

DZone, Inc. | www.dzone.com

#20

CONTENTS INCLUDE:

n	 Configuring the Web Application
n	 Actions
 n	 Configuring Actions
n	 Result Types
n	 Interceptors
n	 Hot Tips and more...

Struts2 is the next generation of model-view-controller web
application frameworks. It aims at providing increased productivity
through reduced XML configuration, smart conventions, and a
modular and loosely-coupled architecture. This refcard refers to
Struts2 version 2.0.x.

To configure Struts2, a filter needs to be configured in the
applications web.xml file:

	 <web-app>

 		 <filter>
 		 <filter-name>struts2</filter-name>
 		 <filter-class>
 	org.apache.struts2.dispatcher.FilterDispatcher 	
	 	 	 </filter-class>
 		 </filter>

 		 <filter-mapping>
 		 <filter-name>struts2</filter-name>
 		 <url-pattern>/*</url-pattern>
 		 </filter-mapping>

	 </web-app>

Actions are the basic building blocks of Struts:

	 public class UserAction {

 		 private int age;
 		 private UserService service;

 		 public int getAge() { return age; }
 		 public void setAge(int age) { this.age = age; }

 		 public void setUserService(UserService service) {
 		 this.service = service;
 		 }

 		 public String execute() throws Exception {
 		 service.updateAge(age);
 		 return "success";
 		 }
	 }

Features of a Struts2 action are:
	 n	 An action doesn’t need to extend classes or implement 	
		 interfaces (it’s a POJO)
	 n	 Use getters and setter to access data in your view and 	
		 transfer data to and from the action
	 n	 Data conversion is done for you by Struts2 (all basic type 	
		 conversion is available, and you can define your own more 	
		 complex conversions)

The struts.xml file (accessed via the classpath) provides
configuration for Struts2.

<struts>

<constant name="struts.devMode" value="true" />

<package name="test" extends="struts-default"
namespace="/tests" >

	 <default-interceptor-ref name="basicStack" />

	 <global-results>
	 		<result name="error" type="dispatcher">	
	 		/error.jsp</result>
	 </global-results>

	 <global-exception-mappings>
	 	 <exception-mapping
	 	 exception="java.lang.Exception" result="error" />
 </global-exception-mappings>

Actions, continued
	 n	 Pluggable dependency injection is used for services 	
		 (injecting a Spring Framework-managed bean is as simple 	
		 as placing a setter on the action with a name that matches 	
		 the bean’s id in the Spring configuration)
	 n	 The method providing the logic is called execute by 	
		 convention—but it could be called anything—as long 	
		 as it returns a String and has no parameters (it can also 	
		 throw Exception)

ABOUT STRUTS2

CONFIGURING THE WEB APPLICATION

ACTIONS

CONFIGURING ACTIONS

S
tr

u
ts

2

 w

w
w

.d
zo

n
e.

co
m

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

n 	Authoritative content
n 	Designed for developers
n 	Written by top experts
n 	Latest tools & technologies
n	 Hot tips & examples
n 	Bonus content online
n 	New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Struts2
By Ian Roughley

→

Even though an action isn’t required to extend
another class, it sometimes makes sense. The
class ActionSupport is one such class, providing
default implementations for validation support,

internationalization, etc. so you don’t have to.

Hot
Tip

http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

Struts2
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

 Configuring Actions, continued

 <default-action-ref name="testMe" />

	 <action name="updateTest"
	 method="update"class="com.fdar.s2.MyAction" >
	 	 <result name="success" type="dispatcher">/WEB-INF	
	 	 /jsp/found.jsp</result>
	 	 <interceptor-ref name="altStack" />
 	 <exception-mapping 	
	 	 exception="java.lang.Exception" 	 	 	
	 	 result="exception" />
	 	 <param name="version">2.0.9</param>
 </action>

</package>

<include file="struts-module1.xml" />

</struts>

Action Annotations
The annotations currently available to actions are listed in Table 2.

When using action-based annotation, there is additional
configuration required in web.xml:

<filter>
 <filter-name>struts2</filter-name>
 <filter-class>	
	 org.apache.struts2.dispatcher.	
	 FilterDispatcher</filter-class>
 <init-param>
 <param-name>actionPackages</param-name>
 <param-value>com.fdar.apress.s2.actions</param-value>
 </init-param>
</filter>

Validation Annotations

Each of the validations in Table 3 are method level validations,
and can be applied to setters or the execute method. As well
as their individual attributes, every annotation has the following
common attributes:

	 n	 message: the message to display to the user
	 n	 key (not required): an i18n key from a language specific 	
		 resource
	 n	 shortCircuit (not required): whether to abort other 		
		 validations if this one fails

Additionally, validators may have the following (annotated in
Table 3 as applicable):

	 a.	 fieldName (not required): specifies the field being 	
			 acted upon

(*) Some attributes have been omitted because they have
limited usage, see http://struts.apache.org/2.x/docs/
configuration-elements.html for the complete list of configuration
attributes available.

For a complete list of configuration properties that can be
modified, take a look at http://struts.apache.org/2.x/docs/
strutsproperties.html.

Table 1. struts.xml Configuration Elements

Table 2. Action Annotations

Tag Name Description

constant Changes the value of a configuration property.
n name—the name of the property for the value to change
n value—the new value to assign

package(*) Provides a way to hierarchically split an application into smaller
units using the URL path namespace.
n name—a unique name (across all packages)
n extends—the package to extend (this package)
n namespace—the unique URL path namespace to access the
 actions in this package

default-
interceptor-ref

The interceptors to apply to all actions in the package by default
n name—the interceptor or interceptor stack to use

global-results Contains a list of result tags (see result tag definition below in
this table), that can be referred to by any action in the package
(or extending packages)

global-
exception-
mappings

Contains a list of exception-mapping tags (see exception-
mapping definition below in this table) to apply to all actions
in the package by default.

exception-
mapping (*)

Maps an exception to the result that should be rendered when
the exception is thrown (requires the exception interceptor).
n exception—the package and class of the exception
n result—the result to forward the user to when the exception is
 encountered

default-action-
ref

The action to invoke when the URL doesn't match any configured.
n name—the action name

action Describes an action that can be invoked
n name—the name of the action (".action" is added as an
 extension when used in the URL)
n method (not required)—the method of the class to invoke
 (defaults to "execute")
n class—the class that provides the action logic

result Provides the view options for the result being returned from the
action classes logic method (more than one result is allowed).
n name (not required)—the String value returned from the action
 logic to match (defaults to "success")
n type (not required)—the result type to use to render the result
 (defaults to "dispatcher")
 The value within the tags provides the template name to render

interceptor-ref The interceptors to apply to this action (can use more than one)
n name—the name of the interceptor or interceptor stack

param Allows parameters to be assigned to the action from
configuration files.
n name—the name of the parameter being assigned
 The value within the tags provides the value to assign—may contain
 OGNL (denoted as ${OGNLExpression})

include Includes another configuration file, allowing a large application
to have multiple configuration files.
n file—the name of the file to include

Many of the configuration options are now
available as annotations, but not all of them.
So it’s important to know how to use the struts.
xml configuration file.

Hot
Tip

To activate annotation-based validation for an
action, the class must first be annotated with
@Validation. This allows Struts2 to further
interrogate only those classes that are known

to have validation annotations.

Note

Annotation Name Description

@Namespace The value is the name of the namespace to use for the action

@ParentPackage The value is the name of the package that the action will inherit from

@Results Used when more than one @Result annotation is configured for
the action.
@Results({
 @Result(…),
 @Result(…)
})

@Result Defines the results for an action.
n name—the result from the action to match (defaults to “success”)
n type—the result type class to use (i.e. JSP rendering result type)
n value—the value for the result type (i.e. the JSP to render)
n params (not required)—additional parameters to pass to the
 result type
@Result(
 name="success"
 type= ServletActionRedirectResult.class,
 value="selectLocation",
 params={"method","input"})

→

http://www.dzone.com
http://www.refcardz.com
http://struts.apache.org/2.x/docs/configuration-elements.html
http://struts.apache.org/2.x/docs/configuration-elements.html
http://struts.apache.org/2.x/docs/strutsproperties.html
http://struts.apache.org/2.x/docs/strutsproperties.html

3

DZone, Inc. | www.dzone.com

Struts2
 tech facts at your fingertips

Validation Annotations, continued
	 b. 	type: Validator.FIELD or Validator.SIMPLE (defaults 	
			 to ValidatorType.FIELD)

	 @Validations(
 		 requiredFields = {
 		 @RequiredFieldValidator(
 		 fieldname="userName",
	 	 	 	 message="Username is required")},
 		 emails = {
 		 @EmailValidator(fieldName="emailAddress",
 		 message="Email address is required")}
)

Conversion Annotations
Similar to validation annotations, when using conversion
annotations you must add the class-level @Conversion
annotation to the class.

Once this is complete, conversion annotations from Table
4 can be used. These annotations can be applied at the
method or property level.

Updated documentation on the validators can be found at:
http://struts.apache.org/2.x/docs/annotations.html.

The @Validations validator allows you to specify multiple validators
on the execute() method. It has the following parameters:

Table 3. Validation Annotations

Table 4. Conversion Annotations

Annotation Name Description

@ConversationErrorFieldValidator
(a)(b)

Validates that there are no conversion errors
for a field.

@DateRangeFieldValidator (a)(b) Validates that a date falls between a range.
n min (not required)—the minimum valid date
n max (not required)—the maximum valid date

@DoubleRangeFieldValidator(
 message = "Please enter a date this year",
 key = "validate.thisYear",
 min = "2008/01/01",
 max = "2008/12/31")

@DoubleRangeFieldValidator
(a)(b)

Validates that a double falls between a range.
n minInclusive (not required)—the inclusive
 minimum valid date
n maxInclusive (not required)—the inclusive
 maximum valid date
n minExclusive (not required)—the exclusive
 minimum valid date
n maxExclusive (not required)—the exclusive
 maximum valid date

@DateRangeFieldValidator(
 message = "Please enter a date this year",
 key = "validate.thisYear",
 minInclusive = "2008/01/01",
 maxInclusive = "2008/12/31")

@EmailValidator (a)(b) Validates that the email has a valid format.

@ExpressionValidator Validates that an expression evaluates to true.
n expression—the OGNL expression to evaluate
@ExpressionValidator(
 message = "Please confirm password",
 key = "confirm.password",
 shortCircuit = true,
 expression =
 "password.equals(confirmPassword)")

@FieldExpressionValidator (a) Validates that a field expression evaluates to true.
n expression—the OGNL expression to evaluate

IntRangeFieldValidator (a)(b) Validates that an int falls between a range.
n min (not required)—the minimum valid date
n max (not required)—the maximum valid date

@RequiredFieldValidator (a)(b) Validates that the field is not null.

@RegexFieldValidator (a)(b) Validates that a string field matches a regular
expression.
n expression—the regular expression to evaluate

@RequiredStringValidator (a)(b) Validates that the field is not empty (i.e. not
null and length > 0)

@StringLengthFieldValidator (a)(b) Validates that a String is of a certain length.
n trim (not required)—removes white space padding
n minLength (not required)—the minimum length
 the String must be
n maxLength (not required)—the maximum length
 the String must be

@UrlValidator (a)(b) Validates that the field has a valid URL format

@VisitorFieldValidator (a) Steps into action properties to continue validation.
This keeps validation for models separate and
re-useable across multiple actions.
n context (not required)—the validation context.
 Multiple contexts allow for different validation
 rules in different circumstances (defaults to
 action context)
n appendPrefix (not required)—whether the property
 name (of the action) should be pre-pended
 to the field name. i.e. “user.name” vs. “name”
 (defaults to true).
@VisitorFieldValidator(
 message = "Error validating User",
 key = "user.error",
 shortCircuit = true,
 context = "model",
 appendPrefix = true)

@CustomValidator (a)(b) Used to specify a custom validator. In addition,
an array of @ValidationParameter annotations
can be used to pass parameter to the custom
validator. Custom validators extend the Valida-
torSupport or FieldValidatorSupport class.
@CustomValidator(
 type ="myUserValidator",
 fieldName = "user",
 parameters = {
 @ValidationParameter(
 name = "source",
 value = "admin") }
)

Parameter Description

requiredFields a list of RequiredFieldValidators

customValidators a list of CustomValidators

conversionErrorFields a list of ConversionErrorFieldValidators

dateRangeFields a list of DateRangeFieldValidators

emails a list of EmailValidators

fieldExpressions a list of FieldExpressionValidators

intRangeFields a list of IntRangeFieldValidators

requiredStrings a list of RequiredStringValidators

stringLengthFields a list of StringLengthFieldValidators

urls a list of UrlValidators

visitorFields a list of VisitorFieldValidators

regexFields a list of RegexFieldValidator

expressions a list of ExpressionValidator

Annotation Name Description

@TypeConversion Provides custom conversion for a property or method.
Custom converters extend the StrutsTypeConverter class.
n key (not required)—the property or key name (defaults to
 property name)
n type (not required)—determines the scope of the conversion:
 ConversionType.APPLICATION or ConversionType.CLASS
 (defaults to ConversionType.CLASS)
n rule (not required)—the conversion rule:
 ConversionRule.PROPERTY, ConversionRule.MAP,
 ConversionRule.KEY, ConversionRule.KEY_PROPERTY,
 ConversionRule.ELEMENT, ConversionRule.CREATE_IF_NULL
 (defaults to ConversionRule.PROPERTY)
n converter (converter or value required)—the class name of
 the converter
n value (converter or value required)—the value to set when using
 ConversionRule.KEY_PROPERTY

@TypeConversion(
 type = ConversionType.APPLICATION,
 property = "java.util.Date",
 converter =
 "com.opensymphony.xwork2.util.XWorkBasic-Converter")

There are more conversion annotations avail-
able, although with generics they are mostly
unused. If you’re interested, the full list can
be found at http://struts.apache.org/2.x/
docs/annotations.html.

Hot
Tip

http://www.dzone.com
http://www.refcardz.com
http://struts.apache.org/2.x/docs/annotations.html
http://struts.apache.org/2.x/docs/annotations.html
http://struts.apache.org/2.x/docs/annotations.html

4

DZone, Inc. | www.dzone.com

Struts2
 tech facts at your fingertips

Result Types, continued

→

As well as JSP templates, a Struts2 action can render a variety of
other options. Each of those available are listed in Table 5.

(*) Some have additional less commonly used parameters.
These parameters can be found at http://struts.apache.
org/2.x/docs/result-types.html.

The online documentation for Result Types can be found at
http://struts.apache.org/2.x/docs/result-types.html.

RESULT TYPES

Table 5. Available Result Types, continued

Table 5. Available Result Types Table 6. Available Interceptors

It’s not just information from the configuration
file that can be used in the result configuration.
Expressions and values from the Value Stack
can be accessed by placing the expression with

the "${" and "}" characters. (i.e. <result>/user/${user.
name}</result>).

Hot
Tip

Result Type Name Description

Chain Result (*)
ActionChainResult.class

Chains one action to another action.
n actionName (default)—the action to invoke next
n namespace (not required)—the namespace of the action
 being chained to (defaults to current namespace)
n method (not required)—the method on the action to
 execute (defaults to execute)
<result type="chain">
 <param name="actionName">listAction</param>
 <param name="namespace">/user</param>
</result>

Dispatcher Result
ServletDispatcherResult.
class

Renders a JSP template.
n location (default)—the template to render
n parse (not required)—whether to parse OGNL
 expressions (true by default)
<result name="success"
 type="dispatcher">user.jsp</result>

or (using the defaults)
<result>user.jsp</result>

Freemarker Result (*)
FreemarkerResult.class

Renders a Freemarker template.
n location (default)—the template to render
n parse (not required)—whether to parse OGNL
 expressions (true by default)
<result name="success"
 type="freemarker">user.ftl</result>

HttpHeader Result
HttpHeaderResult.class

Returns HTTP headers back to the client.
n status—the HTTP response status code to return
n parse (not required)—whether to parse OGNL
 expressions (true by default)
n headers (not required)—header values to return
n error (not required)—the error code to return
n errorMessage (not required)—error message to return
 (if error is set)
<result name="notAuthorized" type="httpheader">
 <param name="status">401</param>
 <param name="headers.user">${username}</param>
 <param name="headers.resource">/deleteUser</param>
</result>

Redirect Result
ServletRedirectResult.
class

Performs a URL redirect rather than rendering a
template.
n location (default)—the URL to redirect to
n parse (not required)—whether to parse OGNL
 expressions (true by default)
<result name="success" type="redirect">
 <param name="location">viewUser.jsp</param>
 <param name="parse">false</param>
</result>

Redirect Action Result
ServletActionRedirectRe-
sult.class

Performs a URL redirect to another Struts2 action.
n actionName (default)—the action to redirect to
n namespace (not required)—the namespace of the action
 being redirected to (default to current namespace)
<result type="redirectAction">
 <param name="actionName">dashboard</param>
 <param name="namespace">/secure</param>
</result>

Velocity Result
VelocityResult.class

Renders a Velocity template.
n location (default)—the template to render
n parse (not required)—whether to parse OGNL
 expressions (true by default)
<result name="success" type="velocity">
 <param name="location">user.vm</param>
</result>

Stream Result (*)
StreamResult.class

Streams raw data back to the client.
n contentType (not required)—the mime-type of the
 response (defaults to text/plain)
n contentLength (not required)—the stream length in bytes
n inputName (not required)—the name of the InputStream
 to return to the client (defaults to inputStream)
n bufferSize (not required)—the buffer size when copying
 from input to output (default 1024)
<result name="success" type="stream">
 <param name="contentType">image/jpeg</param>
 <param name="inputName">imageStream</param>
</result>

Result Type Name Description

XSL Result
XSLTResult.class

Renders XML by serializing attributes of the action, which
may be parsed through an XSL template.
n location (default)—the template to render
n parse (not required)—whether to parse OGNL expressions
 (true by default)
n matchingPattern (not required)—a pattern to match the
 desired elements
n excludingPattern (not required)—a pattern to eliminate
 unwanted elements
<result name="success" type="xslt">
 <param name="location">user.xslt</param>
 <param name="matchingPattern">^/result/[^/*]$<param>
</result>

Interceptors play a large role in providing core framework features
in Struts2. Table 6 provides a list of all the interceptors available
in Struts2.

(a) denotes those interceptors implementing
MethodFilterInterceptor. These interceptors have the following
additional parameters:
	 n	 excludeMethods: method names to be excluded from 	
		 interceptor processing
	 n	 includeMethods: method names to be included in		
		 interceptor processing

INTERCEPTORS

Name/
Configuration Value

Description/Attributes

Alias Interceptor
alias

Allows parameters in the request to be set on the action
under a different name.
n aliasesKey (not required)—the name of the action parameter
 that contains the name-to-alias map (defaults to aliases).
<action name="test" class="com.examples.TestAction">
 <param name="aliases">#{ 'action' : 'alias' }</param>
</action>

Chaining Interceptor
chain

Works with the chain result to copy data from one action
to another.
n excludes (not required)—the list of parameter names to
 exclude from copying (all others will be included).
n includes (not required)—the list of parameter names to
 include when copying (all others will be excluded).

Checkbox Interceptor
checkbox

Looks for a hidden identification field that specifies the
original value of the checkbox. Sets the value of checkbox
elements that aren’t submitted.
n setUncheckedValue (not required)—the value to set as the
 unchecked value (defaults to false)

Cookie Interceptor
cookie

Sets values in the Value Stack based on the cookie name
and value—name and value must match for value to be set.
n cookiesName—comma separated list of cookie names to be
 injected into the Value Stack (all cookies can be specified with
 an asterisk).
n cookiesValue—comma separated list of cookie values to
 match (all cookies names can be specified by using an
 asterisk for the value)

http://www.dzone.com
http://www.refcardz.com
http://struts.apache.org/2.x/docs/result-types.html
http://struts.apache.org/2.x/docs/result-types.html
http://struts.apache.org/2.x/docs/result-types.html

5

DZone, Inc. | www.dzone.com

Struts2
 tech facts at your fingertips

Interceptors, continued

Table 6. Available Interceptors, continued

Table 6. Available Interceptors, continued

Name/
Configuration Value

Description/Attributes

Conversation Error
Interceptor
conversionError

Sets the conversion errors from the ActionContext into the
Action’s field errors.

Create Session
Interceptor
createSession

Creates a HttpSession.

Execute and Wait
Interceptor
execAndWait

Starts a long-running action in the background on a separate
thread, while preventing the HTTP request from timing out.
While still in progress, a “wait” result is returned and rendered
for the user (i.e. for an updating progress meter).
n threadPriority (not required)—the priority to assign the
 processing thread (default Thread.NORM_PRIORITY)
n delay (not required)—an initial delay before the wait page
 is displayed
n delaySleepInterval (not required)—how long to wait
 between wait page refreshing (only used with delay, default
 is 100 milliseconds)

Exception Interceptor
exception

Allows exception to be handled declaratively
(via configuration).
n logEnabled (not required)—whether to log exceptions
n logLevel (not required)—the logging level to use
 (default is debug)
n logCategory (not required)—the logging category to use
 (default is com.opensymphony.xwork2.interceptor.Exception
 MappingInterceptor)

File
Upload Interceptor
fileUpload

Allows the multi-part uploading of files. Three setters are
required on the action for each property (the property being
the name of the HTML form element)—{property}: the actual
File, {property}ContentType: the files content type, and
{property}FileName: the name of the file uploaded
n maximumSize (not required)—the maximum size in bytes for
 the file (default to ~2MB)
n allowedTypes (not required)—a comma separated list of
 allowed content types, i.e. text/html (defaults to allow all types)

Internationalization
Interceptor
i18n

Allows the setting and switching of user locales.
n parameterName (not required)—the name of the HTTP
 request parameter that can switch the locale (default is
 request_locale)
n attributeName (not required)—the name of the
 session key to store the selected locale (default is
 WW_TRANS_I18N_LOCALE)

Logger Interceptor
logger

Logs the start and end of the action’s execution (logged at
the INFO level).

Message Store
Interceptor
store

Stores the action’s ValidationAware messages, errors and
field errors into HTTP Session so they can be
accessed after the current HTTP request.
n allowRequestParameterSwitch (not required)—enables
 the request parameter that can switch the operation
 mode of the interceptor
n requestParameterSwitch (not required)—the request
 parameter that will indicate what mode this interceptor is in.
n operationMode (not required) – the operation mode,
 'STORE': stores messages; 'RETRIEVE': retrieves stored
 messages, or 'NONE': do nothing (defaults to 'NONE')

Model Driven
Interceptor
modelDriven

Places the model (exposed via implementing the ModelDriven
interface on actions) from the action into the Value Stack
above the action.

Scoped Model Driven
Interceptor
scopedModelDriven

Retrieves the model (specified by the ScopedModelDriven
interface) before an action executes and stores the model
after execution.
n className (not required)—the model class name
 (defaults to the model class name)
n name (not required)—the key to store the model under
 (defaults to the model class name).
n scope (not required)—the scope to store the model under
 (defaults to 'request' but can also be 'session')

Parameters Intercep-
tor (a)
params

This interceptor sets all HTTP parameters onto the
Value Stack. Actions that want to programmatically
define acceptable parameters can implement
ParameterNameAware interface.
n ordered (not required)—set to true if you want the top-
 down property setter behavior

Prepare Interceptor (a)
prepare

Calls a method for pre-execute logic for classes implement-
ing the Preparable interface. The method called is either
prepare{methodName}, where {methodName} is usually
execute, or a generic prepare method.
n alwaysInvokePrepare (not required)—determines whether
 the prepare method will always be invoked (defaults to true)

Name/
Configuration Value

Description/Attributes

Scope Interceptor
scope

Sets action properties from the HTTP session before an
action is executed, and stores them back into the HTTP
session after execution.
n session (not required)—a comma delimited list of properties
 to be stored in HTTP session scope
n application (not required)—a comma delimited list of
 properties to be stored in HTTP application scope
n key (not required)—the key to store the properties under,
 can be CLASS (generates a unique key based on the class
 name), ACTION (generates a unique key based on the
 action name), any supplied value
n type (not required)—‘start’: all properties are set to the
 actions default values; ‘end’: all properties are removed
 once the action is run; anything else keeps default behavior
n sessionReset (not required)—when set to true all properties
 are reset

Servlet Configuration
Interceptor
servletConfig

Allows the action to access HTTP information via
interfaces. The interfaces that this interceptor supports
are: ServletContextAware, ServletRequestAware,
ServletResponseAware, ParameterAware, RequestAware,
SessionAware, ApplicationAware and PrincipalAware.

Static Parameters
Interceptor
staticParams

Populates the action with the static parameters defined
in the action configuration. If the action implements
Parameterizable, a map of the static parameters will also
be passed directly to the action.

Roles Interceptor
roles

The action is invoked only if the user has the necessary
role (supplied via the HttpServletRequest).
n allowedRoles—roles allowed to access the action
n disallowedRoles—roles not allowed to access the action

Timer Interceptor
timer

Logs the execution time of the request (in milliseconds).
n logLevel (not required)—the logging level to use
 (default is info)
n logCategory (not required)—the logging category to
 use (default is com.opensymphony.xwork2.interceptor
 TimerInterceptor)

Token Interceptor (a)
token

Ensures that only one request per token (supplied via the to-
ken tag) is processed—prevents double submitting of forms.

Token Session
Interceptor (a)
tokenSession

Builds off of the Token Interceptor, providing advanced
logic for handling invalid tokens (providing intelligent
fail-over in the event of multiple requests using the same
session).

Validation Interceptor (a)
validation

Runs the validations for the action.

Workflow Interceptor (a)
workflow

Redirects user to an alternative result when validation
errors are present (does not perform validation).
n inputResultName (not required)—the result to return
 when validation errors exist (defaults to input)

Parameter Filter
Interceptor
(not pre-configured)

Blocks parameters from entering the Value Stack and
being assigned to the action.
n allowed (not required)—a comma delimited list of parameter
 prefixes that are allowed
n blocked—a comma delimited list of parameter prefixes
 that are not allowed to pass
n defaultBlock—if true, all parameters are blocked and only
 those matching the allowed attribute will be allowed to
 pass (default to false)

Profiling Interceptor
profiling

Enables simple profiling (to the logger) when developer
mode is enabled.
n profilingKey—the key to use to activate profiling

The online documentation for interceptors can be found at
http://struts.apache.org/2.x/docs/interceptors.html.

Interceptors are configured in struts.xml within the package tag.
For single interceptors, the interceptor tag is used specifying a
unique (across individual interceptors and interceptor stacks) name
and the implementing class. To configure interceptor stacks, the
interceptor-stack tag is used; listing the interceptor’s using the
interceptor-ref tag.

	 <interceptors>
 		 <interceptor name="breadcrumb" 	
	 	 class="com.fdar.BreadCrumbInterceptor" />
 		 <interceptor-stack name="appStack">
 		 <interceptor-ref name="basicStack" />
 		 <interceptor-ref name="breadcrumb" />
 		 </interceptor-stack>
	 </interceptors>

http://www.dzone.com
http://www.refcardz.com
http://struts.apache.org/2.x/docs/interceptors.html

Struts2
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Practical Struts2 Web 2.0 Projects, Ian Roughley, APress, November 2007

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-17-2
ISBN-10: 1-934238-17-1

9 781934 238172

5 0 7 9 5

ABOUT THE AUTHOR RECOMMENDED BOOK

The latest v2 release of Apache Struts takes
developers’ capabilities to the next level,
having integrated Ajax support, the ability to
easily integration with the Spring framework,
and the ability to take full advantage of
POJOs. Practical Apache Struts 2 Web 2.0
Projects shows you how to capitalize upon

these new features to build next–generation web applications
that both enthrall and empower your users.

BUY NOW
books.dzone.com/books/struts2

Ian Roughley
Ian Roughley is a speaker, author, and consultant. For more than ten
years he has been helping clients ranging in size from Fortune 10
companies to start-ups. Focused on a pragmatic and results-based
approach, he is a proponent for open source, as well as process and
quality improvements through agile development techniques.

Publications
Author of Starting Struts2 and Practical Struts2 Web 2.0 Projects; Java editor for InfoQ.com

Web Site				 Email
http://www.fdar.com			 ian@fdar.com

Interceptors, continued

It’s important not only to have the correct
interceptors but ensure that they are executed in
the correct order. So make sure your interceptor
stacks are defined in the order you want the 	
interceptors executed!

Hot
Tip

The parameters for interceptors can be configured in two ways.
Parameters can be added using the param tag when configuring
the interceptor:

	 <interceptor-ref name="validation">
 	 <param name="excludeMethods">input,back,cancel,
	 	 browse</param>
	 </interceptor-ref>

The other option is within an actions’ configuration, by
specifying the param tag inside the interceptor-ref tag. In this
case, the interceptor name prepends the parameter being set
on the interceptor:

	 <action name="testMe"
	 class="com.fdar.apress.s2.MyAction">
 		 <interceptor-ref name="defaultStack">
 <param name="validation.excludeMethods">	
	 	 	 	prepare,findById</param>
 	</interceptor-ref>
	 </action>

In addition to the methods that need to be implemented in the
Interceptor interface, interceptors can provide lifecycle callbacks.
The callbacks methods are denoted by the annotations in Table 7.

Table 7. Interception Annotations

Annotation Name Description

@After Denotes methods on the interceptor to execute after the execute()
method is invoked.
n priority (not required)—the order to execute @After annotations

@Before Denotes methods on the interceptor to execute before the
execute() method is invoked.
n priority (not required)—the order to execute @Before annotations

@BeforeResult Denotes methods on the interceptor to execute before the result
is rendered.
n priority (not required)—the order to execute @BeforeResult annotations

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/struts2
http://books.dzone.com/books/struts2
http://books.dzone.com/books/struts2
http://books.dzone.com/books/struts2
http://books.dzone.com/starting-struts2
http://books.dzone.com/books/struts2
http://www.infoq.com
http://www.fdar.com
mailto:ian@fdar.com
http://www.refcardz.com
http://refcardz.dzone.com/refcardz/junit-and-easymock
http://refcardz.dzone.com/refcardz/spring-annotations
http://refcardz.dzone.com/refcardz/core-java
http://refcardz.dzone.com/refcardz/corecss2
http://refcardz.dzone.com/refcardz/php
http://refcardz.dzone.com/refcardz/getting-started-with-jpa
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/corecss-part1
http://refcardz.dzone.com/refcardz/struts2
http://refcardz.dzone.com/refcardz/coredotnet
http://refcardz.dzone.com/refcardz/very-first-steps-flex
http://refcardz.dzone.com/refcardz/csharp
http://refcardz.dzone.com/refcardz/groovy
http://refcardz.dzone.com/refcardz/netbeans
http://refcardz.dzone.com/refcardz/rss-and-atom
http://refcardz.dzone.com/refcardz/glassfish-application-server
http://refcardz.dzone.com/refcardz/silverlight2
http://refcardz.dzone.com/refcardz/intellij-idea
http://refcardz.dzone.com
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns
http://refcardz.dzone.com/refcardz/design-patterns

