
© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF 2: Introduction
and Overview

Originals of Slides and Source Code for Examples:
http://www.coreservlets.com/JSF-Tutorial/jsf2/

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live training on JSF 2 and/or PrimeFaces,
see http://courses.coreservlets.com/

or email hall@coreservlets.com.
Taught by the author of Core Servlets and JSP, this tutorial,

and JSF 2.2 version of Core JSF. Available at public venues, or
customized versions can be held on-site at your organization.

• Courses developed and taught by Marty Hall
– JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 7 or 8 programming, custom mix of topics
– Courses available in any state or country. Maryland/DC area companies can also choose afternoon/evening courses.

• Courses developed and taught by coreservlets.com experts (edited by Marty)
– Spring, Hibernate/JPA, GWT, Hadoop, HTML5, RESTful Web Services

Contact hall@coreservlets.com for details

Topics in This Section

• Different views of JSF
• Pros and cons of JSF

– Vs. standard servlet and JSP technology
– Vs. Apache Struts
– Vs. other Ajax approaches

• New features in JSF 2
– Vs. JSF 1.x

4

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Overview

Why Web Apps?

• Downsides to browser-based apps

– GUI is poor
• HTML is OK for static documents, but lousy for programs

– Communication is inefficient
• HTTP is poor protocol for the way we now use Web apps

6

Why Web Apps? (Continued)

• So why does everyone want Web apps?
– Universal access

• Everyone already has a
browser installed

• Any computer on the network
can access content

– Automatic “updates”
• Content comes from server,

so is never out of date

7

What is JSF?

• A set of Web-based GUI controls and handlers?
– JSF provides many prebuilt HTML-oriented GUI controls, along

with code to handle their events.
• A device-independent GUI control framework?

– JSF can be used to generate graphics in formats other than HTML,
using protocols other than HTTP.

• An MVC-based Web app framework?
– Like Apache Struts, JSF can be viewed as an MVC framework for

building HTML forms, validating their values, invoking business
logic, and displaying results.

• An Ajax library?
– JSF 2 provides very easy-to-use Ajax support. So, JSF 2 can be

viewed as an alternative to jQuery or GWT.
• But which is the proper way to view JSF?

– The answer depends on what you are going to use it for, but 1 & 3
are the most common ways of looking at JSF.

8

Issues

• Alternatives: traditional Web apps
– Servlets/JSP (with MVC)
– Struts 2
– JSF 2

• Alternatives: Ajax-based Web apps
– Add jQuery (or Ext/JS, etc) to existing app
– Use the Google Web Toolkit and write everything in

Java, following a Swing-like style
– Use JSF 2 and add Ajax tags to page

• JSF 2 vs. JSF 1.x
– How does version 2 compare to version 1?

9

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF vs. Servlets/JSP

The MVC Architecture

• Bad JSP design
– Many books or articles on Java-based Web frameworks

start with this example:
<h1>Tiny bit of HTML</h1>
<% Java

Java
Java
More Java %>

<h1>Tiny bit of HTML</h1>
– Then, they redo the example using the framework and

comment on how much better it is.
• This proves nothing

• MVC
– A fair comparison is to look at the use of the framework

vs. the use of MVC with servlets and JSP
11

A Quick Review of MVC

12

HTML or JSP

Form Servletsubmit form
(Form ACTION matches

url-pattern of servlet)

Java Code
(Business Logic)

Results
(beans)

(Store beans in request,
session, or application scope)

JSP1
JSP2
JSP3

(Extract data from beans
and put in output)

request.setAttribute("customer",
currentCustomer);

${customer.firstName}

Applying MVC:
Bank Account Balances

• Bean
– BankCustomer

• Business Logic
– BankCustomerLookup

• Servlet that populates bean and forwards to
appropriate JSP page
– Reads customer ID, calls BankCustomerLookup’s

data-access code to obtain BankCustomer
– Uses current balance to decide on appropriate result page

• JSP pages to display results
– Negative balance: warning page
– Regular balance: standard page
– High balance: page with advertisements added
– Unknown customer ID: error page

13

Bank Account Balances:
Servlet Code

public class ShowBalance extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

BankCustomer currentCustomer =
BankCustomerLookup.getCustomer

(request.getParameter("id"));
request.setAttribute("customer", currentCustomer);
String address;
if (currentCustomer == null) {
address =
"/WEB-INF/bank-account/UnknownCustomer.jsp";

} else if (currentCustomer.getBalance() < 0) {
address =
"/WEB-INF/bank-account/NegativeBalance.jsp";

} ...
RequestDispatcher dispatcher =
request.getRequestDispatcher(address);

dispatcher.forward(request, response);
14

Bank Account Balances:
Bean

public class BankCustomer {
private final String id, firstName, lastName;
private final double balance;

public BankCustomer(String id,
String firstName,
String lastName,
double balance) {

this.id = id;
this.firstName = firstName;
this.lastName = lastName;
this.balance = balance;

}

// Getters for four instance variables. No setters.

public double getBalanceNoSign() {
return(Math.abs(balance));

}
}15

Bank Account Balances:
Business Logic

public class BankCustomerLookup {
private static Map<String,BankCustomer> customers;

static {
// Populate Map with some sample customers

}

…

public static BankCustomer getCustomer(String id) {
return(customers.get(id));

}
}

16

Bank Account Balances:
Input Form

…
<fieldset>
<legend>Bank Account Balance</legend>
<form action="./show-balance">
Customer ID: <input type="text" name="id">

<input type="submit" value="Show Balance">

</form>
</fieldset>
…

17

For the servlet, use the address http://host/appName/show-balance that is set via url-pattern in web.xml

Bank Account Balances:
JSP Code (Negative Balance)
…
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">
We Know Where You Live!</TABLE>

<P>

Watch out, ${customer.firstName},
we know where you live.
<P>
Pay us the $${customer.balanceNoSign}
you owe us before it is too late!
</BODY></HTML>

18

Bank Account Balances:
web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" ...>
<!-- Use the URL http://host/app/show-balance instead of

http://host/app/servlet/coreservlets.ShowBalance -->
<servlet>
<servlet-name>ShowBalance</servlet-name>
<servlet-class>coreservlets.ShowBalance</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>ShowBalance</servlet-name>
<url-pattern>/show-balance</url-pattern>

</servlet-mapping>
...
</web-app>

19

Bank Account Balances:
Results

20

Advantages of JSF (vs. MVC Using
RequestDispatcher)

• Custom GUI controls
– JSF provides a set of APIs and associated custom tags to create HTML

forms that have complex interfaces
• There are many extra-rich third-party JSF libraries

• Event handling
– JSF makes it easy to designate Java code that is invoked when forms are

submitted. The code can respond to particular buttons, changes in
particular values, certain user selections, and so on.

• Managed beans
– In JSP, you can use property="*" with jsp:setProperty to automatically

populate a bean based on request parameters. JSF extends this capability
and adds in several utilities, all of which serve to greatly simplify request
param processing.

• Integrated Ajax support
– You can use jQuery, Dojo, or Ext-JS with servlets and JSP. However, JSF

lets you use Ajax without explicit JavaScript programming and with very
simple tags. Also, the Ajax calls know about the server-side business logic.

21

Advantages of JSF (vs.
Standard MVC), Continued

• Form field conversion and validation
– JSF has builtin capabilities for checking that form values are in the

required format and for converting from strings to various other data types.
If values are missing or in an improper format, the form can be
automatically redisplayed with error messages and with the previously
entered values maintained.

• Page templating
– Although JSP has jsp:include for reuse of content, JSF has a full-fledged

page templating system that lets you build pages that share layout or
content

• Centralized file-based configuration
– Rather then hard-coding information into Java programs, many JSF values

are represented in XML or property files. This loose coupling means that
many changes can be made without modifying or recompiling Java code,
and that wholesale changes can be made by editing a single file. This
approach also lets Java and Web developers focus on their specific tasks
without needing to know about the overall system layout.

• Consistent approach
– JSF encourages consistent use of MVC throughout your application.

22

Disadvantages of JSF (vs. MVC
with RequestDispatcher)

• Bigger learning curve
– To use MVC with the standard RequestDispatcher, you

need to be comfortable with the standard JSP and servlet
APIs. To use MVC with JSF, you have to be comfortable
with the servlet API and a large and elaborate framework
that is almost equal in size to the core system.

– Similarly, if you have an existing app and want to add in
some small amounts of Ajax functionality, it is
moderately easy with jQuery (quite easy if you know
JavaScript already). Switching your app to JSF 2 is a big
investment.

• Worse documentation
– Compared to the standard servlet and JSP APIs, JSF has

fewer online resources, and many first-time users find the
online JSF documentation confusing and poorly
organized. True for both Mojarra and MyFaces.

23

Disadvantages of JSF (vs.
Standard MVC), Continued

• Less transparent
– With JSF applications, there is a lot more going on

behind the scenes than with normal Java-based Web
applications. As a result, JSF applications are:

• Harder to understand
• Harder to benchmark and optimize

• Rigid approach
– The flip side of the benefit that JSF encourages a

consistent approach to MVC is that JSF makes it difficult
to use other approaches.

24

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF 2 vs. Struts 2

Struts is a Serious Alternative

• Situation
– You decide that for your application, the benefits (power)

of using a Web application framework [vs. servlets/JSP
with MVC] outweigh the disadvantages (complexity)

• Problem
– JSF is not the only game in town

• Alternatives
– Struts is the most popular alternative to JSF
– But there are many more

• Spring MVC
• Apache Wicket
• Apache Tapestry
• jMaki
• …

26

Advantages of JSF
(vs. Struts)

• Custom components
– JSF makes it relatively easy to combine complex GUIs into a single

manageable component; Struts does not
– There are many existing third-party component libraries for JSF,

virtually none for Struts
• PrimeFaces, JBoss RichFaces, Oracle ADF, IceFaces, Apache

Tomahawk, Woodstock, Web Galileo, …

• Support for other display technologies
– JSF is not limited to HTML and HTTP; Struts is

• Access to beans by name
– JSF lets you assign names to beans, then you refer to them by name

in the forms. Struts has a complex process with several levels of
indirection.

• Official part of Java EE
– JSF is part of the Java EE spec, and all servers that support Java EE

include JSF (JSF 2 is part of Java EE 6)27

JSF Custom Components:
Examples

28

Advantages of JSF
(vs. Struts), Continued

• Expression language
– The JSF expression language is more concise and powerful

than the Struts bean:write tag.
• This is less advantageous vs. Struts 2

• Simpler controller and bean definitions
– JSF does not require your controller and bean classes to extend

any particular parent class (e.g., Action) or use any particular
method (e.g., execute). Struts does.

• Simpler config file and overall structure
– The faces-config.xml file is much easier to use than is the

struts-config.xml file. In general, JSF is simpler.
• Better tool support

– As of mid-2011, both Eclipse and NetBeans have moderately
good integrated support for JSF 2

• But still not as good as the JSF 1 support in the now-extinct Sun
Java Studio Creator29

Disadvantages of JSF
(vs. Struts)

• Established base

30

Counter-Arguments re
Established Base

• Trends/momentum

31

Counter-Arguments re
Established Base

• Google Trends vs. Indeed.com job listings

32

Disadvantages of JSF (vs. Struts),
Continued

• Support for other display technologies
– JSF is not limited to HTML and HTTP; Struts is

• Hey! Didn't I say this was an advantage of JSF?

• Confusion vs. file names
– The actual pages used in JSF end in .xhtml. But the URLs used

end in .faces or .jsf. This causes many problems.
• You cannot browse directories and click on links
• It is hard to protect raw XHTML pages from access
• It is hard to refer to non-faces pages in faces-config.xml

• Self-submit approach
– With Struts, the form (blah.jsp) and the handler (blah.do)have

different URLs; with JSF they are the same (blah.jsf).

33

Disadvantages of JSF (vs.
Struts), Continued

• Much weaker automatic validation
– Struts comes with form-field validators for email address,

credit card numbers, regular expressions, and more. JSF
only comes with validators for missing values, length of
input, and numbers in a given range.

• You can use third-party validation libraries with JSF (e.g.,
MyFaces/Tomahawk built on the Struts/Commons
validation library), but still not as powerful as Struts

• Lack of client-side validation
– Struts supports JavaScript-based form-field validation;

JSF does not
• You can use Ajax-based validation in JSF, but still not as

good as the true client-side validation in Struts

34

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF 2 vs.
Other Ajax Approaches

Three Main Options

• Traditional JavaScript library
– Add JavaScript code to your existing Web app to add

richer GUIs and to support asynchronous, incremental
updates to your page

• E.g., jQuery, Dojo, Ext-JS, YUI, Prototype/Scriptaculous,
Google Closure, Mootools

• GWT
– Write everything in Java. Use RPC mechanism to talk to

server. Client-side code gets compiled to JavaScript.

• JSF 2 (or another framework with integrated
Ajax support)
– Use simple tags to perform Ajax requests, without

explicit JavaScript programming
36

Using a Traditional JavaScript
Library

• Scenario
– You already built a Web app (using Java, .NET, PHP,

Ruby on Rails, or whatever)
– You want to upgrade it by adding richer GUI elements

and Ajax-enabled features
– You do not want to start over and reimplement the

existing functionality

• Best approach
– Use JavaScript library with rich widgets and Ajax support

• jQuery, Ext-JS, Dojo, YUI, Prototype/Scriptaculous,
Google Closure, Mootools

– Which library is best is another hard question
• Different libraries have different strengths. I have an entire

talk on this question.37

Example: jQuery for Bank
Customer Info

• Functionality
– Enter a customer ID
– Show the first name, last name, and bank account balance

of customer with that ID
– Show error message if ID does not exist

• Goals
– Do not reload the page
– Use existing server-side logic

• Approach
– Use jQuery to pass ID to server via Ajax request and to

insert result into page
– Extend server to format customer as list

38

Bank Example: HTML

…
<fieldset>

<legend>Find Customer Info</legend>
<form id="customer-form">

Customer ID:
<input type="text" name="customerID"/>
<input type="button" value="Show Customer"

id="customer-button"/>
</form>
<div id="customer-region"/>

</fieldset>
…

39

Bank Example: JavaScript

$(function() {
$("#customer-button").click(showCustomer);

});

function showCustomer() {
var queryData = $("#customer-form").serialize();
$("#customer-region").load("find-customer-by-id",

queryData);
}

40

Bank Example: Java

public class FindCustomerByID extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

String customerID = request.getParameter("customerID");
Customer customer =
CustomerUtils.getCustomer(customerID);

String customerData;
if (customer == null) {
customerData = ResultUtils.makeErrorMessage("ID");

} else {
customerData = ResultUtils.makeBulletedList(customer);

}
PrintWriter out = response.getWriter();
out.print(customerData);

}
}

41

Bank Example: Results

42

Using GWT

• Scenario
– You are starting a new Web app
– You want a large pure-Ajax app

• Looks like a desktop application
• Has complex client-server communication

– For client-side code, you want strong typing, many data
structures, and few runtime errors

• You want Java, not JavaScript for the client!

• Best approach
– Use the Google Web Toolkit

• Client-side Java code gets compiled to JavaScript
• Powerful RPC mechanism for talking to server

43

Example: GWT for Bank
Customer Info

• Functionality
– Enter a customer ID
– Show the first name, last name, and bank account balance

of customer with that ID
– Show error message if ID does not exist

• Goals
– Do not reload the page
– Use straightforward server-side logic (no HTTP methods)
– Return Customer object, not just String, to client

• Approach
– Use GWT
– Use Customer class on both client and server

44

Bank Example: Java
(Customer Class)

public class Customer implements Serializable {
private String id, firstName, lastName;
private double balance;

public Customer(String id,
String firstName,
String lastName,
double balance) {

this.id = id;
this.firstName = firstName;
this.lastName = lastName;
this.balance = balance;

}
…
// Getters and setters

}

45

Bank Example: Java
(Core Client Code – Part 1)
private class ButtonHandler implements ClickHandler {
public void onClick(ClickEvent event) {
String id = idBox.getText();
serviceProxy.findCustomer(id, new ButtonCallback());

}
}

46

Bank Example: Java
(Core Client Code – Part 2)
private class ButtonCallback implements AsyncCallback<Customer>
{

public void onSuccess(Customer result) {
if (result != null) {

String message = result.getFirstName() + " " +
result.getLastName() +
" has balance of $" +
result.getBalance();

customerInfo.setHTML(message);
} else {

customerInfo.setHTML("No such ID");
}

}

public void onFailure(Throwable caught) {
Window.alert("Unable to get data from server.");

}
}

47

Bank Example: Java
(Core Server Code)

public class DataServiceImpl extends RemoteServiceServlet
implements DataService {

public Customer findCustomer(String id) {
CustomerLookupService service =
new CustomerSimpleMap();

return(service.findCustomer(id));
}

}

48

Bank Example: JavaScript

This page deliberately left blank

49

Bank Example: Results

50

Using JSF 2

• Scenario
– You are starting a new Web app
– You want a hybrid application

• Regular form submission and page navigation
• Ajax-enabled content
• Richer controls

– You don’t want to write a lot of JavaScript by hand

• Best approach
– Use a Web app framework that includes rich controls and

integrated Ajax support
• Java developers: JSF 2, Struts 2, or Spring MVC 3.0
• .NET developers: ASP.NET Ajax

51

Example: JSF 2 for Bank
Customer Info

• Functionality
– Enter a customer ID
– Show the first name, last name, and bank account balance

of customer with that ID
– Show error message if ID does not exist

• Goals
– Do not reload the page
– Use existing server-side logic and bean names
– Use familiar JSF tags, not explicit JavaScript

• Approach
– Use JSF 2 <f:ajax> tag
– Leave server code unchanged

52

Bank Example: JSF (Facelets)

…
<h:form>
Customer ID:
<h:inputText value="#{bankingBeanAjax.customerId}"/>

Password:
<h:inputSecret value="#{bankingBeanAjax.password}"/>

<h:commandButton value="Show Current Balance"

action="#{bankingBeanAjax.showBalance}">
<f:ajax execute="@form"

render="ajaxMessage1"/>
</h:commandButton>

<h2><h:outputText value="#{bankingBeanAjax.message}"

id="ajaxMessage1"/></h2>
</h:form>
…

53

Bank Example: JavaScript

This page deliberately left blank

54

Bank Example: Java

@ManagedBean
public class BankingBeanAjax extends BankingBeanBase {
private String message = "";

public String getMessage() {
return(message);

}

public void setMessage(String message) {
this.message = message;

}

55

Bank Example: Java
(Continued)
public String showBalance() {

if (!password.equals("secret")) {
message = "Incorrect password";

} else {
CustomerLookupService service =

new CustomerSimpleMap();
customer = service.findCustomer(customerId);
if (customer == null) {

message = "Unknown customer";
} else {

message =
String.format("Balance for %s %s is $%,.2f",

customer.getFirstName(),
customer.getLastName(),
customer.getBalance());

}
}
return(null);

56

Bank Example: Results

57

Bottom Line

• Use traditional JavaScript library when:
– You have existing app already built
– You want to incrementally add rich GUIs/Ajax to it

• Use GWT when:
– You are starting a new Web app
– You want it to look like a desktop app (no page nav)
– You have complex client-server comms

• Use JSF 2 when:
– You are starting a new Web app
– It will be a combination of traditional form submissions

and page navigation plus rich GUIs/Ajax content

58

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

JSF 2.x vs. JSF 1.x

Overview of JSF 2

• New features vs. JSF 1.x
– Smart defaults
– Annotations to replace many faces-config.xml entries
– Ajax support
– Integrated support for facelets
– Simpler custom components
– More components and validators
– Support for Groovy
– Ability to bookmark results pages
– Lots more

• Downside
– Simple installation and testing instructions hard to find

• Rectifying this is the main point of next section
• Next section gives a whirlwind tour of main new JSF 2 features
• Later sections give detailed tutorial on JSF 2

60

Main JSF 2 Implementations

• Sun/Oracle Mojarra
– Main page: http://javaserverfaces.java.net/
– Runs in any server supporting servlets 2.5 or later
– Also integrated into Glassfish 3

• Apache MyFaces
– Main page: http://myfaces.apache.org/core20/
– Runs in any server supporting servlets 2.5 or later
– Also integrated into Apache Geronimo 3

• Any Java EE 6 server
– JSF 2 is an official part of Java EE 6

• JBoss 6, Glassfish 3, WebLogic 11, WebSphere 8,
Geronimo 3, etc.

– JSF 2.2 is part of the upcoming Java EE 7 spec61

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

Summary

• General Web apps
– JSF 2 usually better than

servlets/JSP with MVC
• Higher-level, more builtin features

– JSF 2 probably better than Struts 2
• Technical arguments about even,

but JSF 2 has 3rd party
component libraries, industry
momentum, and is official part of
Java EE 6

– Other Java-based frameworks: No
• For mainstream corporate

projects, other frameworks
(except possibly Spring MVC)
have too small of a market share
to be taken seriously, regardless
of technical features.

• Ajax-enabled Web apps
– Updating existing project to add

Ajax capabilities
• Use jQuery, Ext-JS, Dojo, or

another JavaScript library

– New hybrid (page navigation plus
Ajax) project

• Use JSF 2 because of
integrated Ajax support

– New pure-Ajax (no page
navigation) project

• Use GWT

• JSF 2 vs. JSF 1
– Version 2 is both more powerful

and simpler. Better in every way.
Very big improvement over JSF
version 1.x.

• Only clear-cut answer in lecture!63

© 2014 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java 7, Java 8, JSF 2.2, PrimeFaces, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

JSF 2, PrimeFaces, Java 7 or 8, Ajax, jQuery, Hadoop, RESTful Web Services, Android, HTML5, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.
Also see JSF 2 tutorial and PrimeFaces tutorial.

