

mysql> SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
-> WHERE t1.name = t2.name;

• The ON conditional is any conditional of the form that may be used in a WHERE clause.

• If there is no matching record for the right table in the ON or USING part in a LEFT
JOIN, a row with all columns set to NULL is used for the right table. You can use this
fact to find records in a table that have no counterpart in another table:

536 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT table1.* FROM table1
-> LEFT JOIN table2 ON table1.id=table2.id
-> WHERE table2.id IS NULL;

This example finds all rows in table1 with an id value that is not present in table2
(that is, all rows in table1 with no corresponding row in table2). This assumes that
table2.id is declared NOT NULL, of course. See Section 5.2.7 [LEFT JOIN optimisa-
tion], page 410.

• The USING (column_list) clause names a list of columns that must exist in both
tables. The following two clauses are semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an
INNER JOIN or a LEFT JOIN with a USING clause that names all columns that exist in
both tables.

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condi-
tion: both will produce a Cartesian product between the specified tables (that is, each
and every row in the first table will be joined onto all rows in the second table).

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases,
it’s recommended to use LEFT JOIN instead of RIGHT JOIN.

• STRAIGHT_JOIN is identical to JOIN, except that the left table is always read before the
right table. This can be used for those (few) cases where the join optimiser puts the
tables in the wrong order.

• As of MySQL Version 3.23.12, you can give hints about which index MySQL should
use when retrieving information from a table. This is useful if EXPLAIN shows that
MySQL is using the wrong index from the list of possible indexes. By specifying USE
INDEX (key_list), you can tell MySQL to use only one of the possible indexes to find
rows in the table. The alternative syntax IGNORE INDEX (key_list) can be used to
tell MySQL to not use some particular index.
In MySQL 4.0.9 you can also use FORCE INDEX. This acts likes USE INDEX (key_list)
but with the addition that a table scan is assumed to be VERY expensive. In other
words a table scan will only be used if there is no way to use one of the given index to
find rows in the table.
USE/IGNORE KEY are synonyms for USE/IGNORE INDEX.

Note: USE/IGNORE/FORCE INDEX only affects which indexes are used when MySQL decides
how to find rows in the table and how to do the join. It doesn’t affect whether an index
will be used when resolving an ORDER BY or GROUP BY.
Some examples:

mysql> SELECT * FROM table1,table2 WHERE table1.id=table2.id;
mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;
mysql> SELECT * FROM table1 LEFT JOIN table2 USING (id);
mysql> SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id

-> LEFT JOIN table3 ON table2.id=table3.id;
mysql> SELECT * FROM table1 USE INDEX (key1,key2)

-> WHERE key1=1 AND key2=2 AND key3=3;

Chapter 6: MySQL Language Reference 537

mysql> SELECT * FROM table1 IGNORE INDEX (key3)
-> WHERE key1=1 AND key2=2 AND key3=3;

See Section 5.2.7 [LEFT JOIN optimisation], page 410.

6.4.1.2 UNION Syntax

SELECT ...
UNION [ALL]
SELECT ...
[UNION
SELECT ...]

UNION is implemented in MySQL 4.0.0.

UNION is used to combine the result from many SELECT statements into one result set.

The columns listed in the select expression portion of the SELECT should have the same
type. The column names used in the first SELECT query will be used as the column names
for the results returned.

The SELECT commands are normal select commands, but with the following restrictions:

• Only the last SELECT command can have INTO OUTFILE.

If you don’t use the keyword ALL for the UNION, all returned rows will be unique, as if
you had done a DISTINCT for the total result set. If you specify ALL, then you will get all
matching rows from all the used SELECT statements.

If you want to use an ORDER BY for the total UNION result, you should use parentheses:

(SELECT a FROM table_name WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM table_name WHERE a=11 AND B=2 ORDER BY a LIMIT 10)
ORDER BY a;

6.4.2 Subquery Syntax

A subquery is a SELECT statement inside another statement. For example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In the above example, SELECT * FROM t1 ... is the outer query (or outer statement), and
(SELECT column1 FROM t2) is the subquery. We say that the subquery is nested in the outer
query, and in fact it’s possible to nest subqueries within other subqueries, to a great depth.
A subquery must always be inside parentheses.

Starting with version 4.1, MySQL supports all subquery forms and operations which the
SQL standard requires, as well as a few features which are MySQL-specific. The main
advantages of subqueries are:

• they allow queries which are structured so that it’s possible to isolate each part of a
statement,

• they provide alternative ways to perform operations which would otherwise require
complex joins and unions,

538 MySQL Technical Reference for Version 4.1.1-alpha

• they are, in many people’s opinion, readable. Indeed, it was the innovation of sub-
queries which gave people the original idea of calling the early SQL “Structured Query
Language”.

With earlier MySQL versions it was necessary to work around or avoid subqueries, but
people starting to write code now will find that subqueries are a very useful part of the
toolkit.
Here is an example statement which shows the major points about subquery syntax as
specified by the SQL standard and supported in MySQL.

DELETE FROM t1
WHERE s11 > ANY
(SELECT COUNT(*) /* no hint */ FROM t2
WHERE NOT EXISTS
(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=
(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));

For MySQL versions prior to 4.1, most subqueries can be successfully rewritten using joins
and and other methods. See Section 6.4.2.11 [Rewriting subqueries], page 545.

6.4.2.1 The Subquery as Scalar Operand

In its simplest form (the scalar subquery as opposed to the row or table subqueries which
will be discussed later), a subquery is a simple operand. Thus you can use it wherever a
column value or literal is legal, and you can expect it to have those characteristics that all
operands have: a data type, a length, an indication whether it can be NULL, and so on. For
example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
SELECT (SELECT s2 FROM t1);

The subquery in the above SELECT has a data type of CHAR, a length of 5, a character set
and collation equal to the defaults in effect at CREATE TABLE time, and an indication that
the value in the column can be NULL. In fact almost all subqueries can be NULL, because if
the table is empty – as in the example – then the value of the subquery will be NULL. There
are few restrictions.
• A subquery’s outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE,

SET, or DO.
• A subquery can contain any of the keywords or clauses that an ordinary SELECT can

contain: DISTINCT, GROUP BY, ORDER BY, LIMIT, joins, hints, UNIONs, comments, func-
tions, and so on.

So, when you see examples in the following sections that contain the rather Spartan con-
struct (SELECT column1 FROM t1), imagine that your own code will contain much more
diverse and complex constructions.
For example, suppose we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);

Chapter 6: MySQL Language Reference 539

CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:
SELECT (SELECT s1 FROM t2) FROM t1;

The result will be 2 because there is a row in t2, with a column s1, with a value of 2.
The subquery may be part of an expression. If it is an operand for a function, don’t forget
the parentheses. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

6.4.2.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:
<non-subquery operand> <comparison operator> (<subquery>)

Where <comparison operator> is one of:
= > < >= <= <>

For example:
... ’a’ = (SELECT column1 FROM t1)

At one time the only legal place for a subquery was on the right side of a comparison, and
you might still find some old DBMSs which insist on that.
Here is an example of a common-form subquery comparison which you can’t do with a join:
find all the values in table t1 which are equal to a maximum value in table t2.

SELECT column1 FROM t1
WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggre-
gating for one of the tables: find all rows in table t1 which contain a value which occurs
twice.

SELECT * FROM t1
WHERE 2 = (SELECT COUNT(column1) FROM t1);

6.4.2.3 Subqueries with ANY, IN, and SOME

Syntax:
<operand> <comparison operator> ANY (<subquery>)
<operand> IN (<subquery>)
<operand> <comparison operator> SOME (<subquery>)

The word ANY, which must follow a comparison operator, means “return TRUE if the com-
parison is TRUE for ANY of the rows that the subquery returns.” For example,

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing {10}. The expression is TRUE if table t2
contains {21,14,7} because there is a value in t2 – 7 – which is less than 10. The expression
is FALSE if table t2 contains {20,10}, or if table t2 is empty. The expression is UNKNOWN if
table t2 contains {NULL,NULL,NULL}.
The word IN is an alias for = ANY. Thus these two statements are the same:

540 MySQL Technical Reference for Version 4.1.1-alpha

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

The word SOME is an alias for ANY. Thus these two statements are the same:
SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but the above example shows why it might be useful. The
English phrase “a is not equal to any b” means, to most people’s ears, “there is no b which
is equal to a” – which isn’t what is meant by the SQL syntax. By using <> SOME instead,
you ensure that everyone understands the true meaning of the query.

6.4.2.4 Subqueries with ALL

Syntax:
<operand> <comparison operator> ALL (<subquery>)

The word ALL, which must follow a comparison operator, means “return TRUE if the com-
parison is TRUE for ALL of the rows that the subquery returns”. For example,

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing {10}. The expression is TRUE if table t2
contains {-5,0,+5} because all three values in t2 are less than 10. The expression is FALSE if
table t2 contains {12,6,NULL,-100} because there is a single value in table t2 – 12 – which
is greater than 10. The expression is UNKNOWN if table t2 contains {0,NULL,1}.
Finally, if table t2 is empty, the result is TRUE. You might think the result should be
UNKNOWN, but sorry, it’s TRUE. So, rather oddly,

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

is TRUE when table t2 is empty, but
SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

is UNKNOWN when table t2 is empty. In addition,
SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

is UNKNOWN when table t2 is empty. In general, tables with NULLs and empty tables are
edge cases – when writing subquery code, always consider whether you have taken those
two possibilities into account.

6.4.2.5 Correlated Subqueries

A correlated subquery is a subquery which contains a reference to a column which is also in
the outer query. For example:

SELECT * FROM t1 WHERE column1 = ANY
(SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);

Notice, in the example, that the subquery contains a reference to a column of t1, even
though the subquery’s FROM clause doesn’t mention a table t1. So MySQL looks outside
the subquery, and finds t1 in the outer query.
Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile table
t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE

Chapter 6: MySQL Language Reference 541

column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example the WHERE
clause within the subquery is FALSE (because 7 <> 5), so the subquery as a whole is FALSE.
Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
WHERE x.column1 = (SELECT column1 FROM t2 AS x
WHERE x.column1 = (SELECT column1 FROM t3 WHERE x.column2 = t3.column1));

In the above, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ...
is an outer query which is further out.
For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the
outer select list.
MySQL’s unofficial recommendation is: avoid correlation because it makes your queries
look more complex, and run more slowly.

6.4.2.6 EXISTS and NOT EXISTS

If a subquery returns any values at all, then EXISTS <subquery> is TRUE, and NOT EXISTS
<subquery> is FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally an EXISTS subquery starts with SELECT * but it could begin with SELECT 5
or SELECT column1 or anything at all – MySQL ignores the SELECT list in such a subquery,
so it doesn’t matter.
For the above example, if t2 contains any rows, even rows with nothing but NULL values,
then the EXISTS condition is TRUE. This is actually an unlikely example, since almost always
a [NOT] EXISTS subquery will contain correlations. Here are some more realistic examples.
Example: What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM Stores
WHERE EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

Example: What kind of store is present in no cities?
SELECT DISTINCT store_type FROM Stores
WHERE NOT EXISTS (SELECT * FROM Cities_Stores

WHERE Cities_Stores.store_type = Stores.store_type);

Example: What kind of store is present in all cities?
SELECT DISTINCT store_type FROM Stores S1
WHERE NOT EXISTS (
SELECT * FROM Cities WHERE NOT EXISTS (
SELECT * FROM Cities_Stores
WHERE Cities_Stores.city = Cities.city
AND Cities_Stores.store_type = Stores.store_type));

The last example is a double-nested NOT EXISTS query – it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store which
is not in Stores?”. But it’s easier to say that a nested NOT EXISTS answers the question “is
x TRUE for all y?”.

542 MySQL Technical Reference for Version 4.1.1-alpha

6.4.2.7 Row Subqueries

The discussion to this point has been of column (or scalar) subqueries – subqueries which
return a single column value. A row subquery is a subquery variant that returns a single
row value – and may thus return more than one column value. Here are two examples:

SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2);
SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);

The queries above are both TRUE if table t2 has a row where column1 = 1 and column2 =
2.
The expression (1,2) is sometimes called a row constructor and is legal in other contexts
too. For example

SELECT * FROM t1 WHERE (column1,column2) = (1,1);

is equivalent to
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The normal use of row constructors, though, is for comparisons with subqueries that return
two or more columns. For example, this query answers the request: “find all rows in table
t1 which are duplicated in table t2”:

SELECT column1,column2,column3
FROM t1
WHERE (column1,column2,column3) IN

(SELECT column1,column2,column3 FROM t2);

6.4.2.8 Subqueries in the FROM clause

Subqueries are legal in a SELECT statement’s FROM clause. The syntax that you’ll actually
see is:

SELECT ... FROM (<subquery>) AS <name> ...

The AS <name> clause is mandatory, because any table in a FROM clause must have a name.
Any columns in the <subquery> select list must have unique names. You may find this
syntax described elsewhere in this manual, where the term used is “derived tables”.
For illustration, assume you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here’s how to use the Subqueries in the FROM clause feature, using the example table:
INSERT INTO t1 VALUES (1,’1’,1.0);
INSERT INTO t1 VALUES (2,’2’,2.0);
SELECT sb1,sb2,sb3

FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
WHERE sb1 > 1;

Result: 2, ’2’, 4.0.
Here’s another example: Suppose you want to know the average of the sum for a grouped
table. This won’t work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

But this query will provide the desired information:

Chapter 6: MySQL Language Reference 543

SELECT AVG(sum_column1)
FROM (SELECT SUM(column1) AS sum_column1

FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the
outer query.

At the moment, subqueries in the FROM clause cannot be correlated subqueries.

6.4.2.9 Subquery Errors

There are some new error returns which apply only to subqueries. This section groups them
together because reviewing them will help remind you of some points.

•
ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn’t yet support
’LIMIT & IN/ALL/ANY/SOME subquery’"

This means that

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

will not work, but only in some early versions, such as MySQL 4.1.1.

•
ERROR 1240 (ER_CARDINALITY_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error will occur in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

It’s okay to use a subquery that returns multiple columns, if the purpose is comparison.
See Section 6.4.2.7 [Row subqueries], page 542. But in other contexts the subquery must
be a scalar operand.

•
ERROR 1241 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error will occur in cases like this:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

but only when there is more than one row in t2. That means this error might occur in
code that has been working for years, because somebody happened to make a change
which affected the number of rows that the subquery can return. Remember that if the
object is to find any number of rows, not just one, then the correct statement would
look like this:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

•

544 MySQL Technical Reference for Version 4.1.1-alpha

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can’t specify target table ’x’ for update in FROM clause"

This error will occur in cases like this:
UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

It’s okay to use a subquery for assignment within an UPDATE statement, since subqueries
are legal in UPDATE and in DELETE statements as well as in SELECT statements. However,
you cannot use the same table, in this case table t1, for both the subquery’s FROM clause
and the update target.
Usually, failure of the subquery causes the entire statement to fail.

6.4.2.10 Optimising Subqueries

Development is ongoing, so no optimisation tip is reliable for the long term. Some interesting
tricks that you might want to play with are:
• Using subquery clauses which affect the number or order of the rows in the subquery,

for example
SELECT * FROM t1 WHERE t1.column1 IN
(SELECT column1 FROM t2 ORDER BY column1);

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT DISTINCT column1 FROM t2);

SELECT * FROM t1 WHERE EXISTS
(SELECT * FROM t2 LIMIT 1);

• Replacing a join with a subquery, for example
SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
SELECT column1 FROM t2);

instead of
SELECT DISTINCT t1.column1 FROM t1, t2
WHERE t1.column1 = t2.column1;

• Moving clauses from outside to inside the subquery, for example:
SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

instead of
SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example:
SELECT (SELECT column1 + 5 FROM t1) FROM t2;

instead of
SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Using a row subquery instead of a correlated subquery, for example:
SELECT * FROM t1
WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

instead of

Chapter 6: MySQL Language Reference 545

SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
AND t2.column2=t1.column2);

• Using NOT (a = ANY (...)) rather than a <> ALL (...).
• Using x = ANY (table containing {1,2}) rather than x=1 OR x=2.
• Using = ANY rather than EXISTS

The above tricks may cause programs to go faster or slower. Using MySQL facilities like the
BENCHMARK() function, you can get an idea about what helps in your own situation. Don’t
worry too much about transforming to joins except for compatibility with older versions.

Some optimisations that MySQL itself will make are:

1. MySQL will execute non-correlated subqueries only once, (use EXPLAIN to make sure
that a given subquery really is non-correlated),

2. MySQL will rewrite IN/ALL/ANY/SOME subqueries in an attempt to take advantage of
the possibility that the select-list columns in the subquery are indexed,

3. MySQL will replace subqueries of the form
... IN (SELECT indexed_column FROM single_table ...)

with an index-lookup function, which EXPLAIN will describe as a special join type,
4. MySQL will enhance expressions of the form

value {ALL|ANY|SOME} {> | < | >= | <=} (non-correlated subquery)

with an expression involving MIN or MAX (unless NULLs or empty sets are involved). For
example,

WHERE 5 > ALL (SELECT x FROM t)

might be treated as
WHERE 5 > (SELECT MAX(x) FROM t)

There is a chapter titled “How MySQL Transforms Subqueries” in the MySQL Internals
Manual, which you can find by downloading the MySQL source package and looking for a
file named ‘internals.texi’.

6.4.2.11 Rewriting Subqueries for Earlier MySQL Versions

Up to version 4.0, only nested queries of the form INSERT ... SELECT ... and REPLACE
... SELECT ... are supported. The IN() construct can be used in other contexts.

It is often possible to rewrite a query without a subquery:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

This can be rewritten as:

SELECT t1.* FROM t1,t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

546 MySQL Technical Reference for Version 4.1.1-alpha

SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might
be able to optimise it better – a fact that is not specific to MySQL Server alone. Prior to
SQL-92, outer joins did not exist, so subqueries were the only way to do certain things in
those bygone days. Today, MySQL Server and many other modern database systems offer
a whole range of outer joins types.

For more complicated subqueries you can often create temporary tables to hold the sub-
query. In some cases, however, this option will not work. The most frequently encountered
of these cases arises with DELETE statements, for which standard SQL does not support
joins (except in subqueries). For this situation there are three options available:

• The first option is to upgrade to MySQL version 4.1.

• The second option is to use a procedural programming language (such as Perl or PHP)
to submit a SELECT query to obtain the primary keys for the records to be deleted, and
then use these values to construct the DELETE statement (DELETE FROM ... WHERE ...
IN (key1, key2, ...)).

• The third option is to use interactive SQL to construct a set of DELETE statements auto-
matically, using the MySQL extension CONCAT() (in lieu of the standard || operator).
For example:

SELECT CONCAT(’DELETE FROM tab1 WHERE pkid = ’, "’", tab1.pkid, "’", ’;’)
FROM tab1, tab2
WHERE tab1.col1 = tab2.col2;

You can place this query in a script file and redirect input from it to the mysql
command-line interpreter, piping its output back to a second instance of the inter-
preter:

shell> mysql --skip-column-names mydb < myscript.sql | mysql mydb

MySQL Server 4.0 supports multi-table DELETEs that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multi-table
UPDATEs are also supported from version 4.0.

6.4.3 INSERT Syntax

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] tbl_name [(col_name,...)]
VALUES ((expression | DEFAULT),...),(...),...
[ON DUPLICATE KEY UPDATE col_name=expression, ...]

or INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] tbl_name [(col_name,...)]
SELECT ...

or INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] tbl_name
SET col_name=(expression | DEFAULT), ...
[ON DUPLICATE KEY UPDATE col_name=expression, ...]

Chapter 6: MySQL Language Reference 547

INSERT inserts new rows into an existing table. The INSERT ... VALUES form of the state-
ment inserts rows based on explicitly specified values. The INSERT ... SELECT form inserts
rows selected from another table or tables. The INSERT ... VALUES form with multiple
value lists is supported in MySQL Version 3.22.5 or later. The col_name=expression
syntax is supported in MySQL Version 3.22.10 or later.

tbl_name is the table into which rows should be inserted. The column name list or the SET
clause indicates which columns the statement specifies values for:

• If you specify no column list for INSERT ... VALUES or INSERT ... SELECT, values for
all columns in the table must be provided in the VALUES() list or by the SELECT. If
you don’t know the order of the columns in the table, use DESCRIBE tbl_name to find
out.

• Any column not explicitly given a value is set to its default value. For example, if you
specify a column list that doesn’t name all the columns in the table, unnamed columns
are set to their default values. Default value assignment is described in Section 6.5.3
[CREATE TABLE], page 564.
You can also use the keyword DEFAULT to set a column to its default value. (New in
MySQL 4.0.3.) This makes it easier to write INSERT statements that assign values to
all but a few columns, because it allows you to avoid writing an incomplete VALUES()
list (a list that does not include a value for each column in the table). Otherwise, you
would have to write out the list of column names corresponding to each value in the
VALUES() list.
MySQL always has a default value for all fields. This is something that is imposed on
MySQL to be able to work with both transactional and non-transactional tables.
Our view is that checking of fields content should be done in the application and not
in the database server.

• An expression may refer to any column that was set earlier in a value list. For
example, you can say this:

mysql> INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But not this:
mysql> INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

• If you specify the keyword DELAYED, the server puts the row or rows to be inserted into
a buffer, and the client issuing the INSERT DELAYED statement then may continue on.
If the table is busy, the server holds the rows. When the table becomes free, it begins
inserting rows, checking periodically to see if there are new read requests for the table.
If there are, the delayed row queue is suspended until the table becomes free again.

• If you specify the keyword LOW_PRIORITY, execution of the INSERT is delayed until no
other clients are reading from the table. This includes other clients that began read-
ing while existing clients are reading, and while the INSERT LOW_PRIORITY statement
is waiting. It is possible therefore for a client that issues an INSERT LOW_PRIORITY
statement to wait for a very long time (or even forever) in a read-heavy environment.
(This is in contrast to INSERT DELAYED, which lets the client continue at once.) See
Section 6.4.3.2 [INSERT DELAYED], page 549. Note that LOW_PRIORITY should nor-
mally not be used with MyISAM tables as this disables concurrent inserts. See Section 7.1
[MyISAM], page 594.

548 MySQL Technical Reference for Version 4.1.1-alpha

• If you specify the keyword IGNORE in an INSERT with many rows, any rows that dupli-
cate an existing PRIMARY or UNIQUE key in the table are ignored and are not inserted.
If you do not specify IGNORE, the insert is aborted if there is any row that duplicates
an existing key value. You can determine with the C API function mysql_info() how
many rows were inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE clause (new in MySQL 4.1.0), and a row is
inserted that would cause a duplicate value in a PRIMARY or UNIQUE key, an UPDATE of
the old row is performed. For example, the command:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)
-> ON DUPLICATE KEY UPDATE c=c+1;

in case of column a is declared as UNIQUE and already holds 1 once, would be identical
to the

mysql> UPDATE table SET c=c+1 WHERE a=1;

Note: that if column b is unique too, the UPDATE command would be written as
mysql> UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

and if a=1 OR b=2 matches several rows, only one row will be updated! In general,
one should try to avoid using ON DUPLICATE KEY clause on tables with multiple UNIQUE
keys.
Since MySQL 4.1.1 one can use function VALUES(col_name) to refer to the column value
in the INSERT part of the INSERT ... UPDATE command - that is the value that would
be inserted if there would be no duplicate key conflict. This function especially useful
in multiple-row inserts. Naturally VALUES() function is only meaningful in INSERT ...
UPDATE command and returns NULL otherwise.
Example:

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

The command above is identical to
mysql> INSERT INTO table (a,b,c) VALUES (1,2,3)

-> ON DUPLICATE KEY UPDATE c=3;
mysql> INSERT INTO table (a,b,c) VALUES (4,5,6)

-> ON DUPLICATE KEY UPDATE c=9;

When one uses ON DUPLICATE KEY UPDATE, the DELAYED option is ignored.
• If MySQL was configured using the DONT_USE_DEFAULT_FIELDS option, INSERT state-

ments generate an error unless you explicitly specify values for all columns that require
a non-NULL value. See Section 2.3.3 [configure options], page 91.

• You can find the value used for an AUTO_INCREMENT column with the mysql_insert_id
function. See Section 11.1.3.31 [mysql_insert_id()], page 742.

If you use INSERT ... SELECT or an INSERT ... VALUES statement with multiple value lists,
you can use the C API function mysql_info() to get information about the query. The
format of the information string is shown here:

Records: 100 Duplicates: 0 Warnings: 0

Duplicates indicates the number of rows that couldn’t be inserted because they would
duplicate some existing unique index value. Warnings indicates the number of attempts to

Chapter 6: MySQL Language Reference 549

insert column values that were problematic in some way. Warnings can occur under any of
the following conditions:
• Inserting NULL into a column that has been declared NOT NULL. The column is set to

the default value appropriate for the column type. This is 0 for numeric types, the
empty string (’’) for string types, and the “zero” value for date and time types.

• Setting a numeric column to a value that lies outside the column’s range. The value is
clipped to the appropriate endpoint of the range.

• Setting a numeric column to a value such as ’10.34 a’. The trailing garbage is stripped
and the remaining numeric part is inserted. If the value doesn’t make sense as a number
at all, the column is set to 0.

• Inserting a string into a CHAR, VARCHAR, TEXT, or BLOB column that exceeds the column’s
maximum length. The value is truncated to the column’s maximum length.

• Inserting a value into a date or time column that is illegal for the column type. The
column is set to the appropriate zero value for the type.

6.4.3.1 INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY] [IGNORE] [INTO] tbl_name [(column list)] SELECT ...

With INSERT ... SELECT statement you can quickly insert many rows into a table from one
or many tables.

INSERT INTO tblTemp2 (fldID) SELECT tblTemp1.fldOrder_ID FROM tblTemp1 WHERE
tblTemp1.fldOrder_ID > 100;

The following conditions hold for an INSERT ... SELECT statement:
− Prior to MySQL 4.0.1, INSERT ... SELECT implicitly operates in IGNORE mode. As of

MySQL 4.0.1, you should specify IGNORE explicitly to ignore records that would cause
duplicate-key violations.

− Prior to MySQL 4.0.14, the target table of the INSERT statement cannot appear in the
FROM clause of the SELECT part of the query. This limitation is lifted in 4.0.14.

− AUTO_INCREMENT columns work as usual.
− In C programs, you can use the C API function mysql_info() to get information about

the query. See Section 6.4.3 [INSERT], page 546.
− To ensure that the binary log can be used to re-create the original tables, MySQL will

not allow concurrent inserts during INSERT ... SELECT.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to
INSERT IGNORE in the treatment of new rows that contain unique key values that duplicate
old rows: The new rows are used to replace the old rows rather than being discarded.

6.4.3.2 INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL-specific option that is very
useful if you have clients that can’t wait for the INSERT to complete. This is a common
problem when you use MySQL for logging and you also periodically run SELECT and UPDATE

550 MySQL Technical Reference for Version 4.1.1-alpha

statements that take a long time to complete. DELAYED was introduced in MySQL Version
3.22.15. It is a MySQL extension to SQL-92.

INSERT DELAYED only works with ISAM and MyISAM tables. Note that as MyISAM tables sup-
ports concurrent SELECT and INSERT, if there is no free blocks in the middle of the datafile,
you very seldom need to use INSERT DELAYED with MyISAM. See Section 7.1 [MyISAM],
page 594.

When you use INSERT DELAYED, the client will get an OK at once and the row will be
inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bun-
dled together and written in one block. This is much faster than doing many separate
inserts.

Note that currently the queued rows are only stored in memory until they are inserted into
the table. This means that if you kill mysqld the hard way (kill -9) or if mysqld dies
unexpectedly, any queued rows that weren’t written to disk are lost!

The following describes in detail what happens when you use the DELAYED option to INSERT
or REPLACE. In this description, the “thread” is the thread that received an INSERT DELAYED
command and “handler” is the thread that handles all INSERT DELAYED statements for a
particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created
to process all DELAYED statements for the table, if no such handler already exists.

• The thread checks whether the handler has acquired a DELAYED lock already; if not,
it tells the handler thread to do so. The DELAYED lock can be obtained even if other
threads have a READ or WRITE lock on the table. However, the handler will wait for all
ALTER TABLE locks or FLUSH TABLES to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table,
it puts a copy of the final row into a queue that is managed by the handler thread.
Any syntax errors are noticed by the thread and reported to the client program.

• The client can’t report the number of duplicates or the AUTO_INCREMENT value for the
resulting row; it can’t obtain them from the server, because the INSERT returns before
the insert operation has been completed. If you use the C API, the mysql_info()
function doesn’t return anything meaningful, for the same reason.

• The binary log is updated by the handler thread when the row is inserted into the
table. In case of multiple-row inserts, the binary log is updated when the first row is
inserted.

• After every delayed_insert_limit rows are written, the handler checks whether any
SELECT statements are still pending. If so, it allows these to execute before continuing.

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT
DELAYED commands are received within delayed_insert_timeout seconds, the handler
terminates.

• If more than delayed_queue_size rows are pending already in a specific handler queue,
the thread requesting INSERT DELAYED waits until there is room in the queue. This is
done to ensure that the mysqld server doesn’t use all memory for the delayed memory
queue.

Chapter 6: MySQL Language Reference 551

• The handler thread will show up in the MySQL process list with delayed_insert in
the Command column. It will be killed if you execute a FLUSH TABLES command or kill it
with KILL thread_id. However, it will first store all queued rows into the table before
exiting. During this time it will not accept any new INSERT commands from another
thread. If you execute an INSERT DELAYED command after this, a new handler thread
will be created.
Note that the above means that INSERT DELAYED commands have higher priority than
normal INSERT commands if there is an INSERT DELAYED handler already running!
Other update commands will have to wait until the INSERT DELAYED queue is empty,
someone kills the handler thread (with KILL thread_id), or someone executes FLUSH
TABLES.

• The following status variables provide information about INSERT DELAYED commands:
Variable Meaning
Delayed_insert_threads Number of handler threads
Delayed_writes Number of rows written with INSERT DELAYED
Not_flushed_delayed_
rows

Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a
mysqladmin extended-status command.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not in use. There
is also the additional overhead for the server to handle a separate thread for each table on
which you use INSERT DELAYED. This means that you should only use INSERT DELAYED
when you are really sure you need it!

6.4.4 UPDATE Syntax

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_definition]
[ORDER BY ...]
[LIMIT row_count]

or

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name [, tbl_name ...]
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_definition]

UPDATE updates columns in existing table rows with new values. The SET clause indicates
which columns to modify and the values they should be given. The WHERE clause, if given,
specifies which rows should be updated. Otherwise, all rows are updated. If the ORDER BY
clause is specified, the rows will be updated in the order that is specified.
If you specify the keyword LOW_PRIORITY, execution of the UPDATE is delayed until no other
clients are reading from the table.
If you specify the keyword IGNORE, the update statement will not abort even if we get
duplicate key errors during the update. Rows that would cause conflicts will not be updated.

552 MySQL Technical Reference for Version 4.1.1-alpha

If you access a column from tbl_name in an expression, UPDATE uses the current value of
the column. For example, the following statement sets the age column to one more than
its current value:

mysql> UPDATE persondata SET age=age+1;

UPDATE assignments are evaluated from left to right. For example, the following statement
doubles the age column, then increments it:

mysql> UPDATE persondata SET age=age*2, age=age+1;

If you set a column to the value it currently has, MySQL notices this and doesn’t update
it.
UPDATE returns the number of rows that were actually changed. In MySQL Version 3.22
or later, the C API function mysql_info() returns the number of rows that were matched
and updated and the number of warnings that occurred during the UPDATE. If you update a
column that has been declared NOT NULL by setting to NULL, the column is set to the default
value appropriate for the column type and the warning count is incremented. The default
value is is 0 for numeric types, the empty string (’’) for string types, and the “zero” value
for date and time types.
Starting from MySQL version 3.23, you can use LIMIT row_count to ensure that only a
given number of rows are changed. MySQL will stop the update as soon as it has found
LIMIT rows that satisfies the WHERE clause, independent of the rows changed content or not.
If an ORDER BY clause is used (available from MySQL 4.0.0), the rows will be updated in
that order. This is really only useful in conjunction with LIMIT.
Starting with MySQL Version 4.0.4, you can also perform UPDATE operations that cover
multiple tables:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

Note: you can not use ORDER BY or LIMIT with multi-table UPDATE.

6.4.5 DELETE Syntax

DELETE [LOW_PRIORITY] [QUICK] FROM table_name
[WHERE where_definition]
[ORDER BY ...]
[LIMIT row_count]

or

DELETE [LOW_PRIORITY] [QUICK] table_name[.*] [, table_name[.*] ...]
FROM table-references
[WHERE where_definition]

or

DELETE [LOW_PRIORITY] [QUICK]
FROM table_name[.*] [, table_name[.*] ...]
USING table-references

Chapter 6: MySQL Language Reference 553

[WHERE where_definition]

DELETE deletes rows from table_name that satisfy the condition given by where_
definition, and returns the number of records deleted.
If you issue a DELETE with no WHERE clause, all rows are deleted. If you do this in AUTOCOMMIT
mode, this works as TRUNCATE. See Section 6.4.6 [TRUNCATE], page 554. In MySQL 3.23,
DELETE without a WHERE clause will return zero as the number of affected records.
If you really want to know how many records are deleted when you are deleting all rows,
and are willing to suffer a speed penalty, you can use a DELETE statement of this form:

mysql> DELETE FROM table_name WHERE 1>0;

Note that this is much slower than DELETE FROM table_name with no WHERE clause, because
it deletes rows one at a time.
If you specify the keyword LOW_PRIORITY, execution of the DELETE is delayed until no other
clients are reading from the table.
For MyISAM tables, if you specify the word QUICK then the storage engine will not merge
index leaves during delete, which may speed up certain kind of deletes.
The speed of delete operations may also be affected by factors discussed in Section 5.2.12
[Delete speed], page 415.
In MyISAM tables, deleted records are maintained in a linked list and subsequent INSERT
operations reuse old record positions. To reclaim unused space and reduce file-sizes, use
the OPTIMIZE TABLE statement or the myisamchk utility to reorganise tables. OPTIMIZE
TABLE is easier, but myisamchk is faster. See Section 4.6.1 [OPTIMIZE TABLE], page 281 and
Section 4.5.6.10 [Optimisation], page 274.
The first multi-table delete format is supported starting from MySQL 4.0.0. The second
multi-table delete format is supported starting from MySQL 4.0.2.
The idea is that only matching rows from the tables listed before the FROM or before the
USING clause are deleted. The effect is that you can delete rows from many tables at the
same time and also have additional tables that are used for searching.
The .* after the table names is there just to be compatible with Access:

DELETE t1,t2 FROM t1,t2,t3 WHERE t1.id=t2.id AND t2.id=t3.id

or

DELETE FROM t1,t2 USING t1,t2,t3 WHERE t1.id=t2.id AND t2.id=t3.id

In the above case we delete matching rows just from tables t1 and t2.
If an ORDER BY clause is used (available from MySQL 4.0.0), the rows will be deleted in that
order. This is really only useful in conjunction with LIMIT. For example:

DELETE FROM somelog
WHERE user = ’jcole’
ORDER BY timestamp
LIMIT 1

This will delete the oldest entry (by timestamp) where the row matches the WHERE clause.
The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum num-
ber of rows to be deleted before control is returned to the client. This can be used to ensure

554 MySQL Technical Reference for Version 4.1.1-alpha

that a specific DELETE command doesn’t take too much time. You can simply repeat the
DELETE command until the number of affected rows is less than the LIMIT value.
From MySQL 4.0, you can specify multiple tables in the DELETE statement to delete rows
from one or more tables depending on a particular condition in multiple tables. However,
you can not use ORDER BY or LIMIT in a multi-table DELETE.

6.4.6 TRUNCATE Syntax

TRUNCATE TABLE table_name

In 3.23 TRUNCATE TABLE is mapped to COMMIT; DELETE FROM table_name. See Section 6.4.5
[DELETE], page 552.
TRUNCATE TABLE differs from DELETE FROM ... in the following ways:
• Truncate operations drop and re-create the table, which is much faster than deleting

rows one by one.
• Truncate operations are not transaction-safe; you will get an error if you have an active

transaction or an active table lock.
• The number of deleted rows is not returned.
• As long as the table definition file ‘table_name.frm’ is valid, the table can be re-created

this way, even if the data or index files have become corrupted.

TRUNCATE TABLE is an Oracle SQL extension. This statement was added in MySQL 3.23.28,
although from 3.23.28 to 3.23.32, the keyword TABLE must be omitted.

6.4.7 REPLACE Syntax

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
VALUES (expression,...),(...),...

or REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
SELECT ...

or REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name=expression, col_name=expression,...

REPLACE works exactly like INSERT, except that if an old record in the table has the same
value as a new record on a UNIQUE index or PRIMARY KEY, the old record is deleted before
the new record is inserted. See Section 6.4.3 [INSERT], page 546.
In other words, you can’t access the values of the old row from a REPLACE statement. In
some old MySQL versions it appeared that you could do this, but that was a bug that has
been corrected.
To be able to use REPLACE you must have INSERT and DELETE privileges for the table.
When you use a REPLACE command, mysql_affected_rows() will return 2 if the new row
replaced an old row. This is because one row was inserted after the duplicate was deleted.
This fact makes it easy to determine whether REPLACE added or replaced a row: check
whether the affected-rows value is 1 (added) or 2 (replaced).

Chapter 6: MySQL Language Reference 555

Note that unless the table has a UNIQUE index or PRIMARY KEY, using a REPLACE command
makes no sense. It becomes equivalent to INSERT, because there is no index to be used to
determine whether a new row duplicates another.
Here follows the used algorithm in more detail: (This is also used with LOAD DATA ...
REPLACE.

- Insert the row into the table
- While duplicate key error for primary or unique key
- Revert changed keys
- Read conflicting row from the table through the duplicate key value
- Delete conflicting row
- Try again to insert the original primary key and unique keys in the tree

6.4.8 LOAD DATA INFILE Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE ’file_name.txt’
[REPLACE | IGNORE]
INTO TABLE tbl_name
[FIELDS

[TERMINATED BY ’\t’]
[[OPTIONALLY] ENCLOSED BY ’’]
[ESCAPED BY ’\\’]

]
[LINES

[STARTING BY ’’]
[TERMINATED BY ’\n’]

]
[IGNORE number LINES]
[(col_name,...)]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high
speed. If the LOCAL keyword is specified, it is interpreted with respect to the client end
of the connection. When LOCAL is specified, the file is read by the client program on the
client host and sent to the server. If LOCAL is not specified, the file must be located on the
server host and is read directly by the server. (LOCAL is available in MySQL Version 3.22.6
or later.)
For security reasons, when reading text files located on the server, the files must either
reside in the database directory or be readable by all. Also, to use LOAD DATA INFILE on
server files, you must have the FILE privilege on the server host. See Section 4.3.7 [Privileges
provided], page 222.
In MySQL 3.23.49 and MySQL 4.0.2 LOCAL will only work if you have not started mysqld
with --local-infile=0 or if you have not enabled your client to support LOCAL. See
Section 4.3.4 [LOAD DATA LOCAL], page 218.
If you specify the keyword LOW_PRIORITY, execution of the LOAD DATA statement is delayed
until no other clients are reading from the table.
If you specify the keyword CONCURRENT with a MyISAM table, then other threads can retrieve
data from the table while LOAD DATA is executing. Using this option will of course affect the
performance of LOAD DATA a bit even if no other thread is using the table at the same time.

556 MySQL Technical Reference for Version 4.1.1-alpha

Using LOCAL will be a bit slower than letting the server access the files directly, because the
contents of the file must be sent over the connection by the client to the server. On the
other hand, you do not need the FILE privilege to load local files.
If you are using MySQL before Version 3.23.24 you can’t read from a FIFO with LOAD DATA
INFILE. If you need to read from a FIFO (for example the output from gunzip), use LOAD
DATA LOCAL INFILE instead.
You can also load datafiles by using the mysqlimport utility; it operates by sending a
LOAD DATA INFILE command to the server. The --local option causes mysqlimport to
read datafiles from the client host. You can specify the --compress option to get better
performance over slow networks if the client and server support the compressed protocol.
When locating files on the server host, the server uses the following rules:
• If an absolute pathname is given, the server uses the pathname as is.
• If a relative pathname with one or more leading components is given, the server searches

for the file relative to the server’s data directory.
• If a filename with no leading components is given, the server looks for the file in the

database directory of the current database.

Note that these rules mean a file named as ‘./myfile.txt’ is read from the server’s data
directory, whereas the same file named as ‘myfile.txt’ is read from the database directory
of the current database. For example, the following LOAD DATA statement reads the file
‘data.txt’ from the database directory for db1 because db1 is the current database, even
though the statement explicitly loads the file into a table in the db2 database:

mysql> USE db1;
mysql> LOAD DATA INFILE "data.txt" INTO TABLE db2.my_table;

The REPLACE and IGNORE keywords control handling of input records that duplicate existing
records on unique key values.
If you specify REPLACE, input rows replace existing rows (in other words rows that has the
same value for a primary or unique index as an existing row). See Section 6.4.7 [REPLACE],
page 554.
If you specify IGNORE, input rows that duplicate an existing row on a unique key value are
skipped. If you don’t specify either option, the behaviour depends on whether or not the
LOCAL keyword is specified. Without LOCAL, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored. With LOCAL, the default behaviour is the
same as if IGNORE is specified; this is because the server has no way to stop transmission of
the file in the middle of the operation.
If you want to ignore foreign key constraints during load you can do SET FOREIGN_KEY_
CHECKS=0 before executing LOAD DATA.
If you use LOAD DATA INFILE on an empty MyISAM table, all non-unique indexes are created
in a separate batch (like in REPAIR). This normally makes LOAD DATA INFILE much faster
when you have many indexes. Normally this is very fast, but in some extreme cases you
can create the indexes even faster by turning them off with ALTER TABLE .. DISABLE KEYS
and use ALTER TABLE .. ENABLE KEYS to recreate the indexes. See Section 4.5.6 [Table
maintenance], page 264.
LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. See Section 6.4.1
[SELECT], page 530. To write data from a table to a file, use SELECT ... INTO OUTFILE.

Chapter 6: MySQL Language Reference 557

To read the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and
LINES clauses is the same for both commands. Both clauses are optional, but FIELDS must
precede LINES if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY]
ENCLOSED BY, and ESCAPED BY) is also optional, except that you must specify at least one
of them.

If you don’t specify a FIELDS clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY ’\t’ ENCLOSED BY ’’ ESCAPED BY ’\\’

If you don’t specify a LINES clause, the default is the same as if you had written this:

LINES TERMINATED BY ’\n’

Note: If you have generated the text file on a Windows system you may have to change the
above to: LINES TERMINATED BY ’\r\n’ as Windows uses two characters as a line termina-
tor. Some programs, like wordpad, may use \r as a line terminator.

If all the lines you want to read in has a common prefix that you want to skip, you can use
LINES STARTING BY prefix_string for this.

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• If LINES STARTING BY prefix is used, read until prefix is found and start reading at
character after prefix. If line doesn’t include prefix it will be skipped.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret occurrences of tab, newline, or ‘\’ preceded by ‘\’ as literal characters that
are part of field values.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing
output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use ‘\’ to escape instances of tab, newline or ‘\’ that occur within field values.

• Write newlines at the ends of lines.

Note that to write FIELDS ESCAPED BY ’\\’, you must specify two backslashes for the value
to be read as a single backslash.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For
example, you can use IGNORE 1 LINES to skip over an initial header line containing column
names:

mysql> LOAD DATA INFILE "/tmp/file_name" INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data
from a database into a file and then read the file back into the database later, the field and
line handling options for both commands must match. Otherwise, LOAD DATA INFILE will
not interpret the contents of the file properly. Suppose you use SELECT ... INTO OUTFILE
to write a file with fields delimited by commas:

558 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT * INTO OUTFILE ’data.txt’
-> FIELDS TERMINATED BY ’,’
-> FROM ...;

To read the comma-delimited file back in, the correct statement would be:

mysql> LOAD DATA INFILE ’data.txt’ INTO TABLE table2
-> FIELDS TERMINATED BY ’,’;

If instead you tried to read in the file with the statement shown here, it wouldn’t work
because it instructs LOAD DATA INFILE to look for tabs between fields:

mysql> LOAD DATA INFILE ’data.txt’ INTO TABLE table2
-> FIELDS TERMINATED BY ’\t’;

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources, too. For exam-
ple, a file in dBASE format will have fields separated by commas and enclosed in double
quotes. If lines in the file are terminated by newlines, the command shown here illustrates
the field and line handling options you would use to load the file:

mysql> LOAD DATA INFILE ’data.txt’ INTO TABLE tbl_name
-> FIELDS TERMINATED BY ’,’ ENCLOSED BY ’"’
-> LINES TERMINATED BY ’\n’;

Any of the field or line handling options may specify an empty string (’’). If not empty,
the FIELDS [OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single
character. The FIELDS TERMINATED BY and LINES TERMINATED BY values may be more than
one character. For example, to write lines that are terminated by carriage return-linefeed
pairs, or to read a file containing such lines, specify a LINES TERMINATED BY ’\r\n’ clause.

For example, to read a file of jokes, that are separated with a line of %%, into an SQL table
you can do:

CREATE TABLE jokes (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY, joke TEXT
NOT NULL);
LOAD DATA INFILE "/tmp/jokes.txt" INTO TABLE jokes FIELDS TERMINATED BY ""
LINES TERMINATED BY "\n%%\n" (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ...
INTO OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED
BY character. An example of such output (using a comma as the field delimiter) is shown
here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose CHAR and
VARCHAR fields:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Chapter 6: MySQL Language Reference 559

Note that occurrences of the ENCLOSED BY character within a field value are escaped by
prefixing them with the ESCAPED BY character. Also note that if you specify an empty
ESCAPED BY value, it is possible to generate output that cannot be read properly by LOAD
DATA INFILE. For example, the preceding output just shown would appear as follows if
the escape character is empty. Observe that the second field in the fourth line contains a
comma following the quote, which (erroneously) appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values.
(This is true whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpre-
tation.) Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character
are interpreted as part of the current field value.
If the field begins with the ENCLOSED BY character, instances of that character are recognized
as terminating a field value only if followed by the field or line TERMINATED BY sequence.
To avoid ambiguity, occurrences of the ENCLOSED BY character within a field value can
be doubled and will be interpreted as a single instance of the character. For example, if
ENCLOSED BY ’"’ is specified, quotes are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to write or read special characters. If the FIELDS ESCAPED
BY character is not empty, it is used to prefix the following characters on output:
• The FIELDS ESCAPED BY character
• The FIELDS [OPTIONALLY] ENCLOSED BY character
• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values
• ASCII 0 (what is actually written following the escape character is ASCII ’0’, not a

zero-valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped. It is probably not
a good idea to specify an empty escape character, particularly if field values in your data
contain any of the characters in the list just given.
For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character
are stripped and the following character is taken literally as part of a field value. The
exceptions are an escaped ‘0’ or ‘N’ (for example, \0 or \N if the escape character is ‘\’).
These sequences are interpreted as ASCII 0 (a zero-valued byte) and NULL. See below for
the rules on NULL handling.
For more information about ‘\’-escape syntax, see Section 6.1.1 [Literals], page 441.
In certain cases, field and line handling options interact:
• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-empty,

lines are also terminated with FIELDS TERMINATED BY.
• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (’’), a

fixed-row (non-delimited) format is used. With fixed-row format, no delimiters are used

560 MySQL Technical Reference for Version 4.1.1-alpha

between fields (but you can still have a line terminator). Instead, column values are
written and read using the “display” widths of the columns. For example, if a column
is declared as INT(7), values for the column are written using 7-character fields. On
input, values for the column are obtained by reading 7 characters.
LINES TERMINATED BY is still used to separate lines. If a line doesn’t contain all fields,
the rest of the fields will be set to their default values. If you don’t have a line
terminator, you should set this to ’’. In this case the text file must contain all fields
for each row.
Fixed-row format also affects handling of NULL values; see below. Note that fixed-size
format will not work if you are using a multi-byte character set.

Handling of NULL values varies, depending on the FIELDS and LINES options you use:
• For the default FIELDS and LINES values, NULL is written as \N for output and \N is

read as NULL for input (assuming the ESCAPED BY character is ‘\’).
• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its

value is read as a NULL value (this differs from the word NULL enclosed within FIELDS
ENCLOSED BY characters, which is read as the string ’NULL’).

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.
• With fixed-row format (which happens when FIELDS TERMINATED BY and FIELDS

ENCLOSED BY are both empty), NULL is written as an empty string. Note that this
causes both NULL values and empty strings in the table to be indistinguishable when
written to the file because they are both written as empty strings. If you need to be
able to tell the two apart when reading the file back in, you should not use fixed-row
format.

Some cases are not supported by LOAD DATA INFILE:
• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and

BLOB or TEXT columns.
• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE

won’t be able to interpret the input properly. For example, the following FIELDS clause
would cause problems:

FIELDS TERMINATED BY ’"’ ENCLOSED BY ’"’

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS
ENCLOSED BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value
will cause LOAD DATA INFILE to stop reading a field or line too early. This happens
because LOAD DATA INFILE cannot properly determine where the field or line value
ends.

The following example loads all columns of the persondata table:
mysql> LOAD DATA INFILE ’persondata.txt’ INTO TABLE persondata;

No field list is specified, so LOAD DATA INFILE expects input rows to contain a field for each
table column. The default FIELDS and LINES values are used.
If you wish to load only some of a table’s columns, specify a field list:

mysql> LOAD DATA INFILE ’persondata.txt’
-> INTO TABLE persondata (col1,col2,...);

Chapter 6: MySQL Language Reference 561

You must also specify a field list if the order of the fields in the input file differs from the
order of the columns in the table. Otherwise, MySQL cannot tell how to match up input
fields with table columns.
If a row has too few fields, the columns for which no input field is present are set to default
values. Default value assignment is described in Section 6.5.3 [CREATE TABLE], page 564.
An empty field value is interpreted differently than if the field value is missing:
• For string types, the column is set to the empty string.
• For numeric types, the column is set to 0.
• For date and time types, the column is set to the appropriate “zero” value for the type.

See Section 6.2.2 [Date and time types], page 460.

Note that these are the same values that result if you assign an empty string explicitly to
a string, numeric, or date or time type explicitly in an INSERT or UPDATE statement.
TIMESTAMP columns are only set to the current date and time if there is a NULL value for
the column (that is, \N), or (for the first TIMESTAMP column only) if the TIMESTAMP column
is omitted from the field list when a field list is specified.
If an input row has too many fields, the extra fields are ignored and the number of warnings
is incremented. Note that before MySQL 4.1.1 the warnings is just a number to indicate that
something went wrong. In MySQL 4.1.1 you can do SHOW WARNINGS to get more information
for what went wrong.
LOAD DATA INFILE regards all input as strings, so you can’t use numeric values for ENUM or
SET columns the way you can with INSERT statements. All ENUM and SET values must be
specified as strings!
If you are using the C API, you can get information about the query by calling the API
function mysql_info() when the LOAD DATA INFILE query finishes. The format of the
information string is shown here:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted via the INSERT
statement (see Section 6.4.3 [INSERT], page 546), except that LOAD DATA INFILE also gener-
ates warnings when there are too few or too many fields in the input row. The warnings are
not stored anywhere; the number of warnings can only be used as an indication if everything
went well.
If you get warnings and want to know exactly why you got them, one way to do this is to
use SELECT ... INTO OUTFILE into another file and compare this to your original input file.
If you need LOAD DATA to read from a pipe, you can use the following trick:

mkfifo /mysql/db/x/x
chmod 666 /mysql/db/x/x
cat < /dev/tcp/10.1.1.12/4711 > /nt/mysql/db/x/x
mysql -e "LOAD DATA INFILE ’x’ INTO TABLE x" x

If you are using a version of MySQL older than 3.23.25 you can only do the above with
LOAD DATA LOCAL INFILE.
In MySQL 4.1.1 you can use SHOW WARNINGS to get a list of the first max_error_count
warnings. See Section 4.6.8.9 [SHOW WARNINGS], page 303.
For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding
up LOAD DATA INFILE, See Section 5.2.10 [Insert speed], page 413.

562 MySQL Technical Reference for Version 4.1.1-alpha

6.4.9 HANDLER Syntax

HANDLER tbl_name OPEN [AS alias]
HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

[WHERE ...] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

[WHERE ...] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }

[WHERE ...] [LIMIT ...]
HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to the MyISAM table storage engine interface.

The first form of HANDLER statement opens a table, making it accessible via subsequent
HANDLER ... READ statements. This table object is not shared by other threads and will
not be closed until the thread calls HANDLER tbl_name CLOSE or the thread dies.

The second form fetches one row (or more, specified by LIMIT clause) where the index
specified satisfies the given values and the WHERE condition is met. If you have a multiple-
column index, specify the index column values as a comma-separated list. Either specify
values for all the columns in the index, or specify values for a leftmost prefix of the index
columns. Suppose an index includes three columns named col_a, col_b, and col_c, in
that order. The HANDLER statement can specify values for all three columns in the index,
or for the columns in a leftmost prefix. For example:

HANDLER ... index_name = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... index_name = (col_a_val,col_b_val) ...
HANDLER ... index_name = (col_a_val) ...

The third form fetches one row (or more, specified by LIMIT clause) from the table in index
order, matching WHERE condition.

The fourth form (without index specification) fetches one row (or more, specified by LIMIT
clause) from the table in natural row order (as stored in datafile) matching WHERE condition.
It is faster than HANDLER tbl_name READ index_name when a full table scan is desired.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

Note: If you’re using HANDLER interface for PRIMARY KEY you should remember to quote the
keyword PRIMARY with backticks: HANDLER tbl READ ‘PRIMARY‘ > (...)

HANDLER is a somewhat low-level statement. For example, it does not provide consistency.
That is, HANDLER ... OPEN does NOT take a snapshot of the table, and does NOT lock the
table. This means that after a HANDLER ... OPEN is issued, table data can be modified (by
this or any other thread) and these modifications may appear only partially in HANDLER ...
NEXT or HANDLER ... PREV scans.

The reasons to use this interface instead of normal SQL are:

• It’s faster than SELECT because:
• A designated storage engine is allocated for the thread in HANDLER OPEN.
• There is less parsing involved.
• No optimiser and no query checking overhead.
• The used table doesn’t have to be locked between two handler requests.

Chapter 6: MySQL Language Reference 563

• The handler interface doesn’t have to provide a consistent look of the data (for
example, dirty-reads are allowed), so the storage engine can do optimisations that
SQL doesn’t normally allow.

• It makes it much easier to port applications that uses an ISAM like interface to MySQL.
• It allows one to traverse a database in a manner that is not easy (in some cases impos-

sible) to do with SQL. The handler interface is more natural way to look at data when
working with applications that provide an interactive user interfaces to the database.

6.4.10 DO Syntax

DO expression, [expression, ...]

Execute the expression but don’t return any results. This is a shorthand of SELECT
expression, expression, but has the advantage that it’s slightly faster when you don’t
care about the result.
This is mainly useful with functions that has side effects, like RELEASE_LOCK.

6.5 Data Definition: CREATE, DROP, ALTER

6.5.1 CREATE DATABASE Syntax

CREATE DATABASE [IF NOT EXISTS] db_name

CREATE DATABASE creates a database with the given name.
Rules for allowable database names are given in Section 6.1.2 [Legal names], page 444. An
error occurs if the database already exists and you didn’t specify IF NOT EXISTS.
Databases in MySQL are implemented as directories containing files that correspond to
tables in the database. Because there are no tables in a database when it is initially
created, the CREATE DATABASE statement only creates a directory under the MySQL data
directory.
You can also create databases with mysqladmin. See Section 4.9 [Client-Side Scripts],
page 325.

6.5.2 DROP DATABASE Syntax

DROP DATABASE [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. If you do a DROP
DATABASE on a symbolic linked database, both the link and the original database is deleted.
Be VERY careful with this command!

DROP DATABASE returns the number of files that were removed from the database directory.
For MyISAM tables, this is three times the number of tables, because normally each table
corresponds to a ‘.MYD’ file, a ‘.MYI’ file, and a ‘.frm’ file.
The DROP DATABASE command removes from the given database directory all files with the
following extensions:
Ext Ext Ext Ext

564 MySQL Technical Reference for Version 4.1.1-alpha

.BAK .DAT .HSH .ISD

.ISM .ISM .MRG .MYD

.MYI .db .frm

All subdirectories that consists of 2 digits (RAID directories) are also removed.

In MySQL Version 3.22 or later, you can use the keywords IF EXISTS to prevent an error
from occurring if the database doesn’t exist.

You can also drop databases with mysqladmin. See Section 4.9 [Client-Side Scripts],
page 325.

6.5.3 CREATE TABLE Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name [(create_definition,...)]
[table_options] [select_statement]

or

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name [(] LIKE old_tbl_name [)];

create_definition:
col_name type [NOT NULL | NULL] [DEFAULT default_value] [AUTO_INCREMENT]

[[PRIMARY] KEY] [COMMENT ’string’] [reference_definition]
| PRIMARY KEY (index_col_name,...)
| KEY [index_name] (index_col_name,...)
| INDEX [index_name] (index_col_name,...)
| UNIQUE [INDEX] [index_name] (index_col_name,...)
| FULLTEXT [INDEX] [index_name] (index_col_name,...)
| [CONSTRAINT symbol] FOREIGN KEY [index_name] (index_col_name,...)

[reference_definition]
| CHECK (expr)

type:
TINYINT[(length)] [UNSIGNED] [ZEROFILL]

| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]
| NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]
| CHAR(length) [BINARY | ASCII | UNICODE]
| VARCHAR(length) [BINARY]
| DATE
| TIME

Chapter 6: MySQL Language Reference 565

| TIMESTAMP
| DATETIME
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT
| TEXT
| MEDIUMTEXT
| LONGTEXT
| ENUM(value1,value2,value3,...)
| SET(value1,value2,value3,...)

index_col_name:
col_name [(length)] [ASC | DESC]

reference_definition:
REFERENCES tbl_name [(index_col_name,...)]

[MATCH FULL | MATCH PARTIAL]
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

table_options: table_option [table_option] ...

table_option:
TYPE = {BDB | HEAP | ISAM | InnoDB | MERGE | MRG_MYISAM | MYISAM }

| AUTO_INCREMENT = #
| AVG_ROW_LENGTH = #
| CHECKSUM = {0 | 1}
| COMMENT = ’string’
| MAX_ROWS = #
| MIN_ROWS = #
| PACK_KEYS = {0 | 1 | DEFAULT}
| PASSWORD = ’string’
| DELAY_KEY_WRITE = {0 | 1}
| ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED }
| RAID_TYPE = { 1 | STRIPED | RAID0 } RAID_CHUNKS=# RAID_CHUNKSIZE=#
| UNION = (table_name,[table_name...])
| INSERT_METHOD = { NO | FIRST | LAST }
| DATA DIRECTORY = ’absolute path to directory’
| INDEX DIRECTORY = ’absolute path to directory’

select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

566 MySQL Technical Reference for Version 4.1.1-alpha

CREATE TABLE creates a table with the given name. Rules for allowable table names are given
in Section 6.1.2 [Legal names], page 444. By default, the table is created in the current
database. An error occurs if the table already exists, if there is no current database, or if
the database does not exist.

In MySQL Version 3.22 or later, the table name can be specified as db_name.tbl_name to
create the table in a specific database. This works regardless of whether there is a current
database.

From MySQL Version 3.23, you can use the TEMPORARY keyword when you create a table.
The temporary table is visible only to the current connection, and will be deleted automat-
ically when the connection is closed. This means that two different connections can both
use the same temporary table name without conflicting with each other or with an existing
table of the same name. (The existing table is hidden until the temporary table is deleted.)
From MySQL 4.0.2 on, you must have the CREATE TEMPORARY TABLES privilege to be able
to create temporary tables.

In MySQL Version 3.23 or later, you can use the keywords IF NOT EXISTS so that an error
does not occur if the table already exists. Note that there is no verification that the existing
table has a structure identical to that indicated by the CREATE TABLE statement.

From version 4.1.0, the attribute SERIAL can be used as an alias for BIGINT NOT NULL AUTO_
INCREMENT UNIQUE. This is compatibility feature.

As of MySQL 3.23, you can create one table from another by adding a SELECT statement
at the end of the CREATE TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

Indexes are not carried over to the new table, and some conversion of column types may
occur. For example, the AUTO_INCREMENT attribute is not preserved, and VARCHAR columns
may become CHAR columns.

As of MySQL 4.1, you can explicitly specify the type for a generated column:

CREATE TABLE foo (a tinyint not null) SELECT b+1 AS ’a’ FROM bar;

In MySQL 4.1, you can also use LIKE to create a table based on the definition of another
table, including any column attributes and indexes the original table has:

CREATE TABLE new_tbl LIKE orig_tbl;

CREATE TABLE ... LIKE does not copy any DATA DIRECTORY or INDEX DIRECTORY table op-
tions that were specified for the original table.

Each table tbl_name is represented by some files in the database directory. In the case of
MyISAM-type tables you will get:

File Purpose
tbl_name.frm Table format (definition)

file
tbl_name.MYD Datafile
tbl_name.MYI Index file

For more information on the properties of the various column types, see Section 6.2 [Column
types], page 453:

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had
been specified.

Chapter 6: MySQL Language Reference 567

• An integer column may have the additional attribute AUTO_INCREMENT. When you
insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column,
the column is set to the next sequence value. Typically this is value+1, where value
is the largest value for the column currently in the table. AUTO_INCREMENT sequences
begin with 1. See Section 11.1.3.31 [mysql_insert_id()], page 742.

If you delete the row containing the maximum value for an AUTO_INCREMENT column,
the value will be reused for an ISAM or BDB table, but not for a MyISAM or InnoDB table.
If you delete all rows in the table with DELETE FROM table_name (without a WHERE)
in AUTOCOMMIT mode, the sequence starts over for all table types except InnoDB. See
Section 7.5.12.5 [InnoDB auto-increment column], page 633.

Note: there can be only one AUTO_INCREMENT column per table, it must be indexed and
it can’t have a DEFAULT value. In MySQL Version 3.23, an AUTO_INCREMENT column
will work properly only if it contains only positive values. Inserting a negative number
is regarded as inserting a very large positive number. This is done to avoid precision
problems when numbers “wrap” over from positive to negative and also to ensure that
one doesn’t accidentally get an AUTO_INCREMENT column that contains 0.

In MyISAM and BDB tables you can specify AUTO_INCREMENT secondary column in a
multiple-column key. See Section 3.6.9 [example-AUTO INCREMENT], page 189.

To make MySQL compatible with some ODBC applications, you can find the AUTO_
INCREMENT value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

• NULL values are handled differently for TIMESTAMP columns than for other column types.
You cannot store a literal NULL in a TIMESTAMP column; setting the column to NULL
sets it to the current date and time. Because TIMESTAMP columns behave this way, the
NULL and NOT NULL attributes do not apply in the normal way and are ignored if you
specify them.

On the other hand, to make it easier for MySQL clients to use TIMESTAMP columns,
the server reports that such columns may be assigned NULL values (which is true), even
though TIMESTAMP never actually will contain a NULL value. You can see this when you
use DESCRIBE tbl_name to get a description of your table.

Note that setting a TIMESTAMP column to 0 is not the same as setting it to NULL,
because 0 is a valid TIMESTAMP value.

• A DEFAULT value has to be a constant, it cannot be a function or an expression.

If no DEFAULT value is specified for a column, MySQL automatically assigns one, as
follows.

If the column may take NULL as a value, the default value is NULL.

If the column is declared as NOT NULL, the default value depends on the column type:

− For numeric types other than those declared with the AUTO_INCREMENT attribute,
the default is 0. For an AUTO_INCREMENT column, the default value is the next
value in the sequence.

− For date and time types other than TIMESTAMP, the default is the appropriate zero
value for the type. For the first TIMESTAMP column in a table, the default value is
the current date and time. See Section 6.2.2 [Date and time types], page 460.

568 MySQL Technical Reference for Version 4.1.1-alpha

− For string types other than ENUM, the default value is the empty string. For ENUM,
the default is the first enumeration value.

Default values must be constants. This means, for example, that you cannot set the
default for a date column to be the value of a function such as NOW() or CURRENT_DATE.

• A comment for a column may be specified with the COMMENT option. The comment
is displayed by the SHOW CREATE TABLE statement, and by SHOW FULL COLUMNS. This
option is available as of MySQL 4.1. (It is allowed but ignored in earlier versions.)

• KEY is normally a synonym for INDEX. From version 4.1, the key attribute PRIMARY KEY
may also be specified as just KEY. This was implemented for compatibility with other
databases.

• In MySQL, a UNIQUE key can have only distinct values. An error occurs if you try to
add a new row with a key that matches an existing row.

• A PRIMARY KEY is a unique KEY where all key columns must be defined as NOT NULL. If
they are not explicitly declared as NOT NULL, it will be done implicitly (and quietly).
In MySQL the key is named PRIMARY. A table can have only one PRIMARY KEY. If
you don’t have a PRIMARY KEY and some applications ask for the PRIMARY KEY in your
tables, MySQL will return the first UNIQUE key, which doesn’t have any NULL columns,
as the PRIMARY KEY.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-
column index using the PRIMARY KEY key attibute in a column specification. Doing so
will mark only that single column as primary. You must use a separate PRIMARY
KEY(index_col_name, ...) clause.

• A UNIQUE index is one in which all values in the index must be distinct. The exception
to this is that if a column in the index is allowed to contain NULL values, it may contain
multiple NULL values. This exception does not apply to BDB tables, which allow only a
single NULL.

• If the PRIMARY or UNIQUE key consists of only one column and this is of type integer,
you can also refer to it as _rowid (new in Version 3.23.11).

• If you don’t assign a name to an index that is not a PRIMARY KEY, the index will be
assigned the same name as the first index_col_name, with an optional suffix (_2, _3,
...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 4.6.8.1 [Show database info], page 285.

• Only the MyISAM, InnoDB, and BDB table types support indexes on columns that can
have NULL values. In other cases you must declare such columns NOT NULL or an error
results.

• With col_name(length) syntax in an index specification, you can create an index that
uses only the first length bytes of a CHAR or VARCHAR column. This can make the index
file much smaller. See Section 5.4.4 [Indexes], page 423.

• Only the MyISAM and (as of MySQL 4.0.14) InnoDB table types support indexing on
BLOB and TEXT columns. When putting an index on a BLOB or TEXT column you MUST
always specify the length of the index, up to 255 bytes. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

• An index_col_name specification may end with ASC or DESC. These keywords are
allowed for future extensions for specifying ascending or descending index value storage.

Chapter 6: MySQL Language Reference 569

Currently they are parsed but ignored; index values are always stored in ascending
order.

• When you use ORDER BY or GROUP BY with a TEXT or BLOB column, the server sorts
values using only the initial number of bytes indicated by the max_sort_length server
variable. See Section 6.2.3.2 [BLOB], page 468.

• In MySQL Version 3.23.23 or later, you can also create special FULLTEXT indexes. They
are used for full-text search. Only the MyISAM table type supports FULLTEXT indexes.
They can be created only from CHAR, VARCHAR, and TEXT columns. Indexing always
happens over the entire column; partial indexing is not supported. See Section 6.8
[Fulltext Search], page 583 for details of operation.

• In MySQL Version 3.23.44 or later, InnoDB tables support checking of foreign key
constraints. See Section 7.5 [InnoDB], page 605. Note that the FOREIGN KEY syntax
in InnoDB is more restrictive than the syntax presented above: The columns of the
referenced table must always be explicitly named. InnoDB supports both ON DELETE
and ON UPDATE actions on foreign keys as of MySQL 3.23.50 and 4.0.8, respectively.
See the InnoDB manual section for the precise syntax. See Section 7.5.5.2 [InnoDB
foreign key constraints], page 614. For other table types, MySQL Server does parse the
FOREIGN KEY, CHECK, and REFERENCES syntax in CREATE TABLE commands, but without
further action being taken. See Section 1.7.4.5 [ANSI diff Foreign Keys], page 40.

• For MyISAM and ISAM tables, each NULL column takes one bit extra, rounded up to the
nearest byte. The maximum record length in bytes can be calculated as follows:

row length = 1
+ (sum of column lengths)
+ (number of NULL columns + delete_flag + 7)/8
+ (number of variable-length columns)

delete_flag is 1 for tables with static record format. Static tables use a bit in the
row record for a flag that indicates whether the row has been deleted. delete_flag is
0 for dynamic tables because the flag is stored in the dynamic row header.
These calculations do not apply for InnoDB tables, for which storage size is not different
for NULL columns compared to NOT NULL columns.

• The table_options and SELECT options are only implemented in MySQL Version 3.23
and above.
The TYPE option for specifying the table type takes the following values:
Table type Description
BDB or BerkeleyDB Transaction-safe tables with page locking. See Section 7.6

[BDB], page 653.
HEAP The data for this table is only stored in memory. See Sec-

tion 7.4 [HEAP], page 604.
ISAM The original storage engine. See Section 7.3 [ISAM], page 603.
InnoDB Transaction-safe tables with row locking. See Section 7.5 [Inn-

oDB], page 605.
MERGE A collection of MyISAM tables used as one table. See Sec-

tion 7.2 [MERGE], page 600.
MRG_MyISAM An alias for MERGE.
MyISAM The new binary portable storage engine that is the replace-

ment for ISAM. See Section 7.1 [MyISAM], page 594.

570 MySQL Technical Reference for Version 4.1.1-alpha

See Chapter 7 [Table types], page 593.
If a table type is specified, and that particular type is not available, MySQL will use
MyISAM instead. For example, if a table definition includes the TYPE=BDB option but
the MySQL server does not support BDB tables, the table will be created as a MyISAM
table. This makes it possible to have a replication setup where you have transactional
tables on the master but tables created on the slave are non-transactional (to get more
speed). In MySQL 4.1.1 you get a warning if the specified table type is not honored.
The other table options are used to optimise the behaviour of the table. In most cases,
you don’t have to specify any of them. The options work for all table types, unless
otherwise indicated:
Option Description
AUTO_INCREMENT The next AUTO_INCREMENT value you want to set for your

table (MyISAM only; to set the first auto-increment value for
an InnoDB table, insert a dummy row with a value one less,
and delete the dummy row).

AVG_ROW_LENGTH An approximation of the average row length for your table.
You only need to set this for large tables with variable size
records.

CHECKSUM Set this to 1 if you want MySQL to maintain a checksum for
all rows (makes the table a little slower to update but makes
it easier to find corrupted tables) (MyISAM only).

COMMENT A 60-character comment for your table.
MAX_ROWS Maximum number of rows you plan to store in the table.
MIN_ROWS Minimum number of rows you plan to store in the table.
PACK_KEYS Set this to 1 if you want to have a smaller index. This usu-

ally makes updates slower and reads faster (MyISAM and ISAM
only). Setting this to 0 will disable all packing of keys. Set-
ting this to DEFAULT (MySQL 4.0) will tell the storage engine
to only pack long CHAR/VARCHAR columns.

PASSWORD Encrypt the ‘.frm’ file with a password. This option doesn’t
do anything in the standard MySQL version.

DELAY_KEY_WRITE Set this to 1 if want to delay key table updates until the table
is closed (MyISAM only).

ROW_FORMAT Defines how the rows should be stored. Currently this option
only works with MyISAM tables, which supports the DYNAMIC
and FIXED row formats. See Section 7.1.2 [MyISAM table
formats], page 596.

When you use a MyISAM table, MySQL uses the product of MAX_ROWS * AVG_ROW_
LENGTH to decide how big the resulting table will be. If you don’t specify any of
the above options, the maximum size for a table will be 4G (or 2G if your operating
systems only supports 2G tables). The reason for this is just to keep down the pointer
sizes to make the index smaller and faster if you don’t really need big files.
If you don’t use PACK_KEYS, the default is to only pack strings, not numbers. If you
use PACK_KEYS=1, numbers will be packed as well.
When packing binary number keys, MySQL will use prefix compression. This means
that you will only get a big benefit from this if you have many numbers that are the
same. Prefix compression means that every key needs one extra byte to indicate how

Chapter 6: MySQL Language Reference 571

many bytes of the previous key are the same for the next key (note that the pointer to
the row is stored in high-byte-first order directly after the key, to improve compression).
This means that if you have many equal keys on two consecutive rows, all following
“same” keys will usually only take 2 bytes (including the pointer to the row). Compare
this to the ordinary case where the following keys will take storage size for key +
pointer size (usually 4). On the other hand, if all keys are totally different, you will
use 1 byte more per key, if the key isn’t a key that can have NULL values. (In this case
the packed key length will be stored in the same byte that is used to mark if a key is
NULL.)

• As of MySQL 3.23, if you specify a SELECT after the CREATE statement, MySQL will
create new fields for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (a), KEY(b))
-> TYPE=MyISAM SELECT b,c FROM test2;

This will create a MyISAM table with three columns, a, b, and c. Notice that the columns
from the SELECT statement are appended to the right side of the table, not overlapped
onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default
values for the new columns.
CREATE TABLE ... SELECT will not automatically create any indexes for you. This is
done intentionally to make the command as flexible as possible. If you want to have
indexes in the created table, you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

If any errors occur while copying the data to the table, it will automatically be deleted.
You can precede the SELECT by IGNORE or REPLACE to indicate how to handle records
that duplicate unique key values. With IGNORE, new records that duplicate an existing
record on a unique key value are discarded. With REPLACE, new records replace records

572 MySQL Technical Reference for Version 4.1.1-alpha

that have the same unique key value. If neither IGNORE nor REPLACE are specified,
duplicate unique key values result in an error.
To ensure that the update log/binary log can be used to re-create the original tables,
MySQL will not allow concurrent inserts during CREATE TABLE ... SELECT.

• The RAID_TYPE option will help you to exceed the 2G/4G limit for the MyISAM datafile
(not the index file) on operating systems that don’t support big files. Note that this
option is not recommended for filesystem that supports big files!
You can get more speed from the I/O bottleneck by putting RAID directories on different
physical disks. RAID_TYPE will work on any operating system, as long as you have
configured MySQL with --with-raid. For now the only allowed RAID_TYPE is STRIPED
(1 and RAID0 are aliases for this).
If you specify RAID_TYPE=STRIPED for a MyISAM table, MyISAM will create RAID_CHUNKS
subdirectories named 00, 01, 02 in the database directory. In each of these directories
MyISAM will create a table_name.MYD. When writing data to the datafile, the RAID
handler will map the first RAID_CHUNKSIZE *1024 bytes to the first file, the next RAID_
CHUNKSIZE *1024 bytes to the next file and so on.

• UNION is used when you want to use a collection of identical tables as one. This only
works with MERGE tables. See Section 7.2 [MERGE], page 600.
For the moment you need to have SELECT, UPDATE, and DELETE privileges on the tables
you map to a MERGE table. All mapped tables must be in the same database as the
MERGE table.

• If you want to insert data in a MERGE table, you have to specify with INSERT_METHOD
into with table the row should be inserted. INSERT_METHOD is an option useful for
MERGE tables only. See Section 7.2 [MERGE], page 600. This option was introduced in
MySQL 4.0.0.

• In the created table the PRIMARY key will be placed first, followed by all UNIQUE keys
and then the normal keys. This helps the MySQL optimiser to prioritise which key to
use and also more quickly detect duplicated UNIQUE keys.

• By using DATA DIRECTORY=’directory’ or INDEX DIRECTORY=’directory’ you can
specify where the storage engine should put its datafile and index file. Note that the
directory should be a full path to the directory (not a relative path).
This only works for MyISAM tables in MySQL 4.0, when you are not using the --skip-
symlink option. See Section 5.6.1.2 [Symbolic links to tables], page 439.

6.5.3.1 Silent Column Specification Changes

In some cases, MySQL silently changes a column specification from that given in a CREATE
TABLE statement. (This may also occur with ALTER TABLE.):
• VARCHAR columns with a length less than four are changed to CHAR.
• If any column in a table has a variable length, the entire row is variable-length as a

result. Therefore, if a table contains any variable-length columns (VARCHAR, TEXT, or
BLOB), all CHAR columns longer than three characters are changed to VARCHAR columns.
This doesn’t affect how you use the columns in any way; in MySQL, VARCHAR is just
a different way to store characters. MySQL performs this conversion because it saves
space and makes table operations faster. See Chapter 7 [Table types], page 593.

Chapter 6: MySQL Language Reference 573

• From version 4.1.0, if a CHAR or VARCHAR field with a length specification greater than
255 is converted to TEXT. This is a compatibility feature.

• TIMESTAMP display sizes must be even and in the range from 2 to 14. If you specify a
display size of 0 or greater than 14, the size is coerced to 14. Odd-valued sizes in the
range from 1 to 13 are coerced to the next higher even number.

• You cannot store a literal NULL in a TIMESTAMP column; setting it to NULL sets it to the
current date and time. Because TIMESTAMP columns behave this way, the NULL and NOT
NULL attributes do not apply in the normal way and are ignored if you specify them.
DESCRIBE tbl_name always reports that a TIMESTAMP column may be assigned NULL
values.

• MySQL maps certain column types used by other SQL database vendors to MySQL
types. See Section 6.2.5 [Other-vendor column types], page 472.

If you want to see whether MySQL used a column type other than the one you specified,
issue a DESCRIBE tbl_name statement after creating or altering your table.
Certain other column type changes may occur if you compress a table using myisampack.
See Section 7.1.2.3 [Compressed format], page 598.

6.5.4 ALTER TABLE Syntax

ALTER [IGNORE] TABLE tbl_name alter_specification [, alter_specification ...]

alter_specification:
ADD [COLUMN] create_definition [FIRST | AFTER column_name]

| ADD [COLUMN] (create_definition, create_definition,...)
| ADD INDEX [index_name] (index_col_name,...)
| ADD PRIMARY KEY (index_col_name,...)
| ADD UNIQUE [index_name] (index_col_name,...)
| ADD FULLTEXT [index_name] (index_col_name,...)
| ADD [CONSTRAINT symbol] FOREIGN KEY [index_name] (index_col_name,...)

[reference_definition]
| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
| CHANGE [COLUMN] old_col_name create_definition

[FIRST | AFTER column_name]
| MODIFY [COLUMN] create_definition [FIRST | AFTER column_name]
| DROP [COLUMN] col_name
| DROP PRIMARY KEY
| DROP INDEX index_name
| DISABLE KEYS
| ENABLE KEYS
| RENAME [TO] new_tbl_name
| ORDER BY col
| table_options

ALTER TABLE allows you to change the structure of an existing table. For example, you can
add or delete columns, create or destroy indexes, change the type of existing columns, or
rename columns or the table itself. You can also change the comment for the table and
type of the table. See Section 6.5.3 [CREATE TABLE], page 564.

574 MySQL Technical Reference for Version 4.1.1-alpha

If you use ALTER TABLE to change a column specification but DESCRIBE tbl_name indicates
that your column was not changed, it is possible that MySQL ignored your modification
for one of the reasons described in Section 6.5.3.1 [Silent column changes], page 572. For
example, if you try to change a VARCHAR column to CHAR, MySQL will still use VARCHAR if
the table contains other variable-length columns.

ALTER TABLE works by making a temporary copy of the original table. The alteration is
performed on the copy, then the original table is deleted and the new one is renamed. This
is done in such a way that all updates are automatically redirected to the new table without
any failed updates. While ALTER TABLE is executing, the original table is readable by other
clients. Updates and writes to the table are stalled until the new table is ready.

Note that if you use any other option to ALTER TABLE than RENAME, MySQL will always
create a temporary table, even if the data wouldn’t strictly need to be copied (like when you
change the name of a column). We plan to fix this in the future, but as one doesn’t normally
do ALTER TABLE that often this isn’t that high on our TODO. For MyISAM tables, you can
speed up the index recreation part (which is the slowest part of the recreation process) by
setting the myisam_sort_buffer_size variable to a high value.

• To use ALTER TABLE, you need ALTER, INSERT, and CREATE privileges on the table.
• IGNORE is a MySQL extension to SQL-92. It controls how ALTER TABLE works if there

are duplicates on unique keys in the new table. If IGNORE isn’t specified, the copy is
aborted and rolled back. If IGNORE is specified, then for rows with duplicates on a
unique key, only the first row is used; the others are deleted.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE
statement. This is a MySQL extension to SQL-92, which allows only one of each clause
per ALTER TABLE statement.

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to SQL-92.
• MODIFY is an Oracle extension to ALTER TABLE.
• The optional word COLUMN is a pure noise word and can be omitted.
• If you use ALTER TABLE tbl_name RENAME TO new_name without any other options,

MySQL simply renames the files that correspond to the table tbl_name. There is no
need to create the temporary table. See Section 6.5.5 [RENAME TABLE], page 576.

• create_definition clauses use the same syntax for ADD and CHANGE as for CREATE
TABLE. Note that this syntax includes the column name, not just the column type. See
Section 6.5.3 [CREATE TABLE], page 564.

• You can rename a column using a CHANGE old_col_name create_definition clause.
To do so, specify the old and new column names and the type that the column currently
has. For example, to rename an INTEGER column from a to b, you can do this:

mysql> ALTER TABLE t1 CHANGE a b INTEGER;

If you want to change a column’s type but not the name, CHANGE syntax still requires
an old and new column name, even if they are the same. For example:

mysql> ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

However, as of MySQL Version 3.22.16a, you can also use MODIFY to change a column’s
type without renaming it:

mysql> ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

Chapter 6: MySQL Language Reference 575

• If you use CHANGE or MODIFY to shorten a column for which an index exists on part of
the column (for instance, if you have an index on the first 10 characters of a VARCHAR
column), you cannot make the column shorter than the number of characters that are
indexed.

• When you change a column type using CHANGE or MODIFY, MySQL tries to convert data
to the new type as well as possible.

• In MySQL Version 3.22 or later, you can use FIRST or ADD ... AFTER col_name to add
a column at a specific position within a table row. The default is to add the column
last. From MySQL Version 4.0.1, you can also use the FIRST and AFTER keywords in
CHANGE or MODIFY.

• ALTER COLUMN specifies a new default value for a column or removes the old default
value. If the old default is removed and the column can be NULL, the new default is
NULL. If the column cannot be NULL, MySQL assigns a default value, as described in
Section 6.5.3 [CREATE TABLE], page 564.

• DROP INDEX removes an index. This is a MySQL extension to SQL-92. See Section 6.5.8
[DROP INDEX], page 578.

• If columns are dropped from a table, the columns are also removed from any index of
which they are a part. If all columns that make up an index are dropped, the index is
dropped as well.

• If a table contains only one column, the column cannot be dropped. If what you intend
is to remove the table, use DROP TABLE instead.

• DROP PRIMARY KEY drops the primary index. If no such index exists, it drops the first
UNIQUE index in the table. (MySQL marks the first UNIQUE key as the PRIMARY KEY if
no PRIMARY KEY was specified explicitly.)
If you add a UNIQUE INDEX or PRIMARY KEY to a table, this is stored before any not
UNIQUE index so that MySQL can detect duplicate keys as early as possible.

• ORDER BY allows you to create the new table with the rows in a specific order. Note
that the table will not remain in this order after inserts and deletes. In some cases, it
may make sorting easier for MySQL if the table is in order by the column that you wish
to order it by later. This option is mainly useful when you know that you are mostly
going to query the rows in a certain order; by using this option after big changes to
the table, you may be able to get higher performance.

• If you use ALTER TABLE on a MyISAM table, all non-unique indexes are created in a
separate batch (like in REPAIR). This should make ALTER TABLE much faster when you
have many indexes.

• Since MySQL 4.0 the above feature can be activated explicitly. ALTER TABLE ...
DISABLE KEYS makes MySQL to stop updating non-unique indexes for MyISAM table.
ALTER TABLE ... ENABLE KEYS then should be used to recreate missing indexes. As
MySQL does it with a special algorithm which is much faster then inserting keys one
by one, disabling keys could give a considerable speedup on bulk inserts.

• With the C API function mysql_info(), you can find out how many records were
copied, and (when IGNORE is used) how many records were deleted due to duplication
of unique key values.

• The FOREIGN KEY, CHECK, and REFERENCES clauses don’t actually do anything, ex-
cept for InnoDB type tables which support ... ADD [CONSTRAINT symbol] FOREIGN

576 MySQL Technical Reference for Version 4.1.1-alpha

KEY (...) REFERENCES ... (...) and ... DROP FOREIGN KEY See Section 7.5.5.2
[InnoDB foreign key constraints], page 614. The syntax for other table types is pro-
vided only for compatibility, to make it easier to port code from other SQL servers and
to run applications that create tables with references. See Section 1.7.4 [Differences
from ANSI], page 36.

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

Here is an example that shows some of the uses of ALTER TABLE. We begin with a table t1
that is created as shown here:

mysql> CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

mysql> ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and
to change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

mysql> ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

mysql> ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d, and make column a the primary key:

mysql> ALTER TABLE t2 ADD INDEX (d), ADD PRIMARY KEY (a);

To remove column c:

mysql> ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

mysql> ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
ADD INDEX (c);

Note that we indexed c, because AUTO_INCREMENT columns must be indexed, and also that
we declare c as NOT NULL, because indexed columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence num-
bers for you automatically. You can set the first sequence number by executing SET INSERT_
ID=# before ALTER TABLE or using the AUTO_INCREMENT = # table option. See Section 5.5.6
[SET OPTION], page 432.

With MyISAM tables, if you don’t change the AUTO_INCREMENT column, the sequence num-
ber will not be affected. If you drop an AUTO_INCREMENT column and then add another
AUTO_INCREMENT column, the numbers will start from 1 again.

See Section A.7.1 [ALTER TABLE problems], page 869.

6.5.5 RENAME TABLE Syntax

RENAME TABLE tbl_name TO new_tbl_name[, tbl_name2 TO new_tbl_name2,...]

The rename is done atomically, which means that no other thread can access any of the
tables while the rename is running. This makes it possible to replace a table with an empty
one :

Chapter 6: MySQL Language Reference 577

CREATE TABLE new_table (...);
RENAME TABLE old_table TO backup_table, new_table TO old_table;

The rename is done from left to right, which means that if you want to swap two table
names, you have to:

RENAME TABLE old_table TO backup_table,
new_table TO old_table,
backup_table TO new_table;

As long as two databases are on the same disk you can also rename from one database to
another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

When you execute RENAME, you can’t have any locked tables or active transactions. You
must also have the ALTER and DROP privileges on the original table, and the CREATE and
INSERT privileges on the new table.

If MySQL encounters any errors in a multiple-table rename, it will do a reverse rename for
all renamed tables to get everything back to the original state.

RENAME TABLE was added in MySQL 3.23.23.

6.5.6 DROP TABLE Syntax

DROP [TEMPORARY] TABLE [IF EXISTS] tbl_name [, tbl_name,...] [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. All table data and the table definition are removed,
so be careful with this command!

In MySQL Version 3.22 or later, you can use the keywords IF EXISTS to prevent an error
from occurring for tables that don’t exist. In 4.1 one gets a NOTE for all not existing tables
when using IF EXISTS. See Section 4.6.8.9 [SHOW WARNINGS], page 303.

RESTRICT and CASCADE are allowed to make porting easier. For the moment they don’t do
anything.

Note: DROP TABLE will automatically commit current active transaction (except if you are
using 4.1 and the TEMPORARY key word.

Option TEMPORARY is ignored in 4.0. In 4.1 this option works as follows:

• Only drops temporary tables.
• It doesn’t end a running transactions.
• No access rights is checked.

Using TEMPORARY is a good way to ensure that you don’t accidently drop a real table.

6.5.7 CREATE INDEX Syntax

CREATE [UNIQUE|FULLTEXT] INDEX index_name
ON tbl_name (index_col_name,...)

index_col_name:
col_name [(length)] [ASC | DESC]

578 MySQL Technical Reference for Version 4.1.1-alpha

The CREATE INDEX statement doesn’t do anything in MySQL prior to Version 3.22. In
Version 3.22 or later, CREATE INDEX is mapped to an ALTER TABLE statement to create
indexes. See Section 6.5.4 [ALTER TABLE], page 573.

Normally, you create all indexes on a table at the time the table itself is created with
CREATE TABLE. See Section 6.5.3 [CREATE TABLE], page 564. CREATE INDEX allows you to
add indexes to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index values
are formed by concatenating the values of the given columns.

For CHAR and VARCHAR columns, indexes can be created that use only part of a column,
using col_name(length) syntax to index the first length bytes of each column value. (For
BLOB and TEXT columns, a prefix length is required; length may be a value up to 255.) The
statement shown here creates an index using the first 10 characters of the name column:

mysql> CREATE INDEX part_of_name ON customer (name(10));

Because most names usually differ in the first 10 characters, this index should not be much
slower than an index created from the entire name column. Also, using partial columns
for indexes can make the index file much smaller, which could save a lot of disk space and
might also speed up INSERT operations!

Note that you can add an index on a column that can have NULL values only if you are using
MySQL Version 3.23.2 or newer and are using the MyISAM, InnoDB, or BDB table type. You
can only add an index on a BLOB/TEXT column if you are using MySQL Version 3.23.2 or
newer and are using the MyISAM or BDB table type, or MySQL Version 4.0.14 or newer and
the InnoDB table type. For an index on aBLOB/TEXT column, a prefix length must always
be specified.

An index_col_name specification may end with ASC or DESC. These keywords are allowed
for future extensions for specifying ascending or descending index value storage. Currently
they are parsed but ignored; index values are always stored in ascending order.

For more information about how MySQL uses indexes, see Section 5.4.3 [MySQL indexes],
page 421.

FULLTEXT indexes can index only CHAR, VARCHAR, and TEXT columns, and only in MyISAM
tables. FULLTEXT indexes are available in MySQL Version 3.23.23 and later. Section 6.8
[Fulltext Search], page 583.

6.5.8 DROP INDEX Syntax

DROP INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. DROP INDEX
doesn’t do anything in MySQL prior to Version 3.22. In Version 3.22 or later, DROP INDEX
is mapped to an ALTER TABLE statement to drop the index. See Section 6.5.4 [ALTER TABLE],
page 573.

6.6 Basic MySQL User Utility Commands

Chapter 6: MySQL Language Reference 579

6.6.1 USE Syntax

USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default
database for subsequent queries. The database remains current until the end of the session
or until another USE statement is issued:

mysql> USE db1;
mysql> SELECT COUNT(*) FROM mytable; # selects from db1.mytable
mysql> USE db2;
mysql> SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database current by means of the USE statement does not preclude you
from accessing tables in other databases. The following example accesses the author table
from the db1 database and the editor table from the db2 database:

mysql> USE db1;
mysql> SELECT author_name,editor_name FROM author,db2.editor

-> WHERE author.editor_id = db2.editor.editor_id;

The USE statement is provided for Sybase compatibility.

6.6.2 DESCRIBE Syntax (Get Information About Columns)

{DESCRIBE | DESC} tbl_name [col_name | wild]

DESCRIBE is a shortcut for SHOW COLUMNS FROM. See Section 4.6.8.1 [Show database info],
page 285.

DESCRIBE provides information about a table’s columns. col_name may be a column name
or a string containing the SQL ‘%’ and ‘_’ wildcard characters to obtain output only for the
columns with names matching the string. There is no need to enclose the string in quotes.

If the column types are different from what you expect them to be based on a CREATE TABLE
statement, note that MySQL sometimes changes column types. See Section 6.5.3.1 [Silent
column changes], page 572.

This statement is provided for Oracle compatibility.

The SHOW statement provides similar information. See Section 4.6.8 [SHOW], page 284.

6.7 MySQL Transactional and Locking Commands

6.7.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax

By default, MySQL runs in autocommit mode. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL will store the update on disk.

If you are using transaction-safe tables (like InnoDB or BDB), you can put MySQL into
non-autocommit mode with the following command:

SET AUTOCOMMIT=0

580 MySQL Technical Reference for Version 4.1.1-alpha

After disabling autocommit mode by setting the AUTOCOMMIT variable to zero, you must use
COMMIT to store your changes to disk or ROLLBACK if you want to ignore the changes you
have made since the beginning of your transaction.
If you want to disable autocommit mode for a single series of statements, you can use the
START TRANSACTION statement: :

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summmary=@A WHERE type=1;
COMMIT;

BEGIN and BEGIN WORK can be used instead of START TRANSACTION to initiate a transaction.
START TRANSACTION was added in MySQL 4.0.11; it is SQL-99 syntax and is the recom-
mended way to start an ad-hoc transaction. BEGIN and BEGIN WORK are available from
MySQL 3.23.17 and 3.23.19, respectively.
Note that if you are not using transaction-safe tables, any changes will be stored at once,
regardless of the status of autocommit mode.
If you issue a ROLLBACK statement after updating a non-transactional table, you will get an
error (ER_WARNING_NOT_COMPLETE_ROLLBACK) as a warning. All transaction-safe tables will
be restored but any non-transaction-safe table will not change.
If you are using START TRANSACTION or SET AUTOCOMMIT=0, you should use the MySQL
binary log for backups instead of the older update log. Transactions are stored in the
binary log in one chunk, upon COMMIT, to ensure that transactions that are rolled back are
not stored. See Section 4.10.4 [Binary log], page 351.
You can change the isolation level for transactions with SET TRANSACTION ISOLATION
LEVEL. See Section 6.7.6 [SET TRANSACTION], page 583.

6.7.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language
(DDL) statements, such as those that create or drop databases, or those that create, drop,
or alter tables.
You may wish to design your transactions not to include such statements. If you issue a
statement that cannot be rolled back early in a transaction, and then another statement
later fails, the full effect of the transaction cannot be rolled back by issuing a ROLLBACK
statement.

6.7.3 Statements That Cause an Implicit Commit

The following commands implicitly end a transaction (as if you had done a COMMIT before
executing the command):
Command Command Command
ALTER TABLE BEGIN CREATE INDEX
DROP DATABASE DROP INDEX DROP TABLE
LOAD MASTER DATA LOCK TABLES RENAME TABLE
SET AUTOCOMMIT=1 START TRANSACTION TRUNCATE

Chapter 6: MySQL Language Reference 581

UNLOCK TABLES also ends a transaction if any tables currently are locked. Prior to MySQL
4.0.13, CREATE TABLE ends a transaction if the binary update log is enabled.
Transactions cannot be nested. This is a consequence of the implicit COMMIT performed
for any current transaction when you issue a START TRANSACTION statement or one of its
synonyms.

6.7.4 SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax

Starting from MySQL 4.0.14 and 4.1.1, InnoDB supports the SQL commands SAVEPOINT
and ROLLBACK TO SAVEPOINT.

SAVEPOINT identifier

This statement sets a named transaction savepoint whose name is identifier. If the
current transaction already has a savepoint with the same name, the old savepoint is deleted
and a new one is set.

ROLLBACK TO SAVEPOINT identifier

This statement rolls back a transaction to the named savepoint. Modifications that this
transaction made to rows after the savepoint was set are undone in the rollback, but InnoDB
does not release the row locks that were stored in memory after the savepoint. (Note that
for a new inserted row, the lock information is carried by the transaction ID stored in the
row; the lock is not separately stored in memory. In this case, the row lock is released in
the undo.) Savepoints that were set at a later time than the named savepoint are deleted.
If the command returns the following error, it means that no savepoint with the specified
name exists:

ERROR 1181: Got error 153 during ROLLBACK

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK
that does not name a savepoint.

6.7.5 LOCK TABLES and UNLOCK TABLES Syntax

LOCK TABLES tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}
[, tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE} ...]

...
UNLOCK TABLES

LOCK TABLES locks tables for the current thread. UNLOCK TABLES releases any locks held by
the current thread. All tables that are locked by the current thread are implicitly unlocked
when the thread issues another LOCK TABLES, or when the connection to the server is closed.
To use LOCK TABLES in MySQL 4.0.2 you need the global LOCK TABLES privilege and a
SELECT privilege on the involved tables. In MySQL 3.23 you need to have SELECT, insert,
DELETE and UPDATE privileges for the tables.
The main reasons to use LOCK TABLES are for emulating transactions or getting more speed
when updating tables. This is explained in more detail later.
If a thread obtains a READ lock on a table, that thread (and all other threads) can only read
from the table. If a thread obtains a WRITE lock on a table, then only the thread holding
the lock can read from or write to the table. Other threads are blocked.

582 MySQL Technical Reference for Version 4.1.1-alpha

The difference between READ LOCAL and READ is that READ LOCAL allows non-conflicting
INSERT statements to execute while the lock is held. This can’t however be used if you are
going to manipulate the database files outside MySQL while you hold the lock.

When you use LOCK TABLES, you must lock all tables that you are going to use and you
must use the same alias that you are going to use in your queries! If you are using a table
multiple times in a query (with aliases), you must get a lock for each alias!

WRITE locks normally have higher priority than READ locks, to ensure that updates are
processed as soon as possible. This means that if one thread obtains a READ lock and then
another thread requests a WRITE lock, subsequent READ lock requests will wait until the
WRITE thread has gotten the lock and released it. You can use LOW_PRIORITY WRITE locks
to allow other threads to obtain READ locks while the thread is waiting for the WRITE lock.
You should only use LOW_PRIORITY WRITE locks if you are sure that there will eventually
be a time when no threads will have a READ lock.

LOCK TABLES works as follows:

1. Sort all tables to be locked in a internally defined order (from the user standpoint the
order is undefined).

2. If a table is locked with a read and a write lock, put the write lock before the read lock.
3. Lock one table at a time until the thread gets all locks.

This policy ensures that table locking is deadlock free. There is however other things one
needs to be aware of with this schema:

If you are using a LOW_PRIORITY WRITE lock for a table, this means only that MySQL will
wait for this particlar lock until there is no threads that wants a READ lock. When the
thread has got the WRITE lock and is waiting to get the lock for the next table in the lock
table list, all other threads will wait for the WRITE lock to be released. If this becomes a
serious problem with your application, you should consider converting some of your tables
to transaction safe tables.

You can safely kill a thread that is waiting for a table lock with KILL. See Section 4.6.7
[KILL], page 284.

Note that you should not lock any tables that you are using with INSERT DELAYED. This is
because that in this case the INSERT is done by a separate thread.

Normally, you don’t have to lock tables, as all single UPDATE statements are atomic; no
other thread can interfere with any other currently executing SQL statement. There are a
few cases when you would like to lock tables anyway:

• If you are going to run many operations on a bunch of tables, it’s much faster to lock
the tables you are going to use. The downside is, of course, that no thread can update
a READ-locked table (including the one holding the lock) and no thread can read a
WRITE-locked table other than the one holding the lock.
The reason some things are faster under LOCK TABLES is that MySQL will not flush the
key cache for the locked tables until UNLOCK TABLES is called (normally the key cache
is flushed after each SQL statement). This speeds up inserting, updating, or deletes on
MyISAM tables.

• If you are using a storage engine in MySQL that doesn’t support transactions, you
must use LOCK TABLES if you want to ensure that no other thread comes between a

Chapter 6: MySQL Language Reference 583

SELECT and an UPDATE. The example shown here requires LOCK TABLES in order to
execute safely:

mysql> LOCK TABLES trans READ, customer WRITE;
mysql> SELECT SUM(value) FROM trans WHERE customer_id=some_id;
mysql> UPDATE customer SET total_value=sum_from_previous_statement

-> WHERE customer_id=some_id;
mysql> UNLOCK TABLES;

Without LOCK TABLES, there is a chance that another thread might insert a new row
in the trans table between execution of the SELECT and UPDATE statements.

By using incremental updates (UPDATE customer SET value=value+new_value) or the
LAST_INSERT_ID() function, you can avoid using LOCK TABLES in many cases.
You can also solve some cases by using the user-level lock functions GET_LOCK() and
RELEASE_LOCK(). These locks are saved in a hash table in the server and implemented with
pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See Section 6.3.6.2
[Miscellaneous functions], page 515.
See Section 5.3.1 [Internal locking], page 418, for more information on locking policy.
You can lock all tables in all databases with read locks with the FLUSH TABLES WITH READ
LOCK command. See Section 4.6.4 [FLUSH], page 282. This is very convenient way to get
backups if you have a filesystem, like Veritas, that can take snapshots in time.
NOTE: LOCK TABLES is not transaction-safe and will implicitly commit any active transac-
tions before attempting to lock the tables.

6.7.6 SET TRANSACTION Syntax

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE }

Sets the transaction isolation level for the global, whole session or the next transaction.
The default behaviour is to set the isolation level for the next (not started) transaction. If
you use the GLOBAL keyword, the statement sets the default transaction level globally for all
new connections created from that point on (but not existing connections). You need the
SUPER privilege to do this. Using the SESSION keyword sets the default transaction level for
all future transactions performed on the current connection.
For description of each InnoDB transaction isolation level, see Section 7.5.9.1 [InnoDB trans-
action isolation], page 621. InnoDB supports each of these levels from MySQL 4.0.5 on.
The default level is REPEATABLE READ.
You can set the default global isolation level for mysqld with --transaction-
isolation=.... See Section 4.1.1 [Command-line options], page 195.

6.8 MySQL Full-text Search

As of Version 3.23.23, MySQL has support for full-text indexing and searching. Full-text
indexes in MySQL are an index of type FULLTEXT. FULLTEXT indexes are used with MyISAM
tables only and can be created from CHAR, VARCHAR, or TEXT columns at CREATE TABLE time
or added later with ALTER TABLE or CREATE INDEX. For large datasets, it will be much faster

584 MySQL Technical Reference for Version 4.1.1-alpha

to load your data into a table that has no FULLTEXT index, then create the index with ALTER
TABLE (or CREATE INDEX). Loading data into a table that already has a FULLTEXT index
could be significantly slower.

Full-text searching is performed with the MATCH() function.

mysql> CREATE TABLE articles (
-> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> title VARCHAR(200),
-> body TEXT,
-> FULLTEXT (title,body)
->);

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles VALUES
-> (NULL,’MySQL Tutorial’, ’DBMS stands for DataBase ...’),
-> (NULL,’How To Use MySQL Efficiently’, ’After you went through a ...’),
-> (NULL,’Optimising MySQL’,’In this tutorial we will show ...’),
-> (NULL,’1001 MySQL Tricks’,’1. Never run mysqld as root. 2. ...’),
-> (NULL,’MySQL vs. YourSQL’, ’In the following database comparison ...’),
-> (NULL,’MySQL Security’, ’When configured properly, MySQL ...’);

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST (’database’);

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

The MATCH() function performs a natural language search for a string against a text col-
lection (a set of one or more columns included in a FULLTEXT index). The search string is
given as the argument to AGAINST(). The search is performed in case-insensitive fashion.
For every row in the table, MATCH() returns a relevance value, that is, a similarity measure
between the search string and the text in that row in the columns named in the MATCH()
list.

When MATCH() is used in a WHERE clause (see example above) the rows returned are automat-
ically sorted with highest relevance first. Relevance values are non-negative floating-point
numbers. Zero relevance means no similarity. Relevance is computed based on the number
of words in the row, the number of unique words in that row, the total number of words in
the collection, and the number of documents (rows) that contain a particular word.

It is also possible to perform a boolean mode search. This is explained later in the section.

The preceding example is a basic illustration showing how to use the MATCH() function.
Rows are returned in order of decreasing relevance.

Chapter 6: MySQL Language Reference 585

The next example shows how to retrieve the relevance values explicitly. As neither WHERE
nor ORDER BY clauses are present, returned rows are not ordered.

mysql> SELECT id,MATCH (title,body) AGAINST (’Tutorial’) FROM articles;
+----+---+
| id | MATCH (title,body) AGAINST (’Tutorial’) |
+----+---+
1	0.64840710366884
2	0
3	0.66266459031789
4	0
5	0
6	0
+----+---+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance and still sorts the
rows in order of decreasing relevance. To achieve this result, you should specify MATCH()
twice. This will cause no additional overhead, because the MySQL optimiser will notice
that the two MATCH() calls are identical and invoke the full-text search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
-> (’Security implications of running MySQL as root’) AS score
-> FROM articles WHERE MATCH (title,body) AGAINST
-> (’Security implications of running MySQL as root’);

+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5055546709332 |
| 6 | When configured properly, MySQL ... | 1.31140957288 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

MySQL uses a very simple parser to split text into words. A “word” is any sequence
of characters consisting of letters, digits, ‘’’, and ‘_’. Any “word” that is present in the
stopword list or is just too short is ignored. The default minimum length of words that
will be found by full-text searches is four characters. This can be changed as described in
Section 6.8.2 [Fulltext Fine-tuning], page 587.

Every correct word in the collection and in the query is weighted according to its significance
in the query or collection. This way, a word that is present in many documents will have
lower weight (and may even have a zero weight), because it has lower semantic value in this
particular collection. Otherwise, if the word is rare, it will receive a higher weight. The
weights of the words are then combined to compute the relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way).
For very small tables, word distribution does not reflect adequately their semantic value,
and this model may sometimes produce bizarre results.

mysql> SELECT * FROM articles WHERE MATCH (title,body) AGAINST (’MySQL’);
Empty set (0.00 sec)

586 MySQL Technical Reference for Version 4.1.1-alpha

The search for the word MySQL produces no results in the above example, because that word
is present in more than half the rows. As such, it is effectively treated as a stopword (that
is, a word with zero semantic value). This is the most desirable behaviour — a natural
language query should not return every second row from a 1 GB table.
A word that matches half of rows in a table is less likely to locate relevant documents.
In fact, it will most likely find plenty of irrelevant documents. We all know this happens
far too often when we are trying to find something on the Internet with a search engine.
It is with this reasoning that such rows have been assigned a low semantic value in this
particular dataset.
As of Version 4.0.1, MySQL can also perform boolean full-text searches using the IN
BOOLEAN MODE modifier.

mysql> SELECT * FROM articles WHERE MATCH (title,body)
-> AGAINST (’+MySQL -YourSQL’ IN BOOLEAN MODE);

+----+------------------------------+-------------------------------------+
| id | title | body |
+----+------------------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Efficiently	After you went through a ...
3	Optimising MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+------------------------------+-------------------------------------+

This query retrieved all the rows that contain the word MySQL (note: the 50% threshold is
not used), but that do not contain the word YourSQL. Note that a boolean mode search does
not automatically sort rows in order of decreasing relevance. You can see this from result
of the preceding query, where the row with the highest relevance (the one that contains
MySQL twice) is listed last, not first. A boolean full-text search can also work even without
a FULLTEXT index, although it would be slow.
The boolean full-text search capability supports the following operators:

+ A leading plus sign indicates that this word must be present in every row
returned.

- A leading minus sign indicates that this word must not be present in any row
returned.

By default (when neither plus nor minus is specified) the word is optional, but
the rows that contain it will be rated higher. This mimicks the behaviour of
MATCH() ... AGAINST() without the IN BOOLEAN MODE modifier.

< > These two operators are used to change a word’s contribution to the relevance
value that is assigned to a row. The < operator decreases the contribution and
the > operator increases it. See the example below.

() Parentheses are used to group words into subexpressions.

~ A leading tilde acts as a negation operator, causing the word’s contribution
to the row relevance to be negative. It’s useful for marking noise words. A
row that contains such a word will be rated lower than others, but will not be
excluded altogether, as it would be with the - operator.

Chapter 6: MySQL Language Reference 587

* An asterisk is the truncation operator. Unlike the other operators, it should be
appended to the word, not prepended.

" The phrase, that is enclosed in double quotes ", matches only rows that contain
this phrase literally, as it was typed.

And here are some examples:

apple banana
find rows that contain at least one of these words.

+apple +juice
... both words.

+apple macintosh
... word “apple”, but rank it higher if it also contain “macintosh”.

+apple -macintosh
... word “apple” but not “macintosh”.

+apple +(>turnover <strudel)
... “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank
“apple pie” higher than “apple strudel”.

apple* ... “apple”, “apples”, “applesauce”, and “applet”.

"some words"
... “some words of wisdom”, but not “some noise words”.

6.8.1 Full-text Restrictions

• Full-text searches are supported for MyISAM tables only.
• Full-text searches cannot be used with UCS-2 (but it works with UTF-8).
• All parameters to the MATCH() function must be columns from the same table that is

part of the same FULLTEXT index, unless the MATCH() is IN BOOLEAN MODE.
• All columns in the FULLTEXT index must have the same character set.
• The MATCH() column list must exactly match the column list in some FULLTEXT index

definition for the table, unless this MATCH() is IN BOOLEAN MODE.
• The argument to AGAINST() must be a constant string.

6.8.2 Fine-tuning MySQL Full-text Search

Unfortunately, full-text search has few user-tunable parameters yet, although adding some
is very high on the TODO. If you have a MySQL source distribution (see Section 2.3
[Installing source], page 88), you can exert more control over full-text searching behaviour.
Note that full-text search was carefully tuned for the best searching effectiveness. Modifying
the default behaviour will, in most cases, only make the search results worse. Do not alter
the MySQL sources unless you know what you are doing!
The full-text variables described in the following list must be set at server startup time.
You cannot modify them dynamically while the server is running.

588 MySQL Technical Reference for Version 4.1.1-alpha

• The minimum length of words to be indexed is defined by the MySQL variable ft_
min_word_len. See Section 4.6.8.4 [ft_min_word_len], page 290. (This variable is
only available from MySQL version 4.0.) The default value is four characters. Change
it to the value you prefer, and rebuild your FULLTEXT indexes. For example, if you
want three-character words to be searchable, you can set this variable by putting the
following lines in an option file:

[mysqld]
ft_min_word_len=3

Then restart the server and rebuild your FULLTEXT indexes.
• The stopword list can be loaded from the file specified by the ft_stopword_file

variable. See Section 4.6.8.4 [ft_stopword_file], page 290. Rebuild your FULLTEXT
indexes after modifying the stopword list. (This variable is only available from MySQL
version 4.0.10 and onwards)

• The 50% threshold is determined by the particular weighting scheme chosen. To disable
it, change the following line in ‘myisam/ftdefs.h’:

#define GWS_IN_USE GWS_PROB

To:
#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case. Note: by
doing this you severely decrease MySQL’s ability to provide adequate relevance values
for the MATCH() function. If you really need to search for such common words, it would
be better to search using IN BOOLEAN MODE instead, which does not observe the 50%
threshold.

• Sometimes the search engine maintainer would like to change the operators used for
boolean full-text searches. These are defined by the ft_boolean_syntax variable. See
Section 4.6.8.4 [ft_boolean_syntax], page 290. Still, this variable is read-only; its
value is set in ‘myisam/ft_static.c’.

For full-text changes that require you to rebuild your FULLTEXT indexes, the easiest way to
do so for a MyISAM table is to use the following statement, which rebuilds the index file:

mysql> REPAIR TABLE tbl_name QUICK;

6.8.3 Full-text Search TODO

• Make all operations with FULLTEXT index faster.
• Proximity operators
• Support for "always-index words". They could be any strings the user wants to treat

as words, examples are "C++", "AS/400", "TCP/IP", etc.
• Support for full-text search in MERGE tables.
• Support for UCS-2.
• Make stopword list to depend of the language of the data.
• Stemming (dependent of the language of the data, of course).
• Generic user-suppliable UDF preparser.

Chapter 6: MySQL Language Reference 589

• Make the model more flexible (by adding some adjustable parameters to FULLTEXT in
CREATE/ALTER TABLE).

6.9 MySQL Query Cache

From version 4.0.1, MySQL server features a Query Cache. When in use, the query cache
stores the text of a SELECT query together with the corresponding result that was sent to
the client. If an identical query is later received, the server will retrieve the results from
the query cache rather than parsing and executing the same query again.

NOTE: The query cache does not return stale data. When data is modified, any relevant
entries in the query cache are flushed.

The query cache is extremely useful in an environment where (some) tables don’t change
very often and you have a lot of identical queries. This is a typical situation for many web
servers that use a lot of dynamic content.

Below is some performance data for the query cache. (These results were generated by
running the MySQL benchmark suite on a Linux Alpha 2 x 500 MHz with 2 GB RAM and
a 64 MB query cache):

• If all of the queries you’re performing are simple (such as selecting a row from a table
with one row); but still differ so that the queries can not be cached, the overhead for
having the query cache active is 13%. This could be regarded as the worst case scenario.
However, in real life, queries are much more complicated than our simple example so
the overhead is normally significantly lower.

• Searches after one row in a one row table is 238% faster. This can be regarded as close
to the minimum speedup to be expected for a query that is cached.

• If you want to disable the query cache code set query_cache_size=0. By disabling
the query cache code there is no noticeable overhead. (query cache can be excluded
from code with help of configure option --without-query-cache)

6.9.1 How the Query Cache Operates

Queries are compared before parsing, thus

SELECT * FROM tbl_name

and

Select * from tbl_name

are regarded as different queries for query cache, so queries need to be exactly the same
(byte for byte) to be seen as identical. In addition, a query may be seen as different if for
instance one client is using a new communication protocol format or another character set
than another client.

Queries that uses different databases, uses different protocol versions or the uses different
default character sets are considered different queries and cached separately.

The cache does work for SELECT SQL_CALC_FOUND_ROWS ... and SELECT FOUND_ROWS() ...
type queries because the number of found rows is also stored in the cache.

590 MySQL Technical Reference for Version 4.1.1-alpha

If query result was returned from query cache then status variable Com_select will not be
increased, but Qcache_hits will be. See Section 6.9.4 [Query Cache Status and Mainte-
nance], page 592.

If a table changes (INSERT, UPDATE, DELETE, TRUNCATE, ALTER or DROP TABLE|DATABASE),
then all cached queries that used this table (possibly through a MRG_MyISAM table!) become
invalid and are removed from the cache.

Transactional InnoDB tables that have been changed will be invalidated when a COMMIT is
performed.

In MySQL 4.0, the query cache is disabled inside of transactions (it does not return results).
Beginning with MySQL 4.1.1, the query cache will also work inside of transactions when
using InnoDB tables (it will use the table version number to detect if the data is still current
or not).

Before MySQL 5.0, a query that begins with a leading comment might be cached, but could
not be fetched from the cache. This problem is fixed in MySQL 5.0.

A query cannot be cached if it contains one of the functions:

Function Function Function
User-Defined Functions CONNECTION_ID FOUND_ROWS
GET_LOCK RELEASE_LOCK LOAD_FILE
MASTER_POS_WAIT NOW SYSDATE
CURRENT_TIMESTAMP CURDATE CURRENT_DATE
CURTIME CURRENT_TIME DATABASE
ENCRYPT (with one parameter) LAST_INSERT_ID RAND
UNIX_TIMESTAMP (without
parameters)

USER BENCHMARK

Nor can a query be cached if it contains user variables, references the mysql system database,
is of the form SELECT ... IN SHARE MODE, SELECT ... INTO OUTFILE ..., SELECT ... INTO
DUMPFILE ... or of the form SELECT * FROM AUTOINCREMENT_FIELD IS NULL (to retrieve
last insert ID - ODBC work around).

However, FOUND_ROWS() will return the correct value, even if the preceding query was
fetched from the cache.

In case a query does not use any tables, or uses temporary tables, or if the user has a column
privilege for any of the involved tables, that query will not be cached.

Before a query is fetched from the query cache, MySQL will check that the user has SELECT
privilege to all the involved databases and tables. If this is not the case, the cached result
will not be used.

6.9.2 Query Cache Configuration

The query cache adds a few MySQL system variables for mysqld which may be set in a
configuration file, on the command-line when starting mysqld.

• query_cache_limit Don’t cache results that are bigger than this. (Default 1M).
• query_cache_min_res_unit

This variable is present from version 4.1.

Chapter 6: MySQL Language Reference 591

The result of a query (the data that is also sent to the client) is stored in the query
cache during result retrieval. Therefore the data is usually not handled in one big
chunk. The query cache allocates blocks for storing this data on demand, so when
one block is filled, a new block is allocated. Because memory allocation operation is
costly (time wise), the query cache allocates blocks with a minimum size of query_
cache_min_res_unit. When a query is executed, the last result block is trimmed to
the actual data size, so that unused memory is freed.

• The default value of query_cache_min_res_unit is 4 KB which should be ade-
quate for most cases.

• If you have a lot of queries with small results, the default block size may lead
to memory fragmentation (indicated by a large number of free blocks (Qcache_
free_blocks), which can cause the query cache to have to delete queries from the
cache due to lack of memory (Qcache_lowmem_prunes)). In this case you should
decrease query_cache_min_res_unit.

• If you mostly have queres with big results (see Qcache_total_blocks and Qcache_
queries_in_cache), you can increase performance by increasing query_cache_
min_res_unit. However, be careful to not make it to large (see the previous
point).

• query_cache_size The amount of memory (specified in bytes) allocated to store results
from old queries. If this is 0, the query cache is disabled (default).

• query_cache_type This may be set (only numeric) to

Option Description
0 (OFF, don’t cache or retrieve results)
1 (ON, cache all results except SELECT SQL_NO_CACHE ... queries)
2 (DEMAND, cache only SELECT SQL_CACHE ... queries)

Inside a thread (connection), the behaviour of the query cache can be changed from the
default. The syntax is as follows:

QUERY_CACHE_TYPE = OFF | ON | DEMAND QUERY_CACHE_TYPE = 0 | 1 | 2

Option Description
0 or OFF Don’t cache or retrieve results.
1 or ON Cache all results except SELECT SQL_NO_CACHE ... queries.
2 or DEMAND Cache only SELECT SQL_CACHE ... queries.

6.9.3 Query Cache Options in SELECT

There are two possible query cache related parameters that may be specified in a SELECT
query:

Option Description
SQL_CACHE If QUERY_CACHE_TYPE is DEMAND, allow the query to be cached. If

QUERY_CACHE_TYPE is ON, this is the default. If QUERY_CACHE_TYPE
is OFF, do nothing.

SQL_NO_CACHE Make this query non-cachable, don’t allow this query to be stored in
the cache.

592 MySQL Technical Reference for Version 4.1.1-alpha

6.9.4 Query Cache Status and Maintenance

With the FLUSH QUERY CACHE command you can defragment the query cache to better utilise
its memory. This command will not remove any queries from the cache. FLUSH TABLES also
flushes the query cache.
The RESET QUERY CACHE command removes all query results from the query cache. You can
check whether the query cache is present in your MySQL version:

mysql> SHOW VARIABLES LIKE ’have_query_cache’;
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+
1 row in set (0.00 sec)

You can monitor query cache performance in SHOW STATUS:
Variable Description
Qcache_queries_in_
cache

Number of queries registered in the cache.

Qcache_inserts Number of queries added to the cache.
Qcache_hits Number of cache hits.
Qcache_lowmem_prunes Number of queries that were deleted from

cache because of low memory.
Qcache_not_cached Number of non-cached queries (not

cachable, or due to QUERY_CACHE_TYPE).
Qcache_free_memory Amount of free memory for query cache.
Qcache_free_blocks Number of free memory blocks in query

cache.
Qcache_total_blocks Total number of blocks in query cache.
Total number of queries = Qcache_inserts + Qcache_hits + Qcache_not_cached.
The query cache uses variable length blocks, so Qcache_total_blocks and Qcache_free_
blocks may indicate query cache memory fragmentation. After FLUSH QUERY CACHE only a
single (big) free block remains.
Note: Every query needs a minimum of two blocks (one for the query text and one or more
for the query results). Also, every table that is used by a query needs one block, but if two
or more queries use same table only one block needs to be allocated.
You can use the Qcache_lowmem_prunes status variable to tune the query cache size. It
counts the number of queries that have been removed from the cache to free up memory
for caching new queries. The query cache uses a least recently used (LRU) strategy to
decide which queries to remove from the cache.

Chapter 7: MySQL Table Types 593

7 MySQL Table Types

As of MySQL Version 3.23.6, you can choose between three basic table formats (ISAM, HEAP
and MyISAM). Newer versions of MySQL support additional table types (InnoDB, or BDB),
depending on how you compile it. A database may contain tables of different types.

When you create a new table, you can tell MySQL what type of table to create. The default
table type is usually MyISAM.

MySQL will always create a ‘.frm’ file to hold the table and column definitions. The table’s
index and data will be stored in one or more other files, depending on the table type.

If you try to use a table type that is not compiled-in or activated, MySQL will instead
create a table of type MyISAM. This behaviour is convenient when you want to copy tables
between MySQL servers that support different table types. (Perhaps your master server
supports transactional storage engines for increased safety, while the slave servers use only
non-transactional storage engines for greater speed.)

This automatic change of table types can be confusing for new MySQL users. We plan to fix
this by introducing warnings in the new client/server protocol in version 4.1 and generating
a warning when a table type is automatically changed.

You can convert tables between different types with the ALTER TABLE statement. See Sec-
tion 6.5.4 [ALTER TABLE], page 573.

Note that MySQL supports two different kinds of tables: transaction-safe tables (InnoDB
and BDB) and not transaction-safe tables (HEAP, ISAM, MERGE, and MyISAM).

Advantages of transaction-safe tables (TST):

• Safer. Even if MySQL crashes or you get hardware problems, you can get your data
back, either by automatic recovery or from a backup + the transaction log.

• You can combine many statements and accept these all in one go with the COMMIT
command.

• You can execute ROLLBACK to ignore your changes (if you are not running in auto-
commit mode).

• If an update fails, all your changes will be restored. (With NTST tables all changes
that have taken place are permanent)

• Can provide better concurrency if the table gets many updates concurrently with reads.

Note that to use InnoDB tables you have to use at least the innodb_data_file_path startup
option. See Section 7.5.3 [InnoDB start], page 606.

Advantages of not transaction-safe tables (NTST):

• Much faster as there is no transaction overhead.

• Will use less disk space as there is no overhead of transactions.

• Will use less memory to do updates.

You can combine TST and NTST tables in the same statements to get the best of both
worlds.

594 MySQL Technical Reference for Version 4.1.1-alpha

7.1 MyISAM Tables

MyISAM is the default table type in MySQL Version 3.23. It’s based on the ISAM code and
has a lot of useful extensions.

The index is stored in a file with the ‘.MYI’ (MYIndex) extension, and the data is stored
in a file with the ‘.MYD’ (MYData) extension. You can check/repair MyISAM tables with
the myisamchk utility. See Section 4.5.6.7 [Crash recovery], page 270. You can compress
MyISAM tables with myisampack to take up much less space. See Section 4.8.4 [myisampack],
page 317.

The following is new in MyISAM:

• There is a flag in the MyISAM file that indicates whether the table was closed correctly. If
mysqld is started with --myisam-recover, MyISAM tables will automatically be checked
and/or repaired on open if the table wasn’t closed properly.

• You can INSERT new rows in a table that doesn’t have free blocks in the middle of the
datafile, at the same time other threads are reading from the table (concurrent insert).
A free block can come from an update of a dynamic length row with much data to a
row with less data or when deleting rows. When all free blocks are used up, all future
inserts will be concurrent again.

• Support for big files (63-bit) on filesystems/operating systems that support big files.

• All data is stored with the low byte first. This makes the data machine and OS
independent. The only requirement for binary portability is that the machine uses
two’s-complement signed integers (as every machine for the last 20 years has) and
IEEE floating-point format (also totally dominant among mainstream machines). The
only area of machines that may not support binary compatibility are embedded systems
(because they sometimes have peculiar processors).

There is no big speed penalty in storing data low byte first; the bytes in a table row
is normally unaligned and it doesn’t take that much more power to read an unaligned
byte in order than in reverse order. The actual fetch-column-value code is also not
time critical compared to other code.

• All number keys are stored with high byte first to give better index compression.

• Internal handling of one AUTO_INCREMENT column. MyISAM will automatically update
this on INSERT/UPDATE. The AUTO_INCREMENT value can be reset with myisamchk.
This will make AUTO_INCREMENT columns faster (at least 10%) and old numbers will
not be reused as with the old ISAM. Note that when an AUTO_INCREMENT is defined on
the end of a multi-part-key the old behaviour is still present.

• When inserted in sorted order (as when you are using an AUTO_INCREMENT column) the
key tree will be split so that the high node only contains one key. This will improve
the space utilisation in the key tree.

• BLOB and TEXT columns can be indexed.

• NULL values are allowed in indexed columns. This takes 0-1 bytes/key.

• Maximum key length is 500 bytes by default (can be changed by recompiling). In cases
of keys longer than 250 bytes, a bigger key block size than the default of 1024 bytes is
used for this key.

Chapter 7: MySQL Table Types 595

• Maximum number of keys/table is 32 as default. This can be enlarged to 64 without
having to recompile myisamchk.

• myisamchk will mark tables as checked if one runs it with --update-state. myisamchk
--fast will only check those tables that don’t have this mark.

• myisamchk -a stores statistics for key parts (and not only for whole keys as in ISAM).
• Dynamic size rows will now be much less fragmented when mixing deletes with updates

and inserts. This is done by automatically combining adjacent deleted blocks and by
extending blocks if the next block is deleted.

• myisampack can pack BLOB and VARCHAR columns.
• You can use put the datafile and index file on different directories to get more speed

(with the DATA/INDEX DIRECTORY="path" option to CREATE TABLE). See Section 6.5.3
[CREATE TABLE], page 564.

MyISAM also supports the following things, which MySQL will be able to use in the near
future:
• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in 2

bytes.
• Tables with VARCHAR may have fixed or dynamic record length.
• VARCHAR and CHAR may be up to 64K. All key segments have their own language

definition. This will enable MySQL to have different language definitions per column.
• A hashed computed index can be used for UNIQUE. This will allow you to have UNIQUE

on any combination of columns in a table. (You can’t search on a UNIQUE computed
index, however.)

Note that index files are usually much smaller with MyISAM than with ISAM. This means
that MyISAM will normally use less system resources than ISAM, but will need more CPU
time when inserting data into a compressed index.
The following options to mysqld can be used to change the behaviour of MyISAM tables. See
Section 4.6.8.4 [SHOW VARIABLES], page 290.
Option Description
--myisam-recover=# Automatic recovery of crashed tables.
-O myisam_sort_buffer_size=# Buffer used when recovering tables.
--delay-key-write=ALL Don’t flush key buffers between writes for any My-

ISAM table
-O myisam_max_extra_sort_file_
size=#

Used to help MySQL to decide when to use the slow
but safe key cache index create method. Note that
this parameter is given in megabytes before 4.0.3 and
in bytes beginning with this version.

-O myisam_max_sort_file_size=# Don’t use the fast sort index method to created in-
dex if the temporary file would get bigger than this.
Note that this parameter is given in megabytes be-
fore 4.0.3 and in bytes beginning with this version.

-O bulk_insert_buffer_size=# Size of tree cache used in bulk insert optimisation.
Note that this is a limit per thread!

The automatic recovery is activated if you start mysqld with --myisam-recover=#. See
Section 4.1.1 [Command-line options], page 195. On open, the table is checked if it’s marked

596 MySQL Technical Reference for Version 4.1.1-alpha

as crashed or if the open count variable for the table is not 0 and you are running with
--skip-external-locking. If either of the above is true the following happens.
• The table is checked for errors.
• If we found an error, try to do a fast repair (with sorting and without re-creating the

datafile) of the table.
• If the repair fails because of an error in the datafile (for example a duplicate key error),

we try again, but this time we re-create the datafile.
• If the repair fails, retry once more with the old repair option method (write row by

row without sorting) which should be able to repair any type of error with little disk
requirements..

If the recover wouldn’t be able to recover all rows from a previous completed statement and
you didn’t specify FORCE as an option to myisam-recover, then the automatic repair will
abort with an error message in the error file:

Error: Couldn’t repair table: test.g00pages

If you in this case had used the FORCE option you would instead have got a warning in the
error file:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

Note that if you run automatic recover with the BACKUP option, you should have a cron
script that automatically moves file with names like ‘tablename-datetime.BAK’ from the
database directories to a backup media.
See Section 4.1.1 [Command-line options], page 195.

7.1.1 Space Needed for Keys

MySQL can support different index types, but the normal type is ISAM or MyISAM.
These use a B-tree index, and you can roughly calculate the size for the index file as (key_
length+4)/0.67, summed over all keys. (This is for the worst case when all keys are
inserted in sorted order and we don’t have any compressed keys.)
String indexes are space compressed. If the first index part is a string, it will also be prefix
compressed. Space compression makes the index file smaller than the above figures if the
string column has a lot of trailing space or is a VARCHAR column that is not always used
to the full length. Prefix compression is used on keys that start with a string. Prefix
compression helps if there are many strings with an identical prefix.
In MyISAM tables, you can also prefix compress numbers by specifying PACK_KEYS=1 when
you create the table. This helps when you have many integer keys that have an identical
prefix when the numbers are stored high-byte first.

7.1.2 MyISAM Table Formats

MyISAM supports 3 different table types. Two of them are chosen automatically depending
on the type of columns you are using. The third, compressed tables, can only be created
with the myisampack tool.
When you CREATE or ALTER a table you can for tables that doesn’t have BLOBs force the table
format to DYNAMIC or FIXED with the ROW_FORMAT=# table option. In the future you will

Chapter 7: MySQL Table Types 597

be able to compress/decompress tables by specifying ROW_FORMAT=compressed | default
to ALTER TABLE. See Section 6.5.3 [CREATE TABLE], page 564.

7.1.2.1 Static (Fixed-length) Table Characteristics

This is the default format. It’s used when the table contains no VARCHAR, BLOB, or TEXT
columns.

This format is the simplest and most secure format. It is also the fastest of the on-disk
formats. The speed comes from the easy way data can be found on disk. When looking up
something with an index and static format it is very simple. Just multiply the row number
by the row length.

Also, when scanning a table it is very easy to read a constant number of records with each
disk read.

The security is evidenced if your computer crashes when writing to a fixed-size MyISAM
file, in which case myisamchk can easily figure out where each row starts and ends. So it
can usually reclaim all records except the partially written one. Note that in MySQL all
indexes can always be reconstructed:

• All CHAR, NUMERIC, and DECIMAL columns are space-padded to the column width.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because records are located in fixed positions.

• Doesn’t have to be reorganised (with myisamchk) unless a huge number of records are
deleted and you want to return free disk space to the operating system.

• Usually requires more disk space than dynamic tables.

7.1.2.2 Dynamic Table Characteristics

This format is used if the table contains any VARCHAR, BLOB, or TEXT columns or if the table
was created with ROW_FORMAT=dynamic.

This format is a little more complex because each row has to have a header that says how
long it is. One record can also end up at more than one location when it is made longer at
an update.

You can use OPTIMIZE table or myisamchk to defragment a table. If you have static data
that you access/change a lot in the same table as some VARCHAR or BLOB columns, it might
be a good idea to move the dynamic columns to other tables just to avoid fragmentation:

• All string columns are dynamic (except those with a length less than 4).

• Each record is preceded by a bitmap indicating which columns are empty (’’) for string
columns, or zero for numeric columns. (This isn’t the same as columns containing NULL
values.) If a string column has a length of zero after removal of trailing spaces, or a
numeric column has a value of zero, it is marked in the bit map and not saved to disk.
Non-empty strings are saved as a length byte plus the string contents.

• Usually takes much less disk space than fixed-length tables.

598 MySQL Technical Reference for Version 4.1.1-alpha

• Each record uses only as much space as is required. If a record becomes larger, it is
split into as many pieces as are required. This results in record fragmentation.

• If you update a row with information that extends the row length, the row will be
fragmented. In this case, you may have to run myisamchk -r from time to time to get
better performance. Use myisamchk -ei tbl_name for some statistics.

• Not as easy to reconstruct after a crash, because a record may be fragmented into many
pieces and a link (fragment) may be missing.

• The expected row length for dynamic sized records is:
3
+ (number of columns + 7) / 8
+ (number of char columns)
+ packed size of numeric columns
+ length of strings
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic record is linked whenever an
update causes an enlargement of the record. Each new link will be at least 20 bytes, so
the next enlargement will probably go in the same link. If not, there will be another
link. You may check how many links there are with myisamchk -ed. All links may be
removed with myisamchk -r.

7.1.2.3 Compressed Table Characteristics

This is a read-only type that is generated with the optional myisampack tool (pack_isam
for ISAM tables):
• All MySQL distributions, even those that existed before MySQL went GPL, can read

tables that were compressed with myisampack.
• Compressed tables take very little disk space. This minimises disk usage, which is very

nice when using slow disks (like CD-ROMs).
• Each record is compressed separately (very little access overhead). The header for a

record is fixed (1-3 bytes) depending on the biggest record in the table. Each column
is compressed differently. Some of the compression types are:
− There is usually a different Huffman table for each column.
− Suffix space compression.
− Prefix space compression.
− Numbers with value 0 are stored using 1 bit.
− If values in an integer column have a small range, the column is stored using the

smallest possible type. For example, a BIGINT column (8 bytes) may be stored as
a TINYINT column (1 byte) if all values are in the range 0 to 255.

− If a column has only a small set of possible values, the column type is converted
to ENUM.

− A column may use a combination of the above compressions.
• Can handle fixed- or dynamic-length records.
• Can be uncompressed with myisamchk.

Chapter 7: MySQL Table Types 599

7.1.3 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are
always circumstances that may cause database tables to become corrupted.

7.1.3.1 Corrupted MyISAM Tables

Even if the MyISAM table format is very reliable (all changes to a table is written before
the SQL statements returns) , you can still get corrupted tables if some of the following
things happens:

• The mysqld process being killed in the middle of a write.
• Unexpected shutdown of the computer (for example, if the computer is turned off).
• A hardware error.
• You are using an external program (like myisamchk) on a live table.
• A software bug in the MySQL or MyISAM code.

Typial typical symptoms for a corrupt table is:

• You get the error Incorrect key file for table: ’...’. Try to repair it while se-
lecting data from the table.

• Queries doesn’t find rows in the table or returns incomplete data.

You can check if a table is ok with the command CHECK TABLE. See Section 4.5.4 [CHECK
TABLE], page 262.

You can repair a corrupted table with REPAIR TABLE. See Section 4.5.5 [REPAIR TABLE],
page 263. You can also repair a table, when mysqld is not running with the myisamchk
command. myisamchk syntax.

If your tables get corrupted a lot you should try to find the reason for this! See Section A.4.1
[Crashing], page 857.

In this case the most important thing to know is if the table got corrupted if the mysqld
died (one can easily verify this by checking if there is a recent row restarted mysqld in
the mysqld error file). If this isn’t the case, then you should try to make a test case of this.
See Section E.1.6 [Reproduceable test case], page 1009.

7.1.3.2 Clients is using or hasn’t closed the table properly

Each MyISAM ‘.MYI’ file has in the header a counter that can be used to check if a table has
been closed properly.

If you get the following warning from CHECK TABLE or myisamchk:

clients is using or hasn’t closed the table properly

this means that this counter has come out of sync. This doesn’t mean that the table is
corrupted, but means that you should at least do a check on the table to verify that it’s
okay.

The counter works as follows:

600 MySQL Technical Reference for Version 4.1.1-alpha

• The first time a table is updated in MySQL, a counter in the header of the index files
is incremented.

• The counter is not changed during further updates.
• When the last instance of a table is closed (because of a FLUSH or because there isn’t

room in the table cache) the counter is decremented if the table has been updated at
any point.

• When you repair the table or check the table and it was okay, the counter is reset to 0.
• To avoid problems with interaction with other processes that may do a check on the

table, the counter is not decremented on close if it was 0.

In other words, the only ways this can go out of sync are:
• The MyISAM tables are copied without a LOCK and FLUSH TABLES.
• MySQL has crashed between an update and the final close. (Note that the table may

still be okay, as MySQL always issues writes for everything between each statement.)
• Someone has done a myisamchk --recover or myisamchk --update-stateon a table

that was in use by mysqld.
• Many mysqld servers are using the table and one has done a REPAIR or CHECK of the

table while it was in use by another server. In this setup the CHECK is safe to do
(even if you will get the warning from other servers), but REPAIR should be avoided
as it currently replaces the datafile with a new one, which is not signaled to the other
servers.

7.2 MERGE Tables

MERGE tables are new in MySQL Version 3.23.25. The code is still in gamma, but should be
reasonable stable.
A MERGE table (also known as a MRG_MyISAM table) is a collection of identical MyISAM tables
that can be used as one. You can only SELECT, DELETE, and UPDATE from the collection of
tables. If you DROP the MERGE table, you are only dropping the MERGE specification.
Note that DELETE FROM merge_table used without a WHERE will only clear the mapping for
the table, not delete everything in the mapped tables. (We plan to fix this in 4.1).
With identical tables we mean that all tables are created with identical column and key
information. You can’t merge tables in which the columns are packed differently, doesn’t
have exactly the same columns, or have the keys in different order. However, some of the
tables can be compressed with myisampack. See Section 4.8.4 [myisampack], page 317.
When you create a MERGE table, you will get a ‘.frm’ table definition file and a ‘.MRG’ table
list file. The ‘.MRG’ just contains a list of the index files (‘.MYI’ files) that should be used as
one. Before 4.1.1 all used tables had to be in the same database as the MERGE table itself.
For the moment, you need to have SELECT, UPDATE, and DELETE privileges on the tables you
map to a MERGE table.
MERGE tables can help you solve the following problems:
• Easily manage a set of log tables. For example, you can put data from different months

into separate files, compress some of them with myisampack, and then create a MERGE
to use these as one.

Chapter 7: MySQL Table Types 601

• Give you more speed. You can split a big read-only table based on some criteria and
then put the different table part on different disks. A MERGE table on this could be
much faster than using the big table. (You can, of course, also use a RAID to get the
same kind of benefits.)

• Do more efficient searches. If you know exactly what you are looking after, you can
search in just one of the split tables for some queries and use a MERGE table for others.
You can even have many different MERGE tables active, with possible overlapping files.

• More efficient repairs. It’s easier to repair the individual files that are mapped to a
MERGE file than trying to repair a really big file.

• Instant mapping of many files as one. A MERGE table uses the index of the individual
tables. It doesn’t need to maintain an index of its one. This makes MERGE table
collections VERY fast to make or remap. Note that you must specify the key definitions
when you create a MERGE table!.

• If you have a set of tables that you join to a big table on demand or batch, you should
instead create a MERGE table on them on demand. This is much faster and will save a
lot of disk space.

• Go around the file-size limit for the operating system.
• You can create an alias/synonym for a table by just using MERGE over one table. There

shouldn’t be any really notable performance impacts of doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages with MERGE tables are:
• You can only use identical MyISAM tables for a MERGE table.
• REPLACE doesn’t work.
• MERGE tables uses more file descriptors. If you are using a MERGE table that maps over

10 tables and 10 users are using this, you are using 10*10 + 10 file descriptors. (10
datafiles for 10 users and 10 shared index files.)

• Key reads are slower. When you do a read on a key, the MERGE storage engine will
need to issue a read on all underlying tables to check which one most closely matches
the given key. If you then do a "read-next" then the MERGE storage engine will need
to search the read buffers to find the next key. Only when one key buffer is used up,
the storage engine will need to read the next key block. This makes MERGE keys much
slower on eq_ref searches, but not much slower on ref searches. See Section 5.2.1
[EXPLAIN], page 399.

• You can’t do DROP TABLE, ALTER TABLE, DELETE FROM table_name without a WHERE
clause, REPAIR TABLE, TRUNCATE TABLE, OPTIMIZE TABLE, or ANALYZE TABLE on any of
the table that is mapped by a MERGE table that is "open". If you do this, the MERGE table
may still refer to the original table and you will get unexpected results. The easiest
way to get around this deficiency is to issue the FLUSH TABLES command, ensuring no
MERGE tables remain "open".

When you create a MERGE table you have to specify with UNION=(list-of-tables) which
tables you want to use as one. Optionally you can specify with INSERT_METHOD if you want
insert for the MERGE table to happen in the first or last table in the UNION list. If you don’t
specify INSERT_METHOD or specify NO, then all INSERT commands on the MERGE table will
return an error.

602 MySQL Technical Reference for Version 4.1.1-alpha

The following example shows you how to use MERGE tables:
CREATE TABLE t1 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY, message CHAR(20));
CREATE TABLE t2 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY, message CHAR(20));
INSERT INTO t1 (message) VALUES ("Testing"),("table"),("t1");
INSERT INTO t2 (message) VALUES ("Testing"),("table"),("t2");
CREATE TABLE total (a INT NOT NULL AUTO_INCREMENT, message CHAR(20), KEY(a))

TYPE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;
SELECT * FROM total;

Note that we didn’t create a UNIQUE or PRIMARY KEY in the total table as the key isn’t
going to be unique in the total table.
Note that you can also manipulate the ‘.MRG’ file directly from the outside of the MySQL
server:

shell> cd /mysql-data-directory/current-database
shell> ls -1 t1.MYI t2.MYI > total.MRG
shell> mysqladmin flush-tables

Now you can do things like:
mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

Note that the a column, though declared as PRIMARY KEY, is not really unique, as MERGE
table cannot enforce uniqueness over a set of underlying MyISAM tables.
To remap a MERGE table you can do one of the following:
• DROP the table and re-create it
• Use ALTER TABLE table_name UNION=(...)

• Change the ‘.MRG’ file and issue a FLUSH TABLE on the MERGE table and all underlying
tables to force the storage engine to read the new definition file.

7.2.1 MERGE Table Problems

The following are the known problems with MERGE tables:
• A MERGE table cannot maintain UNIQUE constraints over the whole table. When you do

INSERT, the data goes into the first or last table (according to INSERT_METHOD=xxx)
and this MyISAM table ensures that the data are unique, but it knows nothing about
others MyISAM tables.

• DELETE FROM merge_table used without a WHERE will only clear the mapping for the
table, not delete everything in the mapped tables.

Chapter 7: MySQL Table Types 603

• RENAME TABLE on a table used in an active MERGE table may corrupt the table. This
will be fixed in MySQL 4.1.x.

• Creation of a table of type MERGE doesn’t check if the underlying tables are of compatible
types or if they exists. MySQL will do a quick check if the record length is equal between
mapped tables when the MERGE table is used, but this is not a fullproof check.
If you use MERGE tables in this fashion, you are very likely to run into strange problems.

• If you use ALTER TABLE to first add an UNIQUE index to a table used in a MERGE table and
then use ALTER TABLE to add a normal index on the MERGE table, the key order will be
different for the tables if there was an old non-unique key in the table. This is because
ALTER TABLE puts UNIQUE keys before normal keys to be able to detect duplicate keys
as early as possible.

• DROP TABLE on a table that is in use by a MERGE table will not work on Windows
because the MERGE storage engine does the table mapping hidden from the upper layer of
MySQL. Because Windows doesn’t allow you to drop files that are open, you first must
flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping
the table. We will fix this at the same time we introduce VIEWs.

7.3 ISAM Tables

The deprecated ISAM table type will disappear in MySQL version 5.0. In MySQL 4.1 it’s
included in the source but not compiled anymore. MyISAM is a better implementation of this
table handler and you should convert all ISAM tables to MySAM tables as soon as possible.
ISAM uses a B-tree index. The index is stored in a file with the ‘.ISM’ extension, and the
data is stored in a file with the ‘.ISD’ extension. You can check/repair ISAM tables with
the isamchk utility. See Section 4.5.6.7 [Crash recovery], page 270.
ISAM has the following features/properties:
• Compressed and fixed-length keys
• Fixed and dynamic record length
• 16 keys with 16 key parts/key
• Max key length 256 (default)
• Data is stored in machine format; this is fast, but is machine/OS dependent.

Most of the things true for MyISAM tables are also true for ISAM tables. See Section 7.1
[MyISAM tables], page 594. The major differences compared to MyISAM tables are:
• ISAM tables are not binary portable across OS/Platforms.
• Can’t handle tables > 4G.
• Only support prefix compression on strings.
• Smaller key limits.
• Dynamic tables get more fragmented.
• Tables are compressed with pack_isam rather than with myisampack.

If you want to convert an ISAM table to a MyISAM table so that you can use utilities such as
mysqlcheck, use an ALTER TABLE statement:

mysql> ALTER TABLE tbl_name TYPE = MYISAM;

The embedded MySQL versions doesn’t support ISAM tables.

604 MySQL Technical Reference for Version 4.1.1-alpha

7.4 HEAP Tables

HEAP tables use hashed indexes and are stored in memory. This makes them very fast, but
if MySQL crashes you will lose all data stored in them. HEAP is very useful for temporary
tables!
The MySQL internal HEAP tables use 100% dynamic hashing without overflow areas. There
is no extra space needed for free lists. HEAP tables also don’t have problems with delete +
inserts, which normally is common with hashed tables:

mysql> CREATE TABLE test TYPE=HEAP SELECT ip,SUM(downloads) AS down
-> FROM log_table GROUP BY ip;

mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

Here are some things you should consider when you use HEAP tables:
• You should always use specify MAX_ROWS in the CREATE statement to ensure that you

accidentally do not use all memory.
• Indexes will only be used with = and <=> (but are VERY fast).
• HEAP tables can only use whole keys to search for a row; compare this to MyISAM tables

where any prefix of the key can be used to find rows.
• HEAP tables use a fixed record length format.
• HEAP doesn’t support BLOB/TEXT columns.
• HEAP doesn’t support AUTO_INCREMENT columns.
• Prior to MySQL 4.0.2, HEAP doesn’t support an index on a NULL column.
• You can have non-unique keys in a HEAP table (this isn’t common for hashed tables).
• HEAP tables are shared between all clients (just like any other table).
• You can’t search for the next entry in order (that is, to use the index to do an ORDER

BY).
• Data for HEAP tables are allocated in small blocks. The tables are 100% dynamic (on

inserting). No overflow areas and no extra key space are needed. Deleted rows are put
in a linked list and are reused when you insert new data into the table.

• You need enough extra memory for all HEAP tables that you want to use at the same
time.

• To free memory, you should execute DELETE FROM heap_table, TRUNCATE heap_table
or DROP TABLE heap_table.

• MySQL cannot find out approximately how many rows there are between two values
(this is used by the range optimiser to decide which index to use). This may affect
some queries if you change a MyISAM table to a HEAP table.

• To ensure that you accidentally don’t do anything foolish, you can’t create HEAP tables
bigger than max_heap_table_size.

The memory needed for one row in a HEAP table is:
SUM_OVER_ALL_KEYS(max_length_of_key + sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))

sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

Chapter 7: MySQL Table Types 605

7.5 InnoDB Tables

7.5.1 InnoDB Tables Overview

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine with com-
mit, rollback, and crash recovery capabilities. InnoDB does locking on row level and also
provides an Oracle-style consistent non-locking read in SELECTs. These features increase
multiuser concurrency and performance. There is no need for lock escalation in InnoDB, be-
cause row level locks in InnoDB fit in very small space. InnoDB is the first storage manager
in MySQL to support FOREIGN KEY constraints.

InnoDB has been designed for maximum performance when processing large data volumes.
Its CPU efficiency is probably not matched by any other disk-based relational database
engine.

InnoDB is used in production at numerous large database sites requiring high performance.
The famous Internet news site Slashdot.org runs on InnoDB. Mytrix, Inc. stores over 1
TB of data in InnoDB, and another site handles an average load of 800 inserts/updates per
second in InnoDB.

Technically, InnoDB is a complete database backend placed under MySQL. InnoDB has its
own buffer pool for caching data and indexes in main memory. InnoDB stores its tables and
indexes in a tablespace, which may consist of several files (or raw disk partitions). This
is different from, for example, MyISAM tables where each table is stored as a separate file.
InnoDB tables can be of any size even on operating systems where file-size is limited to 2
GB.

You can find the latest information about InnoDB at http://www.innodb.com/. The most
up-to-date version of the InnoDB manual is always placed there.

InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as
MySQL. If you distribute MySQL/InnoDB, and your application does not satisfy the
restrictions of the GPL license, you have to buy a commercial MySQL Pro license from
https://order.mysql.com/?sub=pg&pg_no=1.

7.5.2 InnoDB in MySQL Version 3.23

From MySQL version 4.0, InnoDB is enabled by default. The following information only
applies to the 3.23 series.

InnoDB tables are included in the MySQL source distribution starting from 3.23.34a and
are activated in the MySQL -Max binary of the 3.23 series. For Windows the -Max binaries
are contained in the standard distribution.

If you have downloaded a binary version of MySQL that includes support for InnoDB, simply
follow the instructions of the MySQL manual for installing a binary version of MySQL. If
you already have MySQL-3.23 installed, then the simplest way to install MySQL -Max
is to replace the server executable ‘mysqld’ with the corresponding executable in the -
Max distribution. MySQL and MySQL -Max differ only in the server executable. See
Section 2.2.9 [Installing binary], page 85. See Section 4.8.5 [mysqld-max], page 323.

606 MySQL Technical Reference for Version 4.1.1-alpha

To compile MySQL with InnoDB support, download MySQL-3.23.34a or newer version from
http://www.mysql.com/ and configure MySQL with the --with-innodb option. See the
MySQL manual about installing a MySQL source distribution. See Section 2.3 [Installing
source], page 88.

cd /path/to/source/of/mysql-3.23.37
./configure --with-innodb

To use InnoDB tables in MySQL-Max-3.23 you must specify configuration parameters in the
[mysqld] section of the configuration file ‘my.cnf’, or on Windows optionally in ‘my.ini’.
At the minimum, in 3.23 you must specify innodb_data_file_path where you specify the
names and the sizes of datafiles. If you do not mention innodb_data_home_dir in ‘my.cnf’
the default is to create these files to the datadir of MySQL. If you specify innodb_data_
home_dir as an empty string, then you can give absolute paths to your datafiles in innodb_
data_file_path.
The minimal way to modify it is to add to the [mysqld] section the line

innodb_data_file_path=ibdata:30M

but to get good performance it is best that you specify options as recommended. See
Section 7.5.3 [InnoDB start], page 606.

7.5.3 InnoDB Startup Options

To enable InnoDB tables in MySQL version 3.23, see Section 7.5.2 [InnoDB in MySQL 3.23],
page 605.
In MySQL-4.0 you are not required to do anything specific to enable InnoDB tables.
The default behaviour in MySQL-4.0 and MySQL-4.1 is to create an auto-extending 10 MB
file ‘ibdata1’ in the datadir of MySQL and two 5 MB ‘ib_logfile’s to the datadir. (In
MySQL-4.0.0 and 4.0.1 the datafile is 64 MB and not auto-extending.)
Note: To get good performance you should explicitly set the InnoDB parameters listed in
the following examples.
If you don’t want to use InnoDB tables, you can add the skip-innodb option to your MySQL
option file.
Starting from versions 3.23.50 and 4.0.2, InnoDB allows the last datafile on the innodb_
data_file_path line to be specified as auto-extending. The syntax for innodb_data_
file_path is then the following:

pathtodatafile:sizespecification;pathtodatafile:sizespecification;...
... ;pathtodatafile:sizespecification[:autoextend[:max:sizespecification]]

If you specify the last datafile with the autoextend option, InnoDB will extend the last
datafile if it runs out of free space in the tablespace. The increment is 8 MB at a time. An
example:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:100M:autoextend

instructs InnoDB to create just a single datafile whose initial size is 100 MB and which is
extended in 8 MB blocks when space runs out. If the disk becomes full you may want to
add another datafile to another disk, for example. Then you have to look at the size of

Chapter 7: MySQL Table Types 607

‘ibdata1’, round the size downward to the closest multiple of 1024 * 1024 bytes (= 1 MB),
and specify the rounded size of ‘ibdata1’ explicitly in innodb_data_file_path. After that
you can add another datafile:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

Be cautious on filesystems where the maximum file-size is 2 GB. InnoDB is not aware of
the OS maximum file-size. On those filesystems you might want to specify the max size for
the datafile:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:100M:autoextend:max:2000M

A simple ‘my.cnf’ example. Suppose you have a computer with 128 MB RAM and
one hard disk. Below is an example of possible configuration parameters in ‘my.cnf’
or ‘my.ini’ for InnoDB. We assume you are running MySQL-Max-3.23.50 or later, or
MySQL-4.0.2 or later. This example suits most users, both on Unix and Windows,
who do not want to distribute InnoDB datafiles and log files on several disks. This
creates an auto-extending datafile ‘ibdata1’ and two InnoDB log files ‘ib_logfile0’
and ‘ib_logfile1’ to the datadir of MySQL (typically ‘/mysql/data’). Also the small
archived InnoDB log file ‘ib_arch_log_0000000000’ ends up in the datadir.

[mysqld]
You can write your other MySQL server options here
...
Datafile(s) must be able to
hold your data and indexes.
Make sure you have enough
free disk space.
innodb_data_file_path = ibdata1:10M:autoextend
Set buffer pool size to
50 - 80 % of your computer’s
memory
set-variable = innodb_buffer_pool_size=70M
set-variable = innodb_additional_mem_pool_size=10M
Set the log file size to about
25 % of the buffer pool size
set-variable = innodb_log_file_size=20M
set-variable = innodb_log_buffer_size=8M
Set ..flush_log_at_trx_commit
to 0 if you can afford losing
some last transactions
innodb_flush_log_at_trx_commit=1

Check that the MySQL server has the rights to create files in datadir.
Note that datafiles must be < 2 GB in some file systems! The combined size of the log files
must be < 4 GB. The combined size of datafiles must be >= 10 MB.
When you for the first time create an InnoDB database, it is best that you start the MySQL
server from the command prompt. Then InnoDB will print the information about the
database creation to the screen, and you see what is happening. See below next section what

608 MySQL Technical Reference for Version 4.1.1-alpha

the printout should look like. For example, in Windows you can start ‘mysqld-max.exe’
with:

your-path-to-mysqld\mysqld-max --console

Where to put ‘my.cnf’ or ‘my.ini’ in Windows? The rules for Windows are the following:
• Only one of ‘my.cnf’ or ‘my.ini’ should be created.
• The ‘my.cnf’ file should be placed in the root directory of the drive ‘C:’.
• The ‘my.ini’ file should be placed in the WINDIR directory, e.g, ‘C:\WINDOWS’ or

‘C:\WINNT’. You can use the SET command of MS-DOS to print the value of WINDIR.
• If your PC uses a boot loader where the ‘C:’ drive is not the boot drive, then your only

option is to use the ‘my.ini’ file.

Where to specify options in Unix? On Unix ‘mysqld’ reads options from the following files,
if they exist, in the following order:
• ‘/etc/my.cnf’ Global options.
• ‘COMPILATION_DATADIR/my.cnf’ Server-specific options.
• ‘defaults-extra-file’ The file specified with --defaults-extra-file=....
• ‘~/.my.cnf’ User-specific options.

‘COMPILATION_DATADIR’ is the MySQL data directory which was specified as a ./configure
option when ‘mysqld’ was compiled (typically ‘/usr/local/mysql/data’ for a binary in-
stallation or ‘/usr/local/var’ for a source installation).
If you are not sure from where ‘mysqld’ reads its ‘my.cnf’ or ‘my.ini’, you can give the path
as the first command-line option to the server: mysqld --defaults-file=your_path_to_
my_cnf.
InnoDB forms the directory path to a datafile by textually catenating innodb_data_home_
dir to a datafile name or path in innodb_data_file_path, adding a possible slash or
backslash in between if needed. If the keyword innodb_data_home_dir is not mentioned
in ‘my.cnf’ at all, the default for it is the ’dot’ directory ‘./’ which means the datadir of
MySQL.
An advanced ‘my.cnf’ example. Suppose you have a Linux computer with 2 GB RAM and
three 60 GB hard disks (at directory paths ‘/’, ‘/dr2’ and ‘/dr3’). Below is an example of
possible configuration parameters in ‘my.cnf’ for InnoDB.
Note that InnoDB does not create directories: you have to create them yourself. Use the
Unix or MS-DOS mkdir command to create the data and log group home directories.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
Datafiles must be able to
hold your data and indexes
innodb_data_file_path = /ibdata/ibdata1:2000M;/dr2/ibdata/ibdata2:2000M:autoextend
Set buffer pool size to
50 - 80 % of your computer’s
memory, but make sure on Linux
x86 total memory usage is

Chapter 7: MySQL Table Types 609

< 2 GB
set-variable = innodb_buffer_pool_size=1G
set-variable = innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
.._log_arch_dir must be the same
as .._log_group_home_dir
innodb_log_arch_dir = /dr3/iblogs
set-variable = innodb_log_files_in_group=3
Set the log file size to about
15 % of the buffer pool size
set-variable = innodb_log_file_size=150M
set-variable = innodb_log_buffer_size=8M
Set ..flush_log_at_trx_commit to
0 if you can afford losing
some last transactions
innodb_flush_log_at_trx_commit=1
set-variable = innodb_lock_wait_timeout=50
#innodb_flush_method=fdatasync
#set-variable = innodb_thread_concurrency=5

Note that we have placed the two datafiles on different disks. InnoDB will fill the tablespace
formed by the datafiles from bottom up. In some cases it will improve the performance of
the database if all data is not placed on the same physical disk. Putting log files on a
different disk from data is very often beneficial for performance. You can also use raw disk
partitions (raw devices) as datafiles. In some Unixes they speed up I/O. See the manual
section on InnoDB file space management about how to specify them in ‘my.cnf’.

Warning: on Linux x86 you must be careful you do not set memory usage too high. glibc
will allow the process heap to grow over thread stacks, which will crash your server. It is a
risk if the value of

innodb_buffer_pool_size + key_buffer +
max_connections * (sort_buffer + read_buffer_size) + max_connections * 2 MB

is close to 2 GB or exceeds 2 GB. Each thread will use a stack (often 2 MB, but in MySQL
AB binaries only 256 KB) and in the worst case also sort_buffer + read_buffer_size
additional memory.

How to tune other ‘mysqld’ server parameters? Typical values which suit most users are:

skip-locking
set-variable = max_connections=200
set-variable = read_buffer_size=1M
set-variable = sort_buffer=1M
Set key_buffer to 5 - 50%
of your RAM depending on how
much you use MyISAM tables, but
keep key_buffer + InnoDB
buffer pool size < 80% of
your RAM
set-variable = key_buffer=...

610 MySQL Technical Reference for Version 4.1.1-alpha

Note that some parameters are given using the numeric ‘my.cnf’ parameter format: set-
variable = innodb... = 123, others (string and boolean parameters) with another format:
innodb_... =

The meanings of the configuration parameters are the following:

Option Description
innodb_data_home_dir The common part of the directory path for all InnoDB

datafiles. If you do not mentioned this option in ‘my.cnf’
the default is the datadir of MySQL. You can specify
this also as an empty string, in which case you can use
absolute file paths in innodb_data_file_path.

innodb_data_file_path Paths to individual datafiles and their sizes. The full di-
rectory path to each datafile is acquired by concatenating
innodb data home dir to the paths specified here. The
file sizes are specified in megabytes, hence the ’M’ after
the size specification above. InnoDB also understands the
abbreviation ’G’, 1 G meaning 1024 MB. Starting from
3.23.44 you can set the file-size bigger than 4 GB on those
operating systems which support big files. On some oper-
ating systems files must be < 2 GB. If you do not specify
innodb_data_file_path, the default behaviour starting
from 4.0 is to create a 10 MB auto-extending datafile
‘ibdata1’. The sum of the sizes of the files must be at
least 10 MB.

innodb_mirrored_log_groups Number of identical copies of log groups we keep for the
database. Currently this should be set to 1.

innodb_log_group_home_dir Directory path to InnoDB log files. If you do not men-
tioned this option in ‘my.cnf’ the default is the datadir
of MySQL.

innodb_log_files_in_group Number of log files in the log group. InnoDB writes to
the files in a circular fashion. Value 2 is recommended
here. The default is 2.

innodb_log_file_size Size of each log file in a log group in megabytes. Sensible
values range from 1M to 1/n-th of the size of the buffer
pool specified below, where n is the number of log files in
the group. The larger the value, the less checkpoint flush
activity is needed in the buffer pool, saving disk I/O. But
larger log files also mean that recovery will be slower in
case of a crash. The combined size of log files must be
less than 4 GB on 32-bit computers. The default is 5M.

innodb_log_buffer_size The size of the buffer which InnoDB uses to write log to
the log files on disk. Sensible values range from 1M to 8M.
A big log buffer allows large transactions to run without a
need to write the log to disk until the transaction commit.
Thus, if you have big transactions, making the log buffer
big will save disk I/O.

Chapter 7: MySQL Table Types 611

innodb_flush_log_at_trx_
commit

Normally you set this to 1, meaning that at a transaction
commit the log is flushed to disk, and the modifications
made by the transaction become permanent, and survive
a database crash. If you are willing to compromise this
safety, and you are running small transactions, you may
set this to 0 or 2 to reduce disk I/O to the logs. Value 0
means that the log is only written to the log file and the
log file flushed to disk approximately once per second.
Value 2 means the log is written to the log file at each
commit, but the log file is only flushed to disk approxi-
mately once per second. The default value is 1 starting
from MySQL-4.0.13; previously it was 0.

innodb_log_arch_dir The directory where fully written log files would be
archived if we used log archiving. The value of this pa-
rameter should currently be set the same as innodb_log_
group_home_dir.

innodb_log_archive This value should currently be set to 0. As recovery from
a backup is done by MySQL using its own log files, there
is currently no need to archive InnoDB log files.

innodb_buffer_pool_size The size of the memory buffer InnoDB uses to cache data
and indexes of its tables. The bigger you set this the
less disk I/O is needed to access data in tables. On a
dedicated database server you may set this parameter up
to 80% of the machine physical memory size. Do not set
it too large, though, because competition of the physical
memory may cause paging in the operating system.

innodb_buffer_pool_awe_
mem_mb

Size of the buffer pool in MB, if it is placed in the AWE
memory of 32-bit Windows. Available starting from 4.1.0
and only relevant in 32-bit Windows. If your 32-bit Win-
dows operating system supports > 4 GB memory, so-
called Address Windowing Extensions, you can allocate
the InnoDB buffer pool into the AWE physical memory
using this parameter. The maximum possible value for
this is 64000. If this parameter is specified, then inn-
odb buffer pool size is the window in the 32-bit address
space of mysqld where InnoDB maps that AWE memory.
A good value for innodb buffer pool size is then 500M.

innodb_additional_mem_
pool_size

Size of a memory pool InnoDB uses to store data dic-
tionary information and other internal data structures.
A sensible value for this might be 2M, but the more ta-
bles you have in your application the more you will need
to allocate here. If InnoDB runs out of memory in this
pool, it will start to allocate memory from the operating
system, and write warning messages to the MySQL error
log.

innodb_file_io_threads Number of file I/O threads in InnoDB. Normally, this
should be 4, but on Windows disk I/O may benefit from
a larger number.

612 MySQL Technical Reference for Version 4.1.1-alpha

innodb_lock_wait_timeout Timeout in seconds an InnoDB transaction may wait for
a lock before being rolled back. InnoDB automatically
detects transaction deadlocks in its own lock table and
rolls back the transaction. If you use the LOCK TABLES
command, or other transaction-safe storage engines than
InnoDB in the same transaction, then a deadlock may
arise which InnoDB cannot notice. In cases like this the
timeout is useful to resolve the situation.

innodb_flush_method (Available from 3.23.40 up.) The default value for this is
fdatasync. Another option is O_DSYNC.

innodb_force_recovery Warning: this option should only be defined in an emer-
gency situation when you want to dump your tables from
a corrupt database! Possible values are 1 - 6. See below
at section ’Forcing recovery’ about the meanings of the
values. As a safety measure InnoDB prevents a user from
modifying data when this option is > 0. This option is
available starting from version 3.23.44.

7.5.4 Creating InnoDB Tablespace

Suppose you have installed MySQL and have edited ‘my.cnf’ so that it contains the nec-
essary InnoDB configuration parameters. Before starting MySQL you should check that
the directories you have specified for InnoDB datafiles and log files exist and that you have
access rights to those directories. InnoDB cannot create directories, only files. Check also
you have enough disk space for the data and log files.
When you now start MySQL, InnoDB will start creating your datafiles and log files. InnoDB
will print something like the following:

~/mysqlm/sql > mysqld
InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile2 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile2 size to 5242880
InnoDB: Started

Chapter 7: MySQL Table Types 613

mysqld: ready for connections

A new InnoDB database has now been created. You can connect to the MySQL server with
the usual MySQL client programs like mysql. When you shut down the MySQL server with
‘mysqladmin shutdown’, InnoDB output will be like the following:

010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed

You can now look at the datafiles and logs directories and you will see the files created.
The log directory will also contain a small file named ‘ib_arch_log_0000000000’. That file
resulted from the database creation, after which InnoDB switched off log archiving. When
MySQL is again started, the output will be like the following:

~/mysqlm/sql > mysqld
InnoDB: Started
mysqld: ready for connections

7.5.4.1 If Something Goes Wrong in Database Creation

If InnoDB prints an operating system error in a file operation, usually the problem is one
of the following:
• You did not create InnoDB data or log directories.
• ‘mysqld’ does not have the rights to create files in those directories.
• ‘mysqld’ does not read the right ‘my.cnf’ or ‘my.ini’ file, and consequently does not

see the options you specified.
• The disk is full or a disk quota is exceeded.
• You have created a subdirectory whose name is equal to a datafile you specified.
• There is a syntax error in innodb_data_home_dir or innodb_data_file_path.

If something goes wrong in an InnoDB database creation, you should delete all files created
by InnoDB. This means all datafiles, all log files, the small archived log file, and in the case
you already did create some InnoDB tables, delete also the corresponding ‘.frm’ files for
these tables from the MySQL database directories. Then you can try the InnoDB database
creation again.

7.5.5 Creating InnoDB Tables

Suppose you have started the MySQL client with the command mysql test. To create
a table in the InnoDB format you must specify TYPE = InnoDB in the table creation SQL
command:

CREATE TABLE CUSTOMER (A INT, B CHAR (20), INDEX (A)) TYPE = InnoDB;

This SQL command will create a table and an index on column A into the InnoDB tablespace
consisting of the datafiles you specified in ‘my.cnf’. In addition MySQL will create a file
‘CUSTOMER.frm’ to the MySQL database directory ‘test’. Internally, InnoDB will add to
its own data dictionary an entry for table ’test/CUSTOMER’. Thus you can create a table

614 MySQL Technical Reference for Version 4.1.1-alpha

of the same name CUSTOMER in another database of MySQL, and the table names will not
collide inside InnoDB.
You can query the amount of free space in the InnoDB tablespace by issuing the table status
command of MySQL for any table you have created with TYPE = InnoDB. Then the amount
of free space in the tablespace appears in the table comment section in the output of SHOW.
An example:

SHOW TABLE STATUS FROM test LIKE ’CUSTOMER’

Note that the statistics SHOW gives about InnoDB tables are only approximate: they are
used in SQL optimisation. Table and index reserved sizes in bytes are accurate, though.

7.5.5.1 Converting MyISAM Tables to InnoDB

InnoDB does not have a special optimisation for separate index creation. Therefore it does
not pay to export and import the table and create indexes afterwards. The fastest way to
alter a table to InnoDB is to do the inserts directly to an InnoDB table, that is, use ALTER
TABLE ... TYPE=INNODB, or create an empty InnoDB table with identical definitions and
insert the rows with INSERT INTO ... SELECT * FROM
To get better control over the insertion process, it may be good to insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
WHERE yourkey > something AND yourkey <= somethingelse;

After all data has been inserted you can rename the tables.
During the conversion of big tables you should set the InnoDB buffer pool size big to reduce
disk I/O. Not bigger than 80% of the physical memory, though. You should set InnoDB log
files big, and also the log buffer large.
Make sure you do not run out of tablespace: InnoDB tables take a lot more space than
MyISAM tables. If an ALTER TABLE runs out of space, it will start a rollback, and that can
take hours if it is disk-bound. In inserts InnoDB uses the insert buffer to merge secondary
index records to indexes in batches. That saves a lot of disk I/O. In rollback no such
mechanism is used, and the rollback can take 30 times longer than the insertion.
In the case of a runaway rollback, if you do not have valuable data in your database, it is
better that you kill the database process and delete all InnoDB datafiles and log files and
all InnoDB table ‘.frm’ files, and start your job again, rather than wait for millions of disk
I/Os to complete.

7.5.5.2 FOREIGN KEY Constraints

Starting from version 3.23.43b InnoDB features foreign key constraints. InnoDB is the first
MySQL table type which allows you to define foreign key constraints to guard the integrity
of your data.
The syntax of a foreign key constraint definition in InnoDB:

[CONSTRAINT symbol] FOREIGN KEY (index_col_name, ...)
REFERENCES table_name (index_col_name, ...)
[ON DELETE {CASCADE | SET NULL | NO ACTION

| RESTRICT}]

Chapter 7: MySQL Table Types 615

[ON UPDATE {CASCADE | SET NULL | NO ACTION
| RESTRICT}]

Both tables have to be InnoDB type, in the table there must be an INDEX where the foreign
key columns are listed as the FIRST columns in the same order, and in the referenced table
there must be an INDEX where the referenced columns are listed as the FIRST columns
in the same order. InnoDB does not auto-create indexes on foreign keys or referenced keys:
you have to create them explicitly. The indexes are needed for foreign key checks to be fast
and not require a table scan.
Corresponding columns in the foreign key and the referenced key must have similar internal
datatypes inside InnoDB so that they can be compared without a type conversion. The size
and the signedness of integer types has to be the same. The length of string types need
not be the same. If you specify a SET NULL action, make sure you have not declared the
columns in the child table NOT NULL.
If MySQL gives the error number 1005 from a CREATE TABLE statement, and the error
message string refers to errno 150, then the table creation failed because a foreign key
constraint was not correctly formed. Similarly, if an ALTER TABLE fails and it refers to
errno 150, that means a foreign key definition would be incorrectly formed for the altered
table. Starting from version 4.0.13, you can use SHOW INNODB STATUS to look at a detailed
explanation of the latest InnoDB foreign key error in the server.
Starting from version 3.23.50, InnoDB does not check foreign key constraints on those
foreign key or referenced key values which contain a NULL column.
A deviation from SQL standards: if in the parent table there are several rows which have
the same referenced key value, then InnoDB acts in foreign key checks like the other parent
rows with the same key value would not exist. For example, if you have defined a RESTRICT
type constraint, and there is a child row with several parent rows, InnoDB does not allow
the deletion of any of those parent rows.
Starting from version 3.23.50, you can also associate the ON DELETE CASCADE or ON DELETE
SET NULL clause with the foreign key constraint. Corresponding ON UPDATE options are
available starting from 4.0.8. If ON DELETE CASCADE is specified, and a row in the parent
table is deleted, then InnoDB automatically deletes also all those rows in the child table
whose foreign key values are equal to the referenced key value in the parent row. If ON
DELETE SET NULL is specified, the child rows are automatically updated so that the columns
in the foreign key are set to the SQL NULL value.
A deviation from SQL standards: if ON UPDATE CASCADE or ON UPDATE SET NULL recurses to
update the SAME TABLE it has already updated during the cascade, it acts like RESTRICT.
This is to prevent infinite loops resulting from cascaded updates. A self-referential ON
DELETE SET NULL, on the other hand, works starting from 4.0.13. A self-referential ON
DELETE CASCADE has always worked.
An example:

CREATE TABLE parent(id INT NOT NULL, PRIMARY KEY (id)) TYPE=INNODB;
CREATE TABLE child(id INT, parent_id INT, INDEX par_ind (parent_id),

FOREIGN KEY (parent_id) REFERENCES parent(id)
ON DELETE SET NULL

) TYPE=INNODB;

A complex example:

616 MySQL Technical Reference for Version 4.1.1-alpha

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,
price DECIMAL,
PRIMARY KEY(category, id)) TYPE=INNODB;

CREATE TABLE customer (id INT NOT NULL,
PRIMARY KEY (id)) TYPE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,
product_category INT NOT NULL,
product_id INT NOT NULL,
customer_id INT NOT NULL,
PRIMARY KEY(no),
INDEX (product_category, product_id),
FOREIGN KEY (product_category, product_id)
REFERENCES product(category, id)
ON UPDATE CASCADE ON DELETE RESTRICT,

INDEX (customer_id),
FOREIGN KEY (customer_id)
REFERENCES customer(id)) TYPE=INNODB;

Starting from version 3.23.50, InnoDB allows you to add a new foreign key constraint to a
table through

ALTER TABLE yourtablename
ADD [CONSTRAINT symbol] FOREIGN KEY (...) REFERENCES anothertablename(...)
[on_delete_and_on_update_actions]

Remember to create the required indexes first, though.
Starting from version 4.0.13, InnoDB supports

ALTER TABLE yourtablename DROP FOREIGN KEY internally_generated_foreign_key_id

You have to use SHOW CREATE TABLE to determine the internally generated foreign key ID
when you want to drop a foreign key.
In InnoDB versions < 3.23.50 ALTER TABLE or CREATE INDEX should not be used in connec-
tion with tables which have foreign key constraints or which are referenced in foreign key
constraints: Any ALTER TABLE removes all foreign key constraints defined for the table. You
should not use ALTER TABLE to the referenced table either, but use DROP TABLE and CREATE
TABLE to modify the schema. When MySQL does an ALTER TABLE it may internally use
RENAME TABLE, and that will confuse the foreign key costraints which refer to the table. A
CREATE INDEX statement is in MySQL processed as an ALTER TABLE, and these restrictions
apply also to it.
When doing foreign key checks, InnoDB sets shared row level locks on child or parent
records it has to look at. InnoDB checks foreign key constraints immediately: the check is
not deferred to transaction commit.
If you want to ignore foreign key constraints during, for example for a LOAD DATA operation,
you can do SET FOREIGN_KEY_CHECKS=0.
InnoDB allows you to drop any table even though that would break the foreign key con-
straints which reference the table. When you drop a table the constraints which were defined
in its create statement are also dropped.
If you re-create a table which was dropped, it has to have a definition which conforms to
the foreign key constraints referencing it. It must have the right column names and types,

Chapter 7: MySQL Table Types 617

and it must have indexes on the referenced keys, as stated above. If these are not satisfied,
MySQL returns error number 1005 and refers to errno 150 in the error message string.
Starting from version 3.23.50 InnoDB returns the foreign key definitions of a table when
you call

SHOW CREATE TABLE yourtablename

Then also ‘mysqldump’ produces correct definitions of tables to the dump file, and does not
forget about the foreign keys.
You can also list the foreign key constraints for a table T with

SHOW TABLE STATUS FROM yourdatabasename LIKE ’T’

The foreign key constraints are listed in the table comment of the output.

7.5.6 Adding and Removing InnoDB Data and Log Files

From version 3.23.50 and 4.0.2 you can specify the last InnoDB datafile to autoextend.
Alternatively, you can increase to your tablespace by specifying an additional datafile. To
do this you have to shut down the MySQL server, edit the ‘my.cnf’ file adding a new datafile
to innodb_data_file_path, and then start the MySQL server again.
Currently you cannot remove a datafile from InnoDB. To decrease the size of your database
you have to use ‘mysqldump’ to dump all your tables, create a new database, and import
your tables to the new database.
If you want to change the number or the size of your InnoDB log files, you have to shut
down MySQL and make sure that it shuts down without errors. Then copy the old log
files into a safe place just in case something went wrong in the shutdown and you will need
them to recover the database. Delete then the old log files from the log file directory, edit
‘my.cnf’, and start MySQL again. InnoDB will tell you at the startup that it is creating
new log files.

7.5.7 Backing up and Recovering an InnoDB Database

The key to safe database management is taking regular backups.
InnoDB Hot Backup is an online backup tool you can use to backup your InnoDB database
while it is running. InnoDB Hot Backup does not require you to shut down your database
and it does not set any locks or disturb your normal database processing. InnoDB Hot
Backup is a non-free additional tool which is not included in the standard MySQL distri-
bution. See the InnoDB Hot Backup homepage http://www.innodb.com/hotbackup.html
for detailed information and screenshots.
If you are able to shut down your MySQL server, then to take a ’binary’ backup of your
database you have to do the following:
• Shut down your MySQL database and make sure it shuts down without errors.
• Copy all your datafiles into a safe place.
• Copy all your InnoDB log files to a safe place.
• Copy your ‘my.cnf’ configuration file(s) to a safe place.
• Copy all the ‘.frm’ files for your InnoDB tables into a safe place.

618 MySQL Technical Reference for Version 4.1.1-alpha

In addition to taking the binary backups described above, you should also regularly take
dumps of your tables with ‘mysqldump’. The reason to this is that a binary file may be
corrupted without you noticing it. Dumped tables are stored into text files which are human-
readable and much simpler than database binary files. Seeing table corruption from dumped
files is easier, and since their format is simpler, the chance for serious data corruption in
them is smaller.

A good idea is to take the dumps at the same time you take a binary backup of your
database. You have to shut out all clients from your database to get a consistent snapshot
of all your tables into your dumps. Then you can take the binary backup, and you will then
have a consistent snapshot of your database in two formats.

To be able to recover your InnoDB database to the present from the binary backup described
above, you have to run your MySQL database with the general logging and log archiving of
MySQL switched on. Here by the general logging we mean the logging mechanism of the
MySQL server which is independent of InnoDB logs.

To recover from a crash of your MySQL server process, the only thing you have to do
is to restart it. InnoDB will automatically check the logs and perform a roll-forward of
the database to the present. InnoDB will automatically roll back uncommitted transac-
tions which were present at the time of the crash. During recovery, InnoDB will print out
something like the following:

~/mysqlm/sql > mysqld
InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database gets corrupted or your disk fails, you have to do the recovery from a backup.
In the case of corruption, you should first find a backup which is not corrupted. From a
backup do the recovery from the general log files of MySQL according to instructions in the
MySQL manual.

Chapter 7: MySQL Table Types 619

7.5.7.1 Forcing recovery

If there is database page corruption, you may want to dump your tables from the database
with SELECT INTO OUTFILE, and usually most of the data is intact and correct. But the
corruption may cause SELECT * FROM table, or InnoDB background operations to crash
or assert, or even the InnoDB roll-forward recovery to crash. Starting from the InnoDB
version 3.23.44, there is a ‘my.cnf’ option with which you can force InnoDB to start up,
and you can also prevent background operations from running, so that you will be able to
dump your tables. For example, you can set

set-variable = innodb_force_recovery = 4

in ‘my.cnf’.
The alternatives for innodb_force_recovery are listed below. The database must not
otherwise be used with these options! As a safety measure InnoDB prevents a user from
doing INSERT, UPDATE, or DELETE when this option is > 0.
Starting from version 3.23.53 and 4.0.4, you are allowed to DROP or CREATE a table even
if forced recovery is used. If you know that a certain table is causing a crash in rollback,
you can drop it. You can use this also to stop a runaway rollback caused by a failing
mass import or ALTER TABLE. You can kill the mysqld process and use the ‘my.cnf’ option
innodb_force_recovery=3 to bring your database up without the rollback. Then DROP the
table which is causing the runaway rollback.
A bigger number below means that all precautions of lower numbers are included. If you
are able to dump your tables with an option at most 4, then you are relatively safe that
only some data on corrupt individual pages is lost. Option 6 is more dramatic, because
database pages are left in an obsolete state, which in turn may introduce more corruption
into B-trees and other database structures.
• 1 (SRV FORCE IGNORE CORRUPT) let the server run even if it detects a corrupt

page; try to make SELECT * FROM table jump over corrupt index records and pages,
which helps in dumping tables;

• 2 (SRV FORCE NO BACKGROUND) prevent the main thread from running: if a
crash would occur in purge, this prevents it;

• 3 (SRV FORCE NO TRX UNDO) do not run transaction rollbacks after recovery;
• 4 (SRV FORCE NO IBUF MERGE) prevent also insert buffer merge operations: if

they would cause a crash, better not do them; do not calculate table statistics;
• 5 (SRV FORCE NO UNDO LOG SCAN) do not look at undo logs when starting the

database: InnoDB will treat even incomplete transactions as committed;
• 6 (SRV FORCE NO LOG REDO) do not do the log roll-forward in connection with

recovery.

7.5.7.2 Checkpoints

InnoDB implements a checkpoint mechanism called a fuzzy checkpoint. InnoDB will flush
modified database pages from the buffer pool in small batches, there is no need to flush
the buffer pool in one single batch, which would in practice stop processing of user SQL
statements for a while.

620 MySQL Technical Reference for Version 4.1.1-alpha

In crash recovery InnoDB looks for a checkpoint label written to the log files. It knows that
all modifications to the database before the label are already present on the disk image of
the database. Then InnoDB scans the log files forward from the place of the checkpoint
applying the logged modifications to the database.
InnoDB writes to the log files in a circular fashion. All committed modifications which make
the database pages in the buffer pool different from the images on disk must be available
in the log files in case InnoDB has to do a recovery. This means that when InnoDB starts
to reuse a log file in the circular fashion, it has to make sure that the database page images
on disk already contain the modifications logged in the log file InnoDB is going to reuse. In
other words, InnoDB has to make a checkpoint and often this involves flushing of modified
database pages to disk.
The above explains why making your log files very big may save disk I/O in checkpointing.
It can make sense to set the total size of the log files as big as the buffer pool or even bigger.
The drawback in big log files is that crash recovery can last longer because there will be
more log to apply to the database.

7.5.8 Moving an InnoDB Database to Another Machine

On Windows InnoDB stores the database names and table names internally always in lower
case. To move databases in a binary format from Unix to Windows or from Windows to
Unix you should have all table and database names in lower case. A convenient way to
accomplish this is to add on Unix the line

set-variable=lower_case_table_names=1

to the [mysqld] section of your ‘my.cnf’ before you start creating your tables. On Windows
the setting 1 is the default.
InnoDB data and log files are binary-compatible on all platforms if the floating-point num-
ber format on the machines is the same. You can move an InnoDB database simply by
copying all the relevant files, which we already listed in the previous section on backing up
a database. If the floating-point formats on the machines are different but you have not
used FLOAT or DOUBLE datatypes in your tables then the procedure is the same: just copy
the relevant files. If the formats are different and your tables contain floating-point data,
you have to use ‘mysqldump’ and ‘mysqlimport’ to move those tables.
A performance tip is to switch off auto-commit mode when you import data into your
database, assuming your tablespace has enough space for the big rollback segment the big
import transaction will generate. Do the commit only after importing a whole table or a
segment of a table.

7.5.9 InnoDB Transaction Model and Locking

In the InnoDB transaction model the goal has been to combine the best properties of a
multi-versioning database to traditional two-phase locking. InnoDB does locking on row
level and runs queries by default as non-locking consistent reads, in the style of Oracle.
The lock table in InnoDB is stored so space-efficiently that lock escalation is not needed:
typically several users are allowed to lock every row in the database, or any random subset
of the rows, without InnoDB running out of memory.

Chapter 7: MySQL Table Types 621

In InnoDB all user activity happens inside transactions. If the autocommit mode is used in
MySQL, then each SQL statement forms a single transaction. MySQL always starts a new
connection with the autocommit mode switched on.
If the autocommit mode is switched off with SET AUTOCOMMIT = 0, then we can think that a
user always has a transaction open. If he issues the SQL COMMIT or ROLLBACK statement, it
ends the current transaction, and a new one starts. Both statements will release all InnoDB
locks that were set during the current transaction. A COMMIT means that the changes
made in the current transaction are made permanent and become visible to other users.
A ROLLBACK statement, on the other hand, cancels all modifications made by the current
transaction.
If the connection has AUTOCOMMIT = 1, then the user can still perform a multi-statement
transaction by starting it with START TRANSACTION or BEGIN and ending it with COMMIT or
ROLLBACK.

7.5.9.1 InnoDB and SET ... TRANSACTION ISOLATION LEVEL ...

In terms of the SQL-92 transaction isolation levels, the InnoDB default is REPEATABLE READ.
Starting from version 4.0.5, InnoDB offers all 4 different transaction isolation levels described
by the SQL-92 standard. You can set the default isolation level for all connections in the
[mysqld] section of ‘my.cnf’:

transaction-isolation = {READ-UNCOMMITTED | READ-COMMITTED
| REPEATABLE-READ | SERIALIZABLE}

A user can change the isolation level of a single session or all new incoming connections
with the SET TRANSACTION statement. Its syntax is as follows:

SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED
| REPEATABLE READ | SERIALIZABLE}

Note that there are no hyphens in level names in the SQL syntax.
The default behaviour is to set the isolation level for the next (not started) transaction. If
you use the GLOBAL keyword, the statement sets the default transaction level globally for all
new connections created from that point on (but not existing connections). You need the
SUPER privilege to do this. Using the SESSION keyword sets the default transaction level for
all future transactions performed on the current connection. Any client is free to change
the session isolation level (even in the middle of a transaction), or the isolation level for
the next transaction. In versions earlier than 3.23.50, SET TRANSACTION had no effect on
InnoDB tables. In versions < 4.0.5 only REPEATABLE READ and SERIALIZABLE were available.
You can query the global and session transaction isolation levels with:

SELECT @@global.tx_isolation;
SELECT @@tx_isolation;

In row level locking InnoDB uses so-called next-key locking. That means that besides index
records, InnoDB can also lock the “gap” before an index record to block insertions by other
users immediately before the index record. A next-key lock means a lock which locks an
index record and the gap before it. A gap lock means a lock which only locks a gap before
some index record.

622 MySQL Technical Reference for Version 4.1.1-alpha

A detailed description of each isolation level in InnoDB:

• READ UNCOMMITTED This is also called “dirty read”: non-locking SELECTs are performed
so that we do not look at a possible earlier version of a record; thus they are not ’con-
sistent’ reads under this isolation level; otherwise this level works like READ COMMITTED.

• READ COMMITTED Somewhat Oracle-like isolation level. All SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE statements only lock the index records, not the gaps
before them, and thus allow free inserting of new records next to locked records. UPDATE
and DELETE which use a unique index with a unique search condition, only lock the
index record found, not the gap before it. But still in range type UPDATE and DELETE,
InnoDB must set next-key or gap locks and block insertions by other users to the gaps
covered by the range. This is necessary since “phantom rows” have to be blocked
for MySQL replication and recovery to work. Consistent reads behave as in Oracle:
each consistent read, even within the same transaction, sets and reads its own fresh
snapshot.

• REPEATABLE READ This is the default isolation level of InnoDB. SELECT ... FOR UPDATE,
SELECT ... LOCK IN SHARE MODE, UPDATE, and DELETE which use a unique index with
a unique search condition, only lock the index record found, not the gap before it.
Otherwise these operations employ next-key locking, locking the index range scanned
with next-key or gap locks, and block new insertions by other users. In consistent
reads there is an important difference from the previous isolation level: in this level
all consistent reads within the same transaction read the same snapshot established by
the first read. This convention means that if you issue several plain SELECTs within
the same transaction, these SELECTs are consistent also with respect to each other.

• SERIALIZABLE This level is like the previous one, but all plain SELECTs are implicitly
converted to SELECT ... LOCK IN SHARE MODE.

7.5.9.2 Consistent Non-Locking Read

A consistent read means that InnoDB uses its multi-versioning to present to a query a
snapshot of the database at a point in time. The query will see the changes made by
exactly those transactions that committed before that point of time, and no changes made
by later or uncommitted transactions. The exception to this rule is that the query will see
the changes made by the transaction itself which issues the query.

If you are running with the default REPEATABLE READ isolation level, then all consistent
reads within the same transaction read the snapshot established by the first such read in
that transaction. You can get a fresher snapshot for your queries by committing the current
transaction and after that issuing new queries.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ
COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks
on the tables it accesses, and therefore other users are free to modify those tables at the
same time a consistent read is being performed on the table.

Chapter 7: MySQL Table Types 623

7.5.9.3 Locking Reads SELECT ... FOR UPDATE and SELECT ... LOCK
IN SHARE MODE

A consistent read is not convenient in some circumstances. Suppose you want to add a
new row into your table CHILD, and make sure that the child already has a parent in table
PARENT.

Suppose you use a consistent read to read the table PARENT and indeed see the parent of
the child in the table. Can you now safely add the child row to table CHILD? No, because
it may happen that meanwhile some other user has deleted the parent row from the table
PARENT, and you are not aware of that.

The solution is to perform the SELECT in a locking mode, LOCK IN SHARE MODE.

SELECT * FROM PARENT WHERE NAME = ’Jones’ LOCK IN SHARE MODE;

Performing a read in share mode means that we read the latest available data, and set a
shared mode lock on the rows we read. If the latest data belongs to a yet uncommitted
transaction of another user, we will wait until that transaction commits. A shared mode
lock prevents others from updating or deleting the row we have read. After we see that the
above query returns the parent ’Jones’, we can safely add his child to table CHILD, and
commit our transaction. This example shows how to implement referential integrity in your
application code.

Let us look at another example: we have an integer counter field in a table CHILD_CODES
which we use to assign a unique identifier to each child we add to table CHILD. Obviously,
using a consistent read or a shared mode read to read the present value of the counter is not
a good idea, since then two users of the database may see the same value for the counter,
and we will get a duplicate key error when we add the two children with the same identifier
to the table.

In this case there are two good ways to implement the reading and incrementing of the
counter: (1) update the counter first by incrementing it by 1 and only after that read it, or
(2) read the counter first with a lock mode FOR UPDATE, and increment after that:

SELECT COUNTER_FIELD FROM CHILD_CODES FOR UPDATE;
UPDATE CHILD_CODES SET COUNTER_FIELD = COUNTER_FIELD + 1;

A SELECT ... FOR UPDATE will read the latest available data setting exclusive locks on each
row it reads. Thus it sets the same locks a searched SQL UPDATE would set on the rows.

7.5.9.4 Next-key Locking: Avoiding the Phantom Problem

In row level locking InnoDB uses an algorithm called next-key locking. InnoDB does the row
level locking so that when it searches or scans an index of a table, it sets shared or exclusive
locks on the index records it encounters. Thus the row level locks are more precisely called
index record locks.

The locks InnoDB sets on index records also affect the ’gap’ before that index record. If a
user has a shared or exclusive lock on record R in an index, then another user cannot insert
a new index record immediately before R in the index order. This locking of gaps is done to
prevent the so-called phantom problem. Suppose I want to read and lock all children with
identifier bigger than 100 from table CHILD, and update some field in the selected rows.

624 MySQL Technical Reference for Version 4.1.1-alpha

SELECT * FROM CHILD WHERE ID > 100 FOR UPDATE;

Suppose there is an index on table CHILD on column ID. Our query will scan that index
starting from the first record where ID is bigger than 100. Now, if the locks set on the
index records would not lock out inserts made in the gaps, a new child might meanwhile be
inserted to the table. If now I in my transaction execute

SELECT * FROM CHILD WHERE ID > 100 FOR UPDATE;

again, I will see a new child in the result set the query returns. This is against the isolation
principle of transactions: a transaction should be able to run so that the data it has read
does not change during the transaction. If we regard a set of rows as a data item, then the
new ’phantom’ child would break this isolation principle.

When InnoDB scans an index it can also lock the gap after the last record in the index.
Just that happens in the previous example: the locks set by InnoDB will prevent any insert
to the table where ID would be bigger than 100.

You can use next-key locking to implement a uniqueness check in your application: if you
read your data in share mode and do not see a duplicate for a row you are going to insert,
then you can safely insert your row and know that the next-key lock set on the successor
of your row during the read will prevent anyone meanwhile inserting a duplicate for your
row. Thus the next-key locking allows you to ’lock’ the non-existence of something in your
table.

7.5.9.5 Locks Set by Different SQL Statements in InnoDB

• SELECT ... FROM ...: this is a consistent read, reading a snapshot of the database and
setting no locks.

• SELECT ... FROM ... LOCK IN SHARE MODE: sets shared next-key locks on all index
records the read encounters.

• SELECT ... FROM ... FOR UPDATE: sets exclusive next-key locks on all index records
the read encounters.

• INSERT INTO ... VALUES (...): sets an exclusive lock on the inserted row; note that
this lock is not a next-key lock and does not prevent other users from inserting to the
gap before the inserted row. If a duplicate key error occurs, sets a shared lock on the
duplicate index record.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive (non-next-key) lock on
each row inserted into T. Does the search on S as a consistent read, but sets shared
next-key locks on S if the MySQL logging is on. InnoDB has to set locks in the latter
case because in roll-forward recovery from a backup every SQL statement has to be
executed in exactly the same way as it was done originally.

• CREATE TABLE ... SELECT ... performs the SELECT as a consistent read or with shared
locks, like in the previous item.

• REPLACE is done like an insert if there is no collision on a unique key. Otherwise, an
exclusive next-key lock is placed on the row which has to be updated.

• UPDATE ... SET ... WHERE ...: sets an exclusive next-key lock on every record the
search encounters.

Chapter 7: MySQL Table Types 625

• DELETE FROM ... WHERE ...: sets an exclusive next-key lock on every record the search
encounters.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete which
requires checking of the constraint condition sets shared record level locks on the records
it looks at to check the constraint. Also in the case where the constraint fails, InnoDB
sets these locks.

• LOCK TABLES ... : sets table locks. In the implementation the MySQL layer of code
sets these locks. The automatic deadlock detection of InnoDB cannot detect deadlocks
where such table locks are involved: see the following section. Also, since MySQL does
know about row level locks, it is possible that you get a table lock on a table where
another user currently has row level locks. But that does not put transaction integrity
into danger. See Section 7.5.15 [InnoDB restrictions], page 636.

7.5.9.6 Deadlock Detection and Rollback

InnoDB automatically detects a deadlock of transactions and rolls back a transaction or
transactions to prevent the deadlock. Starting from version 4.0.5, InnoDB will try to pick
small transactions to roll back. The size of a transaction is determined by the number of
rows it has inserted, updated, or deleted. Previous to 4.0.5, InnoDB always rolled back the
transaction whose lock request was the last one to build a deadlock, that is, a cycle in the
waits-for graph of transactions.
InnoDB cannot detect deadlocks where a lock set by a MySQL LOCK TABLES statement is
involved, or if a lock set in another storage engine than InnoDB is involved. You have to
resolve these situations using innodb_lock_wait_timeout set in ‘my.cnf’.
When InnoDB performs a complete rollback of a transaction, all the locks of the transaction
are released. However, if just a single SQL statement is rolled back as a result of an error,
some of the locks set by the SQL statement may be preserved. This is because InnoDB
stores row locks in a format where it cannot afterwards know which was set by which SQL
statement.

7.5.9.7 An Example of How the Consistent Read Works in InnoDB

Suppose you are running on the default REPEATABLE READ isolation level. When you issue a
consistent read, that is, an ordinary SELECT statement, InnoDB will give your transaction a
timepoint according to which your query sees the database. Thus, if transaction B deletes a
row and commits after your timepoint was assigned, then you will not see the row deleted.
Similarly with inserts and updates.
You can advance your timepoint by committing your transaction and then doing another
SELECT.
This is called multi-versioned concurrency control.

User A User B

SET AUTOCOMMIT=0; SET AUTOCOMMIT=0;
time
| SELECT * FROM t;

626 MySQL Technical Reference for Version 4.1.1-alpha

| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;

empty set
COMMIT;

SELECT * FROM t;
empty set;

COMMIT;

SELECT * FROM t;

| 1 | 2 |

Thus user A sees the row inserted by B only when B has committed the insert, and A has
committed his own transaction so that the timepoint is advanced past the commit of B.
If you want to see the “freshest” state of the database, you should use a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

7.5.9.8 How to Cope With Deadlocks

Deadlocks are a classic problem in transactional databases, but they are not dangerous,
unless they are so frequent that you cannot run certain transactions at all. Normally you
have to write your applications so that they are always prepared to re-issue a transaction
if it gets rolled back because of a deadlock.
InnoDB uses automatic row level locking. You can get deadlocks even in the case of trans-
actions which just insert or delete a single row. That is because these operations are not
really ’atomic’: they automatically set locks on the (possibly several) index records of the
row inserted/deleted.
You can cope with deadlocks and reduce the number of them with the following tricks:
• Use SHOW INNODB STATUS in MySQL versions >= 3.23.52 and >= 4.0.3 to determine

the cause of the latest deadlock. That can help you to tune your application to avoid
deadlocks.

• Always be prepared to re-issue a transaction if it fails in a deadlock. Deadlocks are not
dangerous. Just try again.

• Commit your transactions often. Small transactions are less prone to collide.
• If you are using locking reads SELECT ... FOR UPDATE or ... LOCK IN SHARE MODE, try

using a lower isolation level READ COMMITTED.
• Access your tables and rows in a fixed order. Then transactions will form nice queues,

and do not deadlock.
• Add well-chosen indexes to your tables. Then your queries need to scan fewer in-

dex records and consequently set fewer locks. Use EXPLAIN SELECT to determine that
MySQL picks appropriate indexes for your queries.

Chapter 7: MySQL Table Types 627

• Use less locking: if you can afford a SELECT to return data from an old snapshot, do
not add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using READ COMMITTED
isolation level is good here, because each consistent read within the same transaction
reads from its own fresh snapshot.

• If nothing helps, serialize your transactions with table level locks: LOCK TABLES
t1 WRITE, t2 READ, ... ; [do something with tables t1 and t2 here]; UNLOCK
TABLES. Table level locks make you transactions to queue nicely, and deadlocks are
avoided. Note that LOCK TABLES implicitly starts a transaction, just like the command
BEGIN, and UNLOCK TABLES implicitly ends the transaction in a COMMIT.

• Another solution to serialize transactions is to create an auxiliary ’semaphore’ table
where there is just a single row. Each transaction updates that row before accessing
other tables. In that way all transactions happen in a serial fashion. Note that then
also the InnoDB instant deadlock detection algorithm works, because the serializing
lock is a row level lock. In MySQL table level locks we have to resort to the timeout
method to resolve a deadlock.

7.5.10 Performance Tuning Tips

1. If the Unix ‘top’ or the Windows ‘Task Manager’ shows that the CPU usage percentage
with your workload is less than 70%, your workload is probably disk-bound. Maybe
you are making too many transaction commits, or the buffer pool is too small. Making
the buffer pool bigger can help, but do not set it bigger than 80% of physical memory.

2. Wrap several modifications into one transaction. InnoDB must flush the log to disk at
each transaction commit, if that transaction made modifications to the database. Since
the rotation speed of a disk is typically at most 167 revolutions/second, that constrains
the number of commits to the same 167/second if the disk does not fool the operating
system.

3. If you can afford the loss of some latest committed transactions, you can set the ‘my.cnf’
parameter innodb_flush_log_at_trx_commit to 0. InnoDB tries to flush the log once
per second anyway, though the flush is not guaranteed.

4. Make your log files big, even as big as the buffer pool. When InnoDB has written the log
files full, it has to write the modified contents of the buffer pool to disk in a checkpoint.
Small log files will cause many unnecessary disk writes. The drawback in big log files
is that recovery time will be longer.

5. Also the log buffer should be quite big, say 8 MB.
6. (Relevant from 3.23.39 up.) In some versions of Linux and Unix, flushing files to disk

with the Unix fdatasync and other similar methods is surprisingly slow. The default
method InnoDB uses is the fdatasync function. If you are not satisfied with the
database write performance, you may try setting innodb_flush_method in ‘my.cnf’ to
O_DSYNC, though O_DSYNC seems to be slower on most systems.

7. In importing data to InnoDB, make sure that MySQL does not have autocommit=1 on.
Then every insert requires a log flush to disk. Put before your plain SQL import file
line

SET AUTOCOMMIT=0;

and after it

628 MySQL Technical Reference for Version 4.1.1-alpha

COMMIT;

If you use the ‘mysqldump’ option --opt, you will get dump files which are fast to import
also to an InnoDB table, even without wrapping them to the above SET AUTOCOMMIT=0;
... COMMIT; wrappers.

8. Beware of big rollbacks of mass inserts: InnoDB uses the insert buffer to save disk I/O
in inserts, but in a corresponding rollback no such mechanism is used. A disk-bound
rollback can take 30 times the time of the corresponding insert. Killing the database
process will not help because the rollback will start again at the database startup. The
only way to get rid of a runaway rollback is to increase the buffer pool so that the
rollback becomes CPU-bound and runs fast, or delete the whole InnoDB database.

9. Beware also of other big disk-bound operations. Use DROP TABLE or TRUNCATE (from
MySQL-4.0 up) to empty a table, not DELETE FROM yourtable.

10. Use the multi-line INSERT to reduce communication overhead between the client and
the server if you need to insert many rows:

INSERT INTO yourtable VALUES (1, 2), (5, 5);

This tip is of course valid for inserts into any table type, not just InnoDB.

7.5.10.1 SHOW INNODB STATUS and the InnoDB Monitors

Starting from version 3.23.42, InnoDB includes InnoDB Monitors that print information
about the InnoDB internal state. Starting from versions 3.23.52 and 4.0.3 you can use the
SQL command SHOW INNODB STATUS to fetch the output of the standard InnoDB Monitor
to the SQL client. The data is useful in performance tuning. If you are using the ‘mysql’
interactive SQL client, the output is more readable if you replace the usual semicolon
statement terminator by \G:

SHOW INNODB STATUS\G

Another way to use InnoDB Monitors is to let them continuosly write data to the standard
output of the server ‘mysqld’ (note: the MySQL client will not print anything). When
switched on, InnoDB Monitors print data about once every 15 seconds. If you run ‘mysqld’
as a daemon then this output is usually directed to the ‘.err’ log in the MySQL datadir.
This data is useful in performance tuning. On Windows you must start mysqld-max from
an MS-DOS prompt with the --console option if you want to direct the output to the
MS-DOS prompt window.

There is a separate innodb_lock_monitor which prints the same information as innodb_
monitor plus information on locks set by each transaction.

The printed information includes data on:

• lock waits of a transactions,
• semaphore waits of threads,
• pending file I/O requests,
• buffer pool statistics, and
• purge and insert buffer merge activity of the main thread of InnoDB.

You can start InnoDB Monitor through the following SQL command:

Chapter 7: MySQL Table Types 629

CREATE TABLE innodb_monitor(a INT) type = innodb;

and stop it by
DROP TABLE innodb_monitor;

The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through
the MySQL SQL parser: the created table is not relevant at all for InnoDB Monitor. If you
shut down the database when the monitor is running, and you want to start the monitor
again, you have to drop the table before you can issue a new CREATE TABLE to start the
monitor. This syntax may change in a future release.
A sample output of the InnoDB Monitor:

================================
010809 18:45:06 INNODB MONITOR OUTPUT
================================

LOCKS HELD BY TRANSACTIONS

LOCK INFO:
Number of locks in the record hash table 1294
LOCKS FOR TRANSACTION ID 0 579342744
TABLE LOCK table test/mytable trx id 0 582333343 lock_mode IX

RECORD LOCKS space id 0 page no 12758 n bits 104 table test/mytable index
PRIMARY trx id 0 582333343 lock_mode X
Record lock, heap no 2 PHYSICAL RECORD: n_fields 74; 1-byte offs FALSE;
info bits 0
0: len 4; hex 0001a801; asc ;; 1: len 6; hex 000022b5b39f; asc ";;
2: len 7; hex 000002001e03ec; asc ;; 3: len 4; hex 00000001;
...

CURRENT SEMAPHORES RESERVED AND SEMAPHORE WAITS

SYNC INFO:
Sorry, cannot give mutex list info in non-debug version!
Sorry, cannot give rw-lock list info in non-debug version!

SYNC ARRAY INFO: reservation count 6041054, signal count 2913432
4a239430 waited for by thread 49627477 op. S-LOCK file NOT KNOWN line 0
Mut ex 0 sp 5530989 r 62038708 sys 2155035;
rws 0 8257574 8025336; rwx 0 1121090 1848344

CURRENT PENDING FILE I/O’S

Pending normal aio reads:
Reserved slot, messages 40157658 4a4a40b8
Reserved slot, messages 40157658 4a477e28
...
Reserved slot, messages 40157658 4a4424a8

630 MySQL Technical Reference for Version 4.1.1-alpha

Reserved slot, messages 40157658 4a39ea38
Total of 36 reserved aio slots
Pending aio writes:
Total of 0 reserved aio slots
Pending insert buffer aio reads:
Total of 0 reserved aio slots
Pending log writes or reads:
Reserved slot, messages 40158c98 40157f98
Total of 1 reserved aio slots
Pending synchronous reads or writes:
Total of 0 reserved aio slots

BUFFER POOL

LRU list length 8034
Free list length 0
Flush list length 999
Buffer pool size in pages 8192
Pending reads 39
Pending writes: LRU 0, flush list 0, single page 0
Pages read 31383918, created 51310, written 2985115

END OF INNODB MONITOR OUTPUT
============================
010809 18:45:22 InnoDB starts purge
010809 18:45:22 InnoDB purged 0 pages

Some notes on the output:

• If the section LOCKS HELD BY TRANSACTIONS reports lock waits, then your
application may have lock contention. The output can also help to trace reasons for
transaction deadlocks.

• Section SYNC INFO will report reserved semaphores if you compile InnoDB with
UNIV_SYNC_DEBUG defined in ‘univ.i’.

• Section SYNC ARRAY INFO reports threads waiting for a semaphore and statistics
on how many times threads have needed a spin or a wait on a mutex or a rw-lock
semaphore. A big number of threads waiting for semaphores may be a result of disk
I/O, or contention problems inside InnoDB. Contention can be due to heavy parallelism
of queries, or problems in operating system thread scheduling.

• Section CURRENT PENDING FILE I/O’S lists pending file I/O requests. A large
number of these indicates that the workload is disk I/O-bound.

• Section BUFFER POOL gives you statistics on pages read and written. You can
calculate from these numbers how many datafile I/Os your queries are currently doing.

Chapter 7: MySQL Table Types 631

7.5.11 Implementation of Multi-versioning

Since InnoDB is a multi-versioned database, it must keep information of old versions of
rows in the tablespace. This information is stored in a data structure we call a rollback
segment after an analogous data structure in Oracle.

InnoDB internally adds two fields to each row stored in the database. A 6-byte field tells
the transaction identifier for the last transaction which inserted or updated the row. Also
a deletion is internally treated as an update where a special bit in the row is set to mark
it as deleted. Each row also contains a 7-byte field called the roll pointer. The roll pointer
points to an undo log record written to the rollback segment. If the row was updated, then
the undo log record contains the information necessary to rebuild the content of the row
before it was updated.

InnoDB uses the information in the rollback segment to perform the undo operations needed
in a transaction rollback. It also uses the information to build earlier versions of a row for
a consistent read.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo
logs are only needed in transaction rollback and can be discarded as soon as the transaction
commits. Update undo logs are used also in consistent reads, and they can be discarded
only after there is no transaction present for which InnoDB has assigned a snapshot that
in a consistent read could need the information in the update undo log to build an earlier
version of a database row.

You must remember to commit your transactions regularly, also those transactions which
only issue consistent reads. Otherwise InnoDB cannot discard data from the update undo
logs, and the rollback segment may grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than
the corresponding inserted or updated row. You can use this information to calculate the
space need for your rollback segment.

In our multi-versioning scheme a row is not physically removed from the database immedi-
ately when you delete it with an SQL statement. Only when InnoDB can discard the update
undo log record written for the deletion, it can also physically remove the corresponding
row and its index records from the database. This removal operation is called a purge, and
it is quite fast, usually taking the same order of time as the SQL statement which did the
deletion.

7.5.12 Table and Index Structures

MySQL stores its data dictionary information of tables in ‘.frm’ files in database directories.
But every InnoDB type table also has its own entry in InnoDB internal data dictionaries
inside the tablespace. When MySQL drops a table or a database, it has to delete both a
‘.frm’ file or files, and the corresponding entries inside the InnoDB data dictionary. This
is the reason why you cannot move InnoDB tables between databases simply by moving
the ‘.frm’ files, and why DROP DATABASE did not work for InnoDB type tables in MySQL
versions <= 3.23.43.

632 MySQL Technical Reference for Version 4.1.1-alpha

Every InnoDB table has a special index called the clustered index where the data of the
rows is stored. If you define a PRIMARY KEY on your table, then the index of the primary
key will be the clustered index.

If you do not define a primary key for your table, InnoDB will internally generate a clustered
index where the rows are ordered by the row ID that InnoDB assigns to the rows in such a
table. The row ID is a 6-byte field which monotonically increases as new rows are inserted.
Thus the rows ordered by the row ID will be physically in the insertion order.

Accessing a row through the clustered index is fast, because the row data will be on the
same page where the index search leads us. In many databases the data is traditionally
stored on a different page from the index record. If a table is large, the clustered index
architecture often saves a disk I/O when compared to the traditional solution.

The records in non-clustered indexes (we also call them secondary indexes), in InnoDB
contain the primary key value for the row. InnoDB uses this primary key value to search
for the row from the clustered index. Note that if the primary key is long, the secondary
indexes will use more space.

7.5.12.1 Physical Structure of an Index

All indexes in InnoDB are B-trees where the index records are stored in the leaf pages of the
tree. The default size of an index page is 16 KB. When new records are inserted, InnoDB
tries to leave 1 / 16 of the page free for future insertions and updates of the index records.

If index records are inserted in a sequential (ascending or descending) order, the resulting
index pages will be about 15/16 full. If records are inserted in a random order, then the
pages will be 1/2 - 15/16 full. If the fillfactor of an index page drops below 1/2, InnoDB
will try to contract the index tree to free the page.

7.5.12.2 Insert Buffering

It is a common situation in a database application that the primary key is a unique identifier
and new rows are inserted in the ascending order of the primary key. Thus the insertions
to the clustered index do not require random reads from a disk.

On the other hand, secondary indexes are usually non-unique and insertions happen in a
relatively random order into secondary indexes. This would cause a lot of random disk I/Os
without a special mechanism used in InnoDB.

If an index record should be inserted to a non-unique secondary index, InnoDB checks if
the secondary index page is already in the buffer pool. If that is the case, InnoDB will do
the insertion directly to the index page. But, if the index page is not found from the buffer
pool, InnoDB inserts the record to a special insert buffer structure. The insert buffer is
kept so small that it entirely fits in the buffer pool, and insertions can be made to it very
fast.

The insert buffer is periodically merged to the secondary index trees in the database. Often
we can merge several insertions on the same page in of the index tree, and hence save disk
I/Os. It has been measured that the insert buffer can speed up insertions to a table up to
15 times.

Chapter 7: MySQL Table Types 633

7.5.12.3 Adaptive Hash Indexes

If a database fits almost entirely in main memory, then the fastest way to perform queries
on it is to use hash indexes. InnoDB has an automatic mechanism which monitors index
searches made to the indexes defined for a table, and if InnoDB notices that queries could
benefit from building of a hash index, such an index is automatically built.

But note that the hash index is always built based on an existing B-tree index on the table.
InnoDB can build a hash index on a prefix of any length of the key defined for the B-tree,
depending on what search pattern InnoDB observes on the B-tree index. A hash index
can be partial: it is not required that the whole B-tree index is cached in the buffer pool.
InnoDB will build hash indexes on demand to those pages of the index which are often
accessed.

In a sense, through the adaptive hash index mechanism InnoDB adapts itself to ample main
memory, coming closer to the architecture of main memory databases.

7.5.12.4 Physical Record Structure

• Each index record in InnoDB contains a header of 6 bytes. The header is used to link
consecutive records together, and also in the row level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition,
there is a 6-byte field for the transaction id and a 7-byte field for the roll pointer.

• If the user has not defined a primary key for a table, then each clustered index record
contains also a 6-byte row ID field.

• Each secondary index record contains also all the fields defined for the clustered index
key.

• A record contains also a pointer to each field of the record. If the total length of the
fields in a record is < 128 bytes, then the pointer is 1 byte, else 2 bytes.

7.5.12.5 How an AUTO_INCREMENT Column Works in InnoDB

After a database startup, when a user first does an insert to a table T where an auto-
increment column has been defined, and the user does not provide an explicit value for the
column, then InnoDB executes SELECT MAX(auto-inc-column) FROM T, and assigns that
value incremented by one to the column and the auto-increment counter of the table. We
say that the auto-increment counter for table T has been initialised.

InnoDB follows the same procedure in initialising the auto-increment counter for a freshly
created table.

Note that if the user specifies in an insert the value 0 to the auto-increment column, then
InnoDB treats the row like the value would not have been specified.

After the auto-increment counter has been initialised, if a user inserts a row where he
explicitly specifies the column value, and the value is bigger than the current counter value,
then the counter is set to the specified column value. If the user does not explicitly specify a
value, then InnoDB increments the counter by one and assigns its new value to the column.

634 MySQL Technical Reference for Version 4.1.1-alpha

The auto-increment mechanism, when assigning values from the counter, bypasses locking
and transaction handling. Therefore you may also get gaps in the number sequence if you
roll back transactions which have got numbers from the counter.
The behaviour of auto-increment is not defined if a user gives a negative value to the column
or if the value becomes bigger than the maximum integer that can be stored in the specified
integer type.

7.5.13 File Space Management and Disk I/O

7.5.13.1 Disk I/O

In disk I/O InnoDB uses asynchronous I/O. On Windows NT it uses the native asynchronous
I/O provided by the operating system. On Unix, InnoDB uses simulated asynchronous I/O
built into InnoDB: InnoDB creates a number of I/O threads to take care of I/O operations,
such as read-ahead. In a future version we will add support for simulated aio on Windows
NT and native aio on those versions of Unix which have one.
On Windows NT InnoDB uses non-buffered I/O. That means that the disk pages InnoDB
reads or writes are not buffered in the operating system file cache. This saves some memory
bandwidth.
Starting from 3.23.41 InnoDB uses a novel file flush technique called doublewrite. It adds
safety to crash recovery after an operating system crash or a power outage, and improves
performance on most Unix flavors by reducing the need for fsync operations.
Doublewrite means that InnoDB before writing pages to a datafile first writes them to a
contiguous tablespace area called the doublewrite buffer. Only after the write and the flush
to the doublewrite buffer has completed, InnoDB writes the pages to their proper positions
in the datafile. If the operating system crashes in the middle of a page write, InnoDB will
in recovery find a good copy of the page from the doublewrite buffer.
Starting from 3.23.41 you can also use a raw disk partition as a datafile, though this has
not been tested yet. When you create a new datafile you have to put the keyword newraw
immediately after the datafile size in innodb_data_file_path. The partition must be at
least as large as the size that you specify. Note that 1M in InnoDB is 1024 x 1024 bytes,
while in disk specifications 1 MB usually means 1000 000 bytes.

innodb_data_file_path=/dev/hdd1:5Gnewraw;/dev/hdd2:2Gnewraw

When you start the database again you must change the keyword to raw. Otherwise,
InnoDB will write over your partition!

innodb_data_file_path=/dev/hdd1:5Graw;/dev/hdd2:2Graw

By using a raw disk you can on some versions of Unix perform unbuffered I/O.
When you use raw disk partitions, make sure they have permissions that allow read and
write access to the account used for running the MySQL server.
There are two read-ahead heuristics in InnoDB: sequential read-ahead and random read-
ahead. In sequential read-ahead InnoDB notices that the access pattern to a segment in the
tablespace is sequential. Then InnoDB will post in advance a batch of reads of database
pages to the I/O system. In random read-ahead InnoDB notices that some area in a

Chapter 7: MySQL Table Types 635

tablespace seems to be in the process of being fully read into the buffer pool. Then InnoDB
posts the remaining reads to the I/O system.

7.5.13.2 File Space Management

The datafiles you define in the configuration file form the tablespace of InnoDB. The files
are simply catenated to form the tablespace, there is no striping in use. Currently you
cannot define where in the tablespace your tables will be allocated. However, in a newly
created tablespace, InnoDB will allocate space starting from the low end.

The tablespace consists of database pages whose default size is 16 KB. The pages are
grouped into extents of 64 consecutive pages. The ’files’ inside a tablespace are called
segments in InnoDB. The name of the rollback segment is somewhat misleading because it
actually contains many segments in the tablespace.

For each index in InnoDB we allocate two segments: one is for non-leaf nodes of the B-tree,
the other is for the leaf nodes. The idea here is to achieve better sequentiality for the leaf
nodes, which contain the data.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it
individually. After that InnoDB starts to allocate whole extents to the segment. InnoDB
can add to a large segment up to 4 extents at a time to ensure good sequentiality of data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in
an InnoDB tablespace cannot be allocated to segments as a whole, but only as individual
pages.

When you issue a query SHOW TABLE STATUS FROM ... LIKE ... to ask for available free
space in the tablespace, InnoDB will report the extents which are definitely free in the
tablespace. InnoDB always reserves some extents for clean-up and other internal purposes;
these reserved extents are not included in the free space.

When you delete data from a table, InnoDB will contract the corresponding B-tree indexes.
It depends on the pattern of deletes if that frees individual pages or extents to the tablespace,
so that the freed space is available for other users. Dropping a table or deleting all rows
from it is guaranteed to release the space to other users, but remember that deleted rows
can be physically removed only in a purge operation after they are no longer needed in
transaction rollback or consistent read.

7.5.13.3 Defragmenting a Table

If there are random insertions or deletions in the indexes of a table, the indexes may become
fragmented. By fragmentation we mean that the physical ordering of the index pages on
the disk is not close to the alphabetical ordering of the records on the pages, or that there
are many unused pages in the 64-page blocks which were allocated to the index.

It can speed up index scans if you periodically use mysqldump to dump the table to a text
file, drop the table, and reload it from the dump. Another way to do the defragmenting is to
perform a ’null’ alter table operation ALTER TABLE tablename TYPE=InnoDB. That makes
MySQL to rebuild the table.

636 MySQL Technical Reference for Version 4.1.1-alpha

If the insertions to an index are always ascending and records are deleted only from the
end, then the file space management algorithm of InnoDB guarantees that fragmentation
in the index will not occur.

7.5.14 Error Handling

The error handling in InnoDB is not always the same as specified in the SQL standard.
According to SQL-99, any error during an SQL statement should cause the rollback of
that statement. InnoDB sometimes rolls back only part of the statement, or the whole
transaction. The following list specifies the error handling of InnoDB.
• If you run out of file space in the tablespace, you will get the MySQL ’Table is full’

error and InnoDB rolls back the SQL statement.
• A transaction deadlock or a timeout in a lock wait make InnoDB to roll back the whole

transaction.
• A duplicate key error only rolls back the insert of that particular row, even in a state-

ment like INSERT INTO ... SELECT This will probably change so that the SQL
statement will be rolled back if you have not specified the IGNORE option in your state-
ment.

• A ’row too long’ error rolls back the SQL statement.
• Other errors are mostly detected by the MySQL layer of code, and they roll back the

corresponding SQL statement.

7.5.15 Restrictions on InnoDB Tables

• InnoDB tables do not support fulltext indexes.
• In Windows InnoDB stores the database names and table names internally always in

lower case. To move databases in a binary format from Unix to Windows or from
Windows to Unix you should have all table and database names in lower case.

• Warning: do NOT convert MySQL system tables from MyISAM TO InnoDB tables!
This is not supported; if you do this MySQL will not restart until you restore the old
system tables from a backup or re-generate them with the mysql_install_db script.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the
physical size reserved by the table. The row count is only a rough estimate used in
SQL optimisation.

• If you try to create a unique index on a prefix of a column you will get an error:
CREATE TABLE T (A CHAR(20), B INT, UNIQUE (A(5))) TYPE = InnoDB;

If you create a non-unique index on a prefix of a column, InnoDB will create an index
over the whole column.

• INSERT DELAYED is not supported for InnoDB tables.
• The MySQL LOCK TABLES operation does not know of InnoDB row level locks set in

already completed SQL statements: this means that you can get a table lock on a table
even if there still exist transactions of other users which have row level locks on the
same table. Thus your operations on the table may have to wait if they collide with
these locks of other users. Also a deadlock is possible. However, this does not endanger

Chapter 7: MySQL Table Types 637

transaction integrity, because the row level locks set by InnoDB will always take care
of the integrity. Also, a table lock prevents other transactions from acquiring more row
level locks (in a conflicting lock mode) on the table.

• A table cannot contain more than 1000 columns.
• DELETE FROM TABLE does not regenerate the table but instead deletes all rows, one by

one, which is not that fast. In future versions of MySQL you can use TRUNCATE which
is fast.

• The default database page size in InnoDB is 16 KB. By recompiling the code one can
set it from 8 KB to 64 KB. The maximun row length is slightly less than half of a
database page in versions <= 3.23.40 of InnoDB. Starting from source release 3.23.41
BLOB and TEXT columns are allowed to be < 4 GB, the total row length must also be <
4 GB. InnoDB does not store fields whose size is <= 128 bytes on separate pages. After
InnoDB has modified the row by storing long fields on separate pages, the remaining
length of the row must be less than half a database page. The maximun key length is
7000 bytes.

• On some operating systems datafiles must be < 2 GB. The combined size of log files
must be < 4 GB.

• The maximum tablespace size is 4 billion database pages. This is also the maximum
size for a table. The minimum tablespace size is 10 MB.

• When you restart the MySQL server, InnoDB may reuse an old value for an AUTO_
INCREMENT column.

• You cannot set the first AUTO_INCREMENT column value in InnoDB with CREATE TABLE
... AUTO_INCREMENT=... (or ALTER TABLE ...). To set the value insert a dummy row
with a value one less, and delete that dummy row.

7.5.16 InnoDB Change History

7.5.16.1 MySQL/InnoDB-4.0.14, July 22, 2003

bullet InnoDB now supports the SAVEPOINT and ROLLBACK TO SAVEPOINT SQL statements.
See http://www.innodb.com/ibman.html#Savepoints for the syntax.

bullet You can now create column prefix keys like in CREATE TABLE t (a BLOB, INDEX
(a(10))).

bullet You can also use O_DIRECT as the innodb_flush_method on the latest versions of Linux
and FreeBSD. Beware of possible bugs in those operating systems, though.

bullet Fixed the checksum calculation of data pages. Previously most OS file system corrup-
tion went unnoticed. Note that if you downgrade from version >= 4.0.14 to an earlier
version < 4.0.14 then in the first startup(s) InnoDB will print warnings:

InnoDB: Warning: an inconsistent page in the doublewrite buffer
InnoDB: space id 2552202359 page number 8245, 127’th page in dblwr buf.

but that is not dangerous and can be ignored.
bullet Modified the buffer pool replacement algorithm so that it tries to flush modified pages

if there are no replaceable pages in the last 10 % of the LRU list. This can reduce disk
i/o if the workload is a mixture of reads and writes.

638 MySQL Technical Reference for Version 4.1.1-alpha

bullet The buffer pool checkpoint flush algorithm now tries to flush also close neighbors of
the page at the end of the flush list. This can speed up database shutdown, and can
also speed up disk writes if InnoDB log files are very small compared to the buffer pool
size.

bullet In 4.0.13 we made SHOW INNODB STATUS to print detailed info on the latest UNIQUE KEY
error, but storing that info could slow down REPLACE significantly. We no longer store
or print the info.

bullet Fixed a bug: SET FOREIGN_KEY_CHECKS=0 was not replicated properly in the MySQL
replication. The fix will not be backported to 3.23.

bullet Fixed a bug: the parameter innodb_max_dirty_pages_pct forgot to take into account
the free pages in the buffer pool. This could lead to excessive flushing even though
there were lots of free pages in the buffer pool. Workaround: SET GLOBAL innodb_max_
dirty_pages_pct = 100.

bullet Fixed a bug: if there were big index scans then a file read request could starve and
InnoDB could assert because of a very long semaphore wait.

bullet Fixed a bug: if AUTOCOMMIT=1 then inside LOCK TABLES MySQL failed to do the commit
after an updating SQL statement if binlogging was not on, and for SELECTs did not
commit regardless of binlogging state.

bullet Fixed a bug: InnoDB could make the index page directory corrupt in the first B-tree
page splits after a mysqld startup. A symptom would be an assertion in page0page.c,
in function page dir find slot().

bullet Fixed a bug: if in a FOREIGN KEY with an UPDATE CASCADE clause the parent column
was of a different internal storage length than the child column, then a cascaded update
would make the column length wrong in the child table and corrupt the child table.
Because of MySQL’s ’silent column specification changes’ a fixed-length CHAR column
can change internally to a VARCHAR and cause this error.

bullet Fixed a bug: if a non-latin1 character set was used and if in a FOREIGN KEY the parent
column was of a different internal storage length than the child column, then all inserts
to the child table would fail in a foreign key error.

bullet Fixed a bug: InnoDB could complain that it cannot find the clustered index record, or
in rare cases return an extraneous row if a rollback, purge, and a SELECT coincided.

bullet Fixed a possible hang over the btr0sea.c latch if SELECT was used inside LOCK TABLES.

bullet Fixed a bug: contrary to what the release note of 4.0.13 said, the group commit still
did not work if the MySQL binlogging was on.

bullet Fixed a bug: os event wait() did not work properly in Unix, which might have caused
starvation in various log operations.

bullet Fixed a bug: if a single DELETE statement first managed to delete some rows and then
failed in a FOREIGN KEY error or a ’Table is full error’, MySQL did not roll back the
whole SQL statement as it should, and also wrote the failed statement to the binlog,
reporting there a non-zero error code.

bullet Fixed a bug: the maximum allowed number of columns in a table is 1000, but InnoDB
did not check that limit in CREATE TABLE, and a subsequent INSERT or SELECT from
that table could cause an assertion.

Chapter 7: MySQL Table Types 639

7.5.16.2 MySQL/InnoDB-3.23.57, June 20, 2003

bullet Changed the default value of innodb_flush_log_at_trx_commit from 0 to 1. If you
have not specified it explicitly in your ‘my.cnf’, and your application runs much slower
with this new release, it is because the value 1 causes a log flush to disk at each
transaction commit.

bullet Fixed a bug: InnoDB forgot to call pthread mutex destroy() when a table was dropped.
That could cause memory leakage on FreeBSD and other non-Linux Unixes.

bullet Fixed a bug: MySQL could erroneously return ’Empty set’ if InnoDB estimated an
index range size to 0 records though the range was not empty; MySQL also failed to
do the next-key locking in the case of an empty index range.

bullet Fixed a bug: GROUP BY and DISTINCT could treat NULL values inequal.

7.5.16.3 MySQL/InnoDB-4.0.13, May 20, 2003

bullet InnoDB now supports ALTER TABLE DROP FOREIGN KEY. You have to use SHOW CREATE
TABLE to find the internally generated foreign key ID when you want to drop a foreign
key.

bullet SHOW INNODB STATUS now prints detailed information of the latest detected FOREIGN
KEY and UNIQUE KEY errors. If you do not understand why InnoDB gives the error 150
from a CREATE TABLE, you can use this statement to study the reason.

bullet ANALYZE TABLE now works also for InnoDB type tables. It makes 10 random dives to
each of the index trees and updates index cardinality estimates accordingly. Note that
since it is only an estimate, repeated runs of ANALYZE TABLE may produce different
numbers. MySQL uses index cardinality estimates only in join optimisation. If some
join is not optimised in the right way, you may try using ANALYZE TABLE.

bullet InnoDB group commit capability now works also when MySQL binlogging is switched
on. There have to be > 2 client threads for the group commit to become active.

bullet Changed the default value of innodb_flush_log_at_trx_commit from 0 to 1. If you
have not specified it explicitly in your ‘my.cnf’, and your application runs much slower
with this new release, it is because the value 1 causes a log flush to disk at each
transaction commit.

bullet Added a new global settable MySQL system variable innodb_max_dirty_pages_pct.
It is an integer in the range 0 - 100. The default is 90. The main thread in InnoDB
tries to flush pages from the buffer pool so that at most this many percents are not yet
flushed at any time.

bullet If innodb_force_recovery=6, do not let InnoDB do repair of corrupt pages based on
the doublewrite buffer.

bullet InnoDB start-up now happens faster because it does not set the memory in the buffer
pool to zero.

bullet Fixed a bug: The InnoDB parser for FOREIGN KEY definitions was confused by the
keywords ’foreign key’ inside MySQL comments.

bullet Fixed a bug: If you dropped a table to which there was a FOREIGN KEY reference, and
later created the same table with non-matching column types, InnoDB could assert in
‘dict0load.c’, in function dict_load_table().

640 MySQL Technical Reference for Version 4.1.1-alpha

bullet Fixed a bug: GROUP BY and DISTINCT could treat NULL values as not equal. MySQL
also failed to do the next-key locking in the case of an empty index range.

bullet Fixed a bug: Do not commit the current transaction when a MyISAM table is up-
dated; this also makes CREATE TABLE not to commit an InnoDB transaction, even when
binlogging is enabled.

bullet Fixed a bug: We did not allow ON DELETE SET NULL to modify the same table where
the delete was made; we can allow it because that cannot produce infinite loops in
cascaded operations.

bullet Fixed a bug: Allow HANDLER PREV and NEXT also after positioning the cursor with a
unique search on the primary key.

bullet Fixed a bug: If MIN() or MAX() resulted in a deadlock or a lock wait timeout, MySQL
did not return an error, but returned NULL as the function value.

bullet Fixed a bug: InnoDB forgot to call pthread_mutex_destroy() when a table was
dropped. That could cause memory leakage on FreeBSD and other non-Linux Unix
systems.

7.5.16.4 MySQL/InnoDB-4.1.0, April 3, 2003

• InnoDB now supports up to 64 GB of buffer pool memory in a Windows 32-bit Intel
computer. This is possible because InnoDB can use the AWE extension of Windows
to address memory over the 4 GB limit of a 32-bit process. A new startup variable
innodb_buffer_pool_awe_mem_mb enables AWE and sets the size of the buffer pool in
megabytes.

• Reduced the size of buffer headers and the lock table. InnoDB uses 2 % less memory.

7.5.16.5 MySQL/InnoDB-3.23.56, March 17, 2003

• Fixed a major bug in InnoDB query optimisation: queries of type SELECT ... WHERE
indexcolumn < x and SELECT ... WHERE indexcolumn > x could cause a table scan
even if the selectivity would have been very good.

• Fixed a potential bug if MySQL calls store lock with TL IGNORE in the middle of a
query.

7.5.16.6 MySQL/InnoDB-4.0.12, March 18, 2003

• In crash recovery InnoDB now prints the progress in percents of a transaction rollback.

• Fixed a bug/feature: if your application program used mysql use result(), and used
>= 2 connections to send SQL queries, it could deadlock on the adaptive hash S-latch
in btr0sea.c. Now mysqld releases the S-latch whenever it passes data from a SELECT
to the client.

• Fixed a bug: MySQL could erroneously return ’Empty set’ if InnoDB estimated an
index range size to 0 records though the range was not empty; MySQL also failed to
do the next-key locking in the case of an empty index range.

Chapter 7: MySQL Table Types 641

7.5.16.7 MySQL/InnoDB-4.0.11, February 25, 2003

• Fixed a bug introduced in 4.0.10: SELECT ... FROM ... ORDER BY ... DESC could
hang in an infinite loop.

• An outstanding bug: SET FOREIGN KEY CHECKS=0 is not replicated properly in
the MySQL replication.

7.5.16.8 MySQL/InnoDB-4.0.10, February 4, 2003

• In INSERT INTO t1 SELECT ... FROM t2 WHERE ... MySQL previously set a table
level read lock on t2. This lock is now removed.

• Increased SHOW INNODB STATUS max printed length to 200 KB.

• Fixed a major bug in InnoDB query optimisation: queries of type SELECT ... WHERE
indexcolumn < x and SELECT ... WHERE indexcolumn > x could cause a table scan
even if the selectivity would have been very good.

• Fixed a bug: purge could cause a hang in a BLOB table where the primary key in-
dex tree was of height 1. Symptom: semaphore waits caused by an X-latch set in
btr free externally stored field().

• Fixed a bug: using InnoDB HANDLER commands on a fresh handle crashed mysqld
in ha innobase::change active index().

• Fixed a bug: if MySQL estimated a query in the middle of a SELECT statement,
InnoDB could hang on the adaptive hash index latch in btr0sea.c.

• Fixed a bug: InnoDB could report table corruption and assert in
page dir find owner slot() if an adaptive hash index search coincided with
purge or an insert.

• Fixed a bug: some file system snapshot tool in Windows 2000 could cause an InnoDB
file write to fail with error 33 ERROR LOCK VIOLATION. In synchronous writes
InnoDB now retries the write 100 times at 1 second intervals.

• Fixed a bug: REPLACE INTO t1 SELECT ... did not work if t1 has an auto-inc
column.

• An outstanding bug: SET FOREIGN KEY CHECKS=0 is not replicated properly in
the MySQL replication.

7.5.16.9 MySQL/InnoDB-3.23.55, January 24, 2003

• In INSERT INTO t1 SELECT ... FROM t2 WHERE ... MySQL previously set a table
level read lock on t2. This lock is now removed.

• Fixed a bug: if the combined size of InnoDB log files was >= 2 GB in a 32-bit computer,
InnoDB would write log in a wrong position. That could make crash recovery and
InnoDB Hot Backup to fail in log scan.

• Fixed a bug: index cursor restoration could theoretically fail.

• Fixed a bug: an assertion in btr0sea.c, in function btr search info update slow could
theoretically fail in a race of 3 threads.

642 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a bug: purge could cause a hang in a BLOB table where the primary key in-
dex tree was of height 1. Symptom: semaphore waits caused by an X-latch set in
btr free externally stored field().

• Fixed a bug: if MySQL estimated a query in the middle of a SELECT statement,
InnoDB could hang on the adaptive hash index latch in btr0sea.c.

• Fixed a bug: InnoDB could report table corruption and assert in
page dir find owner slot() if an adaptive hash index search coincided with
purge or an insert.

• Fixed a bug: some file system snapshot tool in Windows 2000 could cause an InnoDB
file write to fail with error 33 ERROR LOCK VIOLATION. In synchronous writes
InnoDB now retries the write 100 times at 1 second intervals.

• An outstanding bug: SET FOREIGN KEY CHECKS=0 is not replicated properly
in the MySQL replication. The fix will appear in 4.0.11 and will probably not be
backported to 3.23.

• Fixed bug in InnoDB page0cur.c in function page cur search with match which caused
InnoDB to remain on the same page forever. This bug is evident only in tables with
more than one page.

7.5.16.10 MySQL/InnoDB-4.0.9, January 14, 2003

• Removed the warning message: ’InnoDB: Out of memory in additional memory pool.’
• Fixed a bug: if the combined size of InnoDB log files was >= 2 GB in a 32-bit computer,

InnoDB would write log in a wrong position. That could make crash recovery and
InnoDB Hot Backup to fail.

• Fixed a bug: index cursor restoration could theoretically fail.

7.5.16.11 MySQL/InnoDB-4.0.8, January 7, 2003

• InnoDB now supports also FOREIGN KEY (...) REFERENCES ...(...) [ON UPDATE
CASCADE | ON UPDATE SET NULL | ON UPDATE RESTRICT | ON UPDATE
NO ACTION].

• Tables and indexes now reserve 4 % less space in the tablespace. Also existing tables
reserve less space. By upgrading to 4.0.8 you will see more free space in "InnoDB free"
in SHOW TABLE STATUS.

• Fixed bugs: updating the PRIMARY KEY of a row would generate a foreign key error
on all FOREIGN KEYs which referenced secondary keys of the row to be updated.
Also, if a referencing FOREIGN KEY constraint only referenced the first columns in
an index, and there were more columns in that index, updating the additional columns
generated a foreign key error.

• Fixed a bug: if an index contains some column twice, and that column is updated, the
table will become corrupt. From now on InnoDB prevents creation of such indexes.

• Fixed a bug: removed superfluous error 149 and 150 printouts from the .err log when
a locking SELECT caused a deadlock or a lock wait timeout.

• Fixed a bug: an assertion in btr0sea.c, in function btr search info update slow could
theoretically fail in a race of 3 threads.

Chapter 7: MySQL Table Types 643

• Fixed a bug: one could not switch a session transaction isolation level back to RE-
PEATABLE READ after setting it to something else.

7.5.16.12 MySQL/InnoDB-4.0.7, December 26, 2002

• InnoDB in 4.0.7 is essentially the same as in 4.0.6.

7.5.16.13 MySQL/InnoDB-4.0.6, December 19, 2002

• Since innodb log arch dir has no relevance under MySQL, there is no need to specify
it any more in my.cnf.

• LOAD DATA INFILE in AUTOCOMMIT=1 mode no longer does implicit commits
for each 1 MB of written binlog.

• Fixed a bug introduced in 4.0.4: LOCK TABLES ... READ LOCAL should not set row
locks on the rows read. This caused deadlocks and lock wait timeouts in mysqldump.

• Fixed two bugs introduced in 4.0.4: in AUTO INCREMENT, REPLACE could cause
the counter to be left 1 too low. A deadlock or a lock wait timeout could cause the
same problem.

• Fixed a bug: TRUNCATE on a TEMPORARY table crashed InnoDB.
• Fixed a bug introduced in 4.0.5: if binlogging was not switched on, INSERT INTO ...

SELECT ... or CREATE TABLE ... SELECT ... could cause InnoDB to hang on a
semaphore created in btr0sea.c, line 128. Workaround: switch binlogging on.

• Fixed a bug: in replication issuing SLAVE STOP in the middle of a multi-statement
transaction could cause that SLAVE START would only perform a part of the trans-
action. A similar error could occur if the slave crashed and was restarted.

7.5.16.14 MySQL/InnoDB-3.23.54, December 12, 2002

• Fixed a bug: the InnoDB range estimator greatly exaggerated the size of a short index
range if the paths to the endpoints of the range in the index tree happened to branch
already in the root. This could cause unnecessary table scans in SQL queries.

• Fixed a bug: ORDER BY could fail if you had not created a primary key to a table,
but had defined several indexes of which at least one was a UNIQUE index with all its
columns declared as NOT NULL.

• Fixed a bug: a lock wait timeout in connection with ON DELETE CASCADE could
cause corruption in indexes.

• Fixed a bug: if a SELECT was done with a unique key from a primary index, and
the search matched to a delete-marked record, InnoDB could erroneously return the
NEXT record.

• Fixed a bug introduced in 3.23.53: LOCK TABLES ... READ LOCAL should not
set row locks on the rows read. This caused deadlocks and lock wait timeouts in
mysqldump.

• Fixed a bug: if an index contains some column twice, and that column is updated, the
table will become corrupt. From now on InnoDB prevents creation of such indexes.

644 MySQL Technical Reference for Version 4.1.1-alpha

7.5.16.15 MySQL/InnoDB-4.0.5, November 18, 2002

• InnoDB now supports also transaction isolation levels READ COMMITTED and
READ UNCOMMITTED. READ COMMITTED more closely emulates Oracle and
makes porting of applications from Oracle to MySQL easier.

• Deadlock resolution is now selective: we try to pick as victims transactions with less
modified or inserted rows.

• FOREIGN KEY definitions are now aware of the lower case table names setting in
my.cnf.

• SHOW CREATE TABLE does not output the database name to a FOREIGN KEY
definition if the referred table is in the same database as the table.

• InnoDB does a consistency check to most index pages before writing them to a datafile.
• If you set innodb force recovery > 0, InnoDB tries to jump over corrupt index records

and pages when doing SELECT * FROM table. This helps in dumping.
• InnoDB now again uses asynchronous unbuffered I/O in Windows 2000 and XP; only

unbuffered simulated async I/O in NT, 95/98/ME.
• Fixed a bug: the InnoDB range estimator greatly exaggerated the size of a short index

range if the paths to the endpoints of the range in the index tree happened to branch
already in the root. This could cause unnecessary table scans in SQL queries. The fix
will also be backported to 3.23.54.

• Fixed a bug present in 3.23.52, 4.0.3, 4.0.4: InnoDB startup could take very long or
even crash on some Windows 95/98/ME computers.

• Fixed a bug: the AUTO-INC lock was held to the end of the transaction if it was
granted after a lock wait. This could cause unnecessary deadlocks.

• Fixed a bug: if SHOW INNODB STATUS, innodb monitor, or innodb lock monitor
had to print several hundred transactions in one report, and the output became trun-
cated, InnoDB would hang, printing to the error log many waits for a mutex created
at srv0srv.c, line 1621.

• Fixed a bug: SHOW INNODB STATUS on Unix always reported average file read size
as 0 bytes.

• Fixed a potential bug in 4.0.4: InnoDB now does ORDER BY ... DESC like MyISAM.
• Fixed a bug: DROP TABLE could cause crash or a hang if there was a rollback

concurrently running on the table. The fix will only be backported to 3.23 if this
appears a real problem for users.

• Fixed a bug: ORDER BY could fail if you had not created a primary key to a table,
but had defined several indexes of which at least one was a UNIQUE index with all its
columns declared as NOT NULL.

• Fixed a bug: a lock wait timeout in connection with ON DELETE CASCADE could
cause corruption in indexes.

• Fixed a bug: if a SELECT was done with a unique key from a primary index, and the
search matched to a delete-marked record, InnoDB could return the NEXT record.

• Outstanding bugs: in 4.0.4 two bugs were introduced to AUTO INCREMENT. RE-
PLACE can cause the counter to be left 1 too low. A deadlock or a lock wait timeout
can cause the same problem. These will be fixed in 4.0.6.

Chapter 7: MySQL Table Types 645

7.5.16.16 MySQL/InnoDB-3.23.53, October 9, 2002

• We again use unbuffered disk I/O to datafiles in Windows. Windows XP and Windows
2000 read performance seems to be very poor with normal I/O.

• Tuned range estimator so that index range scans are preferred over full index scans.

• Allow dropping and creating a table even if innodb force recovery is set. One can use
this to drop a table which would cause a crash in rollback or purge, or if a failed table
import causes a runaway rollback in recovery.

• Fixed a bug present in 3.23.52, 4.0.3, 4.0.4: InnoDB startup could take very long or
even crash on some Windows 95/98/ME computers.

• Fixed a bug: fast shutdown (which is the default) sometimes was slowed down by purge
and insert buffer merge.

• Fixed a bug: doing a big SELECT from a table where no rows were visible in a
consistent read could cause a very long (> 600 seconds) semaphore wait in btr0cur.c
line 310.

• Fixed a bug: the AUTO-INC lock was held to the end of the transaction if it was
granted after a lock wait. This could cause unnecessary deadlocks.

• Fixed a bug: if you created a temporary table inside LOCK TABLES, and used that
temporary table, that caused an assertion failure in ha innobase.cc.

• Fixed a bug: if SHOW INNODB STATUS, innodb monitor, or innodb lock monitor
had to print several hundred transactions in one report, and the output became trun-
cated, InnoDB would hang, printing to the error log many waits for a mutex created
at srv0srv.c, line 1621.

• Fixed a bug: SHOW INNODB STATUS on Unix always reported average file read size
as 0 bytes.

7.5.16.17 MySQL/InnoDB-4.0.4, October 2, 2002

• We again use unbuffered disk I/O in Windows. Windows XP and Windows 2000 read
performance seems to be very poor with normal I/O.

• Increased the max key length of InnoDB tables from 500 to 1024 bytes.

• Increased the table comment field in SHOW TABLE STATUS so that up to 16000
characters of foreign key definitions can be printed there.

• The auto-increment counter is no longer incremented if an insert of a row immediately
fails in an error.

• Allow dropping and creating a table even if innodb force recovery is set. One can use
this to drop a table which would cause a crash in rollback or purge, or if a failed table
import causes a runaway rollback in recovery.

• Fixed a bug: Using ORDER BY primarykey DESC in 4.0.3 causes an assertion failure
in btr0pcur.c, line 203.

• Fixed a bug: fast shutdown (which is the default) sometimes was slowed down by purge
and insert buffer merge.

646 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a bug: doing a big SELECT from a table where no rows were visible in a
consistent read could cause a very long (> 600 seconds) semaphore wait in btr0cur.c
line 310.

• Fixed a bug: if the MySQL query cache was used, it did not get invalidated by a
modification done by ON DELETE CASCADE or ...SET NULL.

• Fixed a bug: if you created a temporary table inside LOCK TABLES, and used that
temporary table, that caused an assertion failure in ha innodb.cc.

• Fixed a bug: if you set innodb flush log at trx commit to 1, SHOW VARIABLES
would show its value as 16 million.

7.5.16.18 MySQL/InnoDB-4.0.3, August 28, 2002

• Removed unnecessary deadlocks when inserts have to wait for a locking read, update,
or delete to release its next-key lock.

• The MySQL HANDLER SQL commands now work also for InnoDB type tables. InnoDB
does the HANDLER reads always as consistent reads. HANDLER is a direct access path to
read individual indexes of tables. In some cases HANDLER can be used as a substitute
of server-side cursors.

• Fixed a bug in 4.0.2: even a simple insert could crash the AIX version.
• Fixed a bug: if you used in a table name characters whose code is > 127, in DROP

TABLE InnoDB could assert on line 155 of pars0sym.c.
• Compilation from source now provides a working version both on HP-UX-11 and HP-

UX-10.20. The source of 4.0.2 worked only on 11, and the source of 3.23.52 only on
10.20.

• Fixed a bug: if compiled on 64-bit Solaris, InnoDB produced a bus error at startup.

7.5.16.19 MySQL/InnoDB-3.23.52, August 16, 2002

• The feature set of 3.23 will be frozen from this version on. New features will go the 4.0
branch, and only bug fixes will be made to the 3.23 branch.

• Many CPU-bound join queries now run faster. On Windows also many other CPU-
bound queries run faster.

• A new SQL command SHOW INNODB STATUS returns the output of the InnoDB
Monitor to the client. The InnoDB Monitor now prints detailed information on the
latest detected deadlock.

• InnoDB made the SQL query optimiser to avoid too much index-only range scans and
choose full table scans instead. This is now fixed.

• BEGIN and COMMIT are now added in the binlog around transactions. The MySQL
replication now respects transaction borders: a user will no longer see half transactions
in replication slaves.

• A replication slave now prints in crash recovery the last master binlog position it was
able to recover to.

• A new setting innodb flush log at trx commit=2 makes InnoDB to write the log to
the operating system file cache at each commit. This is almost as fast as the setting

Chapter 7: MySQL Table Types 647

innodb flush log at trx commit=0, and the setting 2 also has the nice feature that in
a crash where the operating system does not crash, no committed transaction is lost.
If the operating system crashes or there is a power outage, then the setting 2 is no safer
than the setting 0.

• Added checksum fields to log blocks.
• SET FOREIGN KEY CHECKS=0 helps in importing tables in an arbitrary order

which does not respect the foreign key rules.
• SET UNIQUE CHECKS=0 speeds up table imports into InnoDB if you have UNIQUE

constraints on secondary indexes. This flag should be used only if you are certain that
the input records contain no UNIQUE constraint violations.

• SHOW TABLE STATUS now lists also possible ON DELETE CASCADE or ON
DELETE SET NULL in the comment field of the table.

• When CHECK TABLE is run on any InnoDB type table, it now checks also the adaptive
hash index for all tables.

• If you defined ON DELETE CASCADE or SET NULL and updated the referenced key
in the parent row, InnoDB deleted or updated the child row. This is now changed to
conform to SQL-92: you get the error ’Cannot delete parent row’.

• Improved the auto-increment algorithm: now the first insert or SHOW TABLE STA-
TUS initialises the auto-increment counter for the table. This removes almost all
surprising deadlocks caused by SHOW TABLE STATUS.

• Aligned some buffers used in reading and writing to datafiles. This allows using un-
buffered raw devices as datafiles in Linux.

• Fixed a bug: If you updated the primary key of a table so that only the case of
characters changed, that could cause assertion failures, mostly in page0page.ic line
515.

• Fixed a bug: If you delete or update a row referenced in a foreign key constraint and
the foreign key check has to wait for a lock, then the check may report an erroneous
result. This affects also the ON DELETE... operation.

• Fixed a bug: A deadlock or a lock wait timeout error in InnoDB causes InnoDB to roll
back the whole transaction, but MySQL could still write the earlier SQL statements
to the binlog, even though InnoDB rolled them back. This could, for example, cause
replicated databases to get out-of-sync.

• Fixed a bug: If the database happened to crash in the middle of a commit, then the
recovery might leak tablespace pages.

• Fixed a bug: If you specified a non-latin1 character set in my.cnf, then, in contrary to
what is stated in the manual, in a foreign key constraint a string type column had to
have the same length specification in the referencing table and the referenced table.

• Fixed a bug: DROP TABLE or DROP DATABASE could fail if there simultaneously
was a CREATE TABLE running.

• Fixed a bug: If you configured the buffer pool bigger than 2 GB in a 32-bit computer,
InnoDB would assert in buf0buf.ic line 214.

• Fixed a bug: on 64-bit computers updating rows which contained the SQL NULL in
some column could cause the undo log and the ordinary log to become corrupt.

648 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a bug: innodb log monitor caused a hang if it suppressed lock prints for a page.
• Fixed a bug: in the HP-UX-10.20 version mutexes would leak and cause race conditions

and crashes in any part of InnoDB code.
• Fixed a bug: if you ran in the AUTOCOMMIT mode, executed a SELECT, and

immediately after that a RENAME TABLE, then RENAME would fail and MySQL
would complain about error 1192.

• Fixed a bug: if compiled on 64-bit Solaris, InnoDB produced a bus error at startup.

7.5.16.20 MySQL/InnoDB-4.0.2, July 10, 2002

• InnoDB is essentially the same as InnoDB-3.23.51.
• If no innodb data file path is specified, InnoDB at the database creation now creates

a 10 MB auto-extending datafile ibdata1 to the datadir of MySQL. In 4.0.1 the file was
64 MB and not auto-extending.

7.5.16.21 MySQL/InnoDB-3.23.51, June 12, 2002

• Fixed a bug: a join could result in a seg fault in copying of a BLOB or TEXT column
if some of the BLOB or TEXT columns in the table contained SQL NULL values.

• Fixed a bug: if you added self-referential foreign key constraints with ON DELETE
CASCADE to tables and a row deletion caused InnoDB to attempt the deletion of the
same row twice because of a cascading delete, then you got an assertion failure.

• Fixed a bug: if you use MySQL ’user level locks’ and close a connection, then InnoDB
may assert in ha innobase.cc, line 302.

7.5.16.22 MySQL/InnoDB-3.23.50, April 23, 2002

• InnoDB now supports an auto-extending last datafile. You do not need to preallocate
the whole datafile at the database startup.

• Made several changes to facilitate the use of the InnoDB Hot Backup tool. It is a
separate non-free tool you can use to take online backups of your database without
shutting down the server or setting any locks.

• If you want to run the InnoDB Hot Backup tool on an auto-extending datafile you have
to upgrade it to version ibbackup-0.35.

• The log scan phase in crash recovery will now run much faster.
• Starting from this server version, the hot backup tool truncates unused ends in the

backup InnoDB datafiles.
• To allow the hot backup tool to work, on Windows we no longer use unbuffered I/O or

native async I/O; instead we use the same simulated async I/O as on Unix.
• You can now define the ON DELETE CASCADE or ON DELETE SET NULL clause

on foreign keys.
• FOREIGN KEY constraints now survive ALTER TABLE and CREATE INDEX.
• We suppress the FOREIGN KEY check if any of the column values in the foreign key

or referenced key to be checked is the SQL NULL. This is compatible with Oracle, for
example.

Chapter 7: MySQL Table Types 649

• SHOW CREATE TABLE now lists also foreign key constraints. Also mysqldump no
longer forgets about foreign keys in table definitions.

• You can now add a new foreign key constraint with ALTER TABLE ... ADD CON-
STRAINT FOREIGN KEY (...) REFERENCES ... (...).

• FOREIGN KEY definitions now allow backquotes around table and column names.
• MySQL command SET TRANSACTION ISOLATION LEVEL ... has now the fol-

lowing effect on InnoDB tables: if a transaction is defined as SERIALIZABLE then
InnoDB conceptually adds LOCK IN SHARE MODE to all consistent reads. If a
transaction is defined to have any other isolation level, then InnoDB obeys its default
locking strategy which is REPEATABLE READ.

• SHOW TABLE STATUS no longer sets an x-lock at the end of an auto-increment index
if the auto-increment counter has already been initialised. This removes in almost all
cases the surprising deadlocks caused by SHOW TABLE STATUS.

• Fixed a bug: in a CREATE TABLE statement the string ’foreign’ followed by a non-
space character confused the FOREIGN KEY parser and caused table creation to fail
with errno 150.

7.5.16.23 MySQL/InnoDB-3.23.49, February 17, 2002

• Fixed a bug: if you called DROP DATABASE for a database on which there simulta-
neously were running queries, the MySQL server could crash or hang. Crashes fixed,
but a full fix has to wait some changes in the MySQL layer of code.

• Fixed a bug: on Windows one had to put the database name in lower case for DROP
DATABASE to work. Fixed in 3.23.49: case no longer matters on Windows. On Unix
the database name remains case-sensitive.

• Fixed a bug: if one defined a non-latin1 character set as the default character set, then
definition of foreign key constraints could fail in an assertion failure in dict0crea.c,
reporting an internal error 17.

7.5.16.24 MySQL/InnoDB-3.23.48, February 9, 2002

• Tuned the SQL optimiser to favor more often index searches over table scans.
• Fixed a performance problem when several large SELECT queries are run concurrently

on a multiprocessor Linux computer. Large CPU-bound SELECT queries will now also
generally run faster on all platforms.

• If MySQL binlogging is used, InnoDB now prints after crash recovery the latest MySQL
binlog file name and the position in that file (= byte offset) InnoDB was able to recover
to. This is useful, for example, when resynchronizing a master and a slave database in
replication.

• Added better error messages to help in installation problems.
• One can now recover also MySQL temporary tables which have become orphaned inside

the InnoDB tablespace.
• InnoDB now prevents a FOREIGN KEY declaration where the signedness is not the

same in the referencing and referenced integer columns.

650 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a bug: calling SHOW CREATE TABLE or SHOW TABLE STATUS could cause
memory corruption and make mysqld to crash. Especially at risk was mysqldump,
because it calls frequently SHOW CREATE TABLE.

• Fixed a bug: if on Unix you did an ALTER TABLE to an InnoDB table and simul-
taneously did queries to it, mysqld could crash with an assertion failure in row0row.c,
line 474.

• Fixed a bug: if inserts to several tables containing an auto-inc column were wrapped
inside one LOCK TABLES, InnoDB asserted in lock0lock.c.

• In 3.23.47 we allowed several NULLS in a UNIQUE secondary index. But CHECK
TABLE was not relaxed: it reports the table as corrupt. CHECK TABLE no longer
complains in this situation.

• Fixed a bug: on Sparc and other high-endian processors SHOW VARIABLES showed
innodb flush log at trx commit and other boolean-valued startup parameters always
OFF even if they were switched on.

• Fixed a bug: if you ran mysqld-max-nt as a service on Windows NT/2000, the service
shutdown did not always wait long enough for the InnoDB shutdown to finish.

7.5.16.25 MySQL/InnoDB-3.23.47, December 28, 2001

• Recovery happens now faster, especially in a lightly loaded system, because background
checkpointing has been made more frequent.

• InnoDB allows now several similar key values in a UNIQUE secondary index if those
values contain SQL NULLs. Thus the convention is now the same as in MyISAM
tables.

• InnoDB gives a better row count estimate for a table which contains BLOBs.
• In a FOREIGN KEY constraint InnoDB is now case-insensitive to column names, and

in Windows also to table names.
• InnoDB allows a FOREIGN KEY column of CHAR type to refer to a column of VAR-

CHAR type, and vice versa. MySQL silently changes the type of some columns between
CHAR and VARCHAR, and these silent changes do not hinder FOREIGN KEY dec-
laration any more.

• Recovery has been made more resilient to corruption of log files.
• Unnecessary statistics calculation has been removed from queries which generate a

temporary table. Some ORDER BY and DISTINCT queries will now run much faster.
• MySQL now knows that the table scan of an InnoDB table is done through the primary

key. This will save a sort in some ORDER BY queries.
• The maximum key length of InnoDB tables is again restricted to 500 bytes. The

MySQL interpreter is not able to handle longer keys.
• The default value of innodb lock wait timeout was changed from infinite to 50 seconds,

the default value of innodb file io threads from 9 to 4.

7.5.16.26 MySQL/InnoDB-4.0.1, December 23, 2001

• InnoDB is the same as in 3.23.47.

Chapter 7: MySQL Table Types 651

• In 4.0.0 the MySQL interpreter did not know the syntax LOCK IN SHARE MODE.
This has been fixed.

• In 4.0.0 multi-table delete did not work for transactional tables. This has been fixed.

7.5.16.27 MySQL/InnoDB-3.23.46, November 30, 2001

• This is the same as 3.23.45.

7.5.16.28 MySQL/InnoDB-3.23.45, November 23, 2001

• This is a bugfix release.
• In versions 3.23.42-.44 when creating a table on Windows you have to use lower case

letters in the database name to be able to access the table. Fixed in 3.23.45.
• InnoDB now flushes stdout and stderr every 10 seconds: if these are redirected to files,

the file contents can be better viewed with an editor.
• Fixed an assertion failure in .44, in trx0trx.c, line 178 when you drop a table which has

the .frm file but does not exist inside InnoDB.
• Fixed a bug in the insert buffer. The insert buffer tree could get into an inconsistent

state, causing a crash, and also crashing the recovery. This bug could appear especially
in large table imports or alterations.

• Fixed a bug in recovery: InnoDB could go into an infinite loop constantly printing a
warning message that it cannot find free blocks from the buffer pool.

• Fixed a bug: when you created a temporary table of the InnoDB type, and then used
ALTER TABLE to it, the MySQL server could crash.

• Prevented creation of MySQL system tables ’mysql.user’, ’mysql.host’, or ’mysql.db’,
in the InnoDB type.

• Fixed a bug which can cause an assertion failure in 3.23.44 in srv0srv.c, line 1728.

7.5.16.29 MySQL/InnoDB-3.23.44, November 2, 2001

• You can define foreign key constraints on InnoDB tables. An example: FOREIGN
KEY (col1) REFERENCES table2(col2).

• You can create > 4 GB datafiles in those file systems that allow it.
• Improved InnoDB monitors, including a new innodb table monitor which allows you

to print the contents of the InnoDB internal data dictionary.
• DROP DATABASE will now work also for InnoDB tables.
• Accent characters in the default character set latin1 will be ordered according to the

MySQL ordering.
 NOTE: if you are using latin1 and have inserted characters
whose code is > 127 to an indexed CHAR column, you should run CHECK TABLE on
your table when you upgrade to 3.23.43, and drop and reimport the table if CHECK
TABLE reports an error!

• InnoDB will calculate better table cardinality estimates.
• Change in deadlock resolution: in .43 a deadlock rolls back only the SQL statement,

in .44 it will roll back the whole transaction.

652 MySQL Technical Reference for Version 4.1.1-alpha

• Deadlock, lock wait timeout, and foreign key constraint violations (no parent row, child
rows exist) now return native MySQL error codes 1213, 1205, 1216, 1217, respectively.

• A new my.cnf parameter innodb thread concurrency helps in performance tuning in
high concurrency environments.

• A new my.cnf option innodb force recovery will help you in dumping tables from a
corrupted database.

• A new my.cnf option innodb fast shutdown will speed up shutdown. Normally InnoDB
does a full purge and an insert buffer merge at shutdown.

• Raised maximum key length to 7000 bytes from a previous limit of 500 bytes.
• Fixed a bug in replication of auto-inc columns with multiline inserts.
• Fixed a bug when the case of letters changes in an update of an indexed secondary

column.
• Fixed a hang when there are > 24 datafiles.
• Fixed a crash when MAX(col) is selected from an empty table, and col is a not the

first column in a multi-column index.
• Fixed a bug in purge which could cause crashes.

7.5.16.30 MySQL/InnoDB-3.23.43, October 4, 2001

• This is essentially the same as InnoDB-3.23.42.

7.5.16.31 MySQL/InnoDB-3.23.42, September 9, 2001

• Fixed a bug which corrupted the table if the primary key of a > 8000-byte row was
updated.

• There are now 3 types of InnoDB Monitors: innodb monitor, innodb lock monitor,
and innodb tablespace monitor. innodb monitor now prints also buffer pool hit rate
and the total number of rows inserted, updated, deleted, read.

• Fixed a bug in RENAME TABLE.
• Fixed a bug in replication with an auto-increment column.

7.5.16.32 MySQL/InnoDB-3.23.41, August 13, 2001

• Support for < 4 GB rows. The previous limit was 8000 bytes.
• Use the doublewrite file flush method.
• Raw disk partitions supported as datafiles.
• InnoDB Monitor.
• Several hang bugs fixed and an ORDER BY bug (’Sort aborted’) fixed.

7.5.16.33 MySQL/InnoDB-3.23.40, July 16, 2001

• Only a few rare bugs fixed.

Chapter 7: MySQL Table Types 653

7.5.16.34 MySQL/InnoDB-3.23.39, June 13, 2001

• CHECK TABLE now works for InnoDB tables.

• A new ‘my.cnf’ parameter innodb_unix_file_flush_method introduced. It can be
used to tune disk write performance.

• An auto-increment column now gets new values past the transaction mechanism. This
saves CPU time and eliminates transaction deadlocks in new value assignment.

• Several bug fixes, most notably the rollback bug in 3.23.38.

7.5.16.35 MySQL/InnoDB-3.23.38, May 12, 2001

• The new syntax SELECT ... LOCK IN SHARE MODE is introduced.

• InnoDB now calls fsync() after every disk write and calculates a checksum for every
database page it writes or reads, which will reveal disk defects.

• Several bug fixes.

7.5.17 InnoDB Contact Information

Contact information of Innobase Oy, producer of the InnoDB engine. Web site:
http://www.innodb.com/. E-mail: sales@innodb.com

phone: 358-9-6969 3250 (office) 358-40-5617367 (mobile)
Innobase Oy Inc.
World Trade Center Helsinki
Aleksanterinkatu 17
P.O.Box 800
00101 Helsinki
Finland

7.6 BDB or BerkeleyDB Tables

7.6.1 Overview of BDB Tables

BerkeleyDB, available at http://www.sleepycat.com/ has provided MySQL with a trans-
actional storage engine. Support for this storage engine is included in the MySQL source
distribution starting from version 3.23.34 and is activated in the MySQL-Max binary. This
storage engine is typically called BDB for short.

BDB tables may have a greater chance of surviving crashes and are also capable of COMMIT
and ROLLBACK operations on transactions. The MySQL source distribution comes with a
BDB distribution that has a couple of small patches to make it work more smoothly with
MySQL. You can’t use a non-patched BDB version with MySQL.

We at MySQL AB are working in close cooperation with Sleepycat to keep the quality of
the MySQL/BDB interface high.

654 MySQL Technical Reference for Version 4.1.1-alpha

When it comes to supporting BDB tables, we are committed to help our users to locate the
problem and help creating a reproducible test case for any problems involving BDB tables.
Any such test case will be forwarded to Sleepycat who in turn will help us find and fix the
problem. As this is a two-stage operation, any problems with BDB tables may take a little
longer for us to fix than for other storage engines. However, as the BerkeleyDB code itself
has been used by many other applications than MySQL, we don’t envision any big problems
with this. See Section 1.4.1 [Support], page 16.

7.6.2 Installing BDB

If you have downloaded a binary version of MySQL that includes support for BerkeleyDB,
simply follow the instructions for installing a binary version of MySQL. See Section 2.2.9
[Installing binary], page 85. See Section 4.8.5 [mysqld-max], page 323.
To compile MySQL with Berkeley DB support, download MySQL Version 3.23.34 or newer
and configure MySQL with the --with-berkeley-db option. See Section 2.3 [Installing
source], page 88.

cd /path/to/source/of/mysql-3.23.34
./configure --with-berkeley-db

Please refer to the manual provided with the BDB distribution for more updated information.
Even though Berkeley DB is in itself very tested and reliable, the MySQL interface is still
considered gamma quality. We are actively improving and optimising it to get it stable very
soon.

7.6.3 BDB Startup Options

If you are running with AUTOCOMMIT=0 then your changes in BDB tables will not be updated
until you execute COMMIT. Instead of commit you can execute ROLLBACK to forget your
changes. See Section 6.7.1 [COMMIT], page 579.
If you are running with AUTOCOMMIT=1 (the default), your changes will be committed imme-
diately. You can start an extended transaction with the BEGIN WORK SQL command, after
which your changes will not be committed until you execute COMMIT (or decide to ROLLBACK
the changes).
The following options to mysqld can be used to change the behaviour of BDB tables:
Option Description
--bdb-
home=directory

Base directory for BDB tables. This should be
the same directory you use for --datadir.

--bdb-lock-
detect=#

Berkeley lock detect. One of (DEFAULT, OLDEST,
RANDOM, or YOUNGEST).

--bdb-
logdir=directory

Berkeley DB log file directory.

--bdb-no-sync Don’t synchronously flush logs.
--bdb-no-recover Don’t start Berkeley DB in recover mode.
--bdb-shared-data Start Berkeley DB in multi-process mode (Don’t

use DB_PRIVATE when initialising Berkeley DB)
--bdb-
tmpdir=directory

Berkeley DB temporary file directory.

Chapter 7: MySQL Table Types 655

--skip-bdb Disable usage of BDB tables.
-O bdb_max_
lock=1000

Set the maximum number of locks possible. See
Section 4.6.8.4 [bdb_max_lock], page 290.

If you use --skip-bdb, MySQL will not initialise the Berkeley DB library and this will save
a lot of memory. Of course, you cannot use BDB tables if you are using this option. If you
try to create a BDB table, MySQL will instead create a MyISAM table.
Normally you should start mysqld without --bdb-no-recover if you intend to use BDB
tables. This may, however, give you problems when you try to start mysqld if the BDB log
files are corrupted. See Section 2.4.2 [Starting server], page 107.
With bdb_max_lock you can specify the maximum number of locks (10000 by default) you
can have active on a BDB table. You should increase this if you get errors of type bdb:
Lock table is out of available locks or Got error 12 from ... when you have do long
transactions or when mysqld has to examine a lot of rows to calculate the query.
You may also want to change binlog_cache_size and max_binlog_cache_size if you are
using big multi-line transactions. See Section 6.7.1 [COMMIT], page 579.

7.6.4 Characteristics of BDB Tables

• To be able to rollback transactions, the BDB storage engine maintains log files. For
maximum performance you should place these on another disk than your databases by
using the --bdb-logdir option.

• MySQL performs a checkpoint each time a new BDB log file is started, and removes any
log files that are not needed for current transactions. One can also run FLUSH LOGS at
any time to checkpoint the Berkeley DB tables.
For disaster recovery, one should use table backups plus MySQL’s binary log. See
Section 4.5.1 [Backup], page 259.
Warning: If you delete old log files that are in use, BDB will not be able to do recovery
at all and you may lose data if something goes wrong.

• MySQL requires a PRIMARY KEY in each BDB table to be able to refer to previously read
rows. If you don’t create one, MySQL will create an maintain a hidden PRIMARY KEY
for you. The hidden key has a length of 5 bytes and is incremented for each insert
attempt.

• If all columns you access in a BDB table are part of the same index or part of the primary
key, then MySQL can execute the query without having to access the actual row. In a
MyISAM table the above holds only if the columns are part of the same index.

• The PRIMARY KEY will be faster than any other key, as the PRIMARY KEY is stored to-
gether with the row data. As the other keys are stored as the key data + the PRIMARY
KEY, it’s important to keep the PRIMARY KEY as short as possible to save disk and get
better speed.

• LOCK TABLES works on BDB tables as with other tables. If you don’t use LOCK TABLE,
MySQL will issue an internal multiple-write lock on the table to ensure that the table
will be properly locked if another thread issues a table lock.

• Internal locking in BDB tables is done on page level.
• SELECT COUNT(*) FROM table_name is slow as BDB tables doesn’t maintain a count of

the number of rows in the table.

656 MySQL Technical Reference for Version 4.1.1-alpha

• Sequential scanning is slower than with MyISAM tables as the data in BDB tables stored
in B-trees and not in a separate datafile.

• The application must always be prepared to handle cases where any change of a BDB
table may make an automatic rollback and any read may fail with a deadlock error.

• Keys are not prefix or suffix-compressed like keys in MyISAM tables. In other words, the
key information will take a little more space in BDB tables compared to MyISAM tables.

• There are often holes in the BDB table to allow you to insert new rows in the middle of
the key tree. This makes BDB tables somewhat larger than MyISAM tables.

• The optimiser needs to know an approximation of the number of rows in the table.
MySQL solves this by counting inserts and maintaining this in a separate segment in
each BDB table. If you don’t issue a lot of DELETE or ROLLBACK statements, this number
should be accurate enough for the MySQL optimiser, but as MySQL only stores the
number on close, it may be incorrect if MySQL dies unexpectedly. It should not be
fatal even if this number is not 100% correct. One can update the number of rows by
executing ANALYZE TABLE or OPTIMIZE TABLE. See Section 4.6.2 [ANALYZE TABLE],
page 281 . See Section 4.6.1 [OPTIMIZE TABLE], page 281.

• If you get full disk with a BDB table, you will get an error (probably error 28) and the
transaction should roll back. This is in contrast with MyISAM and ISAM tables where
mysqld will wait for enough free disk before continuing.

7.6.5 Things We Need to Fix for BDB in the Near Future

• It’s very slow to open many BDB tables at the same time. If you are going to use
BDB tables, you should not have a very big table cache (like >256) and you should use
--no-auto-rehash with the mysql client. We plan to partly fix this in 4.0.

• SHOW TABLE STATUS doesn’t yet provide that much information for BDB tables.
• Optimise performance.
• Change to not use page locks at all when we are scanning tables.

7.6.6 Operating Systems Supported by BDB

Currently we know that the BDB storage engine works with the following operating systems:
• Linux 2.x Intel
• Sun Solaris (sparc and x86)
• FreeBSD 4.x/5.x (x86, sparc64)
• IBM AIX 4.3.x
• SCO OpenServer
• SCO UnixWare 7.1.x

It doesn’t work with the following operating systems:
• Linux 2.x Alpha
• Linux 2.x AMD64
• Linux 2.x IA64

Chapter 7: MySQL Table Types 657

• Linux 2.x s390
• Max OS X

Note: The above list is not complete; we will update it as we receive more information.
If you build MySQL with support for BDB tables and get the following error in the log file
when you start mysqld:

bdb: architecture lacks fast mutexes: applications cannot be threaded
Can’t init databases

This means that BDB tables are not supported for your architecture. In this case you must
rebuild MySQL without BDB table support.

7.6.7 Restrictions on BDB Tables

Here follows the restrictions you have when using BDB tables:
• BDB tables store in the ‘.db’ file the path to the file as it was created. (This was done

to be able to detect locks in a multi-user environment that supports symlinks).
The effect of this is that BDB tables are not movable between directories!

• When taking backups of BDB tables, you have to either use mysqldump or take a backup
of all table_name.db files and the BDB log files. The BDB log files are the files in
the base data directory named log.XXXXXXXXXX (ten digits); The BDB storage engine
stores unfinished transactions in the log files and requires these logs to be present when
mysqld starts.

7.6.8 Errors That May Occur When Using BDB Tables

• If you get the following error in the hostname.err log when starting mysqld:
bdb: Ignoring log file: .../log.XXXXXXXXXX: unsupported log version #

it means that the new BDB version doesn’t support the old log file format. In this case
you have to delete all BDB logs from your database directory (the files with names that
have the format log.XXXXXXXXXX) and restart mysqld. We would also recommend you
to do a mysqldump --opt of your old BDB tables, delete the old tables, and restore the
dump.

• If you are not running in auto-commit mode and delete a table that is referenced in
another transaction, you may get the following error messages in your MySQL error
log:

001119 23:43:56 bdb: Missing log fileid entry
001119 23:43:56 bdb: txn_abort: Log undo failed for LSN:

1 3644744: Invalid

This is not fatal but we don’t recommend that you delete tables if you are not in
auto-commit mode, until this problem is fixed (the fix is not trivial).

658 MySQL Technical Reference for Version 4.1.1-alpha

8 Introduction to MaxDB

MaxDB is an enterprise level database. MaxDB is the new name of a database management
system formerly called SAP DB.

8.1 History of MaxDB

The history of SAP DB goes back to the early 1980s when it was developed as a commercial
product (Adabas). The database has changed names several times since then. When SAP
AG, a Walldorf, Germany, based company, took over the development of that database
system, it was called SAP DB.

SAP developed that database system to serve as a storage system for all heavy-duty SAP
applications, namely R/3. SAP DB was meant to provide an alternative to third-party
database systems like Oracle, Microsoft SQL Server, or DB2 by IBM. In October 2000,
SAP AG released SAP DB under the GNU GPL license (see Appendix H [GPL license],
page 1020), thus making it open source software. In October 2003, more than 2,000 cus-
tomers of SAP AG were using SAP DB as their main database system, and more than
another 2,000 customers were using it as a separate database system besides their main
database, as part of the APO/LiveCache solution.

In May 2003, a technology partnership was formed between MySQL AB and SAP AG.
That partnership entitles MySQL AB to further develop SAP DB, rename it, and sell
commercial licenses of the renamed SAP DB to customers who do not want to be bound
to the restrictions imposed to them when using that database system under the GNU GPL
(see Appendix H [GPL license], page 1020). In August 2003, SAP DB was renamed to
MaxDB by MySQL AB.

8.2 Licensing and Support

MaxDB can be used under the same licenses available for the other products distributed
by MySQL AB (Section 1.4.3 [MySQL licenses], page 17). Thus, MaxDB will be available
under the GNU General Public License (Appendix H [GPL license], page 1020), and a
commercial license (Section 1.4 [Licensing and Support], page 15).

MySQL will offer MaxDB support to non-SAP customers.

The first rebranded version will be MaxDB 7.5.00 that will be released in late 2003.

8.3 Basic Concepts of MaxDB

MaxDB operates as a client/server product. It was developed to meet the demands of instal-
lations processing a high volume of online transactions. Both online backup and expansion
of the database are supported. Microsoft Clustered Server is supported directly for multi-
ple server implementations; other failover solutions must be scripted manually. Database
management tools are provided in both Windows and browser-based implementations.

Chapter 8: Introduction to MaxDB 659

8.4 Feature Differences between MaxDB and MySQL

The following list provides a short summary of the main differences between MaxDB and
MySQL; it is not complete.

• MaxDB runs as a client/server system. MySQL can run as a client/server system or
as an embedded system.

• MaxDB might not run on all platforms supported by MySQL. For example, MaxDB
does not run on IBM’s OS/2.

• MaxDB uses a proprietary network protocol for client/server communication, while
MySQL uses either TCP/IP (with or without SSL encryption), sockets (under Unix-
like systems), or named pipes (under Windows NT-family systems).

• MaxDB supports stored procedures. For MySQL, stored procedures are not scheduled
for implementation until version 5.0. MaxDB also supports programming of triggers
through an SQL extension, which is scheduled for MySQL 5.1. MaxDB contains a
debugger for stored procedure languages, can cascade nested triggers, and supports
multiple triggers per action and row.

• MaxDB is distributed containing user interfaces that are text-based, graphical, or web-
based. MySQL is distributed with text-based user interfaces only; a graphical user
interface (MySQL Control Center) is shipped separately from the main distributions.
Web-based user interfaces for MySQL are offered by third parties.

• MaxDB supports a number of programming interfaces also supported by MySQL. How-
ever, MaxDB does not support RDO, ADO, or .NET, all of which are supported by
MySQL. MaxDB supports embedded SQL only with C/C++.

• MaxDB contains administrative features that MySQL does not have: Job scheduling
by time, event, and alert, and sending messages to a database administrator on alert
thresholds.

8.5 Interoperability Features between MaxDB and MySQL

The following features will be included in MaxDB versions to be released shortly after the
first 7.5.00 version. These features will allow interoperation between MaxDB and MySQL:

• There will be a MySQL proxy enabling one to connect to MaxDB using the MySQL
protocol. This makes it possible to use MySQL client programs for MaxDB, like the
mysql command-line user interface, the mysqldump dump utility, or the mysqlimport
import program. Using mysqldump, one can easily dump data from one database system
and export (or even pipe) those data to the other database system.

•
Replication between MySQL and MaxDB will be supported in both directions. That is,
either MySQL or MaxDB can be used as the master replication server. The long-range
plan is to converge and extend the replication syntax so that both database systems
understand the same syntax. See Section 4.11.1 [Replication Intro], page 355.

660 MySQL Technical Reference for Version 4.1.1-alpha

8.6 MaxDB-related Links

The main page for information about MaxDB is http://www.mysql.com/maxdb. Eventu-
ally, all information available at http://www.sapdb.org will be moved there.

8.7 Reserved Words in MaxDB

Like MySQL, MaxDB has a number of reserved words that have special meanings. Normally,
they cannot be used as names of identifiers, such as database or table names. The following
table lists reserved words in MaxDB, indicates the context in which those words are used,
and indicates whether or not they have counterparts in MySQL. If such a counterpart exists,
the meaning in MySQL might be identical, or differing in some aspects. The main purpose
is to list in which respects MaxDB differs from MySQL; therefore, this list is not complete.

For the list of reserved words in MySQL, see See Section 6.1.7 [Reserved words], page 451.

Reserved in
MaxDB

Context of usage in
MaxDB

MySQL counterpart

@ May prefix identifier, like
“@table”

Not allowed

ADDDATE() SQL function ADDDATE(); new in MySQL version 4.1.1
ADDTIME() SQL function ADDTIME(); new in MySQL version 4.1.1
ALPHA SQL function Nothing comparable
ARRAY Data type Not implemented
ASCII() SQL function ASCII(), but implemented with a different

meaning
AUTOCOMMIT Transactions; ON by

default
Transactions; OFF by default

BOOLEAN Column types; BOOLEAN
accepts as values only
TRUE, FALSE, and NULL

BOOLEAN was added in MySQL version
4.1.0; it is a synonym for BOOL which is
mapped to TINYINT(1). It accepts inte-
ger values in the same range as TINYINT as
well as NULL. TRUE and FALSE can be used
as aliases for 1 and 0.

CHECK CHECK TABLE CHECK TABLE; similar, but not identical
usage

COLUMN Column types COLUMN; noise word
CHAR() SQL function CHAR(); identical syntax; similar, not iden-

tical usage
COMMIT Implicit commits of

transactions happen
when data definition
queries are being issued

Implicit commits of transactions happen
when data definition queries are being is-
sued, but also with a number of other
queries

COSH() SQL function Nothing comparable
COT() SQL function COT(); identical syntax and

implementation
CREATE SQL, data definition

language
CREATE

DATABASE SQL function DATABASE(); DATABASE is used in a different
context, for example CREATE DATABASE

Chapter 8: Introduction to MaxDB 661

DATE() SQL function CURRENT_DATE
DATEDIFF() SQL function DATEDIFF(); new in MySQL version 4.1.1
DAY() SQL function Nothing comparable
DAYOFWEEK() SQL function DAYOFWEEK(); the first day (1) by default is

Monday in MaxDB, and Sunday in MySQL
DISTINCT SQL functions AVG, MAX,

MIN, SUM
DISTINCT; but used in a different context:
SELECT DISTINCT

DROP inter alia in DROP INDEX DROP INDEX; similar, but not identical
usage

EBCDIC() SQL function Nothing comparable
EXPAND() SQL function Nothing comparable
EXPLAIN Optimisation EXPLAIN; similar, but not identical usage
FIXED() SQL function Nothing comparable
FLOAT() SQL function Nothing comparable
HEX() SQL function HEX(); similar, but not identical usage
INDEX() SQL function INSTR() or LOCATE(); similar, but not

identical syntaxes and meanings
INDEX USE INDEX, IGNORE

INDEX and similar
hints are being used
right after SELECT, like
SELECT ... USE INDEX

USE INDEX, IGNORE INDEX and similar hints
are being used in the FROM clause of a
SELECT query, like in SELECT ... FROM ...
USE INDEX

INITCAP() SQL function Nothing comparable
LENGTH() SQL function LENGTH(); identical syntax, but slightly dif-

ferent implementation
LFILL() SQL function Nothing comparable
LIKE Comparisons LIKE; but the extended LIKE MaxDB pro-

vides rather resembles the MySQL REGEX
LIKE wildcards MaxDB supports “%”,

“ ”, “ctrl+underline”,
“ctrl+up arrow”, “*”,
and “?” as wildcards in
a LIKE comparison

MySQL supports “%”, and “ ” as wildcards
in a LIKE comparison

LPAD() SQL function LPAD(); slightly different implementation
LTRIM() SQL function LTRIM(); slightly different implementation
MAKEDATE() SQL function MAKEDATE(); new in MySQL version 4.1.1
MAKETIME() SQL function MAKETIME(); new in MySQL version 4.1.1
MAPCHAR() SQL function Nothing comparable
MICROSECOND() SQL function MICROSECOND(); new in MySQL version

4.1.1
NOROUND() SQL function Nothing comparable
NULL Column types;

comparisons
NULL; MaxDB supports special NULL values
that are returned by arithmetic operations
that lead to an overflow or a division by
zero; MySQL does not support such special
values

PI SQL function PI(); identical syntax and implementation,
but parantheses are mandatory

REF Data type Nothing comparable

662 MySQL Technical Reference for Version 4.1.1-alpha

RFILL() SQL function Nothing comparable
ROWNO Predicate in WHERE

clause
Similar to LIMIT clause

RPAD() SQL function RPAD(); slightly different implementation
RTRIM() SQL function RTRIM(); slightly different implementation
SEQUENCE CREATE SEQUENCE, DROP

SEQUENCE
AUTO_INCREMENT; similar concept, but dif-
fering implementation

SINH() SQL function Nothing comparable
SOUNDS() SQL function SOUNDEX(); slightly different syntax
STATISTICS UPDATE STATISTICS ANALYZE; similar concept, but differing

implementation
SUBSTR() SQL function SUBSTRING(); slightly different

implementation
SUBTIME() SQL function SUBTIME(); new in MySQL version 4.1.1
SYNONYM Data definition

language: CREATE
[PUBLIC] SYNONYM,
RENAME SYNONYM, DROP
SYNONYM

Nothing comparable

TANH() SQL function Nothing comparable
TIME() SQL function CURRENT_TIME
TIMEDIFF() SQL function TIMEDIFF(); new in MySQL version 4.1.1
TIMESTAMP() SQL function TIMESTAMP(); new in MySQL version 4.1.1
TIMESTAMP()
as argument to
DAYOFMONTH()
and DAYOFYEAR()

SQL function Nothing comparable

TIMEZONE() SQL function Nothing comparable
TRANSACTION() Returns the ID of the

current transaction
Nothing comparable

TRANSLATE() SQL function REPLACE(); identical syntax and
implementation

TRIM() SQL function TRIM(); slightly different implementation
TRUNC() SQL function TRUNCATE(); slightly different syntax and

implementation
USE mysql commandline user

interface command
USE

USER SQL function USER(); identical syntax, but slightly dif-
ferent implementation, and parantheses are
mandatory

UTC_DIFF() SQL function UTC_DATE(); provides a means to calculate
the result of UTC_DIFF()

VALUE() SQL function, alias for
COALESCE()

COALESCE(); identical syntax and
implementation

VARIANCE() SQL function Nothing comparable
WEEKOFYEAR() SQL function WEEKOFYEAR(); new in MySQL version

4.1.1

8.8 Functions

Chapter 8: Introduction to MaxDB 663

8.9 Column Types

664 MySQL Technical Reference for Version 4.1.1-alpha

9 National Character Sets and Unicode

Improved handling of character sets is one of the features added to MySQL in Version 4.1.
This chapter explains:

• What are character sets and collations

• The multi-level default system

• New syntax in MySQL 4.1

• Affected functions and operations

• The meaning of each individual character set and collation

The features described here are as implemented in MySQL 4.1.1. (MySQL 4.1.0 has some
but not all of these features, and some of them are implemented differently.)

9.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing
characters in a character set. Let’s make the distinction clear with an example of an
imaginary character set.

Suppose we had an alphabet with four letters: ‘A’, ‘B’, ‘a’, ‘b’. We give each letter a number:
‘A’ = 0, ‘B’ = 1, ‘a’ = 2, ‘c’ = 3. The letter ‘A’ is a symbol, the number 0 is the encoding
for ‘A’, and the combination of all four letters and their encodings is a character set.

Now, suppose we want to compare two string values, ‘A’ and ‘B’. The simplest way to do
this is to look at the encodings — 0 for ‘A’ and 1 for ‘B’ — and because 0 is less than 1, we
say ‘A’ is less than ‘B’. Now, what we’ve just done is apply a collation to our character set.
The collation is a set of rules (only one rule in this case): “compare the encodings”. We
call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then
we would have at least two rules: (1) treat the lowercase letters ‘a’ and ‘b’ as equivalent to
‘A’ and ‘B’; (2) then compare the encodings. We call this a case insensitive collation. It’s a
little more complex than a binary collation.

In real life, most character sets have many characters: not just ‘A’ and ‘B’ but whole alpha-
bets, sometimes multiple alphabets or eastern writing systems with thousands of characters,
along with many special symbols and punctuation marks. Also in real life, most collations
have many rules: not just case insensitivity but also accent insensitivity (an “accent” is a
mark attached to a character as in German ‘Ö’) and multiple-character mappings (such as
the rule that ‘Ö’ = ‘OE’ in one of the two German collations).

MySQL 4.1 can do these things for you:

• Store strings using a variety of character sets

• Compare strings using a variety of collations

• Mix strings with different character sets or collations in the same server, the same
database, or even the same table

• Allow specification of character set and collation at any level

Chapter 9: National Character Sets and Unicode 665

In these respects, not only is MySQL 4.1 far more flexible than MySQL 4.0, it also is far
ahead of other DBMSs. However, to use the new features effectively, you will need to learn
what character sets and collations are available, how to change their defaults, and what the
various string operators do with them.

9.2 Character Sets and Collations in MySQL

A character set always has at least one collation. It may have several collations.

For example, character set latin1 (“ISO-8859-1 West European”) has the following colla-
tions:

Collation Meaning
latin1_bin Binary according to latin1 encoding
latin1_danish_ci Danish/Norwegian
latin1_german1_ci German DIN-1
latin1_german2_ci German DIN-2
latin1_swedish_ci Swedish/Finnish
latin1_general_ci Multilingual

Notes:

• Two different character sets can’t have the same collation.

• Each character set has one collation that is the default collation. For example, the
default collation for latin1 is latin1_swedish_ci.

Notice that there is a convention for collation names: They start with the name of the
character set they are associated with, they usually include a language name, and they end
with _ci (case insensitive), _cs (case sensitive), or _bin (binary).

9.3 Determining the Default Character Set and Collation

There are default settings for character sets and collations at four levels: server, database,
table, connection. The following description may appear complex, but it’s been found in
practice that multi-level defaulting leads to natural and obvious results.

9.3.1 Server Character Set and Collation

The MySQL Server has a server character set and a server collation, which may not be null.

MySQL determines the server character set and server collation thus:

• According to the option settings in effect when the server starts up.

At this level, the decision is simple. The server character set and collation depend on
the options that you use when you start mysqld. You can use --default-character-
set=character_set_name for the character set, and along with it you can add --default-
collation=collation_name for the collation. If you don’t specify a character set, that

666 MySQL Technical Reference for Version 4.1.1-alpha

is the same as saying --default-character-set=latin1. If you specify only a charac-
ter set (for instance, latin1) but not a collation, that is the same as saying --default-
charset=latin1 --collation=latin1_swedish_ci because latin1_swedish_ci is the de-
fault collation for latin1. Therefore the following three commands all have the same effect:

shell> mysqld
shell> mysqld --default-character-set=latin1
shell> mysqld --default-character-set=latin1

--default-collation=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server
character set and collation when building from sources, use: --with-character-set and
--with-collation as arguments for configure. For example:

shell> ./configure --with-character-set=latin1

or

shell> ./configure --with-character-set=latin1
--with-collation=latin1_german1_ci

Both mysqld and configure check that the character set/collation combination is valid.
Each program displays an error message and terminates if the combination is not valid.

9.3.2 Database Character Set and Collation

Every database has a database character set and a database collation, which may not be
null. The CREATE DATABASE and ALTER DATABASE commands now have optional clauses for
specifying the database character set and collation:

CREATE DATABASE db_name
[CHARACTER SET character_set_name [COLLATE collation_name]]

ALTER DATABASE db_name
[CHARACTER SET character_set_name [COLLATE collation_name]]

Example:

CREATE DATABASE db_name
CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and col-
lation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the server character set and server collation.

MySQL’s CREATE DATABASE ... CHARACTER SET ... syntax is analogous to the standard-
SQL CREATE SCHEMA ... CHARACTER SET ... syntax. Because of this, it is possible to create
databases with different character sets and collations, on the same MySQL server.

The database character set and collation are used as default values if the table character set
and collation are not specified in CREATE TABLE statements. They have no other purpose.

Chapter 9: National Character Sets and Unicode 667

9.3.3 Table Character Set and Collation

Every table has a table character set and a table collation, which may not be null. The
CREATE TABLE and ALTER TABLE statements now have optional clauses for specifying the
table character set and collation:

CREATE TABLE table_name (column_list)
[CHARACTER SET character_set_name [COLLATE collation_name]]

ALTER TABLE table_name
[CHARACTER SET character_set_name] [COLLATE collation_name]

Example:

CREATE TABLE t1 (...) CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and col-
lation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the database character set and collation.

The table character set and collation are used as default values, if the column character set
and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

9.3.4 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column
character set and a column collation, which may not be null. Column definition syntax now
has optional clauses for specifying the column character set and collation:

column_name {CHAR | VARCHAR | TEXT} (column_length)
[CHARACTER SET character_set_name [COLLATE collation_name]]

Example:

CREATE TABLE Table1
(

column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_german1_ci
);

MySQL chooses the column character set and collation thus:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and col-
lation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default
collation.

• Otherwise, the table character set and collation.

The CHARACTER SET and COLLATE clauses are standard SQL.

668 MySQL Technical Reference for Version 4.1.1-alpha

9.3.5 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation
values.

Example 1: Table + Column Definition

CREATE TABLE t1
(
c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci

) CHARACTER SET latin2 COLLATE latin2_bin;

Here you have a column with a latin1 character set and a latin1_german1_ci collation.
The definition is explicit, so that’s straightforward. Notice that there’s no problem storing
a latin1 column in a latin2 table.

Example 2: Table + Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1
) CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Now,
although it might seem natural, the default collation is not taken from the table level.
Instead, because the default collation for latin1 is always latin1_swedish_ci, column c1
will have a collation of latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table + Column Definition

CREATE TABLE t1
(

c1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance,
MySQL looks up to the table level for inspiration in determining the column character set
and collation. So the character set for column c1 is latin1 and its collation is latin1_
danish_ci.

Example 4: Database + Table + Column Definition

CREATE DATABASE d1 CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;
CREATE TABLE t1
(

c1 CHAR(10)
);

Chapter 9: National Character Sets and Unicode 669

We create a column without specifying its character set and collation. We’re also not
specifying a character set and a collation at the table level. In this circumstance, MySQL
looks up to the database level for inspiration. (The database’s settings become the table’s
settings, and thereafter become the column’s setting.) So the character set for column c1
is latin2 and its collation is latin2_czech_ci.

9.3.6 Connection Character Sets and Collations

Every connection has connection character sets and connection collations, which may not
be null. There are actually two connection character sets, which we will call “connec-
tion/literals” and “connection/results” when it is necessary to distinguish them.

Consider what a “connection” is: It’s what you make when you connect to the server. The
client sends SQL statements, such as queries, over the connection to the server. The server
sends responses, such as result sets, over the connection back to the client. This leads to
several questions, such as: (a) what character set is the query in when it leaves the client?
(b) what character set should the server translate a query to after receiving it? (c) what
character set should the server translate to before shipping result sets or error messages
back to the client? You can fine-tune the setting for these things, or you can depend on the
defaults (in which case, you can skip this section).

There are two statements that affect the connection character sets:

SET NAMES character_set_name
SET CHARACTER SET character_set_name

SET NAMES indicates what is in the SQL statement that the client sends. Thus, SET NAMES
cp1251 tells the server “future incoming messages from this client will be in character set
cp1251” and the server is free to translate to its own character set, if appropriate.

SET CHARACTER SET indicates what is in the SQL statement that the client sends, and also
what is in the result set that the server sends back to the client. Thus, SET CHARACTER SET
includes SET NAMES, and also specifies what character set the column values will have if, for
example, you use a SELECT statement.

EXAMPLE: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you
do not say SET CHARACTER SET, then for SELECT column1 FROM t the server will send back
all the values for column1 using character set latin2. If on the other hand you say SET
CHARACTER SET latin1 then the server will, just before sending back, convert the latin2
values to latin1. Such conversion is slow and may be lossy.

When you execute SET NAMES or SET CHARACTER SET, you are also changing the “connection
collation”. However, the connection collation exists for consistency only. Usually its value
doesn’t matter.

With the mysql client, it is not necessary to execute SET NAMES every time you start up.
You can add the --default-character-set-name option setting to your mysql statement
line, or in your option file. For example, the following option file setting will change the
connection character set each time you run mysql:

[mysql]
default-character-set-name=character_set_name

670 MySQL Technical Reference for Version 4.1.1-alpha

9.3.7 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation, which may not be null.
A character string literal may have an optional character set introducer and COLLATE clause:

[_character_set_name]’string’ [COLLATE collation_name]

Examples:
SELECT ’string’;
SELECT _latin1’string’;
SELECT _latin1’string’ COLLATE latin1_danish_ci;

The simple statement SELECT ’string’ uses the connection/literal character set.
The _character_set_name expression is formally called an introducer. It tells the parser,
“the string that is about to follow is in character set X.” Because this has confused people
in the past, we emphasize that an introducer does not cause any conversion, it is strictly a
signal that does not change the string’s value. An introducer is also legal before standard hex
literal and numeric hex literal notation (x’literal’ and 0xnnnn), and before ? (parameter
substitution when using prepared statements within a programming language interface).
Examples:

SELECT _latin1 x’AABBCC’;
SELECT _latin1 0xAABBCC;
SELECT _latin1 ?;

MySQL determines a literal’s character set and collation thus:
• If both _X and COLLATE Y were specified then the literal character set is X and the literal

collation is Y
• If _X is specified but COLLATE is not specified, then the literal character set is X and

the literal collation is X’s default collation
• Otherwise, the connection/literals character set and collation.

Examples:
• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1’Müller’ COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation, that is, latin1_swedish_
ci:

SELECT _latin1’Müller’;

• A string with the connection/literals character set and collation:
SELECT ’Müller’;

Character set introducers and the COLLATE clause are implemented according to standard-
SQL specifications.

9.3.8 COLLATE Clause in Various Parts of an SQL Query

With the COLLATE clause you can override whatever the default collation is for a comparison.
COLLATE may be used in various parts of SQL queries. Here are some examples:

Chapter 9: National Character Sets and Unicode 671

• With ORDER BY:
SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:
SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:
SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:
SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:
SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:
SELECT *
FROM t1
WHERE _latin1 ’Müller’ COLLATE latin1_german2_ci = k;

• With HAVING:
SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 ’Müller’ COLLATE latin1_german2_ci;

9.3.9 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the expression
x || y COLLATE z

is equivalent to:
x || (y COLLATE z)

9.3.10 BINARY Operator

The BINARY operator is a shorthand for a COLLATE clause. For example, BINARY ’x’ is
equivalent to ’x’ COLLATE y, where y is the name of an appropriate binary collation. For
example, assuming that column a is of character set latin1, these two queries have the
same effect:

SELECT * FROM t1 ORDER BY BINARY a;
SELECT * FROM t1 ORDER BY a COLLATE latin1_bin;

Note: Every character set has a binary collation.

672 MySQL Technical Reference for Version 4.1.1-alpha

9.3.11 Some Special Cases Where the Collation Determination is
Tricky

In the great majority of queries, it is obvious what collation MySQL uses to resolve a
comparison operation. For example, in the following cases it should be clear that the
collation will be “the column collation of column x”:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = ’Y’;

Should this query use the collation of the column x, or of the string literal ’Y’?

Standard SQL resolves such questions using what used to be called “coercibility” rules. The
essence is: Because x and ’Y’ both have collations, whose collation takes precedence? It’s
complex, but these rules would take care of most situations:

• An explicit COLLATE clause has precedence 4.

• A concatenation of two strings with different collations has precedence 3.

• A column’s collation has precedence 2.

• A literal’s collation has precedence 1.

Those rules resolve ambiguities thus:

• Use the collation with the highest precedence.

• If both sides have the same precedence, then it’s an error if the collations aren’t the
same.

Examples:

column1 = ’A’ Use collation of column1
column1 = ’A’ COLLATE x Use collation of ’A’
column1 COLLATE x = ’A’ COLLATE y Error

9.3.12 Collations Must Be for the Right Character Set

Recall that each character set has one or more collations, and each collation is associated
with one and only one character set. Therefore, the following statement causes an error
message because the latin2_bin collation is not legal with the latin1 character set:

mysql> SELECT _latin1 ’x’ COLLATE latin2_bin;
ERROR 1251: COLLATION ’latin2_bin’ is not valid
for CHARACTER SET ’latin1’

9.3.13 An example of the Effect of Collation

Suppose column X in table T has these latin1 column values:

Chapter 9: National Character Sets and Unicode 673

Muffler
Müller
MX Systems
MySQL

And suppose that the column values are retrieved using the following statement:
SELECT X FROM T ORDER BY X COLLATE collation_name;

The resulting order of the values for different collations is shown in this table:
latin1_swedish_ci latin1_german1_ci latin1_german2_ci
Muffler Muffler Müller
MX Systems Müller Muffler
Müller MX Systems MX Systems
MySQL MySQL MySQL
The table is an example that shows what the effect would be if we used different collations
in an ORDER BY clause. The character that’s causing the trouble in this example is the U
with two dots over it, which the Germans call U-umlaut, but we’ll call it U-diaeresis.
The first column shows the result of the SELECT using the Swedish/Finnish collating rule,
which says that U-diaeresis sorts with Y.
The second column shows the result of the SELECT using the German DIN-1 rule, which
says that U-diaeresis sorts with U.
The third column shows the result of the SELECT using the German DIN-2 rule, which says
that U-diaeresis sorts with UE.
Three different collations, three different results. That’s what MySQL is here to handle.
By using the appropriate collation, you can choose the sort order you want.

9.4 Operations Affected by Character Set Support

This section describes operations that take character set information into account now.

9.4.1 Result Strings

MySQL has many operators and functions that return a string. This section answers the
question: What is the character set and collation of such a string?
For simple functions that take a string input and return a string result as output, the
output’s character set and collation are the same as the principal input’s. For exam-
ple, UPPER(X) returns a string whose character string and collation are the same as that
of X. The same applies for: INSTR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(),
REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(),
UCASE(), UPPER(). (Also note: the REPLACE() function, unlike all other functions, ignores
the collation of the string input and performs a case-insensitive comparison every time.)
For operations that combine multiple string inputs and return a single string output, SQL-
99’s “aggregation rules” apply. They are:
• If explicit COLLATE X occurs, then use X

• If explicit COLLATE X and COLLATE Y occur, then error

674 MySQL Technical Reference for Version 4.1.1-alpha

• Otherwise, if all collations are X, then use X

• Otherwise, the result has no collation

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resultant
collation is X. The same applies for: CONCAT(), GREATEST(), IF(), LEAST(), CASE, UNION,
||, ELT().
For operations that convert to character data, the result string’s character set and collation
are in the connection/literals character set and have the connection/literals collation. This
applies for: CHAR(), CAST(), CONV(), FORMAT(). HEX(), SPACE().

9.4.2 CONVERT()

CONVERT() provides a way to convert data between different character sets. The syntax is:
CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.
Examples:

SELECT CONVERT(_latin1’Müller’ USING utf8);
INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the SQL-99 specification.

9.4.3 CAST()

You may also use CAST() to convert a string to a different character set. The new format
is:

CAST (character_string AS character_data_type
CHARACTER SET character_set_name)

Example:
SELECT CAST(_latin1’test’ AS CHAR CHARACTER SET utf8);

You may not use a COLLATE clause inside a CAST(), but you may use it outside, that is,
CAST(... COLLATE ...) is illegal but CAST(...) COLLATE ... is legal.
Example:

SELECT CAST(_latin1’test’ AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

If you use CAST() without specifying CHARACTER SET, then the resulting character set and
collation are the connection/literal character set and its default collation. If you use CAST()
with CHARACTER SET X, then the resulting character set is X and the resulting collation is
X’s default collation.

9.4.4 SHOW CHARACTER SET

The SHOW CHARACTER SET command shows all available character sets. It takes an optional
LIKE clause that indicates which character set names to match.
For example:

Chapter 9: National Character Sets and Unicode 675

mysql> SHOW CHARACTER SET LIKE ’latin%’;
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	ISO 8859-1 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+
4 rows in set (0.00 sec)

Notes about the preceding listing:
• The Maxlen column shows the maximum number of bytes used to store one character.

9.4.5 SHOW COLLATION

The output from SHOW COLLATION includes all available character sets. It takes an optional
LIKE clause that indicates which collation names to match.

mysql> SHOW COLLATION LIKE ’latin1%’;
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
+-------------------+---------+----+---------+----------+---------+
7 rows in set (0.00 sec)

The Default column indicates whether a collation is the default for its character set.
Compiled indicates whether or not the character set is compiled into the server. Sortlen
is related to the amount of memory required to sort strings expressed in the character set.

9.4.6 SHOW CREATE DATABASE

The following query shows a CREATE DATABASE statement that will create the given database.
The result includes all database options. DEFAULT CHARACTER SET and COLLATE are sup-
ported. All database options are stored in a text file that can be found in the database
directory.

mysql> SHOW CREATE DATABASE a;
+----------+---+
| Database | Create Database
|
+----------+---+

676 MySQL Technical Reference for Version 4.1.1-alpha

| a | CREATE DATABASE ‘a‘ /*!40100 DEFAULT CHARACTER SET macce
COLLATE macce_ci_ai */ |
+----------+---+
1 row in set (0.00 sec)

9.4.7 SHOW FULL COLUMNS

The SHOW COLUMNS statement now displays the collations of a table’s columns, when invoked
as SHOW FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT datatypes have non-NULL
collations. Numeric and other non-character types have NULL collations. For example:

mysql> SHOW FULL COLUMNS FROM a;
+-------+---------+-------------------+------+-----+---------+-------+
| Field | Type | Collation | Null | Key | Default | Extra |
+-------+---------+-------------------+------+-----+---------+-------+
| a | char(1) | latin1_swedish_ci | YES | | NULL | |
| b | int(11) | NULL | YES | | NULL | |
+-------+---------+-------------------+------+-----+---------+-------+
2 rows in set (0.02 sec)

The character set is not part of the display.

9.5 Unicode Support

There are two new (as of MySQL version 4.1) character sets for storing Unicode data: ucs2
(the UCS-2 Unicode character set) and utf8 (the UTF-8 encoding of the Unicode character
set).

• In UCS-2 (binary Unicode representation) every character is represented by a two-byte
Unicode code with the most significant byte first. For example: "LATIN CAPITAL
LETTER A" has the code 0x0041 and it’s stored as a two byte sequence: 0x00 0x41.
"CYRILLIC SMALL LETTER YERU" (Unicode 0x044B) is stored as a two byte
sequence: 0x04 0x4B. For Unicode characters and their codes please refer to the Unicode
Home Page (http://www.unicode.org/).

Temporary restriction: UCS-2 can’t (yet) be used as a client character set. That means
that SET NAMES ucs2 will not work.

• The UTF8 character set (transform Unicode representation) is an alternative way to
store Unicode data. It is implemented according to RFC2279. The idea of the UTF8
character set is that various Unicode characters fit into byte sequences of different
lengths.

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a two-byte sequence: ex-
tended Latin letters (with tilde, macron, acute, grave and other accents), Cyrillic,
Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese and Japanese ideographs use three-byte sequences.

• Currently, MySQL UTF8 support does not include four-byte sequences.

Chapter 9: National Character Sets and Unicode 677

Tip: To save space with UTF8, use VARCHAR instead of CHAR. Otherwise, MySQL has
to reserve 30 bytes for a CHAR(10) CHARACTER SET utf8 column, because that’s the
maximum possible length.

9.6 UTF8 for Metadata

The metadata is the data about the data. Anything that describes the database, as opposed
to being the contents of the database, is metadata. Thus column names, database names,
user names, version names, and most of the string results from SHOW, are metadata.

All metadata must be in the same character set. (Otherwise, SHOW wouldn’t work properly
because different rows in the same column would be in different character sets.) On the other
hand, metadata must include all characters in all languages. (Otherwise, users wouldn’t be
able to name columns and tables in their own languages.) In order to allow for both of these
objectives, MySQL stores metadata in a Unicode character set, namely UTF8. This will
not cause any disruption if you never use accented characters. But if you do, you should be
aware that metadata is in UTF8.

This means that USER() (and its synonyms, SESSION_USER() and SYSTEM_USER()),
CURRENT_USER(), and VERSION() functions will have the UTF8 character set by default.

This does NOT mean that the headers of columns and the results of DESCRIBE functions
will be in the UTF8 character set by default. (When you say SELECT column1 FROM t the
name column1 itself will be returned from the server to the client in the client’s character
set as determined by the SET NAMES statement.)

If you want the server to pass metadata results back in a non-UTF8 character set, then use
SET CHARACTER SET to force the server to convert (see Section 9.3.6 [Charset-connection],
page 669), or set the client to do the conversion. It is always more efficient to set the client
to do the conversion, but this option will not be available for many clients until late in the
MySQL 4.x product cycle.

If you are just using, for example, the USER() function for comparison or assignment within
a single statement ... don’t worry. MySQL will do some automatic conversion for you.

SELECT * FROM Table1 WHERE USER() = latin1_column;

This will work, because the contents of latin1_column are automatically converted to
UTF8 before the comparison.

INSERT INTO Table1 (latin1_column) SELECT USER();

This will work, becaues the contents of USER() are automatically converted to latin1
before the assignment. Automatic conversion is not fully implemented yet, but should work
correctly in a later version.

Although automatic conversion is not in the SQL standard, the SQL standard document
does say that every character set is (in terms of supported characters) a “subset” of Unicode.
Since it is a well-known principle that “what applies to a superset can apply to a subset,”
we believe that a collation for Unicode can apply for comparisons with non-Unicode strings.

VERSION 4.1.1 NOTE: The ‘errmsg.txt’ files will all be in UTF8 after this point. Con-
version to the client character set will be automatic, as for metadata. Also: We may change
the default behaviour for passing back result set metadata in the near future.

678 MySQL Technical Reference for Version 4.1.1-alpha

9.7 Compatibility with Other DBMSs

For SAP DB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(n) UNICODE);
CREATE TABLE t1 (f1 CHAR(n) CHARACTER SET ucs2);

9.8 New Character Set Configuration File format

In MySQL 4.1, character set configuration is stored in XML files, one file per character set.
(In previous versions, this information was stored in ‘.conf’ files.)

9.9 National Character Set

In MySQL-4.x and earlier, NCHAR and CHAR were synonymous. ANSI defines NCHAR or
NATIONAL CHAR as a way to define that a CHAR column should use some predefined character
set. MySQL uses utf8 as that predefined character set. For example, these column type
declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N’literal’ to create a string in national character set.

These two statements are equivalent:

SELECT N’some text’;
SELECT _utf8’some text’;

9.10 Upgrading from MySQL 4.0

Now, what about upgrading from older versions of MySQL? MySQL 4.1 is almost upward
compatible with MySQL 4.0 and earlier for the simple reason that almost all of the features
are new, so there’s nothing in earlier versions to conflict with. However, there are some
differences and a few things to be aware of.

Most important: The “MySQL 4.0 character set” has the properties of both “MySQL 4.1
character sets” and “MySQL 4.1 collations.” You will have to unlearn this. Henceforth we
will not bundle character set / collation properties in the same conglomerate object.

There is a special treatment of national character sets in MySQL 4.1. NCHAR is not the same
as CHAR, and N’...’ literals are not the same as ’...’ literals.

Chapter 9: National Character Sets and Unicode 679

Finally, there is a different file format for storing information about character sets and colla-
tions. Make sure you have reinstalled the ‘/share/mysql/charsets/’ directory containing
the new configuration files.

If you want to start mysqld from a 4.1.x distribution with data created by MySQL 4.0, you
should start the server with the same character set and collation. In this case you won’t
need to reindex your data.

There are two ways to do so:

shell> ./configure --with-character-set=... --with-collation=...
shell> ./mysqld --default-character-set=... --default-collation=...

If you used mysql with, for example, the MySQL 4.0 danish character set, you should now
use the latin1 character set and the latin1_danish_ci collation:

shell> ./configure --with-character-set=latin1
--with-collation=latin1_danish_ci

shell> ./mysqld --default-character-set=latin1
--default-collation=latin1_danish_ci

Use the table shown in the next section to find old 4.0 character set names and their 4.1
character set/collation pair equivalents.

9.10.1 4.0 Character Sets and Corresponding 4.1 Character
Set/Collation Pairs

ID 4.0 Character Set 4.1 Character Set 4.1 Collation
1 big5 big5 big5_chinese_ci
2 czech latin2 latin2_czech_ci
3 dec8 dec8 dec8_swedish_ci
4 dos cp850 cp850_general_ci
5 german1 latin1 latin1_german1_ci
6 hp8 hp8 hp8_english_ci
7 koi8_ru koi8r koi8r_general_ci
8 latin1 latin1 latin1_swedish_ci
9 latin2 latin2 latin2_general_ci
10 swe7 swe7 swe7_swedish_ci
11 usa7 ascii ascii_general_ci
12 ujis ujis ujis_japanese_ci
13 sjis sjis sjis_japanese_ci
14 cp1251 cp1251 cp1251_bulgarian_ci
15 danish latin1 latin1_danish_ci
16 hebrew hebrew hebrew_general_ci
17 win1251 (removed) (removed)
18 tis620 tis620 tis620_thai_ci
19 euc_kr euckr euckr_korean_ci
20 estonia latin7 latin7_estonian_ci
21 hungarian latin2 latin2_hungarian_ci
22 koi8_ukr koi8u koi8u_ukrainian_ci
23 win1251ukr cp1251 cp1251_ukrainian_ci

680 MySQL Technical Reference for Version 4.1.1-alpha

24 gb2312 gb2312 gb2312_chinese_ci
25 greek greek greek_general_ci
26 win1250 cp1250 cp1250_general_ci
27 croat latin2 latin2_croatian_ci
28 gbk gbk gbk_chinese_ci
29 cp1257 cp1257 cp1257_lithuanian_ci
30 latin5 latin5 latin5_turkish_ci
31 latin1_de latin1 latin1_german2_ci

9.11 The Character Sets and Collations that MySQL
Supports

Here is an annotated list of character sets and collations that MySQL supports. Because
options and installation settings differ, some sites will not have all items in the list, and
some sites will have items that are not on the list because defining new character sets or
collations is straightforward.
MySQL supports 70+ collations for 30+ character sets.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	ISO 8859-1 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp1251	Windows Cyrillic	cp1251_bulgarian_ci	1
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp866	DOS Russian	cp866_general_ci	1

Chapter 9: National Character Sets and Unicode 681

keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci	1
macce	Mac Central European	macce_general_ci	1
macroman	Mac West European	macroman_general_ci	1
cp852	DOS Central European	cp852_general_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
cp1257	Windows Baltic	cp1257_general_ci	1
binary	Binary pseudo charset	binary	1
+----------+-----------------------------+---------------------+--------+
33 rows in set (0.01 sec)

NB: ALL CHARACTER SETS HAVE A BINARY COLLATION. WE HAVE NOT IN-
CLUDED THE BINARY COLLATION IN ALL THE DESCRIPTIONS THAT FOLLOW.

9.11.1 The Unicode Character Sets

Of course there are our two Unicode character sets. You can store texts in about 650
languages using these character sets. We have not added a large number of collations for
these two new sets yet, but that will be happening soon. Now they have default case-
insensitive accent-insensitive collations, plus the binary collation.

+---------+-----------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------+-------------------+--------+
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+-----------------+-------------------+--------+

9.11.2 Platform Specific Character Sets

+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |
+----------+-----------------------------+---------------------+--------+

9.11.3 Character Sets for South Europe and Middle East

+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
armscii8	ARMSCII-8 Armenian	armscii8_general_ci	1
cp1256	Windows Arabic	cp1256_general_ci	1
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
greek	ISO 8859-7 Greek	greek_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
geostd8	Georgian	geostd8_general_ci	1
+----------+-----------------------------+---------------------+--------+

682 MySQL Technical Reference for Version 4.1.1-alpha

9.11.4 The Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai.
These can be complicated. For example, the Chinese sets have to allow for thousands of
different characters.

+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
tis620	TIS620 Thai	tis620_thai_ci	1
+----------+-----------------------------+---------------------+--------+

9.11.5 The Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages. There are
two Baltic character sets currently supported:

• latin7 (ISO 8859-13 Baltic):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
latin7_estonian_cs	latin7	20			0
latin7_general_ci	latin7	41	Yes		0
latin7_general_cs	latin7	42			0
latin7_bin	latin7	79			0
+----------------------+----------+----+---------+----------+---------+

• cp1257 (Windows Baltic):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
cp1257_lithuanian_ci	cp1257	29			0
cp1257_bin	cp1257	58			0
cp1257_general_ci	cp1257	59	Yes		0
+----------------------+----------+----+---------+----------+---------+

9.11.6 The Cyrillic Character Sets

Here are the Cyrillic character sets and collations for use with Belarusian, Bulgarian, Rus-
sian, Ukrainian languages.

• cp1251 (Windows Cyrillic):

Chapter 9: National Character Sets and Unicode 683

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
cp1251_bulgarian_ci	cp1251	14			0
cp1251_ukrainian_ci	cp1251	23			0
cp1251_bin	cp1251	50			0
cp1251_general_ci	cp1251	51	Yes		0
cp1251_general_cs	cp1251	52			0
+----------------------+----------+----+---------+----------+---------+

• cp866 (DOS Russian):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| cp866_general_ci | cp866 | 36 | Yes | | 0 |
| cp866_bin | cp866 | 68 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

• koi8r (KOI8-R Relcom Russian, primarily used in Russia on Unix):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| koi8r_general_ci | koi8r | 7 | Yes | | 0 |
| koi8r_bin | koi8r | 74 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

• koi8u (KOI8-U Ukrainian, primarily used in Ukraine on Unix):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| koi8u_general_ci | koi8u | 22 | Yes | | 0 |
| koi8u_bin | koi8u | 75 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

9.11.7 The Central European Character Sets

We have some support for character sets used in The Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, and Poland.

• cp1250 (Windows Central European):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
cp1250_general_ci	cp1250	26	Yes		0
cp1250_czech_ci	cp1250	34		Yes	2
cp1250_bin	cp1250	66			0
+----------------------+----------+----+---------+----------+---------+

• cp852 (DOS Central European):

684 MySQL Technical Reference for Version 4.1.1-alpha

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| cp852_general_ci | cp852 | 40 | Yes | | 0 |
| cp852_bin | cp852 | 81 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

• macce (Mac Central European):
+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| macce_general_ci | macce | 38 | Yes | | 0 |
| macce_bin | macce | 43 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

• latin2 (ISO 8859-2 Central European):
+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
latin2_czech_ci	latin2	2		Yes	4
latin2_general_ci	latin2	9	Yes		0
latin2_hungarian_ci	latin2	21			0
latin2_croatian_ci	latin2	27			0
latin2_bin	latin2	77			0
+----------------------+----------+----+---------+----------+---------+

• keybcs2 (DOS Kamenicky Czech-Slovak):
+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| keybcs2_general_ci | keybcs2 | 37 | Yes | | 0 |
| keybcs2_bin | keybcs2 | 73 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

9.11.8 The West European Character Sets

West European Character Sets cover most West European languages, such as French, Span-
ish, Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish,
Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and English.
• latin1 (ISO 8859-1 West European):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0

Chapter 9: National Character Sets and Unicode 685

| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

The latin1_swedish_ci collation is the default that probably is used by the majority
of MySQL customers. It is constantly stated that this is based on the Swedish/Finnish
collation rules, but you will find Swedes and Finns who disagree with that statement.
The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1
and DIN-2 standards, where DIN stands for Deutsches Institut für Normung (that is,
the German answer to ANSI). DIN-1 is called the dictionary collation and DIN-2 is
called the phone-book collation.
• latin1_german1_ci (dictionary) rules:

‘Ä’ = ‘A’, ‘Ö’ = ‘O’, ‘Ü’ = ‘U’, ‘ß’ = ‘s’
• latin1_german2_ci (phone-book) rules:

‘Ä’ = ‘AE’, ‘Ö’ = ‘OE’, ‘Ü’ = ‘UE’, ‘ß’ = ‘ss’
• macroman (Mac West European):

+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| macroman_general_ci | macroman | 39 | Yes | | 0 |
| macroman_bin | macroman | 53 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

• cp850 (DOS West European):
+----------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------------+----------+----+---------+----------+---------+
| cp850_general_ci | cp850 | 4 | Yes | | 0 |
| cp850_bin | cp850 | 80 | | | 0 |
+----------------------+----------+----+---------+----------+---------+

686 MySQL Technical Reference for Version 4.1.1-alpha

10 Spatial Extensions in MySQL

MySQL 4.1 introduces spatial extensions to allow the generation, storage, and analysis of
geographic features. Currently, these features are available for MyISAM tables only.

This chapter covers the following topics:

• The basis of these spatial extensions in the OpenGIS geometry model
• Data formats for representing spatial data
• How to use spatial data in MySQL
• Use of indexing for spatial data
• MySQL differences from the OpenGIS specification

10.1 Introduction

MySQL implements spatial extensions following the specification of the Open GIS
Consortium (OGC). This is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual
solutions that can be useful with all kinds of applications that manage spatial data. The
OGC maintains a web site at http://www.opengis.org/.

In 1997, the Open GIS Consortium published the OpenGIS R© Simple Features Specifica-
tions For SQL, a document that proposes several conceptual ways for extending an SQL
RDBMS to support spatial data. This specification is available from the Open GIS web site
at http://www.opengis.org/techno/implementation.htm. It contains additional infor-
mation relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by
OGC. This term refers to an SQL environment that has been extended with a set of geometry
types. A geometry-valued SQL column is implemented as a column that has a geometry
type. The specifications describe a set of SQL geometry types, as well as functions on those
types to create and analyse geometry values.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.
• A space. For example, a postcode area, the tropics.
• A definable location. For example, a crossroad, as a particular place where two streets

intersect.

You can also find documents that use term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. The original meaning of the
word geometry denotes a branch of mathematics. Another meaning comes from cartogra-
phy, referring to the geometric features that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used here is geometry.

Let’s define a geometry as a point or an aggregate of points representing anything in the
world that has a location.

Chapter 10: Spatial Extensions in MySQL 687

10.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC’s SQL with Geometry Types environment is
based on the OpenGIS Geometry Model. In this model, each geometric object has the
following general properties:
• It is associated with a Spatial Reference System, which describes the coordinate space

in which the object is defined.
• It belongs to some geometry class.

10.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:
• Geometry (non-instantiable)

• Point (instantiable)
• Curve (non-instantiable)

• LineString (instantiable)
• Line

• LinearRing

• Surface (non-instantiable)
• Polygon (instantiable)

• GeometryCollection (instantiable)
• MultiPoint (instantiable)
• MultiCurve (non-instantiable)

• MultiLineString (instantiable)
• MultiSurface (non-instantiable)

• MultiPolygon (instantiable)

Some of these classes are abstract (non-instantiable). That is, it is not possible to create an
object of these classes. Other classes are instantiable and objects may be created of them.
Each class has properties and instantiable classes may have assertions (rules that define
valid class instances).
Geometry is the base class. It’s an abstract class. The instantiable subclasses of Geometry
are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-
dimensional coordinate space. All instantiable geometry classes are defined so that valid
instances of a geometry class are topologically closed (that is, all defined geometries include
their boundary).
The base Geometry class has subclasses for Point, Curve, Surface and
GeometryCollection:
• Point represents zero-dimensional objects.
• Curve represents one-dimensional objects, and has subclass LineString, with sub-

subclasses Line and LinearRing.
• Surface is designed for two-dimensional objects and has subclass Polygon.

688 MySQL Technical Reference for Version 4.1.1-alpha

• GeometryCollection has specialised zero-, one-, and two-dimensional collection classes
named MultiPoint, MultiLineString, and MultiPolygon for modelling geometries
corresponding to collections of Points, LineStrings, and Polygons, respectively.
MultiCurve and MultiSurface are introduced as abstract superclasses that generalise
the collection interfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-instantiable
classes. They define a common set of methods for their subclasses and are included for the
reason of extensibility.
Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

10.2.2 Class Geometry

Geometry is the root class of the hierarchy. It is a non-instantiable class but has a number
of properties that are common to all geometry values created from any of the Geometry
subclasses. These properties are described in the following list. (Particular subclasses have
their own specific properties, described later.)

Geometry properties

A geometry value has the following properties:
• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.
• Its SRID, or Spatial Reference Identifier. This value identifies the geometry’s associated

Spatial Reference System that describes the coordinate space in which the geometry
object is defined.

• Its coordinates in its Spatial Reference System, represented as double-precision (8-byte)
numbers. All non-empty geometries include at least one pair of (X,Y) coordinates.
Empty geometries contain no coordinates.
Coordinates are related to the SRID. For example, in different coordinate systems, the
distance between two objects may differ even when objects have the same coordinates,
because the distance on the planar coordinate system and the distance on the geocentric
system (coordinates on the Earth’s surface) are different things.

• Its interior, boundary, and exterior. All geometries occupy some position in space.
The exterior of a geometry is all space not occupied by the geometry. The interior is
the space occupied by the geometry. The boundary is the interface between geometry’s
interior and exterior.

• Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry,
formed by the minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• The quality of being simple or non-simple. Geometry values of some types
(LineString, MultiPoint, MultiLineString) are either simple or non-simple. Each
type determines its own assertions for being simple or non-simple.

• The quality of being closed or not closed. Geometry values of some types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions
for being closed or not closed.

Chapter 10: Spatial Extensions in MySQL 689

• The quality of being empty or not empty A geometry is empty if it does not have any
points. Exterior, interior and boundary of an empty geometry are not defined (that
is, they are represented by a NULL value). An empty geometry is defined to be always
simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:
• −1 stands for empty geometries.
• 0 stands for geometries with no length and no area.
• 1 stands for geometries with non-zero length and zero area.
• 2 stands for geometries with non-zero area.

Point objects have a dimension of zero. LineString objects have a dimension
of 1. Polygon objects have a dimension of 2. The dimensions of MultiPoint,
MultiLineString, and MultiPolygon objects are the same as the dimensions of the
elements they consist of.

10.2.3 Class Point

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A point could represent each
city.

• On a city map, a Point could represent a bus stop.

Point Properties

• X-coordinate value.
• Y-coordinate value.
• Point is defined as a zero-dimensional geometry.
• The boundary of a Point is the empty set.

10.2.4 Class Curve

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Par-
ticular subclasses of Curve define the type of interpolation between points. Curve is a
non-instantiable class.

Curve Properties

• The coordinates of its points.
• Curve is defined as one-dimensional geometry.
• A Curve is simple if it does not pass through the same point twice.
• A Curve is closed if its start point is equal to its end point.

690 MySQL Technical Reference for Version 4.1.1-alpha

• The boundary of a closed Curve is empty.

• The boundary of a non-closed Curve consists of its two end points.

• A Curve that is simple and closed is a LinearRing.

10.2.5 Class LineString

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• Coordinates of LineString segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it’s both closed and simple.

10.2.6 Class Surface

A Surface is a two-dimensional geometry. It is a non-instantiable class. Its only instantiable
subclass is Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of
a single “patch” that is associated with a single exterior boundary and zero or more
interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its
exterior and interior boundaries.

10.2.7 Class Polygon

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single
exterior boundary and zero or more interior boundaries, where each interior boundary
defines a hole in the Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, etc.

Chapter 10: Spatial Extensions in MySQL 691

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRings (that is, LineStrings
that are both simple and closed) that make up its exterior and interior boundaries.

• No two rings in the boundary cross. The rings in the boundary of a Polygon may
intersect at a Point, but only as a tangent.

• A Polygon may not have cut lines, spikes, or punctures.

• The interior of every Polygon is a connected point set.

• The exterior of a Polygon with one or more holes is not connected. Each hole defines
a connected component of the exterior.

In the above assertions, polygons are simple geometries. These assertions make a Polygon
a simple geometry.

10.2.8 Class GeometryCollection

A GeometryCollection is a geometry that is a collection of one or more geometries of any
class.

All the elements in a GeometryCollection must be in the same Spatial Reference System
(that is, in the same coordinate system). GeometryCollection places no other constraints
on its elements, although the subclasses of GeometryCollection described in the following
sections may restrict membership. Retrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

10.2.9 Class MultiPoint

A MultiPoint is a geometry collection composed of Point elements. The points are not
connected or ordered in any way.

MultiPoint Examples

• On a world map, a Multipoint could represent a chain of small islands.

• On a city map, a Multipoint could represent the outlets for a ticket office.

MultiPoint Properties

• MultiPoint is defined as a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate
values).

• The boundary of a MultiPoint is the empty set.

692 MySQL Technical Reference for Version 4.1.1-alpha

10.2.10 Class MultiCurve

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a
non-instantiable class.

MultiCurve Properties

• MultiCurve is defined as a one-dimensional geometry.
• A MultiCurve is simple if and only if all of its elements are simple, the only intersections

between any two elements occur at points that are on the boundaries of both elements.
• The boundary of a MultiCurve is obtained by applying the “mod 2 union rule” (also

known as the odd-even rule): A point is in the boundary of a MultiCurve if it is in the
boundaries of an odd number of MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.
• The boundary of a closed MultiCurve is always empty.

10.2.11 Class MultiLineString

A MultiLineString is a MultiCurve geometry collection composed of LineString ele-
ments.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway
system.

10.2.12 Class MultiSurface

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is
a non-instantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• The interiors of any two surfaces in a MultiSurface may not intersect.
• The boundaries of any two elements in a MultiSurface may intersect at most at a

finite number of points.

10.2.13 Class MultiPolygon

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

Chapter 10: Spatial Extensions in MySQL 693

MultiPolygon Assertions

• The interiors of two Polygon values that are elements of a MultiPolygon may not
intersect.

• The boundaries of any two Polygon values that are elements of a MultiPolygon may
not cross and may touch at only a finite number of points. (Crossing is also forbidden
by the preceding assertion.)

• A MultiPolygon may not have cut lines, spikes or punctures. A MultiPolygon is a
regular, closed point set.

• The interior of a MultiPolygon composed of more than one Polygon is not connected.
The number of connected components of the interior of a MultiPolygon is equal to the
number of Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is defined as a two-dimensional geometry.
• The boundary of a MultiPolygon is a set of closed curves (LineString values) corre-

sponding to the boundaries of its Polygon elements.
• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one

element Polygon.
• Every Curve in the boundary of an element Polygon is in the boundary of the

MultiPolygon.

10.3 Supported Spatial Data Formats

This section describes the standard spatial data formats that are used to represent geometry
objects in queries. They are:
• Well-Known Text (WKT) format
• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT
or WKB format.

10.3.1 Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry
data in ASCII form.
Examples of WKT representations of geometry objects are:
• A Point:

POINT(15 20)

Note that point coordinates are specified with no separating comma.
• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

694 MySQL Technical Reference for Version 4.1.1-alpha

• A Polygon with one exterior ring and one interior ring:
POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:
MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:
MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:
MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:
GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

A Backus-Naur grammar that specifies the formal production rules for writing WKT values
may be found in the OGC specification document referenced near the beginning of this
chapter.

10.3.2 Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation for geometric values is defined by the
OpenGIS specifications. It is also defined in the ISO “SQL/MM Part 3: Spatial” stan-
dard.
WKB is used to exchange geometry data as binary streams represented by BLOB values
containing geometric WKB information.
WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision
numbers (IEEE 754 format). A byte is 8 bits.
For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21
bytes (each represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:
Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

Component representation is as follows:
• The byte order may be either 0 or 1 to indicate little-endian or big-endian storage. The

little-endian and big-endian byte orders are also known as Network Data Representation
(NDR) and External Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7
indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
and GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data
structures, as detailed in the OpenGIS specification.

Chapter 10: Spatial Extensions in MySQL 695

10.4 Creating a Spatially Enabled MySQL Database

This section describes the datatypes you can use for representing spatial data in MySQL,
and the functions available for creating and retrieving spatial values.

10.4.1 MySQL Spatial Datatypes

MySQL provides a set of datatypes that correspond to classes in the class hierarchy of the
OpenGIS Geometry Model. Some of these types hold single geometry values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY is the most general of these single-value types; it can store geometry values of
any type. The others restrict their values to a particular geometry type.

The other datatypes hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection
types restrict collection members to those having a particular geometry type.

10.4.2 Creating Spatial Values

This section describes how to create spatial values using Well-Known Text and Well-Known
Binary functions that are defined in the OpenGIS standard, and using MySQL-specific
functions.

10.4.2.1 Creating Geometry Values Using WKT Functions

MySQL provides a number of functions that take as input parameters a Well-Known Text
representation (and, optionally, a spatial reference system identifier (SRID)), and return
the corresponding geometry.

GeomFromText() accepts a WKT of any geometry type as its first argument. An imple-
mentation also provides type-specific construction functions for construction of geometry
values of each geometry type.

GeomFromText(wkt[,srid])
GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and
SRID.

696 MySQL Technical Reference for Version 4.1.1-alpha

PointFromText(wkt[,srid])
Constructs a POINT value using its WKT representation and SRID.

LineFromText(wkt[,srid])
LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.

PolyFromText(wkt[,srid])
PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

MPointFromText(wkt[,srid])
MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.

MLineFromText(wkt[,srid])
MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.

MPolyFromText(wkt[,srid])
MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.

GeomCollFromText(wkt[,srid])
GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and
SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or
MultiPolygon values based on the WKT representation of a collection of rings or closed
LineString values. These values may intersect. MySQL does not yet implement these
functions:

BdPolyFromText(wkt,srid)
Constructs a Polygon value from a MultiLineString value in WKT format
containing an arbitrary collection of closed LineString values.

BdMPolyFromText(wkt,srid)
Constructs a MultiPolygon value from a MultiLineString value in WKT for-
mat containing an arbitrary collection of closed LineString values.

10.4.2.2 Creating Geometry Values Using WKB Functions

MySQL provides a number of functions that take as input parameters a BLOB containing
a Well-Known Binary representation (and, optionally, a spatial reference system identifier
(SRID)), and return the corresponding geometry.

GeomFromWKT() accepts a WKB of any geometry type as its first argument. An implemen-
tation also provides type-specific construction functions for construction of geometry values
of each geometry type.

Chapter 10: Spatial Extensions in MySQL 697

GeomFromWKB(wkb[,srid])
GeometryFromWKB(wkt[,srid])

Constructs a geometry value of any type using its WKB representation and
SRID.

PointFromWKB(wkb[,srid])
Constructs a POINT value using its WKB representation and SRID.

LineFromWKB(wkb[,srid])
LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.

PolyFromWKB(wkb[,srid])
PolygonFromWKB(wkb[,srid])

Constructs a POLYGON value using its WKB representation and SRID.

MPointFromWKB(wkb[,srid])
MultiPointFromWKB(wkb[,srid])

Constructs a MULTIPOINT value using its WKB representation and SRID.

MLineFromWKB(wkb[,srid])
MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.

MPolyFromWKB(wkb[,srid])
MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

GeomCollFromWKB(wkb[,srid])
GeometryCollectionFromWKB(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and
SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or
MultiPolygon values based on the WKB representation of a collection of rings or closed
LineString values. These values may intersect. MySQL does not yet implement these
functions:

BdPolyFromWKB(wkb,srid)
Constructs a Polygon value from a MultiLineString value in WKB format
containing an arbitrary collection of closed LineString values.

BdMPolyFromWKB(wkb,srid)
Constructs a MultiPolygon value from a MultiLineString value in WKB for-
mat containing an arbitrary collection of closed LineString values.

10.4.2.3 Creating Geometry Values Using MySQL-Specific
Functions

Note: MySQL does not yet implement the functions listed in this section.
MySQL provides a set of useful functions for creating geometry WKB representations. The
functions described in this section are MySQL extensions to the OpenGIS specifications.

698 MySQL Technical Reference for Version 4.1.1-alpha

The results of these functions are BLOB values containing WKB representations of geometry
values with no SRID. The results of these functions can be substituted as the first argument
for any function in the GeomFromWKB() function family.

Point(x,y)
Constructs a WKB Point using its coordinates.

MultiPoint(pt1,pt2,...)
Constructs a WKB MultiPoint value using WKB Point arguments. If any
argument is not a WKBPoint, the return value is NULL.

LineString(pt1,pt2,...)
Constructs a WKB LineString value from a number of WKB Point arguments.
If any argument is not a WKB Point, the return value is NULL. If the number
of Point arguments is less than two, the return value is NULL.

MultiLineString(ls1,ls2,...)
Constructs a WKB MultiLineString value using using WBK LineString ar-
guments. If any argument is not a LineString, the return value is NULL.

Polygon(ls1,ls2,...)
Constructs a WKB Polygon value from a number of WKB LineString argu-
ments. If any argument does not represent the WKB of a LinearRing (that is,
not a closed and simple LineString) the return value is NULL.

MultiPolygon(poly1,poly2,...)
Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments.
If any argument is not a WKB Polygon, the rerurn value is NULL.

GeometryCollection(g1,g2,...)
Constucts a WKB GeometryCollection. If any argument is not a well-formed
WKB representation of a geometry, the return value is NULL.

10.4.3 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for exam-
ple, with CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported only for
MyISAM tables.
• Use the CREATE TABLE statement to create a table with a spatial column:

mysql> CREATE TABLE geom (g GEOMETRY);
Query OK, 0 rows affected (0.02 sec)

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing
table:

mysql> ALTER TABLE geom ADD pt POINT;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> ALTER TABLE geom DROP pt;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

Chapter 10: Spatial Extensions in MySQL 699

10.4.4 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that
format from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The
following examples demonstrate how to insert geometry values into a table by converting
WKT values into internal geometry format.

You can perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText(’POINT(1 1)’));

SET @g = ’POINT(1 1)’;
INSERT INTO geom VALUES (GeomFromText(@g));

Or conversion can take place prior to the INSERT:

SET @g = GeomFromText(’POINT(1 1)’);
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = ’LINESTRING(0 0,1 1,2 2)’;
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = ’POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))’;
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = ’GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))’;
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples all use GeomFromText() to create geometry values. You can also
use type-specific functions:

SET @g = ’POINT(1 1)’;
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = ’LINESTRING(0 0,1 1,2 2)’;
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = ’POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))’;
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g = ’GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))’;
INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry
values, it is responsible for sending correctly formed WKB in queries to the server. However,
there are several ways of satisfying this requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

700 MySQL Technical Reference for Version 4.1.1-alpha

• An ODBC application can send a WKB representation, binding it to a placeholder
using an argument of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.
• In a C program, you can escape a binary value using mysql_real_escape_string()

and include the result in a query string that is sent to the server. See Section 11.1.3.43
[mysql_real_escape_string()], page 753.

10.4.5 Fetching Spatial Data

Geometry values stored in a table can be fetched with conversion in internal format. You
can also convert them into WKT or WKB format.

10.4.5.1 Fetching Spatial Data in Internal Format

Fetching geometry values using internal format can be useful in table-to-table transfers:
CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

10.4.5.2 Fetching Spatial Data in WKT Format

The AsText() function provides textual access to geometry values. It converts a geometry
from internal format into a WKT string.

mysql> SELECT AsText(g) FROM geom;
+-------------------------+
| AsText(p1) |
+-------------------------+
| POINT(1 1) |
| LINESTRING(0 0,1 1,2 2) |
+-------------------------+

10.4.5.3 Fetching Spatial Data in WKB Format

The AsBinary() function provides binary access to geometry values. It converts a geometry
from internal format into a BLOB containing the WKB value.

SELECT AsBinary(g) FROM geom;

10.5 Analysing Spatial Information

After populating spatial columns with values, you are ready to query and analyse them.
MySQL provides a set of functions to perform various operations on spatial data. These
functions can be grouped into four major categories according to the type of operation they
perform:
• Functions that convert geometries between various formats
• Functions that provide access to qualitative or quantitative properties of a geometry

Chapter 10: Spatial Extensions in MySQL 701

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

Spatial analysis functions can be used in many contexts, such as:

• Any interactive SQL program, like mysql or MySQLCC

• Application programs written in any language that supports a MySQL client API

10.5.1 Functions to Convert Geometries Between Formats

MySQL supports the following functions for converting geometry values between internal
format and either WKT or WKB format:

GeomFromText(wkt[,srid])
Converts a string value from its WKT representation into internal geometry
format and returns the result. A number of type-specific functions are also
supported, such as PointFromText() and LineFromText(); see Section 10.4.2.1
[GIS WKT Functions], page 695.

GeomFromWKB(wkb[,srid])
Converts a binary value from its WKB representation into internal geometry
format and returns the result. A number of type-specific functions are also
supported, such as PointFromWKB() and LineFromWKB(); see Section 10.4.2.2
[GIS WKB Functions], page 696.

AsText(g)
Converts a value in internal geometry format to its WKT representation and
returns the resulting string.

mysql> SET @g = ’LineString(1 1,2 2,3 3)’;
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@G)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

AsBinary(g)
Converts a value in internal geometry format to its WKB representation and
returns the resulting binary value.

10.5.2 Geometry Property Analysis Functions

Each function that belongs to this group takes a geometry value as its argument and returns
some quantitive or qualitive property of the geometry. Some functions restrict their argu-
ment type. Such functions return NULL if the argument is of an incorrect geometry type.
For example, Area() returns NULL if the object type is neither Polygon nor MultiPolygon.

702 MySQL Technical Reference for Version 4.1.1-alpha

10.5.2.1 General Geometry Property Analysis Functions

The functions listed in this ssection do not restrict their argument and accept a geometry
value of any type.

GeometryType(g)
Returns as a string the name of the geometry type of which the geometry
instance g is a member. The name will correspond to one of the instantiable
Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText(’POINT(1 1)’));
+--+
| GeometryType(GeomFromText(’POINT(1 1)’)) |
+--+
| POINT |
+--+

Dimension(g)
Returns the inherent dimension of the geometry value g. The result can be −1,
0, 1, or 2. (The meaning of these values is given in Section 10.2.2 [GIS class
geometry], page 688.)

mysql> SELECT Dimension(GeomFromText(’LineString(1 1,2 2)’));
+--+
| Dimension(GeomFromText(’LineString(1 1,2 2)’)) |
+--+
| 1 |
+--+

SRID(g) Returns an integer indicating the Spatial Reference System ID for the geometry
value g.

mysql> SELECT SRID(GeomFromText(’LineString(1 1,2 2)’,101));
+---+
| SRID(GeomFromText(’LineString(1 1,2 2)’,101)) |
+---+
| 101 |
+---+

Envelope(g)
Returns the Minimum Bounding Rectangle (MBR) for the geometry value g.
The result is returned as a polygon value.

mysql> SELECT AsText(Envelope(GeomFromText(’LineString(1 1,2 2)’)));
+---+
| AsText(Envelope(GeomFromText(’LineString(1 1,2 2)’))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

The polygon is defined by the corner points of the bounding box:
POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

Chapter 10: Spatial Extensions in MySQL 703

The OpenGIS specification also defines the following functions, which MySQL does not yet
implement:

Boundary(g)
Returns a geometry that is the closure of the combinatorial boundary of the
geometry value g.

IsEmpty(g)
Returns 1 if the geomtry value g is the empty geometry, 0 if it is not empty,
and −1 if the argument is NULL. If the geometry is empty, it represents the
empty point set.

IsSimple(g)
Currently, this function is a placeholder and should not be used. When imple-
mented, its behavior will be as described in the next paragraph.
Returns 1 if the geometry value g has no anomalous geometric points, such as
self intersection or self tangency. IsSimple() returns 0 if the argument is not
simple, and −1 if it is NULL.
The description of each instantiable geometric class given earlier in the chap-
ter includes the specific conditions that cause an instance of that class to be
classified as not simple.

10.5.2.2 Point Property Analysis Functions

A Point consists of its X and Y coordinates, which may be obtained using the following
functions:

X(p) Returns the X-coordinate value for the point p as a double-precision number.
mysql> SELECT X(GeomFromText(’Point(56.7 53.34)’));
+--------------------------------------+
| X(GeomFromText(’Point(56.7 53.34)’)) |
+--------------------------------------+
| 56.7 |
+--------------------------------------+

Y(p) Returns the Y-coordinate value for the point p as a double-precision number.
mysql> SELECT Y(GeomFromText(’Point(56.7 53.34)’));
+--------------------------------------+
| Y(GeomFromText(’Point(56.7 53.34)’)) |
+--------------------------------------+
| 53.34 |
+--------------------------------------+

10.5.2.3 LineString Property Analysis Functions

A LineString consists of Point values. You can extract particular points of a LineString,
count the number of points that it contains, or obtain its length.

704 MySQL Technical Reference for Version 4.1.1-alpha

EndPoint(ls)
Returns the Point that is the end point of the LineString value ls.

mysql> SELECT AsText(EndPoint(GeomFromText(’LineString(1 1,2 2,3 3)’)));
+--+
| AsText(EndPoint(GeomFromText(’LineString(1 1,2 2,3 3)’))) |
+--+
| POINT(3 3) |
+--+

GLength(ls)
Returns as a double-precision number the length of the LineString value ls
in its associated spatial reference.

mysql> SELECT GLength(GeomFromText(’LineString(1 1,2 2,3 3)’));
+--+
| GLength(GeomFromText(’LineString(1 1,2 2,3 3)’)) |
+--+
| 2.8284271247462 |
+--+

IsClosed(ls)
Returns 1 if the LineString value ls is closed (that is, it sStartPoint() and
EndPoint() values are the same). Returns 0 if ls is not closed, and −1 if it is
NULL.

mysql> SELECT IsClosed(GeomFromText(’LineString(1 1,2 2,3 3)’));
+---+
| IsClosed(GeomFromText(’LineString(1 1,2 2,3 3)’)) |
+---+
| 0 |
+---+

NumPoints(ls)
Returns the number of points in the LineString value ls.

mysql> SELECT NumPoints(GeomFromText(’LineString(1 1,2 2,3 3)’));
+--+
| NumPoints(GeomFromText(’LineString(1 1,2 2,3 3)’)) |
+--+
| 3 |
+--+

PointN(ls,n)
Returns the n-th point in the Linestring value ls. Point numbers begin at 1.

mysql> SELECT AsText(PointN(GeomFromText(’LineString(1 1,2 2,3 3)’),2));
+---+
| AsText(PointN(GeomFromText(’LineString(1 1,2 2,3 3)’),2)) |
+---+
| POINT(2 2) |
+---+

Chapter 10: Spatial Extensions in MySQL 705

StartPoint(ls)
Returns the Point that is the start point of the LineString value ls.

mysql> SELECT AsText(StartPoint(GeomFromText(’LineString(1 1,2 2,3 3)’)));
+---+
| AsText(StartPoint(GeomFromText(’LineString(1 1,2 2,3 3)’))) |
+---+
| POINT(1 1) |
+---+

The OpenGIS specification also defines the following function, which MySQL does not yet
implement:

IsRing(ls)
Returns 1 if the LineString value ls is closed (thatis, its StartPoint() and
EndPoint() values are the same) and is simple (does not pass through the same
point more than once). Returns 0 if ls is not a ring, and −1 if it is NULL.

10.5.2.4 MultiLineString Property Analysis Functions

GLength(mls)
Returns as a double-precision number the length of the MultiLineString value
mls. The length of mls is equal to the sum of the lengths of its elements.

mysql> SELECT GLength(GeomFromText(’MultiLineString((1 1,2 2,3 3),(4 4,5 5))’));
+---+
| GLength(GeomFromText(’MultiLineString((1 1,2 2,3 3),(4 4,5 5))’)) |
+---+
| 4.2426406871193 |
+---+

IsClosed(mls)
Returns 1 if the MultiLineString value mls is closed (that is, the
StartPoint() and EndPoint() values are the same for each LineString in
mls). Returns 0 if mls is not closed, and −1 if it is NULL.

mysql> SELECT IsClosed(GeomFromText(’MultiLineString((1 1,2 2,3 3),(4 4,5 5))’));
+--+
| IsClosed(GeomFromText(’MultiLineString((1 1,2 2,3 3),(4 4,5 5))’)) |
+--+
| 0 |
+--+

10.5.2.5 Polygon Property Analysis Functions

Area(poly)
Returns as a double-precision number the area of the Polygon value poly, as
measured in its spatial reference system.

mysql> SELECT Area(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’));
+--+

706 MySQL Technical Reference for Version 4.1.1-alpha

| Area(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’)) |
+--+
| 8 |
+--+

NumInteriorRings(poly)
Returns the number of interior rings in the Polygon value poly.

mysql> SELECT NumInteriorRings(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’));
+--+
| NumInteriorRings(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’)) |
+--+
| 1 |
+--+

ExteriorRing(poly)
Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SELECT AsText(ExteriorRing(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’)));
+--+
| AsText(ExteriorRing(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’))) |
+--+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+--+

InteriorRingN(poly,n)
Returns the n-th interior ring for the Polygon value poly as a LineString.
Ring numbers begin at 1.

mysql> SELECT AsText(InteriorRingN(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’),1));
+---+
| AsText(InteriorRingN(GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))’),1)) |
+---+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+---+

The OpenGIS specification also defines the following functions, which MySQL does not yet
implement:

Centroid(poly)
Returns the mathematical centroid for the Polygon value poly as a Point. The
result is not guaranteed to be on the polygon.

PointOnSurface(poly)
Returns a Point value that is guaranteed to be on the Polygon value poly.

10.5.2.6 MultiPolygon Property Analysis Functions

Area(mpoly)
Returns as a double-precision number the area of the MultiPolygon value
mpoly, as measured in its spatial reference system.

Chapter 10: Spatial Extensions in MySQL 707

mysql> SELECT Area(GeomFromText(’MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))’));
+---+
| Area(GeomFromText(’MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))’)) |
+---+
| 8 |
+---+

The OpenGIS specification also defines the following functions, which MySQL does not yet
implement:

Centroid(mpoly)
Returns the mathematical centroid for the MultiPolygon value mpoly as a
Point. The result is not guaranteed to be on the MultiPolygon.

PointOnSurface(mpoly)
Returns a Point value that is guaranteed to be on the MultiPolygon value
mpoly.

10.5.2.7 GeometryCollection Property Analysis Functions

NumGeometries(gc)
Returns the number of geometries in the GeometryCollection value gc.

mysql> SELECT NumGeometries(GeomFromText(’GeometryCollection(Point(1 1),LineString(2 2, 3 3))’));
+--+
| NumGeometries(GeomFromText(’GeometryCollection(Point(1 1),LineString(2 2, 3 3))’)) |
+--+
| 2 |
+--+

GeometryN(gc,n)
Returns the n-th geometry in the GeometryCollection value gc. Geometry
numbers begin at 1.

mysql> SELECT AsText(GeometryN(GeomFromText(’GeometryCollection(Point(1 1),LineString(2 2, 3 3))’),1));
+--+
| AsText(GeometryN(GeomFromText(’GeometryCollection(Point(1 1),LineString(2 2, 3 3))’),1)) |
+--+
| POINT(1 1) |
+--+

10.5.3 Functions That Create New Geometries From Existing
Ones

10.5.3.1 Geometry Functions That Produce New Geometries

In the section Section 10.5.2 [Geometry property functions], page 701, we’ve already dis-
cussed some functions that can construct new geometries from the existing ones:
• Envelope(g)

708 MySQL Technical Reference for Version 4.1.1-alpha

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls,n)

• ExteriorRing(poly)

• InteriorRingN(poly,n)

• GeometryN(gc,n)

10.5.3.2 Spatial Operators

OpenGIS proposes a number of other functions that can produce geometries. They are
designed to implement Spatial Operators.
These functions are not yet implemented in MySQL. They should appear in future releases.

Intersection(g1,g2)
Returns a geometry that represents the point set intersection of the geometry
values g1 with g2.

Union(g1,g2)
Returns a geometry that represents the point set union of the geometry values
g1 and g2.

Difference(g1,g2)
Returns a geometry that represents the point set difference of the geometry
value g1 with g2.

SymDifference(g1,g2)
Returns a geometry that represents the point set symmetric difference of the
geometry value g1 with g2.

Buffer(g,d)
Returns a geometry that represents all points whose distance from the geometry
value g is less than or equal to a distance of d.

ConvexHull(g)
Returns a geometry that represents the convex hull of the geometry value g.

10.5.4 Functions For Testing Spatial Relations Between Geometric
Objects

The functions described in these sections take two geometries as input parameters and
return a qualitive or quantitive relation between them.

10.5.5 Relations On Geometry Minimal Bounding Rectangles
(MBRs)

MySQL provides some functions that can test relations between mininal bounding rectangles
of two geometries g1 and g2. They include:

Chapter 10: Spatial Extensions in MySQL 709

MBRContains(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of
g1 contains the Minimum Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0))’);
mysql> SET @g2 = GeomFromText(’Point(1 1)’);
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

MBRWithin(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangle of
g1 is within the Minimum Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText(’Polygon((0 0,0 3,3 3,3 0,0 0))’);
mysql> SET @g2 = GeomFromText(’Polygon((0 0,0 5,5 5,5 0,0 0))’);
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

MBRDisjoint(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles
of the two geometries g1 and g2 are disjoint (do not intersect).

MBREquals(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles
of the two geometries g1 and g2 are the same.

MBRIntersects(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles
of the two geometries g1 and g2 intersect.

MBROverlaps(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles
of the two geometries g1 and g2 overlap.

MBRTouches(g1,g2)
Returns 1 or 0 to indicate whether or not the Minimum Bounding Rectangles
of the two geometries g1 and g2 touch.

10.5.6 Functions That Test Spatial Relationships Between
Geometries

The OpenGIS specification defines the following functions, which MySQL does not yet
implement. They should appear in future releases. When implemented, they will provide
full support for spatial analysis, not just MBR-based support.

710 MySQL Technical Reference for Version 4.1.1-alpha

The functions operate on two geometry values g1 and g2.

Contains(g1,g2)
Returns 1 or 0 to indicate whether or not g1 completely contains g2.

Crosses(g1,g2)
Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a
MultiPolygon, or if g2 is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geome-
tries that has the following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one
less than the maximum dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

Disjoint(g1,g2)
Returns 1 or 0 to indicate whether or not g1 is spatially disjoint from (does not
intersect) g2.

Equals(g1,g2)
Returns 1 or 0 to indicate whether or not g1 is spatially equal to g2.

Intersects(g1,g2)
Returns 1 or 0 to indicate whether or not g1 spatially intersects g2.

Overlaps(g1,g2)
Returns 1 or 0 to indicate whether or not g1 spatially overlaps g2. The term
spatially overlaps is used if two geometries intersect and their intersection
results in a geometry of the same dimension but not equal to either of the given
geometries.

Touches(g1,g2)
Returns 1 or 0 to indicate whether or not g1 spatially touches g2. Two geome-
tries spatially touch if the interiors of the geometries do not intersect, but the
boundary of one of the geometries intersects either the boundary or the interior
of the other.

Within(g1,g2)
Returns 1 or 0 to indicate whether or not g1 is spatially within g2.

Distance(g1,g2)
Returns as a double-precision number the shortest distance between any two
points in the two geometries.

Related(g1,g2,pattern_matrix)
Returns 1 or 0 to indicate whether or not the spatial relationship specified by
pattern_matrix exists between g1 and g2. Returns −1 if the arguments are
NULL. The pattern matrix is a string. Its specification will be noted here when
this function is implemented.

Chapter 10: Spatial Extensions in MySQL 711

10.6 Optimising Spatial Analysis

It is known that search operations in non-spatial databases can be optimised using in-
dexes. This is true for spatial databases as well. With the help of a great variety of multi-
dimensional indexing methods that have already been designed, it’s possible to optimise
spatial searches. The most typical of these are:
• Point queries that search for all objects that contain a given point
• Region queries that search for all objects that overlap a given region

MySQL utilises R-Trees with quadratic splitting to index spatial columns. A spatial index is
built using the MBR of a geometry. For most geometries, the MBR is a minimum rectangle
that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a
rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated
into the point.

10.6.1 Creating Spatial Indexes

MySQL can create spatial indexes using syntax similar to that for creating regular indexes,
but extended with the SPATIAL keyword. Spatial columns that are indexed currently must
be declared NOT NULL. The following examples demonstrate how to create spatial indexes.
• With CREATE TABLE:

mysql> CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

• With ALTER TABLE:
mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:
mysql> CREATE SPATIAL INDEX sp_index ON geom (g);

To drop spatial indexes, use ALTER TABLE or DROP INDEX:
• With ALTER TABLE:

mysql> ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:
mysql> DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32000 geometries, which are stored
in the column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for
storing object ID values.

mysql> SHOW FIELDS FROM geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

712 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

10.6.2 Using a Spatial Index

The optimiser investigates whether available spatial indexes can be involved in the search
for queries that use a function such as MBRContains() or MBRWithin() in the WHERE clause.
For example, let’s say we want to find all objects that are in the given rectangle:

mysql> SELECT fid,AsText(g) FROM geom WHERE
mysql> MBRContains(GeomFromText(’Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))’),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8)
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4)
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2)
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823)
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2)
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2)
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4)
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2)
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121)
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113)
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6)
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2)
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077)
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4)
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019)
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8)
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8)
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134)
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4)
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001)
+-----+---+
20 rows in set (0.00 sec)

Now let’s check the way this query is executed, using EXPLAIN:

Chapter 10: Spatial Extensions in MySQL 713

mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
mysql> MBRContains(GeomFromText(’Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))’),g);
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | geom | range | g | g | 32 | NULL | 50 | Using where |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)

Now let’s check what would happen if we didn’t have a spatial index:

mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
mysql> MBRContains(GeomFromText(’Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))’),g);
+----+-------------+-------+------+---------------+------+---------+------+-------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+-------+-------------+
| 1 | SIMPLE | geom | ALL | NULL | NULL | NULL | NULL | 32376 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+-------+-------------+
1 row in set (0.00 sec)

Let’s execute the above query, ignoring the spatial key we have:

mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
mysql> MBRContains(GeomFromText(’Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))’),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136.4,30240 15127.2)
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136,30210.4 15121)
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,30169 15113)
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30157 15111.6)
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4,30194.2 15075.2)
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,30244.6 15077)
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8,30201.2 15049.4)
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6,30189.6 15019)
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2,30151.2 15009.8)
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,30114.6 15067.8)
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30333.8 15828.8)
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8,30334 15871.4)
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4,30334 15914.2)
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4,30273.4 15823)
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882.4,30274.8 15866.2)
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4,30275 15918.2)
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30278 15134)
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30259 15083.4)
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4,30128.8 15001)
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946.8,30320.4 15938.4)
+-----+---+
20 rows in set (0.46 sec)

714 MySQL Technical Reference for Version 4.1.1-alpha

When the index is not used, the execution time for this query rises from 0.00 seconds to
0.46 seconds.
In future releases, spatial indexes will also be used for optimising other functions. See
Section 10.5.4 [Functions for testing spatial relations between geometric objects], page 708.

10.7 MySQL Conformance and Compatibility

10.7.1 GIS Features That Are Not Yet Implemented

Additional Metadata Views
OpenGIS specifications propose several additional metadata views. For exam-
ple, a system view named GEOMETRY_COLUMNS contains a description of geometry
columns, one row for each geometry column in the database.

Functions to add/drop spatial columns
OpenGIS assumes that columns can be added or dropped using special
AddGeometryColumn() and DropGeometryColumn() functions. In MySQL,
this is done using the ALTER TABLE, CREATE INDEX, and DROP INDEX statements
instead.

Factors related to Spatial Reference Systems and their IDs (SRIDs):
• Functions like Length() and Area() assume a planar coordinate system.
• All objects currently are considered to be in the same planar coordinate

system.

The OpenGIS function Length() on LineString and MultiLineString currently should
be called in MySQL as GLength()

The problem is that it conflicts with the existing SQL function Length() that
calculates the length of string values, and sometimes it’s not possible to distin-
guish whether the function is called in a textual or spatial context. We need
either to solve this somehow, or decide on another function name.

Chapter 11: MySQL APIs 715

11 MySQL APIs

This chapter describes the APIs available for MySQL, where to get them, and how to use
them. The C API is the most extensively covered, as it was developed by the MySQL team,
and is the basis for most of the other APIs.

11.1 MySQL C API

The C API code is distributed with MySQL. It is included in the mysqlclient library and
allows C programs to access a database.

Many of the clients in the MySQL source distribution are written in C. If you are looking
for examples that demonstrate how to use the C API, take a look at these clients. You can
find these in the clients directory in the MySQL source distribution.

Most of the other client APIs (all except Connector/J) use the mysqlclient library to
communicate with the MySQL server. This means that, for example, you can take advantage
of many of the same environment variables that are used by other client programs, because
they are referenced from the library. See Section 4.9 [Client-Side Scripts], page 325, for a
list of these variables.

The client has a maximum communication buffer size. The size of the buffer that is allocated
initially (16K bytes) is automatically increased up to the maximum size (the maximum is
16M). Because buffer sizes are increased only as demand warrants, simply increasing the
default maximum limit does not in itself cause more resources to be used. This size check
is mostly a check for erroneous queries and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for
client-to-server traffic) and one row of returned data (for server-to-client traffic). Each
thread’s communication buffer is dynamically enlarged to handle any query or row up to
the maximum limit. For example, if you have BLOB values that contain up to 16M of data,
you must have a communication buffer limit of at least 16M (in both server and client).
The client’s default maximum is 16M, but the default maximum in the server is 1M. You
can increase this by changing the value of the max_allowed_packet parameter when the
server is started. See Section 5.5.2 [Server parameters], page 427.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after
each query. For clients, the size of the buffer associated with a connection is not decreased
until the connection is closed, at which time client memory is reclaimed.

For programming with threads, see Section 11.1.14 [Threaded clients], page 797. For creat-
ing a stand-alone application which includes the "server" and "client" in the same program
(and does not communicate with an external MySQL server), see Section 11.1.15 [libmysqld],
page 799.

11.1.1 C API Datatypes

MYSQL This structure represents a handle to one database connection. It is used for
almost all MySQL functions.

716 MySQL Technical Reference for Version 4.1.1-alpha

MYSQL_RES
This structure represents the result of a query that returns rows (SELECT, SHOW,
DESCRIBE, EXPLAIN). The information returned from a query is called the result
set in the remainder of this section.

MYSQL_ROW
This is a type-safe representation of one row of data. It is currently implemented
as an array of counted byte strings. (You cannot treat these as null-terminated
strings if field values may contain binary data, because such values may contain
null bytes internally.) Rows are obtained by calling mysql_fetch_row().

MYSQL_FIELD
This structure contains information about a field, such as the field’s name,
type, and size. Its members are described in more detail here. You may obtain
the MYSQL_FIELD structures for each field by calling mysql_fetch_field()
repeatedly. Field values are not part of this structure; they are contained in a
MYSQL_ROW structure.

MYSQL_FIELD_OFFSET
This is a type-safe representation of an offset into a MySQL field list. (Used
by mysql_field_seek().) Offsets are field numbers within a row, beginning
at zero.

my_ulonglong
The type used for the number of rows and for mysql_affected_rows(), mysql_
num_rows(), and mysql_insert_id(). This type provides a range of 0 to
1.84e19.
On some systems, attempting to print a value of type my_ulonglong will not
work. To print such a value, convert it to unsigned long and use a %lu print
format. Example:

printf ("Number of rows: %lu\n", (unsigned long) mysql_num_rows(result));

The MYSQL_FIELD structure contains the members listed here:

char * name
The name of the field, as a null-terminated string.

char * table
The name of the table containing this field, if it isn’t a calculated field. For
calculated fields, the table value is an empty string.

char * def
The default value of this field, as a null-terminated string. This is set only if
you use mysql_list_fields().

enum enum_field_types type
The type of the field. The type value may be one of the following:
Type value Type description
FIELD_TYPE_TINY TINYINT field
FIELD_TYPE_SHORT SMALLINT field
FIELD_TYPE_LONG INTEGER field

Chapter 11: MySQL APIs 717

FIELD_TYPE_INT24 MEDIUMINT field
FIELD_TYPE_LONGLONG BIGINT field
FIELD_TYPE_DECIMAL DECIMAL or NUMERIC field
FIELD_TYPE_FLOAT FLOAT field
FIELD_TYPE_DOUBLE DOUBLE or REAL field
FIELD_TYPE_TIMESTAMP TIMESTAMP field
FIELD_TYPE_DATE DATE field
FIELD_TYPE_TIME TIME field
FIELD_TYPE_DATETIME DATETIME field
FIELD_TYPE_YEAR YEAR field
FIELD_TYPE_STRING CHAR field
FIELD_TYPE_VAR_STRING VARCHAR field
FIELD_TYPE_BLOB BLOB or TEXT field (use max_length to deter-

mine the maximum length)
FIELD_TYPE_SET SET field
FIELD_TYPE_ENUM ENUM field
FIELD_TYPE_NULL NULL-type field
FIELD_TYPE_CHAR Deprecated; use FIELD_TYPE_TINY instead
You can use the IS_NUM() macro to test whether a field has a numeric type.
Pass the type value to IS_NUM() and it will evaluate to TRUE if the field is
numeric:

if (IS_NUM(field->type))
printf("Field is numeric\n");

unsigned int length
The width of the field, as specified in the table definition.

unsigned int max_length
The maximum width of the field for the result set (the length of the longest field
value for the rows actually in the result set). If you use mysql_store_result()
or mysql_list_fields(), this contains the maximum length for the field. If
you use mysql_use_result(), the value of this variable is zero.

unsigned int flags
Different bit-flags for the field. The flags value may have zero or more of the
following bits set:
Flag value Flag description
NOT_NULL_FLAG Field can’t be NULL
PRI_KEY_FLAG Field is part of a primary key
UNIQUE_KEY_FLAG Field is part of a unique key
MULTIPLE_KEY_FLAG Field is part of a non-unique key
UNSIGNED_FLAG Field has the UNSIGNED attribute
ZEROFILL_FLAG Field has the ZEROFILL attribute
BINARY_FLAG Field has the BINARY attribute
AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute
ENUM_FLAG Field is an ENUM (deprecated)
SET_FLAG Field is a SET (deprecated)
BLOB_FLAG Field is a BLOB or TEXT (deprecated)

718 MySQL Technical Reference for Version 4.1.1-alpha

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)
Use of the BLOB_FLAG, ENUM_FLAG, SET_FLAG, and TIMESTAMP_FLAG flags is
deprecated because they indicate the type of a field rather than an attribute
of its type. It is preferable to test field->type against FIELD_TYPE_BLOB,
FIELD_TYPE_ENUM, FIELD_TYPE_SET, or FIELD_TYPE_TIMESTAMP instead.
The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
printf("Field can’t be null\n");

You may use the following convenience macros to determine the boolean status
of the flags value:
Flag status Description
IS_NOT_NULL(flags) True if this field is defined as NOT NULL
IS_PRI_KEY(flags) True if this field is a primary key
IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated;

test field->type instead)

unsigned int decimals
The number of decimals for numeric fields.

11.1.2 C API Function Overview

The functions available in the C API are summarised here and described in greater detail
in a later section. See Section 11.1.3 [C API functions], page 722.

Function Description

mysql affected rows() Returns the number of rows changed/deleted/inserted by
the last UPDATE, DELETE, or INSERT query.

mysql change user() Changes user and database on an open connection.

mysql character set name() Returns the name of the default character set for the con-
nection.

mysql close() Closes a server connection.

mysql connect() Connects to a MySQL server. This function is deprecated;
use mysql_real_connect() instead.

mysql create db() Creates a database. This function is deprecated; use the
SQL command CREATE DATABASE instead.

mysql data seek() Seeks to an arbitrary row number in a query result set.

mysql debug() Does a DBUG_PUSH with the given string.

mysql drop db() Drops a database. This function is deprecated; use the SQL
command DROP DATABASE instead.

mysql dump debug info() Makes the server write debug information to the log.

Chapter 11: MySQL APIs 719

mysql eof() Determines whether the last row of a result set has been
read. This function is deprecated; mysql_errno() or
mysql_error() may be used instead.

mysql errno() Returns the error number for the most recently invoked
MySQL function.

mysql error() Returns the error message for the most recently invoked
MySQL function.

mysql escape string() Escapes special characters in a string for use in an SQL
statement.

mysql fetch field() Returns the type of the next table field.

mysql fetch field direct() Returns the type of a table field, given a field number.

mysql fetch fields() Returns an array of all field structures.

mysql fetch lengths() Returns the lengths of all columns in the current row.

mysql fetch row() Fetches the next row from the result set.

mysql field seek() Puts the column cursor on a specified column.

mysql field count() Returns the number of result columns for the most recent
query.

mysql field tell() Returns the position of the field cursor used for the last
mysql_fetch_field().

mysql free result() Frees memory used by a result set.

mysql get client info() Returns client version information.

mysql get host info() Returns a string describing the connection.

mysql get server version() Returns version number of server as an integer (new in 4.1).

mysql get proto info() Returns the protocol version used by the connection.

mysql get server info() Returns the server version number.

mysql info() Returns information about the most recently executed
query.

mysql init() Gets or initialises a MYSQL structure.

mysql insert id() Returns the ID generated for an AUTO_INCREMENT column
by the previous query.

mysql kill() Kills a given thread.

mysql list dbs() Returns database names matching a simple regular expres-
sion.

720 MySQL Technical Reference for Version 4.1.1-alpha

mysql list fields() Returns field names matching a simple regular expression.

mysql list processes() Returns a list of the current server threads.

mysql list tables() Returns table names matching a simple regular expression.

mysql num fields() Returns the number of columns in a result set.

mysql num rows() Returns the number of rows in a result set.

mysql options() Sets connect options for mysql_connect().

mysql ping() Checks whether the connection to the server is working,
reconnecting as necessary.

mysql query() Executes an SQL query specified as a null-terminated string.

mysql real connect() Connects to a MySQL server.

mysql real escape string() Escapes special characters in a string for use in an SQL
statement, taking into account the current charset of the
connection.

mysql real query() Executes an SQL query specified as a counted string.

mysql reload() Tells the server to reload the grant tables.

mysql row seek() Seeks to a row offset in a result set, using value returned
from mysql_row_tell().

mysql row tell() Returns the row cursor position.

mysql select db() Selects a database.

mysql sqlstate() Returns the SQLSTATE error code for the last error.

mysql shutdown() Shuts down the database server.

mysql stat() Returns the server status as a string.

mysql store result() Retrieves a complete result set to the client.

mysql thread id() Returns the current thread ID.

mysql thread safe() Returns 1 if the clients are compiled as thread-safe.

mysql use result() Initiates a row-by-row result set retrieval.

mysql commit() Commits the transaction (new in 4.1).

mysql rollback() Rolls back the transaction (new in 4.1).

mysql autocommit() Toggles autocommit mode on/off (new in 4.1).

mysql more results() Checks whether any more results exist (new in 4.1).

Chapter 11: MySQL APIs 721

mysql next result() Returns/Initiates the next result in multi-query executions
(new in 4.1).

To connect to the server, call mysql_init() to initialise a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the host-
name, user name, and password). Upon connection, mysql_real_connect() sets the
reconnect flag (part of the MYSQL structure) to a value of 1. This flag indicates, in the
event that a query cannot be performed because of a lost connection, to try reconnecting to
the server before giving up. When you are done with the connection, call mysql_close()
to terminate it.
While a connection is active, the client may send SQL queries to the server using mysql_
query() or mysql_real_query(). The difference between the two is that mysql_query()
expects the query to be specified as a null-terminated string whereas mysql_real_query()
expects a counted string. If the string contains binary data (which may include null bytes),
you must use mysql_real_query().
For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how
many rows were changed (affected) by calling mysql_affected_rows().
For SELECT queries, you retrieve the selected rows as a result set. (Note that some state-
ments are SELECT-like in that they return rows. These include SHOW, DESCRIBE, and
EXPLAIN. They should be treated the same way as SELECT statements.)
There are two ways for a client to process result sets. One way is to retrieve the entire
result set all at once by calling mysql_store_result(). This function acquires from the
server all the rows returned by the query and stores them in the client. The second way is
for the client to initiate a row-by-row result set retrieval by calling mysql_use_result().
This function initialises the retrieval, but does not actually get any rows from the server.
In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_
result(), mysql_fetch_row() accesses rows that have already been fetched from the
server. With mysql_use_result(), mysql_fetch_row() actually retrieves the row from
the server. Information about the size of the data in each row is available by calling
mysql_fetch_lengths().
After you are done with a result set, call mysql_free_result() to free the memory used
for it.
The two retrieval mechanisms are complementary. Client programs should choose the ap-
proach that is most appropriate for their requirements. In practice, clients tend to use
mysql_store_result() more commonly.
An advantage of mysql_store_result() is that because the rows have all been fetched
to the client, you not only can access rows sequentially, you can move back and forth
in the result set using mysql_data_seek() or mysql_row_seek() to change the current
row position within the result set. You can also find out how many rows there are by
calling mysql_num_rows(). On the other hand, the memory requirements for mysql_store_
result() may be very high for large result sets and you are more likely to encounter
out-of-memory conditions.
An advantage of mysql_use_result() is that the client requires less memory for the result
set because it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row
quickly to avoid tying up the server, you don’t have random access to rows within the result

722 MySQL Technical Reference for Version 4.1.1-alpha

set (you can only access rows sequentially), and you don’t know how many rows are in the
result set until you have retrieved them all. Furthermore, you must retrieve all the rows
even if you determine in mid-retrieval that you’ve found the information you were looking
for.
The API makes it possible for clients to respond appropriately to queries (retrieving rows
only as necessary) without knowing whether or not the query is a SELECT. You can do this
by calling mysql_store_result() after each mysql_query() (or mysql_real_query()). If
the result set call succeeds, the query was a SELECT and you can read the rows. If the result
set call fails, call mysql_field_count() to determine whether a result was actually to be
expected. If mysql_field_count() returns zero, the query returned no data (indicating
that it was an INSERT, UPDATE, DELETE, etc.), and was not expected to return rows. If
mysql_field_count() is non-zero, the query should have returned rows, but didn’t. This
indicates that the query was a SELECT that failed. See the description for mysql_field_
count() for an example of how this can be done.
Both mysql_store_result() and mysql_use_result() allow you to obtain information
about the fields that make up the result set (the number of fields, their names and types,
etc.). You can access field information sequentially within the row by calling mysql_fetch_
field() repeatedly, or by field number within the row by calling mysql_fetch_field_
direct(). The current field cursor position may be changed by calling mysql_field_
seek(). Setting the field cursor affects subsequent calls to mysql_fetch_field(). You can
also get information for fields all at once by calling mysql_fetch_fields().
For detecting and reporting errors, MySQL provides access to error information by means
of the mysql_errno() and mysql_error() functions. These return the error code or error
message for the most recently invoked function that can succeed or fail, allowing you to
determine when an error occurred and what it was.

11.1.3 C API Function Descriptions

In the descriptions here, a parameter or return value of NULL means NULL in the sense of
the C programming language, not a MySQL NULL value.
Functions that return a value generally return a pointer or an integer. Unless specified
otherwise, functions returning a pointer return a non-NULL value to indicate success or a
NULL value to indicate an error, and functions returning an integer return zero to indicate
success or non-zero to indicate an error. Note that “non-zero” means just that. Unless the
function description says otherwise, do not test against a value other than zero:

if (result) /* correct */
... error ...

if (result < 0) /* incorrect */
... error ...

if (result == -1) /* incorrect */
... error ...

When a function returns an error, the Errors subsection of the function description lists the
possible types of errors. You can find out which of these occurred by calling mysql_errno().
A string representation of the error may be obtained by calling mysql_error().

Chapter 11: MySQL APIs 723

11.1.3.1 mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

Returns the number of rows changed by the last UPDATE, deleted by the last DELETE or
inserted by the last INSERT statement. May be called immediately after mysql_query() for
UPDATE, DELETE, or INSERT statements. For SELECT statements, mysql_affected_rows()
works like mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero
indicates that no records where updated for an UPDATE statement, no rows matched the
WHERE clause in the query or that no query has yet been executed. -1 indicates that the
query returned an error or that, for a SELECT query, mysql_affected_rows() was called
prior to calling mysql_store_result().

Errors

None.

Example

mysql_query(&mysql,"UPDATE products SET cost=cost*1.25 WHERE group=10");
printf("%ld products updated",(long) mysql_affected_rows(&mysql));

If one specifies the flag CLIENT_FOUND_ROWS when connecting to mysqld, mysql_affected_
rows() will return the number of rows matched by the WHERE statement for UPDATE state-
ments.
Note that when one uses a REPLACE command, mysql_affected_rows() will return 2 if the
new row replaced and old row. This is because in this case one row was inserted after the
duplicate was deleted.

11.1.3.2 mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char
*password, const char *db)

Description

Changes the user and causes the database specified by db to become the default (current)
database on the connection specified by mysql. In subsequent queries, this database is the
default for table references that do not include an explicit database specifier.
This function was introduced in MySQL Version 3.23.3.

724 MySQL Technical Reference for Version 4.1.1-alpha

mysql_change_user() fails unless the connected user can be authenticated or if he doesn’t
have permission to use the database. In this case the user and database are not changed

The db parameter may be set to NULL if you don’t want to have a default database.

Starting from MySQL 4.0.6 this command will always ROLLBACK any active transactions,
close all temporary tables, unlock all locked tables and reset the state as if one had done a
new connect. This will happen even if the user didn’t change.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

The same that you can get from mysql_real_connect().

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

ER_UNKNOWN_COM_ERROR
The MySQL server doesn’t implement this command (probably an old server).

ER_ACCESS_DENIED_ERROR
The user or password was wrong.

ER_BAD_DB_ERROR
The database didn’t exist.

ER_DBACCESS_DENIED_ERROR
The user did not have access rights to the database.

ER_WRONG_DB_NAME
The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{

fprintf(stderr, "Failed to change user. Error: %s\n",
mysql_error(&mysql));

}

Chapter 11: MySQL APIs 725

11.1.3.3 mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set for the current connection.

Return Values

The default character set

Errors

None.

11.1.3.4 mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection
handle pointed to by mysql if the handle was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

11.1.3.5 mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd)

Description

This function is deprecated. It is preferable to use mysql_real_connect() instead.
mysql_connect() attempts to establish a connection to a MySQL database engine running
on host. mysql_connect() must complete successfully before you can execute any of the
other API functions, with the exception of mysql_get_client_info().

726 MySQL Technical Reference for Version 4.1.1-alpha

The meanings of the parameters are the same as for the corresponding parameters for mysql_
real_connect() with the difference that the connection parameter may be NULL. In this
case the C API allocates memory for the connection structure automatically and frees it
when you call mysql_close(). The disadvantage of this approach is that you can’t retrieve
an error message if the connection fails. (To get error information from mysql_errno() or
mysql_error(), you must provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

11.1.3.6 mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero if the database was created successfully. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

Chapter 11: MySQL APIs 727

Example

if(mysql_create_db(&mysql, "my_database"))
{

fprintf(stderr, "Failed to create new database. Error: %s\n",
mysql_error(&mysql));

}

11.1.3.7 mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number and
should be in the range from 0 to mysql_num_rows(stmt)-1.
This function requires that the result set structure contains the entire result of the query,
so mysql_data_seek() may be used only in conjunction with mysql_store_result(), not
with mysql_use_result().

Return Values

None.

Errors

None.

11.1.3.8 mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug li-
brary. To use this function, you must compile the client library to support debugging. See
Section E.1 [Debugging server], page 1004. See Section E.2 [Debugging client], page 1009.

Return Values

None.

Errors

None.

728 MySQL Technical Reference for Version 4.1.1-alpha

Example

The call shown here causes the client library to generate a trace file in ‘/tmp/client.trace’
on the client machine:

mysql_debug("d:t:O,/tmp/client.trace");

11.1.3.9 mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP
DATABASE statement instead.

Return Values

Zero if the database was dropped successfully. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
fprintf(stderr, "Failed to drop the database: Error: %s\n",

mysql_error(&mysql));

11.1.3.10 mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write some debug information to the log. For this to work, the
connected user must have the SUPER privilege.

Chapter 11: MySQL APIs 729

Return Values

Zero if the command was successful. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.11 mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.
mysql_eof() determines whether the last row of a result set has been read.
If you acquire a result set from a successful call to mysql_store_result(), the client
receives the entire set in one operation. In this case, a NULL return from mysql_fetch_
row() always means the end of the result set has been reached and it is unnecessary to call
mysql_eof(). When used with mysql_store_result(), mysql_eof() will always return
true.
On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the
rows of the set are obtained from the server one by one as you call mysql_fetch_row()
repeatedly. Because an error may occur on the connection during this process, a NULL
return value from mysql_fetch_row() does not necessarily mean the end of the result set
was reached normally. In this case, you can use mysql_eof() to determine what happened.
mysql_eof() returns a non-zero value if the end of the result set was reached and zero if
an error occurred.
Historically, mysql_eof() predates the standard MySQL error functions mysql_errno()
and mysql_error(). Because those error functions provide the same information, their
use is preferred over mysql_eof(), which is now deprecated. (In fact, they provide more
information, because mysql_eof() returns only a boolean value whereas the error functions
indicate a reason for the error when one occurs.)

Return Values

Zero if no error occurred. Non-zero if the end of the result set has been reached.

730 MySQL Technical Reference for Version 4.1.1-alpha

Errors

None.

Example

The following example shows how you might use mysql_eof():
mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:
mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

11.1.3.12 mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most
recently invoked API function that can succeed or fail. A return value of zero means that no
error occurred. Client error message numbers are listed in the MySQL ‘errmsg.h’ header
file. Server error message numbers are listed in ‘mysqld_error.h’. In the MySQL source
distribution you can find a complete list of error messages and error numbers in the file
‘Docs/mysqld_error.txt’. The server error codes also are listed at Section 12.1 [Error-
returns], page 823.
Note that some functions like mysql_fetch_row() don’t set mysql_errno() if they succeed.
A rule of thumb is that all functions that have to ask the server for information will reset
mysql_errno() if they succeed.

Chapter 11: MySQL APIs 731

Return Values

An error code value for the last mysql xxx call, if it failed. zero means no error occurred.

Errors

None.

11.1.3.13 mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string
containing the error message for the most recently invoked API function that failed. If a
function didn’t fail, the return value of mysql_error() may be the previous error or an
empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information will reset
mysql_error() if they succeed.

For functions that resets mysql_errno, the following two tests are equivalent:

if(mysql_errno(&mysql))
{

// an error occurred
}

if(mysql_error(&mysql)[0] != ’\0’)
{

// an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL
client library. Currently you can choose error messages in several different languages. See
Section 4.7.2 [Languages], page 307.

Return Values

A null-terminated character string that describes the error. An empty string if no error
occurred.

Errors

None.

732 MySQL Technical Reference for Version 4.1.1-alpha

11.1.3.14 mysql_escape_string()

You should use mysql_real_escape_string() instead!

This function is identical to mysql_real_escape_string() except that mysql_real_
escape_string() takes a connection handler as its first argument and escapes the
string according to the current character set. mysql_escape_string() does not take a
connection argument and does not respect the current charset setting.

11.1.3.15 mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this
function repeatedly to retrieve information about all columns in the result set. mysql_
fetch_field() returns NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you
execute a new SELECT query. The field returned by mysql_fetch_field() is also affected
by calls to mysql_field_seek().

If you’ve called mysql_query() to perform a SELECT on a table but have not called mysql_
store_result(), MySQL returns the default blob length (8K bytes) if you call mysql_
fetch_field() to ask for the length of a BLOB field. (The 8K size is chosen because
MySQL doesn’t know the maximum length for the BLOB. This should be made configurable
sometime.) Once you’ve retrieved the result set, field->max_length contains the length
of the largest value for this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{

printf("field name %s\n", field->name);
}

Chapter 11: MySQL APIs 733

11.1.3.16 mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides
the field definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{

printf("Field %u is %s\n", i, fields[i].name);
}

11.1.3.17 mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int
fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column’s field
definition as a MYSQL_FIELD structure. You may use this function to retrieve the definition
for an arbitrary column. The value of fieldnr should be in the range from 0 to mysql_
num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

734 MySQL Technical Reference for Version 4.1.1-alpha

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{

field = mysql_fetch_field_direct(result, i);
printf("Field %u is %s\n", i, field->name);

}

11.1.3.18 mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to
copy field values, this length information is also useful for optimisation, because you can
avoid calling strlen(). In addition, if the result set contains binary data, you must use
this function to determine the size of the data, because strlen() returns incorrect results
for any field containing null characters.
The length for empty columns and for columns containing NULL values is zero. To see how
to distinguish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any
terminating null characters). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL
if you call it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;

Chapter 11: MySQL APIs 735

unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{

num_fields = mysql_num_fields(result);
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("Column %u is %lu bytes in length.\n", i, lengths[i]);
}

}

11.1.3.19 mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(), mysql_
fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to
retrieve or if an error occurred.
The number of values in the row is given by mysql_num_fields(result). If row holds
the return value from a call to mysql_fetch_row(), pointers to the values are accessed as
row[0] to row[mysql_num_fields(result)-1]. NULL values in the row are indicated by
NULL pointers.
The lengths of the field values in the row may be obtained by calling mysql_fetch_
lengths(). Empty fields and fields containing NULL both have length 0; you can distinguish
these by checking the pointer for the field value. If the pointer is NULL, the field is NULL;
otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an
error occurred.

Errors

Note that error is not reset between calls to mysql_fetch_row()

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

736 MySQL Technical Reference for Version 4.1.1-alpha

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{

unsigned long *lengths;
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("[%.*s] ", (int) lengths[i], row[i] ? row[i] : "NULL");
}
printf("\n");

}

11.1.3.20 mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

If you are using a version of MySQL earlier than Version 3.22.24, you should use unsigned
int mysql_num_fields(MYSQL *mysql) instead.

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus
you have no result set pointer). In this case, you can call mysql_field_count() to de-
termine whether mysql_store_result() should have produced a non-empty result. This
allows the client program to take proper action without knowing whether the query was a
SELECT (or SELECT-like) statement. The example shown here illustrates how this may be
done.

See Section 11.1.12.1 [NULL mysql_store_result()], page 795.

Return Values

An unsigned integer representing the number of fields in a result set.

Errors

None.

Chapter 11: MySQL APIs 737

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if(mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
else // mysql_store_result() should have returned data
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

}
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_
errno(&mysql). In this case, you are checking directly for an error from
mysql_store_result() rather than inferring from the value of mysql_field_count()
whether the statement was a SELECT.

11.1.3.21 mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET
offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() will retrieve
the field definition of the column associated with that offset.

738 MySQL Technical Reference for Version 4.1.1-alpha

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

11.1.3.22 mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value
can be used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

11.1.3.23 mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_
result(), mysql_list_dbs(), etc. When you are done with a result set, you must free
the memory it uses by calling mysql_free_result().

Return Values

None.

Errors

None.

Chapter 11: MySQL APIs 739

11.1.3.24 mysql_get_client_info()

char *mysql_get_client_info(void)

Description

Returns a string that represents the client library version.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

11.1.3.25 mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns version number of server as an integer (new in 4.1).

Return Values

A number that represents the MySQL server version in format:
main version*10000 + minor version *100 + sub version
For example, 4.1.0 is returned as 40100.
This is useful to quickly determine the version of the server in a client program to know if
some capability exits.

Errors

None.

11.1.3.26 mysql_get_host_info()

char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server host name.

740 MySQL Technical Reference for Version 4.1.1-alpha

Return Values

A character string representing the server host name and the connection type.

Errors

None.

11.1.3.27 mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

11.1.3.28 mysql_get_server_info()

char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the server version number.

Return Values

A character string that represents the server version number.

Errors

None.

11.1.3.29 mysql_info()

char *mysql_info(MYSQL *mysql)

Chapter 11: MySQL APIs 741

Description

Retrieves a string providing information about the most recently executed query, but only
for the statements listed here. For other statements, mysql_info() returns NULL. The
format of the string varies depending on the type of query, as described here. The numbers
are illustrative only; the string will contain values appropriate for the query.

INSERT INTO ... SELECT ...
String format: Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ...
String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE
String format: Records: 3 Duplicates: 0 Warnings: 0

UPDATE String format: Rows matched: 40 Changed: 40 Warnings: 0

Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the
multiple-row form of the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed
query. NULL if no information is available for the query.

Errors

None.

11.1.3.30 mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initialises a MYSQL object suitable for mysql_real_connect(). If mysql is a
NULL pointer, the function allocates, initialises, and returns a new object. Otherwise, the
object is initialised and the address of the object is returned. If mysql_init() allocates a
new object, it will be freed when mysql_close() is called to close the connection.

Return Values

An initialised MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

742 MySQL Technical Reference for Version 4.1.1-alpha

Errors

In case of insufficient memory, NULL is returned.

11.1.3.31 mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the ID generated for an AUTO_INCREMENT column by the previous query. Use this
function after you have performed an INSERT query into a table that contains an AUTO_
INCREMENT field.
Note that mysql_insert_id() returns 0 if the previous query does not generate an AUTO_
INCREMENT value. If you need to save the value for later, be sure to call mysql_insert_id()
immediately after the query that generates the value.
If the previous query returned an error, the value of mysql_insert_id() is undefined.
mysql_insert_id() is updated after INSERT and UPDATE statements that generate an AUTO_
INCREMENT value or that set a column value to LAST_INSERT_ID(expr). See Section 6.3.6.2
[Miscellaneous functions], page 515.
Also note that the value of the SQL LAST_INSERT_ID() function always contains the most
recently generated AUTO_INCREMENT value, and is not reset between queries because the
value of that function is maintained in the server.

Return Values

The value of the AUTO_INCREMENT field that was updated by the previous query. Returns
zero if there was no previous query on the connection or if the query did not update an
AUTO_INCREMENT value.

Errors

None.

11.1.3.32 mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

Return Values

Zero for success. Non-zero if an error occurred.

Chapter 11: MySQL APIs 743

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.33 mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters ‘%’
or ‘_’, or may be a NULL pointer to match all databases. Calling mysql_list_dbs() is
similar to executing the query SHOW databases [LIKE wild].
You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.34 mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char
*wild)

744 MySQL Technical Reference for Version 4.1.1-alpha

Description

Returns a result set consisting of field names in the given table that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters ‘%’
or ‘_’, or may be a NULL pointer to match all fields. Calling mysql_list_fields() is similar
to executing the query SHOW COLUMNS FROM tbl_name [LIKE wild].

Note that it’s recommended that you use SHOW COLUMNS FROM tbl_name instead of mysql_
list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.35 mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of infor-
mation as that reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Chapter 11: MySQL APIs 745

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.36 mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the
simple regular expression specified by the wild parameter. wild may contain the wildcard
characters ‘%’ or ‘_’, or may be a NULL pointer to match all tables. Calling mysql_list_
tables() is similar to executing the query SHOW tables [LIKE wild].
You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.37 mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

or

746 MySQL Technical Reference for Version 4.1.1-alpha

unsigned int mysql_num_fields(MYSQL *mysql)

The second form doesn’t work on MySQL Version 3.22.24 or newer. To pass a MYSQL*
argument, you must use unsigned int mysql_field_count(MYSQL *mysql) instead.

Description

Returns the number of columns in a result set.
Note that you can get the number of columns either from a pointer to a result set or to
a connection handle. You would use the connection handle if mysql_store_result() or
mysql_use_result() returned NULL (and thus you have no result set pointer). In this case,
you can call mysql_field_count() to determine whether mysql_store_result() should
have produced a non-empty result. This allows the client program to take proper action
without knowing whether or not the query was a SELECT (or SELECT-like) statement. The
example shown here illustrates how this may be done.
See Section 11.1.12.1 [NULL mysql_store_result()], page 795.

Return Values

An unsigned integer representing the number of fields in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if (mysql_errno(&mysql))

Chapter 11: MySQL APIs 747

{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));

}
else if (mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
}

}

An alternative (if you know that your query should have returned a result set) is to replace
the mysql_errno(&mysql) call with a check if mysql_field_count(&mysql) is = 0. This
will only happen if something went wrong.

11.1.3.38 mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result() or
mysql_use_result() to return the result set. If you use mysql_store_result(), mysql_
num_rows() may be called immediately. If you use mysql_use_result(), mysql_num_
rows() will not return the correct value until all the rows in the result set have been
retrieved.

Return Values

The number of rows in the result set.

Errors

None.

11.1.3.39 mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const char *arg)

Description

Can be used to set extra connect options and affect behaviour for a connection. This
function may be called multiple times to set several options.

748 MySQL Technical Reference for Version 4.1.1-alpha

mysql_options() should be called after mysql_init() and before mysql_connect() or
mysql_real_connect().
The option argument is the option that you want to set; the arg argument is the value for
the option. If the option is an integer, then arg should point to the value of the integer.
Possible options values:
Option Argument type Function
MYSQL_OPT_CONNECT_TIMEOUT unsigned int

*
Connect timeout in seconds.

MYSQL_OPT_COMPRESS Not used Use the compressed
client/server protocol.

MYSQL_OPT_LOCAL_INFILE optional
pointer to uint

If no pointer is given or if
pointer points to an unsigned
int != 0 the command LOAD
LOCAL INFILE is enabled.

MYSQL_OPT_NAMED_PIPE Not used Use named pipes to connect to
a MySQL server on NT.

MYSQL_INIT_COMMAND char * Command to execute when
connecting to the MySQL
server. Will automatically be
re-executed when reconnecting.

MYSQL_READ_DEFAULT_FILE char * Read options from the named
option file instead of from
‘my.cnf’.

MYSQL_READ_DEFAULT_GROUP char * Read options from the named
group from ‘my.cnf’ or the
file specified with MYSQL_READ_
DEFAULT_FILE.

Note that the group client is always read if you use MYSQL_READ_DEFAULT_FILE or MYSQL_
READ_DEFAULT_GROUP.
The specified group in the option file may contain the following options:
Option Description
connect-timeout Connect timeout in seconds. On Linux this timeout

is also used for waiting for the first answer from the
server.

compress Use the compressed client/server protocol.
database Connect to this database if no database was specified

in the connect command.
debug Debug options.
disable-local-
infile

Disable use of LOAD DATA LOCAL.

host Default host name.
init-command Command to execute when connecting to MySQL

server. Will automatically be re-executed when
reconnecting.

interactive-
timeout

Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 11.1.3.42
[mysql real connect], page 751.

local-
infile[=(0|1)]

If no argument or argument != 0 then enable use of
LOAD DATA LOCAL.

Chapter 11: MySQL APIs 749

max_allowed_packet Max size of packet client can read from server.
password Default password.
pipe Use named pipes to connect to a MySQL server on

NT.
protocol=(TCP |
SOCKET | PIPE |
MEMORY)

Which protocol to use when connecting to server
(New in 4.1)

port Default port number.
return-found-rows Tell mysql_info() to return found rows instead of

updated rows when using UPDATE.
shared-memory-
base-name=name

Shared memory name to use to connect to server
(default is "MySQL"). New in MySQL 4.1.

socket Default socket number.
user Default user.
Note that timeout has been replaced by connect-timeout, but timeout will still work for
a while.
For more information about option files, see Section 4.1.2 [Option files], page 203.

Return Values

Zero for success. Non-zero if you used an unknown option.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

The above requests the client to use the compressed client/server protocol and read the
additional options from the odbc section in the ‘my.cnf’ file.

11.1.3.40 mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If it has gone down, an automatic
reconnection is attempted.
This function can be used by clients that remain idle for a long while, to check whether the
server has closed the connection and reconnect if necessary.

750 MySQL Technical Reference for Version 4.1.1-alpha

Return Values

Zero if the server is alive. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.41 mysql_query()

int mysql_query(MYSQL *mysql, const char *query)

Description

Executes the SQL query pointed to by the null-terminated string query. The query must
consist of a single SQL statement. You should not add a terminating semicolon (‘;’) or \g
to the statement.
mysql_query() cannot be used for queries that contain binary data; you should use mysql_
real_query() instead. (Binary data may contain the ‘\0’ character, which mysql_query()
interprets as the end of the query string.)
If you want to know if the query should return a result set or not, you can use mysql_
field_count() to check for this. See Section 11.1.3.20 [mysql_field_count()], page 736.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

Chapter 11: MySQL APIs 751

11.1.3.42 mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char *user,
const char *passwd, const char *db, unsigned int port, const char *unix_socket,
unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine
running on host. mysql_real_connect() must complete successfully before you can exe-
cute any of the other API functions, with the exception of mysql_get_client_info().
The parameters are specified as follows:
• The first parameter should be the address of an existing MYSQL structure. Before

calling mysql_real_connect() you must call mysql_init() to initialise the MYSQL
structure. You can change a lot of connect options with the mysql_options() call.
See Section 11.1.3.39 [mysql options], page 747.

• The value of host may be either a hostname or an IP address. If host is NULL or
the string "localhost", a connection to the local host is assumed. If the OS supports
sockets (Unix) or named pipes (Windows), they are used instead of TCP/IP to connect
to the server.

• The user parameter contains the user’s MySQL login ID. If user is NULL or the empty
string "", the current user is assumed. Under Unix, this is the current login name.
Under Windows ODBC, the current user name must be specified explicitly. See Sec-
tion 11.2.2 [ODBC administrator], page 806.

• The passwd parameter contains the password for user. If passwd is NULL, only entries
in the user table for the user that have a blank (empty) password field will be checked
for a match. This allows the database administrator to set up the MySQL privilege
system in such a way that users get different privileges depending on whether or not
they have specified a password.
Note: Do not attempt to encrypt the password before calling mysql_real_connect();
password encryption is handled automatically by the client API.

• db is the database name. If db is not NULL, the connection will set the default database
to this value.

• If port is not 0, the value will be used as the port number for the TCP/IP connection.
Note that the host parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe that should
be used. Note that the host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following
flags in very special circumstances:
Flag name Flag description
CLIENT_COMPRESS Use compression protocol.
CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the

number of affected rows.
CLIENT_IGNORE_SPACE Allow spaces after function names. Makes all functions

names reserved words.

752 MySQL Technical Reference for Version 4.1.1-alpha

CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of wait_
timeout seconds) of inactivity before closing the
connection.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.
CLIENT_MULTI_QUERIES Tell the server that the client may send multi-row-queries

(separated with ‘;’). If this flag is not set, multi-row-
queries are disabled. New in 4.1.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple-result
sets from multi-queries or stored procedures. This is au-
tomatically set if CLIENT_MULTI_QUERIES is set. New in
4.1.

CLIENT_NO_SCHEMA Don’t allow the db_name.tbl_name.col_name syntax.
This is for ODBC. It causes the parser to generate an
error if you use that syntax, which is useful for trapping
bugs in some ODBC programs.

CLIENT_ODBC The client is an ODBC client. This changes mysqld to
be more ODBC-friendly.

CLIENT_SSL Use SSL (encrypted protocol). This option should not
be set by application programs; it is set internally in the
client library.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the
first parameter.

Errors

CR_CONN_HOST_ERROR
Failed to connect to the MySQL server.

CR_CONNECTION_ERROR
Failed to connect to the local MySQL server.

CR_IPSOCK_ERROR
Failed to create an IP socket.

CR_OUT_OF_MEMORY
Out of memory.

CR_SOCKET_CREATE_ERROR
Failed to create a Unix socket.

CR_UNKNOWN_HOST
Failed to find the IP address for the hostname.

CR_VERSION_ERROR
A protocol mismatch resulted from attempting to connect to a server with a
client library that uses a different protocol version. This can happen if you use
a very old client library to connect to a new server that wasn’t started with the
--old-protocol option.

Chapter 11: MySQL APIs 753

CR_NAMEDPIPEOPEN_ERROR
Failed to create a named pipe on Windows.

CR_NAMEDPIPEWAIT_ERROR
Failed to wait for a named pipe on Windows.

CR_NAMEDPIPESETSTATE_ERROR
Failed to get a pipe handler on Windows.

CR_SERVER_LOST
If connect_timeout > 0 and it took longer than connect_timeout seconds to
connect to the server or if the server died while executing the init-command.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

By using mysql_options() the MySQL library will read the [client] and [your_prog_
name] sections in the ‘my.cnf’ file which will ensure that your program will work, even if
someone has set up MySQL in some non-standard way.
Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the
MYSQL structure) to a value of 1. This flag indicates, in the event that a query cannot be
performed because of a lost connection, to try reconnecting to the server before giving up.

11.1.3.43 mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char
*from, unsigned long length)

Description

This function is used to create a legal SQL string that you can use in a SQL statement. See
Section 6.1.1.1 [String syntax], page 441.
The string in from is encoded to an escaped SQL string, taking into account the current
character set of the connection. The result is placed in to and a terminating null byte is
appended. Characters encoded are NUL (ASCII 0), ‘\n’, ‘\r’, ‘\’, ‘’’, ‘"’, and Control-Z (see
Section 6.1.1 [Literals], page 441). (Strictly speaking, MySQL requires only that backslash
and the quote character used to quote the string in the query be escaped. This function
quotes the other characters to make them easier to read in log files.)
The string pointed to by from must be length bytes long. You must allocate the to buffer
to be at least length*2+1 bytes long. (In the worst case, each character may need to be

754 MySQL Technical Reference for Version 4.1.1-alpha

encoded as using two bytes, and you need room for the terminating null byte.) When
mysql_real_escape_string() returns, the contents of to will be a null-terminated string.
The return value is the length of the encoded string, not including the terminating null
character.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
*end++ = ’\’’;
end += mysql_real_escape_string(&mysql, end,"What’s this",11);
*end++ = ’\’’;
*end++ = ’,’;
*end++ = ’\’’;
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = ’\’’;
*end++ = ’)’;

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and
works like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

11.1.3.44 mysql_real_query()

int mysql_real_query(MYSQL *mysql, const char *query, unsigned long length)

Description

Executes the SQL query pointed to by query, which should be a string length bytes long.
The query must consist of a single SQL statement. You should not add a terminating
semicolon (‘;’) or \g to the statement.

Chapter 11: MySQL APIs 755

You must use mysql_real_query() rather than mysql_query() for queries that contain
binary data, because binary data may contain the ‘\0’ character. In addition, mysql_real_
query() is faster than mysql_query() because it does not call strlen() on the query
string.
If you want to know if the query should return a result set or not, you can use mysql_
field_count() to check for this. See Section 11.1.3.20 [mysql field count], page 736.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.45 mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the
RELOAD privilege.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

756 MySQL Technical Reference for Version 4.1.1-alpha

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.46 mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row
offset that should be a value returned from mysql_row_tell() or from mysql_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number,
use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query,
so mysql_row_seek() may be used only in conjunction with mysql_store_result(), not
with mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

11.1.3.47 mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value
can be used as an argument to mysql_row_seek().

You should use mysql_row_tell() only after mysql_store_result(), not after mysql_
use_result().

Return Values

The current offset of the row cursor.

Chapter 11: MySQL APIs 757

Errors

None.

11.1.3.48 mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the con-
nection specified by mysql. In subsequent queries, this database is the default for table
references that do not include an explicit database specifier.
mysql_select_db() fails unless the connected user can be authenticated as having permis-
sion to use the database.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.49 mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the last error.
The error code consists of five characters. ’00000’ means “no error”. The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Section 12.1 [Error-
returns], page 823.
Note that not all MySQL errors are yet mapped to SQLSTATE’s. The value ’HY000’
(general error) is used for unmapped errors.
This function was added to MySQL 4.1.1.

758 MySQL Technical Reference for Version 4.1.1-alpha

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 11.1.3.12 [mysql errno], page 730. See Section 11.1.3.13 [mysql error], page 731.
See Section 11.1.7.18 [mysql stmt sqlstate], page 789.

11.1.3.50 mysql_shutdown()

int mysql_shutdown(MYSQL *mysql)

Description

Asks the database server to shut down. The connected user must have SHUTDOWN privileges.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.51 mysql_stat()

char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the
mysqladmin status command. This includes uptime in seconds and the number of
running threads, questions, reloads, and open tables.

Return Values

A character string describing the server status. NULL if an error occurred.

Chapter 11: MySQL APIs 759

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.52 mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that suc-
cessfully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN).
You don’t have to call mysql_store_result() or mysql_use_result() for other queries,
but it will not do any harm or cause any notable performance if you call mysql_store_
result() in all cases. You can detect if the query didn’t have a result set by checking if
mysql_store_result() returns 0 (more about this later one).
If you want to know if the query should return a result set or not, you can use mysql_
field_count() to check for this. See Section 11.1.3.20 [mysql field count], page 736.
mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_
RES structure, and places the result into this structure.
mysql_store_result() returns a null pointer if the query didn’t return a result set (if the
query was, for example, an INSERT statement).
mysql_store_result() also returns a null pointer if reading of the result set failed. You
can check if you got an error by checking if mysql_error() doesn’t return a null pointer,
if mysql_errno() returns <> 0, or if mysql_field_count() returns <> 0.
An empty result set is returned if there are no rows returned. (An empty result set differs
from a null pointer as a return value.)
Once you have called mysql_store_result() and got a result back that isn’t a null pointer,
you may call mysql_num_rows() to find out how many rows are in the result set.
You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek()
and mysql_row_tell() to obtain or set the current row position within the result set.
You must call mysql_free_result() once you are done with the result set.
See Section 11.1.12.1 [NULL mysql_store_result()], page 795.

Return Values

A MYSQL_RES result structure with the results. NULL if an error occurred.

760 MySQL Technical Reference for Version 4.1.1-alpha

Errors

mysql_store_result() resets mysql_error and mysql_errno if it succeeds.

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.53 mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument
to mysql_kill() to kill the thread.
If the connection is lost and you reconnect with mysql_ping(), the thread ID will change.
This means you should not get the thread ID and store it for later. You should get it when
you need it.

Return Values

The thread ID of the current connection.

Errors

None.

11.1.3.54 mysql_use_result()

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that suc-
cessfully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN).

Chapter 11: MySQL APIs 761

mysql_use_result() initiates a result set retrieval but does not actually read the result
set into the client like mysql_store_result() does. Instead, each row must be retrieved
individually by making calls to mysql_fetch_row(). This reads the result of a query
directly from the server without storing it in a temporary table or local buffer, which is
somewhat faster and uses much less memory than mysql_store_result(). The client will
only allocate memory for the current row and a communication buffer that may grow up to
max_allowed_packet bytes.
On the other hand, you shouldn’t use mysql_use_result() if you are doing a lot of pro-
cessing for each row on the client side, or if the output is sent to a screen on which the
user may type a ^S (stop scroll). This will tie up the server and prevent other threads from
updating any tables from which the data is being fetched.
When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL
value is returned, otherwise, the unfetched rows will be returned as part of the result set
for your next query. The C API will give the error Commands out of sync; you can’t run
this command now if you forget to do this!
You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from mysql_use_
result(), nor may you issue other queries until the mysql_use_result() has finished.
(However, after you have fetched all the rows, mysql_num_rows() will accurately return
the number of rows fetched.)
You must call mysql_free_result() once you are done with the result set.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error and mysql_errno if it succeeds.

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.3.55 mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

762 MySQL Technical Reference for Version 4.1.1-alpha

Description

Commits the current transaction. Available from MySQL 4.1.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

11.1.3.56 mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction. Available from MySQL 4.1.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

11.1.3.57 mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0. Available from MySQL 4.1.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

Chapter 11: MySQL APIs 763

11.1.3.58 mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

Returns true if more results exist from the currently executed query, and the application
must call mysql_next_result() to fetch the results. Available from MySQL 4.1.

Return Values

TRUE if more results exist. FALSE if no more results exist.

Errors

None.

11.1.3.59 mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

If more query results exist, mysql_next_result() reads the next query results and returns
the status back to application. Available from MySQL 4.1.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

11.1.4 C API Prepared Statements

As of MySQL 4.1, the client/server protocol provides for the use of prepared statements.
This capability uses the MYSQL_STMT statement handler data structure. Prepared execution
is an efficient way to execute a statement more than once. The statement is first parsed to
prepare it for execution. Then it is executed one or more times at a later time, using the
statement handle returned by the prepare function.
Prepared execution is faster than direct execution for statements executed more than once,
primarly because the query is parsed only once. In the case of direct execution, the query
is parsed every time it is executed. Prepared execution also can provide a reduction of

764 MySQL Technical Reference for Version 4.1.1-alpha

network traffic because for each execution of the prepared statement, it is necessary only
to send the data for the parameters.
Another advantage of prepared statements is that it uses a binary protocol that makes data
transfer between client and server more efficient. Prepared statements also can support
input and output binding for multiple query execution.

11.1.5 C API Prepared Statement Datatypes

Note: The API for prepared statements is still subject to revision. This information is
provided for early adopters, but please be aware that the API may change.
Prepared statements mainly use the MYSQL_STMT and MYSQL_BIND data structures. A third
structure, MYSQL_TIME, is used to transfer temporal data.

MYSQL_STMT
This structure represents a prepared statement. A statement is prepared by
calling mysql_prepare(), which returns a statement handle, that is, a pointer
to a MYSQL_STMT. The handle is used for all subsequent statement-related func-
tions.
The MYSQL_STMT structure has no members that are for application use.
Multiple statement handles can be associated with a single connection. The
limit on the number of handles depends on the available system resources.

MYSQL_BIND
This structure is used both for query input (data values sent to the server)
and output (result values returned from the server). For input, it is used
with mysql_bind_param() to bind parameter data values to buffers for use
by mysql_execute(). For output, it is used with mysql_bind_result() to
bind result set buffers for use in fetching rows with mysql_fetch().
The MYSQL_BIND structure contains the following members for use by applica-
tion programs. Each is used both for input and for output, though sometimes
for different purposes depending on the direction of data transfer.

enum enum_field_types buffer_type
The type of the buffer. The allowable buffer_type values are listed
later in this section. For input, buffer_type indicates what type of
value you are binding to a query parameter. For output, it indicates
what type of value you expect to receive in a result buffer.

void *buffer
For input, this is a pointer to the buffer in which a query parame-
ter’s data value is stored. For output, it is a pointer to the buffer
in which to return a result set column value. For numeric column
types, buffer should point to a variable of the proper C type.
(If you are associating the variable with a column that has the
UNSIGNED attribute, the variable should be an unsigned C type.)
For date and time column types, buffer should point to a MYSQL_
TIME structure. For character and binary string column types,
buffer should point to a character buffer.

Chapter 11: MySQL APIs 765

unsigned long buffer_length
The actual size of *buffer in bytes. This indicates the maximum
amount of data that can be stored in the buffer. For character
and binary C data, the buffer_length value specifies the length
of *buffer when used with mysql_bind_param(), or the maximum
number of data bytes that can be fetched into the buffer when used
with mysql_bind_result().

unsigned long *length
A pointer to an unsigned long variable that indicates the actual
number of bytes of data stored in *buffer. length is used for char-
acter or binary C data. For input parameter data binding, length
points to an unsigned long variable that indicates the length of
the parameter value stored in *buffer; this is used by mysql_
execute(). If length is a null pointer, the protocol assumes that
all character and binary data are null-terminated. For output value
binding, mysql_fetch() places the length of the column value that
is returned into the variable that length points to.
length is ignored for numeric and temporal datatypes because the
length of the data value is determined by the buffer_type value.

my_bool *is_null
This member points to a my_bool variable that is true if a value
is NULL, false if it is not NULL. For input, set *is_null to true to
indicate that you are passing a NULL value as a query parameter.
For output, this value will be set to true after you fetch a row if
the result value returned from the query is NULL.

MYSQL_TIME
This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP
data directly to and from the server. This is done by setting the buffer_type
member of a MYSQL_BIND structure to one of the temporal types, and setting
the buffer member to point to a MYSQL_TIME structure.
The MYSQL_TIME structure contains the following members:

unsigned int year
The year.

unsigned int month
The month of the year.

unsigned int day
The day of the month.

unsigned int hour
The hour of the day.

unsigned int minute
The minute of the hour.

unsigned int second
The second of the minute.

766 MySQL Technical Reference for Version 4.1.1-alpha

my_bool neg
A boolean flag to indicate whether the time is negative.

unsigned long second_part
The fractional part of the second. This member currently is unused.

Only those parts of a MYSQL_TIME structure that apply to a given type of tem-
poral value are used: The year, month, and day elements are used for DATE,
DATETIME, and TIMESTAMP values. The hour, minute, and second elements are
used for TIME, DATETIME, and TIMESTAMP values. See Section 11.1.9 [C API
date handling], page 791.

The following table shows the allowable values that may be specified in the buffer_type
member of MYSQL_BIND structures. The table also shows those SQL types that correspond
most closely to each buffer_type value, and, for numeric and temporal types, the corre-
sponding C type.
buffer_type Value SQL Type C Type
MYSQL_TYPE_TINY TINYINT char
MYSQL_TYPE_SHORT SMALLINT short int
MYSQL_TYPE_LONG INT long int
MYSQL_TYPE_LONGLONG BIGINT long long int
MYSQL_TYPE_FLOAT FLOAT float
MYSQL_TYPE_DOUBLE DOUBLE double
MYSQL_TYPE_TIME TIME MYSQL_TIME
MYSQL_TYPE_DATE DATE MYSQL_TIME
MYSQL_TYPE_DATETIME DATETIME MYSQL_TIME
MYSQL_TYPE_TIMESTAMP TIMESTAMP MYSQL_TIME
MYSQL_TYPE_STRING CHAR
MYSQL_TYPE_VAR_STRING VARCHAR
MYSQL_TYPE_TINY_BLOB TINYBLOB/TINYTEXT
MYSQL_TYPE_BLOB BLOB/TEXT
MYSQL_TYPE_MEDIUM_BLOB MEDIUMBLOB/MEDIUMTEXT
MYSQL_TYPE_LONG_BLOB LONGBLOB/LONGTEXT

Implicit type conversion may be performed in both directions.

11.1.6 C API Prepared Statement Function Overview

Note: The API for prepared statements is still subject to revision. This information is
provided for early adopters, but please be aware that the API may change.
The functions available for prepared statement processing are summarised here and de-
scribed in greater detail in a later section. See Section 11.1.7 [C API Prepared statement
functions], page 769.
Function Description

mysql prepare() Prepares an SQL string for execution.

mysql param count() Returns the number of parameters in a prepared SQL state-
ment.

Chapter 11: MySQL APIs 767

mysql get metadata() Returns prepared statement metadata in the form of a result
set.

mysql bind param() Associates application data buffers with the parameter
markers in a prepared SQL statement.

mysql execute() Executes the prepared statement.

mysql stmt affected rows() Returns the number of rows changes, deleted, or inserted by
the last UPDATE, DELETE, or INSERT query.

mysql bind result() Associates application data buffers with columns in the re-
sult set.

mysql stmt store result() Retrieves the complete result set to the client.

mysql stmt data seek() Seeks to an arbitrary row number in a statement result set.

mysql stmt row seek() Seeks to a row offset in a statement result set, using value
returned from mysql_stmt_row_tell().

mysql stmt row tell() Returns the statement row cursor position.

mysql stmt num rows() Returns total rows from the statement buffered result set.

mysql fetch() Fetches the next row of data from the result set and returns
data for all bound columns.

mysql stmt close() Frees memory used by prepared statement.

mysql stmt errno() Returns the error number for the last statement execution.

mysql stmt error() Returns the error message for the last statement execution.

mysql stmt sqlstate() Returns the SQLSTATE error code for the last statement
execution.

mysql send long data() Sends long data in chunks to server.
Call mysql_prepare() to prepare and initialise the statement handle, mysql_bind_param()
to supply the parameter data, and mysql_execute() to execute the query. You can re-
peat the mysql_execute() by changing parameter values in the respective buffers supplied
through mysql_bind_param().
If the query is a SELECT statement or any other query that produces a result set, mysql_
prepare() will also return the result set metadata information in the form of a MYSQL_RES
result set through mysql_get_metadata().

You can supply the result buffers using mysql_bind_result(), so that the mysql_fetch()
will automatically return data to these buffers. This is row-by-row fetching.
You can also send the text or binary data in chunks to server using mysql_send_long_
data(), by specifying the option is_long_data=1 or length=MYSQL_LONG_DATA or -2 in
the MYSQL_BIND structure supplied with mysql_bind_param().
When statement execution has been completed, the statement handle must be closed using
mysql_stmt_close() so that all resources associated with it can be freed.

768 MySQL Technical Reference for Version 4.1.1-alpha

If you obtained a SELECT statement’s result set metadata by calling mysql_get_metadata(),
you should also free it using mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:
1. Call mysql_prepare() and pass it a string containing the SQL statement. For a

successful prepare operation, mysql_prepare() returns a valid statement handle to
the application.

2. If the query produces a result set, call mysql_get_metadata() to obtain the result set
metadata. This metadata is itself in the form of result set, albeit a separate one from
the one that contains the rows returned by the query. The metadata result set indicates
how many columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_bind_param(). All parameters must be
set. Otherwise, query execution will return an error or produce unexpected results.

4. Call mysql_execute() to execute the statement.
5. If the query produces a result set, bind the data buffers to use for retrieving the row

values by calling mysql_bind_result().
6. Fetch the data into the buffers row by row by calling mysql_fetch() repeatedly until

no more rows are found.
7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-

executing the statement.

When mysql_prepare() is called, the MySQL client/server protocol performs these actions:
• The server parses the query and sends the OK status back to the client by assigning a

statement ID. It also sends total number of parameters, a column count, and its meta
information if it is a result set oriented query. All syntax and semantics of the query
are checked by the server during this call.

• The client uses this statement ID for the further operations, so that the server can
identify the statement from among its pool of statements. The client also allocates a
statement handle with this ID and returns the handle to the application.

When mysql_execute() is called, the MySQL client/server protocol performs these actions:
• The client uses the statement handle and sends the parameter data to the server.
• The server identifies the statement using the ID provided by the client, replaces the

parameter markers with the newly supplied data, and executes the query. If the query
produces a result set, the server sends the data back to the client. Otherwise, it sends
an OK status and total number of rows changed, deleted, or inserted.

When mysql_fetch() is called, the MySQL client/server protocol performs these actions:
• The client reads the data from the packet row by row and places it into the application

data buffers by doing the necessary conversions. If the application buffer type is same
as that of the field type returned from the server, the conversions are straightforward.

You can get the statement error code, error message, and SQLSTATE value using mysql_
stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Chapter 11: MySQL APIs 769

11.1.7 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the following functions.

11.1.7.1 mysql_prepare()

MYSQL_STMT * mysql_prepare(MYSQL *mysql, const char *query, unsigned long
length)

Description

Prepares the SQL query pointed to by the null-terminated string query, and returns a
statement handle to be used for further operations on the statement. The query must
consist of a single SQL statement. You should not add a terminating semicolon (‘;’) or \g
to the statement.
The application can include one or more parameter markers in the SQL statement by
embedding question mark (‘?’) characters into the SQL string at the appropriate positions.
The markers are legal only in certain places in SQL statements. For example, they are
allowed in the VALUES() list of an INSERT statement (to specify column values for a row),
or in a comparison with a column in a WHERE clause to specify a comparison value. However,
they are not allowed for identifiers (such as table or column names), in the select list that
names the columns to be returned by a SELECT statement), or to specify both operands of
a binary operator such as the = equal sign. The latter restriction is necessary because it
would be impossible to determine the parameter type. In general, parameters are legal only
in Data Manipulation Languange (DML) statements, and not in Data Defination Language
(DDL) statements.
The parameter markers must be bound to application variables using mysql_bind_param()
before executing the statement.

Return Values

A pointer to a MYSQL_STMT structure if the prepare was successful. NULL if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query

770 MySQL Technical Reference for Version 4.1.1-alpha

CR_UNKNOWN_ERROR
An unknown error occurred.

If the prepare is not successful (that is, mysql_prepare() returns NULL), the error message
can be obtained by calling mysql_error().

Example

For the usage of mysql_prepare(), refer to the Example from Section 11.1.7.5 [mysql_
execute()], page 772.

11.1.7.2 mysql_param_count()

unsigned long mysql_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

For the usage of mysql_param_count(), refer to the Example from Section 11.1.7.5 [mysql_
execute()], page 772.

11.1.7.3 mysql_get_metadata()

MYSQL_RES *mysql_get_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_prepare() is one that produces a result set, mysql_get_
metadata() returns the result set metadata in the form of a pointer to a MYSQL_RES struc-
ture that can be used to process the meta information such as total number of fields and
individual field information. This result set pointer can be passed as an argument to any
of the field-based API functions that process result set metadata, such as:
• mysql_num_fields()

• mysql_fetch_field()

Chapter 11: MySQL APIs 771

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by
passing it to mysql_free_result(). This is similar to the way you free a result set obtained
from a call to mysql_store_result().
The result set returned by mysql_get_metadata() contains only metadata. It does not
contain any row results. The rows are obtained by using the statement handle with mysql_
fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

CR_OUT_OF_MEMORY
Out of memory.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

For the usage of mysql_get_metadata(), refer to the Example from Section 11.1.7.13
[mysql_fetch()], page 781.

11.1.7.4 mysql_bind_param()

my_bool mysql_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_bind_param() is used to bind data for the parameter markers in the SQL statement
that was passed to mysql_prepare(). It uses MYSQL_BIND structures to supply the data.
bind is the address of an array of MYSQL_BIND structures. The client library expects the
array to contain an element for each ‘?’ parameter marker that is present in the query.
Suppose you prepare the following statment:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three
elements, and can be declared like this:

772 MySQL Technical Reference for Version 4.1.1-alpha

MYSQL_BIND bind[3];

The members of each MYSQL_BIND element that should be set are described in Section 11.1.5
[C API Prepared statement datatypes], page 764.

Return Values

Zero if the bind was successful. Non-zero if an error occurred.

Errors

CR_NO_PREPARE_STMT
No prepared statement exists.

CR_NO_PARAMETERS_EXISTS
No parameters exist to bind.

CR_INVALID_BUFFER_USE
Indicates if the bind is to supply the long data in chunks and if the buffer type
is non string or binary.

CR_UNSUPPORTED_PARAM_TYPE
The conversion is not supported. Possibly the buffer_type value is illegal or
is not one of the supported types.

CR_OUT_OF_MEMORY
Out of memory.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

For the usage of mysql_bind_param(), refer to the Example from Section 11.1.7.5 [mysql_
execute()], page 772.

11.1.7.5 mysql_execute()

int mysql_execute(MYSQL_STMT *stmt)

Description

mysql_execute() executes the prepared query associated with the statement handle. The
currently bound parameter marker values are sent to server during this call, and the server
replaces the markers with this newly supplied data.
If the statement is an UPDATE, DELETE, or INSERT, the total number of changed, deleted, or
inserted rows can be found by calling mysql_stmt_affected_rows(). If this is a result set
query such as SELECT, you must call mysql_fetch() to fetch the data prior to calling any
other functions that result in query processing. For more information on how to fetch the
results, refer to Section 11.1.7.13 [mysql_fetch()], page 781.

Chapter 11: MySQL APIs 773

Return Values

Zero if execution was successful. Non-zero if an error occurred. The error code and message
can be obtained by calling mysql_stmt_errno() and mysql_stmt_error().

Errors

CR_NO_PREPARE_QUERY
No query prepared prior to execution.

CR_ALL_PARAMS_NOT_BOUND
Not all parameter data is supplied.

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using mysql_
prepare(), mysql_param_count(), mysql_bind_param(), mysql_execute(), and mysql_
stmt_affected_rows(). The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\

col2 VARCHAR(40),\
col3 SMALLINT,\
col4 TIMESTAMP)"

#define INSERT_SAMPLE "INSERT INTO test_table(col1,col2,col3) VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];

774 MySQL Technical Reference for Version 4.1.1-alpha

unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; it will */
/* be set to the current date and time) */
stmt = mysql_prepare(mysql, INSERT_SAMPLE, strlen(INSERT_SAMPLE));
if (!stmt)
{
fprintf(stderr, " mysql_prepare(), INSERT failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Bind the data for all 3 parameters */

/* INTEGER PARAM */
/* This is a number type, so there is no need to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

Chapter 11: MySQL APIs 775

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_VAR_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_bind_param(stmt, bind))
{
fprintf(stderr, " mysql_bind_param() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_execute(stmt))
{
fprintf(stderr, " mysql_execute(), 1 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %ld\n", affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

776 MySQL Technical Reference for Version 4.1.1-alpha

/* Specify data values for second row, then re-execute the statement */
int_data= 1000;
strncpy(str_data, "The most popular open source database", STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_execute(stmt))
{
fprintf(stderr, " mysql_execute, 2 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %ld\n", affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

Note: For complete examples on the use of prepared statement functions, refer to the file
‘tests/client_test.c’. This file can be obtained from a MySQL source distribution or
from the BitKeeper source repository.

11.1.7.6 mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

Returns the total number of rows changed, deleted, or inserted by the last executed state-
ment. May be called immediatlely after mysql_execute() for UPDATE, DELETE, or INSERT

Chapter 11: MySQL APIs 777

statements. For SELECT statements, mysql_stmt_affected() rows works like mysql_num_
rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero
indicates that no records were updated for an UPDATE statement, no rows matched the
WHERE clause in the query, or that no query has yet been executed. −1 indicates that the
query returned an error or that, for a SELECT query, mysql_stmt_affected_rows() was
called prior to calling mysql_fetch().

Errors

None.

Example

For the usage of mysql_stmt_affected_rows(), refer to the Example from Section 11.1.7.5
[mysql_execute()], page 772.

11.1.7.7 mysql_bind_result()

my_bool mysql_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_bind_result() is used to associate (bind) columns in the result set to data buffers
and length buffers. When mysql_fetch() is called to fetch data, the MySQL client/server
protocol places the data for the bound columns into the specified buffers.

Note that all columns must be bound to buffers prior to calling mysql_fetch(). bind is
the address of an array of MYSQL_BIND structures. The client library expects the array to
contain an element for each column of the result set. Otherwise, mysql_fetch() simply
ignores the data fetch. Also, the buffers should be large enough to hold the data values,
because the protocol doesn’t return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially
retrieved. The new binding takes effect the next time mysql_fetch() is called. Suppose an
application binds the columns in a result set and calls mysql_fetch(). The client/server
protocol returns data in the bound buffers. Then suppose the application binds the columns
to a different set of buffers. The protocol does not place data into the newly bound buffers
until the next call to mysql_fetch() occurs.

To bind a column, an application calls mysql_bind_result() and passes the type, address,
and the address of the length buffer. The members of each MYSQL_BIND element that should
be set are described in Section 11.1.5 [C API Prepared statement datatypes], page 764.

778 MySQL Technical Reference for Version 4.1.1-alpha

Return Values

Zero if the bind was successful. Non-zero if an error occurred.

Errors

CR_NO_PREPARE_STMT
No prepared statement exists.

CR_UNSUPPORTED_PARAM_TYPE
The conversion is not supported. Possibly the buffer_type value is illegal or
is not one of the supported types.

CR_OUT_OF_MEMORY
Out of memory.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

For the usage of mysql_bind_result(), refer to the Example from Section 11.1.7.13 [mysql_
fetch()], page 781.

11.1.7.8 mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

You must call mysql_stmt_store_result() for every query that successfully produces a
result set (SELECT, SHOW, DESCRIBE, EXPLAIN), and only if you want to buffer the complete
result set by the client, so that the subsequent mysql_fetch() call returns buffered data.
It is unnecessary to call mysql_stmt_store_result() for other queries, but if you do, it
will not harm or cause any notable performance in all cases. You can detect whether the
query produced a result set by checking if mysql_get_metadata() returns NULL. For more
information, refer to Section 11.1.7.3 [mysql_get_metadata()], page 770.

Return Values

Zero if the results are buffered successfully. Non-zero if an error occurred.

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

Chapter 11: MySQL APIs 779

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

11.1.7.9 mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and
should be in the range from 0 to mysql_stmt_num_rows(stmt)-1.
This function requires that the statement result set structure contains the entire result of
the last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

11.1.7.10 mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET
offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a
row offset that should be a value returned from mysql_stmt_row_tell() or from mysql_
stmt_row_seek(). This value is not a row number; if you want to seek to a row within a
result set by number, use mysql_stmt_data_seek() instead.
This function requires that the result set structure contains the entire result of the query,
so mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_
result().

780 MySQL Technical Reference for Version 4.1.1-alpha

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

11.1.7.11 mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_fetch(). This value can
be used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

11.1.7.12 mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether or not you used mysql_stmt_
store_result() to buffer the entire result set in the statement handle.

If you use mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immedi-
ately.

Return Values

The number of rows in the result set.

Chapter 11: MySQL APIs 781

Errors

None.

11.1.7.13 mysql_fetch()

int mysql_fetch(MYSQL_STMT *stmt)

Description

mysql_fetch() returns the next row in the result set. It can be called only while the result
set exists, that is, after a call to mysql_execute() that creates a result set or after mysql_
stmt_store_result(), which is called after mysql_execute() to buffer the entire result
set.
mysql_fetch() returns row data using the buffers bound by mysql_bind_result(). It
returns the data in those buffers for all the columns in the current row set and the lengths
are returned to the length pointer.
Note that all columns must be bound by the application before calling mysql_fetch().
If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_
BIND structure contains TRUE (1). Otherwise, the data and its length are returned in
the *buffer and *length elements based on the buffer type specified by the application.
Each numeric and temporal type has a fixed length, as listed in the following table. The
length of the string types depends on the length of the actual data value, as indicated by
data_length.
Type Length
MYSQL_TYPE_TINY 1
MYSQL_TYPE_SHORT 2
MYSQL_TYPE_LONG 4
MYSQL_TYPE_LONGLONG 8
MYSQL_TYPE_FLOAT 4
MYSQL_TYPE_DOUBLE 8
MYSQL_TYPE_TIME sizeof(MYSQL_TIME)
MYSQL_TYPE_DATE sizeof(MYSQL_TIME)
MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)
MYSQL_TYPE_TIMESTAMP sizeof(MYSQL_TIME)
MYSQL_TYPE_STRING data length
MYSQL_TYPE_VAR_STRING data_length
MYSQL_TYPE_TINY_BLOB data_length
MYSQL_TYPE_BLOB data_length
MYSQL_TYPE_MEDIUM_BLOB data_length
MYSQL_TYPE_LONG_BLOB data_length

Return Values

Return Value Description

782 MySQL Technical Reference for Version 4.1.1-alpha

0 Successful, the data has been fetched to application data
buffers.

1 Error occurred. Error code and message can be ob-
tained by calling mysql_stmt_errno() and mysql_stmt_
error().

MYSQL_NO_DATA No more rows/data exists

Errors

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_OUT_OF_MEMORY
Out of memory.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_SERVER_LOST
The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

CR_UNSUPPORTED_PARAM_TYPE
The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_
DATETIME, or MYSQL_TYPE_TIMESTAMP, but the datatype is not DATE, TIME,
DATETIME, or TIMESTAMP.

All other unsupported conversion errors are returned from mysql_bind_
result().

Example

The following example demonstrates how to fetch data from a table using mysql_get_
metadata(), mysql_bind_result(), and mysql_fetch(). (This example expects to re-
trieve the two rows inserted by the example shown in Section 11.1.7.5 [mysql_execute()],
page 772.) The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;

Chapter 11: MySQL APIs 783

char str_data[STRING_SIZE];
my_bool is_null[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_prepare(mysql, SELECT_SAMPLE, strlen(SELECT_SAMPLE));
if (!stmt)
{
fprintf(stderr, " mysql_prepare(), SELECT failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Fetch result set meta information */
prepare_meta_result = mysql_get_metadata(stmt);
if (!prepare_meta_result)
{
fprintf(stderr, " mysql_get_metadata(), returned no meta information\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout, " total columns in SELECT statement: %d\n", column_count);

if (column_count != 4) /* validate column count */
{
fprintf(stderr, " invalid column count returned by MySQL\n");
exit(0);

}

/* Execute the SELECT query */
if (mysql_execute(stmt))
{
fprintf(stderr, " mysql_execute(), failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));

784 MySQL Technical Reference for Version 4.1.1-alpha

exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_VAR_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];

/* Bind the result buffers */
if (mysql_bind_result(stmt, bind))
{
fprintf(stderr, " mysql_bind_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Now buffer all results to client */
if (mysql_stmt_store_result(stmt))
{
fprintf(stderr, " mysql_stmt_store_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Fetch all rows */

Chapter 11: MySQL APIs 785

row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_fetch(stmt))
{
row_count++;
fprintf(stdout, " row %d\n", row_count);

/* column 1 */
fprintf(stdout, " column1 (integer) : ");
if (is_null[0])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

/* column 2 */
fprintf(stdout, " column2 (string) : ");
if (is_null[1])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

/* column 3 */
fprintf(stdout, " column3 (smallint) : ");
if (is_null[2])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

/* column 4 */
fprintf(stdout, " column4 (timestamp): ");
if (is_null[3])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",

ts.year, ts.month, ts.day,
ts.hour, ts.minute, ts.second,
length[3]);

fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
fprintf(stderr, " MySQL failed to return all rows\n");
exit(0);

}

786 MySQL Technical Reference for Version 4.1.1-alpha

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

11.1.7.14 mysql_send_long_data()

my_bool mysql_send_long_data(MYSQL_STMT *stmt, unsigned int parameter_number,
const char *data, unsigned long length)

Description

Allows an application to send parameter data to the server in pieces (or “chunks”). This
function can be called multiple times to send the parts of a character or binary data value
for a column, which must be one of the TEXT or BLOB datatypes.

parameter_number indicates which parameter to associate the data with. Parameters are
numbered beginning with 0. data is a pointer to a buffer containing data to be sent, and
length indicates the number of bytes in the buffer.

Return Values

Zero if the data is sent successfully to server. Non-zero if an error occurred.

Errors

CR_INVALID_PARAMETER_NO
Invalid parameter number.

CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_OUT_OF_MEMORY
Out of memory.

CR_UNKNOWN_ERROR
An unknown error occurred.

Chapter 11: MySQL APIs 787

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It
inserts the data value ’MySQL - The most popular open source database’ into the text_
column column. The mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

if (!mysql_prepare(mysql, INSERT_QUERY, strlen(INSERT_QUERY))
{
fprintf(stderr, "\n prepare failed");
fprintf(stderr, "\n %s", mysql_error(mysql));
exit(0);

}
memset(bind, 0, sizeof(bind));
bind[0].buffer_type= MYSQL_TYPE_STRING;
bind[0].length= &length;
bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_bind_param(stmt, bind))
{
fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply data in chunks to server */
if (!mysql_send_long_data(stmt,0,"MySQL",5))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply the next piece of data */
if (mysql_send_long_data(stmt,0," - The most popular open source database",40))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Now, execute the query */

788 MySQL Technical Reference for Version 4.1.1-alpha

if (mysql_execute(stmt))
{
fprintf(stderr, "\n mysql_execute failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

11.1.7.15 mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle
pointed to by stmt.
If the current statement has pending or unread results, this function cancels them so that
the next query can be executed.

Return Values

Zero if the statement was freed successfully. Non-zero if an error occurred.

Errors

CR_SERVER_GONE_ERROR
The MySQL server has gone away.

CR_UNKNOWN_ERROR
An unknown error occurred.

Example

For the usage of mysql_stmt_close(), refer to the Example from Section 11.1.7.5 [mysql_
execute()], page 772.

11.1.7.16 mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the
most recently invoked statement API function that can succeed or fail. A return value of
zero means that no error occurred. Client error message numbers are listed in the MySQL
‘errmsg.h’ header file. Server error message numbers are listed in ‘mysqld_error.h’. In

Chapter 11: MySQL APIs 789

the MySQL source distribution you can find a complete list of error messages and error
numbers in the file ‘Docs/mysqld_error.txt’. The server error codes also are listed at
Section 12.1 [Error-returns], page 823.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

11.1.7.17 mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string
containing the error message for the most recently invoked statement API function that
can succeed or fail. An empty string ("") is returned if no error occurred. This means the
following two tests are equivalent:

if (mysql_stmt_errno(stmt))
{
// an error occurred

}

if (mysql_stmt_error(stmt)[0])
{
// an error occurred

}

The language of the client error messages many be changed by recompiling the MySQL
client library. Currently you can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

11.1.7.18 mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

790 MySQL Technical Reference for Version 4.1.1-alpha

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated
string containing the SQLSTATE error code for the most recently invoked prepared state-
ment API function that can succeed or fail. The error code consists of five characters.
"00000" means “no error”. The values are specified by ANSI SQL and ODBC. For a list
of possible values, see Section 12.1 [Error-returns], page 823.
Note that not all MySQL errors are yet mapped to SQLSTATE’s. The value "HY000"
(general error) is used for unmapped errors.
This function was added to MySQL 4.1.1.

Return Values

A null-terminated character string containing the SQLSTATE error code.

11.1.8 C API Handling of Multiple Query Execution

From version 4.1, MySQL supports the execution of multiple statements specified in a single
query string. To use this capability with a given connection, you must specify the CLIENT_
MULTI_QUERIES option in the flags parameter of mysql_real_connect() when opening the
connection.
By default, mysql_query() and mysql_real_query() return only the first query status and
the subsequent queries status can be processed using mysql_more_results() and mysql_
next_result().

/* Connect to server with option CLIENT_MULTI_QUERIES */
mysql_real_connect(..., CLIENT_MULTI_QUERIES);

/* Now execute multiple queries */
mysql_query(mysql,"DROP TABLE IF EXISTS test_table;\

CREATE TABLE test_table(id INT);\
INSERT INTO test_table VALUES(10);\
UPDATE test_table SET id=20 WHERE id=10;\
SELECT * FROM test_table;\
DROP TABLE test_table";

while (mysql_more_results(mysql))
{
/* Process all results */
mysql_next_result(mysql);
...
printf("total affected rows: %lld", mysql_affected_rows(mysql));
...
if ((result= mysql_store_result(mysql))
{
/* Returned a result set, process it */

Chapter 11: MySQL APIs 791

}
}

11.1.9 C API Handling of Date and Time Values

The new binary protocol available in MySQL 4.1 and above allows you to send and re-
ceive date and time values (DATE, TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME
structure. The members of this structure are described in Section 11.1.5 [C API Prepared
statement datatypes], page 764.
To send temporal data values, you create a prepared statement with mysql_prepare().
Then, before calling mysql_execute() to execute the statement, use the following procedure
to set up each temporal parameter:
1. In the MYSQL_BIND structure associated with the data value, set the buffer_type

member to the type that indicates what kind of temporal value you’re sending. For
DATE, TIME, DATETIME, or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE,
MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME
structure in which you will pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of
temporal value you’re passing.

Use mysql_bind_param() to bind the parameter data to the statement. Then you can call
mysql_execute().
To retrieve temporal values, the procedure is similar, except that you set the buffer_type
member to the type of value you expect to receive, and the buffer member to the address
of a MYSQL_TIME structure into which the returned value should be placed. Use mysql_
bind_results() to bind the buffers to the statement after calling mysql_execute() and
before fetching the results.
Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable
is assumed to be a valid connection handle.

MYSQL_TIME ts;
MYSQL_BIND bind[3];
MYSQL_STMT *stmt;

strmov(query, "INSERT INTO test_table(date_field, time_field,
timestamp_field) VALUES(?,?,?");

stmt= mysql_prepare(mysql, query, strlen(query)));

/* setup input buffers for all 3 parameters */
bind[0].buffer_type= MYSQL_TYPE_DATE;
bind[0].buffer= (char *)&ts;
bind[0].is_null= 0;
bind[0].length= 0;

792 MySQL Technical Reference for Version 4.1.1-alpha

..
bind[1]= bind[2]= bind[0];
..

mysql_bind_param(stmt, bind);

/* supply the data to be sent is the ts structure */
ts.year= 2002;
ts.month= 02;
ts.day= 03;

ts.hour= 10;
ts.minute= 45;
ts.second= 20;

mysql_execute(stmt);
..

11.1.10 C API Threaded Function Descriptions

You need to use the following functions when you want to create a threaded client. See
Section 11.1.14 [Threaded clients], page 797.

11.1.10.1 my_init()

void my_init(void)

Description

This function needs to be called once in the program before calling any MySQL function.
This initialises some global variables that MySQL needs. If you are using a thread-safe
client library, this will also call mysql_thread_init() for this thread.

This is automatically called by mysql_init(), mysql_server_init() and mysql_
connect().

Return Values

None.

11.1.10.2 mysql_thread_init()

my_bool mysql_thread_init(void)

Chapter 11: MySQL APIs 793

Description

This function needs to be called for each created thread to initialise thread-specific variables.
This is automatically called by my_init() and mysql_connect().

Return Values

Zero if successful. Non-zero if an error occurred.

11.1.10.3 mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated
by mysql_thread_init().
Note that this function is not invoked automatically by the client library. It must be called
explicitly to avoid a memory leak.

Return Values

None.

11.1.10.4 mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client is compiled as thread-safe.

Return Values

1 is the client is thread-safe, 0 otherwise.

11.1.11 C API Embedded Server Function Descriptions

You must use the following functions if you want to allow your application to be linked
against the embedded MySQL server library. See Section 11.1.15 [libmysqld], page 799.
If the program is linked with -lmysqlclient instead of -lmysqld, these functions do noth-
ing. This makes it possible to choose between using the embedded MySQL server and a
stand-alone server without modifying any code.

794 MySQL Technical Reference for Version 4.1.1-alpha

11.1.11.1 mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function must be called once in the program using the embedded server before calling
any other MySQL function. It starts up the server and initialises any subsystems (mysys,
InnoDB, etc.) that the server uses. If this function is not called, the program will crash. If
you are using the DBUG package that comes with MySQL, you should call this after you
have called MY_INIT().
The argc and argv arguments are analogous to the arguments to main(). The first element
of argv is ignored (it typically contains the program name). For convenience, argc may
be 0 (zero) if there are no command-line arguments for the server. mysql_server_init()
makes a copy of the arguments so it’s safe to destroy argv or groups after the call.
The NULL-terminated list of strings in groups selects which groups in the option files will
be active. See Section 4.1.2 [Option files], page 203. For convenience, groups may be NULL,
in which case the [server] and [emedded] groups will be active.

Example

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
"this_program", /* this string is not used */
"--datadir=.",
"--key_buffer_size=32M"

};
static char *server_groups[] = {
"embedded",
"server",
"this_program_SERVER",
(char *)NULL

};

int main(void) {
mysql_server_init(sizeof(server_args) / sizeof(char *),

server_args, server_groups);

/* Use any MySQL API functions here */

mysql_server_end();

return EXIT_SUCCESS;
}

Chapter 11: MySQL APIs 795

Return Values

0 if okay, 1 if an error occurred.

11.1.11.2 mysql_server_end()

void mysql_server_end(void)

Description

This function must be called once in the program after all other MySQL functions. It shuts
down the embedded server.

Return Values

None.

11.1.12 Common questions and problems when using the C API

11.1.12.1 Why mysql_store_result() Sometimes Returns NULL
After mysql_query() Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to mysql_
query(). When this happens, it means one of the following conditions occurred:
• There was a malloc() failure (for example, if the result set was too large).
• The data couldn’t be read (an error occurred on the connection).
• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a non-empty result by
calling mysql_field_count(). If mysql_field_count() returns zero, the result is empty
and the last query was a statement that does not return values (for example, an INSERT or
a DELETE). If mysql_field_count() returns a non-zero value, the statement should have
produced a non-empty result. See the description of the mysql_field_count() function
for an example.
You can test for an error by calling mysql_error() or mysql_errno().

11.1.12.2 What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:
• mysql_affected_rows() returns the number of rows affected by the last query when

doing an INSERT, UPDATE, or DELETE. An exception is that if DELETE is used without
a WHERE clause, the table is re-created empty, which is much faster! In this case,
mysql_affected_rows() returns zero for the number of records affected.

796 MySQL Technical Reference for Version 4.1.1-alpha

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_
result(), mysql_num_rows() may be called as soon as mysql_store_result() re-
turns. With mysql_use_result(), mysql_num_rows() may be called only after you
have fetched all the rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into
a table with an AUTO_INCREMENT index. See Section 11.1.3.31 [mysql_insert_id()],
page 742.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE) return
additional information. The result is returned by mysql_info(). See the description
for mysql_info() for the format of the string that it returns. mysql_info() returns
a NULL pointer if there is no additional information.

11.1.12.3 How to Get the Unique ID for the Last Inserted Row

If you insert a record in a table containing a column that has the AUTO_INCREMENT attribute,
you can get the most recently generated ID by calling the mysql_insert_id() function.
You can also retrieve the ID by using the LAST_INSERT_ID() function in a query string
that you pass to mysql_query().
You can check if an AUTO_INCREMENT index is used by executing the following code. This
also checks if the query was an INSERT with an AUTO_INCREMENT index:

if (mysql_error(&mysql)[0] == 0 &&
mysql_num_fields(result) == 0 &&
mysql_insert_id(&mysql) != 0)

{
used_id = mysql_insert_id(&mysql);

}

The most recently generated ID is maintained in the server on a per-connection basis. It
will not be changed by another client. It will not even be changed if you update another
AUTO_INCREMENT column with a non-magic value (that is, a value that is not NULL and not
0).
If you want to use the ID that was generated for one table and insert it into a second table,
you can use SQL statements like this:

INSERT INTO foo (auto,text)
VALUES(NULL,’text’); # generate ID by inserting NULL

INSERT INTO foo2 (id,text)
VALUES(LAST_INSERT_ID(),’text’); # use ID in second table

11.1.12.4 Problems Linking with the C API

When linking with the C API, the following errors may occur on some systems:
gcc -g -o client test.o -L/usr/local/lib/mysql -lmysqlclient -lsocket -lnsl

Undefined first referenced
symbol in file

Chapter 11: MySQL APIs 797

floor /usr/local/lib/mysql/libmysqlclient.a(password.o)
ld: fatal: Symbol referencing errors. No output written to client

If this happens on your system, you must include the math library by adding -lm to the
end of the compile/link line.

11.1.13 Building Client Programs

If you compile MySQL clients that you’ve written yourself or that you obtain from a third-
party, they must be linked using the -lmysqlclient -lz option on the link command. You
may also need to specify a -L option to tell the linker where to find the library. For exam-
ple, if the library is installed in ‘/usr/local/mysql/lib’, use -L/usr/local/mysql/lib
-lmysqlclient -lz on the link command.

For clients that use MySQL header files, you may need to specify a -I option when you
compile them (for example, -I/usr/local/mysql/include), so the compiler can find the
header files.

To make the above simpler on Unix we have provided the mysql_config script for you. See
Section 4.9.10 [mysql_config], page 348.

You can use this to compile a MySQL client by as follows:

CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname ‘$CFG --cflags‘ progname.c ‘$CFG --libs‘"

The sh -c is need to get the shell to not threat the output from mysql_config as one word.

11.1.14 How to Make a Threaded Client

The client library is almost thread-safe. The biggest problem is that the subroutines in
‘net.c’ that read from sockets are not interrupt safe. This was done with the thought that
you might want to have your own alarm that can break a long read to a server. If you install
interrupt handlers for the SIGPIPE interrupt, the socket handling should be thread-safe.

New in 4.0.16: To not abort the program when a connection terminates, MySQL blocks
SIGPIPE on the first call to mysql_server_init(), mysql_init() or mysql_connect(). If
you want to have your own SIGPIPE handler, you should first call mysql_server_init()
and then install your handler. In older versions of MySQL SIGPIPE was blocked, but only
in the thread safe client library, for every call to mysql_init().

In the older binaries we distribute on our web site (http://www.mysql.com/), the client
libraries are not normally compiled with the thread-safe option (the Windows binaries are
by default compiled to be thread-safe). Newer binary distributions should have both a
normal and a thread-safe client library.

To get a threaded client where you can interrupt the client from other threads and set
timeouts when talking with the MySQL server, you should use the -lmysys, -lmystrings,
and -ldbug libraries and the net_serv.o code that the server uses.

If you don’t need interrupts or timeouts, you can just compile a thread-safe client library
(mysqlclient_r) and use this. See Section 11.1 [MySQL C API], page 715. In this case
you don’t have to worry about the net_serv.o object file or the other MySQL libraries.

798 MySQL Technical Reference for Version 4.1.1-alpha

When using a threaded client and you want to use timeouts and interrupts, you can make
great use of the routines in the ‘thr_alarm.c’ file. If you are using routines from the mysys
library, the only thing you must remember is to call my_init() first! See Section 11.1.10
[C Thread functions], page 792.

All functions except mysql_real_connect() are by default thread-safe. The following notes
describe how to compile a thread-safe client library and use it in a thread-safe manner.
(The notes below for mysql_real_connect() actually apply to mysql_connect() as well,
but because mysql_connect() is deprecated, you should be using mysql_real_connect()
anyway.)

To make mysql_real_connect() thread-safe, you must recompile the client library with
this command:

shell> ./configure --enable-thread-safe-client

This will create a thread-safe client library libmysqlclient_r. (Assuming your OS has a
thread-safe gethostbyname_r() function.) This library is thread-safe per connection. You
can let two threads share the same connection with the following caveats:

• Two threads can’t send a query to the MySQL server at the same time on the same
connection. In particular, you have to ensure that between a mysql_query() and
mysql_store_result() no other thread is using the same connection.

• Many threads can access different result sets that are retrieved with mysql_store_
result().

• If you use mysql_use_result, you have to ensure that no other thread is using the
same connection until the result set is closed. However, it really is best for threaded
clients that share the same connection to use mysql_store_result().

• If you want to use multiple threads on the same connection, you must have a mutex
lock around your mysql_query() and mysql_store_result() call combination. Once
mysql_store_result() is ready, the lock can be released and other threads may query
the same connection.

• If you program with POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

You need to know the following if you have a thread that is calling MySQL functions which
did not create the connection to the MySQL database:

When you call mysql_init() or mysql_connect(), MySQL will create a thread-specific
variable for the thread that is used by the debug library (among other things).

If you call a MySQL function, before the thread has called mysql_init() or mysql_
connect(), the thread will not have the necessary thread-specific variables in place and
you are likely to end up with a core dump sooner or later.

The get things to work smoothly you have to do the following:

1. Call my_init() at the start of your program if it calls any other MySQL function
before calling mysql_real_connect().

2. Call mysql_thread_init() in the thread handler before calling any MySQL function.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This will free
the memory used by MySQL thread-specific variables.

Chapter 11: MySQL APIs 799

You may get some errors because of undefined symbols when linking your client with
libmysqlclient_r. In most cases this is because you haven’t included the thread libraries
on the link/compile line.

11.1.15 libmysqld, the Embedded MySQL Server Library

11.1.15.1 Overview of the Embedded MySQL Server Library

The embedded MySQL server library makes it possible to run a full-featured MySQL server
inside a client application. The main benefits are increased speed and more simple man-
agement for embedded applications.
The embedded server library is based on the client/server version of MySQL, which is
written in C/C++. Consequently, the embedded server also is written in C/C++. There is
no embedded server available in other languages.
The API is identical for the embedded MySQL version and the client/server version. To
change an old threaded application to use the embedded library, you normally only have to
add calls to the following functions:
Function When to call
mysql_server_
init()

Should be called before any other MySQL function is called,
preferably early in the main() function.

mysql_server_end() Should be called before your program exits.
mysql_thread_
init()

Should be called in each thread you create that will access
MySQL.

mysql_thread_end() Should be called before calling pthread_exit()

Then you must link your code with ‘libmysqld.a’ instead of ‘libmysqlclient.a’.
The above mysql_server_xxx functions are also included in ‘libmysqlclient.a’ to allow
you to change between the embedded and the client/server version by just linking your
application with the right library. See Section 11.1.11.1 [mysql_server_init()], page 794.

11.1.15.2 Compiling Programs with libmysqld

To get a libmysqld library you should configure MySQL with the --with-embedded-
server option.
When you link your program with libmysqld, you must also include the system-specific
pthread libraries and some libraries that the MySQL server uses. You can get the full list
of libraries by executing mysql_config --libmysqld-libs.
The correct flags for compiling and linking a threaded program must be used, even if you
do not directly call any thread functions in your code.

11.1.15.3 Restrictions when using the Embedded MySQL Server

The embedded server has the following limitations:
• No support for ISAM tables. (This is mainly done to make the library smaller)

800 MySQL Technical Reference for Version 4.1.1-alpha

• No user defined functions (UDFs).
• No stack trace on core dump.
• No internal RAID support. (This is not normally needed as most OS has nowadays

support for big files).
• You cannot set this up as a server or a master (no replication).
• You can’t connect to the embedded server from an outside process with sockets or

TCP/IP.

Some of these limitations can be changed by editing the ‘mysql_embed.h’ include file and
recompiling MySQL.

11.1.15.4 Using Option Files with the Embedded Server

The following is the recommended way to use option files to make it easy to switch between
a client/server application and one where MySQL is embedded. See Section 4.1.2 [Option
files], page 203.
• Put common options in the [server] section. These will be read by both MySQL

versions.
• Put client/server-specific options in the [mysqld] section.
• Put embedded MySQL-specific options in the [embedded] section.
• Put application-specific options in a [ApplicationName_SERVER] section.

11.1.15.5 Things left to do in Embedded Server (TODO)

• We are going to provide options to leave out some parts of MySQL to make the library
smaller.

• There is still a lot of speed optimisation to do.
• Errors are written to stderr. We will add an option to specify a filename for these.
• We have to change InnoDB to not be so verbose when using in the embedded version.

11.1.15.6 A Simple Embedded Server Example

This example program and makefile should work without any changes on a Linux or FreeBSD
system. For other operating systems, minor changes will be needed. This example is
designed to give enough details to understand the problem, without the clutter that is a
necessary part of a real application.
To try out the example, create an ‘test_libmysqld’ directory at the same level as the
mysql-4.0 source directory. Save the ‘test_libmysqld.c’ source and the ‘GNUmakefile’ in
the directory, and run GNU ‘make’ from inside the ‘test_libmysqld’ directory.
‘test_libmysqld.c’

/*
* A simple example client, using the embedded MySQL server library
*/

Chapter 11: MySQL APIs 801

#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);

const char *server_groups[] = {
"test_libmysqld_SERVER", "embedded", "server", NULL

};

int
main(int argc, char **argv)
{
MYSQL *one, *two;

/* mysql_server_init() must be called before any other mysql
* functions.
*
* You can use mysql_server_init(0, NULL, NULL), and it will
* initialise the server using groups = {
* "server", "embedded", NULL
* }.
*
* In your $HOME/.my.cnf file, you probably want to put:

[test_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english

* You could, of course, modify argc and argv before passing
* them to this function. Or you could create new ones in any
* way you like. But all of the arguments in argv (except for
* argv[0], which is the program name) should be valid options
* for the MySQL server.
*
* If you link this client against the normal mysqlclient
* library, this function is just a stub that does nothing.
*/
mysql_server_init(argc, argv, (char **)server_groups);

one = db_connect("test");
two = db_connect(NULL);

db_do_query(one, "SHOW TABLE STATUS");
db_do_query(two, "SHOW DATABASES");

802 MySQL Technical Reference for Version 4.1.1-alpha

mysql_close(two);
mysql_close(one);

/* This must be called after all other mysql functions */
mysql_server_end();

exit(EXIT_SUCCESS);
}

static void
die(MYSQL *db, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
(void)putc(’\n’, stderr);
if (db)
db_disconnect(db);

exit(EXIT_FAILURE);
}

MYSQL *
db_connect(const char *dbname)
{
MYSQL *db = mysql_init(NULL);
if (!db)
die(db, "mysql_init failed: no memory");

/*
* Notice that the client and server use separate group names.
* This is critical, because the server will not accept the
* client’s options, and vice versa.
*/
mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test_libmysqld_CLIENT");
if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
die(db, "mysql_real_connect failed: %s", mysql_error(db));

return db;
}

void
db_disconnect(MYSQL *db)
{
mysql_close(db);

}

Chapter 11: MySQL APIs 803

void
db_do_query(MYSQL *db, const char *query)
{
if (mysql_query(db, query) != 0)
goto err;

if (mysql_field_count(db) > 0)
{
MYSQL_RES *res;
MYSQL_ROW row, end_row;
int num_fields;

if (!(res = mysql_store_result(db)))
goto err;

num_fields = mysql_num_fields(res);
while ((row = mysql_fetch_row(res)))
{
(void)fputs(">> ", stdout);
for (end_row = row + num_fields; row < end_row; ++row)
(void)printf("%s\t", row ? (char*)*row : "NULL");

(void)fputc(’\n’, stdout);
}
(void)fputc(’\n’, stdout);
mysql_free_result(res);

}
else
(void)printf("Affected rows: %lld\n", mysql_affected_rows(db));

return;

err:
die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);

}

‘GNUmakefile’

This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib

If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-4.0/include
#lib := $(HOME)/mysql-4.0/libmysqld

CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static

804 MySQL Technical Reference for Version 4.1.1-alpha

You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lz -lm -lcrypt

ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif

This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))

all: $(targets)

clean:
rm -f $(targets) $(objects) *.core

11.1.15.7 Licensing the Embedded Server

The MySQL source code is covered by the GNU GPL license (see Appendix H [GPL li-
cense], page 1020). One result of this is that any program which includes, by linking with
libmysqld, the MySQL source code must be released as free software (under a license
compatible with the GPL).

We encourage everyone to promote free software by releasing code under the GPL or a
compatible license. For those who are not able to do this, another option is to purchase
a commercial license for the MySQL code from MySQL AB. For details, please see Sec-
tion 1.4.3 [MySQL licenses], page 17.

11.2 MySQL ODBC Support

MySQL provides support for ODBC by means of the MyODBC program. This chapter will
teach you how to install MyODBC, and how to use it. Here, you will also find a list of common
programs that are known to work with MyODBC.

11.2.1 How to Install MyODBC

MyODBC 2.50 is a 32-bit ODBC 2.50 specification level 0 (with level 1 and level 2 features)
driver for connecting an ODBC-aware application to MySQL. MyODBC works on Windows
9x/Me/NT/2000/XP and most Unix platforms. MyODBC 3.51 is an enhanced version with
ODBC 3.5x specification level 1 (complete core API + level 2 features).

Chapter 11: MySQL APIs 805

MyODBC is Open Source, and you can find the newest version at http://www.mysql.com/downloads/api-myodbc.html.
Please note that the 2.50.x versions are LGPL licensed, whereas the 3.51.x versions are GPL
licensed.

If you have problem with MyODBC and your program also works with OLEDB, you should
try the OLEDB driver.

Normally you only need to install MyODBC on Windows machines. You only need MyODBC
for Unix if you have a program like ColdFusion that is running on the Unix machine and
uses ODBC to connect to the databases.

If you want to install MyODBC on a Unix box, you will also need an ODBC manager. MyODBC
is known to work with most of the Unix ODBC managers.

To install MyODBC on Windows, you should download the appropriate MyODBC ‘.zip’ file,
unpack it with WinZIP or some similar program, and execute the ‘SETUP.EXE’ file.

On Windows/NT/XP you may get the following error when trying to install MyODBC:

An error occurred while copying C:\WINDOWS\SYSTEM\MFC30.DLL. Restart
Windows and try installing again (before running any applications which
use ODBC)

The problem in this case is that some other program is using ODBC and because of how
Windows is designed, you may not in this case be able to install a new ODBC drivers
with Microsoft’s ODBC setup program. In most cases you can continue by just pressing
Ignore to copy the rest of the MyODBC files and the final installation should still work.
If this doesn’t work, the solution is to reboot your computer in “safe mode“ (Choose this
by pressing F8 just before your machine starts Windows during rebooting), install MyODBC,
and reboot to normal mode.

• To make a connection to a Unix box from a Windows box, with an ODBC applica-
tion (one that doesn’t support MySQL natively), you must first install MyODBC on the
Windows machine.

• The user and Windows machine must have the access privileges to the MySQL server
on the Unix machine. This is set up with the GRANT command. See Section 4.4.1
[GRANT], page 239.

• You must create an ODBC DSN entry as follows:

− Open the Control Panel on the Windows machine.

− Double-click the ODBC Data Sources 32-bit icon.

− Click the tab User DSN.

− Click the button Add.

− Select MySQL in the screen Create New Data Source and click the Finish button.

− The MySQL Driver default configuration screen is shown. See Section 11.2.2
[ODBC administrator], page 806.

• Now start your application and select the ODBC driver with the DSN you specified in
the ODBC administrator.

Notice that there are other configuration options on the screen of MySQL (trace, don’t
prompt on connect, etc) that you can try if you run into problems.

806 MySQL Technical Reference for Version 4.1.1-alpha

11.2.2 How to Fill in the Various Fields in the ODBC
Administrator Program

There are three possibilities for specifying the server name on Windows95:
• Use the IP address of the server.
• Add a file ‘\windows\lmhosts’ with the following information:

ip hostname

For example:
194.216.84.21 my_hostname

• Configure the PC to use DNS.

Example of how to fill in the ODBC setup:
Windows DSN name: test
Description: This is my test database
MySQL Database: test
Server: 194.216.84.21
User: monty
Password: my_password
Port:

The value for the Windows DSN name field is any name that is unique in your Windows
ODBC setup.
You don’t have to specify values for the Server, User, Password, or Port fields in the
ODBC setup screen. However, if you do, the values will be used as the defaults later when
you attempt to make a connection. You have the option of changing the values at that
time.
If the port number is not given, the default port (3306) is used.
If you specify the option Read options from C:\my.cnf, the groups client and odbc will
be read from the ‘C:\my.cnf’ file. You can use all options that are usable by mysql_
options(). See Section 11.1.3.39 [mysql_options()], page 747.

11.2.3 Connect parameters for MyODBC

One can specify the following parameters for MyODBC on the [Servername] section of an
‘ODBC.INI’ file or through the InConnectionString argument in the SQLDriverConnect()
call.
Parameter Default value Comment
user ODBC (on

Windows)
The username used to connect to MySQL.

server localhost The hostname of the MySQL server.
database The default database.
option 0 A integer by which you can specify how MyODBC should

work. See below.
port 3306 The TCP/IP port to use if server is not localhost.
stmt A statement that will be executed when connecting to

MySQL.
password The password for the server user combination.

Chapter 11: MySQL APIs 807

socket The socket or Windows pipe to connect to.

The option argument is used to tell MyODBC that the client isn’t 100% ODBC compliant.
On Windows, one normally sets the option flag by toggling the different options on the
connection screen but one can also set this in the option argument. The following options
are listed in the same order as they appear in the MyODBC connect screen:

Bit Description
1 The client can’t handle that MyODBC returns the real width of a column.
2 The client can’t handle that MySQL returns the true value of affected rows.

If this flag is set then MySQL returns ’found rows’ instead. One must have
MySQL 3.21.14 or newer to get this to work.

4 Make a debug log in c:\myodbc.log. This is the same as putting MYSQL_
DEBUG=d:t:O,c::\myodbc.log in ‘AUTOEXEC.BAT’

8 Don’t set any packet limit for results and parameters.
16 Don’t prompt for questions even if driver would like to prompt
32 Simulate a ODBC 1.0 driver in some context.
64 Ignore use of database name in ’database.table.column’.
128 Force use of ODBC manager cursors (experimental).
256 Disable the use of extended fetch (experimental).
512 Pad CHAR fields to full column length.
1024 SQLDescribeCol() will return fully qualified column names
2048 Use the compressed server/client protocol
4096 Tell server to ignore space after function name and before ’(’ (needed by Power-

Builder). This will make all function names keywords!
8192 Connect with named pipes to a mysqld server running on NT.
16384 Change LONGLONG columns to INT columns (some applications can’t handle

LONGLONG).
32768 Return ’user’ as Table qualifier and Table owner from SQLTables

(experimental)
65536 Read parameters from the client and odbc groups from ‘my.cnf’
131072 Add some extra safety checks (should not bee needed but...)

If you want to have many options, you should add the above flags! For example setting
option to 12 (4+8) gives you debugging without package limits!

The default ‘MYODBC.DLL’ is compiled for optimal performance. If you want to debug MyODBC
(for example to enable tracing), you should instead use ‘MYODBCD.DLL’. To install this file,
copy ‘MYODBCD.DLL’ over the installed ‘MYODBC.DLL’ file.

11.2.4 How to Report Problems with MyODBC

MyODBC has been tested with Access, Admndemo.exe, C++-Builder, Borland Builder 4, Cen-
tura Team Developer (formerly Gupta SQL/Windows), ColdFusion (on Solaris and NT with
svc pack 5), Crystal Reports, DataJunction, Delphi, ERwin, Excel, iHTML, FileMaker Pro,
FoxPro, Notes 4.5/4.6, SBSS, Perl DBD-ODBC, Paradox, Powerbuilder, Powerdesigner 32
bit, VC++, and Visual Basic.

If you know of any other applications that work with MyODBC, please send mail to the myodbc
mailing list about this! See Section 1.6.1.1 [Mailing-list], page 25.

808 MySQL Technical Reference for Version 4.1.1-alpha

With some programs you may get an error like: Another user has modifies the record
that you have modified. In most cases this can be solved by doing one of the following
things:
• Add a primary key for the table if there isn’t one already.
• Add a timestamp column if there isn’t one already.
• Only use double float fields. Some programs may fail when they compare single floats.

If the above doesn’t help, you should do a MyODBC trace file and try to figure out why things
go wrong.

11.2.5 Programs Known to Work with MyODBC

Most programs should work with MyODBC, but for each of those listed here, we have tested
it ourselves or received confirmation from some user that it works:

Program Comment

Access To make Access work:
• If you are using Access 2000, you should get and install the newest (ver-

sion 2.6 or above) Microsoft MDAC (Microsoft Data Access Components)
from http://www.microsoft.com/data/. This will fix the following bug
in Access: when you export data to MySQL, the table and column names
aren’t specified. Another way to around this bug is to upgrade to MyO-
DBC Version 2.50.33 and MySQL Version 3.23.x, which together provide
a workaround for this bug!
You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5)
which can be found here http://support.microsoft.com/support/kb/articles/Q
239/1/14.ASP. This will fix some cases where columns are marked as
#deleted# in Access.
Note that if you are using MySQL Version 3.22, you must to apply the
MDAC patch and use MyODBC 2.50.32 or 2.50.34 and above to go around
this problem.

• For all Access versions, you should enable the MyODBC option flag Return
matching rows. For Access 2.0, you should additionally enable Simulate
ODBC 1.0.

• You should have a timestamp in all tables you want to be able to up-
date. For maximum portability TIMESTAMP(14) or simple TIMESTAMP is
recommended instead of other TIMESTAMP(X) variations.

• You should have a primary key in the table. If not, new or updated rows
may show up as #DELETED#.

• Only use DOUBLE float fields. Access fails when comparing with single
floats. The symptom usually is that new or updated rows may show up as
#DELETED# or that you can’t find or update rows.

• If you are linking a table through MyODBC, which has BIGINT as one
of the column, then the results will be displayed as #DELETED. The work
around solution is:

Chapter 11: MySQL APIs 809

• Have one more dummy column with TIMESTAMP as the datatype,
preferably TIMESTAMP(14).

• Check the ’Change BIGINT columns to INT’ in connection options di-
alog in ODBC DSN Administrator

• Delete the table link from access and re-create it.

It still displays the previous records as #DELETED#, but newly
added/updated records will be displayed properly.

• If you still get the error Another user has changed your data after adding
a TIMESTAMP column, the following trick may help you:
Don’t use table data sheet view. Create instead a form with the fields you
want, and use that form data sheet view. You should set the DefaultValue
property for the TIMESTAMP column to NOW(). It may be a good idea to
hide the TIMESTAMP column from view so your users are not confused.

• In some cases, Access may generate illegal SQL queries that MySQL can’t
understand. You can fix this by selecting "Query|SQLSpecific|Pass-
Through" from the Access menu.

• Access on NT will report BLOB columns as OLE OBJECTS. If you want to
have MEMO columns instead, you should change the column to TEXT with
ALTER TABLE.

• Access can’t always handle DATE columns properly. If you have a problem
with these, change the columns to DATETIME.

• If you have in Access a column defined as BYTE, Access will try to export
this as TINYINT instead of TINYINT UNSIGNED. This will give you problems
if you have values > 127 in the column!

ADO When you are coding with the ADO API and MyODBC you need to put attention
in some default properties that aren’t supported by the MySQL server. For
example, using the CursorLocation Property as adUseServer will return for
the RecordCount Property a result of -1. To have the right value, you need to
set this property to adUseClient, like is showing in the VB code here:

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long

myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount

myrs.Close
myconn.Close

810 MySQL Technical Reference for Version 4.1.1-alpha

Another workaround is to use a SELECT COUNT(*) statement for a similar query
to get the correct row count.

Active server pages (ASP)
You should use the option flag Return matching rows.

BDE applications
To get these to work, you should set the option flags Don’t optimize column
widths and Return matching rows.

Borland Builder 4
When you start a query you can use the property Active or use the method
Open. Note that Active will start by automatically issuing a SELECT * FROM
... query that may not be a good thing if your tables are big!

ColdFusion (On Unix)
The following information is taken from the ColdFusion documentation:
Use the following information to configure ColdFusion Server for Linux to use
the unixODBC driver with MyODBC for MySQL data sources. Allaire has verified
that MyODBC Version 2.50.26 works with MySQL Version 3.22.27 and ColdFusion
for Linux. (Any newer version should also work.) You can download MyODBC at
http://www.mysql.com/downloads/api-myodbc.html

ColdFusion Version 4.5.1 allows you to us the ColdFusion Administrator to
add the MySQL data source. However, the driver is not included with Cold-
Fusion Version 4.5.1. Before the MySQL driver will appear in the ODBC
datasources drop-down list, you must build and copy the MyODBC driver to
‘/opt/coldfusion/lib/libmyodbc.so’.
The Contrib directory contains the program ‘mydsn-xxx.zip’ which allows you
to build and remove the DSN registry file for the MyODBC driver on Coldfusion
applications.

DataJunction
You have to change it to output VARCHAR rather than ENUM, as it exports the
latter in a manner that causes MySQL grief.

Excel Works. A few tips:
• If you have problems with dates, try to select them as strings using the

CONCAT() function. For example:
select CONCAT(rise_time), CONCAT(set_time)

from sunrise_sunset;

Values retrieved as strings this way should be correctly recognised as time
values by Excel97.
The purpose of CONCAT() in this example is to fool ODBC into thinking
the column is of “string type”. Without the CONCAT(), ODBC knows the
column is of time type, and Excel does not understand that.
Note that this is a bug in Excel, because it automatically converts a string
to a time. This would be great if the source was a text file, but is plain
stupid when the source is an ODBC connection that reports exact types
for each column.

Chapter 11: MySQL APIs 811

Word
To retrieve data from MySQL to Word/Excel documents, you need to use the
MyODBC driver and the Add-in Microsoft Query help.
For example, create a db with a table containing 2 columns of text:
• Insert rows using the mysql client command-line tool.
• Create a DSN file using the ODBC manager, for example, ‘my’ for the db

above.
• Open the Word application.
• Create a blank new documentation.
• Using the tool bar called Database, press the button insert database.
• Press the button Get Data.
• At the right hand of the screen Get Data, press the button Ms Query.
• In the Ms Query create a New Data Source using the DSN file my.
• Select the new query.
• Select the columns that you want.
• Make a filter if you want.
• Make a Sort if you want.
• Select Return Data to Microsoft Word.
• Click Finish.
• Click Insert data and select the records.
• Click OK and you see the rows in your Word document.

odbcadmin
Test program for ODBC.

Delphi You must use BDE Version 3.2 or newer. Set the Don’t optimize column
width option field when connecting to MySQL.
Also, here is some potentially useful Delphi code that sets up both an ODBC
entry and a BDE entry for MyODBC (the BDE entry requires a BDE Alias Editor
that is free at a Delphi Super Page near you. (Thanks to Bryan Brunton
bryan@flesherfab.com for this):

fReg:= TRegistry.Create;
fReg.OpenKey(’\Software\ODBC\ODBC.INI\DocumentsFab’, True);
fReg.WriteString(’Database’, ’Documents’);
fReg.WriteString(’Description’, ’ ’);
fReg.WriteString(’Driver’, ’C:\WINNT\System32\myodbc.dll’);
fReg.WriteString(’Flag’, ’1’);
fReg.WriteString(’Password’, ’’);
fReg.WriteString(’Port’, ’ ’);
fReg.WriteString(’Server’, ’xmark’);
fReg.WriteString(’User’, ’winuser’);
fReg.OpenKey(’\Software\ODBC\ODBC.INI\ODBC Data Sources’, True);
fReg.WriteString(’DocumentsFab’, ’MySQL’);

812 MySQL Technical Reference for Version 4.1.1-alpha

fReg.CloseKey;
fReg.Free;

Memo1.Lines.Add(’DATABASE NAME=’);
Memo1.Lines.Add(’USER NAME=’);
Memo1.Lines.Add(’ODBC DSN=DocumentsFab’);
Memo1.Lines.Add(’OPEN MODE=READ/WRITE’);
Memo1.Lines.Add(’BATCH COUNT=200’);
Memo1.Lines.Add(’LANGDRIVER=’);
Memo1.Lines.Add(’MAX ROWS=-1’);
Memo1.Lines.Add(’SCHEMA CACHE DIR=’);
Memo1.Lines.Add(’SCHEMA CACHE SIZE=8’);
Memo1.Lines.Add(’SCHEMA CACHE TIME=-1’);
Memo1.Lines.Add(’SQLPASSTHRU MODE=SHARED AUTOCOMMIT’);
Memo1.Lines.Add(’SQLQRYMODE=’);
Memo1.Lines.Add(’ENABLE SCHEMA CACHE=FALSE’);
Memo1.Lines.Add(’ENABLE BCD=FALSE’);
Memo1.Lines.Add(’ROWSET SIZE=20’);
Memo1.Lines.Add(’BLOBS TO CACHE=64’);
Memo1.Lines.Add(’BLOB SIZE=32’);

AliasEditor.Add(’DocumentsFab’,’MySQL’,Memo1.Lines);

C++ Builder
Tested with BDE Version 3.0. The only known problem is that when the table
schema changes, query fields are not updated. BDE, however, does not seem to
recognise primary keys, only the index PRIMARY, though this has not been a
problem.

Vision You should use the option flag Return matching rows.

Visual Basic
To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO can’t handle big integers. This means that some
queries like SHOW PROCESSLIST will not work properly. The fix is to set the
option OPTION=16384 in the ODBC connect string or to set the Change BIGINT
columns to INT option in the MyODBC connect screen. You may also want to
set the Return matching rows option.

VisualInterDev
If you get the error [Microsoft][ODBC Driver Manager] Driver does not
support this parameter the reason may be that you have a BIGINT in
your result. Try setting the Change BIGINT columns to INT option in the
MyODBC connect screen.

Visual Objects
You should use the option flag Don’t optimize column widths.

Chapter 11: MySQL APIs 813

11.2.6 How to Get the Value of an AUTO_INCREMENT Column in
ODBC

A common problem is how to get the value of an automatically generated ID from an INSERT.
With ODBC, you can do something like this (assuming that auto is an AUTO_INCREMENT
field):

INSERT INTO foo (auto,text) VALUES(NULL,’text’);
SELECT LAST_INSERT_ID();

Or, if you are just going to insert the ID into another table, you can do this:
INSERT INTO foo (auto,text) VALUES(NULL,’text’);
INSERT INTO foo2 (id,text) VALUES(LAST_INSERT_ID(),’text’);

See Section 11.1.12.3 [Getting unique ID], page 796.
For the benefit of some ODBC applications (at least Delphi and Access), the following query
can be used to find a newly inserted row:

SELECT * FROM tbl_name WHERE auto IS NULL;

11.2.7 Reporting Problems with MyODBC

If you encounter difficulties with MyODBC, you should start by making a log file from the
ODBC manager (the log you get when requesting logs from ODBCADMIN) and a MyODBC
log.
To get a MyODBC log, you need to do the following:
1. Ensure that you are using ‘myodbcd.dll’ and not ‘myodbc.dll’. The easiest

way to do this is to get ‘myodbcd.dll’ from the MyODBC distribution and copy
it over the ‘myodbc.dll’, which is probably in your ‘C:\windows\system32’ or
‘C:\winnt\system32’ directory.
Note that you probably want to restore the old myodbc.dll file when you have finished
testing, as this is a lot faster than ‘myodbcd.dll’.

2. Tag the ‘Trace MyODBC’ option flag in the MyODBC connect/configure screen. The log
will be written to file ‘C:\myodbc.log’.
If the trace option is not remembered when you are going back to the above screen, it
means that you are not using the myodbcd.dll driver (see the item above).

3. Start your application and try to get it to fail.

Check the MyODBC trace file, to find out what could be wrong. You should be able to find
out the issued queries by searching after the string >mysql_real_query in the ‘myodbc.log’
file.
You should also try duplicating the queries in the mysql monitor or admndemo to find out
if the error is MyODBC or MySQL.
If you find out something is wrong, please only send the relevant rows (max 40 rows) to the
myodbc mailing list. See Section 1.6.1.1 [Mailing-list], page 25. Please never send the whole
MyODBC or ODBC log file!
If you are unable to find out what’s wrong, the last option is to make an archive (tar or zip)
that contains a MyODBC trace file, the ODBC log file, and a README file that explains
the problem. You can send this to ftp://support.mysql.com/pub/mysql/secret/. Only

814 MySQL Technical Reference for Version 4.1.1-alpha

we at MySQL AB will have access to the files you upload, and we will be very discrete with
the data!

If you can create a program that also shows this problem, please upload this too!

If the program works with some other SQL server, you should make an ODBC log file where
you do exactly the same thing in the other SQL server.

Remember that the more information you can supply to us, the more likely it is that we
can fix the problem!

11.3 MySQL Java Connectivity (JDBC)

There are 2 supported JDBC drivers for MySQL:

• MySQL Connector/J from MySQL AB, implemented in 100% native Java. This product
was formerly known as the mm.mysql driver. You can download MySQL Connector/J
from http://www.mysql.com/products/connector-j/.

• The Resin JDBC driver, which can be found at http://www.caucho.com/projects/jdbc-mysql/index.xtp.

For documentation, consult any JDBC documentation, plus each driver’s own documenta-
tion for MySQL-specific features.

11.4 MySQL PHP API

PHP is a server-side, HTML-embedded scripting language that may be used to create
dynamic web pages. It contains support for accessing several databases, including MySQL.
PHP may be run as a separate program or compiled as a module for use with the Apache
web server.

The distribution and documentation are available at the PHP web site
(http://www.php.net/).

11.4.1 Common Problems with MySQL and PHP

• Error: "Maximum Execution Time Exceeded" This is a PHP limit; go into the
‘php3.ini’ file and set the maximum execution time up from 30 seconds to something
higher, as needed. It is also not a bad idea to double the ram allowed per script to 16
MB instead of 8 MB.

• Error: "Fatal error: Call to unsupported or undefined function mysql connect() in
.." This means that your PHP version isn’t compiled with MySQL support. You can
either compile a dynamic MySQL module and load it into PHP or recompile PHP with
built-in MySQL support. This is described in detail in the PHP manual.

• Error: "undefined reference to ‘uncompress’" This means that the client library is
compiled with support for a compressed client/server protocol. The fix is to add -lz
last when linking with -lmysqlclient.

Chapter 11: MySQL APIs 815

11.5 MySQL Perl API

This section documents the Perl DBI interface. The former interface was called mysqlperl.
DBI/DBD now is the recommended Perl interface, so mysqlperl is obsolete and is not docu-
mented here.

11.5.1 DBI with DBD::mysql

DBI is a generic interface for many databases. That means that you can write a script that
works with many different database engines without change. You need a DataBase Driver
(DBD) defined for each database type. For MySQL, this driver is called DBD::mysql.
For more information on the Perl5 DBI, please visit the DBI web page and read the docu-
mentation:

http://dbi.perl.org/

Note that if you want to use transactions with Perl, you need to have DBD-mysql version
1.2216 or newer. Version 2.1022 or newer is recommended.
Installation instructions for MySQL Perl support are given in Section 2.7 [Perl support],
page 152.
If you have the MySQL module installed, you can find information about specific MySQL
functionality with one of the following command

shell> perldoc DBD/mysql
shell> perldoc mysql

11.5.2 The DBI Interface

Portable DBI Methods and Attributes

Method/Attribute Description
connect Establishes a connection to a database server.
disconnect Disconnects from the database server.
prepare Prepares an SQL statement for execution.
execute Executes prepared statements.
do Prepares and executes an SQL statement.
quote Quotes string or BLOB values to be inserted.
fetchrow_array Fetches the next row as an array of fields.
fetchrow_arrayref Fetches next row as a reference array of fields.
fetchrow_hashref Fetches next row as a reference to a hashtable.
fetchall_arrayref Fetches all data as an array of arrays.
finish Finishes a statement and lets the system free

resources.
rows Returns the number of rows affected.
data_sources Returns an array of databases available on localhost.
ChopBlanks Controls whether fetchrow_* methods trim spaces.
NUM_OF_PARAMS The number of placeholders in the prepared

statement.
NULLABLE Which columns can be NULL.

816 MySQL Technical Reference for Version 4.1.1-alpha

trace Perform tracing for debugging.

MySQL-specific Methods and Attributes

Method/Attribute Description
mysql_insertid The latest AUTO_INCREMENT value.
is_blob Which columns are BLOB values.
is_key Which columns are keys.
is_num Which columns are numeric.
is_pri_key Which columns are primary keys.
is_not_null Which columns CANNOT be NULL. See NULLABLE.
length Maximum possible column sizes.
max_length Maximum column sizes actually present in result.
NAME Column names.
NUM_OF_FIELDS Number of fields returned.
table Table names in returned set.
type All column types.

The Perl methods are described in more detail in the following sections. Variables used for
method return values have these meanings:

$dbh Database handle

$sth Statement handle

$rc Return code (often a status)

$rv Return value (often a row count)

Portable DBI Methods and Attributes

connect($data_source, $username, $password)
Use the connect method to make a database connection to the data source.
The $data_source value should begin with DBI:driver_name:. Example uses
of connect with the DBD::mysql driver:

$dbh = DBI->connect("DBI:mysql:$database", $user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname",

$user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname:$port",

$user, $password);

If the user name and/or password are undefined, DBI uses the values of the DBI_
USER and DBI_PASS environment variables, respectively. If you don’t specify a
hostname, it defaults to ’localhost’. If you don’t specify a port number, it
defaults to the default MySQL port (3306).

As of Msql-Mysql-modules Version 1.2009, the $data_source value allows cer-
tain modifiers:

mysql_read_default_file=file_name
Read ‘file_name’ as an option file. For information on option files,
see Section 4.1.2 [Option files], page 203.

Chapter 11: MySQL APIs 817

mysql_read_default_group=group_name
The default group when reading an option file is normally the
[client] group. By specifying the mysql_read_default_group
option, the default group becomes the [group_name] group.

mysql_compression=1
Use compressed communication between the client and server
(MySQL Version 3.22.3 or later).

mysql_socket=/path/to/socket
Specify the pathname of the Unix socket that is used to connect to
the server (MySQL Version 3.21.15 or later).

Multiple modifiers may be given; each must be preceded by a semicolon.
For example, if you want to avoid hardcoding the user name and password into
a DBI script, you can take them from the user’s ‘~/.my.cnf’ option file instead
by writing your connect call like this:

$dbh = DBI->connect("DBI:mysql:$database"
. ";mysql_read_default_file=$ENV{HOME}/.my.cnf",
$user, $password);

This call will read options defined for the [client] group in the option file. If
you wanted to do the same thing but use options specified for the [perl] group
as well, you could use this:

$dbh = DBI->connect("DBI:mysql:$database"
. ";mysql_read_default_file=$ENV{HOME}/.my.cnf"
. ";mysql_read_default_group=perl",
$user, $password);

disconnect
The disconnect method disconnects the database handle from the database.
This is typically called right before you exit from the program. Example:

$rc = $dbh->disconnect;

prepare($statement)
Prepares an SQL statement for execution by the database engine and returns
a statement handle ($sth), which you can use to invoke the execute method.
Typically you handle SELECT statements (and SELECT-like statements such as
SHOW, DESCRIBE, and EXPLAIN) by means of prepare and execute. Example:

$sth = $dbh->prepare($statement)
or die "Can’t prepare $statement: $dbh->errstr\n";

If you want to read big results to your client you can tell Perl to use mysql_
use_result() with:

my $sth = $dbh->prepare($statement { "mysql_use_result" => 1});

execute The execute method executes a prepared statement. For non-SELECT state-
ments, execute returns the number of rows affected. If no rows are affected,
execute returns "0E0", which Perl treats as zero but regards as true. If an error
occurs, execute returns undef. For SELECT statements, execute only starts

818 MySQL Technical Reference for Version 4.1.1-alpha

the SQL query in the database; you need to use one of the fetch_* methods
described here to retrieve the data. Example:

$rv = $sth->execute
or die "can’t execute the query: " . $sth->errstr;

do($statement)
The do method prepares and executes an SQL statement and returns the num-
ber of rows affected. If no rows are affected, do returns "0E0", which Perl treats
as zero but regards as true. This method is generally used for non-SELECT state-
ments that cannot be prepared in advance (due to driver limitations) or that
do not need to be executed more than once (inserts, deletes, etc.). Example:

$rv = $dbh->do($statement)
or die "Can’t execute $statement: $dbh- >errstr\n";

Generally the ’do’ statement is much faster (and is preferable) than
prepare/execute for statements that don’t contain parameters.

quote($string)
The quote method is used to "escape" any special characters contained in the
string and to add the required outer quotation marks. Example:

$sql = $dbh->quote($string)

fetchrow_array
This method fetches the next row of data and returns it as an array of field
values. Example:

while(@row = $sth->fetchrow_array) {
print qw($row[0]\t$row[1]\t$row[2]\n);

}

fetchrow_arrayref
This method fetches the next row of data and returns it as a reference to an
array of field values. Example:

while($row_ref = $sth->fetchrow_arrayref) {
print qw($row_ref->[0]\t$row_ref->[1]\t$row_ref->[2]\n);

}

fetchrow_hashref
This method fetches a row of data and returns a reference to a hash table
containing field name/value pairs. This method is not nearly as efficient as
using array references as demonstrated above. Example:

while($hash_ref = $sth->fetchrow_hashref) {
print qw($hash_ref->{firstname}\t$hash_ref->{lastname}\t\

$hash_ref->{title}\n);
}

fetchall_arrayref
This method is used to get all the data (rows) to be returned from the SQL
statement. It returns a reference to an array of references to arrays for each
row. You access or print the data by using a nested loop. Example:

Chapter 11: MySQL APIs 819

my $table = $sth->fetchall_arrayref
or die "$sth->errstr\n";

my($i, $j);
for $i (0 .. $#{$table}) {

for $j (0 .. $#{$table->[$i]}) {
print "$table->[$i][$j]\t";

}
print "\n";

}

finish Indicates that no more data will be fetched from this statement handle. You
call this method to free up the statement handle and any system resources
associated with it. Example:

$rc = $sth->finish;

rows Returns the number of rows changed (updated, deleted, etc.) by the last com-
mand. This is usually used after a non-SELECT execute statement. Example:

$rv = $sth->rows;

NULLABLE Returns a reference to an array of values that indicate whether columns may
contain NULL values. The possible values for each array element are 0 or the
empty string if the column cannot be NULL, 1 if it can, and 2 if the column’s
NULL status is unknown. Example:

$null_possible = $sth->{NULLABLE};

NUM_OF_FIELDS
This attribute indicates the number of fields returned by a SELECT or SHOW
FIELDS statement. You may use this for checking whether a statement returned
a result: A zero value indicates a non-SELECT statement like INSERT, DELETE,
or UPDATE. Example:

$nr_of_fields = $sth->{NUM_OF_FIELDS};

data_sources($driver_name)
This method returns an array containing names of databases available to the
MySQL server on the host ’localhost’. Example:

@dbs = DBI->data_sources("mysql");

ChopBlanks
This attribute determines whether the fetchrow_* methods will chop leading
and trailing blanks from the returned values. Example:

$sth->{’ChopBlanks’} =1;

trace($trace_level)
trace($trace_level, $trace_filename)

The trace method enables or disables tracing. When invoked as a DBI class
method, it affects tracing for all handles. When invoked as a database or
statement handle method, it affects tracing for the given handle (and any future
children of the handle). Setting $trace_level to 2 provides detailed trace
information. Setting $trace_level to 0 disables tracing. Trace output goes to

820 MySQL Technical Reference for Version 4.1.1-alpha

the standard error output by default. If $trace_filename is specified, the file
is opened in append mode and output for all traced handles is written to that
file. Example:

DBI->trace(2); # trace everything
DBI->trace(2,"/tmp/dbi.out"); # trace everything to

/tmp/dbi.out
$dth->trace(2); # trace this database handle
$sth->trace(2); # trace this statement handle

You can also enable DBI tracing by setting the DBI_TRACE environment variable.
Setting it to a numeric value is equivalent to calling DBI->(value). Setting it
to a pathname is equivalent to calling DBI->(2,value).

MySQL-specific Methods and Attributes

The methods shown here are MySQL-specific and not part of the DBI standard. Several of
them are now deprecated: is_blob, is_key, is_num, is_pri_key, is_not_null, length,
max_length, and table. Where DBI-standard alternatives exist, they are noted here:

mysql_insertid
If you use the AUTO_INCREMENT feature of MySQL, the new auto-incremented
values will be stored here. Example:

$new_id = $sth->{mysql_insertid};

With old versions of the DBI interface, you could use $sth->{’insertid’}.

is_blob Returns a reference to an array of boolean values; for each element of the array,
a value of TRUE indicates that the respective column is a BLOB. Example:

$keys = $sth->{is_blob};

is_key Returns a reference to an array of boolean values; for each element of the array,
a value of TRUE indicates that the respective column is a key. Example:

$keys = $sth->{is_key};

is_num Returns a reference to an array of boolean values; for each element of the array,
a value of TRUE indicates that the respective column contains numeric values.
Example:

$nums = $sth->{is_num};

is_pri_key
Returns a reference to an array of boolean values; for each element of the array, a
value of TRUE indicates that the respective column is a primary key. Example:

$pri_keys = $sth->{is_pri_key};

is_not_null
Returns a reference to an array of boolean values; for each element of the array,
a value of FALSE indicates that this column may contain NULL values. Example:

$not_nulls = $sth->{is_not_null};

is_not_null is deprecated; it is preferable to use the NULLABLE attribute (de-
scribed above), because that is a DBI standard.

Chapter 11: MySQL APIs 821

length
max_length

Each of these methods returns a reference to an array of column sizes. The
length array indicates the maximum possible sizes that each column may be
(as declared in the table description). The max_length array indicates the
maximum sizes actually present in the result table. Example:

$lengths = $sth->{length};
$max_lengths = $sth->{max_length};

NAME Returns a reference to an array of column names. Example:
$names = $sth->{NAME};

table Returns a reference to an array of table names. Example:
$tables = $sth->{table};

type Returns a reference to an array of column types. Example:
$types = $sth->{type};

11.5.3 More DBI/DBD Information

You can use the perldoc command to get more information about DBI.

perldoc DBI
perldoc DBI::FAQ
perldoc DBD::mysql

You can also use the pod2man, pod2html, etc., tools to translate to other formats.

You can find the latest DBI information at the DBI web page: http://dbi.perl.org/.

11.6 MySQL C++ API

MySQL Connector/C++ (or MySQL++) is the official MySQL API for C++. More information
can be found at http://www.mysql.com/products/mysql++/.

11.6.1 Borland C++

You can compile the MySQL Windows source with Borland C++ 5.02. (The Windows source
includes only projects for Microsoft VC++, for Borland C++ you have to do the project files
yourself.)

One known problem with Borland C++ is that it uses a different structure alignment
than VC++. This means that you will run into problems if you try to use the default
libmysql.dll libraries (that was compiled with VC++) with Borland C++. You can do one
of the following to avoid this problem.

• You can use the static MySQL libraries for Borland C++ that you can find on
http://www.mysql.com/downloads/os-win32.html.

• Only call mysql_init() with NULL as an argument, not a pre-allocated MYSQL struct.

822 MySQL Technical Reference for Version 4.1.1-alpha

11.7 MySQL Python API

MySQLdb provides MySQL support for Python, compliant with the Python DB API version
2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

11.8 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming
language. It can be found at http://www.xdobry.de/mysqltcl/.

11.9 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eif-
fel programming language, written by Michael Ravits. It can be found at
http://efsa.sourceforge.net/archive/ravits/mysql.htm.

Chapter 12: Error Handling in MySQL 823

12 Error Handling in MySQL

This chapter describes how MySQL handles errors.

12.1 Error Returns

Following are error codes that may appear when you call MySQL from any host language.
The Name and Error Code columns correspond to definitions in the MySQL source code
file: ‘include/mysqld_error.h’
The SQLSTATE column corresponds to definitions in the MySQL source code file:
‘include/sql_state.h’
The SQLSTATE error code will only appear if you use MySQL version 4.1. SQLSTATE
codes were added for compatibility with X/Open / ANSI / ODBC behaviour.
A suggested text for each error code can be found in the error-message file:
‘share/english/errmsg.sys’
Because updates are frequent, it is possible that the above sources will contain additional
error codes.

Name Error
Code

SQLSTATE

ER HASHCHK 1000 HY000
ER NISAMCHK 1001 HY000
ER NO 1002 HY000
ER YES 1003 HY000
ER CANT CREATE FILE 1004 HY000
ER CANT CREATE TABLE 1005 HY000
ER CANT CREATE DB 1006 HY000
ER DB CREATE EXISTS 1007 HY000
ER DB DROP EXISTS 1008 HY000
ER DB DROP DELETE 1009 HY000
ER DB DROP RMDIR 1010 HY000
ER CANT DELETE FILE 1011 HY000
ER CANT FIND SYSTEM REC 1012 HY000
ER CANT GET STAT 1013 HY000
ER CANT GET WD 1014 HY000
ER CANT LOCK 1015 HY000
ER CANT OPEN FILE 1016 HY000
ER FILE NOT FOUND 1017 HY000
ER CANT READ DIR 1018 HY000
ER CANT SET WD 1019 HY000
ER CHECKREAD 1020 HY000
ER DISK FULL 1021 HY000
ER DUP KEY 1022 23000
ER ERROR ON CLOSE 1023 HY000
ER ERROR ON READ 1024 HY000

824 MySQL Technical Reference for Version 4.1.1-alpha

ER ERROR ON RENAME 1025 HY000
ER ERROR ON WRITE 1026 HY000
ER FILE USED 1027 HY000
ER FILSORT ABORT 1028 HY000
ER FORM NOT FOUND 1029 HY000
ER GET ERRNO 1030 HY000
ER ILLEGAL HA 1031 HY000
ER KEY NOT FOUND 1032 HY000
ER NOT FORM FILE 1033 HY000
ER NOT KEYFILE 1034 HY000
ER OLD KEYFILE 1035 HY000
ER OPEN AS READONLY 1036 HY000
ER OUTOFMEMORY 1037 HY001
ER OUT OF SORTMEMORY 1038 HY001
ER UNEXPECTED EOF 1039 HY000
ER CON COUNT ERROR 1040 08004
ER OUT OF RESOURCES 1041 08004
ER BAD HOST ERROR 1042 08S01
ER HANDSHAKE ERROR 1043 08S01
ER DBACCESS DENIED ERROR 1044 42000
ER ACCESS DENIED ERROR 1045 42000
ER NO DB ERROR 1046 42000
ER UNKNOWN COM ERROR 1047 08S01
ER BAD NULL ERROR 1048 23000
ER BAD DB ERROR 1049 42000
ER TABLE EXISTS ERROR 1050 42S01
ER BAD TABLE ERROR 1051 42S02
ER NON UNIQ ERROR 1052 23000
ER SERVER SHUTDOWN 1053 08S01
ER BAD FIELD ERROR 1054 42S22
ER WRONG FIELD WITH GROUP 1055 42000
ER WRONG GROUP FIELD 1056 42000
ER WRONG SUM SELECT 1057 42000
ER WRONG VALUE COUNT 1058 21S01
ER TOO LONG IDENT 1059 42000
ER DUP FIELDNAME 1060 42S21
ER DUP KEYNAME 1061 42000
ER DUP ENTRY 1062 23000
ER WRONG FIELD SPEC 1063 42000
ER PARSE ERROR 1064 42000
ER EMPTY QUERY 1065 42000
ER NONUNIQ TABLE 1066 42000
ER INVALID DEFAULT 1067 42000
ER MULTIPLE PRI KEY 1068 42000
ER TOO MANY KEYS 1069 42000
ER TOO MANY KEY PARTS 1070 42000
ER TOO LONG KEY 1071 42000

Chapter 12: Error Handling in MySQL 825

ER KEY COLUMN DOES NOT EXITS 1072 42000
ER BLOB USED AS KEY 1073 42000
ER TOO BIG FIELDLENGTH 1074 42000
ER WRONG AUTO KEY 1075 42000
ER READY 1076 00000
ER NORMAL SHUTDOWN 1077 00000
ER GOT SIGNAL 1078 00000
ER SHUTDOWN COMPLETE 1079 00000
ER FORCING CLOSE 1080 08S01
ER IPSOCK ERROR 1081 08S01
ER NO SUCH INDEX 1082 42S12
ER WRONG FIELD TERMINATORS 1083 42000
ER BLOBS AND NO TERMINATED 1084 42000
ER TEXTFILE NOT READABLE 1085 HY000
ER FILE EXISTS ERROR 1086 HY000
ER LOAD INFO 1087 HY000
ER ALTER INFO 1088 HY000
ER WRONG SUB KEY 1089 HY000
ER CANT REMOVE ALL FIELDS 1090 42000
ER CANT DROP FIELD OR KEY 1091 42000
ER INSERT INFO 1092 HY000
ER UPDATE TABLE USED 1093 HY000
ER NO SUCH THREAD 1094 HY000
ER KILL DENIED ERROR 1095 HY000
ER NO TABLES USED 1096 HY000
ER TOO BIG SET 1097 HY000
ER NO UNIQUE LOGFILE 1098 HY000
ER TABLE NOT LOCKED FOR WRITE 1099 HY000
ER TABLE NOT LOCKED 1100 HY000
ER BLOB CANT HAVE DEFAULT 1101 42000
ER WRONG DB NAME 1102 42000
ER WRONG TABLE NAME 1103 42000
ER TOO BIG SELECT 1104 42000
ER UNKNOWN ERROR 1105 HY000
ER UNKNOWN PROCEDURE 1106 42000
ER WRONG PARAMCOUNT TO PROCEDURE1107 42000
ER WRONG PARAMETERS TO PROCEDURE1108 HY000
ER UNKNOWN TABLE 1109 42S02
ER FIELD SPECIFIED TWICE 1110 42000
ER INVALID GROUP FUNC USE 1111 42000
ER UNSUPPORTED EXTENSION 1112 42000
ER TABLE MUST HAVE COLUMNS 1113 42000
ER RECORD FILE FULL 1114 HY000
ER UNKNOWN CHARACTER SET 1115 42000
ER TOO MANY TABLES 1116 HY000
ER TOO MANY FIELDS 1117 HY000
ER TOO BIG ROWSIZE 1118 42000

826 MySQL Technical Reference for Version 4.1.1-alpha

ER STACK OVERRUN 1119 HY000
ER WRONG OUTER JOIN 1120 42000
ER NULL COLUMN IN INDEX 1121 42000
ER CANT FIND UDF 1122 HY000
ER CANT INITIALIZE UDF 1123 HY000
ER UDF NO PATHS 1124 HY000
ER UDF EXISTS 1125 HY000
ER CANT OPEN LIBRARY 1126 HY000
ER CANT FIND DL ENTRY 1127 HY000
ER FUNCTION NOT DEFINED 1128 HY000
ER HOST IS BLOCKED 1129 HY000
ER HOST NOT PRIVILEGED 1130 HY000
ER PASSWORD ANONYMOUS USER 1131 42000
ER PASSWORD NOT ALLOWED 1132 42000
ER PASSWORD NO MATCH 1133 42000
ER UPDATE INFO 1134 HY000
ER CANT CREATE THREAD 1135 HY000
ER WRONG VALUE COUNT ON ROW 1136 21S01
ER CANT REOPEN TABLE 1137 HY000
ER INVALID USE OF NULL 1138 42000
ER REGEXP ERROR 1139 42000
ER MIX OF GROUP FUNC AND FIELDS 1140 42000
ER NONEXISTING GRANT 1141 42000
ER TABLEACCESS DENIED ERROR 1142 42000
ER COLUMNACCESS DENIED ERROR 1143 42000
ER ILLEGAL GRANT FOR TABLE 1144 42000
ER GRANT WRONG HOST OR USER 1145 42000
ER NO SUCH TABLE 1146 42S02
ER NONEXISTING TABLE GRANT 1147 42000
ER NOT ALLOWED COMMAND 1148 42000
ER SYNTAX ERROR 1149 42000
ER DELAYED CANT CHANGE LOCK 1150 HY000
ER TOO MANY DELAYED THREADS 1151 HY000
ER ABORTING CONNECTION 1152 08S01
ER NET PACKET TOO LARGE 1153 08S01
ER NET READ ERROR FROM PIPE 1154 08S01
ER NET FCNTL ERROR 1155 08S01
ER NET PACKETS OUT OF ORDER 1156 08S01
ER NET UNCOMPRESS ERROR 1157 08S01
ER NET READ ERROR 1158 08S01
ER NET READ INTERRUPTED 1159 08S01
ER NET ERROR ON WRITE 1160 08S01
ER NET WRITE INTERRUPTED 1161 08S01
ER TOO LONG STRING 1162 42000
ER TABLE CANT HANDLE BLOB 1163 42000
ER TABLE CANT HANDLE AUTO INCREMENT1164 42000
ER DELAYED INSERT TABLE LOCKED 1165 HY000

Chapter 12: Error Handling in MySQL 827

ER WRONG COLUMN NAME 1166 42000
ER WRONG KEY COLUMN 1167 42000
ER WRONG MRG TABLE 1168 HY000
ER DUP UNIQUE 1169 23000
ER BLOB KEY WITHOUT LENGTH 1170 42000
ER PRIMARY CANT HAVE NULL 1171 42000
ER TOO MANY ROWS 1172 42000
ER REQUIRES PRIMARY KEY 1173 42000
ER NO RAID COMPILED 1174 HY000
ER UPDATE WITHOUT KEY IN SAFE MODE1175 HY000
ER KEY DOES NOT EXITS 1176 HY000
ER CHECK NO SUCH TABLE 1177 42000
ER CHECK NOT IMPLEMENTED 1178 42000
ER CANT DO THIS DURING AN TRANSACTION1179 25000
ER ERROR DURING COMMIT 1180 HY000
ER ERROR DURING ROLLBACK 1181 HY000
ER ERROR DURING FLUSH LOGS 1182 HY000
ER ERROR DURING CHECKPOINT 1183 HY000
ER NEW ABORTING CONNECTION 1184 08S01
ER DUMP NOT IMPLEMENTED 1185 HY000
ER FLUSH MASTER BINLOG CLOSED 1186 HY000
ER INDEX REBUILD 1187 HY000
ER MASTER 1188 HY000
ER MASTER NET READ 1189 08S01
ER MASTER NET WRITE 1190 08S01
ER FT MATCHING KEY NOT FOUND 1191 HY000
ER LOCK OR ACTIVE TRANSACTION 1192 HY000
ER UNKNOWN SYSTEM VARIABLE 1193 HY000
ER CRASHED ON USAGE 1194 HY000
ER CRASHED ON REPAIR 1195 HY000
ER WARNING NOT COMPLETE ROLLBACK1196 HY000
ER TRANS CACHE FULL 1197 HY000
ER SLAVE MUST STOP 1198 HY000
ER SLAVE NOT RUNNING 1199 HY000
ER BAD SLAVE 1200 HY000
ER MASTER INFO 1201 HY000
ER SLAVE THREAD 1202 HY000
ER TOO MANY USER CONNECTIONS 1203 42000
ER SET CONSTANTS ONLY 1204 HY000
ER LOCK WAIT TIMEOUT 1205 HY000
ER LOCK TABLE FULL 1206 HY000
ER READ ONLY TRANSACTION 1207 25000
ER DROP DB WITH READ LOCK 1208 HY000
ER CREATE DB WITH READ LOCK 1209 HY000
ER WRONG ARGUMENTS 1210 HY000
ER NO PERMISSION TO CREATE USER 1211 42000
ER UNION TABLES IN DIFFERENT DIR 1212 HY000

828 MySQL Technical Reference for Version 4.1.1-alpha

ER LOCK DEADLOCK 1213 40001
ER TABLE CANT HANDLE FULLTEXT 1214 HY000
ER CANNOT ADD FOREIGN 1215 HY000
ER NO REFERENCED ROW 1216 23000
ER ROW IS REFERENCED 1217 23000
ER CONNECT TO MASTER 1218 08S01
ER QUERY ON MASTER 1219 HY000
ER ERROR WHEN EXECUTING COMMAND1220 HY000
ER WRONG USAGE 1221 HY000
ER WRONG NUMBER OF COLUMNS IN SELECT1222 21000
ER CANT UPDATE WITH READLOCK 1223 HY000
ER MIXING NOT ALLOWED 1224 HY000
ER DUP ARGUMENT 1225 HY000
ER USER LIMIT REACHED 1226 42000
ER SPECIFIC ACCESS DENIED ERROR 1227 HY000
ER LOCAL VARIABLE 1228 HY000
ER GLOBAL VARIABLE 1229 HY000
ER NO DEFAULT 1230 42000
ER WRONG VALUE FOR VAR 1231 42000
ER WRONG TYPE FOR VAR 1232 42000
ER VAR CANT BE READ 1233 HY000
ER CANT USE OPTION HERE 1234 42000
ER NOT SUPPORTED YET 1235 42000
ER MASTER FATAL ERROR READING BINLOG1236 HY000
ER SLAVE IGNORED TABLE 1237 HY000
ER WRONG FK DEF 1238 42000
ER KEY REF DO NOT MATCH TABLE REF1239 HY000
ER CARDINALITY COL 1240 21000
ER SUBSELECT NO 1 ROW 1241 21000
ER UNKNOWN STMT HANDLER 1242 HY000
ER CORRUPT HELP DB 1243 HY000
ER CYCLIC REFERENCE 1244 HY000
ER AUTO CONVERT 1245 HY000
ER ILLEGAL REFERENCE 1246 42S22
ER DERIVED MUST HAVE ALIAS 1247 42000
ER SELECT REDUCED 1248 01000
ER TABLENAME NOT ALLOWED HERE 1249 42000
ER NOT SUPPORTED AUTH MODE 1250 08004
ER SPATIAL CANT HAVE NULL 1251 42000
ER COLLATION CHARSET MISMATCH 1252 42000
ER SLAVE WAS RUNNING 1253 HY000
ER SLAVE WAS NOT RUNNING 1254 HY000
ER TOO BIG FOR UNCOMPRESS 1255 HY000
ER ZLIB Z MEM ERROR 1256 HY000
ER ZLIB Z BUF ERROR 1257 HY000
ER ZLIB Z DATA ERROR 1258 HY000
ER CUT VALUE GROUP CONCAT 1259 HY000

Chapter 12: Error Handling in MySQL 829

ER WARN TOO FEW RECORDS 1260 01000
ER WARN TOO MANY RECORDS 1261 01000
ER WARN NULL TO NOTNULL 1262 01000
ER WARN DATA OUT OF RANGE 1263 01000
ER WARN DATA TRUNCATED 1264 01000
ER WARN USING OTHER HANDLER 1265 01000
ER CANT AGGREGATE COLLATIONS 1266 42000
ER DROP USER 1267 42000
ER REVOKE GRANTS 1268 42000
ER CANT AGGREGATE 3COLLATIONS 1269 42000
ER CANT AGGREGATE NCOLLATIONS 1270 42000
ER VARIABLE IS NOT STRUCT 1271 HY000
ER UNKNOWN COLLATION 1272 HY000
ER SLAVE IGNORED SSL PARAMS 1273 HY000
ER SERVER IS IN SECURE AUTH MODE 1274 HY000
ER WARN FIELD RESOLVED 1275 HY000
ER BAD SLAVE UNTIL COND 1276 HY000
ER MISSING SKIP SLAVE 1277 HY000
ER UNTIL COND IGNORED 1278 HY000

830 MySQL Technical Reference for Version 4.1.1-alpha

13 Extending MySQL

13.1 MySQL Internals

This chapter describes a lot of things that you need to know when working on the MySQL
code. If you plan to contribute to MySQL development, want to have access to the bleeding-
edge in-between versions code, or just want to keep track of development, follow the in-
structions in Section 2.3.4 [Installing source tree], page 94. If you are interested in MySQL
internals, you should also subscribe to our internals mailing list. This list is relatively low
traffic. For details on how to subscribe, please see Section 1.6.1.1 [Mailing-list], page 25.
All developers at MySQL AB are on the internals list and we help other people who are
working on the MySQL code. Feel free to use this list both to ask questions about the code
and to send patches that you would like to contribute to the MySQL project!

13.1.1 MySQL Threads

The MySQL server creates the following threads:
• The TCP/IP connection thread handles all connection requests and creates a new

dedicated thread to handle the authentication and SQL query processing for each con-
nection.

• On Windows NT there is a named pipe handler thread that does the same work as the
TCP/IP connection thread on named pipe connect requests.

• The signal thread handles all signals. This thread also normally handles alarms and
calls process_alarm() to force timeouts on connections that have been idle too long.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles
alarms is created. This is only used on some systems where there are problems with
sigwait() or if one wants to use the thr_alarm() code in ones application without a
dedicated signal handling thread.

• If one uses the --flush_time=# option, a dedicated thread is created to flush all tables
at the given interval.

• Every connection has its own thread.
• Every different table on which one uses INSERT DELAYED gets its own thread.
• If you use --master-host, a slave replication thread will be started to read and apply

updates from the master.

mysqladmin processlist only shows the connection, INSERT DELAYED, and replication
threads.

13.1.2 MySQL Test Suite

Until recently, our main full-coverage test suite was based on proprietary customer data
and for that reason has not been publicly available. The only publicly available part of
our testing process consisted of the crash-me test, a Perl DBI/DBD benchmark found
in the sql-bench directory, and miscellaneous tests located in tests directory. The lack

Chapter 13: Extending MySQL 831

of a standardised publicly available test suite has made it difficult for our users, as well
developers, to do regression tests on the MySQL code. To address this problem, we have
created a new test system that is included in the source and binary distributions starting
in Version 3.23.29.
The current set of test cases doesn’t test everything in MySQL, but it should catch most
obvious bugs in the SQL processing code, OS/library issues, and is quite thorough in testing
replication. Our eventual goal is to have the tests cover 100% of the code. We welcome
contributions to our test suite. You may especially want to contribute tests that examine
the functionality critical to your system, as this will ensure that all future MySQL releases
will work well with your applications.

13.1.2.1 Running the MySQL Test Suite

The test system consist of a test language interpreter (mysqltest), a shell script to run
all tests(mysql-test-run), the actual test cases written in a special test language, and
their expected results. To run the test suite on your system after a build, type make
test or mysql-test/mysql-test-run from the source root. If you have installed a binary
distribution, cd to the install root (eg. /usr/local/mysql), and do scripts/mysql-test-
run. All tests should succeed. If not, you should try to find out why and report the problem
if this is a bug in MySQL. See Section 13.1.2.3 [Reporting mysqltest bugs], page 832.
If you have a copy of mysqld running on the machine where you want to run the test suite
you do not have to stop it, as long as it is not using ports 9306 and 9307. If one of those
ports is taken, you should edit mysql-test-run and change the values of the master and/or
slave port to one that is available.
You can run one individual test case with mysql-test/mysql-test-run test_name.
If one test fails, you should test running mysql-test-run with the --force option to check
if any other tests fails.

13.1.2.2 Extending the MySQL Test Suite

You can use the mysqltest language to write your own test cases. Unfortunately, we have
not yet written full documentation for it. You can, however, look at our current test cases
and use them as an example. The following points should help you get started:
• The tests are located in mysql-test/t/*.test

• A test case consists of ; terminated statements and is similar to the input of mysql
command-line client. A statement by default is a query to be sent to MySQL server,
unless it is recognised as internal command (eg. sleep).

• All queries that produce results—for example, SELECT, SHOW, EXPLAIN, etc., must
be preceded with @/path/to/result/file. The file must contain the expected re-
sults. An easy way to generate the result file is to run mysqltest -r < t/test-
case-name.test from mysql-test directory, and then edit the generated result files, if
needed, to adjust them to the expected output. In that case, be very careful about not
adding or deleting any invisible characters - make sure to only change the text and/or
delete lines. If you have to insert a line, make sure the fields are separated with a hard
tab, and there is a hard tab at the end. You may want to use od -c to make sure your

832 MySQL Technical Reference for Version 4.1.1-alpha

text editor has not messed anything up during edit. We, of course, hope that you will
never have to edit the output of mysqltest -r as you only have to do it when you find
a bug.

• To be consistent with our setup, you should put your result files in mysql-test/r
directory and name them test_name.result. If the test produces more than one
result, you should use test_name.a.result, test_name.b.result, etc.

• If a statement returns an error, you should on the line before the statement specify with
the --error error-number. The error number can be a list of possible error numbers
separated with ’,’.

• If you are writing a replication test case, you should on the first line of the test file,
put source include/master-slave.inc;. To switch between master and slave, use
connection master; and connection slave;. If you need to do something on an al-
ternate connection, you can do connection master1; for the master, and connection
slave1; for the slave.

• If you need to do something in a loop, you can use something like this:
let $1=1000;
while ($1)
{
do your queries here
dec $1;

}

• To sleep between queries, use the sleep command. It supports fractions of a second,
so you can do sleep 1.3;, for example, to sleep 1.3 seconds.

• To run the slave with additional options for your test case, put them in the command-
line format in mysql-test/t/test_name-slave.opt. For the master, put them in
mysql-test/t/test_name-master.opt.

• If you have a question about the test suite, or have a test case to contribute, e-
mail to the MySQL internals mailing list. See Section 1.6.1.1 [Mailing-list], page 25.
As this list does not accept attachments, you should ftp all the relevant files to:
ftp://support.mysql.com/pub/mysql/Incoming/

13.1.2.3 Reporting Bugs in the MySQL Test Suite

If your MySQL version doesn’t pass the test suite you should do the following:
• Don’t send a bug report before you have found out as much as possible of what when

wrong! When you do it, please use the mysqlbug script so that we can get information
about your system and MySQL version. See Section 1.6.1.3 [Bug reports], page 27.

• Make sure to include the output of mysql-test-run, as well as contents of all .reject
files in mysql-test/r directory.

• If a test in the test suite fails, check if the test fails also when run by its own:
cd mysql-test
mysql-test-run --local test-name

If this fails, then you should configure MySQL with --with-debug and run
mysql-test-run with the --debug option. If this also fails send the trace file

Chapter 13: Extending MySQL 833

‘var/tmp/master.trace’ to ftp://support.mysql.com/pub/mysql/secret so that we
can examine it. Please remember to also include a full description of your system, the
version of the mysqld binary and how you compiled it.

• Try also to run mysql-test-run with the --force option to see if there is any other
test that fails.

• If you have compiled MySQL yourself, check our manual for how to compile MySQL
on your platform or, preferable, use one of the binaries we have compiled for you at
http://www.mysql.com/downloads/. All our standard binaries should pass the test
suite !

• If you get an error, like Result length mismatch or Result content mismatch it
means that the output of the test didn’t match exactly the expected output. This
could be a bug in MySQL or that your mysqld version produces slight different results
under some circumstances.
Failed test results are put in a file with the same base name as the result file with the
.reject extension. If your test case is failing, you should do a diff on the two files. If
you cannot see how they are different, examine both with od -c and also check their
lengths.

• If a test fails totally, you should check the logs file in the mysql-test/var/log directory
for hints of what went wrong.

• If you have compiled MySQL with debugging you can try to debug this by running
mysql-test-run with the --gdb and/or --debug options. See Section E.1.2 [Making
trace files], page 1005.
If you have not compiled MySQL for debugging you should probably do that. Just
specify the --with-debug options to configure! See Section 2.3 [Installing source],
page 88.

13.2 Adding New Functions to MySQL

There are two ways to add new functions to MySQL:
• You can add the function through the user-definable function (UDF) interface. User-

definable functions are added and removed dynamically using the CREATE FUNCTION
and DROP FUNCTION statements. See Section 13.2.1 [CREATE FUNCTION], page 834.

• You can add the function as a native (built in) MySQL function. Native functions are
compiled into the mysqld server and become available on a permanent basis.

Each method has advantages and disadvantages:
• If you write a user-definable function, you must install the object file in addition to the

server itself. If you compile your function into the server, you don’t need to do that.
• You can add UDFs to a binary MySQL distribution. Native functions require you to

modify a source distribution.
• If you upgrade your MySQL distribution, you can continue to use your previously

installed UDFs. For native functions, you must repeat your modifications each time
you upgrade.

Whichever method you use to add new functions, they may be used just like native functions
such as ABS() or SOUNDEX().

834 MySQL Technical Reference for Version 4.1.1-alpha

13.2.1 CREATE FUNCTION/DROP FUNCTION Syntax

CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|REAL|INTEGER}
SONAME shared_library_name

DROP FUNCTION function_name

A user-definable function (UDF) is a way to extend MySQL with a new function that works
like native (built in) MySQL function such as ABS() and CONCAT().
AGGREGATE is a new option for MySQL Version 3.23. An AGGREGATE function works exactly
like a native MySQL GROUP function like SUM or COUNT().
CREATE FUNCTION saves the function’s name, type, and shared library name in the
mysql.func system table. You must have the INSERT and DELETE privileges for the mysql
database to create and drop functions.
All active functions are reloaded each time the server starts, unless you start mysqld with
the --skip-grant-tables option. In this case, UDF initialisation is skipped and UDFs are
unavailable. (An active function is one that has been loaded with CREATE FUNCTION and
not removed with DROP FUNCTION.)
For instructions on writing user-definable functions, see Section 13.2 [Adding functions],
page 833. For the UDF mechanism to work, functions must be written in C or C++,
your operating system must support dynamic loading and you must have compiled mysqld
dynamically (not statically).
Note that to make AGGREGATE work, you must have a mysql.func table that contains
the column type. If you do not have this table, you should run the script mysql_fix_
privilege_tables to create it.

13.2.2 Adding a New User-definable Function

For the UDF mechanism to work, functions must be written in C or C++ and your operating
system must support dynamic loading. The MySQL source distribution includes a file
‘sql/udf_example.cc’ that defines 5 new functions. Consult this file to see how UDF
calling conventions work.
For mysqld to be able to use UDF functions, you should configure MySQL with --with-
mysqld-ldflags=-rdynamic The reason is that to on many platforms (including Linux) you
can load a dynamic library (with dlopen()) from a static linked program, which you would
get if you are using --with-mysqld-ldflags=-all-static If you want to use an UDF that
needs to access symbols from mysqld (like the metaphone example in ‘sql/udf_example.cc’
that uses default_charset_info), you must link the program with -rdynamic (see man
dlopen).
If you are using a precompiled version of the server, use MySQL-Max, which supports
dynamic loading.
For each function that you want to use in SQL statements, you should define corresponding
C (or C++) functions. In the discussion below, the name “xxx” is used for an example
function name. To distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates
an SQL function call, and xxx() (lowercase) indicates a C/C++ function call.
The C/C++ functions that you write to implement the interface for XXX() are:

Chapter 13: Extending MySQL 835

xxx() (required)
The main function. This is where the function result is computed. The corre-
spondence between the SQL type and return type of your C/C++ function is
shown here:
SQL type C/C++

type
STRING char *
INTEGER long long
REAL double

xxx_init() (optional)
The initialisation function for xxx(). It can be used to:
• Check the number of arguments to XXX().
• Check that the arguments are of a required type or, alternatively, tell

MySQL to coerce arguments to the types you want when the main function
is called.

• Allocate any memory required by the main function.
• Specify the maximum length of the result.
• Specify (for REAL functions) the maximum number of decimals.
• Specify whether the result can be NULL.

xxx_deinit() (optional)
The deinitialisation function for xxx(). It should deallocate any memory allo-
cated by the initialisation function.

When an SQL statement invokes XXX(), MySQL calls the initialisation function xxx_init()
to let it perform any required setup, such as argument checking or memory allocation. If
xxx_init() returns an error, the SQL statement is aborted with an error message and the
main and deinitialisation functions are not called. Otherwise, the main function xxx() is
called once for each row. After all rows have been processed, the deinitialisation function
xxx_deinit() is called so it can perform any required cleanup.

For aggregate functions (like SUM()), you must also provide the following functions:

xxx_reset() (required)
Reset sum and insert the argument as the initial value for a new group.

xxx_add() (required)
Add the argument to the old sum.

When using aggregate UDFs, MySQL works the following way:

1. Call xxx_init() to let the aggregate function allocate the memory it will need to store
results.

2. Sort the table according to the GROUP BY expression.
3. For the first row in a new group, call the xxx_reset() function.
4. For each new row that belongs in the same group, call the xxx_add() function.
5. When the group changes or after the last row has been processed, call xxx() to get the

result for the aggregate.

836 MySQL Technical Reference for Version 4.1.1-alpha

6. Repeat 3-5 until all rows has been processed
7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe (not just the main function, but the initialisation and
deinitialisation functions as well). This means that you are not allowed to allocate any
global or static variables that change! If you need memory, you should allocate it in xxx_
init() and free it in xxx_deinit().

13.2.2.1 UDF Calling Sequences for simple functions

The main function should be declared as shown here. Note that the return type and
parameters differ, depending on whether you will declare the SQL function XXX() to return
STRING, INTEGER, or REAL in the CREATE FUNCTION statement:
For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned long *length,
char *is_null, char *error);

For INTEGER functions:
long long xxx(UDF_INIT *initid, UDF_ARGS *args,

char *is_null, char *error);

For REAL functions:
double xxx(UDF_INIT *initid, UDF_ARGS *args,

char *is_null, char *error);

The initialisation and deinitialisation functions are declared like this:
my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that
is used to communicate information between functions. The UDF_INIT structure members
are listed below. The initialisation function should fill in any members that it wishes to
change. (To use the default for a member, leave it unchanged.):

my_bool maybe_null
xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default
value is 1 if any of the arguments are declared maybe_null.

unsigned int decimals
Number of decimals. The default value is the maximum number of decimals
in the arguments passed to the main function. (For example, if the function
is passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3
decimals.

unsigned int max_length
The maximum length of the string result. The default value differs depending
on the result type of the function. For string functions, the default is the length
of the longest argument. For integer functions, the default is 21 digits. For real

Chapter 13: Extending MySQL 837

functions, the default is 13 plus the number of decimals indicated by initid-
>decimals. (For numeric functions, the length includes any sign or decimal
point characters.)
If you want to return a blob, you can set this to 65K or 16M; this memory is
not allocated but used to decide which column type to use if there is a need to
temporary store the data.

char *ptr A pointer that the function can use for its own purposes. For example, functions
can use initid->ptr to communicate allocated memory between functions. In
xxx_init(), allocate the memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the
memory.

13.2.2.2 UDF Calling Sequences for aggregate functions

Here follows a description of the different functions you need to define when you want to
create an aggregate UDF function.
Note that the following function is NOT needed or used by MySQL 4.1.1. You can keep
still have define his function if you want to have your code work with both MySQL 4.0 and
MySQL 4.1.1

char *xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

This function is called when MySQL finds the first row in a new group. In the function you
should reset any internal summary variables and then set the given argument as the first
argument in the group.
In many cases this is implemented internally by reseting all variables (for example by calling
xxx_clear() and then calling xxx_add().
The following function is only required by MySQL 4.1.1 and above:

char *xxx_clear(UDF_INIT *initid, char *is_null, char *error);

This function is called when MySQL needs to reset the summary results. This will be called
at the beginning for each new group but can also be called to reset the values for a query
where there was no matching rows. is_null will be set to point to CHAR(0) before calling
xxx_clear().
You can use the error pointer to store a byte if something went wrong .

char *xxx_add(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

This function is called for all rows that belongs to the same group, except for the first row.
In this you should add the value in UDF ARGS to your internal summary variable.
The xxx() function should be declared identical as when you define a simple UDF function.
See Section 13.2.2.1 [UDF calling], page 836.
This function is called when all rows in the group has been processed. You should normally
never access the args variable here but return your value based on your internal summary
variables.

838 MySQL Technical Reference for Version 4.1.1-alpha

All argument processing in xxx_reset() and xxx_add() should be done identically as for
normal UDFs. See Section 13.2.2.3 [UDF arguments], page 838.

The return value handling in xxx() should be done identically as for a normal UDF. See
Section 13.2.2.4 [UDF return values], page 839.

The pointer argument to is_null and error is the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error
or if the xxx() function should return NULL. Note that you should not store a string into
*error! This is just a 1 byte flag!

is_null is reset for each group (before calling xxx_clear() error is never reset.

If isnull or error are set after xxx() then MySQL will return NULL as the result for the
group function.

13.2.2.3 Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

unsigned int arg_count
The number of arguments. Check this value in the initialisation function if you
want your function to be called with a particular number of arguments. For
example:

if (args->arg_count != 2)
{

strcpy(message,"XXX() requires two arguments");
return 1;

}

enum Item_result *arg_type
The types for each argument. The possible type values are STRING_RESULT,
INT_RESULT, and REAL_RESULT.

To make sure that arguments are of a given type and return an error if they
are not, check the arg_type array in the initialisation function. For example:

if (args->arg_type[0] != STRING_RESULT ||
args->arg_type[1] != INT_RESULT)

{
strcpy(message,"XXX() requires a string and an integer");
return 1;

}

As an alternative to requiring your function’s arguments to be of particular
types, you can use the initialisation function to set the arg_type elements to
the types you want. This causes MySQL to coerce arguments to those types for
each call to xxx(). For example, to specify coercion of the first two arguments
to string and integer, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Chapter 13: Extending MySQL 839

char **args
args->args communicates information to the initialisation function about the
general nature of the arguments your function was called with. For a constant
argument i, args->args[i] points to the argument value. (See below for
instructions on how to access the value properly.) For a non-constant argument,
args->args[i] is 0. A constant argument is an expression that uses only
constants, such as 3 or 4*7-2 or SIN(3.14). A non-constant argument is an
expression that refers to values that may change from row to row, such as
column names or functions that are called with non-constant arguments.
For each invocation of the main function, args->args contains the actual ar-
guments that are passed for the row currently being processed.
Functions can refer to an argument i as follows:
• An argument of type STRING_RESULT is given as a string pointer plus

a length, to allow handling of binary data or data of arbitrary length.
The string contents are available as args->args[i] and the string
length is args->lengths[i]. You should not assume that strings are
null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a
long long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to
a double value:

double real_val;
real_val = *((double*) args->args[i]);

unsigned long *lengths
For the initialisation function, the lengths array indicates the maximum string
length for each argument. You should not change these. For each invocation of
the main function, lengths contains the actual lengths of any string arguments
that are passed for the row currently being processed. For arguments of types
INT_RESULT or REAL_RESULT, lengths still contains the maximum length of
the argument (as for the initialisation function).

13.2.2.4 Return Values and Error Handling

The initialisation function should return 0 if no error occurred and 1 otherwise. If an error
occurs, xxx_init() should store a null-terminated error message in the message parameter.
The message will be returned to the client. The message buffer is MYSQL_ERRMSG_SIZE
characters long, but you should try to keep the message to less than 80 characters so that
it fits the width of a standard terminal screen.
The return value of the main function xxx() is the function value, for long long and double
functions. A string functions should return a pointer to the result and store the length of
the string in the length arguments.
Set these to the contents and length of the return value. For example:

840 MySQL Technical Reference for Version 4.1.1-alpha

memcpy(result, "result string", 13);
*length = 13;

The result buffer that is passed to the calc function is 255 byte big. If your result fits in
this, you don’t have to worry about memory allocation for results.

If your string function needs to return a string longer than 255 bytes, you must allocate the
space for it with malloc() in your xxx_init() function or your xxx() function and free
it in your xxx_deinit() function. You can store the allocated memory in the ptr slot in
the UDF_INIT structure for reuse by future xxx() calls. See Section 13.2.2.1 [UDF calling],
page 836.

To indicate a return value of NULL in the main function, set is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set the error parameter to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and
for any subsequent rows processed by the statement in which XXX() was invoked. (xxx()
will not even be called for subsequent rows.) Note: in MySQL versions prior to 3.22.10,
you should set both *error and *is_null:

*error = 1;
*is_null = 1;

13.2.2.5 Compiling and Installing User-definable Functions

Files implementing UDFs must be compiled and installed on the host where the server runs.
This process is described below for the example UDF file ‘udf_example.cc’ that is included
in the MySQL source distribution. This file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like
a soundex string, but it’s more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its argu-
ments, divided by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.
• sequence([const int]) returns an sequence starting from the given number or 1 if

no number has been given.
• lookup() returns the IP number for a hostname.
• reverse_lookup() returns the hostname for an IP number. The function may be

called with a string "xxx.xxx.xxx.xxx" or four numbers.

A dynamically loadable file should be compiled as a sharable object file, using a command
something like this:

shell> gcc -shared -o udf_example.so myfunc.cc

You can easily find out the correct compiler options for your system by running this com-
mand in the ‘sql’ directory of your MySQL source tree:

shell> make udf_example.o

Chapter 13: Extending MySQL 841

You should run a compile command similar to the one that make displays, except that you
should remove the -c option near the end of the line and add -o udf_example.so to the
end of the line. (On some systems, you may need to leave the -c on the command.)

Once you compile a shared object containing UDFs, you must install it and tell MySQL
about it. Compiling a shared object from ‘udf_example.cc’ produces a file named some-
thing like ‘udf_example.so’ (the exact name may vary from platform to platform). Copy
this file to some directory searched by the dynamic linker ld, such as ‘/usr/lib’ or add the
directory in which you placed the shared object to the linker configuration file (for example,
‘/etc/ld.so.conf’).

On many systems, you can also set the LD_LIBRARY or LD_LIBRARY_PATH environment
variable to point at the directory where you have your UDF function files. The dlopen
manual page tells you which variable you should use on your system. You should set this
in mysql.server or mysqld_safe startup scripts and restart mysqld.

After the library is installed, notify mysqld about the new functions with these commands:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "udf_example.so";
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME "udf_example.so";
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME "udf_example.so";
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME "udf_example.so";
mysql> CREATE FUNCTION reverse_lookup

-> RETURNS STRING SONAME "udf_example.so";
mysql> CREATE AGGREGATE FUNCTION avgcost

-> RETURNS REAL SONAME "udf_example.so";

Functions can be deleted using DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the system table func in the
mysql database. The function’s name, type and shared library name are saved in the table.
You must have the INSERT and DELETE privileges for the mysql database to create and drop
functions.

You should not use CREATE FUNCTION to add a function that has already been created. If
you need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall
it with CREATE FUNCTION. You would need to do this, for example, if you recompile a new
version of your function, so that mysqld gets the new version. Otherwise, the server will
continue to use the old version.

Active functions are reloaded each time the server starts, unless you start mysqld with the
--skip-grant-tables option. In this case, UDF initialisation is skipped and UDFs are
unavailable. (An active function is one that has been loaded with CREATE FUNCTION and
not removed with DROP FUNCTION.)

842 MySQL Technical Reference for Version 4.1.1-alpha

13.2.3 Adding a New Native Function

The procedure for adding a new native function is described here. Note that you cannot add
native functions to a binary distribution because the procedure involves modifying MySQL
source code. You must compile MySQL yourself from a source distribution. Also note that
if you migrate to another version of MySQL (for example, when a new version is released),
you will need to repeat the procedure with the new version.
To add a new native MySQL function, follow these steps:
1. Add one line to ‘lex.h’ that defines the function name in the sql_functions[] array.
2. If the function prototype is simple (just takes zero, one, two or three arguments), you

should in lex.h specify SYM(FUNC ARG#) (where # is the number of arguments) as
the second argument in the sql_functions[] array and add a function that creates a
function object in ‘item_create.cc’. Take a look at "ABS" and create_funcs_abs()
for an example of this.
If the function prototype is complicated (for example takes a variable number of ar-
guments), you should add two lines to ‘sql_yacc.yy’. One indicates the preprocessor
symbol that yacc should define (this should be added at the beginning of the file). Then
define the function parameters and add an “item” with these parameters to the simple_
expr parsing rule. For an example, check all occurrences of ATAN in ‘sql_yacc.yy’ to
see how this is done.

3. In ‘item_func.h’, declare a class inheriting from Item_num_func or Item_str_func,
depending on whether your function returns a number or a string.

4. In ‘item_func.cc’, add one of the following declarations, depending on whether you
are defining a numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you
probably only have to define one of the above functions and let the parent object take
care of the other functions. For example, the Item_str_func class defines a val()
function that executes atof() on the value returned by ::str().

5. You should probably also define the following object function:
void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_
length is the maximum number of characters the function may return. This function
should also set maybe_null = 0 if the main function can’t return a NULL value. The
function can check if any of the function arguments can return NULL by checking the
arguments maybe_null variable. You can take a look at Item_func_mod::fix_length_
and_dec for a typical example of how to do this.

All functions must be thread-safe (in other words, don’t use any global or static variables
in the functions without protecting them with mutexes).
If you want to return NULL, from ::val(), ::val_int() or ::str() you should set null_
value to 1 and return 0.
For ::str() object functions, there are some additional considerations to be aware of:

Chapter 13: Extending MySQL 843

• The String *str argument provides a string buffer that may be used to hold the result.
(For more information about the String type, take a look at the ‘sql_string.h’ file.)

• The ::str() function should return the string that holds the result or (char*) 0 if
the result is NULL.

• All current string functions try to avoid allocating any memory unless absolutely nec-
essary!

13.3 Adding New Procedures to MySQL

In MySQL, you can define a procedure in C++ that can access and modify the data in a
query before it is sent to the client. The modification can be done on row-by-row or GROUP
BY level.
We have created an example procedure in MySQL Version 3.23 to show you what can be
done.
Additionally we recommend you to take a look at mylua. With this you can use the LUA
language to load a procedure at runtime into mysqld.

13.3.1 Procedure Analyse

analyse([max elements,[max memory]])

This procedure is defined in the ‘sql/sql_analyse.cc’. This examines the result from your
query and returns an analysis of the results:
• max elements (default 256) is the maximum number of distinct values analyse will

notice per column. This is used by analyse to check if the optimal column type should
be of type ENUM.

• max memory (default 8192) is the maximum memory analyse should allocate per col-
umn while trying to find all distinct values.
SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max elements,[max memory]])

13.3.2 Writing a Procedure

For the moment, the only documentation for this is the source.
You can find all information about procedures by examining the following files:
• ‘sql/sql_analyse.cc’
• ‘sql/procedure.h’
• ‘sql/procedure.cc’
• ‘sql/sql_select.cc’

844 MySQL Technical Reference for Version 4.1.1-alpha

Appendix A Problems and Common Errors

This chapter lists some common problems and error messages that users have run into. You
will learn how to figure out what the problem is, and what to do to solve it. You will also
find proper solutions to some common problems.

A.1 How to Determine What Is Causing Problems

When you run into problems, the first thing you should do is to find out which program /
piece of equipment is causing problems:
• If you have one of the following symptoms, then it is probably a hardware (like memory,

motherboard, CPU, or hard disk) or kernel problem:
− The keyboard doesn’t work. This can normally be checked by pressing Caps Lock.

If the Caps Lock light doesn’t change you have to replace your keyboard. (Before
doing this, you should try to reboot your computer and check all cables to the
keyboard.)

− The mouse pointer doesn’t move.
− The machine doesn’t answer to a remote machine’s pings.
− Different, unrelated programs don’t behave correctly.
− If your system rebooted unexpectedly (a faulty user level program should never

be able to take down your system).

In this case you should start by checking all your cables and run some diagnostic tool
to check your hardware! You should also check if there are any patches, updates, or
service packs for your operating system that could likely solve your problems. Check
also that all your libraries (like glibc) are up to date.
It’s always good to use a machine with ECC memory to discover memory problems
early!

• If your keyboard is locked up, you may be able to fix this by logging into your machine
from another machine and execute kbd_mode -a on it.

• Please examine your system log file (/var/log/messages or similar) for reasons for your
problems. If you think the problem is in MySQL then you should also examine MySQL’s
log files. See Section 4.10.4 [Binary log], page 351.

• If you don’t think you have hardware problems, you should try to find out which
program is causing problems.
Try using top, ps, taskmanager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Check with top, df, or a similar program if you are out of memory, disk space, open
files, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it doesn’t want
to die, there is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that it’s the
MySQL server or a MySQL client that is causing the problem, it’s time to do a bug report

Appendix A: Problems and Common Errors 845

for our mailing list or our support team. In the bug report, try to give a very detailed
description of how the system is behaving and what you think is happening. You should
also state why you think it’s MySQL that is causing the problems. Take into consideration
all the situations in this chapter. State any problems exactly how they appear when you
examine your system. Use the ’cut and paste’ method for any output and/or error messages
from programs and/or log files!
Try to describe in detail which program is not working and all symptoms you see! We have
in the past received many bug reports that just state "the system doesn’t work". This
doesn’t provide us with any information about what could be the problem.
If a program fails, it’s always useful to know:
• Has the program in question made a segmentation fault (core dumped)?
• Is the program taking up the whole CPU? Check with top. Let the program run for a

while, it may be evaluating something heavy.
• If it’s the mysqld server that is causing problems, can you do mysqladmin -u root

ping or mysqladmin -u root processlist?
• What does a client program say (try with mysql, for example) when you try to connect

to the MySQL server? Does the client jam? Do you get any output from the program?

When sending a bug report, you should of follow the outlines described in this manual. See
Section 1.6.1.2 [Asking questions], page 27.

A.2 Common Errors When Using MySQL

This section lists some errors that users frequently get. You will find descriptions of the
errors, and how to solve the problem here.

A.2.1 Access denied Error

See Section 4.3.12 [Access denied], page 235. See Section 4.3.6 [Privileges], page 219.

A.2.2 MySQL server has gone away Error

This section also covers the related Lost connection to server during query error.
The most common reason for the MySQL server has gone away error is that the server
timed out and closed the connection. By default, the server closes the connection after 8
hours if nothing has happened. You can change the time limit by setting the wait_timeout
variable when you start mysqld.
Another common reason to receive the MySQL server has gone away error is because you
have issued a “close” on your MySQL connection and then tried to run a query on the
closed connection.
If you have a script, you just have to issue the query again for the client to do an automatic
reconnection.
You normally can get the following error codes in this case (which one you get is OS-
dependent):

846 MySQL Technical Reference for Version 4.1.1-alpha

Error code Description
CR_SERVER_GONE_ERROR The client couldn’t send a question to the server.
CR_SERVER_LOST The client didn’t get an error when writing to the server,

but it didn’t get a full answer (or any answer) to the
question.

You will also get this error if someone has kills the running thread with kill #threadid#.

You can check that the MySQL hasn’t died by executing mysqladmin version and exam-
ining the uptime. If the problem is that mysqld crashed you should concentrate one finding
the reason for the crash. You should in this case start by checking if issuing the query again
will kill MySQL again. See Section A.4.1 [Crashing], page 857.

You can also get these errors if you send a query to the server that is incorrect or too large.
If mysqld gets a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you
are working with big BLOB columns), you can increase the query limit by starting mysqld
with the -O max_allowed_packet=# option (default 1M). The extra memory is allocated
on demand, so mysqld will allocate more memory only when you issue a big query or when
mysqld must return a big result row!

You will also get a lost connection if you are sending a packet >= 16M if your client is older
than 4.0.8 and your server is 4.0.8 and above, or the other way around.

If you want to make a bug report regarding this problem, be sure that you include the
following information:

• Include information if MySQL died or not. (You can find this in the hostname.err
file. See Section A.4.1 [Crashing], page 857.

• If a specific query kills mysqld and the involved tables where checked with CHECK
TABLE before you did the query, can you do a test case for this? See Section E.1.6
[Reproduceable test case], page 1009.

• What is the value of the wait_timeout variable in the MySQL server ? mysqladmin
variables gives you the value of this

• Have you tried to run mysqld with --log and check if the issued query appears in the
log ?

See Section 1.6.1.2 [Asking questions], page 27.

A.2.3 Can’t connect to [local] MySQL server Error

A MySQL client on Unix can connect to the mysqld server in two different ways: Unix
sockets, which connect through a file in the file system (default ‘/tmp/mysqld.sock’) or
TCP/IP, which connects through a port number. Unix sockets are faster than TCP/IP but
can only be used when connecting to a server on the same computer. Unix sockets are used
if you don’t specify a hostname or if you specify the special hostname localhost.

On Windows, if the mysqld server is running on 9x/Me, you can connect only via TCP/IP.
If the server is running on NT/2000/XP and mysqld is started with --enable-named-pipe,
you can also connect with named pipes. The name of the named pipe is MySQL. If you
don’t give a hostname when connecting to mysqld, a MySQL client will first try to connect

Appendix A: Problems and Common Errors 847

to the named pipe, and if this doesn’t work it will connect to the TCP/IP port. You can
force the use of named pipes on Windows by using . as the hostname.

The error (2002) Can’t connect to ... normally means that there isn’t a MySQL server
running on the system or that you are using a wrong socket file or TCP/IP port when
trying to connect to the mysqld server.

Start by checking (using ps or the task manager on Windows) that there is a process running
named mysqld on your server! If there isn’t any mysqld process, you should start one. See
Section 2.4.2 [Starting server], page 107.

If a mysqld process is running, you can check the server by trying these different connections
(the port number and socket pathname might be different in your setup, of course):

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h ‘hostname‘ version variables
shell> mysqladmin -h ‘hostname‘ --port=3306 version
shell> mysqladmin -h ’ip for your host’ version
shell> mysqladmin --protocol=socket --socket=/tmp/mysql.sock version

Note the use of backquotes rather than forward quotes with the hostname command; these
cause the output of hostname (that is, the current hostname) to be substituted into the
mysqladmin command.

Here are some reasons the Can’t connect to local MySQL server error might occur:

• mysqld is not running.

• You are running on a system that uses MIT-pthreads. If you are running on a sys-
tem that doesn’t have native threads, mysqld uses the MIT-pthreads package. See
Section 2.2.3 [Which OS], page 73. However, not all MIT-pthreads versions support
Unix sockets. On a system without sockets support you must always specify the host-
name explicitly when connecting to the server. Try using this command to check the
connection to the server:

shell> mysqladmin -h ‘hostname‘ version

• Someone has removed the Unix socket that mysqld uses (default ‘/tmp/mysqld.sock’).
You might have a cron job that removes the MySQL socket (for example, a job that
removes old files from the ‘/tmp’ directory). You can always run mysqladmin version
and check that the socket mysqladmin is trying to use really exists. The fix in this
case is to change the cron job to not remove ‘mysqld.sock’ or to place the socket
somewhere else. See Section A.4.5 [Problems with mysql.sock], page 861.

• You have started the mysqld server with the --socket=/path/to/socket option. If
you change the socket pathname for the server, you must also notify the MySQL clients
about the new path. You can do this by providing the socket path as an argument to
the client. See Section A.4.5 [Problems with mysql.sock], page 861.

• You are using Linux and one thread has died (core dumped). In this case you must
kill the other mysqld threads (for example, with the mysql_zap script before you can
start a new MySQL server. See Section A.4.1 [Crashing], page 857.

• You may not have read and write privilege to either the directory that holds the socket
file or privilege to the socket file itself. In this case you have to either change the

848 MySQL Technical Reference for Version 4.1.1-alpha

privilege for the directory / file or restart mysqld so that it uses a directory that you
can access.

If you get the error message Can’t connect to MySQL server on some_hostname, you can
try the following things to find out what the problem is:
• Check if the server is up by doing telnet your-host-name tcp-ip-port-number and

press Enter a couple of times. If there is a MySQL server running on this port you
should get a responses that includes the version number of the running MySQL server.
If you get an error like telnet: Unable to connect to remote host: Connection
refused, then there is no server running on the given port.

• Try connecting to the mysqld daemon on the local machine and check the TCP/IP
port that mysqld it’s configured to use (variable port) with mysqladmin variables.

• Check that your mysqld server is not started with the --skip-networking option.

A.2.4 Client does not support authentication protocol error

MySQL 4.1 uses an authentication protocal based on a password hashing algorithm that is
incompatible with that used by older clients. If you upgrade the server to 4.1, attempts to
connect to a it with an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To solve this problem you should do one of the following:
• Upgrade all client programs to use the 4.1.1 or newer client library.
• Use a user account with an old password when connecting from a pre 4.1 client.
• Reset the user that needs a pre-4.1 client to use an old password:

mysql> UPDATE user SET Password = OLD_PASSWORD(’mypass’)
-> WHERE Host = ’some_host’ AND User = ’some_user’;

mysql> FLUSH PRIVILEGES;

• Tell the server to use the older password hashing algorithm:
1. Start mysqld with --old-passwords.
2. Set the password for all users that has a long password. You can find these users

with:
SELECT * FROM mysql.user WHERE LEN(password) > 16;

For background on password hashing and authentication, see Section 4.3.11 [Password hash-
ing], page 230.

A.2.5 Host ’...’ is blocked Error

If you get an error like this:
Host ’hostname’ is blocked because of many connection errors.
Unblock with ’mysqladmin flush-hosts’

this means that mysqld has gotten a lot (max_connect_errors) of connect requests from
the host ’hostname’ that have been interrupted in the middle. After max_connect_errors

Appendix A: Problems and Common Errors 849

failed requests, mysqld assumes that something is wrong (like an attack from a cracker), and
blocks the site from further connections until someone executes the command mysqladmin
flush-hosts.

By default, mysqld blocks a host after 10 connection errors. You can easily adjust this by
starting the server like this:

shell> mysqld_safe -O max_connect_errors=10000 &

Note that if you get this error message for a given host, you should first check that there
isn’t anything wrong with TCP/IP connections from that host. If your TCP/IP connections
aren’t working, it won’t do you any good to increase the value of the max_connect_errors
variable!

A.2.6 Too many connections Error

If you get the error Too many connections when you try to connect to MySQL, this means
that there is already max_connections clients connected to the mysqld server.

If you need more connections than the default (100), then you should restart mysqld with
a bigger value for the max_connections variable.

Note that mysqld actually allows (max_connections+1) clients to connect. The last con-
nection is reserved for a user with the SUPER privilege. By not giving this privilege to
normal users (they shouldn’t need this), an administrator with this privilege can log in
and use SHOW PROCESSLIST to find out what could be wrong. See Section 4.6.8.6 [SHOW
PROCESSLIST], page 301.

The maximum number of connects MySQL is depending on how good the thread library
is on a given platform. Linux or Solaris should be able to support 500-1000 simultaneous
connections, depending on how much RAM you have and what your clients are doing.

A.2.7 Some non-transactional changed tables couldn’t be rolled
back Error

If you get the error/warning: Warning: Some non-transactional changed tables
couldn’t be rolled back when trying to do a ROLLBACK, this means that some of the
tables you used in the transaction didn’t support transactions. These non-transactional
tables will not be affected by the ROLLBACK statement.

The most typical case when this happens is when you have tried to create a table of a type
that is not supported by your mysqld binary. If mysqld doesn’t support a table type (or if
the table type is disabled by a startup option) , it will instead create the table type with
the table type that is most resembles to the one you requested, probably MyISAM.

You can check the table type for a table by doing:

SHOW TABLE STATUS LIKE ’table_name’. See Section 4.6.8.2 [SHOW TABLE STATUS],
page 286.

You can check the extensions your mysqld binary supports by doing:

show variables like ’have_%’. See Section 4.6.8.4 [SHOW VARIABLES], page 290.

850 MySQL Technical Reference for Version 4.1.1-alpha

A.2.8 Out of memory Error

If you issue a query and get something like the following error:

mysql: Out of memory at line 42, ’malloc.c’
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

note that the error refers to the MySQL client mysql. The reason for this error is simply
that the client does not have enough memory to store the whole result.

To remedy the problem, first check that your query is correct. Is it reasonable that it should
return so many rows? If so, you can use mysql --quick, which uses mysql_use_result()
to retrieve the result set. This places less of a load on the client (but more on the server).

A.2.9 Packet too large Error

When a MySQL client or the mysqld server gets a packet bigger than max_allowed_packet
bytes, it issues a Packet too large error and closes the connection.

In MySQL 3.23 the biggest possible packet is 16M (due to limits in the client/server proto-
col). In MySQL 4.0.1 and up, this is only limited by the amount on memory you have on
your server (up to a theoretical maximum of 2G).

A communication packet is a single SQL statement sent to the MySQL server or a single
row that is sent to the client.

When a MySQL client or the mysqld server gets a packet bigger than max_allowed_packet
bytes, it issues a Packet too large error and closes the connection. With some clients, you
may also get Lost connection to MySQL server during query error if the communication
packet is too big.

Note that both the client and the server has it’s own max_allowed_packet variable. If you
want to handle big packets, you have to increase this variable both in the client and in the
server.

It’s safe to increase this variable as memory is only allocated when needed; this variable is
more a precaution to catch wrong packets between the client/server and also to ensure that
you don’t accidentally use big packets so that you run out of memory.

If you are using the mysql client, you may specify a bigger buffer by starting the client with
mysql --set-variable=max_allowed_packet=8M. Other clients have different methods to
set this variable. Please note that --set-variable is deprecated since MySQL 4.0, just
use --max-allowed-packet=8M instead.

You can use the option file to set max_allowed_packet to a larger size in mysqld. For
example, if you are expecting to store the full length of a MEDIUMBLOB into a table, you’ll
need to start the server with the set-variable=max_allowed_packet=16M option.

You can also get strange problems with large packets if you are using big blobs, but you
haven’t given mysqld access to enough memory to handle the query. If you suspect this
is the case, try adding ulimit -d 256000 to the beginning of the mysqld_safe script and
restart mysqld.

Appendix A: Problems and Common Errors 851

A.2.10 Communication Errors / Aborted Connection

Starting with MySQL 3.23.40 you only get the Aborted connection error of you start
mysqld with --warnings.
If you find errors like the following in your error log.

010301 14:38:23 Aborted connection 854 to db: ’users’ user: ’josh’

See Section 4.10.1 [Error log], page 350.
This means that something of the following has happened:
• The client program did not call mysql_close() before exit.
• The client had been sleeping more than wait_timeout or interactive_timeout with-

out doing any requests. See Section 4.6.8.4 [wait_timeout], page 290. See Sec-
tion 4.6.8.4 [interactive_timeout], page 290.

• The client program ended abruptly in the middle of the transfer.

When the above happens, the server variable Aborted_clients is incremented.
The server variable Aborted_connects is incremented when:
• When a connection packet doesn’t contain the right information.
• When the user didn’t have privileges to connect to a database.
• When a user uses a wrong password.
• When it takes more than connect_timeout seconds to get a connect package. See

Section 4.6.8.4 [connect_timeout], page 290.

Note that the above could indicate that someone is trying to break into your database!
Other reasons for problems with Aborted clients / Aborted connections.
• Usage of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet

drivers have this bug. You should test for this bug by transferring a huge file via ftp
between these two machines. If a transfer goes in burst-pause-burst-pause ... mode
then you are experiencing a Linux duplex syndrome. The only solution is switching
duplex mode for both your network card and Hub/Switch to either full duplex or to
half duplex and testing the results to decide on the best setting.

• Some problem with the thread library that causes interrupts on reads.
• Badly configured TCP/IP.
• Faulty Ethernets or hubs or switches, cables ... This can be diagnosed properly only

by replacing hardware.
• max_allowed_packet is too small or queries require more memory than you have allo-

cated for mysqld. See Section A.2.9 [Packet too large], page 850.

A.2.11 The table is full Error

There are a couple of different cases when you can get this error:
• You are using an older MySQL version (before 3.23.0) when an in-memory temporary

table becomes larger than tmp_table_size bytes. To avoid this problem, you can
use the -O tmp_table_size=# option to make mysqld increase the temporary table

852 MySQL Technical Reference for Version 4.1.1-alpha

size or use the SQL option BIG_TABLES before you issue the problematic query. See
Section 5.5.6 [SET], page 432.
You can also start mysqld with the --big-tables option. This is exactly the same as
using BIG_TABLES for all queries.
In MySQL Version 3.23, in-memory temporary tables will automatically be converted
to a disk-based MyISAM table after the table size gets bigger than tmp_table_size.

• You are using InnoDB tables and run out of room in the InnoDB tablespace. In this
case the solution is to extend the InnoDB tablespace.

• You are using ISAM or MyISAM tables on an OS that only supports files of 2G in size
and you have hit this limit for the datafile or index file.

• You are using MyISAM tables and the needed data or index size is bigger than what
MySQL has allocated pointers for. (If you don’t specify MAX_ROWS to CREATE TABLE
MySQL will only allocate pointers to hold 4G of data).
You can check the maximum data/index sizes by doing

SHOW TABLE STATUS FROM database LIKE ’table_name’;

or using myisamchk -dv database/table_name.
If this is the problem, you can fix it by doing something like:

ALTER TABLE table_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You only have to specify AVG_ROW_LENGTH for tables with BLOB/TEXT fields as in this
case MySQL can’t optimise the space required based only on the number of rows.

A.2.12 Can’t create/write to file Error

If you get an error for some queries of type:
Can’t create/write to file ’\\sqla3fe_0.ism’.

this means that MySQL can’t create a temporary file for the result set in the given temporary
directory. (The above error is a typical error message on Windows, and the Unix error
message is similar.) The fix is to start mysqld with --tmpdir=path or to add to your
option file:

[mysqld]
tmpdir=C:/temp

assuming that the ‘c:\\temp’ directory exists. See Section 4.1.2 [Option files], page 203.
Check also the error code that you get with perror. One reason may also be a disk full
error;

shell> perror 28
Error code 28: No space left on device

A.2.13 Commands out of sync Error in Client

If you get Commands out of sync; you can’t run this command now in your client code,
you are calling client functions in the wrong order!
This can happen, for example, if you are using mysql_use_result() and try to execute
a new query before you have called mysql_free_result(). It can also happen if you try

Appendix A: Problems and Common Errors 853

to execute two queries that return data without a mysql_use_result() or mysql_store_
result() in between.

A.2.14 Ignoring user Error

If you get the following error:
Found wrong password for user: ’some_user@some_host’; ignoring user

this means that when mysqld was started or when it reloaded the permissions tables, it
found an entry in the user table with an invalid password. As a result, the entry is simply
ignored by the permission system.
Possible causes of and fixes for this problem:
• You may be running a new version of mysqld with an old user table. You can check

this by executing mysqlshow mysql user to see if the password field is shorter than 16
characters. If so, you can correct this condition by running the scripts/add_long_
password script.

• The user has an old password (8 characters long) and you didn’t start mysqld with the
--old-protocol option. Update the user in the user table with a new password or
restart mysqld with --old-protocol.

• You have specified a password in the user table without using the PASSWORD() function.
Use mysql to update the user in the user table with a new password. Make sure to
use the PASSWORD() function:

mysql> UPDATE user SET password=PASSWORD(’your password’)
-> WHERE user=’XXX’;

A.2.15 Table ’xxx’ doesn’t exist Error

If you get the error Table ’xxx’ doesn’t exist or Can’t find file: ’xxx’ (errno: 2),
this means that no table exists in the current database with the name xxx.
Note that as MySQL uses directories and files to store databases and tables, the database
and table names are case-sensitive! (On Windows the databases and tables names are not
case-sensitive, but all references to a given table within a query must use the same case!)
You can check which tables you have in the current database with SHOW TABLES. See
Section 4.6.8 [SHOW], page 284.

A.2.16 Can’t initialize character set xxx error

If you get an error like:
MySQL Connection Failed: Can’t initialize character set xxx

This means one of the following things:
• The character set is a multi-byte character set and you have no support for the character

set in the client.
In this case you need to recompile the client with --with-charset=xxx or with --
with-extra-charsets=xxx. See Section 2.3.3 [configure options], page 91.

854 MySQL Technical Reference for Version 4.1.1-alpha

All standard MySQL binaries are compiled with --with-extra-character-
sets=complex which will enable support for all multi-byte character sets. See
Section 4.7.1 [Character sets], page 306.

• The character set is a simple character set which is not compiled into mysqld and the
character set definition files are not in the place where the client expects to find them.
In this case you need to:
• Recompile the client with support for the character set. See Section 2.3.3 [configure

options], page 91.
• Specify to the client where the character set definition files are. For many clients

you can do this with the --character-sets-dir=path-to-charset-dir option.
• Copy the character definition files to the path where the client expects them to

be.

A.2.17 File Not Found

If you get ERROR ’...’ not found (errno: 23), Can’t open file: ... (errno: 24), or
any other error with errno 23 or errno 24 from MySQL, it means that you haven’t allocated
enough file descriptors for MySQL. You can use the perror utility to get a description of
what the error number means:

shell> perror 23
File table overflow
shell> perror 24
Too many open files
shell> perror 11
Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You
can either tell mysqld not to open so many files at once or increase the number of file
descriptors available to mysqld.
To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by
using the -O table_cache=32 option to mysqld_safe (the default value is 64). Reducing
the value of max_connections will also reduce the number of open files (the default value
is 90).
To change the number of file descriptors available to mysqld, you can use the option --open-
files-limit=# to mysqld_safe or -O open-files-limit=# to mysqld. See Section 4.6.8.4
[open_files_limit], page 290. The easiest way to do that is to add the option to your
option file. See Section 4.1.2 [Option files], page 203. If you have an old mysqld version
that doesn’t support this, you can edit the mysqld_safe script. There is a commented-out
line ulimit -n 256 in the script. You can remove the ’#’ character to uncomment this line,
and change the number 256 to affect the number of file descriptors available to mysqld.
ulimit (and open-files-limit) can increase the number of file descriptors, but only up
to the limit imposed by the operating system. There is also a ’hard’ limit that can only
be overridden if you start mysqld_safe or mysqld as root (just remember that you need
to also use the --user=... option in this case). If you need to increase the OS limit on
the number of file descriptors available to each process, consult the documentation for your
operating system.

Appendix A: Problems and Common Errors 855

Note that if you run the tcsh shell, ulimit will not work! tcsh will also report incorrect
values when you ask for the current limits! In this case you should start mysqld_safe with
sh!

A.3 Installation Related Issues

A.3.1 Problems When Linking with the MySQL Client Library

If you are linking your program and you get errors for unreferenced symbols that start with
mysql_, like the following:

/tmp/ccFKsdPa.o: In function ‘main’:
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to ‘mysql_init’
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to ‘mysql_real_connect’
/tmp/ccFKsdPa.o(.text+0x57): undefined reference to ‘mysql_real_connect’
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to ‘mysql_error’
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to ‘mysql_close’

you should be able to solve this by adding -Lpath-to-the-mysql-library -lmysqlclient
last on your link line.
If you get undefined reference errors for the uncompress or compress function, add -lz
last on your link line and try again!
If you get undefined reference errors for functions that should exist on your system, like
connect, check the man page for the function in question, for which libraries you should
add to the link line!
If you get undefined reference errors for functions that don’t exist on your system, like
the following:

mf_format.o(.text+0x201): undefined reference to ‘__lxstat’

it usually means that your library is compiled on a system that is not 100% compatible
with yours. In this case you should download the latest MySQL source distribution and
compile this yourself. See Section 2.3 [Installing source], page 88.
If you are trying to run a program and you then get errors for unreferenced symbols that
start with mysql_ or that the mysqlclient library can’t be found, this means that your
system can’t find the share ‘libmysqlclient.so’ library.
The fix for this is to tell your system to search after shared libraries where the library is
located by one of the following methods:
• Add the path to the directory where you have ‘libmysqlclient.so’ the LD_LIBRARY_

PATH environment variable.
• Add the path to the directory where you have ‘libmysqlclient.so’ the LD_LIBRARY

environment variable.
• Copy ‘libmysqlclient.so’ to some place that is searched by your system, like ‘/lib’,

and update the shared library information by executing ldconfig.

Another way to solve this problem is to link your program statically, with -static, or by
removing the dynamic MySQL libraries before linking your code. In the second case you
should be sure that no other programs are using the dynamic libraries!

856 MySQL Technical Reference for Version 4.1.1-alpha

A.3.2 How to Run MySQL As a Normal User

The MySQL server mysqld can be started and run by any user. In order to change mysqld
to run as a Unix user user_name, you must do the following:
1. Stop the server if it’s running (use mysqladmin shutdown).
2. Change the database directories and files so that user_name has privileges to read and

write files in them (you may need to do this as the Unix root user):
shell> chown -R user_name /path/to/mysql/datadir

If directories or files within the MySQL data directory are symlinks, you’ll also need
to follow those links and change the directories and files they point to. chown -R may
not follow symlinks for you.

3. Start the server as user user_name, or, if you are using MySQL Version 3.22 or later,
start mysqld as the Unix root user and use the --user=user_name option. mysqld
will switch to run as the Unix user user_name before accepting any connections.

4. To start the server as the given user name automatically at system startup time, add
a user line that specifies the user name to the [mysqld] group of the ‘/etc/my.cnf’
option file or the ‘my.cnf’ option file in the server’s data directory. For example:

[mysqld]
user=user_name

At this point, your mysqld process should be running fine and dandy as the Unix user user_
name. One thing hasn’t changed, though: the contents of the permissions tables. By default
(right after running the permissions table install script mysql_install_db), the MySQL
user root is the only user with permission to access the mysql database or to create or drop
databases. Unless you have changed those permissions, they still hold. This shouldn’t stop
you from accessing MySQL as the MySQL root user when you’re logged in as a Unix user
other than root; just specify the -u root option to the client program.
Note that accessing MySQL as root, by supplying -u root on the command-line, has
nothing to do with MySQL running as the Unix root user, or, indeed, as another Unix
user. The access permissions and user names of MySQL are completely separate from Unix
user names. The only connection with Unix user names is that if you don’t provide a -u
option when you invoke a client program, the client will try to connect using your Unix
login name as your MySQL user name.
If your Unix box itself isn’t secured, you should probably at least put a password on the
MySQL root users in the access tables. Otherwise, any user with an account on that
machine can run mysql -u root db_name and do whatever he likes.

A.3.3 Problems with File Permissions

If you have problems with file permissions, for example, if mysql issues the following error
message when you create a table:

ERROR: Can’t find file: ’path/with/filename.frm’ (Errcode: 13)

then the environment variable UMASK might be set incorrectly when mysqld starts up. The
default umask value is 0660. You can change this behaviour by starting mysqld_safe as
follows:

Appendix A: Problems and Common Errors 857

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> /path/to/mysqld_safe &

By default MySQL will create database and RAID directories with permission type 0700.
You can modify this behaviour by setting the UMASK_DIR variable. If you set this, new
directories are created with the combined UMASK and UMASK_DIR. For example, if you want
to give group access to all new directories, you can do:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> /path/to/mysqld_safe &

In MySQL Version 3.23.25 and above, MySQL assumes that the value for UMASK and UMASK_
DIR is in octal if it starts with a zero.
See Appendix F [Environment variables], page 1016.

A.4 Administration Related Issues

A.4.1 What To Do If MySQL Keeps Crashing

All MySQL versions are tested on many platforms before they are released. This doesn’t
mean that there aren’t any bugs in MySQL, but it means if there are bugs, they are very
few and can be hard to find. If you have a problem, it will always help if you try to find
out exactly what crashes your system, as you will have a much better chance of getting this
fixed quickly.
First, you should try to find out whether the problem is that the mysqld daemon dies or
whether your problem has to do with your client. You can check how long your mysqld
server has been up by executing mysqladmin version. If mysqld has died, you may find
the reason for this in the file ‘mysql-data-directory/‘hostname‘.err’. See Section 4.10.1
[Error log], page 350.
On some systems you can find in this file a stack trace of where mysqld died that you can
resolve with resolve_back_stack. See Section E.1.4 [Using stack trace], page 1007. Note
that the variable values written in the .err file may not always be 100 percent correct.
Many crashes of MySQL are caused by corrupted index files or datafiles. MySQL will
update the data on disk, with the write() system call, after every SQL statement and
before the client is notified about the result. (This is not true if you are running with
delay_key_write, in which case only the data is written.) This means that the data is safe
even if mysqld crashes, as the OS will ensure that the not flushed data is written to disk.
You can force MySQL to sync everything to disk after every SQL command by starting
mysqld with --flush.
The above means that normally you shouldn’t get corrupted tables unless:
• Someone/something killed mysqld or the machine in the middle of an update.
• You have found a bug in mysqld that caused it to die in the middle of an update.
• Someone is manipulating the data/index files outside of mysqld without locking the

table properly.

858 MySQL Technical Reference for Version 4.1.1-alpha

• If you are running many mysqld servers on the same data on a system that doesn’t
support good filesystem locks (normally handled by the lockd daemon) or if you are
running multiple servers with --skip-external-locking

• You have a crashed index/datafile that contains very wrong data that got mysqld
confused.

• You have found a bug in the data storage code. This isn’t that likely, but it’s at least
possible. In this case you can try to change the file type to another storage engine by
using ALTER TABLE on a repaired copy of the table!

Because it is very difficult to know why something is crashing, first try to check whether
things that work for others crash for you. Please try the following things:

Take down the mysqld daemon with mysqladmin shutdown, run myisamchk --silent
--force */*.MYI on all tables, and restart the mysqld daemon. This will ensure that
you are running from a clean state. See Chapter 4 [MySQL Database Administration],
page 195.

• Use mysqld --log and try to determine from the information in the log whether some
specific query kills the server. About 95% of all bugs are related to a particular query!
Normally this is one of the last queries in the log file just before MySQL restarted. See
Section 4.10.2 [Query log], page 350. If you can repeatedly kill MySQL with one of the
queries, even when you have checked all tables just before doing the query, then you
have been able to locate the bug and should do a bug report for this! See Section 1.6.1.3
[Bug reports], page 27.

• Try to make a test case that we can use to reproduce the problem. See Section E.1.6
[Reproduceable test case], page 1009.

• Try running the included mysql-test test and the MySQL benchmarks. See Sec-
tion 13.1.2 [MySQL test suite], page 830. They should test MySQL rather well. You
can also add code to the benchmarks that simulates your application! The bench-
marks can be found in the ‘bench’ directory in the source distribution or, for a binary
distribution, in the ‘sql-bench’ directory under your MySQL installation directory.

• Try fork_test.pl and fork2_test.pl.
• If you configure MySQL for debugging, it will be much easier to gather information

about possible errors if something goes wrong. Reconfigure MySQL with the --with-
debug option or --with-debug=full to configure and then recompile. See Section E.1
[Debugging server], page 1004.

• Configuring MySQL for debugging causes a safe memory allocator to be included that
can find some errors. It also provides a lot of output about what is happening.

• Have you applied the latest patches for your operating system?
• Use the --skip-external-locking option to mysqld. On some systems, the lockd

lock manager does not work properly; the --skip-external-locking option tells
mysqld not to use external locking. (This means that you cannot run 2 mysqld servers
on the same data and that you must be careful if you use myisamchk, but it may be
instructive to try the option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running
but not responding? Sometimes mysqld is not comatose even though you might think
so. The problem may be that all connections are in use, or there may be some internal

Appendix A: Problems and Common Errors 859

lock problem. mysqladmin processlist will usually be able to make a connection
even in these cases, and can provide useful information about the current number of
connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status or in a
separate window to produce statistics while you run your other queries.

• Try the following:
1. Start mysqld from gdb (or in another debugger). See Section E.1.3 [Using gdb on

mysqld], page 1006.
2. Run your test scripts.
3. Print the backtrace and the local variables at the 3 lowest levels. In gdb you can

do this with the following commands when mysqld has crashed inside gdb:
backtrace
info local
up
info local
up
info local

With gdb you can also examine which threads exist with info threads and switch
to a specific thread with thread #, where # is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbe-
have.

• Send a normal bug report. See Section 1.6.1.3 [Bug reports], page 27. Be even more
detailed than usual. Because MySQL works for many people, it may be that the crash
results from something that exists only on your computer (for example, an error that
is related to your particular system libraries).

• If you have a problem with tables with dynamic-length rows and you are not using
BLOB/TEXT columns (but only VARCHAR columns), you can try to change all VARCHAR
to CHAR with ALTER TABLE. This will force MySQL to use fixed-size rows. Fixed-size
rows take a little extra space, but are much more tolerant to corruption!
The current dynamic row code has been in use at MySQL AB for at least 3 years
without any problems, but by nature dynamic-length rows are more prone to errors,
so it may be a good idea to try the above to see if it helps!

A.4.2 How to Reset a Forgotten Root Password

If you never set a root password for MySQL, then the server will not require a password at
all for connecting as root. It is recommended to always set a password for each user. See
Section 4.3.2 [Security], page 215.
If you have set a root password, but forgot what it was, you can set a new password with
the following procedure:
1. Take down the mysqld server by sending a kill (not kill -9) to the mysqld server.

The pid is stored in a ‘.pid’ file, which is normally in the MySQL database directory:
shell> kill ‘cat /mysql-data-directory/hostname.pid‘

You must be either the Unix root user or the same user mysqld runs as to do this.

860 MySQL Technical Reference for Version 4.1.1-alpha

2. Restart mysqld with the --skip-grant-tables option.

3. Set a new password with the mysqladmin password command:

shell> mysqladmin -u root password ’mynewpassword’

4. Now you can either stop mysqld and restart it normally, or just load the privilege tables
with:

shell> mysqladmin -h hostname flush-privileges

5. After this, you should be able to connect using the new password.

Alternatively, you can set the new password using the mysql client:

1. Take down and restart mysqld with the --skip-grant-tables option as described
above.

2. Connect to the mysqld server with:

shell> mysql -u root mysql

3. Issue the following commands in the mysql client:

mysql> UPDATE user SET Password=PASSWORD(’mynewpassword’)
-> WHERE User=’root’;

mysql> FLUSH PRIVILEGES;

4. After this, you should be able to connect using the new password.

5. You can now stop mysqld and restart it normally.

A.4.3 How MySQL Handles a Full Disk

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current
row. If there is enough space, it continues as if nothing had happened.

• Every 6 minutes it writes an entry to the log file warning about the disk full condition.

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must send a mysqladmin kill to the thread. The thread will
be aborted the next time it checks the disk (in 1 minute).

• Note that other threads may be waiting for the table that caused the disk full condition.
If you have several “locked” threads, killing the one thread that is waiting on the disk-
full condition will allow the other threads to continue.

Exceptions to the above behaveour is when you use REPAIR or OPTIMIZE or when the indexes
are created in a batch after an LOAD DATA INFILE or after an ALTER TABLE statement.

All of the above commands may use big temporary files that left to themself would cause big
problems for the rest of the system. If MySQL gets disk full while doing any of the above
operations, it will remove the big temporary files and mark the table as crashed (except for
ALTER TABLE, in which the old table will be left unchanged).

Appendix A: Problems and Common Errors 861

A.4.4 Where MySQL Stores Temporary Files

MySQL uses the value of the TMPDIR environment variable as the pathname of the directory
in which to store temporary files. If you don’t have TMPDIR set, MySQL uses the system
default, which is normally ‘/tmp’ or ‘/usr/tmp’. If the filesystem containing your temporary
file directory is too small, you should edit mysqld_safe to set TMPDIR to point to a directory
in a filesystem where you have enough space! You can also set the temporary directory using
the --tmpdir option to mysqld.
MySQL creates all temporary files as hidden files. This ensures that the temporary files will
be removed if mysqld is terminated. The disadvantage of using hidden files is that you will
not see a big temporary file that fills up the filesystem in which the temporary file directory
is located.
When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files.
The maximum disk-space needed is:

(length of what is sorted + sizeof(database pointer))
* number of matched rows
* 2

sizeof(database pointer) is usually 4, but may grow in the future for really big tables.
For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden
and have names of the form ‘SQL_*’.
ALTER TABLE creates a temporary table in the same directory as the original table.
If you use MySQL 4.1 or later you can spread load between several physical disks by setting
--tmpdir to a list of paths separated by colon : (semicolon ; on Windows). They will be
used in round-robin fashion. Note: These paths should end up on different physical disks,
not different partitions of the same disk.
It is possible to set tmpdir to point to a memory-based filesystem, except if the MySQL
server is a slave. If it is a slave, it needs some of its temporary files (for replication of
temporary tables or of LOAD DATA INFILE) to survive a machine’s reboot, so a memory-
based tmpdir which is cleared when the machine reboots is not suitable; a disk-based
tmpdir is necessary.

A.4.5 How to Protect or Change the MySQL Socket File
‘/tmp/mysql.sock’

If you have problems with the fact that anyone can delete the MySQL communication socket
‘/tmp/mysql.sock’, you can, on most versions of Unix, protect your ‘/tmp’ filesystem by
setting the sticky bit on it. Log in as root and do the following:

shell> chmod +t /tmp

This will protect your ‘/tmp’ filesystem so that files can be deleted only by their owners or
the superuser (root).
You can check if the sticky bit is set by executing ls -ld /tmp. If the last permission bit
is t, the bit is set.
You can change the place where MySQL uses / puts the socket file the following ways:
• Specify the path in a global or local option file. For example, put in /etc/my.cnf:

862 MySQL Technical Reference for Version 4.1.1-alpha

[client]
socket=path-for-socket-file

[mysqld]
socket=path-for-socket-file

See Section 4.1.2 [Option files], page 203.

• Specifying this on the command-line to mysqld_safe and most clients with the --
socket=path-for-socket-file option.

• Specify the path to the socket in the MYSQL_UNIX_PORT environment variable.

• Defining the path with the configure option --with-unix-socket-path=path-for-
socket-file. See Section 2.3.3 [configure options], page 91.

You can test that the socket works with this command:

shell> mysqladmin --socket=/path/to/socket version

A.4.6 Time Zone Problems

If you have a problem with SELECT NOW() returning values in GMT and not your local
time, you have to set the TZ environment variable to your current time zone. This should
be done for the environment in which the server runs, for example, in mysqld_safe or
mysql.server. See Appendix F [Environment variables], page 1016.

A.5 Query Related Issues

A.5.1 Case-Sensitivity in Searches

By default, MySQL searches are case-insensitive (although there are some character sets
that are never case-insensitive, such as czech). That means that if you search with col_
name LIKE ’a%’, you will get all column values that start with A or a. If you want to make
this search case-sensitive, use something like INSTR(col_name, "A")=1 to check a prefix.
Or use STRCMP(col_name, "A") = 0 if the column value must be exactly "A".

Simple comparison operations (>=, >, = , < , <=, sorting and grouping) are based on each
character’s “sort value”. Characters with the same sort value (like E, e and é) are treated
as the same character!

In older MySQL versions LIKE comparisons were done on the uppercase value of each
character (E == e but E <> é). In newer MySQL versions LIKE works just like the other
comparison operators.

If you want a column always to be treated in case-sensitive fashion, declare it as BINARY.
See Section 6.5.3 [CREATE TABLE], page 564.

If you are using Chinese data in the so-called big5 encoding, you want to make all character
columns BINARY. This works because the sorting order of big5 encoding characters is based
on the order of ASCII codes.

Appendix A: Problems and Common Errors 863

A.5.2 Problems Using DATE Columns

The format of a DATE value is ’YYYY-MM-DD’. According to standard SQL, no other format
is allowed. You should use this format in UPDATE expressions and in the WHERE clause of
SELECT statements. For example:

mysql> SELECT * FROM tbl_name WHERE date >= ’1997-05-05’;

As a convenience, MySQL automatically converts a date to a number if the date is used
in a numeric context (and vice versa). It is also smart enough to allow a “relaxed” string
form when updating and in a WHERE clause that compares a date to a TIMESTAMP, DATE, or a
DATETIME column. (Relaxed form means that any punctuation character may be used as the
separator between parts. For example, ’1998-08-15’ and ’1998#08#15’ are equivalent.)
MySQL can also convert a string containing no separators (such as ’19980815’), provided
it makes sense as a date.
The special date ’0000-00-00’ can be stored and retrieved as ’0000-00-00’. When using
a ’0000-00-00’ date through MyODBC, it will automatically be converted to NULL in MyODBC
Version 2.50.12 and above, because ODBC can’t handle this kind of date.
Because MySQL performs the conversions described above, the following statements work:

mysql> INSERT INTO tbl_name (idate) VALUES (19970505);
mysql> INSERT INTO tbl_name (idate) VALUES (’19970505’);
mysql> INSERT INTO tbl_name (idate) VALUES (’97-05-05’);
mysql> INSERT INTO tbl_name (idate) VALUES (’1997.05.05’);
mysql> INSERT INTO tbl_name (idate) VALUES (’1997 05 05’);
mysql> INSERT INTO tbl_name (idate) VALUES (’0000-00-00’);

mysql> SELECT idate FROM tbl_name WHERE idate >= ’1997-05-05’;
mysql> SELECT idate FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT MOD(idate,100) FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT idate FROM tbl_name WHERE idate >= ’19970505’;

However, the following will not work:
mysql> SELECT idate FROM tbl_name WHERE STRCMP(idate,’19970505’)=0;

STRCMP() is a string function, so it converts idate to a string and performs a string com-
parison. It does not convert ’19970505’ to a date and perform a date comparison.
Note that MySQL does very limited checking whether the date is correct. If you store an
incorrect date, such as ’1998-2-31’, the wrong date will be stored.
Because MySQL packs dates for storage, it can’t store any given date as it would not fit
onto the result buffer. The rules for accepting a date are:
• If MySQL can store and retrieve a given date, the wrong date is accepted for DATE and

DATETIME columns.
• All days values between 0-31 are accepted for any date. This makes it very convenient

for web applications where you ask year, month and day in 3 different fields.
• The day or month field may be zero. This is convenient if you want to store a birthdate

in a DATE column and you only know part of the date.

If the date cannot be converted to any reasonable value, a 0 is stored in the DATE field,
which will be retrieved as 0000-00-00. This is both a speed and convenience issue as we

864 MySQL Technical Reference for Version 4.1.1-alpha

believe that the database’s responsibility is to retrieve the same date you stored (even if
the data was not logically correct in all cases). We think it is up to the application to check
the dates, and not the server.

A.5.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who
often think that NULL is the same thing as an empty string "". This is not the case! For
example, the following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ("");

Both statements insert a value into the phone column, but the first inserts a NULL value
and the second inserts an empty string. The meaning of the first can be regarded as “phone
number is not known” and the meaning of the second can be regarded as “she has no
phone”.

In SQL, the NULL value is always false in comparison to any other value, even NULL. An
expression that contains NULL always produces a NULL value unless otherwise indicated in
the documentation for the operators and functions involved in the expression. All columns
in the following example return NULL:

mysql> SELECT NULL,1+NULL,CONCAT(’Invisible’,NULL);

If you want to search for column values that are NULL, you cannot use the =NULL test. The
following statement returns no rows, because expr = NULL is FALSE, for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following shows how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = "";

Note that you can add an index on a column that can have NULL values only if you are using
MySQL Version 3.23.2 or newer and are using the MyISAM, InnoDB, or BDB table type. In
earlier versions and with other table types, you must declare such columns NOT NULL. This
also means you cannot then insert NULL into an indexed column.

When reading data with LOAD DATA INFILE, empty columns are updated with ’’. If you
want a NULL value in a column, you should use \N in the text file. The literal word ’NULL’
may also be used under some circumstances. See Section 6.4.8 [LOAD DATA], page 555.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort
in descending order. Exception: In MySQL versions 4.0.2 through 4.0.10, NULL values sort
first regardless of sort order.

When using GROUP BY, all NULL values are regarded as equal.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values.
The exception to this is COUNT(*), which counts rows and not individual column values.
For example, the following statement would produce two counts. The first is a count of the
number of rows in the table, and the second is a count of the number of non-NULL values in
the age column:

Appendix A: Problems and Common Errors 865

mysql> SELECT COUNT(*), COUNT(age) FROM person;

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.
For some column types, NULL values are handled specially. If you insert NULL into the first
TIMESTAMP column of a table, the current date and time is inserted. If you insert NULL into
an AUTO_INCREMENT column, the next number in the sequence is inserted.

A.5.4 Problems with alias

You can use an alias to refer to a column in the GROUP BY, ORDER BY, or in the HAVING part.
Aliases can also be used to give columns better names:

SELECT SQRT(a*b) as rt FROM table_name GROUP BY rt HAVING rt > 0;
SELECT id,COUNT(*) AS cnt FROM table_name GROUP BY id HAVING cnt > 0;
SELECT id AS "Customer identity" FROM table_name;

Note that standard SQL doesn’t allow you to refer to an alias in a WHERE clause. This is
because when the WHERE code is executed the column value may not yet be determined. For
example, the following query is illegal:

SELECT id,COUNT(*) AS cnt FROM table_name WHERE cnt > 0 GROUP BY id;

The WHERE statement is executed to determine which rows should be included in the GROUP
BY part while HAVING is used to decide which rows from the result set should be used.

A.5.5 Deleting Rows from Related Tables

As MySQL doesn’t support subqueries (prior to Version 4.1), nor the use of more than one
table in the DELETE statement (prior to Version 4.0), you should use the following approach
to delete rows from 2 related tables:
1. SELECT the rows based on some WHERE condition in the main table.
2. DELETE the rows in the main table based on the same condition.
3. DELETE FROM related_table WHERE related_column IN (selected_rows).

If the total number of characters in the query with related_column is more than 1,048,576
(the default value of max_allowed_packet, you should split it into smaller parts and execute
multiple DELETE statements. You will probably get the fastest DELETE by only deleting 100-
1000 related_column ids per query if the related_column is an index. If the related_
column isn’t an index, the speed is independent of the number of arguments in the IN
clause.

A.5.6 Solving Problems with No Matching Rows

If you have a complicated query that has many tables and that doesn’t return any rows,
you should use the following procedure to find out what is wrong with your query:
1. Test the query with EXPLAIN and check if you can find something that is obviously

wrong. See Section 5.2.1 [EXPLAIN], page 399.
2. Select only those fields that are used in the WHERE clause.

866 MySQL Technical Reference for Version 4.1.1-alpha

3. Remove one table at a time from the query until it returns some rows. If the tables
are big, it’s a good idea to use LIMIT 10 with the query.

4. Do a SELECT for the column that should have matched a row against the table that
was last removed from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you
can’t use ’=’. This problem is common in most computer languages because floating-
point values are not exact values. In most cases, changing the FLOAT to a DOUBLE will
fix this. See Section A.5.7 [Problems with float], page 866.

6. If you still can’t figure out what’s wrong, create a minimal test that can be run with
mysql test < query.sql that shows your problems. You can create a test file with
mysqldump --quick database tables > query.sql. Open the file in an editor, remove
some insert lines (if there are too many of these), and add your select statement at the
end of the file.
Test that you still have your problem by doing:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Post the test file using mysqlbug to the general MySQL mailing list. See Section 1.6.1.1
[Mailing-list], page 25.

A.5.7 Problems with Floating-Point Comparison

floating-point numbers cause confusion sometimes, because these numbers are not stored as
exact values inside computer architecture. What one can see on the screen usually is not
the exact value of the number.
Field types FLOAT, DOUBLE and DECIMAL are such.

CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));
INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
(2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
(2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
(4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
(5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
(6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

Appendix A: Problems and Common Errors 867

The result is correct. Although the first five records look like they shouldn’t pass the
comparison test, they may do so because the difference between the numbers show up
around tenth decimal, or so depending on computer architecture.
The problem cannot be solved by using ROUND() (or similar function), because the result
is still a floating-point number. Example:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

This is what the numbers in column ’a’ look like:
mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,

-> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;
+------+----------------------+-------+
| i | a | b |
+------+----------------------+-------+
1	21.3999999999999986	21.40
2	76.7999999999999972	76.80
3	7.4000000000000004	7.40
4	15.4000000000000004	15.40
5	7.2000000000000002	7.20
6	-51.3999999999999986	0.00
+------+----------------------+-------+

Depending on the computer architecture you may or may not see similar results. Each CPU
may evaluate floating-point numbers differently. For example in some machines you may
get ’right’ results by multiplying both arguments with 1, an example follows.
WARNING: NEVER TRUST THIS METHOD IN YOUR APPLICATION, THIS IS AN
EXAMPLE OF A WRONG METHOD!!!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+

The reason why the above example seems to be working is that on the particular machine
where the test was done, the CPU floating-point arithmetics happens to round the numbers
to same, but there is no rule that any CPU should do so, so it cannot be trusted.

868 MySQL Technical Reference for Version 4.1.1-alpha

The correct way to do floating-point number comparison is to first decide on what is the
wanted tolerance between the numbers and then do the comparison against the tolerance
number. For example, if we agree on that floating-point numbers should be regarded the
same, if they are same with precision of one of ten thousand (0.0001), the comparison should
be done like this:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) > 0.0001;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+
1 row in set (0.00 sec)

And vice versa, if we wanted to get rows where the numbers are the same, the test would
be:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) < 0.0001;

+------+-------+-------+
| i | a | b |
+------+-------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
+------+-------+-------+

A.6 Optimiser Related Issues

MySQL uses a cost based optimiser to find out the best way to resolve a query. In many
cases MySQL can calculate the best possible query plan but in some cases MySQL doesn’t
have enough information about the data at hand and have to do some ’educated’ guesses
about the data.
This manual section is intended for the cases when MySQL doesn’t get it right.
The tools one has available to help MySQL do the ’right’ things are:
• EXPLAIN. See Section 5.2.1 [EXPLAIN], page 399.
• ANALYZE TABLE. See Section 4.6.2 [ANALYZE TABLE], page 281.
• USE INDEX, FORCE INDEX and IGNORE INDEX. See Section 6.4.1 [SELECT], page 530.
• Global and table level STRAIGHT JOIN. See Section 6.4.1 [SELECT], page 530.
• Setting thread specific variables. See Section 4.6.8.4 [SHOW VARIABLES], page 290.

A.6.1 How to avoid table scan,,,

EXPLAIN will show ALL in the type column when MySQL uses a table scan to resolve a
query. This happens usually when:

Appendix A: Problems and Common Errors 869

• The table is so small that it’s faster to do a table scan than a key lookup. This is a
common case for tables with < 10 rows and a short row length.

• There is no usable restrictions in the ON or WHERE clause for indexed columns.
• You are comparing indexed columns with constants and MySQL has calculated (based

on the index tree) that the constants covers a too big part of the table and a table scan
would be faster. See Section 5.2.4 [Where optimisations], page 407.

• You are using a key with low cardinality (= many matching rows) through another
column. MySQL will in this case assume that by using the key it will probably do a
lot of key lookups and in this case the table scan would be faster.

What you can do to avoid a ’wrong’ table scan for big tables are:
• Use ANALYZE TABLE for the scanned table to update key distributions. See Section 4.6.2

[ANALYZE TABLE], page 281.
• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expen-

sive compared to use one of the given index. See Section 6.4.1 [SELECT], page 530.
SELECT * FROM t1,t2 force index(index_for_column) WHERE t1.column=t2.column;

• Start mysqld with --max-seeks-for-key=1000 or do SET MAX_SEEKS_FOR_KEY=1000
to tell the optimiser that for no key scan will cause more than 1000 key seeks.

A.7 Table Definition Related Issues

A.7.1 Problems with ALTER TABLE.

ALTER TABLE changes a table to the current character set. If you get a duplicate key error
during ALTER TABLE, then the cause is either that the new character sets maps two keys to
the same value or that the table is corrupted, in which case you should run REPAIR TABLE
on the table.
If ALTER TABLE dies with an error like this:

Error on rename of ’./database/name.frm’ to ’./database/B-a.frm’ (Errcode: 17)

the problem may be that MySQL has crashed in a previous ALTER TABLE and there is an old
table named ‘A-something’ or ‘B-something’ lying around. In this case, go to the MySQL
data directory and delete all files that have names starting with A- or B-. (You may want
to move them elsewhere instead of deleting them.)
ALTER TABLE works the following way:
• Create a new table named ‘A-xxx’ with the requested changes.
• All rows from the old table are copied to ‘A-xxx’.
• The old table is renamed ‘B-xxx’.
• ‘A-xxx’ is renamed to your old table name.
• ‘B-xxx’ is deleted.

If something goes wrong with the renaming operation, MySQL tries to undo the changes.
If something goes seriously wrong (this shouldn’t happen, of course), MySQL may leave the
old table as ‘B-xxx’, but a simple rename on the system level should get your data back.

870 MySQL Technical Reference for Version 4.1.1-alpha

A.7.2 How To Change the Order of Columns in a Table

The whole point of SQL is to abstract the application from the data storage format. You
should always specify the order in which you wish to retrieve your data. For example:

SELECT col_name1, col_name2, col_name3 FROM tbl_name;

will return columns in the order col_name1, col_name2, col_name3, whereas:
SELECT col_name1, col_name3, col_name2 FROM tbl_name;

will return columns in the order col_name1, col_name3, col_name2.
If you want to change the order of columns anyway, you can do it as follows:
1. Create a new table with the columns in the right order.
2. Execute INSERT INTO new_table SELECT fields-in-new_table-order FROM

old_table.
3. Drop or rename old_table.
4. ALTER TABLE new_table RENAME old_table.

In an application, you should never use SELECT * and retrieve the columns based on their
position, because the order and position in which columns are returned will not remain the
same if you add, move, or delete columns. A simple change to your database structure
would then cause your application to fail. Of course SELECT * is quite suitable for testing
queries.

A.7.3 TEMPORARY TABLE problems

The following are a list of the limitations with TEMPORARY TABLES.
• A temporary table can only be of type HEAP, ISAM, MyISAM, MERGE, or InnoDB.
• You can’t use temporary tables more than once in the same query. For example, the

following doesn’t work.
mysql> SELECT * FROM temporary_table, temporary_table AS t2;

• You can’t use RENAME on a TEMPORARY table. Note that ALTER TABLE org_name RENAME
new_name works!

Appendix B: Contributed Programs 871

Appendix B Contributed Programs

Many users of MySQL have contributed very useful support tools and add-ons.

A list of some software available from the MySQL website (or any mirror) is shown here.

You can also visit our online listing of MySQL-related software at http://www.mysql.com/portal/software/.
The community facilities there also allow for your input!

If you want to build MySQL support for the Perl DBI/DBD interface, you should fetch the
Data-Dumper, DBI, and DBD-mysql files and install them. See Section 2.7 [Perl support],
page 152.

Note: The programs listed here can be freely downloaded and used. They are copyrighted
by their respective owners. Please see individual product documentation for more details on
licensing and terms. MySQL AB assumes no liability for the correctness of the information
in this chapter or for the proper operation of the programs listed herein.

B.1 APIs

• Perl Modules

• http://www.mysql.com/Downloads/Contrib/KAMXbase1.2.tar.gz Convert
between ‘.dbf’ files and MySQL tables. Perl module written by Pratap
Pereira pereira@ee.eng.ohio-state.edu, extended by Kevin A. McGrail
kmcgrail@digital1.peregrinehw.com. This converter can handle MEMO fields.

• http://www.mysql.com/Downloads/Contrib/HandySQL-1.1.tar.gz HandySQL
is a MySQL access module. It offers a C interface embedded in Perl and is ap-
proximately 20% faster than regular DBI.

• OLEDB

• http://www.mysql.com/Downloads/Win32/MyOLEDB3.exe MyOLEDB 3.0 instal-
lation package from SWSoft.

• http://www.mysql.com/Downloads/Win32/mysql-oledb-3.0.0.zip Source for
MyOLEDB 3.0.

• http://www.mysql.com/Downloads/Win32/MySamples.zip Examples and docu-
mentation for MyOLEDB.

• http://www.mysql.com/Downloads/Win32/MyOLEDB.chm Help files for
MyOLEDB.

• http://www.mysql.com/Downloads/Win32/libmyodbc.zip Static MyODBC li-
brary used for build MyOLEDB. Based on MyODBC code.

• C++

• http://www.mysql.com/Downloads/Contrib/mysql-c++-0.02.tar.gz MySQL
C++ wrapper library. By Roland Haenel, rh@ginster.net.

• http://www.mysql.com/Downloads/Contrib/MyDAO.tar.gz MySQL C++ API.
By Satish spitfire@pn3.vsnl.net.in. Inspired by Roland Haenel’s C++ API
and Ed Carp’s MyC library.

872 MySQL Technical Reference for Version 4.1.1-alpha

• http://www.mysql.com/products/mysql++/ MySQL C++ API (more than just a
wrapper library). Originally by kevina@clark.net. Now maintained by Sinisa at
MySQL AB.

• http://nelsonjr.homepage.com/NJrAPI/ A C++ database independent library
that supports MySQL.

• Delphi
• http://www.mysql.com/Downloads/Contrib/DelphiMySQL2.zip Delphi

interface to libmysql.dll, by bsilva@umesd.k12.or.us.
• http://www.mysql.com/Downloads/Contrib/Udmysql.pas A wrapper for

libmysql.dll for usage in Delphi. By Reiner Sombrowsky.
• http://www.fichtner.net/delphi/mysql.delphi.phtml A Delphi Interface to

MySQL, with source code. By Matthias Fichtner.
• http://www.productivity.org/projects/tmysql/ TmySQL, a library to use

MySQL with Delphi.
• https://sourceforge.net/projects/zeoslib/ Zeos Library is a set of delphi

native datasets and database components for MySQL, PostgreSQL, Interbase, MS
SQL, Oracle, and DB2. Also it includes development tools such as Database
Explorer and Database Designer.

• http://www.mysql.com/Downloads/Contrib/JdmMysqlDriver-0.1.0.tar.gz A
VisualWorks 3.0 Smalltalk driver for MySQL. By joshmiller@earthlink.net.

• http://www.mysql.com/Downloads/Contrib/Db.py Python module with
caching. By gandalf@rosmail.com.

• http://www.mysql.com/Downloads/Contrib/MySQLmodule-1.4.tar.gz Python
interface for MySQL. By Joseph Skinner joe@earthlight.co.nz. Modified by
Joerg Senekowitsch senekow@ibm.net.

• http://www.mysql.com/Downloads/Contrib/mysqltcl-1.53.tar.gz Tcl inter-
face for MySQL. Based on ‘msqltcl-1.50.tar.gz’. For version 2.0 and more
info, see http://www.xdobry.de/mysqltcl/.

• http://www.mysql.com/Downloads/Contrib/MyC-0.1.tar.gz A Visual
Basic-like API, by Ed Carp.

• http://www.mysql.com/Downloads/Contrib/Vdb-dflts-2.1.tar.gz This is a
new version of a set of library utilities intended to provide a generic interface
to SQL database engines such that your application becomes a 3-tiered applica-
tion. The advantage is that you can easily switch between and move to other
database engines by implementing one file for the new backend without making
any changes to your applications. By damian@cablenet.net.

• http://www.mysql.com/Downloads/Contrib/DbFramework-1.10.tar.gz
DbFramework is a collection of classes for manipulating MySQL databases. The
classes are loosely based on the CDIF Data Model Subject Area. By Paul Sharpe
paul@miraclefish.com.

• http://www.mysql.com/Downloads/Contrib/pike-mysql-1.4.tar.gz MySQL
module for pike. For use with the Roxen web server.

• http://www.mysql.com/Downloads/Contrib/squile.tar.gz Module for guile
that allows guile to interact with SQL databases. By Hal Roberts.

Appendix B: Contributed Programs 873

• http://www.mysql.com/Downloads/Contrib/stk-mysql.tar.gz Interface for
Stk. Stk is the Tk widgets with Scheme underneath instead of Tcl. By Terry
Jones.

• http://www.mysql.com/Downloads/Contrib/eiffel-wrapper-1.0.tar.gz Eif-
fel wrapper by Michael Ravits.

• http://www.mysql.com/Downloads/Contrib/SQLmy0.06.tgz FlagShip Replace-
able Database Driver (RDD) for MySQL. By Alejandro Fernandez Herrero. The
Flagship RDD homepage is at http://www.fship.com/rdds.html.

• http://www.mysql.com/Downloads/Contrib/mydsn-1.0.zip Binary and source
for mydsn.dll. mydsn should be used to build and remove the DSN registry file
for the MyODBC driver in Coldfusion applications. By Miguel Angel Solórzano.

• http://www.mysql.com/Downloads/Contrib/MySQL-ADA95_API.zip An ADA95
interface to the MySQL API. By Francois Fabien.

• http://www.mysql.com/Downloads/Contrib/MyTool-DLL_for_VB_and_
MySQL.zip A DLL with MySQL C API for Visual Basic. By Ken Menzel
kenm@icarz.com.

• http://www.mysql.com/Downloads/Contrib/MYSQLX.EXE MySQL ActiveX Ob-
ject for directly accessing your MySQL servers from IIS/ASP, VB, VC++ skipping
the slower ODBC methods. Fully updatable, multi-threaded with full support for
all MySQL fieldtypes (version 2001.1.1). By SciBit http://www.scibit.com/.

• http://www.fastflow.it/mylua/ MyLUA home page; how to use the LUA lan-
guage to write MySQL PROCEDURE that can be loaded runtime.

• http://www.mysql.com/Downloads/Contrib/lua-4.0.tar.gz LUA 4.0

• http://www.mysql.com/Downloads/Contrib/mylua-3.23.32.1.tar.gz
Patch for MySQL 3.23.32 to use LUA 4.0. By Cristian Giussani.

• http://www.mysql.com/Downloads/Contrib/patched_myodbc.zip Patch
(for Omniform 4.0 support) to the MyODBC driver. By Thomas Thaele
tthaele@papenmeier.de

B.2 Converters

• http://www.mysql.com/Downloads/Contrib/mssql2mysql.txt Converter from
MS-SQL to MySQL. By Michael Kofler. The mssql2mysql home page is at
http://www.kofler.cc/mysql/mssql2mysql.html.

• http://www.mysql.com/Downloads/Contrib/dbf2mysql-1.14.tar.gz Con-
vert between ‘.dbf’ files and MySQL tables. By Maarten Boekhold
(boekhold@cindy.et.tudelft.nl), William Volkman, and Michael Wide-
nius. This converter includes rudimentary read-only support for MEMO
fields.

• http://www.mysql.com/Downloads/Contrib/dbf2mysql-1.13.tgz Con-
vert between ‘.dbf’ files and MySQL tables. By Maarten Boekhold,
boekhold@cindy.et.tudelft.nl, and Michael Widenius. This converter can’t handle
MEMO fields.

874 MySQL Technical Reference for Version 4.1.1-alpha

• http://www.mysql.com/Downloads/Contrib/dbf2mysql.zip Convert between Fox-
Pro ‘.dbf’ files and MySQL tables on Windows. By Alexander Eltsyn, ae@nica.ru or
ae@usa.net.

• http://www.mysql.com/Downloads/Contrib/dbf2sql.zip Short and simple prg that
can help you transport your data from foxpro table into MySQL table. By Danko Josic.

• http://www.mysql.com/Downloads/Contrib/dump2h-1.20.gz Convert
from mysqldump output to a C header file. By Harry Brueckner,
brueckner@mail.respublica.de.

• http://www.mysql.com/Downloads/Contrib/exportsql.txt A script that is similar
to access_to_mysql.txt, except that this one is fully configurable, has better type
conversion (including detection of TIMESTAMP fields), provides warnings and sugges-
tions while converting, quotes all special characters in text and binary data, and
so on. It will also convert to mSQL v1 and v2, and is free of charge for anyone.
See http://www.cynergi.net/exportsql/ for the latest version. By Pedro Freire,
support@cynergi.net. Note: Doesn’t work with Access 2.0!

• http://www.mysql.com/Downloads/Contrib/access_to_mysql.txt Paste this func-
tion into an Access module of a database that has the tables you want to export. See
also exportsql. By Brian Andrews. Note: Doesn’t work with Access2!

• http://www.mysql.com/Downloads/Contrib/importsql.txt A script that does
the exact reverse of exportsql.txt. That is, it imports data from MySQL
into an Access database via ODBC. This is very handy when combined with
exportsql, because it lets you use Access for all DB design and administration,
and synchronise with your actual MySQL server either way. Free of charge. See
http://www.netdive.com/freebies/importsql/ for any updates. Created by
Laurent Bossavit of NetDIVE. Note: doesn’t work with Access 2.0!

• http://www.mysql.com/Downloads/Contrib/mdb2sql.bas Converter from Access97
to MySQL by Moshe Gurvich.

• http://www.mysql.com/Downloads/Contrib/msql2mysqlWrapper-1.0.tgz A C
wrapper from mSQL to MySQL. By alfred@sb.net

• http://www.mysql.com/Downloads/Contrib/sqlconv.pl A simple script that can be
used to copy fields from one MySQL table to another in bulk. Basically, you can run
mysqldump and pipe it to the sqlconv.pl script. The script will parse through the
mysqldump output and will rearrange the fields so they can be inserted into a new table.
An example is when you want to create a new table for a different site you are working
on, but the table is just a bit different (that is - fields in different order, etc.). By Steve
Shreeve.

• http://www.mysql.com/Downloads/Contrib/oracledump Perl program to convert
Oracle databases to MySQL. Has same output format as mysqldump. By Johan
Andersson.

• http://www.mysql.com/Downloads/Contrib/excel2mysql Perl program
to import Excel spreadsheets into a MySQL database. By Stephen Hurd
shurd@sk.sympatico.ca

• http://www.mysql.com/Downloads/Contrib/T2S_100.ZIP. Windows program to
convert text files to MySQL databases. By Asaf Azulay.

Appendix B: Contributed Programs 875

B.3 Utilities

• http://worldcommunity.com/opensource/utilities/mysql_backup.html MySQL
Backup is a backup script for MySQL. By Peter F. Brown.

• http://www.mysql.com/Downloads/Contrib/mysql_watchdog.pl Monitor the
MySQL daemon for possible lockups. By Yermo Lamers, yml@yml.com.

• http://www.mysql.com/Downloads/Contrib/mysql_structure_dumper.tar.gz

• http://www.mysql.com/Downloads/Contrib/mysql_structure_dumper.tgz Prints
the structure of every table in a database. By Thomas Wana.

• http://www.mysql.com/Downloads/Contrib/mysqlsync. A Perl script to keep re-
mote copies of a MySQL database in sync with a central master copy. By Mark
Jeftovic. markjr@easydns.com.

• http://www.mysql.com/Downloads/Contrib/MySQLTutor-0.2.tar.gz. MySQL-
Tutor. A MySQL tutorial for beginners.

• http://www.mysql.com/Downloads/Contrib/MySQLDB.zip

• http://www.mysql.com/Downloads/Contrib/MySQLDB-readme.html. A COM
library for MySQL by Alok Singh.

• http://www.mysql.com/Downloads/Contrib/mysql_replicate.pl Perl program
that handles replication. By elble@icculus.nsg.nwu.edu

• http://www.mysql.com/Downloads/Contrib/dbcheck Perl script that takes a backup
of tables before running isamchk on them. By Elizabeth.

• http://www.mysql.com/Downloads/Contrib/mybackup.
• http://www.mswanson.com/mybackup (mybackup home page) Wrapper for

mysqldump to backup all databases. By Marc Swanson.
• http://www.mysql.com/Downloads/Contrib/mdu.pl.gz Prints the storage usage of

a MySQL database.

876 MySQL Technical Reference for Version 4.1.1-alpha

Appendix C Credits

This appendix lists the developers, contributors, and supporters that have helped to make
MySQL what it is today.

C.1 Developers at MySQL AB

These are the developers that are or have been employed by MySQL AB to work on the
MySQL database software, roughly in the order they started to work with us. Following
each developer is a small list of the tasks that the developer is responsible for, or the
accomplishments they have made. All developers are involved in support.

Michael (Monty) Widenius
• Lead developer and main author of the MySQL server (mysqld).
• New functions for the string library.
• Most of the mysys library.
• The ISAM and MyISAM libraries (B-tree index file handlers with index com-

pression and different record formats).
• The HEAP library. A memory table system with our superior full dynamic

hashing. In use since 1981 and published around 1984.
• The replace program (take a look at it, it’s COOL!).
• MyODBC, the ODBC driver for Windows95.
• Fixing bugs in MIT-pthreads to get it to work for MySQL Server. And

also Unireg, a curses-based application tool with many utilities.
• Porting of mSQL tools like msqlperl, DBD/DBI, and DB2mysql.
• Most of crash-me and the foundation for the MySQL benchmarks.

David Axmark
• Initial main writer of the Reference Manual, including enhancements to

texi2html.
• Automatic web site updating from the manual.
• Initial Autoconf, Automake, and Libtool support.
• Licensing.
• Parts of all the text files. (Nowadays only the ‘README’ is left. The rest

ended up in the manual.)
• Lots of testing of new features.
• Our in-house Free Software legal expert.
• Mailing list maintainer (who never has the time to do it right...).
• Our original portability code (more than 10 years old now). Nowadays

only some parts of mysys are left.
• Someone for Monty to call in the middle of the night when he just got that

new feature to work.
• Chief "Open Sourcerer" (MySQL community relations).

Appendix C: Credits 877

Jani Tolonen
• mysqlimport

• A lot of extensions to the command-line clients.
• PROCEDURE ANALYSE()

Sinisa Milivojevic
• Compression (with zlib) in the client/server protocol.
• Perfect hashing for the lexical analyser phase.
• Multi-row INSERT

• mysqldump -e option
• LOAD DATA LOCAL INFILE

• SQL_CALC_FOUND_ROWS SELECT option
• --max-user-connections=... option
• net_read and net_write_timeout

• GRANT/REVOKE and SHOW GRANTS FOR

• New client/server protocol for 4.0
• UNION in 4.0
• Multi-table DELETE/UPDATE
• Derived tables in 4.1
• User resources management
• Initial developer of the MySQL++ C++ API and the MySQLGUI client.

Tonu Samuel (past developer)
• VIO interface (the foundation for the encrypted client/server protocol).
• MySQL Filesystem (a way to use MySQL databases as files and directo-

ries).
• The CASE expression.
• The MD5() and COALESCE() functions.
• RAID support for MyISAM tables.

Sasha Pachev
• Initial implementation of replication (up to version 4.0).
• SHOW CREATE TABLE.
• mysql-bench

Matt Wagner
• MySQL test suite.
• Webmaster (until 2002).
• Coordinator of development.

Miguel Solorzano
• Win32 development and release builds.
• Windows NT server code.
• WinMySQLAdmin

878 MySQL Technical Reference for Version 4.1.1-alpha

Timothy Smith (past developer)
• Dynamic character sets support.
• configure, RPMs and other parts of the build system.
• Initial developer of libmysqld, the embedded server.

Sergei Golubchik
• Full-text search.
• Added keys to the MERGE library.

Jeremy Cole
• Proofreading and editing this fine manual.
• ALTER TABLE ... ORDER BY
• UPDATE ... ORDER BY
• DELETE ... ORDER BY

Indrek Siitan
• Designing/programming of our web interface.
• Author of our newsletter management system.

Jorge del Conde
• MySQLCC (MySQL Control Center)
• Win32 development
• Initial implementation of the website portals.

Venu Anuganti
• Connector/ODBC (MyODBC) 3.51
• New client/server protocol for 4.1 (for prepared statements).
•

Arjen Lentz
• Maintainer of the MySQL Reference Manual.
• Preparing the O’Reilly printed edition of the manual.

Alexander (Bar) Barkov, Alexey (Holyfoot) Botchkov, and Ramil Kalimullin
• Spatial data (GIS) and R-Trees implementation for 4.1
• Unicode and character sets for 4.1; documentation for same

Oleksandr (Sanja) Byelkin
• Query cache in 4.0
• Implementation of subqueries (4.1).

Aleksey (Walrus) Kishkin and Alexey (Ranger) Stroganov
• Benchmarks design and analysis.
• Maintenance of the MySQL test suite.

Zak Greant
• Open Source advocate, MySQL community relations.

Carsten Pedersen
• The MySQL Certification program.

Appendix C: Credits 879

Lenz Grimmer
• Production (build and release) engineering.

Peter Zaitsev
• SHA1(), AES_ENCRYPT() and AES_DECRYPT() functions.
• Debugging, cleaning up various features.

Alexander (Salle) Keremidarski
• Support.
• Debugging.

Per-Erik Martin
• Lead developer for stored procedures (5.0) and triggers.

Jim Winstead
• Lead web developer.

Mark Matthews
• Connector/J driver (Java).

Peter Gulutzan
SQL-99, SQL:2003 standards compliance.

• Documentation of existing MySQL code/algorithms.
• Character set documentation.

Guilhem Bichot
• Replication, from MySQL version 4.0.

C.2 Contributors to MySQL

While MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish
to recognise those who have made contributions of one kind or another to the MySQL
distribution. Contributors are listed here, in somewhat random order:

Paul DuBois
Ongoing help with making this manual correct and understandable. That in-
cludes rewriting Monty’s and David’s attempts at English into English as other
people know it.

Gianmassimo Vigazzola qwerg@mbox.vol.it or qwerg@tin.it
The initial port to Win32/NT.

Kim Aldale
Helped to rewrite Monty’s and David’s early attempts at English into English.

Per Eric Olsson
For more or less constructive criticism and real testing of the dynamic record
format.

Irena Pancirov irena@mail.yacc.it
Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe

880 MySQL Technical Reference for Version 4.1.1-alpha

David J. Hughes
For the effort to make a shareware SQL database. At TcX, the predeces-
sor of MySQL AB, we started with mSQL, but found that it couldn’t satisfy
our purposes so instead we wrote an SQL interface to our application builder
Unireg. mysqladmin and mysql client are programs that were largely influ-
enced by their mSQL counterparts. We have put a lot of effort into making
the MySQL syntax a superset of mSQL. Many of the API’s ideas are borrowed
from mSQL to make it easy to port free mSQL programs to the MySQL API. The
MySQL software doesn’t contain any code from mSQL. Two files in the dis-
tribution (‘client/insert_test.c’ and ‘client/select_test.c’) are based
on the corresponding (non-copyrighted) files in the mSQL distribution, but are
modified as examples showing the changes necessary to convert code from mSQL
to MySQL Server. (mSQL is copyrighted David J. Hughes.)

Fred Fish For his excellent C debugging and trace library. Monty has made a number of
smaller improvements to the library (speed and additional options).

Richard A. O’Keefe
For his public domain string library.

Henry Spencer
For his regex library, used in WHERE column REGEXP regexp.

Free Software Foundation
From whom we got an excellent compiler (gcc), the libc library (from which we
have borrowed ‘strto.c’ to get some code working in Linux), and the readline
library (for the mysql client).

Free Software Foundation & The XEmacs development team
For a really great editor/environment used by almost everybody at MySQL
AB/TcX/detron.

Patrick Lynch
For helping us acquire http://www.mysql.com/.

Fred Lindberg
For setting up qmail to handle the MySQL mailing list and for the incredible
help we got in managing the MySQL mailing lists.

Igor Romanenko igor@frog.kiev.ua
mysqldump (previously msqldump, but ported and enhanced by Monty).

Yuri Dario
For keeping up and extending the MySQL OS/2 port.

Tim Bunce, Alligator Descartes
For the DBD (Perl) interface.

Tim Bunce
Author of mysqlhotcopy.

Andreas Koenig a.koenig@mind.de
For the Perl interface for MySQL Server.

Appendix C: Credits 881

Eugene Chan eugene@acenet.com.sg
For porting PHP for MySQL Server.

Michael J. Miller Jr. mke@terrapin.turbolift.com
For the first MySQL manual. And a lot of spelling/language fixes for the FAQ
(that turned into the MySQL manual a long time ago).

Yan Cailin
First translator of the MySQL Reference Manual into simplified Chinese in
early 2000 on which the Big5 and HK coded (http://mysql.hitstar.com/)
versions were based. Personal home page at linuxdb.yeah.net
(http://linuxdb.yeah.net).

Giovanni Maruzzelli maruzz@matrice.it
For porting iODBC (Unix ODBC).

Chris Provenzano
Portable user level pthreads. From the copyright: This product includes soft-
ware developed by Chris Provenzano, the University of California, Berkeley,
and contributors. We are currently using version 1 60 beta6 patched by Monty
(see ‘mit-pthreads/Changes-mysql’).

Xavier Leroy Xavier.Leroy@inria.fr
The author of LinuxThreads (used by the MySQL Server on Linux).

Zarko Mocnik zarko.mocnik@dem.si
Sorting for Slovenian language and the ‘cset.tar.gz’ module that makes it
easier to add other character sets.

"TAMITO" tommy@valley.ne.jp
The _MB character set macros and the ujis and sjis character sets.

Joshua Chamas joshua@chamas.com
Base for concurrent insert, extended date syntax, debugging on NT, and an-
swering on the MySQL mailing list.

Yves Carlier Yves.Carlier@rug.ac.be
mysqlaccess, a program to show the access rights for a user.

Rhys Jones rhys@wales.com (And GWE Technologies Limited)
For JDBC, a module to extract data from a MySQL Database with a Java
client.

Dr Xiaokun Kelvin ZHU X.Zhu@brad.ac.uk
Further development of the JDBC driver and other MySQL-related Java tools.

James Cooper pixel@organic.com
For setting up a searchable mailing list archive at his site.

Rick Mehalick Rick_Mehalick@i-o.com
For xmysql, a graphical X client for MySQL Server.

Doug Sisk sisk@wix.com
For providing RPM packages of MySQL for Red Hat Linux.

882 MySQL Technical Reference for Version 4.1.1-alpha

Diemand Alexander V. axeld@vial.ethz.ch
For providing RPM packages of MySQL for Red Hat Linux-Alpha.

Antoni Pamies Olive toni@readysoft.es
For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

Jay Bloodworth jay@pathways.sde.state.sc.us
For providing RPM versions for MySQL Version 3.21.

Jochen Wiedmann wiedmann@neckar-alb.de
For maintaining the Perl DBD::mysql module.

Therrien Gilbert gilbert@ican.net, Jean-Marc Pouyot jmp@scalaire.fr
French error messages.

Petr Snajdr, snajdr@pvt.net
Czech error messages.

Jaroslaw Lewandowski jotel@itnet.com.pl
Polish error messages.

Miguel Angel Fernandez Roiz
Spanish error messages.

Roy-Magne Mo rmo@www.hivolda.no
Norwegian error messages and testing of Version 3.21.#.

Timur I. Bakeyev root@timur.tatarstan.ru
Russian error messages.

brenno@dewinter.com & Filippo Grassilli phil@hyppo.com
Italian error messages.

Dirk Munzinger dirk@trinity.saar.de
German error messages.

Billik Stefan billik@sun.uniag.sk
Slovak error messages.

Stefan Saroiu tzoompy@cs.washington.edu
Romanian error messages.

Peter Feher
Hungarian error messages.

Roberto M. Serqueira
Portuguese error messages.

Carsten H. Pedersen
Danish error messages.

Arjen G. Lentz
Dutch error messages, completing earlier partial translation (also work on con-
sistency and spelling).

David Sacerdote davids@secnet.com
Ideas for secure checking of DNS hostnames.

Appendix C: Credits 883

Wei-Jou Chen jou@nematic.ieo.nctu.edu.tw
Some support for Chinese(BIG5) characters.

Wei He hewei@mail.ied.ac.cn
A lot of functionality for the Chinese(GBK) character set.

Zeev Suraski bourbon@netvision.net.il
FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor.
Active mailing list member.

Luuk de Boer luuk@wxs.nl
Ported (and extended) the benchmark suite to DBI/DBD. Have been of great
help with crash-me and running benchmarks. Some new date functions. The
mysql_setpermissions script.

Jay Flaherty fty@mediapulse.com
Big parts of the Perl DBI/DBD section in the manual.

Paul Southworth pauls@etext.org, Ray Loyzaga yar@cs.su.oz.au
Proof-reading of the Reference Manual.

Alexis Mikhailov root@medinf.chuvashia.su
User-definable functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

Andreas F. Bobak bobak@relog.ch
The AGGREGATE extension to UDF functions.

Ross Wakelin R.Wakelin@march.co.uk
Help to set up InstallShield for MySQL-Win32.

Jethro Wright III jetman@li.net
The ‘libmysql.dll’ library.

James Pereria jpereira@iafrica.com
Mysqlmanager, a Win32 GUI tool for administrating MySQL Server.

Curt Sampson cjs@portal.ca
Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

Antony T. Curtis antony.curtis@olcs.net
Porting of the MySQL Database software to OS/2.

Martin Ramsch m.ramsch@computer.org
Examples in the MySQL Tutorial.

Steve Harvey
For making mysqlaccess more secure.

Konark IA-64 Centre of Persistent Systems Private Limited
http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL
server.

Albert Chin-A-Young.
Configure updates for Tru64, large file support and better TCP wrappers sup-
port.

884 MySQL Technical Reference for Version 4.1.1-alpha

John Birrell
Emulation of pthread_mutex() for OS/2.

Benjamin Pflugmann
Extended MERGE tables to handle INSERTS. Active member on the MySQL
mailing lists.

Guilhem Bichot
Fixed handling of exponents for DECIMAL. Author of mysql_tableinfo.

Jocelyn Fournier
Excellent spotting and reporting innumerable bugs (especially in the MySQL
4.1 subquery code).

Georg Richter
MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for
use with MySQL 4.1 and up.

Marc Liyanage
Maintaining the Mac OS X packages and providing invaluable feedback on how
to create Mac OS X PKGs.

Robert Rutherford
Providing invaluable information and feedback about the QNX port.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wo-
jciech Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, jehamby@lightside,
psmith@BayNetworks.com, duane@connect.com.au, Ted Deppner ted@psyber.com, Mike
Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

Daniel Koch dkoch@amcity.com
Irix setup.

Luuk de Boer luuk@wxs.nl
Benchmark questions.

Tim Sailer tps@users.buoy.com
DBD-mysql questions.

Boyd Lynn Gerber gerberb@zenez.com
SCO-related questions.

Richard Mehalick RM186061@shellus.com
xmysql-related questions and basic installation questions.

Zeev Suraski bourbon@netvision.net.il
Apache module configuration questions (log & auth), PHP-related questions,
SQL syntax-related questions and other general questions.

Francesc Guasch frankie@citel.upc.es
General questions.

Appendix C: Credits 885

Jonathan J Smith jsmith@wtp.net
Questions pertaining to OS-specifics with Linux, SQL syntax, and other things
that might need some work.

David Sklar sklar@student.net
Using MySQL from PHP and Perl.

Alistair MacDonald A.MacDonald@uel.ac.uk
Not yet specified, but is flexible and can handle Linux and maybe HP-UX. Will
try to get user to use mysqlbug.

John Lyon jlyon@imag.net
Questions about installing MySQL on Linux systems, using either ‘.rpm’ files
or compiling from source.

Lorvid Ltd. lorvid@WOLFENET.com
Simple billing/license/support/copyright issues.

Patrick Sherrill patrick@coconet.com
ODBC and VisualC++ interface questions.

Randy Harmon rjharmon@uptimecomputers.com
DBD, Linux, some SQL syntax questions.

C.3 Supporters to MySQL

While MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish to
recognise the following companies, which helped us finance the development of the MySQL
server, such as by paying us for developing a new feature or giving us hardware for devel-
opment of the MySQL server.

VA Linux / Andover.net
Funded replication.

NuSphere Editing of the MySQL manual.

Stork Design studio
The MySQL web site in use between 1998-2000.

Intel Contributed to development on Windows and Linux platforms.

Compaq Contributed to Development on Linux/Alpha.

SWSoft Development on the embedded mysqld version.

FutureQuest
--skip-show-database

886 MySQL Technical Reference for Version 4.1.1-alpha

Appendix D MySQL Change History

This appendix lists the changes from version to version in the MySQL source code.
We are now working actively on MySQL 4.1 & 5.0 and will only provide critical bug fixes
for MySQL 4.0 and MySQL 3.23. We update this section as we add new features, so that
everybody can follow the development.
Our TODO section contains what further plans we have for 4.1 & 5.0. See Section 1.8
[TODO], page 49.
Note that we tend to update the manual at the same time we make changes to MySQL.
If you find a version listed here that you can’t find on the MySQL download page
(http://www.mysql.com/downloads/), this means that the version has not yet been
released!
The date mentioned with a release version is the date of the last BitKeeper ChangeSet that
this particular release has been based on, not the date when the packages have been made
available. The binaries are usually made available a few days after the date of the tagged
ChangeSet - building and testing all packages takes some time.

D.1 Changes in release 5.0.0 (Development)

For the time being, version 5.0 is only available in source code. See Section 2.3.4 [Installing
source tree], page 94.
The following changelog shows what has already been done in the 5.0 tree:
• Basic support for stored procedures (SQL-99 style).
• Added SELECT INTO list_of_vars, which can be of mixed, that is, global and local

type.
• Deprecated the update log (no longer supported). It is fully replaced by the binary log.
• User variable names are now case insensitive: if you do SET @a=10; then SELECT @A;

will now return 10. Of course, the content of the variable is still case sensitive; only
the name of this variable is case insensitive.

D.2 Changes in release 4.1.x (Alpha)

Version 4.1 of the MySQL server includes many enhancements and new features. Binaries for
this version are available for download at http://www.mysql.com/downloads/mysql-4.1.html.
• Subqueries and derived tables (unnamed views). See Section 6.4.2 [Subqueries],

page 537.
• INSERT ... ON DUPLICATE KEY UPDATE ... syntax. This allows you to UPDATE an ex-

isting row if the insert would cause a duplicate value in a PRIMARY or UNIQUE key.
(REPLACE allows you to overwrite an existing row, which is something entirely differ-
ent.) See Section 6.4.3 [INSERT], page 546.

• A newly designed GROUP_CONCAT() aggregate function. See Section 6.3.7 [Group by
functions and modifiers], page 524.

• Extensive Unicode (UTF8) support.

Appendix D: MySQL Change History 887

• Character sets can be defined per column, table, and database.
• BTREE index on HEAP tables.
• Support for OpenGIS spatial types (geographical data). See Chapter 10 [Spatial ex-

tensions in MySQL], page 686.
• SHOW WARNINGS shows warnings for the last command. See Section 4.6.8.9 [SHOW

WARNINGS], page 303.
• Faster binary protocol with prepared statements and parameter binding. See Sec-

tion 11.1.4 [C API Prepared statements], page 763.
• Multi-line queries: You can now issue several queries at once and then read the results

in one go. See Section 11.1.8 [C API multiple queries], page 790.
• Create Table: CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table2 LIKE table1.
• Server based HELP command that can be used in the mysql command line client (and

other clients) to get help for SQL commands.

For a full list of changes, please refer to the changelog sections for each individual 4.1.x
release.

D.2.1 Changes in release 4.1.1 (to be released soon)

Functionality added or changed:
• MATCH ... AGAINST(... WITH QUERY EXPANSION) and command-line option

ft_query_expansion_limit were added.
• Unused ft_max_word_len_for_sort command-line option was removed.
• Full-text search now support multi-byte character sets, and Unicode (UTF-8, but not

UCS-2 yet).
• Phrase search in MATCH ... AGAINST (... IN BOOLEAN MODE) does not match partial

words anymore.
• Added new aggregate function BIT_XOR() for bitwise XOR operations.
• Replication over SSL now works.
• The START SLAVE statement now supports an UNTIL clause for specifying that the slave

SQL thread should be started but run only until it reaches a given position in the
master’s binlogs or in the slave’s relay logs.

• Create warnings also for simple (one row) INSERT. Before you had to set
SQL_WARNING=1 for this to generate warnings.

• Added delimiter (\d) command to the mysql command-line client for changing the
statement delimiter (terminator). The default delimiter is semicolon.

• CHAR, VARCHAR, and TEXT columns now have lengths measured in characters rather
than bytes. Similarly, index values on such columns are measured in characters, not
bytes. The character size depends on the column’s character set. This means, for
example, that a CHAR(n) column for a multi-byte character set will take more storage
than before.

• The DATABASE() function now returns NULL rather than the empty string if there is no
database selected.

888 MySQL Technical Reference for Version 4.1.1-alpha

• Added option --sql-mode=NO_AUTO_VALUE_ON_ZERO to suppress usual behaviour of
generating the next sequence number when zero is stored in an AUTO_INCREMENT col-
umn. With this mode enabled, only NULL generates a sequence number.

• Warning: Incompatible change! Client authentication now is based on 41-byte pass-
words in the user table, not 45-byte passwords as in 4.1.0. Any 45-byte passwords
created for 4.1.0 must be reset after running the mysql_fix_privilege_tables script.

• Warning: Incompatible change! Renamed mysql_prepare_result() to mysql_get_
metadata() as the old name was confusing.

• Added command DROP USER ’username’@’hostname’.
• The interface to aggregated UDF functions has changed a bit. One must now declare

a clear function for each aggregate function.
• CONCAT_WS() no longer skips empty strings.
• Added new functions UTC_DATE(), UTC_TIME(), and UTC_TIMESTAMP().
• Added new functions DATE(), TIME(), TIMESTAMP(), WEEKOFYEAR(), MICROSECOND(),

ADDTIME(), SUBTIME(), DATEDIFF(), TIMEDIFF(), MAKEDATE(), MAKETIME(), and
TIMEDIFF().

• Added new syntax for ADDDATE() and SUBDATE(). They now allow a numeric second
argument representing the number of days to be added to or subtracted from the first
date argument.

• Added new type values DAY_MICROSECOND, HOUR_MICROSECOND, MINUTE_MICROSECOND,
SECOND_MICROSECOND, and MICROSECOND for DATE_ADD(), DATE_SUB(), and EXTRACT().

• Added new %f microseconds format specifier for DATE_FORMAT() and TIME_FORMAT().
• Enabled that all queries in which at least one SELECT does not use indices properly get

into slow query log when long log format is used.
• It is now possible to create MERGE tables from MyISAM tables in different databases.

Formerly, all the MyISAM tables had to be in the same database, and the MERGE table
had to be created in that database as well.

• Added new functions COMPRESS(), UNCOMPRESS(), and UNCOMPRESSED_LENGTH().
• When doing SET sql_mode=’mode’ for a complex mode (like ANSI), we now update the

sql_mode variable to include all the individual options implied by the complex mode.
• Added the OLAP (On-Line Analytical Processing) function ROLLUP, which provides

summary rows for each GROUP BY level.
• Added SQLSTATE codes for all server errors.
• Added client API functions mysql_sqlstate() and mysql_stmt_sqlstate() that re-

turn the SQLSTATE error code for the last error.
• TIME columns with hours > 24 (days) were returned incorrectly to the client.
• ANALYZE, OPTIMIZE, REPAIR, FLUSH (and its equivalents invoked from mysqladmin)

commands are now stored in the binary log (hence are replicated to the slave), except
FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, FLUSH TABLES WITH READ LOCK, and unless
the optional NO_WRITE_TO_BINLOG keyword (or its alias LOCAL) was used. For a syntax
example, see Section 4.6.4 [FLUSH], page 282.

• New global variable RELAY_LOG_PURGE to enable or disable automatic relay log purging.

Appendix D: MySQL Change History 889

• LOAD DATA now produces warnings that can be fetched with SHOW WARNINGS.
• Added support for syntax CREATE TABLE table2 (LIKE table1) that creates an empty

table table2 with a definition that is exactly the same as table1, including any indexes.
• CREATE TABLE table_name (...) TYPE=storage_engine now generates a warning if

the named storage engine is not available. The table is still created as a MyISAM table,
as before.

• Most subqueries are now much faster than before.
• Added alias PURGE BINARY LOGS for PURGE MASTER LOGS.
• PURGE LOGS syntax is disabled (it had been added in version 4.1.0). It is now PURGE

MASTER LOGS or PURGE BINARY LOGS.
• Added alias SHOW BDB LOGS for SHOW LOGS.
• Added alias SHOW MASTER LOGS (which had been deleted in version 4.1.0) to SHOW

BINARY LOGS.
• Added a column Slave_IO_State (the state of the slave I/O thread) and a column

Seconds_behind_master (the number of seconds by which the slave is late compared
to the master) to the output of SHOW SLAVE STATUS.

Bugs fixed:

• Fixed a bug in privilege handling that made connections from certain IP addresses to
get wrong database-level privileges. (More precisely: The connection got the database
privileges of the previous successful authentication from one of those IP addresses, even
if the IP address user name and database name were different). (Bug #1636)

• Error handling functions were not called properly when one got an error from [CREATE
| REPLACE| INSERT] ... SELECT.

• HASH, BTREE, RTREE, ERRORS and WARNINGS are not reserved words anymore. (Bug
#724)

• Fix for bug in ROLLUP when all tables were const tables. (Bug #714)
• --lower-case-table-names=1 now also makes aliases case insensitive. (Bug #534)
• Fixed a bug in UNION which prohibited that NULL values are inserted in result set where

first SELECT contains NOT NULL columns
• Fixed name resolution of fields of reduced subqueries in unions. (Bug #745)
• Fixed memory overrun in subqueries in select list with WHERE clause bigger than outer

query WHERE clause. (Bug #726)
• Fixed a bug that caused MyISAM tables with FULLTEXT indexes created in 4.0.x to be

unreadable in 4.1.x.
• Fixed a data loss bug in REPAIR TABLE ... USE_FRM when used with tables that con-

tained TIMESTAMP fields and were created in 4.0.x.
• Fixed reduced subquery processing in ORDER BY/GROUP BY clauses. (Bug #442)
• Fixed name resolving of outer fields of subquery in INSERT/REPLACE statements. (Bug

#446)
• Fixed bug in marking fields of reduced subqueries. (Bug #679)
• Fixed a bug that made CREATE FULLTEXT INDEX syntax illegal.

890 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a crash when a SELECT that required a temporary table (marked by Using
temporary in EXPLAIN output) was used as a derived table in EXPLAIN command.
(Bug #251)

• Fixed a rare table corruption bug in DELETE from a big table with a new (created by
MySQL-4.1) fulltext index.

• LAST_INSERT_ID() now returns 0 if the last INSERT statement didn’t insert any rows.
• Fixed missing last character in function output. (Bug #447)
• Fixed a rare replication bug when a transaction spanned two or more relay logs, and

the slave was stopped while executing the part of the transaction that was in the second
or later relay log. Then replication would resume at the beginning of the second or
later relay log, which was wrong. (It should resume at BEGIN, in the first relay log.)
(Bug #53)

• CONNECTION_ID() is now properly replicated. (Bug #177)
• The new PASSWORD() function in 4.1 is now properly replicated. (Bug #344)
• Fixed bug with doubly freed memory.
• Fixed crashing bug in UNION operations that involved temporary tables.
• Fixed a crashing bug in DERIVED TABLES when EXPLAIN is used on a DERIVED TABLES

with a join.
• Fixed a crashing bug in DELETE with ORDER BY and LIMIT caused by an uninitialized

array of reference pointers.
• Fixed a bug in USER() function caused by an error in the size of the allocated string.
• Fixed a crashing bug when attempting to create a table with a spatial (GIS) column

type with a storage engine that does not support spatial types.
• Fixed a crashing bug in UNION caused by the empty select list and a non-existent field

being used in some of the sub-selects.
• Fixed a replication bug when the master is 3.23 and the slave 4.0: The slave lost the

replicated temporary tables if FLUSH LOGS was issued on the master. (Bug #254)
• Fixed a security bug: A server compiled without SSL support still allowed connections

by users that had the REQUIRE SSL option specified for their accounts.
• When an undefined user variable was used in a updating query on the master (like

INSERT INTO t VALUES(@a) where @a had never been set by this connection before),
then the slave could replicate the query wrongly if a previous transaction on the master
used a user variable of the same name. (Bug #1331)

D.2.2 Changes in release 4.1.0 (03 Apr 2003: Alpha)

Functionality added or changed:
• New more secure client authentication based on 45-byte passwords in the user table.
• New CRC32() function to compute cyclic redundancy check value.
• On Windows, we are now using shared memory to communicate between server

and client when they are running on the same machine and you are connecting to
localhost.

Appendix D: MySQL Change History 891

• REPAIR of MyISAM tables now uses less temporary disk space when sorting char columns.
• DATE/DATETIME checking is now a bit stricter to support the ability to automatically

distinguish between date, datetime, and time with microseconds. For example, dates
of type YYYYMMDD HHMMDD are no longer supported; you must either have separators
between each DATE/TIME part or not at all.

• Server side help for all MySQL functions. One can now type help week in the mysql
client and get help for the week() function.

• Added new C API client function: mysql_get_server_version().
• Fixed bug in libmysqlclient that fetched field defaults.
• Fixed bug in ‘mysql.cc’ client when skipping comments
• Added record_in_range() method to MERGE tables to be able to choose the right

index when there are many to choose from.
• Replication now works with RAND() and user variables @var.
• Allow one to change mode for ANSI_QUOTES on the fly.
• EXPLAIN SELECT now can be killed. See Section 4.6.7 [KILL], page 284.
• REPAIR TABLE now can be killed. See Section 4.6.7 [KILL], page 284.
• Allow one to specify empty key lists for USE|IGNORE|FORCE INDEX.
• DROP TEMPORARY TABLE now only drops temporary tables and doesn’t end transactions.
• Added a support for UNION in derived tables.
• TIMESTAMP is now returned as a string of type ’YYYY-MM-DD HH:MM:SS’ and different

timestamp lengths are not supported.
This change was necessary for SQL standards compliance. In a future version, a further
change will be made (backward compatible with this change), allowing the timestamp
length to indicate the desired number of digits of fractions of a second.

• New faster client/server protocol which supports prepared statements, bound parame-
ters, and bound result columns, binary transfer of data, warnings.

• Added database and real table name (in case of alias) to the MYSQL_FIELD structure.
• Multi-line queries: You can now issue several queries at once and then read the results

in one go.
• In CREATE TABLE foo (a INT not null primary key) the PRIMARY word is now op-

tional.
• In CREATE TABLE the attribute SERIAL is now an alias for BIGINT NOT NULL AUTO_

INCREMENT UNIQUE.
• SELECT ... FROM DUAL is an alias for SELECT (To be compatible with some other

databases).
• If one creates a too long CHAR/VARCHAR it’s now automatically changed to TEXT or BLOB;

One will get a warning in this case.
• One can specify the different BLOB/TEXT types with the syntax BLOB(length) and

TEXT(length). MySQL will automatically change it to one of the internal BLOB/TEXT
types.

• CHAR BYTE is an alias for CHAR BINARY.

892 MySQL Technical Reference for Version 4.1.1-alpha

• VARCHARACTER is an alias for VARCHAR.

• New operators integer MOD integer and integer DIV integer.

• SERIAL DEFAULT VALUE added as an alias for AUTO_INCREMENT.

• TRUE and FALSE added as alias for 1 and 0, respectively.

• Aliases are now forced in derived tables, as per SQL-99.

• Fixed SELECT .. LIMIT 0 to return proper row count for SQL_CALC_FOUND_ROWS.

• One can specify many temporary directories to be used in a round-robin fashion with:
--tmpdir=dirname1:dirname2:dirname3.

• Subqueries: SELECT * from t1 where t1.a=(SELECT t2.b FROM t2).

• Derived tables:

SELECT a.col1, b.col2
FROM (SELECT MAX(col1) AS col1 FROM root_table) a,
other_table b
WHERE a.col1=b.col1;

• Character sets to be defined per column, table and database.

• Unicode (UTF8) support.

• New CONVERT(... USING ...) syntax for converting string values between character
sets.

• BTREE index on HEAP tables.

• Faster embedded server (new internal communication protocol).

• One can add a comment per column in CREATE TABLE.

• SHOW FULL COLUMNS FROM table_name shows column comments.

• ALTER DATABASE.

• Support for GIS (Geometrical data). See Chapter 10 [Spatial extensions in MySQL],
page 686.

• SHOW [COUNT(*)] WARNINGS shows warnings from the last command.

• One can specify a column type for a colum in CREATE TABLE ... SELECT by defining
the column in the CREATE part.

CREATE TABLE foo (a tinyint not null) SELECT b+1 AS ’a’ FROM bar;

• expr SOUNDS LIKE expr same as SOUNDEX(expr)=SOUNDEX(expr).

• VARIANCE(expr) returns the variance of expr

• One can create a table from the existing table using CREATE [TEMPORARY] TABLE [IF
NOT EXISTS] table (LIKE table). The table can be either normal or temporary.

• New options --reconnect and disable-reconnect for the mysql client, to reconnect
automatically or not if the connection is lost.

• START SLAVE (STOP SLAVE) no longer returns an error if the slave is already started
(stopped); it returns a warning instead.

• SLAVE START and SLAVE STOP are no longer accepted by the query parser; use START
SLAVE and STOP SLAVE instead.

Appendix D: MySQL Change History 893

D.3 Changes in release 4.0.x (Production)

Version 4.0 of the MySQL server includes many enhancements and new features:
• The InnoDB table type is now included in the standard binaries, adding transactions,

row-level locking, and foreign keys. See Section 7.5 [InnoDB], page 605.
• A query cache, offering vastly increased performance for many applications. By caching

complete result sets, later identical queries can return instantly. See Section 6.9 [Query
Cache], page 589.

• Improved full-text indexing with boolean mode, truncation, and phrase searching. See
Section 6.8 [Fulltext Search], page 583.

• Enhanced MERGE tables, now supporting INSERT statements and AUTO_INCREMENT. See
Section 7.2 [MERGE], page 600.

• UNION syntax in SELECT. See Section 6.4.1.2 [UNION], page 537.
• Multi-table DELETE statements. See Section 6.4.5 [DELETE], page 552.
• libmysqld, the embedded server library. See Section 11.1.15 [libmysqld], page 799.
• Additional GRANT privilege options for even tighter control and security. See Sec-

tion 4.4.1 [GRANT], page 239.
• Management of user resources in the GRANT system, particularly useful for ISPs and

other hosting providers. See Section 4.4.7 [User resources], page 249.
• Dynamic server variables, allowing configuration changes without having to take down

the server. See Section 5.5.6 [SET OPTION], page 432.
• Improved replication code and features. See Section 4.11 [Replication], page 355.
• Numerous new functions and options.
• Changes to existing code for enhanced performance and reliability.

For a full list of changes, please refer to the changelog sections for each individual 4.0.x
release.

D.3.1 Changes in release 4.0.17 (not released yet)

Functionality added or changed:
• Changed default service name for mysqld on windows from MySql to MySQL. (Should

not affect usage as service names are case insensitive).
• When you install mysqld as service on Windows systems, mysqld will read the configure

options on the option files tagged with the service name. (Except when service name
is ’MySQL’).

Bugs fixed:
• Fixed optimizer bug, introduced in 4.0.16, when REF access plan was preferred to more

efficient RANGE on another column.
• Fixed problem when installing MySQL as a service with mysqld --install mysql --

defaults-file=path-to-file.
• Fixed an incorrect result from a query that uses only const tables (e.g. one-row tables)

and non-constant expression (e.g. RAND()). (Bug #1271)

894 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed bug when the optimiser did not take SQL_CALC_FOUND_ROWS into account if LIMIT
clause was present. (Bug #1274)

• mysqlbinlog now asks for a password at console when the -p/--password option
is used with no argument. This is how the other clients (mysqladmin, mysqldump..)
already behave. Note that one now has to use mysqlbinlog -p<my_password>;
mysqlbinlog -p <my_password> will not work anymore (in other words, put no space
after -p). (Bug #1595)

• Bug accidentally introduced in 4.0.16: in 4.0.16 the slave SQL thread deleted its repli-
cated temporary tables when STOP SLAVE was issued.

• In a “chain” replication setup A->B->C, if 2 sessions on A updated temporary tables
of the same name at the same time, the binlog of B became wrong and hence C was
confused. (Bug #1686)

• In a “chain” replication setup A->B->C, if STOP SLAVE was issued on B while it was
replicating a temporary table from A, then when START SLAVE was issued on B, the
binlog of B became wrong and hence C was confused. (Bug #1240)

D.3.2 Changes in release 4.0.16 (17 Oct 2003)

Functionality added or changed:
• Write memory allocation information to error log when doing mysqladmin debug. This

only works on system that support the mallinfo() call (like newer Linux systems).
• Added the following new server variables to allow more precise memory allocation:

range_alloc_block_size, query_alloc_block_size, query_prealloc_size,
transaction_alloc_block_size, and transaction_prealloc_size.

• mysqlbinlog now reads options files. To make this work one must now specify --
read-from-remote-server when reading binary logs from a MySQL server. (Note
that using a remote server is deprecated and may disappear in future mysqlbinlog
versions).

• Block SIGPIPE also for non-threaded programs. The blocking is moved from mysql_
init() to mysql_server_init(), which is automatically called on the first call to
mysql_init().

• Added --libs_r and --include options to mysql_config.
• New ‘> prompt for mysql. This prompt is similar to the ’> and "> prompts, but

indicates that an identifier quoted with backticks was begun on an earlier line and the
closing backtick has not yet been seen.

• Updated mysql_install_db to be able to use the local machine’s IP address instead
of the host name when building the initial grant tables if skip-name-resolve has been
specified in my.cnf. Using this option can be helpful on FreeBSD to avoid thread-
safety problems with the FreeBSD resolver libraries. (Thanks to Jeremy Zawodny for
the patch)

• A documentation change: added a note that when backing up a slave, one needs
to backup the ‘master.info’ and ‘relay-log.info’ files, and the ‘SQL-LOAD*’ files
(which are in the ‘slave-load-tmpdir’ directory, which defaults to ‘tmpdir’ if unset).
All these files will be needed when the slave resumes replication after you restore the
slave’s data.

Appendix D: MySQL Change History 895

Bugs fixed:

• Fixed a spurious error ERROR 14: Can’t change size of file (Errcode: 2) on
Windows in DELETE FROM myisamtable without WHERE clause or TRUNCATE TABLE
myisamtable. (Bug #1397)

• Fixed a bug that resulted in thr_alarm queue is full warnings after increasing the
variable max_connections (with SET GLOBAL). (Bug #1435)

• Made LOCK TABLES to work when Lock_tables_priv is granted on the database level
and Select_priv is granted on the table level.

• Fixed crash of FLUSH QUERY CACHE on queries which use same table several times (Bug
#988).

• Fixed core dump bug when setting an enum system variable (like SQL_WARNINGS) to
NULL.

• Extended default timeout in clients on windows from 30 seconds to 1 year. (The
timeout that was added in MySQL 4.0.15 was way too short).

• More “out of memory” checking in range optimiser.
• Fixed and documented problem when setting and using a user variable in the same

SELECT statement. (Bug #1194).
• Fixed bug in overrun check for blobs with compressed tables (bug introduced in 4.0.14).

This caused MySQL to regard some correct tables with blobs to be corrupted. (Bug
#770, Bug #1304, and maybe Bug #1295)

• SHOW GRANTS showed USAGE instead of real privileges for column grants when no table
grants was given.

• When it wanted to copy a database from the master, LOAD DATA FROM MASTER dropped
the corresponding database on the slave, thus dropping tables which may not have a
counterpart on the master, or tables which may be excluded from replication using
replicate-*-table rules. Now LOAD DATA FROM MASTER does not drop the database
anymore, it drops only the tables which have a counterpart on the master and which
match the replicate-*-table rules. replicate-*-db rules can still be used to in-
clude/exclude a database as a whole from LOAD DATA FROM MASTER. A database will
also be included/excluded as a whole if there are some rules like replicate-wild-do-
table=db1.% or replicate-wild-ignore-table=db1.%, like it’s already the case for
CREATE DATABASE and DROP DATABASE in replication. (Bug #1248)

• mysqlbinlog crashed (segmentation fault) when used with the -h, --host option.
(Bug #1258)

• mysqlbinlog crashed (segmentation fault) when used on binlog containing only final
events for LOAD DATA. (Bug #1340)

• Fixed compilation problem when compiling with OpenSSL 0.9.7 with disabled old DES
support (If OPENSSL_DISABLE_OLD_DES_SUPPORT option was enabled).

• Slave no longer can delete temporary files for LOAD DATA (‘SQL_LOAD-*’) belonging to
other instances if these instances use the same temporary directory. (Bug #1357)

• If LOAD DATA INFILE failed for a small file, the master forgot to write a marker
(a Delete_file event) in its binary log, so the slave could not delete 2 files
(‘SQL_LOAD*.info’ and ‘SQL_LOAD*.data’ from its tmpdir. (Bug #1391)

896 MySQL Technical Reference for Version 4.1.1-alpha

• On Windows, the slave forgot to delete a SQL_LOAD*.info file from ‘tmpdir’ after
successfully replicating a LOAD DATA INFILE command. (Bug #1392)

• When a connection terminates, MySQL writes DROP TEMPORARY TABLE statements
to the binary log for all temporary tables which the connection had not explicitely
dropped. MySQL forgot to backquote the database and table names in the statement.
(Bug #1345)

• On some 64-bit machines (some HP-UX and Solaris machines), a slave installed with
the 64-bit MySQL binary could not connect to its master (it connected to itself instead).
(Bug #1256, #1381)

• Code introduced in MySQL 4.0.15 for the slave to detect that the master had died
while writing a transaction to its binlog, reported an error in a legal situation (when
the slave I/O thread was stopped while copying a transaction to the relay log, the slave
SQL thread would later pretend that it found an unfinished transaction). (Bug #1475)

D.3.3 Changes in release 4.0.15 (03 Sep 2003)

Functionality added or changed:
• mysqldump now correctly quotes all identifiers when communicating with the server.

This assures that during the dump process, mysqldump will never send queries to the
server that result in a syntax error. This problem is not related to the mysqldump
program’s output, which was not changed. (Bug #1148)

• Change result set metadata information so that MIN() and MAX() report that they can
return NULL (this is true because an empty set will return NULL). (Bug #324)

• Produce an error message on Windows if a second mysqld server is started on the same
TCP/IP port as an already running mysqld server.

• The mysqld server variables wait_timeout, net_read_timeout and net_write_
timeout now work on Windows.

• Added option --sql-mode=NO_DIR_IN_CREATE to make it possible for slaves to ignore
INDEX DIRECTORY and DATA DIRECTORY options given to CREATE TABLE. When this is
mode is on, SHOW CREATE TABLE will not show the given directories.

• SHOW CREATE TABLE now shows the INDEX DIRECTORY and DATA DIRECTORY options, if
they were specified when the table was created.

• The open_files_limit server variable now shows the real open files limit.
• MATCH ... AGAINST() in natural language mode now treats words that are present in

more than 2,000,000 rows as stopwords.
• The Mac OS X installation disk images now include an additional

‘MySQLStartupItem.pkg’ package that enables the automatic startup of
MySQL on system bootup. See Section 2.1.3 [Mac OS X installation], page 66.

• Most of the documentation included in the binary tarball distributions (.tar.gz) has
been moved into a subdirectory docs. See Section 2.2.5 [Installation layouts], page 77.

• The manual is now included as an additional info file in the binary distributions. (Bug
#1019)

• The binary distributions now include the embedded server library (libmysqld.a) by
default. Due to a linking problem with non-gcc compilers, it was not included in all

Appendix D: MySQL Change History 897

packages of the initial 4.0.15 release. The affected packages were rebuilt and released
as 4.0.15a. See Section 1.5.1.2 [Nutshell Embedded MySQL], page 22.

• MySQL can now use range optimisation for BETWEEN with non-constant limits. (Bug
#991)

• Replication error messages now include the default database, so that users can check
which database the failing query was run for.

• A documentation change: Added a paragraph about how the binlog-do-db and
binlog-ignore-db options are tested against the database on the master (see Sec-
tion 4.10.4 [Binary log], page 351), and a paragraph about how replicate-do-db,
replicate-do-table and analogous options are tested against the database and ta-
bles on the slave (see Section 4.11.6 [Replication Options], page 369).

• Now the slave does not replicate SET PASSWORD if it is configured to exclude the
mysql database from replication (using for example replicate-wild-ignore-
table=mysql.%). This was already the case for GRANT and REVOKE since version 4.0.13
(though there was Bug #980 in 4.0.13 & 4.0.14, which has been fixed in 4.0.15).

• Rewrote the information shown in the State column of SHOW PROCESSLIST for replica-
tion threads and for MASTER_POS_WAIT() and added the most common states for these
threads to the documentation, see Section 4.11.3 [Replication Implementation Details],
page 357.

• Added a test in replication to detect the case where the master died in the middle of
writing a transaction to the binlog; such unfinished transactions now trigger an error
message on the slave.

• A GRANT command that creates an anonymous user (that is, an account with an empty
username) no longer requires FLUSH PRIVILEGES for the account to be recognized by
the server. (Bug #473)

• CHANGE MASTER now flushes ‘relay-log.info’. Previously this was deferred to the
next run of START SLAVE, so if mysqld was shutdown on the slave after CHANGE MASTER
without having run START SLAVE, the relay log’s name and position were lost. At restart
they were reloaded from ‘relay-log.info’, thus reverting to their old (incorrect) values
from before CHANGE MASTER and leading to error messages (as the old relay log did not
exist any more) and the slave threads refusing to start. (Bug #858)

Bugs fixed:
• Fixed buffer overflow in password handling which could potentially be exploited by

MySQL users with ALTER privilege on the mysql.user table to execute random code
or to gain shell access with the UID of the mysqld process (thanks to Jedi/Sector One
for spotting and reporting this bug).

• Fixed server crash on FORCE INDEX in a query that contained "Range checked for each
record" in the EXPLAIN output. (Bug #1172)

• Fixed table/column grant handling - proper sort order (from most specific to less
specific, see Section 4.3.10 [Request access], page 228) was not honored. (Bug #928)

• Fixed rare bug in MYISAM introduced in 4.0.3 where the index file header was not
updated directly after an UPDATE of split dynamic rows. The symptom was that the
table had a corrupted delete-link if mysqld was shut down or the table was checked
directly after the update.

898 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed Can’t unlock file error when running myisamchk --sort-index on Windows.
(Bug #1119)

• Fixed possible deadlock when changing key_buffer_size while the key cache was
actively used. (Bug #1088)

• Fixed overflow bug in MyISAM and ISAM when a row is updated in a table with a large
number of columns and at least one BLOB/TEXT column.

• Fixed incorrect result when doing UNION and LIMIT #,# when one didn’t use braces
around the SELECT parts.

• Fixed incorrect result when doing UNION and ORDER BY .. LIMIT # when one didn’t use
braces around the SELECT parts.

• Fixed problem with SELECT SQL_CALC_FOUND_ROWS ... UNION ALL ... LIMIT # where
FOUND_ROWS() returned incorrect number of rows.

• Fixed unlikely stack bug when having a BIG expression of type 1+1-1+1-1... in certain
combinations. (Bug #871)

• Fixed the bug that sometimes prevented a table with a FULLTEXT index from being
marked as "analyzed".

• Fixed MySQL so that the field length (in C API) for the second column in SHOW
CREATE TABLE is always larger than the data length. The only known application that
was affected by the old behaviour was Borland dbExpress, which truncated the output
from the command. (Bug #1064)

• Fixed crash in comparisons of strings using the tis620 character set. (Bug #1116)
• Fixed ISAM bug in MAX() optimisation.
• myisamchk --sort-records=N no longer marks table as crashed if sorting failed be-

cause of an inappropriate key. (Bug #892)
• Fixed a minor bug in MyISAM compressed table handling that sometimes made it im-

possible to repair compressed table in "Repair by sort" mode. "Repair with keycache"
(myisamchk --safe-recover) worked, though. (Bug #1015)

• Fixed bug in propagating the version number to the manual included in the distribution
files. (Bug #1020)

• Fixed key sorting problem (a PRIMARY key declared for a column that is not explicitly
marked NOT NULL was sorted after a UNIQUE key for a NOT NULL column).

• Fixed the result of INTERVAL when applied to a DATE value. (Bug #792)
• Fixed compiling of the embedded server library in the RPM spec file. (Bug #959)
• Added some missing files to the RPM spec file and fixed some RPM building errors

that occured on Red Hat Linux 9. (Bug #998)
• Fixed incorrect XOR evaluation in WHERE clause. (Bug #992)
• Fixed bug with processing in query cache merged tables constructed from more then

255 tables. (Bug #930)
• Fixed incorrect results from outer join query (e.g. LEFT JOIN) when ON condition is

always false, and range search in used. (Bug #926)
• Fixed a bug causing incorrect results from MATCH ... AGAINST() in some joins. (Bug

#942)

Appendix D: MySQL Change History 899

• MERGE tables do not ignore "Using index" (from EXPLAIN output) anymore.
• Fixed a bug that prevented an empty table from being marked as "analyzed". (Bug

#937)
• Fixed myisamchk --sort-records crash when used on compressed table.
• Fixed slow (as compared to 3.23) ALTER TABLE and related commands such as CREATE

INDEX. (Bug #712)
• Fixed segmentation fault resulting from LOAD DATA FROM MASTER when the master was

running without the --log-bin option. (Bug #934)
• Fixed a security bug: A server compiled without SSL support still allowed connections

by users that had the REQUIRE SSL option specified for their accounts.
• Fixed a random bug: Sometimes the slave would replicate GRANT or REVOKE queries

even if it was configured to exclude the mysql database from replication (for example,
using replicate-wild-ignore-table=mysql.%). (Bug #980)

• The Last_errno and Last_error fields in the output of SHOW SLAVE STATUS are now
cleared by CHANGE MASTER and when the slave SQL thread starts. (Bug #986)

• A documentation mistake: It said that RESET SLAVE does not change connection infor-
mation (master host, port, user, and password), whereas it does. The statement resets
these to the startup options (master-host etc) if there were some. (Bug #985)

• SHOW SLAVE STATUS now shows correct information (master host, port, user, and pass-
word) after RESET SLAVE (that is, it shows the new values, which are copied from the
startup options if there were some). (Bug #985)

• Disabled propagation of the original master’s log position for events because this caused
unexpected values for Exec_master_log_pos and problems with MASTER_POS_WAIT()
in A->B->C replication setup. (Bug #1086)

• Fixed a segfault in mysqlbinlog when --position=x was used with x being between
a Create_file event and its fellow Append_block, Exec_load or Delete_file events.
(Bug #1091)

• mysqlbinlog printed superfluous warnings when using --database, which caused syn-
tax errors when piped to mysql. (Bug #1092)

• Made mysqlbinlog --database filter LOAD DATA INFILE too (previously, it filtered all
queries except LOAD DATA INFILE). (Bug #1093)

• mysqlbinlog in some cases forgot to put a leading ’#’ in front of the original LOAD
DATA INFILE (this command is displayed only for information, not to be run; it is later
reworked to LOAD DATA LOCAL with a different filename, for execution by mysql). (Bug
#1096)

• binlog-do-db and binlog-ignore-db incorrectly filtered LOAD DATA INFILE (it was
half-written to the binary log). This resulted in a corrupted binary log, which could
cause the slave to stop with an error. (Bug #1100)

• When, in a transaction, a transactional table (such as an InnoDB table) was updated,
and later in the same transaction a non-transactional table (such as a MyISAM table)
was updated using the updated content of the transactional table (with INSERT ...
SELECT for example), the queries were written to the binary log in an incorrect order.
(Bug #873)

900 MySQL Technical Reference for Version 4.1.1-alpha

• When, in a transaction, INSERT ... SELECT updated a non-transactional table, and
ROLLBACK was issued, no error was returned to the client. Now the client is warned
that some changes could not be rolled back, as this was already the case for normal
INSERT. (Bug #1113)

• Fixed a potential bug: When STOP SLAVE was run while the slave SQL thread was in
the middle of a transaction, and then CHANGE MASTER was used to point the slave to
some non-transactional statement, the slave SQL thread could get confused (because
it would still think, from the past, that it was in a transaction).

D.3.4 Changes in release 4.0.14 (18 Jul 2003)

Functionality added or changed:
• InnoDB now supports indexing a prefix of a column. This means, in particular, that

BLOB and TEXT columns can be indexed in InnoDB tables, which was not possible before.
• A documentation change: Function INTERVAL(NULL, ...) returns -1.
• Enabled INSERT from SELECT when the table into which the records are inserted is also

a table listed in the SELECT.
• Allow CREATE TABLE and INSERT from any UNION.
• The SQL_CALC_FOUND_ROWS option now always returns the total number of rows for

any UNION.
• Removed --table option from mysqlbinlog to avoid repeating mysqldump functional-

ity.
• Changed optimiser slightly to prefer index lookups over full table scans in some bound-

ary cases.
• Added thread-specific max_seeks_for_key variable that can be used to force the opti-

miser to use keys instead of table scans even if the cardinality of the index is low.
• Added optimisation that converts LEFT JOIN to normal join in some cases.
• A documentation change: added a paragraph about failover in replication (how to

use a surviving slave as the new master, how to resume to the original setup). See
Section 4.11.9 [Replication FAQ], page 386.

• A documentation change: added warning notes about safe use of the CHANGE MASTER
command. See Section 4.11.8.1 [CHANGE MASTER TO], page 378.

• MySQL now issues a warning (not an error, as in 4.0.13) when it opens a table that
was created with MySQL 4.1.

• Added --nice option to mysqld_safe to allow setting the niceness of the mysqld
process. (Thanks to Christian Hammers for providing the initial patch.) (Bug #627)

• Added --read-only option to cause mysqld to allow no updates except from slave
threads or from users with the SUPER privilege. (Original patch from Markus Benning).

• SHOW BINLOG EVENTS FROM x where x is less than 4 now silently converts x to 4 instead
of printing an error. The same change was done for CHANGE MASTER TO MASTER_LOG_
POS=x and CHANGE MASTER TO RELAY_LOG_POS=x.

• mysqld now only adds an interrupt handler for the SIGINT signal if you start it with the
new --gdb option. This is because some MySQL users encountered strange problems
when they accidentally sent SIGINT to mysqld threads.

Appendix D: MySQL Change History 901

• RESET SLAVE now clears the Last_errno and Last_error fields in the output of SHOW
SLAVE STATUS.

• Added max_relay_log_size variable; the relay log will be rotated automatically when
its size exceeds max_relay_log_size. But if max_relay_log_size is 0 (the default),
max_binlog_size will be used (as in older versions). max_binlog_size still applies to
binary logs in any case.

• FLUSH LOGS now rotates relay logs in addition to the other types of logs it already
rotated.

Bugs fixed:

• Comparison/sorting for latin1_de character set was rewritten. The old algorithm
could not handle cases like "sä" > "ßa". See Section 4.7.1.1 [German character set],
page 307. In rare cases it resulted in table corruption.

• Fixed a problem with the password prompt on Windows. (Bug #683)
• ALTER TABLE ... UNION=(...) for MERGE table is now allowed even if some underlying

MyISAM tables are read-only. (Bug #702)
• Fixed a problem with CREATE TABLE t1 SELECT x’41’. (Bug #801)
• Removed some incorrect lock warnings from the error log.
• Fixed memory overrun when doing REPAIR on a table with a multi-part auto increment

key where one part was a packed CHAR.
• Fixed a probable race condition in the replication code that could potentially lead to

INSERT statements not being replicated in the event of a FLUSH LOGS command or when
the binary log exceeds max_binlog_size. (Bug #791)

• Fixed a crashing bug in INTERVAL and GROUP BY or DISTINCT. (Bug #807)
• Fixed bug in mysqlhotcopy so it actually aborts for unsuccessful table copying oper-

ations. Fixed another bug so that it succeeds when there are thousands of tables to
copy. (Bug #812)

• Fixed problem with mysqlhotcopy failing to read options from option files. (Bug #808)
• Fixed bugs in optimiser that sometimes prevented MySQL from using FULLTEXT in-

dexes even though it was possible (for example, in SELECT * FROM t1 WHERE MATCH a,b
AGAINST("index") > 0).

• Fixed a bug with “table is full” in UNION operations.
• Fixed a security problem that enabled users with no privileges to obtain information

on the list of existing databases by using SHOW TABLES and similar commands.
• Fixed a stack problem on UnixWare/OpenUnix.
• Fixed a configuration problem on UnixWare/OpenUNIX and OpenServer.
• Fixed a stack overflow problem in password verification.
• Fixed a problem with max_user_connections.
• HANDLER without an index now works properly when a table has deleted rows. (Bug

#787)
• Fixed a bug with LOAD DATA in mysqlbinlog. (Bug #670)
• Fixed that SET CHARACTER SET DEFAULT works. (Bug #462)

902 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed MERGE table behaviour in ORDER BY ... DESC queries. (Bug #515)
• Fixed server crash on PURGE MASTER LOGS or SHOW MASTER LOGS when the binary log is

off. (Bug #733)
• Fixed password-checking problem on Windows. (Bug #464)
• Fixed the bug in comparison of a DATETIME column and an integer constant. (Bug

#504)
• Fixed remote mode of mysqlbinlog. (Bug #672)
• Fixed ERROR 1105: Unknown error that occurred for some SELECT queries, where a

column that was declared as NOT NULL was compared with an expression that took
NULL value.

• Changed timeout in mysql_real_connect() to use poll() instead of select() to
work around problem with many open files in the client.

• Fixed incorrect results from MATCH ... AGAINST used with a LEFT JOIN query.
• Fixed a bug that limited the maximum value for mysqld variables to 4294967295 when

they are specified on the command line.
• Fixed a bug that sometimes caused spurious “Access denied” errors in HANDLER ...

READ statements, when a table is referenced via an alias.
• Fixed portability problem with safe_malloc, which caused MySQL to give "Freeing

wrong aligned pointer" errors on SCO 3.2.
• ALTER TABLE ... ENABLE/DISABLE KEYS could cause a core dump when done after an

INSERT DELAYED statement on the same table.
• Fixed problem with conversion of localtime to GMT where some times resulted in differ-

ent (but correct) timestamps. Now MySQL should use the smallest possible timestamp
value in this case. (Bug #316)

• Very small query cache sizes could crash mysqld. (Bug #549)
• Fixed a bug (accidentally introduced by us but present only in version 4.0.13) that

made INSERT ... SELECT into an AUTO_INCREMENT column not replicate well. This
bug is in the master, not in the slave. (Bug #490)

• Fixed a bug: When an INSERT ... SELECT statement inserted rows into a
non-transactional table, but failed at some point (for example, due to a “Duplicate
key” error), the query was not written to the binlog. Now it is written to the binlog,
with its error code, as all other queries are. About the slave-skip-errors option for
how to handle partially completed queries in the slave, see Section 4.11.6 [Replication
Options], page 369. (Bug #491)

• SET FOREIGN_KEY_CHECKS=0 was not replicated properly. The fix probably will not be
backported to 3.23.

• On a slave, LOAD DATA INFILE which had no IGNORE or REPLACE clause on the master,
was replicated with IGNORE. While this is not a problem if the master and slave data
are identical (a LOAD that produces no duplicate conflicts on the master will produce
none on the slave anyway), which is true in normal operation, it is better for debugging
not to silently add the IGNORE. That way, you can get an error message on the slave and
discover that for some reason, the data on master and slave are different and investigate
why. (Bug #571)

Appendix D: MySQL Change History 903

• On a slave, LOAD DATA INFILE printed an incomplete “Duplicate entry ’%-.64s’ for key
%d”’ message (the key name and value were not mentioned) in case of duplicate conflict
(which does not happen in normal operation). (Bug #573)

• When using a slave compiled with --debug, CHANGE MASTER TO RELAY_LOG_POS could
cause a debug assertion failure. (Bug #576)

• When doing a LOCK TABLES WRITE on an InnoDB table, commit could not happen, if
the query was not written to the binary log (for example, if --log-bin was not used,
or binlog-ignore-db was used). (Bug #578)

• If a 3.23 master had open temporary tables that had been replicated to a 4.0 slave, and
the binlog got rotated, these temporary tables were immediately dropped by the slave
(which caused problems if the master used them subsequently). This bug had been fixed
in 4.0.13, but in a manner which caused an unlikely inconvenience: if the 3.23 master
died brutally (power failure), without having enough time to automatically write DROP
TABLE statements to its binlog, then the 4.0.13 slave would not notice the temporary
tables have to be dropped, until the slave mysqld server is restarted. This minor
inconvenience is fixed in 3.23.57 and 4.0.14 (meaning the master must be upgraded to
3.23.57 and the slave to 4.0.14 to remove the inconvenience). (Bug #254)

• If MASTER_POS_WAIT() was waiting, and the slave was idle, and the slave SQL thread
terminated, MASTER_POS_WAIT() would wait forever. Now when the slave SQL thread
terminates, MASTER_POS_WAIT() immediately returns NULL (“slave stopped”). (Bug
#651)

• After RESET SLAVE; START SLAVE;, the Relay_log_space value displayed by SHOW
SLAVE STATUS was too big by four bytes. (Bug #763)

• If a query was ignored on the slave (because of replicate-ignore-table and other
similar rules), the slave still checked if the query got the same error code (0, no error)
as on the master. So if the master had an error on the query (for example, “Duplicate
entry” in a multiple-row insert), then the slave stopped and warned that the error codes
didn’t match. (Bug #797)

D.3.5 Changes in release 4.0.13 (16 May 2003)

Functionality added or changed:
• PRIMARY KEY now implies NOT NULL. (Bug #390)
• The Windows binary packages are now compiled with --enable-local-infile to

match the Unix build configuration.
• Removed timing of tests from mysql-test-run. time does not accept all required

parameters on many platforms (for example, QNX) and timing the tests is not really
required (it’s not a benchmark anyway).

• SHOW MASTER STATUS and SHOW SLAVE STATUS required the SUPER privilege; now they
accept REPLICATION CLIENT as well. (Bug #343)

• Added multi-threaded MyISAM repair optimisation and myisam_repair_threads vari-
able to enable it. See Section 4.6.8.4 [myisam_repair_threads], page 290.

• Added innodb_max_dirty_pages_pct variable which controls amount of dirty pages
allowed in InnoDB buffer pool.

904 MySQL Technical Reference for Version 4.1.1-alpha

• CURRENT_USER() and Access denied error messages now report the hostname exactly
as it was specified in the GRANT command.

• Removed benchmark results from the source and binary distributions. They are still
available in the BK source tree, though.

• InnoDB tables now support ANALYZE TABLE.
• MySQL now issues an error when it opens a table that was created with MySQL 4.1.
• Option --new now changes binary items (0xFFDF) to be treated as binary strings in-

stead of numbers by default. This fixes some problems with character sets where it’s
convenient to input the string as a binary item. After this change you have to convert
the binary string to INTEGER with a CAST if you want to compare two binary items
with each other and know which one is bigger than the other. SELECT CAST(0xfeff AS
UNSIGNED) < CAST(0xff AS UNSIGNED). This will be the default behaviour in MySQL
4.1. (Bug #152)

• Enabled delayed_insert_timeout on Linux (most modern glibc libraries have a fixed
pthread_cond_timedwait). (Bug #211)

• Don’t create more insert delayed threads than given by max_insert_delayed_threads.
(Bug #211)

• Changed UPDATE ... LIMIT to also count accepted, but not changed rows.
• Tuned optimiser to favour clustered index over table scan.
• BIT_AND() and BIT_OR() now return an unsigned 64 bit value.
• Added warnings to error log of why a secure connection failed (when running with

--log-warnings).
• Deprecated options --skip-symlink and --use-symbolic-links and replaced these

with --symbolic-links.
• The default option for innodb_flush_log_at_trx_commit was changed from 0 to 1 to

make InnoDB tables ACID by default. See Section 7.5.3 [InnoDB start], page 606.
• Added a feature to SHOW KEYS to display keys that are disabled by ALTER TABLE

DISABLE KEYS command.
• When using a non-existing table type with CREATE TABLE, first try if the default table

type exists before falling back to MyISAM.
• Added MEMORY as an alias for HEAP.
• Renamed function rnd to my_rnd as the name was too generic and is an exported

symbol in libmysqlclient (thanks to Dennis Haney for the initial patch).
• Portability fix: renamed ‘include/dbug.h’ to ‘include/my_debug.h’.
• mysqldump no longer silently deletes the binlogs when called with --master-data or

--first-slave; while this behaviour was convenient for some users, others may suffer
from it. Now one has to explicitely ask for this deletion with the new --delete-
master-logs option.

• If the slave is configured (using for example replicate-wild-ignore-
table=mysql.%) to exclude mysql.user, mysql.host, mysql.db, mysql.tables_priv
and mysql.columns_priv from replication, then GRANT and REVOKE will not be
replicated.

Appendix D: MySQL Change History 905

Bugs fixed:

• Logged Access denied error message had wrong Using password value. (Bug #398)
• Fixed bug with NATURAL LEFT JOIN, NATURAL RIGHT JOIN and RIGHT JOIN when using

many joined tables. The problem was that the JOIN method was not always associated
with the tables surrounding the JOIN method. If you have a query that uses many
RIGHT JOIN or NATURAL ... JOINS you should check that they work as you expected
after upgrading MySQL to this version. (Bug #291)

• mysql command line client no longer looks for * commands inside backtick-quoted
strings.

• Fixed Unknown error when using UPDATE ... LIMIT. (Bug #373)
• Fixed problem with ANSI mode and GROUP BY with constants. (Bug #387)
• Fixed bug with UNION and OUTER JOIN. (Bug #386)
• Fixed bug if one used a multi-table UPDATE and the query required a temporary table

bigger than tmp_table_size. (Bug #286)
• Run mysql_install_db with the -IN-RPM option for the Mac OS X installation to not

fail on systems with improperly configured hostname configurations.
• LOAD DATA INFILE will now read 000000 as a zero date instead as "2000-00-00".
• Fixed bug that caused DELETE FROM table WHERE const_expression always to delete

the whole table (even if expression result was false). (Bug #355)
• Fixed core dump bug when using FORMAT(’nan’,#). (Bug #284)
• Fixed name resolution bug with HAVING ... COUNT(DISTINCT ...).
• Fixed wrong result from truncation operator (*) in MATCH ... AGAINST() in some com-

plex joins.
• Fixed a crash in REPAIR ... USE_FRM command, when used on read-only, nonexisting

table or a table with a crashed index file.
• Fixed a crashing bug in mysql monitor program. It occurred if program was started

with --no-defaults, with a prompt that contained hostname and connection to non-
existing db was requested

• Fixed problem when comparing a key for a multi-byte-character set. (Bug #152)
• Fixed bug in LEFT, RIGHT and MID when used with multi-byte character sets and some

GROUP BY queries. (Bug #314)
• Fix problem with ORDER BY being discarded for some DISTINCT queries. (Bug #275)
• Fixed that SET SQL_BIG_SELECTS=1 works as documented (This corrects a new bug

introduced in 4.0)
• Fixed some serious bugs in UPDATE ... ORDER BY. (Bug #241)
• Fixed unlikely problem in optimising WHERE clause with constant expression like in

WHERE 1 AND (a=1 AND b=1).
• Fixed that SET SQL_BIG_SELECTS=1 works again.
• Introduced proper backtick quoting for db.table in SHOW GRANTS.
• FULLTEXT index stopped working after ALTER TABLE that converts TEXT field to CHAR.

(Bug #283)

906 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a security problem with SELECT and wildcarded select list, when user only had
partial column SELECT privileges on the table.

• Mark a MyISAM table as "analyzed" only when all the keys are indeed analyzed.
• Only ignore world-writeable ‘my.cnf’ files that are regular files (and not, for example,

named pipes or character devices).
• Fixed few smaller issues with SET PASSWORD.
• Fixed error message which contained deprecated text.
• Fixed a bug with two NATURAL JOINs in the query.
• SUM() didn’t return NULL when there was no rows in result or when all values was NULL.
• On Unix symbolic links handling was not enabled by default and there was no way to

turn this on.
• Added missing dashes to parameter --open-files-limit in mysqld_safe. (Bug

#264)
• Fixed wrong hostname for TCP/IP connections displayed in SHOW PROCESSLIST.
• Fixed a bug with NAN in FORMAT(...) function ...
• Fixed a bug with improperly cached database privileges.
• Fixed a bug in ALTER TABLE ENABLE / DISABLE KEYS which failed to force a refresh of

table data in the cache.
• Fixed bugs in replication of LOAD DATA INFILE for custom parameters (ENCLOSED,

TERMINATED and so on) and temporary tables. (Bug #183, Bug #222)
• Fixed a replication bug when the master is 3.23 and the slave 4.0: the slave lost the

replicated temporary tables if FLUSH LOGS was issued on the master. (Bug #254)
• Fixed a bug when doing LOAD DATA INFILE IGNORE: When reading the binary log,

mysqlbinlog and the replication code read REPLACE instead of IGNORE. This could
make the slave’s table become different from the master’s table. (Bug #218)

• Fixed a deadlock when relay_log_space_limit was set to a too small value. (Bug
#79)

• Fixed a bug in HAVING clause when an alias is used from the select list.
• Fixed overflow bug in MyISAM when a row is inserted into a table with a large number of

columns and at least one BLOB/TEXT column. Bug was caused by incorrect calculation
of the needed buffer to pack data.

• Fixed a bug when SELECT @nonexistent variable caused the error in client - server
protocol due to net printf() being sent to the client twice.

• Fixed a bug in setting SQL_BIG_SELECTS option.
• Fixed a bug in SHOW PROCESSLIST which only displayed a localhost in the "Host"

column. This was caused by a glitch that only used current thread information instead
of information from the linked list of threads.

• Removed unnecessary Mac OS X helper files from server RPM. (Bug #144)
• Allow optimisation of multiple-table update for InnoDB tables as well.
• Fixed a bug in multiple-table updates that caused some rows to be updated several

times.

Appendix D: MySQL Change History 907

• Fixed a bug in mysqldump when it was called with --master-data: the CHANGE MASTER
TO commands appended to the SQL dump had wrong coordinates. (Bug #159)

• Fixed a bug when an updating query using USER() was replicated on the slave; this
caused segfault on the slave. (Bug #178). USER() is still badly replicated on the slave
(it is replicated to "").

D.3.6 Changes in release 4.0.12 (15 Mar 2003: Production)

Functionality added or changed:
• mysqld no longer reads options from world-writeable config files.
• Integer values between 9223372036854775807 and 9999999999999999999 are now re-

garded as unsigned longlongs, not as floats. This makes these values work similar to
values between 10000000000000000000 and 18446744073709551615.

• SHOW PROCESSLIST will now include the client TCP port after the hostname to make
it easier to know from which client the request originated.

Bugs fixed:
• Fixed mysqld crash on extremely small values of sort_buffer variable.
• INSERT INTO u SELECT ... FROM t was written too late to the binary log if t was very

frequently updated during the execution of this query. This could cause a problem
with mysqlbinlog or replication. The master must be upgraded, not the slave. (Bug
#136)

• Fixed checking of random part of WHERE clause. (Bug #142)
• Fixed a bug with multiple-table updates with InnoDB tables. This bug occurred as, in

many cases, InnoDB tables can not be updated “on the fly,” but offsets to the records
have to be stored in a temporary table.

• Added missing file mysql_secure_installation to the server RPM subpackage.
(Bug #141)

• Fixed MySQL (and myisamchk) crash on artificially corrupted .MYI files.
• Don’t allow BACKUP TABLE to overwrite existing files.
• Fixed a bug with multi-table UPDATE statements when user had all privileges on the

database where tables are located and there were any entries in tables_priv table,
that is, grant_option was true.

• Fixed a bug that allowed a user with table or column grants on some table, TRUNCATE
any table in the same database.

• Fixed deadlock when doing LOCK TABLE followed by DROP TABLE in the same thread. In
this case one could still kill the thread with KILL.

• LOAD DATA LOCAL INFILE was not properly written to the binary log (hence not properly
replicated). (Bug #82)

• RAND() entries were not read correctly by mysqlbinlog from the binary log which
caused problems when restoring a table that was inserted with RAND(). INSERT INTO
t1 VALUES(RAND()). In replication this worked ok.

• SET SQL_LOG_BIN=0 was ignored for INSERT DELAYED queries. (Bug #104)

908 MySQL Technical Reference for Version 4.1.1-alpha

• SHOW SLAVE STATUS reported too old positions (columns Relay_Master_Log_File and
Exec_master_log_pos) for the last executed statement from the master, if this state-
ment was the COMMIT of a transaction. The master must be upgraded for that, not the
slave. (Bug #52)

• LOAD DATA INFILE was not replicated by the slave if replicate_*_table was set on
the slave. (Bug #86)

• After RESET SLAVE, the coordinates displayed by SHOW SLAVE STATUS looked un-reset
(though they were, but only internally). (Bug #70)

• Fixed query cache invalidation on LOAD DATA.

• Fixed memory leak on ANALYZE procedure with error.

• Fixed a bug in handling CHAR(0) columns that could cause wrong results from the
query.

• Fixed rare bug with wrong initialisation of AUTO_INCREMENT column, as a secondary
column in a multi-column key (see Section 3.6.9 [AUTO_INCREMENT on secondary column
in a multi-column key], page 189), when data was inserted with INSERT ... SELECT or
LOAD DATA into an empty table.

• On Windows, STOP SLAVE didn’t stop the slave until the slave got one new command
from the master (this bug has been fixed for MySQL 4.0.11 by releasing updated 4.0.11a
Windows packages, which include this individual fix on top of the 4.0.11 sources). (Bug
#69)

• Fixed a crash when no database was selected and LOAD DATA command was issued with
full table name specified, including database prefix.

• Fixed a crash when shutting down replication on some platforms (for example, Mac
OS X).

• Fixed a portability bug with pthread_attr_getstacksize on HP-UX 10.20 (Patch
was also included in 4.0.11a sources).

• Fixed the bigint test to not fail on some platforms (for example, HP-UX and Tru64)
due to different return values of the atof() function.

• Fixed the rpl_rotate_logs test to not fail on certain platforms (e.g. Mac OS X) due
to a too long file name (changed slave-master-info.opt to .slave-mi).

D.3.7 Changes in release 4.0.11 (20 Feb 2003)

Functionality added or changed:

• NULL is now sorted LAST if you use ORDER BY ... DESC (as it was before MySQL 4.0.2).
This change was required to comply with the SQL-99 standard. (The original change
was made because we thought that SQL-99 required NULL to be always sorted at the
same position, but this was incorrect).

• Added START TRANSACTION (SQL-99 syntax) as alias for BEGIN. This is recommended
to use instead of BEGIN to start a transaction.

• Added OLD_PASSWORD() as a synonym for PASSWORD().

• Allow keyword ALL in group functions.

Appendix D: MySQL Change History 909

• Added support for some new INNER JOIN and JOIN syntaxes. For example, SELECT *
FROM t1 INNER JOIN t2 didn’t work before.

• Novell NetWare 6.0 porting effort completed, Novell patches merged into the main
source tree.

Bugs fixed:

• Fixed problem with multiple-table delete and InnoDB tables.

• Fixed a problem with BLOB NOT NULL columns used with IS NULL.

• Re-added missing pre- and post(un)install scripts to the Linux RPM packages (they
were missing after the renaming of the server subpackage).

• Fixed that table locks are not released with multi-table updates and deletes with InnoDB
storage engine.

• Fixed bug in updating BLOB columns with long strings.

• Fixed integer-wraparound when giving big integer (>= 10 digits) to function that re-
quires an unsigned argument, like CREATE TABLE (...) AUTO_INCREMENT=#.

• MIN(key_column) could in some cases return NULL on a column with NULL and other
values.

• MIN(key_column) and MAX(key_column) could in some cases return wrong values when
used in OUTER JOIN.

• MIN(key_column) and MAX(key_column) could return wrong values if one of the tables
was empty.

• Fixed rare crash in compressed MyISAM tables with blobs.

• Fixed bug in using aggregate functions as argument for INTERVAL, CASE, FIELD,
CONCAT_WS, ELT and MAKE_SET functions.

• When running with --lower-case-table-names (default on Windows) and you had
tables or databases with mixed case on disk, then executing SHOW TABLE STATUS fol-
lowed with DROP DATABASE or DROP TABLE could fail with Errcode 13.

D.3.8 Changes in release 4.0.10 (29 Jan 2003)

Functionality added or changed:

• Added option --log-error[=file_name] to mysqld_safe and mysqld. This option
will force all error messages to be put in a log file if the option --console is not given.
On Windows --log-error is enabled as default, with a default name of host_name.err
if the name is not specified.

• Changed some things from Warning: to Note: in the log files.

• The mysqld server should now compile on NetWare.

• Added optimisation that if one does GROUP BY ... ORDER BY NULL then result is not
sorted.

• New --ft-stopword-file command-line option for mysqld to replace/disable
the built-in stopword list that is used in full-text searches. See Section 4.6.8.4
[ft_stopword_file], page 290.

910 MySQL Technical Reference for Version 4.1.1-alpha

• Changed default stack size from 64K to 192K; This fixes a core dump problem on Red
Hat 8.0 and other systems with a glibc that requires a stack size larger than 128K for
gethostbyaddr() to resolve a hostname. You can fix this for earlier MySQL versions
by starting mysqld with --thread-stack=192K.

• Added mysql_waitpid to the binary distribution and the MySQL-client RPM sub-
package (required for mysql-test-run).

• Renamed the main MySQL RPM package to MySQL-server. When updating from an
older version, MySQL-server.rpm will simply replace MySQL.rpm.

• If a slave is configured with replicate_wild_do_table=db.% or replicate_wild_
ignore_table=db.%, these rules will be applied to CREATE/DROP DATABASE, too.

• Added timeout value for MASTER_POS_WAIT().

Bugs fixed:
• Fixed initialisation of the random seed for newly created threads to give a better rand()

distribution from the first call.
• Fixed a bug that caused mysqld to hang when a table was opened with the HANDLER

command and then dropped without being closed.
• Fixed bug in logging to binary log (which affects replication) a query that inserts a

NULL in an auto_increment field and also uses LAST_INSERT_ID().
• Fixed an unlikely bug that could cause a memory overrun when using ORDER BY

constant_expression.
• Fixed a table corruption in myisamchk’s parallel repair mode.
• Fixed bug in query cache invalidation on simple table renaming.
• Fixed bug in mysqladmin --relative.
• On some 64 bit systems, show status reported a strange number for Open_files and

Open_streams.
• Fixed wrong number of columns in EXPLAIN on empty table.
• Fixed bug in LEFT JOIN that caused zero rows to be returned in the case the WHERE

condition was evaluated as FALSE after reading const tables. (Unlikely condition).
• FLUSH PRIVILEGES didn’t correctly flush table/column privileges when mysql.tables_

priv is empty.
• Fixed bug in replication when using LOAD DATA INFILE one a file that updated and

auto increment field with NULL or 0. This bug only affected MySQL 4.0 masters (not
slaves or MySQL 3.23 masters). NOTE: If you have a slave that has replicated a file
with generated auto increment fields then the slave data is corrupted and you should
reinitialise the affected tables from the master.

• Fixed possible memory overrun when sending a blob > 16M to the client.
• Fixed wrong error message when setting a NOT NULL field to an expression that returned

NULL.
• Fixed core dump bug in str LIKE "%other_str%" where str or other_str contained

characters >= 128.
• Fixed bug: When executing on master LOAD DATA and InnoDB failed with table full

error the binary log was corrupted.

Appendix D: MySQL Change History 911

D.3.9 Changes in release 4.0.9 (09 Jan 2003)

Functionality added or changed:
• OPTIMIZE TABLE will for MyISAM tables treat all NULL values as different when calcu-

lating cardinality. This helps in optimising joins between tables where one of the tables
has a lot of NULL values in a indexed column:

SELECT * from t1,t2 where t1.a=t2.key_with_a_lot_of_null;

• Added join operator FORCE INDEX (key_list). This acts likes USE INDEX (key_list)
but with the addition that a table scan is assumed to be VERY expensive. One bad
thing with this is that it makes FORCE a reserved word.

• Reset internal row buffer in MyISAM after each query. This will reduce memory in the
case you have a lot of big blobs in a table.

Bugs fixed:
• A security patch in 4.0.8 causes the mysqld server to die if the remote hostname can’t

be resolved. This is now fixed.
• Fixed crash when replication big LOAD DATA INFILE statement that caused log rotation.

D.3.10 Changes in release 4.0.8 (07 Jan 2003)

Functionality added or changed:
• Default max_packet_length for libmysqld.c is now 1024*1024*1024.
• One can now specify max_allowed_packet in a file ready by mysql_options(MYSQL_

READ_DEFAULT_FILE). for clients.
• When sending a too big packet to the server with the not compressed protocol, the

client now gets an error message instead of a lost connection.
• We now send big queries/result rows in bigger hunks, which should give a small speed

improvement.
• Fixed some bugs with the compressed protocol for rows > 16M.
• InnoDB tables now also support ON UPDATE CASCADE in FOREIGN KEY constraints. See

the InnoDB section in the manual for the InnoDB changelog.

Bugs fixed:
• Fixed bug in ALTER TABLE with BDB tables.
• Fixed core dump bug in QUOTE() function.
• Fixed a bug in handling communication packets bigger than 16M. Unfortunately this

required a protocol change; If you upgrade the server to 4.0.8 and above and have
clients that uses packets >= 255*255*255 bytes (=16581375) you must also upgrade
your clients to at least 4.0.8. If you don’t upgrade, the clients will hang when sending
a big packet.

• Fixed bug when sending blobs longer than 16M to client.
• Fixed bug in GROUP BY when used on BLOB column with NULL values.
• Fixed a bug in handling NULL values in CASE ... WHEN ...

912 MySQL Technical Reference for Version 4.1.1-alpha

D.3.11 Changes in release 4.0.7 (20 Dec 2002)

Functionality added or changed:

• mysqlbug now also reports the compiler version used for building the binaries (if the
compiler supports the option --version).

Bugs fixed:

• Fixed compilation problems on OpenUnix and HPUX 10.20.
• Fixed some optimisation problems when compiling MySQL with -DBIG_TABLES on a

32 bit system.
• mysql_drop_db() didn’t check permissions properly so anyone could drop another users

database. DROP DATABASE is checked properly.

D.3.12 Changes in release 4.0.6 (14 Dec 2002: Gamma)

Functionality added or changed:

• Added syntax support for CHARACTER SET xxx and CHARSET=xxx table options (to be
able to read table dumps from 4.1).

• Fixed replication bug that caused the slave to loose its position in some cases when the
replication log was rotated.

• Fixed that a slave will restart from the start of a transaction if it’s killed in the middle
of one.

• Moved the manual pages from ‘man’ to ‘man/man1’ in the binary distributions.
• The default type returned by IFNULL(A,B) is now set to be the more ’general’ of the

types of A and B. (The order is STRING, REAL or INTEGER).
• Moved the mysql.server startup script in the RPM packages from

‘/etc/rc.d/init.d/mysql’ to ‘/etc/init.d/mysql’ (which almost all cur-
rent Linux distributions support for LSB compliance).

• Added Qcache_lowmem_prunes status variable (number of queries that were deleted
from cache because of low memory).

• Fixed mysqlcheck so it can deal with table names containing dashes.
• Bulk insert optimisation (see Section 4.6.8.4 [bulk_insert_buffer_size], page 290)

is no longer used when inserting small (less than 100) number of rows.
• Optimisation added for queries like SELECT ... FROM merge_table WHERE indexed_

column=constant_expr.
• Added functions LOCALTIME and LOCALTIMESTAMP as synonyms for NOW().
• CEIL is now an alias for CEILING.
• The CURRENT_USER() function can be used to get a user@host value as it was matched

in the GRANT system. See Section 6.3.6.2 [CURRENT_USER()], page 515.
• Fixed CHECK constraints to be compatible with SQL-99. This made CHECK a reserved

word. (Checking of CHECK constraints is still not implemented).
• Added CAST(... as CHAR).

Appendix D: MySQL Change History 913

• Added PostgreSQL compatible LIMIT syntax: SELECT ... LIMIT row_count OFFSET
offset

• mysql_change_user() will now reset the connection to the state of a fresh connect
(Ie, ROLLBACK any active transaction, close all temporary tables, reset all user variables
etc..)

• CHANGE MASTER and RESET SLAVE now require that slave threads be both already
stopped; these commands will return an error if at least one of these two threads is
running.

Bugs fixed:
• Fixed number of found rows returned in multi table updates

• Make --lower-case-table-names default on Mac OS X as the default file system
(HFS+) is case insensitive. See Section 6.1.3 [Name case sensitivity], page 445.

• Transactions in AUTOCOMMIT=0 mode didn’t rotate binary log.
• A fix for the bug in a SELECT with joined tables with ORDER BY and LIMIT clause when

filesort had to be used. In that case LIMIT was applied to filesort of one of the tables,
although it could not be. This fix also solved problems with LEFT JOIN.

• mysql_server_init() now makes a copy of all arguments. This fixes a problem when
using the embedded server in C# program.

• Fixed buffer overrun in libmysqlclient library that allowed a malicious MySQL server
to crash the client application.

• Fixed security-related bug in mysql_change_user() handling. All users are strongly
recommended to upgrade to version 4.0.6.

• Fixed bug that prevented --chroot command-line option of mysqld from working.
• Fixed bug in phrase operator "..." in boolean full-text search.
• Fixed bug that caused OPTIMIZE TABLE to corrupt the table under some rare circum-

stances.
• Part rewrite of multi-table-update to optimise it, make it safer and more bug free.
• LOCK TABLES now works together with multi-table-update and multi-table-delete.
• --replicate-do=xxx didn’t work for UPDATE commands. (Bug introduced in 4.0.0)
• Fixed shutdown problem on Mac OS X.
• Major InnoDB bugs in REPLACE, AUTO_INCREMENT, INSERT INTO ... SELECT ... were

fixed. See the InnoDB changelog in the InnoDB section of the manual.
• RESET SLAVE caused a crash if the slave threads were running.

D.3.13 Changes in release 4.0.5 (13 Nov 2002)

Functionality added or changed:
• Port number was added to host name (if it is known) in SHOW PROCESSLIST command
• Changed handling of last argument in WEEK() so that one can get week number ac-

cording to the ISO 8601 specification. (Old code should still work).
• Fixed that INSERT DELAYED threads doesn’t hang on Waiting for INSERT when one

sends a SIGHUP to mysqld.

914 MySQL Technical Reference for Version 4.1.1-alpha

• Change that AND works according to SQL-99 when it comes to NULL handling. In
practice, this only affects queries where you do something like WHERE ... NOT (NULL
AND 0).

• mysqld will now resolve basedir to its full path (with realpath()). This enables one
to use relative symlinks to the MySQL installation directory. This will however cause
show variables to report different directories on systems where there is a symbolic
link in the path.

• Fixed that MySQL will not use index scan on index disabled with IGNORE INDEX or
USE INDEX. to be ignored.

• Added --use-frm option to mysqlcheck. When used with REPAIR, it gets the table
structure from the .frm file, so the table can be repaired even if the .MYI header is
corrupted.

• Fixed bug in MAX() optimisation when used with JOIN and ON expressions.
• Added support for reading of MySQL 4.1 table definition files.
• BETWEEN behaviour changed (see Section 6.3.1.2 [Comparison Operators], page 475).

Now datetime_col BETWEEN timestamp AND timestamp should work as expected.
• One can create TEMPORARY MERGE tables now.
• DELETE FROM myisam_table now shrinks not only the ‘.MYD’ file but also the ‘.MYI’

file.
• When one uses the --open-files-limit=# option to mysqld_safe it’s now passed on

to mysqld.
• Changed output from EXPLAIN from ’where used’ to ’Using where’ to make it more

in line with other output.
• Removed variable safe_show_database as it was no longer used.
• Updated source tree to be built using automake 1.5 and libtool 1.4.
• Fixed an inadvertently changed option (--ignore-space) back to the original --

ignore-spaces in mysqlclient. (Both syntaxes will work).
• Don’t require UPDATE privilege when using REPLACE.
• Added support for DROP TEMPORARY TABLE ..., to be used to make replication safer.
• When transactions are enabled, all commands that update temporary tables inside a

BEGIN/COMMIT are now stored in the binary log on COMMIT and not stored if one does
ROLLBACK. This fixes some problems with non-transactional temporary tables used
inside transactions.

• Allow braces in joins in all positions. Formerly, things like SELECT * FROM (t2 LEFT
JOIN t3 USING (a)), t1 worked, but not SELECT * FROM t1, (t2 LEFT JOIN t3 USING
(a)). Note that braces are simply removed, they do not change the way the join is
executed.

• InnoDB now supports also isolation levels READ UNCOMMITTED and READ COMMITTED. For
a detailed InnoDB changelog, see Section 7.5.16 [InnoDB change history], page 637 in
this manual.

Bugs fixed:
• Fixed bug in MAX() optimisation when used with JOIN and ON expressions.

Appendix D: MySQL Change History 915

• Fixed that INSERT DELAY threads don’t hang on Waiting for INSERT when one sends
a SIGHUP to mysqld.

• Fixed that MySQL will not use an index scan on an index that has been disabled with
IGNORE INDEX or USE INDEX.

• Corrected test for root user in mysqld_safe.
• Fixed error message issued when storage engine cannot do CHECK or REPAIR.
• Fixed rare core dump problem in complicated GROUP BY queries that didn’t return any

result.
• Fixed mysqlshow to work properly with wildcarded database names and with database

names that contain underscores.
• Portability fixes to get MySQL to compile cleanly with Sun Forte 5.0.
• Fixed MyISAM crash when using dynamic-row tables with huge numbers of packed fields.
• Fixed query cache behaviour with BDB transactions.
• Fixed possible floating point exception in MATCH relevance calculations.
• Fixed bug in full-text search IN BOOLEAN MODE that made MATCH to return incorrect

relevance value in some complex joins.
• Fixed a bug that limited MyISAM key length to a value slightly less that 500. It is

exactly 500 now.
• Fixed that GROUP BY on columns that may have a NULL value doesn’t always use disk

based temporary tables.
• The filename argument for the --des-key-file argument to mysqld is interpreted

relative to the data directory if given as a relative pathname.
• Removed a condition that temp table with index on column that can be NULL has to

be MyISAM. This was okay for 3.23, but not needed in 4.*. This resulted in slowdown
in many queries since 4.0.2.

• Small code improvement in multi-table updates.
• Fixed a newly introduced bug that caused ORDER BY ... LIMIT row_count to not re-

turn all rows.
• Fixed a bug in multi-table deletes when outer join is used on an empty table, which

gets first to be deleted.
• Fixed a bug in multi-table updates when a single table is updated.
• Fixed bug that caused REPAIR TABLE and myisamchk to corrupt FULLTEXT indexes.
• Fixed bug with caching the mysql grant table database. Now queries in this database

are not cached in the query cache.
• Small fix in mysqld_safe for some shells.
• Give error if a MyISAM MERGE table has more than 2 ^ 32 rows and MySQL was not

compiled with -DBIG_TABLES.
• Fixed some ORDER BY ... DESC problems with InnoDB tables.

D.3.14 Changes in release 4.0.4 (29 Sep 2002)

• Fixed bug where GRANT/REVOKE failed if hostname was given in non-matching case.

916 MySQL Technical Reference for Version 4.1.1-alpha

• Don’t give warning in LOAD DATA INFILE when setting a timestamp to a string value
of ’0’.

• Fixed bug in myisamchk -R mode.
• Fixed bug that caused mysqld to crash on REVOKE.
• Fixed bug in ORDER BY when there is a constant in the SELECT statement.
• One didn’t get an error message if mysqld couldn’t open the privilege tables.
• SET PASSWORD FOR ... closed the connection in case of errors (bug from 4.0.3).
• Increased max possible max_allowed_packet in mysqld to 1 GB.
• Fixed bug when doing a multi-line INSERT on a table with an AUTO_INCREMENT key

which was not in the first part of the key.
• Changed LOAD DATA INFILE to not recreate index if the table had rows from before.
• Fixed overrun bug when calling AES_DECRYPT() with incorrect arguments.
• --skip-ssl can now be used to disable SSL in the MySQL clients, even if one is using

other SSL options in an option file or previously on the command line.
• Fixed bug in MATCH ... AGAINST(... IN BOOLEAN MODE) used with ORDER BY.
• Added LOCK TABLES and CREATE TEMPORARY TABLES privilege on the database level.

One must run the mysql_fix_privilege_tables script on old installations to activate
these.

• In SHOW TABLE ... STATUS, compressed tables sometimes showed up as dynamic.
• SELECT @@[global|session].var_name didn’t report global | session in the result

column name.
• Fixed problem in replication that FLUSH LOGS in a circular replication setup created an

infinite number of binary log files. Now a rotate-binary-log command in the binary
log will not cause slaves to rotate logs.

• Removed STOP EVENT from binary log when doing FLUSH LOGS.
• Disable the use of SHOW NEW MASTER FOR SLAVE as this needs to be completely reworked

in a future release.
• Fixed a bug with constant expression (for example, field of a one-row table, or field from

a table, referenced by a UNIQUE key) appeared in ORDER BY part of SELECT DISTINCT.
• --log-binary=a.b.c now properly strips off .b.c.
• FLUSH LOGS removed numerical extension for all future update logs.
• GRANT ... REQUIRE didn’t store the SSL information in the mysql.user table if SSL

was not enabled in the server.
• GRANT ... REQUIRE NONE can now be used to remove SSL information.
• AND is now optional between REQUIRE options.
• REQUIRE option was not properly saved, which could cause strange output in SHOW

GRANTS.
• Fixed that mysqld --help reports correct values for --datadir and --bind-address.
• Fixed that one can drop UDFs that didn’t exist when mysqld was started.
• Fixed core dump problem with SHOW VARIABLES on some 64 bit systems (like Solaris

sparc).

Appendix D: MySQL Change History 917

• Fixed a bug in my_getopt(); --set-variable syntax didn’t work for those options
that didn’t have a valid variable in the my_option struct. This affected at least the
default-table-type option.

• Fixed a bug from 4.0.2 that caused REPAIR TABLE and myisamchk --recover to fail on
tables with duplicates in a unique key.

• Fixed a bug from 4.0.3 in calculating the default datatype for some functions. This
affected queries of type CREATE TABLE table_name SELECT expression(),...

• Fixed bug in queries of type SELECT * FROM table-list GROUP BY ... and SELECT
DISTINCT * FROM

• Fixed bug with the --slow-log when logging an administrator command (like FLUSH
TABLES).

• Fixed a bug that OPTIMIZE of locked and modified table, reported table corruption.
• Fixed a bug in my_getopt() in handling of special prefixes (--skip-, --enable-).

--skip-external-locking didn’t work and the bug may have affected other similar
options.

• Fixed bug in checking for output file name of the tee option.
• Added some more optimisation to use index for SELECT ... FROM many_tables ..

ORDER BY key limit #

• Fixed problem in SHOW OPEN TABLES when a user didn’t have access permissions to one
of the opened tables.

D.3.15 Changes in release 4.0.3 (26 Aug 2002: Beta)

• Fixed problem with types of user variables. (Bug #551)
• Fixed problem with configure ... --localstatedir=....
• Cleaned up mysql.server script.
• Fixed a bug in mysqladmin shutdown when pid file was modified while mysqladmin

was still waiting for the previous one to disappear. This could happen during a very
quick restart and caused mysqladmin to hang until shutdown_timeout seconds had
passed.

• Don’t increment warnings when setting AUTO_INCREMENT columns to NULL in LOAD DATA
INFILE.

• Fixed all boolean type variables/options to work with the old syntax, for example, all of
these work: --lower-case-table-names, --lower-case-table-names=1, -O lower-
case-table-names=1, --set-variable=lower-case-table-names=1

• Fixed shutdown problem (SIGTERM signal handling) on Solaris. (Bug from 4.0.2).
• SHOW MASTER STATUS now returns an empty set if binary log is not enabled.
• SHOW SLAVE STATUS now returns an empty set if slave is not initialised.
• Don’t update MyISAM index file on update if not strictly necessary.
• Fixed bug in SELECT DISTINCT ... FROM many_tables ORDER BY not-used-column.
• Fixed a bug with BIGINT values and quoted strings.
• Added QUOTE() function that performs SQL quoting to produce values that can be

used as data values in queries.

918 MySQL Technical Reference for Version 4.1.1-alpha

• Changed variable DELAY_KEY_WRITE to an enum to allow one set DELAY_KEY_WRITE for
all tables without taking down the server.

• Changed behaviour of IF(condition,column,NULL) so that it returns the value of the
column type.

• Made safe_mysqld a symlink to mysqld_safe in binary distribution.
• Fixed security bug when having an empty database name in the user.db table.
• Fixed some problems with CREATE TABLE ... SELECT function().
• mysqld now has the option --temp-pool enabled by default as this gives better per-

formance with some operating systems.
• Fixed problem with too many allocated alarms on slave when connecting to master

many times (normally not a very critical error).
• Fixed hang in CHANGE MASTER TO if the slave thread died very quickly.
• Big cleanup in replication code (less logging, better error messages, etc..)
• If the --code-file option is specified, the server calls setrlimit() to set the maxi-

mum allowed core file size to unlimited, so core files can be generated.
• Fixed bug in query cache after temporary table creation.
• Added --count=N (-c) option to mysqladmin, to make the program do only N iterations.

To be used with --sleep (-i). Useful in scripts.
• Fixed bug in multi-table UPDATE: when updating a table, do_select() became con-

fused about reading records from a cache.
• Fixed bug in multi-table UPDATE when several fields were referenced from a single table
• Fixed bug in truncating nonexisting table.
• Fixed bug in REVOKE that caused user resources to be randomly set.
• Fixed bug in GRANT for the new CREATE TEMPORARY TABLE privilege.
• Fixed bug in multi-table DELETE when tables are re-ordered in the table initialisation

method and ref lengths are of different sizes.
• Fixed two bugs in SELECT DISTINCT with large tables.
• Fixed bug in query cache initialisation with very small query cache size.
• Allow DEFAULT with INSERT statement.
• The startup parameters myisam_max_sort_file_size and myisam_max_extra_sort_

file_size are now given in bytes, not megabytes.
• External system locking of MyISAM/ISAM files is now turned off by default. One can

turn this on with --external-locking. (For most users this is never needed).
• Fixed core dump bug with INSERT ... SET db_name.table_name.colname=’’.
• Fixed client hangup bug when using some SQL commands with wrong syntax.
• Fixed a timing bug in DROP DATABASE

• New SET [GLOBAL | SESSION] syntax to change thread-specific and global server vari-
ables at runtime.

• Added variable slave_compressed_protocol.
• Renamed variable query_cache_startup_type to query_cache_type, myisam_bulk_

insert_tree_size to bulk_insert_buffer_size, record_buffer to read_buffer_
size and record_rnd_buffer to read_rnd_buffer_size.

Appendix D: MySQL Change History 919

• Renamed some SQL variables, but old names will still work until 5.0. See Section 2.5.2
[Upgrading-from-3.23], page 113.

• Renamed --skip-locking to --skip-external-locking.
• Removed unused variable query_buffer_size.
• Fixed a bug that made the pager option in the mysql client non-functional.
• Added full AUTO_INCREMENT support to MERGE tables.
• Extended LOG() function to accept an optional arbitrary base parameter. See Sec-

tion 6.3.3.2 [Mathematical functions], page 493.
• Added LOG2() function (useful for finding out how many bits a number would require

for storage).
• Added LN() natural logarithm function for compatibility with other databases. It is

synonymous with LOG(X).

D.3.16 Changes in release 4.0.2 (01 Jul 2002)

• Cleaned up NULL handling for default values in DESCRIBE table_name.
• Fixed truncate() to round up negative values to the nearest integer.
• Changed --chroot=path option to execute chroot() immediately after all options

have been parsed.
• Don’t allow database names that contain ‘\’.
• lower_case_table_names now also affects database names.
• Added XOR operator (logical and bitwise XOR) with ^ as a synonym for bitwise XOR.
• Added function IS_FREE_LOCK("lock_name"). Based on code contributed by Hartmut

Holzgraefe hartmut@six.de.
• Removed mysql_ssl_clear() from C API, as it was not needed.
• DECIMAL and NUMERIC types can now read exponential numbers.
• Added SHA1() function to calculate 160 bit hash value as described in RFC 3174

(Secure Hash Algorithm). This function can be considered a cryptographically more
secure equivalent of MD5(). See Section 6.3.6.2 [Miscellaneous functions], page 515.

• Added AES_ENCRYPT() and AES_DECRYPT() functions to perform encryption according
to AES standard (Rijndael). See Section 6.3.6.2 [Miscellaneous functions], page 515.

• Added --single-transaction option to mysqldump, allowing a consistent dump of
InnoDB tables. See Section 4.9.6 [mysqldump], page 339.

• Fixed bug in innodb_log_group_home_dir in SHOW VARIABLES.
• Fixed a bug in optimiser with merge tables when non-unique values are used in summing

up (causing crashes).
• Fixed a bug in optimiser when a range specified makes index grouping impossible

(causing crashes).
• Fixed a rare bug when FULLTEXT index is present and no tables are used.
• Added privileges CREATE TEMPORARY TABLES, EXECUTE, LOCK TABLES, REPLICATION

CLIENT, REPLICATION SLAVE, SHOW DATABASES and SUPER. To use these, you must
have run the mysql_fix_privilege_tables script after upgrading.

920 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed query cache align data bug.
• Fixed mutex bug in replication when reading from master fails.
• Added missing mutex in TRUNCATE TABLE; This fixes some core dump/hangup problems

when using TRUNCATE TABLE.
• Fixed bug in multi-table DELETE when optimiser uses only indices.
• Fixed that ALTER TABLE table_name RENAME new_table_name is as fast as RENAME

TABLE.
• Fixed bug in GROUP BY with two or more fields, where at least one field can contain

NULL values.
• Use Turbo Boyer-Moore algorithm to speed up LIKE "%keyword%" searches.
• Fixed bug in DROP DATABASE with symlink.
• Fixed crash in REPAIR ... USE_FRM.
• Fixed bug in EXPLAIN with LIMIT offset != 0.
• Fixed bug in phrase operator "..." in boolean full-text search.
• Fixed bug that caused duplicated rows when using truncation operator * in boolean

full-text search.
• Fixed bug in truncation operator of boolean full-text search (wrong results when there

are only +word*s in the query).
• Fixed bug in boolean full-text search that caused a crash when an identical MATCH

expression that did not use an index appeared twice.
• Query cache is now automatically disabled in mysqldump.
• Fixed problem on Windows 98 that made sending of results very slow.
• Boolean full-text search weighting scheme changed to something more reasonable.
• Fixed bug in boolean full-text search that caused MySQL to ignore queries of ft_min_

word_len characters.
• Boolean full-text search now supports “phrase searches”.
• New configure option --without-query-cache.
• Memory allocation strategy for “root memory” changed. Block size now grows with

number of allocated blocks.
• INET_NTOA() now returns NULL if you give it an argument that is too large (greater

than the value corresponding to 255.255.255.255).
• Fix SQL_CALC_FOUND_ROWS to work with UNIONs. It will work only if the first SELECT

has this option and if there is global LIMIT for the entire statement. For the moment,
this requires using parentheses for individual SELECT queries within the statement.

• Fixed bug in SQL_CALC_FOUND_ROWS and LIMIT.
• Don’t give an error for CREATE TABLE ...(... VARCHAR(0)).
• Fixed SIGINT and SIGQUIT problems in ‘mysql.cc’ on Linux with some glibc versions.
• Fixed bug in ‘convert.cc’, which is caused by having an incorrect net_store_

length() linked in the CONVERT::store() method.
• DOUBLE and FLOAT columns now honor the UNSIGNED flag on storage.

Appendix D: MySQL Change History 921

• InnoDB now retains foreign key constraints through ALTER TABLE and CREATE/DROP
INDEX.

• InnoDB now allows foreign key constraints to be added through the ALTER TABLE syntax.
• InnoDB tables can now be set to automatically grow in size (autoextend).
• Added --ignore-lines=n option to mysqlimport. This has the same effect as the

IGNORE n LINES clause for LOAD DATA.
• Fixed bug in UNION with last offset being transposed to total result set.
• REPAIR ... USE_FRM added.
• Fixed that DEFAULT_SELECT_LIMIT is always imposed on UNION result set.
• Fixed that some SELECT options can appear only in the first SELECT.
• Fixed bug with LIMIT with UNION, where last select is in the braces.
• Fixed that full-text works fine with UNION operations.
• Fixed bug with indexless boolean full-text search.
• Fixed bug that sometimes appeared when full-text search was used with “const” tables.
• Fixed incorrect error value when doing a SELECT with an empty HEAP table.
• Use ORDER BY column DESC now sorts NULL values first. (In other words, NULL values

sort first in all cases, whether or not DESC is specified.) This is changed back in 4.0.10.
• Fixed bug in WHERE key_name=’constant’ ORDER BY key_name DESC.
• Fixed bug in SELECT DISTINCT ... ORDER BY DESC optimisation.
• Fixed bug in ... HAVING ’GROUP_FUNCTION’(xxx) IS [NOT] NULL.
• Fixed bug in truncation operator for boolean full-text search.
• Allow value of --user=# option for mysqld to be specified as a numeric user ID.
• Fixed a bug where SQL_CALC_ROWS returned an incorrect value when used with one

table and ORDER BY and with InnoDB tables.
• Fixed that SELECT 0 LIMIT 0 doesn’t hang thread.
• Fixed some problems with USE/IGNORE INDEX when using many keys with the same

start column.
• Don’t use table scan with BerkeleyDB and InnoDB tables when we can use an index

that covers the whole row.
• Optimised InnoDB sort-buffer handling to take less memory.
• Fixed bug in multi-table DELETE and InnoDB tables.
• Fixed problem with TRUNCATE and InnoDB tables that produced the error Can’t

execute the given command because you have active locked tables or an active
transaction.

• Added NO_UNSIGNED_SUBTRACTION to the set of flags that may be specified with the
--sql-mode option for mysqld. It disables unsigned arithmetic rules when it comes
to subtraction. (This will make MySQL 4.0 behave more like 3.23 with UNSIGNED
columns).

• The result returned for all bit functions (|, <<, ...) is now of type unsigned integer.
• Added detection of nan values in MyISAM to make it possible to repair tables with nan

in float or double columns.

922 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed new bug in myisamchk where it didn’t correctly update number of “parts” in the
MyISAM index file.

• Changed to use autoconf 2.52 (from autoconf 2.13).
• Fixed optimisation problem where the MySQL Server was in “preparing” state for a

long time when selecting from an empty table which had contained a lot of rows.
• Fixed bug in complicated join with const tables. This fix also improves performance

a bit when referring to another table from a const table.
• First pre-version of multi-table UPDATE statement.
• Fixed bug in multi-table DELETE.
• Fixed bug in SELECT CONCAT(argument_list) ... GROUP BY 1.
• INSERT ... SELECT did a full rollback in case of an error. Fixed so that we only roll

back the last statement in the current transaction.
• Fixed bug with empty expression for boolean full-text search.
• Fixed core dump bug in updating full-text key from/to NULL.
• ODBC compatibility: Added BIT_LENGTH() function.
• Fixed core dump bug in GROUP BY BINARY column.
• Added support for NULL keys in HEAP tables.
• Use index for ORDER BY in queries of type: SELECT * FROM t WHERE key_part1=1 ORDER

BY key_part1 DESC,key_part2 DESC

• Fixed bug in FLUSH QUERY CACHE.
• Added CAST() and CONVERT() functions. The CAST and CONVERT functions are nearly

identical and mainly useful when you want to create a column with a specific type
in a CREATE ... SELECT statement. For more information, read Section 6.3.5 [Cast
Functions], page 513.

• CREATE ... SELECT on DATE and TIME functions now create columns of the expected
type.

• Changed order in which keys are created in tables.
• Added new columns Null and Index_type to SHOW INDEX output.
• Added --no-beep and --prompt options to mysql command-line client.
• New feature: management of user resources.

GRANT ... WITH MAX_QUERIES_PER_HOUR N1
MAX_UPDATES_PER_HOUR N2
MAX_CONNECTIONS_PER_HOUR N3;

See Section 4.4.7 [User resources], page 249.
• Added mysql_secure_installation to the ‘scripts/’ directory.

D.3.17 Changes in release 4.0.1 (23 Dec 2001)

• Added system command to mysql.
• Fixed bug when HANDLER was used with some unsupported table type.
• mysqldump now puts ALTER TABLE tbl_name DISABLE KEYS and ALTER TABLE

tbl_name ENABLE KEYS in the sql dump.

Appendix D: MySQL Change History 923

• Added mysql_fix_extensions script.
• Fixed stack overrun problem with LOAD DATA FROM MASTER on OSF/1.
• Fixed shutdown problem on HP-UX.
• Added DES_ENCRYPT() and DES_DECRYPT() functions.
• Added FLUSH DES_KEY_FILE statement.
• Added --des-key-file option to mysqld.
• HEX(string) now returns the characters in string converted to hexadecimal.
• Fixed problem with GRANT when using lower_case_table_names=1.
• Changed SELECT ... IN SHARE MODE to SELECT ... LOCK IN SHARE MODE (as in

MySQL 3.23).
• A new query cache to cache results from identical SELECT queries.
• Fixed core dump bug on 64-bit machines when it got an incorrect communication

packet.
• MATCH ... AGAINST(... IN BOOLEAN MODE) can now work without FULLTEXT index.
• Fixed slave to replicate from 3.23 master.
• Miscellaneous replication fixes/cleanup.
• Got shutdown to work on Mac OS X.
• Added myisam/ft_dump utility for low-level inspection of FULLTEXT indexes.
• Fixed bug in DELETE ... WHERE ... MATCH
• Added support for MATCH ... AGAINST(... IN BOOLEAN MODE). Note: you must re-

build your tables with ALTER TABLE tablename TYPE=MyISAM to be able to use boolean
full-text search.

• LOCATE() and INSTR() are now case-sensitive if either argument is a binary string.
• Changed RAND() initialisation so that RAND(N) and RAND(N+1) are more distinct.
• Fixed core dump bug in UPDATE ... ORDER BY.
• In 3.23, INSERT INTO ... SELECT always had IGNORE enabled. Now MySQL will stop

(and possibly roll back) by default in case of an error unless you specify IGNORE.
• Ignore DATA DIRECTORY and INDEX DIRECTORY directives on Windows.
• Added boolean full-text search code. It should be considered early alpha.
• Extended MODIFY and CHANGE in ALTER TABLE to accept the FIRST and AFTER keywords.
• Indexes are now used with ORDER BY on a whole InnoDB table.

D.3.18 Changes in release 4.0.0 (Oct 2001: Alpha)

• Added --xml option to mysql for producing XML output.
• Added full-text variables ft_min_word_len, ft_max_word_len, and ft_max_word_

len_for_sort.
• Added documentation for libmysqld, the embedded MySQL server library. Also added

example programs (a mysql client and mysqltest test program) which use libmysqld.
• Removed all Gemini hooks from MySQL server.

924 MySQL Technical Reference for Version 4.1.1-alpha

• Removed my_thread_init() and my_thread_end() from ‘mysql_com.h’, and added
mysql_thread_init() and mysql_thread_end() to ‘mysql.h’.

• Support for communication packets > 16M. In 4.0.1 we will extend MyISAM to be able
to handle these.

• Secure connections (with SSL).
• Unsigned BIGINT constants now work. MIN() and MAX() now handle signed and un-

signed BIGINT numbers correctly.
• New character set latin1_de which provides correct German sorting.
• STRCMP() now uses the current character set when doing comparisons, which means

that the default comparison behaviour now is case-insensitive.
• TRUNCATE TABLE and DELETE FROM tbl_name are now separate functions. One bonus is

that DELETE FROM tbl_name now returns the number of deleted rows, rather than zero.
• DROP DATABASE now executes a DROP TABLE on all tables in the database, which fixes a

problem with InnoDB tables.
• Added support for UNION.
• Added support for multi-table DELETE operations.
• A new HANDLER interface to MyISAM tables.
• Added support for INSERT on MERGE tables. Patch from Benjamin Pflugmann.
• Changed WEEK(date,0) to match the calendar in the USA.
• COUNT(DISTINCT) is about 30% faster.
• Speed up all internal list handling.
• Speed up IS NULL, ISNULL() and some other internal primitives.
• Full-text index creation now is much faster.
• Tree-like cache to speed up bulk inserts and myisam_bulk_insert_tree_size variable.
• Searching on packed (CHAR/VARCHAR) keys is now much faster.
• Optimised queries of type: SELECT DISTINCT * from tbl_name ORDER by key_part1

LIMIT row_count.
• SHOW CREATE TABLE now shows all table attributes.
• ORDER BY ... DESC can now use keys.
• LOAD DATA FROM MASTER “automatically” sets up a slave.
• Renamed safe_mysqld to mysqld_safe to make this name more in line with other

MySQL scripts/commands.
• Added support for symbolic links to MyISAM tables. Symlink handling is now enabled

by default for Windows.
• Added SQL_CALC_FOUND_ROWS and FOUND_ROWS(). This makes it possible to know how

many rows a query would have returned without a LIMIT clause.
• Changed output format of SHOW OPEN TABLES.
• Allow SELECT expression LIMIT
• Added ORDER BY syntax to UPDATE and DELETE.
• SHOW INDEXES is now a synonym for SHOW INDEX.

Appendix D: MySQL Change History 925

• Added ALTER TABLE tbl_name DISABLE KEYS and ALTER TABLE tbl_name ENABLE
KEYS commands.

• Allow use of IN as a synonym for FROM in SHOW commands.

• Implemented “repair by sort” for FULLTEXT indexes. REPAIR TABLE, ALTER TABLE, and
OPTIMIZE TABLE for tables with FULLTEXT indexes are now up to 100 times faster.

• Allow SQL-99 syntax X’hexadecimal-number’.

• Cleaned up global lock handling for FLUSH TABLES WITH READ LOCK.

• Fixed problem with DATETIME = constant in WHERE optimisation.

• Added --master-data and --no-autocommit options to mysqldump. (Thanks to Brian
Aker for this.)

• Added script mysql_explain_log.sh to distribution. (Thanks to mobile.de).

D.4 Changes in release 3.23.x (Recent; still supported)

Please note that since release 4.0 is now production level, only critical fixes are done in the
3.23 release series. You are recommended to upgrade when possible, to take advantage of all
speed and feature improvements in 4.0. See Section 2.5.2 [Upgrading-from-3.23], page 113.

The 3.23 release has several major features that are not present in previous versions. We
have added three new table types:

MyISAM A new ISAM library which is tuned for SQL and supports large files.

InnoDB A transaction-safe storage engine that supports row level locking, and many
Oracle-like features.

BerkeleyDB or BDB
Uses the Berkeley DB library from Sleepycat Software to implement
transaction-safe tables.

Note that only MyISAM is available in the standard binary distribution.

The 3.23 release also includes support for database replication between a master and many
slaves, full-text indexing, and much more.

All new features are being developed in the 4.x version. Only bug fixes and minor enhance-
ments to existing features will be added to 3.23.

The replication code and BerkeleyDB code is still not as tested and as the rest of the code,
so we will probably need to do a couple of future releases of 3.23 with small fixes for this
part of the code. As long as you don’t use these features, you should be quite safe with
MySQL 3.23!

Note that the above doesn’t mean that replication or Berkeley DB don’t work. We have
done a lot of testing of all code, including replication and BDB without finding any problems.
It only means that not as many users use this code as the rest of the code and because of
this we are not yet 100% confident in this code.

926 MySQL Technical Reference for Version 4.1.1-alpha

D.4.1 Changes in release 3.23.59 (not released yet)

• If a query was ignored on the slave (because of replicate-ignore-table and other
similar rules), the slave still checked if the query got the same error code (0, no error)
as on the master. So if the master had an error on the query (for example, “Duplicate
entry” in a multiple-row insert), then the slave stopped and warned that the error codes
didn’t match. This is a backport of the fix for MySQL 4.0. (Bug #797)

• mysqlbinlog now asks for a password at console when the -p/--password option
is used with no argument. This is how the other clients (mysqladmin, mysqldump..)
already behave. Note that one now has to use mysqlbinlog -p<my_password>;
mysqlbinlog -p <my_password> will not work anymore (in other words, put no space
after -p). (Bug #1595)

• On some 64-bit machines (some HP-UX and Solaris machines), a slave installed with
the 64-bit MySQL binary could not connect to its master (it connected to itself instead).
(Bug #1256, #1381)

• Fixed a Windows-specific bug present since MySQL version 3.23.57 and 3.23.58, which
caused Windows slaves to crash when they started replication if a ‘master.info’ file
existed. (Bug #1720)

D.4.2 Changes in release 3.23.58 (11 Sep 2003)

• Fixed buffer overflow in password handling which could potentially be exploited by
MySQL users with ALTER privilege on the mysql.user table to execute random code
or to gain shell access with the UID of the mysqld process (thanks to Jedi/Sector One
for spotting and reporting this bug).

• mysqldump now correctly quotes all identifiers when communicating with the server.
This assures that during the dump process, mysqldump will never send queries to the
server that result in a syntax error. This problem is not related to the mysqldump
program’s output, which was not changed. (Bug #1148)

• Fixed table/column grant handling - proper sort order (from most specific to less
specific, see Section 4.3.10 [Request access], page 228) was not honored. (Bug #928)

• Fixed overflow bug in MyISAM and ISAM when a row is updated in a table with a large
number of columns and at least one BLOB/TEXT column.

• Fixed MySQL so that field length (in C API) for the second column in SHOW CREATE
TABLE is always larger than the data length. The only known application that was
affected by the old behaviour was Borland dbExpress, which truncated the output
from the command. (Bug #1064)

• Fixed ISAM bug in MAX() optimisation.
• Fixed Unknown error when doing ORDER BY on reference table which was used with

NULL value on NOT NULL column. (Bug #479)

D.4.3 Changes in release 3.23.57 (06 Jun 2003)

• Fixed problem in alarm handling that could cause problems when getting a packet that
is too large.

Appendix D: MySQL Change History 927

• Fixed problem when installing MySQL as a service on Windows when one gave 2
arguments (option file group name and service name) to mysqld.

• Fixed kill pid-of-mysqld to work on Mac OS X.
• SHOW TABLE STATUS displayed incorrect Row_format value for tables that have been

compressed with myisampack. (Bug #427)
• SHOW VARIABLES LIKE ’innodb_data_file_path’ displayed only the name of the first

datafile. (Bug #468)
• Fixed security problem where mysqld didn’t allow one to UPDATE rows in a table even

if one had a global UPDATE privilege and a database SELECT privilege.
• Fixed a security problem with SELECT and wildcarded select list, when user only had

partial column SELECT privileges on the table.
• Fixed unlikely problem in optimising WHERE clause with a constant expression such as

in WHERE 1 AND (a=1 AND b=1).
• Fixed problem on IA-64 with timestamps that caused mysqlbinlog to fail.
• The default option for innodb_flush_log_at_trx_commit was changed from 0 to 1 to

make InnoDB tables ACID by default. See Section 7.5.3 [InnoDB start], page 606.
• Fixed problem with too many allocated alarms on slave when connecting to master

many times (normally not a very critical error).
• Fixed a bug in replication of temporary tables. (Bug #183)
• Fixed 64 bit bug that affected at least AMD hammer systems.
• Fixed a bug when doing LOAD DATA INFILE IGNORE: When reading the binary log,

mysqlbinlog and the replication code read REPLACE instead of IGNORE. This could
make the slave’s table become different from the master’s table. (Bug #218)

• Fixed overflow bug in MyISAM when a row is inserted into a table with a large number of
columns and at least one BLOB/TEXT column. Bug was caused by incorrect calculation
of the needed buffer to pack data.

• The binary log was not locked during TRUNCATE table_name or DELETE FROM table_
name statements, which could cause an INSERT to table_name to be written to the log
before the TRUNCATE or DELETE statements.

• Fixed rare bug in UPDATE of InnoDB tables where one row could be updated multiple
times.

• Produce an error for empty table and column names.
• Changed PROCEDURE ANALYSE() to report DATE instead of NEWDATE.
• Changed PROCEDURE ANALYSE(#) to restrict the number of values in an ENUM column

to # also for string values.
• mysqldump no longer silently deletes the binary logs when invoked with the --master-

data or --first-slave option; while this behaviour was convenient for some users,
others may suffer from it. Now one has to explicitly ask for binary logs to be deleted
by using the new --delete-master-logs option.

• Fixed a bug in mysqldump when it was invoked with the --master-data option: The
CHANGE MASTER TO statements that were appended to the SQL dump had incorrect
coordinates. (Bug #159)

928 MySQL Technical Reference for Version 4.1.1-alpha

D.4.4 Changes in release 3.23.56 (13 Mar 2003)

• Fixed mysqld crash on extremely small values of sort_buffer variable.
• Fixed a bug in privilege system for GRANT UPDATE on column level.
• Fixed a rare bug when using a date in HAVING with GROUP BY.
• Fixed checking of random part of WHERE clause. (Bug #142)
• Fixed MySQL (and myisamchk) crash on artificially corrupted ‘.MYI’ files.
• Security enhancement: mysqld no longer reads options from world-writeable config

files.
• Security enhancement: mysqld and safe_mysqld now only use the first --user option

specified on the command line. (Normally this comes from ‘/etc/my.cnf’)
• Security enhancement: Don’t allow BACKUP TABLE to overwrite existing files.
• Fixed unlikely deadlock bug when one thread did a LOCK TABLE and another thread

did a DROP TABLE. In this case one could do a KILL on one of the threads to resolve
the deadlock.

• LOAD DATA INFILE was not replicated by slave if replicate_*_table was set on the
slave.

• Fixed a bug in handling CHAR(0) columns that could cause wrong results from the
query.

• Fixed a bug in SHOW VARIABLES on 64-bit platforms. The bug was caused by wrong
declaration of variable server_id.

• The Comment column in SHOW TABLE STATUS now reports that it can contain NULL
values (which is the case for a crashed ‘.frm’ file).

• Fixed the rpl_rotate_logs test to not fail on certain platforms (e.g. Mac OS X) due
to a too long file name (changed slave-master-info.opt to .slave-mi).

• Fixed a problem with BLOB NOT NULL columns used with IS NULL.
• Fixed bug in MAX() optimisation in MERGE tables.
• Better RAND() initialisation for new connections.
• Fixed bug with connect timeout. This bug was manifested on OS’s with poll() system

call, which resulted in timeout the value specified as it was executed in both select()
and poll().

• Fixed bug in SELECT * FROM table WHERE datetime1 IS NULL OR datetime2 IS NULL.
• Fixed bug in using aggregate functions as argument for INTERVAL, CASE, FIELD,

CONCAT_WS, ELT and MAKE_SET functions.
• When running with --lower-case-table-names (default on Windows) and you had

tables or databases with mixed case on disk, then executing SHOW TABLE STATUS fol-
lowed with DROP DATABASE or DROP TABLE could fail with Errcode 13.

• Fixed bug in logging to binary log (which affects replication) a query that inserts a
NULL in an auto_increment field and also uses LAST_INSERT_ID().

• Fixed bug in mysqladmin --relative.
• On some 64 bit systems, show status reported a strange number for Open_files and

Open_streams.

Appendix D: MySQL Change History 929

D.4.5 Changes in release 3.23.55 (23 Jan 2003)

• Fixed double free’d pointer bug in mysql_change_user() handling, that enabled a
specially hacked version of MySQL client to crash mysqld. Note, that one needs to
login to the server by using a valid user account to be able to exploit this bug.

• Fixed bug with the --slow-log when logging an administrator command (like FLUSH
TABLES).

• Fixed bug in GROUP BY when used on BLOB column with NULL values.
• Fixed a bug in handling NULL values in CASE ... WHEN
• Bugfix for --chroot (see Section D.4.6 [News-3.23.54], page 929) is reverted. Unfortu-

nately, there is no way to make it to work, without introducing backward-incompatible
changes in ‘my.cnf’. Those who need --chroot functionality, should upgrade to
MySQL 4.0. (The fix in the 4.0 branch did not break backward-compatibility).

• Make --lower-case-table-names default on Mac OS X as the default file system
(HFS+) is case insensitive.

• Fixed a bug in ‘scripts/mysqld_safe.sh’ in NOHUP_NICENESS testing.
• Transactions in AUTOCOMMIT=0 mode didn’t rotate binary log.
• Fixed a bug in scripts/make_binary_distribution that resulted in a remaining

@HOSTNAME@ variable instead of replacing it with the correct path to the hostname
binary.

• Fixed a very unlikely bug that could cause SHOW PROCESSLIST to core dump in
pthread mutex unlock() if a new thread was connecting.

• Forbid SLAVE STOP if the thread executing the query has locked tables. This removes
a possible deadlock situation.

D.4.6 Changes in release 3.23.54 (05 Dec 2002)

• Fixed a bug, that allowed to crash mysqld with a specially crafted packet.
• Fixed a rare crash (double free’d pointer) when altering a temporary table.
• Fixed buffer overrun in libmysqlclient library that allowed malicious MySQL server

to crash the client application.
• Fixed security-related bug in mysql_change_user() handling. All users are strongly

recommended to upgrade to the version 3.23.54.
• Fixed bug that prevented --chroot command-line option of mysqld from working.
• Fixed bug that made OPTIMIZE TABLE to corrupt the table under some rare circum-

stances.
• Fixed mysqlcheck so it can deal with table names containing dashes.
• Fixed shutdown problem on Mac OS X.
• Fixed bug with comparing an indexed NULL field with <=> NULL.
• Fixed bug that caused IGNORE INDEX and USE INDEX sometimes to be ignored.
• Fixed rare core dump problem in complicated GROUP BY queries that didn’t return any

result.

930 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed a bug where MATCH ... AGAINST () >=0 was treated as if it was >.
• Fixed core dump in SHOW PROCESSLIST when running with an active slave (unlikely

timing bug).
• Make it possible to use multiple MySQL servers on Windows (code backported from

4.0.2).
• One can create TEMPORARY MERGE tables now.
• Fixed that --core-file works on Linux (at least on kernel 2.4.18).
• Fixed a problem with BDB and ALTER TABLE.
• Fixed reference to freed memory when doing complicated GROUP BY ... ORDER BY

queries. Symptom was that mysqld died in function send_fields.
• Allocate heap rows in smaller blocks to get better memory usage.
• Fixed memory allocation bug when storing BLOB values in internal temporary tables

used for some (unlikely) GROUP BY queries.
• Fixed a bug in key optimising handling where the expression WHERE column_name =

key_column_name was calculated as true for NULL values.
• Fixed core dump bug when doing LEFT JOIN ... WHERE key_column=NULL.
• Fixed MyISAM crash when using dynamic-row tables with huge numbers of packed fields.
• Updated source tree to be built using automake 1.5 and libtool 1.4.

D.4.7 Changes in release 3.23.53 (09 Oct 2002)

• Fixed crash when SHOW INNODB STATUS was used and skip-innodb was defined.
• Fixed possible memory corruption bug in binary log file handling when slave rotated

the logs (only affected 3.23, not 4.0).
• Fixed problem in LOCK TABLES on Windows when one connects to a database that

contains upper case letters.
• Fixed that --skip-show-databases doesn’t reset the --port option.
• Small fix in safe_mysqld for some shells.
• Fixed that FLUSH STATUS doesn’t reset delayed_insert_threads.
• Fixed core dump bug when using the BINARY cast on a NULL value.
• Fixed race condition when someone did a GRANT at the same time a new user logged in

or did a USE database.
• Fixed bug in ALTER TABLE and RENAME TABLE when running with -O lower_case_

table_names=1 (typically on Windows) when giving the table name in uppercase.
• Fixed that -O lower_case_table_names=1 also converts database names to lower case.
• Fixed unlikely core dump with SELECT ... ORDER BY ... LIMIT.
• Changed AND/OR to report that they can return NULL. This fixes a bug in GROUP BY

on AND/OR expressions that return NULL.
• Fixed a bug that OPTIMIZE of locked and modified MyISAM table, reported table

corruption.
• Fixed a BDB-related ALTER TABLE bug with dropping a column and shutting down im-

mediately thereafter.

Appendix D: MySQL Change History 931

• Fixed problem with configure ... --localstatedir=....
• Fixed problem with UNSIGNED BIGINT on AIX (again).
• Fixed bug in pthread mutex trylock() on HPUX 11.0.
• Multi-threaded stress tests for InnoDB.

D.4.8 Changes in release 3.23.52 (14 Aug 2002)

• Wrap BEGIN/COMMIT around transaction in the binary log. This makes replication
honour transactions.

• Fixed security bug when having an empty database name in the user.db table.
• Changed initialisation of RND() to make it less predicatable.
• Fixed problem with GROUP BY on result with expression that created a BLOB field.
• Fixed problem with GROUP BY on columns that have NULL values. To solve this we now

create an MyISAM temporary table when doing a GROUP BY on a possible NULL item.
From MySQL 4.0.5 we can use in memory HEAP tables for this case.

• Fixed problem with privilege tables when downgrading from 4.0.2 to 3.23.
• Fixed thread bug in SLAVE START, SLAVE STOP and automatic repair of MyISAM tables

that could cause table cache to be corrupted.
• Fixed possible thread related key-cache-corruption problem with OPTIMIZE TABLE and

REPAIR TABLE.
• Added name of ’administrator command’ logs.
• Fixed bug with creating an auto-increment value on second part of a UNIQUE() key

where first part could contain NULL values.
• Don’t write slave-timeout reconnects to the error log.
• Fixed bug with slave net read timeouting
• Fixed a core-dump bug with MERGE tables and MAX() function.
• Fixed bug in ALTER TABLE with BDB tables.
• Fixed bug when logging LOAD DATA INFILE to binary log with no active database.
• Fixed a bug in range optimiser (causing crashes).
• Fixed possible problem in replication when doing DROP DATABASE on a database with

InnoDB tables.
• Fixed that mysql_info() returns 0 for ’Duplicates’ when using INSERT DELAYED

IGNORE.
• Added -DHAVE_BROKEN_REALPATH to the Mac OS X (darwin) compile options in

‘configure.in’ to fix a failure under high load.

D.4.9 Changes in release 3.23.51 (31 May 2002)

• Fix bug with closing tags missing slash for mysqldump XML output.
• Remove end space from ENUM values. (This fixed a problem with SHOW CREATE TABLE.)
• Fixed bug in CONCAT_WS() that cut the result.

932 MySQL Technical Reference for Version 4.1.1-alpha

• Changed name of server variables Com_show_master_stat to Com_show_master_
status and Com_show_slave_stat to Com_show_slave_status.

• Changed handling of gethostbyname() to make the client library thread-safe even if
gethostbyname_r doesn’t exist.

• Fixed core-dump problem when giving a wrong password string to GRANT.
• Fixed bug in DROP DATABASE with symlinked directory.
• Fixed optimisation problem with DATETIME and value outside DATETIME range.
• Removed Sleepycat’s BDB doc files from the source tree, as they’re not needed (MySQL

covers BDB in its own documentation).
• Fixed MIT-pthreads to compile with glibc 2.2 (needed for make dist).
• Fixed the FLOAT(X+1,X) is not converted to FLOAT(X+2,X). (This also affected

DECIMAL, DOUBLE and REAL types)
• Fixed the result from IF() is case in-sensitive if the second and third arguments are

case sensitive.
• Fixed core dump problem on OSF/1 in gethostbyname_r.
• Fixed that underflowed decimal fields are not zero filled.
• If we get an overflow when inserting ’+11111’ for DECIMAL(5,0) UNSIGNED columns,

we will just drop the sign.
• Fixed optimisation bug with ISNULL(expression_which_cannot_be_null) and

ISNULL(constant_expression).
• Fixed host lookup bug in the glibc library that we used with the 3.23.50 Linux-x86

binaries.

D.4.10 Changes in release 3.23.50 (21 Apr 2002)

• Fixed buffer overflow problem if someone specified a too long datadir parameter to
mysqld

• Add missing <row> tags for mysqldump XML output.
• Fixed problem with crash-me and gcc 3.0.4.
• Fixed that @@unknown_variable doesn’t hang server.
• Added @@VERSION as a synonym for VERSION().
• SHOW VARIABLES LIKE ’xxx’ is now case-insensitive.
• Fixed timeout for GET_LOCK() on HP-UX with DCE threads.
• Fixed memory allocation bug in the glibc library used to build Linux binaries, which

caused mysqld to die in ’free()’.
• Fixed SIGINT and SIGQUIT problems in mysql.
• Fixed bug in character table converts when used with big (> 64K) strings.
• InnoDB now retains foreign key constraints through ALTER TABLE and CREATE/DROP

INDEX.
• InnoDB now allows foreign key constraints to be added through the ALTER TABLE syntax.
• InnoDB tables can now be set to automatically grow in size (autoextend).

Appendix D: MySQL Change History 933

• Our Linux RPMS and binaries are now compiled with gcc 3.0.4, which should make
them a bit faster.

• Fixed some buffer overflow problems when reading startup parameters.
• Because of problems on shutdown we have now disabled named pipes on Windows by

default. One can enable named pipes by starting mysqld with --enable-named-pipe.
• Fixed bug when using WHERE key_column = ’J’ or key_column=’j’.
• Fixed core-dump bug when using --log-bin with LOAD DATA INFILE without an active

database.
• Fixed bug in RENAME TABLE when used with lower_case_table_names=1 (default on

Windows).
• Fixed unlikely core-dump bug when using DROP TABLE on a table that was in use by a

thread that also used queries on only temporary tables.
• Fixed problem with SHOW CREATE TABLE and PRIMARY KEY when using 32 indexes.
• Fixed that one can use SET PASSWORD for the anonymous user.
• Fixed core dump bug when reading client groups from option files using

mysql_options().
• Memory leak (16 bytes per every corrupted table) closed.
• Fixed binary builds to use --enable-local-infile.
• Update source to work with new version of bison.
• Updated shell scripts to now agree with new POSIX standard.
• Fixed bug where DATE_FORMAT() returned empty string when used with GROUP BY.

D.4.11 Changes in release 3.23.49

• Don’t give warning for a statement that is only a comment; this is needed for mysqldump
--disable-keys to work.

• Fixed unlikely caching bug when doing a join without keys. In this case the last used
field for a table always returned NULL.

• Added options to make LOAD DATA LOCAL INFILE more secure.
• MySQL binary release 3.23.48 for Linux contained a new glibc library, which has

serious problems under high load and Red Hat 7.2. The 3.23.49 binary release doesn’t
have this problem.

• Fixed shutdown problem on NT.

D.4.12 Changes in release 3.23.48 (07 Feb 2002)

• Added --xml option to mysqldump for producing XML output.
• Changed to use autoconf 2.52 (from autoconf 2.13)
• Fixed bug in complicated join with const tables.
• Added internal safety checks for InnoDB.
• Some InnoDB variables were always shown in SHOW VARIABLES as OFF on high-byte-first

systems (like SPARC).

934 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed problem with one thread using an InnoDB table and another thread doing an
ALTER TABLE on the same table. Before that, mysqld could crash with an assertion
failure in ‘row0row.c’, line 474.

• Tuned the InnoDB SQL optimiser to favor index searches more often over table scans.

• Fixed a performance problem with InnoDB tables when several large SELECT queries
are run concurrently on a multiprocessor Linux computer. Large CPU-bound SELECT
queries will now also generally run faster on all platforms.

• If MySQL binlogging is used, InnoDB now prints after crash recovery the latest MySQL
binlog name and the offset InnoDB was able to recover to. This is useful, for example,
when resynchronising a master and a slave database in replication.

• Added better error messages to help in installation problems of InnoDB tables.

• It is now possible to recover MySQL temporary tables that have become orphaned
inside the InnoDB tablespace.

• InnoDB now prevents a FOREIGN KEY declaration where the signedness is not the same
in the referencing and referenced integer columns.

• Calling SHOW CREATE TABLE or SHOW TABLE STATUS could cause memory corruption and
make mysqld crash. Especially at risk was mysqldump, because it frequently calls SHOW
CREATE TABLE.

• If inserts to several tables containing an AUTO_INCREMENT column were wrapped inside
one LOCK TABLES, InnoDB asserted in ‘lock0lock.c’.

• In 3.23.47 we allowed several NULL values in a UNIQUE secondary index for an InnoDB
table. But CHECK TABLE was not relaxed: it reports the table as corrupt. CHECK TABLE
no longer complains in this situation.

• SHOW GRANTS now shows REFERENCES instead of REFERENCE.

D.4.13 Changes in release 3.23.47 (27 Dec 2001)

• Fixed bug when using the following construct: SELECT ... WHERE key=@var_name OR
key=@var_name2

• Restrict InnoDB keys to 500 bytes.

• InnoDB now supports NULL in keys.

• Fixed shutdown problem on HP-UX. (Introduced in 3.23.46)

• Fixed core dump bug in replication when using SELECT RELEASE_LOCK().

• Added new command: DO expression,[expression]

• Added slave-skip-errors option.

• Added statistics variables for all MySQL commands. (SHOW STATUS is now much
longer.)

• Fixed default values for InnoDB tables.

• Fixed that GROUP BY expr DESC works.

• Fixed bug when using t1 LEFT JOIN t2 ON t2.key=constant.

• mysql_config now also works with binary (relocated) distributions.

Appendix D: MySQL Change History 935

D.4.14 Changes in release 3.23.46 (29 Nov 2001)

• Fixed problem with aliased temporary table replication.
• InnoDB and BDB tables will now use index when doing an ORDER BY on the whole table.
• Fixed bug where one got an empty set instead of a DEADLOCK error when using BDB

tables.
• One can now kill ANALYZE, REPAIR, and OPTIMIZE TABLE when the thread is waiting

to get a lock on the table.
• Fixed race condition in ANALYZE TABLE.
• Fixed bug when joining with caching (unlikely to happen).
• Fixed race condition when using the binary log and INSERT DELAYED which could cause

the binary log to have rows that were not yet written to MyISAM tables.
• Changed caching of binary log to make replication slightly faster.
• Fixed bug in replication on Mac OS X.

D.4.15 Changes in release 3.23.45 (22 Nov 2001)

• (UPDATE|DELETE) ...WHERE MATCH bugfix.
• shutdown should now work on Darwin (Mac OS X).
• Fixed core dump when repairing corrupted packed MyISAM files.
• --core-file now works on Solaris.
• Fix a bug which could cause InnoDB to complain if it cannot find free blocks from the

buffer cache during recovery.
• Fixed bug in InnoDB insert buffer B-tree handling that could cause crashes.
• Fixed bug in InnoDB lock timeout handling.
• Fixed core dump bug in ALTER TABLE on a TEMPORARY InnoDB table.
• Fixed bug in OPTIMIZE TABLE that reset index cardinality if it was up to date.
• Fixed problem with t1 LEFT_JOIN t2 ... WHERE t2.date_column IS NULL when

date column was declared as NOT NULL.
• Fixed bug with BDB tables and keys on BLOB columns.
• Fixed bug in MERGE tables on OS with 32-bit file pointers.
• Fixed bug in TIME_TO_SEC() when using negative values.

D.4.16 Changes in release 3.23.44 (31 Oct 2001)

• Fixed Rows_examined count in slow query log.
• Fixed bug when using a reference to an AVG() column in HAVING.
• Fixed that date functions that require correct dates, like DAYOFYEAR(column), will

return NULL for 0000-00-00 dates.
• Fixed bug in const-propagation when comparing columns of different types. (SELECT

* FROM date_col="2001-01-01" and date_col=time_col)

936 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed bug that caused error message Can’t write, because of unique constraint
with some GROUP BY queries.

• Fixed problem with sjis character strings used within quoted table names.

• Fixed core dump when using CREATE ... FULLTEXT keys with other storage engines
than MyISAM.

• Don’t use signal() on Windows because this appears to not be 100% reliable.

• Fixed bug when doing WHERE col_name=NULL on an indexed column that had NULL
values.

• Fixed bug when doing LEFT JOIN ... ON (col_name = constant) WHERE col_name =
constant.

• When using replications, aborted queries that contained % could cause a core dump.

• TCP_NODELAY was not used on some systems. (Speed problem.)

• Applied portability fixes for OS/2. (Patch by Yuri Dario.)

The following changes are for InnoDB tables:

• Add missing InnoDB variables to SHOW VARIABLES.

• Foreign keys checking is now done for InnoDB tables.

• DROP DATABASE now works also for InnoDB tables.

• InnoDB now supports datafiles and raw disk partitions bigger than 4 GB on those
operating systems that have big files.

• InnoDB calculates better table cardinality estimates for the MySQL optimiser.

• Accent characters in the default character set latin1 are ordered according to the
MySQL ordering.

Note: if you are using latin1 and have inserted characters whose code is greater than
127 into an indexed CHAR column, you should run CHECK TABLE on your table when you
upgrade to 3.23.44, and drop and reimport the table if CHECK TABLE reports an error!

• A new ‘my.cnf’ parameter, innodb_thread_concurrency, helps in performance tuning
in heavily concurrent environments.

• A new ‘my.cnf’ parameter, innodb_fast_shutdown, speeds up server shutdown.

• A new ‘my.cnf’ parameter, innodb_force_recovery, helps to save your data in case
the disk image of the database becomes corrupt.

• innodb_monitor has been improved and a new innodb_table_monitor added.

• Increased maximum key length from 500 to 7000 bytes.

• Fixed a bug in replication of AUTO_INCREMENT columns with multiple-line inserts.

• Fixed a bug when the case of letters changes in an update of an indexed secondary
column.

• Fixed a hang when there are > 24 datafiles.

• Fixed a crash when MAX(col) is selected from an empty table, and col is not the first
column in a multi-column index.

• Fixed a bug in purge which could cause crashes.

Appendix D: MySQL Change History 937

D.4.17 Changes in release 3.23.43 (04 Oct 2001)

• Fixed a bug in INSERT DELAYED and FLUSH TABLES introduced in 3.23.42.
• Fixed unlikely bug, which returned non-matching rows, in SELECT with many tables

and multi-column indexes and ’range’ type.
• Fixed an unlikely core dump bug when doing EXPLAIN SELECT when using many tables

and ORDER BY.
• Fixed bug in LOAD DATA FROM MASTER when using table with CHECKSUM=1.
• Added unique error message when one gets a DEADLOCK during a transaction with

BDB tables.
• Fixed problem with BDB tables and UNIQUE columns defined as NULL.
• Fixed problem with myisampack when using pre-space filled CHAR columns.
• Applied patch from Yuri Dario for OS/2.
• Fixed bug in --safe-user-create.

D.4.18 Changes in release 3.23.42 (08 Sep 2001)

• Fixed problem when using LOCK TABLES and BDB tables.
• Fixed problem with REPAIR TABLE on MyISAM tables with row lengths in the range from

65517 to 65520 bytes.
• Fixed rare hang when doing mysqladmin shutdown when there was a lot of activity in

other threads.
• Fixed problem with INSERT DELAYED where delay thread could be hanging on

upgrading locks with no apparent reason.
• Fixed problem with myisampack and BLOB.
• Fixed problem when one edited ‘.MRG’ tables by hand. (Patch from Benjamin Pflug-

mann).
• Enforce that all tables in a MERGE table come from the same database.
• Fixed bug with LOAD DATA INFILE and transactional tables.
• Fix bug when using INSERT DELAYED with wrong column definition.
• Fixed core dump during REPAIR of some particularly broken tables.
• Fixed bug in InnoDB and AUTO_INCREMENT columns.
• Fixed bug in InnoDB and RENAME TABLE columns.
• Fixed critical bug in InnoDB and BLOB columns. If you have used BLOB columns larger

than 8000 bytes in an InnoDB table, it is necessary to dump the table with mysqldump,
drop it and restore it from the dump.

• Applied large patch for OS/2 from Yuri Dario.
• Fixed problem with InnoDB when one could get the error Can’t execute the given

command... even when no transaction was active.
• Applied some minor fixes that concern Gemini.
• Use real arithmetic operations even in integer context if not all arguments are integers.

(Fixes uncommon bug in some integer contexts).

938 MySQL Technical Reference for Version 4.1.1-alpha

• Don’t force everything to lowercase on Windows. (To fix problem with Windows and
ALTER TABLE). Now --lower_case_names also works on Unix.

• Fixed that automatic rollback is done when thread end doesn’t lock other threads.

D.4.19 Changes in release 3.23.41 (11 Aug 2001)

• Added --sql-mode=value[,value[,value]] option to mysqld. See Section 4.1.1
[Command-line options], page 195.

• Fixed possible problem with shutdown on Solaris where the ‘.pid’ file wasn’t deleted.
• InnoDB now supports < 4 GB rows. The former limit was 8000 bytes.
• The doublewrite file flush method is used in InnoDB. It reduces the need for Unix

fsync() calls to a fraction and improves performance on most Unix flavors.
• You can now use the InnoDB Monitor to print a lot of InnoDB state information, in-

cluding locks, to the standard output. This is useful in performance tuning.
• Several bugs which could cause hangs in InnoDB have been fixed.
• Split record_buffer to record_buffer and record_rnd_buffer. To make things

compatible to previous MySQL versions, if record_rnd_buffer is not set, then it
takes the value of record_buffer.

• Fixed optimising bug in ORDER BY where some ORDER BY parts where wrongly removed.
• Fixed overflow bug with ALTER TABLE and MERGE tables.
• Added prototypes for my_thread_init() and my_thread_end() to ‘mysql_com.h’
• Added --safe-user-create option to mysqld.
• Fixed bug in SELECT DISTINCT ... HAVING that caused error message Can’t find

record in #...

D.4.20 Changes in release 3.23.40

• Fixed problem with --low-priority-updates and INSERT statements.
• Fixed bug in slave thread when under some rare circumstances it could get 22 bytes

ahead on the offset in the master.
• Added slave_net_timeout for replication.
• Fixed problem with UPDATE and BDB tables.
• Fixed hard bug in BDB tables when using key parts.
• Fixed problem when using GRANT FILE ON database.* ...; previously we added the

DROP privilege for the database.
• Fixed DELETE FROM tbl_name ... LIMIT 0 and UPDATE FROM tbl_name ... LIMIT 0,

which acted as though the LIMIT clause was not present (they deleted or updated
all selected rows).

• CHECK TABLE now checks if an AUTO_INCREMENT column contains the value 0.
• Sending a SIGHUP to mysqld will now only flush the logs, not reset the replication.
• Fixed parser to allow floats of type 1.0e1 (no sign after e).
• Option --force to myisamchk now also updates states.

Appendix D: MySQL Change History 939

• Added option --warnings to mysqld. Now mysqld prints the error Aborted
connection only if this option is used.

• Fixed problem with SHOW CREATE TABLE when you didn’t have a PRIMARY KEY.
• Properly fixed the rename of innodb_unix_file_flush_method variable to innodb_

flush_method.
• Fixed bug when converting BIGINT UNSIGNED to DOUBLE. This caused a problem when

doing comparisons with BIGINT values outside of the signed range.
• Fixed bug in BDB tables when querying empty tables.
• Fixed a bug when using COUNT(DISTINCT) with LEFT JOIN and there weren’t any

matching rows.
• Removed all documentation referring to the GEMINI table type. GEMINI is not released

under an Open Source license.

D.4.21 Changes in release 3.23.39 (12 Jun 2001)

• The AUTO_INCREMENT sequence wasn’t reset when dropping and adding an
AUTO_INCREMENT column.

• CREATE ... SELECT now creates non-unique indexes delayed.
• Fixed problem where LOCK TABLES tbl_name READ followed by FLUSH TABLES put an

exclusive lock on the table.
• REAL @variable values were represented with only 2 digits when converted to strings.
• Fixed problem that client “hung” when LOAD TABLE FROM MASTER failed.
• myisamchk --fast --force will no longer repair tables that only had the open count

wrong.
• Added functions to handle symbolic links to make life easier in 4.0.
• We are now using the -lcma thread library on HP-UX 10.20 so that MySQL will be

more stable on HP-UX.
• Fixed problem with IF() and number of decimals in the result.
• Fixed date-part extraction functions to work with dates where day and/or month is 0.
• Extended argument length in option files from 256 to 512 chars.
• Fixed problem with shutdown when INSERT DELAYED was waiting for a LOCK TABLE.
• Fixed core dump bug in InnoDB when tablespace was full.
• Fixed problem with MERGE tables and big tables (> 4G) when using ORDER BY.

D.4.22 Changes in release 3.23.38 (09 May 2001)

• Fixed a bug when SELECT from MERGE table sometimes results in incorrectly ordered
rows.

• Fixed a bug in REPLACE() when using the ujis character set.
• Applied Sleepycat BDB patches 3.2.9.1 and 3.2.9.2.
• Added --skip-stack-trace option to mysqld.
• CREATE TEMPORARY now works with InnoDB tables.

940 MySQL Technical Reference for Version 4.1.1-alpha

• InnoDB now promotes sub keys to whole keys.
• Added option CONCURRENT to LOAD DATA.
• Better error message when slave max_allowed_packet is too low to read a very long

log event from the master.
• Fixed bug when too many rows where removed when using SELECT DISTINCT ...

HAVING.
• SHOW CREATE TABLE now returns TEMPORARY for temporary tables.
• Added Rows_examined to slow query log.
• Fixed problems with function returning empty string when used together with a group

function and a WHERE that didn’t match any rows.
• New program mysqlcheck.
• Added database name to output for administrative commands like CHECK, REPAIR,

OPTIMIZE.
• Lots of portability fixes for InnoDB.
• Changed optimiser so that queries like SELECT * FROM tbl_name,tbl_name2 ... ORDER

BY key_part1 LIMIT row_count will use index on key_part1 instead of filesort.
• Fixed bug when doing LOCK TABLE to_table WRITE,...; INSERT INTO to_table...

SELECT ... when to_table was empty.
• Fixed bug with LOCK TABLE and BDB tables.

D.4.23 Changes in release 3.23.37 (17 Apr 2001)

• Fixed a bug when using MATCH() in HAVING clause.
• Fixed a bug when using HEAP tables with LIKE.
• Added --mysql-version option to safe_mysqld

• Changed INNOBASE to InnoDB (because the INNOBASE name was already used). All
configure options and mysqld start options now use innodb instead of innobase.
This means that before upgrading to this version, you have to change any configuration
files where you have used innobase options!

• Fixed bug when using indexes on CHAR(255) NULL columns.
• Slave thread will now be started even if master-host is not set, as long as server-id

is set and valid ‘master.info’ is present.
• Partial updates (terminated with kill) are now logged with a special error code to the

binary log. Slave will refuse to execute them if the error code indicates the update
was terminated abnormally, and will have to be recovered with SET SQL_SLAVE_SKIP_
COUNTER=1; SLAVE START after a manual sanity check/correction of data integrity.

• Fixed bug that erroneously logged a drop of internal temporary table on thread termi-
nation to the binary log — this bug affected replication.

• Fixed a bug in REGEXP on 64-bit machines.
• UPDATE and DELETE with WHERE unique_key_part IS NULL didn’t update/delete all

rows.
• Disabled INSERT DELAYED for tables that support transactions.

Appendix D: MySQL Change History 941

• Fixed bug when using date functions on TEXT/BLOB column with wrong date format.
• UDFs now also work on Windows. (Patch by Ralph Mason.)
• Fixed bug in ALTER TABLE and LOAD DATA INFILE that disabled key-sorting. These

commands should now be faster in most cases.
• Fixed performance bug where reopened tables (tables that had been waiting for FLUSH

or REPAIR) would not use indexes for the next query.
• Fixed problem with ALTER TABLE to InnoDB tables on FreeBSD.
• Added mysqld variables myisam_max_sort_file_size and myisam_max_extra_sort_

file_size.
• Initialise signals early to avoid problem with signals in InnoDB.
• Applied patch for the tis620 character set to make comparisons case-independent and

to fix a bug in LIKE for this character set. Note: All tables that uses the tis620
character set must be fixed with myisamchk -r or REPAIR TABLE !

• Added --skip-safemalloc option to mysqld.

D.4.24 Changes in release 3.23.36 (27 Mar 2001)

• Fixed a bug that allowed use of database names containing a ‘.’ character. This fixes
a serious security issue when mysqld is run as root.

• Fixed bug when thread creation failed (could happen when doing a lot of connections
in a short time).

• Fixed some problems with FLUSH TABLES and TEMPORARY tables. (Problem with freeing
the key cache and error Can’t reopen table....)

• Fixed a problem in InnoDB with other character sets than latin1 and another problem
when using many columns.

• Fixed bug that caused a core dump when using a very complex query involving
DISTINCT and summary functions.

• Added SET TRANSACTION ISOLATION LEVEL ...

• Added SELECT ... FOR UPDATE.
• Fixed bug where the number of affected rows was not returned when MySQL was

compiled without transaction support.
• Fixed a bug in UPDATE where keys weren’t always used to find the rows to be updated.
• Fixed a bug in CONCAT_WS() where it returned incorrect results.
• Changed CREATE ... SELECT and INSERT ... SELECT to not allow concurrent inserts

as this could make the binary log hard to repeat. (Concurrent inserts are enabled if
you are not using the binary or update log.)

• Changed some macros to be able to use fast mutex with glibc 2.2.

D.4.25 Changes in release 3.23.35 (15 Mar 2001)

• Fixed newly introduced bug in ORDER BY.
• Fixed wrong define CLIENT_TRANSACTIONS.

942 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed bug in SHOW VARIABLES when using INNOBASE tables.

• Setting and using user variables in SELECT DISTINCT didn’t work.

• Tuned SHOW ANALYZE for small tables.

• Fixed handling of arguments in the benchmark script run-all-tests.

D.4.26 Changes in release 3.23.34a

• Added extra files to the distribution to allow INNOBASE support to be compiled.

D.4.27 Changes in release 3.23.34 (10 Mar 2001)

• Added the INNOBASE storage engine and the BDB storage engine to the MySQL source
distribution.

• Updated the documentation about GEMINI tables.

• Fixed a bug in INSERT DELAYED that caused threads to hang when inserting NULL into
an AUTO_INCREMENT column.

• Fixed a bug in CHECK TABLE / REPAIR TABLE that could cause a thread to hang.

• REPLACE will not replace a row that conflicts with an AUTO_INCREMENT generated key.

• mysqld now only sets CLIENT_TRANSACTIONS in mysql->server_capabilities if the
server supports a transaction-safe storage engine.

• Fixed LOAD DATA INFILE to allow numeric values to be read into ENUM and SET columns.

• Improved error diagnostic for slave thread exit.

• Fixed bug in ALTER TABLE ... ORDER BY.

• Added max_user_connections variable to mysqld.

• Limit query length for replication by max_allowed_packet, not the arbitrary limit of
4 MB.

• Allow space around = in argument to --set-variable.

• Fixed problem in automatic repair that could leave some threads in state Waiting for
table.

• SHOW CREATE TABLE now displays the UNION=() for MERGE tables.

• ALTER TABLE now remembers the old UNION=() definition.

• Fixed bug when replicating timestamps.

• Fixed bug in bidirectional replication.

• Fixed bug in the BDB storage engine that occurred when using an index on multi-part
key where a key part may be NULL.

• Fixed MAX() optimisation on sub-key for BDB tables.

• Fixed problem where garbage results were returned when using BDB tables and BLOB
or TEXT fields when joining many tables.

• Fixed a problem with BDB tables and TEXT columns.

• Fixed bug when using a BLOB key where a const row wasn’t found.

Appendix D: MySQL Change History 943

• Fixed that mysqlbinlog writes the timestamp value for each query. This ensures that
one gets same values for date functions like NOW() when using mysqlbinlog to pipe
the queries to another server.

• Allow --skip-gemini, --skip-bdb, and --skip-innodb options to be specified when
invoking mysqld, even if these storage engines are not compiled in to mysqld.

• One can now do GROUP BY ... DESC.
• Fixed a deadlock in the SET code, when one ran SET @foo=bar, where bar is a column

reference, an error was not properly generated.

D.4.28 Changes in release 3.23.33 (09 Feb 2001)

• Fixed DNS lookups not to use the same mutex as the hostname cache. This will enable
known hosts to be quickly resolved even if a DNS lookup takes a long time.

• Added --character-sets-dir option to myisampack.
• Removed warnings when running REPAIR TABLE ... EXTENDED.
• Fixed a bug that caused a core dump when using GROUP BY on an alias, where the alias

was the same as an existing column name.
• Added SEQUENCE() as an example UDF function.
• Changed mysql_install_db to use BINARY for CHAR columns in the privilege tables.
• Changed TRUNCATE tbl_name to TRUNCATE TABLE tbl_name to use the same syntax as

Oracle. Until 4.0 we will also allow TRUNCATE tbl_name to not crash old code.
• Fixed “no found rows” bug in MyISAM tables when a BLOB was first part of a multi-part

key.
• Fixed bug where CASE didn’t work with GROUP BY.
• Added --sort-recover option to myisamchk.
• myisamchk -S and OPTIMIZE TABLE now work on Windows.
• Fixed bug when using DISTINCT on results from functions that referred to a group

function, like:
SELECT a, DISTINCT SEC_TO_TIME(SUM(a))
FROM tbl_name GROUP BY a, b;

• Fixed buffer overrun in libmysqlclient library. Fixed bug in handling STOP event
after ROTATE event in replication.

• Fixed another buffer overrun in DROP DATABASE.
• Added Table_locks_immediate and Table_locks_waited status variables.
• Fixed bug in replication that broke slave server start with existing ‘master.info’. This

fixes a bug introduced in 3.23.32.
• Added SET SQL_SLAVE_SKIP_COUNTER=n command to recover from replication glitches

without a full database copy.
• Added max_binlog_size variable; the binary log will be rotated automatically when

the size crosses the limit.
• Added Last_error, Last_errno, and Slave_skip_counter variables to SHOW SLAVE

STATUS.

944 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed bug in MASTER_POS_WAIT() function.
• Execute core dump handler on SIGILL, and SIGBUS in addition to SIGSEGV.
• On x86 Linux, print the current query and thread (connection) id, if available, in the

core dump handler.
• Fixed several timing bugs in the test suite.
• Extended mysqltest to take care of the timing issues in the test suite.
• ALTER TABLE can now be used to change the definition for a MERGE table.
• Fixed creation of MERGE tables on Windows.
• Portability fixes for OpenBSD and OS/2.
• Added --temp-pool option to mysqld. Using this option will cause most temporary

files created to use a small set of names, rather than a unique name for each new file.
This is to work around a problem in the Linux kernel dealing with creating a bunch of
new files with different names. With the old behaviour, Linux seems to "leak" memory,
as it’s being allocated to the directory entry cache instead of the disk cache.

D.4.29 Changes in release 3.23.32 (22 Jan 2001: Production)

• Changed code to get around compiler bug in Compaq C++ on OSF/1, that broke
BACKUP, RESTORE, CHECK, REPAIR, and ANALYZE TABLE.

• Added option FULL to SHOW COLUMNS. Now we show the privilege list for the columns
only if this option is given.

• Fixed bug in SHOW LOGS when there weren’t any BDB logs.
• Fixed a timing problem in replication that could delay sending an update to the client

until a new update was done.
• Don’t convert field names when using mysql_list_fields(). This is to keep this code

compatible with SHOW FIELDS.
• MERGE tables didn’t work on Windows.
• Fixed problem with SET PASSWORD=... on Windows.
• Added missing ‘my_config.h’ to RPM distribution.
• TRIM("foo" from "foo") didn’t return an empty string.
• Added --with-version-suffix option to configure.
• Fixed core dump when client aborted connection without mysql_close().
• Fixed a bug in RESTORE TABLE when trying to restore from a non-existent directory.
• Fixed a bug which caused a core dump on the slave when replicating SET PASSWORD.
• Added MASTER_POS_WAIT().

D.4.30 Changes in release 3.23.31 (17 Jan 2001)

• The test suite now tests all reachable BDB interface code. During testing we found and
fixed many errors in the interface code.

• Using HAVING on an empty table could produce one result row when it shouldn’t.
• Fixed the MySQL RPM so it no longer depends on Perl5.

Appendix D: MySQL Change History 945

• Fixed some problems with HEAP tables on Windows.
• SHOW TABLE STATUS didn’t show correct average row length for tables larger than 4G.
• CHECK TABLE ... EXTENDED didn’t check row links for fixed size tables.
• Added option MEDIUM to CHECK TABLE.
• Fixed problem when using DECIMAL() keys on negative numbers.
• HOUR() (and some other TIME functions) on a CHAR column always returned NULL.
• Fixed security bug in something (please upgrade if you are using an earlier MySQL

3.23 version).
• Fixed buffer overflow bug when writing a certain error message.
• Added usage of setrlimit() on Linux to get -O --open-files-limit=# to work on

Linux.
• Added bdb_version variable to mysqld.
• Fixed bug when using expression of type:

SELECT ... FROM t1 LEFT JOIN t2 ON (t1.a=t2.a) WHERE t1.a=t2.a

In this case the test in the WHERE clause was wrongly optimised away.
• Fixed bug in MyISAM when deleting keys with possible NULL values, but the first key-

column was not a prefix-compressed text column.
• Fixed mysql.server to read the [mysql.server] option file group rather than the

[mysql_server] group.
• Fixed safe_mysqld and mysql.server to also read the server option section.
• Added Threads_created status variable to mysqld.

D.4.31 Changes in release 3.23.30 (04 Jan 2001)

• Added SHOW OPEN TABLES command.
• Fixed that myisamdump works against old mysqld servers.
• Fixed myisamchk -k# so that it works again.
• Fixed a problem with replication when the binary log file went over 2G on 32-bit

systems.
• LOCK TABLES will now automatically start a new transaction.
• Changed BDB tables to not use internal subtransactions and reuse open files to get more

speed.
• Added --mysqld=# option to safe_mysqld.
• Allow hex constants in the --fields-*-by and --lines-terminated-by options to

mysqldump and mysqlimport. By Paul DuBois.
• Added --safe-show-database option to mysqld.
• Added have_bdb, have_gemini, have_innobase, have_raid and have_openssl to

SHOW VARIABLES to make it easy to test for supported extensions.
• Added --open-files-limit option to mysqld.
• Changed --open-files option to --open-files-limit in safe_mysqld.
• Fixed a bug where some rows were not found with HEAP tables that had many keys.

946 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed that --bdb-no-sync works.
• Changed --bdb-recover to --bdb-no-recover as recover should be on by default.
• Changed the default number of BDB locks to 10000.
• Fixed a bug from 3.23.29 when allocating the shared structure needed for BDB tables.
• Changed mysqld_multi.sh to use configure variables. Patch by Christopher McCrory.
• Added fixing of include files for Solaris 2.8.
• Fixed bug with --skip-networking on Debian Linux.
• Fixed problem that some temporary files where reported as having the name UNOPENED

in error messages.
• Fixed bug when running two simultaneous SHOW LOGS queries.

D.4.32 Changes in release 3.23.29 (16 Dec 2000)

• Configure updates for Tru64, large file support, and better TCP wrapper support. By
Albert Chin-A-Young.

• Fixed bug in <=> operator.
• Fixed bug in REPLACE with BDB tables.
• LPAD() and RPAD() will shorten the result string if it’s longer than the length argument.
• Added SHOW LOGS command.
• Remove unused BDB logs on shutdown.
• When creating a table, put PRIMARY keys first, followed by UNIQUE keys.
• Fixed a bug in UPDATE involving multi-part keys where one specified all key parts both

in the update and the WHERE part. In this case MySQL could try to update a record
that didn’t match the whole WHERE part.

• Changed drop table to first drop the tables and then the ‘.frm’ file.
• Fixed a bug in the hostname cache which caused mysqld to report the hostname as ’’

in some error messages.
• Fixed a bug with HEAP type tables; the variable max_heap_table_size wasn’t used.

Now either MAX_ROWS or max_heap_table_size can be used to limit the size of a HEAP
type table.

• Changed the default server-id to 1 for masters and 2 for slaves to make it easier to use
the binary log.

• Renamed bdb_lock_max variable to bdb_max_lock.
• Added support for AUTO_INCREMENT on sub-fields for BDB tables.
• Added ANALYZE of BDB tables.
• In BDB tables, we now store the number of rows; this helps to optimise queries when

we need an approximation of the number of rows.
• If we get an error in a multi-row statement, we now only roll back the last statement,

not the entire transaction.
• If you do a ROLLBACK when you have updated a non-transactional table you will get an

error as a warning.

Appendix D: MySQL Change History 947

• Added --bdb-shared-data option to mysqld.
• Added Slave_open_temp_tables status variable to mysqld

• Added binlog_cache_size and max_binlog_cache_size variables to mysqld.
• DROP TABLE, RENAME TABLE, CREATE INDEX and DROP INDEX are now transaction end-

points.
• If you do a DROP DATABASE on a symbolically linked database, both the link and the

original database is deleted.
• Fixed DROP DATABASE to work on OS/2.
• Fixed bug when doing a SELECT DISTINCT ... table1 LEFT JOIN table2 ... when

table2 was empty.
• Added --abort-slave-event-count and --disconnect-slave-event-count options

to mysqld for debugging and testing of replication.
• Fixed replication of temporary tables. Handles everything except slave server restart.
• SHOW KEYS now shows whether key is FULLTEXT.
• New script mysqld_multi. See Section 4.8.3 [mysqld_multi], page 313.
• Added new script, mysql-multi.server.sh. Thanks to Tim Bunce

Tim.Bunce@ig.co.uk for modifying mysql.server to easily handle hosts
running many mysqld processes.

• safe_mysqld, mysql.server, and mysql_install_db have been modified to use
mysql_print_defaults instead of various hacks to read the ‘my.cnf’ files. In
addition, the handling of various paths has been made more consistent with how
mysqld handles them by default.

• Automatically remove Berkeley DB transaction logs that no longer are in use.
• Fixed bug with several FULLTEXT indexes in one table.
• Added a warning if number of rows changes on REPAIR/OPTIMIZE.
• Applied patches for OS/2 by Yuri Dario.
• FLUSH TABLES tbl_name didn’t always flush the index tree to disk properly.
• --bootstrap is now run in a separate thread. This fixes a problem that caused mysql_

install_db to core dump on some Linux machines.
• Changed mi_create() to use less stack space.
• Fixed bug with optimiser trying to over-optimise MATCH() when used with UNIQUE key.
• Changed crash-me and the MySQL benchmarks to also work with FrontBase.
• Allow RESTRICT and CASCADE after DROP TABLE to make porting easier.
• Reset status variable which could cause problem if one used --slow-log.
• Added connect_timeout variable to mysql and mysqladmin.
• Added connect-timeout as an alias for timeout for option files read by mysql_

options().

D.4.33 Changes in release 3.23.28 (22 Nov 2000: Gamma)

• Added new options --pager[=...], --no-pager, --tee=... and --no-tee to the
mysql client. The new corresponding interactive commands are pager, nopager, tee

948 MySQL Technical Reference for Version 4.1.1-alpha

and notee. See Section 4.9.2 [mysql], page 327, mysql --help and the interactive help
for more information.

• Fixed crash when automatic repair of MyISAM table failed.
• Fixed a major performance bug in the table locking code when one constantly had a

lot of SELECT, UPDATE and INSERT statements running. The symptom was that the
UPDATE and INSERT queries were locked for a long time while new SELECT statements
were executed before the updates.

• When reading options_files with mysql_options() the return-found-rows option
was ignored.

• One can now specify interactive-timeout in the option file that is read by mysql_
options(). This makes it possible to force programs that run for a long time (like
mysqlhotcopy) to use the interactive_timeout time instead of the wait_timeout
time.

• Added to the slow query log the time and the user name for each logged query. If you
are using --log-long-format then also queries that do not use an index are logged,
even if the query takes less than long_query_time seconds.

• Fixed a problem in LEFT JOIN which caused all columns in a reference table to be NULL.
• Fixed a problem when using NATURAL JOIN without keys.
• Fixed a bug when using a multi-part keys where the first part was of type TEXT or

BLOB.
• DROP of temporary tables wasn’t stored in the update/binary log.
• Fixed a bug where SELECT DISTINCT * ... LIMIT row_count only returned one row.
• Fixed a bug in the assembler code in strstr() for SPARC and cleaned up the

‘global.h’ header file to avoid a problem with bad aliasing with the compiler
submitted with Red Hat 7.0. (Reported by Trond Eivind Glomsrød)

• The --skip-networking option now works properly on NT.
• Fixed a long outstanding bug in the ISAM tables when a row with a length of more

than 65K was shortened by a single byte.
• Fixed a bug in MyISAM when running multiple updating processes on the same table.
• Allow one to use FLUSH TABLE tbl_name.
• Added --replicate-ignore-table, --replicate-do-table, --replicate-wild-

ignore-table, and --replicate-wild-do-table options to mysqld.
• Changed all log files to use our own IO_CACHE mechanism instead of FILE to avoid OS

problems when there are many files open.
• Added --open-files and --timezone options to safe_mysqld.
• Fixed a fatal bug in CREATE TEMPORARY TABLE ... SELECT
• Fixed a problem with CREATE TABLE ... SELECT NULL.
• Added variables large_file_support,net_read_timeout, net_write_timeout and

query_buffer_size to SHOW VARIABLES.
• Added status variables created_tmp_files and sort_merge_passes to SHOW STATUS.
• Fixed a bug where we didn’t allow an index name after the FOREIGN KEY definition.
• Added TRUNCATE table_name as a synonym for DELETE FROM table_name.

Appendix D: MySQL Change History 949

• Fixed a bug in a BDB key compare function when comparing part keys.
• Added bdb_lock_max variable to mysqld.
• Added more tests to the benchmark suite.
• Fixed an overflow bug in the client code when using overly long database names.
• mysql_connect() now aborts on Linux if the server doesn’t answer in timeout seconds.
• SLAVE START did not work if you started with --skip-slave-start and had not ex-

plicitly run CHANGE MASTER TO.
• Fixed the output of SHOW MASTER STATUS to be consistent with SHOW SLAVE STATUS. (It

now has no directory in the log name.)
• Added PURGE MASTER LOGS TO.
• Added SHOW MASTER LOGS.
• Added --safemalloc-mem-limit option to mysqld to simulate memory shortage when

compiled with the --with-debug=full option.
• Fixed several core dumps in out-of-memory conditions.
• SHOW SLAVE STATUS was using an uninitialised mutex if the slave had not been started

yet.
• Fixed bug in ELT() and MAKE_SET() when the query used a temporary table.
• CHANGE MASTER TO without specifying MASTER_LOG_POS would set it to 0 instead of 4

and hit the magic number in the master binlog.
• ALTER TABLE ... ORDER BY ... syntax added. This will create the new table with the

rows in a specific order.

D.4.34 Changes in release 3.23.27 (24 Oct 2000)

• Fixed a bug where the automatic repair of MyISAM tables sometimes failed when the
datafile was corrupt.

• Fixed a bug in SHOW CREATE when using AUTO_INCREMENT columns.
• Changed BDB tables to use new compare function in Berkeley DB 3.2.3.
• You can now use Unix sockets with MIT-pthreads.
• Added the latin5 (turkish) character set.
• Small portability fixes.

D.4.35 Changes in release 3.23.26 (18 Oct 2000)

• Renamed FLUSH MASTER and FLUSH SLAVE to RESET MASTER and RESET SLAVE.
• Fixed <> to work properly with NULL.
• Fixed a problem with SUBSTRING_INDEX() and REPLACE(). (Patch by Alexander Igo-

nitchev)
• Fix CREATE TEMPORARY TABLE IF NOT EXISTS not to produce an error if the table exists.
• If you don’t create a PRIMARY KEY in a BDB table, a hidden PRIMARY KEY will be created.
• Added read-only-key optimisation to BDB tables.

950 MySQL Technical Reference for Version 4.1.1-alpha

• LEFT JOIN in some cases preferred a full table scan when there was no WHERE clause.
• When using --log-slow-queries, don’t count the time waiting for a lock.
• Fixed bug in lock code on Windows which could cause the key cache to report that the

key file was crashed even if it was okay.
• Automatic repair of MyISAM tables if you start mysqld with --myisam-recover.
• Removed the TYPE= keyword from CHECK and REPAIR. Allow CHECK options to be

combined. (You can still use TYPE=, but this usage is deprecated.)
• Fixed mutex bug in the binary replication log — long update queries could be read

only in part by the slave if it did it at the wrong time, which was not fatal, but resulted
in a performance-degrading reconnect and a scary message in the error log.

• Changed the format of the binary log — added magic number, server version, binlog
version. Added the server ID and query error code for each query event.

• Replication thread from the slave now will kill all the stale threads from the same
server.

• Long replication user names were not being handled properly.
• Added --replicate-rewrite-db option to mysqld.
• Added --skip-slave-start option to mysqld.
• Updates that generated an error code (such as INSERT INTO foo(some_key) values

(1),(1)) erroneously terminated the slave thread.
• Added optimisation of queries where DISTINCT is only used on columns from some of

the tables.
• Allow floating-point numbers where there is no sign after the exponent (like 1e1).
• SHOW GRANTS didn’t always show all column grants.
• Added --default-extra-file=# option to all MySQL clients.
• Columns referenced in INSERT statements now are initialised properly.
• UPDATE didn’t always work when used with a range on a timestamp that was part of

the key that was used to find rows.
• Fixed a bug in FULLTEXT index when inserting a NULL column.
• Changed to use mkstemp() instead of tempnam(). Based on a patch from John Jones.

D.4.36 Changes in release 3.23.25 (29 Sep 2000)

• Fixed that databasename works as second argument to mysqlhotcopy.
• The values for the UMASK and UMASK_DIR environment variables now can be specified

in octal by beginning the value with a zero.
• Added RIGHT JOIN. This makes RIGHT a reserved word.
• Added @@IDENTITY as a synonym for LAST_INSERT_ID(). (This is for MSSQL com-

patibility.)
• Fixed a bug in myisamchk and REPAIR when using FULLTEXT index.
• LOAD DATA INFILE now works with FIFOs. (Patch by Toni L. Harbaugh-Blackford.)
• FLUSH LOGS broke replication if you specified a log name with an explicit extension as

the value of the log-bin option.

Appendix D: MySQL Change History 951

• Fixed a bug in MyISAM with packed multi-part keys.
• Fixed crash when using CHECK TABLE on Windows.
• Fixed a bug where FULLTEXT index always used the koi8_ukr character set.
• Fixed privilege checking for CHECK TABLE.
• The MyISAM repair/reindex code didn’t use the --tmpdir option for its temporary files.
• Added BACKUP TABLE and RESTORE TABLE.
• Fixed core dump on CHANGE MASTER TO when the slave did not have the master to start

with.
• Fixed incorrect Time in the processlist for Connect of the slave thread.
• The slave now logs when it connects to the master.
• Fixed a core dump bug when doing FLUSH MASTER if you didn’t specify a filename

argument to --log-bin.
• Added missing ‘ha_berkeley.x’ files to the MySQL Windows distribution.
• Fixed some mutex bugs in the log code that could cause thread blocks if new log files

couldn’t be created.
• Added lock time and number of selected processed rows to slow query log.
• Added --memlock option to mysqld to lock mysqld in memory on systems with the

mlockall() call (as in Solaris).
• HEAP tables didn’t use keys properly. (Bug from 3.23.23.)
• Added better support for MERGE tables (keys, mapping, creation, documentation...).

See Section 7.2 [MERGE], page 600.
• Fixed bug in mysqldump from 3.23 which caused some CHAR columns not to be quoted.
• Merged analyze, check, optimize and repair code.
• OPTIMIZE TABLE is now mapped to REPAIR with statistics and sorting of the index tree.

This means that for the moment it only works on MyISAM tables.
• Added a pre-alloced block to root malloc to get fewer mallocs.
• Added a lot of new statistics variables.
• Fixed ORDER BY bug with BDB tables.
• Removed warning that mysqld couldn’t remove the ‘.pid’ file under Windows.
• Changed --log-isam to log MyISAM tables instead of isam tables.
• Fixed CHECK TABLE to work on Windows.
• Added file mutexes to make pwrite() safe on Windows.

D.4.37 Changes in release 3.23.24 (08 Sep 2000)

• Added created_tmp_disk_tables variable to mysqld.
• To make it possible to reliably dump and restore tables with TIMESTAMP(X) columns,

MySQL now reports columns with X other than 14 or 8 to be strings.
• Changed sort order for latin1 as it was before MySQL Version 3.23.23. Any table

that was created or modified with 3.23.22 must be repaired if it has CHAR columns that
may contain characters with ASCII values greater than 128!

952 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed small memory leak introduced from 3.23.22 when creating a temporary table.
• Fixed problem with BDB tables and reading on a unique (not primary) key.
• Restored the win1251 character set (it’s now only marked deprecated).

D.4.38 Changes in release 3.23.23 (01 Sep 2000)

• Changed sort order for ’German’; all tables created with ’German’ sortorder must be
repaired with REPAIR TABLE or myisamchk before use!

• Added --core-file option to mysqld to get a core file on Linux if mysqld dies on the
SIGSEGV signal.

• MySQL client mysql now starts with option --no-named-commands (-g) by default.
This option can be disabled with --enable-named-commands (-G). This may cause
incompatibility problems in some cases, for example, in SQL scripts that use named
commands without a semicolon, etc.! Long format commands still work from the first
line.

• Fixed a problem when using many pending DROP TABLE statements at the same time.
• Optimiser didn’t use keys properly when using LEFT JOIN on an empty table.
• Added shorter help text when invoking mysqld with incorrect options.
• Fixed non-fatal free() bug in mysqlimport.
• Fixed bug in MyISAM index handling of DECIMAL/NUMERIC keys.
• Fixed a bug in concurrent insert in MyISAM tables. In some contexts, usage of MIN(key_

part) or MAX(key_part) returned an empty set.
• Updated mysqlhotcopy to use the new FLUSH TABLES table_list syntax. Only tables

which are being backed up are flushed now.
• Changed behaviour of --enable-thread-safe-client so that both non-threaded (-

lmysqlclient) and threaded (-lmysqlclient_r) libraries are built. Users who linked
against a threaded -lmysqlclient will need to link against -lmysqlclient_r now.

• Added atomic RENAME TABLE command.
• Don’t count NULL values in COUNT(DISTINCT ...).
• Changed ALTER TABLE, LOAD DATA INFILE on empty tables and INSERT ... SELECT

... on empty tables to create non-unique indexes in a separate batch with sorting.
This will make the above calls much faster when you have many indexes.

• ALTER TABLE now logs the first used insert id correctly.
• Fixed crash when adding a default value to a BLOB column.
• Fixed a bug with DATE_ADD/DATE_SUB where it returned a datetime instead of a date.
• Fixed a problem with the thread cache which made some threads show up as

DEAD in SHOW PROCESSLIST.
• Fixed a lock in our thr rwlock code, which could make selects that run at the same time

as concurrent inserts crash. This only affects systems that don’t have the pthread_
rwlock_rdlock code.

• When deleting rows with a non-unique key in a HEAP table, all rows weren’t always
deleted.

Appendix D: MySQL Change History 953

• Fixed bug in range optimiser for HEAP tables for searches on a part index.
• Fixed SELECT on part keys to work with BDB tables.
• Fixed INSERT INTO bdb_table ... SELECT to work with BDB tables.
• CHECK TABLE now updates key statistics for the table.
• ANALYZE TABLE will now only update tables that have been changed since the last

ANALYZE. Note that this is a new feature and tables will not be marked to be analysed
until they are updated in any way with 3.23.23 or newer. For older tables, you have to
do CHECK TABLE to update the key distribution.

• Fixed some minor privilege problems with CHECK, ANALYZE, REPAIR and SHOW CREATE
commands.

• Added CHANGE MASTER TO statement.
• Added FAST, QUICK EXTENDED check types to CHECK TABLES.
• Changed myisamchk so that --fast and --check-only-changed are also honored with

--sort-index and --analyze.
• Fixed fatal bug in LOAD TABLE FROM MASTER that did not lock the table during index

re-build.
• LOAD DATA INFILE broke replication if the database was excluded from replication.
• More variables in SHOW SLAVE STATUS and SHOW MASTER STATUS.
• SLAVE STOP now will not return until the slave thread actually exits.
• Full-text search via the MATCH() function and FULLTEXT index type (for MyISAM files).

This makes FULLTEXT a reserved word.

D.4.39 Changes in release 3.23.22 (31 Jul 2000)

• Fixed that lex_hash.h is created properly for each MySQL distribution.
• Fixed that MASTER and COLLECTION are not reserved words.
• The log generated by --slow-query-log didn’t contain the whole queries.
• Fixed that open transactions in BDB tables are rolled back if the connection is closed

unexpectedly.
• Added workaround for a bug in gcc 2.96 (intel) and gcc 2.9 (IA-64) in gen_lex_hash.c.
• Fixed memory leak in the client library when using host= in the ‘my.cnf’ file.
• Optimised functions that manipulate the hours/minutes/seconds.
• Fixed bug when comparing the result of DATE_ADD()/DATE_SUB() against a number.
• Changed the meaning of -F, --fast for myisamchk. Added -C, --check-only-

changed option to myisamchk.
• Added ANALYZE tbl_name to update key statistics for tables.
• Changed binary items 0x... to be regarded as integers by default.
• Fix for SCO and SHOW PROCESSLIST.
• Added auto-rehash on reconnect for the mysql client.
• Fixed a newly introduced bug in MyISAM, where the index file couldn’t get bigger than

64M.
• Added SHOW MASTER STATUS and SHOW SLAVE STATUS.

954 MySQL Technical Reference for Version 4.1.1-alpha

D.4.40 Changes in release 3.23.21

• Added mysql_character_set_name() function to the MySQL C API.
• Made the update log ASCII 0 safe.
• Added the mysql_config script.
• Fixed problem when using < or > with a char column that was only partly indexed.
• One would get a core dump if the log file was not readable by the MySQL user.
• Changed mysqladmin to use CREATE DATABASE and DROP DATABASE statements instead

of the old deprecated API calls.
• Fixed chown warning in safe_mysqld.
• Fixed a bug in ORDER BY that was introduced in 3.23.19.
• Only optimise the DELETE FROM tbl_name to do a drop+create of the table if we are in

AUTOCOMMIT mode (needed for BDB tables).
• Added extra checks to avoid index corruption when the ISAM/MyISAM index files get

full during an INSERT/UPDATE.
• myisamchk didn’t correctly update row checksum when used with -ro (this only gave

a warning in subsequent runs).
• Fixed bug in REPAIR TABLE so that it works with tables without indexes.
• Fixed buffer overrun in DROP DATABASE.
• LOAD TABLE FROM MASTER is sufficiently bug-free to announce it as a feature.
• MATCH and AGAINST are now reserved words.

D.4.41 Changes in release 3.23.20

• Fixed bug in 3.23.19; DELETE FROM tbl_name removed the ‘.frm’ file.
• Added SHOW CREATE TABLE.

D.4.42 Changes in release 3.23.19

• Changed copyright for all files to GPL for the server code and utilities and to LGPL for
the client libraries.

• Fixed bug where all rows matching weren’t updated on a MyISAM table when doing
update based on key on a table with many keys and some key changed values.

• The Linux MySQL RPMs and binaries are now statically linked with a linuxthread
version that has faster mutex handling when used with MySQL.

• ORDER BY can now use REF keys to find subsets of the rows that need to be sorted.
• Changed name of print_defaults program to my_print_defaults to avoid name

confusion.
• Fixed NULLIF() to work as required by SQL-99.
• Added net_read_timeout and net_write_timeout as startup parameters to mysqld.
• Fixed bug that destroyed index when doing myisamchk --sort-records on a table

with prefix compressed index.

Appendix D: MySQL Change History 955

• Added pack_isam and myisampack to the standard MySQL distribution.
• Added the syntax BEGIN WORK (the same as BEGIN).
• Fixed core dump bug when using ORDER BY on a CONV() expression.
• Added LOAD TABLE FROM MASTER.
• Added FLUSH MASTER and FLUSH SLAVE.
• Fixed big/little endian problem in the replication.

D.4.43 Changes in release 3.23.18

• Fixed a problem from 3.23.17 when choosing character set on the client side.
• Added FLUSH TABLES WITH READ LOCK to make a global lock suitable for making a copy

of MySQL datafiles.
• CREATE TABLE ... SELECT ... PROCEDURE now works.
• Internal temporary tables will now use compressed index when using GROUP BY on

VARCHAR/CHAR columns.
• Fixed a problem when locking the same table with both a READ and a WRITE lock.
• Fixed problem with myisamchk and RAID tables.

D.4.44 Changes in release 3.23.17

• Fixed a bug in FIND_IN_SET() when the first argument was NULL.
• Added table locks to Berkeley DB.
• Fixed a bug with LEFT JOIN and ORDER BY where the first table had only one matching

row.
• Added 4 sample ‘my.cnf’ example files in the ‘support-files’ directory.
• Fixed duplicated key problem when doing big GROUP BY operations. (This bug was

probably introduced in 3.23.15.)
• Changed syntax for INNER JOIN to match SQL-99.
• Added NATURAL JOIN syntax.
• A lot of fixes in the BDB interface.
• Added handling of --no-defaults and --defaults-file to safe_mysqld.sh and

mysql_install_db.sh.
• Fixed bug in reading compressed tables with many threads.
• Fixed that USE INDEX works with PRIMARY keys.
• Added BEGIN statement to start a transaction in AUTOCOMMIT mode.
• Added support for symbolic links for Windows.
• Changed protocol to let client know if the server is in AUTOCOMMIT mode and if there

is a pending transaction. If there is a pending transaction, the client library will give
an error before reconnecting to the server to let the client know that the server did a
rollback. The protocol is still backward-compatible with old clients.

• KILL now works on a thread that is locked on a ’write’ to a dead client.

956 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed memory leak in the replication slave thread.
• Added new log-slave-updates option to mysqld, to allow daisy-chaining the slaves.
• Fixed compile error on FreeBSD and other systems where pthread_t is not the same

as int.
• Fixed master shutdown aborting the slave thread.
• Fixed a race condition in INSERT DELAYED code when doing ALTER TABLE.
• Added deadlock detection sanity checks to INSERT DELAYED.

D.4.45 Changes in release 3.23.16

• Added SLAVE START and SLAVE STOP statements.
• Added TYPE=QUICK option to CHECK and to REPAIR.
• Fixed bug in REPAIR TABLE when the table was in use by other threads.
• Added a thread cache to make it possible to debug MySQL with gdb when one does

a lot of reconnects. This will also improve systems where you can’t use persistent
connections.

• Lots of fixes in the Berkeley DB interface.
• UPDATE IGNORE will not abort if an update results in a DUPLICATE_KEY error.
• Put CREATE TEMPORARY TABLE commands in the update log.
• Fixed bug in handling of masked IP numbers in the privilege tables.
• Fixed bug with delay_key_write tables and CHECK TABLE.
• Added replicate-do-db and replicate-ignore-db options to mysqld, to restrict

which databases get replicated.
• Added SQL_LOG_BIN option.

D.4.46 Changes in release 3.23.15 (May 2000: Beta)

• To start mysqld as root, you must now use the --user=root option.
• Added interface to Berkeley DB. (This is not yet functional; play with it at your own

risk!)
• Replication between master and slaves.
• Fixed bug that other threads could steal a lock when a thread had a lock on a table

and did a FLUSH TABLES command.
• Added the slow_launch_time variable and the Slow_launch_threads status vari-

able to mysqld. These can be examined with mysqladmin variables and mysqladmin
extended-status.

• Added functions INET_NTOA() and INET_ATON().
• The default type of IF() now depends on the second and third arguments and not only

on the second argument.
• Fixed case when myisamchk could go into a loop when trying to repair a crashed table.
• Don’t write INSERT DELAYED to update log if SQL_LOG_UPDATE=0.
• Fixed problem with REPLACE on HEAP tables.

Appendix D: MySQL Change History 957

• Added possible character sets and time zone to SHOW VARIABLES output.
• Fixed bug in locking code that could result in locking problems with concurrent inserts

under high load.
• Fixed a problem with DELETE of many rows on a table with compressed keys where

MySQL scanned the index to find the rows.
• Fixed problem with CHECK on table with deleted keyblocks.
• Fixed a bug in reconnect (at the client side) where it didn’t free memory properly in

some contexts.
• Fixed problems in update log when using LAST_INSERT_ID() to update a table with

an AUTO_INCREMENT key.
• Added NULLIF() function.
• Fixed bug when using LOAD DATA INFILE on a table with BLOB/TEXT columns.
• Optimised MyISAM to be faster when inserting keys in sorted order.
• EXPLAIN SELECT ... now also prints out whether MySQL needs to create a temporary

table or use file sorting when resolving the SELECT.
• Added optimisation to skip ORDER BY parts where the part is a constant expression in

the WHERE part. Indexes can now be used even if the ORDER BY doesn’t match the index
exactly, as long as all the unused index parts and all the extra ORDER BY columns are
constants in the WHERE clause. See Section 5.4.3 [MySQL indexes], page 421.

• UPDATE and DELETE on a whole unique key in the WHERE part are now faster than before.
• Changed RAID_CHUNKSIZE to be in 1024-byte increments.
• Fixed core dump in LOAD_FILE(NULL).

D.4.47 Changes in release 3.23.14

• Added mysql_real_escape_string() function to the MySQL C API.
• Fixed a bug in CONCAT() where one of the arguments was a function that returned a

modified argument.
• Fixed a critical bug in myisamchk, where it updated the header in the index file when

one only checked the table. This confused the mysqld daemon if it updated the same
table at the same time. Now the status in the index file is only updated if one uses
--update-state. With older myisamchk versions you should use --read-only when
only checking tables, if there is the slightest chance that the mysqld server is working
on the table at the same time!

• Fixed that DROP TABLE is logged in the update log.
• Fixed problem when searching on DECIMAL() key field where the column data contained

leading zeros.
• Fix bug in myisamchk when the AUTO_INCREMENT column isn’t the first key.
• Allow DATETIME in ISO8601 format: 2000-03-12T12:00:00
• Dynamic character sets. A mysqld binary can now handle many different character

sets (you can choose which when starting mysqld).
• Added command REPAIR TABLE.

958 MySQL Technical Reference for Version 4.1.1-alpha

• Added mysql_thread_safe() function to the MySQL C API.
• Added the UMASK_DIR environment variable.
• Added CONNECTION_ID() function to return the client connection thread ID.
• When using = on BLOB or VARCHAR BINARY keys, where only a part of the column was

indexed, the whole column of the result row wasn’t compared.
• Fix for sjis character set and ORDER BY.
• When running in ANSI mode, don’t allow columns to be used that aren’t in the GROUP

BY part.

D.4.48 Changes in release 3.23.13

• Fixed problem when doing locks on the same table more than 2 times in the same LOCK
TABLE command; this fixed the problem one got when running the test-ATIS test with
--fast or --check-only-changed.

• Added SQL_BUFFER_RESULT option to SELECT.
• Removed end space from double/float numbers in results from temporary tables.
• Added CHECK TABLE command.
• Added changes for MyISAM in 3.23.12 that didn’t get into the source distribution because

of CVS problems.
• Fixed bug so that mysqladmin shutdown will wait for the local server to close down.
• Fixed a possible endless loop when calculating timestamp.
• Added print_defaults program to the ‘.rpm’ files. Removed mysqlbug from the client

‘.rpm’ file.

D.4.49 Changes in release 3.23.12 (07 Mar 2000)

• Fixed bug in MyISAM involving REPLACE ... SELECT ... which could give a corrupted
table.

• Fixed bug in myisamchk where it incorrectly reset the AUTO_INCREMENT value.
• LOTS of patches for Linux Alpha. MySQL now appears to be relatively stable on

Alpha.
• Changed DISTINCT on HEAP temporary tables to use hashed keys to quickly find dupli-

cated rows. This mostly concerns queries of type SELECT DISTINCT ... GROUP BY
This fixes a problem where not all duplicates were removed in queries of the above
type. In addition, the new code is MUCH faster.

• Added patches to make MySQL compile on Mac OS X.
• Added IF NOT EXISTS clause to CREATE DATABASE.
• Added --all-databases and --databases options to mysqldump to allow dumping of

many databases at the same time.
• Fixed bug in compressed DECIMAL() index in MyISAM tables.
• Fixed bug when storing 0 into a timestamp.
• When doing mysqladmin shutdown on a local connection, mysqladmin now waits until

the PID file is gone before terminating.

Appendix D: MySQL Change History 959

• Fixed core dump with some COUNT(DISTINCT ...) queries.
• Fixed that myisamchk works properly with RAID tables.
• Fixed problem with LEFT JOIN and key_field IS NULL.
• Fixed bug in net_clear() which could give the error Aborted connection in the

MySQL clients.
• Added options USE INDEX (key_list) and IGNORE INDEX (key_list) as parameters

in SELECT.
• DELETE and RENAME should now work on RAID tables.

D.4.50 Changes in release 3.23.11

• Allow the ALTER TABLE tbl_name ADD (field_list) syntax.
• Fixed problem with optimiser that could sometimes use incorrect keys.
• Fixed that GRANT/REVOKE ALL PRIVILEGES doesn’t affect GRANT OPTION.
• Removed extra ‘)’ from the output of SHOW GRANTS.
• Fixed problem when storing numbers in timestamps.
• Fix problem with timezones that have half hour offsets.
• Allow the syntax UNIQUE INDEX in CREATE statements.
• mysqlhotcopy - fast online hot-backup utility for local MySQL databases. By Tim

Bunce.
• New more secure mysqlaccess. Thanks to Steve Harvey for this.
• Added --i-am-a-dummy and --safe-updates options to mysql.
• Added select_limit and max_join_size variables to mysql.
• Added SQL_MAX_JOIN_SIZE and SQL_SAFE_UPDATES options.
• Added READ LOCAL lock that doesn’t lock the table for concurrent inserts. (This is used

by mysqldump.)
• Changed that LOCK TABLES ... READ doesn’t anymore allow concurrent inserts.
• Added --skip-delay-key-write option to mysqld.
• Fixed security problem in the protocol regarding password checking.
• _rowid can now be used as an alias for an integer type unique indexed column.
• Added back blocking of SIGPIPE when compiling with --thread-safe-clients to

make things safe for old clients.

D.4.51 Changes in release 3.23.10

• Fixed bug in 3.23.9 where memory wasn’t properly freed when using LOCK TABLES.

D.4.52 Changes in release 3.23.9

• Fixed problem that affected queries that did arithmetic on group functions.
• Fixed problem with timestamps and INSERT DELAYED.
• Fixed that date_col BETWEEN const_date AND const_date works.

960 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed problem when only changing a 0 to NULL in a table with BLOB/TEXT columns.
• Fixed bug in range optimiser when using many key parts and or on the middle key

parts: WHERE K1=1 and K3=2 and (K2=2 and K4=4 or K2=3 and K4=5)

• Added source command to mysql to allow reading of batch files inside the mysql client.
Original patch by Matthew Vanecek.

• Fixed critical problem with the WITH GRANT OPTION option.
• Don’t give an unnecessary GRANT error when using tables from many databases in the

same query.
• Added VIO wrapper (needed for SSL support; by Andrei Errapart and Tõnu Samuel).
• Fixed optimiser problem on SELECT when using many overlapping indexes. MySQL

should now be able to choose keys even better when there are many keys to choose
from.

• Changed optimiser to prefer a range key instead of a ref key when the range key can
uses more columns than the ref key (which only can use columns with =). For example,
the following type of queries should now be faster: SELECT * from key_part_1=const
and key_part_2 > const2

• Fixed bug that a change of all VARCHAR columns to CHAR columns didn’t change row
type from dynamic to fixed.

• Disabled floating-point exceptions for FreeBSD to fix core dump when doing SELECT
FLOOR(POW(2,63)).

• Renamed mysqld startup option from --delay-key-write to --delay-key-write-
for-all-tables.

• Added read-next-on-key to HEAP tables. This should fix all problems with HEAP tables
when using non-UNIQUE keys.

• Added option to print default arguments to all clients.
• Added --log-slow-queries option to mysqld to log all queries that take a long time

to a separate log file with a time indicating how long the query took.
• Fixed core dump when doing WHERE key_col=RAND(...).
• Fixed optimisation bug in SELECT ... LEFT JOIN ... key_col IS NULL, when key_col

could contain NULL values.
• Fixed problem with 8-bit characters as separators in LOAD DATA INFILE.

D.4.53 Changes in release 3.23.8 (02 Jan 2000)

• Fixed problem when handling indexfiles larger than 8G.
• Added latest patches to MIT-pthreads for NetBSD.
• Fixed problem with timezones that are < GMT - 11.
• Fixed a bug when deleting packed keys in NISAM.
• Fixed problem with ISAM when doing some ORDER BY ... DESC queries.
• Fixed bug when doing a join on a text key which didn’t cover the whole key.
• Option --delay-key-write didn’t enable delayed key writing.
• Fixed update of TEXT column which involved only case changes.

Appendix D: MySQL Change History 961

• Fixed that INSERT DELAYED doesn’t update timestamps that are given.

• Added function YEARWEEK() and options x, X, v and V to DATE_FORMAT().

• Fixed problem with MAX(indexed_column) and HEAP tables.

• Fixed problem with BLOB NULL keys and LIKE "prefix%".

• Fixed problem with MyISAM and fixed-length rows < 5 bytes.

• Fixed problem that could cause MySQL to touch freed memory when doing very com-
plicated GROUP BY queries.

• Fixed core dump if you got a crashed table where an ENUM field value was too big.

D.4.54 Changes in release 3.23.7 (10 Dec 1999)

• Fixed workaround under Linux to avoid problems with pthread_mutex_timedwait,
which is used with INSERT DELAYED. See Section 2.6.2 [Linux], page 126.

• Fixed that one will get a ’disk full’ error message if one gets disk full when doing sorting
(instead of waiting until we got more disk space).

• Fixed a bug in MyISAM with keys > 250 characters.

• In MyISAM one can now do an INSERT at the same time as other threads are reading
from the table.

• Added max_write_lock_count variable to mysqld to force a READ lock after a certain
number of WRITE locks.

• Inverted flag delay_key_write on show variables.

• Renamed concurrency variable to thread_concurrency.

• The following functions are now multi-byte-safe: LOCATE(substr,str),
POSITION(substr IN str), LOCATE(substr,str,pos), INSTR(str,substr),
LEFT(str,len), RIGHT(str,len), SUBSTRING(str,pos,len), SUBSTRING(str
FROM pos FOR len), MID(str,pos,len), SUBSTRING(str,pos), SUBSTRING(str
FROM pos), SUBSTRING_INDEX(str,delim,count), RTRIM(str), TRIM([[BOTH |
TRAILING] [remstr] FROM] str), REPLACE(str,from_str,to_str), REVERSE(str),
INSERT(str,pos,len,newstr), LCASE(str), LOWER(str), UCASE(str) and
UPPER(str); patch by Wei He.

• Fix core dump when releasing a lock from a non-existent table.

• Remove locks on tables before starting to remove duplicates.

• Added option FULL to SHOW PROCESSLIST.

• Added option --verbose to mysqladmin.

• Fixed problem when automatically converting HEAP to MyISAM.

• Fixed bug in HEAP tables when doing insert + delete + insert + scan the table.

• Fixed bugs on Alpha with REPLACE() and LOAD DATA INFILE.

• Added interactive_timeout variable to mysqld.

• Changed the argument to mysql_data_seek() from ulong to ulonglong.

962 MySQL Technical Reference for Version 4.1.1-alpha

D.4.55 Changes in release 3.23.6

• Added -O lower_case_table_names={0|1} option to mysqld to allow users to force
table names to lowercase.

• Added SELECT ... INTO DUMPFILE.
• Added --ansi option to mysqld to make some functions SQL-99 compatible.
• Temporary table names now start with #sql.
• Added quoting of identifiers with ‘ (" in --ansi mode).
• Changed to use snprintf() when printing floats to avoid some buffer overflows on

FreeBSD.
• Made FLOOR() overflow safe on FreeBSD.
• Added --quote-names option to mysqldump.
• Fixed bug that one could make a part of a PRIMARY KEY NOT NULL.
• Fixed encrypt() to be thread-safe and not reuse buffer.
• Added mysql_odbc_escape_string() function to support big5 characters in MyO-

DBC.
• Rewrote the storage engine to use classes. This introduces a lot of new code, but will

make table handling faster and better.
• Added patch by Sasha for user-defined variables.
• Changed that FLOAT and DOUBLE (without any length modifiers) no longer are fixed

decimal point numbers.
• Changed the meaning of FLOAT(X): Now this is the same as FLOAT if X <= 24 and a

DOUBLE if 24 < X <= 53.
• DECIMAL(X) is now an alias for DECIMAL(X,0) and DECIMAL is now an alias for

DECIMAL(10,0). The same goes for NUMERIC.
• Added option ROW_FORMAT={DEFAULT | DYNAMIC | FIXED | COMPRESSED} to CREATE_

TABLE.
• DELETE FROM table_name didn’t work on temporary tables.
• Changed function CHAR_LENGTH() to be multi-byte character safe.
• Added function ORD(string).

D.4.56 Changes in release 3.23.5 (20 Oct 1999)

• Fixed some Y2K problems in the new date handling in 3.23.
• Fixed problem with SELECT DISTINCT ... ORDER BY RAND().
• Added patches by Sergei A. Golubchik for text searching on the MyISAM level.
• Fixed cache overflow problem when using full joins without keys.
• Fixed some configure issues.
• Some small changes to make parsing faster.
• Adding a column after the last field with ALTER TABLE didn’t work.
• Fixed problem when using an AUTO_INCREMENT column in two keys

Appendix D: MySQL Change History 963

• With MyISAM, you now can have an AUTO_INCREMENT column as a key sub part: CREATE
TABLE foo (a INT NOT NULL AUTO_INCREMENT, b CHAR(5), PRIMARY KEY (b,a))

• Fixed bug in MyISAM with packed char keys that could be NULL.

• AS on field name with CREATE TABLE table_name SELECT ... didn’t work.

• Allow use of NATIONAL and NCHAR when defining character columns. This is the same
as not using BINARY.

• Don’t allow NULL columns in a PRIMARY KEY (only in UNIQUE keys).

• Clear LAST_INSERT_ID() if one uses this in ODBC: WHERE auto_increment_column
IS NULL. This seems to fix some problems with Access.

• SET SQL_AUTO_IS_NULL=0|1 now turns on/off the handling of searching after the last
inserted row with WHERE auto_increment_column IS NULL.

• Added new variable concurrency to mysqld for Solaris.

• Added --relative option to mysqladmin to make extended-status more useful to
monitor changes.

• Fixed bug when using COUNT(DISTINCT ...) on an empty table.

• Added support for the Chinese character set GBK.

• Fixed problem with LOAD DATA INFILE and BLOB columns.

• Added bit operator ~ (negation).

• Fixed problem with UDF functions.

D.4.57 Changes in release 3.23.4 (28 Sep 1999)

• Inserting a DATETIME into a TIME column no longer will try to store ’days’ in it.

• Fixed problem with storage of float/double on little endian machines. (This affected
SUM().)

• Added connect timeout on TCP/IP connections.

• Fixed problem with LIKE "%" on an index that may have NULL values.

• REVOKE ALL PRIVILEGES didn’t revoke all privileges.

• Allow creation of temporary tables with same name as the original table.

• When granting a user a GRANT option for a database, he couldn’t grant privileges to
other users.

• New command: SHOW GRANTS FOR user (by Sinisa).

• New date_add syntax: date/datetime + INTERVAL # interval_type. By Joshua
Chamas.

• Fixed privilege check for LOAD DATA REPLACE.

• Automatic fixing of broken include files on Solaris 2.7

• Some configure issues to fix problems with big filesystem detection.

• REGEXP is now case-insensitive if you use non-binary strings.

964 MySQL Technical Reference for Version 4.1.1-alpha

D.4.58 Changes in release 3.23.3

• Added patches for MIT-pthreads on NetBSD.
• Fixed range bug in MyISAM.
• ASC is now the default again for ORDER BY.
• Added LIMIT to UPDATE.
• Added mysql_change_user() function to the MySQL C API.
• Added character set to SHOW VARIABLES.
• Added support of --[whitespace] comments.
• Allow INSERT into tbl_name VALUES (), that is, you may now specify an empty value

list to insert a row in which each column is set to its default value.
• Changed SUBSTRING(text FROM pos) to conform to SQL-99. (Before this construct

returned the rightmost pos characters.)
• SUM() with GROUP BY returned 0 on some systems.
• Changed output for SHOW TABLE STATUS.
• Added DELAY_KEY_WRITE option to CREATE TABLE.
• Allow AUTO_INCREMENT on any key part.
• Fixed problem with YEAR(NOW()) and YEAR(CURDATE()).
• Added CASE construct.
• New function COALESCE().

D.4.59 Changes in release 3.23.2 (09 Aug 1999)

• Fixed range optimiser bug: SELECT * FROM table_name WHERE key_part1 >= const
AND (key_part2 = const OR key_part2 = const). The bug was that some rows could
be duplicated in the result.

• Running myisamchk without -a updated the index distribution incorrectly.
• SET SQL_LOW_PRIORITY_UPDATES=1 was causing a parse error.
• You can now update index columns that are used in the WHERE clause. UPDATE tbl_

name SET KEY=KEY+1 WHERE KEY > 100

• Date handling should now be a bit faster.
• Added handling of fuzzy dates (dates where day or month is 0), such as ’1999-01-00’.
• Fixed optimisation of SELECT ... WHERE key_part1=const1 AND key_part_2=const2

AND key_part1=const4 AND key_part2=const4; indextype should be range instead of
ref.

• Fixed egcs 1.1.2 optimiser bug (when using BLOB values) on Linux Alpha.
• Fixed problem with LOCK TABLES combined with DELETE FROM table.
• MyISAM tables now allow keys on NULL and BLOB/TEXT columns.
• The following join is now much faster: SELECT ... FROM t1 LEFT JOIN t2 ON ...

WHERE t2.not_null_column IS NULL.
• ORDER BY and GROUP BY can be done on functions.

Appendix D: MySQL Change History 965

• Changed handling of ’const item’ to allow handling of ORDER BY RAND().
• Indexes are now used for WHERE key_column = function.
• Indexes are now used for WHERE key_column = col_name even if the columns are not

identically packed.
• Indexes are now used for WHERE col_name IS NULL.
• Changed heap tables to be stored in low byte first order (to make it easy to convert

to MyISAM tables)
• Automatic change of HEAP temporary tables to MyISAM tables in case of “table is full”

errors.
• Added --init-file=file_name option to mysqld.
• Added COUNT(DISTINCT value, [value, ...]).
• CREATE TEMPORARY TABLE now creates a temporary table, in its own namespace, that

is automatically deleted if connection is dropped.
• New reserved words (required for CASE): CASE, THEN, WHEN, ELSE and END.
• New functions EXPORT_SET() and MD5().
• Support for the GB2312 Chinese character set.

D.4.60 Changes in release 3.23.1

• Fixed some compilation problems.

D.4.61 Changes in release 3.23.0 (05 Aug 1999: Alpha)

• A new storage engine library (MyISAM) with a lot of new features. See Section 7.1
[MyISAM], page 594.

• You can create in-memory HEAP tables which are extremely fast for lookups.
• Support for big files (63-bit) on OSs that support big files.
• New function LOAD_FILE(filename) to get the contents of a file as a string value.
• New operator <=> which will act as = but will return TRUE if both arguments are

NULL. This is useful for comparing changes between tables.
• Added the ODBC 3.0 EXTRACT(interval FROM datetime) function.
• Columns defined as FLOAT(X) are not rounded on storage and may be in scientific

notation (1.0 E+10) when retrieved.
• REPLACE is now faster than before.
• Changed LIKE character comparison to behave as =; This means that ’e’ LIKE ’é’ is

now true. (If the line doesn’t display correctly, the latter ’e’ is a French ’e’ with a dot
above.)

• SHOW TABLE STATUS returns a lot of information about the tables.
• Added LIKE to the SHOW STATUS command.
• Added Privileges column to SHOW COLUMNS.
• Added Packed and Comment columns to SHOW INDEX.
• Added comments to tables (with CREATE TABLE ... COMMENT "xxx").

966 MySQL Technical Reference for Version 4.1.1-alpha

• Added UNIQUE, as in CREATE TABLE table_name (col INT not null UNIQUE)

• New create syntax: CREATE TABLE table_name SELECT ...

• New create syntax: CREATE TABLE IF NOT EXISTS ...

• Allow creation of CHAR(0) columns.
• DATE_FORMAT() now requires ‘%’ before any format character.
• DELAYED is now a reserved word (sorry about that :().
• An example procedure is added: analyse, file: ‘sql_analyse.c’. This will describe

the data in your query. Try the following:
SELECT ... FROM ...
WHERE ... PROCEDURE ANALYSE([max elements,[max memory]])

This procedure is extremely useful when you want to check the data in your table!
• BINARY cast to force a string to be compared in case-sensitive fashion.
• Added --skip-show-database option to mysqld.
• Check whether a row has changed in an UPDATE now also works with BLOB/TEXT

columns.
• Added the INNER join syntax. NOTE: This made INNER a reserved word!
• Added support for netmasks to the hostname in the MySQL grant tables. You can

specify a netmask using the IP/NETMASK syntax.
• If you compare a NOT NULL DATE/DATETIME column with IS NULL, this is changed to a

compare against 0 to satisfy some ODBC applications. (By shreeve@uci.edu.)
• NULL IN (...) now returns NULL instead of 0. This will ensure that null_column NOT

IN (...) doesn’t match NULL values.
• Fix storage of floating-point values in TIME columns.
• Changed parsing of TIME strings to be more strict. Now the fractional second part is

detected (and currently skipped). The following formats are supported:
• [[DAYS] [H]H:]MM:]SS[.fraction]
• [[[[[H]H]H]H]MM]SS[.fraction]

• Detect (and ignore) fractional second part from DATETIME.
• Added the LOW_PRIORITY attribute to LOAD DATA INFILE.
• The default index name now uses the same case as the column name on which the

index name is based.
• Changed default number of connections to 100.
• Use bigger buffers when using LOAD DATA INFILE.
• DECIMAL(x,y) now works according to SQL-99.
• Added aggregate UDF functions. Thanks to Andreas F. Bobak (bobak@relog.ch) for

this!
• LAST_INSERT_ID() is now updated for INSERT INTO ... SELECT.
• Some small changes to the join table optimiser to make some joins faster.
• SELECT DISTINCT is much faster; it uses the new UNIQUE functionality in MyISAM. One

difference compared to MySQL Version 3.22 is that the output of DISTINCT is no longer
sorted.

Appendix D: MySQL Change History 967

• All C client API macros are now functions to make shared libraries more reliable.
Because of this, you can no longer call mysql_num_fields() on a MYSQL object, you
must use mysql_field_count() instead.

• Added use of LIBWRAP; patch by Henning P. Schmiedehausen.
• Don’t allow AUTO_INCREMENT for other than numerical columns.
• Using AUTO_INCREMENT will now automatically make the column NOT NULL.
• Show NULL as the default value for AUTO_INCREMENT columns.
• Added SQL_BIG_RESULT; SQL_SMALL_RESULT is now default.
• Added a shared library RPM. This enhancement was contributed by David Fox

(dsfox@cogsci.ucsd.edu).
• Added --enable-large-files and --disable-large-files switches to configure.

See ‘configure.in’ for some systems where this is automatically turned off because of
broken implementations.

• Upgraded readline to 4.0.
• New CREATE TABLE options: PACK_KEYS and CHECKSUM.
• Added --default-table-type option to mysqld.

D.5 Changes in release 3.22.x (Old; discontinued)

The 3.22 version has faster and safer connect code than version 3.21, as well as a lot of new
nice enhancements. As there aren’t really any major changes, upgrading from 3.21 to 3.22
should be very easy and painless. See Section 2.5.4 [Upgrading-from-3.21], page 118.

D.5.1 Changes in release 3.22.35

• Fixed problem with STD().
• Merged changes from the newest ISAM library from 3.23.
• Fixed problem with INSERT DELAYED.
• Fixed a bug core dump when using a LEFT JOIN/STRAIGHT_JOIN on a table with only

one row.

D.5.2 Changes in release 3.22.34

• Fixed problem with GROUP BY on TINYBLOB columns; this caused bugzilla to not show
rows in some queries.

• Had to do total recompile of the Windows binary version as VC++ didn’t compile all
relevant files for 3.22.33 :(

D.5.3 Changes in release 3.22.33

• Fixed problems in Windows when locking tables with LOCK TABLE.
• Quicker kill of SELECT DISTINCT queries.

968 MySQL Technical Reference for Version 4.1.1-alpha

D.5.4 Changes in release 3.22.32 (14 Feb 2000)

• Fixed problem when storing numbers in timestamps.
• Fix problem with timezones that have half hour offsets.
• Added mysqlhotcopy, a fast online hot-backup utility for local MySQL databases. By

Tim Bunce.
• New more secure mysqlaccess. Thanks to Steve Harvey for this.
• Fixed security problem in the protocol regarding password checking.
• Fixed problem that affected queries that did arithmetic on GROUP functions.
• Fixed a bug in the ISAM code when deleting rows on tables with packed indexes.

D.5.5 Changes in release 3.22.31

• A few small fixes for the Windows version.

D.5.6 Changes in release 3.22.30

• Fixed optimiser problem on SELECT when using many overlapping indexes.
• Disabled floating-point exceptions for FreeBSD to fix core dump when doing SELECT

FLOOR(POW(2,63)).
• Added print of default arguments options to all clients.
• Fixed critical problem with the WITH GRANT OPTION option.
• Fixed non-critical Y2K problem when writing short date to log files.

D.5.7 Changes in release 3.22.29 (02 Jan 2000)

• Upgraded the configure and include files to match the latest 3.23 version. This should
increase portability and make it easier to build shared libraries.

• Added latest patches to MIT-pthreads for NetBSD.
• Fixed problem with timezones that are < GMT -11.
• Fixed a bug when deleting packed keys in NISAM.
• Fixed problem that could cause MySQL to touch freed memory when doing very com-

plicated GROUP BY queries.
• Fixed core dump if you got a crashed table where an ENUM field value was too big.
• Added mysqlshutdown.exe and mysqlwatch.exe to the Windows distribution.
• Fixed problem when doing ORDER BY on a reference key.
• Fixed that INSERT DELAYED doesn’t update timestamps that are given.

D.5.8 Changes in release 3.22.28 (20 Oct 1999)

• Fixed problem with LEFT JOIN and COUNT() on a column which was declared NULL +
and it had a DEFAULT value.

• Fixed core dump problem when using CONCAT() in a WHERE clause.
• Fixed problem with AVG() and STD() with NULL values.

Appendix D: MySQL Change History 969

D.5.9 Changes in release 3.22.27

• Fixed prototype in ‘my_ctype.h’ when using other character sets.
• Some configure issues to fix problems with big filesystem detection.
• Fixed problem when sorting on big BLOB columns.
• ROUND() will now work on Windows.

D.5.10 Changes in release 3.22.26 (16 Sep 1999)

• Fixed core dump with empty BLOB/TEXT column argument to REVERSE().
• Extended /*! */ with version numbers.
• Changed SUBSTRING(text FROM pos) to conform to SQL-99. (Before this construct

returned the rightmost ’pos’ characters.)
• Fixed problem with LOCK TABLES combined with DELETE FROM table

• Fixed problem that INSERT ... SELECT didn’t use BIG_TABLES.
• SET SQL_LOW_PRIORITY_UPDATES=# didn’t work.
• Password wasn’t updated correctly if privileges didn’t change on: GRANT ...

IDENTIFIED BY

• Fixed range optimiser bug in SELECT * FROM table_name WHERE key_part1 >= const
AND (key_part2 = const OR key_part2 = const).

• Fixed bug in compression key handling in ISAM.

D.5.11 Changes in release 3.22.25

• Fixed some small problems with the installation.

D.5.12 Changes in release 3.22.24 (05 Jul 1999)

• DATA is no longer a reserved word.
• Fixed optimiser bug with tables with only one row.
• Fixed bug when using LOCK TABLES table_name READ; FLUSH TABLES;

• Applied some patches for HP-UX.
• isamchk should now work on Windows.
• Changed ‘configure’ to not use big file handling on Linux as this crashes some Red

Hat 6.0 systems

D.5.13 Changes in release 3.22.23 (08 Jun 1999)

• Upgraded to use Autoconf 2.13, Automake 1.4 and libtool 1.3.2.
• Better support for SCO in configure.
• Added option --defaults-file=file_name to option file handling to force use of only

one specific option file.
• Extended CREATE syntax to ignore MySQL Version 3.23 keywords.

970 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed deadlock problem when using INSERT DELAYED on a table locked with LOCK
TABLES.

• Fixed deadlock problem when using DROP TABLE on a table that was locked by another
thread.

• Add logging of GRANT/REVOKE commands in the update log.
• Fixed isamchk to detect a new error condition.
• Fixed bug in NATURAL LEFT JOIN.

D.5.14 Changes in release 3.22.22 (30 Apr 1999)

• Fixed problem in the C API when you called mysql_close() directly after mysql_
init().

• Better client error message when you can’t open socket.
• Fixed delayed_insert_thread counting when you couldn’t create a new delayed insert

thread.
• Fixed bug in CONCAT() with many arguments.
• Added patches for DEC 3.2 and SCO.
• Fixed path-bug when installing MySQL as a service on NT.
• MySQL on Windows is now compiled with VC++ 6.0 instead of with VC++ 5.0.
• New installation setup for MySQL on Windows.

D.5.15 Changes in release 3.22.21

• Fixed problem with DELETE FROM TABLE when table was locked by another thread.
• Fixed bug in LEFT JOIN involving empty tables.
• Changed the mysql.db column from CHAR(32) to CHAR(60).
• MODIFY and DELAYED are no longer reserved words.
• Fixed a bug when storing days in a TIME column.
• Fixed a problem with Host ’...’ is not allowed to connect to this MySQL server

after one had inserted a new MySQL user with a GRANT command.
• Changed to use TCP_NODELAY also on Linux (should give faster TCP/IP connections).

D.5.16 Changes in release 3.22.20 (18 Mar 1999)

• Fixed STD() for big tables when result should be 0.
• The update log didn’t have newlines on some operating systems.
• INSERT DELAYED had some garbage at end in the update log.

D.5.17 Changes in release 3.22.19 (Mar 1999: Production)

• Fixed bug in mysql_install_db (from 3.22.17).
• Changed default key cache size to 8M.
• Fixed problem with queries that needed temporary tables with BLOB columns.

Appendix D: MySQL Change History 971

D.5.18 Changes in release 3.22.18

• Fixes a fatal problem in 3.22.17 on Linux; after shutdown not all threads died properly.
• Added option -O flush_time=# to mysqld. This is mostly useful on Windows and tells

how often MySQL should close all unused tables and flush all updated tables to disk.
• Fixed problem that a VARCHAR column compared with CHAR column didn’t use keys

efficiently.

D.5.19 Changes in release 3.22.17

• Fixed a core dump problem when using --log-update and connecting without a default
database.

• Fixed some configure and portability problems.
• Using LEFT JOIN on tables that had circular dependencies caused mysqld to hang for-

ever.

D.5.20 Changes in release 3.22.16 (Feb 1999: Gamma)

• mysqladmin processlist could kill the server if a new user logged in.
• DELETE FROM tbl_name WHERE key_column=col_name didn’t find any matching rows.

Fixed.
• DATE_ADD(column, ...) didn’t work.
• INSERT DELAYED could deadlock with status ’upgrading lock’
• Extended ENCRYPT() to take longer salt strings than 2 characters.
• longlong2str is now much faster than before. For Intel x86 platforms, this function

is written in optimised assembler.
• Added the MODIFY keyword to ALTER TABLE.

D.5.21 Changes in release 3.22.15

• GRANT used with IDENTIFIED BY didn’t take effect until privileges were flushed.
• Name change of some variables in SHOW STATUS.
• Fixed problem with ORDER BY with ’only index’ optimisation when there were multiple

key definitions for a used column.
• DATE and DATETIME columns are now up to 5 times faster than before.
• INSERT DELAYED can be used to let the client do other things while the server inserts

rows into a table.
• LEFT JOIN USING (col1,col2) didn’t work if one used it with tables from 2 different

databases.
• LOAD DATA LOCAL INFILE didn’t work in the Unix version because of a missing file.
• Fixed problems with VARCHAR/BLOB on very short rows (< 4 bytes); error 127 could

occur when deleting rows.
• Updating BLOB/TEXT through formulas didn’t work for short (< 256 char) strings.

972 MySQL Technical Reference for Version 4.1.1-alpha

• When you did a GRANT on a new host, mysqld could die on the first connect from this
host.

• Fixed bug when one used ORDER BY on column name that was the same name as an
alias.

• Added BENCHMARK(loop_count,expression) function to time expressions.

D.5.22 Changes in release 3.22.14

• Allow empty arguments to mysqld to make it easier to start from shell scripts.
• Setting a TIMESTAMP column to NULL didn’t record the timestamp value in the update

log.
• Fixed lock handler bug when one did INSERT INTO TABLE ... SELECT ... GROUP BY.
• Added a patch for localtime_r() on Windows so that it will no lonher crash if your

date is > 2039, but instead will return a time of all zero.
• Names for user-defined functions are no longer case-sensitive.
• Added escape of ^Z (ASCII 26) to \Z as ^Z doesn’t work with pipes on Windows.
• mysql_fix_privileges adds a new column to the mysql.func to support aggregate

UDF functions in future MySQL releases.

D.5.23 Changes in release 3.22.13

• Saving NOW(), CURDATE() or CURTIME() directly in a column didn’t work.
• SELECT COUNT(*) ... LEFT JOIN ... didn’t work with no WHERE part.
• Updated ‘config.guess’ to allow MySQL to configure on UnixWare 7.1.x.
• Changed the implementation of pthread_cond() on the Windows version. get_lock()

now correctly times out on Windows!

D.5.24 Changes in release 3.22.12

• Fixed problem when using DATE_ADD() and DATE_SUB() in a WHERE clause.
• You can now set the password for a user with the GRANT ... TO user IDENTIFIED BY

’password’ syntax.
• Fixed bug in GRANT checking with SELECT on many tables.
• Added missing file mysql_fix_privilege_tables to the RPM distribution. This is

not run by default because it relies on the client package.
• Added option SQL_SMALL_RESULT to SELECT to force use of fast temporary tables when

you know that the result set will be small.
• Allow use of negative real numbers without a decimal point.
• Day number is now adjusted to maximum days in month if the resulting month after

DATE_ADD/DATE_SUB() doesn’t have enough days.
• Fix that GRANT compares columns in case-insensitive fashion.
• Fixed a bug in ‘sql_list.h’ that made ALTER TABLE dump core in some contexts.

Appendix D: MySQL Change History 973

• The hostname in user@hostname can now include ‘.’ and ‘-’ without quotes in the
context of the GRANT, REVOKE and SET PASSWORD FOR ... statements.

• Fix for isamchk for tables which need big temporary files.

D.5.25 Changes in release 3.22.11

• Important: You must run the mysql_fix_privilege_tables script when you upgrade
to this version! This is needed because of the new GRANT system. If you don’t do this,
you will get Access denied when you try to use ALTER TABLE, CREATE INDEX, or DROP
INDEX.

• GRANT to allow/deny users table and column access.
• Changed USER() to return a value in user@host format. Formerly it returned only

user.
• Changed the syntax for how to set PASSWORD for another user.
• New command FLUSH STATUS that resets most status variables to zero.
• New status variables: aborted_threads, aborted_connects.
• New option variable: connection_timeout.
• Added support for Thai sorting (by Pruet Boonma pruet@ds90.intanon.nectec.or.th).
• Slovak and Japanese error messages.
• Configuration and portability fixes.
• Added option SET SQL_WARNINGS=1 to get a warning count also for simple inserts.
• MySQL now uses SIGTERM instead of SIGQUIT with shutdown to work better on

FreeBSD.
• Added option \G (print vertically) to mysql.
• SELECT HIGH_PRIORITY ... killed mysqld.
• IS NULL on a AUTO_INCREMENT column in a LEFT JOIN didn’t work as expected.
• New function MAKE_SET().

D.5.26 Changes in release 3.22.10

• mysql_install_db no longer starts the MySQL server! You should start mysqld with
safe_mysqld after installing it! The MySQL RPM will, however, start the server as
before.

• Added --bootstrap option to mysqld and recoded mysql_install_db to use it. This
will make it easier to install MySQL with RPMs.

• Changed +, - (sign and minus), *, /, %, ABS() and MOD() to be BIGINT aware (64-bit
safe).

• Fixed a bug in ALTER TABLE that caused mysqld to crash.
• MySQL now always reports the conflicting key values when a duplicate key entry occurs.

(Before this was only reported for INSERT.)
• New syntax: INSERT INTO tbl_name SET col_name=value, col_name=value, ...

• Most errors in the ‘.err’ log are now prefixed with a time stamp.

974 MySQL Technical Reference for Version 4.1.1-alpha

• Added option MYSQL_INIT_COMMAND to mysql_options() to make a query on connect
or reconnect.

• Added option MYSQL_READ_DEFAULT_FILE and MYSQL_READ_DEFAULT_GROUP to
mysql_options() to read the following parameters from the MySQL option files:
port, socket, compress, password, pipe, timeout, user, init-command, host and
database.

• Added maybe_null to the UDF structure.
• Added option IGNORE to INSERT statements with many rows.
• Fixed some problems with sorting of the koi8 character sets; users of koi8 must run

isamchk -rq on each table that has an index on a CHAR or VARCHAR column.
• New script mysql_setpermission, by Luuk de Boer. It allows easy creation of new

users with permissions for specific databases.
• Allow use of hexadecimal strings (0x...) when specifying a constant string (like in the

column separators with LOAD DATA INFILE).
• Ported to OS/2 (thanks to Antony T. Curtis antony.curtis@olcs.net).
• Added more variables to SHOW STATUS and changed format of output to be like SHOW

VARIABLES.
• Added extended-status command to mysqladmin which will show the new status

variables.

D.5.27 Changes in release 3.22.9

• SET SQL_LOG_UPDATE=0 caused a lockup of the server.
• New SQL command: FLUSH [TABLES | HOSTS | LOGS | PRIVILEGES] [, ...]

• New SQL command: KILL thread_id.
• Added casts and changed include files to make MySQL easier to compile on AIX and

DEC OSF/1 4.x
• Fixed conversion problem when using ALTER TABLE from a INT to a short CHAR() col-

umn.
• Added SELECT HIGH_PRIORITY; this will get a lock for the SELECT even if there is a

thread waiting for another SELECT to get a WRITE LOCK.
• Moved wild_compare() to string class to be able to use LIKE on BLOB/TEXT columns

with \0.
• Added ESCAPE option to LIKE.
• Added a lot more output to mysqladmin debug.
• You can now start mysqld on Windows with the --flush option. This will flush

all tables to disk after each update. This makes things much safer on the Windows
platforms but also much slower.

D.5.28 Changes in release 3.22.8

• Czech character sets should now work much better.
• DATE_ADD() and DATE_SUB() didn’t work with group functions.

Appendix D: MySQL Change History 975

• mysql will now also try to reconnect on USE database commands.

• Fix problem with ORDER BY and LEFT JOIN and const tables.

• Fixed problem with ORDER BY if the first ORDER BY column was a key and the rest of
the ORDER BY columns wasn’t part of the key.

• Fixed a big problem with OPTIMIZE TABLE.

• MySQL clients on NT will now by default first try to connect with named pipes and
after this with TCP/IP.

• Fixed a problem with DROP TABLE and mysqladmin shutdown on Windows (a fatal bug
from 3.22.6).

• Fixed problems with TIME columns and negative strings.

• Added an extra thread signal loop on shutdown to avoid some error messages from the
client.

• MySQL now uses the next available number as extension for the update log file.

• Added patches for UNIXWARE 7.

D.5.29 Changes in release 3.22.7 (Sep 1998: Beta)

• Added LIMIT clause for the DELETE statement.

• You can now use the /*! ... */ syntax to hide MySQL-specific keywords when you
write portable code. MySQL will parse the code inside the comments as if the sur-
rounding /*! and */ comment characters didn’t exist.

• OPTIMIZE TABLE tbl_name can now be used to reclaim disk space after many deletes.
Currently, this uses ALTER TABLE to regenerate the table, but in the future it will use
an integrated isamchk for more speed.

• Upgraded libtool to get the configure more portable.

• Fixed slow UPDATE and DELETE operations when using DATETIME or DATE keys.

• Changed optimiser to make it better at deciding when to do a full join and when using
keys.

• You can now use mysqladmin proc to display information about your own threads.
Only users with the PROCESS privilege can get information about all threads. (In 4.0.2
one needs the SUPER privilege for this.)

• Added handling of formats YYMMDD, YYYYMMDD, YYMMDDHHMMSS for numbers when using
DATETIME and TIMESTAMP types. (Formerly these formats only worked with strings.)

• Added connect option CLIENT_IGNORE_SPACE to allow use of spaces after function
names and before ‘(’ (Powerbuilder requires this). This will make all function names
reserved words.

• Added the --log-long-format option to mysqld to enable timestamps and
INSERT IDs in the update log.

• Added --where option to mysqldump (patch by Jim Faucette).

• The lexical analyser now uses “perfect hashing” for faster parsing of SQL statements.

976 MySQL Technical Reference for Version 4.1.1-alpha

D.5.30 Changes in release 3.22.6

• Faster mysqldump.
• For the LOAD DATA INFILE statement, you can now use the new LOCAL keyword to read

the file from the client. mysqlimport will automatically use LOCAL when importing
with the TCP/IP protocol.

• Fixed small optimise problem when updating keys.
• Changed makefiles to support shared libraries.
• MySQL-NT can now use named pipes, which means that you can now use MySQL-NT

without having to install TCP/IP.

D.5.31 Changes in release 3.22.5

• All table lock handing is changed to avoid some very subtle deadlocks when using DROP
TABLE, ALTER TABLE, DELETE FROM TABLE and mysqladmin flush-tables under heavy
usage. Changed locking code to get better handling of locks of different types.

• Updated DBI to 1.00 and DBD to 1.2.0.
• Added a check that the error message file contains error messages suitable for the

current version of mysqld. (To avoid errors if you accidentally try to use an old error
message file.)

• All count structures in the client (affected_rows(), insert_id(), ...) are now of type
BIGINT to allow 64-bit values to be used. This required a minor change in the MySQL
protocol which should affect only old clients when using tables with AUTO_INCREMENT
values > 16M.

• The return type of mysql_fetch_lengths() has changed from uint * to ulong *. This
may give a warning for old clients but should work on most machines.

• Change mysys and dbug libraries to allocate all thread variables in one struct. This
makes it easier to make a threaded ‘libmysql.dll’ library.

• Use the result from gethostname() (instead of uname()) when constructing ‘.pid’ file
names.

• New better compressed server/client protocol.
• COUNT(), STD() and AVG() are extended to handle more than 4G rows.
• You can now store values in the range -838:59:59 <= x <= 838:59:59 in a TIME

column.
• Warning: incompatible change!! If you set a TIME column to too short a value, MySQL

now assumes the value is given as: [[[D]HH:]MM:]SS instead of HH[:MM[:SS]].
• TIME_TO_SEC() and SEC_TO_TIME() can now handle negative times and hours up to

32767.
• Added new option SET SQL_LOG_UPDATE={0|1} to allow users with the PROCESS

privilege to bypass the update log. (Modified patch from Sergey A Mukhin
violet@rosnet.net.)

• Fixed fatal bug in LPAD().
• Initialise line buffer in ‘mysql.cc’ to make BLOB reading from pipes safer.

Appendix D: MySQL Change History 977

• Added -O max_connect_errors=# option to mysqld. Connect errors are now reset for
each correct connection.

• Increased the default value of max_allowed_packet to 1M in mysqld.
• Added --low-priority-updates option to mysqld, to give table-modifying opera-

tions (INSERT, REPLACE, UPDATE, DELETE) lower priority than retrievals. You can now
use {INSERT | REPLACE | UPDATE | DELETE} LOW_PRIORITY ... You can also use SET
SQL_LOW_PRIORITY_UPDATES={0|1} to change the priority for one thread. One side
effect is that LOW_PRIORITY is now a reserved word. :(

• Add support for INSERT INTO table ... VALUES(...),(...),(...), to allow insert-
ing multiple rows with a single statement.

• INSERT INTO tbl_name is now also cached when used with LOCK TABLES. (Previously
only INSERT ... SELECT and LOAD DATA INFILE were cached.)

• Allow GROUP BY functions with HAVING:
mysql> SELECT col FROM table GROUP BY col HAVING COUNT(*)>0;

• mysqld will now ignore trailing ‘;’ characters in queries. This is to make it easier to
migrate from some other SQL servers that require the trailing ‘;’.

• Fix for corrupted fixed-format output generated by SELECT INTO OUTFILE.
• Warning: incompatible change! Added Oracle GREATEST() and LEAST() functions.

You must now use these instead of the MAX() and MIN() functions to get the
largest/smallest value from a list of values. These can now handle REAL, BIGINT and
string (CHAR or VARCHAR) values.

• Warning: incompatible change! DAYOFWEEK() had offset 0 for Sunday. Changed the
offset to 1.

• Give an error for queries that mix GROUP BY columns and fields when there is no GROUP
BY specification.

• Added --vertical option to mysql, for printing results in vertical mode.
• Index-only optimisation; some queries are now resolved using only indexes. Until

MySQL 4.0, this works only for numeric columns. See Section 5.4.3 [MySQL indexes],
page 421.

• Lots of new benchmarks.
• A new C API chapter and lots of other improvements in the manual.

D.5.32 Changes in release 3.22.4

• Added --tmpdir option to mysqld, for specifying the location of the temporary file
directory.

• MySQL now automatically changes a query from an ODBC client:
SELECT ... FROM table WHERE auto_increment_column IS NULL

to:
SELECT ... FROM table WHERE auto_increment_column == LAST_INSERT_ID()

This allows some ODBC programs (Delphi, Access) to retrieve the newly inserted row
to fetch the AUTO_INCREMENT id.

978 MySQL Technical Reference for Version 4.1.1-alpha

• DROP TABLE now waits for all users to free a table before deleting it.
• Fixed small memory leak in the new connect protocol.
• New functions BIN(), OCT(), HEX() and CONV() for converting between different num-

ber bases.
• Added function SUBSTRING() with 2 arguments.
• If you created a table with a record length smaller than 5, you couldn’t delete rows

from the table.
• Added optimisation to remove const reference tables from ORDER BY and GROUP BY.
• mysqld now automatically disables system locking on Linux and Windows, and for

systems that use MIT-pthreads. You can force the use of locking with the --enable-
external-locking option.

• Added --console option to mysqld, to force a console window (for error messages)
when using Windows.

• Fixed table locks for Windows.
• Allow ‘$’ in identifiers.
• Changed name of user-specific configuration file from ‘my.cnf’ to ‘.my.cnf’ (Unix only).
• Added DATE_ADD() and DATE_SUB() functions.

D.5.33 Changes in release 3.22.3

• Fixed a lock problem (bug in MySQL Version 3.22.1) when closing temporary tables.
• Added missing mysql_ping() to the client library.
• Added --compress option to all MySQL clients.
• Changed byte to char in ‘mysql.h’ and ‘mysql_com.h’.

D.5.34 Changes in release 3.22.2

• Searching on multiple constant keys that matched more than 30% of the rows didn’t
always use the best possible key.

• New functions <<, >>, RPAD() and LPAD().
• You can now save default options (like passwords) in a configuration file (‘my.cnf’).
• Lots of small changes to get ORDER BY to work when no records are found when using

fields that are not in GROUP BY (MySQL extension).
• Added --chroot option to mysqld, to start mysqld in a chroot environment (by Nikki

Chumakov nikkic@cityline.ru).
• Trailing spaces are now ignored when comparing case-sensitive strings; this should fix

some problems with ODBC and flag 512!
• Fixed a core dump bug in the range optimiser.
• Added --one-thread option to mysqld, for debugging with LinuxThreads (or glibc).

(This replaces the -T32 flag)
• Added DROP TABLE IF EXISTS to prevent an error from occurring if the table doesn’t

exist.

Appendix D: MySQL Change History 979

• IF and EXISTS are now reserved words (they would have to be sooner or later).

• Added lots of new options to mysqldump.

• Server error messages are now in ‘mysqld_error.h’.

• The server/client protocol now supports compression.

• All bug fixes from MySQL Version 3.21.32.

D.5.35 Changes in release 3.22.1 (Jun 1998: Alpha)

• Added new C API function mysql_ping().

• Added new API functions mysql_init() and mysql_options(). You now MUST call
mysql_init() before you call mysql_real_connect(). You don’t have to call mysql_
init() if you only use mysql_connect().

• Added mysql_options(...,MYSQL_OPT_CONNECT_TIMEOUT,...) so you can set a time-
out for connecting to a server.

• Added --timeout option to mysqladmin, as a test of mysql_options().

• Added AFTER column and FIRST options to ALTER TABLE ... ADD columns. This makes
it possible to add a new column at some specific location within a row in an existing
table.

• WEEK() now takes an optional argument to allow handling of weeks when the week
starts on Monday (some European countries). By default, WEEK() assumes the week
starts on Sunday.

• TIME columns weren’t stored properly (bug in MySQL Version 3.22.0).

• UPDATE now returns information about how many rows were matched and updated,
and how many “warnings” occurred when doing the update.

• Fixed incorrect result from FORMAT(-100,2).

• ENUM and SET columns were compared in binary (case-sensitive) fashion; changed to be
case-insensitive.

D.5.36 Changes in release 3.22.0

• New (backward-compatible) connect protocol that allows you to specify the database
to use when connecting, to get much faster connections to a specific database.

The mysql_real_connect() call is changed to:

mysql_real_connect(MYSQL *mysql, const char *host, const char *user,
const char *passwd, const char *db, uint port,
const char *unix_socket, uint client_flag)

• Each connection is handled by its own thread, rather than by the master accept()
thread. This fixes permanently the telnet bug that was a topic on the mail list some
time ago.

• All TCP/IP connections are now checked with backward-resolution of the hostname
to get better security. mysqld now has a local hostname resolver cache so connections
should actually be faster than before, even with this feature.

980 MySQL Technical Reference for Version 4.1.1-alpha

• A site automatically will be blocked from future connections if someone repeatedly
connects with an “improper header” (like when one uses telnet).

• You can now refer to tables in different databases with references of the form tbl_
name@db_name or db_name.tbl_name. This makes it possible to give a user read access
to some tables and write access to others simply by keeping them in different databases!

• Added --user option to mysqld, to allow it to run as another Unix user (if it is started
as the Unix root user).

• Added caching of users and access rights (for faster access rights checking)
• Normal users (not anonymous ones) can change their password with mysqladmin

password ’new_password’. This uses encrypted passwords that are not logged in the
normal MySQL log!

• All important string functions are now coded in assembler for x86 Linux machines.
This gives a speedup of 10% in many cases.

• For tables that have many columns, the column names are now hashed for much faster
column name lookup (this will speed up some benchmark tests a lot!)

• Some benchmarks are changed to get better individual timing. (Some loops were so
short that a specific test took < 2 seconds. The loops have been changed to take about
20 seconds to make it easier to compare different databases. A test that took 1-2
seconds before now takes 11-24 seconds, which is much better)

• Re-arranged SELECT code to handle some very specific queries involving group functions
(like COUNT(*)) without a GROUP BY but with HAVING. The following now works:

mysql> SELECT COUNT(*) as C FROM table HAVING C > 1;

• Changed the protocol for field functions to be faster and avoid some calls to malloc().
• Added -T32 option to mysqld, for running all queries under the main thread. This

makes it possible to debug mysqld under Linux with gdb!
• Added optimisation of not_null_column IS NULL (needed for some Access queries).
• Allow STRAIGHT_JOIN to be used between two tables to force the optimiser to join them

in a specific order.
• String functions now return VARCHAR rather than CHAR and the column type is now

VARCHAR for fields saved as VARCHAR. This should make the MyODBC driver better, but
may break some old MySQL clients that don’t handle FIELD_TYPE_VARCHAR the same
way as FIELD_TYPE_CHAR.

• CREATE INDEX and DROP INDEX are now implemented through ALTER TABLE. CREATE
TABLE is still the recommended (fast) way to create indexes.

• Added --set-variable option wait_timeout to mysqld.
• Added time column to mysqladmin processlist to show how long a query has taken

or how long a thread has slept.
• Added lots of new variables to show variables and some new to show status.
• Added new type YEAR. YEAR is stored in 1 byte with allowable values of 0, and 1901 to

2155.
• Added new DATE type that is stored in 3 bytes rather than 4 bytes. All new tables are

created with the new date type if you don’t use the --old-protocol option to mysqld.

Appendix D: MySQL Change History 981

• Fixed bug in record caches; for some queries, you could get Error from table
handler: # on some operating systems.

• Added --enable-assembler option to configure, for x86 machines (tested on Linux
+ gcc). This will enable assembler functions for the most important string functions
for more speed!

D.6 Changes in release 3.21.x

Version 3.21 is quite old now, and should be avoided if possible. This information is kept
here for historical purposes only.

D.6.1 Changes in release 3.21.33

• Fixed problem when sending SIGHUP to mysqld; mysqld core dumped when starting
from boot on some systems.

• Fixed problem with losing a little memory for some connections.
• DELETE FROM tbl_name without a WHERE condition is now done the long way when you

use LOCK TABLES or if the table is in use, to avoid race conditions.
• INSERT INTO TABLE (timestamp_column) VALUES (NULL); didn’t set timestamp.

D.6.2 Changes in release 3.21.32

• Fixed some possible race conditions when doing many reopen/close on the same tables
under heavy load! This can happen if you execute mysqladmin refresh often. This
could in some very rare cases corrupt the header of the index file and cause error 126
or 138.

• Fixed fatal bug in refresh() when running with the --skip-external-locking op-
tion. There was a “very small” time gap after a mysqladmin refresh when a table
could be corrupted if one thread updated a table while another thread did mysqladmin
refresh and another thread started a new update ont the same table before the first
thread had finished. A refresh (or --flush-tables) will now not return until all used
tables are closed!

• SELECT DISTINCT with a WHERE clause that didn’t match any rows returned a row in
some contexts (bug only in 3.21.31).

• GROUP BY + ORDER BY returned one empty row when no rows where found.
• Fixed a bug in the range optimiser that wrote Use_count: Wrong count for ... in

the error log file.

D.6.3 Changes in release 3.21.31

• Fixed a sign extension problem for the TINYINT type on Irix.
• Fixed problem with LEFT("constant_string",function).
• Fixed problem with FIND_IN_SET().

982 MySQL Technical Reference for Version 4.1.1-alpha

• LEFT JOIN core dumped if the second table is used with a constant WHERE/ON expression
that uniquely identifies one record.

• Fixed problems with DATE_FORMAT() and incorrect dates. DATE_FORMAT() now ignores
’%’ to make it possible to extend it more easily in the future.

D.6.4 Changes in release 3.21.30

• mysql now returns an exit code > 0 if the query returned an error.

• Saving of command-line history to file in mysql client. By Tommy Larsen
tommy@mix.hive.no.

• Fixed problem with empty lines that were ignored in ‘mysql.cc’.

• Save the pid of the signal handler thread in the pid file instead of the pid of the main
thread.

• Added patch by tommy@valley.ne.jp to support Japanese characters SJIS and UJIS.

• Changed safe_mysqld to redirect startup messages to ’hostname’.err instead of
’hostname’.log to reclaim file space on mysqladmin refresh.

• ENUM always had the first entry as default value.

• ALTER TABLE wrote two entries to the update log.

• sql_acc() now closes the mysql grant tables after a reload to save table space and
memory.

• Changed LOAD DATA to use less memory with tables and BLOB columns.

• Sorting on a function which made a division / 0 produced a wrong set in some cases.

• Fixed SELECT problem with LEFT() when using the czech character set.

• Fixed problem in isamchk; it couldn’t repair a packed table in a very unusual case.

• SELECT statements with & or | (bit functions) failed on columns with NULL values.

• When comparing a field = field, where one of the fields was a part key, only the length
of the part key was compared.

D.6.5 Changes in release 3.21.29

• LOCK TABLES + DELETE from tbl_name never removed locks properly.

• Fixed problem when grouping on an OR function.

• Fixed permission problem with umask() and creating new databases.

• Fixed permission problem on result file with SELECT ... INTO OUTFILE ...

• Fixed problem in range optimiser (core dump) for a very complex query.

• Fixed problem when using MIN(integer) or MAX(integer) in GROUP BY.

• Fixed bug on Alpha when using integer keys. (Other keys worked on Alpha.)

• Fixed bug in WEEK("XXXX-xx-01").

Appendix D: MySQL Change History 983

D.6.6 Changes in release 3.21.28

• Fixed socket permission (clients couldn’t connect to Unix socket on Linux).
• Fixed bug in record caches; for some queries, you could get Error from table

handler: # on some operating systems.

D.6.7 Changes in release 3.21.27

• Added user level lock functions GET_LOCK(string,timeout), RELEASE_LOCK(string).
• Added Opened_tables to show status.
• Changed connect timeout to 3 seconds to make it somewhat harder for crackers to kill

mysqld through telnet + TCP/IP.
• Fixed bug in range optimiser when using WHERE key_part_1 >= something AND key_

part_2 <= something_else.
• Changed configure for detection of FreeBSD 3.0 9803xx and above
• WHERE with string_col_key = constant_string didn’t always find all rows if the

column had many values differing only with characters of the same sort value (like e
and e with an accent).

• Strings keys looked up with ’ref’ were not compared in case-sensitive fashion.
• Added umask() to make log files non-readable for normal users.
• Ignore users with old (8-byte) password on startup if not using --old-protocol option

to mysqld.
• SELECT which matched all key fields returned the values in the case of the matched

values, not of the found values. (Minor problem.)

D.6.8 Changes in release 3.21.26

• FROM_DAYS(0) now returns "0000-00-00".
• In DATE_FORMAT(), PM and AM were swapped for hours 00 and 12.
• Extended the default maximum key size to 256.
• Fixed bug when using BLOB/TEXT in GROUP BY with many tables.
• An ENUM field that is not declared NOT NULL has NULL as the default value. (Previously,

the default value was the first enumeration value.)
• Fixed bug in the join optimiser code when using many part keys on the same key:

INDEX (Organisation,Surname(35),Initials(35)).
• Added some tests to the table order optimiser to get some cases with SELECT ... FROM

many_tables much faster.
• Added a retry loop around accept() to possibly fix some problems on some Linux

machines.

D.6.9 Changes in release 3.21.25

• Changed typedef ’string’ to typedef ’my_string’ for better portability.

984 MySQL Technical Reference for Version 4.1.1-alpha

• You can now kill threads that are waiting on a disk-full condition.
• Fixed some problems with UDF functions.
• Added long options to isamchk. Try isamchk --help.
• Fixed a bug when using 8 bytes long (alpha); filesort() didn’t work. Affects

DISTINCT, ORDER BY and GROUP BY on 64-bit processors.

D.6.10 Changes in release 3.21.24

• Dynamic loadable functions. Based on source from Alexis Mikhailov.
• You couldn’t delete from a table if no one had done a SELECT on the table.
• Fixed problem with range optimiser with many OR operators on key parts inside each

other.
• Recoded MIN() and MAX() to work properly with strings and HAVING.
• Changed default umask value for new files from 0664 to 0660.
• Fixed problem with LEFT JOIN and constant expressions in the ON part.
• Added Italian error messages from brenno@dewinter.com.
• configure now works better on OSF/1 (tested on 4.0D).
• Added hooks to allow LIKE optimisation with international character support.
• Upgraded DBI to 0.93.

D.6.11 Changes in release 3.21.23

• The following symbols are now reserved words: TIME, DATE, TIMESTAMP, TEXT, BIT,
ENUM, NO, ACTION, CHECK, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, STATUS, VARIABLES.

• Setting a TIMESTAMP to NULL in LOAD DATA INFILE ... didn’t set the current time for
the TIMESTAMP.

• Fix BETWEEN to recognise binary strings. Now BETWEEN is case-sensitive.
• Added --skip-thread-priority option to mysqld, for systems where mysqld’s thread

scheduling doesn’t work properly (BSDI 3.1).
• Added ODBC functions DAYNAME() and MONTHNAME().
• Added function TIME_FORMAT(). This works like DATE_FORMAT(), but takes a time

string (’HH:MM:SS’) as argument.
• Fixed unlikely(?) key optimiser bug when using OR operators of key parts inside AND

expressions.
• Added variables command to mysqladmin.
• A lot of small changes to the binary releases.
• Fixed a bug in the new protocol from MySQL Version 3.21.20.
• Changed ALTER TABLE to work with Windows (Windows can’t rename open files). Also

fixed a couple of small bugs in the Windows version.
• All standard MySQL clients are now ported to MySQL for Windows.
• MySQL can now be started as a service on NT.

Appendix D: MySQL Change History 985

D.6.12 Changes in release 3.21.22

• Starting with this version, all MySQL distributions will be configured, compiled and
tested with crash-me and the benchmarks on the following platforms: SunOS 5.6
sun4u, SunOS 5.5.1 sun4u, SunOS 4.14 sun4c, SunOS 5.6 i86pc, Irix 6.3 mips5k, HP-
UX 10.20 hppa, AIX 4.2.1 ppc, OSF/1 V4.0 alpha, FreeBSD 2.2.2 i86pc and BSDI 3.1
i386.

• Fix COUNT(*) problems when the WHERE clause didn’t match any records. (Bug from
3.21.17.)

• Removed that NULL = NULL is true. Now you must use IS NULL or IS NOT NULL to test
whether a value is NULL. (This is according to SQL-99 but may break old applications
that are ported from mSQL.) You can get the old behaviour by compiling with -DmSQL_
COMPLIANT.

• Fixed bug that core dumped when using many LEFT OUTER JOIN clauses.
• Fixed bug in ORDER BY on string formula with possible NULL values.
• Fixed problem in range optimiser when using <= on sub index.
• Added functions DAYOFYEAR(), DAYOFMONTH(), MONTH(), YEAR(), WEEK(), QUARTER(),

HOUR(), MINUTE(), SECOND() and FIND_IN_SET().
• Added SHOW VARIABLES command.
• Added support of “long constant strings” from SQL-99:

mysql> SELECT ’first ’ ’second’; -> ’first second’

• Upgraded Msql-Mysql-modules to 1.1825.
• Upgraded mysqlaccess to 2.02.
• Fixed problem with Russian character set and LIKE.
• Ported to OpenBSD 2.1.
• New Dutch error messages.

D.6.13 Changes in release 3.21.21a

• Configure changes for some operating systems.

D.6.14 Changes in release 3.21.21

• Fixed optimiser bug when using WHERE data_field = date_field2 AND date_field2
= constant.

• Added SHOW STATUS command.
• Removed ‘manual.ps’ from the source distribution to make it smaller.

D.6.15 Changes in release 3.21.20

• Changed the maximum table name and column name lengths from 32 to 64.
• Aliases can now be of “any” length.
• Fixed mysqladmin stat to return the right number of queries.

986 MySQL Technical Reference for Version 4.1.1-alpha

• Changed protocol (downward compatible) to mark if a column has the AUTO_INCREMENT
attribute or is a TIMESTAMP. This is needed for the new Java driver.

• Added Hebrew sorting order by Zeev Suraski.
• Solaris 2.6: Fixed configure bugs and increased maximum table size from 2G to 4G.

D.6.16 Changes in release 3.21.19

• Upgraded DBD to 1.1823. This version implements mysql_use_result in DBD-Mysql.
• Benchmarks updated for empress (by Luuk).
• Fixed a case of slow range searching.
• Configure fixes (‘Docs’ directory).
• Added function REVERSE() (by Zeev Suraski).

D.6.17 Changes in release 3.21.18

• Issue error message if client C functions are called in wrong order.
• Added automatic reconnect to the ‘libmysql.c’ library. If a write command fails, an

automatic reconnect is done.
• Small sort sets no longer use temporary files.
• Upgraded DBI to 0.91.
• Fixed a couple of problems with LEFT OUTER JOIN.
• Added CROSS JOIN syntax. CROSS is now a reserved word.
• Recoded yacc/bison stack allocation to be even safer and to allow MySQL to handle

even bigger expressions.
• Fixed a couple of problems with the update log.
• ORDER BY was slow when used with key ranges.

D.6.18 Changes in release 3.21.17

• Changed documentation string of --with-unix-socket-path to avoid confusion.
• Added ODBC and SQL-99 style LEFT OUTER JOIN.
• The following are new reserved words: LEFT, NATURAL, USING.
• The client library now uses the value of the environment variable MYSQL_HOST as the

default host if it’s defined.
• SELECT col_name, SUM(expr) now returns NULL for col_name when there are matching

rows.
• Fixed problem with comparing binary strings and BLOB values with ASCII characters

over 127.
• Fixed lock problem: when freeing a read lock on a table with multiple read locks, a

thread waiting for a write lock would have been given the lock. This shouldn’t affect
data integrity, but could possibly make mysqld restart if one thread was reading data
that another thread modified.

Appendix D: MySQL Change History 987

• LIMIT offset,count didn’t work in INSERT ... SELECT.
• Optimised key block caching. This will be quicker than the old algorithm when using

bigger key caches.

D.6.19 Changes in release 3.21.16

• Added ODBC 2.0 & 3.0 functions POWER(), SPACE(), COT(), DEGREES(), RADIANS(),
ROUND(2 arg) and TRUNCATE().

• Warning: Incompatible change! LOCATE() parameters were swapped according to
ODBC standard. Fixed.

• Added function TIME_TO_SEC().
• In some cases, default values were not used for NOT NULL fields.
• Timestamp wasn’t always updated properly in UPDATE SET ... statements.
• Allow empty strings as default values for BLOB and TEXT, to be compatible with

mysqldump.

D.6.20 Changes in release 3.21.15

• Warning: Incompatible change! mysqlperl is now from Msql-Mysql-modules. This
means that connect() now takes host, database, user, password arguments! The
old version took host, database, password, user.

• Allow DATE ’1997-01-01’, TIME ’12:10:10’ and TIMESTAMP ’1997-01-01 12:10:10’
formats required by SQL-99. Warning: Incompatible change! This has the unfortunate
side-effect that you no longer can have columns named DATE, TIME or TIMESTAMP. :(
Old columns can still be accessed through tablename.columnname!)

• Changed Makefiles to hopefully work better with BSD systems. Also, ‘manual.dvi’
is now included in the distribution to avoid having stupid make programs trying to
rebuild it.

• readline library upgraded to version 2.1.
• A new sortorder german-1. That is a normal ISO-Latin1 with a german sort order.
• Perl DBI/DBD is now included in the distribution. DBI is now the recommended way to

connect to MySQL from Perl.
• New portable benchmark suite with DBD, with test results from mSQL 2.0.3, MySQL,

PostgreSQL 6.2.1 and Solid server 2.2.
• crash-me is now included with the benchmarks; this is a Perl program designed to find

as many limits as possible in an SQL server. Tested with mSQL, PostgreSQL, Solid and
MySQL.

• Fixed bug in range-optimiser that crashed MySQL on some queries.
• Table and column name completion for mysql command-line tool, by Zeev Suraski and

Andi Gutmans.
• Added new command REPLACE that works like INSERT but replaces conflicting records

with the new record. REPLACE INTO TABLE ... SELECT ... works also.
• Added new commands CREATE DATABASE db_name and DROP DATABASE db_name.

988 MySQL Technical Reference for Version 4.1.1-alpha

• Added RENAME option to ALTER TABLE: ALTER TABLE name RENAME TO new_name.
• make_binary_distribution now includes ‘libgcc.a’ in ‘libmysqlclient.a’. This

should make linking work for people who don’t have gcc.
• Changed net_write() to my_net_write() because of a name conflict with Sybase.
• New function DAYOFWEEK() compatible with ODBC.
• Stack checking and bison memory overrun checking to make MySQL safer with weird

queries.

D.6.21 Changes in release 3.21.14b

• Fixed a couple of small configure problems on some platforms.

D.6.22 Changes in release 3.21.14a

• Ported to SCO Openserver 5.0.4 with FSU Pthreads.
• HP-UX 10.20 should work.
• Added new function DATE_FORMAT().
• Added NOT IN.
• Added automatic removal of ’ODBC function conversions’: {fn now() }

• Handle ODBC 2.50.3 option flags.
• Fixed comparison of DATE and TIME values with NULL.
• Changed language name from germany to german to be consistent with the other

language names.
• Fixed sorting problem on functions returning a FLOAT. Previously, the values were

converted to INT values before sorting.
• Fixed slow sorting when sorting on key field when using key_column=constant.
• Sorting on calculated DOUBLE values sorted on integer results instead.
• mysql no longer requires a database argument.
• Changed the place where HAVING should be. According to the SQL standards, it should

be after GROUP BY but before ORDER BY. MySQL Version 3.20 incorrectly had it last.
• Added Sybase command USE database to start using another database.
• Added automatic adjusting of number of connections and table cache size if the maxi-

mum number of files that can be opened is less than needed. This should fix that mysqld
doesn’t crash even if you haven’t done a ulimit -n 256 before starting mysqld.

• Added lots of limit checks to make it safer when running with too little memory or
when doing weird queries.

D.6.23 Changes in release 3.21.13

• Added retry of interrupted reads and clearing of errno. This makes Linux systems
much safer!

• Fixed locking bug when using many aliases on the same table in the same SELECT.

Appendix D: MySQL Change History 989

• Fixed bug with LIKE on number key.
• New error message so you can check whether the connection was lost while the command

was running or whether the connection was down from the start.
• Added --table option to mysql to print in table format. Moved time and row infor-

mation after query result. Added automatic reconnect of lost connections.
• Added != as a synonym for <>.
• Added function VERSION() to make easier logs.
• New multi-user test ‘tests/fork_test.pl’ to put some strain on the thread library.

D.6.24 Changes in release 3.21.12

• Fixed ftruncate() call in MIT-pthreads. This made isamchk destroy the ‘.ISM’ files
on (Free)BSD 2.x systems.

• Fixed broken __P_ patch in MIT-pthreads.
• Many memory overrun checks. All string functions now return NULL if the returned

string should be longer than max_allowed_packet bytes.
• Changed the name of the INTERVAL type to ENUM, because INTERVAL is used in SQL-99.
• In some cases, doing a JOIN + GROUP + INTO OUTFILE, the result wasn’t grouped.
• LIKE with ’_’ as last character didn’t work. Fixed.
• Added extended SQL-99 TRIM() function.
• Added CURTIME().
• Added ENCRYPT() function by Zeev Suraski.
• Fixed better FOREIGN KEY syntax skipping. New reserved words: MATCH, FULL,

PARTIAL.
• mysqld now allows IP number and hostname for the --bind-address option.
• Added SET CHARACTER SET cp1251_koi8 to enable conversions of data to and from the

cp1251_koi8 character set.
• Lots of changes for Windows 95 port. In theory, this version should now be easily

portable to Windows 95.
• Changed the CREATE COLUMN syntax of NOT NULL columns to be after the DEFAULT value,

as specified in the SQL-99 standard. This will make mysqldump with NOT NULL and
default values incompatible with MySQL Version 3.20.

• Added many function name aliases so the functions can be used with ODBC or SQL-92
syntax.

• Fixed syntax of ALTER TABLE tbl_name ALTER COLUMN col_name SET DEFAULT NULL.
• Added CHAR and BIT as synonyms for CHAR(1).
• Fixed core dump when updating as a user who has only SELECT privilege.
• INSERT ... SELECT ... GROUP BY didn’t work in some cases. An Invalid use of

group function error occurred.
• When using LIMIT, SELECT now always uses keys instead of record scan. This will give

better performance on SELECT and a WHERE that matches many rows.
• Added Russian error messages.

990 MySQL Technical Reference for Version 4.1.1-alpha

D.6.25 Changes in release 3.21.11

• Configure changes.

• MySQL now works with the new thread library on BSD/OS 3.0.

• Added new group functions BIT_OR() and BIT_AND().

• Added compatibility functions CHECK and REFERENCES. CHECK is now a reserved word.

• Added ALL option to GRANT for better compatibility. (GRANT is still a dummy function.)

• Added partly-translated Dutch error messages.

• Fixed bug in ORDER BY and GROUP BY with NULL columns.

• Added function LAST_INSERT_ID() SQL function to retrieve last AUTO_INCREMENT
value. This is intended for clients to ODBC that can’t use the mysql_insert_id()
API function, but can be used by any client.

• Added --flush-logs option to mysqladmin.

• Added command STATUS to mysql.

• Fixed problem with ORDER BY/GROUP BY because of bug in gcc.

• Fixed problem with INSERT ... SELECT ... GROUP BY.

D.6.26 Changes in release 3.21.10

• New program mysqlaccess.

• CREATE now supports all ODBC types and the mSQL TEXT type. All ODBC 2.5 functions
are also supported (added REPEAT). This provides better portability.

• Added text types TINYTEXT, TEXT, MEDIUMTEXT and LONGTEXT. These are actually
BLOBtypes, but all searching is done in case-insensitive fashion.

• All old BLOB fields are now TEXT fields. This only changes that all searching on strings
is done in case-sensitive fashion. You must do an ALTER TABLE and change the datatype
to BLOB if you want to have tests done in case-sensitive fashion.

• Fixed some configure issues.

• Made the locking code a bit safer. Fixed very unlikely deadlock situation.

• Fixed a couple of bugs in the range optimiser. Now the new range benchmark test-
select works.

D.6.27 Changes in release 3.21.9

• Added --enable-unix-socket=pathname option to configure.

• Fixed a couple of portability problems with include files.

• Fixed bug in range calculation that could return empty set when searching on multiple
key with only one entry (very rare).

• Most things ported to FSU Pthreads, which should allow MySQL to run on SCO. See
Section 2.6.6.9 [SCO], page 149.

Appendix D: MySQL Change History 991

D.6.28 Changes in release 3.21.8

• Works now in Solaris 2.6.
• Added handling of calculation of SUM() functions. For example, you can now use

SUM(column)/COUNT(column).
• Added handling of trigometric functions: PI(), ACOS(), ASIN(), ATAN(), COS(), SIN()

and TAN().
• New languages: Norwegian, Norwegian-ny and Portuguese.
• Fixed parameter bug in net_print() in ‘procedure.cc’.
• Fixed a couple of memory leaks.
• Now allow also the old SELECT ... INTO OUTFILE syntax.
• Fixed bug with GROUP BY and SELECT on key with many values.
• mysql_fetch_lengths() sometimes returned incorrect lengths when you used mysql_

use_result(). This affected at least some cases of mysqldump --quick.
• Fixed bug in optimisation of WHERE const op field.
• Fixed problem when sorting on NULL fields.
• Fixed a couple of 64-bit (Alpha) problems.
• Added --pid-file=# option to mysqld.
• Added date formatting to FROM_UNIXTIME(), originally by Zeev Suraski.
• Fixed bug in BETWEEN in range optimiser (did only test = of the first argument).
• Added machine-dependent files for MIT-pthreads i386-SCO. There is probably more

to do to get this to work on SCO 3.5.

D.6.29 Changes in release 3.21.7

• Changed ‘Makefile.am’ to take advantage of Automake 1.2.
• Added the beginnings of a benchmark suite.
• Added more secure password handling.
• Added new client function mysql_errno(), to get the error number of the error mes-

sage. This makes error checking in the client much easier. This makes the new server
incompatible with the 3.20.x server when running without --old-protocol. The client
code is backward-compatible. More information can be found in the ‘README’ file!

• Fixed some problems when using very long, illegal names.

D.6.30 Changes in release 3.21.6

• Fixed more portability issues (incorrect sigwait and sigset defines).
• configure should now be able to detect the last argument to accept().

D.6.31 Changes in release 3.21.5

• Should now work with FreeBSD 3.0 if used with ‘FreeBSD-3.0-libc_r-1.0.diff’,
which can be found at http://www.mysql.com/downloads/os-freebsd.html.

992 MySQL Technical Reference for Version 4.1.1-alpha

• Added new -O tmp_table_size=# option to mysqld.
• New function FROM_UNIXTIME(timestamp) which returns a date string in ’YYYY-MM-DD

HH:MM:SS’ format.
• New function SEC_TO_TIME(seconds) which returns a string in ’HH:MM:SS’ format.
• New function SUBSTRING_INDEX(), originally by Zeev Suraski.

D.6.32 Changes in release 3.21.4

• Should now configure and compile on OSF/1 4.0 with the DEC compiler.
• Configuration and compilation on BSD/OS 3.0 works, but due to some bugs in BSD/OS

3.0, mysqld doesn’t work on it yet.
• Configuration and compilation on FreeBSD 3.0 works, but I couldn’t get pthread_

create to work.

D.6.33 Changes in release 3.21.3

• Added reverse check lookup of hostnames to get better security.
• Fixed some possible buffer overflows if filenames that are too long are used.
• mysqld doesn’t accept hostnames that start with digits followed by a ’.’, because the

hostname may look like an IP number.
• Added --skip-networking option to mysqld, to allow only socket connections. (This

will not work with MIT-pthreads!)
• Added check of too long table names for alias.
• Added check if database name is okay.
• Added check if too long table names.
• Removed incorrect free() that killed the server on CREATE DATABASE or DROP

DATABASE.
• Changed some mysqld -O options to better names.
• Added -O join_cache_size=# option to mysqld.
• Added -O max_join_size=# option to mysqld, to be able to set a limit how big queries

(in this case big = slow) one should be able to handle without specifying SET SQL_BIG_
SELECTS=1. A # = is about 10 examined records. The default is “unlimited”.

• When comparing a TIME, DATE, DATETIME or TIMESTAMP column to a constant, the
constant is converted to a time value before performing the comparison. This will
make it easier to get ODBC (particularly Access97) to work with the above types. It
should also make dates easier to use and the comparisons should be quicker than before.

• Applied patch from Jochen Wiedmann that allows query() in mysqlperl to take a
query with \0 in it.

• Storing a timestamp with a 2-digit year (YYMMDD) didn’t work.
• Fix that timestamp wasn’t automatically updated if set in an UPDATE clause.
• Now the automatic timestamp field is the FIRST timestamp field.
• SELECT * INTO OUTFILE, which didn’t correctly if the outfile already existed.

Appendix D: MySQL Change History 993

• mysql now shows the thread ID when starting or doing a reconnect.
• Changed the default sort buffer size from 2M to 1M.

D.6.34 Changes in release 3.21.2

• The range optimiser is coded, but only 85% tested. It can be enabled with --new, but
it crashes core a lot yet...

• More portable. Should compile on AIX and alpha-digital. At least the isam library
should be relatively 64-bit clean.

• New isamchk which can detect and fix more problems.
• New options for isamlog.
• Using new version of Automake.
• Many small portability changes (from the AIX and alpha-digital port) Better checking

of pthread(s) library.
• czech error messages by snajdr@pvt.net.
• Decreased size of some buffers to get fewer problems on systems with little memory.

Also added more checks to handle “out of memory” problems.
• mysqladmin: you can now do mysqladmin kill 5,6,7,8 to kill multiple threads.
• When the maximum connection limit is reached, one extra connection by a user with

the process acl privilege is granted.
• Added -O backlog=# option to mysqld.
• Increased maximum packet size from 512K to 1024K for client.
• Almost all of the function code is now tested in the internal test suite.
• ALTER TABLE now returns warnings from field conversions.
• Port changed to 3306 (got it reserved from ISI).
• Added a fix for Visual FoxBase so that any schema name from a table specification is

automatically removed.
• New function ASCII().
• Removed function BETWEEN(a,b,c). Use the standard SQL syntax instead: expr

BETWEEN expr AND expr.
• MySQL no longer has to use an extra temporary table when sorting on functions or

SUM() functions.
• Fixed bug that you couldn’t use tbl_name.field_name in UPDATE.
• Fixed SELECT DISTINCT when using ’hidden group’. For example:

mysql> SELECT DISTINCT MOD(some_field,10) FROM test
-> GROUP BY some_field;

Note: some_field is normally in the SELECT part. Standard SQL should require it.

D.6.35 Changes in release 3.21.0

• New reserved words used: INTERVAL, EXPLAIN, READ, WRITE, BINARY.
• Added ODBC function CHAR(num,...).

994 MySQL Technical Reference for Version 4.1.1-alpha

• New operator IN. This uses a binary search to find a match.
• New command LOCK TABLES tbl_name [AS alias] {READ|WRITE} ...

• Added --log-update option to mysqld, to get a log suitable for incremental updates.
• New command EXPLAIN SELECT ... to get information about how the optimiser will

do the join.
• For easier client code, the client should no longer use FIELD_TYPE_TINY_BLOB, FIELD_

TYPE_MEDIUM_BLOB, FIELD_TYPE_LONG_BLOB or FIELD_TYPE_VAR_STRING (as previ-
ously returned by mysql_list_fields). You should instead only use FIELD_TYPE_
BLOB or FIELD_TYPE_STRING. If you want exact types, you should use the command
SHOW FIELDS.

• Added varbinary syntax: 0x###### which can be used as a string (default) or a number.
• FIELD_TYPE_CHAR is renamed to FIELD_TYPE_TINY.
• Changed all fields to C++ classes.
• Removed FORM struct.
• Fields with DEFAULT values no longer need to be NOT NULL.
• New field types:

ENUM A string which can take only a couple of defined values. The value is stored
as a 1-3 byte number that is mapped automatically to a string. This is
sorted according to string positions!

SET A string which may have one or many string values separated with ’,’. The
string is stored as a 1-, 2-, 3-, 4- or 8-byte number where each bit stands
for a specific set member. This is sorted according to the unsigned value
of the stored packed number.

• Now all function calculation is done with double or long long. This will provide
the full 64-bit range with bit functions and fix some conversions that previously could
result in precision losses. One should avoid using unsigned long long columns with
full 64-bit range (numbers bigger than 9223372036854775807) because calculations are
done with signed long long.

• ORDER BY will now put NULL field values first. GROUP BY will also work with NULL values.
• Full WHERE with expressions.
• New range optimiser that can resolve ranges when some keypart prefix is constant.

Example:
mysql> SELECT * FROM tbl_name

-> WHERE key_part_1="customer"
-> AND key_part_2>=10 AND key_part_2<=10;

D.7 Changes in release 3.20.x

Version 3.20 is quite old now, and should be avoided if possible. This information is kept
here for historical purposes only.
Changes from 3.20.18 to 3.20.32b are not documented here because the 3.21 release branched
here. And the relevant changes are also documented as changes to the 3.21 version.

Appendix D: MySQL Change History 995

D.7.1 Changes in release 3.20.18

• Added -p# (remove # directories from path) to isamlog. All files are written with a
relative path from the database directory Now mysqld shouldn’t crash on shutdown
when using the --log-isam option.

• New mysqlperl version. It is now compatible with msqlperl-0.63.
• New DBD module available.
• Added group function STD() (standard deviation).
• The mysqld server is now compiled by default without debugging information. This

will make the daemon smaller and faster.
• Now one usually only has to specify the --basedir option to mysqld. All other paths

are relative in a normal installation.
• BLOB columns sometimes contained garbage when used with a SELECT on more than

one table and ORDER BY.
• Fixed that calculations that are not in GROUP BY work as expected (SQL-99 extension).

Example:
mysql> SELECT id,id+1 FROM table GROUP BY id;

• The test of using MYSQL_PWD was reversed. Now MYSQL_PWD is enabled as default in the
default release.

• Fixed conversion bug which caused mysqld to core dump with Arithmetic error on
SPARC-386.

• Added --unbuffered option to mysql, for new mysqlaccess.
• When using overlapping (unnecessary) keys and join over many tables, the optimiser

could get confused and return 0 records.

D.7.2 Changes in release 3.20.17

• You can now use BLOB columns and the functions IS NULL and IS NOT NULL in the
WHERE clause.

• All communication packets and row buffers are now allocated dynamically on demand.
The default value of max_allowed_packet is now 64K for the server and 512K for the
client. This is mainly used to catch incorrect packets that could trash all memory. The
server limit may be changed when it is started.

• Changed stack usage to use less memory.
• Changed safe_mysqld to check for running daemon.
• The ELT() function is renamed to FIELD(). The new ELT() function returns a value

based on an index: FIELD() is the inverse of ELT() Example: ELT(2,"A","B","C")
returns "B". FIELD("B","A","B","C") returns 2.

• COUNT(field), where field could have a NULL value, now works.
• A couple of bugs fixed in SELECT ... GROUP BY.
• Fixed memory overrun bug in WHERE with many unoptimisable brace levels.
• Fixed some small bugs in the grant code.

996 MySQL Technical Reference for Version 4.1.1-alpha

• If hostname isn’t found by get_hostname, only the IP is checked. Previously, you got
Access denied.

• Inserts of timestamps with values didn’t always work.

• INSERT INTO ... SELECT ... WHERE could give the error Duplicated field.

• Added some tests to safe_mysqld to make it “safer”.

• LIKE was case-sensitive in some places and case-insensitive in others. Now LIKE is
always case-insensitive.

• ‘mysql.cc’: Allow ’#’ anywhere on the line.

• New command SET SQL_SELECT_LIMIT=#. See the FAQ for more details.

• New version of the mysqlaccess script.

• Change FROM_DAYS() and WEEKDAY() to also take a full TIMESTAMP or DATETIME as
argument. Before they only took a number of type YYYYMMDD or YYMMDD.

• Added new function UNIX_TIMESTAMP(timestamp_column).

D.7.3 Changes in release 3.20.16

• More changes in MIT-pthreads to get them safer. Fixed also some link bugs at least
in SunOS.

• Changed mysqld to work around a bug in MIT-pthreads. This makes multiple small
SELECT operations 20 times faster. Now lock_test.pl should work.

• Added mysql_FetchHash(handle) to mysqlperl.

• The mysqlbug script is now distributed built to allow for reporting bugs that appear
during the build with it.

• Changed ‘libmysql.c’ to prefer getpwuid() instead of cuserid().

• Fixed bug in SELECT optimiser when using many tables with the same column used as
key to different tables.

• Added new latin2 and Russian KOI8 character tables.

• Added support for a dummy GRANT command to satisfy Powerbuilder.

D.7.4 Changes in release 3.20.15

• Fixed fatal bug packets out of order when using MIT-pthreads.

• Removed possible loop when a thread waits for command from client and fcntl() fails.
Thanks to Mike Bretz for finding this bug.

• Changed alarm loop in ‘mysqld.cc’ because shutdown didn’t always succeed in Linux.

• Removed use of termbits from ‘mysql.cc’. This conflicted with glibc 2.0.

• Fixed some syntax errors for at least BSD and Linux.

• Fixed bug when doing a SELECT as superuser without a database.

• Fixed bug when doing SELECT with group calculation to outfile.

Appendix D: MySQL Change History 997

D.7.5 Changes in release 3.20.14

• If one gives -p or --password option to mysql without an argument, the user is solicited
for the password from the tty.

• Added default password from MYSQL_PWD (by Elmar Haneke).

• Added command kill to mysqladmin to kill a specific MySQL thread.

• Sometimes when doing a reconnect on a down connection this succeeded first on second
try.

• Fixed adding an AUTO_INCREMENT key with ALTER_TABLE.

• AVG() gave too small value on some SELECT statements with GROUP BY and ORDER BY.

• Added new DATETIME type (by Giovanni Maruzzelli maruzz@matrice.it).

• Fixed that defining DONT_USE_DEFAULT_FIELDS works.

• Changed to use a thread to handle alarms instead of signals on Solaris to avoid race
conditions.

• Fixed default length of signed numbers. (George Harvey georgeh@pinacl.co.uk.)

• Allow anything for CREATE INDEX.

• Add prezeros when packing numbers to DATE, TIME and TIMESTAMP.

• Fixed a bug in OR of multiple tables (gave empty set).

• Added many patches to MIT-pthreads. This fixes at least one lookup bug.

D.7.6 Changes in release 3.20.13

• Added standard SQL-92 DATE and TIME types.

• Fixed bug in SELECT with AND-OR levels.

• Added support for Slovenian characters. The ‘Contrib’ directory contains source and
instructions for adding other character sets.

• Fixed bug with LIMIT and ORDER BY.

• Allow ORDER BY and GROUP BY on items that aren’t in the SELECT list. (Thanks to Wim
Bonis bonis@kiss.de, for pointing this out.)

• Allow setting of timestamp values in INSERT.

• Fixed bug with SELECT ... WHERE ... = NULL.

• Added changes for glibc 2.0. To get glibc to work, you should add the
‘gibc-2.0-sigwait-patch’ before compiling glibc.

• Fixed bug in ALTER TABLE when changing a NOT NULL field to allow NULL values.

• Added some SQL-92 synonyms as field types to CREATE TABLE. CREATE TABLE now
allows FLOAT(4) and FLOAT(8) to mean FLOAT and DOUBLE.

• New utility program mysqlaccess by Yves.Carlier@rug.ac.be. This program shows
the access rights for a specific user and the grant rows that determine this grant.

• Added WHERE const op field (by bonis@kiss.de).

998 MySQL Technical Reference for Version 4.1.1-alpha

D.7.7 Changes in release 3.20.11

• When using SELECT ... INTO OUTFILE, all temporary tables are ISAM instead of
HEAP to allow big dumps.

• Changed date functions to be string functions. This fixed some “funny” side effects
when sorting on dates.

• Extended ALTER TABLE for SQL-92 compliance.

• Some minor compatibility changes.

• Added --port and --socket options to all utility programs and mysqld.

• Fixed MIT-pthreads readdir_r(). Now mysqladmin create database and
mysqladmin drop database should work.

• Changed MIT-pthreads to use our tempnam(). This should fix the “sort aborted” bug.

• Added sync of records count in sql_update. This fixed slow updates on first connection.
(Thanks to Vaclav Bittner for the test.)

D.7.8 Changes in release 3.20.10

• New insert type: INSERT INTO ... SELECT ...

• MEDIUMBLOB fixed.

• Fixed bug in ALTER TABLE and BLOB values.

• SELECT ... INTO OUTFILE now creates the file in the current database directory.

• DROP TABLE now can take a list of tables.

• Oracle synonym DESCRIBE (DESC).

• Changes to make_binary_distribution.

• Added some comments to installation instructions about configure’s C++ link test.

• Added --without-perl option to configure.

• Lots of small portability changes.

D.7.9 Changes in release 3.20.9

• ALTER TABLE didn’t copy null bit. As a result, fields that were allowed to have NULL
values were always NULL.

• CREATE didn’t take numbers as DEFAULT.

• Some compatibility changes for SunOS.

• Removed ‘config.cache’ from old distribution.

D.7.10 Changes in release 3.20.8

• Fixed bug with ALTER TABLE and multi-part keys.

Appendix D: MySQL Change History 999

D.7.11 Changes in release 3.20.7

• New commands: ALTER TABLE, SELECT ... INTO OUTFILE and LOAD DATA INFILE.
• New function: NOW().
• Added new field File_priv to mysql/user table.
• New script add_file_priv which adds the new field File_priv to the user table.

This script must be executed if you want to use the new SELECT ... INTO and LOAD
DATA INFILE ... commands with a version of MySQL earlier than 3.20.7.

• Fixed bug in locking code, which made lock_test.pl test fail.
• New files ‘NEW’ and ‘BUGS’.
• Changed ‘select_test.c’ and ‘insert_test.c’ to include ‘config.h’.
• Added status command to mysqladmin for short logging.
• Increased maximum number of keys to 16 and maximum number of key parts to 15.
• Use of sub keys. A key may now be a prefix of a string field.
• Added -k option to mysqlshow, to get key information for a table.
• Added long options to mysqldump.

D.7.12 Changes in release 3.20.6

• Portable to more systems because of MIT-pthreads, which will be used automatically
if configure cannot find a -lpthreads library.

• Added GNU-style long options to almost all programs. Test with program --help.
• Some shared library support for Linux.
• The FAQ is now in ‘.texi’ format and is available in ‘.html’, ‘.txt’ and ‘.ps’ formats.
• Added new SQL function RAND([init]).
• Changed sql_lex to handle \0 unquoted, but the client can’t send the query through

the C API, because it takes a str pointer. You must use mysql_real_query() to send
the query.

• Added API function mysql_get_client_info().
• mysqld now uses the N_MAX_KEY_LENGTH from ‘nisam.h’ as the maximum allowable

key length.
• The following now works:

mysql> SELECT filter_nr,filter_nr FROM filter ORDER BY filter_nr;

Previously, this resulted in the error: Column: ’filter_nr’ in order clause is
ambiguous.

• mysql now outputs ’\0’, ’\t’, ’\n’ and ’\\’ when encountering ASCII 0, tab, new-
line or ’\’ while writing tab-separated output. This is to allow printing of binary data
in a portable format. To get the old behaviour, use -r (or --raw).

• Added german error messages (60 of 80 error messages translated).
• Added new API function mysql_fetch_lengths(MYSQL_RES *), which returns an ar-

ray of column lengths (of type uint).

1000 MySQL Technical Reference for Version 4.1.1-alpha

• Fixed bug with IS NULL in WHERE clause.
• Changed the optimiser a little to get better results when searching on a key part.
• Added SELECT option STRAIGHT_JOIN to tell the optimiser that it should join tables in

the given order.
• Added support for comments starting with ’--’ in ‘mysql.cc’ (Postgres syntax).
• You can have SELECT expressions and table columns in a SELECT which are not used

in the group part. This makes it efficient to implement lookups. The column that is
used should be a constant for each group because the value is calculated only once for
the first row that is found for a group.

mysql> SELECT id,lookup.text,SUM(*) FROM test,lookup
-> WHERE test.id=lookup.id GROUP BY id;

• Fixed bug in SUM(function) (could cause a core dump).
• Changed AUTO_INCREMENT placement in the SQL query:

INSERT INTO table (auto_field) VALUES (0);

inserted 0, but it should insert an AUTO_INCREMENT value.
• ‘mysqlshow.c’: Added number of records in table. Had to change the client code a

little to fix this.
• mysql now allows doubled ’’ or "" within strings for embedded ’ or ".
• New math functions: EXP(), LOG(), SQRT(), ROUND(), CEILING().

D.7.13 Changes in release 3.20.3

• The configure source now compiles a thread-free client library -lmysqlclient. This
is the only library that needs to be linked with client applications. When using the
binary releases, you must link with -lmysql -lmysys -ldbug -lmystrings as before.

• New readline library from bash-2.0.
• LOTS of small changes to configure and makefiles (and related source).
• It should now be possible to compile in another directory using VPATH. Tested with

GNU Make 3.75.
• safe_mysqld and mysql.server changed to be more compatible between the source

and the binary releases.
• LIMIT now takes one or two numeric arguments. If one argument is given, it indicates

the maximum number of rows in a result. If two arguments are given, the first argument
indicates the offset of the first row to return, the second is the maximum number of rows.
With this it’s easy to do a poor man’s next page/previous page WWW application.

• Changed name of SQL function FIELDS() to ELT(). Changed SQL function
INTERVALL() to INTERVAL().

• Made SHOW COLUMNS a synonym for SHOW FIELDS. Added compatibility syntax FRIEND
KEY to CREATE TABLE. In MySQL, this creates a non-unique key on the given columns.

• Added CREATE INDEX and DROP INDEX as compatibility functions. In MySQL, CREATE
INDEX only checks if the index exists and issues an error if it doesn’t exist. DROP INDEX
always succeeds.

Appendix D: MySQL Change History 1001

• ‘mysqladmin.c’: added client version to version information.
• Fixed core dump bug in sql_acl (core on new connection).
• Removed host, user and db tables from database test in the distribution.
• FIELD_TYPE_CHAR can now be signed (-128 to 127) or unsigned (0 to 255) Previously,

it was always unsigned.
• Bug fixes in CONCAT() and WEEKDAY().
• Changed a lot of source to get mysqld to be compiled with SunPro compiler.
• SQL functions must now have a ’(’ immediately after the function name (no interven-

ing space). For example, ’USER(’ is regarded as beginning a function call, and ’USER
(’ is regarded as an identifier USER followed by a ’(’, not as a function call.

D.7.14 Changes in release 3.20.0

• The source distribution is done with configure and Automake. It will make porting
much easier. The readline library is included in the distribution.

• Separate client compilation: the client code should be very easy to compile on systems
which don’t have threads.

• The old Perl interface code is automatically compiled and installed. Automatic com-
piling of DBD will follow when the new DBD code is ported.

• Dynamic language support: mysqld can now be started with Swedish or English (de-
fault) error messages.

• New functions: INSERT(), RTRIM(), LTRIM() and FORMAT().
• mysqldump now works correctly for all field types (even AUTO_INCREMENT). The format

for SHOW FIELDS FROM tbl_name is changed so the Type column contains information
suitable for CREATE TABLE. In previous releases, some CREATE TABLE information had
to be patched when re-creating tables.

• Some parser bugs from 3.19.5 (BLOB and TIMESTAMP) are corrected. TIMESTAMP now
returns different date information depending on its create length.

• Changed parser to allow a database, table or field name to start with a number or ’_’.
• All old C code from Unireg changed to C++ and cleaned up. This makes the daemon

a little smaller and easier to understand.
• A lot of small bug fixes done.
• New ‘INSTALL’ files (not final version) and some information regarding porting.

D.8 Changes in release 3.19.x

Version 3.19 is quite old now, and should be avoided if possible. This information is kept
here for historical purposes only.

D.8.1 Changes in release 3.19.5

• Some new functions, some more optimisation on joins.
• Should now compile clean on Linux (2.0.x).

1002 MySQL Technical Reference for Version 4.1.1-alpha

• Added functions DATABASE(), USER(), POW(), LOG10() (needed for ODBC).
• In a WHERE with an ORDER BY on fields from only one table, the table is now preferred

as first table in a multi-join.
• HAVING and IS NULL or IS NOT NULL now works.
• A group on one column and a sort on a group function (SUM(), AVG()...) didn’t work

together. Fixed.
• mysqldump: Didn’t send password to server.

D.8.2 Changes in release 3.19.4

• Fixed horrible locking bug when inserting in one thread and reading in another thread.
• Fixed one-off decimal bug. 1.00 was output as 1.0.
• Added attribute ’Locked’ to process list as information if a query is locked by another

query.
• Fixed full magic timestamp. Timestamp length may now be 14, 12, 10, 8, 6, 4 or 2

bytes.
• Sort on some numeric functions could sort incorrectly on last number.
• IF(arg,syntax_error,syntax_error) crashed.
• Added functions CEILING(), ROUND(), EXP(), LOG() and SQRT().
• Enhanced BETWEEN to handle strings.

D.8.3 Changes in release 3.19.3

• Fixed SELECT with grouping on BLOB columns not to return incorrect BLOB info. Group-
ing, sorting and distinct on BLOB columns will not yet work as expected (probably it
will group/sort by the first 7 characters in the BLOB). Grouping on formulas with a
fixed string size (use MID() on a BLOB) should work.

• When doing a full join (no direct keys) on multiple tables with BLOB fields, the BLOB
was garbage on output.

• Fixed DISTINCT with calculated columns.

Appendix E: Porting to Other Systems 1003

Appendix E Porting to Other Systems

This appendix will help you port MySQL to other operating systems. Do check the list of
currently supported operating systems first. See Section 2.2.3 [Which OS], page 73. If you
have created a new port of MySQL, please let us know so that we can list it here and on
our web site (http://www.mysql.com/), recommending it to other users.
Note: If you create a new port of MySQL, you are free to copy and distribute it under the
GPL license, but it does not make you a copyright holder of MySQL.
A working Posix thread library is needed for the server. On Solaris 2.5 we use Sun PThreads
(the native thread support in 2.4 and earlier versions is not good enough), on Linux we use
LinuxThreads by Xavier Leroy, Xavier.Leroy@inria.fr.
The hard part of porting to a new Unix variant without good native thread support is
probably to port MIT-pthreads. See ‘mit-pthreads/README’ and Programming POSIX
Threads (http://www.humanfactor.com/pthreads/).
Up to MySQL 4.0.2, the MySQL distribution included a patched version of
Chris Provenzano’s Pthreads from MIT (see the MIT Pthreads web page at
http://www.mit.edu/afs/sipb/project/pthreads/ and a programming introduction at
http://www.mit.edu:8001/people/proven/IAP_2000/). These can be used for some
operating systems that do not have POSIX threads. See Section 2.3.6 [MIT-pthreads],
page 99.
It is also possible to use another user level thread package named FSU Pthreads (see
http://moss.csc.ncsu.edu/~mueller/pthreads/). This implementation is being used
for the SCO port.
See the ‘thr_lock.c’ and ‘thr_alarm.c’ programs in the ‘mysys’ directory for some
tests/examples of these problems.
Both the server and the client need a working C++ compiler. We use gcc on many platforms.
Other compilers that are known to work are SPARCworks, Sun Forte, Irix cc, HP-UX aCC,
IBM AIX xlC_r), Intel ecc and Compaq cxx).
To compile only the client use ./configure --without-server.
There is currently no support for only compiling the server, nor is it likly to be added unless
someone has a good reason for it.
If you want/need to change any ‘Makefile’ or the configure script you will also need GNU
Automake and Autoconf. See Section 2.3.4 [Installing source tree], page 94.
All steps needed to remake everything from the most basic files.

/bin/rm */.deps/*.P
/bin/rm -f config.cache
aclocal
autoheader
aclocal
automake
autoconf
./configure --with-debug=full --prefix=’your installation directory’

The makefiles generated above need GNU make 3.75 or newer.

1004 MySQL Technical Reference for Version 4.1.1-alpha

(called gmake below)
gmake clean all install init-db

If you run into problems with a new port, you may have to do some debugging of MySQL!
See Section E.1 [Debugging server], page 1004.
Note: before you start debugging mysqld, first get the test programs mysys/thr_alarm and
mysys/thr_lock to work. This will ensure that your thread installation has even a remote
chance to work!

E.1 Debugging a MySQL server

If you are using some functionality that is very new in MySQL, you can try to run mysqld
with the --skip-new (which will disable all new, potentially unsafe functionality) or with --
safe-mode which disables a lot of optimisation that may cause problems. See Section A.4.1
[Crashing], page 857.
If mysqld doesn’t want to start, you should check that you don’t have any ‘my.cnf’ files
that interfere with your setup! You can check your ‘my.cnf’ arguments with mysqld --
print-defaults and avoid using them by starting with mysqld --no-defaults
If mysqld starts to eat up CPU or memory or if it “hangs”, you can use mysqladmin
processlist status to find out if someone is executing a query that takes a long time. It
may be a good idea to run mysqladmin -i10 processlist status in some window if you
are experiencing performance problems or problems when new clients can’t connect.
The command mysqladmin debug will dump some information about locks in use, used
memory and query usage to the mysql log file. This may help solve some problems. This
command also provides some useful information even if you haven’t compiled MySQL for
debugging!
If the problem is that some tables are getting slower and slower you should try to op-
timise the table with OPTIMIZE TABLE or myisamchk. See Chapter 4 [MySQL Database
Administration], page 195. You should also check the slow queries with EXPLAIN.
You should also read the OS-specific section in this manual for problems that may be unique
to your environment. See Section 2.6 [Operating System Specific Notes], page 122.

E.1.1 Compiling MYSQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this
you must configure MySQL with the --with-debug or the --with-debug=full option. You
can check whether MySQL was compiled with debugging by doing: mysqld --help. If the
--debug flag is listed with the options then you have debugging enabled. mysqladmin ver
also lists the mysqld version as mysql ... --debug in this case.
If you are using gcc or egcs, the recommended configure line is:

CC=gcc CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-debug --with-extra-charsets=complex

This will avoid problems with the libstdc++ library and with C++ exceptions (many com-
pilers have problems with C++ exceptions in threaded code) and compile a MySQL version
with support for all character sets.

Appendix E: Porting to Other Systems 1005

If you suspect a memory overrun error, you can configure MySQL with --with-debug=full,
which will install a memory allocation (SAFEMALLOC) checker. However, running with
SAFEMALLOC is quite slow, so if you get performance problems you should start mysqld
with the --skip-safemalloc option. This will disable the memory overrun checks for each
call to malloc() and free().
If mysqld stops crashing when you compile it with --with-debug, you have probably found
a compiler bug or a timing bug within MySQL. In this case you can try to add -g to the
CFLAGS and CXXFLAGS variables above and not use --with-debug. If mysqld now dies, you
can at least attach to it with gdb or use gdb on the core file to find out what happened.
When you configure MySQL for debugging you automatically enable a lot of extra safety
check functions that monitor the health of mysqld. If they find something “unexpected,”
an entry will be written to stderr, which safe_mysqld directs to the error log! This also
means that if you are having some unexpected problems with MySQL and are using a
source distribution, the first thing you should do is to configure MySQL for debugging!
(The second thing, of course, is to send mail to a MySQL mailing list and ask for help. See
Section 1.6.1.1 [Mailing-list], page 25. Please use the mysqlbug script for all bug reports or
questions regarding the MySQL version you are using!
In the Windows MySQL distribution, mysqld.exe is by default compiled with support for
trace files.

E.1.2 Creating Trace Files

If the mysqld server doesn’t start or if you can cause the mysqld server to crash quickly,
you can try to create a trace file to find the problem.
To do this you have to have a mysqld that is compiled for debugging. You can check this by
executing mysqld -V. If the version number ends with -debug, it’s compiled with support
for trace files.
Start the mysqld server with a trace log in ‘/tmp/mysqld.trace’ (or ‘C:\mysqld.trace’
on Windows):
mysqld --debug

On Windows you should also use the --standalone flag to not start mysqld as a service:
In a console window do:

mysqld --debug --standalone

After this you can use the mysql.exe command-line tool in a second console window to
reproduce the problem. You can take down the above mysqld server with mysqladmin
shutdown.
Note that the trace file will get very big! If you want to have a smaller trace file, you can
use something like:
mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

which only prints information with the most interesting tags in ‘/tmp/mysqld.trace’.
If you make a bug report about this, please only send the lines from the trace file
to the appropriate mailing list where something seems to go wrong! If you can’t
locate the wrong place, you can ftp the trace file, together with a full bug report, to

1006 MySQL Technical Reference for Version 4.1.1-alpha

ftp://support.mysql.com/pub/mysql/secret/ so that a MySQL developer can take a
look a this.

The trace file is made with the DBUG package by Fred Fish. See Section E.3 [The DBUG
package], page 1010.

E.1.3 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld
crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be
able to debug mysqld threads. In this case you can only have one thread active at a time.
We recommend you to upgrade to gdb 5.1 ASAP as thread debugging works much better
with this version!

When running mysqld under gdb, you should disable the stack trace with --skip-stack-
trace to be able to catch segfaults within gdb.

In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This will install
an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and
disable stack tracing and core file handling.

It’s very hard to debug MySQL under gdb if you do a lot of new connections the whole time
as gdb doesn’t free the memory for old threads. You can avoid this problem by starting
mysqld with -O thread_cache_size= ’max_connections +1’. In most cases just using -O
thread_cache_size=5’ will help a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can
start mysqld with the --core-file option. This core file can be used to make a backtrace
that may help you find out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> exit

See Section A.4.1 [Crashing], page 857.

If you are using gdb 4.17.x or above on Linux, you should install a ‘.gdb’ file, with the
following information, in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try
this instead. The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

Appendix E: Porting to Other Systems 1007

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the above output in a mail generated with mysqlbug and mail this to the general
MySQL mailing list. See Section 1.6.1.1 [Mailing-list], page 25.

If mysqld hangs you can try to use some system tools like strace or /usr/proc/bin/pstack
to examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the
trace method or by setting the DBI_TRACE environment variable. See Section 11.5.2 [Perl
DBI Class], page 815.

E.1.4 Using a Stack Trace

On some operating systems, the error log will contain a stack trace if mysqld dies unexpect-
edly. You can use this to find out where (and maybe why) mysqld died. See Section 4.10.1
[Error log], page 350. To get a stack trace, you must not compile mysqld with the -fomit-
frame-pointer option to gcc. See Section E.1.1 [Compiling for debugging], page 1004.

If the error file contains something like the following:

mysqld got signal 11;
The manual section ’Debugging a MySQL server’ tells you how to use a
stack trace and/or the core file to produce a readable backtrace that may
help in finding out why mysqld died
Attemping backtrace. You can use the following information to find out
where mysqld died. If you see no messages after this, something went
terribly wrong
stack range sanity check, ok, backtrace follows
0x40077552
0x81281a0
0x8128f47
0x8127be0
0x8127995
0x8104947
0x80ff28f
0x810131b
0x80ee4bc
0x80c3c91
0x80c6b43
0x80c1fd9
0x80c1686

you can find where mysqld died by doing the following:

1. Copy the above numbers to a file, for example ‘mysqld.stack’.
2. Make a symbol file for the mysqld server:

1008 MySQL Technical Reference for Version 4.1.1-alpha

nm -n libexec/mysqld > /tmp/mysqld.sym

Note that most MySQL binary distributions (except for the "debug" packages, where
this information is included inside of the binaries themselves) already ship with the
above file, named mysqld.sym.gz. In this case you can simply unpack it by doing:

gunzip < bin/mysqld.sym.gz > /tmp/mysqld.sym

3. Execute resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack.
This will print out where mysqld died. If this doesn’t help you find out why mysqld
died, you should make a bug report and include the output from the above command
with the bug report.
Note however that in most cases it will not help us to just have a stack trace to find
the reason for the problem. To be able to locate the bug or provide a workaround, we
would in most cases need to know the query that killed mysqld and preferable a test
case so that we can repeat the problem! See Section 1.6.1.3 [Bug reports], page 27.

E.1.5 Using Log Files to Find Cause of Errors in mysqld

Note that before starting mysqld with --log you should check all your tables with
myisamchk. See Chapter 4 [MySQL Database Administration], page 195.
If mysqld dies or hangs, you should start mysqld with --log. When mysqld dies again,
you can examine the end of the log file for the query that killed mysqld.
If you are using --log without a file name, the log is stored in the database directory as
’hostname’.log In most cases it’s the last query in the log file that killed mysqld, but if
possible you should verify this by restarting mysqld and executing the found query from
the mysql command-line tools. If this works, you should also test all complicated queries
that didn’t complete.
You can also try the command EXPLAIN on all SELECT statements that takes a long time to
ensure that mysqld is using indexes properly. See Section 5.2.1 [EXPLAIN], page 399.
You can find the queries that take a long time to execute by starting mysqld with --log-
slow-queries. See Section 4.10.5 [Slow query log], page 354.
If you find the text mysqld restarted in the error log file (normally named ‘hostname.err’)
you have probably found a query that causes mysqld to fail. If this happens you should
check all your tables with myisamchk (see Chapter 4 [MySQL Database Administration],
page 195), and test the queries in the MySQL log files to see if one doesn’t work. If you find
such a query, try first upgrading to the newest MySQL version. If this doesn’t help and
you can’t find anything in the mysql mail archive, you should report the bug to a MySQL
mailing list. The mailing lists are described at http://lists.mysql.com/, which also has
links to online list archives.
If you have started mysqld with myisam-recover, MySQL will automatically check and
try to repair MyISAM tables if they are marked as ’not closed properly’ or ’crashed’. If this
happens, MySQL will write an entry in the hostname.err file ’Warning: Checking table
...’ which is followed by Warning: Repairing table if the table needs to be repaired. If
you get a lot of these errors, without mysqld having died unexpectedly just before, then
something is wrong and needs to be investigated further. See Section 4.1.1 [Command-line
options], page 195.

Appendix E: Porting to Other Systems 1009

It’s of course not a good sign if mysqld did died unexpectedly, but in this case one shouldn’t
investigate the Checking table... messages but instead try to find out why mysqld died.

E.1.6 Making a Test Case If You Experience Table Corruption

If you get corrupted tables or if mysqld always fails after some update commands, you can
test if this bug is reproducible by doing the following:
• Take down the MySQL daemon (with mysqladmin shutdown).
• Make a backup of the tables (to guard against the very unlikely case that the repair

will do something bad).
• Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with

myisamchk -r database/table.MYI.
• Make a second backup of the tables.
• Remove (or move away) any old log files from the MySQL data directory if you need

more space.
• Start mysqld with --log-bin. See Section 4.10.4 [Binary log], page 351. If you want

to find a query that crashes mysqld, you should use --log --log-bin.
• When you have gotten a crashed table, stop the mysqld server.
• Restore the backup.
• Restart the mysqld server without --log-bin

• Re-execute the commands with mysqlbinlog update-log-file | mysql. The update
log is saved in the MySQL database directory with the name hostname-bin.#.

• If the tables are corrupted again or you can get mysqld to die with the above command,
you have found reproducible bug that should be easy to fix! FTP the tables and the
binary log to ftp://support.mysql.com/pub/mysql/secret/ and enter it into our
bugs system at http://bugs.mysql.com/. If you are a support customer), you can
also support@mysql.com to alert the MySQL team about the problem and have it fixed
as soon as possible.

You can also use the script mysql_find_rows to just execute some of the update statements
if you want to narrow down the problem.

E.2 Debugging a MySQL client

To be able to debug a MySQL client with the integrated debug package, you should configure
MySQL with --with-debug or --with-debug=full. See Section 2.3.3 [configure options],
page 91.
Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in ‘/tmp/client.trace’.
If you have problems with your own client code, you should attempt to connect to the
server and run your query using a client that is known to work. Do this by running mysql
in debugging mode (assuming you have compiled MySQL with debugging on):

1010 MySQL Technical Reference for Version 4.1.1-alpha

shell> mysql --debug=d:t:O,/tmp/client.trace

This will provide useful information in case you mail a bug report. See Section 1.6.1.3 [Bug
reports], page 27.
If your client crashes at some ’legal’ looking code, you should check that your ‘mysql.h’
include file matches your mysql library file. A very common mistake is to use an old
‘mysql.h’ file from an old MySQL installation with new MySQL library.

E.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally
made by Fred Fish. When one has configured MySQL for debugging, this package makes
it possible to get a trace file of what the program is debugging. See Section E.1.2 [Making
trace files], page 1005.
One uses the debug package by invoking the program with the --debug="..." or the -#...
option.
Most MySQL programs has a default debug string that will be used if you don’t specify an
option to --debug. The default trace file is usually /tmp/programname.trace on Unix and
\programname.trace on Windows.
The debug control string is a sequence of colon-separated fields as follows:

<field_1>:<field_2>:...:<field_N>

Each field consists of a mandatory flag character followed by an optional "," and comma-
separated list of modifiers:

flag[,modifier,modifier,...,modifier]

The currently recognised flag characters are:
Flag Description
d Enable output from DBUG <N> macros for the current state. May be followed by a

list of keywords which selects output only for the DBUG macros with that keyword.
An empty list of keywords implies output for all macros.

D Delay after each debugger output line. The argument is the number of tenths of
seconds to delay, subject to machine capabilities. That is, -#D,20 is delay two
seconds.

f Limit debugging and/or tracing, and profiling to the list of named functions. Note
that a null list will disable all functions. The appropriate "d" or "t" flags must still
be given, this flag only limits their actions if they are enabled.

F Identify the source file name for each line of debug or trace output.
i Identify the process with the PID or thread ID for each line of debug or trace output.
g Enable profiling. Create a file called ’dbugmon.out’ containing information that can

be used to profile the program. May be followed by a list of keywords that select
profiling only for the functions in that list. A null list implies that all functions are
considered.

L Identify the source file line number for each line of debug or trace output.
n Print the current function nesting depth for each line of debug or trace output.
N Number each line of dbug output.
o Redirect the debugger output stream to the specified file. The default output is

stderr.

Appendix E: Porting to Other Systems 1011

O As o but the file is really flushed between each write. When needed the file is closed
and reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.
r When pushing a new state, do not inherit the previous state’s function nesting level.

Useful when the output is to start at the left margin.
S Do function sanity(file , line) at each debugged function until sanity() returns

something that differs from 0. (Mostly used with safemalloc to find memory leaks)
t Enable function call/exit trace lines. May be followed by a list (containing only one

modifier) giving a numeric maximum trace level, beyond which no output will occur
for either debugging or tracing macros. The default is a compile time option.

Some examples of debug control strings which might appear on a shell command-line (the
"-#" is typically used to introduce a control string to an application program) are:

-#d:t
-#d:f,main,subr1:F:L:t,20
-#d,input,output,files:n
-#d:t:i:O,\\mysqld.trace

In MySQL, common tags to print (with the d option) are: enter,exit,error,warning,info
and loop.

E.4 Locking methods

Currently MySQL only supports table locking for ISAM/MyISAM and HEAP tables, page-level
locking for BDB tables and row-level locking for InnoDB tables. See Section 5.3.1 [Internal
locking], page 418. With MyISAM tables one can freely mix INSERT and SELECT without
locks, if the INSERT statements are non-conflicting (that is, whenever they append to the
end of the table file rather than filling freespace from deleted rows/data).
Starting in version 3.23.33, you can analyse the table lock contention on your system by
checking Table_locks_waited and Table_locks_immediate environment variables.
To decide if you want to use a table type with row-level locking, you will want to look at
what the application does and what the select/update pattern of the data is.
Pros for row locking:
• Fewer lock conflicts when accessing different rows in many threads.
• Fewer changes for rollbacks.
• Makes it possible to lock a single row a long time.

Cons:
• Takes more memory than page level or table locks.
• Is slower than page level or table locks when used on a big part of the table, because

one has to do many more locks.
• Is definitely much worse than other locks if you do often do GROUP BY on a large part

of the data or if one has to often scan the whole table.
• With higher level locks one can also more easily support locks of different types to tune

the application as the lock overhead is less notable as for row level locks.

1012 MySQL Technical Reference for Version 4.1.1-alpha

Table locks are superior to page level / row level locks in the following cases:
• Mostly reads
• Read and updates on strict keys; this is where one updates or deletes a row that can

be fetched with one key read:
UPDATE table_name SET column=value WHERE unique_key#
DELETE FROM table_name WHERE unique_key=#

• SELECT combined with INSERT (and very few UPDATE and DELETE statements).
• Many scans / GROUP BY on the whole table without any writers.

Other options than row / page level locking:
Versioning (like we use in MySQL for concurrent inserts) where you can have one writer
at the same time as many readers. This means that the database/table supports different
views for the data depending on when one started to access it. Other names for this are
time travel, copy on write or copy on demand.
Copy on demand is in many case much better than page or row level locking; the worst case
does, however, use much more memory than when using normal locks.
Instead of using row level locks one can use application level locks (like get lock/release lock
in MySQL). This works of course only in well-behaved applications.
In many cases one can do an educated guess which locking type is best for the application,
but generally it’s very hard to say that a given lock type is better than another; everything
depends on the application and different part of the application may require different lock
types.
Here are some tips about locking in MySQL:
Most web applications do lots of selects, very few deletes, updates mainly on keys, and
inserts in some specific tables. The base MySQL setup is very well tuned for this.
Concurrent users are not a problem if one doesn’t mix updates with selects that need to
examine many rows in the same table.
If one mixes inserts and deletes on the same table then INSERT DELAYED may be of great
help.
One can also use LOCK TABLES to speed up things (many updates within a single lock is
much faster than updates without locks). Splitting thing to different tables will also help.
If you get speed problems with the table locks in MySQL, you may be able to solve these by
converting some of your tables to InnoDB or BDB tables. See Section 7.5 [InnoDB], page 605.
See Section 7.6 [BDB], page 653.
The optimisation section in the manual covers a lot of different aspects of how to tune
applications. See Section 5.2.13 [Tips], page 415.

E.5 Comments about RTS threads

I have tried to use the RTS thread packages with MySQL but stumbled on the following
problems:
They use an old version of a lot of POSIX calls and it is very tedious to make wrappers for
all functions. I am inclined to think that it would be easier to change the thread libraries
to the newest POSIX specification.

Appendix E: Porting to Other Systems 1013

Some wrappers are already written. See ‘mysys/my_pthread.c’ for more info.
At least the following should be changed:
pthread_get_specific should use one argument. sigwait should take two arguments.
A lot of functions (at least pthread_cond_wait, pthread_cond_timedwait) should return
the error code on error. Now they return -1 and set errno.
Another problem is that user-level threads use the ALRM signal and this aborts a lot of
functions (read, write, open...). MySQL should do a retry on interrupt on all of these but
it is not that easy to verify it.
The biggest unsolved problem is the following:
To get thread-level alarms I changed ‘mysys/thr_alarm.c’ to wait between alarms with
pthread_cond_timedwait(), but this aborts with error EINTR. I tried to debug the thread
library as to why this happens, but couldn’t find any easy solution.
If someone wants to try MySQL with RTS threads I suggest the following:
• Change functions MySQL uses from the thread library to POSIX. This shouldn’t take

that long.
• Compile all libraries with the -DHAVE_rts_threads.
• Compile thr_alarm.
• If there are some small differences in the implementation, they may be fixed by changing

‘my_pthread.h’ and ‘my_pthread.c’.
• Run thr_alarm. If it runs without any “warning”, “error” or aborted messages, you

are on the right track. Here is a successful run on Solaris:
Main thread: 1
Thread 0 (5) started
Thread: 5 Waiting
process_alarm
Thread 1 (6) started
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 1 (1) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 2 (2) sec
Thread: 6 Simulation of no alarm needed
Thread: 6 Slept for 0 (3) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 4 (4) sec
Thread: 6 Waiting

1014 MySQL Technical Reference for Version 4.1.1-alpha

process_alarm
thread_alarm
Thread: 5 Slept for 10 (10) sec
Thread: 5 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 5 (5) sec
Thread: 6 Waiting
process_alarm
process_alarm

...
thread_alarm
Thread: 5 Slept for 0 (1) sec
end

E.6 Differences between different thread packages

MySQL is very dependent on the thread package used. So when choosing a good platform
for MySQL, the thread package is very important.

There are at least three types of thread packages:

• User threads in a single process. Thread switching is managed with alarms and the
threads library manages all non-thread-safe functions with locks. Read, write and
select operations are usually managed with a thread-specific select that switches to
another thread if the running threads have to wait for data. If the user thread packages
are integrated in the standard libs (FreeBSD and BSDI threads) the thread package
requires less overhead than thread packages that have to map all unsafe calls (MIT-
pthreads, FSU Pthreads and RTS threads). In some environments (for example, SCO),
all system calls are thread-safe so the mapping can be done very easily (FSU Pthreads
on SCO). Downside: All mapped calls take a little time and it’s quite tricky to be able
to handle all situations. There are usually also some system calls that are not handled
by the thread package (like MIT-pthreads and sockets). Thread scheduling isn’t always
optimal.

• User threads in separate processes. Thread switching is done by the kernel and all data
are shared between threads. The thread package manages the standard thread calls to
allow sharing data between threads. LinuxThreads is using this method. Downside:
Lots of processes. Thread creating is slow. If one thread dies the rest are usually left
hanging and you must kill them all before restarting. Thread switching is somewhat
expensive.

• Kernel threads. Thread switching is handled by the thread library or the kernel and is
very fast. Everything is done in one process, but on some systems, ps may show the
different threads. If one thread aborts, the whole process aborts. Most system calls are
thread-safe and should require very little overhead. Solaris, HP-UX, AIX and OSF/1
have kernel threads.

Appendix E: Porting to Other Systems 1015

In some systems kernel threads are managed by integrating user level threads in the system
libraries. In such cases, the thread switching can only be done by the thread library and
the kernel isn’t really “thread aware”.

1016 MySQL Technical Reference for Version 4.1.1-alpha

Appendix F Environment Variables

Here is a list of all the environment variables that are used directly or indirectly by MySQL.
Most of these can also be found in other places in this manual.
Note that any options on the command-line take precedence over values specified in con-
figuration files and environment variables, and values in configuration files take precedence
over values in environment variables.
In many cases it’s preferable to use a configure file instead of environment variables to
modify the behaviour of MySQL. See Section 4.1.2 [Option files], page 203.
Variable Description
CCX Set this to your C++ compiler when running configure.
CC Set this to your C compiler when running configure.
CFLAGS Flags for your C compiler when running configure.
CXXFLAGS Flags for your C++ compiler when running configure.
DBI_USER The default user name for Perl DBI.
DBI_TRACE Used when tracing Perl DBI.
HOME The default path for the mysql history file is

‘$HOME/.mysql_history’.
LD_RUN_PATH Used to specify where your ‘libmysqlclient.so’ is.
MYSQL_DEBUG Debug-trace options when debugging.
MYSQL_HISTFILE The path to the mysql history file.
MYSQL_HOST Default host name used by the mysql command-line client.
MYSQL_PS1 Command prompt to use in the mysql command-line client.

See Section 4.9.2 [mysql], page 327.
MYSQL_PWD The default password when connecting to mysqld. Note that

use of this is insecure!
MYSQL_TCP_PORT The default TCP/IP port.
MYSQL_UNIX_PORT The default socket; used for connections to localhost.
PATH Used by the shell to finds the MySQL programs.
TMPDIR The directory where temporary tables/files are created.
TZ This should be set to your local time zone. See Section A.4.6

[Timezone problems], page 862.
UMASK_DIR The user-directory creation mask when creating directories.

Note that this is ANDed with UMASK!
UMASK The user-file creation mask when creating files.
USER The default user on Windows to use when connecting to

mysqld.

Appendix G: MySQL Regular Expressions 1017

Appendix G MySQL Regular Expressions

A regular expression (regex) is a powerful way of specifying a complex search.
MySQL uses Henry Spencer’s implementation of regular expressions, which is aimed at
conformance with POSIX 1003.2. MySQL uses the extended version.
This is a simplistic reference that skips the details. To get more exact information, see
Henry Spencer’s regex(7) manual page that is included in the source distribution. See
Appendix C [Credits], page 876.
A regular expression describes a set of strings. The simplest regexp is one that has no
special characters in it. For example, the regexp hello matches hello and nothing else.
Non-trivial regular expressions use certain special constructs so that they can match more
than one string. For example, the regexp hello|word matches either the string hello or
the string word.
As a more complex example, the regexp B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any
number of a or n characters in between.
A regular expression may use any of the following special characters/constructs:

^ Match the beginning of a string.
mysql> SELECT "fo\nfo" REGEXP "^fo$"; -> 0
mysql> SELECT "fofo" REGEXP "^fo"; -> 1

$ Match the end of a string.
mysql> SELECT "fo\no" REGEXP "^fo\no$"; -> 1
mysql> SELECT "fo\no" REGEXP "^fo$"; -> 0

. Match any character (including newline).
mysql> SELECT "fofo" REGEXP "^f.*"; -> 1
mysql> SELECT "fo\nfo" REGEXP "^f.*"; -> 1

a* Match any sequence of zero or more a characters.
mysql> SELECT "Ban" REGEXP "^Ba*n"; -> 1
mysql> SELECT "Baaan" REGEXP "^Ba*n"; -> 1
mysql> SELECT "Bn" REGEXP "^Ba*n"; -> 1

a+ Match any sequence of one or more a characters.
mysql> SELECT "Ban" REGEXP "^Ba+n"; -> 1
mysql> SELECT "Bn" REGEXP "^Ba+n"; -> 0

a? Match either zero or one a character.
mysql> SELECT "Bn" REGEXP "^Ba?n"; -> 1
mysql> SELECT "Ban" REGEXP "^Ba?n"; -> 1
mysql> SELECT "Baan" REGEXP "^Ba?n"; -> 0

de|abc Match either of the sequences de or abc.
mysql> SELECT "pi" REGEXP "pi|apa"; -> 1
mysql> SELECT "axe" REGEXP "pi|apa"; -> 0
mysql> SELECT "apa" REGEXP "pi|apa"; -> 1

1018 MySQL Technical Reference for Version 4.1.1-alpha

mysql> SELECT "apa" REGEXP "^(pi|apa)$"; -> 1
mysql> SELECT "pi" REGEXP "^(pi|apa)$"; -> 1
mysql> SELECT "pix" REGEXP "^(pi|apa)$"; -> 0

(abc)* Match zero or more instances of the sequence abc.
mysql> SELECT "pi" REGEXP "^(pi)*$"; -> 1
mysql> SELECT "pip" REGEXP "^(pi)*$"; -> 0
mysql> SELECT "pipi" REGEXP "^(pi)*$"; -> 1

{1}
{2,3} The is a more general way of writing regexps that match many occurrences of

the previous atom.

a* Can be written as a{0,}.

a+ Can be written as a{1,}.

a? Can be written as a{0,1}.

To be more precise, an atom followed by a bound containing one integer i and
no comma matches a sequence of exactly i matches of the atom. An atom
followed by a bound containing one integer i and a comma matches a sequence
of i or more matches of the atom. An atom followed by a bound containing
two integers i and j matches a sequence of i through j (inclusive) matches of
the atom.
Both arguments must be in the range from 0 to RE_DUP_MAX (default 255),
inclusive. If there are two arguments, the second must be greater than or equal
to the first.

[a-dX]
[^a-dX] Matches any character which is (or is not, if ^ is used) either a, b, c, d or X.

To include a literal] character, it must immediately follow the opening bracket
[. To include a literal - character, it must be written first or last. So [0-9]
matches any decimal digit. Any character that does not have a defined meaning
inside a [] pair has no special meaning and matches only itself.

mysql> SELECT "aXbc" REGEXP "[a-dXYZ]"; -> 1
mysql> SELECT "aXbc" REGEXP "^[a-dXYZ]$"; -> 0
mysql> SELECT "aXbc" REGEXP "^[a-dXYZ]+$"; -> 1
mysql> SELECT "aXbc" REGEXP "^[^a-dXYZ]+$"; -> 0
mysql> SELECT "gheis" REGEXP "^[^a-dXYZ]+$"; -> 1
mysql> SELECT "gheisa" REGEXP "^[^a-dXYZ]+$"; -> 0

[[.characters.]]
The sequence of characters of that collating element. The sequence is a single
element of the bracket expression’s list. A bracket expression containing a
multi-character collating element can thus match more than one character, for
example, if the collating sequence includes a ch collating element, then the
regular expression [[.ch.]]*c matches the first five characters of chchcc.

[=character_class=]
An equivalence class, standing for the sequences of characters of all collating
elements equivalent to that one, including itself.

Appendix G: MySQL Regular Expressions 1019

For example, if o and (+) are the members of an equivalence class, then
[[=o=]], [[=(+)=]], and [o(+)] are all synonymous. An equivalence class
may not be an endpoint of a range.

[:character_class:]
Within a bracket expression, the name of a character class enclosed in [: and :]
stands for the list of all characters belonging to that class. Standard character
class names are:
Name Name Name
alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit
These stand for the character classes defined in the ctype(3) manual page. A
locale may provide others. A character class may not be used as an endpoint
of a range.

mysql> SELECT "justalnums" REGEXP "[[:alnum:]]+"; -> 1
mysql> SELECT "!!" REGEXP "[[:alnum:]]+"; -> 0

[[:<:]]
[[:>:]] These match the null string at the beginning and end of a word respectively.

A word is defined as a sequence of word characters which is neither preceded
nor followed by word characters. A word character is an alnum character (as
defined by ctype(3)) or an underscore (_).

mysql> SELECT "a word a" REGEXP "[[:<:]]word[[:>:]]"; -> 1
mysql> SELECT "a xword a" REGEXP "[[:<:]]word[[:>:]]"; -> 0

mysql> SELECT "weeknights" REGEXP "^(wee|week)(knights|nights)$"; -> 1

1020 MySQL Technical Reference for Version 4.1.1-alpha

Appendix H GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix H: GNU General Public License 1021

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

1022 MySQL Technical Reference for Version 4.1.1-alpha

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third-
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

Appendix H: GNU General Public License 1023

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

1024 MySQL Technical Reference for Version 4.1.1-alpha

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix H: GNU General Public License 1025

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits
your program.
You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

1026 MySQL Technical Reference for Version 4.1.1-alpha

Appendix I GNU Lesser General Public License

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who
decide to use it. You can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better strategy to use in any
particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish); that you receive source code or
can get it if you want it; that you can change the software and use pieces of it in new free
programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Appendix I: GNU Lesser General Public License 1027

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library
does the same job as widely used non-free libraries. In this case, there is little to gain by
limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the
GNU C Library in non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

1028 MySQL Technical Reference for Version 4.1.1-alpha

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.
The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this License.
d. If a facility in the modified Library refers to a function or a table of data to

be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

Appendix I: GNU Lesser General Public License 1029

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.
This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.
If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work

1030 MySQL Technical Reference for Version 4.1.1-alpha

can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:
a. Accompany the work with the complete corresponding machine-readable source

code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at runtime a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,

Appendix I: GNU Lesser General Public License 1031

as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way

1032 MySQL Technical Reference for Version 4.1.1-alpha

you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

Appendix I: GNU Lesser General Public License 1033

RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

1034 MySQL Technical Reference for Version 4.1.1-alpha

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).
To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full notice is
found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

SQL command, type and function index 1035

SQL command, type and function index

!
! (logical NOT) . 478
!= (not equal) . 476

"
" . 444

%
% (modulo) . 493
% (wildcard character) . 441

&
& (bitwise AND) . 515
&& (logical AND) . 479

(
() (parentheses) . 475
(Control-Z) \z . 441

*
* (multiplication) . 492

+
+ (addition) . 492

-
- (subtraction) . 492
- (unary minus) . 493
-p option . 251
-password option . 251

.

.my.cnf file 125, 203, 205, 212, 225, 238, 252

.mysql_history file . 325

.pid (process ID) file . 275

/
/ (division) . 492
‘/etc/passwd’ . 217
/etc/passwd . 534

<
< (less than) . 476
<< . 188
<< (left shift) . 515
<= (less than or equal) . 476
<=> (Equal to) . 476
<> (not equal) . 476

=
= (equal) . 476

>
> (greater than) . 476
>= (greater than or equal) 476
>> (right shift) . 515

^
^ (bitwise XOR) . 515

_ (wildcard character) . 441

‘
‘ . 444

\
\" (double quote). 441
\’ (single quote). 441
\\ (escape) . 441
\0 (ASCII 0) . 441
\b (backspace) . 441
\n (newline) . 441
\r (carriage return) . 441
\t (tab) . 441
\z (Control-Z) ASCII(26) 441

|
| (bitwise OR) . 515
|| (logical OR) . 479

~
~ . 515

1036 MySQL Technical Reference for Version 4.1.1-alpha

A
ABS() . 493

ACOS() . 496

ADDDATE() . 505

addition (+) . 492

ADDTIME() . 506

AES_DECRYPT() . 517

AES_ENCRYPT() . 517

alias . 865

ALTER COLUMN . 575

ALTER TABLE . 573, 575, 869

ANALYZE TABLE . 281

AND, bitwise . 515

AND, logical . 479

Area() . 705, 706

arithmetic functions . 514

AS . 531, 535

AsBinary() . 701

ASCII() . 482

ASIN() . 496

AsText() . 701

ATAN() . 496

ATAN2() . 496

AUTO_INCREMENT, using with DBI 820

AVG() . 524

B
backspace (\b) . 441

BACKUP TABLE . 261

BdMPolyFromText() . 696

BdMPolyFromWKB() . 697

BdPolyFromText() . 696

BdPolyFromWKB() . 697

BEGIN . 579

BENCHMARK() . 522

BETWEEN ... AND . 477

BIGINT . 454

BIN() . 482

BINARY . 491

BIT . 454

BIT_AND() . 526

BIT_COUNT . 188

BIT_COUNT() . 515

BIT_LENGTH() . 484

BIT_OR . 188

BIT_OR() . 526

BIT_XOR() . 526

BLOB . 458, 468

BOOL . 454

BOOLEAN . 454

Boundary() . 703

Buffer() . 708

C
C:\my.cnf file . 212
carriage return (\r) . 441
CASE . 481
CAST . 513
casts . 491
CC environment variable . 92
CC environment variable 98, 1016
CCX environment variable 1016
CEILING() . 494
Centroid() . 706, 707
CFLAGS environment variable 98, 1016
CHANGE MASTER TO . 378
CHAR . 457, 467
CHAR VARYING . 457
CHAR() . 483
CHAR_LENGTH() . 484
CHARACTER . 457
CHARACTER VARYING . 457
CHARACTER_LENGTH() . 484
CHECK TABLE . 262
CHECKSUM TABLE . 282
ChopBlanks DBI method . 819
COALESCE() . 478
command-line options . 195
Comment syntax . 450
COMMIT . 37, 579
comparison operators . 475
COMPRESS() . 519
CONCAT() . 483
CONCAT_WS() . 483
configure option, --with-charset 93
configure option, --with-extra-charsets . . . 93
connect() DBI method . 816
CONNECTION_ID() . 521
constraints . 42
Contains() . 710
control flow functions . 480
CONV() . 482
CONVERT . 513
ConvexHull() . 708
COS() . 496
COT() . 497
COUNT() . 524
COUNT(DISTINCT) . 524
CRC32() . 497
CREATE DATABASE . 563
CREATE FUNCTION . 834
CREATE INDEX . 577
CREATE TABLE . 564
CROSS JOIN . 535
Crosses() . 710
CURDATE() . 510
CURRENT_DATE . 510
CURRENT_TIME . 510
CURRENT_TIMESTAMP . 511
CURRENT_USER() . 516
CURTIME() . 510

SQL command, type and function index 1037

CXX environment variable 92
CXX environment variable 97, 98
CXXFLAGS environment variable 92, 93, 98,

1016

D
data_sources() DBI method 819
Database information, obtaining 284
DATABASE() . 515
DATE . 456, 462, 863
date and time functions 499
DATE() . 499
DATE_ADD() . 503
DATE_FORMAT() . 507
DATE_SUB() . 503
DATEDIFF() . 506
DATETIME . 456, 462
DAY() . 500
DAYNAME() . 501
DAYOFMONTH() . 500
DAYOFWEEK() . 500
DAYOFYEAR() . 500
DBI->{ChopBlanks} . 819
DBI->{is_blob} . 820
DBI->{is_key} . 820
DBI->{is_not_null} . 820
DBI->{is_num} . 820
DBI->{is_pri_key} . 820
DBI->{length} . 820
DBI->{max_length} . 820
DBI->{mysql_insertid} . 820
DBI->{NAME} . 821
DBI->{NULLABLE} . 819
DBI->{NUM_OF_FIELDS} . 819
DBI->{table} . 821
DBI->{type} . 821
DBI->connect() . 816
DBI->data_sources() . 819
DBI->disconnect . 817
DBI->do() . 818
DBI->execute . 817
DBI->fetchall_arrayref 818
DBI->fetchrow_array . 818
DBI->fetchrow_arrayref 818
DBI->fetchrow_hashref . 818
DBI->finish . 819
DBI->prepare() . 817
DBI->quote . 442
DBI->quote() . 818
DBI->rows . 819
DBI->trace . 819, 1007
DBI_TRACE environment variable 820
DBI_TRACE environment variable 1007, 1016
DBI_USER environment variable 1016
DEC . 456
DECIMAL . 455
DECODE() . 517

DEGREES() . 498
DELAYED . 549
DELETE . 552
DES_DECRYPT() . 519
DES_ENCRYPT() . 518
DESC . 579
DESCRIBE . 180, 579
Difference() . 708
Dimension() . 702
disconnect DBI method . 817
Disjoint() . 710
Distance() . 710
DISTINCT . 168, 409, 524
DIV . 494
division (/) . 492
DO . 563
do() DBI method . 818
DOUBLE . 455
DOUBLE PRECISION . 455
double quote (\"). 441
DROP DATABASE . 563
DROP FUNCTION . 834
DROP INDEX . 575, 578
DROP PRIMARY KEY . 575
DROP TABLE . 577
DROP USER . 249
DUMPFILE . 535

E
ELT() . 487
ENCODE() . 517
ENCRYPT() . 516
EndPoint() . 703
ENUM . 458, 469
Envelope() . 702
environment variable, CC 92
environment variable, CC 98
Environment variable, CC 1016
Environment variable, CCX 1016
environment variable, CFLAGS 98
Environment variable, CFLAGS 1016
environment variable, CXX 92
environment variable, CXX 98
Environment variable, CXX 97
environment variable, CXXFLAGS 92, 93, 98
Environment variable, CXXFLAGS 1016
environment variable, DBI_TRACE 820
Environment variable, DBI_TRACE 1007, 1016
Environment variable, DBI_USER 1016
environment variable, HOME 325
Environment variable, HOME 1016
environment variable, LD_RUN_PATH 129
Environment variable, LD_RUN_PATH . . . 135, 154,

1016
environment variable, MYSQL_DEBUG 325
Environment variable, MYSQL_DEBUG . . 1009, 1016
environment variable, MYSQL_HISTFILE 325

1038 MySQL Technical Reference for Version 4.1.1-alpha

Environment variable, MYSQL_HISTFILE 1016
environment variable, MYSQL_HOST 225
Environment variable, MYSQL_HOST 1016
Environment variable, MYSQL_PS1 1016
environment variable, MYSQL_PWD 225, 325
Environment variable, MYSQL_PWD 1016
environment variable, MYSQL_TCP_PORT 211
environment variable, MYSQL_TCP_PORT 212
environment variable, MYSQL_TCP_PORT 325
Environment variable, MYSQL_TCP_PORT 1016
environment variable, MYSQL_UNIX_PORT 211
environment variable, MYSQL_UNIX_PORT 212
environment variable, MYSQL_UNIX_PORT 325
Environment variable, MYSQL_UNIX_PORT . . . 106,

1016
environment variable, PATH 87
Environment variable, PATH 1016
Environment variable, TMPDIR 106, 1016
Environment variable, TZ 862, 1016
Environment variable, UMASK 856, 1016
Environment variable, UMASK_DIR 857, 1016
environment variable, USER 225
Environment variable, USER 1016
Environment variables, CXX 97
equal (=) . 476
Equals() . 710
escape (\\) . 441
execute DBI method . 817
EXP() . 494
EXPLAIN . 399
EXPORT_SET() . 488
ExteriorRing() . 706
EXTRACT() . 506

F
FALSE . 443
fetchall_arrayref DBI method 818
fetchrow_array DBI method 818
fetchrow_arrayref DBI method 818
fetchrow_hashref DBI method 818
FIELD() . 487
FILE . 488
FIND_IN_SET() . 487
finish DBI method. 819
FIXED . 456
FLOAT . 455
FLOAT(M,D) . 455
FLOAT(precision) . 455
FLOOR() . 493
FLUSH . 282
FORCE INDEX . 531, 536
FORMAT() . 520
FOUND_ROWS() . 523
FROM . 531
FROM_DAYS() . 507
FROM_UNIXTIME() . 511
functions, arithmetic . 514

functions, bit . 514
functions, control flow 480
functions, date and time 499
functions, GROUP BY . 524
functions, mathematical 493
functions, miscellaneous 515
functions, string . 482
functions, string comparison 489
Functions, user-defined 834

G
GeomCollFromText() . 696
GeomCollFromWKB() . 697
GEOMETRY . 695
GEOMETRYCOLLECTION . 695
GeometryCollection() . 698
GeometryCollectionFromText() 696
GeometryCollectionFromWKB() 697
GeometryFromText() . 695
GeometryFromWKB() . 696
GeometryN() . 707
GeometryType() . 702
GeomFromText() . 695, 701
GeomFromWKB() . 696, 701
GET_FORMAT() . 509
GET_LOCK() . 521
GLength() . 704, 705
GRANT . 239
GRANT statement . 246, 257
GRANTS . 303
greater than (>) . 476
greater than or equal (>=) 476
GREATEST() . 498
GROUP BY functions . 524
GROUP_CONCAT() . 525

H
HANDLER . 562
HEX() . 483
hexadecimal values . 443
HOME environment variable 325
HOME environment variable 1016
host.frm, problems finding 102
HOUR() . 502

I
identifiers, quoting . 444
IF() . 480
IFNULL() . 480
IGNORE INDEX . 531, 536
IGNORE KEY . 531, 536
IN . 477
INET_ATON() . 522
INET_NTOA() . 522
INNER JOIN . 535

SQL command, type and function index 1039

INSERT . 413, 546
INSERT ... SELECT. 549
INSERT DELAYED . 549
INSERT statement, grant privileges 247
INSERT() . 487
INSTR() . 484
INT . 454
INTEGER . 454
InteriorRingN() . 706
Intersection() . 708
Intersects() . 710
INTERVAL() . 478
IS NOT NULL . 476
IS NULL . 408, 476
IS NULL, and indexes . 423
is_blob DBI method . 820
IS_FREE_LOCK() . 522
is_key DBI method. 820
is_not_null DBI method . 820
is_num DBI method. 820
is_pri_key DBI method . 820
IsClosed() . 704, 705
IsEmpty() . 703
ISNULL() . 478
ISOLATION LEVEL . 583
IsRing() . 705
IsSimple() . 703

J
JOIN . 535

K
KILL . 284

L
LAST_INSERT_ID() . 39
LAST_INSERT_ID([expr]) 520
LCASE() . 488
LD_RUN_PATH environment variable 129, 135,

154, 1016
LEAST() . 498
LEFT JOIN . 410, 535
LEFT OUTER JOIN . 535
LEFT() . 485
length DBI method. 820
LENGTH() . 484
less than (<) . 476
less than or equal (<=) . 476
LIKE . 489
LIKE, and indexes. 422
LIKE, and wildcards . 422
LIMIT . 412, 523
LineFromText() . 696
LineFromWKB() . 697
LINESTRING . 695

LineString() . 698
LineStringFromText() . 696
LineStringFromWKB() . 697
LN() . 494
LOAD DATA FROM MASTER . 380
LOAD DATA INFILE . 555, 864
LOAD TABLE FROM MASTER . 381
LOAD_FILE() . 488
LOCALTIME . 511
LOCALTIMESTAMP . 511
LOCATE() . 484
LOCK TABLES . 581
LOG() . 495
LOG10() . 495
LOG2() . 495
Logical operators . 478
LONG . 468
LONGBLOB . 458
LONGTEXT . 458
LOWER() . 488
LPAD() . 485
LTRIM() . 486

M
MAKE_SET() . 488
MAKEDATE() . 510
MAKETIME() . 510
MASTER_POS_WAIT() . 381, 522
MATCH ... AGAINST() . 491
mathematical functions . 493
MAX() . 525
max_length DBI method . 820
MBRContains() . 708
MBRDisjoint() . 709
MBREquals() . 709
MBRIntersects() . 709
MBROverlaps() . 709
MBRTouches() . 709
MBRWithin() . 709
MD5() . 517
MEDIUMBLOB . 458
MEDIUMINT . 454
MEDIUMTEXT . 458
MICROSECOND() . 503
MID() . 485
MIN() . 525
minus, unary (-) . 493
MINUTE() . 503
miscellaneous functions 515
MLineFromText() . 696
MLineFromWKB() . 697
MOD (modulo) . 493
MOD() . 493
modulo (%) . 493
modulo (MOD) . 493
MONTH() . 500
MONTHNAME() . 501

1040 MySQL Technical Reference for Version 4.1.1-alpha

MPointFromText() . 696
MPointFromWKB() . 697
MPolyFromText() . 696
MPolyFromWKB() . 697
MULTILINESTRING . 695
MultiLineString() . 698
MultiLineStringFromText() 696
MultiLineStringFromWKB() 697
multiplication (*) . 492
MULTIPOINT . 695
MultiPoint() . 698
MultiPointFromText() . 696
MultiPointFromWKB() . 697
MULTIPOLYGON . 695
MultiPolygon() . 698
MultiPolygonFromText() 696
MultiPolygonFromWKB() . 697
my_init() . 792
my_ulonglong C type . 716
my_ulonglong values, printing 716
MySQL C type . 765
MYSQL C type . 715
mysql_affected_rows() . 723
mysql_autocommit(). 762
MYSQL_BIND C type. 764
mysql_bind_param() . 771
mysql_bind_result() . 777
mysql_change_user() . 723
mysql_character_set_name() 725
mysql_close() . 725
mysql_commit(). 761
mysql_connect() . 725
mysql_create_db() . 726
mysql_data_seek() . 727
MYSQL_DEBUG environment variable 325
MYSQL_DEBUG environment variable . . . 1009, 1016
mysql_debug() . 727
mysql_drop_db() . 728
mysql_dump_debug_info() 728
mysql_eof() . 729
mysql_errno() . 730
mysql_error() . 731
mysql_escape_string() . 732
mysql_execute() . 772
mysql_fetch() . 781
mysql_fetch_field() . 732
mysql_fetch_field_direct() 733
mysql_fetch_fields() . 733
mysql_fetch_lengths() . 734
mysql_fetch_row() . 735
MYSQL_FIELD C type . 716
mysql_field_count() 736, 745
MYSQL_FIELD_OFFSET C type 716
mysql_field_seek() . 737
mysql_field_tell() . 738
mysql_free_result() . 738
mysql_get_client_info() 739
mysql_get_host_info() . 739

mysql_get_metadata. 770
mysql_get_proto_info() 740
mysql_get_server_info() 740
mysql_get_server_version() 739
MYSQL_HISTFILE environment variable 325
MYSQL_HISTFILE environment variable 1016
MYSQL_HOST environment variable 225
MYSQL_HOST environment variable 1016
mysql_info() 548, 552, 561, 575
mysql_info() . 740
mysql_init() . 741
mysql_insert_id() . 39
mysql_insert_id() . 742
mysql_insertid DBI attribute 820
mysql_kill() . 742
mysql_list_dbs() . 743
mysql_list_fields() . 743
mysql_list_processes() 744
mysql_list_tables() . 745
mysql_more_results(). 763
mysql_next_result(). 763
mysql_num_fields() . 745
mysql_num_rows() . 747
mysql_options() . 747
mysql_param_count() . 770
mysql_ping() . 749
mysql_prepare() . 769
MYSQL_PS1 environment variable 1016
MYSQL_PWD environment variable 225, 325
MYSQL_PWD environment variable 1016
mysql_query() . 750, 795
mysql_real_connect() . 751
mysql_real_escape_string() 442
mysql_real_escape_string() 753
mysql_real_query() . 754
mysql_reload() . 755
MYSQL_RES C type . 715
mysql_rollback(). 762
MYSQL_ROW C type . 716
mysql_row_seek() . 756
mysql_row_tell() . 756
mysql_select_db() . 757
mysql_send_long_data(). 786
mysql_server_end() . 795
mysql_server_init() . 794
mysql_shutdown() . 758
mysql_sqlstate() . 757
mysql_stat() . 758
MYSQL_STMT C type. 764
mysql_stmt_affected_rows() 776
mysql_stmt_close() . 788
mysql_stmt_data_seek() 779
mysql_stmt_errno() . 788
mysql_stmt_error(). 789
mysql_stmt_num_rows() . 780
mysql_stmt_row_seek() . 779
mysql_stmt_row_tell() . 780
mysql_stmt_sqlstate() . 789

SQL command, type and function index 1041

mysql_stmt_store_result() 778
mysql_store_result() 759, 795
MYSQL_TCP_PORT environment variable 211
MYSQL_TCP_PORT environment variable 212
MYSQL_TCP_PORT environment variable 325
MYSQL_TCP_PORT environment variable 1016
mysql_thread_end() . 793
mysql_thread_id() . 760
mysql_thread_init() . 792
mysql_thread_safe() . 793
MYSQL_UNIX_PORT environment variable 106
MYSQL_UNIX_PORT environment variable 211
MYSQL_UNIX_PORT environment variable 212
MYSQL_UNIX_PORT environment variable 325
MYSQL_UNIX_PORT environment variable 1016
mysql_use_result() . 760

N
NAME DBI method . 821
NATIONAL CHAR . 457
NATURAL LEFT JOIN. 535
NATURAL LEFT OUTER JOIN 535
NATURAL RIGHT JOIN . 535
NATURAL RIGHT OUTER JOIN 535
NCHAR . 457
newline (\n) . 441
NOT BETWEEN . 477
not equal (!=) . 476
not equal (<>) . 476
NOT IN . 478
NOT LIKE . 490
NOT REGEXP . 491
NOT, logical . 478
NOW() . 511
NUL . 441
NULL . 173, 864
NULL value . 444
NULLABLE DBI method . 819
NULLIF() . 480
NUM_OF_FIELDS DBI method 819
NUMERIC . 456
NumGeometries() . 707
NumInteriorRings() . 706
NumPoints() . 704

O
OCT() . 482
OCTET_LENGTH() . 484
OLD_PASSWORD() . 516
Operators, logical . 478
OPTIMIZE TABLE . 281
OR, bitwise . 515
OR, logical . 479
ORD() . 482
ORDER BY . 575
Overlaps() . 710

P
parentheses (and) . 475
PASSWORD() 226, 250, 516, 853
PATH environment variable 87, 1016
PERIOD_ADD() . 503
PERIOD_DIFF() . 503
PI() . 496
POINT . 695
Point() . 698
PointFromText() . 695
PointFromWKB() . 697
PointN() . 704
PointOnSurface() . 706, 707
PolyFromText() . 696
PolyFromWKB() . 697
POLYGON . 695
Polygon() . 698
PolygonFromText() . 696
PolygonFromWKB() . 697
POSITION() . 484
POW() . 495
POWER() . 495
prepare() DBI method . 817
PRIMARY KEY . 568, 575
PROCESSLIST . 301
PURGE MASTER LOGS. 376

Q
QUARTER() . 501
QUOTE() . 489
quote() DBI method . 818
quoting of identifiers . 444

R
RADIANS() . 498
RAND() . 497
REAL . 455
ref_or_null . 408
REGEXP . 490
Related() . 710
RELEASE_LOCK() . 521
RENAME TABLE . 576
REPAIR TABLE . 263
REPEAT() . 487
REPLACE . 554
REPLACE ... SELECT . 549
REPLACE() . 487
REQUIRE GRANT option . 257
RESET MASTER . 377
RESET SLAVE . 381
RESTORE TABLE . 261
return (\r) . 441
REVERSE() . 487
REVOKE . 239
RIGHT JOIN . 535
RIGHT OUTER JOIN . 535

1042 MySQL Technical Reference for Version 4.1.1-alpha

RIGHT() . 485
RLIKE . 490
ROLLBACK . 37, 579
ROLLBACK TO SAVEPOINT . 581
ROLLUP . 526
ROUND() . 494
rows DBI method . 819
RPAD() . 485
RTRIM() . 486

S
SAVEPOINT . 581
SEC_TO_TIME() . 512
SECOND() . 503
SELECT . 530
SELECT INTO TABLE . 37
SELECT speed . 406
SELECT, optimising . 399
SESSION_USER() . 515
SET . 432, 458, 470
SET GLOBAL SQL_SLAVE_SKIP_COUNTER 382
SET OPTION . 432
SET PASSWORD statement . 250
SET SQL_LOG_BIN . 377
SET TRANSACTION . 583
SHA() . 517
SHA1() . 517
SHOW BINLOG EVENTS . 377
SHOW COLUMNS . 284
SHOW CREATE TABLE . 284, 303
SHOW DATABASES . 284
SHOW FIELDS . 284
SHOW GRANTS . 284, 303
SHOW INDEX . 284
SHOW KEYS . 284
SHOW MASTER LOGS . 284, 377
SHOW MASTER STATUS . 284, 377
SHOW PRIVILEGES . 306
SHOW PROCESSLIST . 284, 301
SHOW SLAVE HOSTS . 378
SHOW SLAVE STATUS . 284, 382
SHOW STATUS . 284
SHOW TABLE STATUS. 284
SHOW TABLE TYPES . 284, 305
SHOW TABLES . 284
SHOW VARIABLES . 284
SHOW WARNINGS . 284, 303
SIGN() . 493
SIN() . 496
single quote (\’). 441
SMALLINT . 454
SOUNDEX() . 486
SOUNDS LIKE . 490
SPACE() . 487
SQL_CACHE . 591
SQL_NO_CACHE . 591
SQRT() . 495

SRID() . 702

START SLAVE . 385

START TRANSACTION . 579

StartPoint() . 704

statements, GRANT . 246

statements, INSERT . 247

STD() . 526

STDDEV() . 526

STOP SLAVE . 386

STR_TO_DATE() . 509

STRAIGHT_JOIN . 535

STRCMP() . 491

string comparison functions 489

string functions . 482

SUBDATE() . 505

SUBSTRING() . 485

SUBSTRING_INDEX() . 486

SUBTIME() . 506

subtraction (-) . 492

SUM() . 525

SymDifference() . 708

SYSDATE() . 511

SYSTEM_USER() . 515

T
tab (\t) . 441

table DBI method . 821

Table scan . 868

table_cache . 425

TAN() . 496

TEXT . 458, 468

threads . 301

TIME . 456, 466

TIME() . 500

TIME_FORMAT() . 510

TIME_TO_SEC() . 512

TIMEDIFF() . 506

TIMESTAMP . 456, 462

TIMESTAMP() . 500

TINYBLOB . 457

TINYINT . 454

TINYTEXT . 457

TMPDIR environment variable 106, 1016

TO_DAYS() . 507

Touches() . 710

trace DBI method . 819, 1007

TRIM() . 486

TRUE . 443

TRUNCATE . 554

TRUNCATE() . 498

type DBI method . 821

Types . 454

TZ environment variable 862, 1016

SQL command, type and function index 1043

U
UCASE() . 488

UDF functions . 834

ulimit . 854

UMASK environment variable 856, 1016

UMASK_DIR environment variable 857, 1016

unary minus (-) . 493

UNCOMPRESS() . 519

UNCOMPRESSED_LENGTH() . 519

UNION . 188, 537

Union() . 708

UNIQUE . 575

UNIX_TIMESTAMP() . 511

UNLOCK TABLES . 581

UPDATE . 551

UPPER() . 488

USE . 579

USE INDEX . 531, 536

USE KEY . 531, 536

USER environment variable 225

USER environment variable 1016

USER() . 515

User-defined functions . 834

UTC_DATE() . 512

UTC_TIME() . 512

UTC_TIMESTAMP() . 512

V
VARCHAR . 457, 467
VARCHARACTER . 457
VARIANCE() . 526
VERSION() . 521

W
WEEK() . 501
WEEKDAY() . 500
WEEKOFYEAR() . 502
WHERE . 407
Wildcard character (%) . 441
Wildcard character (_) . 441
Within() . 710
without-server option . 91

X
X() . 703
XOR, bitwise . 515
XOR, logical . 479

Y
Y() . 703
YEAR . 456, 467
YEAR() . 502

1044 MySQL Technical Reference for Version 4.1.1-alpha

Concept Index

-
--with-raid link errors . 97

A
aborted clients . 851
aborted connection . 851
access control . 225
access denied errors . 845
access privileges . 213
Access program . 808
ACID . 37
ACID . 605
ACLs . 213
ActiveState Perl . 153
adding, character sets . 308
adding, native functions . 842
adding, new functions . 833
adding, new user privileges 246
adding, new users . 86
adding, procedures . 843
adding, user-definable functions 834
administration, server . 334
ADO program . 809
age, calculating . 170
alias names, case-sensitivity 445
aliases, for expressions . 530
aliases, for tables . 532
aliases, in GROUP BY clauses 530
aliases, in ORDER BY clauses 530
aliases, names . 444
aliases, on expressions . 531
anonymous user 226, 228, 245
ANSI mode, running . 33
answering questions, etiquette 32
Apache . 194
APIs. 715
APIs, Perl . 815
applying, patches . 91
argument processing . 838
arithmetic expressions . 492
AUTO-INCREMENT, ODBC 813
AUTO INCREMENT . 189
AUTO_INCREMENT, and NULL values 865

B
backing up, databases 339, 344
backslash, escape character 441
backups . 259
backups, database . 261
batch mode . 181
batch, mysql option . 327
BDB table type . 593

BDB tables . 37
benchmark suite . 397
benchmarks . 398
BerkeleyDB table type . 593
Big5 Chinese character encoding 862
binary distributions . 80
binary distributions, installing 85
binary distributions, on HP-UX 141
binary distributions, on Linux 130
binary log . 351
bit functions, example . 188
BitKeeper tree. 94
BLOB columns, default values 469
BLOB columns, indexing . 568
BLOB, inserting binary data 442
BLOB, size . 473
Borland Builder 4 program 810
Borland C++ compiler . 821
brackets, square . 453
buffer sizes, client . 715
buffer sizes, mysqld server 427
bug reports, criteria for . 29
bugs database . 27
bugs, known . 44
bugs, reporting . 27
bugs.mysql.com . 27
building, client programs . 797

C
C API, datatypes . 715
C API, functions . 718
C API, linking problems . 796
C Prepared statement API, functions 766
C++ . 871
C++ APIs . 821
C++ Builder . 812
C++ compiler cannot create executables 97
C++ compiler, gcc . 92
caches, clearing . 282
calculating, dates . 170
calling sequences for aggregate functions, UDF

. 837
calling sequences for simple functions, UDF . . . 836
can’t create/write to file . 852
case-sensitivity, in access checking 220
case-sensitivity, in names . 445
case-sensitivity, in searches 862
case-sensitivity, in string comparisons 489
case-sensitivity, of database names 34
case-sensitivity, of table names 34
cast operators . 491
casts . 475
cc1plus problems . 97

Concept Index 1045

certification . 13
ChangeLog . 886
changes to privileges . 230
changes, log . 886
changes, version 3.19 . 1001
changes, version 3.20 . 994
changes, version 3.21 . 981
changes, version 3.22 . 967
changes, version 3.23 . 925
changes, version 4.0 . 893
changes, version 4.1 . 886
changes, version 5.0 . 886
changing socket location 92, 109, 861
changing, column . 575
changing, column order . 870
changing, field . 575
changing, table . 573, 575, 869
character sets . 93, 306
Character sets . 664
character sets, adding . 308
character-sets-dir, mysql option 327
characters, multi-byte . 310
check options, myisamchk 267
checking, tables for errors 271
checksum errors . 133
Chinese . 862
choosing types . 472
choosing, a MySQL version 75
clearing, caches . 282
client programs, building . 797
client tools . 715
clients, debugging . 1009
clients, threaded . 797
closing, tables . 425
ColdFusion program . 810
collating, strings . 310
column comments . 568
column names, case-sensitivity 445
column, changing . 575
columns, changing . 870
columns, displaying . 347
columns, indexes . 423
columns, names . 444
columns, other types . 472
columns, selecting . 168
columns, storage requirements 472
columns, types . 453
command syntax . 3
command-line history . 325
command-line options, mysql 327
command-line tool . 327
commands out of sync . 852
commands, for binary distribution 85
commands, list of . 330
commands, replication masters 376
commands, replication slaves 378
comments, adding . 450
comments, starting . 42

commercial support, types . 16
compatibility, between MySQL versions 110,

113, 116, 118
compatibility, with mSQL 490
compatibility, with ODBC 445, 455, 475, 477,

535, 567, 988
compatibility, with Oracle 35, 526, 579
compatibility, with PostgreSQL 36
compatibility, with standard SQL 32
compatibility, with Sybase 579
compiler, C++ gcc . 92
compiling, on Windows . 123
compiling, optimising . 427
compiling, problems . 96
compiling, speed . 429
compiling, statically . 92
compiling, user-defined functions 840
compliance, Y2K . 10
compress, mysql option . 327
compressed tables . 317, 598
config-file option . 314
config.cache . 96
config.cache file . 96
configuration files . 238
configuration options . 91
configure option, –with-low-memory 97
configure script . 91
configure, running after prior invocation 96
connect_timeout variable 329
connecting, remotely with SSH 122
connecting, to the server 157, 224
connecting, verification . 225
connection, aborted . 851
Connector/J . 814
Connector/ODBC . 804
constant table . 400, 407
consulting . 13
contact information . 14
contributed programs . 871
contributing companies, list of 885
contributors, list of . 879
control access . 225
conventions, typographical . 2
converters . 873
copying tables . 566
copyrights . 16
costs, support . 16
counting, table rows . 177
crackers, security against . 215
crash . 1004
crash, recovery . 270
crash, repeated . 857
crash-me . 398
crash-me program . 395, 397
creating, bug reports . 27
creating, databases . 161
creating, default startup options 203
creating, tables . 163

1046 MySQL Technical Reference for Version 4.1.1-alpha

customer support, mailing address 31
customers, of MySQL . 396
CVS tree . 94

D
data, character sets . 306
data, importing . 345
data, loading into tables . 164
data, retrieving . 165
data, size . 421
database design . 420
database names, case-sensitivity 34, 445
database, deleting . 563
database, mysql option . 327
databases, backups . 259
databases, creating . 161
databases, defined . 4
databases, displaying . 347
databases, dumping . 339, 344
databases, information about 180
databases, names . 444
databases, replicating . 355
databases, selecting . 162
databases, symbolic links . 438
databases, using . 161
DataJunction . 810
datatypes, C API . 715
Date and Time types . 460
date calculations . 170
DATE columns, problems 863
date functions, Y2K compliance 10
date types . 473
date types, Y2K issues . 461
date values, problems . 465
db table, sorting . 229
DBI interface . 815
DBI Perl module . 815
DBI/DBD . 821
DBUG package . 1010
debug, mysql option . 327
debug-info, mysql option 329
debugging, client . 1009
debugging, server . 1004
decimal point . 453
default hostname . 224
default installation location 77
default options . 203
default values . 394, 547, 567
default values, BLOB and TEXT columns 469
default values, suppression 43, 93
default, privileges . 245
default-character-set, mysql option 327
defaults, embedded . 800
delayed insert limit . 550
deleting, database . 563
deleting, function . 834
deleting, index . 575, 578

deleting, primary key . 575
deleting, rows . 865
deleting, table . 577
deleting, user . 249
deleting, users . 249
deletion, mysql.sock . 861
Delphi . 872
Delphi program . 811
derived tables . 542
design, choices . 420
design, issues . 44
design, limitations . 394
developers, list of . 876
development source tree . 94
digits . 453
directory structure, default 77
disconnecting, from the server 157
disk full . 860
disk issues. 437
disks, splitting data across 122
display size . 453
displaying, database information 347
displaying, information, SHOW 285
displaying, table status . 286
DNS . 432
downgrading . 110
downloading . 70
dropping, user . 249
dumping, databases . 339, 344
dynamic table characteristics 597

E
e-mail lists . 25
Eiffel Wrapper . 822
embedded MySQL server library 799
employment with MySQL . 14
employment, contact information 14
enable-named-commands, mysql option 328
entering, queries . 158
ENUM, size . 474
environment variables. 204, 238, 311, 325
environment variables, list of 1016
Errcode . 349
errno . 349
error mesaages, can’t find file 856
error messages, displaying 349
error messages, languages 307
errors, access denied . 845
errors, checking tables for 271
errors, common . 844
errors, directory checksum 133
errors, handling for UDFs 839
errors, known . 44
errors, linking . 855
errors, list of . 845
errors, reporting . 2, 24, 27
escape characters . 441

Concept Index 1047

estimating, query performance 406

example option . 314

examples, compressed tables 318

examples, myisamchk output 276

examples, queries . 183

Excel . 810

execute, mysql option . 327

expression aliases . 530, 531

expressions, extended . 174

extensions, to standard SQL 32

extracting, dates . 170

F
fatal signal 11 . 97

features of MySQL . 5

field, changing . 575

files, binary log . 351

files, config.cache . 96

files, error messages . 307

files, log . 91, 355

files, not found message . 856

files, permissions . 856

files, query log . 350

files, repairing . 268

files, script . 181

files, size limits . 9

files, slow query log . 354

files, text . 345

files, tmp . 106

files, update log . 351

files,‘my.cnf’ . 366

floating-point number . 455

floats . 443

flush tables . 336

force, mysql option . 328

foreign key, constraint . 43

foreign keys . 40, 186, 575

free licensing . 18

FreeBSD troubleshooting . 98

full disk . 860

full-text search . 583

FULLTEXT . 583

function, deleting . 834

functions for SELECT and WHERE clauses 474

functions, C API . 718

functions, C Prepared statement API 766

functions, grouping . 475

functions, native, adding . 842

functions, new . 833

functions, user-definable, adding 834

functions, user-defined . 833

G
gcc . 92
gdb, using . 1006
general information . 1
General Public License . 4
General Public License, MySQL 17
geographic feature . 686
geometry . 686
geospatial feature . 686
getting MySQL . 70
GIS. 686
global privileges . 239
goals of MySQL . 5
GPL, General Public License 1020
GPL, GNU General Public License 1020
GPL, MySQL . 17
grant tables . 230
grant tables, re-creating . 246
grant tables, sorting . 227, 229
grant tables, upgrading . 119
granting, privileges . 239
GROUP BY, aliases in . 530
GROUP BY, extensions to standard SQL . . . 529, 533
grouping, expressions . 475

H
handling, errors . 839
HEAP table type . 593
help option . 314
help, mysql option . 327
hints . 34, 533, 536
history file . 325
history of MySQL. 5
host table. 230
host table, sorting . 229
host, mysql option . 328
hostname caching . 432
hostname, default . 224
HP-UX, binary distribution 141
html, mysql option . 328

I
ID, unique . 796
ignore-space, mysql option 328
importing, data . 345
increasing, performance . 388
increasing, speed . 355
index, deleting . 575, 578
indexes . 577
indexes, and BLOB columns 568
indexes, and IS NULL . 423
indexes, and LIKE . 422
indexes, and NULL values . 568
indexes, and TEXT columns 568
indexes, block size . 296
indexes, columns . 423

1048 MySQL Technical Reference for Version 4.1.1-alpha

indexes, leftmost prefix of 422
indexes, multi-column . 424
indexes, multi-part . 577
indexes, names . 444
indexes, use of . 421
InnoDB table type . 593
InnoDB tables . 37
INSERT DELAYED . 549
inserting, speed of . 413
installation layouts . 77
installation overview . 88
installing, binary distribution 85
installing, Linux RPM packages 64
installing, Mac OS X PKG packages 66
installing, overview . 56
installing, Perl . 152
installing, Perl on Windows. 153
installing, source distribution 88
installing, user-defined functions 840
integers . 443
internal compiler errors . 97
internal locking . 418
internals . 830
Internet Relay Chat . 32
Internet Service Providers . 18
IRC . 32
ISAM table type . 593
ISP services . 18

J
Java connectivity . 814
JDBC . 814
jobs at MySQL . 14

K
key space, MyISAM . 596
keys . 423
keys, foreign . 40, 186
keys, multi-column . 424
keys, searching on two . 188
keywords . 451
known errors . 44

L
language support . 307
last row, unique ID . 796
layout of installation . 77
leftmost prefix of indexes . 422
legal names . 444
LGPL, GNU Lesser General Public License . . 1026
LGPL, GNU Library General Public License

. 1026
LGPL, Lesser General Public License 1026
LGPL, Library General Public License 1026
libmysqld . 799

library, mysqlclient . 715
licenses . 16
licensing costs . 16
licensing policy . 17
licensing terms . 15
licensing, contact information 14
licensing, examples . 17
licensing, free . 18
limitations, design . 394
limits, file-size . 9
linking . 797
linking, errors . 855
linking, problems . 796
linking, speed . 429
links, symbolic . 438
Linux, binary distribution 130
literals . 441
loading, tables . 164
locking . 427
locking methods . 1011
locking, row-level . 39
locking, tables . 418
log files . 91
Log files . 349
log files, maintaining . 355
log files, names . 260
log option . 314
log, changes . 886
logos . 18

M
Mac OS X, installation . 66
mailing address, for customer support 31
mailing list address . 2
mailing lists . 25
mailing lists, archive location 27
mailing lists, guidelines . 32
main features of MySQL . 5
maintaining, log files . 355
maintaining, tables . 275
make_binary_distribution 311
manual, available formats . 2
manual, online location . 2
manual, typographical conventions 2
master/slave setup . 356
matching, patterns . 174
max memory used . 336
max_allowed_packet . 329
max_join_size . 329
MBR . 708
memory usage, myisamchk 270
memory use . 336, 431
MERGE table type . 593
MERGE tables, defined . 600
messages, languages . 307
methods, locking . 1011
Minimum Bounding Rectangle 708

Concept Index 1049

mirror sites . 70
MIT-pthreads . 99
modes, batch . 181
modules, list of . 8
monitor, terminal . 157
mSQL compatibility . 490
msql2mysql . 326
multi mysqld . 313
multi-byte character sets . 853
multi-byte characters . 310
multi-column indexes . 424
multi-part index . 577
multiple servers . 206
My, derivation . 5
‘my.cnf’ file . 366
MyISAM table type . 593
MyISAM, compressed tables 317, 598
MyISAM, size . 474
myisamchk . 93, 311
myisamchk, example output 276
myisamchk, options . 266
myisampack . 317, 573, 598
MyODBC . 804
MyODBC, reporting problems 813
mysql . 326, 327
MySQL AB, defined . 11
MySQL binary distribution 75
MySQL certification . 13
mysql command-line options 327
MySQL consulting . 13
MySQL Dolphin name . 5
MySQL history . 5
MySQL mailing lists . 24
MySQL name . 5
MySQL source distribution 75
MySQL table types . 593
MySQL training . 13
MySQL version . 70
MySQL, defined . 4
MySQL, introduction . 4
MySQL, pronunciation . 5
mysql.sock, changing location of 92
mysql.sock, protection . 861
mysql_fix_privilege_tables 236
mysql_install_db . 311
mysql_install_db script . 105
mysqlaccess . 326
mysqladmin 282, 284, 287, 326, 334, 563, 564
mysqladmin option . 314
mysqlbinlog . 326, 336
mysqlbug . 311
mysqlbug script . 27
mysqlbug script, location . 2
mysqlclient library . 715
mysqld . 311
mysqld option . 314
mysqld options . 195
mysqld options . 427

mysqld server, buffer sizes 427
mysqld, starting . 856
mysqld-max . 323
mysqld_multi . 313
mysqld_safe . 312
mysqldump . 121, 326, 339
mysqlimport 121, 326, 345, 556
mysqlshow . 326
mysqltest, MySQL Test Suite 830

N
named pipes . 63
names . 444
names, case-sensitivity . 445
names, variables . 446
naming, releases of MySQL 76
native functions, adding . 842
native thread support . 73
negative values . 443
net etiquette . 27, 32
net_buffer_length . 329
netmask notation, in mysql.user table 226
NetWare . 69, 152
new procedures, adding . 843
new users, adding . 86
no matching rows . 865
no-auto-rehash, mysql option 327
no-beep, mysql option . 327
no-log option . 314
no-named-commands, mysql option 328
no-pager, mysql option . 328
no-tee, mysql option . 328
non-delimited strings . 464
Non-transactional tables . 849
NOT NULL, constraint . 43
Novell NetWare . 69, 152
NULL value . 173
NULL values, and AUTO_INCREMENT columns 865
NULL values, and indexes . 568
NULL values, and TIMESTAMP columns 865
NULL values, vs. empty values 864
NULL, testing for null 476, 478, 480
numbers . 443
numeric types . 472

O
ODBC . 804
ODBC compatibility 445, 455, 475, 477, 535,

567, 988
ODBC, administrator . 806
odbcadmin program . 811
OLEDB . 871
one-database, mysql option 328
online location of manual . 2
Open Source, defined . 4
open tables . 336, 425

1050 MySQL Technical Reference for Version 4.1.1-alpha

OpenGIS . 686
opening, tables . 425
opens . 336
OpenSSL . 252
operating systems, file-size limits 9
operating systems, supported 73
operating systems, Windows versus Unix 123
operations, arithmetic . 492
operators, cast . 491, 492
optimisation, tips . 415
optimisations . 407
optimising, DISTINCT . 409
optimising, LEFT JOIN . 410
optimising, LIMIT . 412
optimising, tables . 274
option files . 203
options, command-line . 195
options, command-line, mysql. 327
options, configure . 91
options, myisamchk . 266
options, provided by MySQL 157
options, replication . 366
Oracle compatibility 35, 526, 579
ORDER BY, aliases in . 530
overview . 1

P
pack_isam . 317
pager, mysql option . 328
parameters, server . 427
partnering with MySQL AB 14
password encryption, reversibility of 516
password option . 314
password, mysql option . 328
password, root user . 245
passwords, for users . 243
passwords, forgotten . 859
passwords, resetting . 859
passwords, security . 218
passwords, setting 242, 250, 434
patches, applying . 91
pattern matching . 174
performance, benchmarks 398
performance, disk issues . 437
performance, estimating . 406
performance, improving 388, 421
Perl API . 815
Perl DBI/DBD, installation problems 154
Perl, installing . 152
Perl, installing on Windows. 153
Perl, modules. 871
permission checks, effect on speed 399
perror . 349
PHP API . 814
port, mysql option . 329
portability . 395
portability, types . 472

porting, to other systems 1003

post-install, multiple servers 206

post-installation, setup and testing 101

PostgreSQL compatibility . 36

prices, support . 16

PRIMARY KEY, constraint 43

primary key, deleting . 575

privilege information, location 222

privilege system . 218

privilege system, described 219

privilege, changes . 230

privileges, access . 213

privileges, adding . 246

privileges, default . 245

privileges, deleting . 249

privileges, display . 303

privileges, dropping . 249

privileges, granting . 239

privileges, revoking . 239

problems, access denied errors 845

problems, common errors . 844

problems, compiling . 96

problems, DATE columns . 863

problems, date values . 465

problems, installing on IBM-AIX 144

problems, installing on Solaris 133

problems, installing Perl . 154

problems, linking . 855

problems, ODBC . 813

problems, reporting . 27

problems, starting the server 107

problems, table locking . 419

problems, timezone . 862

procedures, adding . 843

procedures, stored . 40

process support . 73

processes, display . 301

processing, arguments . 838

products, selling . 17

programs, client . 797

programs, contributed . 871

programs, crash-me . 395

programs, list of . 311, 325

prompt command . 333

prompt, mysql option . 327

prompts, meanings . 160

pronunciation, MySQL . 5

Protocol mismatch . 119

protocol, mysql option 329, 346

Python API . 822

Concept Index 1051

Q
queries, entering . 158
queries, estimating performance 406
queries, examples . 183
queries, speed of . 399
queries, Twin Studies project 190
Query Cache . 589
query log . 350
questions . 336
questions, answering . 32
quick, mysql option . 329
quotes, in strings . 442
quoting . 442
quoting binary data . 442
quoting strings . 818

R
RAID, compile errors . 97
RAID, table type . 572
raw, mysql option . 329
re-creating, grant tables . 246
reconfiguring . 96
reconnect, mysql option . 329
recovery, from crash . 270
reducing, data size . 421
references . 575
regex . 1017
regular expression syntax, described 1017
relational databases, defined 4
release numbers. 75
releases, naming scheme . 76
releases, testing . 77
releases, updating . 78
reordering, columns . 870
repair options, myisamchk 268
repairing, tables . 272
replace . 326
replication . 355
replication masters, commands 376
replication slaves, commands 378
reporting, bugs . 27
reporting, errors . 2, 24
reporting, MyODBC problems 813
reserved words, exceptions 451
restarting, the server . 104
retrieving, data from tables 165
return values, UDFs . 839
revoking, privileges . 239
root password . 245
root user, password resetting 859
rounding errors . 454, 499
rows, counting . 177
rows, deleting . 865
rows, locking . 39
rows, matching problems . 865
rows, selecting . 166
rows, sorting . 169

RPM file . 64
RPM Package Manager . 64
RTS-threads . 1012
running a web server . 18
running configure after prior invocation 96
running, ANSI mode . 33
running, batch mode . 181
running, multiple servers . 206
running, queries . 158

S
safe-mode command . 331
safe-updates, mysql option 329
safe_mysqld . 312
Sakila . 5
script files . 181
scripts . 312, 313, 327
scripts, mysql_install_db 105
scripts, mysqlbug . 27
searching, and case-sensitivity 862
searching, full-text . 583
searching, MySQL web pages 27
searching, two keys . 188
security system . 213
security, against crackers . 215
SELECT, Query Cache . 589
select_limit . 329
selecting, databases . 162
selling products . 17
sequence emulation . 520
server administration . 334
server, connecting . 157, 224
server, debugging . 1004
server, disconnecting . 157
server, restart . 104
server, shutdown . 104
server, starting . 101
server, starting and stopping 108
server, starting problems . 107
servers, multiple . 206
services, ISP . 18
services, web . 18
SET, size . 474
set-variable, mysql option 328
setting, passwords . 250
setup, post-installation . 101
shell syntax . 3
showing, database information 347
shutting down, the server . 104
silent column changes . 572
silent, mysql option . 329
size of tables . 9
sizes, display . 453
skip-column-names, mysql option 328
skip-line-numbers, mysql option 328
slow queries . 336
slow query log . 354

1052 MySQL Technical Reference for Version 4.1.1-alpha

socket location, changing . 92
socket, mysql option . 329
Solaris installation problems 133
Solaris troubleshooting . 98
sorting, character sets . 306
sorting, data . 169
sorting, grant tables . 227, 229
sorting, table rows . 169
source distribution, installing 88
Spatial Extensions in MySQL 686
speed, compiling . 429
speed, increasing . 355
speed, inserting . 413
speed, linking . 429
speed, of queries . 399, 406
SQL commands, replication masters 376
SQL commands, replication slaves 378
SQL, defined . 4
SQL-92, extensions to . 32
sql_yacc.cc problems . 97
square brackets . 453
SSH . 122
SSL and X509 Basics . 252
SSL command-line options 259
SSL related options . 257
stability . 8
Standard SQL, differences from 243
standards compatibility . 32
Starting many servers . 206
starting, comments . 42
starting, mysqld . 856
starting, the server . 101
starting, the server automatically 108
startup options, default . 203
startup parameters . 427
startup parameters, mysql 327
startup parameters, tuning 427
statically, compiling . 92
status command . 331
status command, results . 335
status, tables . 286
stopping, the server . 108
storage of data . 420
storage requirements, column type 472
storage space, minimising 421
stored procedures and triggers, defined 40
string collating . 310
string comparisons, case-sensitivity 489
string types . 467
strings, defined . 441
strings, escaping characters 441
strings, non-delimited . 464
strings, quoting . 818
striping, defined . 437
subqueries . 537
subquery . 537
subselects . 537
superuser . 245

support costs . 16
support terms . 15
support, for operating systems 73
support, licensing . 17
support, mailing address . 31
support, types . 16
suppression, default values 43, 93
Sybase compatibility . 579
symbolic links . 122, 438
syntax, regular expression 1017
system optimisation . 427
system table. 400
system variables . 447
system, privilege . 218
system, security . 213

T
table aliases . 532
table cache . 425
table is full . 434, 851
table names, case-sensitivity 34, 445
table types, choosing . 593
table, changing . 573, 575, 869
table, deleting . 577
table, mysql option . 329
tables, BDB . 653
tables, Berkeley DB . 653
tables, changing column order 870
tables, checking . 267
tables, closing . 425
tables, compressed . 317
tables, compressed format 598
tables, constant . 400, 407
tables, copying . 566
tables, counting rows . 177
tables, creating . 163
tables, defragment . 275, 597
tables, defragmenting . 281
tables, deleting rows . 865
tables, displaying . 347
tables, displaying status . 286
tables, dumping . 339, 344
tables, dynamic . 597
tables, error checking . 271
tables, flush . 336
tables, fragmentation . 281
tables, grant . 230
tables, HEAP . 604
tables, host . 230
tables, improving performance 421
tables, information . 276
tables, information about . 180
tables, ISAM . 603
tables, loading data . 164
tables, locking . 418
tables, maintenance regimen 275
tables, maximum size . 9

Concept Index 1053

tables, merging . 600
tables, multiple . 179
tables, names . 444
tables, open . 425
tables, opening . 425
tables, optimising . 274
tables, RAID . 572
tables, repairing . 272
tables, retrieving data . 165
tables, selecting columns . 168
tables, selecting rows . 166
tables, sorting rows . 169
tables, symbolic links . 439
tables, system . 400
tables, too many . 426
tables, unique ID for last row 796
tables, updating . 37
tar, problems on Solaris . 133
Tcl API . 822
tcp-ip option . 314
TCP/IP . 63
technical support, licensing 17
technical support, mailing address 31
tee, mysql option . 329
temporary file, write access 106
temporary tables, problems 870
terminal monitor, defined. 157
testing mysqld, mysqltest . 830
testing, connection to the server 225
testing, installation . 102
testing, of MySQL releases 77
testing, post-installation . 101
testing, the server. 102
Texinfo . 2
TEXT columns, default values 469
TEXT columns, indexing . 568
text files, importing . 345
TEXT, size . 473
thread packages, differences between 1014
thread support . 73
thread support, non-native 99
threaded clients . 797
threads . 336, 830
threads, display . 301
threads, RTS . 1012
time types . 473
timeout . 295, 521, 550
timeout, connect_timeout variable 329
TIMESTAMP, and NULL values 865
timezone problems . 862
tips, optimisation . 415
ToDo list for MySQL . 49
TODO, embedded server . 800
TODO, symlinks . 439
tools, command-line . 327
tools, mysqld multi . 313
tools, mysqld safe . 312
tools, safe mysqld . 312

trademarks . 18
training . 13
transaction-safe tables 37, 605
transactions, support . 37, 605
triggers . 40
troubleshooting, FreeBSD . 98
troubleshooting, Solaris . 98
tutorial . 157
Twin Studies, queries . 190
type conversions . 475
types of support . 16
types, columns . 453, 472
types, date . 473
types, Date and Time . 460
types, numeric . 472
types, of tables . 593
types, portability . 472
types, strings . 467
types, time . 473
typographical conventions . 2

U
UCS-2 . 664
UDFs, compiling . 840
UDFs, defined . 833
UDFs, return values . 839
unbuffered, mysql option 328
Unicode . 664
unique ID . 796
UNIQUE, constraint . 43
unloading, tables . 165
unnamed views . 542
update log . 351
updating, releases of MySQL 78
updating, tables . 37
upgrading . 110
upgrading, 3.20 to 3.21 . 118
upgrading, 3.21 to 3.22 . 118
upgrading, 3.22 to 3.23 . 116
upgrading, 3.23 to 4.0 . 113
upgrading, 4.0 to 4.1 . 110
upgrading, different architecture 120
upgrading, grant tables . 119
uptime . 336
URLs for downloading MySQL 70
user names, and passwords 243
user option . 314
user privileges, adding . 246
user privileges, deleting . 249
user privileges, dropping . 249
user table, sorting . 227
user variables . 446
user, mysql option . 329
user-defined functions, adding 833, 834
users, adding . 86
users, deleting . 249
users, root . 245

1054 MySQL Technical Reference for Version 4.1.1-alpha

uses, of MySQL . 396
using multiple disks to start data 122
UTF-8 . 664
utilities . 875

V
valid numbers, examples . 443
VARCHAR, size . 473
variables, mysqld . 427
variables, status . 288
variables, System . 447
variables, user . 446
variables, values . 294
verbose, mysql option . 329
version option . 315
version, choosing . 75
version, latest . 70
version, mysql option . 329
vertical, mysql option . 327
views . 41
virtual memory, problems while compiling 97
Visual Basic . 812

W
wait, mysql option . 329
web server, running . 18
Well-Known Binary format 694

Well-Known Text format . 693
What is an X509/Certificate? 252
What is encryption . 252
wildcards, and LIKE . 422
wildcards, in mysql.columns_priv table 229
wildcards, in mysql.db table 228
wildcards, in mysql.host table 228
wildcards, in mysql.tables_priv table 229
wildcards, in mysql.user table 225
Windows . 804
Windows, compiling on . 123
Windows, open issues . 125
Windows, upgrading . 121
Windows, versus Unix . 123
WKB . 694
WKT . 693
Word program . 811
wrappers, Eiffel . 822
write access, tmp . 106

X
xml, mysql option . 328

Y
Year 2000 compliance . 10
Year 2000 issues . 461

