
The JasperReports Ultimate Guide 1.2.5

The JasperReports Ultimate Guide
Version 1.2.5

Authors:
Teodor Danciu
Lucian Chirita

Copyright © 2002 - 2006 JasperSoft Corporation (http://www.jaspersoft.com/). All rights reserved.

Page 1

http://www.jaspersoft.com/

The JasperReports Ultimate Guide 1.2.5

Copyright © 2002 - 2006 JasperSoft Corporation (http://www.jaspersoft.com/). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without either the prior
written permission of the author, or authorization through payment of the appropriate per-copy fee to the
Regsoft, Inc., 9625 West 76th Street, Suite 150, Eden Prairie, MN 55344 USA.
Details about how to purchase a copy of this document can be found at the following address:
http://jasperreports.sourceforge.net/more.docs.html

Page 2

http://jasperreports.sourceforge.net/more.docs.html
http://www.jaspersoft.com/

The JasperReports Ultimate Guide 1.2.5

Tables of contents
1 Introduction..6
2 Getting started..7

2.1 Installing JasperReports...7
2.2 Requirements... 7
2.3 X11 / Headless Java...8
2.4 Build the source files and run the samples...9

3 Working with report templates.. 11
3.1 Creating report templates...11
3.2 Report design preview... 12
3.3 Loading and storing report template files.. 13
3.4 Compiling report templates..14
3.5 Expressions scripting language..14
3.6 Report compilers..15
3.7 Ant tasks for compiling reports..17

4 Filling report templates..19
4.1 Reporting data..19
4.2 Generated reports...20
4.3 Filling order (vertical / horizontal filling)..21
4.4 Asynchronous report filling... 22

5 Handling generated reports..23
5.1 Loading and saving generated reports... 23
5.2 Viewing reports..23
5.3 Printing reports...25
5.4 Exporting reports... 26

6 Large files support... 27
6.1 File virtualizer..27
6.2 Swap file virtualizer...28
6.3 In-memory GZIP virtualizer.. 28

7 API Overview.. 29
8 Report templates.. 34

8.1 JRXML.. 34
8.2 DTD reference... 34
8.3 JRXML encoding...35
8.4 Report template properties...36
8.5 Custom properties.. 40
8.6 Importing packages..40
8.7 Styles..41

9 Reporting data..44
9.1 Expressions.. 44

9.1.1 Syntax...44
9.1.2 Calculator... 46
9.1.3 Built-in functions... 46
9.1.4 Conditional expressions... 47

9.2 Parameters..47
9.2.1 Built-in report parameters.. 49

9.3 Data sources...52
9.3.1 JDBC data source...52
9.3.2 JavaBeans data sources.. 53
9.3.3 Map-based data sources... 54
9.3.4 TableModel data source... 54
9.3.5 XML data sources.. 55
9.3.6 CSV data sources... 56
9.3.7 Empty data sources.. 57
9.3.8 Rewindable data sources..57

Page 3

The JasperReports Ultimate Guide 1.2.5

9.3.9 Data source provider.. 58
9.4 Report query...58

9.4.1 SQL queries..58
9.4.2 Stored procedures...60
9.4.3 Query executer API..60
9.4.4 SQL query executer... 61
9.4.5 XPath query executer... 61
9.4.6 Hibernate query executer... 62
9.4.7 MDX query executer..63
9.4.8 EJB QL / JPA query executer.. 67

9.5 Fields..69
9.6 Variables.. 70

9.6.1 Calculations..72
9.6.2 Incrementers...73
9.6.3 Built-in report variables... 74

9.7 Data filters..75
10 Report sections...76

10.1 Main sections... 77
10.2 Data grouping...79

11 Report elements... 81
11.1 Text elements...87

11.1.1 Fonts and Unicode support.. 88
11.1.2 Static texts.. 93
11.1.3 Text fields.. 93
11.1.4 Styled text.. 96

11.2 Graphic elements... 97
11.2.1 Lines...98
11.2.2 Rectangles.. 99
11.2.3 Ellipses... 99
11.2.4 Images.. 100
11.2.5 Charts and graphics..104

11.3 Box elements..104
11.4 Hyperlinks and bookmarks.. 105
11.5 Element groups.. 107
11.6 Frames..108

12 Subreports..109
12.1 Subreport parameters... 111
12.2 Subreport data source...112
12.3 Returning values from subreports..112
12.4 Subreport runners...113

13 Datasets..115
13.1 Main dataset...115
13.2 Subdatasets...115
13.3 Dataset runs..116

14 Charts...117
14.1 Chart properties..117
14.2 Chart datasets...119
14.3 Chart plots..125
14.4 Chart types... 131

15 Crosstabs..135
15.1 Crosstab parameters...135
15.2 Crosstab dataset... 136
15.3 Data grouping (bucketing)... 137

15.3.1 Row groups.. 138
15.3.2 Column groups...139

15.4 Measures.. 141
15.5 Crosstab cells... 143

16 Scriptlets.. 145

Page 4

The JasperReports Ultimate Guide 1.2.5

17 Internationalization.. 146
18 Report exporters...147

18.1 Exporter input.. 148
18.2 Exporter output.. 148
18.3 Monitoring export progress..149
18.4 Grid exporters.. 149
18.5 Font mappings..151
18.6 Graphics2D exporter..151
18.7 Java Print Service exporter.. 152
18.8 PDF exporter..153
18.9 RTF exporter..155
18.10 XML exporter.. 156
18.11 HTML exporter..157
18.12 XLS exporters.. 161
18.13 CSV exporter... 163
18.14 Plain text exporter..163

19 Configuration files... 165
20 Advanced JasperReports..167

20.1 Implementing data sources.. 167
20.2 Customizing viewers..167
20.3 Using JasperReports in Web environment...168

21 Resources...171

Page 5

The JasperReports Ultimate Guide 1.2.5

1 Introduction
The JasperReports library is a very powerful and flexible report-generating tool that delivers rich content to
the screen, a printer, or a file in PDF, HTML, RTF, XLS, CSV or XML format.

The library is written entirely in Java and can be used in a variety of Java-enabled applications, including
J2EE or Web applications, to generate dynamic content. Its main purpose is to help to create page-oriented,
ready-to-print documents in a simple and flexible manner.

JasperReports, like most reporting applications, uses report templates structured in multiple sections, such
as title, summary, detail, and page and group header and footer. Each section has a free-form layout in
which you can place various types of elements, including images, static and dynamic text fields, lines, and
rectangles. The reporting engine uses this template to organize data in an XML file (JRXML) or to create it
programmatically using the library’s API. This data may come from various data sources, including
relational databases, collections, or arrays of Java objects or XML data. Users can plug the reporting library
into custom-made data sources by implementing a simple interface (see chapter 9.3 Data sources).

To fill a report with data, you must first compile the initial XML report template. Compilation validates the
report template and attaches some compiler-related data to it. This data is used to evaluate the report
expressions at runtime. The compiled report template can be serialized to store it on disk or send it over the
network. This serialized object is then used when the application fills the specified report template with
data. In fact, compiling a report template compiles all report expressions. Various verifications are made at
compilation time to check the report design consistency. The result is a ready-to-fill report template that is
then used to generate documents on different sets of data.

To fill a report template, the engine must receive the report data. This data may come in various forms.
Some of this data can be passed in as report parameters, but most of it comes from the report’s data source.
The reporting engine can directly receive special data source objects that provide the information for the
report, or it can use a supplied JDBC connection object if the data is in a relational database.

The result of the report-filling operation is a new object that represents the ready-to-print document. This
object can also be serialized for storage on disk or network transfer. It can be viewed directly using the
JasperReports built-in viewer or can be exported to other, more popular formats like PDF, HTML, RTF,
XLS, CSV or XML.

Page 6

The JasperReports Ultimate Guide 1.2.5

2 Getting started
This chapter is for those who have never used JasperReports. If you have already installed JasperReports
and used the samples, skip to 3 Working with report templates chapter.

2.1 Installing JasperReports
JasperReports is a content-rendering library, not a standalone application. It cannot run on its own and must
be embedded in another client- or server-side Java application. JasperReports is a pure Java library and can
be used on any platform that supports Java. Being a library, JasperReports is completely agnostic about the
environment where it is used for generating reports.

All JasperReports functionality is concentrated in a single JAR file (jasperreports-x.x.x.jar) that is
available for download at the following URL:
http://sourceforge.net/project/showfiles.php?group_id=36382&package_id=28579

Even though all its reporting functionality is available in this single JAR file, JasperReports relies on other
third-party libraries for related required functionality like XML parsing, logging, and PDF and XLS
generation.

Because JasperReports is a library and cannot run on its own, you do not really install it. “Installing”
JasperReports simply means downloading its JAR file and putting it into the classpath of your application
along with the other required JAR files.

2.2 Requirements
JasperReports handles only reporting. It relies on third-party libraries and APIs to perform needed
functionality like XML parsing, database connectivity, PDF or XLS output, and so on.
This section contains all the libraries that JasperReports may require, depending on the functionality
required by JasperReport’s parent application.

The two types of requirements for using JasperReports are:
• absolute requirements, needed regardless of the module of JasperReports that is actually used
• optional requirements, needed only for a specific JasperReports functionality. (If a certain functionality

of JasperReports is not used by the parent application, then the required libraries needed by that
module can be skipped at deployment time.)

Java Virtual Machine
JRE 1.3 or higher

Report compilation
Depending on the report compiler used, the following are considered requirements for report compilation:
• Eclipse JDT Java compiler (http://www.eclipse.org/jdt/index.html)
• JDK 1.3 or higher
• Jikes (http://jikes.sourceforge.net/)
• Groovy (http://groovy.codehaus.org/)
• BeanShell (http://www.beanshell.org/)

XML
JAXP 1.1 XML Parser

Page 7

http://sourceforge.net/project/showfiles.php?group_id=36382&package_id=28579

The JasperReports Ultimate Guide 1.2.5

Jakarta Commons Javaflow (Sandbox version)
http://jakarta.apache.org/commons/sandbox/javaflow/

Jakarta Commons Digester Component (version 1.7 or later)
http://jakarta.apache.org/commons/digester/

Jakarta Commons BeanUtils Component (version 1.4 or later)
http://jakarta.apache.org/commons/beanutils/

Jakarta Commons Collections Component (version 2.1 or later)
http://jakarta.apache.org/commons/collections/

Jakarta Commons Logging Component (version 1.0 or later)
http://jakarta.apache.org/commons/logging/

JDBC
JDBC 2.0 Driver

PDF
iText - Free Java-PDF library by Bruno Lowagie and Paulo Soares (version 1.01 or later)
http://www.lowagie.com/iText/

XLS
Jakarta POI (version 2.0 or later)
http://jakarta.apache.org/poi/

JExcelApi (version 2.6 or later)
http://jexcelapi.sourceforge.net/

Charts
JFreeChart (1.0.0 or later)
http://www.jfree.org/jfreechart/

2.3 X11 / Headless Java
JasperReports relies on AWT rendering when generating reports, so it might not work if you are using it in
a server environment running Unix/Linux without graphics support.
The application might raise errors such as: “Can't connect to X11 window server using ':0.0'”.

To solve this problem for JVM releases prior to 1.4, provide a "pseudo X-server" to emulate a display
environment. Some of these emulators are:

• X Virtual Frame Buffer (Xvfb)
• Pure Java AWT (PJA)
• Virtual Network Computing (VNC)

The preferred solution for JRE 1.4 or higher is to use the new headless AWT toolkit. This new feature
allows you to use the J2SE API in a server-side Java application without a GUI environment.
To specify the headless environment when using the Sun Microsystems reference implementation, run your
application with this property:

-Djava.awt.headless=true

Page 8

The JasperReports Ultimate Guide 1.2.5

2.4 Build the source files and run the samples
The best way to start working with JasperReports is to download the full project package from the
following Sourceforge.net location:
http://sourceforge.net/project/showfiles.php?group_id=36382&package_id=28579.
The jasperreports-x.x.x-project.zip file available at this location contains all the source files,
required libraries, and freely available documentation, as well as a complete set of sample applications and
reports.

Download the archive and extract its contents to the directory of your choice on your local machine. You'll
be able to see JasperReports in action without having to create a Java application to embed JasperReports
in.

ANT build tool

Before using the JasperReports distribution files and samples, install the ANT tool on your machine.
JasperReports relies heavily on the ANT build tool from the Apache Foundation (http://ant.apache.org/) to
compile the source files, build the distribution files, generate the JavaDoc documentation, and run the
samples. The ANT build tool will make working with the JasperReports library easier. Please refer to the
ANT documentation for installation instructions.

Building the project from source files

Once you have installed ANT, you can compile the source files, generate the JavaDoc API documentation,
or build the distribution JAR files. To do this, execute the ANT tasks declared in the build.xml file found
in the root directory of the project tree.
To see details of each available task, launch the "ant –p" command from the command prompt inside this
root directory.

Running the samples

The JasperReports distribution package comes with a complete set of sample applications and reports that
show how each individual feature of the library can be used.
The samples are in the /demo/samples directory inside the project tree.

HSQLDB demo database

Some of the samples use data from an HSQLDB demo database supplied in the /demo/hsqldb directory
of the JasperReports distribution (http://www.hsqldb.org/).
Before running those samples, start the HSQLDB database by going to the /demo/hsqldb directory and
launching "ant runServer" from the command prompt. To look into the database content using a simple
SQL client tool, launch the HSQLDB Manager application by invoking "ant runManager" in the same
directory after starting the database.

To test a particular sample in the /demo/samples directory, go to the corresponding sample subfolder and
launch "ant –p" from the command line.
This displays a short description of what that sample demonstrates as well as a complete list of ANT tasks
available for use on the sample's source files.

Page 9

http://www.hsqldb.org/
http://ant.apache.org/
http://sourceforge.net/project/showfiles.php?group_id=36382&package_id=28579

The JasperReports Ultimate Guide 1.2.5

Typical steps for running a sample are:
1. Compile the sample's Java source files by calling "ant javac".
2. Compile the JRXML report templates used by the sample application with "ant compile".
3. Fill those report templates with data by calling "ant fill".
4. View the result with "ant view".

To export to other formats, simply use commands like "ant pdf" or "ant html".

These samples are used throughout this guide to illustrate features of the library. Therefor make sure you
can run the samples before reading the rest of this guide.

Page 10

The JasperReports Ultimate Guide 1.2.5

3 Working with report templates
Report templates are standard in reporting applications. They define the layout of the documents that the
report-filling process produces.

Like other reporting engines, JasperReports uses report templates structured in multiple sections.
Each section type has its own characteristics and behavior.
Section types include title, summary, page and column headers and footers, group headers and footers, and
details. Each section is made of individual elements like lines, rectangles, static and dynamic text fields,
images, and charts.

Creating a report template is a two-phase process because of how JasperReports evaluates of report
expressions, also known as formulas. The phases are:

1. The initial report templates are compiled into a more digestible form before being filled with data.

2. Various consistency checks are performed and information for evaluating expressions at runtime is
added.

The entry point in the JasperReports object model is the
net.sf.jasperreports.engine.design.JasperDesign class whose instances represent the source
report templates, also called the raw material. These objects are created by using the JasperReports API
directly, through parsing of a JRXML file edited by hand, or by using an UI design tool. Once compiled,
these report design objects are transformed into compiled report templates in the form of
net.sf.jasperreports.engine.JasperReport objects.

Through compilation, the report templates are validated and put into a more read-only form containing
attached compiler data that will be used for expression evaluation during the filling process.

3.1 Creating report templates
There are two ways to create report templates:
• creating net.sf.jasperreports.engine.design.JasperDesign objects directly using the API;
• editing JRXML files using either a simple text editor, an XML editor or a specialized GUI tool;

The first option is recommended only in case the parent application that uses JasperReports inside the
reporting module needs to create report templates at runtime. In most cases this is not needed since the
reporting functionality required by the application can be achieved using static report templates that do not
change with every execution and only data used to fill them is dynamic.
However, there are cases when the actual report template is the result of some user input. The parent
application might supply its users with a set of options when launching the reports that might take the form
of some simplified report designer or wizard. In such cases, the actual report layout is not know or is not
complete at design time and only after receiving the user's input at runtime the definitive report layout can
be put together.
The most common use case scenario that requires dynamically built or ad-hoc report templates (as we call
them) is the one in which the columns that are going to be present in a table-like report layout is not know
at design time and only the user will give the number of columns and their order inside the desired report at
runtime.

Developers have to make sure that the application they create really needs ad-hoc reports and cannot rely
solely on static report templates, because dynamically built report templates have to be compiled on-the-fly
at runtime and this will result into a certain loss of performance, which is probably not needed.

Page 11

The JasperReports Ultimate Guide 1.2.5

The second option for creating report templates is to edit JRXML files and use those with the
net.sf.jasperreports.engine.JasperCompileManager to prepare them for filling with data.
Because they are well structured and are validated against a public DTD when parsed, these files can be
easily edited using simple editors or specialized XML editors.

3.2 Report design preview
The JasperReports library does not ship with an advanced GUI tool to help design reports. At this time,
there are several third-party projects that provide such a tool. Please refer to the 21 Resources chapter for a
complete list of GUI tools available for JasperReports.

However, the library contains a very helpful visual component that lets you preview the report designs as
you build them.

The net.sf.jasperreports.view.JasperDesigner class is a simple Swing-based Java application
that can load and display a report template either in its JRXML form or its compiled form. Even though it is
not a complex GUI application and lacks advance functionality like dragging and dropping visual report
elements, it is a very helpful tool. All the supplied samples were initially created using this design viewer.

All the supplied samples already have ANT tasks in their build.xml files that will launch this design
viewer to display the report templates.
In fact there are 2 ANT tasks for each sample report: viewDesign and viewDesignXML.
The first one loads the compiled report template that is normally found in the *.jasper file. The second
one loads the JRXML report template, which is more useful since you can edit the JRXML file and push
the "Reload" button to immediately see the modification appearing on the screen.

To preview a sample report template if you have the ANT build tool installed on your system, simply go to
the desired sample directory and enter something like the following from the command line:

>ant viewDesignXML

or

>ant viewDesign

By launching this command, you should see this window:

- figure 1 -

Page 12

The JasperReports Ultimate Guide 1.2.5

3.3 Loading and storing report template files
Both the net.sf.jasperreports.engine.design.JasperDesign and
net.sf.jasperreports.engine.JasperReport classes implement the java.io.Serializable
interface. This allows users to store their report templates as serialized objects either in their fully
modifiable state (JasperDesign objects) or in their compiled form (JasperReport objects).

The preferred file extension for storing net.sf.jasperreports.engine.JasperReport objects in
files is *.jasper. Throughout the documentation we'll often mention the *.jasper file when referring to
a compiled report template. There is no preferred file extension for storing
net.sf.jasperreports.engine.design.JasperDesign objects because this is not done very often.

For serializing objects to files or output streams, the JasperReports library offers a utility class named
net.sf.jasperreports.engine.util.JRSaver.

To load serialized objects, you could rely on the supplied
net.sf.jasperreports.engine.util.JRLoader utility class, which exposes various methods for
loading objects from files, input streams, URLs, or classpath resources. This utility class has a method
called loadObjectFromLocation(String location) with built-in logic to load a serialized object
from a specified java.lang.String location received as parameter. If this method is called, the program
first tries to see if the specified location is a valid URL. If it is not, it then tries to determine whether the
location points to an existing file on disk. If that also fails, the program tries to load the serialized object
from the classpath using the specified location as a classpath resource name.

Working with serializable objects means dealing with compatibility issues every time the
object model changes. Objects that have been stored in serialized form might not be
compatible with the object model when deserialized, due to structural changes made to the
object model. To protect the applications that use newer versions of the library against possible
malfunctions caused by report templates compiled with an older version of the library, all
serializable classes inside the JasperReports object model were marked with a controlled
serialVersionUID constant that was incremented with every new release. This made
serialized compiled report templates incompatible between two versions of the JasperReports
library.
Loading a compiled report template from its serialized form using a library version different
than the one used when compiling it resulted in the program throwing the
java.io.InvalidClassException.
Starting with version 1.2.0, the serialVersionUID constant was frozen at 10200 and will
no longer be incremented in the future.

The library also exposes methods for parsing JRXML content into JasperDesign objects or for producing
JRXML content out of a JasperDesign or JasperReport object.
The functionality is located in the net.sf.jasperreports.engine.xml.JRXmlLoader and the
net.sf.jasperreports.engine.xml.JRXmlWriter classes.

In certain cases, in your application, you might want to manually load the JRXML report template into a
net.sf.jasperreports.engine.design.JasperDesign object without immediately compiling it.
You might do this for applications that programmatically create report designs and use the JRXML form to
store them temporarily or permanently.

You can easily load net.sf.jasperreports.engine.design.JasperDesign objects from JRXML
report designs by calling one of the public static load() methods exposed by the
net.sf.jasperreports.engine.xml.JRXmlLoader class. This way, report design objects can be
loaded from JRXML content stored in a database field or other input stream sources.

The library contains utility methods for parsing JRXML into report design objects and vice versa. You can
generate JRXML from an in-memory report design object.

Page 13

The JasperReports Ultimate Guide 1.2.5

As seen above, sometimes report designs are created programmatically using the JasperReports API. The
report design objects obtained this way can be serialized for disk storage or transfer over the network, but
they also can be stored in JRXML format.

You can obtain the JRXML representation of a given report design object by using one of the public static
writeReport() methods exposed by the net.sf.jasperreports.engine.xml.JRXmlWriter utility
class.

3.4 Compiling report templates
Source report templates, created either by using the API or by parsing JRXML files, are subject to the
report compilation process before they are filled with data.
This is necessary to make various consistency validations and to incorporate into these report templates
data used to evaluate all report expressions at runtime.

The compilation process transforms net.sf.jasperreports.engine.design.JasperDesign objects
into net.sf.jasperreports.engine.JasperReport objects. Both classes are implementations of the
same basic net.sf.jasperreports.engine.JRReport interface. However, JasperReport objects
cannot be modified once they are produced while JasperDesign objects can. This is because some
modifications made on the report template would probably require revalidation, or if a report expression is
modified, the compiler-associated data stored inside the report template would have to be updated.

JasperDesign objects are produced when parsing JRXML files using the
net.sf.jasperreports.engine.xml.JRXmlLoader or are created directly by the parent application
if dynamic report templates are required. The GUI tools for editing JasperReports templates also work with
this class to make in-memory modifications to the report templates before storing them on disk.

A JasperDesign object must be subject to the report compilation process to produce a JasperReport
object.
Central to this process is the net.sf.jasperreports.engine.design.JRCompiler interface, which
defines two methods, one being the following:

public JasperReport compileReport(JasperDesign design) throws JRException;

There are several implementations for this compiler interface depending on the language used for the report
expressions or the mechanism used for their runtime evaluation.

3.5 Expressions scripting language
The default language for the report expressions is Java (see the language property in 8.4 Report template
properties), but report expressions could be written in Groovy or any other scripting language as long as a
report compiler implementation that can evaluate those at runtime is available.
JasperReports currently ships a report compiler implementation for the Groovy scripting language
(http://groovy.codehaus.org/) and another one for the BeanShell scripting library
(http://www.beanshell.org/).
The Groovy-based report compiler is implemented by the
net.sf.jasperreports.compilers.JRGroovyCompiler class, which is now part of the core library,
while the BeanShell one is shipped as a separate sample.
For more details about those two report compilers, check the /demo/samples/beanshell and the
/demo/samples/groovy samples distributed with the project source files.

Page 14

http://www.beanshell.org/
http://groovy.codehaus.org/

The JasperReports Ultimate Guide 1.2.5

3.6 Report compilers
The report templates can be compiled using the desired report compiler implementation by instantiating it
and calling the compiledReport() method mentioned above.

Since the most common scenario is to use the Java language for writing report expressions, default
implementations of the report compiler interface are shipped with the library and are ready to use. They
generate a Java class from the report expressions and store bytecode in the generated
net.sf.jasperreports.engine.JasperReport object for use at report filling time.

The Java report compilers come in different flavors depending on the Java compiler used to compile the
class that is generated on the fly:

net.sf.jasperreports.engine.design.JRJdtCompiler
net.sf.jasperreports.engine.design.JRJdk13Compiler
net.sf.jasperreports.engine.design.JRJdk12Compiler
net.sf.jasperreports.engine.design.JRJavacCompiler
net.sf.jasperreports.engine.design.JRJikesCompiler

To simplify the report compilation process, the JasperReports API offers a façade class
(net.sf.jasperreports.engine.JasperCompileManager) for compiling reports. This class has
various public static methods for compiling report templates that come from files, input streams, or in-
memory objects. The façade class relies on a special report compiler implementation that has a built-in
fallback mechanism that tries to pick up the best Java-based report compiler available in the environment
where it runs.
The net.sf.jasperreports.engine.design.JRDefaultCompiler first reads the configuration
property called net.sf.jasperreports.compiler.class to allow users to override its built-in
compiler detection logic by providing the name of the report compiler implementation to use directly. More
on configuration properties for customizing report compilation can be found later in this chapter.

This default implementation first tries to see if the JDT compiler from the Eclipse Foundation is available
in the application’s classpath. If it is, the net.sf.jasperreports.engine.design.JRJdtCompiler
implementation is used. The current JasperReports distribution ships the JDT compiler packed in the
/lib/jdt-compiler.jar.
If the JDT compiler is not available, it then tries to locate the JDK 1.3 compatible Java compiler from Sun
Microsystems. This is normally found in the tools.jar file that comes with the JDK installation.
If the JDK 1.3 compatible Java compiler is not in the classpath, the fallback search mechanisms look for
the JDK 1.2 compatible Java compiler, also from Sun Microsystems, in case the application is running in
an environment that has a JDK version prior to 1.3 installed. This is also found in the tools.jar file from
the JDK installation.
If all these fail, the last thing the default Java compiler does is to try to launch the javac.exe program
from the command line in order to compile the temporarily generated Java source file on-the-fly.

A brief history of report compiling

All these report compiler implementations are included for historical reasons. In the beginning,
JasperReports started with only the JDK 1.2 compatible report compiler. Then the JDK 1.3 compatible
report compiler was introduced. But both were slow. This is why the
net.sf.jasperreports.engine.design.JRJikesCompiler was created, because the Jikes compiler
proved to be up to ten times faster the JDK-based Java compiler.
However, compiling reports on-the-fly, in case dynamic report templates were required, proved to be
problematic, especially in a Web environment, because all the above-mentioned compilers worked only
with files on disk and required a temporary working directory to store the generated Java source files and
the corresponding class files during the report compilation process. This is why a new implementation was
added, one that relied on the BeanShell library for runtime expression evaluation. BeanShell does not

Page 15

The JasperReports Ultimate Guide 1.2.5

produce Java bytecode and can work with in-memory scripts that it interprets at runtime. With the
net.sf.jasperreports.engine.design.JRBshCompiler, deployment was simpler, but expression
evaluation was slower and loss in performance was noticeable.
With the addition of the JDT-based report compiler, the whole process became both faster and simpler to
deploy as this does not require files on disk and its performance is comparable to Jikes. Runtime report
compilation is not an issue anymore and simply putting the supplied /lib/jdt-compiler.jar in the
application's classpath allows dynamic report template creation without requiring any further settings.
Now the BeanShell report compiler has been removed from the core library and is shipped only as a sample
since the advantages it offered are part of the JDT-based compiler, which is now the recommended one.

Configuration properties to customize report compilation

Because it is a library, JasperReports offers various mechanisms for letting users customize its behavior.
One of these mechanisms is a complete set of configuration properties. The following paragraphs list all the
configuration properties that customize report compilation. You can learn more about how JasperReports
can be configured using configuration files in the 19 Configuration files chapter.

net.sf.jasperreports.compiler.class
(formerly known as the jasper.reports.compiler.class system property)

Used for indicating the name of the class that implements the JRCompiler interface to be instantiated by
the engine when the default compilation is used through the JasperCompileManager and its
corresponding JRDefaultCompiler implementation. The value for this configuration property can be the
name of one of the five built-in implementations of this interface shipped with the library as listed above, or
the name of custom-made implementing class.

Note that the classes implementing the JRCompiler interface can also be used directly in the programs
without having to call them through the façade JasperCompilerManager class.

net.sf.jasperreports.compiler.xml.validation
(formerly known as the jasper.reports.compile.xml.validation system property)

The XML validation, which is ON by default, can be turned OFF by setting the configuration property
called net.sf.jasperreports.compiler.xml.validation to false. When turned off, the XML
parser no longer validates the supplied JRXML against its associated DTD. This might prove useful in
some environments although it is not recommended.

When working with a Java class generating the type of a report compiler, further customizations can be
made using the following system properties, which only apply to them:

net.sf.jasperreports.compiler.classpath
(formerly known as the jasper.reports.compile.class.path system property)

Supplies the classpath. JDK-based and Jikes-based compilers require that the classpath be supplied as a
parameter. They cannot use the current Java Virtual Machine classpath. The supplied classpath resolves
class references inside the Java code they are compiling.

This property is not used by the JDT-based report compiler, which simply uses the parent application's
classpath during Java source file compilation.

net.sf.jasperreports.compiler.temp.dir
(formerly known as the jasper.reports.compile.temp system property)

Page 16

The JasperReports Ultimate Guide 1.2.5

The temporary location for the files generated on-the-fly is by default the current working directory. It can
be changed by supplying a value to the net.sf.jasperreports.compiler.temp.dir configuration
property. This is used by the JDT-based compiler only when it is requested that a copy of the on-the-fly
generated Java class be kept for debugging purposes as specified by the next configuration property,
because normally this report compiler does not work with files on disk.

net.sf.jasperreports.compiler.keep.java.file
(formerly known as the jasper.reports.compile.keep.java.file system property)

Sometimes, for debugging purposes, it is useful to have the generated *.java file or generated script in
order to fix compilation problems related to report expressions. By default, the engine deletes this file after
report compilation, along with its corresponding *.class file. To keep it, however, set the configuration
property net.sf.jasperreports.compiler.keep.java.file to true.

3.7 Ant tasks for compiling reports
Since report template compilation is more like a design-time job than a runtime one, a custom Ant task has
been provided with the library to simplify application development.

This Ant task is implemented by the net.sf.jasperreports.ant.JRAntCompileTask class. Its
syntax and behavior are very similar to the <javac> Ant built-in task.

The report template compilation task can be declared like this, in a project's build.xml file:

<taskdef name="jrc"
 classname="net.sf.jasperreports.ant.JRAntCompileTask">
 <classpath>
 <fileset dir="./lib">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
</taskdef>

In the example above, the lib should contain the jasperreports-x.x.x.jar file along with its other
required libraries.

You can then use this user-defined Ant task to compile multiple JRXML report template files in a single
operation by specifying the root directory that contains those files or by selecting them using file patterns.

 Attributes of the report template compilation task:

srcdir
Location of the JRXML report template files to be compiled. Required unless nested <src> elements are
present.

destdir
Location to store the compiled report template files (the same as the source directory by default).

compiler
Name of the class that implements the net.sf.jasperreports.engine.design.JRCompiler
interface to be used for compiling the reports (optional).

Page 17

The JasperReports Ultimate Guide 1.2.5

xmlvalidation
Flag to indicate whether the XML validation should be performed on the source report template files (true
by default).

tempdir
Location to store the temporary generated files (the current working directory by default).

keepjava
Flag to indicate if the temporary Java files generated on-the-fly should be kept and not deleted
automatically (false by default).

The report template compilation task supports nested <src> and <classpath> elements, just like the Ant
<javac> built-in task.

To see this in action, check the /demo/samples/antcompile sample provided with the project's source
files.

Page 18

The JasperReports Ultimate Guide 1.2.5

4 Filling report templates
The report filling process is the most important piece of JasperReports library functionality, because it
manipulates sets of data to produce high quality documents. This is the main purpose of any reporting tool.

The following things should be supplied to the report filling process as input:
• report template (in the compiled form)
• parameters
• data source

The output is always a single, final document ready to be viewed, printed or exported to other formats.

The net.sf.jasperreports.engine.JasperFillManager class is usually used for filling a report
template with data. This class has various methods that fill report templates located on disk, come from
input streams or are supplied directly as in-memory net.sf.jasperreports.engine.JasperReport
objects.
The output produced always corresponds to the type of input received. That is, when receiving a file name
for the report template, the generated report is also placed in a file on disk. When the report template is read
from an input stream, the generated report is written to an output stream, and so forth.

The various utility methods for filling the reports may not be sufficient for a particular application, for
example, loading report templates as resources from classpath and outputting the generated documents to
files on disk at a certain location.
In such cases, consider manually loading the report template objects before passing them to the report
filling routines using the net.sf.jasperreports.engine.util.JRLoader utility class. This way,
you can retrieve report template properties such as the report name, to construct the name of the resulting
document and place it at the desired disk location.

The report filling manager class covers only the most common scenarios. However, you can always
customize the report-filling process using the library's basic functionality, described above.

4.1 Reporting data
The JasperReports library is completely agnostic and makes no assumptions about where the data it uses
for filling the reports comes from. It is the responsibility of JasperReports’ parent application to supply this
data and handle the output generated by the library.

JasperReports can make use of any data the parent application might have for generating reports because it
relies on two simple things: the report parameters and the report data source.

Report parameters are basically named values that are passed to the engine at report-filling time. The report
parameter values are always packed in a java.util.Map object, which has the parameter names as its
keys.

As for the data source, there are two different scenarios:

Normally, the engine works with an instance of the net.sf.jasperreports.engine.JRDataSource
interface, from which it extracts the data when filling the report.
The façade class net.sf.jasperreports.engine.JasperFillManager has a full set of methods that
receive a net.sf.jasperreports.engine.JRDataSource object as the data source of the report that
is to be filled.

But there is another set of report filling methods in this manager class that receive a
java.sql.Connection object as a parameters, instead of expected data source object.

Page 19

The JasperReports Ultimate Guide 1.2.5

This is because usually reports are generated using data that comes from tables in relational databases.
Users can put the SQL query needed to retrieve the report data from the database in the report template
itself. At runtime, the only thing the engine needs is a JDBC connection object to connect to the desired
relational database, execute the SQL query and retrieve the report data.
Behind the scenes, the engine still uses a special net.sf.jasperreports.engine.JRDataSource
object, but this is preformed transparently for the calling program.

The main difference between parameters and the data source is that parameters are single named values
used inside report expressions for calculations or display, while the data source represents tabular data
made of virtual rows and columns that the engine uses for iteration during the report filling process.

JasperReports can make use of any application data because the JRDataSource interface is very simple
and easy to implement. It only has two methods:
• the next() method, which moves the record pointer to the next record in the virtual tabular data
• the getFieldValue() method, which retrieves the value for each column in the current virtual record

of the data source.

The library ships with several implementations for the JRDataSource interface that cover the most
commonly used sources for filling reports using Java, such as collections or arrays of JavaBeans, XML
data, Swing table models, or JDBC result sets.

Several sample applications are provided with the project, which fill the reports using data from the
supplied HSQLDB database server. In addition to those applications, the /demo/samples/datasource
sample shows how to create custom data source implementations and how to use some of the supplied data
source implementations. Also, check the /demo/samples/xmldatasource to see how to use the XPath-
based data source implementation, shipped with the library, for reporting.

4.2 Generated reports
The output of the report filling process is always a pixel-perfect document, ready for viewing, printing or
exporting to other formats. These documents come in the form of
net.sf.jasperreports.engine.JasperPrint objects, which are serializable. This allows the parent
application to store them or transfer them over the network if needed.

At the top level, a JasperPrint object contains some document-specific information, like the name of the
document, the page size, and its orientation (portrait or landscape). Then it points to a collection of page
objects (net.sf.jasperreports.engine.JRPrintPage instances), each page having a collection of
elements that make up its content. Elements on a page are absolute-positioned at X and Y coordinates
within that page and have a specified width and height in pixels. They can be lines, rectangles, ellipses,
images, or text, with various style settings corresponding to their type.

Page 20

The JasperReports Ultimate Guide 1.2.5

4.3 Filling order (vertical / horizontal filling)
JasperReports templates can have the detail section smaller then the specified page width, so that the output
can be structured into multiple columns, like a newspaper.
When multiple column report templates are used (see columnCount property presented in the 8.4 Report
template properties chapter), the order used for filling those columns is important.
There are two possible column orders (see printOrder property presented in the 8.4 Report template
properties chapter):
• vertically, meaning they run from top to bottom and then from left to right
• horizontally, meaning they first run from left to right and then from top to bottom

When filling report templates horizontally, dynamic text fields inside the detail section no longer stretch to
their entire text content, because this might cause misalignment on the horizontal axis of subsequent detail
sections. The detail band actually behaves the same as the page and column footers, preserving its declared
height when horizontal filling is used.

- figure 2 -

Page 21

The JasperReports Ultimate Guide 1.2.5

4.4 Asynchronous report filling
JasperReports provides the net.sf.jasperreports.engine.fill.AsynchronousFillHandle class
to be used for asynchronous report filling. The main benefit of this method is that the filling process can be
canceled if it takes too much time. This can be useful, for example, in GUI applications where the user
would be able to abort the filling after some time has elapsed and no result has been yet produced.

When using this method, the filling is started on a new thread. The caller is notified about the progress of
the filling process by way of listeners implementing the
net.sf.jasperreports.engine.fill.AsynchronousFilllListener interface. The listeners are
notified of the outcome of the filling process, which can be success, failure, or user cancellation. The
handle is used to start the filling process, register listeners, and cancel the process if wanted.

A typical usage of this handle is:
• The handle is created by calling the static AsynchronousFillHandle.createHandle() methods

that take as arguments the report object, the parameter map, and the data source or the DB connection
to be used.

• One or more listeners are registered with the handle by calling the addListener() method. In a GUI
application, the listener could perform some actions to present to the user the outcome of the filling
process.

• The filling is started by calling the startFill() method. In a GUI application, this could be the
result of some user action; the user could also be notified that the filling has started and is in progress.

• The filling can be canceled by calling cancellFill() on the handle. In a GUI this would be the
result of a user action.

• The listeners are notified when the process finishes. There are three events defined for the listeners and
only one will be called depending on the outcome of the filling:

reportFinished() : called when the filling has finished successfully; the filled report is passed as a
parameter. In a GUI, the user would be presented the filled report or would be able to save/export it.

reportFillError() : called when the filling ended in error; the exception that occurred is passed as a
parameter.

reportCancelled() : called when the filling was aborted by the user.

Page 22

The JasperReports Ultimate Guide 1.2.5

5 Handling generated reports
The output of the report filling process is a pixel-perfect document made of multiple pages, each containing
a series of absolute positioned and sized visual elements. The document is an instance of the
net.sf.jasperreports.engine.JasperPrint class and it is the responsibility of the parent
application to make use of it once generated by JasperReports.

JasperPrint objects can be serialized for storage or transfer over the network, viewed using a built-in
viewer component, or printed or exported to more popular document formats like PDF, HTML, RTF, XLS,
CSV or XML.

5.1 Loading and saving generated reports
Once a net.sf.jasperreports.engine.JasperPrint object has been created as a result of the
report-filling process, you can serialize it and store it on disk, normally in a *.jrprint file. We could say
that this is the proprietary format in which JasperReports stores its generated documents.

You can easily save and load JasperPrint objects to and from *.jrprint files or other byte streams
using the net.sf.jasperreports.engine.util.JRSaver and
net.sf.jasperreports.engine.util.JRLoader utility classes that the library offers. The JRLoader
has various methods for loading serialized objects from files, URLs, input streams, or classpath resources.
Its loadObjectFromLocation(String) method is the most flexible because it has a built-in fallback
mechanism that tries to understand if the supplied java.lang.String location is a URL, file name, or
classpath resource before raising an error if all these fail.

Working with serializable objects means you must deal with compatibility issues every time
the object model changes. See the 3.3 Loading and storing report template files chapter for
more details.

Sometimes it is more convenient to store generated documents in a text-based format like XML instead of
serialized JasperPrint objects. This can be achieved by exporting those documents to XML using the
net.sf.jasperreports.engine.export.JRXmlExporter implementation. The recommended file
extension for these is *.jrpxml. The documents can be parsed back into in-memory JasperPrint
objects using the net.sf.jasperreports.engine.xml.JRPrintXmlLoader utility class.

Exporting to XML is explained in detail in the 18.10 XML exporter chapter.

5.2 Viewing reports
To view the generated reports in this proprietary format or in the proprietary XML format produced by the
internal XML exporter, JasperReports provides a built-in viewer. It is a Swing-based component. Other
Java applications can easily integrate this component without exporting the documents into more popular
formats in order to be viewed or printed. The net.sf.jasperreports.view.JRViewer class represents
this visual component. It can be customized to respond to a particular application’s needs by subclassing it.
For example, you could add or remove buttons from the existing toolbar.

This is illustrated in the supplied /demo/samples/webapp sample, where the JRViewerPlus class adds
a new button to the existing toolbar of this report viewer component. More details about how to extend the
viewer component are provided in the 20.2 Customizing viewers chapter.

JasperReports also comes with an included simple Swing application that uses the visual component for
viewing the reports. This application helps view reports stored on disk in the JasperReports *.jrprint
proprietary format or in the JRPXML format produced by the default XML exporter.

Page 23

The JasperReports Ultimate Guide 1.2.5

This simple Java Swing application is implemented in the
net.sf.jasperreports.view.JasperViewer class. It is used in almost all the provided samples to
view the generated reports.

To view a sample report if you have the ANT build tool installed on your system, go to the desired sample
directory and launch the following from the command line:

>ant view

or

>ant viewXML

You should see this window:

- figure 3 -

The viewer application implemented in the net.sf.jasperreports.view.JasperViewer
class should be considered a demo application that shows how the
net.sf.jasperreports.view.JRViewer component can be used in Swing applications to
display reports.
If you use it directly in your application by calling the public and static viewReport()
methods it exposes, when you close the report viewer frame, the application will unexpectedly
terminate. This is because the JasperViewer class makes a call to the System.exit(0). A
workaround is to subclass it and remove the java.awt.event.WindowListener it has
registered by default.

Page 24

The JasperReports Ultimate Guide 1.2.5

5.3 Printing reports
The main objective of the JasperReports library is to create ready-to-print documents. Most reports that are
generated by applications end up or are supposed to end up on paper.

The printing functionality built into JasperReports at this time reflects the evolution of printing capabilities
within the Java platform.
JDK 1.2 introduced a new API called the Java 2 Printing API to allow Java applications to render all Java
2D graphics on any platform even though the host and printer capabilities are overmatched by Java 2D.
This requirement meant that the Printing API, in some situations, would have had to rasterize Java 2D
graphics on the host computer.

The SDK 1.2 Printing API primarily supplies the “imaging” portion of the print subsystem and allows
applications to format pages and draw their contents, but printer discovery is not supported by the SDK 1.2
Printing API. An application can obtain information about the current printer and print to it by using the
Printing API. The printing dialog supplied by the Printing API also allows a user to change the current
printer, but the application cannot do this programmatically.

Starting with JDK 1.4, a new Java Print API called the Java Print Service API was introduced to allow
applications to print on all Java platforms, including platforms requiring a small footprint, such as a J2ME
profile, and still support the existing Java 2 Print API. The Java Print Service API includes an extensible
print attribute set based on the standard attributes specified in the Internet Printing Protocol (IPP) 1.1 from
the IETF. With these attributes, client and server applications can discover and select printers that have the
capabilities specified by the attributes.

You can print the documents generated by the JasperReports library using the
net.sf.jasperreports.engine.JasperPrintManager class, which is a façade class that relies on
the former Java 2 Printing API. Of course, documents can also be printed after they are exported to other
formats such as HTML or PDF. However, here we will explain how to use the specialized manager class
mentioned to print documents that are stored or transferred in the JasperReports proprietary format
(net.sf.jasperreports.engine.JasperPrint objects).

Among the various methods that the net.sf.jasperreports.engine.JasperPrintManager class
exposes, some allow printing a whole document, a single page or a page range, with and without displaying
the print dialog.

Here's how you could print an entire document without displaying the standard print dialog:

JasperPrintManager.printReport(myReport, false);

Here’s how to print all the pages from 5 to 11 of your document, after having displayed the standard print
dialog:

JasperPrintManager.printPages(myReport, 4, 10, true);

To make use of the much more flexible Java Print Service API introduced with JDK 1.4, there is a special
exporter implementation that makes use of this new API to allow applications to print JasperReports
documents to printing services searched for using attributes such as network printer name and/or page size.

This is the net.sf.jasperreports.engine.export.JRPrintServiceExporter class. More details
about using it can be found in the 18.7 Java Print Service exporter chapter.

An exporter implementation is better suited for sending documents to the printer through the Java Print
Service API, because in some ways printing is similar to document exporting, since both printing and
exporting store generated reports in some other format (paper).

Page 25

The JasperReports Ultimate Guide 1.2.5

5.4 Exporting reports
In some application environments, it is useful to transform the JasperReports generated documents from the
proprietary format into other, more popular formats like PDF, HTML, RTF or XLS. This way, users can
view those reports without having to install special viewers on their systems, especially when sending the
documents over the network.

There is a façade class in JasperReports also for this type of functionality called
net.sf.jasperreports.engine.JasperExportManager, which can be used to obtain PDF, HTML
or XML content for the documents produced by the report filling process.

Exporting means taking a net.sf.jasperreports.engine.JasperPrint object, which represents a
JasperReports document, and transforming it in a different format. The main reason to export the reports
into other formats is to allow more people to view those reports. HTML reports can be viewed by anybody
these days, since at least one browser is available on any system. Viewing JasperReports documents in their
proprietary form would require the installation of special software on the target platform, at least in the
form of a Java applet if not more.

With time, more and more output formats will be supported by the JasperReports library.

For the moment, the library is shipped with several exporter implementations that produce PDF, HTML,
RTF, XLS and XML output and are found in the net.sf.jasperreports.engine.export package.
The JasperExportManager class offers easy access only for the PDF, HTML and XML
implementations. There are only historical reasons for this.

Here's how you could export your report to HTML format using the façade export manager class:

JasperExportManager.exportReportToHtmlFile(myReport);

We did not want to have too many utility methods in the façade class. Therefore, the default exporter
settings offer easy access only for the most common export formats. When new exporters were added to the
library, the export manager class was not extended and users were encouraged to use the exporter classes
directly. Only by doing that could they fully customize the behavior of that particular exporter using
specific exporter parameters.

The 18 Report exporters chapter explains in detail how to use each exporter implementation currently
shipped with the JasperReports library.

To export reports into other, new formats, you must implement a special interface called
net.sf.jasperreports.engine.JRExporter or to extend the corresponding
net.sf.jasperreports.engine.JRAbstractExporter class.

Page 26

The JasperReports Ultimate Guide 1.2.5

6 Large files support
When filling report templates with data the engine takes a JasperReport object along with the supplied
parameters and data source and generates an in-memory JasperPrint object. If very large datasets are
used for report filling, the size of the resulting JasperPrint object could also be very large and might
cause the JVM to run out of memory.

To increasing the memory available for the Java application, first use the -Xmx option when launching the
JVM, since the default value for this parameter is fairly small. However, doing this with large datasets
containing tens of thousand or more records and resulting in documents that have thousands or more pages,
the JVM will eventually run out of memory.

Recent versions of JasperReports offer a simple solution to the problem by introducing the “report
virtualizer”. The virtualizer is a simple interface (net.sf.jasperreports.engine.JRVirtualizer)
that enables the reporting engine to optimize memory consumption during report filling by removing parts
of the JasperPrint object from memory and storing them on disk or in other temporary locations. If a
report virtualizer is used during filling, the engine keeps only a limited number of pages from the generated
JasperPrint object at a time and serializes all the other pages to a temporary storage location, usually the
file system.

Using a report virtualizer is very simple. You supply an instance of the
net.sf.jasperreports.engine.JRVirtualizer interface as the value for the built-in parameter
called REPORT_VIRTUALIZER when filling the report.
In virtualized form, a generated JasperPrint document still behaves normally and can be subject to
exporting, printing or viewing processes, the impact on memory consumption being minimal even when
dealing with very large documents.

When produced using a virtualizer, which itself performs partial document serialization into temporary
files, once completed, a JasperPrint document can be itself serialized normally, without any loss of
information. During the serialization of a virtualized JasperPrint object, the program puts back together
all the pieces and a single serialized file is produced. However, because this single file is probably very
large, simple deserialization would not make sense or it would not be even possible without running out of
memory (this was the reason for using virtualization in the first place). So in order to reload back into
memory a virtualized document that was serialized to a permanent storage facility, a report virtualizer is
needed. This would be set using a thread local variable by calling

JRVirtualizationHelper.setThreadVirtualizer(JRVirtualizer virtualizer)

For details about how report virtualization could be used for generating large reports, check the supplied
/demo/samples/virtualizer sample.

6.1 File virtualizer
The library ships with a ready to use implementation of this interface called
net.sf.jasperreports.engine.fill.JRFileVirtualizer, which stores document pages on disk
during the filling process to free up memory. Once a JasperPrint object is produced using a report
virtualizer, it can be exported to other formats or viewed directly using the library's built-in viewer
component, even though this document is not fully loaded at any one time. The virtualizer ensures that
pages are deserialized and loaded from their temporary storage location as needed during exporting or
display.

A single JRFileVirtualizer instance can be shared across multiple report filling processes so that the
number of document pages kept in-memory at any one time be limited by the virtualizer maxSize property,
regardless of the number of reports that are generated simultaneously.

Page 27

The JasperReports Ultimate Guide 1.2.5

Because it works with temporary files on disk, the file virtualizer has a built-in mechanism so that it
removes those files after they are no longer needed (the generated document or the virtualizer itself have
been disposed by the JVM). The cleanup()method exposed by this virtualizer implementation could be
also called manually so that the temporary files be removed from disk right away instead of waiting for the
finalization of the entities involved.

To ensure that no virtualization files are left over on disk by the application that uses the file virtualizer, all
these temporary files are registered with the JVM so that they are deleted automatically when the JVM
exits normally.
But using File.deleteOnExit()will accumulate JVM process memory on some virtual machine
implementations (http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817) and this should
avoided in long-running applications by turning this feature off using the
net.sf.jasperreports.virtualizer.files.delete.on.exit configuration property.

6.2 Swap file virtualizer
On some platforms, working with a large number of files in a single folder, or even the file manipulating
processes themselves have a significant impact on performance or pose some problems. This makes the use
of the JRFileVirtualizer implementation less effective.
Fortunately there is another implementation of a file-based report virtualizer that uses a single swap file and
can also be shared among multiple report filling processes. Instead of having one temporary file per
virtualized page, we only have a single file into which all virtualizes pages are stored to and then retrieved
from.
This swap file virtualizer implementation is represented by the
net.sf.jasperreports.engine.fill.JRSwapFileVirtualizer class that is now part of the
JasperReports library core functionality and works in combination with a
net.sf.jasperreports.engine.util.JRSwapFile instance representing the target swap file.
The JRSwapFile instance has to be created and configured prior to being passed to the swap virtualizer by
specifying the target directory where the swap file will be created, the size of the blocks allocated by the
swap file as well as the minimum number of blocks by which the swap file grows when full.

The net.sf.jasperreports.engine.util.JRConcurrentSwapFile class represents an enhanced
implementation of the JRSwapFile that only works with JRE version 1.4 or later, because it uses a
java.nio.channels.FileChannel to perform concurrent I/O on the swap file.

6.3 In-memory GZIP virtualizer
The net.sf.jasperreports.engine.fill.JRGzipVirtualizer is a convenience report virtualizer
implementation that does not rely on the file-system to temporarily store unused/virtualized document
pages during the report filling, but rather optimizes memory consumption by compressing those pages in-
memory using a GZIP algorithm.
So even if still relies on the JVM's memory to store document pages during report filling, it serves however
the virtualization purpose of minimizing memory consumption by compressing unused document parts.
Tests indicate that memory consumption during large report generating processes is reduced up to 10 times
when the GZIP in-memory report virtualizer is used.

Page 28

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4513817

The JasperReports Ultimate Guide 1.2.5

7 API Overview
Usually you will work only with a few JasperReports library classes and won't have to get to know the
entire API.

This section addresses the classes and interfaces that are significant when using the library and shows how
to use them in applications that require reporting functionality.

- figure 4 -

net.sf.jasperreports.engine.design.JasperDesign

Instances of this class are the raw material that the JasperReports library uses to generate reports. Such
instances are usually obtained by parsing the JRXML report template files using the library internal XML
parsing utility classes. But they can also be built programmatically by the application that uses
JasperReports through API calls if working with JRXML files is not an option. Third-party GUI design
tools use the JasperReports API to create these report template objects. Among the supplied samples that
come with the project source files, there is one inside /demo/samples/noxmldesign that you can check
to see how to dynamically create a JasperDesign object without editing a JRXML report design file.

All instances of the JasperDesign class are subject to compilation before being used for filling and report
generation. This is why they are considered the raw material for the library.

net.sf.jasperreports.engine.JasperReport

Instances of this class represent compiled report template objects. They are obtained only through the
JasperReports report compilation process and are ready to use for filling with data and report generation.

Through compilation, along with various consistency checks and rearrangements of the report elements for
more rapid performance in the application, the library creates an on-the-fly class file (or a script, depending
on the type of the report compiler used) containing all the report expressions such as report variables
expressions, text field and image expressions, group expressions, etc.
This class or script is used to evaluate report expressions during the report-filling process at runtime.

Page 29

JasperDesign JasperReport JasperPrintJRXML PDF

XML

HTML

Screen

Printer

JRXmlLoader JRCompiler

JasperCompileManager

JasperFillManager

parse compile

fill

JasperPrintManager

JasperExportManager

print

export

The JasperReports Ultimate Guide 1.2.5

net.sf.jasperreports.engine.JasperCompileManager

This is the class that exposes all the library’s report compilation functionality.
It has various methods that allow the users to compile JRXML report templates found in files on disk or
that come from input streams. It also lets you compile in-memory report templates by directly passing a
net.sf.jasperreports.engine.design.JasperDesign object and receiving the corresponding
net.sf.jasperreports.engine.JasperReport object.

Other utility methods include report template verification and JRXML report template generation for in-
memory constructed net.sf.jasperreports.engine.design.JasperDesign class instances. These
instances are especially useful in GUI tools that simplify report design work.

net.sf.jasperreports.engine.JasperPrint

After a compiled report template is filled with data, the resulting document comes in the form of a
net.sf.jasperreports.engine.JasperPrint instance. Such an object can be viewed directly using
the JasperReports build-in report viewer, or can be serialized for disk storage and later use or for sending it
over the network.

The instances of this class represent the output of the report filling process of the JasperReports library and
can be considered as a custom format for storing full-featured, page-oriented documents. They can be
transformed into other more popular formats like PDF, HTML, RTF, XLS, CSV, XML or other by using
the library's export functionality.

net.sf.jasperreports.engine.JRDataSource

JasperReports is very flexible as to the source of the report data. It lets people use any kind of data source
they want, as long as they can provide an appropriate implementation of this interface.

Normally, every time a report is being filled, an instance of this interface is supplied or created behind the
scenes by the reporting engine.

net.sf.jasperreports.engine.JRResultSetDataSource

This is a default implementation of the net.sf.jasperreports.engine.JRDataSource interface.
Since most reports are generated using data from a relational database, JasperReports includes by default
this implementation that wraps a java.sql.ResultSet object.
This class can be instantiated intentionally to wrap already loaded result sets before passing it to the report-
filling routines, but it is also used by the reporting engine to wrap the data retrieved from the database after
having executed the report query (if present) through JDBC.

net.sf.jasperreports.engine.data.JRBeanArrayDataSource and
net.sf.jasperreports.engine.data.JRBeanCollectionDataSource

It is now common to access application data through object persistence layers like EJB, Hibernate, or JDO.
Such applications may need to report out of data they already have available as arrays or collections of in-
memory JavaBean objects.
JasperReports ships with two JavaBean-compliant data source implementations that can wrap either an
array or a collection of JavaBean objects.

This can be seen in the supplied /demo/samples/datasource sample, where instances of a custom
JavaBean class are used to fill a report with data.

Page 30

The JasperReports Ultimate Guide 1.2.5

net.sf.jasperreports.engine.data.JRXmlDataSource

If application data resides inside XML files and you need this data to generate reports, the built-in XPath-
based implementations of the JRDataSource interface are useful. With the help of an XPath query, the
XML data can take a tabular form and can be fed into the report-filling process to generate documents.

The /demo/samples/xmldatasource sample in the distribution package shows how this special data
source implementation can be used with XML data.

net.sf.jasperreports.engine.JREmptyDataSource

The simplest implementation of the net.sf.jasperreports.engine.JRDataSource interface, this
class can be used in reports that do not display data from the supplied data source, but rather from
parameters, and when only the number of virtual rows in the data source is important.

Many of the provided samples such as fonts, images, shapes and unicode found in the
/demo/samples directory of the project's distribution use an instance of this class when filling reports to
simulate a data source with one record in it, but with all the fields null.

net.sf.jasperreports.engine.JasperFillManager

This class is the façade to the report-filling functionality of the JasperReports library.
It exposes a variety of methods that receive a report template in the form of an object, file, or input stream
and produce a document also in various output forms: object, file, or output stream.

Along with the report template, the report-filling engine must also receive data from the data source, as
well as the values for the report parameters, to generate the documents.
Parameter values are always supplied in a java.util.Map object in which the keys are the report
parameter names.

The data source can be supplied in two different forms, depending on the situation:

Normally, it is supplied as a net.sf.jasperreports.engine.JRDataSource object, as mentioned
above.

However, since most reports are filled with data from relational databases, JasperReports has a built-in
default behavior that lets people specify an SQL query in the report template itself. This SQL query is
executed to retrieve the data for filling the report at runtime.
In such cases, the only thing JasperReports needs is a java.sql.Connection object, instead of the usual
data source object. It needs this connection object to connect to the relational database management system
through JDBC and execute the report query.
It automatically creates a net.sf.jasperreports.engine.JRResultSetDataSource behind the
scenes to wrap the java.sql.ResultSet object returned after the execution of the query and passes it to
the normal report filling process.

net.sf.jasperreports.engine.JRAbstractScriptlet

Scriptlets are a very powerful feature of the JasperReports library. They allow users to write custom code to
be executed by the reporting engine during the report filling process. This user code can manipulate report
data and gets executed at well-defined moments such as page, column, or group breaks.

Page 31

The JasperReports Ultimate Guide 1.2.5

net.sf.jasperreports.engine.JRDefaultScriptlet

This is a convenience subclass of the net.sf.jasperreports.engine.JRAbstractScriptlet class.
You will usually subclass this when working with scriptlets, so they don’t have to implement all the
abstract methods declared in the abstract class.

net.sf.jasperreports.engine.JasperPrintManager

After having filled a report, you have the option of viewing it, exporting it to a different format, or, most
commonly, printing it.

In JasperReports, you can print reports using this manager class, which is a façade to the printing
functionality exposed by the library.

This class contains various methods that send to the printer entire documents or only portions of it. You can
also choose whether or not to display the print dialog.

You can display the content of a page from a JasperReports document by generating a java.awt.Image
object for it using this manager class.

net.sf.jasperreports.engine.JasperExportManager

As already mentioned, JasperReports can transform generated documents from its proprietary format into
more popular documents formats such as PDF, HTML or XML. In time, this part of the JasperReports
functionality was extended to support other formats like RTF, XSL, CSV and other.

This manager class has various methods that can process data that comes from different sources and goes to
different destinations: files, input and output streams, etc.

net.sf.jasperreports.engine.JasperRunManager

Sometimes it is useful to produce documents only in a popular format such as PDF or HTML, without
having to store on disk the serialized, intermediate net.sf.jasperreports.egine.JasperPrint
object produced by the report filling process.
This can be achieved using this manager class, which immediately exports the document produced by the
report filling process into the desired output format.
The use of this manager class is shown and can be tested in the supplied /demo/samples/webapp
sample, where PDF and HTML content is produced on-the-fly.

net.sf.jasperreports.view.JRViewer

This class is different from the rest of the classes listed above in that it is more like a pluggable visual
component than a utility class.

It can be used in Swing-based applications to view the reports generated by the JasperReports library.

This visual component is not meant to satisfy everybody. It was included like a demo component to show
how the core printing functionality can be used to display the reports in Swing-based applications.

The preferred way to adapt this component to a particular application is by subclassing it.
The 20.2 Customizing viewers chapter gives more details about this.

Page 32

The JasperReports Ultimate Guide 1.2.5

net.sf.jasperreports.view.JasperViewer

This class also serves a didactical purpose. It uses the net.sf.jasperreports.view.JRViewer
component to display reports. It represents a simple Java Swing application that can load and display
reports. It is used in almost all of the supplied samples to display the generated documents.

net.sf.jasperreports.view.JasperDesignViewer

Usually, an application that uses the JasperReports library for reporting purposes will never use this class.
This class can be used at design time to preview the report templates. It was included in the main library as
a development tool in order to make up for the missing visual designer.

This class is also used in all the samples to preview the report designs, either in raw JRXML form or the
compiled form.

net.sf.jasperreports.engine.util.JRLoader

All JasperReports main processes, like report compilation, report filling, and exporting, often work with
serialized objects. Sometimes it is useful to manually load those serialized objects before submitting them
to the desired JasperReport process.

The net.sf.jasperreports.engine.util.JRLoader class is a utility class that helps loading
serialized objects found in various locations such as files, URLs, or input streams.

The most interesting method exposed by this class is loadObjectFromLocation(String).
When calling this method to load an object from the supplied location, the program first tries to interpret
the location as a valid URL. If this fails, then the program assumes that the supplied location is the name of
a file on disk and tries to read from it. If no file is found at that location, it will try to locate a resource
through classpath that would correspond to the location. Only after this third try fails, an exception is
thrown.

net.sf.jasperreports.engine.util.JRSaver

This utility class can be used when serializable objects must be saved on disk or sent over the network
through an output stream.

net.sf.jasperreports.engine.xml.JRXmlLoader

Parsing a JRXML file into a JasperDesign object can be done using one of the methods published by this
class. Applications might need to do this in cases where report templates kept in their source form
(JRXML) must be modified at runtime based on some user input and then compiled on-the-fly for filling
with data.

net.sf.jasperreports.engine.xml.JRPrintXmlLoader

Generated documents can be stored in XML format if they are exported using the
net.sf.jasperreports.engine.export.JRXmlExporter. After being exported they can be parsed
back into net.sf.jasperreports.engine.JasperPrint object by using this JRPrintXmlLoader.

Page 33

The JasperReports Ultimate Guide 1.2.5

8 Report templates
Generally speaking, a report template contains all the information about the structure and the aspect of the
documents that will be generated when the data is provided. This information determines the position and
the content of various text or graphic elements that will appear on the document, their appearance, the
custom calculations, data grouping and data manipulation that should be performed when generating the
documents, etc.

Creating report templates was discussed in the chapter. This chapter will delve into the structure of a
report template and see how each component and property can be used to achieve a specific functionality.

8.1 JRXML
JRXML is the name we use when referring to XML files that represent the definition of a JasperReports
template and that comply with the mentioned DTD structure.

When working with JRXML report templates, JasperReports uses its own internal DTD files to validate the
XML content it receives for processing. If the XML validation passes, it means that the supplied report
design corresponds to the JasperReports-required XML structure and syntax and the engine is able to
generate the compiled version of the report design.

Valid JRXML report templates always point to the JasperReports internal DTD files for validation. If the
DTD reference is not specified, report compilation fails abruptly. This should not be a big problem since
the DTD reference is always the same and can simply be copied from previous report templates. At the
beginning, you will copy it from the supplied samples.

8.2 DTD reference
As already mentioned, the engine recognizes only the DTD references that point to its internal DTD files.
You cannot make a copy of the DTD files found among the library source files and point to that copy in
your JRXML report templates. To do that, you must also alter the code of some of the library classes
including the net.sf.jasperreports.engine.xml.JRXmlDigester class.
If you ever encounter problems such as the engine not finding its own internal DTD files due to some
resource loading problems, make sure you have eliminated every possible cause before deciding to use
external DTD files. You will probably not encounter such a problem since the resource loading mechanism
of the library has improved with time.

There are only two valid DTD references for the JRXML report templates:

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

or

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://www.jasperreports.com/dtds/jasperreport.dtd">

The root element of a JRXML report template is <jasperReport>. This is how a usual JasperReports
JRXML report template file looks:

Page 34

The JasperReports Ultimate Guide 1.2.5

<?xml version="1.0"?>
<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="name_of_the_report" ... >
...
</jasperReport>

The first ellipsis (…) represents the report design properties and settings and the second ellipsis represents
the suppressed various report design elements such as report parameters, fields, variables, groups, report
sections, etc. Examples of these follow in later chapters of this book.

8.3 JRXML encoding
When creating JRXML report templates in different languages, pay special attention to the encoding
attribute that can be used in the header of the XML file. By default, if no value is specified for this
attribute, the XML parser uses "UTF-8" as the encoding for the content of the XML file.

This important because the report design often contains localized static texts, which are introduced when
manually editing the JRXML file.

For most Western European languages, the ”ISO-8859-1“ encoding, also known as LATIN1, is sufficient.
For example, it includes the special French characters é, â, è, and ç.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="name_of_the_report" ... >
...
</jasperReport>

To find out the encoding type to specify when editing XML files in a particular language, check the XML
documentation.

Page 35

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

The JasperReports Ultimate Guide 1.2.5

8.4 Report template properties
We have already seen that <jasperReport> is the root element of a JRXML report design. This section
will show in detail the properties of a report design object and the JRXML attributes that correspond to
them.

JRXML syntax

<!ELEMENT jasperReport (property*, import*, reportFont*, style*, subDataset*,
parameter*, queryString?, field*, variable*, filterExpression?, group*,
background?, title?, pageHeader?, columnHeader?, detail?, columnFooter?,
pageFooter?, lastPageFooter?, summary?)>

<!ATTLIST jasperReport
name NMTOKEN #REQUIRED
language NMTOKEN "java"
columnCount NMTOKEN "1"
printOrder (Vertical | Horizontal) "Vertical"
pageWidth NMTOKEN "595"
pageHeight NMTOKEN "842"
orientation (Portrait | Landscape) "Portrait"
whenNoDataType (NoPages | BlankPage | AllSectionsNoDetail) "NoPages"
columnWidth NMTOKEN "555"
columnSpacing NMTOKEN "0"
leftMargin NMTOKEN "20"
rightMargin NMTOKEN "20"
topMargin NMTOKEN "30"
bottomMargin NMTOKEN "30"
isTitleNewPage (true | false) "false"
isSummaryNewPage (true | false) "false"
isFloatColumnFooter (true | false) "false"
scriptletClass NMTOKEN #IMPLIED
resourceBundle CDATA #IMPLIED
whenResourceMissingType (Null | Empty | Key | Error) "Null"
isIgnorePagination (true | false) "false"

>

Report name

Every report design needs a name. Its name is important because the library uses it when generating files,
especially when the default behavior is preferred for compiling, filling, or exporting the report.

The name of the report is specified using the name attribute of the <jasperReport> element and is
mandatory. Spaces are not allowed in the report name, which must be a single word.

Language

Report expressions are usually written using the Java language. However, you can use other languages as
long as a report compiler is available to help evaluate these expressions at report filling time.

The default value for this property is "java", meaning that the Java language is used for writing
expressions, and that a report compiler capable of generating and compiling a Java class on the fly is used
for producing the bytecode needed for expressions evaluation at runtime.

This property is read by the report compilers to see whether they can compile the supplied report template
or a different report compiler should be used depending on the actual scripting language.

Page 36

The JasperReports Ultimate Guide 1.2.5

The distribution includes a sample inside the /demo/samples/groovy folder, which demonstrates how
other scripting languages can be used in JasperReports templates.

Column count

JasperReports lets users create reports with more than one column on each page. Multi-column report
templates also have an associated column filling order specified by the next attribute in this section, the
printOrder. The figure in the 4.3 Filling order (vertical / horizontal filling) chapter shows how multi-
column would look like.

By default, the reporting engine creates report with one column on each page.

Print order

For reports having more that one column, is important to specify the order in which the columns will be
filled. You can do this using the printOrder attribute of the <jasperReport> element.

There are two possible situations:
• Vertical filling : Columns are filled from top to bottom and left to right (printOrder="Vertical").
• Horizontal filling : Columns are filled from left to right and top to bottom

(printOrder="Horizontal").

The default print order is printOrder="Vertical".

Page size

There are two attributes at this level to specify the page size of the document that will be generated:
pageWidth and pageHeight.
Like all the other JasperReports attributes that represent element dimensions and position, these are
specified in pixels. JasperReports uses the default Java resolution of 72 dots per inch.
This means that a pageWidth="595" will make about 8.26 inches, which is roughly the width of an A4
sheet of paper.

The default page size corresponds to an A4 sheet of paper:

pageWith="595" pageHeight="842"

Page orientation

The orientation attribute determines whether the documents use the "Portrait" or the "Landscape"
format.

JasperReports requires you to adapt the page width and the page height when switching from "Portrait"
documents to "Landscape" or vice-versa.

For example, assume that you want to create an A4 report using the "Portrait" layout.
An A4 has approximately this size:

pageWidth="595" pageHeight="842" orientation="Portrait"

Page 37

The JasperReports Ultimate Guide 1.2.5

If you decide to use the "Landscape" layout for our A4 document, you must make sure to modify the
page width and page height accordingly, as follows:

pageWidth="842" pageHeight="595" orientation="Landscape"

This is because JasperReports has to know exactly the absolute width and height of the pages it will draw
on, and does not necessarily consider the value supplied in the orientation attribute, at least not at report
filling time.

This orientation attribute is useful only at report printing time, to inform the printer about the page
orientation, or in some special exporters.

The default page orientation is "Portrait".

Page margins

Once the page size is decided, you can specify what margins the reporting engine should preserve when
generating the reports. Four attributes control this: topMargin, leftMargin, bottomMargin and
rightMargin (figure 2).

The default margin for the top and bottom of the page is 20 pixels. The default margin for the right and left
margins is 30 pixels.

Column size and spacing

Reports may have more that one column, as shown in the discussion of the columnCount attribute above.
However, the reporting engine has to know how large a column can be and how much space should it allow
between columns. Two attributes control this: columnWidth and columnSpacing.

A validation check is also performed when you compile report designs, which do not allow creating reports
in which the width of the overall columns and the space between them exceeds the specified page width
and page margins.

Since there is only one column by default, the default column spacing is 0 pixels and the default column
width is 555 pixels: the default page width minus the default left and right margins.

Empty data source behavior

The data source for a report may contain no records. In this case, it is not clear what the output should be.
Some may expect to see a blank document and others may want some of the report sections to be displayed
anyway.

The whenNoDataType attribute lets you decide how the generated document should look when there is no
data in the data source supplied to it.
The possible values of this attribute are:
• Empty document : The generated document will have no pages in it. Viewers might throw an error

when trying to load such documents (whenNoDataType="NoPages").
• Blank page : The generated document contains a single blank page

(whenNoDataType="BlankPage").
• All sections displayed : All the report sections except the detail section will appear in the generated

document (whenNoDataType="AllSectionsNoDetail").

The default value for this attribute is whenNoDataType="NoPages".

Page 38

The JasperReports Ultimate Guide 1.2.5

Title and summary sections placement

To display the title or summary section on separate pages, set one or both of the following attributes to
true: isTitleNewPage and isSummaryNewPage.

Both these boolean attributes are set to false by default.

Note that even if you choose to display the summary section on the remaining space of the last
page, a new page will automatically start if the report has more than one column and the
second column has already started on the last page.

Column footer placement

This boolean property lets users customize the behavior of the column footer section. By default, this
section is rendered at the bottom of the page, just above the page footer. In certain cases, it is useful to
render it higher on the page, just below the last detail or group footer on that particular column. To do this,
set the isFloatColumnFooter property to true.

Scriptlet class

The scriptletClass attribute lets you specify the name of the scriptlet class designed for the current
report. You will learn more about scriptlets in the 16 Scriptlets chapter of this book.
If no value is supplied to this attribute, the reporting engine uses a
net.sf.jasperreports.engine.JRDefaultScriptlet instance anyway.

Resource bundle

To generate reports in different languages from the same report template, associate a resource bundle with
the template and make sure that the locale-specific resources inside report expressions are retrieved based
on the $R{} syntax explained in the 9.1.1 Syntax chapter.

There are two ways to associate the java.util.ResourceBundle object with the report template.
The first is a static association made by setting the resourceBundle property of the report template object
to the base name of the target resource bundle.
A dynamic association can be made by supplying a java.util.ResourceBundle object as the value for
REPORT_RESOURCE_BUNDLE parameter at report filling time. Check the 17 Internationalization chapter for
more details.

Missing resources behavior

The whenResourceMissingType property allows users to choose the desired behavior of the engine
when it deals with missing locale-specific resources in the supplied resource bundle. There are four ways to
deal with missing resources:
• Null : The null value is used (whenResourceMissingType="Null").
• Empty : An empty string is used (whenResourceMissingType="Empty").
• Key : The key is used (whenResourceMissingType="Empty").
• Error : An exception is raised in case a locale specific resource is not found in the supplied resource

bundle for the given key and locale (whenResourceMissingType="Error").

Page 39

The JasperReports Ultimate Guide 1.2.5

Pagination

When the isIgnorePagination property is turned to true, the report filling engine will completely
ignore page break related setting inside the report template and generate the document on a single, very
long page. The value of this property can be overridden at runtime using the optional
IS_IGNORE_PAGINATION built-in parameter.

8.5 Custom properties
Sometimes it is useful to put some information into the report template itself. This information can be used
by the parent application at runtime after loading the report template, or it could be used by the report
design UI tools to store designer-specific information, like whether to display the rules, the size of the snap
grid, etc.

The report templates can store application or user defined properties in the form of named values which can
be archived by using any number or <property> tags inside the report template.

JRXML syntax

<!ELEMENT property EMPTY>

<!ATTLIST property
name CDATA #REQUIRED
value CDATA #IMPLIED

>

It is recommended that property names rely on some name space policy, just as Java application packages
do, to ensure that there no naming conflict arises when several applications store information in the same
report template.

Here is how a named value could be put inside the report template:

<property name="com.mycompany.report.author" value="John Smith"/>
<property name="com.mycompany.report.description" value="Displays sales data"/>

At runtime, this application-defined data can be retrieved from the report template using the API, as
follows:

JasperReport jasperReport =
 (JasperReport)JRLoader.loadObjectFromLocation(
 "C:/MyApp/src/reports/MyReport.jasper");

String author = jasperReport.getProperty("com.mycompany.report.author");
String desc = jasperReport.getProperty("com.mycompany.report.description");

8.6 Importing packages
Using the Java language for writing the report expressions gives great flexibility to the library because
report designers can leverage existing code inside JasperReports’ parent Java applications.

When using Java, all the report expressions are put into a Java source file that is created on-the-fly at report
compilation time. This source file is compiled to bytecode by the report compiler and will be used for
expression evaluation at report-filling time. Being a normal Java source file, it can have import statements
at the top to simplify how classes are referenced inside the source code. By importing entire packages,

Page 40

The JasperReports Ultimate Guide 1.2.5

report expressions can reference application classes by name rather than the full class name (including the
package), resulting in shorter and simpler report expressions.

For importing entire packages or single classes, several <import> tags can be used inside the report
template.

JRXML syntax

<!ELEMENT import EMPTY>

<!ATTLIST import
value CDATA #REQUIRED

>

The following example shows how to import an entire package and a single class:

<import value="com.mycompany.myapp.mypackage.*"/>
<import value="com.mycompany.myapp.MyClass"/>

A report template can contain any number of import tags.

8.7 Styles
A report style is a collection of style settings declared at report level. These settings can be reused
throughout the entire report template when setting the style properties of report elements.

JRXML syntax

<!ELEMENT style (conditionalStyle*)>

<!ATTLIST style
name NMTOKEN #IMPLIED
isDefault (true | false) "false"
style NMTOKEN #IMPLIED
mode (Opaque | Transparent) #IMPLIED
forecolor CDATA #IMPLIED
backcolor CDATA #IMPLIED
pen (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
fill (Solid) #IMPLIED
radius NMTOKEN #IMPLIED
scaleImage (Clip | FillFrame | RetainShape) #IMPLIED
hAlign (Left | Center | Right | Justified) #IMPLIED
vAlign (Top | Middle | Bottom) #IMPLIED
border (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
borderColor CDATA #IMPLIED
padding NMTOKEN #IMPLIED
topBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
topBorderColor CDATA #IMPLIED
topPadding NMTOKEN #IMPLIED
leftBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
leftBorderColor CDATA #IMPLIED
leftPadding NMTOKEN #IMPLIED
bottomBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
bottomBorderColor CDATA #IMPLIED
bottomPadding NMTOKEN #IMPLIED
rightBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED

Page 41

The JasperReports Ultimate Guide 1.2.5

rightBorderColor CDATA #IMPLIED
rightPadding NMTOKEN #IMPLIED
rotation (None | Left | Right) #IMPLIED
lineSpacing (Single | 1_1_2 | Double) #IMPLIED
isStyledText (true | false) #IMPLIED
fontName CDATA #IMPLIED
fontSize NMTOKEN #IMPLIED
isBold (true | false) #IMPLIED
isItalic (true | false) #IMPLIED
isUnderline (true | false) #IMPLIED
isStrikeThrough (true | false) #IMPLIED
pdfFontName CDATA #IMPLIED
pdfEncoding CDATA #IMPLIED
isPdfEmbedded (true | false) #IMPLIED
pattern CDATA #IMPLIED
isBlankWhenNull (true | false) #IMPLIED

>

<!ELEMENT conditionalStyle (conditionExpression?, style)>

<!ELEMENT conditionExpression (#PCDATA)>

Report style name

The name attribute of a <style> element is mandatory. It must be unique because it references the
corresponding report style throughout the report.

Default report style

You can use isDefault="true" for one of your report style declarations, to mark the default for
elements that do not or cannot have another style specified.

Cascading report styles

Each report style definition can reference another style definition from which it will inherit some or all of
its properties. The style attribute specifies the name of the parent report style.

All the other report style properties are explained in detail in the chapters that present the
report elements to which they apply.

Conditional styles

Sometimes users need to change a report element style at runtime based on certain conditions (e.g. colors
can alternate in a report detail section for odd and even rows). To achieve this goal, some style properties
can be enabled only if a specified condition is true. This is done using conditional styles.

A conditional style has 2 elements: a boolean condition expression and a style. The style is used only if the
condition is evaluated to true.

Page 42

The JasperReports Ultimate Guide 1.2.5

Example:

<style name="alternateStyle" fontName="Arial" forecolor="red">
 <conditionalStyle>
 <conditionExpression>
 new Boolean($V{REPORT_COUNT}.intValue() % 2 == 0)
 </conditionExpression>
 <style forecolor="blue"/>
 </conditionalStyle>
</style>

In the above example, elements with this style will have red forecolor. But the presence of the
conditional style modifies the behavior and when rendered on an even row, the same elements will have
blue forecolor.

An important aspect is the priority of styles. When applied, a conditional style will override the properties
of its parent style. In the example above, an even detail row will inherit the fontName property from the
parent style and overwrite the forecolor property.

A style can contain more than one conditional style. In this case, all conditionals that evaluate to true will
be appended to the existing style (the second style will append the first, and so on). Here is a more
elaborate example:

<style name="alternateStyle" fontName="Arial" forecolor="red">
 <conditionalStyle>
 <conditionExpression>
 new Boolean($V{REPORT_COUNT}.intValue() % 2 == 0)
 </conditionExpression>
 <style forecolor=”blue”/>
 </conditionalStyle>
 <conditionalStyle>
 <conditionExpression>
 new Boolean($F{AMOUNT}.intValue() > 10000)
 </conditionExpression>
 <style isBold=”true”/>
 </conditionalStyle>
 <conditionalStyle>
 <conditionExpression>
 new Boolean($F{AMOUNT}.intValue() > 20000)
 </conditionExpression>
 <style isBold=”false” isItalic=”true”/>
 </conditionalStyle>
</style>

In this example, if the field amount is greater than 10000, the second conditional style is true, and the
element displays in bold (it also has red color or blue color depending on whether it is on an even or odd
row).
If the amount is greater than 20000, the last two styles conditions will be true so the third one appends the
second one, by overwriting isBold and adding isItalic.
For amounts over 10000, elements will be written in bold, and for amounts over 20000, elements will be
written in italic (but not bold!). Of course all conditional styles will inherit the font from the parent style.

Referencing a report style

All report elements can reference a report style to inherit all or part of the style properties. A report style
declaration groups all the style-related properties supported throughout the library, but an individual
element inherits only those style properties that apply to it. The others will be ignored.
See the 11 Report elements chapter for details about applying styles to report elements.

Page 43

The JasperReports Ultimate Guide 1.2.5

9 Reporting data
In the 4 Filling report templates chapter, we mentioned that there are three entities that must be supplied as
input to the report-filling process: the report template, the parameter values, and the data source of the
report.

Previous chapters have addressed the reports templates. Now we are going to take a close look at
parameters and the report data source. These are the only source of data that the reporting engine uses to fill
the report.
This data will be organized according to the template defined in the report design to produce a ready-to-
print, page-oriented document.

9.1 Expressions
Expressions are a powerful feature of JasperReports. They can be used to declare report variables that
perform various calculations, group data on the report, specify report text fields content, or further
customize the appearance of report objects.

We mentioned in the 3.5 Expressions scripting language chapter that by default, the Java language is used
for writing report expressions, but other scripting languages can be used if a corresponding report compiler
able to produce the information needed for expressions evaluation at runtime is available. Currently,
JasperReports ships with a report compiler that can compile report templates using the Groovy scripting
language inside report expressions.

For simplicity’s sake we'll explain how report expressions work assuming that they were written using the
Java language only.

Since all JasperReports expressions are (or are assumed to be) real Java expressions, you can use in them
any class you like, as long as you refer to it using its complete class name (including the package), or are
adding the proper imports to your report template as explained in the previous chapter. You also have to
make sure the classes you are using in the report expressions are available in the classpath when you
compile your report and when you fill it with data.

In a JRXML report template there are several elements that define expressions:
<variableExpression>, <initialValueExpression>, <groupExpression>,
<printWhenExpression>, <imageExpression>, <textFieldExpression> and others.

9.1.1 Syntax

Report expressions would be useless if there were no way to reference in them the report parameters, the
report fields, or the declared report variables. For this reason, a special JasperReports syntax on top of the
scripting language allows you to introduce such references in the report expressions you create in the
JRXML report template.

Report parameter references are introduced using the $P{} character sequence like in the following
example:

<textFieldExpression>
 $P{ReportTitle}
</textFieldExpression>

Page 44

The JasperReports Ultimate Guide 1.2.5

This example assumes that the report design declares a report parameter named ReportTitle, whose class
is java.lang.String. The text field will display the value of this parameter when the report is filled.

To use a report field reference in an expression, the name of the field must be put between the $F{ and }
character sequences. For example, to display the concatenated values of two data source fields in a text
field, define an expression like this one:

<textFieldExpression>
 $F{FirstName} + " " + $F{LastName}
</textFieldExpression>

The expression can be even more complex:

<textFieldExpression>
 $F{FirstName} + " " + $F{LastName} + " was hired on " +
 (new SimpleDateFormat("MM/dd/yyyy")).format($F{HireDate}) + "."
</textFieldExpression>

To reference a report variable in an expression, you must put the name of the variable between $V{ and }
like in the example below:

<textFieldExpression>
 "Total quantity : " + $V{QuantitySum} + " kg."
</textFieldExpression>

As you can see, the parameter, field, and variable references introduced by the special JasperReports syntax
are in fact real Java objects. Knowing their class from the parameter, field, or variable declaration made in
the report template, you can even call methods on those object references in your expressions.

Here's one way to extract and display the first letter from a java.lang.String report field:

<textFieldExpression>
 $F{FirstName}.substring(0, 1)
</textFieldExpression>

When support for internationalization was added to JasperReports, a new token was introduced in the
JasperReports syntax to allow access to the locale-specific resources inside the report’s associated resource
bundle. The $R{} character syntax extracts the locale-specific resource from the resource bundle based on
the key that must be put between the brackets.

<textFieldExpression>
 $R{report.title}
</textFieldExpression>

The text field above displays the title of the report by extracting the String value from the resource bundle
associated with the report template based on the runtime-supplied locale and the report.title key. More
on internationalization can be found in the 17 Internationalization chapter.

Page 45

The JasperReports Ultimate Guide 1.2.5

9.1.2 Calculator

What is the “calculator” object? It is the entity inside JasperReports that evaluates expressions and
increments variables or datasets at report filling time. When a report template is compiled, the report
compiler produces and stores in the compiled report template (JasperReport object) information that it
will use at report filling time to build an instance of the
net.sf.jasperreports.engine.fill.JRCalculator class.

The Java-based report compilers generate a Java source file and compile it on-the-fly. This generated class
is a subclass of the JRCalculator and the bytecode produced by compiling it is stored inside the
JasperReport object. At report-filling time, this bytecode is loaded and the resulting class is instantiated to
obtain the calculator object needed for expressions evaluation.

To better understand this calculator object, look at the provided /demo/samples/beanshell sample
which shows how the BeanShell scripting library could be used with JasperReports for expressions
evaluation. During report compilation using the supplied
net.sf.jasperreports.compilers.JRBshCompiler, a BeanShell script is generated and kept inside
the resulting JasperReport object. At report-filling time, this script will be loaded by an instance of the
net.sf.jasperreports.compilers.JRBshCalculator implementation and will serve for
expressions evaluation.

Only the report compiler creates the calculator instance because only the report compiler can make sense of
the information it stored in the compiled report template at report compilation time.

9.1.3 Built-in functions

When JasperReports was internationalized, some of the data and message formatting logic was placed
inside the engine itself to avoid forcing users to rely on external utility classes.

Report expressions can perform method calls on various objects that are available during report filling,
such as parameters, fields, or variable values, but could also call methods on a special object that is already
available as the this reference. This is the “calculator” object presented in the previous section. It has
public utility methods that are ready to use inside report expressions.

Currently there are only a few utility methods of the calculator object available as built-in functions inside
report expressions. These are:

msg

This function offers a convenient way to format messages based on the current report locale, just as you
would normally do when using a java.text.MessageFormat instance.
Furthermore, several signatures for this function take up to three message parameters in order to make the
formatting functionality easier to use.

str

This function is the equivalent of the $R{} syntax. It gives access to locale-specific resources from the
associated resource bundle.

Page 46

The JasperReports Ultimate Guide 1.2.5

9.1.4 Conditional expressions

As the Java language documentation states, an expression is a series of variables, operators, and method
calls (constructed according to the syntax of the language) that evaluate to a single value.
So even if you rely on the Java language for writing report expressions, you cannot use Java statements like
if else, for or while.

However, quite often an expression must return a value that is calculated based on a condition or even
multiple conditions. To accomplish this, use the conditional operator ?:. You can even nest this operator
inside a Java expression to obtain the desired output based on multiple conditions.

The following text field displays "No data" if the value for the quantity field is null:

<textFieldExpression>
 $F{quantity} == null ? "No data" : String.valueOf($F{quantity})
</textFieldExpression>

9.2 Parameters
Parameters are object references that are passed into the report filling operations. They are very useful for
passing to the report engine data that it cannot normally find in its data source.
For example, you could pass to the report engine the name of the user who launched the report filling
operation if we want it to appear on the report, or you could dynamically change the title of our report.

JRXML syntax

<!ELEMENT parameter (parameterDescription?, defaultValueExpression?)>

<!ATTLIST parameter
name NMTOKEN #REQUIRED
class NMTOKEN #REQUIRED
isForPrompting (true | false) "true"

>

<!ELEMENT parameterDescription (#PCDATA)>

<!ELEMENT defaultValueExpression (#PCDATA)>

Declaring a parameter in a report template is very simple. Simply specify only its name and its class:

<parameter name="ReportTitle" class="java.lang.String"/>
<parameter name="MaxOrderID" class="java.lang.Integer"/>
<parameter name="SummaryImage" class="java.awt.Image"/>

The supplied values for the report parameters can be used in the various report expressions, in the report
SQL query, or even in the report scriptlet class. The following special sections of this book address each
report expression, the query, and the scriptlets.

Here are the components that make a report parameter definition complete:

Page 47

The JasperReports Ultimate Guide 1.2.5

Parameter name

The name attribute of the <parameter> element is mandatory and allows referencing the parameter by its
declared name. The naming conventions of JasperReports are similar to those of the Java language as
regards variable declaration. That means that the parameter name should be a single word containing no
special characters like a dot or a comma.

Parameter class

The second mandatory attribute for a report parameter specifies the class name for the parameter values.
The class attribute can have any value as long it represents a class name that is available in the classpath
both at report compile time and report filling time.

Prompting for parameter values

In some GUI applications, it is useful to establish the set of report parameters for which the application
should request user input, before launching the report filling process.
It is also useful to specify the text description that will prompt for the user input for each of those
parameters.

This is why we have the boolean isForPrompting attribute in the parameter declaration sequence and the
inner <parameterDescription> element.

In the following example shows the declaration of a text parameter, along with the description that could be
used at runtime when requesting the user to input the parameter value, in a custom-made dialog window:

<parameter name="Comments" class="java.lang.String" isForPrompting="true">
 <parameterDesciption>
 <![CDATA[
 Please type here the report comments if any
]]>
 </parameterDesciption>
</parameter>

Note the <![CDATA[and]]> character sequences that delimit the parameter description. Those are part of
the XML-specific syntax that instructs the XML parser to not parse the text inside. This allows you to use
XML special characters like the >, <, ", and others in your texts. You'll see this syntax used in other
examples throughout this book and the samples.

Parameter default value

Parameter values are supplied to the report filling process packed in a java.util.Map object with the
parameter names as the keys. This way, you are not obliged to supply a value for each parameter every
time.
If you do not supply a value for a parameter, its value is considered to be null, unless you specify a default
value expression in the report template for this particular report parameter. This expression is only
evaluated if you don't supply a value for the given parameter.

Page 48

The JasperReports Ultimate Guide 1.2.5

Here's a java.util.Date parameter whose value will be the current date if you do not supply a specific
date value when filling the report:

<parameter name="MyDate" class="java.util.Date">
 <defaultValueExpression>
 new java.util.Date()
 </defaultValueExpression>
</parameter>

In the default value expression of a parameter, you can only use previously defined report parameters.

9.2.1 Built-in report parameters

Every report template contains some predefined report parameters, along with the ones that the report
template creator decides to introduce.

These built-in parameters are presented below:

REPORT_PARAMETERS_MAP

This is a built-in parameter that will always point to the java.util.Map object that contains the user-
defined parameters passed when calling the report-filling process.

This parameter is especially useful when you want to pass to the subreports the same set of report
parameters that the master report has received.

REPORT_CONNECTION

This report parameter points to the java.sql.Connection object that was supplied to the engine for
execution through JDBC of the SQL report query, if it is the case.

It has a value different than null only if the report (or subreport) has received a java.sql.Connection
when the report filling process was launched and not a
net.sf.jasperreports.engine.JRDataSource instance.

This parameter is also useful for passing the same JDBC connection object that was used by the master
report to its subreports. You can see this in action in the supplied subreport sample.

REPORT_DATA_SOURCE

When filling a report, there is always a data source object either directly supplied by the parent application
or created behind the scenes by the reporting engine when a JDBC connection is supplied.
This built-in parameter allows you access to the report's data source in the report expressions or in the
scriptlets.

REPORT_MAX_COUNT

You may want to limit the number of records from the report data source during the report filling process.
This built-in parameter accepts java.lang.Integer values representing the number of records from the
data source that the engine will process during the report filling. When the internal record counter reaches
the specified value, the engine will assume that it has reached the last record from the data source and will
stop the iteration through the rest of the data source.

Page 49

The JasperReports Ultimate Guide 1.2.5

REPORT_SCRIPTLET

Even if the report does not use scriptlets, this built-in parameter will point to a
net.sf.jasperreports.engine.JRAbstractScriptlet instance, which is a
net.sf.jasperreports.engine.JRDefaultScriptlet object, in this case.

When using scriptlets, this reference to the scriptlet class instance that is created when filling the report
would allow calling specific methods on it, to manipulate or to use the data that the scriptlet object has
prepared during the filling process. This is shown on the last page of the scriptlet sample report when we
make a call to this scriptlets object. See the 16 Scriptlets chapter for more details about this parameter.

REPORT_LOCALE

Report templates can be reused to generate documents in different languages. The target language used
during report filling is specified by the java.util.Locale object supplied as the value for the
REPORT_LOCALE. The engine uses Locale.getDefault() if no value is explicitly supplied for this
built-in parameter at runtime.
More about this parameter can be found in the 17 Internationalization chapter.

REPORT_RESOURCE_BUNDLE

This parameter points to the java.util.ResourceBundle object that contains localized information
associated with the report template. This object can be supplied directly by the caller application or created
by the engine using the resource bundle base name specified in the resourceBundle property of the
report template. The engine tries to read locale-specific information from this object based on the report-
supplied locale and the key used inside report expressions. More details about internationalization can be
found in the 17 Internationalization chapter.

REPORT_TIME_ZONE

The java.util.TimeZone instance supplied as value for this built-in parameter is used during the report
filling process to format all date and time values. If no value is supplied for this parameter at runtime, the
default time zone of the host machine is used.

REPORT_VIRTUALIZER

When very large reports are generated and memory becomes insufficient, the engine can rely on the report
virtualization mechanism to optimize memory consumption during report filling. Report virtualization is
activated by supplying an instance of the net.sf.jasperreports.engine.JRVirtualizer interface
as the value for the REPORT_VIRTUALIZER built-in parameter. By doing this, the engine will store
temporary data in a serialized form in order to minimize the amount of memory needed during report
filling. Report virtualization is explained in the 6 Large files support chapter.

IS_IGNORE_PAGINATION

By default, JasperReports produces page-oriented documents that are ready for printing. Sometimes,
especially in Web applications, pagination is irrelevant. One way to avoid breaking documents into
multiple pages and to obtain a more flow-oriented document layout is to set this built-in parameter to
Boolean.TRUE at runtime. By doing this, the engine will ignore all the report settings that are related to
page breaking and will produce a document that contains a single very large page.

Page 50

The JasperReports Ultimate Guide 1.2.5

When used, this fill time parameter overrides the value of the isIgnorePagination property of the
report template.

REPORT_CLASS_LOADER

Resources such as images, fonts, and subreports can be referenced using their relative classpath location.
By default, JasperReports uses the current thread’s context class loader to locate the resource. If that fails, it
then falls back to the class loader that loads the library's classes themselves. To extend the resource lookup
mechanism and give greater flexibility to the library, you can pass a custom-made class loader
implementation as the value for the REPORT_CLASS_LOADER fill-time parameter. This would allow
applications to load resources from repository locations that are not normally part of the overall application
classpath.
The equivalent export-time parameter is the CLASS_LOADER exporter parameter. This is used by exporter
implementations to look up lazy images or font files based on their classpath relative location.

REPORT_URL_HANDLER_FACTORY

When images, fonts, and subreports templates are referenced using URLs, the program recognizes only
some common protocols by default. Filesystem-based and HTTP-based URLs that start with the "file:" and
"http:" prefixes respectively work without need for any special configuration.

If custom-made protocols are required to locate and retrieve the resources, there is a need for a mechanism
that associates an URL handler to a specific protocol. Java provides two such standard mechanisms (see the
Javadoc for java.net.URL.URL(String protocol, String host, int port, String file)).
However, neither of the two solutions is possible in certain scenarios (for instance, when an web
application deployed in Apache Tomcat needs to use custom URL handlers present in the application's
classpath). To work around this limitation, the JasperReports library has created its own alternative
mechanism to associate URL handlers for custom URLs used as image, font or subreport locations.

JasperReports provides several ways to register a java.net.URLStreamHandlerFactory instance,
either globally or locally:
• Globally, by calling JRResourcesUtil.setGlobalURLHandlerFactory().
• Locally

o When filling a report, by setting the URLStreamHandlerFactory instance as the value
of the REPORT_URL_HANDLER_FACTORY built-in parameter (the name of the parameter is
accessible via the JRParameter.REPORT_URL_HANDLER_FACTORY constant).

o When exporting a report, by using the
JRExporterParameter.URL_HANDLER_FACTORY export parameter.

o By calling JRResourcesUtil.setThreadURLHandlerFactory() directly.

When a local/context or global URL handler factory is registered with JasperReports, the engine uses it (the
local one takes precedence when both are registered) to obtain an URL handler while creating java.net.URL
instances from String locations. When the location of a resource is specified as a String, the engine will
check whether the location begins with a protocol token followed by a colon (“:”) and whether the
registered URL handler factory returns a valid URL handler for the specific protocol. If so, the URL
handler will be used to create the java.net.URL instance and to open the URL and read data from it.

This mechanism would mainly apply to the following cases:
• Report images can have custom URLs specified as String location, for instance

<imageExpression>”my_protocol://image_host/logo.jpg”</ imageExpression>
Note that the image source should not be a java.net.URL object.

• Subreports can specify custom URLs as location
• PDF fonts names can be defined as custom URLs.

Page 51

http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html#URL(java.lang.String, java.lang.String, int, java.lang.String)

The JasperReports Ultimate Guide 1.2.5

Client code using the JasperReports APIs can also benefit from the mechanism by using methods of the
JRResourcesUtil or JRLoader utility classes.

Therefore, when one or more custom URL protocols have to be used as locations for various report
resources, one only needs to write an implementation of java.net.URLStreamHandlerFactory and
make sure that the createURLStreamHandler(String protocol) method returns non-null protocol
handlers for each custom protocol.

9.3 Data sources
When filling the report, the JasperReports engine iterates through the records of the supplied data source
object and generates every section according to the template defined in the report design.

Normally, the engine expects to receive a net.sf.jasperreports.engine.JRDataSource object as
the data source of the report that it has to fill. But as we shall see, another feature lets users supply a JDCB
connection object instead of the usual data source object when the report data is found in a relational
database.

The net.sf.jasperreports.engine.JRDataSource interface is very simple. You implement only
two methods:

public boolean next() throws JRException;

public Object getFieldValue(JRField jrField) throws JRException;

The next() method is called on the data source object by the reporting engine when iterating through the
data, at report filling time. The second method provides the value for each report field in the current data
source record.

It is very important to know that the only way to retrieve data from the data source is by using the report
fields. A data source object is more like a table with columns and rows containing data in the table cells.
The rows of this table are the records through which the reporting engine iterates when filling the report
and each column should be mapped to a report field, so that we can make use of the data source content in
the report expressions.

There are several default implementations of the net.sf.jasperreports.engine.JRDataSource
interface, and we shall take a closer look to each of them.

9.3.1 JDBC data source

The net.sf.jasperreports.engine.JRResultSetDataSource is a very useful implementation of
the net.sf.jasperreports.engine.JRDataSource interface because it wraps a
java.sql.ResultSet object. Since most reports are generated using data in relational databases, this is
probably the most commonly used implementation for the data source interface.

Interestingly, you might end up using this implementation even if you do not instantiate this class yourself
when filling your reports. This is what happens:

If you specify the SQL query in your report template, the reporting engine executes the specified SQL
query and wraps the returned java.sql.ResultSet object in a
net.sf.jasperreports.engine.JRResultSetDataSource instance. The only thing the engine
needs to execute the query is a java.sql.Connection object . You supply this connection object instead
of supplying the usual data source object.

Page 52

The JasperReports Ultimate Guide 1.2.5

You can see this in samples like jasper, scriptlet, subreport and query found under the
/demo/samples directory of the distributed package.

Of course, you could execute the SQL query in the parent application, outside JasperReports, if you want to
or have to. In this case, you could manually wrap the java.sql.ResultSet obtained using an instance of
this data source class before calling the report filling process.

The most important thing to know when using this type of data source is that you must declare a report
field for each column in the result set. The name of the report field must be same as the name of the column
it maps as well as the data type.
If this is not always possible, the data source also allows users to retrieve data from a particular column in
the java.sql.ResultSet by index. The report field that maps the specified column can be named
”COLUMN_x" where x is the 1-based index of the result set column.
For maximum portability, as stated in the JDBC documentation, the values from a java.sql.ResultSet
object should be retrieved from left to right and only once. Therefore, to do that, consider declaring the
report fields in the same order as they appear in the SQL query.

BLOB and CLOB support

When the SQL query retrieves data from table columns that have large binary or large char data types and
are mapped to java.sql.Blob and java.sql.Clob values through JDBC, the current data source
implementation tries to simplify the data by using intelligent field mapping.

For instance, in most cases, BLOB columns are used to store images in the database that the application
might need to use inside a report. If the report field that maps a given BLOB column from the
java.sql.ResultSet is of type java.awt.Image, the data source will try to read from the
java.sql.Blob instance and load an image object using a java.awt.MediaTracker.
Or, if very large chunks of text are stored in large character columns inside the database, then the data
source will try to read the text from the database and load it in java.lang.String objects, in case the
corresponding report field was declared as being of type String.

The supported mappings are:
BLOB: java.sql.Blob, java.io.InputStream, java.awt.Image
CLOB: java.sql.Clob, java.io.InputStream, java.io.Reader, java.lang.String

9.3.2 JavaBeans data sources

The library is shipped with two data source implementations that can wrap collections or arrays of
JavaBean objects. Both implementations rely on Java Reflection to retrieve report field data from the
JavaBean objects wrapped inside the data sources. These data sources can be used to generate reports using
data already available in-memory in the form of EJBs, Hibernate, JDO objects or even POJOs.

The net.sf.jasperreports.engine.data.JRBeanArrayDataSource is for wrapping an array of
JavaBean objects to use for filling a report with data and the
net.sf.jasperreports.engine.data.JRBeanCollectionDataSource is for wrapping a collection
of JavaBeans. Each object inside the array or the collection will be seen as one record in this type of data
source.

The mapping between a particular JavaBean property and the corresponding report field is made by naming
conventions. The name of the report field must be the same as the name of the JavaBean property as
specified by the JavaBeans specifications.
For instance, to retrieve the value of a report field named "productDescription", the program will try
to call through reflection a method called getProductDescription() on the current JavaBean object.
Note that the current implementations rely on the Jakarta Commons BeanUtils library to retrieve JavaBean
property values, so check their documentation to see how nested JavaBean properties could be used with

Page 53

The JasperReports Ultimate Guide 1.2.5

report fields.
Let's say that the current JavaBean object inside the data source is of type Product and contains nested
supplier information accessible by calling the getSupplier() method, which returns a Supplier object.
In this case, you could have a report field that maps to the supplier’s address if it is called
"supplier.address".

Note that in the past, report fields did not accept dots, spaces, or other special characters in their names.
Therefore, to access nested JavaBean properties, the data source relied on the field's description, if present,
to identify the property, because dots might appear inside the field's description. For backward
compatibility reasons, the current implementations still look into the field's description first, by default. If
there is no description, then the report field name is used for locating the JavaBean property. If this default
behavior is not desirable, especially if the field description is already used for other purposes, the data
sources have special constructors that receive a flag called isUseFieldDescription to avoid using the
field description.

9.3.3 Map-based data sources

JasperReports is shipped with two data source implementations that can wrap arrays or collections of
java.util.Map objects.
The net.sf.jasperreports.engine.data.JRMapArrayDataSource wraps an array of Map objects,
and net.sf.jasperreports.engine.data.JRMapCollectionDataSource can be used to wrap a
java.util.Collection of Map objects.

These implementations are useful if the parent application already stores the reporting data available in-
memory as Map objects. Each Map object in the wrapped array or collection is considered as a virtual record
in the data source, and the value of each report field is extracted from the map using the report field name
as the key.

9.3.4 TableModel data source

In some Swing-based desktop client applications, the reporting data might already be available in the form
of a javax.swing.table.TableModel implementation used for rendering javax.swing.JTable
components on various forms. JasperReports can generate reports using this kind of data if a given
javax.swing.table.TableModel object is wrapped in a
net.sf.jasperreports.engine.data.JRTableModelDataSource instance before being passed as
the data source for the report filling process.

There are two ways to use this type of data source:

Normally, to retrieve data from it, you must declare a report field for each column in the
javax.swing.table.TableModel object, bearing the same name as the column it maps.
Sometimes it is not possible or desirable to use the column name because the report field name and
columns could still be bound to report fields using their zero-based index instead of their names.
For instance, if you know that a particular column is the third column in the table model object (index=2),
then you could name the corresponding field "COLUMN_2" and use the column data without problems.

An example is provided in the /demo/samples/datasource sample.

Page 54

The JasperReports Ultimate Guide 1.2.5

9.3.5 XML data sources

JasperReports comes with a ready-to-use XML data source implementation that lets you generate reports
out of data found in XML format using XPath expressions.

The data source is constructed around a node set (record set) selected by an XPath expression from the
XML document.

Each field can provide an additional XPath expression that will be used to select its value. This expression
must be specified using the <fieldDescription> element of the field. The expression is evaluated in the
context of the current node, so the expression should be relative to the current node.

To support subreports, sub data sources can be created. There are two different methods for creating sub
data sources. The first one allows you to create a sub data source rooted at the current node. The current
node can be seen as a new document around which the sub data source is created. The second method
allows you to create a sub data source that is rooted at the same document that is used by the data source
but uses a different XPath select expression.

Example:

<A>
 <B id="0">
 <C>
 <C>

 <B id="1">
 <C>
 <C>

 <D id="3">
 <E>
 <E>
 </D>

Data source creation:
• creating a data source with two nodes of type /A/B

new JRXmlDataSource(document, "/A/B")

• creating a data source with two nodes of type /A/D

new JRXmlDataSource(document, "/A/D")

Field selection:
• selecting the id attribute from the current node: @id
• selecting the value of the first node of type C under the current node: C

Sub data source creation:
• creating a data source with elements of type /B/C in the context of the node B

((net.sf.jasperreports.engine.data.JRXmlDataSource)$P{REPORT_DATA_SOURCE})
 .subDataSource("/B/C")

Page 55

The JasperReports Ultimate Guide 1.2.5

• creating a data source with elements of type /A/D

((net.sf.jasperreports.engine.data.JRXmlDataSource)$P{REPORT_DATA_SOURCE})
 .dataSource("/A/D")

Note that the full power of XPath expressions is generally available. As an example, "/A/B[@id > 0]"
selects all the nodes of type /A/B having the id greater than 0. You'll find a short XPath tutorial at the
following URL:
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

Note on performance: Because all XPath expressions are interpreted, the data source
performance is not great. For the cases where more speed is required, consider implementing a
custom data source that directly accesses the Document through the DOM API.

You can see how this data source implementation works by checking the
/demo/samples/xmldatasource sample provided with the project source files.

9.3.6 CSV data sources

Sometimes data that users need to fill the report with is found in plain text files, in a certain format, such as
the popular CSV (comma separated values).
JasperReports provides an implementation for such a data source, by wrapping the CSV data from a text
file into a net.sf.jasperreports.engine.data.JRCsvDataSource.

The CSV data source usually needs to read a file from disk, or at least from an input stream. Thus, the
JRCsvDataSource can be initialized in three ways, depending on where it gets the data:
• a file: new JRCsvDataSource(File)
• an input stream: new JRCsvDataSource(InputStream)
• a reader: new JRCsvDataSource(Reader)

The CSV format has certain formatting rules. Data rows are separated by a record delimiter (text sequence)
and fields inside each row are separated by a field delimiter (character). Fields containing delimiter
characters can be placed inside quotes. If fields contain quotes themselves, these are duplicated (e.g. "John
""Doe""" will be displayed as John "Doe").

The default values in JasperReports (and also the most common for CSV files) are a comma for field
delimiter and a newline (\n) for record delimiter. Users can override these default values by calling
setFieldDelimiter(char) and setRecordDelimiter(String). For example, on some systems,
users may need to replace the default \n delimiter with a \r\n one.

Since CSV does not specify column names, the default convention is to name report fields COLUMN_x and
map each column with the field found at index x in each row (these indices start with 0). To avoid this
situation, users have 2 possible solutions:
• use the setUseFirstRowAsHeader(true) to consider the first line of the CSV to represent column

names;
• provide an array of column names using the setColumnNames(String[]) method.

Note that in both cases, the number of provided column names must be at least equal with the number of
actual fields in any record, otherwise an exception will be thrown. Also, for any column name in the data
source, an equivalent report field must exist.

A particular aspect is handling data types, since CSV does not provide such information. This matter is
solved by trying to match each field in the data source to its corresponding report field type. This works
nicely for basic data types, except dates, because the field definition does not specify the date format.

Page 56

http://www.zvon.org/xxl/XPathTutorial/General/examples.html

The JasperReports Ultimate Guide 1.2.5

To solve this problem, you can specify the expected date format in the data source itself, using the
setDateFormat(DateFormat) method.

The CSV data source implementation also has a JRCsvDataSourceProvider class, useful for design
tools creators. See chapter 9.3.9 Data source provider for more details.

9.3.7 Empty data sources

The net.sf.jasperreports.engine.JREmptyDataSource class is a very simple data source
implementation that simulates a data source with a given number of virtual records inside. It is called
“empty data source” because even though it has one or more records inside, all the report fields are null for
all the virtual records of the data source.

Such a simple data source implementation is used by the UI tools to offer basic report preview
functionality, or in special report templates, or for testing and debugging purposes.

9.3.8 Rewindable data sources

The net.sf.jasperreports.engine.JRRewindableDataSource is an extension of the basic
net.sf.jasperreports.engine.JRDataSource interface, to which it adds the possibility to move the
record pointer back before the first virtual record. It adds only one method, called moveFirst(), to the
interface.

Rewindable data sources are useful when working with subreports. If a subreport is placed inside a band
which is not allowed to split due to the isSplitAllowed="false" setting, and when there is not enough
space on the current page for the entire subreport to be rendered, then the engine has to give up rendering
the current band, introduce a page break, and restart the band and the subreport on the next page. But since
the subreport already consumed some of the supplied data source records when trying to render the band on
the previous page, it needs to move the record pointer of the data source back before the first data source
for the subreport to restart properly.

All built-in data source implementations are rewindable except for the
net.sf.jasperreports.engine.JRResultSetDataSource, which does not support moving the
record pointer back. This is a problem only if this data source is used to manually wrap a
java.sql.ResultSet before passing it to the subreport. It is not a problem if the SQL query resides in
the subreport template because the engine will re-execute it when restarting the same subreport on the next
page.

Page 57

The JasperReports Ultimate Guide 1.2.5

9.3.9 Data source provider

To simplify integration with the GUI tools for creating and previewing report templates, the JasperReports
library has published an interface that allows those tools to create and dispose of data source objects. This
is the standard way to plug custom data sources into a design tool.

This is very useful when the developer wants to preview the reports with the design tool and use the actual
data that the target application will supply at runtime. In order to achieve this, simply create a custom
implementation of the net.sf.jasperreports.engine.JRDataSourceProvider interface and make
it available to the design tool to create the required data sources to use during report preview.

The data source provider interface has only a few methods that allow creating and disposing of data source
objects and also methods for listing the available report fields inside the data source if possible. Knowing
which fields will be found in the created data sources helps you to create report field wizards inside the
design tools to simplify report creation.

The library also comes with an abstract implementation of the JRDataSourceProvider interface that can
be used as the base class for creating data source provider implementations that produce JavaBean-based
data sources.
The net.sf.jasperreports.engine.data.JRAbstractBeanDataSourceProvider uses Java
Reflection to provide available report fields names for a given JavaBean class.

For more details about data source providers, check the JavaDoc API documentation and the GUI tools
available for JasperReports listed in the final chapter.

9.4 Report query
To fill a report, provide the reporting engine with the report data, or at least instruct it how to get this data.

JasperReports normally expects to receive a net.sf.jasperreports.engine.JRDataSource object
as the report data source, but it was also enhanced to work with JDBC so that it can retrieve data from
relational databases if required.

9.4.1 SQL queries

The library allows the report template to specify the SQL query for report data if this data is located in
relational databases.

The SQL query specified in the report template is taken into account and executed only if a
java.sql.Connection object is supplied instead of the normal
net.sf.jasperreports.engine.JRDataSource object when filling the report.

This query can be introduced in the JRXML report template using the <queryString> element. If present,
this element comes after the report parameter declarations and before the report fields.

JRXML syntax

<!ELEMENT queryString (#PCDATA)>
<!ATTLIST queryString

language NMTOKEN "sql"
>

Page 58

The JasperReports Ultimate Guide 1.2.5

Here is a simple SQL query that retrieves data from a table called Orders placed in a relational database:

<queryString><![CDATA[SELECT * FROM Orders]]></queryString>

Report parameters in the query string are important to further refine the data retrieved from the database.
These parameters can act as dynamic filters in the query that supplies data for the report. Parameters are
introduced using a special syntax, similar to the one used in report expressions.

There are two possible ways to use parameters in the query:

 1. The parameters are used like normal java.sql.PreparedStatement parameters, using the
following syntax:

<queryString>
 <!CDATA[
 SELECT * FROM Orders WHERE OrderID <= $P{MaxOrderID} ORDER BY ShipCountry
]]>
</queryString>

 2. Sometimes is useful to use parameters to dynamically modify portions of the SQL query or to pass the
entire SQL query as a parameter to the report filling routines. In such a case, the syntax differs a little, as
shown in the following example. Notice the ! character:

<queryString>
 <!CDATA[
 SELECT * FROM $P!{MyTable} ORDER BY $P!{OrderByClause}
]]>
</queryString>

What is different in this second example? Parameters are used for the missing table name in the FROM
clause and the missing column names in the ORDER BY clause. Note that you cannot use normal IN
parameters to dynamically change portions of your query that you execute using a
java.sql.PreparedStatement object.

The special syntax that introduces the parameter values in this example ensures that the value supplied for
those parameters replace the parameter references in the query, before it is sent to the database server using
a java.sql.PreparedStatement object.
In fact, the reporting engine first deals with the $P!{} parameter references by using their values to obtain
the final form of the SQL query, and only after that transforms the rest of the $P{} normal parameter
references into usual IN parameters used when working with JDBC prepared statements.

For more details about what type of parameters to use in your report queries, you must be familiar with
JDBC technology, especially the java.sql.PreparedStatement interface and its parameters.

This second type of parameter reference used in the SQL query allows you to pass the entire SQL query at
runtime if you like:

<queryString>$P!{MySQLQuery}</queryString>

You cannot put other parameter references into a parameter value. That is, when supplying the
entire SQL query as a report parameter, the engine does not expect to find parameter
references in the query, which it considers finished and ready to send ”as is“, to the database
server.

Some of the provided samples like jasper, subreport, scriptlet, and query use internal SQL queries
to retrieve data. The most interesting sample illustrating this is in the /demo/samples/query directory of
the project's distribution.

Page 59

The JasperReports Ultimate Guide 1.2.5

9.4.2 Stored procedures

In the majority of cases, the SQL query text placed inside a report template is a SELECT statement.
JasperReport uses a java.sql.PreparedStatement behind the scenes to execute that SQL query
through JDBC and retrieve a java.sql.ResultSet object to use for report filling. However, the SQL
query string might also contain stored procedures calls.

Certain conditions must be met to put stored procedures calls in the SQL query string of a report template:
• the stored procedure must return a java.sql.ResultSet when called through JDBC;
• the stored procedure cannot have OUT parameters;

These two conditions imply that the stored procedure can be called using a
java.sql.PreparedStatement and does not need to be called through a
java.sql.CallableStatement in order to work with JasperReports.

9.4.3 Query executer API

Starting with JasperReports version 1.2.0, report data can be produced by specifying queries in languages
other than SQL. Each query language is associated a query executer factory implementation. JasperReports
has built-in query executer implementations for SQL, Hibernate 3 and XPath queries.

The query language is specified in JRXML using the language attribute of the <queryString> tag.
Using the API, the query language is set by JRDesignQuery.setLanguage(String). The default
language is SQL, thus ensuring backward compatibility for report queries that do not specify a query
language.

To register a query executer factory for a query language, one has to define a JasperReports property
named net.sf.jasperreports.query.executer.factory.<language> (see the 19 Configuration
files chapter for details). The same mechanism can be used to override the built-in query executers for a
query language, for instance to use a custom query executer for SQL queries.

The API for query executers involves an executer factory interface, a query executer interface,
implementations of these interfaces, and JRDataSource implementations.

JRQueryExecuterFactory is a factory interface used to query executers for a specific language and to
provide information regarding the connection parameters required by the query executer to run the query. It
has the following methods:
• JRQueryExecuter createQueryExecuter(JRDataset dataset, Map parameters) –

creates a query executer. The dataset includes the query string and the fields that will be requested
from the data source created by the query executer. The parameters map contains parameter types and
run-time values to be used for query parameters. This method usually sends the dataset and parameters
map to the created query executer.

• Object[] getBuiltinParameters() - returns parameters that will be automatically registered
with a report/dataset based on the query language. These parameters will be used by query executers as
the context/connection on which to execute the query. For instance, the Hibernate query executer
factory specifies a HIBERNATE_SESSION parameter of type org.hibernate.Session whose value
will be used by the query executer to run the query.

• boolean supportsQueryParameterType(String className) – used on report validation to
determine whether a query parameter type (for a parameter specified in the query using $P{..}) is
supported by the query executer implementation.

Page 60

The JasperReports Ultimate Guide 1.2.5

A JRQueryExecuter is responsible for running a query, creating a data source out of the result and
closing the result. The It include these methods:
• JRDataSource createDatasource() - processes and runs the query and creates a data source out

of the query result. Usually, the required data (query string and parameter values) are made available to
the query executer by the factory on creation.

• void close() - closes the query execution result and any other resource associated with it. This
method is called after the all data produced by the query executer has been fetched.

• boolean cancelQuery() - this method is called when the user decides to cancel a report fill
process. The implementation should check whether the query is currently being executed and ask the
underlying mechanism to abort the execution. The method should return true if the query was being
executed and the execution was canceled. If execution abortion is not supported, the method would
always return false.

Query executer implementation can benefit from using JRAbstractQueryExecuter as a base. The
abstract base provides query parameter processing functionality and other utility methods.

In most of the cases, a query executer needs a new JRDataSource implementation to wrap its specific
query results. Still, in some of the cases, query executers can use existing JRDataSource implementations.

9.4.4 SQL query executer

The SQL query executer is a JDBC based executer for SQL queries. It replaces the mechanism used before
the 1.2.0 release for executing report queries, preserving all this functionality.

The SQL query executer factory does not register any parameter as the REPORT_CONNECTION parameter is
kept in all reports for backward compatibility. The SQL query executer uses this parameter to retrieve a
java.sql.Connection object.

The query executer creates a JRResultSetDataSource data source to wrap the JDBC result set.

Aborting the currently running query is supported using java.sql.PreparedStatement.cancel().

The fetch size of the JDBC statement used by the query executer behind the scenes can be set using the
net.sf.jasperreports.jdbc.fetch.size configuration property at report level or globally.

9.4.5 XPath query executer

The XPath query executer permits reports using XML data sources to specify the XPath that produces the
list of nodes/records as the report query.

The query executer factory registers a parameter named XML_DATA_DOCUMENT of type
org.w3c.dom.Document. The query executer will run the XPath query against this document and
produce a JRXmlDataSource data source.

Parameters are supported in the XPath query. All parameters will be replaced in the query string by their
java.lang.String value.

More details about how the built-in XPath data source works can be found in the 9.3.5 XML data sources
chapter and you can see this query executer being used in the /demo/samples/xmldatasource sample
provided with the project source files.

Page 61

The JasperReports Ultimate Guide 1.2.5

9.4.6 Hibernate query executer

Hibernate 3 support is present in JasperReports in the form of a query executer. This allows users to specify
in a report a HQL query that should be used to retrieve report data.

For reports having a HQL query, the executer factory will automatically define a parameter named
HIBERNATE_SESSION of type org.hibernate.Session. Its value will be used by the query executer to
create the query.

Query parameters

Like SQL queries, HQL queries can embed two types of parameters:

1. Query parameters are embedded using the $P{..} syntax. These parameters are used as named
parameters of the Hibernate query. The correspondence between parameter Java types and Hibernate
types is resolved according to the following table:

Parameter type (Java) Hibernate type
java.lang.Boolean boolean
java.lang.Byte byte
java.lang.Double double
java.lang.Float float
java.lang.Integer integer
java.lang.Long long
java.lang.Short short
java.math.BigDecimal big_decimal
java.math.BigInteger big_integer
java.lang.Character character
java.lang.String string
java.util.Date date
java.sql.Timestamp timestamp
java.sql.Time time
java.util.Collections
implementation

Multiple values parameter; the type is
guessed by Hibernate

Mapped entity class Mapped persistent entity
Other Guessed by Hibernate

2. Statement substitution parameters are embedded using the $P!{..} syntax. The java.lang.String
value of the parameter is substituted as-is in the query string before creating the Hibernate query. This
type of parameters can be used to dynamically specify query clauses/parts.

Query execution

The result of a Hibernate query can be obtained in several ways. The Hibernate query executer chooses the
way the query result will be produced based on a property named
net.sf.jasperreports.hql.query.run.type.

This property can be specified both globally as a JasperReports property (see the 19 Configuration files
chapter) and as a property of the report/dataset (using the <property> element in JRXML or the
setProperty(String, String) method). The report/dataset property value overrides the global value.

Page 62

The JasperReports Ultimate Guide 1.2.5

The run type can be one of:
• list – the result is fetched using org.hibernate.Query.list(). The result rows can be fetched

all at once or in fixed sized chunks. To enable paginated result rows retrieval, the
net.sf.jasperreports.hql.query.list.page.size configuration property should have a
positive value.

• scroll – the result is fetched using org.hibernate.Query.scroll()
• iterate – the result is fetched using org.hibernate.Query.iterate()

The fetch size of the query can be set using the net.sf.jasperreports.jdbc.fetch.size
configuration property at report level or globally.

Field mapping

A report/dataset fields is mapped to a value from the Hibernate query result by its description or by its
name. By default, the program uses the report field name, but the report field description property could be
used instead if the net.sf.jasperreports.hql.field.mapping.descriptions configuration
property is set to true either in the report template or globally.

The mappings are similar to the ones used by JavaBeans data sources (see the 9.3.2 JavaBeans data
sources chapter), except that select aliases are used when queries return tuples instead of single objects.

The field mappings are resolved according to this scheme:
• If the query returns one object per row

o If the object's type is a Hibernate entity or component type, the field mappings are
resolved as property names of the entity/component. If a select alias is present, it can be
used to map a field to the whole entity/component object.

o Otherwise, the object type is considered scalar and only one field can be mapped to its
value.

• If the query returns a tuple (object array) per row, then a field mapping can be one of:
o a select alias – the field will be mapped to the value corresponding to the alias
o a property name prefixed by a select alias and a "." - the field will be mapped to the value

of the property for the object corresponding to the alias. The type corresponding to the
select alias has to be an entity or component type.

Field mappings do not yet support queries like select new list(..) or select new map(..).

9.4.7 MDX query executer

Reporting on OLAP data is supported in JasperReports via a MDX query executer and a data source that
use the Mondrian APIs. Users can create reports with MDX queries and map report fields on the OLAP
result; the engine will execute the query via Mondrian and pass the result to a data source implementation,
which will be used to fill the report.
The Mondrian query executer is registered by default for queries having "MDX" or "mdx" as language
specified in the report template. You can use JasperReports configuration properties to register additional
or alternative query language to query executer mappings (see chapter 9.4.3 Query executer API).

Connection parameter

The Mondrian query executer requires a single connection parameter named MONDRIAN_CONNECTION of
type mondrian.olap.Connection.
When filling reports with MDX queries, the caller is required to supply a valid Mondrian connection to be

Page 63

http://mondrian.sourceforge.net/

The JasperReports Ultimate Guide 1.2.5

used for executing the query. The connection can be obtained as follows:

mondrian.olap.Connection connection = ...;
parameters.put(JRMondrianQueryExecuterFactory.PARAMETER_MONDRIAN_CONNECTION,
connection);
JasperPrint print = JasperFillManager.fillReport(report, parameters);

Query parameters

MDX queries can contain placeholders for parameters of any type. When the query gets executed, each
parameter placeholder will be replaced in the query string by its toString() value. Therefore, for MDX
queries, $P{...} parameters are equivalent to $P!{...} query fragments.

Data source

The Mondrian query executer passes the query result to a Mondrian data source, which will be used to
iterate the result and map values from the result to report fields.

The field mapping deals with mapping values from the OLAP result to report fields. As an OLAP result has
a multidimensional and hierarchical structure while a JasperReports data source has a tabular structure,
mapping values to fields is not a trivial task.

A special syntax is used to specify what value should be mapped to a field. The field description is used to
hold the mapping specification.

Using the mapping syntax, one can map two types of values from the OLAP result:
• Member values are names or properties of members of the result axes.
• Data/measure values are cell values from the result.

The Mondrian data source performs a traversal of the OLAP result by iterating the members of the result
axes. On every step, each field is checked whether its mapping matches the current position in the OLAP
result. If so, the value is extracted from the result and set to the field.

A member mapping matches members on an axis specified either by name or index. Each element on an
axis is a tuple. To match a single member in a tuple, an index or a dimension name is used. If a level is
specified either by depth or level name, then the specified level member is matched.

The member level can be used to map members that are parents of the current member in the dimension
hierarchy. The fields, which are mapped to higher-level members, can then be used for grouping. For
example, if the result cube has members of the Store dimension on the Rows axis, one can map
Rows[Store][Store Country] to a country field and Rows[Store][Store City] to a city field and
use the country field to create a report group.

A member mapping yields the following value:
• if a property is specified, then the property value is retrieved from the member
• otherwise

o if a level is specified, then the value is the name of the member
(mondrian.olap.Member.getName())

o otherwise, the value is the member itself (mondrian.olap.Member instance)

Member mapping examples:
• Rows[Store][Store State] – yields the Store State name of the Store dimension member on

the Rows axis of the result
• Rows[Store][Store Name](Store Manager) – yields the Store Manager property of the

Store Name level of the Store dimension member on the Rows axis

Page 64

The JasperReports Ultimate Guide 1.2.5

A data mapping matches data cells corresponding to a member level filter and fixed axis positions.
A member level filter consists of several member level specifications. The data mapping matches the
current axis members only if for each filter entry the level of the corresponding axis member is the same as
the filter level. If a member level for an axis/dimension is not present in the filter, the data mapping will
match any member for the axis/dimension.

The member filter can be used to map data values aggregated at higher levels and use these values as totals
instead of variables calculated by the JasperReports engine. For example, you can map a field to
Data(Rows[Store][Store Country]) to get the country aggregated total and another field to
Data(Rows[Store][Store City]) to get the city total.

Fixed positions on an axis can be specified for a data mapping. This means that the entries on that axis will
not be iterated, but the fixed value will be used when retrieving the data cell for the data mapping. The
positions correspond to the axes and if there is no fixed position for an axis, "?" should be used. For
instance, [?, 1, ?] corresponds to the second entry on the rows axis and the current (iterated) positions
on the columns and pages axes.

Fixed positions can be specified either by numerical indexes or by MDX tuple names. The syntax is similar
to the MDX syntax, except that all the member names need to be enclosed in brackets. If a tuple is
composed of only one member, the tuple name would be something like

[Store].[All Stores].[USA].[CA]

while for tuples composed of multiple members, the name would be something of the form

([Store].[All Stores].[USA].[CA],[Customers].[All Customers].[USA].[CA])

The names are matched against mondrian.olap.Member.getUniqueName().

A data mapping yields the cell value if the data label is Data, and yields the cell formatted value if the
label is FormattedData.

Data mapping examples:
• Data – yields the cell value corresponding to the current axis positions; all the result axes will be

iterated in this case;
• Data([Measures].[Unit Sales],?) - yields the cell value corresponding to the

[Measures].[Unit Sales] member on the Columns axis and the current position on the Rows
axis; only the Rows axis will be iterated in this case;

• FormattedData(Rows[Store][Store State])([Measures].[Customer Count],?) - yields
the formatted cell value at the Store State level on the Rows axis (and corresponding to the
[Measures].[Customer Count] member on the Columns axis);

• Data(Columns[Time][Month],Rows[Store][Store Country]) – yields the cell value for the
Month level on the Columns axis and the Store Country level on the Rows axis; both the Columns
and the Rows axis will be iterated.

The Mondrian data source performs a Cartesian iteration on the entries of axes that do not have fixed
positions. If axis positions are not specified, then all the axes are iterated. E.g. if the data mappings specify
positions that look like [?, ?, x], then the Columns and Rows axes entries will be iterated by
performing an iteration of the Rows entries and, at each step of this iteration, a nested iteration of the
Columns entries.

The most common case is to iterate on only one axis. In this case, the conversion from the OLAP result to a
JasperReports data source is more natural.

At an iteration step, a data source row is produced only if the maximum level of member mappings for each
axis/dimension is reached by the current axis members. If the maximum level is not reached for an

Page 65

The JasperReports Ultimate Guide 1.2.5

axis/dimension, then the matching mapping values are collected and the axis iterations continue without
producing a data source row. The reason behind this logic is that the higher levels of OLAP dimensions
conceptually correspond to JasperReports groups and not data source rows. Values found at the higher
levels can be mapped to report fields using level specifications and member level filters and can be used in
the report group headers or footers.

For example, suppose the data source iterates on the following entries on the Rows axis:
[Store].[All Stores].[USA]
[Store].[All Stores].[USA].[CA]
[Store].[All Stores].[USA].[CA].[Los Angeles]
[Store].[All Stores].[USA].[CA].[Sacramento]
[Store].[All Stores].[USA].[CA].[San Francisco]

Presuming that the maximum level of the member mappings is [Store].[Store City], the first two
entries of the axis would not produce a data source row as the maximum level is not reached. Member or
data values can be mapped for the country or state levels and used in group headers/footers or in the detail
band.

Mapping syntax reference

The following syntax table can be used as a reference for the field mapping syntax:

Syntax element Syntax rule Description
Mapping Member_mapping |

Cell_mapping
A field mapping is either a member
mapping or cell mapping

Member_mapping Member [Property] A member mapping consists of a member
specification and an optional property

Member Axis Axis_position [Level] A member specification consists of an axis,
an axis position and an optional level
specification

Axis Axis_no | Axis_name An axis is either specified by index or name
Axis_no "Axis(" <number> ")" Axis specified by number
Axis_name "Columns" | "Rows" | "Pages"

| "Chapters" | "Sections"
Axis names

Axis_position "[" (<number> | <name>) "]" An axis positions is specified by either an
index of the axis tuple or a dimension name

Level "[" (<number> | <name>) "]" A level is specified either by a depth or by a
level name

Property "(" <name> ")" A property is specified by name
Cell_mapping Data [Member_filter]

[Axis_indexes]
A cell mapping consists of data
specification, an optional a member filter
and optional axis indexes

Data "Data" | "FormattedData"
Member_filter "(" Member ("," Member)* ")" A member filter consists of one or more

member specifications separated by comma.
Axis_ indexes "(" Axis_index (","

Axis_index)* ")"
Axis indexes separated by comma. Note: the
number of indexes must be the same with
the number of query axes.

Axis_index "?" | <number> | Axis_tuple
| Axis_member

An axis index is either ?, a number, an axis
tuple or an axis member

Axis_tuple "(" Axis_member (","
Axis_member)* ")"

An axis tuple consists of a list of axis
members separated by comma.

Axis_member "[" <name> "]" (".[" +
<name> + "]")*

An axis member is a MDX member having
all the names enclosed in brackets

You can see a working example of the MDX query executer in the supplied /demo/samples/mondrian
sample which is part of the project distribution source files.

Page 66

The JasperReports Ultimate Guide 1.2.5

9.4.8 EJB QL / JPA query executer

The EJB QL report query executer adds support for reporting on EJB 3.0 persistent entities data. For an
EJB QL query in a report, the query executer will use the EJB 3.0 Java Persistence API to execute the
query against an entity manager provided at runtime, and use the query result as a data source for the
report.
The built-in EJB QL query executer is registered by default for queries having "EJBQL" or "ejbql" as
language. This mapping can be changed by using JasperReports properties (see chapter 9.4.3 Query
executer API).

Query execution

The EJB QL query executer contributes with built-in parameters to the report:
• the entity manager to be used for executing the query;
• an optional query hints map.

When the report template contains an EJB QL query, you must provide a JPA entity manager at runtime;
the query executer will run the query using the supplied entity manager. The entity manager is of type
javax.persistence.EntityManager and should be provided via the "JPA_ENTITY_MANAGER" built-
in parameter:

Map parameters = new HashMap();
javax.persistence.EntityManager entityManager = createEntityManager();
parameters.put(
 JRJpaQueryExecuterFactory.PARAMETER_JPA_ENTITY_MANAGER,
 entityManager
);
JasperFillManager.fillReport(jasperReport, parameters);

The means of getting hold of an entity manager depends on the particular EJB/JPA environment and
implementation.

An additional parameter named "JPA_QUERY_HINTS_MAP" allows you to specify query hints for running
the query. The parameter value should be a map containing hint values mapped to hint names. The hints are
set using the javax.persistence.Query.setHint(String hintName, Object value) method.

Hints can also be specified statically by using report properties. The query executer treats any report
property starting with net.sf.jasperreports.ejbql.query.hint.<hintName> as a hint by
interpreting the property suffix as the hint name and the property value as the hint value. Thus, if the
following property is present in the report:

<property name="net.sf.jasperreports.ejbql.query.hint.cacheType"
value="Shared"/>

the cacheType hint having "Shared" as value will be set when running the query. Note that only hints
that accept String values can be set using this mechanism.
A separate report property can be used to paginate the query result. This property can be used for
controlling the amount of Java heap space used by the query executer while filling the report. The property
can be set in the following manner:

<property name="net.sf.jasperreports.ejbql.query.page.size" value="500"/>

Page 67

The JasperReports Ultimate Guide 1.2.5

The results of the query will be fetched in chunks containing 500 rows.
The pagination is achieved via the javax.persistence.Query.setMaxResults() and
setFirstResult() methods. Obviously, using pagination could result in performance loss. Therefore
enabling it is primarily recommended when the query results are very large.

Report EJB QL queries can contain parameters of any type. At runtime, the value of the parameter is
directly set by using javax.persistence.Query.setParameter(String name, Object value),
with no other processing.

Data source

The result of the query execution is sent to a data source implementation, which iterates over it and extracts
report field values. Fields are mapped to specific values in the query result by specifying the mapping as
field description or field name.
The JPA data source can handle two types of query results:
• queries returning a single entity/bean per row;
• queries returning object tuples as rows.

When the query returns a single entity/bean per row, like in the following examples:

SELECT m FROM Movie m

or

SELECT NEW MovieDescription(m.title, m.gender) FROM Movie m

the field mappings are interpreted as bean property names.
The same conventions as for JavaBean data sources are used (see chapter 9.3.2 JavaBeans data sources).

When the query returns multiple objects per row:

SELECT m.title, m.gender FROM Movie m

the fields are mapped using one of the following forms:
• COLUMN_<index> - maps the field to a value specified by its position in the resulting tuple. The

positions start from 1.
• COLUMN_<index>.<property> - maps the field to a property of a value specified by its position in

the resulting tuple.

For instance, the following mappings could be used for a query returning multiple objects per row:
COLUMN_1, COLUMN_2, COLUMN_1.title, COLUMN_2.movie.title.

The EJB QL query executer and the corresponding JPA data source are used in the supplied
/demo/samples/ejbql sample which is part of the JasperReports distribution package.

Page 68

The JasperReports Ultimate Guide 1.2.5

9.5 Fields
The report fields represent the only way to map data from the data source into the report template and to
use this data in report expressions to obtain the desired output.

When declaring report fields, make sure that the data source you supply at report filling time can provide
values for all those fields.
For example, if you use the net.sf.jasperreports.engine.JRResultSetDataSource
implementation when the report’s SQL query is used, make sure there is a column for each field in the
result set obtained after the execution of the query. The corresponding column must bear the same name
and have the same data type as the field that maps it.

JRXML syntax

<!ELEMENT field (fieldDescription?)>

<!ATTLIST field
name CDATA #REQUIRED
class NMTOKEN "java.lang.String"

>

<!ELEMENT fieldDescription (#PCDATA)>

Here’s a small example that shows the fields to declare to map the columns of a database table, called
Employees, with the following structure:

Column Name Data Type Length
EmployeeID int 4
LastName varchar 50
FirstName varchar 50
HireDate datetime 8

The report fields should declare the field as follows:

<field name="EmployeeID" class="java.lang.Integer"/>
<field name="LastName" class="java.lang.String"/>
<field name="FirstName" class="java.lang.String"/>
<field name="HireDate" class="java.util.Date"/>

If you declare a field that without a corresponding column in the result set, an exception will be thrown at
runtime. The columns in the result set produced by the execution of the SQL query that do not have
corresponding fields in the report template do not affect the report filling operations, but they also won’t be
accessible for display on the report.

Here are the components of a report field definition:

Field name

The name attribute of the <field> element is mandatory. It lets you reference the field in report
expressions by name.

Field class

The second attribute for a report field specifies the class name for the field values.

Page 69

The JasperReports Ultimate Guide 1.2.5

Its default value is java.lang.String, but it can be changed to any class available at runtime.

Regardless of the type of a report field, the engine makes the appropriate cast in report expressions where
the $F{} token is used, making manual casts unnecessary.

Field description

This additional text chunk can prove very useful when implementing a custom data source, for example.
You could store in it a key, or whatever information you might need in order to retrieve the field's value,
from the custom data source at runtime.

By using the optional <fieldDesciption> element instead of the field name, you can easily overcome
restrictions of field naming conventions when retrieving the field values from the data source.

<field name="PersonName" class="java.lang.String" isForPrompting="true">
 <fieldDesciption>PERSON NAME</fieldDesciption>
</field>

The field description is less important than in previous versions of the library because now even the field's
name accepts dots, spaces, and other special characters.

9.6 Variables
Report variables are special objects built on top of a report expression. They can simplify the report
template by declaring only once an expression that is heavily used throughout the report template or to
perform various calculations on the corresponding expression.

JRXML syntax

<!ELEMENT variable (variableExpression?, initialValueExpression?)>

<!ATTLIST variable
name CDATA #REQUIRED
class NMTOKEN "java.lang.String"
resetType (None | Report | Page | Column | Group) "Report"
resetGroup CDATA #IMPLIED
incrementType (None | Report | Page | Column | Group) "None"
incrementGroup CDATA #IMPLIED
calculation (Nothing | Count | DistinctCount | Sum | Average | Lowest |

Highest | StandardDeviation | Variance | System | First) "Nothing"
incrementerFactoryClass NMTOKEN #IMPLIED

>

<!ELEMENT variableExpression (#PCDATA)>

<!ELEMENT initialValueExpression (#PCDATA)>

In its expression, a variable can reference other report variables, fields, or parameters. With every iteration
through the data source, variables are evaluated/incremented in the same order as they were declared.
Therefore, the order of variables as they appear in the report template is very important.

Variable name

Just as for the parameters and fields, the name attribute of the <variable> element is mandatory and

Page 70

The JasperReports Ultimate Guide 1.2.5

allows referencing the variable by its declared name in report expressions.

Variable class

The class attribute contains the name of the class to which the variable values belong. The default is
java.lang.String, but you can declare report variables of any class as long as the class is available in
the classpath, both at report compilation time and report filling time.

Reset type

The value of a report variable can change with every iteration, but it can be brought back to the value
returned by its initial value expression at specified times during the report-filling process. This behavior is
controlled using the resetType attribute, which indicates when the variable should be reinitialized during
the report-filling process.

There are five reset types for a variable:
• No reset : The variable will never be initialized using its initial value expression and will only contain

values obtained by evaluating the variable’s expression (resetType="None").
• Report level reset : The variable is initialized only once, at the beginning of the report filling process,

with the value returned by the variable’s initial value expression (resetType="Report").
• Page level reset : The variable is reinitialized at the beginning of each new page

(resetType="Page").
• Column level reset : The variable is reinitialized at the beginning of each new column

(resetType="Column").
• Group level reset : The variable is reinitialized every time the group specified by the resetGroup

attributes breaks (resetType="Group").

The default value for this attribute is resetType="Report".

Reset group

If present, the resetGroup attribute contains the name of a report group and works only in conjunction
with the resetType attribute, whose value must be resetType="Group".

Increment type

This property lets you choose the exact moment to increment the variable. By default, variables are
incremented with each record in the data source, but in reports with multiple levels of data grouping, some
variables might calculate higher level totals and would need to be incremented only occasionally and not
with every iteration through the data source.

This attribute uses the same values as the resetType attribute, as follows:
• Row level increment : The variable is incremented with every record during the iteration through the

data source (incrementType="None").
• Report level increment : The variable never gets incremented during the report filling process

(incrementType="Report").
• Page level increment : The variable is incremented with each new page (incrementType="Page").
• Column level increment : The variable is incremented with each new column

(incrementType="Column").
• Group level increment : The variable is incremented every time the group specified by the

incrementGroup attributes breaks (incrementType="Group").

Page 71

The JasperReports Ultimate Guide 1.2.5

Increment group

If present, the incrementGroup attribute contains the name of a report group. It works only in
conjunction with the incrementType attribute, whose value must be incrementType="Group".

9.6.1 Calculations

As mentioned, variables can perform built-in types of calculations on their corresponding expression
values. Here are all the possible values for the calculation attribute of the <variable> element:

Calculation Nothing

This is the default calculation type that a variable performs. It means that the variable’s value is
recalculated with every iteration in the data source and that the value returned is obtained by simply
evaluating the variable’s expression.

Calculation Count

A count variable includes in the count the non-null values returned after evaluating the variable main
expression, with every iteration in the data source. Count variables must be always of a numeric type, but
they can have non-numeric expressions as their main expression, since the engine does not care about the
expression type, but only counts for the non-null values returned, regardless of their type.

Only the variable’s initial value expression should be also numeric and compatible with the variable's type,
since this value will be directly assigned to the count variable when initialized.

Calculation DistinctCount

This type of calculation works just like the Count calculation, the only difference being that it ignores
repeating values and only counts for distinct non-null values.

Calculation Sum

The reporting engine can sum up the values returned by the variable’s main expression if you choose this
type of calculation, but make sure the variable has a numeric type. You cannot calculate the sum of a
java.lang.String or java.util.Date type of a report variable unless a customized variable
incrementer is used, as explained in the 9.6.2 Incrementers chapter.

Calculation Average

The reporting engine can also calculate the average for the series of values obtained by evaluating the
variable's expression for each record in the data source. This type of calculation can also be performed only
for numeric variables (see the 9.6.2 Incrementers chapter for details).

Calculation Lowest and Highest

Choose this type of calculation when you want to obtain the lowest or highest value in the series of values
obtained by evaluating the variable's expression for each data source record.

Page 72

The JasperReports Ultimate Guide 1.2.5

Calculation StandardDeviation and Variance

In some special reports, you might want to perform more advanced types of calculations on numeric
expressions. JasperReports has built-in algorithms to obtain the standard deviation and the variance for the
series of values returned by evaluation of a report variable’s expression.

Calculation System

This type of calculation can be chosen only when you don't want the engine to calculate any value for your
variable. That means you are calculating the value for that variable yourself, almost certainly using the
scriptlets functionality of JasperReports.

For this type of calculation, the only thing the engine does is to conserve the value you have calculated
yourself, from one iteration in the data source to the next.

Calculation First

When using calculation type First, the variable will keep the value obtained after the first incrementation
and will not change it until the reset event occurs.

Examples:

Here is a simple report variable declaration that calculates the sum for a numeric report field called
"Quantity":

<variable name="QuantitySum" class="java.lang.Double" calculation="Sum">
 <variableExpression>$F{Quantity}</variableExpression>
</variable>

If you want the sum of this field for each page, here’s the complete variable declaration:

<variable name="QuantitySum" class="java.lang.Double" resetType="Page"
calculation="Sum">
 <variableExpression>$F{Quantity}</variableExpression>
 <initialValueExpression>new Double(0)</initialValueExpression>
</variable>

In this example above, our page sum variable will be initialized with zero at the beginning of each new
page.

9.6.2 Incrementers

All calculations in the JasperReports engine are performed incrementally. This is obvious for variables that
calculate counts, sums, or the highest and lowest value of a series, but is also true for more complex
calculations like average or standard deviation. There are formulas that allow updating the average value of
a series when a new element is added, so the average is updated with each iteration through the data source.

JasperReports provides a built-in set of calculations that depend on the type of the data involved. You can
also create custom calculation capabilities using simple interfaces.

If a variable needs to perform a certain type of calculation on some special data, implement the
net.sf.jasperreports.engine.fill.JRIncrementer interface and associate that implementation
with a report variable that shows the JasperReports engine how to handle that custom calculation.

Page 73

The JasperReports Ultimate Guide 1.2.5

To associate custom types of calculations with a given report variable, set the incremetorFactoryClass
attribute to the name of a class that implements the
net.sf.jasperreports.engine.fill.JRIncrementerFactory interface. The factory class will be
used by the engine to instantiate incrementer objects at runtime depending on the calculation attribute
set for the variable.

Such customized calculations could be useful for making JasperReports sum up java.lang.String
values or for teaching it how to calculate the average value of some custom-made numeric data (third-party
optimized implementations of big decimal numbers, for instance).

9.6.3 Built-in report variables

The following built-in system variables are also provided in expressions:

PAGE_NUMBER

This variable’s value is its current page number. At the end of the report filling process, it will contain the
total number of pages in the document.

It can be used to display both the current page number and the total number of pages using a special feature
of JasperReports text field elements, the evaluationTime attribute. You can see this happening in most
of the samples. Check the /demo/samples/jasper sample for an example.

COLUMN_NUMBER

Built-in variable that contains the current column number.
For example, on a report with three columns, the possible values are 1, 2 and 3. The variable restarts from 1
and runs up to the defined number of columns for each page in the generated document.

REPORT_COUNT

After finishing the iteration through the data source, this report variable contains the total number of the
records processed.

PAGE_COUNT

This variable contains the number of records that were processed when generating the current page.

COLUMN_COUNT

This variable contains the number of records that were processed when generating the current column.

GroupName_COUNT

When declaring a report group, the engine automatically creates a count variable that calculates the number
of records that make up the current group (that is, the number of records processed between group
ruptures).

The name of this variable is derived from the name of the group it corresponds to, suffixed with the
"_COUNT" sequence. It can be used like any other report variable, in any report expression, even in the

Page 74

The JasperReports Ultimate Guide 1.2.5

current group expression, as shown in the "BreakGroup" of the /demo/samples/jasper sample).

9.7 Data filters
Sometimes it is useful to have a way to filter out records from the data source. When SQL queries are used,
the filtering is usually done through the WHERE clause of the query.
But when reporting data comes from a data source that is not already filtered, or when preprocessing the
data would require significant overhead, JasperReports offers an easy way to eliminate unwanted records
based on a Boolean expression.

JRXML syntax

<!ELEMENT filterExpression (#PCDATA)>

The <filterExpression> (if present) is evaluated immediately after moving the record pointer to the
next record in the data source. The evaluation is performed using field and variable values corresponding to
the new record. If the result of the evaluation is Boolean.TRUE, the record gets processed by the report-
filling engine. If the result is null or Boolean.FALSE, the current record will be skipped and the data
source pointer will be moved to the following record.

Page 75

The JasperReports Ultimate Guide 1.2.5

10 Report sections
JasperReports works with templates that are structured into multiple sections, like any traditional reporting
tool. At report-filling time, the engine iterates through the virtual records of the supplied report data source
and renders each report section when appropriate, depending on each section’s defined behavior.

For instance, the detail section is rendered for each record in the data source. When page breaks occur, the
page header and the page footer sections are rendered as needed.

Sections are portions of the report template that have a specified height and width and can contain report
elements like lines, rectangles, images, or text fields. These sections are filled repeatedly at report
generating time and make up the final document. When declaring the content and layout of a report section,
in an JRXML report design, use the generic element <band>.

JRXML syntax

<!ELEMENT band (printWhenExpression?, (line | rectangle | ellipse | image |
staticText | textField | subreport | pieChart | pie3DChart | barChart |
bar3DChart | xyBarChart | stackedBarChart | stackedBar3DChart| lineChart |
xyLineChart | areaChart | xyAreaChart | scatterChart | bubbleChart |
timeSeriesChart | highLowChart | candlestickChart | elementGroup | crosstab |
frame)*)>

<!ATTLIST band
height NMTOKEN "0"
isSplitAllowed (true | false) "true"

>

Report sections, sometimes referred to as report bands, represent a feature and functionality common to
almost all reporting tools.

Band height

The attribute height in a report band declaration specifies the height in pixels for that particular band and is
very important in the overall report design.

The elements contained by a certain report band should always fit the band’s dimensions to avoid potential
bad results when generating the reports. The engine issues a warning if it finds elements outside the band
borders when compiling report designs.

Preventing band split

In some cases it is desirable to keep whole content of a given band in one piece and to prevent page breaks
that split the band when it stretches beyond its initial specified height. To do this, use the
isSplitAllowed flag, which is true by default.

Skipping bands

All the report sections allow you to define a report expression that will be evaluated at runtime to decide if
that section should be generated or skipped when producing the document.
This expression is introduced by the <printWhenExpression> tag that is available in any <band>
element of the JRXML report design and should always return a java.lang.Boolean object or null.

Page 76

The JasperReports Ultimate Guide 1.2.5

10.1 Main sections
When building a report template, you must define the content and the layout of its sections. The entire
structure of the report template is based on the following sections: <title>, <pageHeader>,
<columnHeader>, <groupHeader>, <detail>, <groupFooter>, <columnFooter>, <pageFooter>,
<lastPageFooter>, <summary>, and <background>.

All report sections are optional, but of course all useful templates have at least one such section.

JRXML syntax

<!ELEMENT background (band?)>

<!ELEMENT title (band?)>

<!ELEMENT pageHeader (band?)>

<!ELEMENT columnHeader (band?)>

<!ELEMENT detail (band?)>

<!ELEMENT columnFooter (band?)>

<!ELEMENT pageFooter (band?)>

<!ELEMENT lastPageFooter (band?)>

<!ELEMENT summary (band?)>

So let's take a closer look at each report section and see how it behaves.

Title

This is the first section of the report. It is generated only once during the report filling process and
represents the beginning of the resulting document.

The title section precedes even the page header section. To print the page header before the title section, put
the elements on the page header at the beginning of the title section as well. You can suppress the actual
page header on the first page using the <printWhenExpression>, based on the PAGE_NUMBER report
variable.

As we have already seen in the 8.4 Report template properties paragraph, the title section could be
followed by a page break, if the attribute isTitleNewPage is set to true.

Page header

This section appears at the top of each page in the generated document.

Column header

This section appears at the top of each column in the generated document.

Page 77

The JasperReports Ultimate Guide 1.2.5

Detail

For each record in the data source, the engine tries to generate this section.

Column footer

This section appears at the bottom of each column in the generated document. It never stretches downward
to acquire the content of its containing text fields. Its rendering position is controlled by the
isFloatColumnFooter flag declared at report template level.

Page footer

This section appears at the bottom of each page in the generated document. Just like the column footer
section, the page footer never stretches downwards to acquire the content of its containing text fields and
always retains the declared fixed height.

Summary

This section is generated only once per report and appears at the end of the generated document, but is not
necessarily the last section generated.

This is because in some cases the column footer and/or page footer of the last page can follow it.

As mentioned in the 8.4 Report template properties paragraph, the summary section can start a new page of
its own by setting the isSummaryNewPage attribute to true. Even if this attribute remains false, the
summary section always starts a new page if it does not fit on the remaining space of the last page, or if the
report has more than one column and it has already started a second column on the last page.

Last page footer

If present, this section replaces the normal page footer section, but only on the last occurrence of the page
footer, which might not be the last page if the summary is present and it overflows on multiple pages or it is
rendered alone on its own last page. So it behaves more like “the last” page footer than the footer of the
“last page”.

Background

This is a special section that is rendered on all pages and its content is placed underneath all other report
sections. Normal report sections are rendered one after the other, but the background section does not
interfere with the other report sections and can be used to achieve watermark effects or for having the same
background for all pages.

If the main report sections that we have seen here do not meet your needs, maybe consider introducing
supplementary sections like group headers and group footers.
The following section shows how to group data on the report.

Page 78

The JasperReports Ultimate Guide 1.2.5

10.2 Data grouping
Groups represent a flexible way to organize data on a report. A report group is represented by sequence of
consecutive records in the data source that have something in common, like the value of a certain report
field.

A report group has three components:
• group expression;
• group header section;
• group footer section.

The value of the associated group expression is what makes group records stick together. This value is what
they have in common. When the value of the group expression changes during the iteration through the
data source at report filling time, a group rupture occurs and the corresponding group sections
<groupFooter> and <groupHeader> are inserted in the resulting document.

You can have as many groups as you want on a report. The order of groups declared in a report template is
important because groups contain each other. One group contains the following group and so on. When a
larger group encounters a rupture, all subsequent groups are reinitialized.

Data grouping works as expected only when the records in the data source are already ordered
according to the group expressions used in the report.
For example, if you want to group some products by country and city of the manufacturer, the
engine expects to find the records in the data source already ordered by country and city.
If not, expect to find records belonging to a specific country or city in different parts of the
resulting document, because JasperReports does not sort the data before using it.

JRXML syntax

<!ELEMENT group (groupExpression?, groupHeader?, groupFooter?)>

<!ATTLIST group
name NMTOKEN #REQUIRED
isStartNewColumn (true | false) "false"
isStartNewPage (true | false) "false"
isResetPageNumber (true | false) "false"
isReprintHeaderOnEachPage (true | false) "false"
minHeightToStartNewPage NMTOKEN "0"

>

<!ELEMENT groupExpression (#PCDATA)>

<!ELEMENT groupHeader (band?)>

<!ELEMENT groupFooter (band?)>

Group name

The name unequivocally identifies the group and can be used in other JRXML attributes when you want to
refer a particular report group. The name of a group is mandatory and obeys the same naming convention
that we mentioned for the report parameters, fields and report variables.

Page 79

The JasperReports Ultimate Guide 1.2.5

Starting new page/column when group breaks

Sometimes is useful to introduce a page or column break when a new group starts, usually because that
particular group is more important and should start on a page or column of its own.
To instruct the engine to start a new page or column for a certain group instead of printing it on the
remaining space at the bottom of the page or column, you must set either the isStartNewPage or
isStartNewColumn attribute to true.

These two attributes are the only settings in the entire library that let you voluntary introduce page breaks.
In all other situations the reporting engine introduces page breaks automatically, if necessary.
However, in some report templates, you may want to introduce page breaks on purpose when a report
section is larger than one page. To do this, introduce special dummy groups, as shown in the Tips & Tricks
section of the freely available documentation, published on the JasperReports website.

However, if you don't want to consistently introduce page or column breaks for a particular group, but you
prefer to do that only if the remaining space at the bottom of the page or column is too small, use the
minHeightToStartNewPage attribute.
This attribute specifies the minimum remaining vertical space that prevents the group from starting a new
page of its own. It is measured in pixels.

Resetting page number

If required, report groups have the power to reset the built-in report variable that contains the current page
number (variable PAGE_NUMBER). To do this, set the isResetPageNumber attribute to true.

Group header

This section marks the start of a new group in the resulting document. It is inserted in the document every
time the value of the group expression changes during the iteration through the data source.

Group footer

Every time a report group changes, the engine adds the corresponding group footer section before starting
the new group or when the report ends.

Check the provided samples like jasper, datasource or query, placed inside the /demo/samples
directory of the project to see how report groups can be used.

Page 80

http://jasperreports.sourceforge.net/
http://jasperreports.sourceforge.net/tips.tricks.html#largebands

The JasperReports Ultimate Guide 1.2.5

11 Report elements
The generated reports would be empty if you did not put some report elements in the report template. The
report elements are displayable objects like static texts, text fields, images, lines, or rectangles that you put
in your report template sections.

As you can see, the report elements come in two flavors:
• Text elements: static texts and text fields that display dynamic content
• Graphic elements: lines, rectangles, ellipses, images and charts

The following sections provide details of these two element categories. For now, we are going to present in
detail the element properties that both categories share.

When you add a report element to one of your report sections, you must specify the relative position of this
element in that particular section and its size, along with other general report element properties like color,
transparency, stretch behavior, etc.

The properties that are common to all types of report elements are grouped in the <reportElement> tag
that can appear in the declaration of all report elements.

JRXML syntax

<!ELEMENT reportElement (printWhenExpression?)>

<!ATTLIST reportElement
key NMTOKEN #IMPLIED
style NMTOKEN #IMPLIED
positionType (Float | FixRelativeToTop | FixRelativeToBottom)

"FixRelativeToTop"
stretchType (NoStretch | RelativeToTallestObject | RelativeToBandHeight)

"NoStretch"
isPrintRepeatedValues (true | false) "true"
mode (Opaque | Transparent) #IMPLIED
x NMTOKEN #REQUIRED
y NMTOKEN #REQUIRED
width NMTOKEN #REQUIRED
height NMTOKEN #REQUIRED
isRemoveLineWhenBlank (true | false) "false"
isPrintInFirstWholeBand (true | false) "false"
isPrintWhenDetailOverflows (true | false) "false"
printWhenGroupChanges CDATA #IMPLIED
forecolor CDATA #IMPLIED
backcolor CDATA #IMPLIED

>

<!ELEMENT printWhenExpression (#PCDATA)>

Element key

Unlike variables and parameters, report elements are not required to have a name, because normally you do
not need to obtain any individual element inside a report template. However, in some cases it is useful to be
able to locate an element to alter one of its properties before using the report template.

This could be the case in an application that needs to change the color for some elements in the report
template based on user input. To locate those report elements that need to have their colors altered, the
caller program could use the getElementByKey(String) method available at band level. A key value

Page 81

The JasperReports Ultimate Guide 1.2.5

must be associated with the report element and it must be unique within the overall band for the lookup to
work.
The key attribute is used as an example in the provided /demo/samples/alterdesign sample.

Style

Any type of report element can reference a report style definition using the style attribute. By doing so,
all the style properties declared by the style definition that are applicable to the current element will be
inherited. Specific style properties specified at report element level can be used to override the inherited
values.

Absolute position

The x and y attributes of any report element are mandatory and represent x and y coordinates, measured in
pixels, that mark the absolute position of the top-left corner of the specified element within its parent report
section.

Relative position

Some report elements, such as the text fields, have special properties that allow them to stretch downwards
to acquire all the information they have to display. Their height is calculated at runtime and may affect the
neighboring elements in the same report section, especially those placed immediately below them.

The positionType attribute specifies the behavior that the report element should have if the layout of the
report section in which it is been place is affected by stretch.

There are three possible values for the positionType attribute:
• Floating position : The element floats in its parent section if it is pushed downwards by other elements

found above it. It tries to conserve the distance between it and the neighboring elements placed
immediately above it (positionType="Float").

• Fixed position relative to the top of the parent band : The current report element simply ignores what
happens to the other section elements and tries to conserve the y offset measured from the top of its
parent report section (positionType="FixRelativeToTop").

• Fixed position relative to the bottom of the parent band : If the height of the parent report section is
affected by elements that stretch, the current element tries to conserve the original distance between its
bottom margin and the bottom of the band (positionType="FixRelativeToBottom").

A report element called e2 will float when another report element called e1 stretches only if these three
conditions are met:

e2 has postitionType="Float"
e1.y + e1.height <= e2.y
e1.width + e2.width > max(e1.x + e1.width, e2.x + e2.width) – min(e1.x, e2.x)

The second and the third conditions together imply that the element e2 must be placed below the e1.

By default, all elements have a fixed position relative to the top of the band.

To see how element stretching and element floating work together, check the provided
/demo/samples/stretch sample.

Page 82

The JasperReports Ultimate Guide 1.2.5

Element size

The width and height attributes are mandatory and represent the size of the report element measured in
pixels. Other element stretching settings may instruct the reporting engine to ignore the specified element
height. Even in this case, the attributes remain mandatory since even when the height is calculated
dynamically, the element will not be smaller than the originally specified height.

Element color

Two attributes represent colors: forecolor and backcolor. The fore color is for the text of the text
elements and the border of the graphic elements. The back color fills the background of the specified report
element, if it is not transparent.

You can also use the decimal or hexadecimal representation for the desired color. The preferred way to
specify colors in JRXML is using the hexadecimal representation, because it lets you control the level for
each base color of the RGB system.

For example, you can display a text field in red by setting its forecolor attribute as follows:

forecolor="#FF0000"

The equivalent using the decimal representation would be:

forecolor="16711680"

but the inconvenience is evident.

The default fore color is black and the default back color is white.

Element transparency

Report elements can be either transparent or opaque, depending on the value you specify for the attribute
mode.

The default value for this attribute depends on the type of the report element. Graphic elements like
rectangles and lines are opaque by default, but the images are transparent. Both static texts and text fields
are transparent by default, and so are the subreport elements.

Skipping element display

The engine can decide at runtime if it really should display a report element if you use the
<printWhenExpression> that is available for all types of report elements.
If present, this report expression should return a java.lang.Boolean object or null. It is evaluated
every time the section containing the current element is generated, to see if this particular element should
appear or not in the report.
If the expression returns null, it is equivalent to returning java.lang.Boolean.FALSE. If the expression
is missing, the report element will get printed every time, that is, if other setting do not intervene, as we
shall see below.

Page 83

The JasperReports Ultimate Guide 1.2.5

Reprinting elements on section overflows

When generating a report section, the engine might be forced to start a new page or column because the
remaining space at the bottom of the current page or column is not sufficient for all the section elements to
fit in, probably because some elements have stretched.

In such cases, you might want to reprint some of your already displayed elements on the new page or
column to recreate the context in which the page/column break occurred.
To achieve this, set isPrintWhenDetailOverflows="true" for all report elements you want to
reappear on the next page or column.

Suppressing repeating values display

First, let's see what exactly a ”repeating value“ is.

It very much depends on the type of the report element we are talking about.

For text field elements, this is very intuitive. In the following list containing names taken from an ordinary
phone book, you can see that for some consecutive lines, the value of the ”Family Name“ column repeats
itself (those are only dummy phone numbers).

Family Name First Name Phone
Johnson Adam 256.12.35
Johnson Christine 589.54.52
Johnson Peter 546.85.95
Johnson Richard 125.49.56
Smith John 469.85.45
Smith Laura 459.86.54
Smith Denise 884.51.25

You might want to suppress the repeating ”Family Name“ values and print something like this:

Family Name First Name Phone
Johnson Adam 256.12.35

Christine 589.54.52
Peter 546.85.95
Richard 125.49.56

Smith John 469.85.45
Laura 459.86.54
Denise 884.51.25

To do that, set the following for the text field that displays the family name:

isPrintRepeatedValues="false"

The static text elements behave in the same way. As you would expect, their value always repeats and in
fact never changes until the end of the report. This is why we call them static texts. So, if you set
isPrintRepeatedValues="false" for one of your <staticText> elements, it is displayed only once,
the first time, at the beginning of the report, and never again.

Now, what about graphic elements?

An image is considered to be repeating itself if its bytes are exactly the same from one occurrence to the
next. This happens only if you choose to cache your images using the isUsingCache attribute available in
the <image> element and if the corresponding <imageExpression> returns the same value from one
iteration to the next (the same file name, the same URL, etc).

Page 84

The JasperReports Ultimate Guide 1.2.5

Lines and rectangles always repeat themselves, because they are static elements, just like the static texts we
have seen above. So, when you do not display repeating values for a line or a rectangle, it is displayed only
once, at the beginning of the report, and then ignored until the end of the report.

The isPrintRepeatedValues attribute works only if the corresponding
<printWhenExpression> is missing. If it is not missing, it will always dictate whether the
element should be printed, regardless of the repeating values.

If you decide to not display the repeating values for some of your report elements, you can modify this
behavior by indicating the exceptional occasions in which you might want to have a particular value
redisplayed during the report generation process.

When the repeating value spans multiple pages or columns, you can redisplay this repeating value at least
once for every page or column.
By setting isPrintInFirstWholeBand="true", the report element will reappear in the first band of a
new page or column that is not an overflow from a previous page or column.

Also, if the repeating value you have suppressed spans multiple groups, you can make it reappear at the
beginning of a certain report group, is you specify the name of that particular group in the
printWhenGroupChanges attribute.

Removing blank space

When report elements are not displayed for some reason: <printWhenExpression> evaluates to
Boolean.FALSE, or a repeated value is suppressed, a blank space remains where that report element
would have stood.
This blank space also appears if a text field displays only blank characters or an empty text value.

You can eliminate this unwanted blank space on the vertical axis only if certain conditions are met.

For example, say you have three successive text fields, one on top of the other, like this:

TextField1
TextField2
TextField3

If the second field has an empty string as its value or contains a repeated value that you chose to suppress,
the output would look like this:

TextField1

TextField3

In order to eliminate the gap between the first text field and the third, set
isRemoveLineWhenBlank="true" for the second text field. The following then displays:

TextField1
TextField3

However, certain conditions must be met in order for this functionality to work. The blank space will not be
removed if your second text field shares some vertical space with other report elements that are printed,
even if this second text field does not print.

Page 85

The JasperReports Ultimate Guide 1.2.5

For example, you might have some vertical lines on the sides of your report section like this:

| TextField1 |
| |
| TextField3 |

or you might have a rectangle that draws a box around your text fields:

| TextField1 |
| |
TextField3

or even other text elements that are placed on the same horizontal with your second text field:

Label1 TextField1
Label2
Label3 TextField3

In all these situations, the blank space between the first and the third text field cannot be removed because
it is being used by other visible report elements.

The blank vertical space between elements can be removed using the isRemoveWhenBlank
attribute only if it is not used by other elements, as explained above.

Stretch behavior

The stretchType attribute of a report element can be used to customize the stretch behavior of the
element when, on the same report section, there are text fields that stretch themselves because their text
content is too large to fit in the original text field height.
When stretchable text fields are present on a report section, the height of the report section itself is affected
by the stretch.

A report element can respond to the modification of the report section layout in three ways:
• Won't stretch : The report element preserves its original specified height

(strechType="NoStretch").
• Stretching relative to the parent band height : The report element adapts its height to match the new

height of the report section it is placed on, which has been affected by stretch
(stretchType="RelativeToBandHeight").

• Stretching relative to the tallest element in group : You have the possibility to group the elements of a
report section in multiple nested groups, if you like. The only reason to group your report elements is
to customize their stretch behavior. Details about how to group elements are supplied in the section
11.5 Element groups . Report elements can be made to automatically adapt their height to fit the
amount of stretch suffered by the tallest element in the group that they are part of
(stretchType="RelativeToTallestObject").

Page 86

The JasperReports Ultimate Guide 1.2.5

11.1 Text elements
There are two kinds of text elements in JasperReports: static texts and text fields.
As their names suggest, the first are text elements with a fixed, static content, which do not change during
the report filling process and are used especially for introducing labels in the final document.
Text fields, however, have an associated expression, which is evaluated at runtime to produce the text
content that will be displayed.

Both types of text elements share some properties and those are introduced using a <textElement>
element. We are now going to see them in detail.

JRXML syntax

<!ELEMENT textElement (font?)>

<!ATTLIST textElement
textAlignment (Left | Center | Right | Justified) #IMPLIED
verticalAlignment (Top | Middle | Bottom) #IMPLIED
rotation (None | Left | Right) #IMPLIED
lineSpacing (Single | 1_1_2 | Double) #IMPLIED
isStyledText (true | false) #IMPLIED

>

Horizontal alignment

To specify how the content of a text element should be aligned on the horizontal, use the textAlignment
attribute and choose one of the 4 possible values: "Left", "Center", "Right" or "Justified". The
default horizontal alignment for text is "Left".

Vertical alignment

Text can also be aligned inside the element bounds on the vertical axis using the verticalAlignment
attribute and choosing one of the 3 possible values: "Top", "Middle", "Bottom". By default, text
elements are aligned at the top.

Rotating text

The rotation attribute, available for text elements, allows changing the text direction by rotating it 90
degrees to the right or to the left.

Line spacing

The amount of space between consecutive lines of text can be set using the lineSpacing attribute:
• Single : The paragraph text advances normally using an offset equal to the text line height

(lineSpacing="Single").
• 1.5 Lines : The offset between two consecutive text lines is 1 ½ lines (lineSpacing="1_1_2").
• Double : The space between text lines is double the height of a single text line

(lineSpacing="Double").

The font settings for the text elements are also part of the <textElement> tag. Font settings are explained
in a later section.

Page 87

The JasperReports Ultimate Guide 1.2.5

Styled text

The isStyledText attribute is a flag that indicates whether the text content of the element is pure text or
has embedded styling information like colors, fonts and others. More about styled text functionality can be
found in the 11.1.4 Styled text chapter.

11.1.1 Fonts and Unicode support

Each text element present on your report can have its own font settings. Those settings can be specified
using the tag available in the <textElement> tag.

Since a report template usually uses only a few types of fonts shared by different text elements, there's no
point forcing JRXML report template creators to specify the same font settings repeatedly for each text
element. Instead, reference a report level font declaration and adjust only some of the font settings, on the
spot, if a particular text element requires it.

Report fonts

A report font is a collection of font settings declared at report level that can be reused throughout the entire
report template when setting the font properties of text elements.

Report fonts are now deprecated and report style definitions should be used instead. Please
refer to the 8.7 Styles chapter for more details on styles.

JRXML syntax

<!ELEMENT reportFont EMPTY>

<!ATTLIST reportFont
name NMTOKEN #REQUIRED
isDefault (true | false) "false"
fontName CDATA "sansserif"
size NMTOKEN "10"
isBold (true | false) "false"
isItalic (true | false) "false"
isUnderline (true | false) "false"
isStrikeThrough (true | false) "false"
pdfFontName CDATA "Helvetica"
pdfEncoding CDATA "CP1252"
isPdfEmbedded (true | false) "false"

>

Report font name

The name attribute of a <reportFont> element is mandatory and must be unique, because it will be used
when referencing the corresponding report font throughout the report.

Default report font

You can use isDefault="true" for one of your report font declarations. It marks the default base font
that the reporting engine uses when dealing with text elements that do not reference a particular report font.
This default font is also used by the text elements that do not have any font settings at all.

Page 88

The JasperReports Ultimate Guide 1.2.5

All the other report font properties are the same as those for a normal element, as shown below.

JRXML syntax

<!ELEMENT font EMPTY>

<!ATTLIST font
reportFont NMTOKEN #IMPLIED
fontName CDATA #IMPLIED
size NMTOKEN #IMPLIED
isBold (true | false) #IMPLIED
isItalic (true | false) #IMPLIED
isUnderline (true | false) #IMPLIED
isStrikeThrough (true | false) #IMPLIED
pdfFontName CDATA #IMPLIED
pdfEncoding CDATA #IMPLIED
isPdfEmbedded (true | false) #IMPLIED

>

Referencing a report font

When introducing the font settings for a text element of your report, you can use a report font declaration as
a base for the font settings you want to obtain.
All the attributes of the element, if present, are used only to override the attributes with the same
name that are present in the report font declaration referenced using the reportFont attribute.

For example, if the report contains a font like the following:

<reportFont
name="Arial_Normal"
isDefault="true"
fontName="Arial"
size="8"
pdfFontName="Helvetica"
pdfEncoding="Cp1252"
isPdfEmbedded="false"/>

and you want to create a text field that has the same font settings as those in this report font, only larger,
simply reference this report font using the reportFont attribute and specify the desired font size like this:

<textElement>

</textElement>

When the reportFont attribute is missing, the default report font is used as base font.

Font name

In Java, there are two types of fonts: physical fonts and logical fonts. Physical fonts are the actual font
libraries consisting of, for example, TrueType or PostScript Type 1 fonts. The physical fonts may be Arial,
Time, Helvetica, Courier, or any number of other fonts, including international fonts.

Page 89

The JasperReports Ultimate Guide 1.2.5

Logical fonts are the five font types that have been recognized by the Java platform since version 1.0: Serif,
Sans-serif, Monospaced, Dialog, and DialogInput. These logical fonts are not actual font libraries that are
installed anywhere on your system. They are merely font-type names recognized by the Java runtime,
which must be mapped to some physical font that is installed on your system.

In the fontName attribute of the element or the <reportFont> element, you must specify the
name of a physical font or the name of a logical font. You only need to make sure the font you specify
really exists and is available on your system.

For more details about fonts in Java, check the Java Tutorial or the JDK documentation.

Font size

The font size is measured in points and can be specified using the size attribute.

Font styles and decorations

There are four boolean attributes available in the and <reportFont> elements that control the
font style and/or decoration. They are: isBold, isItalic, isUnderline, and isStrikeThrough.
Their meaning is obvious.

PDF font name

When exporting reports to PDF format, the JasperReports library uses the iText library.

As the name (Portable Document Format) implies, PDF files can be viewed on various platforms and will
always look the same. This is partially because in this format there is a special way of dealing with fonts.

If you want to design your reports so that they will eventually be exported to PDF, make sure you choose
the appropriate PDF font settings that correspond to the Java font settings of your text elements.

The iText library knows how to deal with built-in fonts and TTF files. It recognizes the following built-in
font names:

Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique
Symbol
Times-Roman
Times-Bold
Times-BoldItalic
Times-Italic
ZapfDingbats

Every time you work with fonts, the iText library requires you to specify as the font name one of:
• a built-in font name from the above list.
• the name of a TTF file that it can locate on disk.
• the real name of the font provided that the TTF file containing the font has been previously registered

with iText or an alias defined when font is registered.

Page 90

http://www.lowagie.com/iText/

The JasperReports Ultimate Guide 1.2.5

The font name introduced by the previously explained fontName attribute is of no use when exporting to
PDF. This is why we have special font attributes, so that we are able to specify the font settings that the
iText library expects from us.

Configuration properties (see the 19 Configuration files chapter) are used to register fonts with iText so that
the real font name or a given alias can be used to specify the PDF font name. Font files, font collection
files, and font directories can be registered with iText.

To register a font file or font collection, create a property having a key that starts with
"net.sf.jasperreports.export.pdf.font." and the file location as the property value. The file
location can be the name of a file to be loaded from the file system, the name of a resource present on the
class path, or an URL. A font directory on the file system can be registered with iText by creating a
property having a key starting with "net.sf.jasperreports.export.pdf.fontdir.". When
registering a directory, all the font files in that directory are loaded and the real font name will be accepted
when working with iText fonts.

The pdfFontName attribute can contain one of the following values:
• the name of a PDF built-in font from the above list.
• the name of a TTF file that can be located on disk at runtime, when exporting to PDF.
• the real name of a registered font.
• the suffix of the key (the part after "net.sf.jasperreports.export.pdf.font.") for a font

registered with iText as a font file.

The report template creator must choose the right value for the pdfFontName attribute that
would exactly correspond to the Java physical or logical font specified using the fontName
attribute. If those two fonts, one used by the Java viewers and printers and the other used in the
PDF format, do not represent the same font or do not at least look alike, you might get
unexpected results when exporting to PDF format.

Additional PDF fonts can be installed on your system if you choose one of the Acrobat Reader’s font
packs. For example, by installing the Asian font pack from Adobe on your system, you could use font
names like the following for the pdfFontName attribute:

Language PDF Font Name
Simplified Chinese STSong-Light
Traditional Chinese MHei-Medium

MSung-Light
Japanese HeiseiKakuGo-W5

HeiseiMin-W3
Korean HYGoThic-Medium

HYSMyeongJo-Medium

For more details about how to work with fonts when generating PDF documents, check the iText library
documentation.

Page 91

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/

The JasperReports Ultimate Guide 1.2.5

PDF encoding

When creating reports in different languages for export to PDF, make sure that you choose the appropriate
character encoding type.

For example, an encoding type widely used in Europe is Cp1252, also known as LATIN1. Other possible
encoding types are:

Character Set Encoding
Latin 2: Eastern Europe Cp1250
Cyrillic Cp1251
Greek Cp1253
Turkish Cp1254
Windows Baltic Cp1257
Simplified Chinese UniGB-UCS2-H

UniGB-UCS2-V
Traditional Chinese UniCNS-UCS2-H

UniCNS-UCS2-V
Japanese UniJIS-UCS2-H

UniJIS-UCS2-V
UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Korean UniKS-UCS2-H
UniKS-UCS2-V

You can find more details about how to work with fonts and character encoding when generating PDF
documents in the iText library documentation.

PDF embedded fonts

To use a TTF file when exporting your reports to PDF format and make sure everybody will be able to
view it without problems, make sure that at least one of the following conditions are met:
• The TTF font is installed on the user’s system;
• The font is embedded in the PDF document itself.

It’s not easy to comply with the first condition, therefore, it is advisable to meet the second condition. You
can do that by setting the isPdfEmbedded attribute to true.

For further details about how to embed fonts in PDF documents, see the iText documentation. A very
useful example is available in the /demo/samples/unicode sample provided with the project.

Page 92

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/

The JasperReports Ultimate Guide 1.2.5

11.1.2 Static texts

Static texts are text elements with fixed content, which does not change during the report filling process.
They are used mostly to introduce static text labels in the generated documents.

JRXML syntax

<!ELEMENT staticText (reportElement, box?, textElement?, text?)>

<!ELEMENT text (#PCDATA)>

As you can see from the syntax above, besides element general properties and text specific properties that
we have already explained, a static text definition also has only the <text> tag, which introduces the fixed
text content of the static text element.

11.1.3 Text fields

Unlike static text elements, which do not change their text content, text fields have an associated expression
that is evaluated with every iteration in the data source to obtain the text content to be displayed.

JRXML syntax

<!ELEMENT textField (reportElement, box?, textElement?, textFieldExpression?,
anchorNameExpression?, hyperlinkReferenceExpression?,
hyperlinkAnchorExpression?, hyperlinkPageExpression?)>

<!ATTLIST textField
isStretchWithOverflow (true | false) "false"
evaluationTime (Now | Report | Page | Column | Group | Band | Auto) "Now"
evaluationGroup CDATA #IMPLIED
pattern CDATA #IMPLIED
isBlankWhenNull (true | false) #IMPLIED
hyperlinkType (None | Reference | LocalAnchor | LocalPage | RemoteAnchor

| RemotePage) "None"
hyperlinkTarget (Self | Blank) "Self"
bookmarkLevel NMTOKEN "0"

>

<!ELEMENT textFieldExpression (#PCDATA)>

<!ATTLIST textFieldExpression
class (java.lang.Boolean | java.lang.Byte | java.util.Date |

java.sql.Timestamp | java.sql.Time | java.lang.Double | java.lang.Float |
java.lang.Integer | java.lang.Long | java.lang.Short | java.math.BigDecimal |
java.lang.Number | java.lang.String) "java.lang.String"
>

Variable height text fields

Because text fields have a dynamic content, most of the time you can’t anticipate the exact amount of space
to provide for your text fields. If the space you reserve for your text fields is not sufficient, the text content
is truncated so that it fits in the available area.

Page 93

The JasperReports Ultimate Guide 1.2.5

This scenario is not always acceptable, so you can let the reporting engine calculate the amount of space
required to display the entire content of the text field at runtime, and automatically adjust the size of the
report element.

To do this, set the isStretchWithOverflow to true for the particular text field elements you are
interested in. By doing this, you ensure that if the specified height for the text field is not sufficient, it will
automatically be increased (never decreased) in order to be able to display the entire text content.

When text fields are affected by this stretch mechanism, the entire report section to which they belong is
also stretched.

Evaluating text fields

Normally, all report expressions are evaluated immediately, using the current values of all the parameters,
fields, and variables at that particular moment. It is like making a photo of all data, for every iteration in the
data source, during the report filling process.

This means that at any particular time, you won't have access to values that are going to be calculated later,
in the report filling process. This makes perfect sense, since all the variables are calculated step by step and
reach their final value only when the iteration arrives at the end of the data source range they cover.
For example, a report variable that calculates the sum of a field for each page will not contain the expected
sum until the end of the page is reached. That’s because the sum is calculated step by step, when iterating
through the data source records. At any particular time, the sum is only partial, since not all the records of
the specified range have been processed.
As a consequence, you cannot display a sum on the page header, since this value will be known only when
the end of the page is reached. At the beginning of the page, when generating the page header, the sum
variable would contain zero, or its initial value.

To address this problem, JasperReports provides a feature (the evaluationTime attribute) that lets you
decide the exact moment you want the text field expression to be evaluated, avoiding the default behavior,
which makes this expression be evaluated immediately when generating the current report section.
The evaluationTime attribute can have one of the following values:
• Immediate evaluation : The text field expression is evaluated when filling the current band

(evaluationTime="Now").
• End of report evaluation : The text field expression is evaluated when reaching the end of the report

(evaluationTime="Report").
• End of page evaluation : The text field expression is evaluated when reaching the end of the current

page (evaluationTime="Page").
• End of column evaluation : The text field expression is evaluated when reaching the end of the current

column (evaluationTime="Column").
• End of group evaluation : The text field expression is evaluated when the group specified by the

evaluationGroup attribute changes (evaluationTime="Group").
• Auto evaluation : Evaluation time indicating that each variable participating in the text field expression

is evaluated at a time corresponding to its reset type. Fields are evaluated "Now". This evaluation type
should be used for text field expressions that combine values evaluated at different times, like the
percentage out of a total (evaluationTime="Auto").

The default value for this attribute is "Now", as already mentioned. In the example presented above, you
could easily specify evaluationTime="Page" for the text field placed in the page header section, so that
it displays the value of the sum variable only when reaching the end of the current page.

Page 94

The JasperReports Ultimate Guide 1.2.5

Note that, when deciding to avoid the immediate evaluation of the text field expression, the
text field will never stretch to acquire all its content.
This is because the text element height is calculated when the report section is generated and
even if the engine comes back later with the text content of the text field, the element height
will not adapt, because it would ruin the already created layout.

Also, avoid using evaluation type "Auto" when other types suffice, as it can lead to
performance loss.

Suppressing null values display

If the text field expression returns null, your text field will display the "null" text in the generated
document. A simple way to avoid this is to set the isBlankWhenNull attribute to true. By doing this, the
text field will cease to display "null" and will display an empty string. This way nothing will appear on
your document if the text field value is null.

Formatting output

Of course, when dealing with numeric or date/time values, you could use the Java API to format the output
of the text field expressions. But there is a more convenient way to do it: by using the pattern attribute
available in the <textField> element.

In fact, what the engine does is to instantiate the java.text.DecimalFormat class if the text field
expression returns subclasses of the java.lang.Number class or to instantiate the
java.text.SimpleDataFormat if the text field expression return java.util.Date,
java.sql.Timestamp, or java.sql.Time objects.

For numeric fields, the value you should supply to this attribute is the same as if you formatted the value
using java.text.DecimalFormat.

For date/time fields the value of this attribute has to be one of:
• a style for the date part of the value and one for the time part, separated by comma, or only one style

for both the date part and the time part. A style is one of "Short", "Medium", "Long", "Full",
"Default" (corresponding to java.text.DateFormat styles) and "Hide". The formatter is
constructed by calling one of the getDateTimeInstance(), getDateInstance(), or
getTimeInstance() methods of java.text.DateFormat (depending on one of the date/time parts
being hidden) and supplying the date/time styles and the report locale.

• a pattern that can supplied to java.text.SimpleDateFormat. Note that in this case the
internationalization support is limited.

For more detail about the syntax of this pattern attribute, check the Java API documentation for the
java.text.DecimalFormat and java.text.SimpleDateFormat classes.

Text field expression

We have already talked about the text field expression. It is introduced by the <textFieldExpression>
element and can return values from only the limited range of classes listed below:

java.lang.Boolean
java.lang.Byte
java.util.Date
java.sql.Timestamp
java.sql.Time

Page 95

The JasperReports Ultimate Guide 1.2.5

java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.math.BigDecimal
java.lang.Number
java.lang.String

If the text field expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

11.1.4 Styled text

Normally, all the text content in a text element has the style specified by the text element attributes (text
fore color, text background color, font name, font size, etc). But in some cases, users need a way to
highlight a few words inside a text element by changing the text fore color or by changing the font style
using underline or by making it bold or italic. In such cases, the text content of that particular text element
will no longer be pure text. It will be XML content with a special structure that would help include style
information in the text itself.

All text elements have a special flag called isStyledText. If set to true, this flag indicates to the
rendering engine that the content of the text element mixes style information with text to produce a richer
visual output.

To change the style for a portion of text inside a text element, embed that portion inside a <style> tag or
simple HTML tags from the following list: , <u>, <i>, , and
. As we already
mentioned, for styled text elements, the content is considered to be XML and the engine will try to parse it
in order to extract the style information at runtime. If the parsing fails for any reason, including malformed
XML tags, then the engine will still render that content but it will consider it as pure text and not styled
text.

The XML structure of styled text is very simple and consists only of embedded <style> tags and simple
HTML tags. Those tags can be nested on an unlimited number of levels to override certain style settings for
the embedded text.

The <style> tag has various attributes for altering the color, the font, or other style properties of the text.
From the standard HTML tag only the three attributes are recognized by the JasperReports engine.
Below is the equivalent DTD structure for the XML content of a style text element:

<!ELEMENT style (style*, b*, u*, i*, font*, li*, br*)*>

<!ATTLIST style
fontName CDATA #IMPLIED
size NMTOKEN #IMPLIED
isBold (true | false) #IMPLIED
isItalic (true | false) #IMPLIED
isUnderline (true | false) #IMPLIED
isStrikeThrough (true | false) #IMPLIED
pdfFontName CDATA #IMPLIED
pdfEncoding CDATA #IMPLIED
isPdfEmbedded (true | false) #IMPLIED
forecolor CDATA #IMPLIED
backcolor CDATA #IMPLIED

>

Page 96

The JasperReports Ultimate Guide 1.2.5

<!ATTLIST font
fontFace CDATA #IMPLIED
color CDATA #IMPLIED
size NMTOKEN #IMPLIED

>

All style attributes inside a <style> tag or a tag are optional because each individual style
property is inherited from the overall text element or from the parent <style> tag when nested <style>
are used.

Special XML characters like <, >, “, ' and others must be XML encoded when placed inside a text field.

To see how the style text feature works in JasperReports, check the /demo/samples/styledtext sample
provided with the project source files.

11.2 Graphic elements
Graphic elements are the second major category of report elements. This category includes lines,
rectangles, and images.

They all have some properties in common, which are grouped under the attributes of the
<graphicElement> tag.

JRXML syntax

<!ELEMENT graphicElement EMPTY>

<!ATTLIST graphicElement
stretchType (NoStretch | RelativeToTallestObject | RelativeToBandHeight)

#IMPLIED
pen (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
fill (Solid) #IMPLIED

>

Stretch behavior

In early versions of JasperReports, only graphic elements could adapt their height depending on the height
of other elements to which they were related through element grouping. But now all elements have this
capability, and the stretchType attribute has been moved to the <reportElement> tag. It is still present
inside the <graphicElement> tag only for JRXML backward compatibility reasons. Details about this
attribute are given in the 11 Report elements chapter.

Border style

In the past, only graphic elements could have a border. Since the introduction of the “box” concept, text
elements can also have border-independent settings on all four sides of the element's rectangle area. Details
about box elements are given in the 11.3 Box elements chapter.

To specify the type of the border around a graphic element, use the pen attribute. This attribute is also used
for specifying the type of lines drawn using <line> elements or for specifying the type of the contour for
<ellipse> elements. The color of the border comes from the forecolor attribute presented when
describing the <reportElement> tag, explained in a previous chapter.

Page 97

The JasperReports Ultimate Guide 1.2.5

The possible types for a graphic element border are:
• No border : The graphic element will not display any border around it (pen="None").
• Thin border : The border around the graphic element will be half a point thick (pen="Thin").
• 1 point thick border : Normal border (pen="1Point").
• 2 points thick border : Thick border (pen="2Point").
• 4 point thick border : Very thick border (pen="4Point").
• Dotted border : The border will be one point thick and made of dots (pen="Dotted").

The default border around a graphic element depends on its type. Lines and rectangles have a normal one
point thick border by default. However, images, by default, do not display any border.

Background fill style

The fill attribute specifies the style of the background of the graphic elements. The only style currently
supported is the solid fill style, which is also the default (fill="Solid").

11.2.1 Lines

When displaying a line element, JasperReports draws one of the two diagonals of the rectangle represented
by the x, y, width, and height attributes specified for this element.

JRXML syntax

<!ELEMENT line (reportElement, graphicElement?)>

<!ATTLIST line
direction (TopDown | BottomUp) "TopDown"

>

Line direction

The direction attribute determines which one of the two diagonals of the rectangle should be:
• direction="TopDown" draws a diagonal line from the top-left corner of the rectangle to the bottom-

right corner.
• direction="BottomUp" draws a diagonal line from the bottom-left corner to the upper-right corner.

You can draw vertical lines by specifying width="1" and horizontal lines setting height="1". For these
lines the direction is not important.

The default direction for a line is "TopDown".

Page 98

The JasperReports Ultimate Guide 1.2.5

11.2.2 Rectangles

Rectangle elements are the simplest report elements. They share almost all their settings with most other
report elements.

JRXML syntax

<!ELEMENT rectangle (reportElement, graphicElement?)>

<!ATTLIST rectangle
radius NMTOKEN #IMPLIED

>

Round rectangles

The radius attribute specifies the radius for the arcs used to draw the corners of the rectangle. The default
value is zero, meaning that the rectangle has normal, square corners.

11.2.3 Ellipses

Ellipses are the most basic graphic elements. This is why there are no supplementary settings to declare an
ellipse element, besides those already mentioned in the sections for the <reportElement> and
<graphicElement> tags.

JRXML syntax

<!ELEMENT ellipse (reportElement, graphicElement?)>

For more detailed examples of lines and rectangles, check the /demo/samples/shapes sample.

Page 99

The JasperReports Ultimate Guide 1.2.5

11.2.4 Images

The most complex graphic on a report are the images.

Just as for text field elements, their content is dynamically evaluated at runtime, using a report expression.

JRXML syntax

<!ELEMENT image (reportElement, box?, graphicElement?, imageExpression?,
anchorNameExpression?, hyperlinkReferenceExpression?,
hyperlinkAnchorExpression?, hyperlinkPageExpression?)>

<!ATTLIST image
scaleImage (Clip | FillFrame | RetainShape) #IMPLIED
hAlign (Left | Center | Right) #IMPLIED
vAlign (Top | Middle | Bottom) #IMPLIED
isUsingCache (true | false) #IMPLIED
isLazy (true | false) "false"
onErrorType (Error | Blank | Icon) "Error"
evaluationTime (Now | Report | Page | Column | Group | Band | Auto) "Now"
evaluationGroup CDATA #IMPLIED
hyperlinkType (None | Reference | LocalAnchor | LocalPage | RemoteAnchor

| RemotePage) "None"
hyperlinkTarget (Self | Blank) "Self"
bookmarkLevel NMTOKEN "0"

>

<!ELEMENT imageExpression (#PCDATA)>

<!ATTLIST imageExpression
class (java.lang.String | java.io.File | java.net.URL |

java.io.InputStream | java.awt.Image |
net.sf.jasperreports.engine.JRRenderable) "java.lang.String"
>

Scaling images

Since images are loaded at runtime, there is no way to know their exact size when creating the report
template. The dimensions of the image element specified at design time may differ from that of the actual
image loaded at runtime.

Therefore, you must define how to the image should behave to adapt to the original image element
dimensions specified in the report template. The scaleImage attribute allows you to do that, by choosing
one of its three possible values:
• Clipping the image : If the actual image is larger than the image element size, it will be cut off so that it

keeps its original resolution, and only the region that fits the specified size will be displayed
(scaleImage="Clip").

• Forcing the image size : If the dimensions of the actual image do not fit those specified for the image
element that displays it, the image is forced to obey them and stretch itself so that it fits in the
designated output area. It will be deformed if necessary (scaleImage="FillFrame").

• Keeping image proportions : If the actual image does not fit into the image element, it can be adapted
to those dimensions keeping its original proportions without deforming it
(scaleImage="RetainShape").

Page 100

The JasperReports Ultimate Guide 1.2.5

Retain Shape

Clip

Fill Frame

- figure 5 -

Image alignment

If scale type for the image is "Clip" or "RetainShape" and the actual image is smaller than its defined
size in the report template or does not have the same proportions, the image might not occupy all the space
allocated to it in the report template. In such cases, you can align the image inside its predefined report
space using the hAlign and vAlign attributes, which specify the alignment of the image on the horizontal
axis (Left, Center, Right) and the vertical axis (Top, Middle, Bottom). By default, images are aligned
at the top and to the left inside their specified bounds.

Caching images

All image elements have dynamic content. There are no special elements to introduce static images on the
reports, as there are for static text elements.
However, most of the time, the images on a report are in fact static and do not necessarily come from the
data source or from parameters. Usually, they are loaded from files on disk and represent logos and other
static resources.

To display the same image multiple times on a report (for example, a logo appearing on the page header),
you do not need to load the image file each time. Instead, you can cache the image for better performance.

When you set the isUsingCache attribute to true, the reporting engine will try to recognize previously
loaded images using their specified source. For example, it will recognize an image if the image source is a
file name that it has already loaded, or if it is the same URL.

This caching functionality is available for image elements whose expressions return objects of any type as
the image source. The isUsingCache flag is set to true by default for images having
java.lang.String expressions and to false for all other types. The key used for the cache is the value
of the image source expression; key comparisons are performed using the standard equals method. As a
corollary, for images having java.io.InputStream source with caching enabled, the input stream is
read only once, and subsequently the image will be taken from the cache.

The isUsingCache flag should not be set in cases when an image has a dynamic source (e.g., the image is
loaded from a binary database field for each row) because the images would accumulate in the cache and
the report filling would rapidly fail due to “out of memory” error. Obviously, the flag should also not be set
when a single source is used to produce different images (e.g., an URL that would return a different image
each time it's accessed).

Page 101

The JasperReports Ultimate Guide 1.2.5

Lazy loading images

The isLazy boolean attribute specifies whether the image should be loaded and processed during report
filling or during the report export. This is useful in some cases where the image is loaded from an URL and
is not available at report filling time, but it will be available at report export or report display time. For
instance, there could be a logo image that has to be loaded from a public Web server to which the machine
that fills the reports does not have access. However, if the reports will be rendered in HTML, the image
could be loaded by the browser from the specified URL at report display time. In such cases, the isLazy
flag should be set to true (it is false by default) and the image expression should be of type
java.util.String, even if the specified image location is actually an URL, a file, or a classpath
resource. When lazy loading an image at fill-time, the engine will no longer try to load the image from the
specified String location but only store that location inside the generated document. The exporter class is
responsible for using that String value in order to access the image at report export time.

The /demo/samples/images sample provided contains an image element that points to the JasperReports
logo, which is lazy loaded from the project’s website.

Missing images behavior

For various reasons, an image may be unavailable when the engine tries to load it either at report filling
time or export time, especially if the image is loaded from some public URL. For this reason, you may
want to customize the way the engine handles missing images during report generation.

The onErrorType attribute available for images allows that. It can take the following values:
• Error : An exception is thrown if the engine cannot load the image (onErrorType="Error").
• Blank : Any image loading exception is ignored and nothing will appear in the generated document

(onErrorType="Blank").
• Icon : If the image was not successfully loaded, the engine will put a small icon in the document to

indicate that the actual image is missing (onErrorType="Icon").

Evaluating images

As for text fields, you can postpone evaluating the image expression, which by default is performed
immediately. This would allow you to display somewhere in the document images that will be built or
chosen later in the report filling process, due to complex algorithms, for example.

The same attributes, evaluationTime and evaluationGroup, that we have talked about in the text
fields section are also available in the <image> element. The evaluationTime attribute can take the
following values:
• Immediate evaluation : The image expression is evaluated when filling the current band

(evaluationTime="Now").
• End of report evaluation : The image expression is evaluated when reaching the end of the report

(evaluationTime="Report").
• End of page evaluation : The image expression is evaluated when reaching the end of the current page

(evaluationTime="Page").
• End of column evaluation : The image expression is evaluated when reaching the end of the current

column (evaluationTime="Column").
• End of group evaluation : The image expression is evaluated when the group specified by the

evaluationGroup attribute changes (evaluationTime="Group").
• Auto evaluation : Evaluation time indicating that each variable participating in the image expression is

evaluated at a time corresponding to its reset type. Fields are evaluated "Now"
(evaluationTime="Auto").

Page 102

The JasperReports Ultimate Guide 1.2.5

The default value for this attribute is "Now".

Image expression

The value returned by the image expression is the source for the image to be displayed. The image
expression is introduced by the <imageExpression> element and can return values from only a limited
range of classes listed below:

java.lang.String
java.io.File
java.net.URL
java.io.InputStream
java.awt.Image
net.sf.jasperreports.engine.JRRenderable

When the image expression returns a java.lang.String value, the engine tries to see
whether the value represents an URL from which to load the image. If it is not a valid URL
representation, it tries to locate a file on disk and load the image from it, assuming that the
value represents a file name. If no file is found, it finally assumes that the string value
represents the location of a classpath resource and tries to load the image from there. An
exception is thrown only if all these attempts fail.

If the image expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

The /demo/samples/images sample provided with the project contains several examples of image
elements.

Image renderer

The content of an image element can come either directly from an image file like a JPG, GIF, PNG, or can
be a scalable vector graphic (SVG) that is rendered using some business logic or a special graphics API like
a charting or a barcode library. Either way, JasperReports treats images in a very transparent way because it
relies on a special interface called net.sf.jasperreports.engine.JRRenderable to offer a common
way to render images.

The JRRenderer interface has one method called render(Graphics2D grx, Rectangle2D r) which
gets called by the engine each time it needs to draw the image on a given device or graphic context. This
approach provides the best quality for the SVG images when they must be drawn on unknown devices or
they must be zoomed into without losing sharpness.
Other methods specified in this interface obtain the native size of the actual image that the renderer wraps
or the binary data for an image that must be stored in a separate file during export.

The library comes with a default implementation for the JRRenderable interface that wraps images that
come from files or from binary image data in JPG, GIF, or PNG format.
The net.sf.jasperreports.engine.JRImageRenderer class is actually a container for this binary
image data, which it uses to load a java.awt.Image object from it and draw it on the supplied
java.awt.Graphics2D context when the engine requires it.
Image renderers are serializable because inside the generated document for each image is a renderer object
kept as reference, which is serialized along with the whole JasperPrint object.
When a JRImageRenderer instance is serialized, so is the binary image data it contains. However, if the
image element must be lazy loaded (see the isLazy attribute), then the engine will not load the binary
image data at report filling time. Rather, it stores inside the renderer only the java.lang.String location
of the image. The actual image data is loaded only when needed for rendering at report export or view time.

Page 103

The JasperReports Ultimate Guide 1.2.5

To simplify the implementation of SVG image renderers, JasperReports ships with an abstract rendered
net.sf.jasperreports.engine.JRAbstractSvgRenderer. This implementation contains the code
to produce binary image data from the SVG graphic in JPG format. This is needed when the image must be
stored in separate files on disk or delivered in binary format to a consumer (like the Web browser).

11.2.5 Charts and graphics

The JasperReports library does not produce charts and graphics itself. This is not one of its goals.
However, it can easily integrate charts, barcodes, and graphics produced by other, more specialized Java
libraries.

The great majority of available Java libraries that produce charts and graphics can output to image files or
to in-memory Java image objects. This is why it shouldn't be hard to put a chart or a graphic generated by
one of those libraries into a JasperReports document using a normal image element as described in the
previous section of this book.

You can see this working in the samples called jfreechart, jcharts, and barbecue which are found in
the /demo/samples directory of the project. The last one shows how barcodes could be rendered using the
Barbecue library.

To simplify the integration of charts inside reports and help mapping and extract the data needed for the
chart from the data available for the report, a specialized chart element was added to JasperReports. Built-
in support for charts is explained in the 14 Charts chapter.

11.3 Box elements
The text elements, the images, and the charts are considered “box elements” because you can surround
them by a border, customizable on each side.
When defining the border around such a box element, the user can control the width, the style, and the
color for each of the four sides of the element, as well as the padding (the amount of blank space to reserve
between the border of the element and its actual content).

JRXML syntax

<!ELEMENT box EMPTY>

<!ATTLIST box
border (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
borderColor CDATA #IMPLIED
padding NMTOKEN #IMPLIED
topBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
topBorderColor CDATA #IMPLIED
topPadding NMTOKEN #IMPLIED
leftBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
leftBorderColor CDATA #IMPLIED
leftPadding NMTOKEN #IMPLIED
bottomBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
bottomBorderColor CDATA #IMPLIED
bottomPadding NMTOKEN #IMPLIED
rightBorder (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
rightBorderColor CDATA #IMPLIED
rightPadding NMTOKEN #IMPLIED

>

Page 104

http://barbecue.sourceforge.net/

The JasperReports Ultimate Guide 1.2.5

Border style

If the border has the same style on all four sides of the element, then the border attribute should be used.
This can be set to one of six possible values, which are the same as the ones used for the pen attribute
available for graphic elements:
• No border : The graphic element will not display a border (border="None").
• Thin border : The border around the graphic element will be half a point thick (border ="Thin").
• 1 point thick border : Normal border (border ="1Point").
• 2 points thick border : Thick border (border ="2Point").
• 4 point thick border : Very thick border (border ="4Point").
• Dotted border : The border will be one point thick and made of dots (border ="Dotted").

The attributes for specifying the border style for each side of the box are topBorder, leftBorder,
bottomBorder, and rightBorder. These can be used for overriding the border style specified by the
border attribute mentioned above.

Border color

If the border color is the same for all four sides of the box, the borderColor attribute can be used. If the
border color must be overridden for a specific box side, then one or more of the following attributes can be
set: topBorderColor, leftBorderColor, bottomBorderColor and rightBorderColor.

Box padding

The amount of space to be left blank as margins within the bounds of a box element could be controlled
using either the padding attribute (same padding on all four sides) or the individual attributes for each
side: topPadding, leftPadding, bottomPadding, and rightPadding.

11.4 Hyperlinks and bookmarks
JasperReports allows you to create drill-down reports, which introduce tables of contents in your
documents or redirect viewers to external documents using special report elements called hyperlinks.

When the user clicks a hyperlink, he or she is redirected to a local destination within the current document
or to an external resource. Hyperlinks are not the only actors in this viewer-redirecting scenario. You also
need a way to specify what the destinations in a document are. These local destinations are called anchors.

There are no special report elements that introduce hyperlinks or anchors in a report template, but rather
special settings that make an usual report element a hyperlink and/or an anchor.

In JasperReports, only text field, image, and chart elements can be hyperlinks or anchors. This is because
all these types of elements offer special settings that allow you to specify the hyperlink reference to which
the hyperlink will point or the name of the local anchor. Note that a particular text field or image can be
both anchor and hyperlink at the same time.

Page 105

The JasperReports Ultimate Guide 1.2.5

JRXML syntax

<!ELEMENT anchorNameExpression (#PCDATA)>

<!ELEMENT hyperlinkReferenceExpression (#PCDATA)>

<!ELEMENT hyperlinkAnchorExpression (#PCDATA)>

<!ELEMENT hyperlinkPageExpression (#PCDATA)>

Hyperlink type

In the section on the JRXML syntax for text field elements and image elements, an attribute called
hyperlinkType was mentioned but not explained. The following are the possible values for this attribute
along with their significance:
• No hyperlink : By default, neither the text fields nor the images represent hyperlinks, even if the special

hyperlink expressions are present (hyperlinkType="None").
• External reference : The current hyperlink points to an external resource specified by the corresponding

<hyperlinkReferenceExpression> element, usually an URL (hyperlinkType="Reference").
• Local anchor : The current hyperlink points to a local anchor specified by the corresponding

<hyperlinkAnchorExpression> element (hyperlinkType="LocalAnchor").
• Local page : The current hyperlink points to a 1-based page index within the current document

specified by the corresponding <hyperlinkPageExpression> element
(hyperlinkType="LocalPage").

• Remote anchor : The current hyperlink points to an anchor specified by the
<hyperlinkAnchorExpression> element within an external document indicated by the
corresponding <hyperlinkReferenceExpression> element
(hyperlinkType="RemoteAnchor").

• Remote page : The current hyperlink points to a 1-based page index specified by the
<hyperlinkPageExpression> element, within an external document indicated by the
corresponding <hyperlinkReferenceExpression> element (hyperlinkType="RemotePage").

Hyperlink target

All hyperlink elements, like text fields, images, and charts, also expose an attribute called
hyperlinkTarget. Its purpose is to help customize the behavior of the specified link when it is clicked in
the viewer.

Currently, there are only two possible values for this attribute:
• Self : The document to which the hyperlink points will be opened in the current viewer window

(hyperlinkTarget="Self").
• Blank : The document to which the hyperlink points will be opened in a new viewer window

(hyperlinkTarget="Blank").
If not specified, the hyperlink target is "Self" by default.

Bookmark level

Some of the document formats, like PDF, have built-in support for tables of contents and bookmarks. To
make use of this, JasperReports lets you transform anchors into document bookmarks. To build a tree
structure from a list of document anchors, each one should at least have assigned an indentation level. To
do this, set a positive integer value to the bookmarkLevel attribute available for all hyperlink elements in
JasperReports.

Page 106

The JasperReports Ultimate Guide 1.2.5

For more details about how to use hyperlink anchors as document bookmarks, see the supplied
/demo/samples/datasource sample, which contains a table of contents when exported to PDF format.

Anchor expression

If present in a text field or image element declaration, the <anchorNameExpression> tag transforms that
particular text field or image into a local anchor of the resulting document, to which hyperlinks can point.
The anchor will bear the name returned after evaluating the anchor name expression, which should always
return java.lang.String values.

Hyperlink expressions

Depending on the current hyperlink type, one or two of the following expressions are evaluated and used to
build the reference to which the hyperlink element will point:

<hyperlinkReferenceExpression>
<hyperlinkAnchorExpression>
<hyperlinkPageExpression>

Note that the first two should always return java.lang.String and the third should return
java.lang.Integer values.

A special sample is provided in the /demo/samples/hyperlink directory of the projects, which shows
how to use this type of report element.

11.5 Element groups
Report elements placed in any report section can be arranged in multiple nested groups. The only reason for
grouping your elements is to customize the stretch behavior of the report elements, as explained in the 11
Report elements chapter.

One possible value of the stretchType attribute, available for all report elements, is
"RelativeToTallestObject". When choosing this option, the engine tries to identify the object from
the same group as the current graphic element that has suffered the biggest amount of stretch. It will then
adapt the height of the current report element to the height of this tallest element of the group.

However, for this to work, you must group your elements. To do this, use the <elementGroup> and
</elementGroup> tags to mark the elements that are part of the same group.

JRXML syntax

<!ELEMENT elementGroup (line | rectangle | ellipse | image | staticText |
textField | subreport | pieChart | pie3DChart | barChart | bar3DChart |
xyBarChart | stackedBarChart | stackedBar3DChart| lineChart | xyLineChart |
areaChart | xyAreaChart | scatterChart | bubbleChart | timeSeriesChart |
highLowChart | candlestickChart | elementGroup | crosstab | frame)*>

Page 107

The JasperReports Ultimate Guide 1.2.5

Element groups can contain other nested element groups and there is no limit on the number of the nested
element groups.
Report sections are element groups themselves, so all report elements placed directly in a containing band
are part of the same default element group, which is the band itself. This is why for these report elements
placed directly in the band, stretchType="RelativeToTallestObject" and
stretchType="RelativeToBandHeight" have the same effect.

Check the /demo/samples/stretch sample to see how element grouping works.

11.6 Frames
A frame is a report element that behaves like an element container. It is like a rectangle that can contain
other report elements. Frames can be nested into one another to any depth.

JRXML syntax

<!ELEMENT frame (reportElement, box?, (line | rectangle | ellipse | image |
staticText | textField | subreport | pieChart | pie3DChart | barChart |
bar3DChart | xyBarChart | stackedBarChart | stackedBar3DChart| lineChart |
xyLineChart | areaChart | xyAreaChart | scatterChart | bubbleChart |
timeSeriesChart | highLowChart | candlestickChart | elementGroup | crosstab |
frame)*)>

Frames have a background and a border, and they stretch to accommodate their content. They are usually
helpful when a common background and/or a common border must be put around a group of elements.

For elements inside a frame, the coordinates, the positionType and stretchType properties are relative
to the frame instead of the band.

Page 108

The JasperReports Ultimate Guide 1.2.5

12 Subreports
Subreports are an important feature of a report-generating tool. They enable you to create more complex
reports and simplify the design work. Subreports are very useful when creating master-detail reports or
when the structure of a single report is not sufficient to describe the complexity of the desired output
document.

A subreport is in fact a normal report that is been incorporated as part of another report. You can overlap
subreports or make a subreport that contains itself other subreports up to any level of nesting.

At the same time, a subreport is also a special kind of report element that helps you introduce a subreport
into the parent report.

Subreports are compiled and filled just like normal reports. In fact, any report template can be used as a
subreport when incorporated into another report template, without changing anything inside it.

Following are the details concerning the <subreport> element that you use when introducing subreports
into master reports.

JRXML syntax

<!ELEMENT subreport (reportElement, parametersMapExpression?,
subreportParameter*, (connectionExpression | dataSourceExpression)?,
returnValue*, subreportExpression?)>
<!ATTLIST subreport

isUsingCache (true | false) #IMPLIED
>
<!ELEMENT parametersMapExpression (#PCDATA)>
<!ELEMENT subreportParameter (subreportParameterExpression?)>
<!ATTLIST subreportParameter

name NMTOKEN #REQUIRED
>
<!ELEMENT subreportParameterExpression (#PCDATA)>

<!ELEMENT returnValue EMPTY>
<!ATTLIST returnValue

subreportVariable NMTOKEN #IMPLIED
toVariable NMTOKEN #IMPLIED
calculation (Nothing | Count | DistinctCount | Sum | Average | Lowest |

Highest | StandardDeviation | Variance) "Nothing"
incrementerFactoryClass NMTOKEN #IMPLIED

>

<!ELEMENT connectionExpression (#PCDATA)>
<!ELEMENT dataSourceExpression (#PCDATA)>
<!ELEMENT subreportExpression (#PCDATA)>
<!ATTLIST subreportExpression

class (java.lang.String | java.io.File | java.net.URL |
java.io.InputStream | net.sf.jasperreports.engine.JasperReport |
dori.jasper.engine.JasperReport) "java.lang.String"
>

Page 109

The JasperReports Ultimate Guide 1.2.5

Subreport expression

Just like normal report templates, subreport templates are in fact
net.sf.jasperreports.engine.JasperReport objects, which are obtained after compiling a
net.sf.jasperreports.engine.design.JasperDesign object as seen in the 3.4 Compiling report
templates chapter of this book.

We have seen that text field elements have an expression that is evaluated to obtain the text content to
display. Image elements have an expression representing the source of the image to display. In the same
way, subreport elements have an expression that is evaluated at runtime to obtain the source of the
net.sf.jasperreports.engine.JasperReport object to load.

The so-called subreport expression is introduced by the <subreportExpression> element and can return
values from the following classes:

java.lang.String
java.io.File
java.net.URL
java.io.InputStream
net.sf.jasperreports.engine.JasperReport

When the subreport expression returns a java.lang.String value, the engine tries to see
whether the value represents an URL from which to load the subreport template object. If it is
not a valid URL representation, it will try to locate a file on disk and load the subreport
template from it, assuming that the value represents a file name. If no file is found, it will
finally assume that the string value represents the location of a classpath resource and will try
to load the subreport template from there. Only if all those fail, an exception will be thrown.

If the subreport expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

Caching subreports

A subreport element can load different subreport templates with every evaluation, giving you great
flexibility in shaping your documents.
However, most of the time, the subreport elements on a report are in fact static and their sources do not
necessarily change with each new evaluation of the subreport expression. Usually, the subreport templates
are loaded from fixed locations: files on disk or static URLs.

If the same subreport template is filled multiple times on a report, there is no point in loading the subreport
template object from the source file every time you fill it with data.
You can instruct the reporting engine to cache this subreport template object. This way, you make sure that
the subreport template is loaded from disk or from its particular location only once, after which it will be
reused only when it must be filled.

By setting the isUsingCache attribute to true, the reporting engine will try to recognize previously
loaded subreport template objects, using their specified source. For example, it will recognize a subreport
object if its source is a file name that it has already loaded, or if it is the same URL.

This caching functionality is available only for subreport elements that have expressions returning
java.lang.String objects as the subreport template source, representing file names, URLs, or classpath
resources. That's because the engine uses the subreport source string as the key to recognize that it is the
same subreport template that it has already cached.

Page 110

The JasperReports Ultimate Guide 1.2.5

12.1 Subreport parameters
Since subreports are normal reports themselves, they are compiled and filled just like other reports. This
means that they also require a data source from which to get the data when they are filled. They can also
receive parameters for additional information to use when being filled.

There are two ways to supply parameter values to a subreport. They can be used simultaneously, if desired.

You can supply a map containing the parameter values, as when filling a normal report with data, using one
of the fillReportXXX() methods exposed by the JasperFillManager class (see the 4 Filling report
templates chapter).
To do this, use the <parametersMapExpression> element, which introduces the expression that will be
evaluated to obtain the specified parameter map. This expression should always return a java.util.Map
object in which the keys are the parameter names.

In addition to, or instead of, supplying the parameter values in a map, you can supply the parameter values
individually, one by one, using a <subreportParameter> element for each relevant parameter. To do
this, specify the name of the corresponding parameter using the mandatory name attribute and provide an
expression that will be evaluated at runtime to obtain the value for that particular parameter, the value that
will be supplied to the subreport filling routines.

Note that you can use both ways to provide subreport parameter values, simultaneously. When this
happens, the parameter values specified individually, using the <subreportParameter> element,
override the parameter values present in the parameter map that correspond to the same subreport
parameter. If the map does not contain corresponding parameter values already, the individually specified
parameter values are added to the map.

Attention! When you supply the subreport parameter values, be aware that the reporting engine
will affect the java.util.Map object it receives, adding the built-in report parameter values
that correspond to the subreport. This map is also affected by the individually specified subreport
parameter values, as already explained above.
To avoid altering the original java.util.Map object that you send, wrap it in a different map
before supplying it to the subreport filling process, as follows:

new HashMap(myOriginalMap)

This way, your original map object remains unaffected and modifications are made to the
wrapping map object.
This is useful, especially when you want to supply to your subreport the same set of parameters
that the master report has received and you are using the built-in REPORT_PARAMETERS_MAP
report parameter of the master report. However, you don't want to affect the value of this built-in
parameter, so wrap it as follows:

<parametersMapExpression>
 new HashMap($P{REPORT_PARAMETERS_MAP})
</parametersMapExpression>

Page 111

The JasperReports Ultimate Guide 1.2.5

12.2 Subreport data source
Subreports require a data source in order to generate their content, just like normal reports.
In the 4 Filling report templates chapter of this book, we have seen that when filling a report you must
supply either a data source object or a connection object, depending on report type.

Subreports behave in the same way and expect to receive the same kind of input when they are being filled.

You can supply to your subreport either a data source using the <dataSourceExpression> element or a
JDBC connection for the engine to execute the subreport's internal SQL query using the
<connectionExpression> element. These two XML elements cannot be both present at the same time
in a subreport element declaration. This is because you cannot supply both a data source and a connection
for your subreport. You must decide on one of them and stick to it.

The report engine expects that the data source expression returns a
net.sf.jasperreports.engine.JRDataSource object and that the connection expression returns a
java.sql.Connnection object, whichever is present.

To see how subreports work, check the /demo/samples/subreport sample provided with the project
distribution.

12.3 Returning values from subreports
Values calculated by a subreport can be returned to the parent report. More specifically, after a subreport is
filled, values of the subreport variables can be either copied or accumulated (using an incrementer) to
variables of the caller report.

The <returnValue> element is used inside <subreport> to specify values to be returned from the
subreport. The <returnValue> element has the following structure:

JRXML syntax

<!ELEMENT returnValue EMPTY>

<!ATTLIST returnValue
subreportVariable NMTOKEN #IMPLIED
toVariable NMTOKEN #IMPLIED
calculation (Nothing | Count | DistinctCount | Sum | Average | Lowest |

Highest | StandardDeviation | Variance | First) "Nothing"
incrementerFactoryClass NMTOKEN #IMPLIED

>

Subreport variable

The subreportVariable attribute specifies the name of the subreport variable whose value is to be
returned. At fill time, the name is checked to ensure it is an existing variable name of the report specified
by the subreport expression.

Page 112

The JasperReports Ultimate Guide 1.2.5

Master report variable

The toVariable attribute specifies the name of the parent report variable whose value is to be
copied/incremented with the value from the subreport. The name is checked at compile time to ensure it is
an existing variable name of the master report. At fill time, the system checks that the types of the subreport
and master variables are compatible.

Using returned values

A value returned from a subreport can simply be copied into the target master report variable, or it can be
subject to a certain type of calculation made on the variable. The type of the operation performed with the
returned value is specified by the calculation attribute, which works like the homonym attribute of the
<variable> element (see the 9.6.1 Calculations chapter). The default value is "Nothing", which means
that the value returned from the subreport will be simply copied into the master report variable.

Custom incrementers

Just as for report variables, the engine lets users customize how they want the subreport returned values
handled. The incrementerFactoryClass attribute specifies the factory class for creating the
incrementer instance. The attribute is equivalent to the same attribute of the <variable> element (see the
9.6.2 Incrementers chapter).

A variable of the master report used when returning values from subreports should be declared with
"System" calculation because its value is not calculated by the main calculation engine. The variable
could declare a reset type, for example, when the sum of a subreport total is to be calculated per one of the
master’s groups.

The same value can be returned more than once from a subreport, for example, if different calculations are
required.

Note that the value from the subreport is not returned on a column or page break, but only when the
subreport filling is done. Also note that the calculation is a two-level process, that is, if the subreport
computes a total average and the master accumulates values from the subreports using calculated averages,
then the master result will be the average of the subreport averages and not the average of the combined
subreport records.

The /demo/samples/subreport sample contains two examples of values returned from subreports.

12.4 Subreport runners
By default, JasperReports uses multiple threads to render subreports. There is a separate thread for the
master report and one thread for each subreport element found in the report template hierarchy. Each of
these threads deals with the filling of its associated report template, which is either a master report or an
embedded subreport. Even though we have multiple threads involved when subreports are present, those
threads do not actually run simultaneously and rather pass the control from one another at specific moments
in time, usually when page breaks occur. At any one moment in time there is only one report or subreport
filling thread in execution, the others being in wait state.
Using multiple threads was the first and the easiest way to add subreporting functionality in JasperReports
because it allowed the reuse of the existing report-filling logic and only adapt it to function also when
output was embedded into some other master document.

Page 113

The JasperReports Ultimate Guide 1.2.5

But while easy to implement at first, the solution proved to have some drawbacks due to heavy use of
threads. One of the most important limitations was that J2EE containers discourage any use of threads.
Also, some operating systems have a pour way of managing threads, which resulted in decreased
performance and heavy memory usage.

There was no alternate solution to this for a long time, but then it was found in this concept called Java
Continuations. For those not familiar with continuations, I'll quote Paul Graham's On Lisp :

"A continuation is a program frozen in action: a single functional object containing the state of a
computation. When the object is evaluated, the stored computation is restarted where it left off. In solving
certain types of problems it can be a great help to be able to save the state of a program and restart it later.
In multiprocessing, for example, a continuation conveniently represents a suspended process. In
nondeterministic search programs, a continuation can represent a node in the search tree. "

This seemed to be the exactly the way JasperReports used threads to render subreports and Java
Continuations proved to be the perfect solution to replace them. From among several third-partly libraries
implementing this concept that were available at the time, JasperReports proved to work well with Jakarta
Commons Javaflow (still a Sandbox project at the time of this writing).

In order to not break any existing functionality and also allow users to turn off multi-threading when
working with subreports in JasperReports, the solution was to isolate subreport filling logic into a separate
abstract class called net.sf.jasperreports.engine.fill.JRSubreportRunnable that would have
two interchangeable implementations:
• net.sf.jasperreports.engine.fill.JRThreadSubreportRunner – initial thread-based

implementation;
• net.sf.jasperreports.engine.fill.JRContinuationSubreportRunner – Javaflow-based

implementation;

Switching between the above subreport runner implementation is not done through direct instantiation, but
rather through a configuration property called net.sf.jasperreports.subreport.runner.factory.
This configuration property should point to a
net.sf.jasperreports.engine.fill.JRSubreportRunnerFactory implementation able to
produce the needed JRSubreportRunnable objects at runtime. That could be one of the following two:
• net.sf.jasperreports.engine.fill.JRContinuationSubreportRunnerFactory
• net.sf.jasperreports.engine.fill.JRThreadSubreportRunnerFactory

The default value for the factory configuration property is JRThreadSubreportRunnerFactory, for
backwards compatibility reasons.

Note that Jakarta Commons Javaflow library is now part of the requirements when running
JasperReports and it can be found in the /lib directory of the JasperReports project distribution
package.

Page 114

http://jakarta.apache.org/commons/sandbox/javaflow/
http://jakarta.apache.org/commons/sandbox/javaflow/
http://jakarta.apache.org/commons/sandbox/javaflow/
http://www.paulgraham.com/onlisp.html

The JasperReports Ultimate Guide 1.2.5

13 Datasets
A dataset is a concept that lies somewhere between a data source and a subreport. Datasets allow the engine
to iterate through some virtual records, just as data sources do, but also enable calculations and data
grouping during this iteration using variables and groups. Because dataset declarations contain parameters,
fields, variables, and groups, they very much resemble subreports, but completely lack any visual content
(that is, they have no sections or layout information at the dataset level).

Datasets are useful for chart and crosstab generation when you need to iterate though data that is not the
main report data source itself, in order to gather data for the chart or perform data bucketing for the
crosstab. Before datasets, the only way to iterate through virtual records that were nested collections of
virtual records rather than part of the current report data source was by using subreports. However,
subreports come with unwanted visual settings and tend to complicate layout and report template structure.

13.1 Main dataset
The report data source along with the parameters, fields, variables, and groups declared at report level
represent the building blocks of what we call the main dataset for the report. All report templates implicitly
declare and use this main dataset.
This main dataset is responsible for iterating through the data source records, calculating variables,
filtering-out records and estimating group breaks during the report filling process.

13.2 Subdatasets
User defined datasets are declared in JRXML using the <subDataset> tag.

JRXML syntax

<!ELEMENT subDataset (property*, parameter*, queryString?, field*, variable*,
filterExpression?, group*)>

<!ATTLIST subDataset
name NMTOKEN #REQUIRED
scriptletClass NMTOKEN #IMPLIED
resourceBundle CDATA #IMPLIED
whenResourceMissingType (Null | Empty | Key | Error) "Null"

>

The engine does not necessarily use a declared dataset. Datasets are instantiated and iterate through the
supplied data source to calculate dataset variable values only if they are referenced by a chart or crosstab
dataset run.

Just like subreports, when instantiated, datasets expect to receive parameter values and a data source to
iterate through. As a convenience, datasets can have an associated SQL query that is executed by the engine
if a java.sql.Connection object is supplied to them instead of the usual data source.

Datasets can also have scriptlets associated with them to allow making callbacks to user-defined business
logic during the dataset iteration, if further data manipulation is needed.

Page 115

The JasperReports Ultimate Guide 1.2.5

13.3 Dataset runs
Once a dataset is declared inside a report template, it can only be used if actually referenced by a chart or
crosstab. Simply declaring a dataset at report level does not have any effect.
When a dataset gets referenced by a chart or crosstab, we say that a dataset run is instantiated. It will run
through the supplied data source performing all the variable calculations and required data grouping.

JRXML syntax

<!ELEMENT datasetRun (parametersMapExpression?, datasetParameter*,
(connectionExpression | dataSourceExpression)?)>
<!ATTLIST datasetRun

subDataset NMTOKEN #REQUIRED
>

<!ELEMENT datasetParameter (datasetParameterExpression?)>
<!ATTLIST datasetParameter

name NMTOKEN #REQUIRED
>

<!ELEMENT datasetParameterExpression (#PCDATA)>

A dataset run declaration supplies the values for the dataset parameters as well as the data source through
which the dataset will iterate. Optionally, a java.sql.Connection can be passed to the dataset instead of
a JRDataSource instance, when there is a SQL query associated with the dataset. This query is executed
by the engine using the supplied JDBC connection and the java.sql.ResultSet object obtained is
iterated through.

Dataset runs very much resemble subreports in the way parameters and the data source/connection is
passed in. Please refer to the 12 Subreports chapter for more details.

Both charts and crosstabs can reference datasets by instantiating and configuring data set runs. If no dataset
run is specified for a chart or crosstab, the main dataset of the report is used.

Page 116

The JasperReports Ultimate Guide 1.2.5

14 Charts
JasperReports now has built-in support for charts, using the new chart component.

 This greatly simplifies the way charts are included inside reports, because previously the user had to
completely rely on scriptlets to gather the chart data and render the chart using an image element in the
report template. Note that you can still render charts making direct API calls to a particular charting library,
which allows users to fully control the appearance and content of their charts. This can be seen in the
jcharts and jfreechart samples. The first one uses the jCharts library and the second one uses the
JFreeChart library for rendering the charts as images.
Our new chart component uses the JFreeChart library and exposes a limited set of visual properties that the
charting package actually supports. This limited set should be sufficient for the great majority of users and
will be extended in the future to accommodate community feedback and requests.

With the new chart component, the user only has to make the desired visual settings to it and define the
expressions that will help the engine build up the chart dataset incrementally during the iteration through
the report data source.

When including and configuring a chart component, there are three entities involved:
• the overall chart component
• the chart dataset (groups chart data related settings)
• the chart plot (groups visual settings related to the way the chart items are rendered)

JasperReports currently supports the following types of charts:
Pie, Pie 3D, Bar, Bar 3D, XY Bar, Stacked Bar, Stacked Bar 3D, Line, XY Line, Area, XY Area, Scatter
Plot, Bubble, Time series, High Low Open Close, Candlestick.
For each type of chart there is a special JRXML tag that groups various chart settings, including the dataset
and the plot.

14.1 Chart properties
There is a common set of properties for all types of charts. First of all, charts are normal report elements so
they share a part of their properties with all the other report elements, as explained in the 11 Report
elements chapter.
They are also box elements and can have hyperlinks associated with them (see the 11.3 Box elements and
the 11.4 Hyperlinks and bookmarks chapters).

Special settings that are specific only to charts, but apply to all types of charts, are grouped under a special
JRXML tag called <chart>.

Page 117

http://www.jfree.org/jfreechart/index.php
http://jcharts.sourceforge.net/

The JasperReports Ultimate Guide 1.2.5

JRXML syntax

<!ELEMENT chart (reportElement, box?, chartTitle?, chartSubtitle?,
anchorNameExpression?, hyperlinkReferenceExpression?,
hyperlinkAnchorExpression?, hyperlinkPageExpression?)>

<!ATTLIST chart
isShowLegend (true | false) "true"
evaluationTime (Now | Report | Page | Column | Group | Band) "Now"
evaluationGroup CDATA #IMPLIED
hyperlinkType (None | Reference | LocalAnchor | LocalPage | RemoteAnchor

| RemotePage) "None"
hyperlinkTarget (Self | Blank) "Self"
bookmarkLevel NMTOKEN "0"
customizerClass NMTOKEN #IMPLIED

>

<!ELEMENT chartTitle (font?, titleExpression?)>

<!ATTLIST chartTitle
position (Top | Bottom | Left | Right) "Top"
color CDATA #IMPLIED

>

<!ELEMENT titleExpression (#PCDATA)>

<!ELEMENT chartSubtitle (font?, subtitleExpression?)>

<!ATTLIST chartSubtitle
color CDATA #IMPLIED

>

<!ELEMENT subtitleExpression (#PCDATA)>

Display chart legend

All types of charts can display a legend that explains the values represented by the chart. By default all
charts display the legend, but this can be suppressed by setting the isShowLegend flag to false.

Evaluating charts

Charts resemble text fields and images in that they can postpone their actual rendering until all the data
needed for this operation becomes available to the reporting engine.
Data needed by a chart is gathered by the associated dataset during iteration through the report data.
However, you might want to display charts at the beginning of a document where the required data is not
yet available given the way the engine process data and renders the final document.
In such cases, you can postpone chart evaluation using the evaluationTime and evaluationGroup
attributes, which work just as for text fields and images, as explained in previous chapters.

Chart title and subtitle

All charts can have one title and one subtitle. Both are optional and can be customized for color, font, and
position.
The title of a chart can be placed either at the top of the chart, at the bottom, or on one of the sides
depending on the value of the position attribute of the <chartTitle> tag.

Page 118

The JasperReports Ultimate Guide 1.2.5

Chart customizer

Although the JFreeChart library is a fairly complete charting package that offers great flexibility and a
comprehensive range of settings to fully customize the appearance and the content of the charts it renders,
the built-in chart component offered by JasperReports exposes only a subset of the library’s original
charting functionality.
This ensures that JasperReports charts are easily embeddable into reports and the basic set of properties that
are exposed through JRXML and the object model are enough for the majority of use cases.
In time, other JFreeChart settings will be exposed through the built-in chart component, but certainly
JasperReports will never be able to expose all the JFreeChart settings through JRXML tags or the API.

To provide full control over chart customization even when using the built-in chart component,
JasperReports can make use of a net.sf.jasperreports.engine.JRChartCustomizer
implementation associated with the chart element using the customizerClass attribute.

We recommend extending the net.sf.jasperreports.engine.JRAbstractChartCustomizer class
instead of directly implementing the chart customizer interface, because the supplied abstract
implementation gives access to parameters, fields and variables and allow more flexible chart
customization based on report data.

14.2 Chart datasets
One of the most important things to take care of when putting a chart element into a report template is the
data mapping. The chart will need to extract its data from whatever data is available inside the report at
runtime.

Charts rely on a data-oriented component called the chart dataset for mapping report data and retrieving
chart data at runtime.

A chart dataset is an entity that somewhat resembles a report variable because it gets initialized and
incremented at specified moments during the report-filling process and iteration through the report data
source. Like report variables, at any moment a chart dataset holds a certain value, which is a complex data
structure that gets incremented and will be used for rendering the chart at the appropriate moment.

There are several types of chart datasets available in JasperReports because each type of chart works with
certain types of datasets: Pie Dataset, Category Dataset, XY Dataset, Time Series, Time Period Values,
XYZ Dataset, High Low Dataset.

The JasperReports object model uses the net.sf.jasperreports.engine.JRChartDataset
interface to define chart datasets. There are implementations of this interface for each of the mentioned
types of datasets.
All chart datasets initialize and increment in the same way, and differ only in the type of data or data series
they map.

Page 119

The JasperReports Ultimate Guide 1.2.5

Common dataset properties are grouped under the <dataset> tag in JRXML format.

JRXML syntax

<!ELEMENT dataset (incrementWhenExpression?, datasetRun?)>

<!ATTLIST dataset
resetType (None | Report | Page | Column | Group) "Report"
resetGroup CDATA #IMPLIED
incrementType (None | Report | Page | Column | Group) "None"
incrementGroup CDATA #IMPLIED

>

<!ELEMENT incrementWhenExpression (#PCDATA)>

Resetting and incrementing chart datasets

As we have already mentioned, chart datasets resemble variables in that they are used to calculate a certain
value in an incremental fashion. In the case of the chart dataset, this value is a complex data structure that
will be used by the charting library to render the chart. This data structure is built incrementally during
iteration through the report data source by adding values to it.
At certain moments, the chart dataset must be reinitialized because it has probably already been used for
rendering a chart during report filling and must be prepared for further incrementation for later reuse.

All four attributes, resetType, resetGroup, incrementType, and incrementGroup, have the same
meaning and work exactly as previously explained for report variables.

Filtering out data

The way a chart dataset is incremented can be further customized by filtering out unwanted data through
the use of the <incrementWhenExpression> tag. The chart dataset is incremented in accordance with
the specified incrementType and incrementGroup attributes, but only if the mentioned expression
returns Boolean.TRUE (or is not present). The expression returning null is equivalent to
Boolean.FALSE, so incrementation does not occur at that particular moment.

Using report subdatasets through dataset runs

The <datasetRun> tag is optional for a chart dataset declaration. This means that by default, the engine
will use the main dataset of the report. In such a case, all chart expressions make use of report level
parameters, fields, variables, and the group level resets, or increments are performed based on the report
data grouping structure.
Charts that use the main dataset of the report gather their data during iteration through the data source of
the report itself and can be rendered only when this process is completed. This is why charts that use the
main dataset of the report are usually placed at the end of the report or the end of a certain group. If the
chart precedes the data it used inside the overall document, then the evaluationTime attribute must be
used to postpone the rendering of the chart after the iteration through that data has completed.

Sometimes charts and crosstabs need to gather data by iterating through virtual records that are not part of
the report datasource, but are rather virtual records nested inside complex data structures that are part of the
current record inside the report data source.
To iterate though such nested data structures, use subdatasets as explained in the previous chapter.
A chart dataset can instantiate a dataset run by referencing a subdataset declared at report level and by
supplying parameter values to it, as well as a data source or a connection.

Page 120

The JasperReports Ultimate Guide 1.2.5

Using a chart coupled with a dataset run is equivalent to putting a chart inside a subreport and making all
the required wiring for passing the data from the master report to the subreport. Datasets were introduced to
simplify this and to remove the need to use subreports that did not have visual content, but were only used
for iterating through data and making calculations.

We'll now take a closer look at each type of dataset to see what kind of data mapping they require.

Pie dataset

This dataset is useful for rendering Pie or Pie 3D charts. Data required for such charts comes in the form of
key-value pairs. Each pair represents a slice in the pie chart.

JRXML syntax

<!ELEMENT pieDataset (dataset?, keyExpression?, valueExpression?,
labelExpression?)>

Key expression

Values of this expression represent the categories that will make up the slices in the pie chart. This
expression can return any java.lang.Comparable object.

Value expression

This expression produces the values that correspond to each category/key in the dataset. Values are always
java.lang.Number objects.

Label expression

If this expression is missing, the chart will display default labels for each slice in the pie chart. Use this
expression, which returns java.lang.String values, to customize the item labels for the pie chart.

Category dataset

This dataset accommodates one or more data series made of values associated with categories. It is used to
render Bar, Bar 3D, Stacked Bar, Line, and Area charts.

JRXML syntax

<!ELEMENT categoryDataset (dataset?, categorySeries*)>

<!ELEMENT categorySeries (seriesExpression?, categoryExpression?,
valueExpression?, labelExpression?)>

Series expression

This expression indicates the name of the series. The value of this expression can be any
java.lang.Comparable object.
Note that this expression may return different values with each iteration, which in turn will result in the

Page 121

The JasperReports Ultimate Guide 1.2.5

dataset having multiple category series even though a single <categorySeries> tag was used inside the
<categoryDataset>. However, this expression usually returns a java.lang.String constant, and
there are several <categorySeries> tags that introduce multiple category series in the dataset.

Category expression

This expression returns the name of the category for each value inside the series specified by the series
expression. Categories are java.lang.Comparable objects and not necessarily java.lang.String
objects.

Value expression

Returns the java.lang.Number values for each category in the specified series.

Label expression

If present, allows customizing the item labels in the chart.

XY dataset

This dataset is a wrapper for data series made of (x, y) value pairs and is used for rendering XY Bar, XY
Line, XY Area, and Scatter Plot charts.

JRXML syntax

<!ELEMENT xyDataset (dataset?, xySeries*)>

<!ELEMENT xySeries (seriesExpression?, xValueExpression?, yValueExpression?,
labelExpression?)>

Series expression

Returns the java.lang.Comparable object that identifies a certain data series in the overall dataset.
Because it is an expression, it can return different values, which will result in the dataset containing
multiple series even when a single <xySeries> tag is used inside the <xyDataset> tag.

X value expression

Returns the java.lang.Number representing the X value from the (x, y) pair that will be added to the
current data series.

Y value expression

Returns the java.lang.Number representing the Y value from the (x, y) pair that will be added to the
current data series.

Page 122

The JasperReports Ultimate Guide 1.2.5

Time Series dataset

This dataset wraps one or multiple time series. A time series is made of (time period, numeric value) pairs.
The time series dataset can be used with Times Series and XY Bar charts.

JRXML syntax

<!ELEMENT timeSeriesDataset (dataset?, timeSeries*)>

<!ATTLIST timeSeriesDataset
timePeriod (Year | Quarter | Month | Week | Day | Hour | Minute | Second

| Milisecond) "Day"
>

<!ELEMENT timeSeries (seriesExpression?, timePeriodExpression?,
valueExpression?, labelExpression?)>

Time period

The timePeriod attribute, available inside the <timeSeriesDataset> tag, is for specifying the type of
the data series inside the dataset. Time series can contain numeric values associated with days, months,
years, or other predefined time periods.

Series expression

As for all other series-based datasets, this expression specifies the series to which to add the current value
pair when incrementing the dataset. Any java.lang.Comparable object can be used to identify a series.

Time period expression

This expression returns a java.util.Date value from which the engine will extract the corresponding
time period depending on the value set for the timePeriod attribute mentioned above in the time series
dataset. For instance, if it is about yearly data, the engine will extract only the year from the date value, or
if we are gathering monthly data, the engine will use only the month value from the date object returned by
this expression.

Value expression

This expression returns the java.lang.Number value to associate with the corresponding time period
value when incrementing the current series of the dataset.

Label expression

This expression should return java.lang.String values and if present, helps customizing the item labels
inside charts.

Page 123

The JasperReports Ultimate Guide 1.2.5

Time Period dataset

The dataset is very much like the time series dataset in that it wraps series made of (time period, numeric
value) pairs. The only difference is that in this case the time periods are not to chosen from a predefined list
but can be arbitrary time intervals. This kind of dataset is for use only with XY Bar charts.

JRXML syntax

<!ELEMENT timePeriodDataset (dataset?, timePeriodSeries*)>

<!ELEMENT timePeriodSeries (seriesExpression?, startDateExpression?,
endDateExpression?, valueExpression?, labelExpression?)>

Series expression

Multiple series can be put inside the dataset, and this expression returns a java.lang.Comparable that
identifies each series. This tag is common for all series-based datasets, as explained elsewhere in this
chapter.

Start date and end date expressions

These two expressions specify the date interval with which the numeric value will be associated when it is
added to the time period series.

Value expression

Returns the java.lang.Number value to associate with the current date interval specified by the start date
and end date expressions above.

Label expression

If present, this dataset also lets you customize item labels in the resulting chart.

XYZ dataset

The XYZ dataset wraps series made of (x, y, z) items. It is used only by the Bubble chart.

JRXML syntax

<!ELEMENT xyzDataset (dataset?, xyzSeries*)>

<!ELEMENT xyzSeries (seriesExpression?, xValueExpression?, yValueExpression?,
zValueExpression?)>

Series expression

Identifies the series in multi-series datasets. See the previous dataset for more details about this tag.

Page 124

The JasperReports Ultimate Guide 1.2.5

X, Y and Z value expressions

All these expressions return a java.lang.Number value that will form the (x, y, z) item to add to the
current series when incrementing the dataset.

High Low dataset

Although it is called the High Low dataset, it can actually hold a series of (x, high, low, open, close,
volume) items. It is used in combination with either a High Low or a Candlestick chart.

JRXML syntax

<!ELEMENT highLowDataset (dataset?, seriesExpression?, dateExpression?,
highExpression?, lowExpression?, openExpression?, closeExpression?,
volumeExpression?)>

Series expression

Currently only one series is supported inside a High Low or Candlestick chart. This limitation is
documented inside JFreeChart, the library we are using for the built-in chart support. However, this single
series must be identified by a java.lang.Comparable value returned by this expression and must also be
used as the series name in the chart’s legend.

Date expression

Returns the date to which the current (high, low, open, close, volume) item refers.

High, low, open and close expressions

Each one of these expressions return a java.lang.Number value which will be part of the data item
added to the series when the dataset gets incremented.

Volume expression

This is a numeric expression that returns the volume value to use for the current data item and it is used
only for Candlestick charts.

14.3 Chart plots

The chart plot is the area of the chart on which the axes and items get rendered. There are different types of
plots depending on the type of the chart. Some plots specialize in drawing pies, others in drawing bar items
or lines.

Each type of plot comes with its own set of properties or attributes for customizing the chart’s appearance
and behavior.
There is, however, a subset of plot properties common to all types of plots. They are grouped under the
<plot> tag in JRXML and can be part of any chart/plot definition in the report template.

Page 125

The JasperReports Ultimate Guide 1.2.5

JRXML syntax

<!ELEMENT plot EMPTY>

<!ATTLIST plot
backcolor CDATA #IMPLIED
orientation (Horizontal | Vertical) "Vertical"
backgroundAlpha NMTOKEN "1"
foregroundAlpha NMTOKEN "1"

>

Plot background color

The backcolor attribute is for specifying the color used for drawing the plot’s area background.

Plot orientation

Some types of plots can draw their items either vertically or horizontally. For instance, Bar charts can
display either vertical or horizontal bars. Pie charts do not use this setting, but since the great majority of
charts do have a concept of orientation, the attribute was included among the common plot settings.

Plot transparency

When filling up the background with the specified color or drawing items on the target device, the plot can
use a customizable degree of transparency, which you can control using the backgroundAlpha and
foregroundAlpha attributes. These attributes accept numeric values ranging from 0 to 1.
The default for both attributes is 1, which means drawings on the plot area are opaque.

Pie plot

This type of plot is used for rendering Pie charts. There is no special setting for this type of plot other than
the common settings presented above.

JRXML syntax

<!ELEMENT piePlot (plot)>

Pie 3D plot

As its name suggests, this kind of plot is used only for rendering Pie 3D charts.

JRXML syntax

<!ELEMENT pie3DPlot (plot)>

<!ATTLIST pie3DPlot
depthFactor CDATA "0.2"

>

Page 126

The JasperReports Ultimate Guide 1.2.5

Depth factor

The only special setting that the Pie 3D plot exposes is the depth factor, a numeric value ranging from 0 to
1 representing the depth of the pie as a percentage of the height of the plot area.

Bar plot

This type of plot can be used to render Bar, Stacked Bar and XY Bar charts.

JRXML syntax

<!ELEMENT barPlot (plot, categoryAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST barPlot
isShowLabels (true | false) "false"
isShowTickMarks (true | false) "true"
isShowTickLabels (true | false) "true"

>

Axis labels

Bar plots display two axes, one for categories and the other for the values associated with those categories.
Both axes can display labels if the <categoryAxisLabelExpression> and
<valueAxisLabelExpression> are used. These two expressions are supposed to return
java.lang.Comparable values.

Showing item labels

By default, this plot does not display labels for the items it draws on the plot area. By setting the
isShowLabels to true, default or customized labels should appear. Check the corresponding dataset used
by the chart to see how item can be customized.

Showing tick marks and tick labels

There are two boolean attributes, isShowTickMarks and isShowTickLabels, both set to true by default,
for controlling the display of the tick marks and the labels on the chart axes.

Bar 3D plot

Only the Bar 3D and the Stacked Bar 3D charts make use of the Bar 3D plot.
Like the abovementioned Bar plot, this plot also allows customizing the labels for both of its axes and the
display of the item labels.

Page 127

The JasperReports Ultimate Guide 1.2.5

JRXML syntax

<!ELEMENT bar3DPlot (plot, categoryAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST bar3DPlot
isShowLabels (true | false) "false"
xOffset CDATA #IMPLIED
yOffset CDATA #IMPLIED

>

3D effect

This plot exposes two special attributes, xOffset and yOffset, that allow users to control the 3D effect.
Both accept numeric values representing the number of pixels in the 3D effect on the two axes.

Line plot

This plot is used by the Line and XY Line charts.

JRXML syntax

<!ELEMENT linePlot (plot, categoryAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST linePlot
isShowLines (true | false) "true"
isShowShapes (true | false) "true"

>

Axis labels

The line plot also has two axes. Their labels can be controlled by using the
<categoryAxisLabelExpression> and <valueAxisLabelExpression> tags to return
java.lang.Comparable values to use as labels.

Show lines

The line plot draws lines between the points that represent the chart items inside the plot area. Those lines
can be suppressed if the isShowLines attribute is set to false.

Show shapes

The line plot also marks each item point with a small graphical shape which is different for each series in
the underlying dataset. This small shape can be hidden by setting the isShowShapes flag to false.

Page 128

The JasperReports Ultimate Guide 1.2.5

Area plot

Area charts rely on this plot to render the axes and the items. This kind of plot only allows users to specify
the labels for both axes. Currently no other settings are permitted.

JRXML syntax

<!ELEMENT areaPlot (plot, categoryAxisLabelExpression?,
valueAxisLabelExpression?)>

Scatter plot

Scatter plots are used only with Scatter Plot charts. They render items as points on a two-axis plot area.
This very much resembles the Line plot described above in that it lets users configure the labels for both
axes, the rendering of lines to unite the item points, and the rendering of the small shapes that mark each
item point on the target plot area.

JRXML syntax

<!ELEMENT scatterPlot (plot, xAxisLabelExpression?, yAxisLabelExpression?)>

<!ATTLIST scatterPlot
isShowLines (true | false) "true"
isShowShapes (true | false) "true"

>

Bubble plot

Only Bubble charts use this type of plot. Like all other two-axis plots, it lets users control the labels
displayed for each axis.

JRXML syntax

<!ELEMENT bubblePlot (plot, xAxisLabelExpression?, yAxisLabelExpression?)>

<!ATTLIST bubblePlot
scaleType (BothAxes | DomainAxis | RangeAxis) "RangeAxis"

>

Bubble scale type

The plot draws an ellipse for each item present in the dataset for a given series. Usually this is a circle
whose radius is specified by the Z value in that chart item. However, the plot needs to know whether the Z
value is proportional to its corresponding X value or to its corresponding Y value in order to calculate the
actual size of the bubble.

Page 129

The JasperReports Ultimate Guide 1.2.5

This is specified by the scaleType attribute that this plot exposes:
• Range axis scaling : The bubble is a circle with the radius proportional to the Y value for each item

(scaleType="RangeAxis").
• Domain axis scaling : The bubble is a circle with the radius proportional to the X value for each item

(scaleType="DomainAxis").
• Scaling on both axes : The bubble is an ellipse with the height proportional to the Y value and the width

proportional to the X value for each item (scaleType="BothAxes").
By default, bubbles scale on the range axis.

Time Series plot

This type of plot is similar to the Line plot and Scatter plot presented above in that it lets users configure
the labels for both axes, the rendering of lines to unite the item points, and the rendering of the small shapes
that mark each item point on the target plot area. It is used only in combination with Time Series charts.

JRXML syntax

<!ELEMENT timeSeriesPlot (plot, timeAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST timeSeriesPlot
isShowLines (true | false) "true"
isShowShapes (true | false) "true"

>

High Low plot

Used only in combination with High Low charts, this type of plot lets users customize the labels for both
axes, like all the other axis-oriented plots.

JRXML syntax

<!ELEMENT highLowPlot (plot, timeAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST highLowPlot
isShowCloseTicks (true | false) "true"
isShowOpenTicks (true | false) "true"

>

Show tick marks

This special type of plot draws the items as vertical lines that start at the high value and go downwards to
the low value. On each line the plot displays by default small ticks to indicate the open and close values
corresponding to the current item. To suppress these ticks, set to false the two flags available inside the
plot definition: isShowCloseTicks and isShowOpenTicks.

Page 130

The JasperReports Ultimate Guide 1.2.5

Candlestick plot

The candlestick plot is also an axis-oriented plot and allows customizing axis labels using expressions.
It can be used only in combination with a Candlestick chart.

JRXML syntax

<!ELEMENT candlestickPlot (plot, timeAxisLabelExpression?,
valueAxisLabelExpression?)>

<!ATTLIST candlestickPlot
isShowVolume (true | false) "true"

>

Show volume

The candlestick charts use a High Low dataset, but unlike the High Low charts, they can make use of the
volume value inside each dataset item.
The volume value is displayed as the body of the candlestick figure rendered for each item.
The volume is displayed by default in a Candlestick chart but can be suppressed by setting the
isShowVolume flag to false.

14.4 Chart types
JasperReports offers built-in support for several chart types. The JFreeChart library used to render the
charts supports an even wider range of chart types, but the subset offered though the chart element
available in JasperReports should be sufficient for the great majority of reporting requirements. Note that
you can still render special charts by making direct calls to the charting API inside a generic image element
placed inside the report template.

Each one of the predefined chart types in JasperReports is a combination between a dataset and a plot.

Pie chart

A combination of a pie dataset and a pie plot.

JRXML syntax

<!ELEMENT pieChart (chart, pieDataset, piePlot)>

Pie 3D chart

Groups a pie dataset and a pie 3D plot.

JRXML syntax

<!ELEMENT pie3DChart (chart, pieDataset, pie3DPlot)>

Page 131

The JasperReports Ultimate Guide 1.2.5

Bar chart

A basic combination between a category dataset and a bar plot.

JRXML syntax

<!ELEMENT barChart (chart, categoryDataset, barPlot)>

Bar 3D chart

Wraps a category dataset and a bar 3D plot.

JRXML syntax

<!ELEMENT bar3DChart (chart, categoryDataset, bar3DPlot)>

XY Bar chart

Supports time period datasets, time series datasets, and XY datasets, and uses a bar plot to render the axis
and the items.

JRXML syntax

<!ELEMENT xyBarChart (chart, (timePeriodDataset | timeSeriesDataset | xyDataset
), barPlot)>

Stacked Bar chart

Just like the Bar charts, the Stacked Bar chart uses data from category dataset and renders its content using
a bar plot.

JRXML syntax

<!ELEMENT stackedBar3DChart (chart, categoryDataset, bar3DPlot)>

Stacked Bar 3D chart

This type of chart is very similar to the Bar 3D chart in that it wraps together a category dataset and a bar
3D plot.

JRXML syntax

<!ELEMENT stackedBar3DChart (chart, categoryDataset, bar3DPlot)>

Page 132

The JasperReports Ultimate Guide 1.2.5

Line chart

Line charts are made of a category dataset and a line plot.

JRXML syntax

<!ELEMENT lineChart (chart, categoryDataset, linePlot)>

XY Line chart

Groups an XY dataset and a line plot.

JRXML syntax

<!ELEMENT xyLineChart (chart, xyDataset, linePlot)>

Area chart

Items from a category dataset are rendered using an area plot.

JRXML syntax

<!ELEMENT areaChart (chart, categoryDataset, areaPlot)>

XY Area chart

Uses data from an XY dataset and renders it through an area plot.

JRXML syntax

<!ELEMENT xyAreaChart (chart, xyDataset, areaPlot)>

Scatter Plot chart

Wraps an XY dataset with a scatter plot.

JRXML syntax

<!ELEMENT scatterChart (chart, xyDataset, scatterPlot)>

Bubble chart

Usable only with an XYZ dataset and only in combination with a bubble plot.

JRXML syntax

<!ELEMENT bubbleChart (chart, xyzDataset, bubblePlot)>

Page 133

The JasperReports Ultimate Guide 1.2.5

Time Series chart

Usable only with a time series dataset and a time series plot.

JRXML syntax

<!ELEMENT timeSeriesChart (chart, timeSeriesDataset, timeSeriesPlot)>

High Low Open Close chart

A combination of a high-low dataset and a high-low plot.

JRXML syntax

<!ELEMENT highLowChart (chart, highLowDataset, highLowPlot)>

Candlestick chart

Use data from a high-low dataset but with a special candlestick plot.

JRXML syntax

<!ELEMENT candlestickChart (chart, highLowDataset, candlestickPlot)>

Page 134

The JasperReports Ultimate Guide 1.2.5

15 Crosstabs
A crosstab is a special type of report element that summarizes data into a two-dimensional grid. Crosstabs
usually display the joint distribution of two or more variables in the form of a table in which both rows and
columns are dynamic, and where the table cells use these variables to display aggregate data such as sums,
counts, min, max, and other types of calculations.

Crosstabs are useful because they are easy to understand, can be used with any level of data (nominal,
ordinal, interval, or ratio), and provide greater insight than single statistics.

JRXML syntax

<!ELEMENT crosstab (reportElement, crosstabParameter*,
parametersMapExpression?, crosstabDataset?, crosstabHeaderCell?, rowGroup*,
columnGroup*, measure*, crosstabCell*, whenNoDataCell?)>

<!ATTLIST crosstab
isRepeatColumnHeaders (true | false) "true"
isRepeatRowHeaders (true | false) "true"
columnBreakOffset NMTOKEN "10"

>

Repeating row and column headers

When a crosstab does not fit entirely on the current page and either a column break or a row break occurs,
the crosstab is split into multiple pieces and it continues on the same page or overflows onto a new page.
By default, the subsequent crosstab pieces redisplay the column headers and the rows headers, in order to
recreate the context for the values displayed inside the crosstab cells. To suppress this behavior, set the
isRepeatColumnHeaders and isRepeatRowHeaders attributes to false.

Column break offset

When a column break occurs and there is still enough space on the current page, the subsequent crosstab
piece is placed below the previous one at a controlled offset that you can specify with the
columnBreakOffset attribute.

15.1 Crosstab parameters
Crosstabs use an internal calculation engine for bucketing and preparing the aggregated data they display.
However, sometimes it is useful to pass single values from the containing report and display them inside
the crosstab. This would be the case for some crosstab header titles.

Any number of crosstab parameters can be declared inside the crosstab element. Each parameter has its
own name and type as well as the expression used at runtime to obtain the value to pass into the crosstab.

Page 135

The JasperReports Ultimate Guide 1.2.5

JRXML syntax

<!ELEMENT crosstabParameter (parameterValueExpression?)>

<!ATTLIST crosstabParameter
name CDATA #REQUIRED
class NMTOKEN "java.lang.String"

>

<!ELEMENT parameterValueExpression (#PCDATA)>

All parameters must be declared explicitly using the corresponding <crosstabParameter> tag even
when no expression is associated with the parameter and all parameter values are passed from the parent
report using a single java.util.Map instance through the <parametersMapExpression> tag.

Inside a <parameterValueExpression> tag, you can reference parameters, fields, and
variables from the parent report.

Crosstab parameters can be referenced only from crosstab cell expressions using the $P{} syntax, so they
can participate only in the displayed values.

15.2 Crosstab dataset
The crosstab calculation engine aggregates data by iterating through an associated dataset. This can be the
parent report’s main dataset or a dataset run that uses one of the report’s declared subdatasets.

JRXML syntax

<!ELEMENT crosstabDataset (dataset?)>

<!ATTLIST crosstabDataset
isDataPreSorted (true | false) "false"

>

Crosstab dataset resetting, incrementing and filtering-out of data work the same as for chart datasets and
were explained in chapter 14.2 Chart datasets .

Using presorted data

The calculation engine of a crosstab works faster if the data in its associated dataset is already sorted in
accordance with the row and column groups (buckets) declared by the crosstab, in this order: row buckets,
then column buckets.
If data is not already sorted in the dataset before the iteration starts, the crosstab calculation engine can sort
it during the data aggregation process using supplied comparators, as explained in the next chapter, but this
will result in some performance loss.

Page 136

The JasperReports Ultimate Guide 1.2.5

15.3 Data grouping (bucketing)
The original dataset data through which the crosstab calculation engine iterates to make the required data
aggregation must be grouped in accordance with the declared rows and columns of the crosstab. Row and
column groups in a crosstab rely on group items called “buckets”. A bucket definition consists of:

• an expression evaluated at runtime that obtains
 the group items (buckets) in which to place the aggregated information.

• a comparator to sort the group items (buckets) in case the natural
 ordering of the values is not acceptable or even possible.

For example, if you want to group by city, the expression would be the city name (provided that it's unique)
and the comparator expression could be a java.text.Collator to perform locale-sensitive ordering.

 A bucket is an expression that will be evaluated at runtime in order to obtain the data buckets in which to
place the aggregated information and also a comparator to sort the buckets in case the natural ordering of
the bucket values is not acceptable or even possible.

JRXML syntax

<!ELEMENT bucket (bucketExpression?, comparatorExpression?)>

<!ATTLIST bucket
order (Ascending | Descending) "Ascending"

>

<!ELEMENT bucketExpression (#PCDATA)>

<!ATTLIST bucketExpression
class NMTOKEN #REQUIRED

>

<!ELEMENT comparatorExpression (#PCDATA)>

Bucket expression

Crosstab data grouping is similar to report data grouping. Both require that an expression be evaluated to
obtain a series of distinct values that will identify the data groups. Crosstabs have both row grouping and
column grouping, but there is no distinction between the two as far as data is concerned. The only
difference is in the crosstab layout and the way it flows. Both row and column group declarations have a
nested data bucket, which introduces the mentioned expression as the bucket expression using the
<bucketExpression> tag.

Both the <bucketExpression> and the <comparatorExpression> tags can contain only
parameter, field, and variable references from the associated dataset. If the crosstab dataset
uses a dataset run associated with a subdataset declared at report level, then all those
references inside the expression point to parameters, fields, and variables declared in that
subdataset. For crosstab datasets that run on the main dataset of the report, the references
inside expressions point to the parent report parameters, fields, and variables as expected.

Page 137

The JasperReports Ultimate Guide 1.2.5

Bucket comparator and sort order

The row and column groups are always sorted in the final crosstab layout. Bucket values usually make it
into the row or column headers, which are always sorted either by their natural order (when
java.lang.Comparable values are used for those buckets) or can be sorted using a custom
java.util.Comparator that is supplied using the <comparatorExpression>.

15.3.1 Row groups

Crosstabs can have any number of row groups, which are nested according to the order in which they were
declared.

JRXML syntax

<!ELEMENT rowGroup (bucket, crosstabRowHeader?, crosstabTotalRowHeader?)>

<!ATTLIST rowGroup
name NMTOKEN #REQUIRED
width NMTOKEN #REQUIRED
totalPosition (Start | End | None) "None"
headerPosition (Top | Middle | Bottom | Stretch) "Top"

>

<!ELEMENT crosstabRowHeader (cellContents?)>

<!ELEMENT crosstabTotalRowHeader (cellContents?)>

Row group name

All groups require a unique name, specified using the name attribute. This name is used to reference the
group when declaring the content of its corresponding cells or when referencing the bucket values of the
group to display them in the group headers.

Row group headers

A row group can have one header for introducing the rows that correspond to each distinct bucket value
and a special header for introducing the totals of the group when the crosstab ends or when a higher-level
row group breaks due to a changing bucket value.
Both header areas are optional. If present, they have a free-form layout. You can place almost any kind of
report element inside, except for subreports, charts, and crosstabs.

Inside a row header area, put only information that the crosstab calculation engine produced
during the aggregation and bucketing process, as well as crosstab parameter values. The $P{}
syntax used inside header expressions points to crosstab parameter values and the $V{} syntax
points to either a bucket value (if the name of a group was mentioned between the brackets) or
to a measure value (if a measure was referenced by name).
Note that measures and groups cannot have the same name to avoid naming conflicts when
using the $V{} syntax.

Page 138

The JasperReports Ultimate Guide 1.2.5

Header width

For each row header, specify the width in pixels using the width attribute. This value is used by the engine
to render the headers that introduce bucket values. For the totals header, the width comes as a sum of the
row headers it wraps.

Position of totals row

The totalPosition attribute controls the appearance of the row that displays the totals for the row group:
• Start : The row that displays the totals for the group precedes the rows corresponding to the group’s

bucket values (totalPosition="Start").
• End : The row that displays the totals for the group is rendered after the rows corresponding to the

group's bucket values (totalPosition="End").
• None : The row that displays the totals for the group is not displayed (totalPosition="None").

Header stretch behavior

When multiple nested row groups are used in the crosstab, the height of the row headers for the higher level
groups grows in order to wrap the rows of the nested groups. The headerPosition attribute determines
how the row header content should adapt to the increased height. The possible values for this attribute are:
• Top : The content of the row header does not stretch and remains at the top of the header area

(headerPosition="Top").
• Middle : The content of the row header does not stretch and moves to the middle of the header area

(headerPosition="Middle").
• Bottom : The content of the row header does not stretch and moves to the bottom of the header area

(headerPosition="Bottom").
• Stretch : The content of the row header adapts its height proportionally to the newly increased row

header height (headerPosition="Stretch").

By default, the row header content stays at the top of the row header area.

15.3.2 Column groups

As previously mentioned for the row groups, a crosstab can contain any number of nested columns. The
order of column groups is also important.

JRXML syntax

<!ELEMENT columnGroup (bucket, crosstabColumnHeader?,
crosstabTotalColumnHeader?)>

<!ATTLIST columnGroup
name NMTOKEN #REQUIRED
height NMTOKEN #REQUIRED
totalPosition (Start | End | None) "None"
headerPosition (Left | Center | Right | Stretch) "Left"

>

<!ELEMENT crosstabColumnHeader (cellContents?)>

<!ELEMENT crosstabTotalColumnHeader (cellContents?)>

Page 139

The JasperReports Ultimate Guide 1.2.5

Column group name

Column groups are also uniquely identified by the name attribute, typically to reference the column group
(when declaring the content of its corresponding cells) or the bucket values of the group (for display in the
group headers).

Column group headers

Any column group can have two optional header regions, one at the top of the bucket columns and the
other at the top of the column displaying the totals of the column group.
These column header regions have a free-form layout and can contain any kind of report element, except
subreports, charts, and crosstabs.

Inside a column header area, only the $P{} and $V{} references are valid for expressions.
They point to crosstab parameters, bucket values, and measures, as already explained for row
headers.

Header height

The height attribute specifies the height of the column headers in pixels. The header for the group totals
column takes its height from the total height of the column headers it wraps.

Position of totals column

The totalPosition attribute controls the appearance of the column that displays the totals for the
column group:
• Start : The column that displays the totals for the group precedes the columns corresponding to the

group's bucket values (totalPosition="Start").
• End : The column that displays the totals for the group is rendered after the columns corresponding to

the group's bucket values (totalPosition="End").
• None : The column that displays the totals for the group is not displayed (totalPosition="None").

Header stretch behavior

The column headers of crosstabs with multiple nested column groups must adapt their content to the
increased width caused by the nested columns they wrap. There are four possibilities as specified by the
values of the headerPosition attribute:
• Left : The content of the column header does not stretch and remains to the left of the header area

(headerPosition="Left").
• Center : The content of the column header does not stretch and moves to the center of the header area

(headerPosition="Center").
• Right : The content of the column header does not stretch and moves to the right of the header area

(headerPosition="Right").
• Stretch : The content of the column header adapts its width proportionally to the newly increased

column header width (headerPosition="Stretch").

By default, the column header content stays to the left of the column header area.

Page 140

The JasperReports Ultimate Guide 1.2.5

15.4 Measures
The crosstab calculation engine aggregates data, called a measure, while iterating through the associated
dataset. A measure is typically displayed in the crosstab cells.

For each thing that the crosstab needs for accumulating data during bucketing, a corresponding measure
must be declared.

JRXML syntax

<!ELEMENT measure (measureExpression?)>

<!ATTLIST measure
name NMTOKEN #REQUIRED
class NMTOKEN #IMPLIED
calculation (Nothing | Count | DistinctCount | Sum | Average | Lowest |

Highest | StandardDeviation | Variance | First) "Nothing"
incrementerFactoryClass NMTOKEN #IMPLIED
percentageOf (None | GrandTotal) "None"
percentageCalculatorClass NMTOKEN #IMPLIED

>

<!ELEMENT measureExpression (#PCDATA)>

Measure name

Crosstab measures are identified by a unique name. The value of the name attribute of a measure cannot
coincide with any row or column group names.

Measure type

Just like report variables, crosstab measures have an associated type specified by the class attribute.

Measure expression

The <measureExpression> specifies the expression that produces the values used by the calculation
engine to increment the measure during the data aggregation process.

All the parameter, field, and variable references used inside a measure expression point to the
references declared in the crosstab dataset definition. If the crosstab does not use a subdataset
run, then all these references point to the report’s main dataset. Therefore, they are actually
parameters, fields, and variables of the parent report.

Measure calculation and custom incrementers

Crosstab measures behave just like report variables. They store a value that is incremented with each
iteration through the crosstab dataset. The supported types of calculations are the same for the measure as
for report variables, except for calculation type System, which does not make sense for measures.
Furthermore, custom-defined calculations can be introduced using implementations of the
net.sf.jasperreports.engine.fill.JRExtendedIncrementer interface, as explained in the
discussion of the incrementerFactoryClass attribute in the 9.6.2 Incrementers chapter.

Page 141

The JasperReports Ultimate Guide 1.2.5

Percentages and second pass types of calculations (deprecated)

The crosstab functionality described in the following two paragraphs is now considered
deprecated. The introduction of the built-in crosstab total variables helps displaying percentage
like types of values in a simpler manner. See the following section for details.

In addition to the usual calculations supported also by the report variables and mentioned in the above
paragraph, crosstabs can calculate and display percentage values for numerical measurements that have
calculation type Sum or Count. To do this, set the percentageOf attribute to a value other than None.
Currently, only percentages of the grand total of the crosstab are supported.

The percentage is a type of calculation that requires at least a second pass through the data after the totals
are calculated. However, there may be other custom-made calculations that require a similar second pass.
To enable users to define their own types of calculations that require a second pass, implement the
net.sf.jasperreports.crosstabs.fill.JRPercentageCalculator interface and associate it
with the measure using the percentageCalculatorClass attribute.

Built-in crosstab total variables

The value of a measure is available inside a crosstab cell through a variable bearing the same name as the
measure. Besides the current value of the measure, totals of different levels corresponding to the cell can be
accessed through variables named after this scheme:
• <Measure>_<Column Group>_ALL – yields the total corresponding to a column group (i.e. the total

for all the entries in the column group from the same row)
• <Measure>_<Row Group>_ALL – yields the total corresponding to a row group (i.e. the total for all

the entries in the row group from the same column)
• <Measure>_<Row Group>_<Column Group>_ALL – yields the combined total corresponding to the

row and column groups (i.e. the total corresponding to all the entries in both row and column groups)

For example, if one creates a crosstab having "Year" and "Month" column groups, a "City" row group and
a "Sales" measure, the following variables can be used:
• Sales – the current measure value
• Sales_Month_ALL – the total for all the months (one year) corresponding to the current cell
• Sales_Year_ALL – the total for all the years
• Sales_City_ALL – the total for all the cities
• Sales_City_Month_ALL – the total for all the cities and all the months (one year)
• Sales_City_Year_ALL – the grand total

These variables can be used in both detail and total cells. In total cells, such a variable can be used to access
a total corresponding to a higher level group of the same dimension (e.g. in a Month total cell
Sales_Year_ALL can be used as the total for all the years) or a total corresponding to a group on the other
dimension (e.g. in a Month total cell Sales_City_ALL can be used as the total for all the cities and one
year).

A typical usage of these variables is showing measure values as percentages out of arbitrary level totals.

Page 142

The JasperReports Ultimate Guide 1.2.5

15.5 Crosstab cells
A crosstab cell is a rectangular area at the intersection of a crosstab row and a crosstab column. The cell is
a free-form element that can contain any kind of report element except subreports, charts, and crosstabs.

Crosstab cells are of two types:
• detail crosstab cell – both the row and the column correspond to bucket values and not totals.
• total crosstab cell – either the row or the column or both correspond to a group total.

JRXML syntax

<!ELEMENT crosstabCell (cellContents?)>

<!ATTLIST crosstabCell
width NMTOKEN #IMPLIED
height NMTOKEN #IMPLIED
rowTotalGroup NMTOKEN #IMPLIED
columnTotalGroup NMTOKEN #IMPLIED

>

<!ELEMENT cellContents (box?, (line | rectangle | ellipse | image | staticText
| textField | elementGroup | frame)*)>

<!ATTLIST cellContents
backcolor CDATA #IMPLIED
mode (Opaque | Transparent) #IMPLIED
style NMTOKEN #IMPLIED

>

<!ELEMENT crosstabHeaderCell (cellContents)>

<!ELEMENT whenNoDataCell (cellContents)>

Cell backcolor and border

All crosstab cells can have a background color and a border specified by the background attribute and the
nested <box> tag respectively. In the resulting document, each crosstab cell is transformed into a frame
element containing all the nested elements of that cell.

Crosstab header cell

The optional <crosstabHeaderCell> tag defines the content of the region found at the upper-left corner
of the crosstab where column headers and row headers meet. The size of this cell is calculated
automatically based on the defined row and column widths and heights.

Detail cell

The crosstab cell at the intersection of a row bucket value and a column bucket value (called the detail
crosstab cell) can be declared using a <crosstabCell> tag in which both the rowTotalGroup and the
columnTotalGroup attributes are empty.
For the detail crosstab cell, both the width and the height attributes are mandatory, specifying the size of
the cell in pixels.

Page 143

The JasperReports Ultimate Guide 1.2.5

Total cells

Total crosstab cells are those declared using a <crosstabCell> tag in which at least one of the two
rowTotalGroup and columnTotalGroup attributes are present and point to a row group or a column
group respectively.
If the rowTotalGroup attribute is present, then the crosstab cell displays column totals for the mentioned
row group. For such total crosstab cells, only the height is configurable and the width is forced by the
detail cell.
If the columnTotalGroup attribute is present, then the cell displays row totals for the specified column
group. For these cells, only the width is configurable, and the cell inherits the value of the height
attribute from the detail cell.

Crosstab cell expression can only reference crosstab parameters using the $P{} syntax and
bucket and measure values using the $V{} syntax.

No data cell

The optional <whenNoDataCell> defines a pseudo crosstab cell used by the engine to display something
when the crosstab does not have any data. The crosstab dataset might not have any virtual records to iterate
through, raising the question of what to display in the parent report.
If this pseudo cell is declared, its content is rendered if the crosstab data is missing, allowing users to view
messages such as "No data for the crosstab!" instead of only empty space.

Page 144

The JasperReports Ultimate Guide 1.2.5

16 Scriptlets
All the data displayed in a report comes from the report parameters and from the report fields. This data can
be processed using the report variables and their expressions.

Some variables are initialized according to their reset type when the report starts, or when a page or column
break is encountered, or when a group changes. Furthermore, variables are evaluated every time new data is
fetched from the data source (for every row).

But simple variable expressions cannot always implement complex functionality. This is where scriptlets
come in. Scriptlets are sequences of Java code that are executed every time a report event occurs. Through
scriptlets, users can affect the values stored by the report variables. Since scriptlets work mainly with report
variables, it is important to have full control over the exact moment the scriptlet is executed.

JasperReports allows the execution of custom Java code BEFORE or AFTER it initializes the report
variables according to their reset type: Report, Page, Column, or Group.
In order to make use of this functionality, users need only create a scriptlet class by extending one of the
following two classes:

net.sf.jasperreports.engine.JRAbstractScriptlet
net.sf.jasperreports.engine.JRDefaultScriptlet

The complete name of this custom scriptlet class (including the package) must be specified in the
scriptletClass attribute of the <jasperReport> element and must be available in the classpath, at
report filling time, so that the engine can instantiate it on the fly. If no value is specified for the
scriptletClass attribute, the engine instantiates the JRDefaultScriptlet class.

When creating a JasperReports scriptlet class, there are several methods that developers should implement
or override, including beforeReportInit(), afterReportInit(), beforePageInit(),
afterPageInit(), beforeGroupInit(), and afterGroupInit(). The report engine calls these
methods at the appropriate time when filling the report.

For more complex reports containing very complicated report expressions for grouping or displaying data,
create a separate class to which you then make calls from simplified report expressions. The scriptlet class
is ideal for this. This is because the reporting engine supplies you with a reference to the scriptlet object it
creates on the fly using the REPORT_SCRIPTLET built-in parameter.

Check the /demo/samples/scriptlet sample provided with the project source files to see this type of
functionality used.

Page 145

The JasperReports Ultimate Guide 1.2.5

17 Internationalization
JasperReports lets you associate a java.util.ResourceBundle with the report template, either at
design time, by using the new resourceBundle attribute or at runtime, by providing a value for the
REPORT_RESOURCE_BUNDLE build-in parameter.

If the report needs to be generated in a locale that is different from the current one, use the built-in
REPORT_LOCALE parameter to specify the runtime locale when filling the report.

To facilitate report internationalization, a special syntax is available inside report expressions to reference
java.lang.String resources placed inside a java.util.ResourceBundle object associated with the
report. The $R{} syntax is for wrapping resource bundle keys to retrieve the value for that key.

To format messages in different languages based on the report locale, a built-in method inside the report’s
net.sf.jasperreports.engine.fill.JRCalculator offers functionality similar to the
java.text.MessageFormat class. This method, msg(), has three convenience signatures that allow
using up to three message parameters in the messages.
Also provided is the build-in str() method, which is the equivalent of the $R{} syntax inside the report
expressions, that gives access to the resource bundle content based on the report locale.

For date and time formatting, the REPORT_TIME_ZONE built-in parameter could be used to ensure
proper time transformations.

In the generated output, the library keeps information about the text run direction so that documents
generated in languages that have right-to-left writing (like Arabic and Hebrew) can be rendered properly.

If an application relies on the built-in Swing viewer to display generated reports, then it too must be
internationalized by adapting the button tool tips or other texts displayed. This is very easy to do since the
viewer relies on a predefined resource bundle to extract locale-specific information.
The base name for this resource bundle is net.sf.jasperreports.view.viewer.

Check the /demo/samples/i18n and /demo/samples/unicode samples for details.

Page 146

The JasperReports Ultimate Guide 1.2.5

18 Report exporters
The proprietary document format used by JasperReports to generate and store final documents is
represented by a net.sf.jasperreports.engine.JasperPrint object, which can be serialized for
transfer over the network or permanent storage.

However, when these documents must be sent to third-party consumers who do not have the proper tools to
view and print the documents in the JasperReports proprietary format, the best solution is to export those
documents to more popular formats like PDF, HTML, RTF, XLS or CVS for which there are specialized
viewers available on almost all platforms.

JasperReports tries to expose its exporting functionality in a flexible way and allow users to fully customize
how documents are exported, as well as to allow them to extend the existing functionality if needed.

All document exporting in JasperReports is done through a very simple interface called
net.sf.jasperreports.engine.JRExporter. Every document format that JasperReports currently
supports has an implementation of this interface.

When a report must be exported, an instance of the desired exporter implementation is created and
configured before the calling the export method to launch the actual export process on that exporter.

All the input data the exporter might need is supplied to it using the so-called exporter parameters, before
the exporting process is started.
This is because the exporting process is always invoked by calling the exportReport() method of the
net.sf.jasperreports.engine.JRExporter interface, and this method does not receive any
parameters when called. The exporter parameters must have already been set using the setParameter()
method on the exporter instance you are working with before launching the export task.
You might also choose to bulk set all the exporter parameters using the setParameters() method, which
receives a java.util.Map object containing the parameter values. The keys in this map should be
instances of the net.sf.jasperreports.engine.JRExporterParameter class, as they would be
supplied when individually calling the setParameter() method for each of the exporter parameters.

Note that no matter what the type of output your exporter produces, you will be using parameters to
indicate to the exporter where to place or send this output.
Such parameters might be called OUT parameters.
For example, if you want your exporter to send the output it produces to an output stream, supply the
java.io.OutputStream object reference to the exporter using a parameter, probably identified by the
net.sf.jasperreports.engine.JRExporterParameter.OUTPUT_STREAM constant.

All the supported exporter parameters are identified by an instance of the
net.sf.jasperreports.engine.JRExporterParameter class or one of its subclasses.
All have predefined constants that are used as keys to store and retrieve the parameter values from the
internal map each exporter uses behind the scenes to keep all parameter values.

Each exporter can recognize and use its own parameters, but some predefined parameters are common to
all exporters. These are identified by constants in the JRExporterParameters base class. They are
described in the following section.

Page 147

The JasperReports Ultimate Guide 1.2.5

18.1 Exporter input
The input data for an exporter comes in the form of one or more JasperPrint documents that must be
exported to some other document format.
These JasperPrint objects may already be in memory, come from the network through an input stream,
or reside in files on disk.

An exporter should be able to handle such a wide range of document sources. In fact, all exporter
implementations that are shipped inside the library already do this. They all extend the
net.sf.jasperreports.engine.JRAbstractExporter class, which holds all the logic for dealing
with the source documents that need to be exported inside its defined setInput() method.

Batch mode export

The first thing an exporter needs to know is whether it is acting on a single JasperPrint document or a
list with several such generated documents. Exporting multiple JasperPrint objects to a single resulting
document is called batch mode exporting.
Not all exporters can work in batch mode, but those that do first look into the supplied parameter values to
see whether a java.util.List of JasperPrint objects has been supplied to them using the
JASPER_PRINT_LIST exporter parameter. If so, the exporter loops through this list of documents and
produces a single document from them.

If the exporters act on a single document, they check whether a value is supplied to the JASPER_PRINT
parameter, representing a single in-memory JasperPrint document that must be exported.

If no value was found for this parameter, then the input for the exporter is a single JasperPrint document
to be loaded from an input stream, an URL, a file object, or a file name. The exporter checks the following
exporter parameters in this exact order, stopping at the first that has a non-null value: INPUT_STREAM,
INPUT_URL, INPUT_FILE, and INPUT_FILE_NAME.
If it does not find any of these parameters being set, then the exporter throws an exception telling the caller
that no input source was set for the export process.

18.2 Exporter output
There are at least three types of exporters depending on the type of output they produce:
• exporters that export to text or character based file formats (HTML, RTF, CSV, TXT, XML exporters)
• exporters that export to binary file formats (PDF and XLS exporters)
• exporters that export directly to graphic devices (Graphics2D and Java Print Service exporters)

The first two categories of exporters reuse generic exporter parameters for configuring their output. A text-
or character-oriented exporter first looks into the OUTPUT_STRING_BUFFER parameter to see whether it
needs to output the text content it produces to a supplied java.lang.StringBuffer object. If no value
has been supplied for this parameter, then it will subsequently try to identify the output destination for the
content by checking the following exporter parameters in this order: OUTPUT_WRITER, OUTPUT_STREAM,
OUTPUT_FILE, and OUTPUT_FILE_NAME.
If none of these OUT parameters has been set, then the exporter throws an exception to inform the caller.

Page 148

The JasperReports Ultimate Guide 1.2.5

A binary exporter uses similar logic to find the output destination for the binary content it produces. It
checks generic exporter parameters in this exact order: OUTPUT_STREAM, OUTPUT_FILE,
OUTPUT_FILE_NAME.

Special exporters that do not produce character or binary output but rather render the document directly on
a target device have special export parameters to configure their output. Those special parameters are
explained in the following sections.

When not working in batch mode, all exporters allow users to export only parts of the single document
received as input. To export a single page or a range of pages from this source document, set the
PAGE_INDEX or the START_PAGE_INDEX and the END_PAGE_INDEX exporter parameters. Page indexes
are zero-based and the PAGE_INDEX overrides both the START_PAGE_INDEX and the END_PAGE_INDEX if
all are set for any given exporter.

18.3 Monitoring export progress
Some applications need to display a progress bar to show the user how much has been already processed
from the supplied document and how much remains to be exported. All exporters can inform the caller
program of their progress by using a simple interface called
net.sf.jasperreports.engine.export.JRExportProgressMonitor. To monitor the exporter’s
progress, implement this interface and supply an instance of their export progress monitor class as the value
for the PROGRESS_MONITOR parameter, which is recognized by almost all built-in exporters.

The interface has only one method, afterPageExport(), which gets called by the exporter on the
monitor object after exporting each page from the supplied document. The monitor object can keep track of
the number of pages already exported and the total number of pages to be exported by checking the number
of pages in the source JasperPrint object.

The supplied /demo/samples/scriptlet sample shows how a simple export monitor could be used to
track exporter progress.

18.4 Grid exporters
The main goal of the JasperReports library is to produce high quality, pixel-perfect documents for printing.
The document it produces can have a rich content and all elements present on a given page are absolute-
positioned and sized.
The library tries to keep the same document quality throughout all supported export formats, but there are
some limitations for each of these formats.

All existing exporters fall into two categories depending on the way the content of the documents they
produce may be structured:
• the exporters that target document formats that support free-form page content. These are the

Grapchis2D, PDF, RTF and XML exporters.
• exporters that target document formats that only support relative positioning of elements on a page or a

grid-based layout. In this category are the HTML, XLS and CSV exporters.

Exporters from this second category are also known as grid exporters because the layout of the documents
they produce is formed by a grid. For instance, the HTML exporter will generate a <table> element for
each page and try to put each element on that page inside a <td> tag. Likewise, the XLS exporter must put
each element inside a sheet cell.

These grid exporters have an obvious limitation: a built-in algorithm for transforming an absolute-
positioned page layout into a grid-based layout. This algorithm analyzes each page and tries to build a

Page 149

The JasperReports Ultimate Guide 1.2.5

virtual table in which to place elements so the overall layout of the document remains intact. However,
since a table cell can contain only a single element, elements that overlap in the initial absolute-positioned
layout will not display correctly in a grid-based layout. In fact, when two elements overlap, the element
behind will not even appear in the grid-based layout.

Creating grid-friendly report layouts

When the report templates are very complex or agglomerated, passing from absolute positioning to grid or
table layout produces very complex tables with many unused rows and columns, to make up for the empty
space between elements or their special alignment.

Here are a few very simple guidelines for obtaining optimized HTML, XLS or CSV documents when using
the built-in JasperReports grid exporters.

1. Minimize the number of rows and columns in the grid oriented formats (the number of "cuts").
To do that, align your report elements as often as you can, both on the horizontal and the vertical axis, and
eliminate the space between elements.

a) Inefficient layout

b) Grid friendly layout

2. Avoid overlapping report elements.
Make sure report element will not overlap when the report is generated. If two elements share a region,
they cannot share the same cell in the resulting grid structure. Overlapping elements might lead to
unexpected results.

Page 150

The JasperReports Ultimate Guide 1.2.5

18.5 Font mappings
Since exported documents will probably be transferred and viewed on other systems and platforms, be
especially careful with fonts.

In the 11.1.1 Fonts and Unicode support chapter, we already talked about fonts, how they work and what
needs to be done when exporting to PDF format. We have explained how the PDF font mappings are made
using the three attributes: pdfFontName, pdfEncoding, and isPdfEmbedded.
However, the font mapping issue is not specific to PDF, and similar mappings are required when exporting
to other formats, like HTML or RTF.
The three PDF-related font attributes are present in JRXML and in the object model today only for
historical reasons, because JasperReports started with support for PDF export, and at the time we did not
realize this will be a common issue for various export formats.

Even though the three original PDF font attributes specified inside the report template are still supported
and are not deprecated yet, we recommend making all the required font mappings at export time using the
FONT_MAP exporter parameter, which is recognized by all the exporters that work with fonts.

For more details about export time font mappings, please refer to the chapters that present exporters
individually, because the same exporter parameter is used differently by each of the exporters.

18.6 Graphics2D exporter
JasperReports relies on AWT for text measurements and all sorts of layout calculations during report
filling, so if the documents were created using AWT, they will certainly look perfect when rendered with
AWT on a java.awt.Graphics2D context.
For this reason, the net.sf.jasperreports.engine.export.JRGrapchis2DExporter is the perfect
exporter. The output it produces is considered to be the reference in terms of layout capabilities and
element styling.
Generally speaking, the document quality produced by all the other exporters is only an approximation of
the perfect output that the Graphics2D exporter can produce.

As its name indicates, this exporter is special because it does not produce files or send character or binary
data to an output stream.
Instead, its only possible target is a java.awt.Graphics2D object onto which to render the content of a
given page. This exporter is also special because it can export only one page at a time.

This exporter is used by the built-in Swing viewer to render the content of each page and is also used when
printing the documents. The documents are printed page by page, and this exporter is invoked to draw each
document page on the graphic context associated with the selected printer job.

Because we are relying on the same code (same exporter) when viewing the documents using the built-in
viewer and when printing them, JasperReports is a perfect WYSIWYG tool. The document quality on
paper is the same as on screen.

In terms of exporter input, note that this exporter does not work in batch mode. If a java.util.List of
JasperPrint documents is supplied to it using the JASPER_PRINT_LIST parameter, it considers only the
first one for exporting and ignores all the others.

Furthermore, this exporter can export only a single page at a time. The index of the page to be exported can
be set using either the START_PAGE_INDEX parameter or the PAGE_INDEX parameter. Note that if present,
the PAGE_INDEX overrides the value of the START_PAGE_INDEX parameter. Therefore, this exporter
actually exports only the first page from the specified page range, no matter how the page range was
specified.

As already mentioned, this exporter needs a target java.awt.Graphics2D object onto which to render

Page 151

The JasperReports Ultimate Guide 1.2.5

the specified page. This Graphics2D object can be set using the special exporter parameter
GRAPHICS_2D. If this parameter is not set, the exporter will throw an exception signaling to the caller
program that no output target was specified for the export process.

By default, the exporter renders the content of the page at normal proportions. However, it can also render
it at different proportions if needed. For instance, when used inside the Swing viewer, the Graphics2D
exporter must render the page using the user defined zoom ratio. To set the zoom ratio to the exporter,
supply a java.lang.Float value ranging from 0 to 1 as the value for the ZOOM_RATIO exporter
parameter.

18.7 Java Print Service exporter
In the 5.3 Printing reports chapter we explained how to print generated reports in JasperReports. As
mentioned there, JDK 1.4 added a new printing API available called Java Print Service API which gives
Java applications better control over selecting a printer based on its capabilities or when printing documents
in specific formats.

Access to this new printing API is available in JasperReports through a special exporter implementation
called the net.sf.jasperreports.engine.export.JRPrintServiceExporter.

There are four ways of using the Java Print Service with the Java 2D API:
• Print 2D graphics using PrinterJob.
• Stream 2D graphics using PrinterJob.
• Print 2D graphics using DocPrintJob and a service-formatted DocFlavor.
• Stream 2D graphics using DocPrintJob and a service-formatted DocFlavor.

The net.sf.jasperreports.engine.export.JRPrintServiceExporter implementations takes
the first approach and uses some of the new methods added to the java.awt.print.PrinterJob class:
• static convenience methods to look up print services that can image 2D graphics, which are returned as

an array of PrintService or StreamPrintServiceFactory objects depending on the method.
• methods to set and get a PrintService on a PrinterJob.
• a pageDialog() method that takes a PrintRequestAttributeSet parameter.
• a printDialog() method that takes a PrintRequestAttributeSet parameter.
• a print method that takes a PrintRequestAttributeSet parameter.

Looking up a printing service

This exporter tries to find a print service that supports the necessary attributes. The set of attributes can be
supplied to the exported in the form of a javax.print.attribute.PrintServiceAttributeSet
object that is passed as the value for the special PRINT_SERVICE_ATTRIBUTE_SET exporter parameter.
For more details about the attributes that can be part of such an attribute set, check the Java Print Service
API documentation.
The lookup procedure might return one or more print services able to handle the specified print service
attributes. If so, the exporter uses the first one in the list.
If no suitable print service is found, the exporter throws an exception.

Page 152

http://java.sun.com/j2se/1.4.2/docs/guide/jps/
http://java.sun.com/j2se/1.4.2/docs/guide/jps/

The JasperReports Ultimate Guide 1.2.5

Configuring the PrinterJob

Once a print service has been located, it is associated with a PrinterJob instance. Further customization
is made by passing a javax.print.attribute.PrintRequestAttributeSet instance when calling
the print() method on the PrinterJob object to start the printing process.
To supply the javax.print.attribute.PrintRequestAttributeSet object containing the desired
javax.print.attribute.PrintRequestAttribute values to the exporter, set the special
PRINT_REQUEST_ATTRIBUTE_SET exporter parameter.

Displaying print dialogs

If this exporter is invoked by a desktop or client-side Java application, you can offer the end user a final
chance to customize the printer job before actually starting the printing process. The exporter has two other
predefined parameters: DISPLAY_PAGE_DIALOG and DISPLAY_PRINT_DIALOG, both receiving
java.lang.Boolean values, to show or suppress the page dialog and/or the print dialog associated with
the PrinterJob instance.
The two dialogs are cross-platform. They enable users to alter the print service attributes and the print
request attributes that are already set for the current print service and printer job.
They also allow canceling the current printing procedure altogether.

The JRPrintServiceExporter can be used only with JRE 1.4 or later. The supplied
/demo/samples/printservice sample shows you how.

18.8 PDF exporter
Exporting to PDF was among the initial requirements for the JasperReports library. As its name indicates,
PDF is a very precise and complex document format that ensures documents will look and print the same
on all platforms.
This is why the PDF exporter implemented by the
net.sf.jasperreports.engine.export.JRPdfExporter class in JasperReports is one of the best
exporters. The output it produces is almost of the same quality as the one produced by the
net.sf.jasperreports.engine.export.JRGraphics2DExporter, which is always the reference.

The JRPdfExporter implementation uses iText, which is a specialized PDF generating library. PDF is a
binary document format which allows absolute positioning of the elements inside a page, so the existing
PDF exporter does not have the limitations of a grid-exporter.

It also works very well in batch mode, because it allows concatenation of multiple documents within the
same PDF file, even if the files have different page sizes.

Font mappings

As seen in the 11.1.1 Fonts and Unicode support chapter, exporting to PDF requires mapping the fonts
using the three attributes: pdfFontName, pdfEncoding, and isPdfEmbedded. Even though those three
attributes are still supported in JRXML and the API, we recommend making the PDF font mappings at
export time using the FONT_MAP exporter parameter.

When exporting documents to PDF, for each combination of the three fontName, isBold and isItalic
font attributes, there must be an equivalent combination of the PDF related font attributes pdfFontName,
pdfEncoding, and isPdfEmbedded.
“Equivalent combination” means one that causes the text elements to be rendered exactly the same, or at
least as closely as possible, when viewed in PDF and the build-in Graphics2D exporter, which is the
reference.

Page 153

http://www.lowagie.com/iText/

The JasperReports Ultimate Guide 1.2.5

If a value is supplied for the FONT_MAP exporter parameter, the PDF exporter expects it to be a
java.util.Map instance that contains net.sf.jasperreports.engine.export.FontKey objects as
keys and net.sf.jasperreports.engine.export.PdfFont objects as corresponding values. It then
uses those key-value pairs as font mappings to render text elements in PDF.
In some cases, there is no font file available to use with the pdfFontName attribute in order to render bold
and italic texts exactly like the Graphics2D exporter renders them in AWT. Those fonts might only have a
normal style variant and no variants for bold and italic. In such cases, the PDF exporter (the iText library to
be more precise) is able to simulate those styles by applying transformations to the normal font glyphs.
This feature can be turned on by using the two isPdfSimulatedBold and isPdfSimulatedItalic
boolean parameters in the constructor of the PdfFont objects that are part of the font mapping construct.

Batch mode bookmarks

When several JasperPrint documents must be concatenated in the same PDF file by batch-export, you
can introduce PDF bookmarks in the resulting PDF document to mark the beginning of each individual
document that was part of the initial document list.
Those bookmarks have the same name as the original JasperPrint document as specified by the
jasperPrint.getName() property.
However, users can turn on and off the creation of those bookmarks by setting the
IS_CREATING_BATCH_MODE_BOOKMARKS exporter parameter to Boolean.TRUE or Boolean.FALSE.
The exporter does not create such bookmarks by default.

The supplied /demo/samples/batchexport sample shows how this parameter works.

Encrypted PDF

In some cases, users might want to encrypt the PDF documents generated by JasperReports so that only
authorized viewers can have access to those documents.
There are 5 exporter parameters for that:

IS_ENCRYPTED

When set to Boolean.TRUE, this parameter instructs the exporter to encrypt the resulting PDF document.
By default PDF files are not encrypted.

IS_128_BIT_KEY

The PDF exporter can encrypt the files using either a 40-bit key or a 128-bit key. By default, it uses a 40-bit
key, but by setting this flag to Boolean.TRUE, it can be configured to use a 128 bits key for stronger
encryption.

USER_PASSWORD

This parameter specifies the password required from a normal PDF file user to access the document.

OWNER_PASSWORD

This parameter specifies the password required from the owner of the PDF file to access the document. The
owner usually has more permissions. If this password is not set, an arbitrary string will be used when
encrypting so that access is denied to all would-be owners.

Page 154

The JasperReports Ultimate Guide 1.2.5

PERMISSIONS

This exporter parameter accepts java.lang.Integer values representing the PDF permissions for the
generated document. The open permissions for the document can be AllowPrinting,
AllowModifyContents, AllowCopy, AllowModifyAnnotations, AllowFillIn,
AllowScreenReaders, AllowAssembly, and AllowDegradedPrinting (these are all in the
PdfWriter class of iText library). Permissions can be combined by applying bit-wise OR to them.

A special sample, /demo/samples/pdfencrypt, is supplied with the project to show how to use all
these exporter parameters.

PDF version

Some applications require marking the generated files with a particular PDF specifications version.
The PDF_VERSION exporter parameter accepts java.lang.Character values, but only a few values are
recognized as valid, so users have to use the constants defined in the JRPdfExporterParameter class to
point to the PDF specification, version, from 1.2 to 1.6.

Word wrap and line break policy

By default, the PDF exporter does not guarantee that the same text with the same style properties will be
rendered exactly as it was when using AWT at report filling time. The word wrap and line break policy is
slightly different and in some cases it might cause portions of text to disappear at the end of longer text
paragraphs. To make sure this does not happen, the PDF exporter can be configured to use the AWT word
wrap and line break policy by setting the FORCE_LINEBREAK_POLICY parameter to Boolean.TRUE. Note
that this feature is not turned on by default because it affects the exporter performance.

18.9 RTF exporter
The net.sf.jasperreports.engine.export.JRRtfExporter implementation is a recent addition to
the JasperReports library. It helps to export JasperPrint documents in RTF format using the RTF
Specification 1.6. This means the RTF files produced by this exporter are compatible with MS Word 6.0,
MS Word 2003, and MS Word XP.
However, users might experience some problems when opening those RTF files with OpenOffice or
StarOffice, as these product are not perfectly compatible with the RTF specifications from MS.

RTF is a character-based file format that supports absolute positioning of elements, which means this
exporter produces output very close to that of the Graphics2D and the PDF exporter. There are no special
parameters for this exporter.

Almost all the provided samples show how to export to RTF.

Font mappings

The RTF exporter expects to find a java.util.Map instance as the value for the FONT_MAP exporter
parameter. If such a value is supplied at export time, then this exporter assumes that this map contains key-
value pairs where the key is a java.lang.String value representing the name of the font as specified by
the fontName attribute in JRXML, or the corresponding API property and a java.lang.String value
representing the name of the font to use when generating the corresponding RTF font tags in the destination
file.

Page 155

The JasperReports Ultimate Guide 1.2.5

This font mapping capability is particularly useful when the report template uses Java logical fonts as
values for the fontName attribute (Serif, Sans-serif, Monospaced, etc.) and those need to be translated into
real TTF font names during the RTF export process.

18.10XML exporter
The discussion of ways to store generated JasperPrint object in the 5.1 Loading and saving generated
reports chapter mentioned the net.sf.jasperreports.engine.export.JRXmlExporter as a
possible way to transform documents into a text-based format.

As with the report templates defined using a special XML syntax called JRXML, the JasperReports library
also has a special XML structure for storing generated documents in XML format. This format is called
JRPXML because the files produced by the JRXmlExporter usually have the *.jrpxml extension. These
XML files can be parsed back into the JasperPrint object using the
net.sf.jasperreports.engine.xml.JRPrintXmlLoader utility class. Their structure is validated
against an internal DTD file called the jasperprint.dtd.

This document does not provide details of JRPXML structure. Valid JRPXML files should point to the
internal DTD file using a public ID as follows:

<!DOCTYPE jasperPrint PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperprint.dtd">

The root element of a JRPXML document is <jasperPrint>, which contains a list of report font
definitions (<reportFont> tags) that are reused by text elements throughout the document, and a list of
pages (<page> tags), each of which contains a nested list of elements like lines, rectangles, ellipses,
images, and texts.

The quality of this exporter is equal to the Grapchis2D exporter because it preserves 100% of the initial
document content and properties. There is no loss in document quality when exporting to XML because the
resulting XML content can be parsed back into JasperPrint object that will look the same as the original
one.
The built-in viewers can display documents exported in JRPXML format because they actually rely on the
JRPrintXmlLoader to parse the document back into a JasperPrint object before rendering it on the
screen.

Embedding images

When exporting XML, pay special attention to how images are stored. The two ways are:
• If the exporter outputs to a file on disk, store the images contained by the source document in separate

files that accompany the main JRPXML file. The image files are put in a directory that takes its name
from the original destination file name plus the "_files" suffix, the same directory as the JRPXML
file.

• You can also embed images in the JRPXML file itself by encoding their binary data using a Base64
encoder. This simplifies transfer over the network or by direct output to streams.

To determine how to handle images, set the IS_EMBEDDING_IMAGES exporter parameter, which expects a
java.lang.Boolean. By default, the images are embedded in the resulting XML.

Page 156

The JasperReports Ultimate Guide 1.2.5

Override DTD location

For various reasons, you might need to handle the generated JRPXML content with special XML viewers
or even browsers. To prevent these tools from complaining about not finding the public DTD mentioned in
the header of the document when Internet access is not available, have your files point to a local DTD file
instead of the public location previously mentioned above in this guide. In such cases, use the
DTD_LOCATION exporter parameter to override the default DTD location used by the exporter and point to
the local DTD file.

18.11HTML exporter
Among the first export formats supported by JasperReports was HTML. This is because HTML is a very
popular document format and browsers are available on all platforms. Also, many Java applications
requiring reporting functionality are Web-based applications.

The net.sf.jasperreports.engine.export.JRHtmlExporter tries to produce high quality HTML
output by using the most common tags to ensure the documents are compatible with the great majority of
browsers, and that they look almost the same on all platforms. It is a grid-based exporter because it
structures the layout of each document page using a <table> element, so all the limitations mentioned
about grid-exporters are applicable to this exporter too (see the 18.4 Grid exporters chapter).

Since JasperReports version 1.2.0, the built-in HTML exporter produces output that is compatible with the
XHTML standard.

Perfect element alignment

As previously mentioned, regardless of the output format, the JasperReports exporters try to produce
documents that are as close as possible to their Graphics2D representation. This is also true for HTML. In
HTML, elements are placed inside <td> tags, which are part of a <table> component associated with
each document page. In older browsers, to have full control over a table cell in HTML, a 1x1 pixel
transparent image had to be used as a spacer to make sure the browser preserved the specified width and
height for each component, and did not adapt them to the size of the window.
Recent browser versions no longer have this problem, or at least it is no longer so obvious. Also, the
JRHtmlExporter implementation relies more and more on CSS for element sizing and styling, so the
spacer is no longer needed. The IS_USING_IMAGES_TO_ALIGN boolean parameter can be used to turn off
the use of a spacer image inside the generated HTML content, which greatly simplifies the handling of the
output, especially if the original documents do not contain images of their own. By default, the HTML
exporter still uses the spacer image for alignment.

Flow-oriented output

The JasperPrint documents can contain one or more pages and the HTML exporter can export either
one page or several pages at a time. Because all exporters try to adhere as closely as possible to the
Graphics2D or PDF representation of the source document’s quality and layout, the page breaks are
visible in HTML format in case multiple pages are exported in the same HTML document. Sometimes,
however, this is not desirable One way to make page breaks less obvious is to suppress all the blank space
left between cells on the vertical axis to achieve a more flow-based layout. When set to Boolean.TRUE,
the IS_REMOVE_EMPTY_SPACE_BETWEEN_ROWS exporter parameter ensures that all empty rows on the
resulting HTML table are collapsed. By default, the exporter preserves all the white space for precise page
layout.

Furthermore, between two consecutive pages rendered as two separate <table> components inside the
generated HTML, the exporter places two
 tags by default to display the pages separately. To alter

Page 157

The JasperReports Ultimate Guide 1.2.5

the default behavior, specify the HTML chunk to be used as page separator in the resulting HTML. The
BETWEEN_PAGES_HTML exporter parameter accepts a java.lang.String to replace the default page
separator when exporting to HTML format.

The provided /demo/samples/nopagebreak sample uses this parameter when exporting to produce a
more flow-based document layout.
To completely ignore pagination, use the built-in fill-time parameter, IS_IGNORE_PAGINATION, as
explained in the 9.2.1 Built-in report parameters chapter.

HTML header

Since HTML content is usually sent directly to the browser as an individual document or stored on disk, the
HTML exporter wraps the result inside document level tags like <html> and <body>.
The default HTML header used by the JRHtmlExporter class is as follows:

<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <style type="text/css">
 a {text-decoration: none}
 </style>
</head>
<body text="#000000" link="#000000" alink="#000000" vlink="#000000">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr><td width="50%"> </td><td align="center">

By default, the HTML result ends with this chunk:

</td><td width="50%"> </td></tr>
</table>
</body>
</html>

You can customize both the header and the footer chunks used for wrapping the document pages by setting
the desired HTML chunks as values for the HTML_HEADER and HTML_FOOTER exporter parameters. These
two parameters enable you to make references to other resources like stylesheet files or even to suppress
the header and footer completely if the resulting HTML content is used only for embedding into another
Web page which is part of a portal-like application.

Font mappings

When working with fonts in JasperReports, the engine relies on the fontName attribute and uses the
metrics of that font with AWT to make all layout calculations during the report filling process. However,
when exporting to HTML, the documents are probably viewed on a system that does not have the fonts
installed, or else the browser does not recognize these fonts as specified by the original fontName value.

For example, say the report templates use the Arial font for rendering a text element. The report is
generated and exported to HTML on a Windows machine that has the Arial font installed and available to
the current JVM. Then the HTML output produced by JasperReports is displayed on a browser which runs
on a client Linux/Unix machine and does not have the Arial font installed. In this case, the HTML will look
different because the client browser will use a default font instead of Arial.

To solve this issue, the HTML exporter can be configured to use font mappings. These mappings can
replace the original font name as specified by the fontName attribute with a sequence of font names
separated by commas. This provides a safer fallback mechanism to render the text using the closest font
possible if the original one is not available on the client machine.

Page 158

The JasperReports Ultimate Guide 1.2.5

If a value is supplied to the FONT_NAME exporter parameter, the HTML exporter expects it to be a
java.util.Map value with both keys and values of type java.lang.String. The key should be the
original fontName value and the value should be the sequence of substitute fonts described in the
preceding paragraph.

Background color

Empty space found on each page in the source JasperPrint document normally results in empty cells
inside the corresponding HTML <table> component. The background color of these empty cells is
specified by a browser configuration, or by a container component of a higher level if the HTML is
embedded inside a Web page and is not a standalone page. This causes the cells to appear transparent.
However, by setting the IS_WHITE_PAGE_BACKGROUND exporter parameter to Boolean.TRUE, the
exporter can make appear as if printed on white paper.

Text wrapping

The text wrap policy can vary with the document format. This is the main reason that document output may
vary slightly when viewing or printing the same document with the JRGraphics2DExporter.
By default, browsers try not to break long words. The only way to force them to do so is to use a CSS
attribute that specifies the text wrap policy to use for a given text element in HTML. Long words are
broken into multiple lines if they do not fit the width of their container if the IS_WRAP_BREAK_WORD is set
to Boolean.TRUE for the exporter.

Pixels or points

All positioning and sizing in JasperReports templates and generated documents is performed using the
default Java resolution of 72 dots per inch. The built-in Swing viewer used to display JasperPrint
documents can detect the screen resolution at runtime and adapt the size of one point drawn on the screen
so that the document can keep its normal size even when viewed on high-resolution devices.
The PDF, XLS, and RTF viewers can also do that, so at 100% zoom ratio a document maintains same size
throughout all mentioned document formats.
However, in HTML dimensions can be specified using several different length measurement units. The
width of a table cell can be specified either in pixels or in points. If specified in pixels, the document will
look smaller when viewed with the browser on high resolution screens, because the size of a pixel is
smaller. Measuring all sizes in points (a point being the CSS equivalent of 1/72 of an inch) is not perfect
either, because the browser cannot scale up images that are rendered at their normal size in pixels rather
than points, especially if they are lazy loaded.
Because there is no perfect solution for measurement units used in the resulting HTML, choose the unit that
best suits your needs by setting the SIZE_UNIT exporter parameter to one of the values predefined as a
constant in the JRHtmlExporterParameter (SIZE_UNIT_PIXEL or SIZE_UNIT_POINT).

Working with images

Because HTML is a character-based format, the JRHtmlExporter can send HTML content to a
java.lang.StringBuffer, java.io.Writer or java.io.OutputStream, as shown in the general
discussion in the 18.2 Exporter output chapter. However, in HTML format image elements get special
treatment because they cannot be embedded into the HTML content itself; they must be delivered to the
browser using different techniques depending on the type of deployment.

Page 159

The JasperReports Ultimate Guide 1.2.5

If the HTML content produced by the exporter is to be stored in a file on disk, then it is easier to handle the
images because they can be placed as individual image files inside a separate folder that accompanies the
main HTML file. This closely resembles how browsers save HTML pages on disk. It is the exporter's
default behavior when its output is directed to a file using either the OUPUT_FILE or OUTPUT_FILE_NAME
parameters.
But even in this case the creation of a separate folder for putting the images could be suppressed if the
IS_OUTPUT_IMAGES_TO_DIR exporter parameter is set to Boolean.FALSE.

If the images folder is created, it has by default the same name as the target HTML file plus the "_files"
suffix. To change this default name for the images folder, by supply a value for either the IMAGES_DIR
exporter parameter, which expects a java.io.File value, or the IMAGES_DIR_NAME, which expects the
name of the folder as java.lang.String.

A special scenario is when the HTML content does not get directed to files on disk, but must be delivered
to an output stream. Saving the images as files on disk would not make much sense because the HTML
consumer (most probably a Web browser) would have no way to retrieve those files from the local disk at
HTML render-time.

Regardless of the output destination set for the generated HTML, the exporter always gives each image a
name with the form of "img_x_y_z[_z_z]" where:
• x is the index of document within the list of documents to export in batch mode;
• y is the page index;
• z values are a series of one or more element indexes that locate the image on the page, looping through

nested frames, if it is the case.
Lazy loaded images are not given a name because they are supposed to be loaded by the browser from a
public URL, available at HTML render-time.

In the URLs for each tag inside the generated HTML content, images are referenced using their
export-time calculated name, which is "img_x_y_z[_z_z]", as explained above. In those URLs, the
name of the image is prefixed with a path (URI), which is automatically calculated by the exporter when
the HTML is directed to a file and images are stored in a separate folder. This prefix is actually the name of
the images folder. This URI prefix can be supplied to the exporter using the IMAGES_URI exporter
parameter in case the HTML is sent over the network to a browser and the images are supposed to be
delivered to that browser by calling a special image servlet. The IMAGES_URI parameter can point to that
servlet and the image name that gets appended to it in order to construct a fully formatted URL can be the
value for a servlet parameter that will help identify the image that needs to be sent out.

For more details on working with the HTML exporter, see the 20.3 Using JasperReports in Web
environment chapter.

Page 160

The JasperReports Ultimate Guide 1.2.5

18.12XLS exporters
For generating XLS files, there are currently two different exporter implementations available in
JasperReports. The first to appear was the net.sf.jasperreports.engine.export.JRXlsExporter
implementation that uses the POI library. Because the POI library does not handle images very well, or at
least not in a transparent way, this exporter implementation completely ignores the image elements present
in the source documents that need to be exported.
This was the main reason to try to come up with a new XLS exporter that would support images. The new
solution is the net.sf.jasperreports.engine.export.JExcelApiExporter implementation that
makes use of the JExcelApi library.

Because, in XLS, all document content is placed inside cells, the XLS exporters are considered typical grid-
exporters and they have limitations mentioned before (see the 18.4 Grid exporters chapter).

An XLS file is structured in multiple sheets, and both exporters can be configured either to put all pages
inside the source JasperPrint document on one sheet (one after the another), or to put each page on a
separate sheet in the resulting XLS. The choice is made by setting the IS_ONE_PAGE_PER_SHEET exporter
parameter, which is set to Boolean.FALSE by default.

Flow-oriented output

The JasperPrint documents are page-oriented. When they are exported to a single sheet XLS document,
all the pages are rendered consecutively. Because all exporters try to adhere as closely as possible to the
quality and layout of the source document’s Graphics2D or PDF, the page breaks are visible in XLS
format. Sometimes this is not desirable. One way to make page breaks less obvious and to make the layout
more flow-based is to suppress all the remaining blank space between cells on the vertical axis. When set to
Boolean.TRUE, the IS_REMOVE_EMPTY_SPACE_BETWEEN_ROWS exporter parameter ensures that all
empty rows on the resulting XLS sheet are collapsed. By default, the exporter preserves all the white space
for a precise page layout.
The provided /demo/samples/nopagebreak sample makes use of this parameter when exporting to
XLS to produce a more flow-based document layout.
To completely ignore pagination, use the built-in fill-time parameter IS_IGNORE_PAGINATION, as
explained in the 9.2.1 Built-in report parameters chapter.

Cell types

Inside the proprietary document format that JasperReports uses, represented by JasperPrint object, all
text elements are considered alphanumeric values. This means that if a numeric text field of type
java.lang.Double is placed in the report template at design time, all the text elements inside the
JasperPrint resulting from it will hold java.lang.String values even though they are actually
numbers. Therefore, in a sense, data type information is lost during report filling. This is because the main
goal of JasperReports is to create documents for viewing and printing. Therefore, not necessarily for further
data manipulation inside tools like Excel, where formulas could be added to numeric cells.
However, these resulting text elements found in the generated document nowadays hold enough data type
information, in addition to the alphanumeric content, so that the original value of the text element be
recreated, if needed.
Both XLS exporters support the IS_DETECT_CELL_TYPE parameter that would force the recreation of the
original cell value in accordance with its declared data type, as specified in the report template.

This new exporter parameter deprecates the former IS_AUTO_DETECT_CELL_TYPE exporter parameter,
which only dealt with numeric cells, ignored date and time cells and had the disadvantage of transforming
into numbers all text cells that would successfully parse into numeric value, regardless of their initial data
type.

Page 161

http://jexcelapi.sourceforge.net/
http://jakarta.apache.org/poi/index.html

The JasperReports Ultimate Guide 1.2.5

Cell type detection is turned off by default.

Font mappings

Font mappings for the XLS exporter work exactly the same as in the RTF’s exporter case. Both keys and
values in the supplied FONT_MAP exporter parameter should be of type java.util.String. Font
mappings are useful especially when the report templates rely on logical Java font names which must be
translated into physical font names at export time.

Background color

Empty space found on each page in the source JasperPrint document normally results in empty cells on
the corresponding sheet inside the XLS file. The background color of these empty cells is specified by the
configuration of the XLS viewer itself. This makes the cells appear transparent. To force the document’s
background to be white, set the IS_WHITE_PAGE_BACKGROUND exporter parameter to Boolean.TRUE.

Excel color palette

In JasperReports, any color can be used for the background or the foreground of a report element.
However, when exporting to XLS format, only a limited set of colors is supported through what is called a
color palette.

The default Excel Color Palette contains 40 colors. You should choose among these colors if you want the
colors to remain unaltered when exporting to XLS format.

#FFFF00 YELLOW #003300 DARK_GREEN
#969696 GREY_40_PERCENT #808000 DARK_YELLOW
#99CC00 LIME #FF00FF PINK
#CC99FF LAVENDER #FF99CC ROSE
#FFFF99 LIGHT_YELLOW #3366FF LIGHT_BLUE
#008000 GREEN #FF6600 ORANGE
#C0C0C0 GREY_25_PERCENT #993300 BROWN
#339966 SEA_GREEN #993366 PLUM
#FF9900 LIGHT_ORANGE #800080 VIOLET
#FF0000 RED #333399 INDIGO
#003366 DARK_TEAL #000000 BLACK
#FFFFFF WHITE #00CCFF SKY_BLUE
#99CCFF PALE_BLUE #333333 GREY_80_PERCENT
#00FFFF TURQUOISE #CCFFFF LIGHT_TURQUOISE
#008080 TEAL #CCFFCC LIGHT_GREEN
#000080 DARK_BLUE #666699 BLUE_GREY
#FFCC00 GOLD #0000FF BLUE
#33CCCC AQUA #00FF00 BRIGHT_GREEN
#333300 OLIVE_GREEN #800000 DARK_RED
#808080 GREY_50_PERCENT #FFCC99 TAN

If the colors used in a report template do not match any of these colors, the XLS exporter will use a special
algorithm to determine which is the closest resembling one by comparing the RGB levels. But the results
might not be always what the you expect.

Page 162

The JasperReports Ultimate Guide 1.2.5

Font size correction

Currently, there is no way to control the line spacing in a spreadsheet cell and this results in the cell text not
fitting exactly within the cell boundaries.
As a workaround, in order to force the cell text to fit, you can use the IS_FONT_SIZE_FIX_ENABLED
exporter parameter to decrease the font size by one point when generating the cell format.

18.13CSV exporter
Initially, exporting to Comma Separated Values files was not a goal or requirement for the JasperReports
library. Because it is a data-oriented file format, exporting rich content documents to CSV results in a
tremendous loss of quality. However, community feedback showed that this is often a requirement for
applications.
Eventually the net.sf.jasperreports.engine.export.JRCsvExporter was implemented and
shipped with the library, although users might need to think twice before deciding to use a very complex
visual tool like JasperReports to generate data files in a very simple format like CSV. It would probably
require too much overhead to use JasperReports just for that.

It is obvious that the CSV exporter will completely ignore graphic elements present in the source document
that needs to be exported. It will only deal will text elements and from those it will only extra the text
value, completely ignoring the style properties.

CSV is a character-based file format whose content is structured in rows and columns, so the
JRCsvExporter is a grid-exporter because it must transform the free-form content of each page from the
source document into a grid-like structure using the special algorithm already mentioned in the 18.4 Grid
exporters chapter.

By default, the CSV exporter uses commas to separate column values and new-line characters to separate
rows in the resulting file. However, you can redefine the delimiters using the two special exporter
parameters called FIELD_DELIMITER and RECORD_DELIMITER, which both accept java.lang.String
values.

18.14Plain text exporter
The net.sf.jasperreports.engine.export.JRTextExporter implementation represents a plain
text exporter that tries to convert the JasperReports document into a simple text document with a fixed page
width and height, measured in characters.

Users can specify the desired page width and height, and the engine will make the best effort to fit text
elements into the corresponding text page. The basic idea of the algorithm is to convert pixels to characters
(find a pixel/character ratio).
To achieve this, use the following parameters:

CHARACTER_WIDTH and CHARACTER_HEIGHT parameters specify how many pixels in the original report
should be mapped onto a character in the exported text.

PAGE_WIDTH and PAGE_HEIGHT parameters specify the text page width and height in characters.

Note that both width and height must be specified and that character sizes have priority over page sizes.

Page 163

The JasperReports Ultimate Guide 1.2.5

Since the algorithm causes loss of precision, a few precautions should be taken when creating templates
that will eventually be exported to plain text:
• Report sizes and text page sizes should be divisible (for example, specify a template width of 1000

pixels and a page width of 100 characters, resulting a character width of 10 pixels).
• Text element sizes should also follow the previous rule (for example, if the character height is 10

pixels and a particular text element is expected to span two rows, the text element should be 20 pixels
tall).

• For best results, text elements should be aligned in a grid-like fashion.
• Text fields should not be too small.

Example 1: If the character height is 10 and the element height is smaller, the element will not appear in the
exported text file.

Example 2: If the character width is 10 and the element width is 80, only the first
eight characters will be displayed.

Users can specify the text that should be inserted between two subsequent pages by using the
BETWEEN_PAGES_TEXT parameter. The default value is two blank lines.

Check the supplied /demo/samples/text sample to see the kind of output this exporter can produce.

Page 164

The JasperReports Ultimate Guide 1.2.5

19 Configuration files
The configuration properties of the JasperReports library can be specified using a properties file. The file
can be read from the file system, accessed as a resource from the classpath, or loaded from an URL.

The default name of the properties file is jasperreports.properties. The
net.sf.jasperreports.properties system property can be used to specify a different file name or
location. The default or custom name is successively interpreted as a file name, a resource name, and an
URL; the properties are read from the first succeeding source.

Most of the configuration properties have default values hard-coded in the library. These values act as
defaults for the properties read from the file. Therefore, the properties file can contain only properties
whose values differ from the default.

To access and set configuration properties at runtime, use the
net.sf.jasperreports.engine.util.JRProperties static methods. This class contains constants
for all the configuration properties.

These are the most useful methods:

String getProperty(String key) – returns the value of a property as a String.

boolean getBooleanProperty(String key) – returns the value of a property as a boolean.

void setProperty(String key, String value) – sets the value of a property.

void setProperty(String key, boolean value) – sets the value of a boolean property.

Prior to version 1.0.0, some of the configuration properties were specified by way of system properties.
This has been deprecated in version 1.0.0 in favor of using a properties file. The names of the properties
have also changed; see the table bellow for the correspondence between the old names and the current ones.

Using system properties to configure JasperReports is still partially supported for backward compatibility
by checking if the system properties are set when initializing the configuration properties. Setting and
changing the configuration properties via java.lang.System.setProperty after the configuration
properties are initialized is no longer supported; use the JRProperties methods instead.

Page 165

The JasperReports Ultimate Guide 1.2.5

Following is a table of configuration properties currently used by the library, along with the old (pre 1.0.0)
property name:

Property name Former system property name
net.sf.jasperreports.compiler.class jasper.reports.compiler.class
net.sf.jasperreports.compiler.xml.validation jasper.reports.compile.xml.validation
net.sf.jasperreports.compiler.keep.java.file jasper.reports.compile.keep.java.file
net.sf.jasperreports.compiler.classpath jasper.reports.compile.class.path
net.sf.jasperreports.compiler.temp.dir jasper.reports.compile.temp
net.sf.jasperreports.ejbql.query.hint.*
net.sf.jasperreports.ejbql.query.page.size
net.sf.jasperreports.export.xml.validation jasper.reports.export.xml.validation
net.sf.jasperreports.export.pdf.font.*
net.sf.jasperreports.export.pdf.fontdir.*
net.sf.jasperreports.export.pdf.force.linebreak.policy
net.sf.jasperreports.hql.field.mapping.descriptions
net.sf.jasperreports.hql.query.list.page.size
net.sf.jasperreports.hql.query.run.type
net.sf.jasperreports.jdbc.fetch.size
net.sf.jasperreports.properties
net.sf.jasperreports.query.executer.factory.*
net.sf.jasperreports.subreport.runner.factory
net.sf.jasperreports.virtualizer.files.delete.on.exit

The meaning of each property can be found in the related chapters of this guide.

In the future, more configuration properties will be supported by the JasperReports library to reduce its
reliance on hard-coded constant values for various internal settings.

Page 166

The JasperReports Ultimate Guide 1.2.5

20 Advanced JasperReports
Previous chapters have presented the core functionality that most people will use when working with the
JasperReports library.

However, some complex requirements of your specific applications might force you to dig deeper into the
JasperReports functionality.

The following sections provide a closer look at those aspects that can help you make fuller use of the
JasperReports library.

20.1 Implementing data sources
JasperReports library comes with several default implementations of the
net.sf.jasperreports.engine.JRDataSource interface. This interface supplies the report data
when invoking the report filling process, as explained in the previous chapters of this book.
These default implementations let you generate reports using data from relational databases retrieved
through JDBC, from Java Swing tables, or from collections and arrays of JavaBeans objects.

However, maybe your application data has a special structure or an organization that prevents you from
using any of the default implementations of the data source interface that come with the library.
In such situations, you will have to create custom implementations for the
net.sf.jasperreports.engine.JRDataSource interface to wrap your special report data so that the
reporting engine can understand and use it when generating the reports.
Creating a custom implementation for the net.sf.jasperreports.engine.JRDataSource interface
is not very difficult since you have to implement only two methods.
The first one, the next() method, is called by the reporting engine every time it wants the current pointer
to advance to the next virtual record in the data source.
The other, the getFieldValue() method, is called by the reporting engine with every iteration through
the data source to retrieve the value for each report field.

If your custom data source is also supposed to work with subreports that are placed inside bands that cannot
split due to the isSplitAllowed="false" property, implement the JRRewindableDataSource
interface. This interface contains an extra method that lets the record pointer move back before the first
virtual record in the data source if the subreport needs to restart on a new page.

20.2 Customizing viewers
The JasperReports library comes with built-in viewers that enable you to display the reports stored in the
library's proprietary format or to preview your report templates when you create them.

These viewers are represented by the following two classes:
net.sf.jasperreports.view.JasperViewer : Use this class to view generated reports, either as in-
memory objects or serialized objects on disk or even stored in XML format.
net.sf.jasperreports.view.JasperDesignViewer : Use this class to preview report templates,
either in JRXML or compiled form.

However, these default viewers might not suit everybody's needs. You may want to customize them to
adapt to certain application requirements.
To do that, be aware that these viewers actually use other, more basic visual components that come with the
JasperReports library.

Page 167

The JasperReports Ultimate Guide 1.2.5

The report viewers mentioned above use the visual component represented by the
net.sf.jasperreports.view.JRViewer class and its companions. It is in fact a special
javax.swing.JPanel component that is capable of displaying generated reports. It can be easily
incorporated into other Java Swing based applications or applets.
If the functionality of this basic visual component does not meet your needs, you can adapt it by
subclassing it. For example, to create an extra button on the toolbar of this viewer, extend the component
and add that button yourself in the new visual component you obtain by subclassing.

This can be seen in the /demo/samples/webapp sample, where the ”Printer Applet“ displays a
customized version of the report viewer with an extra button in the toolbar.

Another very important issue is that the default report viewer that comes with the library does not know
how to deal with document hyperlinks that point to external resources. It deals only with local references
by redirecting the viewer to corresponding local anchor.
However, JasperReports lets you handle yourself the clicks made on document hyperlinks that point to
external documents and not local anchors.

To do this, simply implement the net.sf.jasperreports.view.JRHyperlinkListener interface
and add an instance of this listener class to register with the viewer component, using the
addHyperlinkListener() method exposed by the net.sf.jasperreports.view.JRViewer class.
By doing this, you ensure the viewer will also call your implementation of the gotoHyperlink() method
in which you handle the external references yourself.

20.3 Using JasperReports in Web environment
Recent surveys indicate that JasperReports is usually used inside Web-based applications to render
dynamic content.

When using JasperReports inside such applications, keep in mind how to handle report templates, reference
report resources, and deal with images when exporting to HTML.

A small Web application that does these things is included as one of the samples. The
/demo/samples/webapp directory inside the project distribution package contains the source files of a
simple Web application that uses JasperReports for rendering a report. This report can be viewed in HTML
and PDF format, or even directly as a JasperPrint object using the built-in Swing viewer as an applet
inside the browser.

Compiling report templates

Any Java application that needs reporting functionality can use the JasperReports library in two ways:
• to generate documents out of static report templates which get compiled at development time and are

distributed in the compiled form as part of the application distribution files.
• to generate documents out of dynamically built or so-called ad-hoc report templates which are the

result of some user input at runtime.

In the first case, *.jasper files containing compiled report templates are deployed as resources inside the
application distribution package, just as images or normal Java *.class files are distributed and deployed.
The compilation of the static report templates should be part of the application build system, taking into
account that the library is shipped with a ready-to-use ANT task for bulk-compiling multiple report
template files at once.

Page 168

The JasperReports Ultimate Guide 1.2.5

The second scenario assumes that static report templates cannot be used, or at least are subject to some
runtime modifications based on user feedback. Runtime-created or runtime-modified report templates must
be compiled on-the-fly as already explained in the 3.4 Compiling report templates chapter. Report
compilation in a Web environment could be a challenge if JDK-based report compilers are used, because
they require a temporary working directory and an explicitly set classpath. However, recent versions of
JasperReports use the JDT-based compiler by default, which is both faster and easier to use because it does
not require any configuration. To use it, make sure the jdt-compiler.jar distributed with the
JasperReports project source files inside the /lib directory is part of the Web application classpath.

Deploying report templates and resources

Report templates can reference other resources such as images, fonts, or other report templates used as
nested subreports. In any Java application, but especially inside Web applications where locating files on
disk is more challenging, the best way to locate static resources is by means of classpath. All these
resources that need to be loaded using a relative location at runtime should be part of the application’s
classpath. Images, fonts, and subreports should be referenced inside a report template using their relative
location within the classpath. By doing this, you ensure that links between those resources are still valid
regardless of how the application is actually deployed.

Delivering images in HTML format

Since images cannot be embedded in the HTML output directly but are supposed to be retrieved by the
browser from their specified public URL, a Web application using JasperReports for generating reports in
HTML must be specially configured for the JRHtmlExporter.
JasperReports is now shipped with a ready-to-use servlet implementation that can deliver images from a
JasperPrint document or a list of JasperPrint documents placed on the HTTP session.
The HTML exporter can be configured so that all the images point to this servlet in their URLs. To do this,
supply the ULR prefix to use for all the images as the value for the IMAGES_URI exporter parameter.
The image servlet is implemented by the net.sf.jasperreports.j2ee.servlets.ImageServlet
class. An example is in the supplied /demo/samples/webapp sample inside the project distribution.

Page by page HTML viewer

The JRHtmlExporter can be configured to export only one page at a time. With the source JasperPrint
document kept on the HTTP session, an application can simulate a viewer that allows users to view the
document page by page, as we do with the built-in Swing viewer, instead of viewing all the pages at the
same time, one after the other.
The provided /demo/samples/webapp sample shows how such a simple HTML viewer could be
implemented inside a Web application.

Sending PDF content to the browser

Although it can send binary PDF content directly into an output stream, the PDF exporter must be used in
combination with an in-memory java.io.ByteArrayOutputStream when used inside a Web
application to send output to the browser on the client side. It must measure the length of the binary output
that it produces before even attempting to send that output directly to the browser because some browsers
need to know the size of the binary content they will receive in order to work properly.
The downside is that you consume extra memory by temporarily storing PDF content instead of sending it
directly to the consumer.

Page 169

The JasperReports Ultimate Guide 1.2.5

Applet viewer

If a Web-based application is used only or mainly inside an Intranet and it is acceptable to use Java Applets
for enhanced usability, generated reports can be viewed with the built-in Swing viewer. The server
application would no longer need to export the JasperPrint objects to more popular formats such as
HTML or PDF, but can instead send the objects over the network in serialized form to an applet that can
display them natively.
Among the files available for download on the JasperReports website is one called jasperreports-
x.x.x-applet.jar. This jar file is smaller than the complete jasperreports-x.x.x.jar because it
contains only the class interfaces that the viewer needs to display documents in the proprietary
JasperPrint format, making it more appropriate for an applet.
An applet making use of this smaller JAR file is in the supplied /demo/samples/webapp sample
provided with the project’s source files.

Page 170

The JasperReports Ultimate Guide 1.2.5

21 Resources

Support and training

JasperSoft Corporation offers support services and training for JasperReports. You can learn more about
these at the following location:
http://www.jaspersoft.com/ss_overview.html

Forums and mailing lists

http://sourceforge.net/forum/?group_id=36382
http://sourceforge.net/mail/?group_id=36382

GUI tools

http://jasperreports.sourceforge.net/gui.tools.html

Articles

http://jasperreports.sourceforge.net/documentation.html

Page 171

http://jasperreports.sourceforge.net/documentation.html
http://jasperreports.sourceforge.net/gui.tools.html
http://sourceforge.net/mail/?group_id=36382
http://sourceforge.net/forum/?group_id=36382
http://www.jaspersoft.com/ss_overview.html

	1Introduction
	2Getting started
	2.1Installing JasperReports
	2.2Requirements
	2.3X11 / Headless Java
	2.4Build the source files and run the samples

	3Working with report templates
	3.1Creating report templates
	3.2Report design preview
	3.3Loading and storing report template files
	3.4Compiling report templates
	3.5Expressions scripting language
	3.6Report compilers
	3.7Ant tasks for compiling reports

	4Filling report templates
	4.1Reporting data
	4.2Generated reports
	4.3Filling order (vertical / horizontal filling)
	4.4Asynchronous report filling

	5Handling generated reports
	5.1Loading and saving generated reports
	5.2Viewing reports
	5.3Printing reports
	5.4Exporting reports

	6Large files support
	6.1File virtualizer
	6.2Swap file virtualizer
	6.3In-memory GZIP virtualizer

	7API Overview
	8Report templates
	8.1JRXML
	8.2DTD reference
	8.3JRXML encoding
	8.4Report template properties
	8.5Custom properties
	8.6Importing packages
	8.7Styles

	9Reporting data
	9.1Expressions
	9.1.1Syntax
	9.1.2Calculator
	9.1.3Built-in functions
	9.1.4Conditional expressions

	9.2Parameters
	9.2.1Built-in report parameters

	9.3Data sources
	9.3.1JDBC data source
	9.3.2JavaBeans data sources
	9.3.3Map-based data sources
	9.3.4TableModel data source
	9.3.5XML data sources
	9.3.6CSV data sources
	9.3.7Empty data sources
	9.3.8Rewindable data sources
	9.3.9Data source provider

	9.4Report query
	9.4.1SQL queries
	9.4.2Stored procedures
	9.4.3Query executer API
	9.4.4SQL query executer
	9.4.5XPath query executer
	9.4.6Hibernate query executer
	9.4.7MDX query executer
	9.4.8EJB QL / JPA query executer

	9.5Fields
	9.6Variables
	9.6.1Calculations
	9.6.2Incrementers
	9.6.3Built-in report variables

	9.7Data filters

	10Report sections
	10.1Main sections
	10.2Data grouping

	11Report elements
	11.1Text elements
	11.1.1Fonts and Unicode support
	11.1.2Static texts
	11.1.3Text fields
	11.1.4Styled text

	11.2Graphic elements
	11.2.1Lines
	11.2.2Rectangles
	11.2.3Ellipses
	11.2.4Images
	11.2.5Charts and graphics

	11.3Box elements
	11.4Hyperlinks and bookmarks
	11.5Element groups
	11.6Frames

	12Subreports
	12.1Subreport parameters
	12.2Subreport data source
	12.3Returning values from subreports
	12.4Subreport runners

	13Datasets
	13.1Main dataset
	13.2Subdatasets
	13.3Dataset runs

	14Charts
	14.1Chart properties
	14.2Chart datasets
	14.3Chart plots
	14.4Chart types

	15Crosstabs
	15.1Crosstab parameters
	15.2Crosstab dataset
	15.3Data grouping (bucketing)
	15.3.1Row groups
	15.3.2Column groups

	15.4Measures
	15.5Crosstab cells

	16Scriptlets
	17Internationalization
	18Report exporters
	18.1Exporter input
	18.2Exporter output
	18.3Monitoring export progress
	18.4Grid exporters
	18.5Font mappings
	18.6Graphics2D exporter
	18.7Java Print Service exporter
	18.8PDF exporter
	18.9RTF exporter
	18.10XML exporter
	18.11HTML exporter
	18.12XLS exporters
	18.13CSV exporter
	18.14Plain text exporter

	19Configuration files
	20Advanced JasperReports
	20.1Implementing data sources
	20.2Customizing viewers
	20.3Using JasperReports in Web environment

	21Resources

