

DZone, Inc. | www.dzone.com

CONTENTS INCLUDE:

n	 About JSP Expression Language
n	 Using the EL in a JSP Page
n	 Literal Values
n	 Introducing Scoped Variables
n	 Grabbing JavaBean Properties
n	 Hot Tips and more...

The JavaServer Pages (JSP) Expression Language (EL) is a

simple non-procedural scripting language that can be used

to evaluate dynamic expressions within a JSP page. Each EL

expression evaluates to a single value that is then expressed as

text in the output of the JSP (when used in template text), or

passed as a value to a JSP action.

As such, it is ideal for adding dynamic elements to the HTML

page (or other text output) generated by the execution of a JSP.

The EL—in concert with the JSP Standard Tag Library (JSTL) —is

intended to supplant the need for Java (in the form of scriptlets

and scriptlet expressions) in JSP pages, resulting in JSPs that

are pure templates rather than unwieldy and error-plagued

procedural components.

The EL syntax was inspired by the JavaScript (ECMAScript, to

be pedantic) expression syntax. So those familiar with JavaScript

should find the syntax familiar.

This refcard focuses on the Expression Language as applied

to JSP pages. The EL described here is a subset of the fuller

Unified Expression Language that applies to not only JSP

pages, but also to JavaServer Faces (JSF) pages. To keep

this refcard focused on JSP, JSF-only aspects have not been

included.

An EL expression is delimited in a JSP page using the notation:

${el-expression-goes-here}

When the JSP is executed, the value of the expression is

determined and the delimiters, along with the enclosed

expression, is replaced with the text evaluation of the result.

For example, the EL expression ${ 3 + 4 } will be replaced
with the text 7 in the response output or attribute value.

About JSP Expression Language

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

By Bear Bibeault

Essential JSP Expression Language

Literal Values

Using the EL in a JSP Page

In the previous section, we saw the use of a number of numeric
and text literals. Literals represent fixed values such as 3, 4,
's' and '' (the empty string).

Another example that we might find in the template text of a

JSP (don't worry about the details, we'll be getting to that soon

enough):

<p>There are ${thing.count} thing${(thing.count==1)

? '':'s'} available.</p>

When executed, if the value of the expression thing.count

evaluates to the value 3 (again, don't worry about how yet), the

following text would be placed into the response buffer:

<p>There are 3 things available.</p>

Using the EL in a JSP Page , continued

Hot
Tip

The ${ } delimiters enclose the entire EL
expression.

Some people mistakenly think of the ${ } as a sort
of “fetch” operator that must enclose individual
elements. Not so!

For example, ${ a + b } is correct (we'll see
later what a and b represent), while ${ ${a} +
${b} } is not.

Note
If you want the sequence ${ to appear as
template text in your JSP page for some reason,
escape the $ character with the backslash (\)
character, as in: \${.

Es
se

nt
ia

l J
SP

 E
xp

re
ss

io
n

La
ng

ua
g

e

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#33

http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com

Essential JSP Expression Language

2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Referencing Simple Values

Literal Values, continued Introducing Scoped Variables, continued

The example code in the previous section created a scoped
variable named greeting that contains a simple text value.
Regardless of what kind of value a scoped variable contains, it
can be referenced in an EL expression simply by naming it. For
example:

${greeting}

When evaluated, this EL expression will result in the text Hi
there! being emitted into the response output stream.

Scoped variables can be referenced anywhere in an EL
expression. Let's say that the scoped variables a and b contain
numeric values. If we wanted to add the values together and
emit the result, we could write:

${a + b}

Fixed values are all well and good, but the true strength of
the EL lies in expressing dynamic values. These values can be
generated from a number of sources, but are always represented
by scoped variables.

The concept of a variable should be familiar: a named element
that represents a dynamic value that can be assigned to it. But
the concept of the JSP scopes may be new.

These scopes define the order in which variable names are
resolved, the lifetime of the variable, and its purview. The
scopes, in their default search order, are: page, request,
session and application.

In Java code, these scoped variables are created by the
setAttribute() method of their respective Java classes.
These classes (or interfaces), as well as the other properties of
the scopes are shown in the following table:

Hot
Tip

Be aware that when an EL expression is used
within the value of the attribute to a standard or
custom action, quoting gets complicated as the
attribute value itself is quoted using one of the

single or double-quote characters.

For example, the JSTL action:

<c:out value="${"Don't look back!"}"/>

will result in a JSP exception as the double quote characters
in the EL expression interfere with the quoting of the attribute
value. The correct syntax would be:

<c:out value="${'Don\\'t look back!'}"/>

Note that the backslash itself must be escaped so that it “sur-
vives” both levels of interpretation (EL and attribute value).

Luckily, when using the EL in template text, these quoting
issues rarely raise their head.

Hot
Tip

Application scope is a very handy place to store
information that needs to be made available to all
resources within a web application. It's easy to
establish such data whenever a web application

starts up by doing so in context listener.

A context listener is simply a Java class that implements the
javax.servlet.ServletContextListener interface, and
is declared as a listener in the deployment descriptor (web.
xml) using the <listener> element.

Methods in such a class are invoked whenever a web applica-
tion is put into (and taken out of) service, making it an ideal
choice for application setup (and tear down).

And best of all, any scoped variables placed in application
scope are available to any EL expression in any JSP in the
application!

Scoped variables can be created in many places, but a very

common scenario is for the page controller servlet to create

scoped variables in request scope, then forward to a JSP page in

order to display that data.

For example:

request.setAttribute("greeting","Hi there!");

This statement creates a request-scoped variable named
greeting with the string value Hi there!.

Now let's see how we can use that variable in a JSP.

scope Java class/interface purview lifetime

page PageContext Current JSP page Execution of the
current JSP page.

request ServletRequest Current request Lifetime of the current
request.

session HttpSession Resources
participating in the
active session

Lifetime of the active
session.

application ServletContext All resources in the
web application.

Lifetime of the
application context.

Numeric literals can be expressed as integer values such as

3 or 213, or as floating point values such as 2.058 and 0.9999.

Exponential notation such as 1.23E5 can also be used. Integer

literals are, by far, the most commonly used.

Text literals are delimited using either the single-quote character

(') or the double-quote character("). The same character must

be used to delimit the beginning and the end of the literal. For

example: "Hi there!” or 'Hello'.

If the text literal must contain the quote character that is being

used as the delimiter, the character must be escaped with the

backslash character (\). For example:

${'He said, "My name is O\'Hara."'}

The backslash character itself must be expressed as \\.

There are two more types of literals: the Boolean literals, which

consist of the values true and false, and the Null Literal

consisting of the value null.

Introducing Scoped Variables

http://www.dzone.com
http://www.refcardz.com

Essential JSP Expression Language

3

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

While strings and numbers are useful for representing scalar

values, more frequently, complex objects in the form of

JavaBeans are what we have to deal with, so the EL is specifically

designed to make it easy to access the properties of JavaBeans.

For example, imagine a JavaBean of class Person that has

properties such as: firstName, lastName, address, and title.

These would be represented in the Java class respectively with

the accessor methods: getFirstName(), getLastName(),

getAddress() and getTitle().

If an instance of this class were to be created as a scoped

variable named person, we could use the EL's property

operator to reference the property values. This operator has

two forms; the simplest and most commonly-used form is the

dot (period) character. For example, to reference the bean's title

property:

${person.title}

Similarly, we could reference the firstName property with:

${person.firstName}.

This operator can be chained. Imagine that the address property
is itself a JavaBean whose class defines a number of properties,
one of which is city. We could access the person's city value with:

${person.address.city}

The more general form of the property operator consists of

square bracket characters([]) which contain an expression

whose string evaluation is taken as the property to be

referenced. Consider:

${person['title']}

This expression is identical to ${person.title}. Since it's
more complex, and slightly more difficult to read, you might
wonder “Why bother?”

In addition to scalar values and beans, the EL can easily
reference the elements of certain Java collection constructs.
The EL allows us to access the elements of Java arrays, and of
collections that implement the java.util.List interface, or
the java.util.Map interface.

Elements within Java arrays and List implementors can be
accessed via the indexing operator which just happens to also be
the square bracket characters. (Whether the square brackets are
interpreted as the property operator or the indexing operator
depends upon what type of data it is operating upon.)

The expression within the square brackets must evaluate to an
integer numeric value that is used as the zero-based index into
the collection. So, assuming that scoped variable list is an
array or List, you could use any of:

${list[0]}
${list[3+4]}
${list[a]}
${list[a+b]}

to access elements of the collection as long as the expression
within the brackets evaluates to an integer value that is within the
range of the collection. (How the EL deals with out-of-bounds
values depends upon how it is being used in an expression,
but generally, the reference will either be nulled or zeroed. An
exception is usually not thrown unless the index expression is not
numeric.)

Dealing with Collections

Hot
Tip

Scoped variables that represent classes which do
not conform to the JavaBean rules are generally
much less useful as EL targets. By design, the EL

has no means to call general methods of Java classes, or to
access data that is not available as JavaBean properties.

This is one of the reasons that non-bean classes like database
result sets are ill-suited for use in JSPs. (There are a bazillion
other good reasons that database classes should not be propa-
gated out of the persistence layer, but that's another subject!)

One of the major duties assigned to page controllers is
ensuring that the data being sent to a JSP conforms to proper
JavaBean standards so that the data can be easily consumed
by the EL.

In other words, keep the controllers smart, and the JSP pages
stupid.

Grabbing JavaBean Properties

Referencing Simple Values, continued

When a scoped variable is referenced, it is searched for in the
order shown in the previous table: first in page scope, then in
request scope, then in session scope, and finally in application
scope.

Hot
Tip

Regardless of what type of values are referenced,
the final evaluated result is always converted to
its string equivalent before being emitted.

So if the result is a Java object whose class has no explicit
toString() method defined, you might end with goop like
the following in the output:

org.bibeault.dzone.MyBean@af100d

This can be rectified by making sure that the class (in this
case, MyBean) has an appropriate toString() method
defined.

Grabbing JavaBean Properties, continued

Imagine that the name of the property to be accessed is itself
in a scoped variable, let's say named someProperty. You could
access the property using:

${person[someProperty]}

We'll see some other cases where the more general notation
must be used.

http://www.dzone.com
http://www.refcardz.com

Essential JSP Expression Language

4

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

In the previous sections, we briefly saw a few operators being

used within EL expressions: the addition (+) operator, and even a

glimpse of the ternary (?) operator.

In actuality, there are quite a number of operators that can

be used within EL expressions. We'll start by looking at the

arithmetic operators.

operator meaning

+ addition

- subtraction, unary minus

* multiplication

/ or div division

% or mod modulus (remainder)

Examples:
<p>3 + 4 = ${3 + 4}</p>

<div>2 cubed is ${2 * 2 * 2}

The remainder of ${a} over ${b} is ${a mod b}

The relational operators are:

operator meaning

eq or == equals

ne or != not equals

lt or < less than

le or <= less than or equals

gt or > greater than

ge or >= greater than or equals

Examples:

<c:if test="${a == b}">${a} is equal to ${b}</c:if>
<p>True or false? ${a} is less than ${b} is ${a <
b}</p>

The logical operators are:

operator meaning

and or && and

or or || or

not or ! not

Arithmetic, Relational, Logical and
Other Operators

Arithmetic, Relational, Logical and Other Operators,
continued

Examples:
<c:if test="${a==b and c==d}">It’s true!</c:if>

<c:if test=”${not a}>It’s not true!</c:if>

A special operator lets us test if a scoped variable exists or if a

collection has no elements, the empty operator:

operator meaning

empty A unary operator that evaluates to true if:

n the operand is null, or
n the operand is an empty string, or
n the operand is an empty array, Map or List

Otherwise, evaluates to false.

Examples:
<c:if test=”${empty a}”>The scoped variable a is

empty!</c:if>

<c:if test=”${empty myCollection}”>The collection

is empty!</c:if>

<c:if test=”${not empty myCollection}”>The

collection is not empty!</c:if>

<c:if test=”${empty myString}”>The string is

empty!</c:if>

<c:if test=”${empty myBean.someProperty}”>The

property is empty!</c:if>

Another special operator is the ternary operator, also know as

the conditional operator:

operator meaning

? An operator that evaluates to one of two conditional expressions.
The format is:

conditional ? expression1 : expression2

If the conditional expression evaluates to true, then the value of the
operation is expression1, else expression2.

Examples:
<p>The switch is ${switchState ? 'on' : 'off'}.</p>

<p>The value is ${(value % 2 == 1) ? 'odd' :

'even'}.</p>

<label>The value:</label> ${(empty value) ? 'N/A'

: value}

<p>There are ${thing.count} thing${(thing.count==1)

? '':'s'} available.</p>

The precedence of all these operators is as follows:

n	 [] .
n	 ()
n	 - (unary) not ! empty
n	 * / div % mod
n	 + - (binary)
n	 < lt > gt <= le => ge
n	 == eq != ne
n	 && and
n	 || or
n	 ? :

Parentheses can be used to affect evaluation precedence in the

customary manner.

Dealing with Collections, continued

When the scoped variable is an instance of a class that
implements java.util.Map, the same property operator that is
used with JavaBeans is employed to access the map entries. But
rather than the enclosed expression evaluating to the name of
the property to be fetched, the expression value is taken as the
key of the Map entry to be referenced.

So if scoped variable myMap is a Map instance that contains an
entry with the key fred, the EL expressions:

${myMap.fred}

${myMap['fred']}

could be used to reference the value of the Map entry.

In essence, (at least as far as the EL is concerned) you can think
of a Map as a bean with dynamic properties.

http://www.dzone.com
http://www.refcardz.com

Essential JSP Expression Language

5

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

In order to allow the EL to interact with the environment of a JSP
page above and beyond scoped variables that are defined by
the web developer, a number of useful implicit scoped variables
are pre-defined that can be used in any EL expression on a JSP
page.

These implicit variables are:

implicit variable description

pageContext The PageContext instance for the JSP page. This bean
provides important properties that allow the EL to access
many critical environment values (such as the request
instance and so on).

pageScope A Map of all scoped variables in page scope.

requestScope A Map of all scoped variables in request scope.

sessionScope A Map of all scoped variables in session scope.

applicationScope A Map of all scoped variables in application scope.

param A Map of all request parameters on the current request.
Only the first of any values for a request parameter is
mapped as a String.

paramValues A Map of all request parameters on the current request.
All the values for a request parameter are mapped as a
String array.

header A Map of all request headers for the current request. Only
the first of any values for a request header is mapped as
a String.

headerValues A Map of all request headers for the current request. All
the values for a request header are mapped as a String
array.

cookie A Map of each available cookie mapped to a Cookie
instance.

initParam A Map of all context parameter values defined in the
deployment descriptor. (Not to be confused with servlet
init parameters!)

Examples:

The submitted parameter xyz is ${param.xyz}

The value of the xyz cookie is ${cookie.xyz}

The xyz context parameter: ${initParam.xyz}

The context path is ${pageContext.request.contextPath}

The request URI is ${pageContext.request.requestUri}

Hot
Tip

The JSP Standard Tag Library (JSTL) defines
a handful of useful EL functions using the
namespace fn. These functions are primarily
focused on text processing and give access to

many of the most useful methods defined on the java.lang.
String class.

Additionally, it provides the length() function which returns
the length of a String instance, or the size of a collection. For
example, if list is a scoped variable that contains a collection:

${fn:length(list)}

will evaluate to the number of elements in the collection.

The JSP implicit Variables

Hot
Tip

We saw earlier that when you reference a scoped
variable by name, let's say fred, all scopes, be-
ginning with page scope, are searched for fred.

If you want to limit the search to a single scope, you can use
one of the implicit scoped Map variables to short-circuit that
search. For example:

${sessionScope.fred}

will only find scoped variables named fred in session scope
because the implicit scoped variable sessionScope only
contains entries for session-scoped variables.

Note that if a scoped variable named fred exists in a higher-
precedence scope (such as page or request scope) this is the
only way that you can access fred in session scope.

Using EL Functions

Although accessing general methods of scoped variables is not
possible with the EL, the EL does make provisions for defining
functions that can be invoked as part of an EL expression.

These functions have some severe limitations, the most stringent
being that the implementation of the function must be a static
method of a Java class.

EL functions are defined within a TLD (Tag Library Definition) file,
alongside custom tags, using XML syntax that defines the class
and method that implements the function, as well as the function
signature.

A typical TLD entry might be:

<function>
	 <name>toJSON</name>
	 <function-class> org.bibeault.dzone.refcardz.	
		 CoreELFunctions </function-class>
 	 <function-signature> java.lang.String toJSON(
		 java.lang.Object) </function-signature>
</function>

This entry defines an EL function named toJSON which accepts
any Java object as an argument, and returns a String value. The
function is implemented by a static Java method named toJSON
(it doesn't have to match, but it's conventional) in a class named
CoreELFunctions. The Java signature of this method is:

public static String toJSON(Object value)

Note
Because this is a static function, it has no implicit
access to the environment of the JSP. If your
function needs such access, it's customary to
pass the pageContext implicit variable (see

next section) as the first parameter to the method.

The EL functions are accessed using the same notation used
in most other languages: name the function and provide any
parameters in parentheses. But because functions are defined in
a TLD, the namespace of the TLD must be specified.

For example, if a function named fred was defined in a TLD
mapped to namespace xyz, it might be called as follows:

${xyz:fred(a,b,c)}

http://www.dzone.com
http://www.refcardz.com

6
Essential JSP Expression Language

 tech facts at your fingertips

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-41-7
ISBN-10: 1-934238-41-4

9 781934 238417

5 0 7 9 5

ABOUT THE AUTHOR

Head First Servlets & JSP will show

you how to write servlets and JSPs,

what makes the Container tick,

how to use the new JSP Expression

Language (EL), and much more.

RECOMMENDED BOOK

Bear Bibeault
Bear Bibeault has been writing software for over three

decades, starting with a Tic-Tac-Toe program written on a

Control Data Cyber supercomputer via a 100-baud teletype.

He is a Software Architect for a company that builds applica-

tions used by the IT administrators that high-performance

data centers keep shackled to their servers. He also serves as a “sheriff” at the

popular JavaRanch.com.

Books published
n	 jQuery in Action
n	 Ajax in Practice
n	 Prototype and Scriptaculous in Action

BUY NOW
books.dzone.com/books/hfservlets-jsp

Get More FREE Refcardz. Visit refcardz.com now!
Upcoming Refcardz:
Core CSS: Part III

Using XML in Java

Core Mule 2

Getting Started with Equinox
OSGi

SOA Patterns

EMF

Available:
Getting Started with Hibernate
Search

Core Seam

Essential Ruby

Essential MySQL

JUnit and EasyMock

Spring Annotations

Getting Started with MyEclipse

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

Hopefully this refcard has provided a good kick-start in
wrapping your mind around the JSP Expression Language and
serves as a useful quick reference.

For more details, particularly the manner in which error
conditions are handled, please refer to:

JavaServer Pages Specification Version 2.0 (Section JSP.2.2)

Expression Language Specification Version 2.1

The former is actually an easier read if you are only interested
in using the EL on JSP pages rather than on JavaServer Faces
(JSF) pages.

Wrap-up
Hot
Tip

One final note: the ability for the JSP Expression
Language to easily access java.util.Map entries
is a much more important and extensible ability
than might be apparent at first. Essentially, this

allows you to treat maps as beans with dynamic properties.
Also, classes that implement the Map interface can create
some incredibly flexible functionality.

For two examples of using The EL and maps in a pliable man-
ner, please see the following articles published in issues of
the JavaRanch Journal:

The Power of the Map and The Constant Constants
Consternation

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/hfservlets-jsp
http://www.javaranch.com
http://books.dzone.com/books/jquery-in-action
http://books.dzone.com/books/ajax-in-practice
http://books.dzone.com/books/protoscript-in-action
http://books.dzone.com/books/hfservlets-jsp
http://books.dzone.com/books/hfservlets-jsp
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/myeclipse
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/javaserver-faces
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://jcp.org/aboutJava/communityprocess/final/jsr152/
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://www.javaranch.com/journal/200508/Journal200508.jsp
http://www.javaranch.com/journal/200601/Journal200601.jsp
http://www.javaranch.com/journal/200601/Journal200601.jsp

