
Willie Wheeler
WITH Joshua White

Covers Spring 3

M A N N I N G

www.it-ebooks.info

http://www.it-ebooks.info/

Spring in Practice

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Spring in Practice

WILLIE WHEELER
with JOSHUA WHITE

M A N N I N G
Shelter Island
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical editor: Doug Warren
PO Box 261 Copyeditor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781935182054
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents
1 ■ Introducing Spring: the dependency injection container 1

2 ■ Data persistence, ORM, and transactions 33

3 ■ Building web applications with Spring Web MVC 65

4 ■ Basic web forms 105

5 ■ Enhancing Spring MVC applications with Web Flow 134

6 ■ Authenticating users 173

7 ■ Authorizing user requests 209

8 ■ Communicating with users and customers 244

9 ■ Creating a rich-text comment engine 277

10 ■ Integration testing 306

11 ■ Building a configuration management database 338

12 ■ Building an article-delivery engine 392

13 ■ Enterprise integration 422

14 ■ Creating a Spring-based “site-up” framework 467
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
preface xiii
acknowledgments xv
about Spring xvii
about this book xix
about the cover illustration xxiii

1 Introducing Spring: the dependency injection container 1
1.1 What is Spring, and why use it? 2

The major pieces of the framework 2 ■ Why use it? 4

1.2 Flexible configuration via dependency injection 5
Configuring dependencies the old way 5 ■ Dependency
injection 6 ■ Inversion of control 8

1.3 A simple bean configuration example 9
Creating the account domain object 9 ■ Creating the account DAO
interface and implementation 10 ■ Configuring CsvAccountDao with
Spring 12 ■ Creating the account service that finds delinquent
accounts 13 ■ Wiring up the AccountService to CsvAccountDao 14

1.4 Wiring beans using XML 16
An overview of the beans namespace 16 ■ Bean scopes 20
The p namespace 23 ■ The c namespace 24
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
1.5 Autowiring and component scanning using annotations 25
@Autowired 26 ■ Stereotype annotations 28 ■ Component
scanning 29 ■ XML vs. annotations: which is better? 31

1.6 Summary 32

2 Data persistence, ORM, and transactions 33
2.1 Data access using JDBC 35

2.2 Looking up a DataSource with JNDI 39

2.3 Object-relational mapping and transactions via Hibernate 42

2.4 Creating a data access layer 52

2.5 Working with JPA (optional) 57

2.6 Spring Data JPA overview (optional) 61

2.7 Summary 63

3 Building web applications with Spring Web MVC 65
3.1 Spring Web MVC background 66

A review of the model-view-controller (MVC) pattern 66 ■ What is Spring
Web MVC? 67 ■ An architectural overview of Spring Web MVC 68

3.2 Creating your first Spring Web MVC application 69
Configuring the application 69 ■ A simple domain object 70
Writing a basic controller 71 ■ Implementing the master and
details views 73

3.3 Serving and processing forms 74
Using domain objects as form beans 74 ■ Adding a controller 76
Adding a form JSP and a “thanks” JSP 78 ■ Updating the application
context 79 ■ Adding redirect-after-post behavior 79 ■ Adding form-
binding whitelisting 80 ■ Adding form validation 81

3.4 Configuring Spring Web MVC: web.xml 81
3.5 Configuring Spring Web MVC: the application context 83

Configuring HandlerMappings 84 ■ Configuring HandlerAdapters 89
Configuring HandlerExceptionResolvers 89 ■ Configuring View-
Resolvers 89 ■ Configuring a RequestToViewNameTranslator 92
Configuring other resolvers 93

3.6 Spring Mobile technology preview 93
A brief anatomy of an HTTP request 94 ■ Detecting a mobile device with
Spring Mobile 95 ■ Configuring Spring Mobile 96 ■ Handling site
preferences 98 ■ Using JavaScript frameworks for enhanced look and
feel 100 ■ Switching to a separate mobile site 102
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
3.7 Related technologies 103
Spring Web Flow 103 ■ Spring JavaScript 103 ■ Spring
Faces 103 ■ Spring Security 104 ■ RESTful web services 104

3.8 Summary 104

4 Basic web forms 105
4.1 Displaying a web form 105

4.2 Externalizing strings in the view 112

4.3 Validating form data 115

4.4 Saving form data 124

4.5 Summary 133

5 Enhancing Spring MVC applications with Web Flow 134
5.1 Is Spring Web Flow right for you? 135

5.2 An overview of Spring Web Flow 135
Defining a flow 136 ■ The five types of states 136 ■ Transitions
between states 140 ■ Flow data 141

5.3 The Spring Soccer Club demo application 143

5.4 Using action classes 156

5.5 Form data binding 160

5.6 Form validation 162

5.7 Flow and state inheritance 165

5.8 Securing web flows 167

5.9 Summary 172

6 Authenticating users 173
6.1 Implementing login and logout with remember-me

authentication 173
6.2 Customizing the login page 182
6.3 Implementing an always-resident login form 185
6.4 Sourcing user data from a database 188
6.5 Customizing the user database schema 191
6.6 Using a custom user service and user principal 193
6.7 Secure user passwords in the database 201
6.8 Auto-authenticating the user after a successful

registration 206
6.9 Summary 208
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
7 Authorizing user requests 209
7.1 Authorizing Java methods using authentication levels, roles,

and permissions 211
7.2 Authorizing JSP views using authentication levels, roles, and

permissions 217
7.3 Authorizing web resources using authentication levels, roles,

and permissions 220
7.4 Authorizing method invocations based on ACLs 223

7.5 Displaying web navigation and content based on ACLs 241

7.6 Summary 243

8 Communicating with users and customers 244
8.1 Create a web-based Contact Us form 245

8.2 Autogenerate an email response and email notification 252

8.3 Speeding up autogenerated emails 258

8.4 Allowing users to subscribe to a mailing list 262

8.5 Publishing a news feed 272

8.6 Summary 276

9 Creating a rich-text comment engine 277
9.1 Creating a basic user comment engine 278

9.2 Integrating the comment engine with an article-delivery
service 287

9.3 Adding rich-text support to the comment engine 295

9.4 Testing the HTML filter 302

9.5 Summary 305

10 Integration testing 306
10.1 Configuring Maven for integration testing 307

10.2 Writing transactional happy-path integration tests 313

10.3 Verifying that code under test throws an exception 325

10.4 Creating integration tests that verify performance 328

10.5 Ignoring a test 331

10.6 Running integration tests against an embedded database 332

10.7 Summary 337
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
11 Building a configuration management database 338
11.1 Creating a simple configuration item 342

11.2 Creating related configuration items 347

11.3 Adding a RESTful web service 359

11.4 Updating the CMDB after successful builds 369

11.5 Sourcing public GitHub data 374

11.6 Sourcing private GitHub data 379

11.7 Encrypting access tokens for production use 388

11.8 Summary 391

12 Building an article-delivery engine 392
12.1 Storing articles in a content repository 394

12.2 Creating a web-based article-delivery engine 405

12.3 Storing articles in a document repository 416

12.4 Summary 420

13 Enterprise integration 422
13.1 A whirlwind tour of Spring Integration 423

13.2 Integrating applications via a shared database 425

13.3 Decoupling applications with RESTful web services 430

13.4 Implementing a message bus using RabbitMQ and Spring
Integration 438

13.5 Sourcing tickets from an IMAP store 456

13.6 Send confirmation messages over SMTP 462

13.7 Summary 465

14 Creating a Spring-based “site-up” framework 467
14.1 Circuit-breaker overview 468

14.2 Creating a circuit-breaker template and callback 469

14.3 Exposing the circuit breaker as a JMX MBean 482

14.4 Supporting AOP-based configuration 487

14.5 Supporting custom namespaces 494

14.6 Supporting annotation-based configuration 502

14.7 Summary 512
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
appendix Working with the sample code 513
index 519
www.it-ebooks.info

http://www.it-ebooks.info/

preface
I started using Spring in 2004 after having used Enterprise JavaBeans 2 (EJB) for a
couple of years. Unlike many who made the jump in those early days, I don’t have
any EJB horror stories to recount. My EJB project was too small to have had any seri-
ous technology issues—pretty much any technology would have worked. Although I
never fell in love with EJB, my team was able to make it work, so we didn’t have any
major complaints.

 In 2004 I took a job with a new employer where everybody was using Spring. It was
immediately clear to me that Spring’s POJO- and injection-based approach was simpler
to use than EJB and that it resulted in cleaner code. Moreover, our Spring apps were
supporting thousands of concurrent users without issue. Contrary to the orthodoxy of
the day, Spring was certainly ready to take on enterprise demands without EJBs and
heavyweight app servers.

 My teams and I built a number of Spring apps. Even as a manager, I did quite a bit
of hands-on development, and that’s how I learned the framework. After a while,
though, my management responsibilities made it harder to do as much development
as I wanted to do. I started blogging about Spring (springinpractice.com) to maintain
and expand my knowledge of the framework. Eventually, Manning came across my
blog and asked me to write this book.

 Nowadays I again do hands-on development, and to this day I use Spring for
almost all of my Java development. It’s a fantastic framework that makes development
enjoyable and productive.

WILLIE WHEELER
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExiv
Early in my career, I worked on several large enterprise projects that used EJB 1.0. It
quickly became evident to me that enterprise Java development was painful. Solutions
were often complex, tedious, time-consuming, and error-prone. By the time Rod
Johnson’s book Expert One-on-One J2EE Design and Development came out in 2002, I was
more than ready for a change. The ideas that Rod expressed in his book, and later
incorporated into the Spring Framework, struck a chord not only with me but with the
Java development community at large. Because the framework handled the infrastruc-
ture code for me, my code was cleaner, simpler, and less error-prone. It became clear
that with Spring, I was more productive and enjoying development again. I have been
an evangelist of the Spring Framework ever since.

 As Spring grew, my thirst for knowledge about the framework, its surrounding
technologies, and its ecosystem grew as well. Over the years, I had become an avid
technical reader and soon found myself reviewing and providing technical input for
other authors’ books. It wasn’t until Manning provided me with the opportunity to
team up with Willie and coauthor this book that I was able to experience being on the
other side of the fence.

JOSHUA WHITE
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
Willie here. As a longtime acknowledgments reader, I’m familiar with the typical
expressions of gratitude aimed toward one’s significant other, children, and other
inconvenienced parties. But sitting now in the writer’s seat, I more fully appreciate
how inadequate even the more vigorous of these expressions are.

 I owe my first and largest debt to my wife, Raylene, who supported my efforts far
beyond what was fair to ask or expect. Personal shame prevents me from describing
the many sacrifices she made on my behalf, but, suffice it to say that she’s eagerly look-
ing forward to receiving her copy of the book so she can set it aflame. Thank you, Ray-
lene, for making this book possible—your name belongs on the cover of this book
every bit as much as mine does.

 Next, I thank our children, Max, Jude, Lucy, and Ben, two of whom have never
known life without “the book.” They, like their mom, have been nothing but patient
and supportive during the entire process, and I am deeply grateful.

 Thanks to my in-laws, Ray, Jane, Renee, Rana, and Raymond, for making their
home available to my family for many weekend getaways.

 And, of course, big thanks to my coauthor, Josh, for helping get the book across
the finish line.

 Both Josh and I would like to thank the team at Manning: Marjan Bace, Cynthia
Kane, Elizabeth Martin, Mary Piergies, Maureen Spencer, Tiffany Taylor, and Megan
Yockey. A special and heartfelt thanks to our development editor, Cynthia Kane.
Besides providing outstanding support on the editorial side, Cynthia was a driving
xv

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxvi
force in seeing this project through to its successful completion. Thank you, Cynthia,
for your expertise, patience, and support.

 Thanks are due both to the technical reviewers and to the MEAP customers for
their invaluable questions and feedback during the development process. Their
efforts have made this a much better book. We would especially like to acknowedge Al
Scherer, Brian O’Shea, Carol McDonald, Craig Walls, Daniel Alford, Deepak Vohra,
Dmitry Sklyut, Erwin Vervaet, George Franciscus, Gordon Dickens, Jeremy Flowers,
Jeroen Nouws, John Guthrie, John Ryan, John Tyler, Kenneth Kousen, Kenrick Chien,
Mario Arias, Patrick Steger, Prasad A Chodavarapu, Rama Kanneganti, Ricardo Lima,
Rizwan Lodhi, Robby O’Connor, Robert Casazza, Robert Hanson, Ryan Stephens, Sri-
kanth Balusani, and Willem Jiang.

 And, finally, a special thanks to our technical editor, Doug Warren, whose tireless
efforts and attention to detail resulted in many improvements throughout the book.
We could not have done it without you!
www.it-ebooks.info

http://www.it-ebooks.info/

about Spring
Spring was originally conceived as a way to simplify Java Enterprise Edition (JEE)
development, but it’s not exactly a simple framework. It’s huge. The core framework is
large, and dozens of portfolio projects extend that core, covering things like security,
web flow, SOAP web services (REST web services are part of the core), enterprise inte-
gration, batch processing, mobile, various flavors of social (Facebook, LinkedIn, Twit-
ter, GitHub, and so on), various flavors of NoSQL (MongoDB, Neo4j, Riak, and so on),
BlazeDS/Flex, AMQP/Rabbit, and many more. If “simple” means something with few
parts, then Spring isn’t simple.

 Yet Spring does simplify Java development. As a general rule, it does so by isolating
infrastructural concerns (such as persistence management and transaction manage-
ment) from domain concerns. The framework handles the former so app developers
can focus on the latter. In this respect, Spring is like JEE and even its earlier J2EE incar-
nation. Spring’s approach—based on POJOs, dependency injection, and support for a
wide variety of third-party libraries—proved to be more effective than J2EE with EJB.
JEE closed the gap by adopting key elements of that approach.

 That Spring simplifies development without itself being simple isn’t paradoxical.
Tools that simplify work don’t themselves have to be simple to learn. IDEs are a case in
point.

 The good news is that Spring keeps the learning curve reasonable in several ways:
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT SPRINGxviii
■ There’s a distinction between the framework’s core and its various “portfolio”
projects. The core framework addresses general development needs, such as
database development, object/relational mapping, transactions, web develop-
ment, and so on. The portfolio projects are more special-purpose. One good
way to learn Spring is to learn the basics of the core framework first and then
move on to portfolio projects.

■ Certain approaches and patterns, such as POJOs, dependency injection, tem-
plates, AOP-based auto proxying, and so forth, recur throughout the frame-
work. Learning Spring is a matter of learning a reasonably constrained set of
core approaches.

■ One of the original approaches was XML-based configuration. Over time, some
developers became grumpy about this: it requires a lot of explicit bean wiring,
and XML compares unfavorably to terser formats like JSON, YAML, and perhaps
even Java. Spring addressed this by adding a number of simpler configuration
options, including namespace-based, annotation-based, and Java-based.

■ Spring’s development team pays attention to what’s happening outside the Java
world and freely adopts ideas that offer simplifications. Ruby on Rails has been
a particularly rich source of such ideas—Spring Roo and Grails are essentially
Rails clones, bringing Rails-like development to Java and Groovy, respectively.
(SpringSource leads the development of the Groovy language and the Grails
framework.)

■ Spring has strong IDE support in the form of the Spring Tool Suite (STS),
which is a branded and extended version of Eclipse. This support makes it eas-
ier to visualize bean dependencies, to understand where aspect-oriented pro-
gramming (AOP) advice is being applied, and so on. Some of the portfolio
projects have additional IDE integration, such as Spring Integration with inte-
gration visualizations.

This isn’t a complete list, but it gives the basic idea.
 Our hope in writing this book is to make the learning curve gentler. We do this by

presenting a reasonably wide range of problems you’re likely to encounter at some
point (if you haven’t already) and showing how Spring can help you solve them. The
core framework appears throughout, so you’ll get plenty of practice with that. But we
also pull in several portfolio projects, mostly because they’re appropriate to the prob-
lem at hand, but also because seeing them will help you develop a sense for the recur-
ring themes.

 By the end of this book, you’ll have a broad understanding of the core framework
and many of the portfolio projects. You’ll also have sufficient practical knowledge to
do real work with Spring. We won’t make you an expert, but you’ll understand
enough of the nuts and bolts to know roughly what the answers look like and where to
find them.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
Spring in Practice is a practice-oriented book. The first three chapters are background,
but are still quite substantial, and we expect most readers will find some new informa-
tion in them. Chapter 2 and the final 11 chapters use a cookbook format to tackle a
given problem with incremental recipe-by-recipe, or technique-by-technique, solu-
tions. There are 66 techniques covered in this book.

Roadmap
As noted, chapters 1 through 3 provide background material that we use throughout
the rest of the book:

■ Chapter 1 explains the Spring inversion of control lightweight container.
■ Chapter 2 shows how to work with data access, ORM, and transactions. Although

we pursue the more traditional approach of implementing a generic DAO, we
also show how to take advantage of Spring Data JPA’s powerful capabilities.

■ Chapter 3 presents an overview of Spring Web MVC, a rich framework for imple-
menting web applications. Chapter 3 also presents Spring Mobile, which
extends Spring Web MVC to provide support for mobile application develop-
ment. Although Spring Mobile doesn’t count as background material, it fit
fairly naturally with chapter 3, so we went with it.

Chapters 4 and 5 present two different approaches to implementing registration
forms; the material is easy to generalize to other problem domains:
xix

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxx
■ Chapter 4 shows how to implement a single-page, web-based registration form
using Spring Web MVC. The techniques apply to single-page form development
in general.

■ Chapter 5 uses Spring Web Flow to implement a more sophisticated, multipage
registration process. Here the techniques apply to flow-based interactions gen-
erally, such as application processes, checkout processes, and so forth.

In chapters 6 and 7 we switch gears, treating two important aspects of security:
■ Chapter 6 uses Spring Security to implement a login process.
■ Chapter 7 continues with Spring Security by showing how to add authorization

to a web forum application. We consider both role-based and ACL-based
authorization.

Chapters 8 and 9 explore another common concern in application development—
communicating with users and making it possible for them to communicate with one
another.

■ Chapter 8 covers web-based Contact Us forms, email responses, as well as notifi-
cations, mailing lists, and RSS feeds.

■ Chapter 9 shows how to implement a rich-text comment engine using the Page-
Down editor, which is the same one that StackOverflow uses.

The remaining chapters mostly stand alone:
■ Chapter 10 illustrates the use of the Spring TestContext Framework when

implementing integration tests.
■ Chapter 11 presents a configuration management database (CMDB) based on

Neo4j, Spring Data Neo4j, Spring Social, and more.
■ Chapter 12 shows how to build an article delivery engine against both Java Con-

tent Repository (JCR) and MongoDB.
■ Chapter 13 covers building a Spring-based help desk system on the inbound

and the outbound side. Our focus is on building a basic structure.

■ Chapter 14 demonstrates techniques for building your own Spring-based frame-
works, with support for namespace-based configuration, AOP, annotations, and
more. Our example is a framework for site resiliency.

The appendix explains how we’ve organized the book’s source code, as well as how to
build, configure, and run it.

Who should read this book?
As its title suggests, Spring in Practice aims to help you put the Spring Framework to
practical use. Although we do explain the occasional concept (such as dependency
injection) or principle (like preferring whitelisting to blacklisting), there’s compara-
tively little of that. Most of the time, we’re showing how to do things.

 Accordingly we assume that you come to the book with enough experience to
understand what you’re trying to accomplish and why. This isn’t a first book on
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxi
Spring. We think it makes a nice complement to books that expand more upon the
foundations, such as Spring in Action, Third Edition by Craig Walls (Manning, 2011).

 Nearly all of the recipes deal with web application development in some way. This
reflects the ongoing importance of web application development, as well as the back-
ground of your lead author. We assume that you know the basics of Java web applica-
tion development, including HTTP, servlets, JSPs, and tag libraries.

 Many of the recipes involve various Java enterprise APIs, such as JNDI, JPA, JavaMail,
and JMX. We use Hibernate quite a bit, too. In addition, more recent trends such as
mobile, social, and NoSQL are now commonplace in both corporate and noncorpo-
rate settings, and some of the recipes in the book treat topics such as GitHub, OAuth,
MongoDB, and Neo4j as well. In general, we assume that you have enough experience
to set those up on your own (even if you have to read about them elsewhere), and we
focus on the Spring part.

 This isn’t a book for absolute beginners; most developers who have been doing
Java development for the past few years should find the book useful for expanding
their knowledge of Spring.

Code conventions and downloads
You can find the source code for all of the examples in the book at www.manning.com/
SpringinPractice or at https://github.com/springinpractice. The repositories for the
book are sip02, sip03, sip04, and so forth. The appendix contains more information
about how to build, configure, and run the code.

 The following conventions are used throughout the book:

■ Italic typeface is used to introduce new terms.
■ Courier typeface is used to denote code samples, as well as elements and attri-

butes, method names, classes, interfaces, and other identifiers.
■ Code annotations accompany many segments of code. Certain annotations are

marked with numbered bullets. These annotations have further explanations
that follow the code.

■ Code line continuations use the ➥ symbol.

Author Online
The purchase of Spring in Practice includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum and
subscribe to it, point your web browser to www.manning.com/SpringinPractice. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid).
www.it-ebooks.info

http://www.manning.com/
www.manning.com/SpringinPractice
www.manning.com/SpringinPractice
http://www.manning.com/SpringinPractice
http://www.manning.com/SpringinPractice
https://github.com/springinpractice
http://www.it-ebooks.info/

ABOUT THIS BOOKxxii
We suggest you try asking the authors some challenging questions lest their inter-
est stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.

About the authors
WILLIE WHEELER currently serves as a principal applications engineer at Expedia, with a
focus on continuous delivery and web operations. He has been working with Java
since 1997 and with Spring since 2005. If you like this book, you can find more of the
same at Willie’s Spring blog, springinpractice.com. He also runs a devops blog at zky-
base.org/blog. Willie lives in Sammamish, Washington, with his wife Raylene and
their four children Max, Jude, Lucy, and Ben.

JOSHUA WHITE is currently director of software engineering and innovation at Cigna and
has more than 12 years of experience developing and architecting complex software
systems for a number of financial and health services organizations. He has worked with
and evangelized the use of the Spring Framework since its inception in 2002. Joshua
lives in Farmington, Connecticut.
www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of Spring in Practice is an “Officer of the Grand Signior,” the
elite guard that surrounded the Sultan. The illustration is taken from a collection of
costumes of the Ottoman Empire published on January 1, 1802, by William Miller of
Old Bond Street, London. The title page is missing from the collection and we have
been unable to track it down to date. The book’s table of contents identifies the figures
in both English and French, and each illustration bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing the
front cover of a computer programming book...a bit more than two hundred years.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.
xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE COVER ILLUSTRATIONxxiv
 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spring:
the dependency

 injection container
In this chapter, we’ll provide a brief overview of the Spring Framework, beginning
with a discussion of what Spring is and giving an overview of its major pieces. Then
we’ll delve into the underlying principles behind the Spring Framework, and talk
about inversion of control and how it relates to dependency injection. Finally, we’ll
dive into a small example that shows how to use the Spring Core Container hands-
on. Let’s get started.

This chapter covers
■ Major functional areas of the Spring Framework
■ Flexible configuration using dependency injection
■ Wiring beans using XML
■ Autowiring and component scanning using

annotations
1

www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER 1 Introducing Spring: the dependency injection container
1.1 What is Spring, and why use it?
The Spring Framework is an open source application framework created to simplify
the development of enterprise Java software. The framework achieves this goal by pro-
viding developers with a component model and a set of simplified and consistent APIs
that effectively insulate developers from the complexity and error-prone boilerplate
code required to create complex applications.

 Over the last nine years, the breadth and depth of the framework has increased sig-
nificantly, yet it has remained simple to learn and easy to use. The framework has
evolved into roughly 20 modules that can be grouped into 6 basic functional areas. As
shown in figure 1.1, these functional areas are Data Access/Integration, Web, Aspect-
Oriented Programming (AOP), Instrumentation, the Core Container, and Test.

 This modularity gives developers the freedom to choose which parts of the frame-
work to use in their applications without the need to include the entire framework.
Let’s begin our tour by looking at each of these functional areas.

1.1.1 The major pieces of the framework

In the paragraphs that follow, we’ll give you a brief introduction to each of Spring’s six
basic functional areas. We’ll take a deeper dive into each of these topics as we work
through individual recipes later in the book.

THE CORE SPRING CONTAINER

We’ll further dissect what dependency injection (DI) is in section 1.2. For now, it’s
enough to know that the DI container is at the core of the Spring Framework and
provides the fundamental capabilities on which all the other modules are built. The

Figure 1.1 A high-level block diagram illustrating Spring’s six basic functional areas
www.it-ebooks.info

http://www.it-ebooks.info/

3What is Spring, and why use it?
container provides the facility for decoupling the creation, configuration, and man-
agement of beans (discussed later) from your application code.

ASPECT-ORIENTED PROGRAMMING (AOP)

The Spring Framework also supports aspect-oriented programming with both a sim-
pler approach called Spring AOP and the more powerful AspectJ approach. AOP,
which is covered in more detail later, aims to encapsulate cross-cutting concerns
(security, logging, transaction management, and so on) into aspects to retain modu-
larity and reusability. These concerns often can’t be cleanly decomposed from the rest
of the system and can result in code duplication, significant dependencies between
systems, or both. Like the DI container, AOP support is both independently useful to
developers and used to implement different parts of framework functionality. For
example, Spring implements its support for declarative transaction management
through AOP because transactions are a cross-cutting concern.

DATA ACCESS/INTEGRATION

The Data Access/Integration module provides support for the Java Database Connec-
tivity API (JDBC), object-relational mapping (ORM), Object/XML mapping (OXM),
Java Message Service (JMS), and transactional support.

 The JDBC module provides an abstraction layer that relieves developers from hav-
ing to write tedious and error-prone boilerplate code by automatically managing data-
base connections and connection pools, and by mapping vendor-specific errors into a
uniform exception hierarchy. It also makes it easy to map java.sql.ResultSets to
lists of domain objects and execute stored procedures.

 If you prefer to use ORM instead of straight JDBC for database access code, you’re
in luck. The ORM module supports the best and most popular ORMs available, includ-
ing Hibernate, iBATIS, Java Data Objects (JDO), and the Java Persistence API (JPA).

The OXM module provides an abstraction layer that offers simplified and consistent
support for popular Object/XML mapping tools such as Castor, the Java Architecture
for XML Binding (JAXB), JiBX, XMLBeans, and XStream.

 The JMS module provides simplified APIs for producing and consuming messages.
Finally, the Transaction module provides support for both programmatic and declara-
tive transaction management.

WEB

Spring’s Web module provides common web infrastructure code for integrating Spring
into web applications, multipart file upload, and web-based remoting capabilities. In

A quick note about iBATIS
Apache iBATIS was retired in 2010 and has been superseded by MyBatis (myba-
tis.org). Although iBATIS 2 has been supported since Spring 2, due to release timing
issues, Spring 3 doesn’t yet include official support for it. See the MyBatis-Spring
module at www.mybatis.org/spring.
www.it-ebooks.info

www.mybatis.org/spring
http://www.it-ebooks.info/

4 CHAPTER 1 Introducing Spring: the dependency injection container
addition to providing its own servlet- or portlet-based Model-View-Controller (MVC)
framework, this module integrates with popular web-development frameworks and
technologies like Struts, JavaServer Faces (JSF), Velocity, FreeMarker, and JavaServer
Pages (JSP).

TEST

Last but not least in the framework stack is Spring’s testing support. This module pro-
vides support for using both the JUnit and TestNG frameworks.

 Now that we’ve provided a high-level overview of the Spring Framework, let’s dis-
cuss the benefits of using the framework.

1.1.2 Why use it?

You may have worked with or even developed other frameworks or APIs that handle one
or more of the Spring Framework’s concerns. Why would you stop to learn something
that requires a fairly substantial time investment? In addition to providing you with a
component model and a simplified and consistent set of APIs that effectively insulate
developers from complexity and error-prone boilerplate code, here are other reasons:

■ Quality—From the overall design of the modules, packages, class structures,
and APIs to the implementation and test coverage of the source code, the
Spring Framework is a great example of high-quality open source software.

■ Modularity—As we mentioned earlier, the framework has evolved into roughly 20
modules, giving developers the freedom to choose which parts of the framework
to use in their applications without the need to include the entire framework.

■ Promotes best practices—Spring’s plain old Java object (POJO)-based program-
ming model promotes decoupled component models, unit testing, and other
best practices.

■ Modest learning curve—Due to the consistency and simplicity of the APIs, Spring
isn’t hard to learn. As we make our way through the framework, you’ll see that com-
mon patterns emerge. Plus, hundreds of resources online and in print are at your
disposal, including message boards where the core developers often participate.

■ Popularity—As evidenced by myriad publications, websites, and job postings, the
Spring Framework is almost ubiquitous.

For an excellent print reference that will certainly be of aid during your journey with this
book, check out Craig Walls’ Spring in Action, 3rd Edition (Manning Publications, 2011).

 Spring offers a lot, and it takes time to understand and appreciate the land-
scape. But rest assured that the effort is well worth it. By learning Spring and using it
to solve problems, you’ll see how to bring together disparate technologies and incor-
porate them into cohesive applications. You’ll keep hardcoded configuration param-
eters out of your classes and centralized in standard locations. You’ll design
interface-based dependencies between classes and better support changing require-
ments. And ultimately, you’ll get more done with less effort and in less time because
the Spring Framework handles the plumbing while you focus on writing code to
solve business problems.
www.it-ebooks.info

http://www.it-ebooks.info/

5Flexible configuration via dependency injection
Now that you have a general idea of what the framework offers, let’s take a deeper dive
into the capabilities of the Core Container shown in figure 1.2. Spring’s Core Con-
tainer provides the inversion of control (IoC) and DI capabilities on which all the
other modules are built.

1.2 Flexible configuration via dependency injection
IoC became popular some years back through DI containers like Spring. Although
that might be eons ago in internet time, it’s still a relatively new and unfamiliar con-
cept for many developers. In this section, we’ll explain what IoC is and examine the
forces that produced it. You’ll even get your hands a little dirty and see how to config-
ure Spring’s container.

1.2.1 Configuring dependencies the old way

Consider the relationship between a data access object (DAO) and the DataSource it
relies on in the following code sample. For the DAO to work with the DataSource, you
need to create and initialize the DataSource with various connection parameters
within the JdbcAccountDao class:

// Source project: sip01, branch: 01 (Maven Project)
package com.springinpractice.ch01.dao.jdbc;

import org.apache.commons.dbcp.BasicDataSource;
import com.springinpractice.ch01.dao.AccountDao;

public class JdbcAccountDao implements AccountDao {
 private BasicDataSource dataSource;

 public JdbcAccountDao() {
 dataSource = new BasicDataSource();
 dataSource.setDriverClassName("com.mysql.jdbc.Driver");
 dataSource.setUrl("jdbc:mysql://localhost:3306/springbook" +
 "?autoReconnect=true");
 dataSource.setUsername("root");
 dataSource.setPassword("");
 }

}

In this code sample, JdbcAccountDao specifies a dependency on a JDBC DataSource.
Coding to interfaces is certainly a best practice. As shown in figure 1.3, the code also
specifically creates a dependency on a BasicDataSource, a specific DataSource imple-
mentation from the Apache Commons Database Connection Pool (DBCP) project.

Figure 1.2 The Core Container
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Introducing Spring: the dependency injection container
An obvious problem here is that the JdbcAccountDao class is intimately aware of the
DataSource’s implementation, creation, and configuration. Another potential prob-
lem is that it’s likely that many DAOs may need to share this connection information.
As a result of the current design, changing the DataSource’s implementation or con-
figuration may involve multiple code changes, recompilations, and redeployments
every time the DataSource implementation or configuration changes.

 You could externalize the connection parameters with java.util.Properties, and
that would certainly be an improvement. But a more subtle problem would remain. In
the previous code sample, the class is specifying and driving the dependencies. Let’s
look at how you can invert this control by injecting your dependencies instead.

1.2.2 Dependency injection

One way to eliminate the concrete dependency on BasicDataSource would be to
specify the dependency externally and have that dependency injected into the
JdbcAccountDao as a DataSource. This gives you a lot of flexibility because you can
easily change the configuration in one place. If you want to proxy the DataSource
before injecting it, you can do that. In unit-testing scenarios, if you want to replace
the DataSource with a mock, you can do that too. Again, DI provides a lot of flexibil-
ity that you don’t have when the dependency’s construction is hardwired into the
components relying on the dependency.

 To make DI work, you need to create the DataSource externally and then either
construct the DAO with it or set it on the DAO with a setter method, as shown here:

// Source project: sip01, branch: 02 (Maven Project)
package com.springinpractice.ch01.dao.jdbc;

import javax.sql.DataSource;
import com.springinpractice.ch01.dao.AccountDao;

public class JdbcAccountDao implements AccountDao {

 private DataSource dataSource;

 public JdbcAccountDao() {}

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

}

Notice that the DAO no longer has a hardwired dependency on BasicDatasource. As
a result, you’ll notice that the BasicDataSource import has been removed. Because the
dependency is provided via a setter, it’s no longer necessary to provide a constructor to

Figure 1.3 JdbcAccountDao specifies a dependency on Apache DBCP’s
BasicDataSource, which is a concrete DataSource implementation.
www.it-ebooks.info

http://www.it-ebooks.info/

7Flexible configuration via dependency injection
initialize the DataSource explicitly. Another approach to refactoring this class would
have been to provide a DataSource implementation as a constructor argument instead
of using a setter. Either approach represents an improvement. But you might argue rea-
sonably that you’ve succeeded only in pushing the construction of this dependency
elsewhere in the code. Look at the service that creates the DAO:

//Source project: sip01, branch: 02 (Maven Project)
package com.springinpractice.ch01.service;
import java.util.Properties;
import java.io.InputStream;
import org.apache.commons.dbcp.BasicDataSource;
import com.springinpractice.ch01.dao.jdbc.JdbcAccountDao;

public class AccountService {
 private JdbcAccountDao accountDao;

 public AccountService() {
 try {
 Properties props = new Properties();
 InputStream inputStream = this.getClass().getClassLoader()
 .getResourceAsStream("dataSource.properties");
 props.load(inputStream);

 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName(
 props.getProperty("driverClassName"));
 dataSource.setUrl(props.getProperty("url"));
 dataSource.setUsername(props.getProperty("username"));
 dataSource.setPassword(props.getProperty("password"));

 accountDao = new JdbcAccountDao();
 accountDao.setDataSource(dataSource);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
}

In one respect, you’ve made things worse: you’ve introduced dependencies between
AccountService and BasicDataSource—a relationship that is clearly undesirable.
You also have a dependency between AccountService and JdbcAccountDao (a con-
crete class), so you’re still in the same boat you started in (see figure 1.4)! It’s easy to
see how the entire dependency graph for a particular system could become compli-
cated and inflexible with nodes that are hard to swap out.

Figure 1.4 Now
JdbcAccountDao has the
desired interface dependency
on DataSource, but
AccountService has de-
pendencies on two concrete
classes.
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Introducing Spring: the dependency injection container
That doesn’t mean DI was a failed experiment. It’s taking you in the right direction.
To clean things up, you need to revise what is doing the injecting.

1.2.3 Inversion of control

You can move the DI away from client code and over to Spring. In this scenario, client
code doesn’t request or look up an AccountService. Instead, the AccountService is
transparently injected into client code when the client code is initialized. The follow-
ing code shows AccountService with a strict interface dependency on AccountDao:

//Source project: sip01, branch: 03 (Maven Project)
package com.springinpractice.ch01.service;
import com.springinpractice.ch01.dao.AccountDao;

public class AccountService {
 private AccountDao accountDao;

 public AccountService() {}

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

}

How do you specify the dependency chain? With Spring, one option is to use XML to
assemble it declaratively, as in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 03 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url"
 value="jdbc:mysql://localhost:3306/springbook?autoReconnect=true"/>
 <property name="username" value="someusername"/>
 <property name="password" value="somepassword"/>
 </bean>

 <bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
 </bean>
</beans>

Listing 1.1 Spring configuration file that specifies object relationships

DataSource
configured with

parameters B

DataSource injected
into JdbcAccountDaoC

JdbcAccountDao
injected into
AccountServiceD
www.it-ebooks.info

http://www.it-ebooks.info/

9A simple bean configuration example
If you’re new to Spring, this configuration might be unfamiliar, but its meaning
should be clear enough. At B you declare the DataSource and set it up with its con-
figuration parameters. At C you declare the JdbcAccountDao and inject it with the
DataSource. Similarly, you inject the JdbcAccountDao into the AccountService at D.
The end result is that the service now carries the entire dependency chain, and the
configuration is entirely transparent to the service. The cleaned up, new relationship
is shown in the class diagram in figure 1.5.

 As you can see, the class structure has taken on more of a layered approach. In
contrast to figure 1.4, notice that the layers above are dependent only on the layers
below, and all the dependencies are expressed as interfaces. This simplifies the depen-
dency graph and makes it easier to swap out individual nodes. In the next section,
we’ll use an example to illustrate how you can use Spring to manage and inject the
concrete implementations of your dependencies.

1.3 A simple bean configuration example
With the what and the why past you, you’ll get your hands dirty and try Spring Frame-
work DI with a small sample application. The application won’t be anything serious—
just enough to learn the basics of expressing and managing dependencies using
Spring. You’ll build a domain object, a DAO that reads from a CSV file, and a service,
and then you’ll wire everything up.

 The code will get a list of delinquent accounts for an imaginary utility company.
You’ll define a delinquent account as one with an unpaid balance that hasn’t been
credited for 30 days or more. The service will have the responsibility of finding out
which accounts are delinquent, but it will need to delegate to the DAO to get a list of
candidate accounts. Before you create the DAO, you’ll create the domain object it
works with.

1.3.1 Creating the account domain object

The toy Account domain object in the following listing has only the fields and meth-
ods you need to demonstrate DI through other parts of the sample application.

// Source project: sip01, branch: 04 (Maven Project)
package com.springinpractice.ch01.model;

Listing 1.2 Basic account bean, Account.java

Figure 1.5 Now the dependencies
are interface-based and the concrete
classes are configured transparently
through Spring.
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Introducing Spring: the dependency injection container
import java.math.BigDecimal;
import java.util.Date;

public class Account {

 private String accountNo;
 private BigDecimal balance;
 private Date lastPaidOn;

 public Account(String accountNo, BigDecimal balance, Date lastPaidOn) {
 this.accountNo = accountNo;
 this.balance = balance;
 this.lastPaidOn = lastPaidOn;
 }

 public String getAccountNo() {
 return accountNo;
 }

 public BigDecimal getBalance() {
 return balance;
 }

 public Date getLastPaidOn() {
 return lastPaidOn;
 }
}

In a real application, accounts wouldn’t appear out of thin air. You’d have databases,
files, and other systems that you’d store and read them from. For the example, you’ll
create a DAO that parses a comma-separated values (CSV) file with data like this:

100,0,09012008
200,100,08012008
300,-100,09012008

In the CSV file, accounts.csv, the first field is the account number, the second is the
balance (positive or negative), and the third is the date the account was last credited
in MMDDYYYY format. As mentioned in section 1.2, interface-based dependencies
keep things flexible by allowing pluggable, varying implementations. Before you cre-
ate the DAO responsible for consuming this file, let’s create an interface for it.

1.3.2 Creating the account DAO interface and implementation

The following interface has only a single read operation to get all accounts from what-
ever back-end store a particular implementation would read against. We’re leaving out
the rest of the CRUD operations because you don’t need them for this example:

// Source project: sip01, branch: 04 (Maven Project)
package com.springinpractice.ch01.dao;

import java.util.List;

import com.springinpractice.ch01.model.Account;

public interface AccountDao {

 List<Account> findAll() throws Exception;

}

www.it-ebooks.info

http://www.it-ebooks.info/

11A simple bean configuration example
Now you’ll create the concrete AccountDao implementation that reads Accounts from
a CSV file. Assume that the name of the CSV file might change over time; therefore,
you won’t hardcode it. It would be perfectly legitimate to externalize it in a properties
file and use java.util.Properties to read it in; but instead of doing that, you’ll con-
figure it with Spring. Here’s the code.

// Source project: sip01, branch: 04 (Maven Project)
package com.springinpractice.ch01.dao.csv;

import java.io.BufferedReader;
import java.io.FileReader;
import java.math.BigDecimal;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import org.springframework.core.io.Resource;
import com.springinpractice.ch01.dao.AccountDao;
import com.springinpractice.ch01.model.Account;

public class CsvAccountDao implements AccountDao {

 private Resource csvResource;

 public void setCsvResource(Resource csvFile) {
 this.csvResource = csvFile;
 }

 public List<Account> findAll() throws Exception {
 List<Account> results = new ArrayList<Account>();

 DateFormat fmt = new SimpleDateFormat("MMddyyyy");
 BufferedReader br = new BufferedReader(
 new FileReader(csvResource.getFile()));
 String line;
 while ((line = br.readLine()) != null) {
 String[] fields = line.split(",");

 String accountNo = fields[0];
 BigDecimal balance = new BigDecimal(fields[1]);
 Date lastPaidOn = fmt.parse(fields[2]);
 Account account =
 new Account(accountNo, balance, lastPaidOn);
 results.add(account);
 }
 br.close();
 return results;
 }
}

The CsvAccountDao declares a csvFile field where Spring populates B. For Spring
to set it for you, you define the required public setter at C. The implementation of
findAll() at D rolls through the lines in a file, tokenizing and parsing them into

Listing 1.3 Reading accounts from a CSV file, CsvAccountDao.java

CSV file path Spring
will configure

B

Required for
setter injectionC

Implements
AccountDao
interfaceD
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Introducing Spring: the dependency injection container

ao
on

perty
your Account domain objects, which are collected in an ArrayList and returned to
calling code.1

1.3.3 Configuring CsvAccountDao with Spring

You have enough code in place to bring Spring into the picture. There are different
ways to configure objects and their dependencies with Spring, and the most popular
are XML and annotations. You’ll use XML in this section; we’ll build on these concepts
when we introduce annotation-style configuration in section 1.5. The XML file in the
following listing shows how to define and configure a bean using Spring.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 04 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="accountDao"
 class="com.springinpractice.ch01.dao.csv.CsvAccountDao">
 <property name="csvResource" value="accounts.csv"/>
 </bean>

 <bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
 </bean>
</beans>

By convention, developers usually name the Spring configuration file application-
Context.xml, but it can be named anything. In real-world applications, it usually
makes sense to break out the Spring configuration across multiple files, especially
when the applications are large with many bean definitions. When you do that, the
configuration is often broken out by architectural, rather than functional, slice. You
might create configuration files dedicated to DAOs, services, servlets, and security. As

1 The method of configuration used here is called setter injection. Spring provides other ways to configure beans
and wire dependencies, including constructor injection and factory-method injection. In this book, we mostly use
setter injection because it’s the most popular approach. For the pros and cons of the different injection strat-
egies, see the “Constructor versus Setter Injection” section of Martin Fowler’s “Inversion of Control Contain-
ers and the Dependency Injection pattern,” January 2004, http://mng.bz/xvk5.

Listing 1.4 Spring configuration file, applicationContext.xml

Omission of error checking and assertions
To keep the examples clear, we’ve omitted error checking that you would expect to
see in production-ready code. For example, in the previous sample, production-ready
code would assert that the String passed in for the location of the csvFile was not
null and that the file existed at the path specified.

Spring beans
schema

B

CsvAccountD
bean definitiC

Configured
csvResource proD
www.it-ebooks.info

http://martinfowler.com/articles/injection.html#ConstructorVersusSetterInjection
http://www.it-ebooks.info/

13A simple bean configuration example
you progress through this book, you’ll indeed do this. Because your needs are mini-
mal to start, a single file will suffice.

 Spring ships with different schemas for configuring its different pieces of function-
ality, such as AOP and transaction management. For now, you declare the beans
schema at B, which is the most fundamental of the schemas in that the functionality
that the other schemas provide is generally expressible (albeit in a more verbose fash-
ion) as explicit bean definitions. The beans schema provides everything you need to
define beans of all sorts, configure them, and wire them together.

 You define your first bean at C. The bean element has two attributes: id and
class. You use the ID to support dependencies between beans. The class attribute is
set to the fully qualified name of the CsvAccountDao. Spring uses reflection to instan-
tiate the class as you request it through the container (or request other classes that
depend on it). At D, you declare a property element for the csvResource property.
Again, Spring uses reflection to set this to the value in the value attribute. If you’re
following the code examples, you’ll find this file in the src/main/resources direc-
tory. Spring relies on the JavaBeans programming model in order to set the property,
so that’s why you declare the setter in the Account domain object.

1.3.4 Creating the account service that finds delinquent accounts

With the domain object and DAO out of the way, you can build the service that has the
responsibility of scanning all accounts and finding delinquent ones. The logic in the
next listing is fairly straightforward.

//Source project: sip01, branch: 04 (Maven Project)
package com.springinpractice.ch01.service;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.List;

import com.springinpractice.ch01.dao.AccountDao;
import com.springinpractice.ch01.model.Account;

public class AccountService {
 private AccountDao accountDao;

 public AccountService() {}

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }

 public List<Account> findDeliquentAccounts() throws Exception {
 List<Account> delinquentAccounts = new ArrayList<Account>();
 List<Account> accounts = accountDao.findAll();

 Date thirtyDaysAgo = daysAgo(30);

Listing 1.5 AccountService.java: a service responsible for finding delinquent accounts

AccountDao that
Spring will resolve

B

Setter Spring
needs for injection

C

Finds delinquent
accounts D
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Introducing Spring: the dependency injection container
 for (Account account : accounts) {
 boolean owesMoney = account.getBalance()
 .compareTo(BigDecimal.ZERO) > 0;
 boolean thirtyDaysLate = account.getLastPaidOn()
 .compareTo(thirtyDaysAgo) <= 0;

 if (owesMoney && thirtyDaysLate) {
 delinquentAccounts.add(account);
 }
 }
 return delinquentAccounts;
 }

 private static Date daysAgo(int days) {
 GregorianCalendar gc = new GregorianCalendar();
 gc.add(Calendar.DATE, -days);
 return gc.getTime();
 }

}

The AccountDao dependency is declared by interface at B. The required setter
method is at C. At D, you iterate through all the Accounts that the DAO returns and
test whether they’re delinquent. If they are, you add them to a list and return them.

1.3.5 Wiring up the AccountService to CsvAccountDao

Now, let’s wire up the AccountService with CsvAccountDao. All you need to do is add
a simple bean definition to the applicationContext.xml configuration file as shown
next.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 04 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="accountDao"
 class="com.springinpractice.ch01.dao.csv.CsvAccountDao">
 <property name="csvResource" value="accounts.csv"/>
 </bean>

 <bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
 </bean>
</beans>

Like the CsvAccountDao you defined in listing 1.4, you give the AccountService bean
definition id and class attributes. The subtle but important difference is the way
you’re injecting the AccountDao into the service. Here, you’re using the ref instead of
the value attribute. The ref attribute is used for injecting other beans you’ve defined

Listing 1.6 Completed Spring configuration file

AccountService
bean definition

Injection of
AccountDao
www.it-ebooks.info

http://www.it-ebooks.info/

15A simple bean configuration example

ner

ice
er
with Spring. The value attribute injects simple primitive and value object properties.
Figure 1.6 shows the class diagram for the objects.

 All you need to do is create a console application to run the code. Based on the
three accounts you’ve defined, the only one that is delinquent is 200. The following
code prints the delinquent account number.

// Source project: sip01, branch: 04 (Maven Project)
package com.springinpractice.ch01;

import java.util.List;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import com.springinpractice.ch01.model.Account;
import com.springinpractice.ch01.service.AccountService;

public class ConsoleApp {
 public static void main(String[] args) throws Exception {
 ApplicationContext appCtx =
 new ClassPathXmlApplicationContext("applicationContext.xml");
 AccountService accountService =
 (AccountService)appCtx.getBean("accountService");
 List<Account> delinquentAccounts = accountService
 .findDeliquentAccounts();

 for (Account a : delinquentAccounts) {
 System.out.println(a.getAccountNo());
 }
 }
}

You create an instance of ClassPathXmlApplicationContext at B and pass in the
classpath-relative location of the configuration file. With this class, you can get a refer-
ence to any bean you define in the Spring configuration file by the ID you defined in
the bean’s definition. The ApplicationContext interface and its implementations are
the gateway into the beans through Spring. They essentially make up a sophisticated
implementation of the factory pattern. In order for the factory to instantiate beans,
the beans must have a no-argument constructor. (The implicit, default no-argument
constructor is fine.) Spring provides support for instantiating beans with constructor

Listing 1.7 ConsoleApp.java, which retrieves the AccountService from Spring

Figure 1.6 AccountService has
an interface-based association with
AccountDao, and both depend on
Account.

Dependency
injection contai

B

Retrieves
AccountServ
from containC
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Introducing Spring: the dependency injection container
arguments, which we’ll talk about in the next section. At C, you get a reference to the
AccountService you’ve defined along with its AccountDao dependency and the
AccountDao’s configured csvFile property in one fell swoop.

 In this section, you built a simple application with the Spring Framework. It’s easy
to see that a full-blown application with many DAOs, services, and other components
configured and wired together through Spring would be more cleanly separated and
easier to manage than one that wasn’t.

 Now that we’ve piqued your interest with the basics, in the next section we’ll take a
more detailed look at the framework’s DI capabilities. After examining the beans
namespace, we’ll look at different ways of injecting dependencies, configuring and
externalizing bean properties, bean scopes, and a little syntax sugar to make your con-
figuration more clear and concise.

1.4 Wiring beans using XML
As you’ve seen, a Spring bean represents a POJO component. Because the other five
functional areas of the Spring Framework (Data Access/Integration, Web, AOP, Instru-
mentation, and Test) build on the capabilities offered by the Core Container, learning
how to wire beans is paramount to understanding and using the Spring Framework.
In this section, we’ll look at using XML to configure Spring. In the following sections,
we’ll discuss two of Spring’s XML namespaces that we’ll be using throughout this
book: the core beans namespace and the handy p namespace.

1.4.1 An overview of the beans namespace

The beans namespace is the most fundamental and deals with DI; it provides a way to
define beans and wire dependency relationships between them. To create a configura-
tion file that uses the beans namespace, you create an XML document and reference
the schema:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">
</beans>

At this point, all you have is an empty configuration. You can add object definitions
with the inner bean element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService"/>
</beans>
www.it-ebooks.info

http://www.it-ebooks.info/

17Wiring beans using XML
Here you define an AccountService by creating a bean element with id and class
attributes. The id is a convenient handle to the bean. As described in section 1.3,
Spring uses reflection to create a new instance of the class specified as you fetch
instances by ID programmatically through the ApplicationContext interface.

WIRING BEANS TOGETHER

You could have constructed the AccountService using the new keyword, but the cre-
ation of service layer objects is rarely so straightforward. They often depend on DAOs,
mail senders, SOAP proxies, and whatnot. You could instantiate each of those depen-
dencies programmatically in the AccountService constructor (or through static ini-
tialization), but that leads to hard dependencies and cascading changes as they’re
swapped out. Additionally, you could create dependencies externally and set them on
the AccountService via setter methods or constructor arguments. Doing so would
eliminate the hard internal dependencies (as long as they were declared in the
AccountService by interface), but you’d have duplicated initialization code every-
where. Here’s how you create a DAO and wire it up to your AccountService the
Spring way:

<bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"/>

<bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
</bean>

You’ve injected the AccountService with a JdbcAccountDao by declaring a property
element for the dependency. The property element has a name attribute, which is the
name of the property you want to set; and it has a ref attribute that’s set to the id of
the bean you want to inject.

 Other services and classes can depend on the accountDao bean. If its implementa-
tion changes, say from a JDBC one to a Hibernate one, you just need to update the
class attribute in its configuration instead of going to each class with the dependency
and swapping it out manually. Spring supports this type of wiring and can easily work
with complex object graphs that are multiple levels deep.

CONSTRUCTOR AND SETTER INJECTION

Just as AccountService needs a no-argument constructor so Spring can use reflection
to instantiate it, it also needs to have a setAccountDao() setter method that corre-
sponds to the accountDao property:

public class AccountService {

 private AccountDao accountDao;

 public void setAccountDao(AccountDao accountDao) {
 this.accountDao = accountDao;
 }
 //...
}

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Introducing Spring: the dependency injection container
This type of injection is called setter injection. But, as mentioned previously, Spring lets
you instantiate objects with constructor arguments, too. You can nix the setter method
and declare a constructor instead:

public AccountService(AccountDao accountDao) {
 this.accountDao = accountDao;
}

In Spring, you resolve the dependency like this:

<bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <constructor-arg ref="accountDao"/>
</bean>

As you’ve probably guessed, this is called constructor injection. We mostly use setter
injection in this book.

CONFIGURING SIMPLE BEAN PROPERTIES

The JdbcAccountDao you configured is likely to have additional initialization require-
ments. In the example, you’ll register a JDBC driver and set up additional connection
information. In the following code sample, you configure a BasicDataSource with
simple properties using the property element instead of the ref attribute:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url"
 value="jdbc:mysql://localhost:3306/springbook?autoReconnect=true"/>
 <property name="username" value="someusername"/>
 <property name="password" value="somepassword"/>
</bean>

<bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao">
 <property name="dataSource" ref="dataSource"/>
</bean>

Of course, in a production system, you’d likely use a javax.sql.DataSource with con-
nection pooling. (We’ll show you how to do that in chapter 2.) Here you’re setting
simple String properties on the BasicDataSource. But what if the properties were
numeric or java.util.Date properties? In that case, Spring would attempt to convert
the String specified in the value attribute to its appropriate type with a
java.beans.PropertyEditor implementation. Spring ships with quite a few of such
implementations and allows you to define your own if you need to.2

EXTERNALIZING SIMPLE PROPERTIES WITH A PROPERTYPLACEHOLDERCONFIGURER

In one sense, you could say you’ve done a good thing by configuring the JdbcAccount-
Dao properties externally to the class. Changing configuration parameters won’t require
any recompiling of code; you can just update the XML. Also, having a centralized con-
figuration makes it easy to change things in one place (or a few logically related places

2 You can read more about the built-in PropertyEditors at http://mng.bz/7CO9.
www.it-ebooks.info

http://mng.bz/7CO9
http://www.it-ebooks.info/

19Wiring beans using XML

er
if you’re using multiple configuration files). But in most environments, you don’t hook
straight up to a production database server and start cranking out and running untested
code. You have one or more QA environments. Luckily, Spring allows you to handle sce-
narios like this with an API class: PropertyPlaceholderConfigurer.

 In order to use PropertyPlaceholderConfigurer, you first create a properties file
(call it springbook.properties):

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql://localhost:3306/springbook?autoReconnect=true
dataSource.username=root
dataSource.password=secret

Then, you define the PropertyPlaceholderConfigurer bean in the Spring configura-
tion. Finally, as you define beans, you use the placeholder constructs ${} when specify-
ing their property values, so the container can resolve them at runtime.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 05 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean class="org.springframework.beans.factory.config.

➥ PropertyPlaceholderConfigurer">
 <property name="location" value="springbook.properties"/>
 </bean>

 <bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
 </bean>

 <bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName"
 value="${dataSource.driverClassName}"/>
 <property name="url" value="${dataSource.url}"/>
 <property name="username" value="${dataSource.username}"/>
 <property name="password" value="${dataSource.password}"/>
 </bean>

</beans>

The PropertyPlaceholderConfigurer B doesn’t have an id attribute. That’s because
the Spring container detects its presence automatically and enables its functionality

Listing 1.8 Declaring a PropertyPlaceholderConfigurer to substitute properties

Declare Property-
PlaceholderConfigur

B

location uses Java system
environment variable C

Placeholders substituted
at runtime

D

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 Introducing Spring: the dependency injection container
for you. In the location property C of the PropertyPlaceholderConfigurer, the file
is located in the root of your classpath. If you’re following the code examples, the
springbook.properties file is located in the src/main/resources directory, which is
included in your classpath. You could also change the configuration at C to

<property name="location" value="file:${user.home}/springbook.properties"/>

In the previous configuration, you point to a file located in the home directory of what-
ever computer account is running your application through a Java system environment
variable. (Spring will attempt to substitute Java system environment variables in the
placeholders if they aren’t found in the properties files.) This is handy because server
admins can store sensitive information in these files, which developers may not need to
access. Also, this makes it easy for multiple developers to work on a project while point-
ing to their own databases. Figure 1.7 shows these scenarios in action. At D, you change
the hardcoded values over to substitution placeholders.

 At this point, you’re beginning to get a solid picture of how beans are configured
cleanly in Spring. Although there’s more than we can possibly hope to cover here,
let’s spend a little time going into depth about the important concept of bean scopes.

1.4.2 Bean scopes

When defining a bean with Spring, you can specify how you want instances created
and managed as they’re retrieved from the container. This is called the bean scope.
There are five such scopes: singleton, prototype, request, session, and global session.
Scope is configured with the scope attribute:

Figure 1.7 Using external properties files to manage configuration for separate environments
www.it-ebooks.info

http://www.it-ebooks.info/

21Wiring beans using XML
<bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"
 scope="singleton|prototype|request|session|globalSession"/>

SINGLETON SCOPE

Singleton scope is the default scope for beans declared in Spring. These singletons are
different than Java classes that implement the singleton design pattern. Declaring a sin-
gleton bean in Spring ensures that only one instance exists on a per-container basis,
whereas an instance of a class that implements the singleton design pattern will be the
only one available on a per-classloader basis.

 As you request singleton beans from
the container, Spring will create
instances and cache them if they haven’t
been created (see figure 1.8); otherwise,
Spring will return already-existing
instances from its cache. Therefore, sin-
gleton beans in Spring often don’t main-
tain state because they’re usually shared
among multiple threads (such as in serv-
let environments). For example, single-
ton services often have references to
singleton DAOs, and the DAOs might
have references to Hibernate SessionFactorys, which are thread-safe. As long as
resources are thread-safe—meaning they’re synchronized, immutable, have no state,
or have fields where any of the previous criteria are strictly met—you can safely declare
them with singleton scope to eliminate the overhead of creating them each time
they’re requested.

PROTOTYPE SCOPE

Prototype-scoped beans are created every time they’re requested via ApplicationCon-
text’s getBean() method, or each time they’re injected into other beans. Let’s con-
sider the second case. The following code injects a bean with prototype scope into
another bean with default singleton scope. (Note that you generally wouldn’t declare
a DAO with prototype scope because you design them for thread-safety. We’re using a
DAO to maintain consistency with previous examples.)

<bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"
 scope="prototype"/>

<bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService">
 <property name="accountDao" ref="accountDao"/>
</bean>

In this scenario, AccountService is created once and cached. During that time, Jdbc-
AccountDao is created and injected, but never cached. Subsequent requests for
accountService, by way of ApplicationContext’s getBean() method or through

Figure 1.8 Singleton-scoped beans are shared
among dependent class instances.
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 Introducing Spring: the dependency injection container
injection, will yield the sole, cached AccountService instance along with its Jdbc-
AccountDao reference. A singleton referencing a prototype makes the prototype effec-
tively singleton in scope. But if you were to simultaneously inject JdbcAccountDao into
another bean with singleton scope, that bean would maintain a reference to a sepa-
rate instance. Figure 1.9 illustrates prototype scope.

 Prototype-scoped beans have differ-
ent lifecycle semantics than singleton-
scoped beans. Spring can manage the
complete lifecycle including creation
and destruction of singleton-scoped
beans, but it can only manage the cre-
ation (instantiation, configuration, and
decoration through dynamic proxying)
of prototype-scoped beans. It’s up to
the client code to clean up, release
resources, and otherwise manage the
lifecycle of prototype-scoped beans. In
this way, prototype beans are similar to
classes created with the new keyword in
Java, although it would be irregular to
substitute the former for the latter
unless there are complex initialization
requirements for stateful beans that Spring will make easier to manage.

REQUEST, SESSION, AND GLOBAL SESSION SCOPE

The last three scopes—request, session and global session—are useful only in the con-
text of web applications. It doesn’t matter what web framework you’re using; they
function identically across all of them.

 Request-scoped beans are created each time an HTTP request makes its way into a
servlet resource that is injected with one. Similar to request-scoped variables in serv-
lets, these beans are safe to change and work with because the servlet specification dic-
tates one thread per HTTP request.

 Session-scoped beans are confined to the scope of standard session-scoped vari-
ables. These, like request-scoped beans, are safe to modify and work with because
although their access isn’t restricted to the same, single thread, it’s restricted to one
thread at a time, which is tied to the current session of the client making the requests.

 Global session–scoped beans are applicable only in the context of portlet applica-
tions. Like session-scoped beans, they exist throughout an entire session, but they’re
shared among all the portlets in a complete portlet web application, whereas session-
scoped beans are created and managed for each individual portlet.

 There are a few prerequisites to employing beans with these scopes. First, if you’re
using a framework other than Spring Web MVC, you have to register a Request-
ContextListener in the servlet deployment descriptor (web.xml):

Figure 1.9 Prototype-scoped beans are instantiat-
ed every time one of their dependent classes is re-
trieved from the container. But if the dependent class
is singleton-scoped, subsequent retrievals of it will
return already-cached instances where the proto-
type-scoped dependency is effectively cached as
well (it isn’t reinstantiated).
www.it-ebooks.info

http://www.it-ebooks.info/

23Wiring beans using XML
<web-app>
 ...
 <listener>
 <listener-class>
 org.springframework.web.context.request.RequestContextListener
 </listener-class>
 </listener>
 ...
</web-app>

You can use RequestContextListener in Servlet containers that implement version 2.4
of the Servlet specification or greater. For 2.3 containers, a corresponding Request-
ContextFilter implementation is available. These listeners and filters enable the
required integration between Spring and whatever servlet container you’re using. Basi-
cally, Spring can intercept requests and decorate them with this scoping functionality.

 If you’re fetching beans with these scopes from an ApplicationContext, the
ApplicationContext implementation must be a web-aware one such as XmlWebAppli-
cationContext. Otherwise you’ll get an IllegalStateException complaining about
unknown bean scopes.

 We’ve spent a lot of time with the beans namespace. As indicated at the outset, this
chapter’s treatment isn’t comprehensive, and there’s quite a bit more to learn if you
decide to pursue a more in-depth study. At this point, let’s turn our attention to the p
namespace, whose mission is to make your XML configuration a little cleaner than you
can make it with the beans namespace alone.

1.4.3 The p namespace

The p namespace extends the beans namespace by providing an alternate property-
declaration syntax. Instead of configuring properties as XML elements as you do with
JdbcAccountDao, you can declare them as attributes on the bean element. As shown in
the following listing, properties are specified as attributes using the format p:[prop-
ertyName]="someValue".

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 06 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 ...

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${dataSource.driverClassName}"
 p:url="${dataSource.url}"

Listing 1.9 Declaring a PropertyPlaceholderConfigurer to substitute properties

Declare p
namespace

B

Declare properties
as bean element
attributes

C

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1 Introducing Spring: the dependency injection container
 p:username="${dataSource.username}"
 p:password="${dataSource.password}"/>

 ...
</beans>

The p namespace provides you with XML syntax sugar and makes the configuration
more concise. You declare the namespace at B but don’t put a corresponding schema
location. It’s easy to see why, when you look at the namespace usage at C. It doesn’t
define any elements or attributes. The p namespace isn’t defined in an XSD file like
the beans namespace. Instead, this functionality is implemented in Spring. In addi-
tion to specifying simple properties, you can also inject full-blown beans:

<bean
 id="accountService"
 class="com.springinpractice.ch01.service.AccountService"
 p:accountDao-ref="accountDao"/>

The only difference between this attribute declaration and the ones for simple prop-
erties is that you append -ref onto the end of this attribute.

 In the next section, we’ll introduce annotation-based configuration. In general, we
tend to favor the convenience and clarity of using annotations for configuring many
cross-cutting concerns (validation, persistence, transactions, security, web services,
request mappings, and so on), so we’ll use them quite a bit. (Subsection 1.5.4 dis-
cusses some of the debate regarding XML versus annotation-based configuration.)
The foregoing techniques are still useful for a couple of reasons: not everything that
Spring offers can be configured solely with annotations, and you may prefer to keep
your POJOs insulated from configuration concerns, which arguably is the whole point.

1.4.4 The c namespace

Spring 3.1 introduced the c namespace with two goals in mind. The first was to
improve on the existing constructor-injection syntax and clarify which constructor
arguments are being set. The second goal was to provide similar XML syntax sugar for
those who prefer constructor-based injection. It’s no longer necessary to provide a
number of constructor-arg elements for constructor injection.

 Let’s start with a very simple example. Look at the following fictional Person class.
Notice the two String arguments in its constructor:

public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

Prior to Spring 3.1, you had to configure this bean as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

Declare properties as
bean element attributes

C

www.it-ebooks.info

http://www.it-ebooks.info/

25Autowiring and component scanning using annotations
 <bean id="joshAsPerson" class="foo.Person">
 <constructor-arg value="Joshua"/>
 <constructor-arg value="White"/>
 </bean>

</beans>

Using Spring 3.1, you now have two options. Each is illustrated here:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="joshAsPerson" class="foo.Person"
 c:firstName="Joshua"
 c:lastName="White"/>

 <bean id="willieAsPerson" class="foo.Person"
 c:_0="Willie"
 c:_1="Wheeler"/>
</beans>

Similar to the p namespace, the c namespace provides XML syntax sugar and makes the
configuration clearer and more concise. You declare the required namespace at B in
the example configuration. Again, you don’t specify a corresponding schema location.
Just like the p namespace, the c namespace isn’t defined in an XSD file. The functionality
is implemented in Spring.

 At C you begin to see the benefit of the new syntax. Using the format c:[variable-
Name]="someValue", it becomes clear which value is being associated with which con-
structor argument. The ability to match names in the XML with the names of
constructor arguments is dependent on the code being compiled with debugging infor-
mation. If you’re using a third-party library where this may not be in your control, you
can use the format c:_[variableIndex]="someValue" shown at D. Instead of depend-
ing on the presence of variable names in the bytecode, this configuration style lets you
specify the index of each constructor argument. Just as with the p namespace, you can
append the same –ref suffix to reference other beans.

 In this section, we took a closer look at how to wire beans using XML and covered a
significant amount of ground. We examined the beans namespace and wiring beans
together. Then we looked at constructor and setter injection as well as configuring
and externalizing bean properties. Finally, we introduced bean scopes and demon-
strated how you can use the p and c namespaces. In the next section, you’ll see how
you can use Java annotations to define Spring components and their dependencies
without using XML.

1.5 Autowiring and component scanning using annotations
Now that we’ve shown you the basics of wiring beans together, we’ll introduce the anno-
tation-based configuration that was introduced in Spring 2.0 and further enhanced in

Declare c
namespace

B

Declare constructor arguments
using variable names

C

Declare constructor arguments
using variable order

D

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 Introducing Spring: the dependency injection container
Spring 2.5. The @Autowired annotation can be applied to constructors or fields and
allows you to wire relationships by type, without having to explicitly set them up in the
XML configuration. After that, we’ll explore the stereotype annotations that come with
the framework: @Component, @Repository, @Service, and @Controller. With
@Autowired and the stereotype annotations, you can enable component scanning for
dependencies using annotations and minimal XML configuration. We use autowiring
and component scanning often in this book because they’re much more compact
(although less explicit).3

1.5.1 @Autowired

In the previous section, you injected a DAO into a service using regular bean declara-
tions along with the p namespace:

<bean id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"/>

<bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService"
 p:accountDao-ref="accountDao"/>

With the @Autowired annotation, you can eliminate the p:accountDao-ref attribute.
First let’s look at the annotation, and then you’ll modify the XML configuration to
support it:

import org.springframework.beans.factory.annotation.Autowired;

... other imports omitted ...

public class AccountService {

 @Autowired
 private AccountDao accountDao;

 ...
}

THE CONTEXT NAMESPACE

The @Autowired annotation won’t do you any good until you modify the XML configu-
ration to use it. You have to reference the context schema in your configuration and
declare the annotation-config element as shown in the next listing. You’ve also
removed the setters from the accountDao and accountService beans.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 07 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 There is a tradeoff between using autowiring and not using it. Autowiring cleans up your configuration but
makes the dependencies between components less clear—some might say “magical.” The more complex your
configuration is, the less sense it makes to autowire components, although this point is certainly debatable.

Listing 1.10 Spring configuration modified to support annotations
www.it-ebooks.info

http://www.it-ebooks.info/

27Autowiring and component scanning using annotations

xt
a
nce
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-

➥ 3.1.xsd">

 <context:annotation-config/>

 <bean
 class="org.springframework.beans.factory.config.
 PropertyPlaceholderConfigurer"
 p:location="springbook.properties"/>

 <bean
 id="accountService"
 class="com.springinpractice.ch01.service.AccountService"/>

 <bean
 id="accountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"/>

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${dataSource.driverClassName}"
 p:url="${dataSource.url}"
 p:username="${dataSource.username}"
 p:password="${dataSource.password}"/>

</beans>

The context namespace elements deal with configuration issues. One of those is
whether the container should enable annotation-based configuration. You declare the
context schema at B. After that, turning on annotations is a simple matter of declar-
ing the annotation-config element C. You can see at D that the p:accountDao-ref
attribute is no longer necessary. Notice that you also split out the DataSource configu-
ration E into its own bean. As we’ll discuss in the next chapter, notice that the simple
String-based configuration parameters are still used to configure the properties of
this bean.

 If you were to run an application that used these beans and this configuration,
you’d see that Spring would inject the AccountService with the JdbcAccountDao.
When a field is @Autowired, Spring looks through the container for beans with a
matching type to inject. Because JdbcAccountDao implements the AccountDao inter-
face and AccountService declares an AccountDao field, Spring automatically wires the
dependency. What happens when there’s more than one bean with a matching type?

...

<bean id="jdbcAccountDao"
 class="com.springinpractice.ch01.dao.jdbc.JdbcAccountDao"/>
<bean id="hibernateAccountDao"

Conte
schem
refereB

Enables annotation-
based configurationC

Explicit injection
no longer required

D

String-based
configuration
parameters
still usedE
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 1 Introducing Spring: the dependency injection container
 class="com.springinpractice.ch01.dao.hibernate.HibernateAccountDao"/
<bean id="accountService"
 class="com.springinpractice.ch01.service.AccountService"/>

...

Spring complains with a BeanCreationException:

Exception in thread "main"
org.springframework.beans.factory.BeanCreationException: Error creating
bean with name 'accountService': Autowiring of fields failed; nested
exception is org.springframework.beans.factory.BeanCreationException: Could
not autowire field: private springinpractice.ch01.dao.AccountDao
springinpractice.ch01.service.AccountService.accountDao; nested exception
is org.springframework.beans.factory.NoSuchBeanDefinitionException: No
unique bean of type [springinpractice.ch01.dao.AccountDao] is defined:
expected single matching bean but found 2: [jdbcAccountDao,
hibernateAccountDao]

As an aside, if you declared the field as an AccountDao array or an AccountDao-typed
collection, Spring would populate the array or collection with both DAOs:

@Autowired
private AccountDao[] accountDaos;

Obviously, it wouldn’t make much sense to have an array of DAOs in most cases, but it’s
fairly common to have multiple implementations of an interface and a need to specify
one at a time. Fortunately, @Autowired permits you to specify the bean you want:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;

public class AccountService {

 @Autowired
 @Qualifier("hibernateAccountDao")
 private AccountDao accountDao;
}

You qualify by the id attribute of the bean declaration. This isn’t the only way to do it;
the context namespace supplies a qualifier element you could nest in the Account-
Dao declarations. The qualifier element would come in handy if you needed to keep
the id attributes as they are (maybe because you had a convention in place) and also
needed different qualification rules. For example, you could distinguish a regular
Hibernate-based DAO from a high-octane straight-JDBC DAO with hand-crafted SQL
that a DBA spent hours tuning for performance.

1.5.2 Stereotype annotations

So far, we’ve shown how to wire beans using @Autowired. But using @Autowired alone
handles only wiring. You still have to define the beans themselves so the container is
aware of them and can inject them for you. But with Spring’s stereotype annotations,
you can annotate classes and enable component scanning (which we’ll talk about
shortly), and Spring will automatically import the beans into the container so you
www.it-ebooks.info

http://www.it-ebooks.info/

29Autowiring and component scanning using annotations
don’t have to define them explicitly with XML. There are currently four core stereo-
type annotations: @Component, @Repository, @Service, and @Controller.

 The @Component annotation flags a bean so the component-scanning mechanism
can pick it up and pull it into the application context. If you wanted to get rid of the
JdbcAccountDao in the XML configuration, all you’d have to do is place @Component
above the class declaration:

import org.springframework.stereotype.Component;

@Component
public class JdbcAccountDao implements AccountDao {
 ...
}

Now you could completely wipe out the XML bean declaration, and the @Autowired
accountDao field in AccountService would be automatically populated with a Jdbc-
AccountDao instance. Although this is all well and good, there is another, more suit-
able annotation that provides additional benefits specifically for DAOs.

 The @Repository annotation is a specialization of the @Component annotation. It
not only imports the DAOs into the DI container, but it also makes the unchecked
exceptions that they throw eligible for translation into Spring DataAccessExceptions
(also unchecked).

 The @Service annotation is also a specialization of the component annotation. It
doesn’t currently provide any additional behavior over the @Component annotation,
but it’s a good idea to use @Service over @Component in service-layer classes because it
specifies intent better. Additionally, tool support and additional behavior might rely
on it in the future.

 Finally, the @Controller annotation marks a class as a Spring Web MVC controller.
It too is a @Component specialization, so beans marked with it are automatically imported
into the DI container. We haven’t talked much about Spring Web MVC yet, but we’ll be
using it heavily throughout this book. Basically, when you add the @Controller anno-
tation to a class, you can use another annotation, @RequestMapping, to map URLs to
instance methods of a class. That is, you can tell Spring that you want a certain method
invoked when a user agent requests one of your application’s URLs. We’ll get more into
that later.

1.5.3 Component scanning

Just as you need to declare context:annotation-config to turn on autowiring, you
need to declare context:component-scan to enable the importing of classes that are
annotated with the stereotypes. The following listing shows how this is done.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 08 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"

Listing 1.11 Spring configuration modified to support component scanning
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 1 Introducing Spring: the dependency injection container
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:component-scan base-package="com.springinpractice.ch01"/>

 …

</beans>

The context:component-scan element requires a base-package attribute, which, as
its name suggests, specifies a starting point for a recursive component search. Here
you set it to com.springinpractice.ch01. Also, the component-scan element can be
declared multiple times and pointed to multiple packages. It’s common to lay out
package structures by application layer (which is the convention we follow for the rec-
ipes in this book), so you might have packages for DAOs, services, and controllers. In
that case, you’d declare three component-scan elements, each with a base-package
attribute pointing to a different package.

 Also, when component-scan is declared, you no longer need to declare con-
text:annotation-config, because autowiring is implicitly enabled when component
scanning is enabled.

 Finally, you no longer need to declare the flagged beans in your configuration. When
component scanning kicks in at application startup, Spring will recurse over all the pack-
ages you’ve specified, look for stereotype-annotated classes, and import them into the
container. Their default bean names are their uncapitalized, nonqualified classnames.4

For example, springinpractice.ch01.dao.jdbc.JdbcAccountDao resolves to jdbc-
AccountDao. The resulting configuration file looks like this.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip01, branch: 08 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

4 If the default bean names aren’t suitable for your purposes, you can implement Spring’s
BeanNameGenerator interface to customize the naming strategy. Then, when declaring the component-
scan element, tack on the name-generator attribute and point it to the name of your custom
BeanNameGenerator. See Rod Johnson et al, “Naming autodetected components,” The Spring Framework
Reference Documentation, SpringSource, http://mng.bz/23kk.

Listing 1.12 Final Spring configuration using component scanning
www.it-ebooks.info

http://mng.bz/7CO9
http://www.it-ebooks.info/

31Autowiring and component scanning using annotations
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:component-scan base-package="com.springinpractice.ch01"/>

 <bean
 class="org.springframework.beans.factory.config.

➥ PropertyPlaceholderConfigurer"
 p:location="springbook.properties"/>

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${dataSource.driverClassName}"
 p:url="${dataSource.url}"
 p:username="${dataSource.username}"
 p:password="${dataSource.password}"/>

</beans>

Because you enable component scanning and use the @Service annotation in the
accountService and @Repository annotation in the accountDao, you no longer need
to specify their configuration in XML. Because you’re using a compiled class from a
third-party library (BasicDataSource), you’re unable to decorate its code with anno-
tations. As a result, you must still specify its configuration here.

1.5.4 XML vs. annotations: which is better?

Throughout the book, we’ll use annotation-based configuration liberally. Many of the
recipes use Hibernate, JPA, and Hibernate Validator annotations as well. This in part
reflects the general direction in which the Spring team is steering, and in part reflects
the fact that annotations are more convenient and usable in a wide variety of situations.

 The choice of whether to use XML or annotations for configuration is the subject
of much community debate. With XML the configuration is centralized into a set of
files, and each file is typically dedicated to a particular architectural concern or slice.
For example, if you had a Spring configuration file for DAOs and another for services
and you wanted to change something, you’d pull up the appropriate file, scan
through it, and make the change. It’s easy to locate the file, but depending how large
it is, it could be difficult to scan through. Additionally, keeping configuration in the
XML keeps POJOs clean, which is a big part of the argument for using Spring in the
first place. Distributing configuration makes it more challenging to replace one piece
of infrastructure technology with another.

 On the other hand, if you use annotations, your configuration is consolidated
according to application verticals. We prefer this because feature changes are likely
to span architectural slices, and it’s nice to be able to change things in one place. For
instance, if you needed to add a field to a domain class, you’d open the class in your
IDE, add the field, and add JPA and Bean Validation Framework annotations to it at
the same time. This is easier than opening each respective XML configuration file,
scanning through it, and making the necessary changes. Another benefit of using
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 1 Introducing Spring: the dependency injection container
annotations is that it’s easy to get a 360-degree view of individual domain services
and objects.

Some XML configuration will still be necessary. You need to enable component
scanning in XML, and Spring ships with several classes that can only be configured
with XML.

1.6 Summary
This chapter has provided a brief overview of the Spring Framework, its major pieces,
and its underlying principles, including inversion of control and how it relates to
dependency injection. Through several examples, we’ve demonstrated the benefits of
using Spring to manage an application’s dependencies and described how to define
these dependencies using both XML and Java annotations.

 In the next chapter, we’ll move away from the container and explore some of the
(very) useful components that Spring provides around persistence, object-relational
mapping, and transaction management. In many cases, you can incorporate these
components into your application in a transparent fashion.
www.it-ebooks.info

http://www.it-ebooks.info/

Data persistence,
 ORM, and transactions
This chapter assembles the data persistence, ORM, DAO, and transaction-
management infrastructure you’ll be using throughout the rest of the book.
Although there are cases where it’s useful to work directly with JDBC, the ORM
approach confers major benefits in terms of simplifying the codebase. Most of the
persistence examples throughout the book are ORM-based—specifically Hiber-
nate-based—and so a large part of what we’ll do here is explain not only how
ORM fits into the scheme of things, but also how to perform common tasks with
Hibernate specifically. We don’t pretend to offer an exhaustive treatment of
Hibernate, but we hope that it’s sufficient to allow you to make sense of the code
examples and get started with Hibernate if you aren’t already using it.1

This chapter covers
■ Understanding Spring JDBC data-persistence

templates
■ Exploiting ORM using Hibernate and JPA
■ Learning how transactions manage database

concurrency
33

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Data persistence, ORM, and transactions
 Here’s an overview of what we’ll be doing in this chapter:

■ Recipe 2.1 shows how Spring simplifies JDBC-based access to the database using
the JdbcTemplate.

■ Recipe 2.2 shows how to acquire a JDBC DataSource using the Java Naming and
Directory Interface (JNDI).

■ In recipe 2.3, you’ll replace your JDBC-based approach with ORM via Hibernate.
We’ll also look at transactions.

■ Recipe 2.4 shows how to create a data access layer that presents the app with a
clean persistence API that hides
the mapping details.

■ (Optional) Recipe 2.5 shows how
to use the JPA instead of use
Hibernate directly. Although the
rest of the book uses Hibernate
directly, it’s useful to see how to
do things with JPA.

■ (Optional) Recipe 2.6 presents
the recent Spring Data JPA proj-
ect, which simplifies data access
even further. You don’t use it in
the following chapters—primarily
because it came out after most of
the book was already written—but
it’s good to see what it is and how
to use it.

Figure 2.1 presents a visual lay of the
land, illustrating the layering in a typical
Java-based persistence architecture.

 You’ll begin by learning how to use
Spring to simplify JDBC-based database
access. In the following recipe and
throughout the chapter, you’ll work with a
simple contact management application.
The complete code is available from the
GitHub master at https://github.com/
springinpractice/sip02/. There is also a
GitHub branch (01-06) available that cor-
responds to each of the recipes in this

1 For the definitive reference on Hibernate, see Java Persistence with Hibernate by Christian Bauer and Gavin King
(Manning 2006), http://manning.com/bauer2/.

Figure 2.1 The layers involved when implement-
ing a typical Java-based persistence architecture
www.it-ebooks.info

https://github.com/springinpractice/sip02/
https://github.com/springinpractice/sip02/
http://manning.com/bauer2/
http://www.it-ebooks.info/

35Data access using JDBC

with
ms
chapter. Don’t worry if there are parts (even lots of parts) you don’t fully understand,
because that’s what the rest of the book is for.

2.1 Data access using JDBC
PREREQUISITES

None. Assumes familiarity with SQL and JDBC.

KEY TECHNOLOGIES

SQL, JDBC, Spring JDBC

Background

The JDBC API is a useful and well-known approach to accessing data in a relational
database. But it can be somewhat cumbersome to use, because it involves a lot of boil-
erplate code that acquires connections, creates statements, executes queries, and then
closes all those things in the reverse order. This recipe shows how Spring simplifies
JDBC-based data access.

Problem

Issue queries and updates against a relational database.

Solution

As noted, you’ll use JDBC to talk with the database, but you’ll see how that looks using
Spring’s NamedParameterJdbcOperations and RowMapper abstractions. The following
listing shows how to do it.

package com.springinpractice.ch02.service.impl;

import java.util.HashMap;
import java.util.List;
import javax.inject.Inject;
import org.springframework.jdbc.core.namedparam.MapSqlParameterSource;
import org.springframework.jdbc.core.namedparam.

➥ NamedParameterJdbcOperations;
import org.springframework.jdbc.core.namedparam.SqlParameterSource;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.jdbc.support.KeyHolder;
import org.springframework.stereotype.Service;
import com.springinpractice.ch02.model.Contact;
import com.springinpractice.ch02.service.ContactService;

@Service
public class ContactServiceImpl implements ContactService {
 private static final String CREATE_SQL =
 "insert into contact (last_name, first_name, mi, email) " +
 "values (:lastName, :firstName, :mi, :email)";
 private static final String FIND_ALL_SQL =
 "select id, last_name, first_name, mi, email from contact";

Listing 2.1 ContactServiceImpl.java, with JDBC access code

SQL update
named para

B

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Data persistence, ORM, and transactions
 private static final String FIND_ALL_BY_EMAIL_LIKE_SQL =
 "select id, last_name, first_name, mi, email from contact " +
 "where email like :email";
 private static final String FIND_ONE_SQL =
 "select id, last_name, first_name, mi, email from contact " +
 "where id = :id";
 private static final String UPDATE_SQL =
 "update contact set last_name = :lastName, " +
 "first_name = :firstName, mi = :mi, email = :email " +
 "where id = :id";
 private static final String DELETE_SQL =
 "delete from contact where id = :id";

 @Inject private NamedParameterJdbcOperations jdbcTemplate;
 @Inject private ContactRowMapper contactRowMapper;

 public void createContact(Contact contact) {
 SqlParameterSource params = new MapSqlParameterSource()
 .addValue("lastName", contact.getLastName())
 .addValue("firstName", contact.getFirstName())
 .addValue("mi", contact.getMiddleInitial())
 .addValue("email", contact.getEmail());
 KeyHolder keyHolder = new GeneratedKeyHolder();
 jdbcTemplate.update(CREATE_SQL, params, keyHolder);
 contact.setId(keyHolder.getKey().longValue());
 }

 public List<Contact> getContacts() {
 return jdbcTemplate.query(
 FIND_ALL_SQL, new HashMap<String, Object>(), contactRowMapper);
 }

 public List<Contact> getContactsByEmail(String email) {
 SqlParameterSource params =
 new MapSqlParameterSource("email", "%" + email + "%");
 return jdbcTemplate.query(
 FIND_ALL_BY_EMAIL_LIKE_SQL, params, contactRowMapper);
 }

 public Contact getContact(Long id) {
 SqlParameterSource params =
 new MapSqlParameterSource("id", id);
 return jdbcTemplate.queryForObject(
 FIND_ONE_SQL, params, contactRowMapper);
 }

 public void updateContact(Contact contact) {
 SqlParameterSource params = new MapSqlParameterSource()
 .addValue("id", contact.getId())
 .addValue("lastName", contact.getLastName())
 .addValue("firstName", contact.getFirstName())
 .addValue("mi", contact.getMiddleInitial())
 .addValue("email", contact.getEmail());
 jdbcTemplate.update(UPDATE_SQL, params);
 }

 public void deleteContact(Long id) {
 jdbcTemplate.update(DELETE_SQL,

SQL query with
named param C

JDBC
operations

D

Row
mapperE

Executes
updateF

Executes
queryG
www.it-ebooks.info

http://www.it-ebooks.info/

37Data access using JDBC

 new MapSqlParameterSource("id", id));
 }
}

At B and C you create an SQL update and query with named parameters, respec-
tively. You prefix each named parameter with a colon. Then at D you have the JDBC
operations object, against which you execute your queries and updates. You use the
row mapper at E to map JDBC result sets to object lists, which is useful for queries that
return multiple rows. You’ll see the row mapper in detail in a minute.

F is an example of an update operation, which here is an insert. Note that you use
MapSqlParameterSource.addValue() to specify the parameters that you want to sub-
stitute into the query. In this case, the insert involves an autogenerated key, so you cre-
ate a GeneratedKeyHolder as well. You execute the update by calling update() on the
JDBC operations object, and then you use the key holder to update the ID on the entity.

 You also have a query example at G. In this case, there is only a single parameter,
so you take advantage of the corresponding constructor. (The flanking % characters
are SQL wildcards indicating zero or more characters, which is useful for text
searches.) Here you call query() to get the results.

 Notice that in making the query, you pass in the contactRowMapper. This is what
lets you map a JDBC result set to a list of contacts. The next listing shows how to imple-
ment the RowMapper interface to achieve this result.

package com.springinpractice.ch02.service.impl;

import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Component;
import com.springinpractice.ch02.model.Contact;

@Component
public class ContactRowMapper implements RowMapper<Contact> {

 public Contact mapRow(ResultSet resultSet, int rowNum)
 throws SQLException {

 Contact contact = new Contact();
 contact.setId(resultSet.getLong(1));
 contact.setLastName(resultSet.getString(2));
 contact.setFirstName(resultSet.getString(3));
 contact.setMiddleInitial(resultSet.getString(4));
 contact.setEmail(resultSet.getString(5));
 return contact;
 }
}

It should be easy to follow what’s happening in listing 2.2 because you’ve no doubt
written similar code before. At B you implement the RowMapper interface so Spring
can use it. At C you perform a standard mapping to extract a Contact from a

Listing 2.2 ContactRowMapper.java

Implements
RowMapper

B

Implements
mapRow()C
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Data persistence, ORM, and transactions
ResultSet. Spring handles the iteration for you, so all you need to do is perform the
row-level mapping.

 That’s all you need to do as far as actual code goes. You still need to configure the
app. In the next section, we’ll show how to do that.

 The NamedParameterJdbcOperations abstraction does a nice job of hiding any
configuration messiness. Once you have the operations object, you’re good to go. But
of course you need to create that object somewhere, and so that’s what you’ll do now.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${dataSource.driverClassName}"
 p:url="${dataSource.url}"
 p:username="${dataSource.username}"
 p:password="${dataSource.password}" />

 <bean class="org.springframework.jdbc.core.namedparam.

➥ NamedParameterJdbcTemplate"
 c:dataSource-ref="dataSource" />

 <context:component-scan
 base-package="com.springinpractice.ch02.service" />
</beans>

At B you source externalized configuration properties, as described in chapter 1.
This allows you to avoid hard-coding environment-specific information into your app.

 You configure a JDBC DataSource at C. A DataSource is essentially a factory for
database connections. As such, DataSources are an important part of most web and
enterprise applications. Here you’re using the Apache Commons Database Connec-
tion Pool (DBCP) implementation, BasicDataSource, which pools connections. You
specify a bean ID and class, as usual. The optional destroy-method attribute tells
Spring to call DataSource.close() upon shutting down the Spring container, which
releases all pooled Connections. Finally, you have the standard driverClassName, url,
username, and password attributes.

Listing 2.3 beans-service.xml configuration

Source
config
properties

B

Configures
DataSourceC

Creates JDBC
templateD
www.it-ebooks.info

http://www.it-ebooks.info/

39Looking up a DataSource with JNDI
 Note that in this configuration, you create
and manage the DataSource from the app
itself, rather than looking up a container-
managed DataSource.2 See figure 2.2.

 Now that you have a DataSource, you can
create the JDBC operations object. The spe-
cific implementation is NamedParameter-
JdbcTemplate D. You pass the DataSource
into the constructor using Spring’s construc-
tor namespace.

 That’s all there is to it. Set up your data-
base using the SQL scripts at /src/main/sql,
and create the externalized environment
.properties file as described in appendix A. Run the app using

mvn -e clean jetty:run

and aim your browser at http://localhost:8080/sip/.
 Click the Contacts link in the navigation bar. You should be able to view the con-

tact list and search for contacts by email address. You should also be able to view, edit,
and delete individual contacts. Try it out.

Discussion

In this recipe, you configured the DataSource as part of the application configura-
tion. Although this is an option, it has drawbacks:

■ Without proper configuration externalization (for example, moving URLs and
credentials out of the main configuration), you end up tying the app to a partic-
ular environment.

■ If multiple apps in the same container want to use the same DataSource, you
have to repeat the configuration for all of them.

■ This approach doesn’t allow different apps to share a connection pool, which
can lead to an inefficient use of system resources.

In the next recipe, we look at a more centralized alternative to managing Data-
Sources. This alternative addresses these issues.

2.2 Looking up a DataSource with JNDI
PREREQUISITES

Recipe 2.1, “Data access using JDBC”

KEY TECHNOLOGIES

JDBC, JNDI

2 You’ll learn how to use a container-managed DataSource in recipe 2.2.

Figure 2.2 An app-managed DataSource
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Data persistence, ORM, and transactions
Background

You can address the issues we raised in the discussion of recipe 2.1 by adopting a cen-
tralized approach to configuring the DataSource. Instead of having each application
manage its database configuration, you can configure the DataSource inside the con-
tainer and then have the applications point to that shared configuration. In addition
to streamlining the configuration, this allows you to share a single connection pool
across applications.

Problem

Configure the DataSource centrally to simplify configuration management and share
a connection pool.

Solution

In this configuration, the application con-
tainer manages the DataSource, and the
app makes a JNDI call to get a reference to
it. See figure 2.3.

 We assume that you’ve already config-
ured your application server to expose your
DataSource through JNDI. If not, please
consult the documentation for your app
server for more information. The sample
code for most of the chapters in the book
includes a /sample_conf/jetty-env.xml file
that shows how to do it for Jetty.

 To do a namespace-based JNDI Data-
Source lookup, you need to declare the
jee namespace3 in your app context and
include the jee:jndi-lookup element.
The following listing shows how to do this.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd">

 <jee:jndi-lookup id="dataSource"

3 Spring’s context JAR supports the jee namespace.

Listing 2.4 beans-service.xml, with JNDI-based DataSource lookup

Declares
namespace

B

Specifies schema
location C

Figure 2.3 Getting a container-managed
DataSource via JNDI lookup
www.it-ebooks.info

http://www.it-ebooks.info/

41Looking up a DataSource with JNDI
 jndi-name="jdbc/Sip02DS"
 resource-ref="true" />

 ...

</beans>

In the namespace part, you declare the jee namespace B, which gives you access to
some elements related to JNDI and stateless session beans. Here you care about JNDI. You
specify the schema location C as well. (Note that the code download includes other
namespaces that we’ve suppressed here because you don’t need them for this recipe.)

 Finally, you perform the lookup D. The id attribute specifies the ID under which the
DataSource bean will be exposed; in this case you’re being unimaginative and calling
it dataSource. The jndi-name attribute gives the DataSource’s configured JNDI name
(whatever you or your app server admin picked), and resource-ref="true" indicates
that the target object is a resource—an object that the app server makes available as part
of the general environment instead of an application-specific object. (Other common
resources come from JMS, JavaMail, and JCA.) Because you’ve set this to true, Spring will
automatically prepend the JNDI name you specified with the standard java:comp/env/
prefix. The full name is therefore java:comp/env/jdbc/Sip02DS.

 All you’ve really done is replace the app-specific DataSource configuration with a
JNDI lookup. This change doesn’t affect the app itself. Try the app again to confirm.

Discussion

In this recipe and the last, we explored a couple of different ways to set up a Data-
Source in Spring:

■ Configure the DataSource directly in your Spring application context using an
implementation like the BasicDataSource class from the Apache Commons
DBCP library.

■ Configure your DataSource in your app server and expose it through JNDI, as
you just saw.

The former approach is probably more straightforward to set up, because it doesn’t
require you to configure anything in the container. In addition, the DataSource con-
figuration is more portable across containers. Finally, it’s useful when you want apps to
have isolated connection pools so as to ensure that a greedy app doesn’t prevent other
apps from getting connections.

 The centralized JNDI approach is useful when you want to configure your Data-
Source one time and share a connection pool across applications. It also provides a
nice way to push sensitive database credentials out of your application sources,
although there are other ways to do that as well: for instance, with PropertyPlace-
holderConfiguraton, as we showed in recipe 2.1.

 That concludes our treatment of DataSources and JDBC-based access. Next we’ll
look at a different model for database interaction: ORM. This approach makes data-
base access more object-oriented in nature. We’ll explore the very popular Hibernate
ORM framework.

Performs
JNDI lookupD
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Data persistence, ORM, and transactions
2.3 Object-relational mapping and transactions via Hibernate
PREREQUISITES

Recipe 2.1, “Data access using JDBC”

KEY TECHNOLOGIES

Hibernate, transactions

Background

In addition to code examples, this recipe offers a high-level overview of ORM with
Hibernate. A full discussion would take a whole book—indeed, the book exists: Java
Persistence with Hibernate by Christian Bauer and Gavin King (Manning, 2006)—so we
won’t attempt it here. But this overview should equip newbies to understand what’s
happening in the code examples in the rest of the book.

Problem

Simplify and streamline data access, as compared to JDBC.

Solution

You’ll use the Hibernate ORM framework to establish a simpler, more object-oriented
interface for working with the database. We need to investigate multiple elements of
the framework:

■ Mapping—You’ll learn how Hibernate makes it easier to work with entities, rela-
tionships, and SQL queries by exposing corresponding POJOs and an object-ori-
ented query language.

■ Querying and updating—You’ll see how Hibernate’s Session API allows you to
execute queries and updates against the database.

■ Transactions—You’ll learn how to use Spring and Hibernate together for trans-
action management.

Let’s start at the beginning with the mapping itself.

PERFORMING THE MAPPING

The primary function of ORM is to resolve the so-called impedance mismatch between
working with Java objects and working with databases. The idea is that although there
are some correspondences (classes versus tables, properties versus columns, instances
versus rows, and so on), there are also key differences (inheritance in Java has no nat-
ural counterpart in databases; Java has collections but databases don’t). ORM attempts
to make database development simpler and cleaner for software developers by facili-
tating the mapping between the two worlds.

 The first thing ORM helps with is translating Java objects back and forth into database
entities, and mapping associations between objects back and forth into database rela-
tionships. As noted, classes correspond to tables, properties to columns, and instances
to rows. With associations, things are quite a bit more involved, because you have to
www.it-ebooks.info

http://www.it-ebooks.info/

43Object-relational mapping and transactions via Hibernate
account for various concerns (multiplicity, directionality, whether the associated objects
have dependent or independent lifecycles, and so on). We won’t get too deep into the
weeds here, but see figure 2.4 for the basic concept.

 Once you have the basic framework of mapping objects and relationships, it’s not
a huge leap to map queries. ORM frameworks typically provide an object-oriented
query language that they translate behind the scenes into SQL. These object-oriented
query languages, as you might guess, involve queries on objects and their properties.
Figure 2.5 shows an example of how the Java Persistence Query Language (JPQL)—
used for JPA queries—maps to standard SQL.

 In most cases, object-oriented queries (such as JPQL) are more concise than their
SQL counterparts. They also tend to be more natural to developers, who are in many
cases more comfortable working with Java objects than with database constructs.

 Now let’s look at the code. The first order of business is to perform the mapping
itself. The following listing shows how to perform both entity and query mapping.

Figure 2.4 ORM
helps you map Java
objects and associa-
tions to database
entities and rela-
tionships.

Figure 2.5 Mapping JPA queries to SQL queries
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Data persistence, ORM, and transactions

gy
package com.springinpractice.ch02.model;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.persistence.Transient;
import javax.validation.constraints.NotNull;
import org.hibernate.validator.constraints.Email;
import org.hibernate.validator.constraints.Length;
import com.springinpractice.util.StringUtils;

@Entity
@Table(name = "contact")
@NamedQuery(
 name = "findContactsByEmail",
 query = "from Contact where email like :email")
public class Contact {
 private Long id;
 private String lastName;
 private String firstName;
 private String middleInitial;
 private String email;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column
 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 @NotNull
 @Length(min = 1, max = 40)
 @Column(name = "last_name")
 public String getLastName() { return lastName; }

 public void setLastName(String lastName) {
 this.lastName = StringUtils.cleanup(lastName);
 }

 @NotNull
 @Length(min = 1, max = 40)
 @Column(name = "first_name")
 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) {
 this.firstName = StringUtils.cleanup(firstName);
 }

 @Length(max = 1)
 @Column(name = "mi")
 public String getMiddleInitial() { return middleInitial; }

 public void setMiddleInitial(String mi) {

Listing 2.5 Contact.java, illustrating how to map between Java and the database

JPA annotationsB

Identify
as entity

C

Maps to tableD
JPQL
queryE

Identify as
primary key

F

PK generation strateG
Maps
to columnH
www.it-ebooks.info

http://www.it-ebooks.info/

45Object-relational mapping and transactions via Hibernate
 this.middleInitial = StringUtils.cleanup(mi);
 }

 @Email
 @Column
 public String getEmail() { return email; }

 public void setEmail(String email) {
 this.email = StringUtils.cleanup(email);
 }

 @Transient
 public String getFullName() {
 String fullName = lastName + ", " + firstName;
 if (! (middleInitial == null || "".equals(middleInitial.trim()))) {
 fullName += " " + middleInitial + ".";
 }
 return fullName;
 }

 public String toString() {
 return "[Contact: id=" + id
 + ", firstName=" + firstName
 + ", middleInitial=" + middleInitial
 + ", lastName=" + lastName
 + ", email=" + email
 + "]";
 }
}

The Contact class shows how JPA annotations work. There are many such annotations
in the javax.persistence package (many more than we’re using here), and you use
them to perform the mapping. You import the annotations you’re using at B.

 The first part of the mapping identifies the Contact class as an entity C and maps
it to a table D. The @Entity annotation supports package scanning.

 At E you use the @NamedQuery annotation to build a JPQL query based on the
entity. This example is close to the simplest possible query, but it will do for now. You’ll
see more interesting queries over the course of the book. Please consult Java Persis-
tence with Hibernate for more information.

 You use @Id F to identify your contact’s primary key and @GenerationStrategy G
to pick out a primary key generation strategy (in this case, the IDs are autogenerated).
Then you have an @Column H annotation to map the bean property to a database col-
umn. By default, the column name is the same as the property name, although you
can use the name attribute to specify the column name explicitly. Finally, at I you
mark getFullName() as @Transient, which means you’re not mapping it to a column
in the database.

 Although you don’t use them here, JPA includes annotations for mapping associa-
tions: one-one, one-many, many-one, and many-many. You’ll see plenty of examples in
subsequent chapters. See Java Persistence with Hibernate for more information on the
intricacies of association mapping.

 That’s it for ORM. Next you’ll execute queries and updates based on this mapping.

Marks as
transient

I

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Data persistence, ORM, and transactions
EXECUTING QUERIES AND UPDATES

In the foregoing discussion, we’ve focused on what Bauer and King describe as the
structural mismatch problem (p. 384). This is where you map structures in the Java
domain to structures in the database domain.

 But in addition to structural mappings, you need to deal with the behavioral mis-
match. Lookups and other dynamic behavior based on Java collections and the like are
different than database queries and updates, and you need a way to ensure that your
database queries end up meeting whatever performance requirements you have.

 Hibernate’s Session API is the key piece of the behavioral strategy. It provides an
interface against which to perform persistence operations (basic Create, Read,
Update, and Delete [CRUD] queries and updates, transaction control, and context
management), and it does so against an internal persistence context, supporting opti-
mizations such as automatic dirty checking (don’t flush to the database unless some-
thing changed), transactional write-behind (flush as late as possible to minimize
database lock times), and caching (support repeatable reads for free, avoid database
hits when nothing has changed, and so on).

 More generally, the Session API allows you to transition objects through the persis-
tence lifecycle. In Hibernate, objects have one of four states—transient, persistent,
removed, and detached—and the various Session API methods amount to ways to
effect state transitions on individual objects. For example, Session.save() moves an
object from the transient state (meaning Hibernate isn’t managing it) to the persis-
tent state (meaning Hibernate is managing it).

 In the next listing you reimplement ContactServiceImpl, this time using Hiber-
nate’s Session API instead of NamedParameterJdbcOperations. Compare this with list-
ing 2.1.

package com.springinpractice.ch02.service.impl;

import java.util.List;
import javax.inject.Inject;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch02.model.Contact;
import com.springinpractice.ch02.service.ContactService;

@Service
@Transactional
public class ContactServiceImpl implements ContactService {
 @Inject private SessionFactory sessionFactory;

 public void createContact(Contact contact) {
 getSession().save(contact);
 }

 @SuppressWarnings("unchecked")

Listing 2.6 ContactServiceImpl.java revisited: Hibernate-based implementation

Marks as
transactional

B

Injects
SessionFactoryC

Saves
contactD
www.it-ebooks.info

http://www.it-ebooks.info/

47Object-relational mapping and transactions via Hibernate
 public List<Contact> getContacts() {
 return getSession()
 .createQuery("from Contact")
 .list();
 }

 public List<Contact> getContactsByEmail(String email) {
 return getSession()
 .getNamedQuery("findContactsByEmail")
 .setString("email", "%" + email + "%")
 .list();
 }

 public Contact getContact(Long id) {
 return (Contact) getSession().get(Contact.class, id);
 }

 public void updateContact(Contact contact) {
 getSession().update(contact);
 }

 public void deleteContact(Long id) {
 getSession().delete(getContact(id));
 }

 private Session getSession() {
 return sessionFactory.getCurrentSession();
 }
}

You mark the class as @Transactional at B. This indicates that all public methods are
transactional. You can also do method-level overrides, although you don’t do that here.
The crucial point is that this is the extent of your explicit treatment of transactions: the
@Transactional annotation allows you to avoid explicit transaction-management code
against the Hibernate Session, which keeps your code clean. We’ll look more carefully
at transaction management in the next section.

 Everything else deals with various persistence operations against the Session. At
C you inject a SessionFactory so you have a way to get the current session (the ses-
sion bound to the request thread) via getCurrentSession() I. The persistence oper-
ations save a contact D, find all contacts by creating a JPQL query E, find all contacts
with a matching email address by looking up a named JPQL query F, return a single
contact G, and delete a contact H.

 We’ve touched on both structural and behavioral mapping. The third topic is
transaction management.

TRANSACTION MANAGEMENT

DAOs provide a way to perform persistence operations on entities, but they aren’t
themselves domain logic—they’re pure mechanism. Instead, domain logic lives in the
service layer that sits above the data access layer.

 Any given service method might invoke a number of persistence methods, and these
might involve multiple operations on multiple entities. In most cases, you want a service
method to operate as a transaction with the standard ACID semantics. If the service

Creates
query

E

Gets named
query

F

Gets single
contact

G

Deletes
contact

H

Gets current
sessionI
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Data persistence, ORM, and transactions
method makes multiple persistence calls against one or more DAOs, you generally (or
at least often) want those calls to operate as part of a single transaction. Figure 2.6 shows
an example.

 To handle this, your service layer needs a way to embed its database calls within the
context of a transaction.4 When a client calls a service method, you want to see some-
thing like the following flow:

1 Start a transaction.
2 Create a Hibernate session, and bind it to the transaction.
3 Execute the service method, including any DAO calls.
4 Flush the Hibernate session to the database.
5 Commit (or roll back) the transaction.
6 Clean up (unbind resources, close the Hibernate session).

Notice that step 3 is the only one that’s interesting from an application development
standpoint. The other steps are pure infrastructural boilerplate. Spring’s transaction
framework essentially does the boilerplate so developers can focus on the domain logic.

 Because the framework handles the actual logic, all you need to do is tell the trans-
action infrastructure where the transactional boundaries are and which transactional
semantics to apply in terms of propagation, isolation, rollback behavior, and so forth.
You use Spring’s @Transactional annotation to do this. Basically, you attach the anno-
tation to methods that you want to run within a transaction. You can define specifics

4 Although the service layer doesn’t typically make direct database calls, the DAO calls that it does make pass
through ORM, and these in turn ultimately go to the database. You usually want these to be part of a single
transaction.

Figure 2.6 A single
transaction spanning
multiple updates to the
database
www.it-ebooks.info

http://www.it-ebooks.info/

49Object-relational mapping and transactions via Hibernate
around the transaction (such as propagation behavior and isolation level) using the
same annotation. Table 2.1 lists the options.

This way of specifying transactions is called declarative transaction management,
because you attach @Transactional to a method when you want it to be transactional.
It’s the best-practice approach to building transactional Spring applications.

 Declarative transaction management stands in contrast to programmatic transaction
management, where you code up all the logic to create new transactions, bind sessions
and connections to them, write if/else logic to decide which exceptions trigger roll-
backs, commit the transaction, clean everything up, and so forth. This is in general not
what you want to do as an application developer.

 You saw in listing 2.6 that all you had to do was affix a class-level @Transactional
annotation to your service bean. You could have specified additional transactional
semantics, such as read-only transactions, but you didn’t do that. Again, you can apply
@Transactional to individual methods; these override any class-level definition that
might exist.

Table 2.1 Defining transactions with @Transactional elements

Element Description Possible values Default

propagation Transaction-propagation
behavior.

MANDATORY, NESTED,
NEVER, NOT_SUPPORTED,
REQUIRED,
REQUIRES_NEW,
SUPPORTS

REQUIRED

isolation Transaction isolation level. DEFAULT,
READ_COMMITTED,
READ_UNCOMMITTED,
REPEATABLE_READ,
SERIALIZABLE

DEFAULT

timeout Transaction timeout in seconds. Integer -1 (no timeout)

readOnly Indicates whether the transac-
tion is read-only.

true, false false

rollbackFor Zero or more Throwables
that trigger a rollback.

{}

rollbackFor
ClassName

Like rollbackFor, but with
class names. Can be a sub-
string.

{}

noRollbackFor Zero or more Throwables
that do not trigger a rollback.

{}

noRollbackFor
ClassName

Like noRollbackFor, but
with class names. Can be a
substring.

{}
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Data persistence, ORM, and transactions
TIP An overriding method-level @Transactional completely overrides the
class-level @Transactional rather than augmenting it in an additive way. If,
for example, a class-level @Transactional specifies SERIALIZABLE isolation
and a method-level @Transactional doesn’t explicitly specify anything, the
method’s isolation level will be DEFAULT, not SERIALIZABLE.

The only thing remaining to see is the configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/Sip02DS"
 resource-ref="true" />

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5InnoDBDialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </util:properties>

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

➥ AnnotationSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch02.model"
 p:hibernateProperties-ref="hibernateProperties" />

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate3.

➥ HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory" />

 <tx:annotation-driven />

Listing 2.7 beans-service.xml, with Hibernate configuration

Hibernate
properties

B

Session
factory

C

Transaction
manager

D

Activates
@Transactional

E

www.it-ebooks.info

http://www.it-ebooks.info/

51Object-relational mapping and transactions via Hibernate
 <context:component-scan
 base-package="com.springinpractice.ch02.service.impl" />
</beans>

You set Hibernate configuration properties using the util namespace at B. Then you
use them to define an AnnotationSessionFactoryBean at C, which is a factory that pro-
duces a SessionFactory. The SessionFactory knows how to read the Hibernate and
JPA mapping annotations that you place on entity classes, as you did with Contact in list-
ing 2.5. You inject the DataSource into the AnnotationSessionFactoryBean because
your Sessions ultimately need to read from and write to the DataSource. You also tell
the AnnotationSessionFactoryBean which package(s) to scan for entities. Here you
have only one package, but you can also
use multiple comma-separated packages.
Figure 2.7 shows how this all fits together.

 At D you define a Hibernate-

TransactionManager. This handles the
complicated transaction-management
logic that you’d rather not have to deal
with. Behind the scenes, the trans-
action manager invokes transaction-
management methods on the underly-
ing SessionFactory.

 The <tx:annotation-driven/> at
E activates the transaction manager by
wrapping beans (usually service beans)
annotated with @Transactional with
transactional proxies.5 Each proxy has a
reference to the transaction manager,
which by default has the ID transac-
tionManager. (That’s why you used this
ID when you defined the transaction
manager.) The proxy uses the transaction manager to manage transactions on behalf
of the proxy’s target bean. This is entirely transparent to clients of the target bean,
which work with the proxy and are none the wiser.

 Declarative, transparent transaction management is arguably one of the most use-
ful features of the entire Spring framework.

 With that, you’ve established the data access and transaction background neces-
sary to make sense of what you do in the rest of the book. Note that Spring’s transac-
tion framework is rich, and there’s much that we couldn’t cover here. Consult the
Spring reference manual for more information.

 As with recipe 2.2, the changes you’ve made don’t affect the behavior of the app.
Try running the application again to make sure everything is still working.

5 It’s also possible to weave these with AspectJ, although you aren’t doing that here.

Figure 2.7 How applications get access to
sessions
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 2 Data persistence, ORM, and transactions
Discussion

This recipe showed how to clean up your persistence code using Hibernate ORM. You
can see that there’s a big difference between the JDBC-based code in listing 2.1 and
the ORM-based code in listing 2.6.

 But there is another improvement to be had. Ideally, your service tier doesn’t have
to involve itself in the mechanics of persistence management. Instead, the service tier
should focus on domain logic and delegate persistence concerns to something else.
That “something else” is the topic of the next recipe.

2.4 Creating a data access layer
PREREQUISITES

Recipe 2.3, “Object-relational mapping and transactions via Hibernate”

KEY TECHNOLOGIES

Hibernate

Background

Persistence is a fairly low-level concern; it’s not part of the domain logic that forms the
core concern for your application’s service tier. Unfortunately, so far your service bean
focuses squarely on persistence. In this recipe, you’ll learn how to isolate domain logic
from persistence logic, which creates a cleaner architecture.

Problem

Separate the domain logic and persistence logic concerns.

Solution

The classical solution to separating the domain logic and persistence logic concerns is
called the data access object (DAO) pattern.6 The basic idea is to consolidate persistence-
related code in a dedicated architectural tier that sits above the database, and have the
service tier (which handles domain logic) defer persistence-related concerns to this
persistence-centric tier.

 The approach to implementing DAOs is simple: inject the Hibernate SessionFac-
tory into each DAO, and then implement persistence methods backed by the sessions
you grab from the factory. Because a lot of the persistence operations are common,
it’s useful to define a general DAO interface and an abstract base DAO, and then
derive corresponding entity-specific interfaces and classes as shown in figure 2.8.

6 Core J2EE Patterns—Data Access Object, Oracle, http://mng.bz/0PSy.

Figure 2.8 Class diagram
illustrating the relation-
ship between generic
framework classes and
app-specific implementa-
tions
www.it-ebooks.info

http://mng.bz/0PSy
http://www.it-ebooks.info/

53Creating a data access layer
The following listing presents the generic DAO interface that you’ll use throughout
the book.

package com.springinpractice.dao;

import java.io.Serializable;
import java.util.List;

public interface Dao<T extends Object> {

 void create(T t);

 T get(Serializable id);

 T load(Serializable id);

 List<T> getAll();

 void update(T t);

 void delete(T t);

 void deleteById(Serializable id);

 void deleteAll();

 long count();

 boolean exists(Serializable id);
}

There’s not a single way to implement a generic DAO interface, but this one meets the
needs for this book. Let’s take a look.

 First, note that this interface is in the com.springinpractice.dao package B. We
put it there instead of in com.springinpractice.ch02 because you’ll use this inter-
face throughout the book. To get the sample DAO code, grab the download at https:
//github.com/springinpractice/sip-top/.

 A key feature is the use of a generic type parameter C. This allows you to adapt
derived interfaces to specific domain classes, making them friendlier to use. You
include the various CRUD methods such as create() D. You can also include general-
purpose queries; here you use a getAll() finder method E that finds all instances of
the relevant type.

 Deriving a subinterface is easy. You can add entity-specific methods as you please,
as shown in the next listing.

package com.springinpractice.ch02.dao;

import java.util.List;
import com.springinpractice.ch02.model.Contact;
import com.springinpractice.dao.Dao;

public interface ContactDao extends Dao<Contact> {

 List<Contact> findByEmail(String email);
}

Listing 2.8 Dao.java, a generic DAO interface

Listing 2.9 ContactDao.java: a contact DAO interface

Common DAO
packageB

Generic type
parameterCCRUD operationD

A queryE
www.it-ebooks.info

https: //github.com/springinpractice/sip-top/
https: //github.com/springinpractice/sip-top/
http://www.it-ebooks.info/

54 CHAPTER 2 Data persistence, ORM, and transactions
You now have a base DAO interface, and you know how to derive entity-specific inter-
faces from it. You’re going to do the same thing on the implementation side, defining
a generic base DAO class, then subclassing it on a per-entity basis. The implementation
is based on Hibernate.

package com.springinpractice.dao.hibernate;

import java.io.Serializable;
import java.lang.reflect.Method;
import java.lang.reflect.ParameterizedType;
import java.util.Date;
import java.util.List;
import javax.inject.Inject;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.springframework.util.ReflectionUtils;
import com.springinpractice.dao.Dao;

public abstract class AbstractHbnDao<T extends Object>
 implements Dao<T> {

 @Inject private SessionFactory sessionFactory;
 private Class<T> domainClass;

 protected Session getSession() {
 return sessionFactory.getCurrentSession();
 }

 @SuppressWarnings("unchecked")
 private Class<T> getDomainClass() {
 if (domainClass == null) {
 ParameterizedType thisType =
 (ParameterizedType) getClass().getGenericSuperclass();
 this.domainClass =
 (Class<T>) thisType.getActualTypeArguments()[0];
 }
 return domainClass;
 }

 private String getDomainClassName() {
 return getDomainClass().getName();
 }

 public void create(T t) {
 Method method = ReflectionUtils.findMethod(
 getDomainClass(), "setDateCreated",
 new Class[] { Date.class });
 if (method != null) {
 try {
 method.invoke(t, new Date());
 } catch (Exception e) { /* Ignore */ }
 }

 getSession().save(t);
 }

Listing 2.10 AbstractHbnDao.java: a generic base class for implementing DAOs

Uses genericsB

Injects
SessionFactoryC

Returns current
sessionD

Returns domain
classE

CRUD methodF
www.it-ebooks.info

http://www.it-ebooks.info/

55Creating a data access layer
 @SuppressWarnings("unchecked")
 public T get(Serializable id) {
 return (T) getSession().get(getDomainClass(), id);
 }

 @SuppressWarnings("unchecked")
 public T load(Serializable id) {
 return (T) getSession().load(getDomainClass(), id);
 }

 @SuppressWarnings("unchecked")
 public List<T> getAll() {
 return getSession()
 .createQuery("from " + getDomainClassName())
 .list();
 }

 public void update(T t) { getSession().update(t); }

 public void delete(T t) { getSession().delete(t); }

 public void deleteById(Serializable id) { delete(load(id)); }

 public void deleteAll() {
 getSession()
 .createQuery("delete " + getDomainClassName())
 .executeUpdate();
 }

 public long count() {
 return (Long) getSession()
 .createQuery("select count(*) from " + getDomainClassName())
 .uniqueResult();
 }

 public boolean exists(Serializable id) { return (get(id) != null); }
}

In line with the Dao interface, the base class uses generics B. You inject the Hibernate
SessionFactory C and then offer a protected getSession() method D, allowing
subclasses to perform persistent operations against the Hibernate Session.

 Implementing general versions of your CRUD operations and queries requires a
reference to the actual domain class. You use reflection to discover and return it E.

 The various methods are implementations of Dao methods. You have, for example,
a CRUD method F and a query G. The create() method sets the dateCreated prop-
erty if it exists.

 The following listing shows how to extend AbstractHbnDao to create an entity-
specific DAO.

package com.springinpractice.ch02.dao.hbn;

import java.util.List;
import org.springframework.stereotype.Repository;
import com.springinpractice.ch02.dao.ContactDao;

Listing 2.11 HbnContactDao.java: Hibernate-based DAO for contacts

QueryG
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 2 Data persistence, ORM, and transactions
import com.springinpractice.ch02.model.Contact;
import com.springinpractice.dao.hibernate.AbstractHbnDao;

@Repository
public class HbnContactDao extends AbstractHbnDao<Contact>
 implements ContactDao {

 @SuppressWarnings("unchecked")
 public List<Contact> findByEmail(String email) {
 return getSession()
 .getNamedQuery("findContactsByEmail")
 .setString("email", "%" + email + "%")
 .list();
 }
}

Clearly, AbstractHbnDao makes life much simpler. You don’t have to implement the
core persistence methods, because they’re available in AbstractHbnDao. Instead, you
can focus on entity-specific extensions such as findByEmail(). Note the use of the flu-
ent Query interface in this implementation of the findByEmail() method.

 Also note the use of the @Repository annotation. This allows Spring to component-
scan the bean, among other things.

 The next listing shows the effect of your refactoring on the ContactServiceImpl
bean.

package com.springinpractice.ch02.service.impl;

import java.util.List;
import javax.inject.Inject;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch02.dao.ContactDao;
import com.springinpractice.ch02.model.Contact;
import com.springinpractice.ch02.service.ContactService;

@Service
@Transactional
public class ContactServiceImpl implements ContactService {
 @Inject private ContactDao contactDao;

 public void createContact(Contact contact) {
 contactDao.create(contact);
 }

 public List<Contact> getContacts() {
 return contactDao.getAll();
 }

 public List<Contact> getContactsByEmail(String email) {
 return contactDao.findByEmail(email);
 }

 public Contact getContact(Long id) {
 return contactDao.get(id);
 }

Listing 2.12 ContactServiceImpl.java without persistence code
www.it-ebooks.info

http://www.it-ebooks.info/

57Working with JPA (optional)
 public void updateContact(Contact contact) {
 contactDao.update(contact);
 }

 public void deleteContact(Long id) {
 contactDao.deleteById(id);
 }
}

As you can see, this “service” is a pass-through layer to the DAO. In a more realistic
application, you’d expect to see service beans include more domain logic. Sometimes
this is domain logic proper, and sometimes it’s other non-domain logic that for what-
ever reason hasn’t been externalized. Examples are validation, security, messaging,
and workflow. In any event, you’ve successfully moved the persistence concern out of
the service bean into a dedicated tier.

 This recipe was just a refactoring; rerun the application to ensure that it still func-
tions before continuing on to the next recipe. Don’t forget to add

<context:component-scan
 base-package="com.springinpractice.ch02.dao.hbn" />

to beans-service.xml so Spring can find the HbnContactDao you created.

Discussion

You’ve defined general persistence operations in the Dao interface. AbstractHbnDao
implements this interface using Hibernate’s Session API. You create entity-specific
interfaces by extending Dao, and you create entity-specific implementations by extend-
ing AbstractHbnDao.

 The next two recipes are optional because they present material that you don’t use
elsewhere in the book. But we strongly recommend that you review them, because
they present an official framework for building DAOs, similar to the earlier ones,
based on JPA and Spring Data JPA. Spring Data JPA is a fairly recent addition to the
Spring portfolio, and we didn’t have time to rework all the examples in the book to
use JPA and Spring Data JPA instead of Hibernate and custom DAOs. But we would
have liked to have done so. Look at the next two recipes, and consider using the
approach described in your own projects.

2.5 Working with JPA (optional)
PREREQUISITES

Recipe 2.4, “Creating a data access layer”

KEY TECHNOLOGIES

JPA, Hibernate

Background

Hibernate was a pioneer in Java-based ORM. Eventually the idea caught on, and Sun
created the Java Persistence API (JPA) standard around ORM, based in large part on
Hibernate. Although you can use Hibernate in a standalone fashion, it’s a compliant
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 2 Data persistence, ORM, and transactions
Figure 2.9 DAOs call the
Hibernate API directly.

Figure 2.10 DAOs call JPA in-
terfaces. You can bind an arbi-
trary persistence provider to the
interface (EclipseLink JPA,
OpenJPA, Hibernate, and so on).

JPA implementation. So you also have the option of
using JPA and treating Hibernate as a persistence
provider. This allows you to use JPA-based frameworks
like Spring Data JPA, which you’ll pursue in the follow-
ing recipe.

Problem

Use the standard JPA API instead of using Hibernate’s
proprietary persistence API.

Solution

So far, we’ve described a configuration in which applica-
tions (the DAO part of apps, anyway) work directly with
the Hibernate API. Although you do use standardized
JPA annotations to declare the mappings on the entities
(Hibernate understands them), you’ve been using
Hibernate’s SessionFactory, Session, Query, and so
forth to implement the DAOs (see figure 2.9).

 There’s little danger in doing this because you’ve iso-
lated all such code in the data access layer, and this is
the approach used throughout the book. It’s a more or
less straightforward configuration, and it’s nice for
developers who are already familiar with the well-known
Hibernate API.

 But you may prefer to use standardized JPA interfaces
such as EntityManagerFactory and EntityManager

when you implement your DAOs. This approach offers
additional flexibility with respect to choosing a persis-
tence provider. You can, of course, continue to use Hiber-
nate, because it’s a mature JPA implementation. But you
have other options, such as EclipseLink and OpenJPA.
Figure 2.10 shows the JPA-based configuration.

 The following listing shows how to reimplement
ContactDao using JPA.

package com.springinpractice.ch02.dao.jpa;

import java.io.Serializable;
import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.springframework.stereotype.Repository;
import com.springinpractice.ch02.dao.ContactDao;

Listing 2.13 JpaContactDao.java: a JPA-based DAO
www.it-ebooks.info

http://www.it-ebooks.info/

59Working with JPA (optional)

r

import com.springinpractice.ch02.model.Contact;

@Repository
public class JpaContactDao implements ContactDao {
 @PersistenceContext private EntityManager entityManager;

 public void create(Contact contact) {
 entityManager.persist(contact);
 }

 public Contact get(Serializable id) {
 return entityManager.find(Contact.class, id);
 }

 public List<Contact> getAll() {
 return (List<Contact>) entityManager
 .createQuery("from Contact")
 .getResultList();
 }

 ... other persistence methods ...
}

This implementation is similar to what you did with Hibernate in listings 2.10 and 2.11.
You begin by using the JPA @PersistenceContext annotation to inject not an Entity-
ManagerFactory (the analog to Hibernate’s SessionFactory) but a shared, thread-safe
EntityManager B. This is analogous to injecting a Hibernate Session, which you can
do with JPA.

 You also have standard persistence methods, this time implemented against the
EntityManager instead of against a Hibernate Session C.

 The other piece relevant to Spring/JPA integration is the application context con-
figuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/Sip02DS"

Listing 2.14 beans-service.xml with a JPA-based persistence configuration

EntityManageB

Persistence
methodC
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 2 Data persistence, ORM, and transactions
 resource-ref="true" />

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.

➥ LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch02.model">

 <property name="persistenceProvider">
 <bean class="org.hibernate.ejb.HibernatePersistence" />
 </property>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5Dialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 </bean>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory" />

 <tx:annotation-driven />

 <context:component-scan
 base-package="com.springinpractice.ch02.dao.jpa" />
 <context:component-scan
 base-package="com.springinpractice.ch02.service.impl" />
</beans>

As with the DAO, the JPA version of bean-service.xml is similar to its Hibernate coun-
terpart. You create a LocalContainerEntityManagerFactoryBean (analogous to the
AnnotatedSessionFactoryBean) at B. There are other options, depending in part
on what sort of container you want to use, but this is the one that makes sense for web
containers such as Tomcat and Jetty. (See the Spring reference documentation for
more information.) You don’t have to provide an explicit persistence.xml JPA configu-
ration because you specify the DataSource, provider, and provider-specific properties
right here in the Spring configuration. You create a JpaTransactionManager at C,
which takes the place of the HibernateTransactionManager you used formerly.

 You’ve completely decoupled the app from Hibernate. You can still use Hibernate
as a JPA persistence provider, or you can use EclipseLink JPA, OpenJPA, or any other
JPA provider.

 As with previous recipes, verify that the contact-management app still works before
continuing to the final recipe in this chapter.

Discussion

The next recipe builds on what you’ve done here with JPA. It presents the Spring Data
JPA project, which allows you to simplify your already simple DAO layer even further.

EntityManagerFactoryB

TransactionManagerC
www.it-ebooks.info

http://www.it-ebooks.info/

61Spring Data JPA overview (optional)
2.6 Spring Data JPA overview (optional)
PREREQUISITES

Recipe 2.5, “Working with JPA”

KEY TECHNOLOGIES

JPA, Spring Data JPA

Background

Until recently, it has been up to developers to implement their own DAO framework,
as we showed how to do in recipe 2.4. With Spring Data JPA, that has changed. Spring
Data JPA provides an official DAO framework as part of Spring itself—one that
includes several useful characteristics and features:

■ The generic DAO interface is comprehensive. It includes support for paging,
sorting, and batch operations.

■ Another nice touch is that in addition to the entity class, the ID class is a type
parameter. That way you can use Long, String, or any other Serializable type
in a typesafe way.

■ Spring Data JPA automatically generates concrete DAO classes using dynamic
proxies.

■ It automatically generates query method implementations based on the name
of the query method.

■ It automatically translates exceptions to Spring’s DataAccessException

hierarchy.

Once you’ve updated your app to use JPA instead of using Hibernate directly, you can
take advantage of Spring Data JPA. This recipe shows how.

Problem

Replace your custom DAO framework with the simpler and more powerful Spring
Data JPA.

Solution

Spring Data JPA provides a generic DAO interface called JpaRepository that serves
the same function your Dao interface does, although in a more comprehensive way.
Let’s begin by creating a ContactDao interface based on JpaRepository.

package com.springinpractice.ch02.dao;

import java.io.Serializable;
import java.util.List;

import org.springframework.data.jpa.repository.JpaRepository;
import com.springinpractice.ch02.model.Contact;

Listing 2.15 ContactDao.java, revised to use Spring Data JPA
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 2 Data persistence, ORM, and transactions

itory

JPA
ce
public interface ContactDao extends JpaRepository<Contact, Long> {

 List<Contact> findByEmailLike(String email);
}

To support contacts, you pass the Contact and Long type parameters into JpaReposi-
tory B. Those are the domain class and the ID class, respectively.

 You also declare a finder method to support email search at C. The method name
is significant because it’s what allows Spring Data JPA to figure out how to build the
corresponding query dynamically. See the Spring Data JPA reference documentation
for more information on how Spring Data JPA maps method names to queries.

 Now let’s look at the revised beans-service.xml configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa-1.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/Sip02DS"
 resource-ref="true" />

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.

➥ LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch02.model">

 <property name="persistenceProvider">
 <bean class="org.hibernate.ejb.HibernatePersistence" />
 </property>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5Dialect
 </prop>

Listing 2.16 beans-service.xml, revised to use Spring Data JPA

Extends
JpaReposBFinder

method
for searchC

Declares
namespaB
www.it-ebooks.info

http://www.it-ebooks.info/

63Summary
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 </bean>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory" />

 <tx:annotation-driven />

 <jpa:repositories base-package="com.springinpractice.ch02.dao" />
 <context:component-scan
 base-package="com.springinpractice.ch02.service.impl" />
</beans>

We’ve bolded the few parts that have changed from listing 2.14. You add the jpa
namespace (and its schema location) to the configuration B. And you replace the
DAO component scan with a <jpa:repositories> definition C, which is almost like a
component scan, except that it discovers the DAO interfaces and then automatically
provides dynamic proxy implementations for you. That’s right: you don’t have to write the
DAO implementations. Nor do you need to mark up the interface with @Repository or
@Component, because <jpa:repositories> can determine which interfaces imple-
ment JpaRepository.

 Your data access tier has come a long way, when you think back to recipe 2.1. What
started out as a bunch of SQL with named parameter substitutions and row mappings
is now effectively a single findByEmailLike() method declaration.

 Run the app to confirm that it functions as expected with the new Spring Data JPA
data access tier in place.

Discussion

This recipe provides only a flavor of what Spring Data JPA is all about. But even with
this small taste, it’s clear that Spring Data JPA provides a powerful and streamlined
approach to building out a data access tier. For more information on Spring Data JPA,
visit the project home page at www.springsource.org/spring-data/jpa.

2.7 Summary
In this chapter, you learned how to put together a persistence and transaction infra-
structure using a DataSource, Hibernate, the data access object design pattern, and
declarative transactions. This popular combination makes for a powerful back end
because it cleanly separates the infrastructure from the domain logic.

 We also explored building DAOs against JPA rather than coding directly against
Hibernate. Even though this book uses Hibernate directly, it’s useful to see how
the JPA-based approach works and how Spring makes it simple to move from one to
the other.

 Finally, we took a brief glimpse at Spring Data JPA, one of the projects under the
Spring Data umbrella. Spring Data JPA simplifies the development of JPA-based DAOs.

Discovers DAOs C
www.it-ebooks.info

www.springsource.org/spring-data/jpa
http://www.it-ebooks.info/

64 CHAPTER 2 Data persistence, ORM, and transactions
In addition to JPA support, Spring Data has projects for several nonrelational data
stores, including Hadoop, GemFire, Redis, Riak, MongoDB, Neo4j, and Amazon S3.

 In chapter 3, we’ll move up the stack to the web tier, where you’ll see how to
develop web-based model-view-controller (MVC) apps using Spring Web MVC.
www.it-ebooks.info

http://www.it-ebooks.info/

Building web applications
 with Spring Web MVC
This book is mostly about web application development, partly because that’s
where the bulk of your authors’ experience lies, and partly because there’s enough
interesting material to support an entire book. (Actually, there’s enough to support
a lot of books, as any visit to your local bookstore will reveal.) Therefore most of the
recipes involve some amount of web-related code and configuration, and you’ll
find that many of the same ideas and techniques recur throughout. Instead of
repeating those over and over, we’ll take a moment to discuss the basics here. This
way, you can easily refer back to this material for review as you work through the
recipes ahead.

 Despite the large number of Java web frameworks, we’re going to concentrate
our efforts around using and understanding Spring Web MVC, which is the web

This chapter covers
■ Creating your first Spring Web MVC application
■ Serving and processing forms
■ Configuring Spring Web MVC
■ Spring Mobile technology preview
65

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Building web applications with Spring Web MVC
framework that ships with Spring. We’re more concerned with covering a variety of
business problems using core Spring technologies and less concerned with covering
every available technical option. No doubt the technical alternatives are interesting
in their own right, but given our limited space we’ll leave that treatment for refer-
ence manuals.

 We’ll begin by laying out background material, including a quick overview of the
model-view-controller (MVC) pattern, Spring’s approach to MVC, and its architectural
underpinnings. Next you’ll try your hand at writing some Spring Web MVC code, with
your goal being to get an intuitive feel for how things work in Spring Web MVC. The
rest of the chapter offers a more systematic treatment of writing controllers and con-
figuring web applications to use them.

 First things first: let’s go over some important background information.

3.1 Spring Web MVC background
To understand Spring Web MVC, it will be useful to understand web-based MVC frame-
works in general, Spring’s version of web MVC, and the highlights of Spring Web MVC
architecture, including the key components and control flow through those compo-
nents. We’ll cover each of those topics now.

3.1.1 A review of the model-view-controller (MVC) pattern

Model-view-controller (MVC) refers to the architectural pattern in which you sepa-
rate your business services and domain objects (the model) from the UI (the view)
and mediate their interaction through one or more controllers. You’d like to be able
to modify your UI without having to change your business logic and domain objects,
and separating the model and view makes it easier to do just that. It’s a simple but
proven concept.

 Java web applications typically realize MVC in roughly the following way: the model
encompasses business-tier code (service beans, POJOs, Enterprise JavaBeans [EJBs],
and so forth), the view involves JSPs or similar technologies, and the controller is usu-
ally servlet-based. HTTP requests come into the servlet, which routes the request to a
handler component (sometimes called an action, sometimes called a controller) that in
turn processes the request. The handler makes any necessary calls against the service
tier and grabs any domain objects1 it needs to populate the view. Finally, the handler
figures out which view to deliver and forwards processing to that view. Figure 3.1
shows the typical flow.

 The flow works like this. As shown in figure in 3.1, an HTTP request comes into the
controller B. The controller accesses the model C, possibly getting data D, possibly
updating the model, and possibly both. The controller then uses the view E to gener-
ate a response F, passing any relevant data it pulled out of the model. The client
receives the generated response G, and service is complete.

1 It’s not always desirable to use domain objects in the presentation layer. See section 3.3.1 for a more detailed
discussion of this topic.
www.it-ebooks.info

http://www.it-ebooks.info/

67Spring Web MVC background
The separation of concerns is clear. The model is insulated from changes to the view,
and the view is insulated from at least certain changes to the model. Of course,
because the view renders model data, the view isn’t completely insulated from model
changes. But in general, separating the model and view into separate components
means it’s easier to update one without breaking the other.

 We’ll begin by exploring what Spring Web MVC is and how it helps us build web
applications.

3.1.2 What is Spring Web MVC?

Spring Web MVC, as you might guess, is Spring’s web-centric MVC framework. Its primary
job is to support the MVC way of dividing application functionality, so it provides explicit
support for organizing the web layer into models, views, and controllers. Separation
between the three concerns is clean; for example, when a controller selects a view, it does
so by selecting only a view name (not a View object, not a hardcoded path), and depen-
dency injection makes it possible to treat even view names as injected values.

 Besides a clean separation of concerns, another major design goal for Spring Web
MVC is flexibility. There are many ways for you to customize the way it works. If you want
to use POJO controllers, you can do that. If you prefer defining an interface for con-
trollers, you can do that too. You can control how requests map to controllers, how view
names are generated, and how view names are resolved to views. You can define inter-
ceptor chains and exception handling for your controllers, and you can choose from dif-
ferent strategies for resolving locales, UI themes, multipart resolvers, and more.

NOTE Spring 3 deprecates the org.springframework.web.servlet.mvc
.Controller hierarchy, so we will not cover these interfaces and classes here.
Spring 3 controllers are generally POJOs.

Figure 3.1 A conceptual view of control flow in web-based model-view-controller applications
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Building web applications with Spring Web MVC
Speaking of flexibility, one of our favorite things about Spring Web MVC is the tremen-
dous flexibility it provides around handler2 method parameters and return values: if
you want to expose an HttpServletRequest to a handler method, just declare the
parameter, and it’s automatically provided to the method. If you don’t want it, leave it
out. You can do the same thing with a whole host of parameters, as you’ll see.

 Don’t worry if that sounds like mumbo-jumbo at this point. We’ll look at this in
detail over the course of the chapter. Suffice it to say that Spring Web MVC is flexible
and capable.

 Let’s see some highlights of the Spring Web MVC architecture.

3.1.3 An architectural overview of Spring Web MVC

The center of the Spring Web MVC universe is the DispatcherServlet, a front con-
troller3 that dispatches requests to registered request handlers. The handlers can be
UI controllers or endpoints for HTTP-based remote services. Each handler performs a
service and then specifies a view to which the DispatcherServlet passes the request.
See figure 3.2.

2 In Spring Web MVC, handler is a more general way of referring to a UI controller. The idea is the same, but
handlers include HTTP-based remote service endpoints, which wouldn’t normally be considered UI control-
lers even though in reality they’re doing roughly the same thing: grabbing data and exporting it in a desired
format. We’ll mostly use handler and controller interchangeably.

3 A front controller is a top-level controller. It often manages other controllers. See Core J2EE Patterns—Front
Controller, Oracle, http://mng.bz/AB9X for more information.

Figure 3.2 A conceptual view of con-
trol flow in Spring Web MVC
www.it-ebooks.info

http://mng.bz/AB9X
http://www.it-ebooks.info/

69Creating your first Spring Web MVC application

let
We’re still dealing with the conceptual here, so don’t take figure 3.2 too literally, but
here’s how it works. The request comes into the DispatcherServlet B. Based on the
request path, the DispatcherServlet figures out which of its registered handlers is
the right one to service the request C. It then passes the HTTP request (or, more
abstractly, the user command or form data that the request represents) to a handler for
processing D. The handler queries or updates the model (or both) E, and if appro-
priate the model returns the requested data F. The handler then returns both the data
and a logical view name back to the DispatcherServlet G. The DispatcherServlet
resolves the view name into an actual view H and then passes the model data (if any)
along to that view I so it can be used in generating a response J. Processing is com-
plete, and the DispatcherServlet has serviced the request 1).

 We’ve suppressed a lot of details, but now you have a basic understanding of how
Spring Web MVC works. Let’s get right to the good stuff: writing your first Spring Web
MVC application (a toy app) and seeing it in action.

3.2 Creating your first Spring Web MVC application
Let’s build a simple application (in the broadest sense of the term) to manage a ros-
ter of some sort. We’re going to present this without tons of detailed explanation;
our goal is to give you an intuition for how things work in Spring Web MVC, rather
than exhaustively cover all the bases. This leisurely stroll will give you a context
against which to understand a more detailed discussion afterward. You’ll begin with
the app configuration.

3.2.1 Configuring the application

The following listing shows a bare-bones web.xml configuration, but it will work just fine.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip03, branch: 01 (Maven Project) -->

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <servlet>
 <servlet-name>main</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>main</servlet-name>
 <url-pattern>/main/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 3.1 Simple DispatcherServlet configuration in web.xml

Declares
DispatcherServ

B

Maps requests
to it

C

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Building web applications with Spring Web MVC

r
As promised, this is as simple as they come. You’ve defined a minimal Dispatch-
erServlet B, which again is Spring Web MVC’s front controller, and you’ve indicated
that you want to send /main/* requests to it C. You’re not tied to that particular map-
ping; that’s just what you happen to have chosen.

 Now let’s see the application context. You didn’t define a ContextLoaderListener
in web.xml, so you might be wondering where the app context comes from. The
answer is that each DispatcherServlet instance creates its own local app context
using an XML configuration we provide, so here’s that configuration.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip03, branch: 01 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean name="/roster/*"
 class="com.springinpractice.ch03.web.RosterController"/>

 <bean class="org.springframework.web.servlet.view.

➥ InternalResourceViewResolver"
 p:prefix="/WEB-INF/jsp/"
 p:suffix=".jsp"/>
</beans>

DispatcherServlet knows where to find this file by using a convention you can prob-
ably guess.4 You can configure the location, but we won’t worry about that right now.

 First you define the controller, RosterController B. The controller name speci-
fies the requests that the RosterController services.

 You also define a ViewResolver C, which allows you to convert logical view names
to views. For now it’s enough to know that a logical view name such as foo is converted
to /WEB-INF/jsp/foo.jsp given the definition here. When dealing with JSP views in
particular, it’s a good practice to place them somewhere inside the WEB-INF folder
(WEB-INF/jsp is the official recommendation) so clients can’t access them directly.
That’s what you do here.

 That does it for configuration. You’ll create a controller in a few minutes, but in
preparation for that, let’s create a domain object to represent a member of your
roster.

3.2.2 A simple domain object

The following listing shows Member.java, a simple domain object you’ll use in your
controller.

Listing 3.2 /WEB-INF/main-servlet.xml, the DispatcherServlet’s local app context

4 The location convention is /WEB-INF/[servlet-name]-servlet.xml, if you’re feeling lazy.

Controlle
beanB

Maps view
names to views

C

www.it-ebooks.info

http://www.it-ebooks.info/

71Creating your first Spring Web MVC application
// Source project: sip03, branch: 01 (Maven Project)
package com.springinpractice.ch03.model;

public class Member {
 private String firstName;
 private String lastName;

 public Member() { }

 public Member(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() { return firstName; }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() { return lastName; }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String toString() {
 return firstName + " " + lastName;
 }
}

There isn’t anything too special here. You include two constructors because you’ll
eventually use both of them.

 Now let’s get to the controller, which is more interesting.

3.2.3 Writing a basic controller

The next listing shows the RosterController. To keep things simple, you’ll hard-code
some fake roster data directly in the controller. In a real application, the controller
would typically delegate to either a service or a DAO to obtain this data on the control-
ler’s behalf. This is a pattern we’ll demonstrate in chapter 4.

// Source project: sip03, branch: 01 (Maven Project)
package com.springinpractice.ch03.web;

import java.util.*;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import com.springinpractice.ch03.model.Member;

@Controller
public final class RosterController {

Listing 3.3 Member.java

Listing 3.4 RosterController.java, the simple controller

@Controller for
controllers

B

Just a POJOC
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 Building web applications with Spring Web MVC
 private List<Member> members = new ArrayList<Member>();

 public RosterController() {
 members.add(new Member("John", "Lennon"));
 members.add(new Member("Paul", "McCartney"));
 members.add(new Member("George", "Harrison"));
 members.add(new Member("Ringo", "Starr"));
 }

 @RequestMapping
 public void list(Model model) {
 model.addAttribute(members);
 }

 @RequestMapping
 public void member(@RequestParam("id") Integer id, Model model) {
 model.addAttribute(members.get(id));
 }
}

There’s a lot packed into this small controller class, and you’re relying heavily on con-
ventions. Don’t feel bad if you’re not seeing the details of how everything is wired up;
you’ll have plenty of time to get to that in the pages ahead.

 Because the controller is a POJO, it’s useful for certain purposes (for example, for
request mapping purposes) to have an alternative way to flag it as a controller. That’s
what the @Controller annotation is doing B. You’re not extending any other classes
or implementing any interfaces C; you’re effectively defining the contract for this
controller.

WARNING It should be obvious that you’ve hardcoded the member list into
the controller. In a real application, you’d likely grab that from a service
bean. But here you’re trying to see how the MVC part works, so you’re faking
the member list.

You attach an @RequestMapping attribute to the list() and member() methods D.
This identifies them as request-servicing methods. The actual paths involved are spec-
ified by conventions you’ll see soon; here the paths are /roster/list[.*] and /roster/
member[.*] respectively, where * is any extension. For example, /roster/list, /roster/
list.do, and /roster/list.html all map to the list() method.

 The signature of the list() method is largely up to you. You declare whatever
you’d like to have, within certain bounds of course. (This is the part we were saying
earlier that we like about Spring Web MVC.) You declare a Model parameter E, which
means Spring will automatically pass you a Model object (essentially it functions as a
Map, even though it doesn’t implement that interface). Anything you put on the Model
will be available to the JSP as a JSP expression language (EL) variable. Here, you’ve
placed the list of members on the Model F. When you place objects on the model,
they’re stored as name/value pairs. Here, you haven’t explicitly assigned a name to
the attribute, so Spring will automatically generate the name by convention. Here,
because the type is List<Member>, the generated name is memberList. You’ll be able
to access it from your JSP using ${memberList}.

Maps requests
to method

D

Model providedE

Passes data
to viewF

Accepts request
param G
www.it-ebooks.info

http://localhost:8080/sip/main/nominee/form.do
http://www.it-ebooks.info/

73Creating your first Spring Web MVC application

 At G you can see another example of the flexible method signatures in action.
This time you declare that you want to accept an HTTP parameter called id, and you
want it to be automatically parsed into an Integer. That’s exactly what happens here.
(We told you it was cool.) And again, with the model you haven’t provided an explicit
attribute name, so the name will be autogenerated based on the attribute type. In this
case the name will be member, and it will be available to the JSP using ${member}.

 You may have noticed that you haven’t explicitly specified any view names. How
does DispatcherServlet know which view gets the request after a given handler
method is finished with it. The answer is that you’re using a convention that automati-
cally translates the request URL to a logical view name. Because the request URL for
the list() method is /roster/list[.*], the view name according to the convention will
be list. Similarly, because the request URL for the member() method is /roster/mem-
ber[.*], the view name will be member. You’ll see more about this convention later
when we discuss the DefaultRequestToViewNameTranslator.

 Another thing to note is that you define a couple of different actions. You can
define as many as you like, but for now you’re keeping it simple. Normally you would
put closely related functionality together in a single controller as you do here.

 Now let’s peek at the master and details JSPs.

3.2.4 Implementing the master and details views

The following listing shows list.jsp, which displays the entire roster.

<%-- Source project: sip03, branch: 01 (Maven Project) --%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Roster</title>
 </head>
 <body>
 <h1>Roster</h1>

 <c:forEach var="member" items="${memberList}"
 varStatus=”status”>

 <c:out value="${member}"></c:out>

 </c:forEach>

 </body>
</html>

In this listing you reference the memberList attribute you set in the controller
through a JSP EL variable B. You list the members C, with their names being links to
details pages. You also pass an id parameter along, which the member() method
expects as you saw in listing 3.4.

Listing 3.5 /WEB-INF/jsp/roster/list.jsp, a roster master page

Member list exposed
as ${memberList}

B

Passes id
paramC
www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Building web applications with Spring Web MVC
 Next, here’s the details page, member.jsp.

<%-- Source project: sip03, branch: 01 (Maven Project) --%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Member: ${member}</title>
 </head>
 <body>
 <h1>Member: ${member}</h1>
 <p>Back</p>
 </body>
</html>

Nothing much happening here. It’s another example of grabbing data from the Model
and displaying it in the JSP B. Let’s stop at this point to admire the beauty of your
work so far. Point your browser to http://localhost:8080/sip/main/roster/list.do. It
won’t win any design awards, but it works.

 Let’s try adding a form.

3.3 Serving and processing forms
Now that you’ve seen how to create a simple POJO controller, it’s time to get a little
more adventurous and implement form serving and processing functionality. Let’s
pretend you create a form to allow the user to nominate a member for an award.
(Yeah, we’re making this example up as we go.) Although it’s entirely possible to mix
and match form methods with non-form methods on a single controller, let’s create a
new controller because showing rosters and roster members isn’t closely related to
nominating members for awards.

Before creating your new controller, you’ll need a form bean. One of the nice features
of Spring Web MVC is that if it makes sense to do so, you can use your domain objects
as form beans. Let’s see what’s involved with that.

3.3.1 Using domain objects as form beans

To add a form, the first thing you need to do is create a bean to store the form data.
This is called a form bean or form-backing bean. There are a couple of different
approaches to doing this, and they aren’t mutually exclusive.

Listing 3.6 /WEB-INF/jsp/roster/member.jsp, a member details page

Member exposed
as ${member}

B

A best practice for controllers
With Spring Web MVC before Spring 2.5, the way you bundled controller methods to-
gether was dictated more by the classes in the Controller hierarchy than it was by
which methods were closely related. With POJO controllers that’s no longer the case.
A best practice is to bundle closely related methods together in a single controller,
and to put unrelated methods on other controllers.
www.it-ebooks.info

http://www.it-ebooks.info/

75Serving and processing forms
 One approach is to use your domain objects as your form beans. This works well
when there’s a close match between the fields you require on the form and the prop-
erties your domain model has, as is often the case. The advantage of this approach is
that you can avoid creating separate but parallel sets of classes for your domain objects
and your form beans, which keeps the clutter down. (With Struts 1, for instance, it was
common to have parallel sets of classes like this.)

 Another approach is to implement your form bean separately from your domain
model. This can make sense when the domain model has properties for which there
aren’t corresponding form fields, when the form has fields for which there aren’t cor-
responding domain object properties, or both. A good example (which you’ll see in
chapter 4, even though there you use the domain object as a form bean after all) is a
user registration form. Most registration forms have a “confirm password” field, and
many have CAPTCHA fields, but neither of those is properly part of the domain model.
Similarly, the domain model often has properties such as confirmed, enabled, and so
forth. Obviously you wouldn’t include those as form fields.

 When using this second approach, you have to pay attention to how you handle the
extra fields on both sides. If the form has extra fields, like a “confirm password” field,
you can declare those as separate @RequestParam parameters as you did in listing 3.4.
If the domain model has extra properties, such as confirmed or enabled, you’ll need to
make sure users can’t bind extraneous HTTP parameters to those properties. That
involves creating a form-binding whitelist. See section 3.3.6 for more information.

Again, the approaches aren’t mutually exclusive, meaning you can use domain objects
to back forms in certain cases and dedicated form beans in other cases.

 That’s enough philosophizing for now. In this case, the Member class is exactly what
you’d want from a form bean, so you’ll use it as a form bean.

Is it really OK to use domain objects as form beans?
Even in cases where there’s not an exact match between form beans and domain
objects, it’s a judgment call and a matter of architectural sensibilities whether you
reuse your domain objects for your form.

Some prefer not to do it because they (reasonably) draw a strong architectural
distinction between form beans and domain objects. Struts 1, for instance, works
like this: the framework enforces a clean separation between domain objects and
form models.

Others, your authors included, don’t mind a little architectural impurity if we can avoid
having two parallel sets of strongly similar classes (which carries its own costs). If
our domain objects and form beans mostly overlap, we’re willing to accept (for in-
stance) JPA annotations in our form bean as the cost of having a single class.

Spring Web MVC provides this option by design. Reasonable minds will differ as to
its architectural merits. In practice we find the option useful and not confusing.
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Building web applications with Spring Web MVC
 Let’s build the new controller.

3.3.2 Adding a controller

The new form will allow the user to nominate a member for an award. The control-
ler won’t do anything other than show some log output and forward to a “thanks”
page. You just want to see how to set up a form. The following listing contains the
new form controller.

// Source project: sip03, branch: 02 (Maven Project)
package com.springinpractice.ch03.web;

import org.apache.log4j.Logger;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import com.springinpractice.ch03.model.Member;

@Controller
public final class NomineeController {
 private static final Logger log =
 Logger.getLogger(NomineeController.class);

 private String thanksViewName;

 public void setThanksViewName(String thanksViewName) {
 this.thanksViewName = thanksViewName;
 }

 @RequestMapping(method = RequestMethod.GET)
 public Member form() { return new Member();}

 @RequestMapping(method = RequestMethod.POST)
 public String processFormData(Member member) {
 log.info("Processing nominee: " + member);
 return thanksViewName;
 }
}

The new controller is dedicated to serving and processing a form. You define a setter
so you can inject a logical view name for a “thanks” page after the user submits a nom-
ination B. It’s probably obvious why you don’t want to return something like /WEB-
INF/jsp/nominee/thanks.jsp: that doesn’t give you a good separation between the
controller and the view. But it may be less obvious why you don’t return a logical view
name, say thanks. You’ll see the answer to that when we discuss the redirect-after-post
pattern, but for now take it on faith that even with the view name it often makes sense
to keep the controller and view separate.

 You have two methods. One is marked as handling GET requests and the other as
handling POSTs. In the GET handler C, you return an empty form bean so the HTML
form fields have something to bind to. In this case you aren’t prepopulating the Mem-
ber form bean, but sometimes it’s useful to do that kind of thing.

Listing 3.7 NomineeController.java, a simple form controller

Injects view
name

B

Handles GET
requests

C

Serves empty formD
Handles POST
requestsE

Gets form
data as beanFReturns view

name G
www.it-ebooks.info

http://www.it-ebooks.info/

77Serving and processing forms
Whether or not you prepopulate the form bean with data, by returning it from the
method you’re placing it on the Model under the generated attribute name member D.
If you wanted to use another attribute name, such as nominee, you would do something
like this:

@RequestMapping(method = RequestMethod.GET)
public void form(Model model) {
 model.addAttribute("nominee", new Member());
}

The result is the same, except that the form bean’s attribute name is nominee instead
of member.

 At any rate, let’s be happy with the attribute name member and return a Member. But
the choice is yours. This is yet another example of how flexible Spring Web MVC is.

 Now let’s look at the POST handler. You include an annotation marking it as such E,
and then you have a method signature that takes a Member and returns a String F. Once
again, the signature you use is dependent on your need. By taking a Member parameter,
the submitted form data will be automatically bound to a Member bean, the bean will be
placed on the model as an attribute under its generated name (member), and the bean
will be passed into the method itself. But as with return types, you aren’t forced to use
the generated name here: you can use the @ModelAttribute annotation5 to select a dif-
ferent name. Play around with the following, adding and removing the @ModelAttrib-
ute annotation, to see how it works:

@RequestMapping(method = RequestMethod.POST)
public String processFormData(
 @ModelAttribute("nominee") Member member, Model model) {

 log.info("Processing nominee: " + member);
 Map map = model.asMap();
 log.info("model[member]=" + map.get("member"));
 log.info("model[nominee]=" + map.get("nominee"));
 return thanksViewName;
}

For the following discussion, assume that you’re using the code from listing 3.8
rather than the modified version. We wanted to give you a nice way to understand
what’s going on with the form bean parameter, as well as exposure to the @ModelAt-
tribute annotation.

5 The fully qualified class name is org.springframework.web.bind.annotation.ModelAttribute.

Prepopulating form beans
The most common case of prepopulating form beans arises in validation scenarios:
when the user enters invalid form data, you usually want to re-present that invalid
data in the form so the user can correct it, rather than making them reenter the data
from scratch. There are other examples too. You might prepopulate a request for in-
formation (RFI) form bean with location data based on the user’s IP address.
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Building web applications with Spring Web MVC

g
 At G you return the view name. Any time the return type is a String, Dispatch-
erServlet assumes that the return value represents a logical view name.

 You’ll need a couple more JSPs: one to display the form and one to thank the user
for submitting the form.

3.3.3 Adding a form JSP and a “thanks” JSP

The following listing shows the form.

<%-- Source project: sip03, branch: 02 (Maven Project) --%>
<%@ taglib prefix="form"
 uri="http://www.springframework.org/tags/form" %>

<html>
 <head>
 <title>Nominate a member for the award</title>
 </head>
 <body>
 <h1>Nominate a member for the award</h1>
 <form:form modelAttribute="member">
 <div>First name: <form:input path="firstName"/></div>
 <div>Last name: <form:input path="lastName"/></div>
 <div><input type="submit" value="Submit"></input></div>
 </form:form>
 </body>
</html>

The form is modest and looks a lot like a normal HTML form. The main difference is
that you declare the Spring form tag library B, and you’re using that to represent the
form and its inputs. The primary advantage of using the form tag library is that it pro-
vides binding form inputs. If you were to prepopulate the Member bean with data, that
data would automatically be rendered in the corresponding text field. (Try it out if
you like.)

 At C you bind the form to the member attribute that the controller placed on the
Model. This gives you a way to interpret input paths (discussed in a moment) as bean
properties. If you don’t specify an explicit value for modelAttribute, the default form
bean attribute name is command, which isn’t descriptive. You should probably always
set a modelAttribute explicitly.

 At D you have a text field that binds to member.firstName. There’s one for the last
name too. The form tag library has tags for all the standard HTML input controls,
although you’re using only text fields here.

 Finally you have a submit button E. There’s no tag from the tag library for this
because there isn’t anything for the submit button to bind to; that is, the submit
button doesn’t have a corresponding bean property. So you use a normal HTML sub-
mit button.

 The next listing shows a basic “thanks” page.

Listing 3.8 /WEB-INF/jsp/nominee/form.jsp

Declares form
tag libraryB

Defines formC
Bindin
input

D

No special
submit tag E
www.it-ebooks.info

http://www.it-ebooks.info/

79Serving and processing forms
<%-- Source project: sip03, branch: 02 (Maven Project) --%>
<html>
 <head>
 <title>Thanks</title>
 </head>
 <body>
 <h1>Thanks</h1>
 <p>Thanks for nominating ${member}.</p>
 </body>
</html>

The only reason we’re looking at this is that it shows you that the Member form bean
passed into processFormData() lives on the Model under the member attribute name.

 As you can see, adding a form is more involved than actions that grab data and dis-
play it. And we haven’t yet touched whitelisting and validation. But all things consid-
ered, it’s still fairly straightforward. The framework handles form/bean binding
automatically, and you define the controller methods to use just what you need and
nothing else.

 Let’s finish the form (for the moment) by updating the application context.

3.3.4 Updating the application context

You need to make only one change to the main-servlet.xml application context file.
Add the following bean, and you’re set:

<bean name="/nominee/*"
 class="com.springinpractice.ch03.web.NomineeController"
 p:thanksViewName="nominee/thanks"/>

It’s time to try the new form. Point your browser to http://localhost:8080/sip/main/
nominee/form.do. You should get the nomination form. When you complete the
form and submit it, you should get the “thank you” message, complete with the nomi-
nee’s name.

 The form basically works, but it’s not done yet. You need to address important
usability and security issues. Let’s look at those.

3.3.5 Adding redirect-after-post behavior

One common pattern to use with web-based forms is called redirect-after-post. The idea
is that when a user submits a form via HTTP POST, it’s nice to force a redirect to mini-
mize the likelihood of a double submit, to avoid browser warnings when the user
clicks the back button, to make the resulting page easier to bookmark, and so forth.
To do this, prepend redirect: to the logical view name. This will cause RedirectView
to kick in, and the browser will request whatever page you tell it to request.

 This illustrates a good reason for using dependency injection to set logical view
names. Presumably controllers shouldn’t know whether they’re issuing forwards or redi-
rects. By keeping the view names configurable, you achieve controller/view separation.

Listing 3.9 /WEB-INF/jsp/nominee/thanks.jsp
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 Building web applications with Spring Web MVC
 Now let’s look at a security issue you need to address when working with forms.

3.3.6 Adding form-binding whitelisting

In July 2008, Ounce Labs6 discovered a security vulnerability in Spring Web MVC
related to automatic form binding. Because Spring automatically binds HTTP parame-
ters to form bean properties, an attacker could conceivably bind to properties that
weren’t intended for binding by providing suitably named HTTP parameters. This
might be a real problem in cases where a domain object is serving as the form-backing
bean, because domain objects often have fields that are suppressed when used in
form-backing scenarios, as we discussed in section 3.3.1.

 To address this problem, you can define explicit whitelists in your controllers. You
can do this using so-called @InitBinder methods. You’ll need one for each form. (If
your controller has two forms, it needs two separate @InitBinder methods.)

 Here’s an example you’ll see later in the book. You have a controller that handles
two forms: one to allow users to subscribe to a mailing list using a form called sub-
scriber, and one to allow them to unsubscribe using a form called unsubscriber. You
use these @InitBinder methods to whitelist the form fields:

@InitBinder("subscriber")
public void initSubscriberBinder(WebDataBinder binder) {
 binder.setAllowedFields(new String[] {
 "firstName", "lastName", "email"
 });
}

@InitBinder("unsubscriber")
public void initUnsubscriberBinder(WebDataBinder binder) {
 binder.setAllowedFields(new String[] { "email" });
}

If there’s only one form, you don’t have to provide an explicit annotation value. But
because you have two forms, you need to specify subscriber or unsubscriber to let
Spring know which binder to initialize.

 Even after initializing the binders, you aren’t finished. You have to verify that the
whitelist has been respected each time the user submits a form. One simple way to do
this is to define a helper class with a static verification method and call that from your
form-processing methods. Here’s a sample implementation:

public static void verifyBinding(BindingResult result) {
 String[] suppressedFields = result.getSuppressedFields();
 if (suppressedFields.length > 0) {
 throw new RuntimeException(
 "Attempting to bind suppressed fields: " +
 StringUtils.arrayToCommaDelimitedString(suppressedFields));
 }
}

6 Ounce Labs was acquired by IBM in 2009.
www.it-ebooks.info

http://www.it-ebooks.info/

81Configuring Spring Web MVC: web.xml
A more sophisticated way to do this might be to define an aspect that automatically
applies the verification to all form-processing methods, although you don’t do that
here.

 See recipe 4.1 for more information on whitelisting form bindings.

3.3.7 Adding form validation

When users submit form data, you typically want to validate it before accepting it for
processing. For example, in the present case you’d want to make sure that the fields
aren’t empty, that they aren’t too long, that the e-mail field looks like a real e-mail
address, and so forth. The preferred approach will eventually be to use JSR 303 (Bean
Validation) to define annotation-based validation semantics on objects requiring vali-
dation. But JSR 303 isn’t ready at the time of this writing, so the preferred approach
until then is to use Hibernate Validator. Please see recipe 4.2 for a detailed example of
how to perform annotation-based form validation in Spring.

 Now that you’ve toured some of the capabilities Spring provides for implementing
web-based MVC applications, let’s look more carefully at configuration.

3.4 Configuring Spring Web MVC: web.xml
In sections 3.2 and 3.3 you created a toy application, and then we discussed in some
detail how it works. We focused on the programming model rather than the configura-
tion model, but now it’s time to address configuration. Understanding Spring Web MVC
configuration amounts to understanding how to configure the DispatcherServlet.

 There are two levels of DispatcherServlet configuration. First, because it’s a serv-
let, you declare one or more DispatcherServlet instances and their corresponding
servlet mappings inside web.xml. Second, each DispatcherServlet instance has its
own application context, and by configuring that you configure the DispatcherServ-
let itself. In this section we’ll look at web.xml; in the following sections we’ll look at
the much more involved matter of configuring the servlet’s application context.

DispatcherServlet is only a servlet, so at a certain level of abstraction there’s no dif-
ference between configuring DispatcherServlet and configuring other servlets. The
following listing shows a perfectly simple and valid DispatcherServlet configuration.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>

Listing 3.10 Simple DispatcherServlet configuration in web.xml

Loads root
app context

B

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 Building web applications with Spring Web MVC

let
 </listener>
 <servlet>
 <servlet-name>main</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>main</servlet-name>
 <url-pattern>/main/*</url-pattern>
 </servlet-mapping>
</web-app>

This is a minimal DispatcherServlet configuration. You load a root application con-
text from the default location, /WEB-INF/applicationContext.xml B. Then you create
the DispatcherServlet C. Because you haven’t specified a location for the servlet’s
dedicated application context configuration, DispatcherServlet assumes that it
exists at /WEB-INF/main-servlet.xml; the general pattern for the default location is
/WEB-INF/[servlet-name]-servlet.xml. Finally, you specify the requests that you want
the DispatcherServlet to service D.

 When DispatcherServlet creates its application context, it uses the root app con-
text as a parent context. But note that it isn’t necessary to create a root app context. In
that case, DispatcherServlet’s app context will be free-standing (no parent).

 The servlet’s application context can “see” beans in the root context, but not the
other way around. Thus a nice way to use the servlet’s app context is to put Spring
Web MVC stuff in it rather than in the root context. That way your root context stays
nice and tidy.

DispatcherServlet supports several configuration options. We’ll mostly ignore
them because they’re fairly esoteric, but one that’s worth knowing is contextConfig-
Location. This works exactly like the same parameter for the root context (see chap-
ter 1), but here it’s a servlet init-param instead of an application context-param. If
you wanted to move the XML file into a WEB-INF/conf directory, you would do some-
thing like this:

<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/conf/main-servlet.xml</param-value>
 </init-param>
</servlet>

As with the root application context, you can specify multiple whitespace- or comma-
delimited locations in the param-value. The resulting application context will include
the beans from all files, with beans defined later in the list taking priority over those
defined earlier in the case of naming conflicts.

Creates
DispatcherServ

C

Maps
requestsD
www.it-ebooks.info

http://www.it-ebooks.info/

83Configuring Spring Web MVC: the application context
NOTE If you’re interested in the other configuration parameters, look at the
DispatcherServlet Javadocs. It turns out that its various JavaBean properties
(such as contextConfigLocation, contextAttribute, contextClass, dis-
patchOptionsRequest, detectAllHandlerMappings, and so on) are all setta-
ble via the init-param mechanism. Pretty cool, right? Servlets don’t usually
work that way, but DispatcherServlet descends from HttpServletBean,
which provides this special behavior.

That’s about all you need to know about the web.xml configuration. But the core serv-
let configuration lives in the servlet’s application context, and we’ll visit that large
topic right now.

3.5 Configuring Spring Web MVC: the application context
We’re now going to look at the various DispatcherServlet configuration options at
your fingertips. In calling these DispatcherServlet configuration options, note that
we’re talking about Spring Web MVC configuration generally, because Dispatch-
erServlet does play that large a role in Spring Web MVC.

 Fundamentally, DispatcherServlet provides a central place for registering con-
trollers you write and an infrastructure for using the controllers to service requests.
The configuration of that infrastructure is strategy-based, meaning Spring Web MVC
defines a number of interfaces corresponding to the properties that need to be con-
figured. Your job as application developers is to select or create appropriate imple-
mentations (strategies, in design pattern lingo) for those interfaces. Spring Web MVC
provides several default strategy implementations, and normally you could use them
as opposed to being forced to write your own. But the possibility of writing your own is
certainly there, which speaks to the aforementioned flexibility of the design.

 Before jumping into the specifics of controllers and DispatcherServlet configu-
ration, we’ll summarize the strategies and their default implementations in table 3.1.

Table 3.1 DispatcherServlet strategy interfaces and default implemetations

Strategy interface # Default implementation(s)

HandlerMapping 1–n BeanNameUrlHandlerMapping,
DefaultAnnotationHandlerMapping
(Java 5+ only)

HandlerAdapter 1–n HttpRequestHandlerAdapter,
SimpleControllerHandlerAdapter,
ThrowawayControllerHandlerAdapter,
AnnotationMethodHandlerAdapter
(Java 5+ only)

HandlerExceptionResolver 0–n None

ViewResolver 1–n InternalResourceViewResolver
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Building web applications with Spring Web MVC
The table contains the major DispatcherServlet configuration options. Each option
requires a given number of implementing beans, as described. For example, you can
have as many HandlerMapping beans as you like, as long as you have at least one. If you
don’t specify any, then DispatcherServlet chooses defaults. (The annotation-based
handler mapping and adapter are created only for Java 5+.)

 Some of the beans are discovered by type, and some require the use of well-known
names. In the case of DispatcherServlet, strategy interfaces allowing n implementa-
tions do type-based discovery, and interfaces allowing at most one implementation
all require the use of well-known names if you want the DispatcherServlet to find
your beans.

 Now that you have some hint as to how DispatcherServlet configuration works in
the application context, let’s consider each strategy interface individually.

3.5.1 Configuring HandlerMappings

We’ll begin with the HandlerMapping interface. Here’s the idea behind handler map-
pings. Whenever DispatcherServlet receives a new HTTP request, it needs to find a
handler (controller) to service that request. To this end DispatcherServlet main-
tains an ordered list of 1–n HandlerMappings.7 When it receives a request, it checks
each of its registered HandlerMappings, in order, to see whether it’s able to generate a
handler for the given request. If so, then that’s the selected handler. If the process bot-
toms out without a handler being selected, then DispatcherServlet generates an
HTTP 404.

 There’s more we can say about how HandlerMappings work, but let’s pause to
digest what you’ve learned so far. Table 3.2 shows the different HandlerMapping imple-
mentations available (and again, you can always write your own).8 Each mapping
scheme describes a way to match a request to a handler bean.

RequestToViewNameTranslator
(bean ID: viewNameTranslator)

1 DefaultRequestToViewNameTranslator

MultipartResolver (bean ID:
multipartResolver)

0–1 None

LocaleResolver (bean ID:
localeResolver)

1 AcceptHeaderLocaleResolver

ThemeResolver (bean ID:
themeResolver)

1 FixedThemeResolver

7 We know that all lists are ordered. We’re emphasizing the list order because it matters here.
8 As of Spring 3.0, CommonsPathMapHandlerMapping no longer exists. Use annotation-based request map-

ping as a replacement.

Table 3.1 DispatcherServlet strategy interfaces and default implemetations (continued)

Strategy interface # Default implementation(s)
www.it-ebooks.info

http://www.it-ebooks.info/

85Configuring Spring Web MVC: the application context
Let’s see how (most of) the individual HandlerMapping implementations work.

BEANNAMEURLHANDLERMAPPING

As indicated, BeanNameUrlHandlerMapping is one of the defaults you get if you don’t
specify some other mapping. (If you do specify another mapping, then if you want
the BeanNameUrlHandlerMapping you have to define it explicitly, because explicit
handler mapping definitions displace the defaults.) It’s very simple. You use the con-
troller bean’s name to specify the handler URLs that map to the controller. Here’s
how it works:

<bean name="/contact/*" class="mypackage.MyController"/>

The URL is relative to the servlet path. This approach is nice for its simplicity, but it
can be verbose if you have a lot of controllers. Let’s see another handler mapping—
one that’s concise.

CONTROLLERCLASSNAMEHANDLERMAPPING

ControllerClassNameHandlerMapping allows you to use the name of the controller to
implicitly define the URLs that map to the controller. All you need to do is place the
handler-mapping bean on the application context, and it’s activated. The mapping
works for controllers defined using the old Controller hierarchy as well as for those
defined using the newer @Controller annotation.

Table 3.2 HandlerMapping implementations

Implementation Mapping scheme

BeanNameUrlHandlerMapping Match the request URL with a handler bean name,
which must be URL-like and begin with a slash (/):
for example, /contact.do. Wildcards are OK.
This mapping is activated by default if (and only if)
you don’t specify mappings explicitly.

ControllerBeanNameHandlerMapping Match the request URL with a plain handler bean
name, which is converted into a URL by prepending
an optional prefix, appending an optional suffix, and
prepending a slash.

ControllerClassNameHandlerMapping Match the request URL with a handler class name,
which is converted into a base URL using a certain
convention.

DefaultAnnotationHandlerMapping Match based on the presence of the
@RequestMapping annotation at the handler-
type level or the existence of @Controller at the
handler-type level and @RequestMapping at the
handler-method level.

SimpleUrlHandlerMapping Match according to a map whose keys are URL
paths (possibly wildcarded) and whose values are
bean IDs or names.
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 Building web applications with Spring Web MVC
 Here’s how to put it on the app context:

<bean class="org.springframework.web.servlet.mvc.support.

➥ ControllerClassNameHandlerMapping"/>

Once you do that, URLs will map to controllers based on controller names. If you have
a controller called ContactController, for example, requests like /contact and
/contact/* will map to the ContactController. The exact mappings depend on the
type of controller; the mappings we just described apply to MultiActionControllers
and @Controller beans. For more information please consult the Javadocs for
ControllerClassNameHandlerMapping.

DEFAULTANNOTATIONHANDLERMAPPING

This is the second default handler mapping that’s available, although only under
Java 5. If you define another handler mapping explicitly, DefaultAnnotationHan-
dlerMapping will be displaced and you’ll need to define it explicitly if you want it.

 This handler mapping works by inspecting method-level @RequestMapping annota-
tions. Under this handler mapping, any annotations discovered on the methods auto-
matically generate mappings to the handler itself.

DefaultAnnotationHandlerMapping typically depends on a type-level @Control-
ler annotation to determine whether a given bean generates mappings, but this isn’t
strictly required. The other alternative is to have a type-level @RequestMapping annota-
tion. One of the two type-level annotations must be present.

SIMPLEURLHANDLERMAPPING

This handler mapping is similar to BeanNameUrlHandlerMapping in the sense that
it involves defining explicit URL/handler pairs in the application context file; but
SimpleUrlHandlerMapping allows you to define multiple mapping patterns with a sin-
gle bean; BeanNameUrlHandlerMapping allows only one mapping pattern per bean.
Here’s an example of how it works:

<bean class="org.springframework.web.servlet.handler.

➥ SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/index.html">coreController</prop>
 <prop key="/about.html">coreController</prop>
 <prop key="/contact/*">contactController</prop>
 <prop key="/forums/*">forumsController</prop>
 </props>
 </property>
</bean>

As with the BeanNameUrlHandlerMapping, the URLs are relative to the servlet path.
This handler mapping provides a nice way to combine several mappings in a single
bean definition.

USING MULTIPLE HANDLER MAPPINGS AT ONCE

You may find yourself needing to use multiple handler mappings in a single Dis-
patcherServlet. Maybe you want to use ControllerClassNameHandlerMapping as
www.it-ebooks.info

http://www.it-ebooks.info/

87Configuring Spring Web MVC: the application context
your main handler mapping strategy, but you want to use SimpleUrlHandlerMapping
to cover some cases where your URLs don’t match the controller class name in the way
that would be required for the ControllerClassNameHandlerMapping to work. What
to do, what to do?

 You can accomplish this by placing any desired handler mappings on the context
and defining an order. DispatcherServlet will find all of your handler mappings,
and it will determine handler-mapping priority based on the handler mapping’s
order property, which all AbstractHandlerMappings have by virtue of implementing
the Order interface. Here, the lower the number (with Integer.MIN_VALUE being the
lowest possibility), the higher the precedence. When routing a request, Dispatch-
erServlet iterates over its registered handler mappings starting with the highest-
priority mapping, trying at each step to generate a handler match. Once a match is
found, request processing continues with the matched handler. If there’s no match,
DispatcherServlet generates an HTTP 404.

 Here’s how it looks in code:

<bean class="org.springframework.web.servlet.handler.

➥ SimpleUrlHandlerMapping"
 p:order="0">
 <property name="mappings">
 <props>
 <prop key="/index.html">coreController</prop>
 <prop key="/about.html">coreController</prop>
 <prop key="/contact/*">contactController</prop>
 <prop key="/forums/*">forumsController</prop>
 </props>
 </property>
</bean>

<bean class="org.springframework.web.servlet.mvc.support.

➥ ControllerClassNameHandlerMapping"
 p:order="1"/>

Now let’s look at what happens when the routing actually occurs. Although in most
cases the request goes directly to a controller, that’s not the only way it works. You can
define interceptors around the controller to modify processing both coming in and
going out.

HANDLERINTERCEPTORS

Any HandlerMapping implementation extending from AbstractHandlerMapping (and
that would include all of the HandlerMapping implementations provided out of the
box) allows you to specify an array of interceptors—implementing the HandlerInter-
ceptor interface—which wrap handler requests in the same way that servlet filters
wrap servlet requests. Figure 3.3 shows how this works.

 Spring comes with several out-of-the-box HandlerInterceptor implementations.
One example is WebContentInterceptor, which supports request checks such as
checking whether the HTTP method is permissible and whether a session exists (if ses-
sions are required). You can apply interceptors by injecting them into handler map-
pings, as shown next.
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Building web applications with Spring Web MVC

...

<bean id="webContentInterceptor"
 class="org.springframework.web.servlet.mvc.WebContentInterceptor">
 <property name="supportedMethods">
 <list>
 <value>GET</value>
 <value>POST</value>
 </list>
 </property>
</bean>

<bean class="org.springframework.web.servlet.mvc.support.

➥ ControllerClassNameHandlerMapping">
 <property name="interceptors">
 <list>
 <ref bean="webContentInterceptor"/>
 </list>
 </property>
</bean>

...

In listing 3.7, you begin by defining an interceptor B. Here you’re using one of the
ready-made interceptors; you’ll use it to block any HTTP request that isn’t a GET or a
POST. You accomplish this by configuring the supportedMethods property C, which is
of course specific to this particular interceptor class. Although the property type is a
String[], Spring knows how to convert your list into an array.

Listing 3.11 How to intercept controllers with HandlerInterceptors

Figure 3.3 Control flow in
a HandlerExecutionChain

Defines interceptor B

Configures itC

Defines handler
mapping

D

Injects
interceptorsE

References defined
interceptorF
www.it-ebooks.info

http://www.it-ebooks.info/

89Configuring Spring Web MVC: the application context
 Next is the handler-mapping definition D. Because this particular handler map-
ping extends AbstractHandlerMapping, you can define an interceptors property
and pass along the list of interceptors E. Here there’s only one. As previously men-
tioned, the interceptors property expects an array, but Spring knows how to convert
the list to an array. You pass in the single WebContentInterceptor you created F. The
result will be that for any request coming through that handler mapping, if it isn’t
either a GET or a POST, it will be blocked. For more information on interceptors, please
see the HandlerInterceptor Javadocs.

 Now let’s move on to handler adapters, which allow Spring to be flexible with
respect to the type of controllers it permits.

3.5.2 Configuring HandlerAdapters

Recall from our earlier discussion that one of the design goals behind Spring Web
MVC is to be flexible. One expression of this flexibility lies in the fact that controllers
don’t have to implement any particular interface, at least as far as the app developer is
concerned. Developers can implement interfaces in the Controller hierarchy, or
they can add @Controller to their POJOs.

 Ultimately, of course, DispatcherServlet needs to have some way to invoke the
handlers, and it accomplishes this through the HandlerAdapter interface. The idea is
that as long as there’s a HandlerAdapter implementation that knows how to deal with
your specific type of controller, DispatcherServlet is happy and can work with your
controller. HandlerAdapter is therefore more a service provider interface (SPI) that
you would implement only if you needed to support a new handler type; you wouldn’t
normally make calls against it yourself. Only DispatcherServlet needs to call it.9

3.5.3 Configuring HandlerExceptionResolvers

We’ve been discussing handler execution chains, which consist of a handler and its
interceptors. Sometimes you want to define special exception handlers for the handler
execution chains, and for that you turn to HandlerExceptionResolvers. By default
DispatcherServlet doesn’t have any, but if you decide you want one or more, it’s easy
to do. You place the desired HandlerExceptionResolver beans in the app context,
using the order property to set precedence if you have more than one. If any given
resolver is able to determine an appropriate landing page for the exception, it provides
the page; otherwise, it returns null and the next resolver in the chain takes a crack at
it. If all resolvers return null, then normal processing occurs (that is, whatever happens
when there’s an exception and no HandlerExceptionResolvers to handle it).

3.5.4 Configuring ViewResolvers

When a controller is done processing a request, it generally returns a logical view
name to DispatcherServlet. The view name serves as a basis for view resolution.

9 Probably HandlerAdapter is a misleading name for the interface. With the adapter design pattern, adapter
refers to the implementation code that bridges the two interfaces. The outer interface itself isn’t an adapter.
No biggie, especially because nothing sees HandlerAdapter except DispatcherServlet.
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 3 Building web applications with Spring Web MVC
(The controller can also return a null view name to indicate that it has itself handled
processing.) When DispatcherServlet receives the view name, it grabs its list of
ViewResolvers and iterates over them until it finds one that’s able to generate a View
from the view name.

 We’ll look at this chaining behavior in a few moments, but first let’s examine the
default view resolver, which is InternalResourceViewResolver.

INTERNALRESOURCEVIEWRESOLVER, THE DEFAULT VIEW RESOLUTION STRATEGY

The default strategy for view resolution is InternalResourceViewResolver. This
allows you to map view names to InternalResourceViews, which represent servlet-
based view technologies such as servlets, JSPs, JSTL-based JSPs, and Tiles pages.

InternalResourceViewResolver converts the logical view name to a physical path
by taking the logical view name, prepending a configurable prefix, and appending a
configurable suffix. By default, the prefix and suffix are empty, which means you have
to specify full view paths instead of logical view names to use. Because you don’t usu-
ally want to specify full view paths from your controllers—that ties the controller too
closely to the view—you’ll generally want to define your own InternalResourceView-
Resolver. Here’s a typical configuration:

<bean class="org.springframework.web.servlet.view.

➥ InternalResourceViewResolver"
 p:prefix="/WEB-INF/jsp/"
 p:suffix=".jsp"/>

If this resolver receives the logical view name contact, for example, it converts that to
/WEB-INF/jsp/contact.jsp and then builds a corresponding view. The view is an
InternalResourceView if JavaServer Pages Standard Tag Library (JSTL) isn’t on the
classpath or else a JstlView if JSTL is present. InternalResourceViewResolver
automatically detects the presence or absence of JSTL and selects the correct view
type accordingly.

Let’s look at a couple of special view names that InternalResourceViewResolver
knows how to handle.

REDIRECT: AND FORWARD:

InternalResourceViewResolver inherits from its UrlBasedViewResolver superclass
an awareness of two special view name prefixes, redirect: and forward:. When

Best practice: place JSPs in /WEB-INF/jsp or /WEB-INF/views
In MVC applications, controllers mediate access to views, and you don’t usually want
users hitting JSP pages directly. A best practice is to place the JSPs under the /WEB-
INF folder where users can’t get to them. Most applications place the JSPs under
/WEB-INF/jsp or /WEB-INF/views. By configuring InternalResourceViewResolver
with the /WEB-INF/jsp/ or /WEB-INF/views/ prefix, you can ensure that logical view
names resolve to JSPs inside /WEB-INF/jsp or /WEB-INF/views, respectively.
www.it-ebooks.info

http://www.it-ebooks.info/

91Configuring Spring Web MVC: the application context
InternalResourceViewResolver sees a view name that begins with either of these, it
short-circuits standard view resolution and instead returns a special view, either a
RedirectView or an InternalResourceView according to whether the prefix is the
redirect prefix or the forward prefix.

Redirecting is especially helpful after processing form requests, as you saw in sec-
tion 3.3.5. It does, of course, have other applications.

 Let’s look at some other view resolvers you can use.

BEANNAMEVIEWRESOLVER

One of the simpler view resolvers is BeanNameViewResolver. When it receives a candi-
date view name, it checks the application context for a bean with a matching name or
ID. If it finds one, it assumes the bean is the desired View and returns it. Otherwise it
returns null, which means the DispatcherServlet will move to the next resolver in
the chain.

BeanNameViewResolver is nice for simple applications, but as the number of views
grows, XmlViewResolver becomes more helpful.

XMLVIEWRESOLVER

XmlViewResolver is conceptually similar to BeanNameViewResolver in that it uses
named View beans to resolve view names to views. The difference is that BeanNameView-
Resolver assumes that the View beans are defined in the application context, whereas
XmlViewResolver assumes that they’re defined in a separate file, using the same Spring
beans schema. By default the file is /WEB-INF/views.xml.

OTHER VIEWRESOLVERS AND VIEWS

Spring includes several ViewResolver and View implementations, including those for
handling FreeMarker views, Velocity views, and XSLT views.10 Spring 3 introduces new

10 Please see the new Thymeleaf template engine at www.thymeleaf.org. It directly supports integration with
Spring 3.

Does forward: do anything?
Once the view name reaches InternalResourceViewResolver, using forward: is
almost—but not exactly—the same as using the logical view name. The difference is
that with an unprefixed view name, the returned View is either an InternalRe-
sourceView or a JstlView depending on whether JSTL is present. With forward:
the view is always an InternalResourceView. Because JstlView provides a super-
set of the functionality that InternalResourceView provides, there isn’t a good rea-
son to use forward:.

One possible way of using forward: might be to prevent a view name from being han-
dled by some other view resolver (other than InternalResourceViewResolver) in
view resolver chaining scenarios. We’re a little skeptical of this idea, but it might be
useful in some cases.
www.it-ebooks.info

www.thymeleaf.org
http://www.it-ebooks.info/

92 CHAPTER 3 Building web applications with Spring Web MVC
views for generating RSS and Atom feeds; we show how to generate an RSS feed using
the BeanNameViewResolver and AbstractRssFeedView in chapter 8.

CHAINING VIEWRESOLVERS

We’ve alluded several times to the fact that you can chain view resolvers. The usual sce-
nario is that you want a standard InternalResourceViewResolver to handle most of
your view resolution needs, but sometimes you want other view resolvers, such as
BeanNameViewResolver or XmlViewResolver, to handle special cases. Here’s a simple
example. Maybe most of your views are JSPs but you also publish an RSS feed. To han-
dle that, you’d have an InternalResourceViewResolver to handle the JSPs, and you’d
probably include a single BeanNameViewResolver for the RSS feed.

 To configure multiple view resolvers, you add them to the application context as
beans. The ViewResolver implementations implement the Ordered interface, so you
can define a processing order using the resolver’s order property if you like. (The
numerically lower the order, the higher the precedence.) If you don’t define an
explicit processing order, the InternalResourceViewResolver is automatically
assumed to be the last resolver in the chain, because it never returns null (and hence
never passes processing along to the next processor in the chain).

3.5.5 Configuring a RequestToViewNameTranslator

We’ve noted that controllers return a logical view name once they’re done processing,
and that DispatcherServlet hands that view name over to a chain of view resolvers to
generate a corresponding view. But in many cases it’s easy to automate the generation
of logical view names such that controllers don’t have to provide them explicitly.

 That’s where RequestToViewNameTranslator comes in. Its job is to map requests
to logical view names. The controller can always override the generated view name by
providing its own explicit view name; otherwise, the controller can let Request-
ToViewNameTranslator do all the hard work.

 The default strategy is DefaultRequestToViewNameTranslator. It maps request
URLs to logical view names in a configurable way: you can configure a prefix and a suffix
for the generated view names, and you can configure slash- and extension-stripping
behavior. Here are some translation examples:

http://localhost:8080/app/home.html -> home
http://localhost:8080/app/aboutUs.html -> aboutUs
http://localhost:8080/app/admin/index.html -> admin/index

You can define your own RequestToViewNameTranslator strategy by creating a bean
with the well-known name viewNameTranslator.

 Effective use of RequestToViewNameTranslator can be a nice way to adopt conven-
tion over configuration practices. In some cases you won’t be able to use it. This hap-
pens, for instance, when your controller method returns a different view name
depending on the outcome of processing (for example, returning either a success or a
failure page following an attempt to process form data). In cases where you can use it,
it makes your code cleaner. We’ll use request-to-view-name translation liberally
throughout the book.
www.it-ebooks.info

http://www.it-ebooks.info/

93Spring Mobile technology preview
3.5.6 Configuring other resolvers

DispatcherServlet uses a few other resolvers as well: MultipartResolver (for sup-
porting file uploads), LocaleResolver (for supporting internationalization), and
ThemeResolver (for supporting skinnable UIs). We’ll treat each of these in separate
recipes later in the book:

■ MultipartResolver is tackled in chapter 11 when you upload product photos
to a product catalog.

■ LocaleResolver and ThemeResolver appear in chapter 7, where we present
general UI recipes.

With that, we’ve completed our examination of the Spring Web MVC configuration.
As you have seen, Spring MVC is a flexible and capable framework. To show you how
easy it is to extend and use this framework, we’ll provide a technology preview of
Spring Mobile, a relatively simple but powerful extension of Spring MVC.

3.6 Spring Mobile technology preview
Up to this point, we’ve focused on using Spring MVC to create normal web applica-
tions. But what if you were asked to extend the capabilities of an existing Spring
MVC application to provide a more customized user experience for mobile users or
to create a completely new application that specifically targets mobile devices? In
addition to detecting mobile devices, one of the most concerning problems that
mobile web applications face is that both the screen size and capabilities of the each
web browser vary significantly among today’s smartphone, PDA, tablet, and other
mobile devices.

 The Spring Mobile project provides extensions to Spring MVC for developing
mobile web applications and offers server-side device detection, site preference man-
agement, and site-switcher functionality out of the box. This gives you all the founda-
tional tools necessary to enhance an existing web application or create a web
application that provides a more customized user experience that mobile visitors will
find more enjoyable and intuitive to use.

 The Spring Mobile project provides two approaches for handling mobile devices:

■ Determine the type of device that initiated a web request. Provide the informa-
tion to a web application’s runtime that would provide the opportunity to cus-
tomize its user experience. For example, you could customize the layout,
Cascading Style Sheets (CSS), and JavaScript based on this information.

■ Determine the type of device that initiated a web request. Redirect the user to a
separate site that caters specifically to mobile devices. A common pattern is to
redirect users of mysite.com to domains such as m.mysite.com or mysite.mobi
where the content is designed specifically for mobile devices.

The ability to detect a mobile device is something that is common to both
approaches. We’ll take a deeper dive into the anatomy of an HTTP request in the next
section. In the pages that follow, you’ll create a trivial Contact List sample application
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 3 Building web applications with Spring Web MVC
that will demonstrate the first approach to handling mobile devices. At its core, this
application is similar to the Spring MVC Roster sample application covered in sec-
tion 3.2. As such, the process of constructing master/detail views in Spring MVC
should already be familiar. You should focus on how easy it is to use Spring Mobile
and a JavaScript library to create an interface that will be recognizable to existing
smartphone users. Instead of building a full-blown application, we’ll focus on build-
ing out the pieces that illustrate detecting a mobile device as well as managing site
preferences (full versus mobile). Before we conclude our preview of Spring Mobile,
we’ll show you the configuration required to implement the second approach to han-
dling mobile devices.

 As of this writing, Spring Mobile version 1.0.0.RC1 has been released. A word of
warning: although the changes to the API have slowed considerably, additional
changes may still occur before Spring Mobile finally becomes generally available. You
can download the source code for this working application here: https://
github.com/springinpractice/sip03, branch 03. Let’s get started by talking about how
mobile devices are detected on the server side using Spring Mobile.

3.6.1 A brief anatomy of an HTTP request

Spring Mobile’s DeviceResolvers use information present in an HTTP request to sniff
out the presence of a mobile device. To give you an idea of how this works and what
this information looks like, let’s look at how a typical HTTP request is made.

HTTP, like most network protocols, uses a client-server communication model. An
HTTP client opens a connection and sends a request message to an HTTP server. The
server then returns a response message that normally contains the resource that was
originally requested. After the response is completed, the server closes the connection.

 If you were to open your browser and type in http://www.google.com and press
Enter, your browser would create a request message that looks something like this:

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:6.0.2) Gecko/20100101 Firefox/

6.0.2
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Connection: keep-alive

In the first line of this message, you define that you’re using the GET HTTP method to
obtain the resource at / and that you’re using HTTP 1.1. Following this initial request
line is a list of header lines. Each line defines a header in the format Header-Name:
value. Note that in some cases, a header can have multiple values and span multiple
lines. In addition, when using HTTP 1.1, only the Host header is required. This means
all the other headers are optional.

 The important header to focus on here is User-Agent. It identifies the program
that is making the request. In the example, we used Firefox version 6.0.2 on Windows
www.it-ebooks.info

http://www.google.com
https://github.com/springinpractice/sip03
https://github.com/springinpractice/sip03
http://www.it-ebooks.info/

95Spring Mobile technology preview
NT 5.1 (Windows XP). If we were to make the same request using an iPhone, the
User-Agent header might look like this:

User-Agent: Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_2_10 like Mac OS X;
en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2
Mobile/8E600 Safari/6533.18.5

In the sample User-Agent header, you can now tell that the platform has changed
from Windows NT 5.1 to iPhone. Each device leaves its own request fingerprint that
may consist of information from only the User-Agent header or from a combination
of information in the HTTP request. As you’ll see next, you don’t necessarily need to
own or have access to these devices to get started developing mobile web applications.

SIMULATING A MOBILE DEVICE

Several browser-based plug-ins/extensions provide the ability to switch the User-
Agent header that is supplied by the browser. For example, User Agent Switcher, a
Firefox extension, provides a menu and toolbar button to switch the user agent of a
browser to any number of values simulating mobile devices. This is useful for develop-
ment and testing. If you’ll only be deploying the sample Contact List application to
your desktop, you’ll need this or a similar plug-in for testing.

 Now that you have an idea of the information available in an HTTP request and a
mechanism to manipulate it, let’s see how Spring Mobile detects a mobile device.

3.6.2 Detecting a mobile device with Spring Mobile

Spring Mobile’s server-side device resolution functionality is based primarily on two
interfaces, DeviceResolver and Device. The DeviceResolver interface attempts to
determine which device created the current web request. We have omitted the com-
ments in the code sample for brevity.

public interface DeviceResolver {

 Device resolveDevice(HttpServletRequest request);

}

The default implementation of the DeviceResolver interface is the LiteDevice-
Resolver, which attempts to detect the presence of a mobile device based on informa-
tion in the request headers. LiteDeviceResolver looks for clues such as the use of the
Wireless Access Protocol (WAP) or by comparing the contents of the User-Agent
header to a list of 90 or so keywords or prefixes. For example, LiteDeviceResolver
would find the keyword phone in the iPhone User-Agent string (case-insensitive) we dis-
cussed earlier. Just as the name implies, LiteDeviceResolver only aims to determine if
the device that created the current request is a mobile device. LiteDeviceResolver
returns an instance of LiteDevice, which implements the Device interface:

public interface Device {

 boolean isMobile();

}

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 3 Building web applications with Spring Web MVC
For more information, look at the WurflDeviceResolver. WURFL stands for Wireless
Universal Resource FiLe and is a community effort focused on mobile device detection.
This DeviceResolver implementation provides specific device and feature informa-
tion (screen size and other device specific capabilities).

Now that we’ve talked about Spring Mobile’s server-side device-resolution functional-
ity, let’s get started building an example application.

3.6.3 Configuring Spring Mobile

Because Spring Mobile is an extension of Spring MVC, configuring the Contact List
application will be a breeze. You start by configuring the Spring MVC DispatcherServlet
in the web.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip03, branch: 03 (Maven Project) -->
<web-app
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">
 <servlet>
 <servlet-name>main</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>main</servlet-name>
 <url-pattern>/main/*</url-pattern>
 </servlet-mapping>
</web-app>

As we talked about earlier, when configuring DispatcherServlet, Spring looks for a
file in the WEB-INF directory of the web application by the name of main-servlet.xml
B, unless a different name and location are explicitly configured. Let’s look at this
file now.

Listing 3.12 web.xml

A quick note about WurflDeviceResolver
WurflDeviceResolver was originally part of the Spring Mobile project. It was re-
moved after WURFL, which used to be free and open source software (FOSS), was
changed to an AGPL license as of version 2.2. The original support for WURFL has
been factored out of the Spring Mobile distribution and placed here: https://
github.com/kdonald/wurfl-spring. The team is currently looking to contribute this in-
tegration to the official WURFL project.

Configures
DispatcherServletB
www.it-ebooks.info

https://github.com/kdonald/wurfl-spring
https://github.com/kdonald/wurfl-spring
http://www.it-ebooks.info/

97Spring Mobile technology preview
<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip03, branch: 03 (Maven Project) -->

<beans:beans xmlns="http://www.springframework.org/schema/mvc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.1.xsd">

 <interceptors>
 <beans:bean class="org.springframework.mobile.device.

➥ DeviceResolverHandlerInterceptor" />
 </interceptors>

 <resources mapping="/resources/**" location="/resources/" />

 <beans:bean class="org.springframework.web.servlet.view.

➥ InternalResourceViewResolver">
 <beans:property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView"
 />
 <beans:property name="prefix" value="/WEB-INF/jsp/" />
 <beans:property name="suffix" value=".jsp" />
 </beans:bean>

 <context:component-scan base-package="com.springinpractice.ch03" />

</beans:beans>

The thing added in the Contact List application above and beyond a vanilla Spring
MVC configuration is the DeviceResolverHandlerInterceptor at B. We talked about
HandlerInterceptors in section 3.5.1. In short, HandlerInterceptors behave much
like servlet filters. In this case, the preHandle() method of DeviceResolverHandler-
Interceptor delegates to a DeviceResolver to resolve the device that originated the
current request.

 By default, DeviceResolverHandlerInterceptor delegates to a LiteDevice-
Resolver that resolves the device to a LiteDevice. If you wanted to use the Wurfl-
DeviceResolver we talked about earlier, you would inject this device resolver’s
implementation into the HandlerInterceptor via constructor injection.

 Based on this configuration alone, you can now detect when a mobile device is
requesting a resource from the Contact List application. In the code, you can obtain a
reference to the current device by using the DeviceUtils class:

Listing 3.13 main-servlet.xml

Configures
DeviceResolverHandlerInterceptor B

Configures
InternalResourceViewResolver
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 3 Building web applications with Spring Web MVC

ver
Device device = DeviceUtils.getRequiredCurrentDevice(servletRequest);

if (device.isMobile()) {
//Do something
}

If you want to have the Device passed in as an argument to one of your @Controller
methods, you can configure a WebArgumentResolver. This is a Spring MVC feature
that is new in version 3.1. You can do this by adding the following to the main-
servlet.xml file.

<annotation-driven>
 <argument-resolvers>
 <beans:bean class="org.springframework.mobile.device.

➥ DeviceWebArgumentResolver" />
 <beans:bean class="org.springframework.mobile.device.site.

➥ SitePreferenceWebArgumentResolver" />
 </argument-resolvers>
</annotation-driven>

You configure two different WebArgumentResolvers. The DeviceWebArgument-

Resolver B allows you to pass in the current device in your @Controller method like
this:

@Controller
@RequestMapping("/contact")
public final class ContactController {

 ...

 @RequestMapping("/list")
 public void list(Model model, Device device) {
 if (device.isMobile()) {
 //Do something
 }
 }

 ...

We’ll talk more about the SitePreferenceArgumentResolver C in the next section.
 Now that you have the ability to detect mobile devices in the Contact List applica-

tion using Spring Mobile’s server-side device detection, you can control the user expe-
rience based on this knowledge. For example, to optimize a user’s mobile experience,
it’s possible to redirect the user to a mobile-specific version of the site. In most cases,
this site may be a thinned-down version of the original site to accommodate a device’s
smaller screen size. But what if the end user wants to visit the normal site?

3.6.4 Handling site preferences

The Spring Mobile team has provided a facility to handle user site preference man-
agement as well. The code uses a pattern similar to the server-side device-detection

Listing 3.14 Configuring WebArgumentResolvers

Configures
DeviceWeb-
ArgumentResol

B

Configures
SitePreferenceWebArgumentResolver C
www.it-ebooks.info

http://www.it-ebooks.info/

99Spring Mobile technology preview
code we talked about earlier. This time, instead of talking about DeviceResolverHan-
dlerInterceptor, DeviceResolver, and Device, we’re talking about SitePrefer-
enceHandlerInterceptor, SitePreferenceHandler, and SitePreference.

 The SitePreferenceHandlerInterceptor is added to your configuration after the
DeviceResolverHandlerInterceptor at B in listing 3.13. This interceptor delegates
to an instance of SitePreferenceHandler. The default implementation, Standard-
SitePreferenceHandler, checks to see if a user specified a SitePreference. If not, its
value defaults to MOBILE if a mobile device has been detected or NORMAL if not. By
default, this value is stored using the CookieSitePreferenceRepository, which is the
default implementation of SitePreferenceRepository.

StandardSitePreferenceHandler supports query-parameter-based site-preference
switching. For example, the following code can be used to set a user’s site preference:

<c:if test="${currentDevice.mobile}">
 <c:choose>
 <c:when test="${currentSitePreference.mobile}">

 Switch To: Normal Site

 </c:when>
 <c:otherwise>

 Switch To: Mobile Site

 </c:otherwise>
 </c:choose>
</c:if>

Configuring site preference management is similar to configuring Spring Mobile’s
server-side device detection. To configure the site-preference management in the
Contact List application, you need to add the SitePreferenceHandlerInterceptor
right after the DeviceResolverHandlerInterceptor in your main-servlet.xml file:

<interceptors>
 <beans:bean
 class="org.springframework.mobile.device.

➥ DeviceResolverHandlerInterceptor" />
 <beans:bean
 class="org.springframework.mobile.device.site.

➥ SitePreferenceHandlerInterceptor" />
</interceptors>

Based on this single configuration change, you can now detect an end-user’s explicit
or default site preference when a resource is requested from your application. In your
code, you can obtain a reference to the current device by using the SitePreferen-
ceUtils class:

SitePreference sitePreference = SitePreferenceUtils

➥ .getCurrentSitePreference(servletRequest);

if (SitePreference.MOBILE == sitePreference) {
 //Do something
}

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 3 Building web applications with Spring Web MVC
Similar to how you handled the Device earlier, if you want the SitePreference passed
in as an argument to one of your @Controller methods, you can configure an addi-
tional WebArgumentResolver as seen at C in listing 3.14 to the main-servlet.xml file.
The SitePreferenceWebArgumentResolver allows you to pass in the current device in
your @Controller method like this:

@Controller
@RequestMapping("/contact")
public final class ContactController {

 ...

 @RequestMapping("/list")
 public void list(Model model, SitePreference sitePreference) {
 if (SitePreference.MOBILE == sitePreference) {
 //Do something
 }
 }
 ...

The Contact List application is taking shape. You can now detect if a mobile device is
accessing your site, and a mechanism lets users manage their own site preference (full
versus mobile). This gives you the information you need to make decisions about how
you might want to customize your site to provide a more enjoyable and intuitive user
experience for your mobile visitors. In the next section, we’ll look at how you can use
a JavaScript framework to do just this.

3.6.5 Using JavaScript frameworks for
enhanced look and feel

The beauty of mobile JavaScript frameworks is that they
let you use the HTML 5, CSS3, and JavaScript skills you
already have. These frameworks offer an abstraction layer
that simplifies mobile web development by providing a
collection of cross-browser UI elements/widgets that
often mimic the native device’s look and feel as well as a
unified way to access native mobile OS features.

 In the Contact List sample application, we chose to use
jQuery Mobile (http://jquerymobile.com/). jQuery
Mobile is a touch-optimized web framework for smart-
phones and tablets that is built on top of jQuery and jQuery
UI. Measuring in at 12 KB, the framework is relatively light-
weight, a feature that is important for devices that may have
limited bandwidth. Based on figures 3.4 and 3.5, you can
see how you can turn normal HTML 5 into something that
closely resembles a mobile devices look and feel.

 To experiment with this trivial sample application and
see all the items we talk about in action, download and

Figure 3.4 The Contact List
sample application when
viewed by a normal browser
www.it-ebooks.info

http://jquerymobile.com/
http://www.it-ebooks.info/

101Spring Mobile technology preview
run the source code for this chapter and point your browser to http://local-
host:8080/sip/main/contact/list. As shown in figure 3.4, in a normal browser you see
a rather vanilla-looking list of contacts.

 When you view the same address using a mobile device browser or normal browser
with a user-agent switcher to mimic a mobile device, you’ll see the view shown in fig-
ure 3.5.

Figure 3.5 The Contact List sample application when viewed by a mobile device
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 3 Building web applications with Spring Web MVC
As we mentioned at the beginning of section 3.6, Spring Mobile provides two different
approaches to handling mobile devices. Although trivial, the Contact List sample
application you just finished demonstrates how Spring Mobile can provide the infor-
mation necessary to a web application’s runtime that can allow you to customize the
layout, CSS, and JavaScript based on the type of device accessing the site. Before we
conclude our Spring Mobile preview, let’s look at the out-of-the-box site-switching
functionality that Spring Mobile provides. This secondary approach can be useful
when you would like to detect mobile users and redirect them to an entire site that
might be designed specifically to cater to the needs of mobile users. Let’s look at this
additional approach next.

3.6.6 Switching to a separate mobile site

As opposed to using SitePreferenceHandlerInterceptor to manage preferences
within the same site, you can use SiteSwitcherHandlerInterceptor to redirect
mobile users to a separate site.

SiteSwitcherHandlerInterceptor provides convenient factory methods out of
the box to handle redirecting users to either a site with an “m.” subdomain (such as
m.yourdomain.com) or a “.mobi” top-level domain (TLD) (yourdomain.mobi). An
example of each is provided in the following sections. Keep in mind that SiteSwitch-
erHandlerInterceptor delegates to a SitePreferenceHandler internally so there is
no need to configure a SitePreferenceHandlerInterceptor explicitly.

MDOT SITESWITCHER

You can use the mDot factory method to create an instance of the SiteSwitcherHan-
dlerInterceptor that redirects users to a domain in the format m.yourdomain.com:

<interceptors>
 <beans:bean class="org.springframework.mobile.device.

➥ DeviceResolverHandlerInterceptor"/>
 <beans:bean class="org.springframework.mobile.device.switcher.

➥ SiteSwitcherHandlerInterceptor" factory-method="mDot">
 <beans:constructor-arg value="yourdomain.com"/>
 </beans:bean>
</interceptors>

DOTMOBI SITESWITCHER

You can use the dotMobi factory method to create an instance of SiteSwitcherHan-
dlerInterceptor that redirects users to a domain in the format yourdomain.mobi:

<interceptors>
 <beans:bean class="org.springframework.mobile.device.

➥ DeviceResolverHandlerInterceptor"/>
 <beans:bean class="org.springframework.mobile.device.switcher.

➥ SiteSwitcherHandlerInterceptor" factory-method="dotMobi">
 <beans:constructor-arg value="yourdomain.com"/>
 </beans:bean>
</interceptors>
www.it-ebooks.info

http://www.it-ebooks.info/

103Related technologies
This concludes our technology preview of the Spring Mobile project. Over the last sev-
eral pages, we have discussed how this project provides extensions to Spring MVC for
developing mobile web applications and offers server-side device detection, site-pref-
erence management, and site-switcher functionality out of the box. We also talked
about how you can use Spring Mobile to detect and customize a single site for both
mobile and nonmobile devices or redirect mobile users to a different site. Spring
Mobile provides all the foundational tools necessary to enhance an existing web appli-
cation or create a web application that provides a more customized user experience
that mobile visitors will find more enjoyable and intuitive to use.

3.7 Related technologies
Spring Web MVC is closely related to other technologies in the Spring stack. We’ll
mention them briefly here so that if you’re interested, you can do some follow-up
study.

3.7.1 Spring Web Flow

Spring Web Flow (SWF) brings web-based conversations to Spring Web MVC. The idea
is that there are use cases in which it’s necessary to treat a series of user interactions as
a single transaction. Examples include checkout processes (for example, buying a
plane ticket, booking a hotel, and buying something from an e-commerce site), multi-
page user registration and application processes, and product-configuration wizards.

 In SWF, you model each process with flows (see chapter 5 for more details). Flows
are essentially state-transition graphs, and they have a hierarchical structure so you
can reuse finer-grained flows inside coarser-grained flows. You might have a user-regis-
tration flow and a login flow, and you might incorporate those into a larger checkout
flow such that at the end of a checkout process the user is given the option of creating
an account or logging in. SWF defines flows using an intuitive XML grammar.

3.7.2 Spring JavaScript

Spring JavaScript provides a client-side abstraction over JavaScript toolkits, with an
emphasis on progressive enhancement, widgets, and AJAX support. It began life as
part of Spring Web Flow, but eventually it became its own project because it’s not
inherently tied to SWF. Currently Spring JavaScript has a Dojo implementation. In the
future it will likely have other implementations.

3.7.3 Spring Faces

The Spring Faces project provides for integration between Spring and JavaServer
Faces. Like Spring JavaScript, it originated in the Spring Web Flow project, but
became a separate project because it’s not specifically tied to SWF.
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 3 Building web applications with Spring Web MVC
3.7.4 Spring Security

Although Spring Security (née Acegi) isn’t inherently tied to Spring Web MVC, it’s
worth mentioning here because it includes a great deal of support for securing web
applications. Spring Security isn’t limited to web apps, but it does provide strong sup-
port for securing them.

 Spring Security primarily addresses two major areas of security: authentication and
authorization.11 Concerning web authentication, it provides a built-in username/pass-
word login form with optional remember-me functionality, support for CAS-based
SSO, OpenID authentication, and others. Concerning authorization, Spring Security
supports both role- and ACL-based authorization at multiple application tiers. You can
selectively display and hide JSP page content using tag libraries. You can authorize web
requests using servlet filters. And you can authorize methods (in any application
tier—especially the web and service tiers) using aspects.

 Chapters 4–6 present recipes that draw heavily from the Spring Security
framework.

3.7.5 RESTful web services

Beginning with Spring 3.0, RESTful web services live in the world of Spring Web MVC.
The @RequestMapping annotation with its method element—accepting values from the
RequestMethod enum, such as GET, POST, PUT, and DELETE—was apparently too good a
REST-match not to explicitly provide REST support, so that’s what happened. We won’t
cover Spring MVC’s REST support in this book. But if you want more information on
how to use Spring MVC to support REST, have a look at Spring in Action, 3rd edition, by
Craig Walls (Manning, 2011).

3.8 Summary
This has been a whirlwind tour through Spring Web MVC. We’ve covered a great deal
of what the framework provides, so if you understand the material in this chapter, you
should be in a good place to understand the recipes in the chapters that follow.

 Unlike the recipe chapters, chapters 1 and 3 are intended to be reference-like in
nature. Please refer to them as you work through the recipes any time you need to
review the material.

11 Spring Security addresses other areas too, such as privacy (for example, encryption and SSL, hashing, and salt-
ing passwords), but most of the focus is on authentication and authorization.
www.it-ebooks.info

http://www.it-ebooks.info/

Basic web forms
Web forms provide a means by which we can collect data from end users. As such,
they’re a key aspect of any nontrivial web application. This chapter shows how to
use Spring Web MVC and related technologies to build a simple user registration
form with standard features such as redirect-after-post, externalized strings, form
data validation, and persistence.

 Our approach is hands-on and practical. See Spring in Action, 3rd edition by
Craig Walls (Manning, 2011) for additional material on Spring Web MVC.

4.1 Displaying a web form
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Web MVC, Spring form tag library

This chapter covers
■ Building a web form
■ Externalizing strings in a view
■ Validating and saving form data
105

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Basic web forms
Background

Users establish a relationship with a website or an organization by registering. The
resulting user account allows logins, order placement, community participation, and
so on. The first step in supporting a user registration process is to display a registra-
tion form.

Problem

Create a web-based form.

Solution

In this recipe you’ll use Spring Web MVC to display a user registration form. You’ll
build a user account form bean, a web controller, a registration form, and a confirma-
tion page.

 It won’t hurt to have a visual on the UI you’re planning to create in this recipe. Fig-
ure 4.1 shows what you’re aiming for.

 Let’s begin by creating a form bean for your user accounts.

CREATING AN ACCOUNT FORM BEAN

You use a form bean to store form data, as shown in the following listing.

package com.springinpractice.ch04.web;

import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;

public class AccountForm {
 private String username, password, confirmPassword, firstName,
 lastName, email;
 private boolean marketingOk = true;
 private boolean acceptTerms = false;

 public String getUsername() { return username; }

 public void setUsername(String username) { this.username = username; }

 ... other getter/setter pairs ...

 public String toString() {
 return new ToStringBuilder(this, ToStringStyle.SHORT_PREFIX_STYLE)
 .append("username", username)
 .append("firstName", firstName)
 .append("lastName", lastName)
 .append("email", email)
 .append("marketingOk", marketingOk)
 .append("acceptTerms", acceptTerms)
 .toString();
 }
}

Listing 4.1 AccountForm.java, a form bean for user accounts

Demographic data B

Marketing preferenceC

Legal confirmationD

toString()
implementation

E

www.it-ebooks.info

http://www.it-ebooks.info/

107Displaying a web form
AccountForm is a POJO.1 It has properties for personal B, marketing C, and legal D
data. These are typical concerns when modeling user accounts. You also include a
descriptive toString() method E, based on the Commons Lang library, so you can
observe the form-binding later in the recipe. By design, you suppress the password
here to avoid accidentally revealing it.

 You default the marketingOk property to true because you’d like to market to your
users unless they explicitly opt out. On the other hand, you default acceptTerms to
false because you want the user’s acceptance of the terms of use to be active rather
than passive. Presumably this gives you a stronger legal leg to stand on in the event of
a disagreement with the user.2

 You have a form bean, but without a web controller, it’s inert. Let’s take care of
that.

CREATING A WEB CONTROLLER

Your account controller, which appears in the following listing, handles form delivery
and processing.

1 See http://en.wikipedia.org/wiki/Plain_Old_Java_Object.
2 Disclaimer: We aren’t lawyers! Consult a qualified legal expert if necessary.

Figure 4.1 The simple web-based registration form that you’ll build in this recipe
www.it-ebooks.info

http://en.wikipedia.org/wiki/Plain_Old_Java_Object
http://www.it-ebooks.info/

108 CHAPTER 4 Basic web forms
package com.springinpractice.ch04.web;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/users")
public class AccountController {
 private static final Logger log =
 LoggerFactory.getLogger(AccountController.class);

 @RequestMapping(value = "new", method = RequestMethod.GET)
 public String getRegistrationForm(Model model) {
 model.addAttribute("account", new AccountForm());
 return "users/registrationForm";
 }

 @RequestMapping(value = "", method = RequestMethod.POST)
 public String postRegistrationForm(AccountForm form) {
 log.info("Created registration: {}", form);
 return "redirect:registration_ok";
 }
}

At B the @Controller annotation tells Spring that this is a web controller. You estab-
lish a base path for request mapping using the @RequestMapping annotation C. This
path contextualizes paths declared at the method level. At D you’re not implement-
ing any special interfaces or extending special classes.

 You serve the empty form bean at E. The associated request mapping is /users/
new, which you obtain by combining the class-level /users base path with the method-
level new mapping. (To override a class-level mapping rather than refine it, place a
slash in front of the method-level mapping.) The method itself places a new Account-
Form instance on the model under the key account and returns the view name.

 You process form submissions at F, specifying the POST request method. The
request mapping is just /users because that’s the result of combining the base path
with the empty string. For now, when users post form data, you log it and redirect
them to a view that thanks them for registering G. We’ll discuss the redirection in
more detail later in the recipe.

 Let’s move on to the two view pages. First you’ll create the view for the registration
form, and after that you’ll create the “thanks” page for successful form submissions.

CREATING THE VIEW PAGES

The next listing shows how to implement the registration form from figure 4.1. Note
that we’ve suppressed the layout and CSS code; see the code download (src/main/
webapp/WEB-INF/jsp/users/registrationForm.jsp) for the full version.

Listing 4.2 AccountController.java to handle user registrations

Declares
@Controller

B

Base controller pathC
No special
interfaceD

Serves
formE

Accepts form
submission

F

Redirects to
another pageG
www.it-ebooks.info

http://www.it-ebooks.info/

109Displaying a web form

rd
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<html>
 <head><title>New User Registration</title></head>
 <body>
 <form:form action="." modelAttribute="account">
<h1>New User Registration</h1>
<div>Username: <form:input path="username" /></div>
<div>Password: <form:password path="password" /></div>
<div>Confirm password: <form:password path="confirmPassword" /></div>
<div>E-mail address: <form:input path="email" /></div>
<div>First name: <form:input path="firstName" /></div>
<div>Last name: <form:input path="lastName" /></div>
<div><form:checkbox id="marketingOk" path="marketingOk" />
 Please send me product updates by e-mail.</div>
<div><form:checkbox id="acceptTerms" path="acceptTerms" />
 I accept the terms of use.</div>
<div><input type="submit" value="Register" /></div>
 </form:form>
 </body>
</html>

The registration page uses the form B tag to create an HTML form. You use
action="." to post the form submission to /main/users/. The modelAttribute attri-
bute references the model object to be used as the form-backing bean. The HTML
form elements are bound to the form bean’s properties in both directions:

■ Inbound—The form bean is populated with the HTML form element values when
the form is submitted and passed to the controller for validation and processing.

■ Outbound—The form elements are prepopulated with the form bean’s values.
You use this, for example, to set the default value of the marketingOk check box
to true and acceptTerms to false. Form elements are also prepopulated before
representing a form to a user for remediating invalid form data; you’ll see this
in recipe 4.3.

Figure 4.2 presents a high-level view of form binding.

Listing 4.3 registrationForm.jsp: view to display your registration form

Renders
HTML form

B

HTML text fieldC

HTML
passwo
fieldD

HTML
check boxE

No special
submit tagF

Figure 4.2 Form-
binding in action.
Stars show where
form fields and bean
properties are
bound together.
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 Basic web forms
You use input C, password D, and checkbox E tags from the Spring form tag library
to render HTML form elements. These are essentially form-binding versions of the
corresponding HTML elements. The tag library doesn’t provide anything for submit
buttons (there’s nothing to bind to here), so you use standard HTML F.

 After the user successfully submits a registration, you need a page to let the user
know that the registration succeeded. Here’s a minimalistic registrationOk.jsp file:

<html>
 <head><title>Registration Confirmed</title></head>
 <body><p>Thank you for registering.</p></body>
</html>

In this case, the page doesn’t even need to be a JSP, although you’ll leave it as is
because it’s always possible that you’ll want to present dynamic information through
the page.

 You’re done with your form bean, controller, and views. All that remains is
configuration.

CONFIGURING THE APP

The key part of your web.xml configuration is the following:

<servlet>
 <servlet-name>spring</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:/spring/beans-web.xml</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>spring</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

This web.xml configuration references a single Spring configuration, called beans-
web.xml, associated with the DispatcherServlet. It goes in src/main/resources/
spring so it will be on the classpath when you package and deploy the app.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.1.xsd
 http://www.springframework.org/schema/beans

Listing 4.4 beans-web.xml: web tier configuration
www.it-ebooks.info

http://www.it-ebooks.info/

111Displaying a web form
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:component-scan
 base-package="com.springinpractice.ch04.web" />

 <mvc:annotation-driven />

 <mvc:view-controller path="/users/registration_ok"
 view-name="users/registrationOk" />

 <bean class="org.springframework.web.servlet.view.

➥ InternalResourceViewResolver"
 p:viewClass="org.springframework.web.servlet.view.JstlView"
 p:prefix="/WEB-INF/jsp/" p:suffix=".jsp" />
</beans>

The listing ties everything together. You use component scanning to discover the
AccountController B based on its @Controller annotation.

 Spring 3 introduces the mvc namespace. You use <mvc:annotation-driven> at C
to activate annotation-based configuration inside the DispatcherServlet explicitly.

 At D you use <mvc:view-controller> to configure a new controller for the regis-
tration success page. Recall from listing 4.2 that you redirected the request to a suc-
cess page, but you never specified a controller to display the success page. That’s what
<mvc:view-controller> does. It creates a ParameterizableViewController instance
whose job is to accept requests for /users/registration_ok and serve up the logical
view name users/registrationOk for view resolution.

 You redirect rather than forward to the success page because you want to apply the
redirect-after-post pattern to your form submission. With this pattern, a successful
form submission issues an HTTP redirect to avoid resubmissions if the user reloads or
bookmarks the page, as illustrated by the sequence diagram in figure 4.3.

 The figure suppresses the ViewResolver, but the DispatcherServlet uses the
instance you created for both view resolutions depicted. The DispatcherServlet uses
the ViewResolver E to convert logical view names into views.

Discovers
@Controller

B

Activates annotationsC
Creates
controller

D

View resolverE

Why do you need <mvc:annotation-driven>?
You might wonder why you need to declare <mvc:annotation-driven> explicitly. Af-
ter all, the DispatcherServlet default configuration already has an internal
DefaultAnnotationHandlerMapping instance to handle @RequestMapping anno-
tations. The reason: behind the scenes, <mvc:view-controller> creates a
SimpleUrlHandlerMapping to map the ParameterizableViewController to the
specified path, and this replaces the DefaultAnnotationHandlerMapping that
would otherwise have been created. You use <mvc:annotation-driven> to indicate
that you want the DefaultAnnotationHandlerMapping as well.
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Basic web forms
That almost wraps it up for the configuration. You’ll also need a WEB-INF/decora-
tors.xml file for SiteMesh; see the code download for that. To run the app, run Maven
with the jetty:run goal. On the command line, it looks like this:

mvn -e clean jetty:run

Then go to http://localhost:8080/sip/users/new.html. You should see a registration
page that looks like the one from figure 4.1.

Discussion

What you’ve done so far isn’t tied to registration forms; this recipe is a blueprint for
displaying web forms in general. As you move forward in the chapter, you’ll continue
to target registration forms, but the discussion and techniques are broadly applicable.

 In the next recipe, you’ll make your view pages more flexible by externalizing the
strings that appear in the JSPs.

4.2 Externalizing strings in the view
PREREQUISITE

Recipe 4.1 Displaying a web form

KEY TECHNOLOGIES

Java resource bundles, Spring tag library

Figure 4.3 The redirect-after-post implementation for successful registrations
www.it-ebooks.info

http://www.it-ebooks.info/

113Externalizing strings in the view
Background

It’s often desirable to decouple a view from the specific bits of text rendered in the
view. Reasons include internationalization and centralized management. This recipe
shows how.

Problem

Externalize the strings that appear in the registration JSPs so they can be managed
centrally.

Solution

The solution involves three steps:

1 Create a resource bundle that contains the externalized strings, or messages in
the Spring vernacular.

2 Add a ReloadableResourceBundleMessageSource to the configuration.
3 Replace the hardcoded strings in the JSPs with references to the externalized

strings in the resource bundle.

First up is the resource bundle, which contains your messages.

CREATING A RESOURCE BUNDLE FOR THE MESSAGES

The following listing shows how to create a resource bundle for your messages. This
file goes in src/main/resources because you want it to appear at the root of the class-
path on deployment.

common.message.unimplemented=Not implemented

newUserRegistration.pageTitle=New User Registration
newUserRegistration.message.allFieldsRequired=All fields are required.
newUserRegistration.label.username=Username:
newUserRegistration.label.firstName=First name:
newUserRegistration.label.lastName=Last name:
newUserRegistration.label.email=E-mail address:
newUserRegistration.label.password=Password:
newUserRegistration.label.confirmPassword=Confirm password:
newUserRegistration.label.marketingOk=Please send me product updates by

➥ e-mail. I can unsubscribe at any time.
newUserRegistration.label.acceptTerms=I accept the <a class="unimplemented"

➥ href="#" title="Not implemented"> terms of use.
newUserRegistration.label.privacyPolicy=Please see your <a

➥ class="unimplemented" href="#" title="Not implemented" >privacy

➥ policy.
newUserRegistration.label.register=Register

registrationOk.pageTitle=Registration Confirmed
registrationOk.message.thanks=Thank you for registering.
registrationOk.label.continue=Continue »

Listing 4.5 messages.properties: resource bundle for externalized strings

Common messagesB
Reg form messagesC

Success page
messages

D

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Basic web forms
You can organize these messages as you like. In this case, you have three sections: one
for messages that are common to both pages B, another for registration form mes-
sages C, and a third for messages that appear on the success page D. The key names
reflect this organization.

 Next you add a single bean to the beans-web.xml configuration.

ADDING A MESSAGE SOURCE TO BEANS-WEB.XML

Add the following code snippet to beans-web.xml:

<bean id="messageSource"
 class="org.springframework.context.support.

➥ ReloadableResourceBundleMessageSource"
 p:basename="classpath:messages" />

This creates a message source, backed by the resource bundle, that you can use to
drive dereferencing in the JSP. The ID messageSource is required.

 The third and final step is to replace the hardcoded strings in the JSP with
references.

REPLACING THE HARDCODED STRINGS WITH REFERENCES

The next listing shows how to convert hardcoded strings into references using the
<spring:message> tag.

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<spring:message var="pageTitle" code="newUserRegistration.pageTitle" />
<spring:message var="msgAllFieldsRequired"
 code="newUserRegistration.message.allFieldsRequired" />

<html>
 <head><title>${pageTitle}</title></head>
 <body>
 <form:form action="." modelAttribute="account">

<h1>${pageTitle}</h1>
<div>${msgAllFieldsRequired}</div>
<div>
 <spring:message code="newUserRegistration.label.username" />
 <form:input path="username" />
</div>

... snip ...

 </form:form>
 </body>
</html>

We’ve suppressed a good chunk of the code in listing 4.6, but it should be obvious
given what we’ve included how to convert the rest of listing 4.3. First you declare the

Listing 4.6 Updating registrationForm.jsp to use external messages

Declares tag library B

Stores messages
in variables C

Displays
variableD

Displays other
variable

E

Displays message
directly F
www.it-ebooks.info

http://www.it-ebooks.info/

115Validating form data
spring tag library B.3 Then you use the <spring:message> tag to set a couple of vari-
ables to messages in the resource bundle C so you can use them later. You use the
pageTitle variable at D and also inside the following <h1>, and you use the msgAll-
FieldsRequired variable at E. At F you use <spring:message> in a slightly different
fashion; this time, you dump the message right into the template. This occurs because
you haven’t specified a var attribute.

 That’s it for the changes. Run the app the same way you ran it in recipe 4.1. Under
the hood, you’ve externalized the strings, but you shouldn’t see any behavioral
changes.

Discussion

It’s a good practice to externalize application strings. Besides paving the way for inter-
nationalization, it gives you a central place to manage text. This helps with quality con-
trol, and it helps when you decide you want to change, for example, “Technical
Support Representative” to “Customer Care Specialist” across the board.

 So far your form is very permissive. You can enter whatever you like into the
form—including nothing—and the result is always success. In the following recipe,
you’ll fix that with form validation.

4.3 Validating form data
PREREQUISITE

Recipe 4.2 Externalizing strings in the view

KEY TECHNOLOGIES

Spring Web MVC, Spring binding and validation APIs, JSR 303 Bean Validation, JSR 223
Java Scripting, Hibernate Validator, Spring form tag library

Background

No matter how intuitive your registration form, people will accidentally or even inten-
tionally fill it out with invalid information. You treat such errors as user errors rather
than system or application exceptions, meaning you usually want to explain the error
to the user in nontechnical language and help them overcome it.

Problem

When users submit form data, validate it before performing further processing. If
there are errors, help the user understand what went wrong and how to address the
issue.

Solution

At the highest level, this recipe addresses two types of validation:

3 The spring and form tag libraries come from the org.springframework.web.servlet artifact, and the
corresponding tag library descriptors are spring.tld and spring-form.tld, respectively. You can find
these inside the JAR’s META-INF directory.
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Basic web forms
■ Field filtering—Ensure that all submitted field names are permissible. In general,
clients shouldn’t be allowed to submit fields that don’t appear on the form.

■ Field validation—Ensure that all submitted field values follow validation rules.

We’ll set the stage with an architectural overview. Spring Web MVC supports both types
of validation just described using three key APIs: Spring’s form-binding API, Spring’s
validation API, and JSR 303 Bean Validation. See figure 4.4.

 Here’s how it works. When users submit HTML form data, Spring Web MVC uses
the form-binding API to bind the HTTP parameters to form bean properties in an
automated fashion. In certain cases—for example, when a form bean is performing
double duty as a persistent entity—the form bean may have properties that aren’t
intended binding targets. The form-binding API allows you to filter out unwanted
HTTP parameters by silently ignoring them during binding.

 When Spring Web MVC invokes a form-submission request-handler method, such as
postRegistrationForm(), it passes in the form data. In general, the form data is encap-
sulated within a form bean, and you want to validate it. This is the domain of JSR 303
Bean Validation. Spring Web MVC uses JSR 303 to validate form data encapsulated in this
fashion, and developers use the Spring validation API (specifically, the BindingResult
interface) from within a controller to determine whether the bean is valid.

 Sometimes you need to perform a bit of custom validation logic. You’ll see an
example. Spring’s validation API provides a programmatic interface for implementing
such logic.

 That will do for an overview. Let’s add field filtering to the AccountController.

FIELD FILTERING VIA @INITBINDER AND WEBDATABINDER

Recall that Spring Web MVC automatically binds HTML forms to an underlying form
bean. Although this is a major convenience to application developers, it raises a security

Figure 4.4 Validation in Spring Web MVC. The form-binding API handles field filtering,
JSR 303 handles bean validation, and there’s a Spring validation API for custom logic.
www.it-ebooks.info

http://www.it-ebooks.info/

117Validating form data
concern because it allows attackers to inject data into form bean properties that aren’t
intended to be accessed via the HTML form. You’re not in that situation here, but it’s a
common state of affairs in cases where a single model object performs double duty as
both a form bean and a persistent entity. In such cases you need a way to guard against
data injection.4

 Spring Web MVC supports this using @InitBinder methods. Add the following
method to AccountController:

@InitBinder
public void initBinder(WebDataBinder binder) {
 binder.setAllowedFields(new String[] {
 "username", "password", "confirmPassword", "firstName",
 "lastName", "email", "marketingOk", "acceptTerms" });
}

The @InitBinder annotation tells Spring Web MVC to call this method when initializ-
ing the WebDataBinder responsible for binding HTTP parameters to form beans. The
setAllowedFields() method defines a whitelist of bindable form bean fields. The
binder silently ignores unlisted fields.

Now let’s examine field validation.

VALIDATING THE FORM DATA

Several steps are involved in adding form validation to your app:

1 Add a JSR 303 implementation to the classpath.
2 Add validation annotations to AccountForm.
3 Add @ModelAttribute, @Valid, BindingResult, and validation logic to Account-

Controller.
4 Create a ValidationMessages.properties resource bundle, and update the

messages.properties resource bundle.

4 Consider the case where you use a single Account POJO to serve as both an entity and a form bean. The entity
might have an enabled field that indicates whether the account is enabled. You wouldn’t want clients to be
able to manipulate that field by sending a value for the field to the form processor.

Whitelisting vs. blacklisting
The list of allowed fields is an example of a whitelist. The idea is that nothing gets
through unless it’s on the whitelist.

There is an alternative approach called a blacklist. With a blacklist, everything gets
through unless it’s on the blacklist.

Whitelists are generally more secure, because they start with an assumption of dis-
trust rather than trust. But blacklists have their place as well. For example, you might
filter out comment spammers using an IP blacklist, because it wouldn’t be practical
to use a whitelist for web traffic.
www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 4 Basic web forms
5 Update registrationForm.jsp to display error messages.
6 Confirm that beans-web.xml has <mvc:annotation-driven> (for validation)

and a message source (for certain custom error messages).

There’s a lot to cover. Let’s start at the top of the list and work our way down.

STEP 1. PLACING A JSR 303 IMPLEMENTATION ON THE CLASSPATH

Your Maven build takes care of placing Hibernate Validator 4, a JSR 303 implementation,
on the classpath. Spring Web MVC will automatically pick it up. You can therefore move
on to the next step, which is marking up AccountForm with validation annotations.

STEP 2. ADDING BEAN-VALIDATION ANNOTATIONS TO THE FORM BEAN

The following listing updates the AccountForm from listing 4.1 by adding validation
annotations.

package com.springinpractice.ch04.web;

import javax.validation.constraints.AssertTrue;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;
import org.hibernate.validator.constraints.Email;
import org.hibernate.validator.constraints.ScriptAssert;

@ScriptAssert(
 lang = "javascript",
 script = "_this.confirmPassword.equals(_this.password)",
 message = "account.password.mismatch.message")
public class AccountForm {

 ... fields same as before ...

 @NotNull
 @Size(min = 1, max = 50)
 public String getUsername() { return username; }

 @NotNull
 @Size(min = 6, max = 50)
 public String getPassword() { return password; }

 @NotNull
 @Size(min = 6, max = 50)
 @Email
 public String getEmail() { return email; }

 @AssertTrue(message = "{account.acceptTerms.assertTrue.message}")
 public boolean getAcceptTerms() { return acceptTerms; }

 ... other methods same as before ...
}

The previous listing uses the Bean Validation (JSR 303) standard and Hibernate Vali-
dator to specify validation constraints. You attach the annotations either to the fields

Listing 4.7 AccountForm.java, with validation annotations (updates listing 4.1)

@ScriptAssert for
password check

B

@NotNull
and @Size

C

@EmailD

@AssertTrue for
accepting terms E
www.it-ebooks.info

http://www.it-ebooks.info/

119Validating form data
or to the getters. At C you indicate that the username property can’t be null, and its
size must be 1–50 characters in length. At D you use the Hibernate-specific @Email
annotation to ensure that the email property represents a valid e-mail address. At E
you require that the acceptTerms property be true for validation to succeed, and you
specify a message code to use when the validation fails. (More on that shortly.)

 Finally, you declare a class-level @ScriptAssert annotation at B. This Hibernate
annotation, which was introduced with Hibernate Validator 4.1, allows you to use a
script to express validation constraints involving multiple fields. Here you use
JavaScript to assert that the password and confirmation must be equal. (The Rhino
JavaScript engine is automatically available if you’re using Java 6; otherwise you’ll
need to place a JSR 223–compliant [Scripting for the Java Platform] script engine JAR
on the classpath.) In addition to JavaScript, there are many other language options,
including Groovy, Ruby, Python, FreeMarker, and Velocity.

 Next you update AccountController to validate the account bean.

STEP 3. UPDATING THE CONTROLLER TO VALIDATE THE FORM DATA

The next listing shows how to update the AccountController from listing 4.2 to sup-
port both Bean Validation via JSR 303 and custom password validation.

package com.springinpractice.ch04.web;

import javax.validation.Valid;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.validation.ObjectError;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.InitBinder;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/users")
public class AccountController {
 private static final String VN_REG_FORM = "users/registrationForm";
 private static final String VN_REG_OK = "redirect:registration_ok";

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.setAllowedFields(new String[] {
 "username", "password", "confirmPassword", "firstName",
 "lastName", "email", "marketingOk", "acceptTerms" });
 }

 @RequestMapping(value = "new", method = RequestMethod.GET)
 public String getRegistrationForm(Model model) {
 model.addAttribute("account", new AccountForm());
 return VN_REG_FORM;
 }

Listing 4.8 AccountController.java, updated to validate form data (updates listing 4.2)
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 4 Basic web forms

ibute

ic
 @RequestMapping(value = "", method = RequestMethod.POST)
 public String postRegistrationForm(
 @ModelAttribute("account") @Valid AccountForm form,
 BindingResult result) {

 convertPasswordError(result);
 return (result.hasErrors() ? VN_REG_FORM : VN_REG_OK);
 }

 private static void convertPasswordError(BindingResult result) {
 for (ObjectError error : result.getGlobalErrors()) {
 String msg = error.getDefaultMessage();
 if ("account.password.mismatch.message".equals(msg)) {
 if (!result.hasFieldErrors("password")) {
 result.rejectValue("password", "error.mismatch");
 }
 }
 }
 }
}

You add @ModelAttribute and @Valid annotations to the AccountForm parameter B.
The @ModelAttribute annotation causes the account bean to be placed automatically
on the Model object for display by the view, using the key "account". The @Valid
annotation causes the bean to be validated on its way into the method.

 Spring exposes the validation result via the BindingResult object C. This is how
you can tell whether bean validation turned up any errors. You can also programmati-
cally add new errors to the BindingResult by using its various reject() and reject-
Value() methods. The BindingResult method parameter must immediately follow
the form bean in the method parameter list.

 The logic of the postRegistrationForm() method itself is straightforward. You
call convertPasswordError() D, which converts the global error that @ScriptAssert
generates into an error on the password field. You use the rejectValue() method to
do this, as mentioned, passing in an error code "error.mismatch". This error code
resolves to one of the following message codes, depending on which message codes
appear in the resource bundle:

■ error.mismatch.account.password (error code + . + object name + . + field
name)

■ error.mismatch.password (error code + . + field name)
■ error.mismatch.java.lang.String (error code + . + field type)
■ error.mismatch (error code)

These message codes are listed in priority order: if the resource bundle contains
the first message code, then that’s the resolution, and so forth.5 The first message
code does in fact appear in messages.properties. See the Javadoc for Spring’s

5 It’s probably worth emphasizing the fact that despite superficial similarities, error codes and message codes
aren’t the same thing. Validation errors have associated codes, and these generally map to a set of resource
bundle message codes, which in turn map to error messages. It’s pretty easy to get these mixed up.

@ModelAttr
and @Valid

B

BindingResult
to record errors C

Converts
password errors

D

Routing logE
www.it-ebooks.info

http://www.it-ebooks.info/

121Validating form data

sage

s

DefaultMessageCodesResolver for more information on the rules for converting
error codes to message codes.

 Finally, once you’ve processed any password errors, you check to see whether there
were any validation errors, and route to a success or failure page accordingly E.
Notice that you’re using the view name constants defined at the top of the file.

 Let’s take a more detailed look at the error messages here.

STEP 4. CONFIGURING ERROR MESSAGES

First let’s talk about the default JSR 303 and Hibernate Validator messages. Strictly
speaking, you don’t have to override them at all. But the defaults aren’t particularly
user-centric (one of the defaults, for example, references regular expressions), so
you’ll change the messages for the constraints you’re using. JSR 303 supports this by
allowing you to place a ValidationMessages.properties resource bundle at the top
of the classpath. You’ll use this resource bundle not only to override the JSR 303 and
Hibernate Validator defaults, but also to define an error message specific to the
acceptTerms property.

javax.validation.constraints.Size.message=

➥ Please enter {min}-{max} characters.
org.hibernate.validator.constraints.Email.message=

➥ Please enter a valid e-mail address.
account.acceptTerms.assertTrue.message=

➥ You must accept the terms of use to register.

You override the default JSR 303 @Size B and default Hibernate Validator @Email C
error messages as shown. The message for @Size is effectively a template that gener-
ates messages with the minimum and maximum sizes substituted in. You aren’t over-
riding the default JSR 303 error message for @NotNull because that error shouldn’t
occur if you don’t forget to implement any form fields. (And if you do, the default
error message is OK because this is a programming error rather than an end user
error.) Finally, you define an error message for the acceptTerms property at D.

 In addition to the JSR 303 error messages, you need messages for the Spring-man-
aged errors. You’ll add these to messages.properties because ValidationMes-
sages.properties is for JSR 303 error messages. Although it can be a little confusing
to split the error messages into two resource bundles, it helps to do exactly this. The
reason is that JSR 303 and Spring use different schemes for resolving error codes to
message codes, and mixing error messages in a single resource bundle can make it
harder to keep message codes straight.

 Add the following two error messages to messages.properties:

error.global=Please fix the problems below.
error.mismatch.account.password=Your passwords do not match. Please try

➥ again.

Now you have an error message for the password-mismatch error code you used in the
controller. You’ll use the global error message in the form JSP.

Listing 4.9 ValidationMessages.properties, for JSR 303 error messages

Overrides default @Size messageB

Overrides default @Email mesC

Defines message for acceptTermD
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 4 Basic web forms
STEP 5. DISPLAYING VALIDATION ERRORS IN THE VIEW

You use the Spring form tag library to display both a global error message (“Please fix
the problems below”) and error messages on the form bean, as illustrated in figure 4.5.

 The text fields for properties with errors are visually distinct (they have red borders),
although it’s hard to tell if you’re viewing the figure in black and white. Also, fields are
prepopulated with the user’s submitted data so the user can fix mistakes instead of reen-
tering all the data. The only exceptions are the two password fields, which for security
reasons you don’t prepopulate. The user has to reenter those values.

 To accomplish this design, you’ll need to revise registrationForm.jsp as shown
next. (See the code download for the full version.)

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<spring:message var="pageTitle" code="newUserRegistration.pageTitle" />
<spring:message var="msgAllFieldsRequired"
 code="newUserRegistration.message.allFieldsRequired" />

<html>
 <head><title>${pageTitle}</title></head>
 <body>
 <form:form cssClass="main" action="." modelAttribute="account">

<form:errors path="*">
 <div><spring:message code="error.global" /></div>
</form:errors>

<h1>${pageTitle}</h1>
<div>${msgAllFieldsRequired}</div>

<div>

Listing 4.10 registrationForm.jsp, updated with validation error messages

Figure 4.5 The revised registration form, with a global error message and field-level error messages

Displays global
error messageB
www.it-ebooks.info

http://www.it-ebooks.info/

123Validating form data
 <div>
 <spring:message code="newUserRegistration.label.username" />
 <form:input path="username" cssClass="short"
 cssErrorClass="short error" />
 </div>
 <form:errors path="username">
 <div><form:errors path="username" htmlEscape="false" /></div>
 </form:errors>
</div>

... other fields and submit button ...

 </form:form>
 </body>
</html>

At B you display the global error message. The tag logic here is to look for the exis-
tence of any error whatsoever—a global error or a field error—and if there is one, dis-
play the global error message. The path="*" piece is your error wildcard.

 You display the username field at C. By using the <form:input> tag, you get data
prepopulation for free. This time around you include the CSS attributes because
there’s something interesting to show off. The cssClass attribute specifies the
<input> element’s CSS class when there’s no error. (The short class just sets the text-
field width in the sample code.) The cssErrorClass attribute specifies the class when
there is an error. This allows you to change the visual appearance of the text field
when there’s an error.

 In addition to the text field, you want to display the error message, and that’s
what’s going on at D. You select the specific form bean property with the path attri-
bute and use htmlEscape="false" so you can include HTML in the error message
if desired.

 The other fields are essentially the same, so we’ve suppressed them. Again, please
see the code download for the full version of the code.

 The last step in the process is to configure the application for validation.

STEP 6. CONFIGURING THE APP FOR VALIDATION

Surprise—you’ve already done what you need to do here. In recipe 4.1 you included
the <mvc:annotation-driven> configuration inside beans-web.xml, which among sev-
eral other things activates JSR 303 Bean Validation, causing Spring Web MVC to recog-
nize the @Valid annotation. In recipe 4.2 you added a MessageSource.

 Start up your browser and give the code a spin.

Discussion

The preceding recipe handles validation in the web tier. There’s nothing wrong with
that, because the constraints you’ve used so far make sense as web tier constraints. But
it’s important to bear in mind that modern validation frameworks like Spring valida-
tion and JSR 303 validation abandon the traditional assumption that bean validation
occurs exclusively in the web tier. In the following recipe, you’ll see what validation
looks like in the service tier.

Displays
username fieldC

Displays username
error messages D
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 4 Basic web forms
4.4 Saving form data
PREREQUISITES

Recipe 4.1 Displaying a web form
Recipe 4.3 Validating form data

KEY TECHNOLOGIES

Spring, JPA, Hibernate 3, Spring JdbcTemplate, MySQL, or other RDBMS

Background

So far you’re accepting and validating user registrations, but you aren’t saving the data
to a persistent store. In this recipe, you’ll persist data using Spring, JPA, Hibernate,
and JDBC. You’ll also perform service-tier validation to avoid duplicate usernames.

Problem

Save form data to a persistent store.

Solution

Although you’ll save your form data to a database, you’re not going to save the
AccountForm form bean directly. The main reason is that there’s a mismatch between
the form bean and what you’d want out of a domain object:

■ For security purposes, you don’t want your domain object to have a password
property. (You don’t want a bunch of in-memory passwords sitting around.)

■ Your domain object will have an enabled field that the form bean doesn’t have.

Instead, you’ll create a separate Account domain object and then have the controller
translate the AccountForm into an Account before saving the Account.

Why not save the form bean directly?
It’s possible to have a single POJO serve as both a form bean and a domain object,
but architecturally it’s cleaner to separate the two, especially if there are material dif-
ferences between them. Here the security difference seems important enough to war-
rant two separate classes.

Note that if you were to use a single POJO, then the @InitBinder method from
recipe 4.3 would allow you to prevent users from setting the enabled property.

Having said all that, the choice is partly a matter of style. Especially with traditional
designs based on anemic domain objects, it’s common to see a single POJO support-
ing presentational, domain, and persistence concerns. This might change, though, if
domain-driven design (DDD) catches on in the Spring community. (Spring Roo pro-
motes a DDD approach.) As domain objects get richer, they become less suitable as
form beans.
www.it-ebooks.info

http://www.it-ebooks.info/

125Saving form data
You’ll use a combination of Hibernate, JPA annotations, and JDBC to persist the user
registration data. Hibernate will work nicely for saving the Account domain object,
but you need a way to save user passwords as well, and Hibernate won’t help there
because the password isn’t part of Account. So, you’ll use straight JDBC to save the
password. The POJO and password data need to be saved as part of the same transac-
tion, and we’ll also show how to do that.

 This recipe adds a lot of infrastructure to what you already have. See figure 4.6.
 You’ll start with the database schema, then build out the code and configuration

on top of that.

CREATING A DATABASE SCHEMA FOR STORING USER ACCOUNTS

The following listing presents the database schema for MySQL, which involves a single
table for storing user accounts.

create table account (
 id bigint unsigned not null auto_increment primary key,
 username varchar(50) unique not null,
 first_name varchar(50) not null,
 last_name varchar(50) not null,
 email varchar(50) not null,
 password varchar(64),
 marketing_ok boolean not null,
 accept_terms boolean not null,

Listing 4.11 User account table (MySQL)

Figure 4.6 Bean-dependency diagram for saving user
registration data. We’re including infrastructure for both
Hibernate- and JDBC-based persistence.
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 4 Basic web forms
 enabled boolean not null,
 date_created timestamp default 0,
 date_modified timestamp default current_timestamp
 on update current_timestamp,
 unique index account_idx1 (username),
 unique index account_idx2 (email)
) engine = InnoDb;

Notice that you coordinate the database constraints in listing 4.11 with the validation
constraints in recipe 4.3. For example, the field-size maximums are generally 50 in
both locations. (The exception is that the password column in the database allows 64
characters to accommodate SHA-256 hashes, as you’ll see in recipe 6.7.) Also, you
include a password column here even though the Account domain object won’t have
a corresponding property.

 Speaking of Account, let’s create it, because you’ll need it for what follows.

ANNOTATING THE ACCOUNT MODEL FOR PERSISTENCE

The next listing presents the Account domain object, with JPA annotations for
persistence.

package com.springinpractice.ch04.domain;

import java.util.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.persistence.Transient;
import javax.validation.constraints.AssertTrue;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.hibernate.validator.constraints.Email;

@NamedQuery(
 name = "findAccountByUsername",
 query = "from Account where username = :username")
@Entity
@Table(name = "account")
public class Account {
 private Long id;
 private String username, firstName, lastName, email;
 private boolean marketingOk = true;
 private boolean acceptTerms = false;
 private boolean enabled = true;
 private Date dateCreated;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")

Listing 4.12 Account.java with JPA annotations for persistence

Finder
query

B

Mark POJO
as persistent entityCAssociate entity

with tableD

ID columnE
www.it-ebooks.info

http://www.it-ebooks.info/

127Saving form data
 public Long getId() { return id; }

 @SuppressWarnings("unused")
 private void setId(Long id) { this.id = id; }

 @NotNull
 @Size(min = 1, max = 50)
 @Column(name = "username")
 public String getUsername() { return username; }

 public void setUsername(String userName) { this.username = userName; }

 @Transient
 public String getFullName() { return firstName + " " + lastName; }

 ... other getters and setters ...
}

You use the JPA @Entity annotation C to mark your domain object as a persistent
entity, and @Table D to associate the entity with a database table. At E you use @Id,
@GeneratedValue, and @Column on the getId() method to establish it as an ID prop-
erty mapped to a database column called id, with GenerationType.AUTO indicating
that the JPA provider (Hibernate in this case) is responsible for determining the right
ID-generation strategy for the underlying database. (IDs might be generated by an
autoincrement column, or perhaps by a sequence, and so on.)

 For most properties, the column mapping is a matter of attaching an @Column
annotation to the getter method or the field. You can see this with getUsername() F.

 In the case of the fullName property, it’s a convenience method rather than a per-
sistent field, so you mark it with @Transient G to prevent Hibernate from trying to
persist it. You can also use JPA to define named queries supporting finder methods. At
B you define a named query to look up accounts by username. You’ll use this query
in your data access object.

CREATING THE ACCOUNT DATA ACCESS OBJECT

You need both an interface and an implementation for your DAO. The interface
extends the Dao interface from chapter 1 by adding a password-aware create()
method (recall that the Account doesn’t have a password property) and a finder-by-
username:

package com.springinpractice.ch04.dao;

import com.springinpractice.ch04.domain.Account;
import com.springinpractice.dao.Dao;

public interface AccountDao extends Dao<Account> {

 void create(Account account, String password);

 Account findByUsername(String username);
}

The DAO implementation in the following listing is more interesting. You derive it
from AbstractHbnDao in chapter 1, but note that it isn’t a pure Hibernate DAO.

Username columnF

Transient
(nonpersistent) field G
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 4 Basic web forms

C
package com.springinpractice.ch04.dao;

import javax.inject.Inject;
import org.hibernate.Query;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;
import com.springinpractice.ch04.domain.Account;
import com.springinpractice.dao.hibernate.AbstractHbnDao;

@Repository
public class HbnAccountDao extends AbstractHbnDao<Account>
 implements AccountDao {

 private static final String UPDATE_PASSWORD_SQL =
 "update account set password = ? where username = ?";

 @Inject private JdbcTemplate jdbcTemplate;

 public void create(Account account, String password) {
 create(account);
 jdbcTemplate.update(
 UPDATE_PASSWORD_SQL, password, account.getUsername());
 }

 public Account findByUsername(String username) {
 Query q = getSession().getNamedQuery("findAccountByUsername");
 q.setParameter("username", username);
 return (Account) q.uniqueResult();
 }
}

You use @Repository B to tag HbnAccountDao as a DAO. This allows Spring to dis-
cover the bean during component scanning.

 Now we get to the interesting part. You’re doing both Hibernate and JDBC inside
this DAO. Hibernate handles everything on the Account POJO, but the password is a
standalone field. So you need JDBC to update that. First you define a password-update
statement at C. You also inject a JdbcTemplate at D to execute the update. At E you
have Hibernate and JDBC working together to save the user account data, including
the password. A Hibernate Session sits behind the call to create(). Then you run the
JDBC password update using the JdbcTemplate.

 Besides saving account information, you have a finder for looking up an account
by username F. You’ll use this to check for duplicate usernames when the user tries to
register an account. The finder uses the JPA named query you created on the Account
domain object in listing 4.12.

 Now let’s create an account service around the account DAO.

CREATING THE ACCOUNT SERVICE

You’ll create a service with a single method for registering valid users. Here is the ser-
vice interface:

Listing 4.13 HbnAccountDao.java, backed by both Hibernate and JDBC

Mark as DAOB

JDBC update
query

c

JDBC templateD

Hibernate and JDB
working togetherE

Invokes
named query F
www.it-ebooks.info

http://www.it-ebooks.info/

129Saving form data

package com.springinpractice.ch04.service;

import org.springframework.validation.Errors;
import com.springinpractice.ch04.domain.Account;

public interface AccountService {
 boolean registerAccount(
 Account account, String password, Errors errors);
}

Notice that the service interface accepts an Errors object. The idea here is that the
registerAccount() method does a conditional registration—it registers the account
if and only if there aren’t any validation errors, either present in the Errors object, or
discovered inside the registerAccount() implementation (such as a duplicate user-
name). The controller will call registerAccount() with its BindingResult object,
which works fine because BindingResult extends Errors. You use Errors in the
AccountService interface, though, rather than BindingResult, because the service
tier doesn’t know anything about web binding.

The following listing is the account service implementation.

package com.springinpractice.ch04.service;

import javax.inject.Inject;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.validation.Errors;
import com.springinpractice.ch04.dao.AccountDao;
import com.springinpractice.ch04.domain.Account;

@Service
@Transactional(readOnly = true)
public class AccountServiceImpl implements AccountService {
 @Inject private AccountDao accountDao;

 @Transactional(readOnly = false)
 public boolean registerAccount(
 Account account, String password, Errors errors) {

 validateUsername(account.getUsername(), errors);
 boolean valid = !errors.hasErrors();
 if (valid) { accountDao.create(account, password); }
 return valid;
 }

Listing 4.14 AccountServiceImpl.java: service implementation

Why call registerAccount() if there are already known errors?
It may seem odd to call the registerAccount() method if there are already errors
in the Errors container. The reason: when doing form validation, you generally want
to know about all validation errors, not just the first one. So you still check for duplicate
usernames even if you already know, for example, that the passwords didn’t match.

Default transaction
definition

B

Overrides
default

C

Validates
username

D

Creates
account if validE
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 4 Basic web forms
 private void validateUsername(String username, Errors errors) {
 if (accountDao.findByUsername(username) != null) {
 errors.rejectValue("username", "error.duplicate",
 new String[] { username }, null);
 }
 }
}

A good practice when writing service beans is to associate a read-only transaction defi-
nition at the class level B. This provides a basic layer of safety because individual
methods have to override the definition explicitly C in order to write to the persistent
store. Here you have only one method, so it looks a little funny, but this way you won’t
forget if you decide to add more methods.

 Inside registerAccount(), you validate the username D and save the account to
the database if the entire account is valid E. The username validation F uses the
finder you created to determine whether the username is a duplicate. If it is, then you
use the errors object to reject the username, specifying the errors.duplicate error
code (we’ll define that momentarily) and the username for token substitution.

 Let’s quickly take care of that error message.

ADDING A NEW ERROR MESSAGE FOR DUPLICATE USERNAMES

All you need to do is add a single error message to messages.properties:

error.duplicate.account.username=The username {0} is already taken.

The error.duplicate.account.username message code will match the error.dupli-
cate error code as explained in recipe 4.3. Spring will substitute the username for the
{0} when displaying the error message, because the username is the 0th element of the
String[] you passed into rejectValue().

 There isn’t much you need to do to the controller to make it save accounts, as
you’ll see now.

UPDATING THE CONTROLLER TO SAVE ACCOUNTS USING THE SERVICE

To update the controller, you add a single line to the postRegistrationForm()
method, and you add a helper method to convert the form bean into a domain object:

@RequestMapping(value = "", method = RequestMethod.POST)
public String postRegistrationForm(
 @ModelAttribute("account") @Valid AccountForm form,
 BindingResult result) {

 convertPasswordError(result);
 accountService.registerAccount(
 toAccount(form), form.getPassword(), result);
 return (result.hasErrors() ? VN_REG_FORM : VN_REG_OK);
}

private static Account toAccount(AccountForm form) {
 Account account = new Account();
 account.setUsername(form.getUsername());
 account.setFirstName(form.getFirstName());
 account.setLastName(form.getLastName());

Checks for
duplicate

usernames F
www.it-ebooks.info

http://www.it-ebooks.info/

131Saving form data

 account.setEmail(form.getEmail());
 account.setMarketingOk(form.isMarketingOk());
 account.setAcceptTerms(form.getAcceptTerms());
 account.setEnabled(true);
 return account;
}

You’ll need to augment the existing configuration to support persistence. The main
part of this effort involves adding a new Spring application context file. You’ll need to
modify web.xml slightly as well. First let’s do the app context.

CREATING A NEW APPLICATION CONTEXT CONFIGURATION FOR PERSISTENCE

To add persistence to your registration form, you need to add several bits.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/Sip04DS"
 resource-ref="true"/>

 <bean class="org.springframework.jdbc.core.JdbcTemplate"
 p:dataSource-ref="dataSource" />

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5InnoDBDialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </util:properties>

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

➥ AnnotationSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch04.domain"
 p:hibernateProperties-ref="hibernateProperties" />

Listing 4.15 beans-service.xml: application context configuration

DataSource
referenceB

JDBC template
for JDBC callsC

Hibernate
configurationD

Hibernate
SessionFactory

E

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 4 Basic web forms
 <bean id="transactionManager"
 class="org.springframework.orm.hibernate3.

➥ HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory" />

 <context:component-scan
 base-package="com.springinpractice.ch04.dao.hbn" />
 <context:component-scan
 base-package="com.springinpractice.ch04.service" />

 <tx:annotation-driven />
</beans>

You declare a DataSource reference using a JNDI lookup at B. You’ll need to con-
sult the documentation for your servlet container to see what’s involved with expos-
ing a DataSource with JNDI using that container. The sample code includes a Jetty
configuration.

 At C you declare the JDBC template you’re using to set the user password. The
Hibernate configuration is at D, and it’s set up for MySQL 5 in listing 4.15. You’ll
need to modify that if you’re using a different RDBMS; see the Javadoc for the
org.hibernate.dialect package for more options.

 You define a Hibernate SessionFactory at E, using the DataSource and configu-
ration you just created. As its name suggests, the SessionFactory is a session source.
Sometimes it creates brand-new sessions (for example, when starting a new transac-
tion), and sometimes it returns sessions that have already been created (such as when
executing DAO persistence operations).

 The transaction manager F provides (you guessed it) transaction management
services. It knows, for example, how to start, suspend, and stop transactions. The
HibernateTransactionManager implementation coordinates transaction manage-
ment with Hibernate session management.

 You use <context:component-scan> to discover DAOs and service beans G. Com-
ponent scanning interprets classes annotated with @Repository as DAOs and classes
annotated with @Service as service beans.

 Finally, at H you use <tx:annotation-driven> to activate transactions. The spe-
cific details of that process are fairly involved, and there’s no need to dig into the
details here, but the basic idea is that it causes Spring’s IOC container to wrap transac-
tion-aware Spring AOP proxies around components marked up with the @Transac-
tional annotation.6 It does this using Spring AOP’s autoproxy facility.

 Just one small tweak to go, and you’ll be ready to run the app.

UPDATING WEB.XML TO POINT TO THE NEW APP CONTEXT CONFIGURATION

All you need to do here is add a single configuration element to web.xml. This tells
the Spring Web MVC DispatcherService where to find your beans-service.xml
configuration:

6 In addition to Spring AOP proxies, AspectJ weaving is an option. See the reference documentation for
<tx:annotation-driven> for more details.

Transaction
managerF

Discovers DAOs
and services

G

Activates
transactionsH
www.it-ebooks.info

http://www.it-ebooks.info/

133Summary
<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:/spring/beans-service.xml</param-value>
</context-param>

With that, you should be ready to go. Try it out.

Discussion

In this recipe we’ve shown how to save form data to a persistent store. That’s of course
a common requirement, and now you have a good feel for how to do it. You even saw
how to use Hibernate and JDBC together in cases where the form data doesn’t all fit
nicely inside a single domain object.

 Because our topic is web forms in general rather than user-registration forms in
particular, we’ve neglected some persistence- and security-related topics that a real
user form would take seriously. The good news is that we’ll address them in chapter 6.
They’re the following:

■ Spring Security integration—A key reason for user accounts is to support logins.
Recipe 6.6 shows how to use the account data you’ve developed in chapter 4 as
an authentication source.

■ Hashing and salting passwords—It’s a poor security practice to save passwords as
plaintext in the database, because that makes it easier for a malicious person to
see those passwords and use them on other websites. (Users often use the same
password for multiple websites.) You can use password hashing and salting to
mitigate this issue. We’ll show how to hash and salt passwords in recipe 6.7.

4.5 Summary
In this chapter, you developed a basic registration form with several of the key features
you’d expect such a form to have, including string externalization, validation, and
persistence. Although we used user registration as an example, the topics we’ve
treated are obviously general concerns when developing web-based forms.

 In many cases, registration forms aren’t as simple as the one you developed in this
chapter. Instead they carry the user through a series of steps, implemented as a web
flow spanning multiple pages. In chapter 5 you’ll learn how to implement multistep
flows using Spring Web Flow.
www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Spring MVC
applications with Web Flow
Most enterprise Java developers have worked on web applications that have some
sort of workflow component to them. Classic use cases consist of searching for
products, booking a flight, and preparing your tax return. But without the right
tools, determining how to manage this workflow can be a challenge.

 Model-view-controller (MVC) frameworks work best in situations where the unit
of work required to create or update the model can be implemented in a minimal
number of views. By itself, though, the MVC pattern doesn’t provide an efficient
mechanism for managing a series of intermediate steps, their rules, and states that
span multiple requests. As a result, page-flow logic typically seeps into both the view

This chapter covers
■ An introduction to Spring Web Flow
■ Building a Spring soccer demo application
■ Using action classes
■ Working with form data-binding and validation
■ Understanding flow and state inheritance
■ Securing web flows
134

www.it-ebooks.info

http://www.it-ebooks.info/

135An overview of Spring Web Flow
and controller tiers whereas the application state required to support the page-flow
logic is often spread between a combination of session and request parameters. As a
result, understanding, maintaining, and testing complex page flows in an MVC appli-
cation can quickly become an arduous task.

 In this chapter, we’ll look at Spring Web Flow (SWF) and focus on how you can use
this framework to complement your existing Spring MVC application. Before we dive
in, let’s go over some important background information.

5.1 Is Spring Web Flow right for you?
SWF is often confused with more general-purpose workflow engines. In general,
workflow engines can route work through any number of sequenced tasks or activi-
ties. Processing in these engines takes place either synchronously or asynchronously
using a number of predefined rules and other complex workflow patterns such as
forks and joins.

 In contrast, SWF provides only a subset of these capabilities. It’s focused specifically
on addressing the problem of navigation (page flows) in the web tier. Both the rela-
tionship and application of these tools should be viewed as complementary rather
than competitive. But this narrow focus makes SWF intuitive to use and easy to learn.

SWF is best applied when you need to navigate a user through a series of pre-
defined and/or dynamic steps (states) to achieve a desired outcome or complete a
unit of work. Some examples of where SWF would be beneficial are as follows:

■ Booking travel reservations
■ Shopping carts
■ Adaptive surveys or questionnaires
■ Multistep product configuration

SWF greatly simplifies the work required to design, maintain, and understand com-
plex page-navigation decisions. As you’ll see in section 5.6, large flows can be broken
down into reusable subflows with their own predefined contracts and lifecycle, mak-
ing reusability and modularity straightforward.

5.2 An overview of Spring Web Flow
SWF is a framework that was introduced in 2005 and is focused on being the best
solution for managing page flows in a web application. Over the next several sec-
tions, we’ll introduce you to this framework and its core concepts. You’ll build on
this knowledge in section 5.3 by creating a brief demo application. The remainder of
the chapter will focus on making you more productive by examining problems or
tasks you’re likely to encounter as you begin developing with SWF. Although SWF
provides JSF and portlet support, we’ll focus on complementing your existing Spring
MVC configuration.
www.it-ebooks.info

http://localhost:8080/sip/findExistingPlayer
http://localhost:8080/sip/findExistingPlayer
http://localhost:8080/sip/findExistingPlayer
http://www.it-ebooks.info/

136 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
5.2.1 Defining a flow

As kids, we liked to read “choose your own adventure” books. Our favorite stories
involved going on quests or exploring foreign lands. The format of these books was
always the same. The first chapter introduced us as the main character and set up the
initial story line. Subsequent chapters added to the story and presented several options
that let us control what we as the main character did next. We were then routed back
and forth through several parts of the book based on the actions we chose. It was com-
mon for these books to have varying endings depending on the choices made.

 Flows are similar to these books in that they have a single place to start, followed by
several intermediary steps. Each step can route the user to additional steps or differ-
ent end points based on information captured in the flow.

 In SWF, these flows are potentially reusable components that represent a unit of
work and are defined using states, transitions, and flow data. Figure 5.1 represents a
simple search flow.

 A flow is defined using an XML-based flow definition language. Each flow is
defined in its own file using the following root element.

<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
 start-state="enterSearchCriteria">

 ...

</flow>

In addition to defining a flow, at B you explicitly define the enterSearchCriteria
state as being the flow start state. Let’s talk more about states next.

5.2.2 The five types of states

Each box in figure 5.1 represents an individual step in the flow called a state. This is
where something is displayed to the user, a decision is made, and a flow ends or some
other action is taken. Like the “choose your own adventure” books we talked about
earlier, flows must have a single start state but can contain one or many end states.
SWF defines five states, as shown in table 5.1.

Listing 5.1 Defining a flow

Figure 5.1 In this simpli-
fied search flow, users
start by entering search
criteria and transition to a
state where they can view
their search results. The
flow transitions to the end
state after the user selects
an item.

Explicitly defines
start stateB
www.it-ebooks.info

mailto:RobinJBryce@example.com
mailto:RobinJBryce@example.com
mailto:RobinJBryce@example.com
http://www.it-ebooks.info/

137An overview of Spring Web Flow
Missing from table 5.1 is the flow’s start state. The start state is a marker state that des-
ignates another state (view, action, decision, end, subflow) defined in the flow as
being the flow’s starting point. You defined an explicit start-state at B called
enterSearchCriteria in listing 5.1. When start-state isn’t explicitly defined, the
first state defined in the flow is assumed to be the start state. Let’s look at how each of
these states is defined in SWF’s XML-based flow definition language.

VIEW STATE

The view state is used to either display or solicit information from the user and is
defined using the view-state element in the flow definition XML file. In the simpli-
fied search flow in figure 5.1, you use view states to interact with the end user by pre-
senting a search form or viewing search results. In the following example, the logical
view name is explicitly specified using the optional view attribute. If the view attribute
isn’t specified, the view is given the same name as the state’s required id attribute
along with a .jsp suffix. More on this later:

<view-state id="enterSearchCriteria" view="enterSearchCriteriaForm">
 <transition on="search" to="viewSearchResults"/>
</view-state>

Although our focus in this chapter is on enhancing your existing Spring MVC applica-
tion, SWF supports a number of view technologies. In addition to JSF, SWF can use any
of the view technologies that Spring MVC supports out of the box. As of this writing,
these are JSP, JSTL, Velocity, and XSLT.

 When a view is rendered to the user, the flow pauses and waits for another event to
occur. Users can continue flows by generating additional events by either clicking
links or submitting forms containing event IDs. Event IDs can be specified as the value
of the _eventId request parameter or directly in the request parameter’s name itself
using the prefix _eventId_. In the following code snippet, both lines are equivalent.

_eventId=enterSearchCriteria
_eventId_enterSearchCriteria

Table 5.1 The five types of state in SWF

State type What it does

View The view state renders a view to the user and is used to either solicit information from or
provide information to the user.

Action An action state is used when you want to perform some type of work and transition to
another state based on its outcome.

Decision The decision state is similar to an action state but uses a convenient If…Then…Else
statement to determine which state to transition to next.

End The end state represents the end of a flow. There may be one or many flow end states.

Subflow The subflow state starts another existing flow as a subflow and maps the subflow’s end
states to transitions in the current flow.
www.it-ebooks.info

http://localhost:8080/sip/helloWorldControllerTest
http://localhost:8080/sip/helloWorldControllerTest
http://www.it-ebooks.info/

138 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
To specify an event ID in a link, you need to include the event ID using one of the con-
ventions appended to flowExecutionUrl. flowExecutionUrl is a variable that SWF
provides that contains the context-relative URI for the current execution of the flow
and some information about the current view state. The two lines in the following
example are equivalent and show how to specify event IDs using links:

New Search

New Search

When the view is rendered, flowExecutionUrl contains the context-relative URI for
the current flow execution and a request variable called execution. The link specified
on the first line in the example may be resolved as

New Search

In the example, the value of the execution request variable is specified in the for-
mat eXsY where e indicates the current instance of the flow myFlowId, which is
denoted by X. The letter s indicates the current step that is being executed and is
denoted by Y. Using the example you’re executing the first instance and first step of
the flow with flowId myFlow. We’ll talk more about flow IDs and how they’re speci-
fied and resolved later.

 When using forms to capture user input, the event ID can be specified either in a
hidden field or in the name of a submit button. The next code snippet provides an
example of specifying the event ID using a hidden form field:

<form:form action="${flowExecutionUrl}" >
 <input type="hidden" name="_eventId"
 value="processSearchForm"/>
 <input type="submit" value="Search"/>
</form:form>

Similar to the previous code, the following snippet provides an example of how to
specify an event ID using a form submit button:

<form:form action="${flowExecutionUrl}" >
 <input type="submit" name="_eventId_processSearchForm"
 value="Search"/>
</form:form>

Notice how this example provides both the event ID and its value together using the
underscore character B. The view state is unique in that it’s the only state where the
currently executing flow pauses and waits for a user-generated event to occur. With
the exception of the end state, other states continue the flow by evaluating events gen-
erated in the state. Let’s look at the action state next.

Using a button
name to specify
the event IDB
www.it-ebooks.info

http://www.it-ebooks.info/

139An overview of Spring Web Flow

ACTION STATE

As the name suggests, the action state is where the application does work. You express
the work to be done using an expression in an evaluate statement. Look at the fol-
lowing example:

<action-state id="addVolunteer">
 <evaluate expression="volunteerAction.addVolunteer(volunteer)"/>
 <transition on="success" to="successView" />
 <transition on="failure" to="failureView" />
</action-state>

At B, your expression calls the addVolunteer() method of a Spring-managed bean
named volunteerAction, passing it a flow-scoped variable named volunteer. When
the expression is evaluated, the value that volunteerAction returns becomes the
event ID to transition to.

 If you need to execute additional code, you can add evaluate elements. SWF will
execute each expression in order until the outcome of the code being called matches
a local or globally defined transition. We’ll discuss transitions in section 5.2.3.

DECISION STATE

A decision state provides a subset of the functionality of the action state mentioned
earlier. Instead of checking the return value of one or more expressions to find a
match to a local or global transition, the decision state evaluates a boolean expression
and transitions to one of two states depending on the result. The addVolunteer code
snippet is rewritten next as a decision state:

<decision-state id="addVolunteer">
 <if test="volunteerAction.addVolunteer(volunteer)"
 then="successView" else="failureView"/>
</decision-state>

Now that we’ve talked about how to start a flow, interact with users, and do work, let’s
see how you end the flow.

END STATE

Once the flow transitions to an end state, it’s terminated:

<end-state id="myFlowEndState"/>

<end-state id="myFlowEndState" view="endOfFlowView”/>

In its simplest form, the flow ends at B. If a view is specified C, SWF renders the view
in addition to ending the flow. As you’ll see next, if you’re ending a subflow, the end
state’s id is used as an event to transition to in the parent flow.

SUBFLOW STATE

In general, it’s a good practice to break large, complex problems into smaller, more
manageable pieces. Flows are no different. In SWF, the flow is a potentially reusable

Using Spring Expression
Language (SpEL) to do work B

Simplest form of
flow’s end-state

B

Renders endOfFlowView
view and ends flowC
www.it-ebooks.info

http://localhost:8080/sip/testWebFlow
http://localhost:8080/sip/testWebFlow
http://localhost:8080/sip/testWebFlow
http://www.it-ebooks.info/

140 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
and self-contained component that is defined using states, transitions, flow data,
inputs, and outputs. As shown in the following snippet, you use the subflow state in
the top-level flow to call an existing flow as a subflow:

<subflow-state id="createdNewWidget" subflow="widget/createNew">
 <input name="widget" value="widget"/>
 <transition on="success" to "ourNextStateInParentFlow"/>
</subflow-state>

Here you are calling a subflow with the ID widget/createNew. You’re using the
<input> element to pass a widget object into the subflow for some type of configura-
tion or modification. The example assumes that the subflow will transition to an end
state with the ID success. As we mentioned earlier, the ID of the subflow’s end state
will be used as the event to transition to.

 Now that we’ve discussed the five different types of states available in SWF, let’s turn
our attention to transitions and see how you can use them to move from state to state.

5.2.3 Transitions between states

In figure 5.1, the arrows represent transitions between states. Transitions can be
defined in a given state or globally. A transition is defined using the transition ele-
ment and maps an event occurring in the current state to the next state. Look at the
following listing.

 <view-state id="displayFindExistingPlayerResult">
 <transition on="back" to="findExistingPlayerForm"/>
 <transition on="newSearch" to="newSearchEndState"/>
 <transition on="noneMatch" to="endState"/>
 <transition on="existingAccountFound"
 to="existingAccountFoundEndState"/>
 <transition to="newSearchEndState"/>
 <transition on-exception=
 "com.springinpractice.exception.ServiceUnavailableException"

➥ to="systemUnavailable"/>
 </view-state>

Each transition is evaluated in the order it’s defined. At B, you implement a catch-all
transition by omitting the event name. In this example, you transition to newSearch-
EndState if an explicit match isn’t found for the other transition events.

 As seen at C, transitions aren’t limited to events. Here, if a ServiceUnavailable-
Exception is thrown, you can transition to a view state to provide the end user with a
friendly message.

 After writing a flow that contains many different states, you may find that you’re
defining certain transitions over and over again. Perhaps in a given flow, there are many
points at which a user can choose to either quit and exit the flow or start over. Instead
of specifying a transition from the quit event to an end state with the ID quitEndState
in each location, you could define this transition globally. Let’s look at an example:

Listing 5.2 Defining transitions

Catch-all
transition

B

Exception-based
transition

C

www.it-ebooks.info

http://www.it-ebooks.info/

141An overview of Spring Web Flow
<global-transitions>
 <transition on="quit" to="quitEndState"/>
 <transition on="startOver" to="newSearchEndState"/>
</global-transitions>

Here you use the global-transitions element to define two global transitions that
can be used in any view or action state in the flow.

 Up to this point, we’ve talked about events, the five types of states, and how to tran-
sition between them. The next section completes our overview by discussing how SWF
manages its state. Then we’ll put it all together in a brief example application in sec-
tion 5.3.

5.2.4 Flow data

In most MVC applications that contain complex page flows, developers are left to fig-
ure out how they should maintain state for each individual step, rule, or entire work-
flow. Bugs are often introduced into these systems as a result of having multiple places
and approaches to managing this state. Thinking about your past experience, was
state managed using session variables, request variable, URL parameters, hidden form
fields, or a combination of each? When a user restarted a given workflow or reused
part of an existing flow, how were you sure you’d cleared out all the necessary state
from the previous run?

 This is where SWF shines. SWF provides facilities for creating, storing, and retriev-
ing data as well as managing its lifecycle. Let’s look at how you define variables in SWF
and then at the approaches you can use to store and manage the lifecycle of this state
in the flow.

DECLARING VARIABLES

There are several different ways to define variables in SWF. The <var> element is used
at the flow level to define flow-scoped instance variables:

<var name="user" class="com.springinpractice.domain.User"/>

In the example, SWF instantiates an instance of the User class and assigns it to a vari-
able named user. This variable is accessible from anywhere in the current flow.

 As you saw in section 5.2.2, you can use the <evaluate> element in an action or
view state to evaluate an expression and store its result:

<evaluate result="viewScope.userInfo"
 expression="userService.getUserInfo(currentUser.name)"/>

Here you’re calling the getUserInfo() method of a Spring managed bean named
userService and storing the result in a view-scoped variable named userInfo. When
saving the result of an expression into a variable, you must explicitly specify the
intended scope for the variable. We’ll talk more about the scopes used in SWF in the
next section.

 Because the <evaluate> element determines the event it returns at runtime, it’s
ideally suited for driving transitions in an action state:
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
<action-state id="processSearchCriteria">
 <evaluate expression="searchService.getResults(searchCriteria)"/>
 <transition on="singleResult" to="detailView"/>
 <transition on="multipleOrNone" to="searchResultsView"/>
</action-state>

The <set> element is similar to <evaluate> but only provides a subset of its function-
ality. Like the <evaluate> element, it stores the result of an expression into a named
variable using a slightly different syntax:

<set name="flowScope.widget"
 value="new com.springinpractice.domain.Widget()"/>

Here you’re creating a new Widget instance and storing it in the flowScope under the
name widget. The <set> element differs from the <evaluate> element in that it
always returns the success event.

 Up to this point, all the expressions you’ve seen use the Spring Expression Lan-
guage (SpEL) which is new to Spring 3.0. Although other expression languages such
as Unified EL, OGNL, and JBoss EL exist, SpEL was specifically created to provide
developers with a single expression language that can be used throughout the entire
Spring stack.

 The expressions shown in both the <evaluate> and <set> elements are basic and
use SpEL to invoke methods on Spring managed beans. SpEL is a powerful expression
language and can be used to express many complex concepts both inside and outside
of Spring. Because of its usefulness and application throughout the Spring stack, we
strongly urge you to learn more about programming with SpEL. For more details
about the expression language, its API, or its syntax, consult the documentation for
the core Spring project available at www.springsource.org/documentation.

 As you may have expected, defining variables in SWF is pretty straightforward. SWF
has made managing the lifecycle of this data just as easy. We’ll discuss this next.

THE FIVE VARIABLE SCOPES

The data you store as variables in a flow can have different lifecycles based on which of
the following five scopes it belongs to:

■ requestScope—Similar to an HTTP or portlet request, a variable in this scope is
created when the flow is called for the current request and destroyed when it
returns. The data will be available for the duration of the request, which may
involve many states and transitions.

■ flashScope—Variables in this scope are allocated when the flow starts and
destroyed when the flow ends. They are cleared following a view rendering.
Objects in this scope should be serializable.

■ viewScope—Variables in this scope are created when you enter a view state and
destroyed when the view state exists. They can only be referenced from the view
state that created them. Objects in this scope should be serializable.
www.it-ebooks.info

www.springsource.org/documentation
http://www.it-ebooks.info/

143The Spring Soccer Club demo application
■ flowScope—Variables in this scope are created when a flow starts and destroyed
when the flow ends. They can only be referenced from the flow in which they
were created. Objects in this scope should be serializable.

■ conversationScope—Similar to flowScope, variables in this scope are created
when a flow starts and destroyed when the flow ends. They can be referenced
from the flow that defined them as well as all subflows. Objects in this scope
should be serializable.

With the exception of the <var> element, when assigning variables, you need to be
explicit about which scope the variable should be created in. When accessing a vari-
able, specifying the scope is optional. In this case, SWF uses the scope-searching algo-
rithm illustrated in figure 5.2 to
determine which scope the vari-
able is in. After searching each
of the variable scopes, if no vari-
able is found, an Evaluation-
Exception is thrown.

 This algorithm is similar in concept to how the EL searches through scopes for a
named object in a JSP page.

 Now that we’ve provided a brief overview of all the major components of SWF, let’s
see how you can assemble them into a brief demo application that demonstrates the
main features of SWF.

5.3 The Spring Soccer Club demo application
For the remainder of the chapter, you’ll focus on building out a small demo applica-
tion called Spring Soccer Club. Every spring and fall, hundreds of kids look forward to
the start of a new youth soccer season. Their parents, on the other hand, dread the
existing paper-based sign-up process. You’re going to help them by defining an online
registration process where they can create an account and register their kids for the
upcoming season. Figure 5.3 illustrates this flow.

Figure 5.3 Before users are allowed to register, you first ask if they have registered in the past. If they
haven’t, users go directly to the registration page. If they have registered previously, the user is able to
search for this registration. If they still are unable to find their existing registration, users can register again.

Figure 5.2 If you don’t explicitly identify which scope a vari-
able is in, SWF starts looking in the request scope and con-
tinues looking in the flash, view, flow, and conversation
scopes until the variable is found.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
In the diagram, the boxes represent states in SWF and the arrows represent transitions
between those states. Throughout the rest of this chapter, we use the word state and
step interchangeably.

 In the next several sections, you’ll take an iterative approach to building this demo
application, resulting in a working example of how all of SWF’s main features work.
After getting SWF installed and working, your first step will be to define views for each
step in the flow. Second, you’ll start to define the transitions between steps. Then
you’ll add dynamic transition logic with action states and decision-state constructs.
Finally, you’ll see how to bind data to forms and perform data validation. After work-
ing through the next several sections, you should have the knowledge necessary to
start experimenting with SWF on your own. To keep the focus on SWF, we’ll minimize
extra coding by stubbing out the service code. Let’s get started.

5.3.1 Installing and configuring SWF

PREREQUISITES

None

KEY TECHNOLOGIES

Spring MVC, SWF

Background

In chapter 3, you learned how to set up a basic Spring MVC application. This recipe
builds on this knowledge and shows how to extend and validate this configuration to
support SWF.

Problem

You would like to install SWF in a new application or extend an existing Spring MVC
application.

Solution

As of this writing, the latest version of SWF is version 2.3.0. SWF requires at least Java 1.5
and Spring 3.0 or greater to run. If you’re using Maven, there are two different depen-
dencies you can define in your project object model (POM) depending on whether
you’ll be using JSF. As our focus is on extending an existing Spring MVC application,
you’ll use the following for the demo application:

<dependency>
 <groupId>org.springframework.webflow</groupId>
 <artifactId>spring-webflow</artifactId>
 <version>2.3.0.RELEASE</version>
</dependency>

If you were also using JSF, you could use the following Maven dependency instead. For
clarity, the spring-faces artifact includes everything in the Maven dependency plus
additional JARs to support JSF development. There is no need to include both:
www.it-ebooks.info

http://www.it-ebooks.info/

145The Spring Soccer Club demo application
<dependency>
 <groupId>org.springframework.webflow</groupId>
 <artifactId>spring-faces</artifactId>
 <version>2.3.0.RELEASE</version>
</dependency>

For those not using Maven, you can download the SWF JAR files from the project’s site
(www.springsource.org/webflow). Once you’ve unzipped the distribution, you’ll find
the following JAR files in the dist directory:

org.springframework.webflow-2.3.0.RELEASE.jar
org.springframework.binding-2.3.0.RELEASE.jar
org.springframework.js-2.3.0.RELEASE.jar
org.springframework.js.resources-2.3.0.RELEASE.jar
org.springframework.faces-2.3.0.RELEASE.jar

In addition to the Spring 3.x JAR files, you need the web flow and binding JARs for the
demo application. The faces JAR file is only required if you’ll be using JSF.

 As of the 2.1 release of SWF, no additional dependencies are required. In the 2.0
release, the unified EL was the default expression language and users were given the
choice to include either a unified EL implementation or Object Graph Navigation
Language (OGNL). As of the 2.1 release, SpEL is the default and preferred expression
language going forward. Although unified EL and OGNL are both supported, it’s
strongly recommended that users use or migrate to using SpEL as their expression lan-
guage of choice. We’ll talk more about this later.

BASIC SPRING MVC CONFIGURATION

To develop the Spring Soccer Club Demo application, you’ll use Spring MVC. The
next few steps are designed to quickly set up and validate the Spring MVC setup.
Once you validate that Spring MVC is set up, you’ll quickly extend that setup and get
SWF working.

SWF uses several components from Spring MVC, the first of which is Dispatch-
erServlet. Start by adding the following servlet and mapping to your web.xml file:

<!-- Source project: sip05, branch: 01 (Maven Project) -->
<servlet>
 <servlet-name>springSoccer</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/web/dispatcherServlet-context.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

Listing 5.3 web.xml: DispatcherServlet
www.it-ebooks.info

www.springsource.org/webflow
http://www.it-ebooks.info/

146 CHAPTER 5 Enhancing Spring MVC applications with Web Flow

ller
ing

es
Later in the file, you also need to add the servlet mapping for the springSoccer serv-
let. Starting in Spring 3.04, you can map DispatcherServlet to /. We’ll discuss this
more after listing 5.4:

<servlet-mapping>
 <servlet-name>springSoccer</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

Next, create a file named dispatcherServlet-context.xml in the WEB-INF/spring/web
directory with the following contents.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 01 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <mvc:annotation-driven />

 <mvc:resources mapping="/resources/**" location="/resources/" />

 <bean class="org.springframework.web.servlet.

➥ view.InternalResourceViewResolver">
 <property
 name="viewClass"
 value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 </bean>

 <context:component-scan base-package="com.springinpractice.ch05" />
</beans>

The code should look familiar. At B, you enabled the @Controller programming
model that enables Spring MVC’s annotation-driven features. In Spring 3.04, a new
<mvc:resources> element handles requests for static content. As you can see in list-
ing 5.3, this allows you to configure DispatcherServlet to handle all requests C. At D,
you configure InternalResourceViewResolver. Here you are prefixing your logical
view names with /WEB-INF/jsp/ and adding a .jsp suffix. For more information on this,
take another look at section 3.5.4. Finally, you add the <context:component-scan>
element E. Our annotated controller test class is in the com.springinpractice.ch05
.mvc package.

Listing 5.4 dispatcherServlet-context.xml

Enables
@Contro
programm
model

B

Maps
location
of static
resourcC

Configures
view resolverD

Location of
annotated classes

E

www.it-ebooks.info

http://www.it-ebooks.info/

147The Spring Soccer Club demo application
 Next, create the following controller and JSP page. You’ll test to make sure the
Spring MVC is working before moving on.

// Source project: sip05, branch: 01 (Maven Project)
package com.springinpractice.ch05.mvc;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class HelloWorldController {

 @RequestMapping("/helloWorldControllerTest")
 public String showTestPage() {
 return "helloWorld";
 }
}

The controller is straightforward and returns the helloWorld view when called. Let’s
put together this view next.

<%-- Source project: sip05, branch: 01 (Maven Project) --%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>Hello World!</title>
 </head>
 <body>
 <h2>Hello World from Spring MVC!</h2>
 </body>
</html>

Start up your web server, and point your browser at the following address (adjusting for
host name and port number): http://localhost:8080/sip/helloWorldControllerTest.

 If everything is set up correctly, you should see a “Hello World” message from
Spring MVC as shown in figure 5.4.

BASIC SWF CONFIGURATION

Now that you’ve validated that your Spring
MVC configuration is working, let’s extend
this configuration to include SWF. To make
things easier to keep track of, you’re going
to put the SWF configuration in a new file.
Open the dispatcherServlet-context.xml
file (see listing 5.4) and add the following
line before the closing </beans> tag:

<import resource="webflowContext.xml"/>

Listing 5.5 HelloWorldController

Listing 5.6 /WEB-INF/jsp/helloWorld.jsp

Figure 5.4 If everything is working correctly,
you should see “Hello World” from Spring MVC.
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
The next listing contains the contents of the webflowContext.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 02 (Maven Project) -->

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:flow="http://www.springframework.org/schema/webflow-config"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/webflow-config
 http://www.springframework.org/schema/webflow-config/

➥ spring-webflow-config-2.3.xsd">

 <flow:flow-builder-services id="flowBuilderServices"
 development="true"/>

 <flow:flow-executor id="flowExecutor" flow-registry="flowRegistry"/>

 <flow:flow-registry id="flowRegistry" base-path="/WEB-INF/flows">
 <flow:flow-location
 id="testWebFlow" path="/test/helloWorld-flow.xml"/>
 </flow:flow-registry>

 <bean
 class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">
 <property name="flowExecutor" ref="flowExecutor"/>
 </bean>

 <bean
 class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">
 <property name="flowRegistry" ref="flowRegistry"/>
 <property name="order" value="0"/>
 </bean>

</beans>

We’ll discuss the contents of this file in detail in the next several sections.

CUSTOMIZING FLOW BUILDER SERVICES

You use the <flow:flow-builder-services> element at B to customize how the
flows are built in the flow registry. When defining this element, you only need to refer-
ence the settings that you want to change from the default. Here, you’re setting
development="true". This enables hot-reloading of flow definition files.

CONFIGURING THE FLOW EXECUTOR

At C, you configure the flow executor using the <flow:flow-executor> element.
The flow executor, as the name suggests, drives the execution of flow definitions.
Here, you just need to make it aware of the flow registry. We’ll talk about that in more
detail next.

CONFIGURING THE FLOW REGISTRY

In SWF, each flow is configured in its own XML files. The flow registry maintains a cat-
alogue of these files. At D, you make the flow registry aware of your helloWorld-flow.xml

Listing 5.7 /WEB-INF/spring/web/webflowContext.xml

Flow definition files
are hot-reloadable.

B

Configures flow executor C

References
single flow DCustom

HandlerAdapter
E

Implementation of
HandlerMapping

F

www.it-ebooks.info

http://www.it-ebooks.info/

149The Spring Soccer Club demo application
file using the <flow:flow-location> element. Notice that the optional base-path attri-
bute is used to simplify the mapping.

<flow:flow-location> has an optional id attribute that is used to explicitly spec-
ify the flow ID for the flow. In the example, the flow ID is explicitly set to testWebFlow.
Flow IDs are used to explicitly reference a particular flow. Without this optional attri-
bute, the flow ID would have been determined to be test.

 A more flexible configuration would be to configure the flow registry like this:

<flow:flow-registry id="flowRegistry" base-path="/WEB-INF/flows">
 <flow:flow-location-pattern value="/**/*-flow.xml" />
</flow:flow-registry>

Using the mapping, any directory after the base path, represented by the two asterisks,
would represent the flow ID. If you were to use this configuration in the example in
listing 5.7, the flow ID would be determined to be test.

 You’re almost finished. All that’s left to do is make Spring MVC aware of SWF. We’ll
talk about this next.

INTEGRATING WITH SPRING MVC

The FlowHandlerAdapter created at E in listing 5.7 joins the Spring MVC Dispatch-
erServlet and the flow executor. As you’ll recall from chapter 3, DispatcherServlet
determines how best to dispatch a given request by looking at several handler map-
pings. The FlowHandlerMapping created at F makes the FlowHandlerAdapter and
hence the DispatcherServlet aware of all the flow IDs available in your registry.

 To see this in action and to verify your setup, start your web server and point your
browser at the following address (adjust-
ing for host name and port number):
http://localhost:8080/sip/testWebFlow.

 If everything is set up correctly, you
should see a “Hello World” message
from SWF as shown in figure 5.5.

 Now that you have SWF up and run-
ning, your next step is to create views for
each state in the demo application.

5.3.2 Creating flows with different state types

PREREQUISITES

Installing and configuring SWF

KEY TECHNOLOGIES

SWF

Background

SWF is best applied when you need to navigate a user through a series of predefined
and/or dynamic steps (states) to achieve a desired outcome or complete a unit of
work. Now that you’ve installed SWF and validated that it’s working properly, your next

Figure 5.5 If everything is working correctly, you
should see “Hello World” from SWF.
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
step is to use SWF to implement the different flows and states required by the Spring
Soccer Club demo application introduced in section 5.3.

Problem

You would like to use SWF to manage a complex page flow representing a single unit
of work.

Solution

Continuing with the Spring Soccer Club theme, your next step is to implement the
different flows and states shown in figure 5.3. For a brief discussion of this demo appli-
cation, refer back to section 5.3.

 Because searching for an object is normally a reusable flow, you’ll split the overall
flow into a registration main flow and a findExistingPlayer subflow. Figure 5.6 illus-
trates this change.

CREATING THE FINDEXISTINGPLAYER SUBFLOW

Let’s get started putting together the findExistingPlayer subflow. The following list-
ing contains the contents for the findExistingPlayer-flow.xml file. We’ll discuss the
contents of this file in detail in the next several sections.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 03 (Maven Project) -->
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"

Listing 5.8 /WEB-INF/flows/findExistingPlayer/findExistingPlayer-flow.xml

Figure 5.6 Being able to search for and select an existing player may be useful in several places in a
larger application. As a result, you’ll separate the findExistingPlayer functionality into its own
subflow. It will be called from the main registration flow.
www.it-ebooks.info

http://www.it-ebooks.info/

151The Spring Soccer Club demo application

Sp
e

 start-state="findExistingPlayerForm">

 <view-state id="findExistingPlayerForm">
 <on-render>
 <!-- Prepares the form object for display on a form -->
 <evaluate expression="findExistingPlayerAction.setupForm"/>
 </on-render>
 <transition on="find" to="findExistingPlayerActionState">
 <evaluate
 expression="findExistingPlayerAction.bindAndValidate"/>
 </transition>
 </view-state>

 <action-state id="findExistingPlayerActionState">
 <evaluate expression="playerService.

➥ findExistingPlayer(playerSearchCriteria)"
 result="flowScope.player"/>
 <transition on="success" to="displayFindExistingPlayerResult"/>
 </action-state>

 <!--
 You can either end the subflow or reset the form and start over...
 -->
 <!--
 <action-state id="newSearch">
 <evaluate expression="findExistingPlayerFormAction.resetForm"/>
 <transition on="success" to="findExistingPlayerForm"/>
 </action-state>
 -->

 <view-state id="displayFindExistingPlayerResult">
 <transition on="back" to="findExistingPlayerForm"/>
 <transition on="newSearch" to="newSearchEndState"/>
 <transition on="noneMatch" to="endState"/>
 <transition on="existingAccountFound"
 to="existingAccountFoundEndState"/>
 </view-state>

 <end-state id="newSearchEndState"/>

 <end-state id="endState"/>

 <end-state id="existingAccountFoundEndState" >
 <output name="loginUsername" value="player.guardian.username"/>
 </end-state>

 <global-transitions>
 <transition on="skip" to="endState"/>
 </global-transitions>

</flow>

The previous listing contains many of the items we’ve talked about up to this point.
Because this listing is large, let’s start by focusing on the first several lines. At B, you
explicitly set the starting state for the flow. At C is your first view state, named find-
ExistingPlayerForm. Recalling our discussion from section 5.2.2, if you don’t explic-
itly specify a view name, the view name will be the same as the id attribute by
convention. At D you use an Action class to manage your form object. We’ll discuss
handling forms in more detail later.

ecifies
xplicit
start
state B

First state
in flow

C
Example of
action class

D

Processes form
submissionE

Alternative to
ending the flow F

Ends flow on
new searchG

Restarts flow
in placeH

Example of
returning a variable I
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
 The action state at E processes the search criteria submitted from the view state
at C. Here you pass the criteria object to your search service. Because you’re focus-
ing on SWF, this stub implementation always returns a single result.

 On the search results view, the end user has an option to perform another search.
Clicking the New Search link fires off a newSearch event that currently transitions to
newSearchEndState at H. Looking at a snippet of code from the parent flow, you can
see that newSearchEndState is mapped back to the findExistingPlayer subflow state:

<subflow-state id="findExistingPlayer" subflow="findExistingPlayer">
 <transition on="endState" to="newAccountForm"/>
 <transition on="newSearchEndState" to="findExistingPlayer"/>
 <transition on="existingAccountFoundEndState" to="sendToLoginEndState">
 <set name="flowScope.loginUsername"
 value="currentEvent.attributes.loginUsername"/>
 </transition>
</subflow-state>

What is happening here is that you’re returning a newSearchEndState event from the
subflow and mapping it back to another call to the findExistingPlayer subflow state.
Your original subflow and its state are destroyed, and you repeat the subflow using a
new instance. This approach is useful when you have a complex subflow that has sev-
eral steps because it ensures that all of the intermediary state gets cleared out.

F in listing 5.8 provides another way to achieve the same behavior. Instead of
destroying the current subflow and starting again, you can reset your form object and
transition back to the findExistingPlayerForm to start your search again. All you
have to do is change G to transition to the newSearch action state. Because you’re
clearing out the state manually, this approach works best when there isn’t a lot of
intermediary state being captured. Both approaches are valid.

I demonstrates how a subflow can return information back to the parent flow. In
this case, the user has identified that they have an existing account and have chosen to
log in using that account. Figure 5.7 shows an unstyled snapshot of what the search
results page looks like.

Figure 5.7 Showing the result of the displayFindExistingPlayerResult view state
www.it-ebooks.info

http://www.it-ebooks.info/

153The Spring Soccer Club demo application

B

Here’s a partial source listing for the displayFindExistingPlayerResult view.

<%-- Source project: sip05, branch: 03 (Maven Project) --%>
<%-- Partial code listing below --%>

 <c:set var="foundPlayer"
 scope="request" value="${!empty player}"/>

 <head><title>Search Results</title></head>

 <body>
 <h2>Search Results</h2>

 <c:choose>
 <c:when test="${foundPlayer}">
 <table border="1">
 <tr>
 <th>Player</th>
 <th>Location</th>
 <th>Phone</th>
 <th>Notes</th>
 <th>Click Link To Continue</th>
 </tr>
 <tr>
 <td>${player.firstName} ${player.lastName}</td>
 <td>${player.guardian.address1}</td>
 <td>${player.guardian.homePhone}</td>
 <td>
 Login Already Exists

 Username=${player.guardian.username}
 </td>
 <td>

 Login With This Account
 </td>
 </tr>
 </table>
 </c:when>
 <c:otherwise>
 No Player Found

 </c:otherwise>
 </c:choose>

...

The implementation is simple. If an existing account is found, the user can choose to
log in with the account listed. A link is used at B to fire the existingAccountFound
event, which is later transitioned to existingAccountFoundEndState where the user
name is returned to the parent flow.

 Let’s look at the findExistingPlayerForm.jsp file next.

<%-- Source project: sip05, branch: 03 (Maven Project) --%>
<%@ include file="/WEB-INF/jsp/taglibs.jsp" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

Listing 5.9 /WEB-INF/flows/findExistingPlayer/displayFindExistingPlayerResult.jsp

Listing 5.10 /WEB-INF/flows/findExistingPlayer/findExistingPlayerForm.jsp

Log in with
this account
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:form="http://www.springframework.org/tags/form">

 <head><title>Find Existing Player(s)</title></head>

 <body>
 <h2>Find Existing Player(s)</h2>
 <p>
 Has anyone in your family registered with us in the
 past? If so, enter your information below:
 </p>

 <form:form commandName="playerSearchCriteria"
 action="${flowExecutionUrl}" >

 <label for="firstname">Player First Name</label>
 <form:input path="firstName" />

 <label for="lastName">Player Last Name</label>
 <form:input path="lastName" />

 <label for="birthDate">Birth Date</label>
 <form:input path="birthDate" />

 <label for="homePhone">Home Phone:</label>
 <form:input path="homePhone" />

 <input type="submit" name="_eventId_skip"
 value="Skip"/>
 <input type="submit" name="_eventId_find"
 value="Find"/>
 </form:form>

 </body>
</html>

At B, you use the Spring Form tag library to generate your form tags. At C, you spec-
ify the name of the event you want to fire when the form is submitted. For more infor-
mation, see the view-state discussion in section 5.2.2.

 That about does it for the findExistingPlayer subflow. At this point, you should
be able to test the flow by pointing your browser at the following address (adjusting
for host name and port number): http://localhost:8080/sip/findExistingPlayer.

 Keep in mind as you test the flow that because this subflow isn’t getting called from
a parent flow yet, when you transition to an end state, the flow ends and all the state
for the flow is destroyed. As a result, you’ll end up on the same URL that started the
flow, causing a new instance of the flow to be created. Watch the value of the execu-
tion variable in the browser. You’ll find that the execution represented by e is incre-
mented every time the flow restarts. For more information about this variable, flip
back to the view-state discussion in section 5.2.2.

Spring Form
tag library

B

Event ID and
value as name

C

www.it-ebooks.info

http://www.it-ebooks.info/

155The Spring Soccer Club demo application
CREATING THE REGISTRATION FLOW

With the findExistingPlayer subflow working, let’s configure the other states that
are left in the example application. The following listing details the flow definition for
the registration flow.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 03 (Maven Project) -->
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
 start-state="findExistingPlayer">

 <subflow-state id="findExistingPlayer" subflow="findExistingPlayer">
 <transition on="endState" to="newAccountForm"/>
 <transition on="newSearchEndState" to="findExistingPlayer"/>
 <transition on="existingAccountFoundEndState" to="sendToLoginEndState">
 <set name="flowScope.loginUsername"
 value="currentEvent.attributes.loginUsername"/>
 </transition>
 </subflow-state>

 <view-state id="newAccountForm">
 <on-render>
 <evaluate expression="newAccountFormAction.setupForm"/>
 </on-render>
 <transition on="next" to="confirmNewAccount">
 <evaluate expression="newAccountFormAction.bindAndValidate"/>
 </transition>
 </view-state>

 <view-state id="confirmNewAccount">
 <transition on="back" to="newAccountForm" />
 <transition on="next" to="processNewAccount" />
 </view-state>

 <action-state id="processNewAccount">
 <set name="flowScope.loginUsername"
 value="playerService.createNewAccount(newAccountForm)"/>
 <transition on="success" to="sendToLoginEndState"/>
 </action-state>

 <end-state
 id="sendToLoginEndState"
 view="externalRedirect:contextRelative:/login.jsp

➥ ?username=#{flowScope.loginUsername}"/>

</flow>

At B, you explicitly define your start state as findExistingPlayer, which calls the
findExistingPlayer subflow as its first step. At C, you see how to retrieve informa-
tion from a subflow. currentEvent is a special EL variable that allows you to retrieve

Listing 5.11 /WEB-INF/flows/registration/registration-flow.xml

Explicitly defines
start state

B

Retrieves
value from
subflowC

createNewAccount
is only a stub.

D

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
the attributes associated with the current Event. The attributes are returned in an
AttributeMap, which is essentially an immutable interface that provides the read-only
operations you would normally find on a map.

 At D, you call a stub that pretends to create an account for the user. The service
returns the username of the newly created account.

 That wraps up the registration flow. We won’t cover the last two views, newAccoun-
tForm and confirmNewAccount. They’re available in the chapter’s source. You can test
the flow by pointing your browser at the following address (adjusting for host name
and port number): http://localhost:8080/sip/registration.

 In the “Declaring Variables” discussion in section 5.2.4, we spoke briefly about how
the <set> element provides a subset of the functionality of the <evaluate> element.
At D in listing 5.11, you can see that the <set> element implicitly returns success.
When creating a real system, you would more than likely be coordinating with multi-
ple services and would want more control over error handling and the resulting views
that are returned. To do that, you need to use the <evaluate> element and put your
logic into an Action class. Let’s talk about this next.

5.4 Using action classes
PREREQUISITES

Installing and configuring SWF

KEY TECHNOLOGIES

SWF

Background

You’ve learned that it’s possible to call methods on POJOs to do work and drive transi-
tions between states using the <set> or <evaluate> elements.

Problem

Although it’s certainly easier to call POJOs directly, there are times when you would
like to do more. Perhaps you want to read or set several variables in different flow
scopes or invoke complex business logic that might be supported by multiple services.
What happens when a business exception is thrown? How can you handle and map
this exception to something meaningful to SWF?

Solution

Those who have experience with Spring MVC may immediately think about control-
lers. In Spring MVC, controllers provide a layer of indirection between the service
layer and the view. Controllers typically delegate to application or business services to
retrieve necessary data or invoke business operations. After completing its work, the
controller selects a view to be rendered.

 In SWF, the flow is considered to be the controller. Action classes provide a mecha-
nism for you to provide a similar layer of indirection between the service layer and
www.it-ebooks.info

http://www.it-ebooks.info/

157Using action classes
SWF. Instead of selecting a view to be ren-
dered directly, when an action is executed,
it returns an Event providing an outcome
that the flow can respond to.

 You can create an action class by imple-
menting the org.springframework.web-

flow.execution.Action interface. SWF
provides several Action implementations
out of the box. We’ll focus our attention on
the three implementations of the Action
interface shown in figure 5.8.

 An action is essentially a command that
performs some work and returns an event.
The Action interface contains a single
method:

public Event execute(RequestContext context) throws Exception;

The RequestContext, available as the flowRequestContext EL variable, gives informa-
tion about the current flow execution and provides access to each of the variable scopes.
Revisiting the Spring Soccer demo, you can create a simple action class that encapsulates
the call to the playerService. The class in the following listing would be configured like
any other Spring-managed bean, allowing you to inject any necessary resources.

// Source project: sip05, branch: 04 (Maven Project)
package com.springinpractice.ch05.mvc;

import com.springinpractice.ch05.service.PlayerService;
import com.springinpractice.ch05.domain.*;
import com.springinpractice.ch05.domain.search.PlayerSearchCriteria;
import org.springframework.webflow.execution.*;

public class FindExistingPlayerAction implements Action {
 private PlayerService playerService;

 public void setPlayerService(PlayerService playerService) {
 this.playerService = playerService;
 }

 @Override
 public Event execute(RequestContext context) {
 Event event = null;
 PlayerSearchCriteria criteria =
 (PlayerSearchCriteria)context.getFlowScope().get("playerSearchCriteria");
 if (criteria != null) {
 Player player = playerService.findExistingPlayer(criteria);
 context.getFlowScope().put("player",player);

 event = new Event(this, "success");
 }

Listing 5.12 FindExistingPlayerAction.java

Figure 5.8 Although several classes imple-
ment the Action interface out of the box, we’ll
focus on AbstractAction, MultiAction,
and FormAction.
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
 else {
 event = new Event(this, "error");
 }

 return event;
 }

}

With the FindExistingPlayerAction class in hand, the following line in the existing
demo application

<evaluate expression="playerService.findExistingPlayer(playerSearchCriteria)"
 result="flowScope.player"/>

can now be replaced with the following line. When implementing the Action inter-
face, it’s no longer necessary to explicitly pass in the flowRequestContext EL variable:

<evaluate expression="findExistingPlayerAction" />

Although you can implement the Action interface directly, it’s more convenient to
take advantage of the convenience methods available in the AbstractAction class.
We’ll talk about this briefly next.

ABSTRACTACTION

SWF provides an AbstractAction class that provides a convenient base implementa-
tion for all of your action classes. Specifically, this class provides a default implemen-
tation of the InitializingBean interface, which provides a hook for you to do
custom initialization or validation after your bean’s properties have been set by the
container. In addition, the AbstractAction class implements the Action interface’s
execute() method and provides a doExecute()method for you to place the code you
would normally place in the execute() method, and two additional template meth-
ods, doPreExecute()and doPostExecute(), which you can override to do pre- and
postprocessing. The class provides several factory methods that create common
Events, such as success and error.

MULTIACTION

If you prefer to group all of your actions together, the MultiAction class builds on the
functionality provided by the AbstractAction class and allows you to bundle two or
more execution methods in the same class. As shown next, the signature of each
method needs to be in the same format as the execute() method in the Action class.
The only difference is that the name can be anything you like:

public Event ${method}(RequestContext context) throws Exception;

An example of a MultiAction class can be seen in the following listing.

// Source project: sip05, branch: 04 (Maven Project)
package com.springinpractice.ch05.mvc;
import org.springframework.webflow.action.*;

Listing 5.13 PlayerActions.java
www.it-ebooks.info

http://www.it-ebooks.info/

159Using action classes

n
import org.springframework.webflow.execution.*;
import com.springinpractice.ch05.service.PlayerService;
import com.springinpractice.ch05.domain.*;
import com.springinpractice.ch05.domain.search.PlayerSearchCriteria;

public class PlayerActions extends MultiAction {

 private PlayerService playerService;

 public void setPlayerService(PlayerService playerService) {
 this.playerService = playerService;
 }

 public Event findExistingPlayer(RequestContext context) {
 PlayerSearchCriteria criteria =
 (PlayerSearchCriteria)context.getFlowScope().

➥ get("playerSearchCriteria");
 if (criteria != null) {
 Player player = playerService.findExistingPlayer(criteria);
 context.getFlowScope().put("player",player);

 return success();
 }
 else {
 return error();
 }
 }

 public Event doSomethingElse(RequestContext context) {...}

}

Here you reimplement the setPlayerService from listing 5.12 in a MultiAction
class. This action can be invoked in two different ways. By default, the ID of the wrap-
ping action state is treated as the method to execute. Look at the following example:

<action-state id="findExistingPlayer">
 <evaluate expression="playerActions/>
 ...
</action-state>

This code snippet would be functionally equivalent to the more explicit action state
that follows, where the action-execution method, findExistingPlayer(), is explicitly
identified:

<action-state id="findExistingPlayer">
 <evaluate expression="playerActions.findExistingPlayer"/>
 ...
</action-state>

Next let’s look at a more configuration-based action, FormAction.

FORMACTION

The FormAction class helps simplify working with forms by providing several conve-
nience methods that make it easy to set up, validate, and bind form data. Each
method takes in an instance of RequestContext:

Reimplemented i
MultiAction class
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
■ setupForm()—Creates the form object as well as the errors object that accom-
panies it. Unless an exception occurs, this method returns success.

■ bindAndValidate()—Binds all the available request parameters to the speci-
fied form object and validates the data. If a validation error occurs, an error
event is returned. Otherwise, a success event is returned.

■ bind()—Binds all the available request parameters to the specified form object
without the additional validation step. This method returns a success event
unless binding errors occur. In that case, an error event is returned.

■ validate()—Only validates the data and assumes that the form data had
already been bound. If a validation error occurs, an error event is returned.
Otherwise, a success event is returned.

■ resetForm()—Reloads the underlying form object, causing the form to reset.
Unless an exception occurs, this method returns success.

There should be no reason to extend the FormAction class directly. Instead, you can
configure the form action as a Spring bean, as show in the following listing.

<!-- Source project: sip05, branch: 04 (Maven Project) -->
<%-- Partial code listing below --%>
<bean id="findExistingPlayerFormAction"
 class="org.springframework.webflow.action.FormAction">
 <property name="formObjectClass"
 value="com.springinpractice.ch05.domain.search.PlayerSearchCriteria"/>
 <property name="propertyEditorRegistrar">
 <bean class="com.springinpractice.

➥ ch05.beans.CustomPropertyEditorRegistrar"/>
 </property>
</bean>

Three examples of using this bean were provided earlier, in listing 5.8, starting at D.
 Each of the classes we talked about in this recipe is configured in webflowCon-

text.xml in the chapter’s source code (sip05, branch: 04). Look at the comments in
the findExistingPlayer-flow.xml file for hints on how to use each. You can test the flow
by pointing your browser at (adjusting for host name and port number) http://local-
host:8080/sip/findExistingPlayer.

 Now we’ll take a deeper dive into form data binding in section 5.5 and validating
form data using JSR-303 in section 5.6.

5.5 Form data binding
PREREQUISITES

Installing and configuring SWF

KEY TECHNOLOGIES

SWF, Spring form tag library

Listing 5.14 FormAction: webflowContext.xml
www.it-ebooks.info

http://www.it-ebooks.info/

161Form data binding
Background

Up to this point, we’ve talked about view states, but we haven’t had a specific conversa-
tion about form data binding. In this recipe, you’ll use the information you learned in
section 4.1 to do data binding in SWF.

Problem

When a user submits a form, you would like to control how data is bound to your Java
objects.

Solution

Data binding in SWF is pretty straightforward. In a view state, you use the model attri-
bute to specify which object the view should bind to. Look at the view-state definition:

<view-state id="newAccountForm" model="accountForm">
 <transition on="next" to="confirmNewAccount"/>
</view-state>

The newAccountForm view state is bound to the accountForm object. Now that this
association has been made, SWF will attempt to bind form data to this object by
default.

 At times, it may be desirable to skip the data-binding process. For example, look at
the updated view-state definition:

<view-state id="newAccountForm" model="accountForm">
 <transition on="next" to="confirmNewAccount"/>
 <transition on="back" to="somePreviousState" bind="false" />
</view-state>

In the code (registration-flow.xml from project: sip05, branch: 05), when the view
state transitions to back, the binding process is suppressed and the flow transitions to
somePreviousState without binding data.

 By default, SWF will attempt to bind data to every field in the target object. As we
talked about in section 4.1, sometimes that behavior isn’t desirable. To change the
default behavior, you can create a whitelist by identifying each of the attributes you
would like to bind using the <binder> element in the view state. Here’s an example:

<binder>
 <binding property="guardian.firstName" required="true" />
 <binding property="guardian.lastName" required="true" />
</binder>

You’re telling SWF that the firstName and lastName attributes of the guardian object
are the only fields on the guardian object that should be bound. In addition, you’re
using the optional required attribute, telling SWF that each of these properties is
required.

 In the next section, we’ll discuss how to take this one step further. You’ll use the
JSR-303 Bean Validation API to declaratively add additional validation constraints to
your POJO.
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
5.6 Form validation
PREREQUISITES

Form Data Binding

KEY TECHNOLOGIES

SWF, Spring Validation, JSR-303 Bean Validation API

Background

Users interact with websites by clicking links and submitting forms. All but the simplest
systems validate their form data to ensure that information is captured in the format that
is expected and that any additional rules, such as required fields, are enforced.

Problem

When a user submits a form, you would like to validate the data that was submitted
before doing additional processing. If validation errors occur, you would like to let the
user know in a user-friendly way so they may make any necessary corrections before
continuing.

Solution

JSR-303 defines a standardized metadata model and API for Java bean validation that
allows you to define validation constraints without tying you to a specific application
tier or programming model. The JSR-303 Bean Validation API became fully supported
in Spring 3.0 and has been available to Spring MVC applications for quite some time.
Information on how to configure JSR-303 validation with Spring MVC was covered in
section 4.2. At the time of this writing, version 2.3.0 of SWF has been released and has
added support for JSR-303–style validation.

 If you’ve already configured JSR-303 support as part of your Spring MVC setup, you
can skip the next section. If not, let’s get started.

BOOTSTRAPPING A JSR-303 IMPLEMENTATION

As you’ve come to expect, Spring has made bootstrapping a JSR-303 implementation
easy. All that is necessary is to create a single bean definition and have a JSR-303 pro-
vider on the classpath. You’ll use Hibernate Validator, the JSR-303 reference imple-
mentation, here. Validate that you have the following dependency in your POM file:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>4.1.0.Beta1</version>
</dependency>

This Maven dependency adds the hibernate-validator-4.1.0.Beta1.jar file to your class-
path. Once this is done, you can add the following bean definition to your Spring con-
figuration. If you’re following along with the source code from the project (sip05,
branch: 06), this is already done for you:

<bean id="validator" class="org.springframework.validation.

➥ beanvalidation.LocalValidatorFactoryBean"/>
www.it-ebooks.info

http://www.it-ebooks.info/

163Form validation
LocalValidatorFactoryBean implements three separate interfaces: javax.valida-
tion.ValidatorFactory, javax.validation.Validator, and org.springframe-

work.validation.Validator. Many applications use JSR-303 validation in addition to
Spring validation. The added flexibility allows you to use the same bean definition
for both.

CONFIGURING SWF TO USE JSR-303 VALIDATION

Now that your JSR-303 validator is configured, you need to make SWF aware of it. To
do this, add a reference to your new validator to the flow-builder-services ele-
ment in the webflowContext.xml file:

<flow:flow-builder-services id="flowBuilderServices"
 development="true"
 validator="validator"
/>

That’s all there is to it. You’ve established the foundation; let’s look next at adding
JSR-303 annotations to a class. The following listing shows the code.

// Source project: sip05, branch: 06 (Maven Project)
package com.springinpractice.ch05.form;

import javax.validation.Valid;
import org.hibernate.validator.constraints.NotEmpty;
import com.springinpractice.ch05.domain.Guardian;
import com.springinpractice.ch05.domain.Player;
import java.io.Serializable;

public class AccountForm implements Serializable {
 private static final long serialVersionUID = 1L;

 protected Guardian guardian = new Guardian();
 protected Player child = new Player();
 protected String confirmPassword;
 protected String confirmEmail;

 public AccountForm() {}

 @Valid
 public Guardian getGuardian() {
 return guardian;
 }

 public void setGuardian(Guardian guardian) {
 this.guardian = guardian;
 }

 @Valid
 public Player getChild() {
 return child;
 }

 public void setChild(Player child) {
 this.child = child;

Listing 5.15 com.springinpractice.ch05.form.AccountForm

Validates constraints
in the Guardian class

B

Validates constraints
in the Player class

C

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
 }

 @NotEmpty
 public String getConfirmPassword() {
 return confirmPassword;
 }

 ...

}

You use two different annotations. The @Valid annotation at B tells the validator to
validate the Guardian child class and aggregate any error messages with those from
the AccountForm class as well. You see similar behavior at C with the Player class.
Note that like JPA annotations, JSR-303 annotations can be placed on the attribute or
on the getter method. For a more detailed discussion of the built-in JSR-303 con-
straints and the JSR 303 specification, see http://jcp.org/en/jsr/detail?id=303. Note
that the annotation at D isn’t part of the JSR-303 specification. Instead, it’s a part of
the Hibernate Validator framework that is the reference implementation for JSR 303.
For more information on the Hibernate Validator, see the documentation at http://
hibernate.org/subprojects/validator.

 Now let’s talk about how you can customize any resulting error messages.

MAPPING ERROR CODES TO MESSAGES IN A PROPERTIES FILE

When one or more validation rules fail, the validator generates a set of keys that Spring
resolves to localized messages. Looking at example messages from the demo applica-
tion’s messages.properties file, you’ll find that the naming convention is intuitive:

accountForm.confirmPassword.NotEmpty=The guardian's password confirmation

➥ is required
accountForm.confirmEmail.NotEmpty=The guardian's email confirmation is

➥ required

...

accountForm.child.firstName.NotEmpty=The child's first name is required
accountForm.child.lastName.NotEmpty=The child's last name is required
accountForm.child.birthDate.NotNull=The child's birth date is required
accountForm.child.birthDate.typeMismatch=The child's birth date must be in

➥ the format mm/dd/yyyy

In this example, the @NotEmpty annotation generates .NotEmpty, which is appended
to the end of the full EL-like path of the property. To create a flow-specific message
bundle, add a default message.properties file or a localized version of this file in the
same directory as the flow-definition file. No additional configuration is necessary.

 When a model is specified in a view state, validation follows the binding process.
You can suppress this validation process by specifying validation="false" in the
transition element. Look at the following example:

<view-state id="newAccountForm" model="accountForm">
 <transition on="next" to="confirmNewAccount"/>
 <transition on="back" to="somePreviousState" validate="false" />
</view-state>

Provided by
Hibernate Validator

D

www.it-ebooks.info

http://jcp.org/en/jsr/detail?id=303
http://hibernate.org/subprojects/validator
http://hibernate.org/subprojects/validator
http://www.it-ebooks.info/

165Flow and state inheritance
When transitioning to next, information is bound to accountForm and validated. If an
error occurs, the user is returned to the newAccountForm view where the errors are
displayed. Because displaying form errors was covered in section 4.2, we won’t discuss
it again here. When transitioning to back, binding still occurs, but the data is no lon-
ger validated. Alternatively, you could specify bind="false" and omit the binding and
validation process entirely.

 You can test your handiwork by pointing your browser at http://localhost:8080/
sip/registration (adjusting for host name and port number) and then navigating to
the New Account Creation form.

5.7 Flow and state inheritance
PREREQUISITES

Installing and configuring SWF

KEY TECHNOLOGIES

SWF

Background

SWF has a couple of mechanisms to facilitate code modularity and reuse. Earlier in
this chapter, we talked about how you can reuse individual flows by calling them as
subflows. We also talked about defining common transitions globally in a flow so they
can be reused in a given flow.

Problem

You want to reuse common states or transitions in several flows.

Solution

A flow definition can contain a lot of configuration information that might be useful
for other flows. Similar to Spring’s bean-definition inheritance, SWF has a built-in
mechanism for inheritance at both the flow and state levels. Let’s start by looking at
flow-level inheritance.

FLOW INHERITANCE

Flow inheritance is similar to bean-definition inheritance but with a couple of key dif-
ferences. Let’s start by talking about what is similar. Like parent bean definitions, ele-
ments defined in a parent flow are exposed and available to a child flow. The
following listing shows an abstract flow definition.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 07 (Maven Project) -->
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow

Listing 5.16 \WEB-INF\flows\common\common-flow.xml
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 5 Enhancing Spring MVC applications with Web Flow

m
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
 abstract="true">

 <view-state id="commonErrorView"
 view="/WEB-INF/flows/common/error.jsp"/>

 <view-state id="commonView"
 view="/WEB-INF/flows/common/commonView.jsp"/>

 <global-transitions>
 <transition on="commonErrorView" to="commonErrorView"/>

 <transition
 on-exception="com.springinpractice.ch05.

➥ webflow.action.DemoRuntimeException"
 to="commonErrorView"/>
 </global-transitions>

</flow>

As shown at B, a flow definition can be marked as being abstract. This prevents SWF
from trying to use the flow directly.

 The next listing defines a simple flow that inherits the elements in your abstract
flow definition.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 07 (Maven Project) -->
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
 start-state="start"
 parent="common">

 <view-state id="start">
 <transition on="throwError" to="throwError"/>
 <transition on="commonViewDemo" to="commonView">
 <set name="flowScope.previousEventId" value="'start'" />
 </transition>
 </view-state>

 <view-state id="childOfInheritedView" parent="common#commonView"/>

 <action-state id="throwError">
 <evaluate expression="exceptionAction" />
 </action-state>

 <end-state id="end" view="externalRedirect:contextRelative:/"/>

 <global-transitions>
 <transition on="start" to="start"/>
 </global-transitions>
</flow>

Listing 5.17 \WEB-INF\flows\inheritanceDemo\inheritance-demo-flow.xml

Marks flow
as abstractB

Common error
view state

Common
view state

Example global
transition

Specifies
flow’s parentB

Inherited fro
parent flow

C

Extends definition
of same type

D

Throws
DemoRuntimeExceptionE
www.it-ebooks.info

http://www.it-ebooks.info/

167Securing web flows
Unlike a bean definition, a flow can inherit from more than one flow. At B, you use the
parent attribute of the flow element to indicate that the flow will inherit from the com-
mon flow. A comma-delimited list can be used to specify multiple flows to inherit from.

 When inheriting view states, it’s important to understand how flow inheritance
works. If you’ve ever used static includes in a JSP file, you’ll remember that the source
of the included JSP file is copied into the main JSP file at compile time, creating a sin-
gle composite file. This makes all relative links to resources (images or other docu-
ments) specified in that included JSP file relative to the resulting composite parent
file, regardless of where the included JSP file originally was located.

 Flow inheritance works the same way. Recall that a view state doesn’t specify a view
attribute; by convention the view attribute is assumed to be the value of the id attri-
bute plus the defaultViewSuffix, which is .jsp by default. Using this convention, the
view state at C would have a view state of start.jsp. The default implementation of the
ViewResolver would try to resolve this view in the same directory as the currently exe-
cuting flow. Like statically included JSP files, this is always relative to the currently exe-
cuting flow, not the inherited flow. For this reason, it’s best to specify absolute paths to
views in inherited view states. C and D in listing 5.17 provide an example.

 The transition at C transitions to a view state that appears in your parent flow (see
listing 5.16). At E, you call an action that does nothing more than throw a DemoRun-
timeException. This action is used to demonstrate how the transition at E is inher-
ited from the common flow.

STATE INHERITANCE

State inheritance behaves more like bean-definition inheritance, where a given state can
only inherit from one parent of the same state type. As you can see at D in listing 5.17,
you specify the name of the parent state using the parent attribute in the form
flowId#stateId. In the example, you’re extending the commonView state of the common
flow, which is identified as the flow’s parent.

 Although it certainly isn’t pretty, you can click through this example by pointing
your browser at the following address (adjusting for host name and port number):
http://localhost:8080/sip/inheritanceDemo.

MORE INFORMATION

Through flow and state inheritance, you can obtain a much higher level of reuse than
using subflows and global transitions alone. For details on the algorithm used to
merge each and every element in the SWF definition language, consult the web-flow
documentation located at www.springsource.org/spring-web-flow#documentation.

5.8 Securing web flows
PREREQUISITES

Understanding of Spring security (see chapter 6)

KEY TECHNOLOGIES

Spring Security, SWF
www.it-ebooks.info

www.springsource.org/spring-web-flow#documentation
http://www.it-ebooks.info/

168 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
Background

In chapter 6 (recipes 6.1 and 6.2), you’ll learn how to set up Spring Security to protect
resources as well as provide a customized login page to authenticate users.

Problem

Now that you have a mechanism to authenticate users, you would like to secure spe-
cific web flows so that they can only be accessed by authorized users.

Solution

Once you’ve configured Spring Security for your application, authorizing individual
flows is pretty straightforward. First we’ll cover the three basic steps required to con-
figure Spring Security. Then we’ll look at how easy it is to secure individual flows,
states, and transitions.

CONFIGURING SPRING SECURITY

Just as you’ll do in recipe 6.1, you need to configure the DelegatingFilterProxy that
will be used to load the Spring Security filter chain. The following listing focuses on
the configuration relevant to Spring Security.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 08 (Maven Project) -->

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/
javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/
javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/root-context.xml
 /WEB-INF/spring/applicationContext-security.xml
 </param-value>
 </context-param>
 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</

filter-class>
 </filter>
 <filter>
 <filter-name>sitemesh</filter-name>
 <filter-class>
 com.opensymphony.sitemesh.webapp.SiteMeshFilter
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Listing 5.18 web.xml

Spring Security
configuration

B

Required to intercept
URL-based requests

C

Intercepts all URL-
based requests

D

www.it-ebooks.info

http://www.it-ebooks.info/

169Securing web flows
 <filter-mapping>
 <filter-name>sitemesh</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>springSoccer</servlet-name>
 <servlet-class>org.springframework.

➥ web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/web/

➥ dispatcherServlet-context.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>springSoccer</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
</web-app>

You load a file containing your Spring Security configuration at B. We’ll look at this
in a moment. At C, you configure the DelegatingFilterProxy, which will be used by
Spring Security. At D, you configure the filter to be applied to all URLs.

 Here are the contents of the applicationContext-security.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 08 (Maven Project) -->

<beans:beans
 xmlns="http://www.springframework.org/schema/security"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/

➥ spring-security-3.0.xsd">

 <http auto-config="true">
 <form-login
 login-page="/login.jsp"
 authentication-failure-url="/login.jsp?error=true"/>
 <intercept-url
 pattern="/account/**" access="ROLE_USER"/>
 <intercept-url
 pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

Listing 5.19 \WEB-INF\spring\applicationContext-security.xml

Sets up several
defaults

B

Custom
login page

C

URLs are processed
in order.D
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
 </http>

 <authentication-manager alias="authenticationManager">
 <authentication-provider>
 <user-service>
 <user name="joshua"
 password="joshua"
 authorities="ROLE_USER"/>
 <user name="RobinJBryce@example.com"
 password="password"
 authorities="ROLE_USER"/>
 </user-service>
 </authentication-provider>
 </authentication-manager>

</beans:beans>

Here you’re configuring Spring Security. Most of the items in this file will be covered
by recipes 6.1 and 6.2, so we’ll be brief here. Starting at B, you enable Spring Secu-
rity’s auto-config, which sets up Spring Security to use several defaults. At C, you
customize your login page. See recipe 6.2 for more details.

 At D, you protect a URL-based resource by creating an intercept-url definition.
Remember that flows, specifically parent flows, are also URL-based resources.
Although you could protect them here, we’ll talk about a better solution to specifically
secure a flow in a moment.

 Starting at E, you create a simple in-memory UserDetailService with two
accounts for testing.

CONFIGURING THE SECURITYFLOWEXECUTIONLISTENER

Now that you have Spring Security up and running, let’s start plugging it into SWF. You
do this by updating the webflowContext.xml file we discussed earlier with a new flow-
execution-listener.

 <flow:flow-executor id="flowExecutor">
 <flow:flow-execution-listeners>
 <flow:listener ref="securityFlowExecutionListener" />
 </flow:flow-execution-listeners>
 </flow:flow-executor>

<bean id="securityFlowExecutionListener"
 class="org.springframework.webflow.security.SecurityFlowExecutionListener" />

You add the SecurityFlowExecutionListener defined at C to your collection of lis-
teners defined at B. Spring Security is now aware of your SWF application. To secure
an entire web flow or a specific state in a flow, you use the <secured> element; we’ll
talk more about this next.

SECURING FLOWS, TRANSITIONS, AND STATES

With SWF configured to use Spring Security, you can use the <secured> element to
secure a flow, transition, or state. The <secured> element is placed in the element you

Listing 5.20 \WEB-INF\config\webflowContext.xml

In-memory
UserDetailServiceE

Spring Security is
now flow aware

B

Required for
Spring Security

C

www.it-ebooks.info

http://www.it-ebooks.info/

171Securing web flows
want to secure. It should appear before any other elements. The following listing
secures a view state.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Source project: sip05, branch: 08 (Maven Project) -->

<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
 start-state="unsecured">

 <view-state id="secured">
 <secured attributes="ROLE_USER"/>
 <transition on="next" to="end" />
 </view-state>

 <view-state id="unsecured">
 <secured attributes="ROLE_ANONYMOUS, ROLE_USER" match="any"/>
 <transition on="next" to="secured" />
 </view-state>

 <end-state id="end"
 view="externalRedirect:contextRelative:/registration"/>
</flow>

B uses the <secured> element to secure the secured view state, whereas the unse-
cured view state at C can be accessed by those with either a ROLE_USER or
ROLE_ANONYMOUS role. Here you see that the attributes attribute can take a comma-
separated list of roles. The match attribute specifies how they’re interpreted. Valid val-
ues are any and all.

 You can click through this example by pointing your browser at the following
address (adjusting for host name and port number): http://localhost:8080/sip/
securityDemo.

 When you’re asked for an email (username) and password, you can use the values
we generated and hardcoded (see www.fakenamegenerator.com) in the application-
Context-security.xml file:

Email: RobinJBryce@example.com
Password: password

As you’ve seen, with an existing Spring Security configuration in place, adding a
SecurityFlowExecutionListener to SWF’s list of flow-execution-listeners is all
that is required to make Spring Security aware of SWF. Securing entire flows, individ-
ual states, and transitions using the <secured> element is straightforward. Don’t worry
about the details of listing 5.19 just yet; we’ll take a much deeper dive into Spring
Security in the next few chapters.

Listing 5.21 \WEB-INF\flows\securityDemo\security-demo-flow.xml

Secures
specific state

B

Valid values:
any, all C
www.it-ebooks.info

www.fakenamegenerator.com
http://www.it-ebooks.info/

172 CHAPTER 5 Enhancing Spring MVC applications with Web Flow
5.9 Summary
SWF’s narrow focus on addressing the problem of navigation in the web tier makes
SWF intuitive to use and easy to learn. In this chapter, we introduced you to SWF and
familiarized you with its features and functionality.

 You started by learning about defining flows, states, how to use transitions, and
managing flow data. Next you learned how to extend your existing Spring MVC appli-
cation by installing and configuring SWF. Then we looked at using action classes, how
to bind and validate form data, flow inheritance, and, finally, securing web flows. Our
goal was to show how you can use this framework to complement your existing Spring
MVC application and simplify the work required to design, maintain, and understand
complex page flows in an application.

 We touched briefly on using Spring Security to authorize individual states and
flows in this chapter. Chapter 6 takes you much deeper into using Spring Security for
authorizing user requests.
www.it-ebooks.info

http://www.it-ebooks.info/

Authenticating users
Many applications need a way to allow users to authenticate—that is, to say who they
are and prove it. In this chapter, you’ll learn how to support this common require-
ment using Spring Security 3. The first three recipes look at approaches to imple-
menting a login form. The five remaining recipes look at sourcing user data from a
persistent store.

6.1 Implementing login and logout with
remember-me authentication
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Security 3 (including tag libraries)

This chapter covers
■ Implementing user authentication with Spring

Security
■ Customizing a login page via Hibernate
■ Using password hashing, salting, and auto-

authentication
173

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 6 Authenticating users
Background

Spring Security 3, although a large framework, makes it easy to get started with basic
authentication. This recipe shows what you can do with a fairly minimal configuration.

Problem

Support basic logins and logouts, including remember-me authentication.

Solution

You’ll use Spring Security 3 to add logins and logouts to a simple web app. You’ll do
this entirely through configuration; that is, you don’t need to write any Java code to
make it work.

 The app is a simple university portal
with nothing more than a home page and
a login page (figure 6.1). To implement it,
you’ll need to configure Spring Security,
configure web.xml, and add login and log-
out links to the app.

 There’s also a beans-web.xml configura-
tion, but we won’t address that here
because it doesn’t contain anything spe-
cific to this recipe. See the code download
for more information.

 Let’s start by configuring Spring Secu-
rity. You’ll do the configuration itself first,
and after that we’ll dive into some of the
behind-the-scenes details.

CONFIGURE SPRING SECURITY

The following listing shows a simple Spring
Security 3 configuration that enables web-
based authentication and creates an
authentication source.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/

➥ spring-security-3.0.xsd">

Listing 6.1 beans-security.xml, your Spring Security configuration

Spring Security
namespace B

Figure 6.1 The default login page, complete
with Submit Query (or Submit, depending on the
browser) button. The page is styled with CSS.
www.it-ebooks.info

http://www.it-ebooks.info/

175Implementing login and logout with remember-me authentication

rity

d

on
 <http auto-config="true" use-expressions="true">
 <form-login default-target-url="/home.html" />
 <remember-me />
 <logout logout-success-url="/home.html" />
 </http>
 <authentication-manager>
 <authentication-provider>
 <user-service>
 <user name="juan" password="p@ssword"
 authorities="user,admin" />
 <user name="elvira" password="p@ssword"
 authorities="user" />
 </user-service>
 </authentication-provider>
 </authentication-manager>
</beans:beans>

The first thing to notice is that beans-security.xml isolates your Spring Security config-
uration into its own configuration file. Because you’ve done this, it makes a lot of sense
to declare the Spring Security namespace as the default namespace, which you do at B.
That way you don’t have to keep specifying a namespace prefix with each element.

 At C you enable web security using the <http> element. Although this element is
responsible for web-based security generally (authentication, authorization, HTTPS,
and so on), the focus in this chapter is authentication. (Chapter 7 covers web authori-
zation in some detail.) The <http> element works by creating a chain of servlet filters
to handle different aspects of web security.

 By setting auto-config="true", you enable the filters for form-based logins
(using the form from figure 6.1), HTTP basic authentication, and logouts. If you pre-
fer, you can set auto-config="false" (that’s the default) and specify the desired fil-
ters manually.

 You also set use-expressions="true" to enable the SpEL, which you’ll need when
you create your JSPs.

 You override the auto-config defaults by placing the desired configuration inside
the <http> configuration. In the case of <form-login>, you choose your own value for
default-target-url D to indicate where you want the user to land after they success-
fully log in.1

 At E you enable remember-me authentication. Spring Security 2 automatically
included remember-me authentication with its auto-config, but that’s no longer the
case with Spring Security 3. You must add it yourself.

 The logout configuration at F is similar to what you did with <form-login>, but
this time you’re specifying a target URL for successful logouts.

 That takes care of your web authentication configuration. But you still need
an authentication source, and that’s what <authentication-manager> helps you

1 Note that this is a default URL. When an unauthenticated user tries to access a protected resource, the login
page intercepts the attempt, and the target URL is the originally requested page unless always-use-
default-target="true" is set on the <form-login> element. See the Spring Security Reference Docu-
mentation for details.

Enables web secuC

Form-base
login
configuratiD

Enables
remember-me
authenticationE

In-memory
user DAO I

Authentication
providerH

Authentication
managerG

F
Logout
configuration
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 6 Authenticating users
establish G. This element allows you to identify a list of authentication providers
that the manager will consult during authentication; authentication succeeds as long
as at least one provider successfully authenticates the user. <authentication-
provider> sets up a single DaoAuthenticationProvider backed by a DAO H. In
general the DAO can be any UserDetailsService implementation; here <user-
service> implicitly selects the InMemoryDaoImpl implementation I.2 You use the in-
memory DAO to create two users, one with username juan, password p@ssword, and
roles called user and admin, and the other for username elvira with password
p@ssword who only has the user role. (Note that the specific interfaces and classes
are hidden by the namespace configuration, and that’s the point of using namespace
configuration in the first place.)

 That’s the Spring Security configuration. Even though it’s small, it’s pretty dense; it
will help to examine some technical details before moving on to web.xml configura-
tion, especially because you’ll need them again in recipes 6.5 and 6.6.

AUTHENTICATION MANAGERS, PROVIDERS, AND USER DETAILS SERVICES

We stated that an authentication manager manages a list of providers. More exactly,
AuthenticationManager is an interface with a single authenticate() method to pro-
cess authentication requests. It doesn’t care whether implementations use providers,
although it’s hard to imagine what else they would reasonably do. At any rate, from
the AuthenticationManager’s point of view, providers
are an implementation detail.

 The default AuthenticationManager implementa-
tion is called ProviderManager. You’re telling Spring
Security to create a ProviderManager instance when
you include the <authentication-manager> element.
ProviderManager maintains a list of Authentication-
Providers corresponding to the authentication sources
you want to include. See figure 6.2.

 Where things get interesting is with the providers
themselves. Spring Security offers many provider
options. You happen to be using the DaoAuthentica-
tionProvider, but that’s certainly not the only one
there is—not by a long shot. See the class diagram in
figure 6.3.

 As figure 6.3 shows, Spring Security provides rich
support for authentication. Besides the DAO provider,
there are providers for CAS, JAAS, LDAP, OpenID, and more.

 Let’s drill down one more level. When you use a DaoAuthenticationProvider, you
have to specify a DAO: that is, a UserDetailsService implementation. In essence,

2 Once again, we’re glossing over many configuration options and details. Please consult the Spring Security
Reference Documentation.

Figure 6.2 A class diagram for
AuthenticationManager
and ProviderManager
www.it-ebooks.info

http://www.it-ebooks.info/

177Implementing login and logout with remember-me authentication
DaoAuthenticationProvider is an adapter that allows you to use any User-

DetailsService implementation as an AuthenticationProvider. There are multiple
UserDetailsService implementations; see figure 6.4.

UserDetailsService is a read-only interface with a single loadUserByUsername()
method. This is how DaoAuthenticationProvider provides authentication services to
AuthenticationManager. UserDetailsManager extends UserDetailsService to add
write operations as well, although AuthenticationManager doesn’t use that.

Figure 6.3 The AuthenticationProvider hierarchy, which includes tons of provider options

Figure 6.4 UserDetailsService hierarchy, containing DAOs used by the
DaoAuthenticationProvider
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 6 Authenticating users
Now you’re in a better position to understand what’s happening with listing 6.1. See
the bean dependency diagram in figure 6.5. The <authentication-manager> ele-
ment creates an AuthenticationManager bean—specifically, a ProviderManager—
called org.springframework.security.AuthenticationManager at B.

 At C, <authentication-provider> creates a single AuthenticationProvider
bean—a DaoAuthenticationProvider—and adds it to the ProviderManager. It also
creates an InMemoryDaoImpl at D. The net result is an in-memory authentication pro-
vider, which is fine for development purposes.

 For the sake of completeness, <authentication-manager> also creates a Default-
AuthenticationEventPublisher at E. The ProviderManager uses this to publish
authentication events (successes and failures) so that listeners can respond as needed
(for example, redirecting the user to the correct target URL).

 That’s enough behind-the-scenes for now. Let’s configure web.xml.

CONFIGURING WEB.XML FOR WEB SECURITY

Spring Security uses a special servlet filter to secure web resources. We’ll examine this
in more detail momentarily, but first let’s look at the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

➥ version="2.5">

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:beans-security.xml</param-value>
 </context-param>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>

Listing 6.2 Configuring web.xml with the Spring Security filter

Figure 6.5 Bean dependency diagram for listing 6.1

Specifies
application
context

B

www.it-ebooks.info

http://www.it-ebooks.info/

179Implementing login and logout with remember-me authentication
 </listener>
 <filter>
 <filter-name>sitemesh</filter-name>
 <filter-class>
 com.opensymphony.sitemesh.webapp.SiteMeshFilter
 </filter-class>
 </filter>
 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
 </filter>
 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>sitemesh</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 ... DispatcherServlet configuration for main app functionality ...

</web-app>

At B you reference the beans-security.xml security configuration from listing 6.1.
At C you enable Spring Security web security by defining a DelegatingFilterProxy
filter, which is part of the core Spring distribution rather than being part of Spring
Security itself.3 DelegatingFilterProxy is essentially a trick for injecting servlet fil-
ters. You can point it at any filter on the application context you like by giving the
DelegatingFilterProxy a name that matches the target filter’s bean ID. The target
filter, being a bean, is injectable like any other bean.

 Although it would certainly be possible to define one DelegatingFilterProxy for
each filter you want to use, that would be a hassle. Instead you define a single Delegat-
ingFilterProxy filter on the web.xml side and a single FilterChainProxy filter on the
beans-security.xml side. Then you create the filters and filter chains you want to use
entirely within the Spring Security configuration rather than in web.xml. Fortunately,
using <http auto-config="true" /> sets up the FilterChainProxy, filters, and filter
chains for you, using the bean ID springSecurityFilterChain. See figure 6.6 for a
visual overview of what we just described.

 Figure 6.7 shows the same thing as a sequence diagram.
 Finally, you indicate that you want all requests to pass through the filter D. This

includes all requests, because login submissions and logouts aren’t associated with any
DispatcherServlet.

 You’re done with configuration. Now let’s make sure your JSPs are equipped to dis-
play the login and logout links appropriately.

3 DelegatingFilterProxy was inspired by the FilterToBeanProxy class, which originated with Acegi Secu-
rity—the precursor to Spring Security.

Configures Spring
Security filter chain C

Applies filter
chain to all
requestsD
www.it-ebooks.info

http://springinpractice.com/code-and-setup
http://www.it-ebooks.info/

180 CHAPTER 6 Authenticating users
Figure 6.6 Filter proxying for injectable servlet filters

Figure 6.7 DelegatingFilterProxy sequence diagram. This is a partial view; we’ve suppressed the
full filter chain. Filter 1, Filter 2, and so on refer to filters in the chain.

Quick tip: the filter mapping order matters
Note that you place the Spring Security filter mapping before the Sitemesh filter map-
ping for a reason: you want the request to pass through the Spring Security filter first
so authentication information will be available on the request when the Sitemesh filter
kicks in. This allows you to display, for example, the user’s name as part of the template.
www.it-ebooks.info

http://www.it-ebooks.info/

181Implementing login and logout with remember-me authentication

CREATING THE APPROPRIATE LINKS IN YOUR JSPS

So far your only special JSP is subhead.jspf.4 The next listing shows a simplified (CSS
suppressed) version of subhead.jspf. See the code download for the full version.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="security"
 uri="http://www.springframework.org/security/tags" %>

<c:url var="homeUrl" value="/home.html" />
<c:url var="loginUrl" value="/spring_security_login" />
<c:url var="logoutUrl" value="/j_spring_security_logout" />

Home

<security:authorize access="isAnonymous()">
 Hi, guest. Log in
</security:authorize>
<security:authorize access="isAuthenticated()">
 Hi, <security:authentication property="principal.username" />.
 Log out
</security:authorize>

You begin by declaring the Spring Security tag library B, because you’re going to use
it both to present/suppress links according to role and to display user information.
Next you create a couple of variables to store the default login C and logout D URLs.
The login URL here returns a login form, not the form submission URL.

 At E you display the login link to anonymous users using <security:authorize>
and using SpEL for the access rule. This is why you had to set use-expressions="true"
in listing 6.1. You’ll learn more about <security:authorize> in recipe 7.1.

 At F you display a personalized welcome message and the logout link to authenti-
cated users, once again using <security:authorize> and SpEL to perform the test.
The personalized welcome message uses the <security:authentication> tag G,
which exposes the user’s authentication information to the JSP. The property attri-
bute refers to a property on an underlying org.springframework.security

.core.Authentication object; see the Javadoc for that class for more information on
what’s available.5 By default, the principal is an org.springframework.security
.core.userdetails.User, and its properties are available for use as well. You’ll see
how to use a custom principal object in recipe 6.5.

 You now have fully functional login and logout capabilities. Try it at http://
localhost:8080/sip/home.html.

4 A .jspf file is a JSP fragment (or JSP segment in JSP 2.0). JSPF pages are JSPs that you want to include in other
JSPs.

Listing 6.3 User information and shared navigation in subhead.jspf

5 Bear in mind that you’re using Spring Security 3 here, not Spring Security 2. Some classes moved around in
Spring Security 3, including Authentication.

Spring Security
tag library

B

Login
page
URLCLogout URL D

Login link for
anonymous usersE

Tests for authenticationF

Displays
usernameG
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 6 Authenticating users
Discussion

The main benefit of the default login form is that it’s easy to set up. But it’s merely ser-
viceable; it’s not necessarily what you’d want to use for a more polished app:

■ The login button uses the awkward language Submit Query (or Submit on
some browsers, which is somewhat better). We’d prefer something like Log in
or Sign in.

■ The form includes a reset button, which most users would consider superfluous.
■ You may want a different page layout, form layout, or styling.

In the following recipe you’ll learn how to customize the login form.

6.2 Customizing the login page
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication

KEY TECHNOLOGIES

Spring Security

Background

In recipe 6.1, you learned the mechanics of using Spring Security to set up form-based
logins, but in most real-life applications you’ll need (or at least want) to modify the
form’s appearance. This recipe shows how to replace the purely functional default
login form with one that addresses not only the functional requirements but also
those that are more visual or interactive in nature.

Problem

Create a custom login page.

Solution

To create a custom login page, you must

■ Create a custom login JSP
■ Add a <mvc:view-controller> element to

beans-web.xml (part of the code download)
■ Modify the <form-login> element in beans-

security.xml
■ Update subhead.jspf to use the new form

As in recipe 6.1, you don’t have to write any Java
language code to pull this off. You’ll start with the
JSP change.

CREATING THE LOGIN FORM JSP

Figure 6.8 shows a custom login page. It isn’t
hugely different in appearance than the default Figure 6.8 A custom login page
www.it-ebooks.info

http://www.it-ebooks.info/

183Customizing the login page

L

ge
form, but there is a key difference: you now control what’s on the page. Notice that
there’s a nav bar at the top of the login form (although all we’ve put there is a Home
link). That nav bar wasn’t part of the default login form from figure 6.1. We’ve also
changed the old Submit Query button to a new Log in button, and we’ve gotten rid of
the unnecessary Reset button.

 The following listing shows how to implement a custom form. For clarity, we’ve
suppressed most of the actual layout and CSS because it’s the form itself that matters.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<c:url var="postLoginUrl" value="/j_spring_security_check" />

<html>
 <head><title>Please log in</title></head>
 <body>
 <c:if test="${param.failed == true}">
 <div>Your login attempt failed. Please try again.</div>
 </c:if>

 <h1>Please log in</h1>

 <form class="main" action="${postLoginUrl}" method="post">
 Username: <input type="text" name="j_username" />

 Password: <input type="password" name="j_password" />

 <input type="checkbox" name="_spring_security_remember_me" />
 Remember me

 <input type="submit" value="Log in" />
 </form>
 </body>
</html>

You use <c:url> to store the form-submission URL at B. This allows you to avoid
hard-coding the context path into the URL, because <c:url> provides it
automatically. The specific URL you’re using is the Spring Security default for login
form submissions.

 If there’s a login failure, you need a way to say so. That’s what C is about. The JSP
checks to see whether there is an HTTP parameter failed=true. If so, it displays the
error message.

 The form at D uses the form-submission URL you created as its action. You also
use specific parameter names for the username, password, and remember-me check
box.

 That’s all there is to the login form. But you still need to make it reachable by
updating beans-web.xml.

ADDING A VIEW CONTROLLER TO BEANS-WEB.XML

The beans-web.xml configuration (see the code download) already declares the mvc
namespace, so all you need to do is add the following view controller:

<mvc:view-controller path="/login.html" />

Listing 6.4 Custom login form, login.jsp, whose appearance you control

Form
submission URB

Validation
error messa

C

Login form D
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 6 Authenticating users
This maps requests for /login.html to the logical
view name login, thanks to the Dispatch-

erServlet’s DefaultRequestToViewNameTrans-
lator. (You can also pick a view name explicitly
by using the view-name attribute on the
<mvc:view-controller>.) Then of course the
InternalResourceViewResolver carries the view
name to an actual JSP. See figure 6.9.

 Now that you have a login page, the next step
is to tell Spring Security about it.

MODIFYING THE <FORM-LOGIN> ELEMENT
IN BEANS-SECURITY.XML

There isn’t much to do to beans-security.xml. You
need to tell Spring Security where to find your new
login page, and you need to ensure that it uses the
error-message capability you created in the JSP.
Modify the <form-login> element as follows:

<form-login
 login-page="/login.html"
 authentication-failure-url="/login.html?failed=true"
 default-target-url="/home.html" />

The login-page attribute tells Spring Security where the custom login page is. It
needs this so it can redirect unauthenticated users to the login page when they
attempt to access a protected resource. You don’t currently have any protected pages,
so you can’t yet see this in action, but you’ll return to this in chapter 7.

 The authentication-failure-url attribute, as you might guess, tells Spring Secu-
rity where to direct the user if the login attempt fails. You send the user right back to
your custom login page, but you include a failed=true HTTP parameter. That’s how
you tell the JSP to display the error message, as you saw in listing 6.4.

■ Now that you’ve handled configuration, let’s update the navigation JSP
fragment.

UPDATING THE LOGIN LINK IN THE NAVIGATION

All you have to do in subhead.jspf is replace the /spring_security_login path with
/login.html. Simple! Admire your handiwork at http://localhost:8080/sip/
home.html.

Discussion

This recipe showed how to improve upon the default login page that Spring Security
provides by creating a custom login page. In the next recipe, you’ll consider a third
way to handle login forms. This time, instead of using a login link that points to a sep-
arate login page, you’ll build the login form right into the page navigation.

Figure 6.9 From request path to view
with a view controller
www.it-ebooks.info

http://www.it-ebooks.info/

185Implementing an always-resident login form
6.3 Implementing an always-resident login form
PREREQUISITES

Recipe 6.2 Customizing the login page

KEY TECHNOLOGIES

Spring Security, Spring Security tag library

Background

In recipes 6.1 and 6.2, you looked at two standard ways to present login forms: you can
present a login link as part of the site navigation, or you can present a login form
when an unauthenticated user attempts to access a protected resource.

 Here we’ll consider a third way: the always-resident login form. It allows the user to
log in with one less click.

Problem

Display a login form that appears as part of the page template (and thus on every
page) until the user logs in. See figure 6.10.

Solution

Normally an unauthenticated user either clicks a login link or attempts to access a
protected resource, after which Spring Security redirects them to a login page. Here
you don’t have that; every page has a login form, and there isn’t any login page.

 Fortunately, Spring Security is sufficiently flexible that you can pull it off. The
main thing you care about is having somewhere to post the form data, no matter
where the form lives. You’ll start by modifying the subhead.jspf navigation file.

MODIFYING SUBHEAD.JSPF TO INCLUDE THE LOGIN FORM

The next listing updates the subhead.jspf file from listing 6.3. As before, we’ve simpli-
fied the layout and CSS for clarity’s sake; see the code download for the full version.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="security"
 uri="http://www.springframework.org/security/tags" %>

<c:url var="homeUrl" value="/main/home.html" />

Listing 6.5 subhead.jspf updated to include an always-resident login form

Figure 6.10 A login form that displays on every page until the user logs in
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 6 Authenticating users
<c:url var="postLoginUrl" value="/j_spring_security_check" />
<c:url var="logoutUrl" value="/j_spring_security_logout" />

Home

<security:authorize access="isAnonymous()">
 <form action="${postLoginUrl}">
 Username: <input type="text" name="j_username" />
 Password: <input type="password" name="j_password" />
 <input type="submit" value="Log in" />
 </form>
</security:authorize>
<security:authorize access="isAuthenticated()">
 Hi, <security:authentication property="principal.username" />.
 Log out
</security:authorize>

You specify the login submission URL at B and use it to create a login form at C.
That’s all there is to it. This is a special case of the custom login form from recipe 6.2.

 You need two more JSPs. The first is a login-required page that you present to
unauthenticated users when they attempt to access protected resources. The second is
a login-failed page to display when (yup) a login attempt failed.

CREATING A LOGIN-REQUIRED PAGE

Normally, when an unauthenticated user attempts to access a protected page, you
send the user to a login page, perhaps with some verbiage to the effect that they need
to log in. Here you don’t have a dedicated login page, so you need to do something
different. You’ll use loginRequired.jsp for this. It’s simple:

<html>
 <head><title>Login required</title></head>
 <body>
 <%@ include file="includes/subhead.jspf" %>
 <h1>Login required</h1>
 <p>Please log in to access the requested page.</p>
 </body>
</html>

The subhead.jspf include has a built-in login form, so the user can log in from this
page. Now let’s create the login-failed page.

CREATING A LOGIN-FAILED PAGE

In recipes 6.1 and 6.2, the login pages displayed login-failed messages as appropriate;
but now there’s no login page, so you need some other way to communicate that mes-
sage. Once again you’ll create a simple page to do that, this time called login-
Failed.jsp:

<html>
 <head><title>Login failed</title></head>
 <body>
 <%@ include file="includes/subhead.jspf" %>
 <h1>Login failed</h1>
 <div class="warning">
 Your login attempt failed. Please try again, or contact

Login submission URL B

Always-resident login form C
www.it-ebooks.info

http://www.it-ebooks.info/

187Implementing an always-resident login form
 technical support for further assistance.
 </div>
 </body>
</html>

Those are the JSPs you’ll need. Let’s add them to beans-web.xml because you’ll need
to reference them from beans-security.xml.

SPRING WEB MVC CONFIGURATION

Here all you need do is add a couple of view controllers to beans-web.xml, like so:

<mvc:view-controller
 path="/login-required.html" view-name="loginRequired" />
<mvc:view-controller
 path="/login-failed.html" view-name="loginFailed" />

Notice that this time around you’re using the view-name attribute to specify view names
explicitly, because, for example, /login-required.html wouldn’t map to /WEB-INF/jsp/
loginRequired.jsp under the implicit mapping. You could have named the JSPs login-
required.jsp and login-failed.jsp, but you happened not to do that. Either way works.

 With the JSPs and MVC configuration complete, let’s update the Spring Security
configuration.

SPRING SECURITY CONFIGURATION

All you need are a couple of tweaks to your existing beans-security.xml configuration.
Once again it’s the <form-login> element you need to change:

<form-login
 login-page="/login-required.html"
 authentication-failure-url="/login-failed.html"
 default-target-url="/home.html" />

Same attributes, different values. This time login-page points to the login-required
page and authentication-failure points to the login-failed page.

 There you have it: an always-resident login form. Spring Security makes it easy. You
can give it a test drive using the same URL as before. Bear in mind that you don’t yet
have any way to exercise the login-required page, because the sample app doesn’t
include any access controls. We’ll treat authorization in chapter 7.

Discussion

The always-resident login form described in this recipe is an alternative to the more
typical login link. It works well if you have enough screen real estate to present it and
if you want to avoid an unnecessary click. The Spring Community Forums (http://
forum.springsource.org/), for example, use this login style. Always-resident login
forms are good for highlighting the fact that a given website supports user registra-
tions and logins. They’re often located near links for registration and resetting forgot-
ten passwords.

 Once the user logs in, it’s common to replace the login form with account settings
information or links as well as a logout link. This helps to establish the piece of screen
real estate as containing account/session information and options.
www.it-ebooks.info

http://forum.springsource.org/
http://forum.springsource.org/
http://www.it-ebooks.info/

188 CHAPTER 6 Authenticating users
 You now have a nice login front end. It’s time to attend to back-end issues. Specifi-
cally you’re ready to connect the login form to a backing database.

6.4 Sourcing user data from a database
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication

KEY TECHNOLOGIES

Spring Security, database

Background

In real applications, you want to source authentication data from a persistent store,
and a database is a common choice. In this recipe you’ll see how to replace your in-
memory user service with one that’s backed by a database.

Problem

Source user authentication data from a database.

Solution

We covered both the DaoAuthenticationProvider class and UserDetailsService
interfaces in recipe 6.1, so we won’t rehash that here. Instead we’ll jump right into the
changes you need to make. These recipes require that your Maven configuration be set
up as described under “Building and Configuration” at http://springinpractice.com/
code-and-setup to enable Jetty startup to find the jetty-env.xml configuration file.

 The most straightforward approach to using a database back end is to replace the
InMemoryDaoImpl user service with a JdbcDaoImpl user service. To do this, you’ll need
to perform the following steps:

1 Create user-related schema and tables in a database.
2 Grant appropriate permissions to whichever user you’re using. (The sample

scripts and configuration assume user sip/sip and database sip06. It’s fine to
grant all permissions to that user on the sip06 database.)

3 Expose the database through JNDI in your servlet container environment.
4 Use Spring to do a JNDI DataSource lookup.
5 Update the Spring Security authentication provider configuration.

When all is said and done, you’re targeting the bean graph shown in figure 6.11.
 You’ll see more details as you work through the recipe. Let’s get started by creating

the database tables.

CREATING THE DATABASE TABLES

Although it’s possible to use a custom database schema, in this recipe you’ll use the
default Spring Security user schema. In recipe 6.5, you’ll customize the schema.
www.it-ebooks.info

http://www.it-ebooks.info/

189Sourcing user data from a database
The default user schema has only two tables: users and authorities, for user creden-
tials and roles, respectively. Figure 6.12 shows the entity-relationship diagram (ERD)
for the user schema.

 Here’s the MySQL DDL for the schema in figure 6.12:

create table users (
 username varchar(50) not null primary key,
 password varchar(50) not null,
 enabled boolean not null
) engine = InnoDb;

create table authorities (
 username varchar(50) not null,
 authority varchar(50) not null,
 foreign key (username) references users (username),
 unique index authorities_idx_1 (username, authority)
) engine = InnoDb;

Create the tables, and add users and authorities. You can use, for example, the following:

insert into users values ('juan', 'p@assword', 1);
insert into authorities values ('juan', 'user');

Figure 6.11 Bean dependency graph for a JDBC-backed authentication manager

Figure 6.12 ERD for the default
user schema. Each user has zero
or more roles.
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 6 Authenticating users
You can find the schema and data SQL scripts in the sample code in the src/main/sql
folder.

 The next step is to use JNDI to expose the database in the servlet container
environment.

EXPOSING THE DATABASE USING JNDI

The specifics of this step are strongly dependent on the servlet container you’re using.
If you haven’t already done so, consult your container documentation for instructions
on how to do this.

 For the sake of this exercise, assume that you’ve bound the DataSource to the
jdbc/Sip06DS JNDI name. The code download contains a sample_conf/jetty-env.xml
configuration for Jetty with the driver, URL, username, and password set to match
some of the assumptions we’ve made (for example, database name is sip06, username
is sip).

 Next you’ll make the DataSource available to Spring so you can use it as an authen-
tication source.

LOOKING UP THE DATASOURCE FROM SPRING

For this step, you’ll create a new application context configuration file. Although it
would be possible to place the DataSource lookup directly in beans-security.xml, in
general you’d expect to use the DataSource for general persistence needs and
not merely security needs. Therefore the DataSource lookup doesn’t belong in
beans-security.xml.

 Create a new configuration file called beans-data.xml. All it has is a lookup:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.0.xsd">

 <jee:jndi-lookup id="dataSource"
 jndi-name="jdbc/Sip06DS" resource-ref="true"/>
</beans>

You also need to update web.xml to point to the new Spring configuration. Change
the contextConfigLocation parameter definition to look like this:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:/spring/beans-data.xml
 classpath:/spring/beans-security.xml
 </param-value>
</context-param>

Now you have a DataSource. Next you need to update the Spring Security configura-
tion to use it to source authentication data.
www.it-ebooks.info

http://www.it-ebooks.info/

191Customizing the user database schema
WORKING WITH JDBCDAOIMPL

By now you may be noticing the common theme that you can make fairly major
changes with minimal effort. Swapping a JDBC-backed user service for the in-memory
user service is another case in point. Change the <authentication-manager> configu-
ration so it looks like this:

<authentication-manager>
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource" />
 </authentication-provider>
</authentication-manager>

Behind the scenes, the <jdbc-user-service> element creates a JdbcDaoImpl (imple-
ments UserDetailsService) to inject into the DaoAuthenticationProvider created
by <authentication-provider>. Refer to recipe 6.1 for figures and details.

 Table 6.1 shows the default SQL queries that JdbcDaoImpl uses for looking up users
and roles. Note that these match the tables you created.

That concludes the solution part of the recipe. Now you have a database back end for
your authentication source. Try it at http://localhost:8080/sip/home.html.

Discussion

In this recipe, you saw how to source authentication data from a database. Although
there was a little setup to do with respect to the database and DataSource configura-
tion, presumably most of your apps have to do that anyway. The Spring Security part
was trivial.

 The default user schema that JdbcDaoImpl expects may or may not serve your needs
in any given case. It’s simple and minimalistic, so it won’t be long before you’re looking
for ways to customize, expand, or replace it. We’ll cover that topic in recipes 6.5 and 6.6.

6.5 Customizing the user database schema
PREREQUISITES

Recipe 6.4 Sourcing user data from a database

KEY TECHNOLOGIES

Spring Security, database

Table 6.1 Default SQL queries that JdbcDaoImpl uses to retrieve user data

Description Query

Gets users
by username

SELECT username, password, enabled FROM users WHERE username = ?

Gets roles
by username

SELECT username, authority FROM authorities WHERE username = ?
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 6 Authenticating users
Background

In most instances, you’ll want to use something a little more beefy than the default
JdbcDaoImpl user schema. The good news is that it’s easy to do.

Problem

Use a custom database schema for authentication.

Solution

As an example, suppose you want to use the schema from recipe 4.4—that is, the
three-table schema shown in figure 6.13.

 You can handle this by configuring <jdbc-user-service> to use custom queries,
as follows:

<authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"
 users-by-username-query=
 "select username, password, enabled
 from account where username = ?"
 authorities-by-username-query=
 "select a.username, r.name
 from account a, role r, account_role ar
 where ar.account_id = a.id and ar.role_id = r.id
 and a.username = ?" />
</authentication-provider>

This configuration uses the same JdbcDaoImpl user service you’ve been using, but you
replace the two lookup queries with custom queries that reflect the underlying
schema.

 Be sure to run the SQL scripts in the src/main/sql directory of the sample code
before starting up the app. Then point the browser at http://localhost:8080/sip/
home.html, and you should be running successfully against the new database schema.

Figure 6.13 ERD for a custom user schema. Compare with figure 6.12.
www.it-ebooks.info

http://www.it-ebooks.info/

193Using a custom user service and user principal
Discussion

Being able to customize the database schema is certainly a useful thing to do, but
sometimes the customizations you desire are more involved. Recall from the discus-
sion following listing 6.3 that the default principal object for Spring Security user ser-
vices is an org.springframework.security.core.userdetails.User. Even when you
customize the database schema as just described, you’re still stuck with the default
User object, which is once again minimalistic. Ideally you’d like to be able to query
the principal object for the user’s first and last names, email, address, and so forth.

 The next recipe shows how to overcome this limitation by sourcing your user data
from the account service you implemented in recipe 4.4.

6.6 Using a custom user service and user principal
PREREQUISITES

Recipe 4.4 Saving form data
Recipe 6.5 Customizing the user database schema

KEY TECHNOLOGIES

Spring Security

Background

In general, user representations include important information beyond credentials and
account flags. This might include demographic data (first name, last name, email
address), preferences, and more. Because Spring Security makes the authenticated user
principal available in the security context, it would be nice to use a more full-featured
user instead of the default org.springframework.security.core.userdetails.User.
In this recipe, you’ll learn how to do that with a custom user service.

Problem

Enhance the user principal with first name, last name, email address, and so forth.

Solution

For this recipe, you’ll connect the account service you created in recipe 4.4 with
Spring Security. You did most of the heavy lifting in that recipe, but there’s still a bit
more work to do. Here are the steps you’ll need to carry out:

1 Adapt the Account domain object from recipe 4.4 to the Spring Security User-
Details interface.

2 Create a DAO to get the password for the new UserDetails object, because nei-
ther Account nor AccountDao exposes the password.

3 Adapt the AccountService interface from recipe 4.4 to the Spring Security
UserDetailsService interface.

4 Update the Spring configuration to use the new UserDetailsService. (You’ll
inject your custom UserDetailsService into the DaoAuthenticationProvider.)

5 Update subhead.jspf to take advantage of the new UserDetails object. You’ll
show the user’s full name instead of only their username.
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 6 Authenticating users
Figure 6.14 is a class diagram that shows several of the key pieces for this recipe.
 You’ll begin by implementing the UserDetailsAdapter.

ADAPTING THE ACCOUNT DOMAIN OBJECT TO THE USERDETAILS INTERFACE

To perform authentication, Spring Security needs your user principal to implement
the UserDetails interface. Although you could add implements UserDetails to the
Account object from recipe 4.4, this would be invasive. Instead you’ll create an
adapter to make the Account object conform to the UserDetails interface, as shown
in the following listing.

package com.springinpractice.ch06.domain;

import java.util.Collection;
import java.util.HashSet;
import java.util.Set;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.GrantedAuthorityImpl;
import org.springframework.security.core.userdetails.UserDetails;

public class UserDetailsAdapter implements UserDetails {

Listing 6.6 UserDetailsAdapter.java, which adapts Account to UserDetails

Figure 6.14 Class diagram for the DaoAuthenticationProvider. In this recipe, you’ll implement
the adapters that allow you to use the account service from recipe 4.4 as a UserDetailsService.

Implements
UserDetails

B

www.it-ebooks.info

http://www.it-ebooks.info/

195Using a custom user service and user principal
 private Account account;
 private String password;

 public UserDetailsAdapter(Account account) {
 this.account = account;
 }

 public Account getAccount() { return account; }

 public Long getId() { return account.getId(); }

 public String getFirstName() { return account.getFirstName(); }

 public String getLastName() { return account.getLastName(); }

 public String getFullName() { return account.getFullName(); }

 public String getEmail() { return account.getEmail(); }

 @Override
 public String getUsername() { return account.getUsername(); }

 @Override
 public String getPassword() { return password; }

 public void setPassword(String password) {
 this.password = password;
 }

 @Override
 public boolean isAccountNonExpired() { return true; }

 @Override
 public boolean isAccountNonLocked() { return true; }

 @Override
 public boolean isCredentialsNonExpired() { return true; }

 @Override
 public boolean isEnabled() { return account.isEnabled(); }

 @Override
 public Collection<GrantedAuthority> getAuthorities() {
 Set<GrantedAuthority> authorities =
 new HashSet<GrantedAuthority>();
 for (Role role : account.getRoles()) {
 authorities.add(new GrantedAuthorityImpl(role.getName()));
 }
 return authorities;
 }
}

The listing is an adapter to make Account act like a UserDetails. Obviously that
involves implementing the UserDetails interface B and accepting a backing
Account C. You expose special Account properties like firstName D, lastName,
fullName, and email because you want these to be available to the app for rendering
or other purposes.

 You must also implement the methods that UserDetails expects, such as user-
name, password, various flag properties, and authorities. In the case of username, it’s

Backed by
Account

C

Exposes Account
properties

D

Exposes UserDetails
properties E

Password
setterF

Handles extra
propertiesG

Roles to
authoritiesH
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 6 Authenticating users
a pass-through E. The password property is different because Account doesn’t
include a password property (recall that you left it out for security reasons), so you
implement it here and include a setter F because the database has a password col-
umn. The flag properties other than enabled, on the other hand, have neither corre-
sponding Account properties nor corresponding database columns, so you return
true for all of them G. Finally, you support the authorities property by mapping
roles to authorities H.

 You now have a custom user principal class, but you still need a way to get the pass-
word out of the database. You’ll create a DAO for that.

CREATING A DAO FOR RETRIEVING PASSWORDS

This DAO exists solely for the purpose of obtaining user passwords from the database.
Although you could go back and modify the account service, that would again be inva-
sive. We’ll continue to show how to adapt the account service without changing it.

 The interface for your DAO has a single method:

package com.springinpractice.ch06.dao;

public interface UserDetailsDao {
 String findPasswordByUsername(String username);
}

The next listing is a JDBC-based implementation of the UserDetailsDao interface.

package com.springinpractice.ch06.dao;

import javax.inject.Inject;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Repository;

@Repository
public class JdbcUserDetailsDao implements UserDetailsDao {
 @Inject private JdbcTemplate jdbcTemplate;

 private static final String FIND_PASSWORD_SQL =
 "select password from account where username = ?";

 @Override
 public String findPasswordByUsername(String username) {
 return jdbcTemplate.queryForObject(
 FIND_PASSWORD_SQL, new Object[] { username }, String.class);
 }
}

This DAO uses JDBC instead of Hibernate because you’re not doing any ORM. You
inject the JdbcTemplate at B and define a simple query at C. You query for the pass-
word at D by specifying the SQL, the username, and the String class.

 With that, you have a user principal and a means to populate all of its properties.
But what you don’t have is an implementation of the UserDetailsService to inject
into the DaoAuthenticationProvider. You’ll take care of that in the next subsection.

Listing 6.7 JdbcUserDetailsDao.java for password lookups

Injects
JdbcTemplate

B

Simple SQL
query

C

Runs
query

D

www.it-ebooks.info

http://www.it-ebooks.info/

197Using a custom user service and user principal
ADAPTING THE ACCOUNTSERVICE INTERFACE TO THE USERDETAILSSERVICE INTERFACE

In the same way that you adapted the Account class to the UserDetails interface, you
need to adapt the AccountService interface to the UserDetailsService interface.
The following listing is an adapter to do this.

package com.springinpractice.ch06.service;

import javax.inject.Inject;
import org.springframework.dao.DataAccessException;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.

➥ UsernameNotFoundException;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch06.dao.UserDetailsDao;
import com.springinpractice.ch06.domain.Account;
import com.springinpractice.ch06.domain.UserDetailsAdapter;

@Service("userDetailsService")
@Transactional(readOnly = true)
public class UserDetailsServiceAdapter implements UserDetailsService {
 @Inject AccountService accountService;
 @Inject UserDetailsDao userDetailsDao;

 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException, DataAccessException {

 Account account =
 accountService.getAccountByUsername(username);

 if (account == null) {
 throw new UsernameNotFoundException(
 "No such user: " + username);
 } else if (account.getRoles().isEmpty()) {
 throw new UsernameNotFoundException(
 "User " + username + " has no authorities");
 }

 UserDetailsAdapter user = new UserDetailsAdapter(account);
 user.setPassword(
 userDetailsDao.findPasswordByUsername(username));
 return user;
 }
}

The adapter is a service bean. You give it a name B so you can reference it from the
Spring Security <authentication-provider> configuration. As an adapter, it imple-
ments UserDetailsService C and accepts a backing AccountService D. It also
accepts a UserDetailsDao E so you have a way to look up the user’s password.

 The single method you need to implement is loadUserByUsername() F. To do
this, you get the Account from the backing AccountService G and then validate the

Listing 6.8 UserDetailsServiceAdapter.java, backed by AccountService

Named service beanB Implements
UserDetailsService

C

Backing
AccountServiceD

G
Gets

account

UserDetailsDao for password E

Method to
implementF

Validates
accountH

Creates
adapter

I

Sets
passwordJ
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 6 Authenticating users
account H, throwing UsernameNotFoundException as per the UserDetailsService
contract. Then you create the UserDetailsAdapter I, inject the password J, and
return the user principal.

 The Java part of your effort is now complete, so let’s look at the configuration
changes you need to make.

UPDATING THE SPRING CONFIGURATION TO USE THE NEW USERDETAILSSERVICE

Now that you’ve added the custom user service from recipe 4.4, you need to update the
configuration to support it. There’s also some other configuration to handle, such as the
configuration for the JdbcTemplate. Here’s what you need to do for the data tier.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/Sip06DS"
 resource-ref="true"/>

 <bean class="org.springframework.jdbc.core.JdbcTemplate"
 p:dataSource-ref="dataSource" />

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5InnoDBDialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </util:properties>

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

➥ AnnotationSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch06.domain"
 p:hibernateProperties-ref="hibernateProperties" />

 <context:component-scan
 base-package="com.springinpractice.ch06.dao" />
</beans>

Listing 6.9 beans-data.xml, updated to support the custom user service

Still have a
DataSourceB

Adds JdbcTemplateC

Adds
HibernateD

Finds DAOsE
www.it-ebooks.info

http://www.it-ebooks.info/

199Using a custom user service and user principal
As with recipes 6.4 and 6.5, you still have a DataSource B. But now you add a
JdbcTemplate C to help with the password lookup. You also add Hibernate D and
scan for DAOs E because your user service will need those.

 In addition to configuring your data tier, you must configure your service tier.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate3.

➥ HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory" />

 <tx:annotation-driven />

 <context:component-scan
 base-package="com.springinpractice.ch06.service.impl" />
</beans>

The previous listing is of course entirely standard, and there’s not much to say about it.
 The third Spring configuration file you need to update is beans-security.xml. Here,

the change is easy. Replace the old <authentication-provider> definition with a
new one, as shown:

<authentication-provider user-service-ref="userDetailsService" />

You no longer need the <jdbc-user-service> from the previous recipe, because
UserDetailsServiceAdapter (whose ID is userDetailsService; see listing 6.8) is
your new user service.

 Figure 6.15 shows the bean dependency graph for the DaoAuthenticationPro-
vider bean and its supporting infrastructure. This is a visual summary of the work
you’ve already done. The authentication provider at the top is something that
Spring Security provides, and the account service at the bottom is what you did in
recipe 4.4. The adapter layer, which you just implemented, is the glue that holds
these two things together.

Listing 6.10 beans-service.xml for service configuration
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 6 Authenticating users
You don’t need to change anything for beans-web.xml. But you do need to add the
entry for beans-service.xml to web.xml:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:/spring/beans-data.xml
 classpath:/spring/beans-service.xml
 classpath:/spring/beans-security.xml
 </param-value>
</context-param>

Figure 6.15 Bean dependency graph for DaoAuthenticationProvider and its dependencies
www.it-ebooks.info

http://www.it-ebooks.info/

201Secure user passwords in the database
You also need to modify one of the JSPs slightly, so let’s do that next.

UPDATING SUBHEAD.JSPF TO DISPLAY THE USER’S FULL NAME

In previous recipes, you displayed the user’s username in the navigation area because
you didn’t have access to user properties beyond those provided by the default Spring
Security UserDetails implementation. But now you’re using the UserDetails-
Adapter class from listing 6.6, which gives you access to nonstandard properties such
as the user’s first name, last name, full name, and email address. You can address the
user by their full name by changing subhead.jspf as follows:

Hi, <security:authentication property="principal.fullName" />.

When you run this app, it will display “Hi, Juan Cazares” instead of “Hi, Juan.” Go
ahead and try it now: http://localhost:8080/sip/home.html.

Discussion

Recipe 6.6 ties together the custom authentication source you created in recipe 4.4
with Spring Security logins. This gives you a great deal of flexibility as regards your
back-end authentication source, and it allows you to use rich user principals in your
code and JSPs.

 One issue we’ve neglected is storing passwords securely. All the examples so far
have involved storing passwords as plain text. Recipe 6.7 remediates this issue.

6.7 Secure user passwords in the database
PREREQUISITES

Recipe 6.6 Using a custom user service and user principal (code dependency only)

KEY TECHNOLOGIES

Spring Security, cryptography

Background

When storing passwords, you need to take steps to ensure that nobody can see them,
yourself included. This recipe shows how to use password salting and hashing to pre-
vent anybody from viewing user passwords in the database. Although this recipe
doesn’t inherently depend on using a custom user service or user principal, you do
build on the sample code from recipe 6.6.

Problem

Prevent people (including you) from viewing user passwords stored in the database.

Solution

You’ll use cryptography to secure user passwords in the database, or at rest. The specific
technique you’ll use is hashing, which performs a one-way encryption of a user pass-
word; that is, hashing doesn’t provide a corresponding decrypt operation. The way it
works is as follows. When a user creates an account, you hash the user’s password before
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 6 Authenticating users
storing it in the database. That way, nobody except the user knows what it is, even if the
database is compromised. When the same user wants to log in, you take the submitted
password, hash it, and compare that hash to the one stored in the database. The authen-
tication succeeds if and only if the hashes are the same. This works because different
messages (here, passwords) are extremely unlikely to hash to the same value.

 Figure 6.16 illustrates the process of hashing a plaintext message.
 Spring Security makes it easy to add password hashing to your app, but to learn

how, you need to treat both the initial password creation (as embodied, for example,
in a user registration process) and subsequent authentications. The code download
for this recipe combines the login work you’ve done in this chapter with the user reg-
istration code from recipe 4.4.

 First you’ll update the registration process to store password hashes instead of
plain text.

HASHING PASSWORDS BEFORE STORING THEM IN THE DATABASE

The change here is fairly trivial. You need to inject the HbnAccountDao (from recipe 4.4,
listing 4.13) with a Spring Security PasswordEncoder and then use the encoder to hash
the password before saving it:

package com.springinpractice.ch06.dao;

import org.springframework.security.authentication.encoding.

➥ PasswordEncoder;

... other imports ...

@Repository
public class HbnAccountDao extends AbstractHbnDao<Account>
 implements AccountDao {

 @Inject private PasswordEncoder passwordEncoder;

 public void create(Account account, String password) {
 create(account);
 String encPassword =
 passwordEncoder.encodePassword(password, null);
 jdbcTemplate.update(UPDATE_PASSWORD_SQL,
 encPassword, account.getUsername());
 }

 ... other members ...
}

Figure 6.16 Hashing a plaintext password into a digest for improved security at rest
www.it-ebooks.info

http://www.it-ebooks.info/

203Secure user passwords in the database
The encodePassword() method’s second argument is an optional salt, which you’re
not using yet. You’ll see that shortly. For now, you pass in null.

 The only other thing to do is add a PasswordEncoder in the app context. You’ll
use it both for the initial password creation as well as for logins. To do this, you need
to choose an appropriate hashing algorithm. MD5 and SHA-1, although popular
choices, have known vulnerabilities. MD5 in particular is no longer considered a
secure hash algorithm. Instead, you’ll use SHA-256. Here’s what you need to do to
beans-security.xml:

<beans:bean id="passwordEncoder"
 class="org.springframework.security.authentication.encoding.

➥ ShaPasswordEncoder">
 <beans:constructor-arg value="256" />
</beans:bean>

<authentication-manager>
 <authentication-provider user-service-ref="userDetailsService">
 <password-encoder ref="passwordEncoder" />
 </authentication-provider>
</authentication-manager>

You use the ShaPasswordEncoder and its constructor to specify SHA-256. (Other
choices include 1, 384, and 512.) Spring automatically injects this into the HbnAc-
countDao. This therefore takes care of the registration use case.

 For logins, you use the <password-encoder> configuration to endow the DaoAu-
thenticationProvider with the ShaPasswordEncoder. The <password-encoder> ele-
ment has an optional hash attribute that you can use to specify a hash algorithm (for
example, hash="sha-256"), but you reference an external bean because you need to
inject the bean into the HbnAccountDao as noted.

 One other item is that the password column in the account database table sup-
ports 64 characters because that’s how many characters SHA-256 requires. (Each
hexadecimal digit represents 4 bits, and 256/4 = 64.) Because any accounts you cre-
ated in previous recipes will no longer work (the passwords aren’t hashed), you may
as well rebuild the database with the database scripts. (Be sure to run both the
schema and the data script.) See the src/main/sql in the code download. If for
whatever reason you don’t want to do that, you can as an alternative use this:

ALTER TABLE account MODIFY COLUMN password varchar(64);

At this point, if you run the app, new registrations will create hashed passwords, and
logins will hash tendered passwords before comparing with the database hashes.
You’ll need to create new accounts (with hashed passwords) through the registration
process to log in.

 The new password-storage scheme offers considerably better security than plain
text, which is completely insecure. But it has some important weaknesses. The most
significant is that despite the fact that hash algorithms don’t support a decrypt opera-
tion, you (wearing your black hat) can do something that’s almost as good: precom-
pute hashes for all the words in a dictionary and use the result as a reverse-lookup
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 6 Authenticating users
table. Although this won’t necessarily allow you to recover every password in the data-
base, it will allow you to recover any password that’s a dictionary word, and plenty of
users use dictionary words for passwords. You need something to defend against so-
called dictionary attacks, and that’s where salt comes in.

DEFENDING AGAINST DICTIONARY ATTACKS USING SALT

The idea behind salt is to add extra bits to user passwords to ensure that they aren’t
dictionary words, thus making dictionary attacks harder to execute. There are various
approaches to salt. One best practice is to associate a large, random set of bits with
each user and append it to each password before hashing it. This makes it much more
costly to precompute reverse-lookup tables because a table must be created for each
possible combination of bits.

 Here you’ll do something that’s weaker but still an improvement over simple hash-
ing: you’ll use the user’s ID as a salt. We can best explain how Spring Security will use
this by way of example. Suppose you have a user with ID 27 and password maxmax.
Spring Security will incorporate the chosen salt (here, the ID) into a nondictionary
password as follows: maxmax{27}. This is weaker because you can easily imagine some-
body precomputing a catalog of reverse-lookup tables to attack apps that use Spring
Security and this particular salt scheme. But it would require a table for each ID, which
means more effort than a single table of dictionary word hashes. But if your security
needs are more stringent, you would be well advised to consider a stronger salt
scheme, such as the large random bitset we described.

 Figure 6.17 shows how you’ll encode passwords using salting and hashing.

To add salt, once again you need to add it to both the password-creation and authenti-
cation processes. Here’s what HbnAccountDao looks like with salt added:

package com.springinpractice.ch06.dao;

import org.springframework.security.authentication.dao.SaltSource;

... other imports ...

@Repository
public class HbnAccountDao extends AbstractHbnDao<Account>
 implements AccountDao {

Figure 6.17 Improving security at rest by incorporating a variable salt
www.it-ebooks.info

http://www.it-ebooks.info/

205Secure user passwords in the database
 @Inject private SaltSource saltSource;

 public void create(Account account, String password) {
 create(account);
 Object salt = saltSource.getSalt(new UserDetailsAdapter(account));
 String encPassword =
 passwordEncoder.encodePassword(password, salt);
 jdbcTemplate.update(UPDATE_PASSWORD_SQL, encPassword,
 account.getUsername());
 }

 ... other members ...
}

What you’re doing is similar to what you did with the PasswordEncoder. You inject a
SaltSource and then use it to generate a salt from the account in a way you’ll see.
Note though that you need to wrap the account with a UserDetailsAdapter because
the getSalt() method expects a UserDetails argument. You update the call to
encodePassword() by passing in the salt instead of null.

 The new beans-security.xml configuration looks like this:

<beans:bean id="saltSource"
 class="org.springframework.security.authentication.dao.

➥ ReflectionSaltSource"
 p:userPropertyToUse="id" />

<authentication-manager>
 <authentication-provider user-service-ref="userDetailsService">
 <password-encoder ref="passwordEncoder">
 <salt-source ref="saltSource" />
 </password-encoder>
 </authentication-provider>
</authentication-manager>

You’ve added a ReflectionSaltSource bean to generate salts from the user’s id prop-
erty, and as with the PasswordEncoder, Spring automatically injects this into the
HbnAccountDao so you can use it during account creation. You also configure the salt
source into the DaoAuthenticationProvider so you can use it during logins.

 Once again, this configuration effectively invalidates any existing accounts, because
their passwords won’t be recognizable anymore. But see the ”Quick tip” sidebar.

Quick tip: preserving legacy passwords
If you want to upgrade a plaintext password-storage scheme to a hashed storage
scheme, that’s easy enough: you replace the plaintext passwords with hashed ver-
sions. But what if you want to upgrade a legacy hashed password-storage scheme to
a salted, hashed scheme? Here you don’t have the original passwords, so you can’t
recompute the passwords.

The answer is to use two authentication providers: the one with the salt source and
the one without. Put them both inside the <authentication-manager> element, be-
cause it accepts a list of <authentication-provider> children. Problem solved!
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 6 Authenticating users
Your password-storage scheme is now significantly more secure than the plaintext
scheme you’ve been using up to this point.

Discussion

This recipe illustrated the link between the account-creation process and the authen-
tication process. In general, the two processes need to be coordinated so that created
accounts can serve in authentication contexts.

 Something you’ll notice if you run the sample code for this recipe is that you aren’t
automatically logged in after you register an account. That’s an annoyance and
another example of where it makes sense to coordinate account creation with authen-
tication. The final recipe in this chapter shows how to fix that.

6.8 Auto-authenticating the user after a successful registration
PREREQUISITES

Recipe 4.4 Saving form data
Recipe 6.4 Sourcing user data from a database
Recipe 6.7 Securing user passwords in the database (code dependency only)

KEY TECHNOLOGIES

Spring Security

Background

Users expect applications to authenticate them automatically after creating an
account. This recipe shows how to do this with Spring Security.

 This recipe builds on the code from recipe 6.7, but it doesn’t depend on hashing
or salting. The sample code for recipe 6.7 is convenient in that it includes both the
registration component and the login component.

Problem

Automatically authenticate the user after a successful new user registration.

Solution

This requires a couple of minor modifications to the sample code from recipe 6.7:

■ Update the AccountController to perform the auto-authentication immedi-
ately following a successful user registration.

■ Update beans-security.xml to support injecting your authentication manager
into the controller.

Let’s handle the controller first. You add an AuthenticationManager dependency to
the AccountController class:

import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.security.authentication.AuthenticationManager;

...
www.it-ebooks.info

http://www.it-ebooks.info/

207Auto-authenticating the user after a successful registration
public class AccountController {

 @Inject
 @Qualifier("authenticationManager")
 private AuthenticationManager authMgr;

 ...
}

You use Spring’s @Qualifier annotation because it turns out there are two Authenti-
cationManager beans on the app context—one created as part of the <http> element
and one created as part of the <authentication-manager> element—and you need a
way to specify the one you want to inject. (Note that javax.inject also has an @Qual-
ifier annotation, but it has different semantics. You’re using the Spring version.)

 You also have to modify AccountController to use the authentication manager to
perform the auto-authentication:

import org.springframework.security.authentication.

➥ UsernamePasswordAuthenticationToken;
import org.springframework.security.core.Authentication;
import org.springframework.security.core.context.SecurityContextHolder;

...

public class AccountController {

 @RequestMapping(value = "", method = RequestMethod.POST)
 public String postRegistrationForm(
 @ModelAttribute("account") @Valid AccountForm form,
 BindingResult result) {

 convertPasswordError(result);
 String password = form.getPassword();
 accountService.registerAccount(toAccount(form), password, result);

 Authentication authRequest =
 new UsernamePasswordAuthenticationToken(
 form.getUsername(), password);
 Authentication authResult = authMgr.authenticate(authRequest);
 SecurityContextHolder.getContext().setAuthentication(authResult);

 return (result.hasErrors() ? VN_REG_FORM : VN_REG_OK);
 }

 ...
}

The part you care about starts where you create the authentication request. You feed it
the username and password. To authenticate the token, you need to pass it into the
authenticate() method on the AuthenticationManager. The authentication should
succeed because you’ve just created the associated account. After you have the authen-
ticated token, you place it on the SecurityContext. The user is now authenticated.

 There’s one small detail you need to handle in the beans-security.xml configura-
tion. Because there are (as we mentioned) two AuthenticationManagers, you can’t
rely on type-based injection. You used @Qualifier to identify the bean you want to
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 6 Authenticating users
inject, which is authenticationManager. The problem is that the bean’s actual ID is
org.springframework.security.authenticationManager, and that’s an internal ID
that Spring Security gives it rather than a published ID. To reference this bean, you
need to give it an explicit alias. You do this as follows:

<authentication-manager alias="authenticationManager">
 ...
</authentication-manager>

With those changes, you now have a registration process that automatically authenti-
cates the user after a successful registration.

Discussion

This final authentication recipe showed how to handle an important detail when inte-
grating registration with authentication: auto-authenticating the user on a successful
registration. You were able to accomplish this using the AuthenticationManager in a
programmatic fashion.

6.9 Summary
You should now have a reasonable understanding of how to implement logins and log-
outs using Spring Security. We began by looking at different login UI options, then
moved on to back-end options as well. Toward the end, you saw how to integrate dif-
ferent aspects of account creation with authentication, such as hashing, salting, and
auto-authentication.

 In chapter 7, we’ll consider one of the major use cases for authentication: authori-
zation. Authorization is the process of determining for a given user whether they’re
allowed to access a given resource. Once again, Spring Security provides a rich set of
tools to handle the job.
www.it-ebooks.info

http://www.it-ebooks.info/

Authorizing user requests
Authorization is the area of security that deals with protecting resources from users
or systems—generically, principals—which aren’t allowed to view, modify, or other-
wise access them. It generally builds on authentication. Authentication establishes
the principal’s identity, and authorization decides what the principal is allowed to
do. This chapter continues the treatment of Spring Security we began in chapter 6,
this time exploring its authorization features.

Figure 7.1 shows the relationship between the types of authorization in Spring
Security 3. On the one hand we have authorization targets, which correspond to
what is being protected: methods, views, and web resources. On the other we have
authorization styles, or how we’re protecting the targets: via authentication levels,
roles, and access control lists (ACLs). Conceptually we’ll break authorization into
the grid in table 7.1.
Each recipe addresses one of the cells in the table.

This chapter covers
■ Implementing authorization using Spring

Security
■ Using authentication levels, roles, and

permissions
■ Establishing access control lists
209

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 7 Authorizing user requests
 Before tackling the recipes, let’s discuss the authorization targets and styles.

AUTHORIZATION TARGETS

Spring Security allows you to authorize the three target types that appear as columns
in table 7.1:

■ Methods—We often need to protect Java methods from unauthorized access. We
can define access rules on a per-method basis.

■ Views—JSPs frequently contain navigation and content that we want to show or
hide according to the user’s permissions. For example, if the user doesn’t have
access to an admin console, it probably doesn’t make sense to show the link to
the admin console in the first place. We also need a way to suppress page con-
tent when the user isn’t allowed to see it. Spring Security has tag libraries to
help here.

■ Web resources—We can grant or deny access to different HTTP requests based on
the associated URLs and HTTP methods.

Table 7.1 Authorization combinations and their corresponding recipes

Authorization style Authentication target

Methods Views Web resources

Authentication-, role-
and permission-based

Recipe 7.1 Recipe 7.2 Recipe 7.3

ACL-based Recipe 7.4 Recipe 7.5 Unsupported

Figure 7.1 Relationship between the types of
authorization in Spring Security 3
www.it-ebooks.info

http://www.it-ebooks.info/

211Authorizing Java methods using authentication levels, roles, and permissions
There are other targets—for example, databases and SMTP mailers—but security for
such resources is typically handled by the resource itself. We won’t discuss those here.

AUTHORIZATION STYLES

The two rows in table 7.1 deal with how access is determined. There are two comple-
mentary approaches:

■ Authentication-, role-, and permission-based authorization—Authentication-based
authorization uses authentication levels to determine access. Authentication
levels range from anonymous (not authenticated) to remembered (authenti-
cated via remember-me) to fully authenticated.
Role-based authorization involves assigning roles to individual users and then
using those roles to determine what users can see and do, ideally through asso-
ciated permissions.

■ ACL-based authorization—ACLs control access to an application’s domain objects
based on user permissions attaching to those domain objects. For example, I
have access to my inbox but not yours. Because ACLs attach to domain objects,
people often refer to this authorization style as domain object authorization or
domain object security.

The following recipes center around a discussion forum sample application. The first
three recipes cover authentication- and role-based authorization. The last two recipes
deal with ACL-based authorization.

7.1 Authorizing Java methods using authentication levels,
roles, and permissions
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication

KEY TECHNOLOGIES

Spring Security 3

Background

There are multiple reasons to protect Java methods from unauthorized access:

■ To consolidate the definition of access rules so they can be managed in one
place instead of being distributed and repeated across multiple clients

■ To avoid having to rely on potentially untrusted clients to enforce access rules
■ To provide for defense-in-depth, which is a security best practice

Spring Security allows you to define access rules, using either XML or annotations,
that you can apply to Java service methods. We’ll focus in this chapter on the annota-
tion-based approach.

Problem

Secure service methods by defining authentication- and role-based access rules.
www.it-ebooks.info

http://springinpractice.com/code-and-setup
http://www.it-ebooks.info/

212 CHAPTER 7 Authorizing user requests
Solution

Approaches to securing Java methods involve defining rules that specify who has
access to which methods. You’ll define access rules using annotations, although XML-
based rules are also an option. Consult the Spring Security reference documentation
for information on using security pointcuts and AOP to secure Java methods. These
recipes require that your Maven configuration be set up as described under “Building
and Configuration” at http://springinpractice.com/code-and-setup to enable Jetty
startup to find the jetty-env.xml configuration file.

 The first thing to understand is how to define an access rule. Let’s take the “who”
part first. As of Spring 3, you can use the SpEL to define who has access to a target
(whether a method or otherwise). Table 7.2 shows the predicates for defining authen-
tication- and role-based access rules.

With the annotation-based approach, you add security annotations to your service
beans, and then you add a single line to your beans-security.xml configuration.

 Let’s look at an example. You’ll secure the ForumServiceImpl service bean in the
sample app. This service allows clients to access forum-related functionality, like get-
ting forums, updating messages in a forum, and so on. For now, your rules will be sim-
ple, although later you’ll refine them. They will be things like these:

■ The user must have a general, application-wide “read forums” permission to get
a forum or forums from the service.

■ The user must have a general, application-wide “create messages” permission to
post a message to a forum.

Table 7.2 SpEL predicates for defining authentication- and role-based access controls

Predicate Truth condition

permitAll Always true (truth constant).

denyAll Always false (falsity constant).

isAnonymous() Principal is anonymous.

isAuthenticated() Principal isn’t anonymous.

isRememberMe() Principal authenticated via remember-me.

isFullyAuthenticated() Principal authenticated by providing credentials explicitly.

hasRole(role) Principal has the specified role.

hasAnyRole(role1,
role2, ..., role n)

Principal has at least one of the specified roles.

hasIpAddress(ipAddr) Client IP address matches a specified address. ipAddr can be
either a single IP address or a range of IP addresses using IP/net-
mask notation. (Available only in web contexts.)
www.it-ebooks.info

http://www.it-ebooks.info/

213Authorizing Java methods using authentication levels, roles, and permissions
You get the idea. Let’s implement the rules using Spring Security annotations. List-
ing 7.1 shows what ForumServiceImpl.java looks like with the annotations in place.

package com.springinpractice.ch07.service.impl;

import java.util.List;
import javax.inject.Inject;
import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch07.dao.ForumDao;
import com.springinpractice.ch07.dao.MessageDao;
import com.springinpractice.ch07.domain.Forum;
import com.springinpractice.ch07.domain.Message;
import com.springinpractice.ch07.service.ForumService;

@Service
@Transactional
@PreAuthorize("denyAll")
public class ForumServiceImpl implements ForumService {
 @Inject private ForumDao forumDao;
 @Inject private MessageDao messageDao;

 @PreAuthorize("hasRole('PERM_READ_FORUMS')")
 public List<Forum> getForums() { return forumDao.getAll(); }

 @PreAuthorize("hasRole('PERM_CREATE_MESSAGES')")
 public void createMessage(Message message) {
 messageDao.create(message);
 }

 ... other methods ...
}

Despite its simplicity, this code snippet uses two key techniques that we need to discuss
in a little detail. Let’s cover the raw mechanics, then we’ll look at the bigger picture.

 The class-level @PreAuthorize annotation defines a default denyAll rule for the
methods in the class B. The denyAll rule rejects access no matter what. That may
seem like a strange thing to do, but it’s one of the key techniques that we’ll discuss
momentarily.

@PreAuthorize means the denyAll check takes place before entering the method;
there’s also an @PostAuthorize annotation that’s similar but performs a check after
exiting the method. You’ll see use cases for @PostAuthorize in recipe 7.4.

 The default applies unless individual methods override it with method-level anno-
tations. Of course, denying access to everybody doesn’t make for a useful method. So
at C you override the default denyAll rule by specifying that having the
PERM_READ_FORUMS permission is a necessary and sufficient condition for entering the
getForums() method. Similarly, at D you create a rule that says that having the
PERM_CREATE_MESSAGES permission is necessary and sufficient for entering the
createMessage() method.

Listing 7.1 ForumServiceImpl.java with security annotations

Whitelist
via denyAll

B

Requires “read
forums” permission

C

Requires “create
messages” permissionD
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 7 Authorizing user requests
 You might wonder why you’re using a hasRole() predicate to check for a permis-
sion, because roles and permissions aren’t the same thing.1 That gets to the second
key technique we need to discuss. Without further ado, here are the two techniques.

KEY TECHNIQUE 1: WHITELISTING

Broadly speaking, there are two approaches to authorization: whitelisting and black-
listing. Whitelisting denies requests unless they’re explicitly granted (on the whitelist),
whereas blacklisting grants requests unless they’re explicitly forbidden (on the black-
list). Whitelisting, as the more paranoid, generally makes for better security, and secu-
rity professionals consider it a best practice. Use it whenever it’s practical to do so.

 Your default denyAll rule is effectively a whitelist implementation. If somebody
adds a new method to ForumServiceImpl and forgets to attach an access rule, the
default rule prevents anybody from using the method.

TIP Whitelisting is a security best practice. Use class-level @PreAuthorize
("denyAll") annotations to implement whitelists.

Now let’s look at the second key technique.

KEY TECHNIQUE 2: SEPARATE ROLES AND PERMISSIONS

The goal behind this technique is to avoid embedding security policy decisions in the
code. Such decisions should be set at runtime because they vary across customers,
they vary over time, and sometimes they need to be changed immediately (for exam-
ple, in response to a security breach).

 Consider, for example, the difference between this rule

@PreAuthorize(
 "hasAnyRole('ROLE_STUDENT', 'ROLE_FACULTY_MEMBER', 'ROLE_ADMIN')")
public Forum getForum(long id){ ... }

and this one:

@PreAuthorize("hasRole('PERM_READ_FORUMS')")
public Forum getForum(long id) { ... }

The first rule breaks when somebody decides that teaching assistants, parents, faculty
trainers, accreditors, or any number of other roles should gain access, or that one of
the roles should lose access (for instance, faculty-only forums). The roles may be dif-
ferent for different customers using the software, and many of the roles may not make
any sense for some customers.

 The second rule is more resilient in the face of such changes, because in essence it
says that a user can access a given forum if they have read access to forums generally.
The rule isn’t perfect—you may decide there isn’t any such thing as read access to
forums generally (that is, access exists on a forum-by-forum basis)—but clearly it’s
much more flexible, especially if you can establish the relationship between roles and
permissions outside of the code itself. And you can certainly do that.

1 A role typically entails a set of permissions. The “release engineer” role, for example, might have permission
to deploy software packages to servers.
www.it-ebooks.info

http://www.it-ebooks.info/

215Authorizing Java methods using authentication levels, roles, and permissions
 As a general rule, prefer permission-based rules to role-based rules. There are
exceptions (you’ll see an example in recipe 7.2), but it holds in general.

 Spring Security 3 appears schizophrenic on the issue of separating roles and per-
missions. The interface underlying ROLE_STUDENT, PERM_READ_FORUMS, and so forth is
called GrantedAuthority, and this sounds like a fancy way of saying permission rather
than role. But the examples in the Spring Security reference documentation tend to
treat granted authorities as roles; even the hasRole() and hasAnyRole() predicates
steer you toward using roles directly, which is at best a questionable practice for the
reasons already given.2

 Apparent schizophrenia aside, Spring Security makes it easy to do the right thing.
The sample code, for instance, uses a custom UserDetailsService backed by the
user/role/permission schema shown in figure 7.2.3 The src/main/sql/schema.sql
script contains this schema, but it’s just an example. Even if you’re using JdbcDaoImpl
instead of a custom UserDetailsService, you can take advantage of the Spring Secu-
rity group schema to separate roles and permissions.4

2 See Willie Wheeler, “Quick tip: Spring Security role-based authorization and permissions,” October 27, 2010,
http://mng.bz/010n, for a more extended treatment of this topic.

3 The sample code uses BIGINTs but in real life you’ll almost certainly want to use a smaller type, like INTs or
even smaller. This will improve indexing and conserve storage. Of course, if you do need room for 18 quin-
tillion accounts, then BIGINT is the data type for you.

4 See Rich Freedman, “Spring Security Database Schema,” August 19, 2008, http://mng.bz/NsB0, for more
information. The basic idea is that groups are roles and granted authorities are permissions. The group
schema itself is similar to figure 7.2.

Figure 7.2 User schema that
separates roles from permissions
www.it-ebooks.info

http://mng.bz/010n
http://mng.bz/NsB0
http://www.it-ebooks.info/

216 CHAPTER 7 Authorizing user requests
In addition to the schema, you also need sample data so you can test the security con-
figuration. Figure 7.3 shows the roles and permissions that each sample user has, as
contained in the src/main/sql/data.sql script.

 That’s it for source code changes. Now you need to activate the security annota-
tions. To do that, you add a single line to the beans-security.xml configuration from
recipe 6.1:

<global-method-security pre-post-annotations="enabled" />

You’ve enabled Spring Security’s pre- and post-annotations, disabled by default,
because they allow you to use SpEL to define access rules in an elegant fashion. This is
the preferred approach in Spring Security 3. There are a couple of other options,
which we’ll list for completeness:

■ jsr250-annotations="enabled"—Activates the standard JSR 250 security
annotations. Although these are standard, they support only simple role-based
rules and aren’t nearly as powerful as Spring Security’s pre/post annotations.
These are disabled by default.

■ secured-annotations="enabled"—Support for Spring’s legacy @Secured

annotation. Originally superseded by the JSR 250 @RolesAllowed annotation,
and now by the Spring Security @PreAuthorize annotation. @Secured is dis-
abled by default.

That’s annotation-based configuration. To try the security annotations, try the
following:

1 Start up the application, and click the Forums link. Spring Security forces a
login because the call to getForums() requires the PERM_READ_FORUMS permis-
sion.

2 Log in as user daniel/p@ssword. He has just the student role.

Figure 7.3 Users, roles, and
permissions for the sample
application
www.it-ebooks.info

http://www.it-ebooks.info/

217Authorizing JSP views using authentication levels, roles, and permissions
3 Go into one of the forums, select a message, and try to block it (the link is avail-
able at the bottom of the message). You should get an error message in a dialog
box because the ForumServiceImpl.setMessageVisible() method requires
the PERM_ADMIN_MESSAGES permission, which the student role doesn’t have.

4 Try the same thing with editing and deleting messages. You’ll be able to access
the edit page and the delete confirm box. But there will be an error message
when you try to save the edit or confirm the deletion, because the student role
doesn’t have the required PERM_UPDATE_MESSAGES and PERM_DELETE_MESSAGES
permissions.

5 Log out, and then log back in under juan/p@ssword. User juan has the admin
role. Try the same operations. You should be able to execute all of them,
because the admin role has the required permissions.

Discussion

The first authorization recipe showed how to create authorization rules and apply
them to Java methods. You’ve focused on applying them to Java service beans,
although it’s also possible to use Spring Security with AspectJ to attach authorization
rules to domain objects when implementing a domain-driven design.

 The next recipe shows how to secure views by applying authorization rules to code
fragments inside a JSP.

7.2 Authorizing JSP views using authentication levels,
roles, and permissions
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication

KEY TECHNOLOGIES

Spring Security 3 (including tag library), Spring Expression Language

Background

In many cases it’s necessary to suppress JSP fragments.5 One case would be where the
fragment contains content the user isn’t authorized to view. Another is where the frag-
ment contains navigation pointing to pages the user isn’t allowed to access.6 This rec-
ipe shows how to use Spring Security 3 to implement this type of suppression.

 We’ll use a basic forum application to illustrate the techniques involved.

Problem

Show or hide JSP page fragments based on the user’s authentication level and role.

5 Here we mean subsets of the content inside a JSP, rather than .jspf files per se.
6 Note that there are also plenty of cases where it does make sense to show navigation that points to features or

content the user can’t access. One such example would involve trying to entice the user to purchase premium
features or content.
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 7 Authorizing user requests

r
n

Solution

Recipe 7.1 showed how to accomplish authorization based on authentication levels.
We’ll show how to add authorization based on roles and permissions. The main tool
here is the Spring Security tag library.

 Figure 7.4 presents the page naviga-
tion. The Home link appears for all
users. The Forums link is present if the
user has the read forums permission.
The My Account and Logout (not dis-
played) links appear only if the user is
authenticated; otherwise a Login link appears. Finally, the Admin link appears only if
the user has the admin role.

 To control the display, you use the <spring:authorize access="[predicate]">
JSP tag along with SpEL predicates you saw in recipe 7.1. The tag displays its body if
and only if the predicate evaluates true against the current principal.

 Listing 7.2 shows how you use the predicates to implement the desired display con-
trols.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="security"
 uri="http://www.springframework.org/security/tags" %>

<security:authentication var="myAccount" property="principal" />

<div id="topNav">
 <div id="welcomeUser">
 Hi,
 <security:authorize access="isAnonymous()">
 guest
 </security:authorize>
 <security:authorize access="isAuthenticated()">
 <c:out value="${myAccount.firstName}" />
 </security:authorize>
 </div>
 <div>
 Home
 <security:authorize access="hasRole('PERM_READ_FORUMS')">
 | Forums
 </security:authorize>
 <security:authorize access="isAuthenticated()">
 <c:url var="myAccountUrl"
 value="${accountsPath}/${myAccount.username}.html" />
 | My Account
 </security:authorize>
 <security:authorize access="hasRole('ROLE_ADMIN')">
 | Admin
 </security:authorize>
 <security:authorize access="isAnonymous()">

Listing 7.2 subhead.jspf, containing the app’s primary page navigation

Security
tag libraryB

Checks for
anonymous

C

Checks for
authenticatedD

Checks fo
permissio

E

Checks for
admin roleF

Figure 7.4 Navigation display based on user authen-
tication levels, roles, and permissions
www.it-ebooks.info

http://www.it-ebooks.info/

219Authorizing JSP views using authentication levels, roles, and permissions
 | Log in
 </security:authorize>
 <security:authorize access="isAuthenticated()">
 | Log out
 </security:authorize>
 </div>
 <div style="clear:both"></div>
</div>

As in recipe 6.1, you use the Spring Security tag library B to implement page frag-
ment shows and hides, and you use isAnonymous() C and isAuthenticated() D to
decide whether to greet the user as a guest or by name. You use the same predicates to
control the visibility of the My Account, Login, and Logout links.

 The new piece is hasRole(). At E you use it to show the Forums link according to
whether the user has the PERM_READ_FORUMS permission, and at F you use it to show
the Admin link based on whether the user has the ROLE_ADMIN role. Keep in mind (as
discussed in recipe 7.1) that the hasRole() predicate is a test for whether the speci-
fied granted authority exists; the granted authority doesn’t strictly have to be a role.

 Recall that recipe 7.1 mentioned that sometimes it does make sense to build access
rules based on roles rather than permissions. Listing 7.2 provides a case in point.
Here, it makes sense to tie the Admin page directly to the admin role, because that
rule is unlikely to require revision: the page specifically targets the role. Similarly, it’s
fine to tie the Login link to isAnonymous(), and it’s appropriate to tie the My Account
and Logout links to isAuthenticated().

ANOTHER WAY TO SPECIFY A <SECURITY:AUTHORIZE> ACCESS CONDITION

There is a second way to specify access conditions for <security:authorize> tags.
Instead of defining an access attribute, you can define a url attribute, along with an
optional method attribute for HTTP methods, to establish an access condition. The
idea is that the tag displays its body if and only if the user has access to the URL via the
method in question. You’ll see how to define access controls on a URL and method in
the next recipe.

 This approach is useful when rendering navigation, because it allows you to bind
the visibility of a given navigation item to its access definition instead of duplicating
what’s essentially a single rule. You’ll put this technique into use in recipe 7.3.

Discussion

This recipe showed how to hide links and content based on user authentication levels
and roles. In the case of links, developers sometimes use the technique of hiding links
as a substitute for proper access controls. This is known as security by obscurity and isn’t

What about the other <security:authorize> attributes?
The <security:authorize> tag has other attributes we haven’t covered:
ifAnyGranted, ifAllGranted, and ifNotGranted. These are deprecated; use
either access or url and method instead.
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 7 Authorizing user requests
generally considered real security, because users can still enter the target URL directly
into the browser if they know or guess it.7 Instead, the techniques in this recipe are
more like user experience and usability techniques than security techniques where
navigation and links are concerned. To defend the link targets against unauthorized
access, it will help to have a way to selectively permit or deny HTTP requests, and that’s
what the next recipe shows how to do.

7.3 Authorizing web resources using authentication levels,
roles, and permissions
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication

KEY TECHNOLOGIES

Spring Security 3

Background

In recipe 7.2, you saw how to display web-page content based on user authentication
levels, roles, and permissions. This is often used as a way to keep the UI streamlined; in
most cases it doesn’t make sense to show users links that they aren’t allowed to use.

 But it’s important not to mistake obscurity for security. Just because the link is hid-
den doesn’t mean users can’t get to it. To have real security, you must protect your web
resources with access rules. This recipe shows how to do that.

Problem

Control users’ access to web resources according to their authentication level, roles,
and permissions.

Solution

You’ll continue using Spring Security 3 to implement authentication-, role-, and per-
mission-based authentication for the web URLs in your sample forum application. The
relevant code is in the beans-security.xml file. You use the intercept-url element to
define access rules for web URLs as shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/

7 Try it using http://localhost:8080/sip/main/admin.html and some account other than juan. You’ll find that
you can still get to the admin page.

Listing 7.3 Defining access controls on URLs in beans-security.xml.
www.it-ebooks.info

http://www.it-ebooks.info/

221Authorizing web resources using authentication levels, roles, and permissions

on
➥ spring-security-3.0.xsd">

 <http auto-config="true" use-expressions="true">
 <intercept-url pattern="/skin/**" filters="none" />
 <intercept-url pattern="/styles/**" filters="none" />
 <intercept-url pattern="/scripts/**" filters="none" />
 <intercept-url pattern="/images/**" filters="none" />
 <intercept-url pattern="/home.html" method="GET"
 access="permitAll" />
 <intercept-url pattern="/admin.html" method="GET"
 access="hasRole('ROLE_ADMIN')" />
 <intercept-url pattern="/forums/*" method="GET"
 access="isAuthenticated()" />
 <intercept-url pattern="/forums/*/messages" method="POST"
 access="isAuthenticated()" />

 ... other rules ...

 <intercept-url pattern="/**" access="denyAll" />
 <form-login default-target-url="/home.html" />
 <logout logout-success-url="/home.html" />
 <access-denied-handler error-page="/accessdenied.html"/>
 </http>
 <authentication-manager>
 <authentication-provider user-service-ref="accountDao" />
 </authentication-manager>
</beans:beans>

To define access rules, you once again take advantage of SpEL. You do that by setting
use-expressions="true" at B. Prior to Spring Security 3, there was a non-SpEL
method of defining rules. That approach is now legacy, so we won’t cover it here.

 Now you have the <intercept-url> rules. Before looking at the specific rules, let’s
discuss the high-level approach and some details about the mechanics of defining a
rule.

 As with recipe 7.1, you adopt the best practice of defining access on a whitelist
model. To implement a whitelist, bear in mind that rules are evaluated on a first-
match basis; that is, the first rule in the list with a pattern that matches the request
URL is the rule that applies. Therefore you need to place more specific patterns
before more general patterns. You make your list a whitelist by making the most gen-
eral rule one that denies access to all resources using denyAll.

 To specify rules, you use a URL pattern, an optional HTTP method (GET, POST, PUT,
DELETE, and so on), and either filters="none" or access="[predicate]". The rule
applies to all HTTP methods if the method is omitted. The first option, filters="none",
indicates that the pattern and method don’t require authentication, authorization, or
any other security services. The second option allows you to use SpEL to define the con-
ditions under which the user can use the URL/method pair in question.

 The patterns have two possible syntaxes, which you choose by setting the path-type
attribute on the containing <http> element. The default syntax is Ant, which uses
either path-type="ant" or nothing because it’s the default. The alternative is regular
expression syntax via path-type="regex". You’ll use the default Ant-style syntax.

Enables
expressions

B

Disables
filteringC

Opens access
to home page

D

Admins onlyE
Forums require
authentication

F

Posts message that
requires authenticatiG

Whitelists
via denyAllH
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 7 Authorizing user requests
 Now let’s look at the specific rules. The first four use filters="none" to indicate
that neither the skin files nor the static assets (images, CSS, JavaScript) require secu-
rity services C.

 Next you have rules for specific URL and method combinations. Although the
methods are optional, it’s a good practice to specify them explicitly to avoid opening
up access unnecessarily. (This is very much in line with the whitelist approach.) At D
you use permitAll to specify that GET requests for the home page are always to be
granted. At E you use hasRole('ROLE_ADMIN') to ensure that only administrators
have access to the admin page. You define additional access rules for forums and mes-
sages at F and G. Although it would have been possible to use Ant’s ** wildcard to
shorten the list of rules, doing so would effectively create a blacklist inside of the
whitelist, and from a security perspective it’s safer to require grants to be explicit.

 At H you create the denyAll rule that makes your rule list a whitelist.
 To test this:

■ Try to access http://localhost:8080/sip/admin.html anonymously by manually
entering it in the browser’s address bar. You should be redirected to a login
page. If you log in as juan, the request should succeed; otherwise, you should
get the access-denied page.

■ Log into the app as elvira using the normal login process. Once you’ve done so,
manually enter the admin URL from the previous bullet. Unlike in recipe 7.2, you
should now get the access-denied page.

There’s one loose end to tie up before we move on to the next recipe.

UPDATING THE PAGE NAVIGATION TO ELIMINATE RULE DUPLICATION

In recipe 7.2, we pointed out that it’s possible to specify <security:authorize> access
rules in terms of URLs and HTTP methods instead of defining access conditions explic-
itly. Recall that the idea is to bind the display of a navigation item to the user’s access
to that item such that you can define the access rule in a single location (such as
beans-security.xml) instead of defining it in two. Indeed, let’s update subhead.jspf to
take advantage of this feature (see listing 7.2 for the original listing):

<security:authorize url="${servletPath}/home.html" method="GET">
 Home
</security:authorize>
<security:authorize url="${servletPath}/account/*" method="GET">
 <c:url var="accountUrl"
 value="${accountPath}/${myAccount.username}.html" />
 | My Account
</security:authorize>
<security:authorize url="${servletPath}/admin.html" method="GET">
 | Admin
</security:authorize>
<security:authorize access="isAnonymous()">
 | Log in
</security:authorize>
<security:authorize access="isAuthenticated()">
 | Log out
</security:authorize>
www.it-ebooks.info

http://www.it-ebooks.info/

223Authorizing method invocations based on ACLs
Now, when you change the rules in beans-security.xml, the <security:authorize>
tag’s behavior automatically reflects the change. You can define rules authoritatively in
the Spring Security configuration file instead of duplicating rule definitions in the JSPs.

Discussion

In the preceding three recipes, you’ve assumed fairly simple requirements around
access, mostly around application-wide roles and permissions. For example, you’ve
assumed that users either do or don’t have permission to edit messages.

 Real-world access requirements tend to be more nuanced. You might want each
forum to have a moderator with administrative privileges over that forum, rather than
having just a single site administrator. For any given message, you might want the site
admin, the forum moderator, and the original author to have edit permissions, but no
one else. You might want the site admin and forum moderator to be able to block,
unblock, and delete messages, but nobody else.

 The requirements just described require machinery more powerful than that
offered so far, because they’re based not on simple application-wide permissions but
on relationships between a principal and a domain object being accessed. A given
user either is or isn’t the moderator for a given forum, and the answer makes a differ-
ence in terms of what the user is allowed to do with messages in that forum.

 Recipes 7.4 and 7.5 show how to implement domain object security using Spring
Security 3 access control lists.

7.4 Authorizing method invocations based on ACLs
PREREQUISITE

Recipe 6.1 Implementing login and logout with remember-me authentication
Recipe 7.1 Authorizing Java methods using authentication levels, roles, and permissions

KEY TECHNOLOGIES

Spring Security 3

Background

This is the first of two recipes that deal with authorizing access to and displaying specific
domain objects that exist in your system. Keeping with the discussion forum example,
imagine that you want to allow the author, the forum moderator, and the site admin to
edit a message after it’s been posted, and nobody else. Additionally, moderators must be
able to block, unblock, and delete messages in forums they moderate.8

 Enter access control lists (ACLs). The idea is that each domain object has an associ-
ated list of access rules specifying who is allowed to do what with the object. Each rule,
more formally known as an access control entry (ACE), specifies an actor, an action, and
either grant or deny, indicating whether the actor may perform the action on the

8 You’ll handle part of this requirement around blocking, unblocking, and deleting messages in this recipe.
Recipe 7.5 completes the treatment of that requirement.
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 7 Authorizing user requests
domain object. The end result is that you can resolve questions like, “Can Juan edit mes-
sage 106?” This gives you the ability to define fine-grained access rules. See figure 7.5 for
a visual explanation of access control lists.

 Speaking more conceptually, you have actors, targets, and actions. Actors (like
Daniel) want to perform actions (like editing) against domain object targets (like
message 106). You need to decide in any given instance whether the desired action is
permissible. This is where Spring Security’s ACL module helps.

ACL-based authorization is more complex than role-based authorization. With
role-based authorization, you manage predicates on principals without worrying
about specific targets. You can use role-based authorization to answer questions like.
“Can Daniel edit messages generally?” ACL-based authorization is finer-grained and
involves managing relationships between actors and targets. Figure 7.6 shows the dif-
ference between role-based and ACL-based authorization.

 With that background, you’re ready to tackle the rest of the recipe.

Problem

Authorize service method invocations involving domain objects based on the relation-
ship between the principal and the domain object(s) in question. Specifically, the
author, the forum moderator, and the site admin must be able to edit existing posts.
You also need to lay the groundwork allowing moderators to block, unblock, and
delete posts, although that will require additional work in recipe 7.5.

Figure 7.5 An ACL for a message. The author has one set of permissions with respect to the message,
and other users have other permissions.
www.it-ebooks.info

http://www.it-ebooks.info/

225Authorizing method invocations based on ACLs
Solution

You’ll use the Spring Security ACL module to implement domain object authoriza-
tion. Here’s a roadmap of the recipe ahead:

■ Defining domain object ACLs—First we’ll cover the basics of granting (or, less com-
monly, denying) user permissions on domain objects using the ACL database
schema to drive the discussion. (For example, “Daniel has permission to edit
message 106.”)

■ Defining ACL-based access rules for Java methods—You’ll see how to use annotations
to define ACL-based access rules, specified in terms of user permissions, on Java
methods. (For example, “Allow the method invocation if the current user has
permission to edit the passed message.”)

■ Configuring Spring Security for ACLs—You need configuration to activate domain
object security. You’ll learn how to do that.

■ Optimizing ACL definition—We’ll look at ways to simplify and streamline ACL
definitions.

■ Manipulating ACLs programmatically—We’ll look at programmatic manipulation
of ACL data, which is often necessary in cases where the app creates new
domain objects. (For example, give the author of a new message permission to
edit the message even after it has already been posted.)

Figure 7.6 With role-
based authorization,
a user might have per-
mission to (say) edit
messages in general.
With ACL-based autho-
rization, you can set
user edit permissions
on a message-
by-message basis.
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 7 Authorizing user requests
Because the ACL module is database-driven, you’ll start there both to get a good grasp
of the key concepts and details on the database schema. Note that the schema we’re
about to cover replaces the one from the earlier recipes, so you should rebuild the
database using the scripts at src/main/sql at this time.

DEFINING DOMAIN OBJECT ACLS

To begin, you need to understand some key ACL concepts and how to define user per-
missions on domain objects so you can define access rules in terms of said permis-
sions. The ACL database schema is the logical place to start both because it highlights
the concepts and because it’s where you define the user permissions.

 The ACL module has four tables to store actors, actions, and targets (domain
objects). Together they provide a framework for defining access rules for specific
domain objects. Spring Security uses the access rules to make access decisions.

 Figure 7.7 is the E/R diagram for the ACL module. Again, see the sample code for
the MySQL scripts.9

TIP In figure 7.7, all the IDs are MySQL BIGINTs. It’s unlikely in the extreme
that you’ll require BIGINTs for your dataset, and using them consumes space
unnecessarily. It pays to think about your expected data volumes and choose
data widths accordingly.

9 Alternatively, see Willie Wheeler, “Spring Security 3 database schemas for MySQL,” July 6, 2010, http://
mng.bz/Q3IZ.

Figure 7.7 E/R diagram for the Spring Security ACL schema
www.it-ebooks.info

http://mng.bz/Q3IZ
http://mng.bz/Q3IZ
http://www.it-ebooks.info/

227Authorizing method invocations based on ACLs
Let’s go over the tables in detail because it will help you better understand how ACL-
based security works. As an example, you’ll define a rule that grants user daniel per-
mission to edit message 106.

 You represent actors using the acl_sid table. A security identity (SID) can be a prin-
cipal such as an end user or a system or a granted authority such as the admin role or
even a system-wide permission as noted in recipe 7.1.

 The principal column is a flag indicating whether the SID is a principal or a
granted authority, and the sid column contains a username or granted authority name
accordingly. Together the principal and sid columns allow Spring Security to associate
SIDs in the ACL schema with app users and granted authorities, as figure 7.8 shows.

 To be concrete, consider user daniel with a role called ROLE_USER. Table 7.3 shows
how the sample app maps these to rows in the acl_sid table.

The IDs are arbitrary, but the other columns aren’t. SID 100 is the granted authority
(here, a role) called ROLE_USER. There is a corresponding row—that is, a row where
the name is ROLE_USER—in your application’s role table. SID 201 is the principal
named daniel. Once again there is a corresponding row—a row where the username
is daniel—in your application’s account table. (See the sample code.)

 You represent domain object targets using the acl_class and acl_object_identity
tables, which model domain object types and instances, respectively. In the acl_class
table, there are only two columns: id and class. The id column is an arbitrary ID. The

id principal sid

100 0 ROLE_USER

201 1 daniel

Figure 7.8 How Spring Security links its ACL schema to its user schema. This allows Spring Security
to support custom app objects because the Spring Security user schema uses Java interfaces.

Table 7.3 Sample acl_sid rows (SIDs)
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 7 Authorizing user requests
class column holds a fully qualified classname, such as com.springinpractice.ch07
.domain.Message.

 There’s a lot going on in acl_object_identity, whose rows are referred to as OIDs.
Each OID is Spring Security’s representation of an application domain object. The
object_id_class column references the acl_class table and allows you to specify the
domain object’s type. The object_id_identity column is for the domain object’s native
ID, which Spring Security assumes to be numeric and exposed by an id property on
the domain object. Together these two columns pick out a domain object.

 Continuing with the example, suppose you want to represent message ID 106. You
need to create a corresponding OID using the acl_class and acl_object_identity tables
in the ACL schema. (If the class already exists in acl_class, then you need create only
a row in acl_object_identity.) Figure 7.9 presents the situation schematically.

 Tables 7.4 and 7.5 show the same thing in record form.

In tables 7.4 and 7.5, the IDs in the id column (3 and 112 for class and OID, respec-
tively) are arbitrary. But the ID in the object_id_identity column isn’t. It contains the
message’s native ID, which is 106.

 We’ve focused on a subset of the OID columns, but there are a few other columns:
parent_object, entries_inheriting, and owner_id. These are more advanced in nature,
so we’ll ignore them in this first pass and return to them shortly.

id class

3 com.springinpractice.ch07.domain.Message

id object_id_class object_id_identity

112 3 106

Figure 7.9 How Spring Security ties its
ACL schema to domain objects

Table 7.4 Representing
messages generally using
acl_class

Table 7.5 Representing
message 106 using
acl_object_identity (some
columns suppressed)
www.it-ebooks.info

http://www.it-ebooks.info/

229Authorizing method invocations based on ACLs
Actions are what SIDs want to do with OIDs, such as creating or editing them. Each row
in the acl_entry table, or ACE, is essentially an assertion to the effect that such-and-
such SID either does or doesn’t have permission to perform such-and-such action on
such-and-such OID. Each ACE involves a SID, an OID, a permission, and either grant
or deny. The list of ACEs for a given OID is the OID’s ACL.

 Let’s talk about permissions. The simplest way to think about permissions is that
the BasePermission class defines five default permissions with associated codes
(masks), as shown in table 7.6.

The precise interpretation of the specific permissions depends on the application, but
they correspond to the standard CRUD (create, read, update and delete) operations
plus an administrative operation. Principals with the administrative permission are
able to manage the corresponding object’s ACL (add or remove ACEs, change parent,
change ownership, change audit information, and so on). There are other ways to be
able to manage object ACLs, and you’ll see those later in the recipe.

 Up to 32 distinct permissions are possible, although the 5 just given should be suf-
ficient for many use cases. If you create additional permissions, their masks must be
powers of 2.10

Table 7.6 ACL permissions and their numeric values

Permission Mask Notes

READ 1

WRITE 2

CREATE 4

DELETE 8

ADMINISTRATION 16 Principals with this permission can manipulate the object’s ACL.

10 In some cases custom permissions are helpful. Our current project, for instance, is a software deployment
automation system. Permission to deploy to environments like dev, test, and prod varies with role; for exam-
ple, developers can deploy to the development environment but not to production. We distinguish the ability
to update the environment domain object from the ability to update the real-world environment. We use the
standard WRITE permission for the former and a custom DEPLOY permission for the latter, because the ability
to update an environment’s description (say) is distinct from the ability to deploy a change to it.

Use only one ACE per permission
Spring Security supports up to 32 permissions: the 5 defaults from table 7.6 and up
to 27 custom permissions. You can represent individual permissions using a bit
index i (0-31) or, equivalently, as integers of the form 2i, which explains why the
default codes are all powers of 2. So far, so good.
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 7 Authorizing user requests
There’s also a granting flag. If it’s 1, the ACE grants the permission. If it’s 0, the ACE
denies the permission.

 Table 7.7 shows a sample ACE, one that grants the edit (a.k.a. write) permission to
your hero daniel for message 106.

SID 201 corresponds to daniel as per table 7.3, and OID 112 corresponds to message 106
as per table 7.5. The mask value 2 indicates the WRITE permission as per table 7.6, and
granting value 1 means that you’re granting the permission rather than denying it.11 12

 The ace_order column is the ACE’s 0-indexed order in the domain object’s ACL.
The org.springframework.security.acls.model.Acl interface doesn’t specify
semantics for the ACE order. See the Javadoc for AclImpl.isGranted() for details on
how the order matters for the default AclImpl implementation.13

 Those are the basics. You’re now ready to learn how to define access rules on Java
methods in terms of user permissions like the one you’ve just defined.

Table 7.7 Granting Daniel permission to edit message 106 (some columns suppressed)

id acl_object_identity ace_order sid mask granting

42 112 0 201 2 1

11 For a detailed explanation, see “ACE masks are not being compared as bitmasks,” https://jira.springsource
.org/browse/SEC-1140.

12 “Provide strategy interface for AclImpl isGranted() method,” https://jira.springsource.org/browse/SEC-1166.
13 It’s fairly complicated, but the basic idea is that the first matching ACE is the one that wins. But that’s a sim-

plification; again, consult the Javadoc for details.

(continued)
Besides representing individual permissions, you might want to represent sets of per-
missions, as when granting such-and-such user both READ and WRITE permissions on
some message. Bitmasks are a well-established and economical way to do that. The
number 3, for instance, represents this combination because 3 = 1 (READ) + 2 (WRITE).

Unfortunately, despite the use of the mask terminology in the database table and in
the API, the default ACL implementation, AclImpl, doesn’t support arbitrary bitmasks.
You can’t grant READ and WRITE using a single ACE with the mask set to 3. Instead
you need to create an ACE for the READ permission and a second ACE for the WRITE
permission. The reason is somewhat difficult,11 but suffice to say that many Spring
Security beginners understandably but incorrectly assume that they can place bitmasks
in the mask column.

It looks like Spring Security 3.1 will make it possible for AclImpl to treat the mask
as a true bitmask using a strategy interface.12
www.it-ebooks.info

https://jira.springsource.org/browse/SEC-1140
https://jira.springsource.org/browse/SEC-1140
https://jira.springsource.org/browse/SEC-1166
http://www.it-ebooks.info/

231Authorizing method invocations based on ACLs
DEFINING ACL-BASED ACCESS RULES FOR JAVA METHODS

You saw in recipe 7.1 that Spring Security provides an @PreAuthorize annotation that
allows you to define access rules for Java methods using SpEL expressions. In recipe 7.1
you defined rules in terms of authentication status, roles, and system-wide permissions.
But now you’re going to define rules in terms of permissions on domain objects.

 As it happens, Spring Security supports several access-control annotations, as
shown in table 7.8.

As we just mentioned, the expressions can reference domain objects. Table 7.9 intro-
duces the SpEL expressions that support this.

Let’s look at a few examples from the class ForumServiceImpl in the sample code.
 First, here’s @PreAuthorize:

@PreAuthorize("hasPermission(#message, delete)")
public void deleteMessage(Message message) { ... }

In the snippet, the rule is to allow entry into the method if and only if the cur-
rent principal has the delete permission on the message being passed in. Spring
Security checks this by matching on the Message class and domain object ID as

Table 7.8 Annotations for controlling access to Java methods

Annotation Description

@PreAuthorize(expression) Checks the expression before allowing access to the anno-
tated method

@PostAuthorize(expression) Checks the expression after executing the method but
before returning the return value to the caller

@PreFilter(value=expression
[, filterTarget=collection])

Filters a collection of domain objects before passing it into
the annotated method

@PostFilter(expression) Filters a collection of domain objects returned from the
annotated method before returning them to the caller

Table 7.9 SpEL expressions for domain object security

Expression Description

#paramName Variable referring to a method argument by parameter name.

filterObject Term referring to an arbitrary collection element in a filter annotation (either
@PreFilter or @PostFilter).

returnValue Term referring to the method’s return value. Used in @PostAuthorize.

hasPermission(
domainObject,
permission)

Predicate indicating whether the current principal has a given permission on a
given domain object. Legal values for permission are read, write,
create, delete, and admin (no quotes).
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 7 Authorizing user requests
previously described. You use the special variable syntax, #message, to reference the
passed message.14

 The @PostAuthorize annotation isn’t as generally useful as @PreAuthorize, but it
has its uses. Sometimes you want to drive access decisions based on something other
than object IDs. For instance, the sample app allows forum moderators and site
admins to block messages. Only users with the admin permission on a blocked mes-
sage should be able to see it. The following code snippet shows how to use the @Post-
Authorize annotation to accomplish this:

@PreAuthorize("permitAll")
@PostAuthorize(
 "(hasPermission(returnObject, read) and returnObject.visible) or

➥ hasPermission(returnObject, admin)")
public Message getMessage(long id) { ... }

In this example, you have no way of knowing whether the message is visible based on
the message ID alone. You have to get the message (using the special returnObject
term), check for the read permission (using the hasPermission predicate), and then
check its visibility. @PostAuthorize is useful in such cases.

 Notice that you’re also using a @PreAuthorize("permitAll") annotation. The rea-
son is that ForumServiceImpl has a type-level @PreAuthorize("denyAll") annotation
whose purpose is to create a whitelist security model as we explained in recipe 7.1. You
have to override that annotation so calls can enter the method.

 The sample app doesn’t use the @PreFilter annotation, and it’s not commonly
used, but for completeness we’ll say something about it here. Prefiltering can be use-
ful where bulk operations on domain objects are concerned. It allows you to remove a
domain object from the bulk operation when the current principal doesn’t have per-
mission to perform the operation on that domain object. The domain objects need to
be part of a java.util.Collection (an array won’t work), and the Collection needs
to support the remove() method. Null values in the collection aren’t allowed.

 Suppose, hypothetically, that you wanted to support a bulk delete on messages.
The following code would allow you to do that:

@PreAuthorize("permitAll")
@PreFilter("hasPermission(filterObject, delete)")
public void deleteMessages(List<Message> messages) { ... }

You’d need to use @PreAuthorize("permitAll"). But after that, you’d use the @Pre-
Filter annotation with the special filterObject (representing an arbitrary collec-
tion element) and hasPermission expressions to exclude messages for which the
current principal lacks the delete permission.

 In this case you have only one collection parameter, but if you had more than one,
you’d use the filterTarget element to choose one.

14 If you’re wondering how Spring Security knows the parameter name, the answer is that it uses compiler debug
information. You must compile the code with the debug local variable information turned on in order for this
feature to work. There are other such examples in Spring, especially in Spring Web MVC.
www.it-ebooks.info

http://www.it-ebooks.info/

233Authorizing method invocations based on ACLs
 When a method returns a collection of domain objects, sometimes you want to fil-
ter out individual elements before handing them over to the caller. That’s what
@PostFilter is for. The following snippet includes a given forum in the result set if—
and only if—the principal has read permission on the forum:

@PreAuthorize("permitAll")
@PostFilter("hasPermission(filterObject, read)")
public List<Forum> getForums() { ... }

As with @PreFilter, you use filterObject and hasPermission to perform the
desired filtering.

 The annotations define the access rules, but you need to activate them to make
them do anything. You’ll need to add configuration to make that work.

CONFIGURING DOMAIN OBJECT SECURITY

There are a couple of different pieces to the configuration. First, you make a minor
tweak to the <global-method-security> definition in beans-security.xml:

<global-method-security pre-post-annotations="enabled">
 <expression-handler ref="expressionHandler" />
</global-method-security>

Here you add an explicit expression handler definition to the <global-method-
security> definition. Although <global-method-security> creates a default expres-
sion handler, it can’t handle hasPermission() expressions because it doesn’t come
with a permission handler. You address that with a new beans-security-acl.xml config-
uration as shown next.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="expressionHandler"
 class="org.springframework.security.access.expression.method.

➥ DefaultMethodSecurityExpressionHandler"
 p:permissionEvaluator-ref="permissionEvaluator" />
 <bean id="permissionEvaluator"
 class="org.springframework.security.acls.AclPermissionEvaluator">
 <constructor-arg ref="aclService" />
 </bean>
 <bean id="aclService" class="org.springframework.security.acls.

➥ jdbc.JdbcMutableAclService">
 <constructor-arg ref="dataSource" />
 <constructor-arg ref="lookupStrategy" />
 <constructor-arg ref="aclCache" />
 </bean>
 <bean id="lookupStrategy" class="org.springframework.security.

➥ acls.jdbc.BasicLookupStrategy">

Listing 7.4 beans-security-acl.xml, supporting domain object security

Expression
handler

B

ACL permission
evaluator

C

ACL service D

JDBC ACL
lookup strategy

E

www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 7 Authorizing user requests
 <constructor-arg ref="dataSource" />
 <constructor-arg ref="aclCache" />
 <constructor-arg ref="aclAuthzStrategy" />
 <constructor-arg>
 <bean class="org.springframework.security.acls.domain.

➥ ConsoleAuditLogger" />
 </constructor-arg>
 </bean>
 <bean id="aclCache" class="org.springframework.security.acls.

➥ domain.EhCacheBasedAclCache">
 <constructor-arg>
 <bean class="org.springframework.cache.ehcache.

➥ EhCacheFactoryBean" p:cacheName="aclCache">
 <property name="cacheManager">
 <bean class="org.springframework.cache.ehcache.

➥ EhCacheManagerFactoryBean"/>
 </property>
 </bean>
 </constructor-arg>
 </bean>
 <bean id="aclAuthzStrategy"
 class="org.springframework.security.acls.domain.

➥ AclAuthorizationStrategyImpl">
 <constructor-arg>
 <list>
 <ref local="adminRole" />
 <ref local="adminRole" />
 <ref local="adminRole" />
 </list>
 </constructor-arg>
 </bean>
 <bean id="adminRole" class="org.springframework.security.core.

➥ authority.GrantedAuthorityImpl">
 <constructor-arg value="admin" />
 </bean>
</beans>

Figure 7.10 is the same expression handler configuration as a bean dependency
graph.

 You use the beans namespace in listing 7.4 rather than the security namespace.
The security namespace doesn’t (at the time of this writing, anyway) directly support
ACL configuration, so you need to do everything explicitly.

 First you define the expression handler B. It’s still the default expression handler,
but you’re giving it a nondefault configuration by injecting a permission evaluator
that knows how to handle hasPermission() expressions, which is the whole point of
the beans-security-acl.xml configuration. The specific permission evaluator you need
is the AclPermissionEvaluator, so you create one at C.

 The permission evaluator relies on an ACL service for ACL CRUD operations. You
use a JdbcMutableAclService D because your ACLs are in a database (that’s the JDBC
part) and you want to be able to create, update, and delete ACLs as you create, update,
and delete the corresponding domain objects (that’s the mutable part). Because it’s a

Audit logger F

ACL cache G

ACL authorization
strategy

H

www.it-ebooks.info

http://www.it-ebooks.info/

235Authorizing method invocations based on ACLs
JDBC-based ACL service, you inject a data source. The service also uses caching for per-
formance, so you inject an Ehcache-backed cache too G.15

ACL lookups are the most common operation, so for performance the ACL service
delegates them to a LookupStrategy. This allows you to adopt DBMS-specific optimiza-
tions as desired. For simplicity you use a BasicLookupStrategy E, which is based on
ANSI SQL. It doesn’t have DBMS-specific optimizations, but it attempts to be perfor-
mant within the confines of ANSI SQL. The BasicLookupStrategy uses the same data
source and cache that the JdbcMutableAclService uses. You also inject a console log-
ger F for logging purposes.

 The BasicLookupStrategy also has an AclAuthorizationStrategyImpl H, which
it injects into the AclImpls that it returns from lookups. The AclAuthorization-
StrategyImpl supports ACL administration by authorizing ACL modification
attempts. Its constructor takes an array of three granted authorities as described in
table 7.10.

 You’ll learn a little more about how these constructor arguments work when we
discuss programmatic ACL management, but the idea is that not just anybody can

15 Don’t forget to configure your Ehcache, at least for production. See http://ehcache.org/documentation/
configuration.html for information on how to do that.

Figure 7.10 ACL configuration as a bean dependency graph
www.it-ebooks.info

http://ehcache.org/documentation/configuration.html
http://ehcache.org/documentation/configuration.html
http://www.it-ebooks.info/

236 CHAPTER 7 Authorizing user requests
manage (create, modify, and delete) ACLs. We already mentioned in connection with
table 7.6 that one way to manage an object’s ACL is to have the administrative permis-
sion on that object. Another way is to have the authority or authorities injected into
the AclAuthorizationStrategyImpl constructor, because each entails a special ACL
management permission. (These aren’t to be confused with the normal permissions
that appear inside the ACLs. You can think of the special permissions as metapermis-
sions that sit outside the ACLs, determining who can change the ACLs.) In practice,
the authority you pass into all three constructor slots is a system-wide administrative
authority, and indeed that’s what you’ve configured here.

 That covers the ACL configuration. Now let’s look at some optimizations you can
make to your ACL definitions.

OPTIMIZING ACL DEFINITIONS

In the first pass, we skipped over the parent_object and entries_inheriting columns
in the acl_object_identity table. These columns allow you to simplify the manage-
ment of your ACLs and also to save what could potentially be a lot of storage space by
creating OID hierarchies and then allowing OIDs to inherit ACEs from parent OIDs.

 For example, in the sample app, you want the administrator to have the write per-
mission (among others) for all messages in all forums, and you want forum modera-
tors to have the write permission for all messages in forums they moderate. Although
you could create one ACE for every <SID, OID> pair, this approach doesn’t scale well.
There are lots of users and lots of messages, and if you have to create a new set of ACEs
for every new user or new message, things will get out of control in a hurry.

 Instead you can do the following:

■ Establish a parent-child relationship between forums and messages using the
parent_object column on message OIDs.

■ Set entries_inheriting true on the message OIDs so that messages automati-
cally inherit ACEs from their parent forums.

■ Give the site admin the write permission on the individual forums, and give
forum moderators the write permission on the forums they moderate. The mes-
sages will inherit ACEs from the forum ACLs, allowing you to avoid creating lots
of message ACEs.

Table 7.10 AclAuthorizationStrategyImpl constructor arguments

Index Param name Description

0 Change
ownership

Authority able to change ACL ownership. That is, the specified authority has the
special AclAuthorizationStrategy.CHANGE_OWNERSHIP permission.

1 Change
auditing

Authority able to modify auditing details. That is, the specified authority has the
special AclAuthorizationStrategy.CHANGE_AUDITING permission.

2 Change
general

Authority able to change other ACL and ACE details (for example, inserting an ACE
into an ACL or changing an ACL’s parent). That is, the specified authority has the
special AclAuthorizationStrategy.CHANGE_GENERAL permission.
www.it-ebooks.info

http://www.it-ebooks.info/

237Authorizing method invocations based on ACLs
The preceding is easier to understand with a diagram. First see figure 7.11.
 In figure 7.11, your user has the write (or edit) permission on each message, and

you implement this using one ACE per message. Using this approach, if you want to
give the user read permission on the messages, you need to create another set of ACEs
granting the read permission. If you decide to revoke the write permission, you’ll
need to delete all the ACEs.

 Compare the approach from figure 7.11 to the superior approach in figure 7.12.
 In figure 7.12, you establish parent/child relationships between the forum and its

messages using the parent_object column. Then you give the user the write permis-
sion on the forum. Finally you use inheritance to grant the user the write permission
on the messages by setting entries_inheriting to true. Notice that this solves the
issues we mentioned: you can add and revoke permissions on the messages by adding
and revoking a single permission on the forum.

 We need to cover one additional topic: manipulating ACLs programmatically.

MANIPULATING ACLS PROGRAMMATICALLY

Because applications create, update, and delete domain objects, you need to ensure
that you keep the various ACL schema objects in sync. If you create a message, you
need to create a corresponding OID and ACL. If you delete a message, you need to
delete the corresponding OID and ACL as well.

Figure 7.11 Creating separate ACEs for each message. Don’t do this!

Figure 7.12 Best practice: establish parent/child relationships, then inherit permissions
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 7 Authorizing user requests
Spring Security makes this possible via an ACL management API called Mutable-
AclService. You included a JdbcMutableAclService in the configuration in list-
ing 7.4. The following listing shows how you can use a MutableAclService to manage
the creation, updating, and deletion of messages.

package com.springinpractice.ch07.service.impl;

import javax.inject.Inject;

import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.security.acls.domain.BasePermission;
import org.springframework.security.acls.domain.ObjectIdentityImpl;
import org.springframework.security.acls.domain.PrincipalSid;
import org.springframework.security.acls.model.MutableAcl;
import org.springframework.security.acls.model.MutableAclService;
import org.springframework.security.acls.model.ObjectIdentity;
import org.springframework.security.acls.model.Sid;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import com.springinpractice.ch07.dao.MessageDao;
import com.springinpractice.ch07.domain.Forum;
import com.springinpractice.ch07.domain.Message;
import com.springinpractice.ch07.service.ForumService;

... other imports ...

@Service
@PreAuthorize("denyAll")
@Transactional
public class ForumServiceImpl implements ForumService {
 @Inject private MessageDao messageDao;
 @Inject private MutableAclService aclService;

 ... other fields ...

 @PreAuthorize("hasRole('PERM_WRITE_MESSAGES')")
 public void createMessage(Message message) {
 messageDao.create(message);
 createAcl(message);
 }

 @PreAuthorize("hasPermission(#message, admin)")
 public void setMessageVisible(Message message) {
 Message pMessage = messageDao.get(message.getId());
 pMessage.setVisible(message.isVisible());
 messageDao.update(pMessage);
 updateAcl(pMessage);
 }

 @PreAuthorize("hasPermission(#message, delete)")
 public void deleteMessage(Message message) {
 messageDao.delete(message);
 deleteAcl(message);
 }

Listing 7.5 Using MutableAclService to manage message ACLs

Declares
@Transactional

B

Injects
MutableAclServiceC

Calls
createAcl()D

Calls
updateAcl()E

Calls
deleteAcl()F
www.it-ebooks.info

http://www.it-ebooks.info/

239Authorizing method invocations based on ACLs

CL
 private void createAcl(Message message) {
 Long forumId = message.getForum().getId();
 ObjectIdentity forumOid =
 new ObjectIdentityImpl(Forum.class, forumId);
 MutableAcl forumAcl =
 (MutableAcl) aclService.readAclById(forumOid);
 MutableAcl messageAcl =
 aclService.createAcl(getMessageOid(message));
 messageAcl.setParent(forumAcl);

 Sid author = new PrincipalSid(message.getAuthor().getUsername());
 if (message.isVisible()) {
 messageAcl.insertAce(
 0, BasePermission.WRITE, author, true);
 }

 messageAcl.setOwner(author);
 aclService.updateAcl(messageAcl);
 }

 private void deleteAcl(Message message) {
 aclService.deleteAcl(getMessageOid(message), true);
 }

 private void updateAcl(Message message) {
 deleteAcl(message);
 createAcl(message);
 }

 private ObjectIdentity getMessageOid(Message message) {
 return new ObjectIdentityImpl(Message.class, message.getId());
 }

 ... other methods ...
}

Listing 7.5 is ForumServiceImpl, which we referenced earlier when going over the
security annotations. Like the other service beans, you declare it to be @Transac-
tional B, which matters here in part because you want your domain modifications to
execute in the same transactional context as your ACL modifications.

 You inject a MutableAclService at C because this is your API into the Spring Secu-
rity ACL module.

 You have different message modification methods that create, update, and delete
messages. Each, in addition to modifying the domain model, makes a call as appropri-
ate to createAcl() D, updateAcl() E, or deleteAcl() F to keep the ACL model in
sync with the domain model.

 The createAcl() implementation G is the most interesting. You create a forum
OID, then use it to issue a forum ACL lookup against the ACL service H. Then you create
a new message ACL and corresponding OID I. By default, the JdbcMutableAclService
assigns OID ownership to the current principal, which may or may not be the author,
as you’ll see. Ownership is back-ended by the owner_sid column of the
acl_object_identity table, which you saw in figure 7.9. Spring Security doesn’t specify
what it means to own a domain object, but by default the owner is allowed to perform

createAcl()
implementationG

Gets forum
ACL

H

Creates message AI

Grants write
permission to author

J

Sets owner to author1)

Updates ACL1!

deleteAcl()
implementation1@

updateAcl()
implementation1#
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 7 Authorizing user requests
administrative actions on the associated ACL in precisely the same way the admin ACL
permission (see table 7.6) and the AclAuthorizationStrategyImpl constructor
authorities (see table 7.10) can.

 Now that you’ve created the message ACL, you make the forum ACL its parent.
The current principal can do this because it owns the current OID, as noted. Any
principal with the AclAuthorizationStrategy.CHANGE_GENERAL metapermission
(see table 7.10) can change an OID’s parent.

 At J you give the author write permission on the message if the message is visible.
The idea is that the author can edit their own messages as long as an administrator
hasn’t put an administrative block on the message (that is, an administrator hasn’t
made it invisible). This change requires the AclAuthorizationStrategy.CHANGE
_GENERAL metapermission.

 You change the message ACL owner to the author at 1). This requires the AclAu-
thorizationStrategy.CHANGE_OWNERSHIP metapermission, which the current princi-
pal has because it’s the current owner. In most cases, the author will already be the
owner, because in most cases it’s the author who invokes the createAcl() method by
posting a message. But you’ll see momentarily that in some cases an administrator is
creating the ACL, and in such cases you need the administrator to relinquish owner-
ship to the author.

 You update the ACL in the persistent store at 1!. You now have a new message OID
and ACL with the right parent, author write permission, and owner.

 In addition to creating ACLs, you have to be able to delete them. At 1@ you delete
an ACL with a single deleteAcl() call against the ACL service.

 You also have to be able to update ACLs 1#. This can happen if the original author
updates the message (not shown in listing 7.5, but it’s in the code download), or it can
happen if an administrator blocks the message. Either way, the most straightforward way
to update the ACL is to delete the old ACL and create a new one. In the case of an admin-
istrative block, the current principal will be the administrator when you call the cre-
ateAcl() method, which is why you have to make the author the owner as mentioned.

 With that, you’re able to manage ACLs alongside your domain objects.

Discussion

In this recipe, you learned how to add fine-grained authorization to your application.
With the earlier recipes you had to be content with fairly crude rules, such as the rule
that normal users can read and create messages in general and that the site admin can
also edit, block, unblock, and delete messages in general. But now you can create
more specific rules, such as the rule that relevant authors and forum moderators
should also be allowed to edit specific messages.

 But there’s still a gap. You’d like forum moderators to be able to block, unblock, and
delete messages in their forums, but the app doesn’t yet support this. Under the hood
you have the ACLs in place for it, but on the display side, the JSP doesn’t yet know how
to take the ACLs into account. The display of the block/unblock/delete options still
www.it-ebooks.info

http://www.it-ebooks.info/

241Displaying web navigation and content based on ACLs
hinges on coarse-grained permissions rather than on fine-grained ACLs. Also, the app
always shows the Edit Message option, even if the user doesn’t have that permission for
that message. The final recipe in this chapter, recipe 7.5, addresses these issues.

7.5 Displaying web navigation and content based on ACLs
PREREQUISITE

Recipe 7.4 Authorizing method invocations based on ACLs

KEY TECHNOLOGIES

Spring Security, Spring Security tag library

Background

In addition to protecting URLs from being accessed and methods from being called,
it’s often useful to show or hide page navigation and content according to a user’s
authorization to view them. Spring Security’s tag library allows you to display page nav-
igation and content based on ACL data.

Problem

Show or hide web navigation and content based on domain object ACLs. Specifically,
you need to show or hide the edit, block, unblock, and delete message options
depending on whether the user has permission to perform those operations on the
messages in question.

Solution

In previous recipes, the sample app always displays the Edit Message link, even if the
user doesn’t have permission to perform that operation. And it uses crude, general
permissions to decide whether to display the block/unblock/delete options:

Edit message
<security:authorize access="hasRole('PERM_UPDATE_MESSAGES')">
 Block message
 Unblock message
</security:authorize>
<security:authorize access="hasRole('PERM_DELETE_MESSAGES')">
 Delete message
</security:authorize>

Instead, you want to show or hide those options based on the ACLs you created in rec-
ipe 7.4. The basic approach is to use the <security:accesscontrollist> JSP tag to
decide whether to hide or show the edit link. The tag references the ACLs you created
in the previous recipe.

 Now that we’ve discussed the structure of the Spring Security ACL module, you’re
in a good place to understand the JSP that contains the ACL-based JSP tags. Let’s look
at that so you can keep the goal in mind.

THE MESSAGE JSP

The following listing shows the relevant part of the JSP that displays individual forum posts.
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 7 Authorizing user requests
<%@ taglib prefix="security"
 uri="http://www.springframework.org/security/tags" %>

... display message ...

<security:accesscontrollist hasPermission="2,8,16"
 domainObject="${message}">

 <security:accesscontrollist hasPermission="2"
 domainObject="${message}">
 Edit message
 </security:accesscontrollist>
 <security:accesscontrollist hasPermission="16"
 domainObject="${message}">
 Block message
 Unblock message
 </security:accesscontrollist>
 <security:accesscontrollist hasPermission="8"
 domainObject="${message}">
 Delete message
 </security:accesscontrollist>

 ... other stuff ...

</security:accesscontrollist>

The part shown is the list of options at the bottom of the message. Under normal cir-
cumstances, the only thing a user would see is the Reply link. But as you can see, there
are other possibilities.

 First you declare the Spring Security tag library B because you’re going to use the
<security:accesscontrollist> tag. Next you have the tag itself C. It has exactly two
attributes: domainObject and hasPermission. The idea behind the tag is simple. The
domainObject attribute points to a domain object (no surprises there), and hasPer-
mission describes individually sufficient permissions that the current user must have
with respect to the domain object. In other words, you enter the body tag if and only if
the current user has at least one of the listed permissions. Here you’re basically dis-
playing the only if there’s at least one option to show.

 The user role doesn’t directly come into the picture here. Instead, it’s all about
having the right permissions on the specific message referenced by the domainObject
attribute.16 If you have them, that’s it—you’re in. Otherwise, you aren’t.

 At D, E, and F are controls for specific permissions: write (2), admin (16), and
delete (8). Note that in E, even though the JSP generates HTML for both the block
and unblock options, JavaScript ensures that exactly one is visible.

Listing 7.6 message.jsp, showing how you show or suppress privileged features

16 User roles are indirectly involved, though, because they factor into which general permissions are in place,
and those in turn factor into specific permissions. In this specific case, the site admin role has all ACL permis-
sions on the site object, and those propagate down to forums and messages through the ACL inheritance
mechanism.

Spring Security
tag libraryB

Write, delete, and
admin permissionsC

Write permissionD

Admin permissionE

Delete permissionF
www.it-ebooks.info

http://www.it-ebooks.info/

243Summary
TRY IT OUT

Point your browser at http://localhost:8080/sip/home.html, and try it out. Log in to
the application as user julia, and go to the Algebra I forum, which she moderates. Julia
should be able to perform all operations on the messages in that forum. Then go into
the Calculus II forum, which she doesn’t moderate. She can edit messages that she
wrote, but she can’t do anything other than read messages that somebody else wrote.

 Log out, and then log back in as user juan, the site admin. You should be able to
perform all operations on all messages across all forums.

Discussion

As with role-based authorization, ACL-based authorization involves collaboration
between an underlying authorization model and view-related controls based on that
model. In this recipe, you learned how to use the <security:accesscontrollist> JSP
tag to make display decisions based on an underlying ACL apparatus. All the hard
work goes into the ACL model. Once that’s in place, showing or hiding page content
based on ACLs is a piece of cake.

7.6 Summary
With this chapter, we’ve completed our two-chapter tour of security-related problems.
The issues we’ve examined are of a general nature and reappear in application after
application. You’ve also seen that Spring Security provides a nice framework for solv-
ing such problems, providing services around authentication and authorization,
including a rich ACL infrastructure.

 In the next chapter, we switch gears and discuss how to build features for commu-
nicating with customers and end users.

How it works: AccessControlListTag
The <security:accesscontrollist> tag is backed by the AccessControlListTag
class. AccessControlListTag looks for an AclService on the application context,
which it uses to find the ACL attaching to the domain object in question. Then
AccessControlListTag delegates the access decision to Acl.isGranted(...)
in much the same way that AbstractSecurityInterceptor delegates to an
AccessDecisionManager.

The Acl interface specifies the semantics that access is granted if—and only if—the
user has at least one of the required permissions. This is different than how the
AccessDecisionManager makes its decisions. We noted that AccessDecision-
Managers (at least, the ones that ship with Spring Security) use a voting mechanism
(in the form of AccessDecisionVoter) combined with a conflict-resolution mechanism
(in the form of AccessDecisionManager) to yield access decisions. With Acl there
is no such thing. If the user has at least one of the permissions, access is granted.
Otherwise access is denied.
www.it-ebooks.info

http://www.it-ebooks.info/

Communicating
 with users and customers
The success of a website is often closely tied to your communication with users and
customers. You need to understand their needs, desires, and concerns to provide
the level of service required to acquire and retain them. By the same token, you
need a way to communicate news and announcements, new products and services,
marketing and PR information, operational issues, and so forth to people who need
the information. It’s clear that good communication is crucial to the success of
many websites and businesses.

 The ability to communicate depends of course on the existence of an appropri-
ate technical infrastructure. Usually you want to have multiple channels available
because users vary widely in how they prefer to contact you and to be contacted.

This chapter covers
■ Creating customer feedback forms with email

response
■ Scheduling asynchronous background email tasks
■ Enabling secure mailing list subscriptions
■ Publishing RSS news feeds
244

www.it-ebooks.info

http://www.it-ebooks.info/

245Create a web-based Contact Us form
 In this chapter, we’ll look at how to use Spring to support some common commu-
nications requirements, including Contact Us forms, mailing lists, and news feeds.

8.1 Create a web-based Contact Us form
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Web MVC, JSR-303 Bean Validation, Hibernate, database

Background

Most websites let users contact the organization behind the website. Users may need
to ask questions, report issues, or leave general feedback.

 One important avenue through which users will want to contact your organization
is “through the computer.” This can take various forms; it might be email-based,
through a customer support forum, through instant messaging, and so on.

 Although it’s easy to put an email link on a web page, often this isn’t the ideal way
to collect user communications. Sometimes you need extra structure around the com-
munication, such as asking whether it’s a tech-support issue or a suggestion. This can
be useful for routing the request and for analytic purposes. Sometimes users don’t
want to use their work email account to correspond with your business. Finally, if you
post an email address, you have to worry about spammers having it.

 In this recipe, we’ll look at a common alternative to the mailto link: the web-based
form. Web forms solve all the issues just mentioned. You can collect whatever informa-
tion you like, users can provide whatever return email address they like, and you don’t
have to post an email address that spammers will spam.1

 You’ll need to update the Jetty configuration in this recipe for Maven, including
specifying the username and password for the MySQL database (sip/sip).2

Problem

Create a web-based form so users can send you comments, questions, issues, and so
forth.

Solution

You’ll implement the form in figure 8.1 using Spring Web MVC for the controller, a
POJO service bean, and a POJO data access object backed by Hibernate. For now, you’ll
save the user’s message in the database. In the next recipe, you’ll see how to automati-
cally generate emails for the user and the site administrator.

1 Note that spammers will probably still spam your contact form—it’s just that they won’t have an actual email
address to spam. You can reduce the amount of email spam by using a CAPTCHA. See Willie Wheeler, “How
to reCAPTCHA your Java application,” March 13, 2008,” http:// mng.bz/SiZ9, to learn how to add reCAPT-
CHA to your contact form.

2 See Willie Wheeler, “Code & Setup,” http://springinpractice.com/code-and-setup.
www.it-ebooks.info

http:// mng.bz/SiZ9
http://springinpractice.com/code-and-setup
http://www.it-ebooks.info/

246 CHAPTER 8 Communicating with users and customers
The bean-dependency graph in figure 8.2
shows the main part of what you’re doing in
this recipe. It’s only a controller, a service
bean, and a DAO.

 Let’s begin with the web tier, where
you’ll build a controller and a JSP.

SPRING WEB MVC CONTROLLER AND FORM JSP

The following listing shows ContactCon-
troller, which is responsible for serving the
form and processing the user’s submission.

package com.springinpractice.ch08.web;

import java.util.Date;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.validation.Valid;
import org.springframework.beans.propertyeditors.StringTrimmerEditor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.InitBinder;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import com.springinpractice.ch08.model.UserMessage;
import com.springinpractice.ch08.service.ContactService;

Listing 8.1 ContactController.java, a Spring web MVC controller

Figure 8.1 This is the simple contact form that you’re creating.

Figure 8.2 Key contact service dependencies:
a standard controller/service/DAO stack
www.it-ebooks.info

http://www.it-ebooks.info/

247Create a web-based Contact Us form

ge
@Controller
@RequestMapping("/contact")
public class ContactController {
 @Inject private ContactService contactService;

 @InitBinder
 public void initBinder(WebDataBinder binder) {
 binder.setAllowedFields(new String[] {
 "name", "email", "text", "referer"
 });
 binder.registerCustomEditor(
 String.class, new StringTrimmerEditor(true));
 }

 @RequestMapping(value = "/new", method = RequestMethod.GET)
 public String getContactForm(HttpServletRequest req, Model model) {
 UserMessage userMsg = new UserMessage();
 userMsg.setReferer(req.getHeader("Referer"));
 model.addAttribute(userMsg);
 return getFullViewName("contactForm");
 }

 @RequestMapping(value = "", method = RequestMethod.POST)
 public String postContactForm(
 HttpServletRequest req,
 @ModelAttribute @Valid UserMessage userMessage,
 BindingResult result) {

 if (result.hasErrors()) {
 result.reject("error.global");
 return getFullViewName("contactForm");
 }

 userMessage.setIpAddress(req.getRemoteAddr());
 userMessage.setAcceptLanguage(req.getHeader("Accept-Language"));
 userMessage.setUserAgent(req.getHeader("User-Agent"));
 userMessage.setDateCreated(new Date());
 contactService.saveUserMessage(userMessage);
 return "redirect:/contact/thanks.html";
 }

 @RequestMapping(value = "/thanks", method = RequestMethod.GET)
 public String getThanksPage() {
 return getFullViewName("thanks");
 }

 private String getFullViewName(String viewName) {
 return "contact/" + viewName;
 }
}

You implement ContactController as an annotated POJO controller. At B you
define the form whitelist, which you definitely want in this case because the User-
Message bean includes properties that aren’t part of the form. Spring binds only
whitelisted properties and silently ignores others. (See recipe 4.1 for a discussion
of initBinder().)

Defines whitelist
for security

B

Serves up
empty form

C

Accepts form
submissions

D

Validates
submissionE

Sets messa
metadata

F

Redirects
after post

G

Shows
a JSPH
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 8 Communicating with users and customers
 In the form-serving method C you grab the referer (yes, that’s the correct spelling—
it’s an HTTP header that gives the referring page, if any) of the request and insert it into
the form bean. In the JSP (see listing 8.2), you’ll expose the referer as a hidden field. The
reason for storing the referer is that it’s often useful to know which page the user was
on just prior to asking a question or reporting a problem. You only get one chance to
capture the referer, and this is it, so you grab it and store it. After that, you store the User-
Message in the model. Because you didn’t explicitly specify an attribute name, Spring
applies a convention that stores the UserMessage bean under the name userMessage.
But there is also an addAttribute(String name, Object value) method if you want to
specify a different name.

 In the form-processing method D you attach the @Valid annotation to the User-
Message E to tell Spring to validate the form data on the way in. If there are any
errors, you call reject(String) to signal a global error (something like “Please cor-
rect the errors”) and return the logical view name contact/contactForm, which is
mapped to the form’s JSP. Otherwise, you set a bunch of other properties on the form
bean F. Like the referer, these provide useful context when answering questions and
troubleshooting. If somebody says “The site doesn’t work,” you can see it’s because
they’re using an unsupported browser, for instance. You handle these in the form-pro-
cessing method instead of in the form-serving method because you can—they don’t
change from request to request (or if they do, it doesn’t matter), so you can avoid hav-
ing to create hidden form fields by placing them in the form-processing method.

 After processing the post, you redirect to a “thank you” page G. This redirect-
after-post pattern allows you to minimize duplicate form submissions. You serve the
“thank you” page by returning the appropriate logical view name H.

 The “thanks” JSP isn’t especially interesting (it just says “thanks”), so we won’t look
at it here, but we do want to check out the form which is shown in the next listing.
We’ve suppressed most of the CSS, but it’s in the code download if you’re interested.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<c:url var="contactUrl" value="/contact.html" />

...

<form:form cssClass="main" action="${contactUrl}"
 modelAttribute="userMessage">

 <form:errors path="*">
 <div class="warning alert">
 <spring:message code="error.global" />
 </div>

Listing 8.2 contactForm.jsp, a JSP to present the contact form

Creates
HTML form

B

Shows global
error, if anyC
www.it-ebooks.info

http://www.it-ebooks.info/

249Create a web-based Contact Us form
 </form:errors>

 <form:hidden path="referer"/>

 <div>Your name:</div>
 <div><form:input path="name" cssErrorClass=" error" /></div>
 <form:errors path="name">
 <div><form:errors path="name" htmlEscape="false" /></div>
 </form:errors>

 ... additional form fields for e-mail address and message text ...

 <div><input type="submit" value="Submit"></input></div>
</form:form>

...

Here you’re using the Spring form tag library to generate the HTML form and to bind
it to the userMessage form bean. First you declare a form with the model attribute set
to userMessage B. This specifies the form bean, and the name is the one that Spring
assigned by convention as discussed.

 The next bit of code displays your global error, if any C. You use nested
form:errors tags as described in chapter 3.

 Next is the referer hidden field D. If you do a View Source in the browser, you
should be able to see the field set to whatever referer brought you to the form page (it
will be empty if you accessed the form directly).

 At E you bind a text field to the form bean’s name property, and at F you use
nested form:errors tags to display any property-specific error messages.

 That takes care of the web tier. Let’s move on to the business tier.

A SIMPLE SERVICE BEAN

Take a peek at the magic behind the scenes. The following listing shows the service
bean. (We’ve suppressed the interface, but it’s exactly what you’d expect.)

package com.springinpractice.ch08.service.impl;

import javax.inject.Inject;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch08.dao.UserMessageDao;
import com.springinpractice.ch08.model.UserMessage;
import com.springinpractice.ch08.service.ContactService;

@Service
@Transactional(
 propagation = Propagation.REQUIRED,
 isolation = Isolation.DEFAULT,
 readOnly = true)
public class ContactServiceImpl implements ContactService {
 @Inject private UserMessageDao userMsgDao;

Listing 8.3 ContactServiceImpl.java, the service bean

Hidden
referer field

D
Binds text field

to property
E

Shows property-specific
 error, if any F
www.it-ebooks.info

http://freemarker.org/
http://www.it-ebooks.info/

250 CHAPTER 8 Communicating with users and customers
 @Transactional(readOnly = false)
 public void saveUserMessage(UserMessage userMsg) {
 userMsgDao.create(userMsg);
 }
}

OK, there wasn’t anything magical. In recipe 8.2, the service bean will become more
interesting, but for now it’s just a pass-through to the DAO.

 Let’s look at the UserMessage domain object and its persistence mapping.

USERMESSAGE AND PERSISTENCE

Like the service bean, the combined form bean/domain object is nondescript. Here
it is.

package com.springinpractice.ch08.model;

import java.util.Date;
import javax.persistence.*;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.apache.commons.lang.builder.ToStringBuilder;
import org.hibernate.validator.constraints.Email;
import org.hibernate.validator.constraints.Length;

@Entity
@Table(name = "user_message")
public final class UserMessage {
 private Long id;

 @NotNull
 @Length(min = 1, max = 80)
 private String name;

 @NotNull
 @Size(min = 1, max = 80)
 @Email
 private String email;

 @NotNull
 @Size(min = 1, max = 4000)
 private String text;

 private String ipAddr, acceptLanguage, referer, userAgent;
 private Date dateCreated;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")
 public Long getId() { return id; }

 @SuppressWarnings("unused")
 private void setId(Long id) { this.id = id; }

 @Column(name = "name")
 public String getName() { return name; }

Listing 8.4 UserMessage.java, a domain model for (surprise!) user messages
www.it-ebooks.info

http://www.it-ebooks.info/

251Create a web-based Contact Us form
 public void setName(String name) { this.name = name; }

 other getters and setters ...
}

UserMessage is a domain object, but you’re using it as a form bean as well to avoid
multiplying classes beyond necessity. (See chapter 3 for a discussion.) You’re using JPA
annotations for persistence and JSR-303 (including the Hibernate Validator imple-
mentation) for validation.

 The UserMessageDao implementation, HbnUserMessageDao, extends AbstractHi-
bernateDao<UserMessage> without adding anything extra. Therefore we won’t show
it here, but you can get it, as well as the user_message DDL, in the code download at
the book’s website.

 You need the backing database schema too. As you might guess, it’s very simple.

DATABASE SCHEMA

Here’s the single MySQL table you need to support user messages:

create table user_message (
 id int unsigned not null auto_increment primary key,
 name varchar(80) not null,
 email varchar(80) not null,
 message_text text not null,
 ip_addr varchar(40) not null,
 accept_language varchar(255) not null,
 referer varchar(255) default null,
 user_agent varchar(255) not null,
 date_created timestamp default 0,
 date_modified timestamp default current_timestamp
 on update current_timestamp
) engine = InnoDB;

The only piece remaining is the application configuration. Because all you’re doing is
connecting a plain controller to a plain service bean and connecting that to a plain
DAO, there’s nothing to discuss. See the code download for the web.xml, beans-
web.xml and beans-service.xml configurations.

 With that, you’re ready. Open your browser and try it out. You should be able to fill
out the contact form, and the results should end up in the table you created.

Discussion

Creating a simple web-based Contact Us form is straightforward and isn’t unlike other
forms you’ve already seen. This recipe does show some useful techniques in action,
such as using a domain object as a form bean (using @InitBinder to keep the domain
data secure), prepopulating a form bean with metadata (in this case, referer data),
and postpopulating the form bean with metadata before storing it in the database.

 As mentioned previously, contact forms are useful for supporting multiple commu-
nications processes, including support and collecting suggestions and feedback.
Although we didn’t show it here, if users are contacting you in sufficient volume, you may
want to add a type property to UserMessage and use it to route messages accordingly.
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 8 Communicating with users and customers
 In the following recipe, you’ll augment the contact form by creating emails from
email templates and autogenerating email responses and notifications.

8.2 Autogenerate an email response and email notification
PREREQUISITES

Recipe 8.1 Creating a web-based Contact Us form

KEY TECHNOLOGIES

JavaMail, Velocity

Background

In recipe 8.1, you saw how to create a web-based contact form, which serves as an alter-
native to placing mailto links in a website. Despite the fact that sometimes email isn’t
the best communications medium, it’s obvious that other times email is an entirely
appropriate way to communicate with your users and customers.

 In this recipe, you’ll build on recipe 8.1 by adding autogenerated email messages,
both to the user who completed the contact form and to an administrative mailbox.
You’ll generate the emails from Velocity templates, then you’ll send them using JavaMail.

 It’s important to update the Maven configuration (sip08) for this second recipe
because it contains additional Jetty configuration for JavaMail using a Gmail mail
server, which wasn’t included in the first recipe. Also, a username and password will
need to be specified for the Gmail account to be used.3

Problem

When a user completes a web-based contact form, send two template-based emails: a
confirmation to the user who completed the form and a notification to an administra-
tive mailbox indicating that a user has submitted a contact form.

Solution

You’ll use Velocity to define a couple of email templates and stamp out individual
email messages. First let’s create the templates. You’ll create only one—the confirma-
tion message template—here because the other template is entirely analogous. The
next listing shows how to create a confirmation message template using the Velocity
Template Language (VTL).4

[This e-mail was automatically generated. Please do not reply.]

Thank you for contacting Example.com. This is an auto-generated response to let
you know that we received your message. We typically respond within 24
hours.

3 See Willie Wheeler, “Configuring Jetty to use Gmail as an SMTP provider,” April 29, 2012, http://mng.bz/
EALs.

Listing 8.5 src/main/resources/velocity/contactConfirm.vm

4 For more information about Velocity, see http://velocity.apache.org/engine/devel/user-guide.html.
www.it-ebooks.info

http://mng.bz/EALs
http://mng.bz/EALs
http://velocity.apache.org/engine/devel/user-guide.html
http://www.it-ebooks.info/

253Autogenerate an email response and email notification
Thanks,
Example.com

Your message:

Name: ${userMessage.name}
E-mail: ${userMessage.email}
Date: ${userMessage.dateCreated}

${userMessage.text}

As you would expect, most of this is static content, with some placeholders for
dynamic content B. We won’t get deep into VTL syntax here, but you can see that you
can access bean properties using dot notation, just as with JSP EL. For more informa-
tion about VTL, see the Velocity User Guide.

 You have your template (or two templates if you’ve downloaded the code), so let’s
update the ContactServiceImpl bean to use it to create emails.

CONTACTSERVICEIMPL REVISITED

In recipe 8.1, ContactServiceImpl was boring, but we indicated that you’d be build-
ing it out. Figure 8.3 shows what you’re aiming for.

The following listing is an implementation of the design in figure 8.3.

package com.springinpractice.ch08.service.impl;

import static org.springframework.util.Assert.notNull;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;
import javax.inject.Inject;
import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;
import org.apache.velocity.app.VelocityEngine;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.ui.velocity.VelocityEngineUtils;
import com.springinpractice.ch08.dao.UserMessageDao;
import com.springinpractice.ch08.model.UserMessage;
import com.springinpractice.ch08.service.ContactService;

Listing 8.6 New and improved ContactServiceImpl.java

Dynamic content
via VTL reference

B

Figure 8.3 Equipping the ContactService to send email
www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 8 Communicating with users and customers
@Service
@Transactional(
 propagation = Propagation.REQUIRED,
 isolation = Isolation.DEFAULT,
 readOnly = true)
public class ContactServiceImpl implements ContactService {
 private static final String CONFIRMATION_TEMPLATE_PATH =
 "contactConfirm.vm";
 private static final String USER_MSG_TEMPLATE_PATH =
 "contactUserMessage.vm";

 @Inject private UserMessageDao userMsgDao;
 @Inject private JavaMailSender mailSender;
 @Inject private VelocityEngine velocityEngine;

 @Value("#{contactServiceProps.sendConfirmation}")
 private boolean sendConfirmation;

 @Value("#{contactServiceProps.notifyAdmin}")
 private boolean notifyAdmin;

 @Value("#{contactServiceProps.noReplyEmailAddress}")
 private String noReplyEmailAddr;

 @Value("#{contactServiceProps.adminEmailAddress}")
 private String adminEmailAddr;

 @Transactional(readOnly = false)
 public void saveUserMessage(UserMessage userMsg) {
 notNull(userMsg, "userMsg can't be null");
 userMsgDao.create(userMsg);
 if (sendConfirmation) {
 MimeMessage mimeMsg = createEmail(
 userMsg, CONFIRMATION_TEMPLATE_PATH,
 "Confirmation message", userMsg.getEmail(),
 noReplyEmailAddr, null);
 sendEmail(mimeMsg);
 }
 if (notifyAdmin) {
 MimeMessage mimeMsg = createEmail(
 userMsg, USER_MSG_TEMPLATE_PATH,
 "User message", adminEmailAddr,
 userMsg.getEmail(), userMsg.getName());
 sendEmail(mimeMsg);
 }
 }

 private MimeMessage createEmail(UserMessage userMsg,
 String templatePath, String subject, String toEmail,
 String fromEmail, String fromName) {

 MimeMessage mimeMsg = mailSender.createMimeMessage();
 Map<String, Object> model = new HashMap<String, Object>();
 model.put("userMessage", userMsg);
 String text = VelocityEngineUtils.mergeTemplateIntoString(
 velocityEngine, templatePath, model);
 text = text.replaceAll("\n", "
");

 try {

JavaMailSender
dependency

B

VelocityEngine
dependencyC

Service
configurationD

Still saves
message

E

Conditionally
sends two emailsF

Method to
create email

G

Creates
MimeMessage

HModel to
instantiate

template

I

Instantiates
template JFormat for HTML 1)
www.it-ebooks.info

http://www.it-ebooks.info/

255Autogenerate an email response and email notification
 MimeMessageHelper helper = new MimeMessageHelper(mimeMsg);
 helper.setSubject(subject);
 helper.setTo(toEmail);

 if (fromName == null) {
 helper.setFrom(fromEmail);
 } else {
 try {
 helper.setFrom(fromEmail, fromName);
 } catch (UnsupportedEncodingException e) {
 helper.setFrom(fromEmail);
 }
 }

 helper.setSentDate(userMsg.getDateCreated());
 helper.setText(text, true);
 } catch (MessagingException e) {
 throw new RuntimeException(e);
 }

 return mimeMsg;
 }

 private void sendEmail(MimeMessage mimeMsg) {
 mailSender.send(mimeMsg);
 }
}

There’s a lot happening here, so let’s take a look.

DEPENDENCIES

At B you declare a JavaMailSender dependency. You’ll use this to create and send
email. At C you declare a dependency on VelocityEngine, which you’ll use to stamp
out emails from a template. Next you define several configuration options D. Two of
them are flags that indicate who (if anybody) should get an email when a user submits
a contact form. You can choose whether or not to send the user a confirmation, and
you can choose whether or not to send the site administrator an email notification. If
you send these emails, you’ll need to have a couple of email addresses handy: a nore-
ply address and the administrator’s address.

CREATING AND SENDING EMAIL

Now you get to the stage of saving the user message. You still have the call to UserMes-
sageDao.save() that you had in recipe 8.1 E. But now you have a couple of extra
things. If the sendConfirmation flag is true F, then you use the createEmail()
method to create a MimeMessage (which supports HTML) that you then send via the
JavaMailSender.send() method. You pass in all the parameters you need to create
the email, including the name of the template you want to use. The process is similar
for the notifyAdmin flag and notification emails to the admin.

 Let’s look at createEmail() G. It’s designed to be fairly general so it can handle
both the confirmation and notification requirements. It uses the JavaMailSender to
create the MimeMessage H. You’ll use Velocity to generate the email text, so you start
by creating a simple model to resolve references in the email templates I. Then you

Sets email subject
and so on1!

Sets From name,
if possible1@

Sets MIME type
to “text/html”1#
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 8 Communicating with users and customers
run everything through the engine (using Spring’s VelocityEngineUtils) to gener-
ate the result of applying the template to the model J. Because you’ll send this as an
HTML email, you replace newline characters with the
 tag 1).

 That takes care of the text, but you have to set the other fields on the email as well.
You do this using Spring’s MimeMessageHelper class 1!. Most of this is straightforward;
the only exception is setting the sender’s name, which can possibly generate an
UnsupportedEncodingException. If the name is provided, you try to set it, but if you
can’t, you just set the sender’s email address 1@. Finally, by passing in true as the sec-
ond argument to setText(), you set the message MIME type to text/html 1#.

 That’s the guts of what you’re doing in this recipe, but let’s see what beans-
service.xml looks like.

APPLICATION CONFIGURATION

You need to add definitions for the JavaMailSender and VelocityEngine dependen-
cies to beans-service.xml. Configuration-wise, the target is the one in figure 8.4.

 The next listing shows what you need to add to beans-service.xml to achieve this.

Figure 8.4 Key bean dependencies for recipe 8.2.
www.it-ebooks.info

http://www.it-ebooks.info/

257Autogenerate an email response and email notification

plate
<beans ...
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 ...
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd">

 ...

 <jee:jndi-lookup id="mailSession"
 jndi-name="mail/Session" resource-ref="true" />
 <bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:session-ref="mailSession" />
 <bean id="velocityEngine"
 class="org.springframework.ui.velocity.VelocityEngineFactoryBean"
 p:resourceLoaderPath="classpath:/velocity/" />
 <util:properties id="contactServiceProps"
 location="classpath:/spring/contactService.properties" />
</beans>

For the JNDI lookup B, be sure to add the jee namespace. You’ll also need to con-
figure a JavaMail Session in your server. The code download includes a sample Jetty
configuration at sample_conf/jetty-env.xml.5 The mailSender bean C references
that session.

 The VelocityEngineFactoryBean definition D is a little interesting. If you’re pay-
ing attention, you’ll notice that the velocityEngine dependency in ContactServi-
ceImpl is a VelocityEngine, but a quick look at the Javadocs for VelocityEngine-
FactoryBean reveal that it isn’t a VelocityEngine, either directly or indirectly.
What gives?

 Here’s what’s going on. VelocityEngineFactoryBean implements Spring’s Facto-
ryBean interface. Because of this, it isn’t itself injected into other beans (that’s why it
doesn’t show up in figure 8.4); instead, the result of calling its getObject() method
(which is declared by the FactoryBean interface) is injected into other beans.

 Also, because you want to set a bunch of properties on the ContactServiceImpl
bean, you add the util:properties definition E and the corresponding util
namespace. To supply values, you create a /spring/contactService.properties file:

Listing 8.7 Additions to beans-service.xml

5 See also Willie Wheeler, “Configuring Jetty to use Gmail as an SMTP provider” April 29, 2012, http://mng.bz/
mvG9. If you don’t want to use JNDI to look up a mail session, you can configure the JavaMailSenderImpl
directly. See Wheeler, “Send e-mail using Spring and JavaMail,” May 15, 2008, http://mng.bz/5e84, for more
information. The post also shows how to do JavaMail+JNDI using Tomcat 6. Finally, to troubleshoot PKIX cer-
tificate issues, see Wheeler, “Fixing PKIX path building issues when using JavaMail and SMTP,” April 29, 2012,
http://mng.bz/W4w8.

Mail session
lookup

B

Spring mail
sender

C

Email tem
engine

D

Contact service
configuration E
www.it-ebooks.info

http://mng.bz/W4w8
http://mng.bz/mvG9
http://mng.bz/mvG9
http://mng.bz/5e84
http://www.it-ebooks.info/

258 CHAPTER 8 Communicating with users and customers
sendConfirmation=true
notifyAdmin=true
noReplyEmailAddress=noreply@example.com
adminEmailAddress=admin@example.com

That’s it for this one. Configure the application context so the two ContactService
flags are true, and set the admin email address to one of your own. Try it out, and see
if it works. The service should generate two emails: one sent to whatever email address
you provide in the form (again, use one of your own) and one to the admin email
address.

Discussion

In this recipe you learned how to use JavaMail to send email and also how to use the
Velocity template engine to create them. Clearly it’s useful in a wide range of situations
to be able to send email; you’ll see more in this chapter (for example, in recipe 8.4), and
even previous chapters offered opportunities to send email (for example, in chapter 4
where you did user registrations).

NOTE If you prefer the FreeMarker template engine (http://freemarker.org/)
over Velocity, Spring provides support classes for integrating with FreeMarker.6

In the next recipe, we’ll look at a simple but interesting enhancement to the email
functionality you’ve just added.

8.3 Speeding up autogenerated emails
PREREQUISITES

Recipe 8.1 Creating a web-based Contact Us form
Recipe 8.2 Autogenerating an email response and email notification

KEY TECHNOLOGIES

Spring Task Execution API, JavaMail, threads

Background

When you complete the contact form from recipe 8.2, you may notice that there’s a
fairly significant delay between the time you submit the form and the time the “thank
you” page appears. The reason is that it takes a while to send the confirmation and
notification emails, which you’re sending in a synchronous fashion on the calling
thread. But there’s no good reason to make the user wait, especially because email is
an asynchronous form of communication. In this recipe, you’ll see how to use the
Spring Task Execution API to fork the calling thread when sending the emails.

Problem

Minimize the noticeable delay that the user experiences after submitting the contact
form.

6 Another interesting option is the Thymeleaf project at www.thymeleaf.org/. See for example José Miguel
Samper, “Rich HTML email in Spring with Thymeleaf,” www.thymeleaf.org/springmail.html.
www.it-ebooks.info

http://freemarker.org/
www.thymeleaf.org/
www.thymeleaf.org/springmail.html
http://www.it-ebooks.info/

259Speeding up autogenerated emails
Solution

Keep in mind that when the user submits the form, you do two things. First, you save
the contact form data in the database. Second, you fire off a couple of emails. You
want to leave the database call on the calling thread because you need to be able to
alert the user when problems occur. (For now a stack trace will suffice, but obviously
you’d have a proper error page in a production application.) You want to move the
emails to a separate thread.

 Spring 3 provides a Task Execution API that allows you to wrap beans with a proxy
that calls @Async-annotated methods asynchronously. The easiest approach would be
to annotate ContactServiceImpl.saveUserMessage() with @Async; but doing so
would cause the database save to happen on the forked thread, which would mean the
user would have no way to know if the save failed. So a little refactoring is in order: the
ContactServiceImpl will call a dedicated ContactMailSender component that does
the mail sending, and you’ll wrap the ContactMailSender with the proxy. That way,
your service bean can do the database call on the calling thread and then fork the
email send. Figure 8.5 shows what this looks like.

REFACTORING CONTACTSERVICEIMPL

You’ll refactor ContactServiceImpl by splitting it into two pieces: a thin piece that
saves to the database (by calling HbnUserDao) and a slightly larger piece that sends the
email. The following listing shows the new ContactServiceImpl.

package com.springinpractice.ch08.service.impl;

import javax.inject.Inject;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

Listing 8.8 The newly refactored ContactServiceImpl

Figure 8.5 Refactored design to allow you to send email asynchronously: (1) save the form data,
(2) invoke the mail-sender proxy, (3) call the mail sender asynchronously, and (4) send the email.
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 8 Communicating with users and customers
import com.springinpractice.ch08.dao.UserMessageDao;
import com.springinpractice.ch08.model.UserMessage;
import com.springinpractice.ch08.service.ContactService;

@Service
@Transactional(
 propagation = Propagation.REQUIRED,
 isolation = Isolation.DEFAULT,
 readOnly = true)
public class ContactServiceImpl implements ContactService {
 @Inject private UserMessageDao userMsgDao;
 @Inject private ContactMailSender contactMailSender;

 @Transactional(readOnly = false)
 public void saveUserMessage(UserMessage userMsg) {
 userMsgDao.create(userMsg);
 contactMailSender.sendEmail(userMsg);
 }
}

Effectively, you’ve moved the former sendEmail() method to a separate class for
proxying. At B you inject the ContactService, which for you is a proxy. At C you call
the DAO on the calling thread, which means that if the call fails, the user will find out
about it, as desired. At D you invoke sendEmail() on the proxy, which performs its
job asynchronously as you’ll see momentarily.

The next listing shows the ContactMailSender, which is the bean you want to proxy
with forking behavior.

package com.springinpractice.ch08.service.impl;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;
import javax.inject.Inject;
import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;
import org.apache.velocity.app.VelocityEngine;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.scheduling.annotation.Async;

Listing 8.9 ContactMailSender, which you invoke asynchronously using @Async

Injection point
for proxy

B

Saves message on
current thread

C

Sends email
using proxyD

Why can’t you annotate sendEmail() with @Async?
An alternative approach that turns out not to work would be to annotate the former
ContactServiceImpl.sendEmail() method with @Async. This doesn’t work
because once the thread is inside saveUserMessage(), calls to sendEmail() go
directly to the bean rather than jumping outside the proxy and coming back in. That’s
why you’re creating a separate ContactMailSender class.
www.it-ebooks.info

http://www.it-ebooks.info/

261Speeding up autogenerated emails

C

import org.springframework.stereotype.Component;
import org.springframework.ui.velocity.VelocityEngineUtils;
import com.springinpractice.ch08.model.UserMessage;

@Component
public class ContactMailSender {
 private static final String CONFIRMATION_TEMPLATE_PATH =
 "contactConfirm.vm";
 private static final String USER_MSG_TEMPLATE_PATH =
 "contactUserMessage.vm";

 @Inject private JavaMailSender mailSender;
 @Inject private VelocityEngine velocityEngine;

 @Value("#{contactServiceProps.sendConfirmation}")
 private boolean sendConfirmation;

 @Value("#{contactServiceProps.notifyAdmin}")
 private boolean notifyAdmin;

 @Value("#{contactServiceProps.noReplyEmailAddress}")
 private String noReplyEmailAddr;

 @Value("#{contactServiceProps.adminEmailAddress}")
 private String adminEmailAddr;

 @Async
 public void sendEmail(UserMessage userMsg) { ... same as before ... }

 ... createEmail() and sendEmail() methods same as before ...
}

As you can see, you haven’t changed much as compared to when this code was in
ContactServiceImpl. The only changes are a new @Component annotation B to sup-
port discovery via component scanning and a new @Async annotation C on the send-
Email() method, which is now public. This latter provides the desired behavior: it
indicates that you want calls to sendEmail() to be asynchronous.

 You’re almost done, but you need to update beans-service.xml.

CONFIGURING THE APP FOR ASYNCHRONOUS TASKS

Just adding the @Async annotation isn’t enough. You need to add some configuration
to beans-service.xml. Fortunately the new configuration is easy, as we show next.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...
 xmlns:task="http://www.springframework.org/schema/task"
 xsi:schemaLocation="http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task-3.0.xsd
 ...">

 <task:annotation-driven />
 <task:executor id="userMessageExecutor"
 pool-size="5-10" queue-capacity="100" keep-alive="300" />
</beans>

Listing 8.10 Additions to beans-services.xml to support @Async

@Component
for scanning

B

@Async to
indicate fork

C

Task namespace B

Activates
@Async

D

Task executor for
asynchronous calls E

Task namespace
schema location
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 8 Communicating with users and customers
The configuration takes advantage of Spring 3’s task namespace. You declare the
namespace B and its schema location C.

 The <task:annotation-driven/> element D tells Spring to activate the @Async
annotation, which basically means to wrap any bean that uses the annotation with a
proxy that calls down to the annotated method on a separate thread. The definition at
E creates a Spring ThreadPoolTaskExecutor, which is a convenient front end for a
Java ThreadPoolExecutor that provides the threads. Table 8.1 presents the configura-
tion options; see the Javadoc for ThreadPoolExecutor for details.

Now you should be able to see the effect of the work you’ve done. Start the server, sub-
mit the contact form, and pay attention to how quickly you receive the response. Even
after the response is complete, you should see in the server console output that the
server is sending mail on a separate thread.

Discussion

The original version of this recipe showed how to create an aspect to handle thread
forking in a generic fashion. With Spring 3, you have a native Spring API for perform-
ing this—one that uses the nice namespace configuration facility and avoids some of
the complexities associated with AOP.

 Note that you may need to adjust your server’s security configuration in order to
create threads for the thread pool. This is because thread creation is an expensive
operation, and some server configurations disallow it.

 That completes our treatment of contact forms. In the next recipe, we’ll look at
mailing lists and how to implement the subscription process, which turns out to be
interesting due to some of the security-related elements we need to consider.

8.4 Allowing users to subscribe to a mailing list
PREREQUISITES

None

Table 8.1 <task:executor> configuration

Attribute Description

id Bean ID. Serves as a prefix for thread names.

pool-size Number of threads in the pool. Either a single integer or a range such as “5-10.”
The lower end of the range is the core pool size: the size the pool tends toward
as its steady state. The upper end is the maximum pool size.

queue-capacity Task queue capacity.

keep-alive Keep-alive time in seconds for threads in excess of the core pool size.

rejection-policy Policy when threads are rejected (queue exhausted and pool size at maxi-
mum). Options are ABORT (default), CALLER_RUNS, DISCARD, and
DISCARD_OLDEST.
www.it-ebooks.info

http://www.it-ebooks.info/

263Allowing users to subscribe to a mailing list
KEY TECHNOLOGIES

JavaMail, Hibernate, database, cryptography

Background

For marketing purposes, it’s often beneficial to provide a way for users to sign up for
an email mailing list. Because mailing lists are an opt-in communication, and because
users generally understand that such lists serve marketing purposes, this can be an
easy way to identify high-value customers and keep them up-to-date on company news,
your products and services, helpful articles, and so forth. Although many users prefer
to subscribe to a news feed (we’ll discuss that in recipe 8.5), others are happy to pro-
vide their email address to a trusted site and receive email updates.

 Another benefit of providing a mailing list is that it gives you a nice goal to track if
you’re using analytics tools such as Google Analytics. You can treat a confirmed sub-
scription as a goal conversion, and that’s a way to gauge interest over time in your
organization, site, products, articles and blog posts, and so forth. This is similar to
tracking feed subscriptions through a service like FeedBurner.

 In this recipe, you’ll create a mailing list using Spring. This recipe will handle only
the subscription piece, but the sample code treats unsubscriptions as well. Also, we’re
not treating the topic of sending marketing emails to mailing list members. (We do
cover confirmation emails, though, so you should have the tools you need.)

Problem

Create a mailing list for your website. Users also need a way to subscribe to and unsub-
scribe from the list. Subscriptions and unsubscriptions must require email confirma-
tion to prevent attackers from falsely subscribing or unsubscribing people.

Solution

At first it might seem that mailing lists aren’t very interesting from a technical perspec-
tive. But they’re reasonably interesting after all, owing to the requirement that you
avoid false subscriptions (signing up victims to a bunch of mailing lists to spam them)
and unsubscriptions (unsubscribing victims from mailing lists they care about).

 You’ll create a MailingListService to handle subscriptions and unsubscriptions,
although due to space limitations you’ll focus on the subscription case. (The code
download includes code for unsubscription as well.) It’s a controller/service/DAO
stack like the ContactService, but the implementation details are a little different.
The user flow looks roughly like figure 8.6.

Figure 8.6 User flow when subscribing to the mailing list.
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 8 Communicating with users and customers

In the happy path flow, the user first clicks the site’s Mailing List link, which presents a
subscription form. The user completes the form, supplying their name and email
address, and submits it. The response is a page that tells the user to go to their inbox
and click the link in a confirmation email the site just sent. The user does that and
receives a “subscription confirmed” success message. There are some sad path flows as
well, such as when the user takes too long to confirm the subscription. You’ll see those.

 First up is the controller.

THE CONTROLLER

You’ll begin at the top with the controller, which appears in the following listing.

package com.springinpractice.ch08.web;

import java.util.Date;
import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.validation.Valid;
import org.springframework.beans.propertyeditors.StringTrimmerEditor;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.InitBinder;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import com.springinpractice.ch08.model.Subscriber;
import com.springinpractice.ch08.service.ConfirmationExpiredException;
import com.springinpractice.ch08.service.ConfirmationFailedException;
import com.springinpractice.ch08.service.MailingListService;

@Controller
@RequestMapping("/mailinglist")
public class MailingListController {
 private static final String SUBSCRIBER = "subscriber";

 @Inject private MailingListService mailingListService;

 @InitBinder(SUBSCRIBER)
 public void initSubscriberBinder(WebDataBinder binder) {
 binder.registerCustomEditor(
 String.class, new StringTrimmerEditor(true));
 binder.setAllowedFields(
 new String[] { "firstName", "lastName", "email" });
 }

 @RequestMapping(value = "/subscribe", method = RequestMethod.GET)
 public String getSubscribeForm(Model model) {
 model.addAttribute(new Subscriber());
 return getFullViewName("subscribeForm");
 }

Listing 8.11 Handling subscriptions with MailingListController.java

Init
binder

B

Form field
whitelist

C

Handles form
requestsD
www.it-ebooks.info

http://www.it-ebooks.info/

265Allowing users to subscribe to a mailing list
 @RequestMapping(value = "/subscribe", method = RequestMethod.POST)
 public String postSubscribeForm(
 HttpServletRequest request,
 @ModelAttribute(SUBSCRIBER) @Valid Subscriber subscriber,
 BindingResult result) {

 if (result.hasErrors()) {
 result.reject("error.global");
 return getFullViewName("subscribeForm");
 }

 subscriber.setIpAddress(request.getRemoteAddr());
 subscriber.setDateCreated(new Date());
 mailingListService.addSubscriber(subscriber);
 return "redirect:/mailinglist/subscribe-preconfirm.html";
 }

 @RequestMapping(
 value = "/subscribe-preconfirm", method = RequestMethod.GET)
 public String getConfirmSubscriptionPage() {
 return getFullViewName("subscribePreconfirm");
 }

 @RequestMapping(
 value = "/subscribe-confirm", method = RequestMethod.GET)
 public String confirmSubscription(
 @RequestParam("s") Long subscriberId,
 @RequestParam("d") String digest,
 Model model) {

 try {
 mailingListService.confirmSubscriber(subscriberId, digest);
 return getFullViewName("subscribeSuccess");
 } catch (ConfirmationExpiredException e) {
 model.addAttribute("expired", true);
 } catch (ConfirmationFailedException e) {
 model.addAttribute("failed", true);
 }

 model.addAttribute(new Subscriber());
 return getFullViewName("subscribeForm");
 }

 private String getFullViewName(String viewName) {
 return "mailingList/" + viewName;
 }
}

The controller handles three different requests: the initial subscription form, the
form submission, and the confirmation. Let’s see how it works.

■ Initial subscription form—For the subscription form, you have a method to serve
up the initial form D. There’s nothing to do other than put an empty Sub-
scriber form bean on the model and return the logical view name.

■ Form submission—The form-submission process begins with an @InitBinder
method for the subscriber form bean B. You specify an actual value because the
code download supports an unsubscriber bean as well, and specifying a value

Handles form
submissions E

Populates form
before adding

F

Preconfirmation
pageG

Confirms
subscriptionH
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 8 Communicating with users and customers
allows you to associate an @InitBinder method with a given form bean. Inside the
method is a standard form field whitelist C. (See recipe 4.1 for a discussion.)

After that, Spring validates the request and calls the request handler method
E. Assuming validation succeeds, you set a couple of fields on the subscrip-
tion—the IP address and the creation date F—and save the unconfirmed sub-
scription to the database. You’re including the IP address mostly for your own
information, but you’ll use the date to assign an expiration date to your confir-
mation emails, so you need to set it before saving it to the database.

■ After accepting the submission, you redirect to a preconfirmation page G that
offers the user instructions on how to confirm the subscription.

■ Confirmation—At this point the user goes to their inbox, opens the confirma-
tion email, and clicks the confirmation link. This brings them to the confirma-
tion handler H. If the call to confirmSubscriber() succeeds, you return the
success view. If the call fails because the subscription request has expired or for
some other reason, you deliver an appropriate failure page. In the case of a fail-
ure, you set an appropriate model attribute to tell the JSP (and ultimately the
user) what the problem was.

That’s it for the controller. Now you’ll see the subscription form, which serves two sep-
arate roles in your mailing-list module.

THE SUBSCRIPTION FORM

Your subscription form appears, of course, at the beginning of the subscription
process. You also use it during the confirmation process when confirmations fail;
for example, due to expiry. The next listing shows the form and how it supports
both roles.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-strict.dtd">

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<c:url var="subscribeUrl" value="/mailinglist/subscribe.html" />

... html, head, body, etc. ...

<c:if test="${not empty expired}">
 <div>
 Sorry, your previous subscription request has expired. To subscribe
 you will need to complete a new subscription request using the form

 </div>
</c:if>
<c:if test="${not empty failed}">
 <div>

Listing 8.12 Subscription form, subscribeForm.jsp

Expiry testB

Other
failure testC
www.it-ebooks.info

http://www.it-ebooks.info/

267Allowing users to subscribe to a mailing list
 Sorry, we were unable to confirm your subscription. If you copied
 the URL from your confirmation e-mail into the browser, please make
 sure you copied the entire URL. Otherwise, you can complete a new
 subscription request using the form.
 </div>
</c:if>

<p>To subscribe, please provide your name and e-mail address.</p>

<form:form modelAttribute="subscriber" action="${subscribeUrl}">
 <form:errors path="*">
 <div><spring:message code="error.global" /></div>
 </form:errors>

 <div>Your first name:</div>
 <div><form:input path="firstName" cssErrorClass="error" /></div>
 <form:errors path="email">
 <div><form:errors path="firstName" htmlEscape="false" /></div>
 </form:errors>

 ... last name, e-mail address, submit button ...

</form:form>

...

This form is similar to forms you’ve seen in other recipes, so we’ll go over only the two
tests; if you want to see more, you can download the code from the book’s website.
The first test checks for the existence of an attribute called expired B. You saw in list-
ing 8.11 that you set the corresponding model attribute. The second test checks for an
attribute called failed C.

 We’ll talk about the conditions under which a confirmation might expire or fail in
the next subsection, which covers the service bean.

THE SERVICE BEAN

Before we examine the service bean code, let’s talk about a couple of security
requirements:

■ Authentication—You need to prevent people from maliciously subscribing other
people to your mailing list, generating what the victim might consider to be
spam. Essentially this is an authentication requirement: the subscriber must
prove that he’s the one being subscribed.

■ Privacy—In cases where privacy is a concern, whether for regulatory or other
reasons, it must be impossible for attackers to use the subscription process as a
way to query the system for who’s on the mailing list. The UI must respond to all
subscription requests in exactly the same way (by telling the user to look for a
confirmation email). It shouldn’t say “You are already a subscriber”; there
shouldn’t be a difference in how long it takes to respond to new versus existing
subscribers, and so on

We’ll start with the authentication requirement; we’ll worry about privacy later. Your
tack is the standard one: you capture the subscriber’s email address and send them a
confirmation email containing a link that, when clicked, activates the subscription.
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 8 Communicating with users and customers
The challenge is that you need to know that the person clicking the link is the person
who subscribed to the mailing list.

 A naïve approach might be to include in the link the subscriber ID as an HTTP
parameter. But this isn’t a good approach. Clearly it’s too susceptible to guessing,
especially if the subscriber IDs are drawn from a sequence.

 A much better way to do this would be to generate a large random string, save it
with the rest of the subscriber information, and include both the ID and the random
string as HTTP parameters in the email link. This approach makes it much more diffi-
cult for an attacker to guess the confirmation link.

 But it turns out you can avoid the extra database column, which of course is better
still. What you do is inject a secret key into the service bean (the key should be ran-
dom-looking and not prone to dictionary attacks), then concatenate that with the sub-
scriber ID before hashing it. The resulting string is called a digest, and you include the
ID and digest in the email link. For any given ID, attackers can’t compute the digest
because they don’t know the secret key. And from any given digest, attackers can’t
uncover the secret key because hashes are one-way and the key is sufficiently obscure
that it wouldn’t be found in a dictionary attack. Yet by passing the ID and digest to the
server, the server can determine whether the digest is correct because it knows the
secret key that was used in generating the digest. See figure 8.7.

 Because email links aren’t especially secure—once somebody sees it, they can use
it—you should attach an expiration date to the link such that if somebody clicks it
after the expiration, it won’t work. This is easy: all you have to do is timestamp the sub-
scription request and check the timestamp when processing confirmation requests.

 We hope that explanation makes some sense; but if not, that’s OK, because you
have the code. The next listing shows MailingListServiceImpl.java, which contains the
core mailing-list service logic, including the authentication feature described.

Figure 8.7 Using a digest to au-
thenticate subscribers without
having to store subscriber-specific
secrets
www.it-ebooks.info

http://www.it-ebooks.info/

269Allowing users to subscribe to a mailing list
package com.springinpractice.ch08.service.impl;

import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.inject.Inject;
import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;
import org.apache.commons.codec.digest.DigestUtils;
import org.apache.velocity.app.VelocityEngine;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.ui.velocity.VelocityEngineUtils;
import com.springinpractice.ch08.dao.SubscriberDao;
import com.springinpractice.ch08.model.Subscriber;
import com.springinpractice.ch08.service.ConfirmationExpiredException;
import com.springinpractice.ch08.service.ConfirmationFailedException;
import com.springinpractice.ch08.service.MailingListService;

... @Service and @Transactional ...
public class MailingListServiceImpl implements MailingListService {
 private static final String SUBSCRIBE_TEMPLATE_PATH =
 "mailingListSubscribe.vm";
 private static final long ONE_DAY_IN_MS = 24 * 60 * 60 * 1000;

 @Inject private SubscriberDao subscriberDao;
 @Inject private JavaMailSender mailSender;
 @Inject private VelocityEngine velocityEngine;

 @Value("#{mailingListServiceProps.noReplyEmailAddress}")
 private String noReplyEmailAddress;

 @Value("#{mailingListServiceProps.confirmSubscriptionUrl}")
 private String confirmSubscriptionUrl;

 @Value("#{mailingListServiceProps.confirmationKey}")
 private String confirmationKey;

 public Subscriber getSubscriber(Long id) {
 return subscriberDao.load(id);
 }

 @Async
 @Transactional(readOnly = false)
 public void addSubscriber(Subscriber subscriber) {
 subscriberDao.create(subscriber);
 sendConfirmSubscriptionEmail(subscriber);
 }

 private void sendConfirmSubscriptionEmail(Subscriber subscriber) {
 MimeMessage message = mailSender.createMimeMessage();

Listing 8.13 MailingListServiceImpl.java, with secure subscriptions

Adds unconfirmed
subscriber

B

Sends confirmation
email

C

www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 8 Communicating with users and customers
 MimeMessageHelper helper = new MimeMessageHelper(message);

 String digest = generateSubscriptionDigest(subscriber);
 String url = confirmSubscriptionUrl
 + "?s=" + subscriber.getId() + "&d=" + digest;

 Map<String, Object> model = new HashMap<String, Object>();
 model.put("subscriber", subscriber);
 model.put("url", url);

 String text = VelocityEngineUtils.mergeTemplateIntoString(
 velocityEngine, SUBSCRIBE_TEMPLATE_PATH, model);

 try {
 helper.setSubject("Please confirm your subscription");
 helper.setTo(subscriber.getEmail());
 helper.setFrom(noReplyEmailAddress);
 helper.setSentDate(subscriber.getDateCreated());
 helper.setText(text, true);
 } catch (MessagingException e) {
 throw new RuntimeException(e);
 }

 mailSender.send(message);
 }

 @Transactional(readOnly = false)
 public void confirmSubscriber(Long subscriberId, String digest)
 throws ConfirmationFailedException {

 Subscriber subscriber = getSubscriber(subscriberId);
 checkTimestamp(subscriber.getDateCreated().getTime());
 String expectedDigest = generateSubscriptionDigest(subscriber);
 if (!digest.equals(expectedDigest)) {
 throw new ConfirmationFailedException("Bad digest");
 }
 subscriber.setConfirmed(true);
 subscriberDao.update(subscriber);
 }

 private String generateSubscriptionDigest(Subscriber subscriber) {
 return DigestUtils.shaHex(subscriber.getId() + ":"
 + confirmationKey);
 }

 private static void checkTimestamp(long timestamp)
 throws ConfirmationExpiredException {

 long now = System.currentTimeMillis();
 if (now - timestamp > ONE_DAY_IN_MS) {
 throw new ConfirmationExpiredException();
 }
 }
}

The service bean so far includes two high-level functions: the ability to accept a sub-
scription request and the ability to confirm a subscriber. At B you see the first of the
two. Here you take the unconfirmed Subscriber and save it in the database, and then

Generates
digestD

Creates
confirmation URL E

Confirms
subscriber

F

Checks
for expiry

G

Compares
digests H

Digest
detailsI

Expiry
detailsJ
www.it-ebooks.info

http://www.it-ebooks.info/

271Allowing users to subscribe to a mailing list
send a confirmation email. Note that you’re using the @Async annotation you saw in
recipe 8.3. In this case you’re putting the annotation on the addSubscriber()
method, the idea being that this helps you meet the privacy requirement described
earlier in the recipe. (If the subscription already exists, a constraint violation occurs;
but the user never sees it because it’s on another thread.) It would be somewhat
cleaner to emulate the approach from recipe 8.3 where the calling thread does the
database access; in this case, you’d report any exception other than a duplicate sub-
scription exception, which you’d suppress.

 You build the email at C. We covered the mechanics of creating an email in rec-
ipe 8.2, so we won’t rehash that here. But as indicated, you need to create a secure
link that the user can click to confirm their subscription. To do this, you create a
digest D and include that as part of a URL you create E.

 In addition to sending confirmation emails, you process the result when a user
clicks the email link in confirmSubscriber() F. It checks the timestamp on the sub-
scription to make sure it hasn’t expired G and then checks to see whether the submit-
ted digest matches the expected digest H. The expected digest is the result of hashing
the subscriber ID concatenated with a secret key (the key is arbitrary, and you inject it
into the service bean) I, and the expiration period is set to one day J.

 To save space, we won’t look at code listings for Subscriber.java and mailingList-
Subscribe.vm. Neither file is particularly interesting for the purposes of this recipe. It’s
easy enough to infer the fields available on the former by looking at listing 8.13, and
the latter is only a Velocity template that asks the user to click the link within 24 hours.
If you want to see these, download the code from the book’s website.

 Similarly, the database table mirrors the structure of the Subscriber class, so see
the code download for that.

APPLICATION CONTEXT CONFIGURATION

The Spring configuration extends the beans-service.xml configuration used in rec-
ipe 8.3. There’s little to add because you’re using annotations for component scan-
ning and dependency injection. Add the following configuration:

<util:properties id="mailingListServiceProps"
 location="classpath:/spring/mailingListService.properties" />

The corresponding mailingListService.properties file looks like this (but feel free to
use your own property values):

noReplyEmailAddress=noreply@example.com
confirmSubscriptionUrl=http://localhost:8080/sip/mailinglist

➥ /subscribe-confirm.html
confirmUnsubscriptionUrl=http://localhost:8080/sip/mailinglist

➥ /unsubscribe-confirm.html
confirmationKey=l5cl@nbt$1s$h@IBharLR557+B

At this point you should be able to run the app. Sign up for the mailing list, and work
through the flow we described earlier. The end result (once you confirm) should be
that you have a record in the database with the confirmed flag set to true.
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 8 Communicating with users and customers
Discussion

Mailing lists are a little more involved than they might initially seem, owing to the
need to prevent malicious subscriptions and unsubscriptions. In this recipe, we cov-
ered the subscription side. The sample code shows how to do unsubscriptions as well.

NOTE Be aware that users may be reading your confirmation email with a
non-HTML client. They may not be able to click the confirmation link. It
helps to provide a non-hyperlinked version of the confirmation URL that the
user can cut/paste into a browser. Note that because the URL is long, it’s pos-
sible that it may line wrap, and the user may not copy/paste it correctly. You
can handle this by including explicit instructions in the email and by advising
the user about potential causes in the event of a failed confirmation.

8.5 Publishing a news feed
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Web MVC, RSS, ROME

Background

In recipe 8.4, you saw how to create a mailing list for your website. Mailing lists are nice
from the website operator’s perspective, because they involve collecting certain useful
bits of information from your customers, such as their name and email address. If you
have actual user account information, you can even target the user based on demo-
graphics, behavior, stated preferences, and so forth. But many users want to be able to
keep up to date on your site without having to give you any personal information.

 Enter the news feed. Users can subscribe to news feeds (for example, RSS feeds and
Atom feeds) without revealing personal information other than, say, their IP address,
user agent information, and whatever else the browser sends in the request headers.
This is yet another example of a growing trend in web-based business (and indeed
business everywhere): the customer is king.

Problem

Publish a news feed from your website or web application.

Solution

Spring 3.0 introduces a set of View classes for publishing feeds. These have their ori-
gin in the AbstractRssView class from the defunct Spring Modules project (http://
java.net/projects/springmodules/), but now the View classes have made their way
into the framework proper. Like the Spring Modules class, the new View classes are
based on Sun’s open source ROME API (http://rometools.org/).

 Here you’ll publish an RSS feed, which means you’ll be working with Abstract-
RssFeedView. But note that there’s also an AbstractAtomFeedView for (yep) Atom
feeds, and they share a common subclass in AbstractFeedView.
www.it-ebooks.info

http://java.net/projects/springmodules/
http://java.net/projects/springmodules/
http://rometools.org/
http://www.it-ebooks.info/

273Publishing a news feed

w

 The general approach is for the controller to grab the necessary data from the ser-
vice bean, such as a list of news items, drop that on a Model, and return a logical view
name that you map to an AbstractRssFeedView subclass. This allows you to keep the
controller, service bean, and news items ignorant of the fact that you’re going to ren-
der the news items as an RSS feed. Let’s see the whole thing in action.

THE VIEW

We may as well start with the AbstractRssFeedView implementation, because that’s
the core piece.

package com.springinpractice.ch08.web;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.view.feed.AbstractRssFeedView;
import com.springinpractice.ch08.model.NewsItem;
import com.sun.syndication.feed.rss.Channel;
import com.sun.syndication.feed.rss.Description;
import com.sun.syndication.feed.rss.Item;

public class RssNewsFeedView extends AbstractRssFeedView {
 private String feedTitle;
 private String feedDesc;
 private String feedLink;

 ... setters for dependency injection ...

 protected void buildFeedMetadata(
 Map model, Channel feed, HttpServletRequest request) {

 feed.setTitle(feedTitle);
 feed.setDescription(feedDesc);
 feed.setLink(feedLink);
 }

 protected List<Item> buildFeedItems(
 Map model,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {

 List<NewsItem> newsItems =
 (List<NewsItem>) model.get("newsItemList");
 List<Item> feedItems = new ArrayList<Item>();
 if (newsItems != null) {
 for (NewsItem newsItem : newsItems) {
 Item feedItem = new Item();
 feedItem.setTitle(newsItem.getTitle());
 feedItem.setAuthor(newsItem.getAuthor());
 feedItem.setPubDate(newsItem.getDatePublished());
 feedItem.setLink(newsItem.getLink());

Listing 8.14 RSS news feed view: RssNewsFeedView.java

Extends
AbstractRssFeedVie

B

Injects feed
metadataC

Builds feed
metadata

D

Builds feed
items

E

Gets news items
from model

F

Map to
feed itemsG
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 8 Communicating with users and customers
 Description desc = new Description();
 desc.setType("text/html");
 desc.setValue(newsItem.getDescription());
 feedItem.setDescription(desc);

 feedItems.add(feedItem);
 }
 }

 return feedItems;
 }
}

You implement the view, sans an @Component annotation (you want to configure this
bean explicitly in beans-web.xml), by extending the AbstractRssFeedView class B.
You include a few metadata properties C so you can configure those externally when
you build your feed D.

 Besides building the metadata, you need to build the feed items themselves E.
You first grab the domain objects (here, a List of NewsItem objects, which is your own
class) off the model F. Then you iterate over the NewsItems, converting them to
FeedItems that you add to a list G. Note that you do an explicit null check to handle
the case where the list of items is empty (which, as it turns out, means Spring can’t
automatically discover the model key, which in turn means the corresponding attri-
bute is null). AbstractRssFeedView takes care of building the RSS Channel and serial-
izing it to the servlet output stream.

 To use the view, you’ll need a controller. Let’s pay that a visit.

THE CONTROLLER

The controller is amazingly simple, as shown next.

package com.springinpractice.ch08.web;

import javax.inject.Inject;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import com.springinpractice.ch08.service.NewsService;

@Controller
public final class NewsController {
 @Inject private NewsService newsService;

 @RequestMapping("/news.rss")
 public String rss(Model model) {
 model.addAttribute(newsService.getRecentNews());
 return "news";
 }
}

As promised, the controller is entirely straightforward. You grab the List of News-
Items from the service bean and add it as an attribute to the Model B. Because you

Listing 8.15 Minimalistic NewsController.java

Drops news
onto model

B

Returns
view nameC
www.it-ebooks.info

http://www.it-ebooks.info/

275Publishing a news feed
didn’t specify an explicit attribute name, Model applies a naming convention that gen-
erates the name newsItemList for this particular attribute. As we hinted, if the list of
news items is empty, Spring can’t autodiscover the model key, and so the news items
won’t be stored under the desired key. You handled this in listing 8.15 by doing an
explicit null check.

 You return the logical view name “news” at C. As you’ll see in a moment, you’ll
map that view name to an actual bean using the BeanNameViewResolver.

 There isn’t any need to review the NewsItem, NewsServiceImpl, and other related
classes because this shows how the RSS piece works. If you want to see the other classes,
consult the sample code. We do need to look at the application context, though.

THE APPLICATION CONTEXT

You need to add two things to beans-web.xml. First, add the view you created in list-
ing 8.15:

<bean id="news"
 class="com.springinpractice.ch08.web.RssNewsFeedView"
 p:feedTitle=" News"
 p:feedDescription="Recent updates"
 p:feedLink="http://example.com" />

Then map the “news” logical view name to this view. To do this, you’ll use the
BeanNameViewResolver, which maps the logical view name to the bean having the
same name (or ID), which is why you called your view “news” in the snippet. Here’s
the definition:

<bean class="org.springframework.web.servlet.view.BeanNameViewResolver" />

That’s all. Once you put the news back end in place, direct your browser to

http://localhost:8080/sip/news.rss

(or whatever URL you’re using), and you should see your news items showing up as an
RSS feed. Congratulations!

Discussion

In this recipe, we’ve explored Spring’s support for feed publication. We hope you’ll
agree that Spring makes publishing feeds both easy and clean.

 There are some useful websites you should know about if you’re going to publish
an RSS feed. One is www.feedvalidator.org, which will tell you whether your feed is
valid. Another is www.feedicons.com, which has numerous icons you can use to make
your feed look great.

 Once your feed is in place, consider fronting it with FeedBurner or a similar ser-
vice. FeedBurner acts as a proxy to your feed, serving at least two useful purposes.

■ You don’t have to worry about load issues, because subscribers hit FeedBurner,
not you, and FeedBurner updates its cache of your feed or feeds only on a peri-
odic basis (roughly every half hour, but we’ve observed quite a bit of variability
in our server logs).
www.it-ebooks.info

www.feedvalidator.org
www.feedicons.com
http://www.it-ebooks.info/

276 CHAPTER 8 Communicating with users and customers
■ FeedBurner captures statistics on how many subscribers you have and, option-
ally, how many people are clicking through to visit pages on your site. It’s useful
to have visibility into that kind of data without having to write it yourself, which
is more involved than you might guess because you have to account for multiple
subscribers coming out of the same aggregator (Netvibes, Google Reader, and
so forth).

8.6 Summary
We’ve come to the end of what we hope has been an interesting chapter on ways to keep
in touch with your users and customers. It’s a tried and true way of being successful on
the web and in business, so it helps to know some of the standard options available.

 In chapter 9, we’ll extend the present discussion to cover additional ways in which
your users and customers can communicate not only with you, but also with one
another. Many websites and organizations are finding that building and taking advan-
tage of community is an important way to understand user characteristics, likes, and
dislikes; to generate content and traffic; and in general to generate value.
www.it-ebooks.info

http://www.it-ebooks.info/

Creating a rich-text
 comment engine
A striking characteristic of several successful modern websites and web applications
is the way in which they support community, sometimes for its own sake and some-
times in the service of other goals. Examples include sites like Facebook (social net-
working), LinkedIn (career networking), Wikipedia (online encyclopedia), Digg
(social bookmarking), DZone (tech-specific social bookmarking), Amazon (retail),
Pinterest (photo sharing), and YouTube (video sharing).

 One important way to create a sense of community is to allow users to submit
comments. The comments might target articles, blog posts, user submissions, prod-
ucts, or anything else where it’s useful to respond to items in a public fashion.

 In this chapter, you’ll implement a comment engine. It will be generic in that it
won’t care what kind of item serves as a target. You’ll begin with a basic comment
engine. Then you’ll embed it in an article-delivery engine. Next you’ll add support

This chapter covers
■ Enabling user comments
■ Supporting article delivery
■ Including rich-text editing
277

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 9 Creating a rich-text comment engine
for rich-text editing, with real-time client-side previewing. Finally you’ll write tests that
deal with the security issues that rich-text editing raises.

9.1 Creating a basic user comment engine
PREREQUISITES

None

KEY TECHNOLOGIES

JPA, Hibernate Core and Validator, programmatic transaction management, JavaMail

Background

Allowing users to comment on articles, blog posts, products, other users, and so
forth is useful in many ways. If you’re trying to build a sense of community, there’s
nothing like seeing users out and about, speaking their minds. That can be helpful if
you’re trying to choose the topic of your next article, or if your users are trying to
decide which laptop to buy. And giving your community a voice will keep your users
coming back. Comments can also help generate traffic by improving search-engine
rankings, tying your site into a larger community of related sites, and making your
pages more attractive link targets by providing a well-balanced view of the subject
under discussion.

 In this recipe, you’ll build a simple comment engine. You’ll build it in a generic
way that allows you to use it for arbitrary targets, whether articles, products, or some-
thing else. You’ll start with recipes 9.1 and 9.2 and then elaborate the design in reci-
pes 9.3 and 9.4.

Problem

Allow users to read and submit comments for articles, blog posts, products, and so on.
For now the comment engine should support only plain text comments, not rich text
(but see recipe 9.3). Once a user posts a comment, the engine must notify the site
admin by email.

Solution

You’ll build a comment engine as just described. Recipe 9.1 treats the engine, and rec-
ipe 9.2 shows how to integrate it with an article-delivery system. Figure 9.1 shows the
result after you’re done with recipes 9.1 and 9.2.

 Figure 9.2 shows the beans you’ll use and how you’ll wire them all up.
 Again, in this recipe you’re building the comment engine, not integrating it with

article delivery, product catalogs, and so on, so all you’re seeing is the comment
engine.

DATABASE SCHEMA

One key goal for the comment engine is that it be agnostic with respect to the sorts of
targets (articles, products, and so on) that comments can attach to. You’re building a
generic comment engine, not one for any particular target type.
www.it-ebooks.info

http://www.it-ebooks.info/

279Creating a basic user comment engine
Figure 9.1 The comment engine, with a comment list and a place to enter comments

Figure 9.2 Comment en-
gine bean-dependency
graph. This shows what the
comment service needs to
filter comments and send
notification emails.
www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 9 Creating a rich-text comment engine
Figure 9.3 shows a two-table E/R dia-
gram for the database schema. You
have a comment table for individual
comments. You need a way to attach
those to an arbitrary target, but you
don’t want to use a foreign key to some-
thing specific like an article; instead
the generic comment_target table rep-
resents anything you might want to
comment on. See schema.sql in the
code download for the DDL for this
pair of tables.

 Now let’s see the Comment and CommentTarget domain objects that correspond to
the two tables.

DOMAIN OBJECTS, ORM, AND VALIDATION

Listing 9.1 shows the Comment class. You’re using it primarily as a domain object repre-
senting an individual comment, although you’ll also use it as a form-backing bean
when you get to the Spring Web MVC part in recipe 9.2.

package com.springinpractice.ch09.comment.model;

import java.util.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.validation.constraints.Size;
import org.hibernate.validator.constraints.Email;
import org.springframework.util.StringUtils;

@Entity
@Table(name = "comment")
public final class Comment implements Comparable<Comment> {

 ... various private fields ...

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")
 public Long getId() { return id; }

 private void setId(Long id) { this.id = id; }

 @Size(min = 1, max = 100)
 @Column(name = "name")
 public String getName() { return name; }

 public void setName(String name) {

Listing 9.1 Comment.java domain object

Comparable
for sorting

B

Figure 9.3 Comment engine E/R diagram. This sim-
ple schema allows you to attach comments to arbitrary
targets.
www.it-ebooks.info

http://www.it-ebooks.info/

281Creating a basic user comment engine
 this.name = StringUtils.trimWhitespace(name);
 }

 ... various getters and setters ...

 public int compareTo(Comment o) {
 return dateCreated.compareTo(o.dateCreated);
 }
}

As noted, Comment performs double-duty as a domain object and a form-backing bean.
The various annotations reflect the dual roles: you have JPA annotations to store Com-
ments in the database, and you have JSR 303 Bean Validation annotations to validate
user-submitted form data.

 At B you define Comment as implementing the Comparable interface. This is
because you’ll want to sort comments by date for display purposes.

 At C you use Spring’s convenient StringUtils.trimWhitespace() static method
to trim any leading or trailing whitespace from the name. You use this instead of the
standard JDK String.trim() method because the latter doesn’t work when the name
is null. Finally, you implement the compareTo() method D to sort by date.

 The next listing contains CommentTarget.java, which represents an arbitrary tar-
get against which users can create comments.

package com.springinpractice.ch09.comment.model;

import java.util.List;
import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.OneToMany;
import javax.persistence.Table;

@Entity
@Table(name = "comment_target")
public final class CommentTarget {
 private Long id;
 private List<Comment> comments;

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")
 public Long getId() { return id; }

 @SuppressWarnings("unused")
 private void setId(Long id) { this.id = id; }

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
 @JoinColumn(name = "comment_target_id", nullable = false)
 public List<Comment> getComments() { return comments; }

Listing 9.2 CommentTarget.java, representing anything that can be commented on

Trims nameC

Sorts by dateD

Maintains
comments

B

www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 9 Creating a rich-text comment engine
 public void setComments(List<Comment> comments) {
 this.comments = comments;
 }
}

CommentTarget provides a way to group comments associated with a single target.
Although in theory you could link comments to their articles, products, and other tar-
gets directly, the problem is that you want to keep the comment engine generic. You
need some kind of generic grouping mechanism.

 You have a list of comments B with cascading persistence operations, meaning that
if you save, update, or delete (there are some other operations as well) a CommentTarget,
the same operation flows down to the Comment instances. orphanRemoval = true tells
Hibernate to mark individual Comments for deletion when they’re removed from their
respective CommentTargets. You do this because individual Comments don’t have their
own lifecycle and don’t have shared references.

 Now it’s time to check out the service bean for the comment engine.

THE COMMENTSERVICEIMPL SERVICE BEAN

The following listing presents the CommentServiceImpl service bean. (See the code
download for the CommentService interface.)

package com.springinpractice.ch09.comment.service.impl;

import java.util.Date;
import javax.inject.Inject;
import org.springframework.stereotype.Service;
import com.springinpractice.ch09.comment.model.Comment;
import com.springinpractice.ch09.comment.service.CommentService;
import com.springinpractice.ch09.comment.service.PostCommentCallback;
import com.springinpractice.ch09.comment.service.TextFilter;
import com.springinpractice.web.WebUtils;

@Service
public class CommentServiceImpl implements CommentService {
 @Inject private TextFilter textFilter;
 @Inject private CommentMailSender mailSender;

 public TextFilter getTextFilter() { return textFilter; }

 public void setTextFilter(TextFilter filter) {
 this.textFilter = filter;
 }

 public void postComment(
 final Comment comment, final PostCommentCallback callback) {

 prepareComment(comment);
 callback.post(comment);
 mailSender.sendNotificationEmail(comment);
 }

 private void prepareComment(final Comment comment) {
 comment.setWeb(WebUtils.cleanupWebUrl(comment.getWeb()));

Listing 9.3 CommentServiceImpl.java, a service bean

Posts comment B

Cleans up
comment

C
Saves
comment

D

Sends email
notificationE
www.it-ebooks.info

http://www.it-ebooks.info/

283Creating a basic user comment engine
 comment.setDateCreated(new Date());
 comment.setText(textFilter.filter(comment.getText()));
 }
}

The simple comment service is responsible primarily for saving user comments. It has
a postComment() method B that does a few things. First, it uses the TextFilter to
clean up and format the comment C. The TextFilter abstraction hides the details,
but this could be anything from converting newlines to
 tags to processing a
simplified markup language called Markdown.1 (You’ll see examples of both.) Sec-
ond, it invokes the callback D, which is where you expect the associated application
to link the comment to a domain object (such as an article) and save it. Finally, the
method sends an email using the CommentMailSender E. We won’t go into the details
here because we did that in recipes 8.2 and 8.3. Those details are of course available in
the code download.

 Note that this service doesn’t have an @Transactional annotation. You’re assuming
the client will already have a transactional context in place if one is necessary. In this
case, it’s important for the sendNotificationEmail() method to return quickly
because you wouldn’t want it unnecessarily extending the transaction’s duration. In the
CommentMailSender sample code, note that you use the @Async trick from recipe 8.3 to
ensure a quick return.

 You’ll see more about PostCommentCallback in recipe 9.2, because that’s where
you’ll link the comment engine to a simple article-delivery system. Now let’s attend to
the text filtering piece.

COMMENT TEXT FILTERING

Still referring to listing 9.3, in prepareComment() a bit of code does some text filter-
ing. Because there are multiple strategies you might reasonably use to filter text, here
we’ve created a TextFilter interface (see the code download) and made this prop-
erty injectable. For now you’ll use a simple text-filtering strategy, treating user input as
plain text using the filter in the following listing. In recipe 9.3 you’ll see more
advanced text filtering.

package com.springinpractice.ch09.comment.service.impl;

import com.springinpractice.ch09.comment.service.TextFilter;

public final class PlainTextFilter implements TextFilter {

 public String filter(String text) {
 return text.replace("&", "&")
 .replace("<", "<")
 .replace(">", ">")
 .replace("\n", "
");
 }
}

1 See John Gruber, “Markdown: Basics,” Daring Fireball, http://daringfireball.net/projects/markdown/basics
for a good introduction.

Listing 9.4 PlainTextFilter.java: a simple strategy for filtering text
www.it-ebooks.info

http://daringfireball.net/projects/markdown/basics
http://www.it-ebooks.info/

284 CHAPTER 9 Creating a rich-text comment engine
This isn’t the most time-efficient implementation of plain-text filtering, but it’s simple
and easy to speed up should you need to do that.

 That does it for the comment service. You need to provide a couple of JSP frag-
ments as well, to make it easier for client services to display comment lists and the
form for posting new comments.

JSP FRAGMENT FOR DISPLAYING A COMMENT LIST

The next listing presents a JSP fragment for displaying a comment list. We’ve simpli-
fied the HTML to streamline the code; please see the code download for the full ver-
sion.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<h2>Comments (${fn:length(commentList)})</h2>
<c:choose>
 <c:when test="${not empty commentList}">
 <c:forEach var="comment" items="${commentList}">
 <c:out value="${comment.text}" escapeXml="false" />
 by
 <c:choose>
 <c:when test="${empty comment.web}">
 <c:out value="${comment.name}" />
 </c:when>
 <c:otherwise>
 <a href="<c:out value="${comment.web}" />"
 rel="nofollow"><c:out
 value="${comment.name}" />
 </c:otherwise>
 </c:choose>
 on
 <fmt:formatDate type="both" timeStyle="short"
 value="${comment.dateCreated}" />
 </c:forEach>
 </c:when>
 <c:otherwise>
 <p>No comments.</p>
 </c:otherwise>
</c:choose>

You loop over each of the comments, using <c:out> at B and C instead of JSP EL to
ensure that you escape user-provided data appropriately for HTML. This helps prevent
cross-site scripting (XSS) attacks.2 Also, you include rel="nofollow" at C to tell
search engines not to follow the link. This makes comment spamming less attractive.

 In addition to viewing a comment list, users need a way to post comments. We’ll go
over that next.

Listing 9.5 /WEB-INF/jspf/comment/list.jspf

2 See http://en.wikipedia.org/wiki/Cross-site_scripting for more information.

c:out for output
escaping

B

More output
escapingC
www.it-ebooks.info

http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.it-ebooks.info/

285Creating a basic user comment engine

JSP FRAGMENT FOR POSTING A NEW COMMENT

The next listing contains the form for posting a new comment. We’ve suppressed
parts of it here; see the code download for the full version.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<spring:message var="postCommentLabel"
 code="commentForm.label.postComment" />

<h2>Post a comment</h2>
<form:form modelAttribute="comment" action="${postCommentUrl}">
 <form:errors>
 <div class="alert warning">
 <form:errors />
 </div>
 </form:errors>
 <div>
 <spring:message code="commentForm.label.yourName" />:
 <form:input path="name" />
 <form:errors path="name">
 <div class="formFieldError">
 <form:errors path="name" />
 </div>
 </form:errors>
 </div>

 ... other fields ...

 <div>
 <spring:message code="commentForm.label.yourComment" />:
 <form:textarea path="text" />
 <form:errors path="text">
 <div class="formFieldError">
 <form:errors path="text" />
 </div>
 </form:errors>
 </div>
 <input type="submit" value="${postCommentLabel}" />
</form:form>

We covered what you’re doing here throughout chapter 4, so refer to that if anything
looks confusing. At B you set action="${postCommentUrl}". You expect the client
application to supply this URL so it can process posts as necessary.

 It’s time for the last piece: bean configuration.

BEAN CONFIGURATION

You need to do some bean configuration for the comment engine, as shown next.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"

Listing 9.6 /WEB-INF/jspf/comment/post.jspf

Listing 9.7 /src/main/resources/spring/beans-service.xml

App-settable
submit URLB
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 9 Creating a rich-text comment engine

n

il
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:task="http://www.springframework.org/schema/task"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task-3.1.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <bean id="commentMailMessage"
 class="org.springframework.mail.SimpleMailMessage"
 p:to="${comment.notification.to}"
 p:from="${comment.notification.from}"
 p:subject="${comment.notification.subject}" />

 <task:annotation-driven executor="executor" />
 <task:executor id="executor" pool-size="5" />

 <context:component-scan
 base-package="com.springinpractice.ch09.comment.service.impl" />

 <bean class="com.springinpractice.ch09.comment.service.impl.

➥ PlainTextFilter" />
</beans>

This configuration should be easy to follow given what we’ve already discussed. First,
you externalize your environment-specific properties into an environment.properties
file B, and you use them to define a comment-notification email message C. You use
the task namespace D to activate the @Async annotation and define a thread pool to
send email asynchronously. At E you scan for the comment service and the mail
sender, and at F you create a plain-text comment filter for the comment service to use.

 Let’s discuss the comment engine briefly and then see how to use it.

Discussion

You’ve created a simple but effective comment engine. The design is such that you
can use it for multiple purposes in a single application; it’s not tied to articles, prod-
uct reviews, or anything else. Having said that, the comment engine doesn’t provide
any value unless you integrate it with some other service. We’ll address this issue in
recipe 9.2.

 By using the PlainTextFilter strategy for text filtering, you’ve taken the draconian
step of preventing cross-site scripting and user-generated nuisance issues by disallowing
HTML markup. But obviously there are plenty of situations in which you want to be
more flexible. Can’t you allow users to set font characteristics (bold, italics, subscripts
and superscripts, and so on) without unduly exposing yourself to XSS attacks? What
about hyperlinks and images? If you’re running a technical software-development site,

Externalizes
configuratioB

Comment
notification emailC

For asynchronous emaD

Finds service and mail sender E

Creates
text
filterF
www.it-ebooks.info

http://www.it-ebooks.info/

287Integrating the comment engine with an article-delivery service
then you probably want a nice way for users to submit formatted code, and that proba-
bly involves <pre> tags. In short, although it’s true that you want to minimize your expo-
sure to security issues, you don’t want to throw the baby out with the bath water. In many
cases, you’d like to offer the end user the ability to enter rich text while simultaneously
limiting security issues. We’ll come back to that in recipe 9.3.

9.2 Integrating the comment engine with an
article-delivery service
PREREQUISITES

Recipe 9.1 Creating a basic user comment engine

KEY TECHNOLOGIES

JPA, Hibernate Core, Spring Web MVC

Background

The comment engine you created in recipe 9.1 is generic, meaning you can use it to
add comments to targets such as articles, blog posts, and products. But to use it, you
have to integrate it with a relevant service.

 In this recipe, you’ll create a basic article-delivery engine and hook the comment
engine up to it. We won’t get into the details of the article-delivery engine because
the point is to show how to use the comment engine, and the articles are incidental
to that goal. If you’re curious about those details, please look at the code download
for the chapter. Also, chapter 12 revisits article delivery with a focus on different
back-end strategies.

 You’ll need to update the Jetty configuration in this recipe for Maven, including
specifying the username and password for the MySQL database.3

Problem

You have an article-delivery engine (or some other such service) that doesn’t support
user comments. You’d like to integrate it with the comment engine from recipe 9.1.

Solution

Because the purpose of this recipe is to show how to integrate the comment engine
with a service you already have, you’ll be minimalistic with respect to the service. That
way we can keep the discussion focused on the integration, and we can minimize the
number of assumptions we have to make about how the service works. For the sake of
discussion, we’ll assume you have an article-delivery service; but we intend this recipe
to be more generally useful than that.

 Let’s begin by considering the bean-dependency graph in figure 9.4. This graph
builds on figure 9.2 by adding article-specific context. Now you have a DAO, a service
bean, and a controller to support article delivery. As the dependency graph shows, the

3 See Willie Wheeler, “Code & Setup,” http://springinpractice.com/code-and-setup.
www.it-ebooks.info

http://springinpractice.com/code-and-setup
http://www.it-ebooks.info/

288 CHAPTER 9 Creating a rich-text comment engine
integration happens between the article and comment services. Specifically, you inject
the comment service into the article service. You’ll learn more about the collabora-
tion shortly.

 Next let’s look at the slightly revised E/R diagram in figure 9.5. It’s the same as fig-
ure 9.3, but it adds a couple of tables to support articles.

 The schema is designed to support a 1-1 relationship between articles and comment
targets in the domain model. If you look closely at the diagram, you’ll see that you support
this relationship by defining a foreign key from the article table to the comment_target
table. Although you certainly could do that the other way around, that would make the
comment engine aware of articles (the comment_target table would know about the arti-
cle table), which would in turn undermine the goal of keeping the comment engine
generic. So, the article table references the comment_target table instead of the reverse.
You enforce a 1-1 relationship at the database level by including a unique constraint on
the comment_target_id column in the article table. See schema.sql for the DDL.

 You’ll need to create an Article class and integrate it appropriately with Comment-
Target. Let’s do that next.

Figure 9.4 A bean-dependency graph showing the relationship between the comment service from recipe
9.1 and the article service from this recipe.

Figure 9.5 E/R diagram for the comment engine, with an article table added. You connect the tables
using a foreign key in the article table that points at comment_target.
www.it-ebooks.info

http://www.it-ebooks.info/

289Integrating the comment engine with an article-delivery service
A SIMPLE ARTICLE CLASS, SHOWING HOW TO INTEGRATE WITH COMMENTTARGET

The following listing presents a simple Article class. We’ll suppress the details
(including the related ArticlePage class), focusing instead on the integration with
CommentTarget, which is the real goal.

package com.springinpractice.ch09.article.model;

import java.util.*;
import javax.persistence.*;
import com.springinpractice.ch09.comment.model.Comment;
import com.springinpractice.ch09.comment.model.CommentTarget;

@Entity
@Table(name = "article")
... some named queries ...
public final class Article {
 private CommentTarget commentTarget;

 ... other fields ...

 @OneToOne(cascade = CascadeType.ALL, orphanRemoval = true)
 @JoinColumn(name = "comment_target_id")
 private CommentTarget getCommentTarget() {
 return commentTarget;
 }

 private void setCommentTarget(CommentTarget target) {
 this.commentTarget = target;
 }

 @Transient
 public List<Comment> getComments() {
 return commentTarget.getComments();
 }

 ... other methods ...
}

The Article class has a getter B and setter for the commentTarget property, but
notice that you make them private. This doesn’t prevent Spring from performing the
dependency injection. You have this property to establish a 1-1 association between
Article and CommentTarget, but you make it private because you don’t want clients
to have to code to it—that would be a nuisance. Instead, you want them to be able to
work with comments directly. Therefore you expose a transient getComments()
method C.

 That does it for the article. For the details please see the code download. Let’s
build the corresponding DAO, which is very simple.

DATA ACCESS OBJECT FOR ARTICLES

This listing contains the DAO you use to save both articles and their comments.

Listing 9.8 Article.java: an example of something that can be commented on

Private getter
methodB

Transient
propertyC
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 9 Creating a rich-text comment engine
package com.springinpractice.ch09.dao;

import org.springframework.stereotype.Repository;
import com.springinpractice.ch09.article.dao.ArticleDao;
import com.springinpractice.ch09.article.model.Article;
import com.springinpractice.dao.hibernate.AbstractHbnDao;

... other imports ...

@Repository
public class HbnArticleDao extends AbstractHibernateDao<Article>
 implements ArticleDao {

 ... a couple of finder methods, but nothing else ...
}

The only operations relevant to the current purpose are the ones defined in
AbstractHibernateDao. (The finders mentioned support article delivery and aren’t
related to comments.) Also, because you’ve specified cascading persistence operations
on Article.getCommentTarget() and CommentTarget.getComments(), you don’t
need separate DAOs for CommentTarget and Comment. Instead you add the comments
to the article and use the ArticleDao to save them.

 Let’s turn now to the article service bean.

THE ARTICLESERVICEIMPL SERVICE BEAN

The following listing shows the service bean for articles. (See the code download for
the interface.) It isn’t part of the comment engine; it merely shows how to use the
comment engine.

package com.springinpractice.ch09.article.service.impl;

import java.util.List;
import javax.inject.Inject;
import org.hibernate.Hibernate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Isolation;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;
import com.springinpractice.ch09.article.dao.ArticleDao;
import com.springinpractice.ch09.article.dao.ArticlePageDao;
import com.springinpractice.ch09.article.model.Article;
import com.springinpractice.ch09.article.model.ArticlePage;
import com.springinpractice.ch09.article.service.ArticleService;
import com.springinpractice.ch09.comment.model.Comment;
import com.springinpractice.ch09.comment.service.CommentService;
import com.springinpractice.ch09.comment.service.PostCommentCallback;

@Service
@Transactional(
 propagation = Propagation.REQUIRED,
 isolation = Isolation.DEFAULT,

Listing 9.9 HbnArticleDao.java

Listing 9.10 ArticleServiceImpl.java service bean
www.it-ebooks.info

http://www.it-ebooks.info/

291Integrating the comment engine with an article-delivery service
 readOnly = true)
public class ArticleServiceImpl implements ArticleService {
 @Inject private ArticleDao articleDao;
 @Inject private ArticlePageDao pageDao;
 @Inject private CommentService commentService;

 public List<Article> getAllArticles() { return articleDao.getAll(); }

 public ArticlePage getArticlePage(String articleName, int pageNumber) {
 ArticlePage page =
 pageDao.getByArticleNameAndPageNumber(articleName, pageNumber);
 Hibernate.initialize(page.getArticle().getComments());
 return page;
 }

 @Transactional(
 propagation = Propagation.REQUIRED,
 isolation = Isolation.DEFAULT,
 readOnly = false)
 public void postComment(final String articleName, Comment comment) {
 commentService.postComment(comment, new PostCommentCallback() {
 public void post(Comment comment) {
 Article article = articleDao.getByName(articleName);
 article.getComments().add(comment);
 articleDao.update(article);
 }
 });
 }
}

ArticleServiceImpl is small but interesting. First, it has a dependency on Com-
mentService B. This is entirely legitimate; CommentService is a lower-level service,
and it often makes sense for higher-level services to call lower-level services. With
respect to the comment engine, the expected use is for target-specific services (Arti-
cleService, BlogPostService, ProductService, and so on) to delegate most of the
work of posting comments to CommentService.

 The next noteworthy item is a Hibernate tip. As you probably know, by default
Hibernate loads collections lazily. Although it’s possible to configure Hibernate to
load any given collection eagerly, you mostly want the collection to be loaded lazily
except in certain use cases. For example, when you load the master list of articles, you
don’t want to load all the comments, because you aren’t displaying those with the arti-
cle list. But when you load a single article, you do want to load the comments. There
are different techniques to accomplish this with Hibernate, but one of the nicer ones
is to call Hibernate.initialize() C. This call triggers an eager load.

CommentService
dependency

B

Forces
eager loadC

Article-aware
callback D

Why we like Hibernate.initialize()
With Hibernate, there are various ways to specify whether a given association should
be lazily or eagerly loaded. One way is to specify in the configuration that such-and-
such association should always be lazily loaded, or else always eagerly loaded.
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 9 Creating a rich-text comment engine
You delegate to CommentService.postComment() at D. With this call, you can see that
the only thing ArticleServiceImpl.postComment() is doing is creating a callback
and passing it to the CommentService.postComment() template method. The anony-
mous callback class implements the PostCommentCallback interface, which has a sin-
gle post() method.

 That takes care of the article service bean and the bulk of the integration. Let’s
move on to the web controller.

SPRING WEB MVC @CONTROLLER

The following listing shows the single controller, which handles article-related
requests. We’ve suppressed code that isn’t directly related to the comment engine, so
if you want to see the whole thing you can check out the code download.

package com.springinpractice.ch09.article.web;

import javax.inject.Inject;
import javax.servlet.http.HttpServletRequest;
import javax.validation.Valid;

Listing 9.11 ArticleController.java

(continued)
But often that’s not what you need. Take the relationship between articles and com-
ments. When loading a master list of articles, you don’t want to load the comments
at all because you don’t display them in that context. On the other hand, when you
load a single article, you do want to load the comments. How do you handle that?

One approach is to use Spring’s OpenSessionInViewFilter (or OpenSessionIn-
ViewInterceptor). This is a servlet filter that binds a Hibernate Session to the re-
quest-processing thread for the duration of the request. If the JSP needs to display
something (say, a comment) that hasn’t already been loaded, the Session is avail-
able and the data is loaded just-in-time.

We don’t care for this approach, because it often triggers lots of database queries if
you’re not careful. Imagine, for instance, that you were to display comment counts
with the master list of articles. The OpenSessionInViewFilter approach would gen-
erate a database query for each article.

Our preference is to define the association-loading behavior on a per-service-method
basis. We might specify, for example, that calls to getAllArticles() (or whatever)
don’t necessarily load the comments, whereas a call to getArticle(Long id) defi-
nitely does load the associated comments. This approach, which involves using
Hibernate.initialize() to trigger the eager load as illustrated in listing 9.10, of-
fers flexibility in treating the association differently according to the use case. But
some argue that it couples the service too tightly to the UI in that changes to the UI
might necessitate changes to the service. This doesn’t bother us because we don’t
find it surprising that adding new data elements to a UI might require support on the
back end.
www.it-ebooks.info

http://www.it-ebooks.info/

293Integrating the comment engine with an article-delivery service
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.WebDataBinder;
import org.springframework.web.bind.annotation.*;
import com.springinpractice.ch09.article.model.ArticlePage;
import com.springinpractice.ch09.article.service.ArticleService;
import com.springinpractice.ch09.comment.model.Comment;

@Controller
@RequestMapping("/articles")
public final class ArticleController {
 @Inject private ArticleService articleService;

 ... various fields and methods ...

 @RequestMapping(value = "", method = RequestMethod.GET)
 public String getArticles(Model model) {
 model.addAttribute(articleService.getAllArticles());
 return articleListViewName;
 }

 @RequestMapping(
 value = "/{articleName}/{pageNumber}", method = RequestMethod.GET)
 public String getArticlePage(
 @PathVariable String articleName,
 @PathVariable int pageNumber,
 Model model) {

 prepareModel(model, articleName, pageNumber);
 model.addAttribute(new Comment());
 return articlePageViewName;
 }

 @RequestMapping(
 value = "/{articleName}/comments", method = RequestMethod.POST)
 public String postComment(
 HttpServletRequest req,
 @PathVariable String articleName,
 @RequestParam("p") int pageNumber,
 Model model,
 @ModelAttribute @Valid Comment comment,
 BindingResult result) {

 if (result.hasErrors()) {
 result.reject("global.error");
 prepareModel(model, articleName, pageNumber);
 return postCommentFailedViewName;
 }

 comment.setIpAddress(req.getRemoteAddr());
 articleService.postComment(articleName, comment);
 return "redirect:" + pageNumber + "#comment-" + comment.getId();
 }

 private void prepareModel(
 Model model, String articleName, int pageNumber) {

Places comment
on model

B

Sets IP address
before saving

C

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 9 Creating a rich-text comment engine

ts

nt
 ArticlePage page =
 articleService.getArticlePage(articleName, pageNumber);
 model.addAttribute(page);
 model.addAttribute(page.getArticle().getComments());
 }
}

In the getArticlePage() method, you create an empty comment and put it on the
model B so you can bind it to the comment form in the JSP. You require controllers
to set the IP address before posting the comment C.

 In prepareModel(), you get the article page and the article’s comments with a sin-
gle service call D. You place the comment list directly on the model E so the generic
comment JSP can find it, because that JSP doesn’t know anything about articles or how
to pull comments out of articles.

 Let’s pull together the comment list and comment form in a JSP.

AN ARTICLE JSP THAT USES THE TWO COMMENT JSP FRAGMENTS

The next listing shows a JSP that presents an individual article page. We’ve suppressed
most of it, showing only the part that’s relevant for displaying comments.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
...
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
...
<body>
...
<jsp:include page="/WEB-INF/jspf/comment/list.jspf" />
<jsp:include page="/WEB-INF/jspf/comment/post.jspf" />
...
</body>
</html>

At B you show the list of comments, and immediately after that you show the form for
posting a new comment C.

 To make it all work, you’ll need a few Spring configuration files: beans-
resources.xml, beans-service.xml, and beans-web.xml. Because none of those illus-
trates anything you haven’t already seen, we won’t cover them here; see the code
download.

 The comment-enhanced article engine is ready. Try it out!

Discussion

You learned here how to integrate the generic comment engine from recipe 9.1 with
an arbitrary service, such as an article service. You did that using the template method
pattern coupled with Spring’s support for programmatic transaction management.
Solid stuff, but not too much “wow” factor.

Listing 9.12 /WEB-INF/jsp/articles/articlePage.jsp

Gets
page and
commenD

Places comment
list on model E

Comment
list

B

Posts comme
formC
www.it-ebooks.info

http://www.it-ebooks.info/

295Adding rich-text support to the comment engine
 In recipe 9.3, you’ll add pizzazz by introducing support for rich-text editing, cour-
tesy of the RequireJS and PageDown JavaScript libraries. You’ll see other goodies as
well, including server-side JavaScript via Rhino and Spring’s support for incorporating
external resources (such as JavaScript files) into your apps.

9.3 Adding rich-text support to the comment engine
PREREQUISITES

Recipe 9.2 Integrating the comment engine with an article-delivery service

KEY TECHNOLOGIES

JavaScript, RequireJS, PageDown, Rhino, Spring resources

Background

In recipe 9.1, we looked at creating a simple comment engine. One basic requirement
with comment engines is to prevent XSS attacks. The simplest way to do this is to pre-
vent users from entering any markup, but in many cases that isn’t an acceptable
approach. A lot of times users need to be able to post links, images, code snippets, and
so forth, and yet the requirement to prevent XSS doesn’t go away.

In this recipe we’ll show how to support rich text in the comment engine while simul-
taneously guarding against XSS.

Problem

Support XSS-free rich text and content in the comment engine.

Solution

You’ll do a number of fun and interesting things in this recipe. Principally you’ll use
the PageDown4 rich-text editor from the folks at Attacklab and Stack Overflow to

4 The PageDown project has a somewhat complicated history, including an original version called WMD by John
Fraser (a.k.a. Attacklab), some forks, and most recently PageDown at http://code.google.com/p/pagedown/.

What is cross-site scripting (XSS)?
XSS is a technique for attacking vulnerable web-based applications. Typically an at-
tacker enters an HTML <script> tag into a web form, and the app redisplays it with-
out filtering it. Users then download and execute potentially malicious code. Most of
us are potential targets because we allow JavaScript to run in the browser.

Despite the name, XSS also refers to attacks that inject malicious nonscript HTML.
This could be anything from adding unmatched HTML tags (thus potentially messing
up the page layout) to creating images with width="1000000" (again messing up the
page) to creating malicious iFrames.

Although web forms are the typical attack vector, they’re by no means the only one.
HTTP parameters in a URL are another possibility, as are web service inputs. Any user-
provided input you display onscreen is a potential candidate for an XSS-based attack.
www.it-ebooks.info

http://code.google.com/p/pagedown/
http://www.it-ebooks.info/

296 CHAPTER 9 Creating a rich-text comment engine
endow the HTML <textarea> with rich-text capabilities, including a button bar for
creating rich text, support for Markdown (also for creating rich text), and an impres-
sive real-time, completely client-side HTML preview capability. See figure 9.6.

Figure 9.6 The comment engine after adding PageDown
www.it-ebooks.info

http://www.it-ebooks.info/

297Adding rich-text support to the comment engine
 We won’t go into the syntax of Markdown here because that’s available on the web
and because you can easily discover it by using the button bar interface. Instead let’s
preview the overall technical approach for this recipe:

■ In the web browser, you’re running a few PageDown scripts: Markdown.Editor.js
(presents a rich-text editor), Markdown.Converter.js (converts Markdown to
HTML), and Markdown.Sanitizer.js (cleans up the HTML and guards against
XSS attacks). Users can create Markdown with the UI controls or enter it directly.

■ When the user submits the form, you send Markdown to the server, not HTML.
You do this for a couple of reasons. First, if there’s any kind of validation error,
you need to be able to prepopulate the <textarea> with the user’s original
Markdown, not with HTML. Second, if you wanted to support user edits after
the comment had already been saved, you’d want the user to be able to edit the
Markdown rather than the HTML.

■ Once a valid form reaches the server, you use server-side JavaScript (via Rhino)
to convert the Markdown to HTML. Specifically you use RequireJS (http://
requirejs.org/) to set up a CommonJS (www.commonjs.org/) environment for
PageDown, and then use PageDown (Markdown.Converter.js and Mark-
down.Sanitizer.js) to convert it to sanitized HTML.

■ You save both the Markdown and the HTML to the database. Again, saving the
Markdown makes it possible to support user edits, and saving the HTML allows
you to avoid retranslating Markdown to HTML every time you display a comment.

That’s the approach. Figure 9.7 presents the bean-dependency graph.

Figure 9.7 Bean-dependency graph for the version of the comment engine
www.it-ebooks.info

http://requirejs.org/
http://requirejs.org/
http://www.commonjs.org/
http://www.it-ebooks.info/

298 CHAPTER 9 Creating a rich-text comment engine
Figure 9.7 is a lot like figure 9.2, but the text filter is a little more involved. Here the text
filter supports rich text—specifically, Markdown (which allows embedded HTML). We’ll
discuss that shortly, but first let’s see the updated application context configuration.

APPLICATION CONTEXT CONFIGURATION AND SPRING RESOURCES

The following listing shows the beans-service.xml configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:task="http://www.springframework.org/schema/task"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

➥ AnnotationSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch09.*.model"
 p:hibernateProperties-ref="hibernateProperties" />

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5InnoDBDialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </util:properties>

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate3.

➥ HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory" />

 <tx:annotation-driven />

 <context:component-scan
 base-package="com.springinpractice.ch09.article.dao.hbn" />

Listing 9.13 beans-service.xml configuration
www.it-ebooks.info

http://www.it-ebooks.info/

299Adding rich-text support to the comment engine
 <bean class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:session-ref="mailSession" />

 <bean class="org.springframework.mail.SimpleMailMessage"
 p:to="${comment.notification.to}"
 p:from="${comment.notification.from}"
 p:subject="${comment.notification.subject}" />

 <task:annotation-driven executor="executor" />
 <task:executor id="executor" pool-size="5" />

 <context:component-scan
 base-package="com.springinpractice.ch09.article.service.impl" />
 <context:component-scan
 base-package="com.springinpractice.ch09.comment.service.impl" />

 <bean class="com.springinpractice.ch09.comment.service.impl.

➥ RichTextFilter"
 p:r="classpath:/requirejs/r.js"
 p:convert="classpath:/convert.js" />

</beans>

In the listing you grab a couple of JavaScript resources off the classpath and inject
them into the RichTextFilter B. The first one is r.js, which provides a RequireJS
implementation that runs on Rhino.5 The second one is convert.js, which is a cus-
tom script to launch a slightly modified version of Markdown.Sanitizer.js using
RequireJS.6 In both cases, Spring injects these into RichTextFilter as Resource
objects so you can read and run them. Let’s see how.

A RICH-TEXT FILTER FOR CONVERTING MARKDOWN TO HTML

The rich-text filter, RichTextFilter, converts user-entered Markdown to appropri-
ately filtered HTML. You do this using Rhino, a helper object called JsRuntimeSup-
port (you’ll see it in a bit) and a couple of scripts. See the following listing.

package com.springinpractice.ch09.comment.service.impl;7

import java.io.IOException;
import java.io.InputStreamReader;
import org.mozilla.javascript.Context;
import org.mozilla.javascript.Scriptable;
import org.mozilla.javascript.ScriptableObject;
import org.springframework.core.io.Resource;
import com.springinpractice.ch09.comment.service.TextFilter;

5 See https://github.com/jrburke/r.js/. RequireJS is a CommonJS-compatible module system for loading
JavaScript resources, and r.js adapts it to the Rhino JavaScript engine that ships with Java 6. You use RequireJS
here because PageDown needs a CommonJS environment to run on the server side.

6 The sample code contains the original and modified PageDown scripts at src/main/resources/pagedown.
The modified scripts wrap the originals in a function to allow them to run correctly under RequireJS.

Listing 9.14 RichTextFilter.java: converts Markdown to sanitized HTML7

7 Thanks to user sperumal on Stack Overflow for assistance in getting RequireJS to run on Rhino. See http://
mng.bz/CC77.

Injects classpath
resourceB
www.it-ebooks.info

http://mng.bz/CC77
http://mng.bz/CC77
https://github.com/jrburke/r.js/
http://www.it-ebooks.info/

300 CHAPTER 9 Creating a rich-text comment engine
public class RichTextFilter implements TextFilter {
 private Resource r;
 private Resource convert;

 public Resource getR() { return r; }

 public void setR(Resource r) { this.r = r; }

 public Resource getConvert() { return convert; }

 public void setConvert(Resource convert) { this.convert = convert; }

 public String filter(String text) {
 Context ctx = Context.enter();
 try {
 ScriptableObject scope =
 ctx.initStandardObjects(new JsRuntimeSupport(), true);

 String[] names = { "print", "load" };
 scope.defineFunctionProperties(
 names, scope.getClass(), ScriptableObject.DONTENUM);
 Scriptable argsObj =
 ctx.newArray(scope, new Object[] { });
 scope.defineProperty(
 "arguments", argsObj, ScriptableObject.DONTENUM);
 ctx.evaluateReader(scope,
 new InputStreamReader(r.getInputStream()),
 "r", 1, null

 scope.defineProperty(
 "markdown", text, ScriptableObject.DONTENUM);
 ctx.evaluateReader(scope,
 new InputStreamReader(convert.getInputStream()),
 "convert", 1, null);

 return (String) scope.get("html");

 } catch (IOException e) {
 throw new RuntimeException(e);
 } finally {
 Context.exit();
 }
 }
}

The filter() method B uses the Rhino API directly instead of using the Java Script-
ing API because Rhino makes it easier to get RequireJS working. We won’t get into all
the details here—consult the Rhino API documentation for more information—but
note that you initialize a top-level JavaScript scope at C using a custom support object
that provides load() and print() implementations for RequireJS. At D you read and
evaluate the r.js resource you injected in listing 9.13, which establishes RequireJS for
loading JavaScript modules. At E you do the same thing with a custom convert.js
script, which loads the Markdown.Sanitizer.Modified module, converts the Mark-
down into sanitized HTML, and places the result in the global html variable so you can
return it at F.

Uses Rhino API directly B

Uses support object C

Reads r.jsD

Reads
convert.js

E

Returns HTMLF
www.it-ebooks.info

http://www.it-ebooks.info/

301Adding rich-text support to the comment engine
 Here’s convert.js:

require.config({
 baseUrl : "pagedown"
});

var html;

require(["Markdown.Sanitizer.Modified"], function(sanitizer) {
 html = sanitizer.getSanitizingConverter().makeHtml(markdown);
});

You don’t have to load the Markdown.Converter.Modified module explicitly, because
Markdown.Sanitizer.Modified loads it for you.

 The next listing shows the JsRuntimeSupport class that we mentioned.

package com.springinpractice.ch09.comment.service.impl;

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import org.mozilla.javascript.Context;
import org.mozilla.javascript.Function;
import org.mozilla.javascript.Scriptable;
import org.mozilla.javascript.ScriptableObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.core.io.ClassPathResource;

public class JsRuntimeSupport extends ScriptableObject {
 private static final Logger log =
 LoggerFactory.getLogger(JsRuntimeSupport.class);

 public String getClassName() { return "test"; }

 public static void print(
 Context ctx, Scriptable thisObj, Object[] args, Function func) {

 for (int i = 0; i < args.length; i++) {
 log.info(Context.toString(args[i]));
 }
 }

 public static void load(
 Context ctx, Scriptable thisObj, Object[] args, Function func)
 throws IOException {

 JsRuntimeSupport support =
 (JsRuntimeSupport) getTopLevelScope(thisObj);
 for (int i = 0; i < args.length; i++) {
 String filename = Context.toString(args[i]);
 log.info("Loading file: {}", filename);
 support.processSource(ctx, filename);
 }
 }

 private void processSource(Context ctx, String filename)
 throws IOException {

Listing 9.15 JsRuntimeSupport.java, providing load() and print() implementations

print()
implementation

B

load()
implementation

C

www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 9 Creating a rich-text comment engine
 InputStream is = new ClassPathResource(filename).getInputStream();
 ctx.evaluateReader(
 this, new InputStreamReader(is), filename, 1, null);
 }
}

JsRuntimeSupport provides RequireJS with working print() B and load() C imple-
mentations, because the browser implementations aren’t available on the server side.
Note that the load() implementation grabs files from the classpath. This is how you load
the Markdown.Sanitizer.Modified and Markdown.Converter.Modified modules.

 Start the app, and point the browser at http://localhost:8080/sip to try the new
editor. If you know Markdown, you can enter it directly. Otherwise, use the button bar
on the editor to create Markdown.

Discussion

Recipe 9.3 enhanced the plain-text editor from recipe 9.2 into a rich-text editor. Rich
text offers important features, such as the ability to style text, add images and links,
and so forth. But such features carry their own risks, because they allow ill-intentioned
parties to create XSS if you’re not careful.

 To that point, it’s important from a security perspective that you test the filter. The
next recipe shows how you can use JUnit and Spring’s TestContext framework to get a
handle on this task.

9.4 Testing the HTML filter
PREREQUISITES

Recipe 9.3 Adding rich-text support to the comment engine

KEY TECHNOLOGIES

JUnit, Spring TestContext framework

Background

Whether or not you’re a proponent of test-driven development (TDD) or even unit
and/or integration testing in general, there’s no doubt that in some cases it makes a
lot of sense to write such tests. One case is when you’re writing code that’s addressing
security needs, such as the HTML filter.

Problem

Write tests to ensure that the comment engine filters out potential XSS attacks.

Solution

You’ll get a slight jump on the content from chapter 10 and implement the first inte-
gration test here using JUnit and the Spring TestContext framework. The rich-text
comment engine is exactly the sort of place where testing is critical, so we’ll show how
to do that here. It should be easy to follow, but if you have questions, continue on to
chapter 10.
www.it-ebooks.info

http://www.it-ebooks.info/

303Testing the HTML filter
 The next listing presents an example of what an integration test for RichTextFil-
ter might look like. This isn’t a full-blown test, but it gives you an idea of what would
be involved in developing a more comprehensive test.

package com.springinpractice.ch09.comment.service.impl;

import static org.junit.Assert.assertEquals;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.

➥ AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations = "/spring/beans-service-richtext.xml")
public class RichTextFilterTests
 extends AbstractJUnit4SpringContextTests {

 private RichTextFilter filter;

 @Before
 public void setUp() throws Exception {
 this.filter = applicationContext.getBean(RichTextFilter.class);
 }

 @After
 public void tearDown() throws Exception {
 this.filter = null;
 }

 @Test
 public void testAWithJavaScriptUrls() {
 String in = "Hi";
 String out = "<p>Hi</p>";
 assertEquals(out, filter.filter(in));
 }

 ... other tests ...
}

In the listing we’ve suppressed most of the test cases (even in the code download, the
cover is thin), but we’re focusing on how to conduct the test. The main issue for inte-
gration-testing beans is that you need access to the Spring application context so you
can inject any necessary dependencies. Here you want to inject r.js and convert.js.
Recall from recipe 9.3 that convert.js loads Markdown.Sanitizer.Modified, which
in turn loads Markdown.Converter.Modified. Ultimately these latter two give you the
conversion and sanitation that you want to see.

 At B you specify the locations for your Spring app context configuration files.
You’re using src/main/resources/spring/beans-service-richtext.xml, which is a sim-
plified version of the beans-service.xml configuration from recipe 9.3:

Listing 9.16 RichTextFilterTest.java: integration test based on JUnit

Config file
location

B

Extends
support classC

Gets filter from
app context D

Verifies filtering
behavior

E

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 9 Creating a rich-text comment engine
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean class="com.springinpractice.ch09.comment.service.impl.

➥ RichTextFilter"
 p:r="classpath:/requirejs/r.js"
 p:convert="classpath:/convert.js" />
</beans>

Note that this involves moving the filter definition out of the existing beans-
service.xml file into beans-service-richtext.xml and updating web.xml to reflect the
new beans-service-richtext.xml file. See the code download.

 At C you extend AbstractJUnit4SpringContextTests, a support class for the
ApplicationContextAware interface. Although you could implement the Applica-
tionContextAware interface directly and apply the type-level @RunWith

(SpringJUnit4ClassRunner.class) annotation, that would require you to provide the
setter for the applicationContext property yourself, and there’s no reason to do that
here. When you extend AbstractJUnit4SpringContextTests, you don’t have to specify
the @RunWith annotation because you inherit it from the abstract class.

 At D you get the filter bean under test from the application context. It comes with
the resources already injected. Finally, at E you verify that the filter converts and san-
itizes Markdown input the way you expect.

 Try running the tests using Maven: mvn clean test.

Discussion

The test in this recipe is an integration test because you’re not testing the RichText-
Filter: you’re testing how it works in conjunction with several key external scripts.
Usually you want to run unit tests and integration tests separately from one another.
In a continuous integration context, you generally want to run unit tests (perhaps with
a handful of strategically chosen integration tests) to get fast feedback about whether
you broke the build. Integration tests, because they access external resources, are
much slower than unit tests, and you should typically separate them.

 Here you’ve added the test to the src/test folder, which is where you also place
your unit tests. Also, you haven’t used many of the features of the Spring TestCon-
text framework, such as the ability to run any given test in a transaction that you roll
back at the test’s conclusion to maintain a known test data baseline. The following
chapter explains how you can segregate integration tests from unit tests, and how
you can take advantage of some of the more advanced features of the Spring Test-
Context framework.
www.it-ebooks.info

http://www.it-ebooks.info/

305Summary
9.5 Summary
In this chapter we’ve taken a detailed look at implementing a rich-text comment
engine. In the course of doing that, we explored RequireJS, PageDown, Rhino, and
Spring resources. You also learned how to use Spring’s TestContext framework to
remove XSS vulnerabilities from your rich-text filter.

 In chapter 10, we’ll build on recipe 9.4 and expand our coverage of integration
testing with Spring.
www.it-ebooks.info

http://www.it-ebooks.info/

Integration testing
Ideally, testing is a core activity of the practicing software developer, and it so hap-
pens that the dependency-injection approach to software design is especially useful
in the testing arena. Dependency injection is particularly useful in unit testing,
where you desire to test small units of code in isolation from other code. With
dependency injection you can inject mock dependencies with prescribed behavior
into code units, which allows you to isolate faults to the code under test.

 A step up from unit testing is integration testing. The idea here is to test collab-
orations between units of code. An integration test can be fairly narrow, perhaps
involving a single collaboration between a web controller and a service bean (with
DAO dependencies mocked out). At the other extreme it can involve deploying the
code under test to a servlet container (or other container), sending HTTP requests
and parsing HTTP responses for the expected output.

 This chapter presents Spring’s TestContext framework, which offers features
useful for both unit and integration testing. Here we’ll focus on integration testing
because the features in this area are especially powerful.

This chapter covers
■ Maven configuration for Spring integration

testing
■ Writing transactional happy-path tests
■ Creating exception and performance tests
306

www.it-ebooks.info

http://www.it-ebooks.info/

307Configuring Maven for integration testing
Maven and JUnit also play major roles. You typically want to be able to run the tests
during project builds, so you’ll see how to do that with Maven. Concerning the test
framework itself, you have two options: JUnit and TestNG. Although Spring provides
support for TestNG tests, you use JUnit here because the key Spring TestContext fea-
tures don’t depend on the underlying test framework, and JUnit is probably more
familiar to most readers.

 You’ll build integration tests for the simple contact-management application that’s
available as part of the code download for this book; see figure 10.1. We won’t present
any of the code for the sample app because it’s the test code we’re interested in, but
again you may download the code if you wish.

 Your first task is Maven setup, mostly around declaring plug-ins and dependencies.

10.1 Configuring Maven for integration testing
PREREQUISITES

Basic familiarity with Maven 3

KEY TECHNOLOGIES

Maven 3, Failsafe Maven plug-in, Build Helper Maven plug-in

Background

Maven is one of the more popular build-automation tools in the Java world, and as you
might expect, it supports integration testing. Unfortunately, its out-of-the-box configu-
ration leaves a couple of things to be desired where integration testing is concerned:

■ Although Maven’s default lifecycle includes an integration-test phase, by
default no goals bind to it.

■ You could place integration tests and their associated resources in the src/test/
java and src/test/resources folders, respectively, but it would be nice to separate
integration tests from unit tests more cleanly.

Figure 10.1 A simple contact-management application for which you’ll write integration tests
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 10 Integration testing
This recipe shows how to remedy this situation. This is a Maven recipe rather than a
Spring recipe, but you need it to set the stage for the recipes that follow.

Problem

Configure Maven to run integration tests, keeping integration tests separate from unit
tests.

Solution

Before diving into the specifics of the Maven plug-in configuration, it will be helpful to
review the phases of the default Maven lifecycle, which represents something like a stan-
dard build. Figure 10.2 shows these phases in graphical form. We’ve taken the liberty of
collapsing closely related phases into a single box on the diagram to improve clarity.
We don’t need to peer too closely at the details (this is after all a Spring book), but suf-
fice it to say that the phases provide hooks onto which you can hang additional goals
related to integration testing. Let’s start by creating new source and resource folders
for your integration tests.

Figure 10.2 Overview of the default Maven lifecycle
www.it-ebooks.info

http://www.it-ebooks.info/

309Configuring Maven for integration testing
BUILD HELPER MAVEN PLUG-IN

Your first task is to create dedicated source and resource directories for your integra-
tion tests to keep yourself from getting them mixed up with unit tests. To accomplish
this, you’ll use the Build Helper Maven plug-in as illustrated in the following listing.
You’re placing this in the top-level project object model (POM) because you want to
enable integration testing across all projects.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <id>add-it-source</id>
 <goals>
 <goal>add-test-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/it/java</source>
 </sources>
 </configuration>
 </execution>
 <execution>
 <id>add-it-resource</id>
 <goals>
 <goal>add-test-resource</goal>
 </goals>
 <configuration>
 <resources>
 <resource>
 <directory>src/it/resources</directory>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
</plugin>

Normally there is a single test source directory (src/test/java) and a single test resource
directory (src/test/resources). In effect what you’re doing in the previous listing is
adding a second test source directory and a second test resource directory. At B you
add the src/it/java (“it” stands for integration test) test source directory to the build.
This is where you’ll place the Java code for the integration tests. You accomplish this
small feat using the plug-in’s add-test-source goal. By default the plug-in binds this
goal to the generate-test-sources lifecycle phase, and you don’t have any reason to
change that.

 The configuration at C is entirely analogous. This time you’re adding the src/it/
resources test resource directory to the build. You’ll store things like bean configuration

Listing 10.1 Adding new source and resource directories to Maven

Adds test source
directory

B

Adds test
resource
directory

C

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 10 Integration testing
files and SQL scripts here. In this case you rely on the plug-in’s add-test-resource goal,
which this time is bound to the generate-test-resources phase.

Build Helper has indeed helped your build by allowing you to keep your project struc-
ture nice and tidy. The next concern is how to go about running your integration
tests. Rather than using the standard Surefire Maven plug-in (which is designed for
unit tests), we’ll turn to the Failsafe Maven plug-in (designed specifically for integra-
tion tests).

FAILSAFE MAVEN PLUG-IN

Before going over the Failsafe configuration, it will help to understand the difference
between Surefire and Failsafe. You might reasonably ask why you can’t run your inte-
gration tests using Surefire. After all, it’s designed to run tests.

 The major difference between the two is that Surefire fails the build immediately
when a unit test fails; Failsafe allows the build to proceed to a cleanup phase. With
unit tests, there’s no general environmental setup (there are only test fixtures specific
to individual test cases, and these don’t reference external resources), so there’s noth-
ing to tear down if a test fails. But with integration tests, there may very well be a gen-
eral environmental setup, such as building a clean test database or perhaps deploying
a package to a remote server. If an integration test were to fail, you’d want the build to
perform the cleanup before ending the build.

 That background should help you understand better how Failsafe works, so let’s
look more closely. In figure 10.2 we offered a high-level overview of the default Maven
lifecycle, but we’ll zero in on the specific phases we care about for integration testing.
See figure 10.3.

Maven doesn’t distinguish between unit-test, integration-test directories
The new test source and resource directories are nothing more than an attempt to
make the project structure more developer-friendly. We happen to prefer keeping unit
tests and integration tests separate, and that’s what the Build Helper Maven plug-in
is helping you do.

Note that from Maven’s point of view, you’ve added new test source and resource
directories. Maven has no idea that you intend to store unit-test goodies in one pair
of directories and integration-test goodies in the other.

A couple of things follow from this. First, the test-compile phase compiles all the
test code at once, whether it’s unit-test code or integration-test code. It compiles any
code in a test source directory. That shouldn’t be a big deal.

Second, to run unit tests and integration tests separately (and that is a big deal, be-
cause you typically want to run unit tests with every build but not integration tests,
because they’re slower), you need some way to distinguish unit-test cases from inte-
gration-test cases. We’ll get to that shortly.
www.it-ebooks.info

http://www.it-ebooks.info/

311Configuring Maven for integration testing
The Failsafe plug-in has two goals:

■ An integration-test goal, binding by default to the integration-test phase,
that runs the integration tests

■ A verify goal, binding by default to the verify phase, that verifies that the
integration tests passed

The Failsafe plug-in doesn’t bind anything to either the pre-integration-test or the
post-integration-test phase. You won’t need to do anything during those phases
for the purposes of this chapter because you’ll handle environment setup and (as
needed) teardown as part of the integration tests.

 The following listing shows how to deploy the Failsafe plug-in.

<plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <junitArtifactName>
 org.junit:com.springsource.org.junit
 </junitArtifactName>
 </configuration>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>integration-test</goal>
 </goals>
 </execution>
 <execution>
 <id>verify</id>
 <goals>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
</plugin>

There’s not a lot to say here, but one thing to point out is that because you’re using
SpringSource’s Enterprise Bundle Repository (EBR), you need to help the Failsafe
plug-in deal with the fact that the EBR renames the JUnit artifact (or TestNG if you’re
using that). That’s what you’re doing at B.1

 We mentioned in the earlier sidebar that Maven doesn’t distinguish unit-test direc-
tories from integration-test directories. They’re all test directories to Maven. Yet you

Listing 10.2 Binding integration test goals to the default lifecycle

1 See JIRA issue EBR-220 at https://issuetracker.springsource.com/browse/EBR-220.

Figure 10.3 The key Maven lifecycle phases for integration testing

Fix JUnit
artifact nameB
www.it-ebooks.info

https://issuetracker.springsource.com/browse/EBR-220
http://www.it-ebooks.info/

312 CHAPTER 10 Integration testing
need some way to ensure that only unit tests run during the test phase and only inte-
gration tests run during the integration-test phase. Here you rely on filename con-
ventions that the Surefire and Failsafe plug-ins use. Basically, if a test case’s filename
matches a Surefire pattern, then Surefire will run it; and if it matches a Failsafe pattern,
then Failsafe will run it. Table 10.1 lists the default patterns for Surefire and Failsafe.

You can change these patterns in your plug-in configuration, but here you’ll go with
these. For integration tests, you’ll use the **/*IT.java pattern for no special reason.

 You need to do only one more piece of setup: declare test dependencies.

MAVEN DEPENDENCIES

The plug-ins you just installed take care of the Maven integration-testing infrastruc-
ture, but you need to include integration testing dependencies as well.

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>org.springframework.test</artifactId>
 <version>${spring.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.junit</groupId>
 <artifactId>com.springsource.org.junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>com.springsource.org.mockito</artifactId>
 <version>${mockito.version}</version>
 <scope>test</scope>
</dependency>

You’ll learn more about these dependencies in the upcoming recipes, but we can make
a few high-level remarks here. The Spring TestContext framework dependency B is
Spring’s integration-testing framework. JUnit C is a unit-testing framework, but it’s also
useful for writing integration tests. Mockito D allows you to mock out dependencies.
Mock objects are especially useful for unit testing, but sometimes you need mocks in
integration tests too.

 That wraps up the first recipe. Now you can write your first integration test.

Surefire patterns Failsafe patterns

**/Test*.java **/*Test.java

**/*TestCase.java **/IT*.java

**/*IT.java **/*ITCase.java

Listing 10.3 Integration-testing dependencies

Spring TestContext
frameworkB

JUnit for
testsC

Mockito for
mock objectsD

Table 10.1 Default Surefire and
Failsafe filename pattern matching
www.it-ebooks.info

http://www.it-ebooks.info/

313Writing transactional happy-path integration tests
Discussion

In this recipe, you’ve prepared your Maven configuration for the integration-test reci-
pes that follow. Although it’s possible to run integration tests outside of a build con-
text, in practice they’re almost always included as part of a build, and that’s what we’ve
shown how to do.

 Recipe 10.2 builds on this base to create simple but nontrivial happy-path integra-
tion tests involving transactional access to a live test database.

10.2 Writing transactional happy-path integration tests
PREREQUISITES

Recipe 10.1 Configuring Maven for integration testing

KEY TECHNOLOGIES

Spring TestContext framework, JUnit, DBMS

Background

Among the simplest sort of integration tests are those that test for routine, nonexcep-
tional behavior, often called happy-path behavior in testing circles. This might involve,
for instance, requesting an object from a web-based interface, having all the back-end
transactional magic happen (for example, hitting a database), and then verifying that
the returned result is what’s expected. Because this type of test forms the basis for
more sophisticated tests, it makes a good starting point, so we’ll explore happy-path
integration testing in this recipe.

Problem

Write happy-path integration tests to verify correct integration between web, service,
DAO, and database components.

Solution

As a general statement, integration testing involves selecting large vertical slices of an
application’s architecture and testing such slices as collaborating integrated wholes.
Ideally you’re able to reuse as much of the app’s native configuration as possible,
partly to minimize code duplication, but more fundamentally to put the configuration
to test. It is, after all, part of what makes the app work. In the normal situation, you fall
short of that ideal because you don’t want to run integration tests against live produc-
tion databases. But you can get pretty close. If you can identify the relevant slices and
make it easy to choose between the test and production databases, you have a winner.

 We’ll begin with details of how to implement the strategy just outlined using
Spring. Spring’s approach to configuration makes it easy and elegant to do this.

STRUCTURING APP CONFIGURATION TO FACILITATE INTEGRATION TESTING

In figure 10.4 we highlight the part of the stack we’ll address with our approach to inte-
gration testing. Although you don’t quite hit 100% of the stack (you’re excluding the
DispatcherServlet and JSPs from the scope), what you get represents a reasonable
www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 10 Integration testing
balance between coverage on the one hand, and execution speed and ease of imple-
mentation on the other.

 As illustrated, the stack starts from the controller and pushes all the way back to
the database. It bears repeating that you can write integration tests that are more
aggressive about coverage—tests that include the DispatcherServlet and JSPs, for
example. And in the case of the DispatcherServlet, there are strong reasons for
doing so, among them the desire to verify that controller annotations (@InitBinder,
@RequestMapping, @PathVariable, @Valid, and so on)2 do what they’re supposed to
do. But you’d take a hit for expanding that coverage, either by making the testing
more complicated (you’d have to provide the DispatcherServlet configuration,
which is more involved than controller configuration) or by slowing down the execu-
tion (for instance, by running the tests in-container). This chapter opts for the stack
shown in figure 10.4, although it’s useful to know that other options are available.

 Now that you’ve identified the stack, you need to figure out how to implement the
wiring only one time. You’ll reuse that wiring across both normal app use and integra-
tion test contexts. You’ll see that it’s easy to do. First, figure 10.5 shows the applica-
tion’s bean-dependency diagram, using the normal data source.

 In essence, two things differ between the app’s normal configuration (the one
shown in figure 10.5) and its integration-testing configuration:

■ The database.
■ How you get the DataSource. (JNDI lookups are available in Java EE container

environments but require more work to establish outside such environments.)3

You want to carve off the DataSource definition from the rest of the configuration and
select a definition based on the context. When all is said and done, you want the inte-
gration-test configuration to look like figure 10.6, and you want to factor out as much
of what’s common to the main and integration-test configurations as you can.

2 The case for testing JSPs in this fashion is, in our opinion, somewhat weaker because view components change
more often and are thus more prone to cause spurious test failures. Still, the right approach here can pay
dividends.

3 It can be done; it’s just more work. See org.springframework.mock.jndi.SimpleNamingContextBuilder for
details. In our opinion the approach we present here is more straightforward.

Figure 10.4 You’ll write integration tests for the stack that start from the controller and go all the way
back to the database.
www.it-ebooks.info

http://www.it-ebooks.info/

315Writing transactional happy-path integration tests
Figure 10.5 Bean-dependency diagram for a simple contact-management application. This is the normal
app configuration, not the integration-test configuration.

Figure 10.6 Spring app context configuration for integration tests. The DataSourceInitializer
sets up the test database by running DDL and test data DML. The controller, service, and DAO are sup-
pressed because they’re exactly the same as in figure 10.5.
www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 10 Integration testing

g

You can accomplish the desired refactoring by having two separate DataSource bean
configuration files. For normal app execution, the app uses the bean configuration
shown in the next listing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.0.xsd">

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/sip10DS"
 resource-ref="true" />
</beans>

That’s just the DataSource lookup; you configure the DataSource via whatever con-
tainer-specific means the container makes available. The sample code uses /WEB-INF/
jetty-env.xml to configure the DataSource.

 The application pulls this configuration into the fold using the normal context-
ConfigLocation means available through web.xml. You’ve seen that configuration so
many times by now that we won’t repeat it here, but look at web.xml in the sample
code if you’d like to see it again.

 For integration tests, the bean configuration is considerably different. You don’t
have a JNDI environment available, so you need to both build and configure a Data-
Source, as shown in listing 10.5.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.0.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd">

 <context:property-placeholder
 location="classpath:/spring/sip10-it.properties" />

 <bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close"
 p:driverClassName="${dataSource.driverClassName}"

Listing 10.4 beans-datasource.xml, for normal app usage

Listing 10.5 beans-datasource-it.xml, for integration testing

Externalizes
DataSource confiB

Creates
DataSourceC
www.it-ebooks.info

http://www.it-ebooks.info/

317Writing transactional happy-path integration tests
 p:url="${dataSource.url}"
 p:username="${dataSource.username}"
 p:password="${dataSource.password}" />

 <jdbc:initialize-database data-source="dataSource"
 ignore-failures="DROPS">
 <jdbc:script location="classpath:/mysql/sip10-schema-mysql.sql" />
 <jdbc:script
 location="classpath:/mysql/sip10-test-data-mysql.sql" />
 </jdbc:initialize-database>
</beans>

At B you observe the standard practice of externalizing volatile configuration such as
username/password information. Next you build a BasicDataSource C using that
configuration, instead of performing a JNDI lookup, because you aren’t in a Java EE
container environment.

 Next is something new for which there’s no counterpart in listing 10.4. At a high
level, this part of the configuration D resets the test database to a known state, which
you obviously desire in order to have predictable and repeatable testing. The
<jdbc:initialize-database> configuration (the jdbc namespace appeared in
Spring 3) causes Spring to run the referenced SQL scripts in the given order against
the referenced DataSource whenever you load this application context, typically just
before running the integration test suite. The optional ignore-failures="DROPS"
attribute says that if a script attempts to drop a table and fails (perhaps because the
table doesn’t yet exist), continue running the script.

 You haven’t yet seen the integration-testing counterpart to web.xml for specifying
the configuration files you want; that comes when you write the integration test case
(listing 10.8). But before you do that, let’s look quickly at the SQL scripts you’re using
to reset the test database prior to running the integration tests.

SQL SCRIPTS FOR INTEGRATION TESTING

The following listing contains the database DDL—a single table—for the test database,
based on MySQL’s SQL dialect. The DDL file is located at src/it/resources/mysql/
sip10-schema-mysql.sql.

drop table if exists contact;

create table contact (
 id bigint unsigned not null auto_increment primary key,
 last_name varchar(40) not null,
 first_name varchar(40) not null,
 mi char(1),
 email varchar(80),
 date_created timestamp default 0,
 date_modified timestamp default current_timestamp
 on update current_timestamp,
 unique index contact_idx1 (last_name, first_name, mi)
) engine = InnoDB;

Listing 10.6 sip10-schema-mysql.sql: integration test DDL

Sets database
to known state

D

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 10 Integration testing
The next listing contains simple test data that you’ll use to populate the contact table.
This time the SQL script is located at src/it/resources/mysql/sip10-test-data-mysql.sql.

insert into contact values
 (1, 'Zimmerman', 'Robert', 'A', 'bobdylan@example.com', null, null),
 (2, 'Osbourne', 'John', 'M', 'ozzyosbourne@example.com', null, null),
 (3, 'Mapother', 'Tom', 'C', 'tomcruise@example.com', null, null),
 (4, 'Norris', 'Carlos', 'R', 'chucknorris@example.com', null, null),
 (5, 'Johnson', 'Caryn', 'E', 'whoppigoldberg@example.com', null, null),
 (6, 'Smith', 'John', null, 'johnsmith@example.com', null, null),
 (7, 'Smith', 'Jane', 'X', null, null, null);

There isn’t much to say about these scripts. The DDL script drops the table and recre-
ates it, which should provide a solid reset. The DML script feeds the table with test data
that you can use for your integration testing.

 In the following subsections, you’ll write three separate happy-path integration
tests, demonstrating different key capabilities of
the Spring TestContext framework. The first is the
simplest test, which involves asking for a specific
contact and verifying that you got the information
you expected to get.

HAPPY-PATH INTEGRATION TEST #1: GETTING A CONTACT

The bare-bones sample contact-management app
is a master list of contacts with editable details
pages corresponding to individual contacts. Each
details page comes prepopulated with the con-
tact’s data. Figure 10.7 shows what a details page
looks like.

 When we said bare bones, we weren’t kidding.
All you have is a name and an email address. Your
first integration test tests (the next listing) this
contact details page feature.

package com.springinpractice.ch10.web;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import javax.inject.Inject;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.test.context.ContextConfiguration;

Listing 10.7 sip10-test-data-mysql.sql: test data

Listing 10.8 ContactControllerIT.java: integration test case

Figure 10.7 A details page prepopulat-
ed with subterranean, homesick con-
tact data
www.it-ebooks.info

http://www.it-ebooks.info/

319Writing transactional happy-path integration tests
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.ui.ExtendedModelMap;
import org.springframework.ui.Model;
import com.springinpractice.ch10.model.Contact;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration({
 "classpath:/spring/beans-datasource-it.xml",
 "classpath:/spring/beans-service.xml",
 "classpath:/spring/beans-web.xml" })
@Transactional
public class ContactControllerIT {
 @Inject private ContactController controller;

 @Value("#{viewNames.contactForm}")
 private String expectedContactFormViewName;

 private MockHttpServletRequest request;
 private Model model;

 @Before
 public void setUp() throws Exception {
 this.request = new MockHttpServletRequest();
 this.model = new ExtendedModelMap();
 }

 @After
 public void tearDown() throws Exception {
 this.request = null;
 this.model = null;
 }

 @Test
 public void testGetContactHappyPath() {
 String viewName = controller.getContact(request, 1L, model);
 assertEquals(expectedContactFormViewName, viewName);
 Contact contact = (Contact) model.asMap().get("contact");
 assertNotNull(contact);
 assertEquals((Long) 1L, contact.getId());
 assertEquals("Robert", contact.getFirstName());
 assertEquals("A", contact.getMiddleInitial());
 assertEquals("Zimmerman", contact.getLastName());
 assertEquals("bobdylan@example.com", contact.getEmail());
 }
}

The first thing to notice in the listing is that the test case class is an annotated POJO

E. It doesn’t extend one of the now-deprecated (as of Spring 3) JUnit 3.8 base classes
(for example, AbstractDependencyInjectionSpringContextTests). The annotated
POJO approach is based on Spring’s TestContext framework, and as of Spring 3 it’s the
standard approach to Spring-based integration testing, even though there are in fact
optional, non-deprecated base classes for JUnit 4.5+.

@RunWith B is a JUnit annotation. It expects a JUnit Runner implementation class
for a value. The test execution environment (Failsafe, for instance) uses this class to

Uses
TestContext
framework

B

Configures
test context

C

Runs tests in
transactions

D

POJO test
caseI Top of stackF

EL works hereG

Uses Spring
mock object

H

ExtendedModelMap
works fineI

Exercise code J

Verifies
view name 1)

Verifies
contact info 1!
www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 10 Integration testing
create a Runner instance. We’ve chosen SpringJUnit4ClassRunner, which is effec-
tively how you activate the Spring TestContext framework. Figure 10.8 shows how
these elements fit together.

 Figure 10.8 shows that Failsafe runs tests using the JUnit API and the Spring Test-
Context framework implementation of the JUnit Runner. The Spring TestContext
framework performs the following services:

■ Loads the test context (that is, bean definitions) from locations you’ll specify,
reusing most of the application context configuration files.

■ Injects test fixture instances, and resolves any Spring EL expressions.
■ Caches the test context between test executions unless otherwise directed.
■ Wraps tests in transactions as directed, typically rolling back the transaction

when the test completes.
■ Honors not only standard JUnit test annotations like @Test and @Ignore, but

also Spring TestContext framework annotations like @ExpectedException,
@Timed, and @Repeat. (You’ll see these and other framework annotations in
upcoming recipes.)

■ Provides a helpful utility API. ReflectionTestUtils allows test cases to inject
dependencies into private fields, much as autowiring would do.

At C you use the @ContextConfiguration annotation to tell the test-execution envi-
ronment where to find the bean configuration files. Notice that you’re getting the
DataSource from beans-datasource-it.xml instead of beans-datasource.xml, thanks to
the work you did earlier in separating the DataSource configuration. This is the test
case counterpart to the contextConfigLocation parameter from web.xml.

Figure 10.8 Test cases use JUnit and Spring TestContext framework annotations.
The tests run in the Failsafe integration-test execution environment.
www.it-ebooks.info

http://www.it-ebooks.info/

321Writing transactional happy-path integration tests
 The rules for specifying the @ContextConfiguration locations are explained by
the Javadoc for AbstractContextLoader#modifyLocations as follows:

A plain path, e.g. "context.xml", will be treated as a classpath resource from the
same package in which the specified class is defined. A path starting with a slash is
treated as a fully qualified class path location, e.g.: "/org/springframework/
whatever/foo.xml". A path which references a URL (e.g., a path prefixed with
classpath:, file:, http:, etc.) will be added to the results unchanged.

At D, the @Transaction annotation indicates that you want to wrap each test with a
transaction. That way you can roll back any database mischief you create at the end of
each test. You’ll reuse the transactional machinery from the application’s bean-config-
uration files. (You might be seeing at this point why the TestContext framework is nice
to have around.) If you wanted to specify a custom PlatformTransactionManager
bean name (the default is transactionManager) or turn off the default rollback-on-
test-completion behavior, you could add a @TransactionConfiguration annotation
here, but you don’t want to do either. You’re happy.

 We covered E, so let’s start looking in the class. At F you have an autowired con-
troller-class-under-test (using the standardized Java EE @Inject annotation that
Spring 3 supports), and the framework will in fact perform that dependency injection
on your behalf. It’s not just the controller under test, but rather the entire stack under
the controller. The controller gives you something to poke and prod, and you can
watch it to see what happens.

 The framework resolves the EL at G to give you an expected view name.
 The test setup method creates a request and a model. The request object H is a

mock object and is part of Spring’s wider offering around mock web objects for test-
ing.4 At I you create a real ExtendedModelMap because there’s no reason to prefer a
mock to the real thing.

 With all that test-case setup (whew!), you’re finally ready to write your first happy-
path test. You exercise the code by asking the controller to get the contact with ID 1,
put it on the model, and return a view name J. At 1) you verify that the expected
view name matches the actual view name. At 1! you verify that the returned contact
matches the SQL test data you saw in listing 10.7.

 Before you can run the tests, you need a test database. Create one called sip10_it.
After that you can run the tests from the command line as follows:

mvn –e verify

You launch the verify phase rather than the integration-test phase because you
want to ensure that you run any cleanup goals bound to the post-integration-test
phase. In this case nothing is bound to post-integration-test, but it’s a good habit
to launch integration tests using verify anyway just in case that phase happens to be
performing cleanup.

4 See org.springframework.mock.web for more examples.
www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 10 Integration testing

 This last subsection was a lot to digest, so please be sure to review as necessary
before moving on. If you’re ready, you’ll do a slightly more interesting happy-path
test, this time updating a contact.

HAPPY-PATH INTEGRATION TEST #2: UPDATING A CONTACT

Updating a contact is what you do when you click the Save button on the form in fig-
ure 10.7, so it’s the logical next test. The following listing shows an updated version of
ContactControllerIT.java, suppressing code you’ve already seen.

package com.springinpractice.ch10.web;

import javax.sql.DataSource;
import org.hibernate.SessionFactory;
import org.springframework.jdbc.core.simple.SimpleJdbcTemplate;
import org.springframework.validation.BeanPropertyBindingResult;
import org.springframework.validation.BindingResult;

... other imports as before ...

... @RunWith, @ContextConfiguration, @Transactional ...
public class ContactControllerIT {
 private static final String SELECT_FIRST_NAME_QUERY =
 "select first_name from contact where id = ?";

 @Inject private SessionFactory sessionFactory;
 @Inject private DataSource dataSource;

 @Value("#{viewNames.updateContactSuccess}")
 private String expectedUpdateContactSuccessViewName;

 private SimpleJdbcTemplate jdbcTemplate;

 ... other fields as before ...

 @Before
 public void setUp() throws Exception {
 this.jdbcTemplate = new SimpleJdbcTemplate(dataSource);
 ... other setup as before ...
 }

 @After
 public void tearDown() throws Exception {
 this.jdbcTemplate = null;
 ... other teardown as before ...
 }

 @Test
 public void testUpdateContactHappyPath() {
 Contact contact = new Contact();
 contact.setFirstName("Bob");
 contact.setLastName("Dylan");
 contact.setEmail("bobdylan@example.com");

 BindingResult result =
 new BeanPropertyBindingResult(contact, "contact");

Listing 10.9 Testing contact updates

Verifies
DB state

B

Prepares updated
contact

C

Creates test
dummy

D

www.it-ebooks.info

http://www.it-ebooks.info/

323Writing transactional happy-path integration tests

 String viewName =
 controller.updateContact(request, 1L, contact, result);

 assertEquals(expectedUpdateContactSuccessViewName, viewName);

 Model anotherModel = new ExtendedModelMap();
 controller.getContact(request, 1L, anotherModel);
 Contact updatedContact =
 (Contact) anotherModel.asMap().get("contact");
 assertEquals("Bob", updatedContact.getFirstName());

 String firstName = jdbcTemplate.
 queryForObject(SELECT_FIRST_NAME_QUERY, String.class, 1);
 assertEquals("Robert", firstName);

 sessionFactory.getCurrentSession().flush();

 String updatedFirstName = jdbcTemplate.
 queryForObject(SELECT_FIRST_NAME_QUERY, String.class, 1);
 assertEquals("Bob", updatedFirstName);
 }
}

The test for updating a contact looks a lot different than the test for getting a contact,
and it is. One major difference is that updating a contact involves a database update
that the test framework will roll back on test completion—whether or not the test is
successful—to keep the test database in a known, clean state. But that’s not the part
that looks different, because you can’t see that at all. The framework handles that
transparently, which is one of its major selling points. See figure 10.9.

 The part that looks different is that you have to deal with some complexity that
Hibernate adds. The basic idea is that when you update the controller, this updates a
service bean, which updates a DAO, which then updates a Hibernate session. For opti-
mization purposes, Hibernate doesn’t flush every change it receives immediately to
the database. It collects changes and flushes them either automatically at appropriate
points or manually on demand. The integration test deals with all of this, as you’ll see.
Let’s walk through the steps.

Exercises
code E

Verifies
view name

F

Verifies first name
in HibernateG

Shows update
not flushed

H

Flushes updateI

Verifies first
name in DB J

Figure 10.9 The TestContext
framework automatically rolls back
transactions after each test com-
pletes, ensuring that the test data-
base is in a clean state for the next
test.
www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 10 Integration testing
In the setup, you create a new SimpleJdbcTemplate using an injected DataSource B.
You’ll use this to verify database changes directly instead of relying on Hibernate’s
report, because Hibernate session state is somewhat decoupled from database state.

 Then you get to the test. You must simulate an update request from a web client.
To do this, you create a Contact C with the submitted update (here, the original first
name Robert is being updated to Bob), create a dummy BindingResult to keep the
controller’s updateContact() method happy D, and finally exercise the method
under test E.

 Once you’ve exercised the method, it’s time to verify the result. You verify the view
name F, and then you want to determine whether you were successful in updating
the first name. This is a slightly tricky question, as explained. Checking with the con-
troller G, it will appear (on running the test) that the answer is yes. And that’s true.
But you can use SimpleJdbcTemplate to determine whether the change made its way
all the way back to the database, and the answer will be no H. You’re still in the mid-
dle of a transaction, and Hibernate hasn’t flushed the change to the database yet. You
can flush the change manually I and check the database again J. This time, the
change is in the database.

 Normally you wouldn’t write the first database check (the check to verify that the
change didn’t make it), although it doesn’t hurt anything. You’d flush the session and
then check the database. But we wanted to show how Hibernate works and how you’ll
need to flush the session and use the SimpleJdbcTemplate if you want to ensure that
your code did what it was supposed to in the database.

 We’ll look at one more happy-path integration test. This time, let’s delete the con-
tact you’ve been working with.

HAPPY-PATH INTEGRATION TEST #3: DELETING A CONTACT

In the following listing, you test the deletion of the good Mr. Zimmerman.

package com.springinpractice.ch10.web;

import static org.junit.Assert.fail;
import com.springinpractice.web.ResourceNotFoundException;

... other imports ...

... @RunWith, @ContextConfiguration, @Transactional ...
public class ContactControllerIT {

 ... various fields ...

 @Value("#{viewNames.deleteContactSuccess}")
 private String expectedDeleteContactSuccessViewName;

 ... setUp(), tearDown(), tests ...

 @Test
 public void testDeleteContactHappyPath() {
 controller.getContact(request, 1L, model);
 Contact contact = (Contact) model.asMap().get("contact");

Listing 10.10 Testing contact deletion

Verifies
existence

B

www.it-ebooks.info

http://www.it-ebooks.info/

325Verifying that code under test throws an exception
 assertNotNull(contact);

 String viewName = controller.deleteContact(1L);

 assertEquals(expectedDeleteContactSuccessViewName, viewName);

 try {
 controller.getContact(request, 1L, new ExtendedModelMap());
 fail("Expected ResourceNotFoundException");
 } catch (ResourceNotFoundException e) { /* OK */ }

 String firstName = jdbcTemplate.
 queryForObject(SELECT_FIRST_NAME_QUERY, String.class, 1);
 assertEquals("Robert", firstName);

 sessionFactory.getCurrentSession().flush();

 try {
 jdbcTemplate.queryForObject(
 SELECT_FIRST_NAME_QUERY, String.class, 1);
 fail("Expected DataAccessException");
 } catch (DataAccessException e) { /* OK */ }
 }
}

By now you’ve seen this a couple of times, so we’ll blast through it. You start with a
quick check to make sure the contact you’re about to delete (it’s Bob Dylan again)
exists B. Then you exercise the code C and verify the view name D. Next you try to
get the contact from the controller E. You expect a ResourceNotFoundException;
you fail the test if you don’t get one. Finally, you run through the same JDBC routine
where you flush the session, then verify that the contact is removed from the database
F. Once again, you didn’t have to check the database twice; you did that in this case
to demonstrate that the flush is required.

 That’s happy-path integration testing in Spring.

Discussion

This recipe covered a lot of ground. Even though we focused on the basic happy-path
integration test, you learned how the Spring TestContext framework supports test
database resets, configuration reuse, dependency injection of test fixtures, transac-
tions and rollbacks, mocks, assertions against database state, and more. Fortunately,
this basic training was the most grueling you’ll see. In the following recipes, you’ll be
able to build in a more leisurely fashion on the knowledge you’ve just gained.

10.3 Verifying that code under test throws an exception
PREREQUISITES

Recipe 10.1 Configuring Maven for integration testing
Recipe 10.2 Writing transactional, happy-path integration tests

KEY TECHNOLOGIES

Spring TestContext framework, JUnit, Mockito

Exercises
code

C

Verifies
view name D

Verifies
deletion E

Flushes to DB
and verify

F

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 10 Integration testing
Background

Testing the happy path is only one part of what integration testing is all about. It’s at
least as important—and probably more important—to test how the code responds to
exceptional and failure conditions:

■ Happy-path integrations are exercised repeatedly in the normal course of devel-
opment, which in many cases reduces the likelihood that a defect will make it
out of dev. (You still want the testing because defects can easily go unnoticed.)

■ Failures often occur at integration points. This can happen when different peo-
ple with different assumptions write the code on either side of the integration
point. It can also happen when the integration point involves communicating
with a resource (like a database) that may be unavailable.

When exceptions occur, you want to ensure that you control the way the system
responds, rather than letting the exception determine what happens.

Problem

Write an integration test that verifies the proper handling of an exceptional condition.

Solution

The following listing shows how to write a test to verify that an expected exception is
thrown.

package com.springinpractice.ch10.web;

import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.hibernate.HibernateException;
import org.springframework.test.annotation.DirtiesContext;
import org.springframework.test.annotation.ExpectedException;
import org.springframework.test.util.ReflectionTestUtils;
import com.springinpractice.ch10.dao.HbnContactDao;

... other static imports and normal imports ...

... @RunWith, @ContextConfiguration, @Transactional ...
public class ContactControllerIT {
 @Inject private HbnContactDao contactDao;
 private SessionFactory badSessionFactory;

 ... other fields ...

 @Before
 public void setUp() throws Exception {
 this.badSessionFactory = mock(SessionFactory.class);
 when(badSessionFactory.getCurrentSession())
 .thenThrow(new HibernateException(
 "Problem getting current session"));

 ...

Listing 10.11 Elaborating ContactControllerIT.java

Misbehaving
SessionFactory

B

Mocks
SessionFactory

C

Defines mock
behaviorD
www.it-ebooks.info

http://www.it-ebooks.info/

327Verifying that code under test throws an exception
 }

 @After
 public void tearDown() throws Exception {
 this.badSessionFactory = null;
 ...
 }

 @Test
 @ExpectedException(HibernateException.class)
 @DirtiesContext
 public void testGetContactWithBadSessionFactory() {
 ReflectionTestUtils.setField(contactDao, "sessionFactory",
 badSessionFactory);
 controller.getContact(request, 1L, model);
 }

 ... other tests ...
}

In the code, you want to verify that HibernateExceptions arising out of the Session-
Factory pass through the DAO, service bean, and controller. The listing demonstrates
several useful techniques. First, you need a way to induce a failure condition so you
can test the system response. To do this you’ll mock out a broken Hibernate Session-
Factory B to simulate a Hibernate failure when trying to get a session. At C you cre-
ate the mock object using the Mockito framework. You specify at D that the mock is
to throw a HibernateException when a client calls the getCurrentSession() method
using Mockito’s intuitive API.

 With the setup complete, you can now write the test. You use Spring’s @Expected-
Exception annotation E to declare the expectation that the test method will throw a
HibernateException. The test fails if the exception isn’t thrown. For instance, if the
service bean were to catch the HibernateException and rethrow it as something else,
the test would fail.

You also annotate the test method with @DirtiesContext F. Normally the TestCon-
text framework loads the application context one time at the beginning and caches it
so it can be reused across all test methods in the test case. That speeds up the tests.
The @DirtiesContext annotation tells the framework to mark the app context as
being dirty so it will be automatically reloaded before running the next test. You use
this annotation because you want to modify the contact DAO to use the mock Ses-
sionFactory instead of the real one, but you don’t want that change to survive outside
of this test. You mark the test method as one that dirties the app context, and the
reload will follow when it’s needed.

Declares
expectation

E

Marks
context
dirtyFWires

private
field G

Exercises code H

@ExpectedException vs. @Test(Expected=. . .)
JUnit supports the same expected-exception functionality by way of the @Test(ex-
pected=...) configuration. They do the same thing, but you can’t use them togeth-
er. If you’re using JUnit 4, you’ll need to choose one or the other.
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 10 Integration testing
 In the sample code, there is no setter for the SessionFactory; it’s a private field.
To work around this, you can use the ReflectionTestUtils.setField() method G.
In this case, you’re setting contactDao.sessionFactory to badSessionFactory.

 Finally, you exercise the code H. Again, the test passes if and only if this call to the
controller throws a HibernateException.

Discussion

At this point we’ve covered most of the basics: you’ve set up your integration-testing
infrastructure, implemented happy-path tests, and implemented a test that demon-
strates a desired response to an exceptional condition. In recipe 10.4, we’ll examine
a more advanced technique that allows you to create tests that run only in spe-
cific environments.

10.4 Creating integration tests that verify performance
PREREQUISITES

Recipe 10.1 Configuring Maven for integration testing
Recipe 10.2 Writing transactional, happy-path integration tests

KEY TECHNOLOGIES

Maven 3, Spring TestContext framework, JUnit

Background

You often want to be able to verify that code runs within specified time bounds. This can
be challenging, because a given piece of code has different performance characteristics
on different machines and in different environments, and so it may be unclear what
response time to specify as the expected response time. You probably shouldn’t expect
production-level performance in a development environment, for example.

 But you can pick a given machine—let’s say a continuous-integration server—and
build performance tests around the capabilities of that machine. Although that won’t
generally provide a good sense for performance in production, it can at least catch
certain cases of performance drift and provide advance warning of issues.

 Therefore you’d like to have performance tests that run during continuous-inte-
gration builds but not during private builds (that is, builds on an individual devel-
oper’s machine).

 This isn’t a perfect technique, and it’s certainly no substitute for proper performance
testing in a system test environment. But it can flag issues and set a minimum bar.

Problem

Create time-bounded integration tests that run during continuous-integration builds
but not during private builds.

Solution

There are two steps here. The first is to write the tests, as in the following listing.
www.it-ebooks.info

http://www.it-ebooks.info/

329Creating integration tests that verify performance

s

package com.springinpractice.ch10.web;

import org.springframework.test.annotation.IfProfileValue;
import org.springframework.test.annotation.Repeat;
import org.springframework.test.annotation.Timed;

... other imports ...

... @RunWith, @ContextConfiguration, @Transactional ...
public class ContactControllerIT {

 ...

 @IfProfileValue(name = "environment", value = "ci")
 @Repeat(20)
 @Test(timeout = 200L)
 public void testGetContactPerformanceSingleCall() {
 controller.getContact(request, 1L, new ExtendedModelMap());
 }

 @IfProfileValue(name = "environment", value = "ci")
 @Repeat(20)
 @Timed(millis = 2000)
 @Test
 public void testGetContactPerformanceMultipleCalls() {
 controller.getContact(request, 1L, new ExtendedModelMap());
 }
}

You create two separate tests. Each tests the controller’s getContact() method, albeit
in slightly different ways to be described.

 Each test uses the TestContext framework’s @IfProfileValue annotation B to
make test execution dependent on having the system property environment set to the
value ci, which stands for “continuous integration.” Note that this system property
isn’t a standard, canned property—we made it up. You’ll have to set environment=ci
for continuous-integration builds and not elsewhere.

 Each test also uses the TestContext framework’s @Repeat annotation to repeat the
test 20 times C, including the test-fixture setup and teardown for each test run. This rep-
etition provides an extra level of assurance when tests pass because execution times can
vary somewhat from run to run. But note that it’s more likely that at least one test will
fail, so your time bounds must be fairly conservative to avoid excessive failure rates.

 The first test uses the JUnit @Test annotation to set a timeout D. This approach
applies timeouts to individual test iterations: each iteration must complete within 200
ms. If the test fails on your machine under this setting, adjust the timeout upward so
your test will pass. (It works on our laptop, and our laptop isn’t particularly fast.)

 The second test uses the TestContext framework’s @Timed annotation E, which sets
a timeout that applies to the overall set of iterations, including their respective setups
and teardowns. Once again you may need to adjust the timeout for your machine.5 Fig-
ure 10.10 offers a visual comparison of setting timeouts via @Test and @Timed.

Listing 10.12 Adding a time-bounded test to ContactControllerIT.java

5 JUnit’s @RunWith and Runner are nice. They allow custom test runners, like SpringJUnit4ClassRunner,
that offer a way to support extension annotations such as Spring’s @IfProfileValue, @Repeat, and @Timed.

Runs only in CI
environment

B

Each run
 200 msD

Repeat
test 20
timesC

Run total
 2000 msE
www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 10 Integration testing
In addition to writing the new tests, you need to pass system properties from the envi-
ronment to the test runner. To do this, add the <systemPropertyVariables> section
to the Failsafe configuration.

<plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <junitArtifactName>
 org.junit:com.springsource.org.junit
 </junitArtifactName>
 <systemPropertyVariables>
 <environment>${environment}</environment>
 </systemPropertyVariables>
 </configuration>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>integration-test</goal>
 </goals>
 </execution>
 <execution>
 <id>verify</id>
 <goals>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
</plugin>

If you run this test the normal way using

mvn –e verify

Listing 10.13 Updating Failsafe definition in pom.xml

Figure 10.10 A visual comparison between setting timeouts using @Test(timeout = ...) and @Timed
www.it-ebooks.info

http://www.it-ebooks.info/

331Ignoring a test
then the test runner will skip the two
tests you just added, because you
haven’t set the system property envi-
ronment=ci (see figure 10.11).

 To remedy this situation, type

mvn –e –Denvironment=ci verify

which sets the system property environment=ci. This time you won’t skip any tests
(see figure 10.12).

 Configure your CI server (Hudson
or Bamboo, for example) to run the
Maven build with environment=ci,
and you’re ready to go.

Discussion

Keep in mind that code runs faster or slower depending on the environment, so the
techniques described here are inappropriate for production performance testing.
Performance testing should generally be conducted under production-like loads, with
production-like data and data volumes (so the DBMS generates production-like execu-
tion plans) and so forth.

 What these techniques do allow you to do is see that a test that once ran without
issue now exceeds the timeout period. That’s a handy thing to know.

 The next recipe presents a cleaner alternative to commenting out broken tests.

10.5 Ignoring a test
PREREQUISITES

Recipe 10.1 Configuring Maven for integration testing
Recipe 10.2 Writing transactional, happy-path integration tests

KEY TECHNOLOGIES

JUnit

Background

Ideally you would never have occasion to ignore a test. You might adopt test-driven
development (TDD) practices,6 creating or changing tests before changing the corre-
sponding code to make the lights turn from red to green. Code would never break a
test, and there wouldn’t be cause to ignore tests.

 Somewhat short of this ideal would be the situation in which you change some
code, you break a few tests, you fix the tests, and then you continue coding.

 But in the real world (or at least in our real world), sometimes you change code, it
breaks stuff, and you aren’t ready to go back and fix everything you just broke. So you

6 For more information about TDD or testing in general, consult Effective Unit Testing: A Guide for Java Developers
by Lasse Koskela (Manning, 2013) or Test Driven: TDD and Acceptance TDD for Java Developers by Lasse Koskela
(Manning, 2007). They present many techniques not discussed here.

Figure 10.11 Without environment=ci, the test
runner skips two tests.

Figure 10.12 No skipped tests
www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 10 Integration testing
comment out the test and rerun the tests. In the extreme case, this lack of discipline
leads to way too many tests being commented out, but it’s fair to say that sometimes
you want to make a code change without fixing all the resulting broken tests at that
moment. You’d prefer to do that in a clean way, rather than commenting everything
out all over the place. This is where the @Ignore annotation comes in.

Problem

Ignore a test without commenting everything out.

Solution

This one is easy, and it uses a standard JUnit annotation. Apply the @Ignore annota-
tion to the test method, as illustrated in the next listing.

package com.springinpractice.ch10.web;

import org.junit.Ignore;

... other imports ...

... @RunWith, @ContextConfiguration, @Transactional ...
public class ContactControllerIT {

 @Ignore
 ... other annotations ...
 public void testGetContactWithBadSessionFactory() { ... }

 ... other tests ...
}

There’s nothing else to it. It’s much cleaner than commenting out tests. The test run-
ner will skip ignored tests.

Discussion

Even though applying the @Ignore annotation is cleaner than commenting out test
code, it’s still subject to abuse. Ignoring too many tests might be a sign that you
weren’t disciplined in preserving your tests. At some point you may pay the price
through increased regression.

 Setting up a code-coverage tool like Clover, EMMA, or Cobertura can be a big help
with managing this issue. By ignoring a test, you prevent it from contributing to the
coverage percentages that coverage tools typically provide as part of their reporting
functionality. Having a code-coverage tool in place can help alert you to excessive
ignoring, among many other things.

 The final recipe shows how to run integration tests against an embedded database.

10.6 Running integration tests against an embedded database
PREREQUISITES

Recipe 10.1 Configuring Maven for integration testing
Recipe 10.2 Writing transactional, happy-path integration tests

Listing 10.14 Ignoring a test using @Ignore
www.it-ebooks.info

http://www.it-ebooks.info/

333Running integration tests against an embedded database
KEY TECHNOLOGIES

Spring TestContext framework, embedded DBMS

Background

Recipe 10.2 introduced you to the jdbc namespace that appears in Spring 3. There
you used it to initialize the test database to a known state because integration tests
depend on that.

 The jdbc namespace also provides a <jdbc:embedded-database> tag for creating
an in-memory, embedded database that can be helpful for implementing a more light-
weight testing capability—one that allows you to avoid having to set up one or more
real test databases for the development team. This recipe shows how to take advantage
of the <jdbc:embedded-database> tag.

Problem

Simplify the infrastructure needed to support integration testing by replacing real test
databases with an embedded test database.

Solution

Spring 3 provides namespace support for embedded databases. Out of the box,
Spring supports HSQL, H2, and Derby. It’s also possible to implement support for
other DBMSs, although here we’ll stick with HSQL.

 Figure 10.13 shows what you’ll build in this recipe. Basically you use the jdbc
namespace to create an embedded DataSource that the Hibernate SessionFactory
can use.

Figure 10.13 Bean dependencies
using the embedded database
www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 10 Integration testing
On to the changes. First add the following dependency to the Maven project object
model (POM):

<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>com.springsource.org.hsqldb</artifactId>
 <version>${hsqldb.version}</version>
 <scope>test</scope>
</dependency>

Next you need to add a new DDL script, because the existing MySQL script won’t work
with HSQL. The following listing shows the roughly equivalent DDL script for HSQL.
This goes in src/it/resources/hsql.

create table contact (
 id bigint generated by default as identity
 (start with 1, increment by 1) not null primary key,
 last_name varchar(40) not null,
 first_name varchar(40) not null,
 mi char(1),
 email varchar(80),
 date_created timestamp default 0,
 date_modified timestamp default current_timestamp,
 unique (last_name, first_name, mi)
);

You’ll also need a copy of the DML script in the hsql directory. Copy the MySQL ver-
sion (the same DML works here) to sip10-test-data-hsql.sql.

 Finally, you need to modify and even refactor your Spring configuration a bit.
Until now, both the app and integration-test configurations have been using MySQL,
so it hasn’t been an issue that you’re specifying the SQL dialect in beans-service.xml
(which is shared across both configurations). But now the two configurations use dis-
tinct dialects, so you want to push the dialect selection out of beans-service.xml and
into the two data-source configuration files.

 First, the next listing shows the updated beans-service.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.0.xsd
 http://www.springframework.org/schema/tx

Listing 10.15 sip10-schema-hsql.sql: integration test DDL for HSQLDB

Listing 10.16 beans-service.xml, revisited
www.it-ebooks.info

http://www.it-ebooks.info/

335Running integration tests against an embedded database
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

➥ AnnotationSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.springinpractice.ch10.model"
 p:hibernateProperties-ref="hibernateProperties" />

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate3.

➥ HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory" />

 <tx:annotation-driven />

 <context:component-scan
 base-package="com.springinpractice.ch10.dao" />
 <context:component-scan
 base-package="com.springinpractice.ch10.service" />
</beans>

All you’ve done here is replace the previous hibernateProperties configuration with
an external reference, which the individual data-source configurations will provide.

 And here’s the updated beans-datasource-it.xml configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.0.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd">

 <jdbc:embedded-database id="dataSource">
 <jdbc:script location="classpath:/hsql/sip10-schema-hsql.sql" />
 <jdbc:script
 location="classpath:/hsql/sip10-test-data-hsql.sql" />
 </jdbc:embedded-database>

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">

➥ org.hibernate.dialect.HSQLDialect</prop>
 <prop key="hibernate.show_sql">true</prop>
 </util:properties>
</beans>

Listing 10.17 beans-datasource-it.xml, revisited

Creates
database

B

Runs
DDL C

Runs DML D

Updates
dialectE
www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 10 Integration testing
At B you replace the previous BasicDataSource definition with a new HSQL definition
based on <jdbc:embedded-database>. (The tag accepts a type attribute with valid val-
ues HSQL, H2, and DERBY. The default is HSQL if the type isn’t explicitly specified.)

 You reference the DDL and DML scripts at C and D respectively to initialize the
embedded database with the desired schema and test data. The external hiber-
nateProperties definition appears at E. You’re using the util namespace for this,
so don’t forget to add the corresponding namespace and schema location declara-
tions to the top of the file.

 You’re almost done, but the change to beans-datasource-it.xml broke the app
because there’s no app-side target for the hibernateProperties reference yet. The
next listing fixes this.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.0.xsd">

 <jee:jndi-lookup id="dataSource"
 jndi-name="jdbc/sip10DS" resource-ref="true"/>

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">

➥ org.hibernate.dialect.MySQL5InnoDBDialect</prop>
 <prop key="hibernate.show_sql">true</prop>
 </util:properties>
</beans>

You’ve added the necessary hibernateProperties configuration, along with the sup-
porting util namespace declarations.

 At this point, you should be able to run both the app and the integration tests. If
everything is good, the app runs against the MySQL database, and the integration tests
run against the embedded HSQL database.

Discussion

Using an embedded database is a useful technique for reducing the amount of setup
necessary to get going with integration tests. The integration tests are more self-con-
tained, and you don’t have to worry about starting up a database, having a network
connection to the database (if it’s remote), and so forth. Also, in many cases working
with an embedded database offers performance benefits over working with non-
embedded databases.

Listing 10.18 beans-datasource.xml, revisited
www.it-ebooks.info

http://www.it-ebooks.info/

337Summary
 Keep the following points in mind before using an embedded database:

■ By using an embedded database, you’re no longer including the database in the
scope of your integration test. Yes, you’re still using a database, but it’s function-
ing essentially as a test double for the real database. You aren’t testing the real
database.

■ You must keep the SQL for the real and embedded databases in sync. This can
be painful if there are lots of database changes. One approach to dealing with
this is to start off using only an embedded database (not only for the integra-
tion tests but also for the app) while the schema is still under heavy develop-
ment. As schema changes slow down, introduce a real database on the app side.

■ Embedded databases may not support all the features you’d expect to see from
a non-embedded database. HSQL 1.8.x, for example, supports only READ
UNCOMMITTED transaction isolation. (HSQL 2 supports the READ COMMITTED and
SERIALIZABLE isolation levels as well.)

Our preference is to run integration tests against a local, nonembedded test database,
mostly because we prefer to include the database in the scope of our integration test-
ing, but you may find the embedded-database option useful.

10.7 Summary
That concludes our tour of the Spring TestContext framework. It’s well-known that
Spring’s dependency injection lends to designs that are easy to unit-test. In this chap-
ter, you’ve seen that Spring additionally provides several features to make integration
testing simple and effective.

 For more information about testing (including integration testing), check out Effec-
tive Unit Testing: A Guide for Java Developers by Lasse Koskela (Manning, 2013) or Test
Driven: TDD and Acceptance TDD for Java Developers by Lasse Koskela (Manning, 2007).
www.it-ebooks.info

http://www.it-ebooks.info/

Building a configuration
management database
If you work with a technical infrastructure of any size, you may have run into a vari-
ety of common issues:

■ Poor visibility into system configuration—It may be difficult to know exactly what’s
deployed, which apps live on which servers, who to call when apps fail, and so
on. When multiple teams are involved (for example, multiple development
and operations teams), they may not have the same way of referring to appli-
cations, making communication, planning, and incident response difficult.

This chapter covers
■ Creating a configuration database using Spring Data

Neo4j
■ Enabling REST web services using JSON and XML
■ Invoking web services using the Maven deployment

plug-in
■ Accessing GitHub using Spring Social and OAuth 2

authorization
■ Using Spring Security to encrypt GitHub access tokens
338

www.it-ebooks.info

http://www.it-ebooks.info/

339
■ Configuration drift—Things aren’t configured the way you expect them to be.
This could include servers that are supposed to match but don’t, firewall ports
being closed when they should be open, and so forth.

■ Manual change processes—Deploying software, for example, involves a large team
performing manual releases late at night. Because they’re manual, they take a
long time, it’s easy to miss steps (such as forgetting to update a configuration
file on one of the servers), some team members may be absent, and so on. Man-
ual change processes are a major contributor to configuration drift.

■ Rogue changes—Another major cause of configuration drift, rogue changes are
changes that somebody makes outside the official change process. Perhaps
someone needs a firewall port opened and emails his networking buddy, who
opens the port without logging the change, without making the corresponding
change in other environments, without a proper security review, and so on.

■ Inability to reset to a known state—It’s important to be able to reset your environ-
ment, or elements of your environment, to a known good state. Examples
include testing (tests should run against a known state), adding capacity to a
farm (new servers should have the same configuration as existing servers),
disaster recovery (DR environment requires standing up servers according to a
known configuration), and more.

■ VM sprawl—VM costs are running out of control because people create VMs as if
they’re free, without harvesting unused capacity.

These issues are a small sample of those that arise without proper configuration man-
agement in place. Configuration management is a set of practices around ensuring that
you have good visibility into and control over the technology assets (infrastructure,
middleware, apps, and so on) underlying your services. When the technology footprint
is smaller, it’s certainly possible (although arguably still not best practice) to use man-
ual deployment and release processes, to make changes in the environment as they’re
needed, to document configuration information on a wiki, to build new servers from
wiki documents, and so forth. But once there are hundreds or even thousands of serv-
ers in place, the approaches that work in smaller environments don’t scale.

 In sum, configuration management is useful for any organization wanting visibility
and control over its technology, and it becomes more and more essential as your tech-
nology footprint scales up.

 This chapter shows how Willie is using Spring to implement several features in an
open source configuration management database (CMDB) called Zkybase1 (http://
zkybase.org/). A CMDB serves as the foundation for a more general configuration
management capability by supporting data, tool, and process integration. In particu-
lar, it supports various sorts of automation, including build, test, deployment, and
operations automation.

1 The app is currently called Zkybase, but its former name was Skybase. It appears as “Skybase” in the various
figures in this chapter.
www.it-ebooks.info

http://zkybase.org/
http://zkybase.org/
http://www.it-ebooks.info/

340 CHAPTER 11 Building a configuration management database
 Figure 11.1 is an architectural overview of a hypothetical configuration management
system.2 In this diagram, imagine that we want a code commit to result in an automatic
deployment to a development environment. The architecture and use case are just one
possibility among many; the point is to highlight the foundational role that a CMDB plays
in such a system.

2 The Heliopolis team at the Apollo Group, of which Willie was delighted to be a member, established a
configuration management architecture along these lines. Thus this is more than a purely hypothetical
architecture.

Figure 11.1 A hypothetical configuration management architecture built around a CMDB,
supporting auto-deployment to dev servers on commit
www.it-ebooks.info

http://www.it-ebooks.info/

341
Let’s review the individual steps in the diagram:

1 The developer makes any necessary updates to the CMDB and to the app config-
uration. For the CMDB, this might include specifying instance IP addresses (in
cases where instances already exist) or the desired number of instances (in cases
where instances will be launched as part of the deployment). For app configura-
tion, this could be anything you typically see in an app configuration, such as set-
ting passwords, setting log levels, adding security rules, and so on. Usually the
developer doesn’t need to do anything here because the configuration is already
in place from previous deployments.

2 The developer commits the code to a source control, such as Subversion or Git.
3 This triggers a build on the continuous-integration server, such as Jenkins or

Bamboo.
4 Assuming the build succeeds (compiles, tests pass), Maven pushes the new

snapshot build into the Maven package repository, such as Nexus or Artifactory.
It also updates the CMDB with information about the new package.

5 With the build complete, Maven initiates the deployment.
6 The deployment engine grabs the package and configuration (both the app

configuration and the general environmental configuration) from the relevant
repositories.

7 The deployment engine pushes the assets across the WAN to a staging reposi-
tory sitting at the target site.

8 The deployment engine requests instances from the compute provider, such as
Amazon EC2.

9 The compute provider launches the instances.
10 As the instances come up, they grab the required assets from the staging reposi-

tory and then perform the required installation and configuration.3

11 The deployment engine updates the CMDB with information about the deploy-
ment (for example, the IP addresses of any instances that were newly provisioned).

Again, this is just one use case. There are lots of others, such as self-service deploy-
ments to development and test environments, continuous delivery, and runbooks that
source data from the CMDB.

3 Alternatively, the deployment engine can push a bootstrapper onto the instance, which then takes care of get-
ting the assets from the staging repo.

Important: This chapter uses Spring 3.1
The other chapters in this book are based on Spring 3.0, but this one is based on
Spring 3.1. Spring 3.1 was released as we were drawing the book to a close, and it
includes new features that we wanted to present. This chapter presents several of
those, including new MVC namespace configuration elements, producible and con-
sumable media types, constructor injection, and profiles. We’ll call out the new fea-
tures as we use them.
www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 11 Building a configuration management database
There’s a ton to cover, so let’s dive right into establishing the foundation for the entire
system: the configuration management database.

11.1 Creating a simple configuration item
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Framework 3.1, Neo4j, Spring Data Neo4j

Background

A CMDB centralizes system configuration, broadly conceived, in a way that enhances vis-
ibility, security, and management. Although there isn’t a single, universally agreed-on
definition, the general concept is that it manages the so-called configuration items (CIs)
that allow you to keep your environments in an operational steady state, and also to man-
age changes to those environments. CIs can be anything you want to manage in this con-
text: an entire data center can be a CI, as can an individual NIC on a physical server.

 A CMDB isn’t necessarily a single physical database, and there’s nothing saying that
it has to be a relational database or any other type of technology. It’s more conceptual:
it brings together the configuration necessary to stand up and maintain your technical
environment. Strictly speaking, the app configuration repository in figure 11.1 is part
of this logical CMDB concept because it contains configuration of the sort under dis-
cussion. But for present purposes we’ll separate the environmental configuration from
the app configuration, and we’ll generally use the term CMDB to refer to the former.

 Centralizing configuration is hugely
useful. It’s easiest to see this by contrast-
ing it with in-place configuration “man-
agement” as shown in figure 11.2.

 Because there’s no gold copy of the
configuration for a given set of server
instances, the deployer has to go onto
each server and update the configuration
manually. In addition to being laborious
(especially if you have farms that are
many servers wide), it’s also highly error
prone. It’s easy to make a single-character
password mistake when you’re slogging
through a late-night release window with
10 more app releases to go.

 Instead, we prefer to adopt an approach more like the one in figure 11.3 where we
have a different situation. The deployer updates a single configuration master in the
CMDB (or app config repo; in this case we’re using the term CMDB more generically),
and then the automation deploys it. Although it’s certainly possible for the deployer

Figure 11.2 The deployer updates configuration
in place on all target servers, requiring lots of man-
ual, error-prone work. Not a best practice.
www.it-ebooks.info

http://www.it-ebooks.info/

343Creating a simple configuration item
to make a mistake, it’s no longer possible for the configuration copies to be out of
sync. If there’s a mistake, all instances will have it, and a single fix will fix all instances.
Centralization has therefore eliminated an important source of configuration drift.

 Security is better here, too. Firewall rules (at least in environments where you need
the control) prevent anybody other than the deployment automation from getting on
the target servers. You can place appropriate access controls and auditing at the CMDB
to ensure that only authorized activity takes place.4

Problem

Implement a simple CI for a CMDB.

Solution

In this solution, we’ll show how to build some pieces of the Zkybase CMDB (http://
github.com/williewheeler/zkybase), which is based on Neo4j and Spring Data Neo4j.
Specifically, you’ll build your first CI—a simple, relationship-free application CI—
along with an associated data access object.

4 We don’t discuss CMDB security in this chapter, but see chapters 6 and 7 for information on adding access
controls.

Figure 11.3 The deployer edits the configuration in one place, and then the automation
pushes it through to the target servers.

What is Neo4j?
Neo4j (http://neo4j.org/) is an open source graph database, which falls under the
general rubric of NoSQL databases. Unlike many of the other NoSQL databases,
Neo4j is fully transactional. Just as with relational databases, you want to represent
entities and relationships, but instead of using tables, columns, foreign keys, and
such, you use graph nodes and edges.
www.it-ebooks.info

http://github.com/williewheeler/zkybase
http://github.com/williewheeler/zkybase
http://neo4j.org/
http://www.it-ebooks.info/

344 CHAPTER 11 Building a configuration management database
Because you’ll build several CIs (one in this recipe and more in the next), you’ll build
out some framework code in this recipe to make subsequent CIs easier to implement.
Let’s begin with that groundwork.

CREATING A CI ABSTRACTION AND BASE CI

Even though we’re only looking at the application CI here, your CMDB will have lots of
different CI types, so it’s sensible to define an appropriate abstraction. The following
listing is the simple CI interface.

package com.springinpractice.ch11.model;

import java.util.Date;

public interface CI<T extends CI<T>> extends Comparable<T> {

 Long getId();

 void setId(Long id);

 Date getDateCreated();

 void setDateCreated(Date dateCreated);

 Date getDateModified();

 void setDateModified(Date dateModified);

 String getDisplayName();
}

You need a base class for implementation as well, as shown next.

package com.springinpractice.ch11.model;

import java.util.Date;
import org.springframework.data.neo4j.annotation.GraphId;
import org.springframework.data.neo4j.annotation.NodeEntity;

@NodeEntity
public abstract class AbstractCI<T extends CI<T>> implements CI<T> {

Listing 11.1 CI.java: the CI interface

Listing 11.2 AbstractCI: a base class for implementing CIs

(continued)
Neo4j is schema-free. You can add nodes and edges to the database without worrying
about database schema conflicts. (Alternatively, you have to worry about the schema
in the app, because the database won’t help.) This is particularly nice for a CMDB,
which often has a rich set of entities and relationships that evolve over time to support
maturing development and operational processes. It’s easier to make the correspond-
ing changes to the underlying data when there isn’t an explicit schema in the way.

It’s beyond our scope to get into a detailed discussion of Neo4j (there’s just too much
for us to cover here), but have a look at the Neo4j website for more information.

Marks CI as
node entity

B

www.it-ebooks.info

http://www.it-ebooks.info/

345Creating a simple configuration item
 @GraphId private Long id;
 private Date dateCreated;
 private Date dateModified;

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 ... accessors for dateCreated and dateModified ...

 ... equals(), hashCode(), compareTo() ...
}

Your abstract CI uses annotations from the Spring Data Neo4j project to help perform
the object/graph mapping. With Neo4j, you usually represent entities with nodes, and
in such cases you use @NodeEntity B to accomplish such a mapping.5 You also need
to tell Spring Data Neo4j which field you want to serve as an identifier, and you do that
using @GraphId C.

Now that you have a simple interface and abstract base class, let’s implement the
application CI.6

CREATING THE APPLICATION CI

The next listing shows how to create an application CI using the AbstractCI class you
just created.

package com.springinpractice.ch11.model;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.springframework.data.neo4j.annotation.Indexed;

public class Application extends AbstractCI<Application> {
 @Indexed private String name;
 private String shortDescription;

 @NotNull
 @Size(max = 80)
 public String getName() { return name; }

5 In other cases, it’s useful to represent an entity with an edge. An example might be a membership entity in a
team roster, where you have a relationship between a person and a team, along with an additional role attri-
bute attaching to the membership. Spring Data Neo4j provides @RelationshipEntity for that. You’ll see
this in recipe 11.2.

6 You’ll also see Spring Data MongoDB in chapter 12.

Listing 11.3 Application.java: the application CI

Annotates
entity IDC

What is Spring Data Neo4j?
In chapter 2 we glanced at Spring Data JPA.6 Spring Data Neo4j is another Spring Data
project, but this time for Neo4j databases. It offers a data-access API, the ability to
generate dynamic DAO implementations, and annotations for mapping Java objects
to Neo4j graphs. See www.springsource.org/spring-data/neo4j for more information.

Extends
base class

B

Indexed for
lookupsC
www.it-ebooks.info

www.springsource.org/spring-data/neo4j
http://www.it-ebooks.info/

346 CHAPTER 11 Building a configuration management database

B

 public void setName(String name) { this.name = name; }

 @Size(max = 200)
 public String getShortDescription() { return shortDescription; }

 public void setShortDescription(String shortDescription) {
 this.shortDescription = shortDescription;
 }
 public String getDisplayName() {
 return “Application”;
 }
}

Obviously this isn’t an especially robust application model. You have only a couple of
properties and no relationships at all. But that’s OK, because you’re just getting
started. The main point is that you extend the AbstractCI base class B. This makes
Application an @NodeEntity and endows it with an @GraphId.

 You also index the name property using Spring Data Neo4j’s @Indexed annota-
tion C. This will allow you to perform name-based lookups.

 Next you’ll want a DAO for CRUD operations and queries. Spring Data Neo4j pro-
vides a way to generate DAOs dynamically using the GraphRepository abstraction.

CREATING THE APPLICATION DAO

The following listing creates ApplicationRepository, which is your DAO for persis-
tence operations on applications.

package com.springinpractice.ch11.repository;

import com.springinpractice.ch11.model.Application;
import org.springframework.data.neo4j.repository.GraphRepository;

public interface ApplicationRepository
 extends GraphRepository<Application> {

 Application findByName(String name);
}

This listing shows how simple it is to create a DAO using Spring Data Neo4j. All you
have to do is create an interface extending GraphRepository<Application> B,
which provides various CRUD methods and finders. You can even define a custom
finder C using method-naming conventions. Spring Data Neo4j generates a DAO
implementation dynamically for you, including the custom finder.

 There’s only one more thing left to do, and that’s the configuration.

SPRING CONFIGURATION

To make the magic work, you need some configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"

Listing 11.4 ApplicationRepository.java: the DAO interface

Listing 11.5 beans-service.xml configuration

Extends
GraphRepository<Application>

Custom
finder

C

www.it-ebooks.info

http://www.it-ebooks.info/

347Creating related configuration items

s
 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/data/neo4j
 http://www.springframework.org/schema/data/neo4j/

➥ spring-neo4j-2.0.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />
 <context:annotation-config />

 <neo4j:config storeDirectory="${graphDb.dir}" />
 <neo4j:repositories
 base-package="com.springinpractice.ch11.repository" />
</beans>

At B you tell Spring where to find the Neo4j database. This is a full file path to the
database, such as /Users/williewheeler/dev/neo4j/zkybase/db.7 Then you use C to
scan a base package for GraphRepository implementations, from which Spring Data
Neo4j generates implementations dynamically.

 With that, you’ve created your first Neo4j-backed CI and repository.

Discussion

In this recipe you got your feet wet with Spring Data Neo4j, creating a simple CI and
a simple DAO for performing persistence operations. Although everything you’ve
done has been straightforward, you have the basis for a powerful way of working with
CMDB data.

 Recipe 11.2 builds on the work you did here by elaborating both the data model
and the application stack.

11.2 Creating related configuration items
PREREQUISITES

Recipe 11.1 Creating a simple configuration item

KEY TECHNOLOGIES

Spring Framework 3.1, Neo4j, Spring Data Neo4j

Background

In recipe 11.1 you created a simple application CI. But real CIs aren’t quite so simple:
they generally have relationships to other CIs. Applications, for example, can have

7 It’s also possible to run Neo4j as a standalone server, but we’re not pursuing that deployment approach here.

Points to
database

B

Generates DAO
dynamicallyC
www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 11 Building a configuration management database

Rea
modules, which in turn have associated packages. To do anything useful with your
CMDB, you need to know how to create relationships between your CIs.

Problem

Create additional CIs, supporting relationships.

Solution

To illustrate a variety of techniques for creating relationships, you’ll create CIs for
modules, packages, and teams. In this recipe you’ll lay down the code for the
expanded domain model. After that, you’ll create the DAOs as well, because you’ll
need them for subsequent recipes. Finally, with the persistence layer in place, you’ll
create a transactional service layer for your CIs.

ENHANCING THE APPLICATION CI TO SUPPORT RELATIONSHIPS

First, your application CI now has a one-many relationship to a new module CI and a
many-many relationship to a new team CI. The following listing shows how you can
establish the relationships in question. (You’ll see the new CIs shortly.)

package com.springinpractice.ch11.model;

import java.util.Set;
import javax.validation.Valid;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.neo4j.graphdb.Direction;
import com.springinpractice.ch11.model.relationship.ApplicationTeam;
import org.springframework.data.neo4j.annotation.Indexed;
import org.springframework.data.neo4j.annotation.RelatedTo;
import org.springframework.data.neo4j.annotation.RelatedToVia;

public class Application extends AbstractCI<Application> {
 @Indexed private String name;
 private String shortDescription;

 @RelatedTo(type = "APPLICATION_MODULE",
 direction = Direction.OUTGOING)
 private Set<Module> modules;

 @RelatedToVia(direction = Direction.OUTGOING)
 private Set<ApplicationTeam> teams;

 ... same name and shortDescription accessors as before ...

 public Set<Module> getModules() { return modules; }

 public void setModules(Set<Module> modules) { this.modules = modules; }

 public Iterable<ApplicationTeam> getTeams() { return teams; }

 public ApplicationTeam addTeam(Team team,
 ApplicationTeam.TeamType type) {

 ApplicationTeam appTeam = new ApplicationTeam(this, team, type);

Listing 11.6 Expanding Application.java to support relationships

Relates app
to modules

B

Relates app
to teams

C

d/write
Set

D ERead-only
Iterable

Method to add teamsF
www.it-ebooks.info

http://www.it-ebooks.info/

349Creating related configuration items
 teams.add(appTeam);
 return appTeam;
 }
 public String getDisplayName() { return name; }
}

You relate applications to modules using the Spring Data Neo4j @RelatedTo annota-
tion B. This involves choosing a name for the relationship type; here you choose
APPLICATION_MODULE.

 In Neo4j, you model relationships between entities as directed edges in a graph.8

Because the edges are directed, one end of the edge is the start node and the other
end is the end node. The direction doesn’t carry any inherent semantic significance.
It’s up to the app either to impose a meaning or to ignore the directionality, although
all Neo4j edges are directed. The direction = Direction.OUTGOING indicates that
applications appear as start nodes in this particular relationship; direction = Direc-
tion.INCOMING would indicate an end node. The default value is Direction.OUTGO-
ING if you don’t specify a direction, but here you’ve been explicit.

At C you have another relationship, this time between applications and teams. But
notice that the definition here looks slightly different than the definition in B. For
one thing, you’re using the Spring Data Neo4j @RelatedToVia annotation instead of
@RelatedTo. For another, you haven’t defined a relationship type. What’s going on?

 In this case you’re dealing not with a simple relationship but with a relationship
entity. A relationship entity is a relationship that exists as a first-class entity with an
explicit class definition. In this case, what’s happening is that you’re relating the
Application CI with a Team CI through a relationship entity called ApplicationTeam.
The main use case for relationship entities is that you can attach properties to the rela-
tionship. You’ll see in listing 11.7 that you can assign a team type to the relationship: a
given app might have a development team, a test team, a release team, and an ops
team. Another example might be a role property on the relationship between a team
and a person.

 A second use case for relationship entities would be wanting to have a way to con-
nect two entities without either one knowing about the other. For example, you might
want to constrain individual apps to be deployable to specific server farms, but you
might not want apps to know about server farms and vice versa. Relationship entities
are useful here even if you don’t have any properties defined on the relationship.

8 In fact, Neo4j refers to such edges as relationships, as opposed to saying that edges represent relationships.

Naming relationship types
Note that relationship types need unique names. If, for example, you have a relation-
ship called CONTAINS between an application and a module, you can’t have another
relationship called CONTAINS between a server farm and a server.
www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 11 Building a configuration management database
 When dealing with relationship entities, you still need a type. You can specify that
either in the @RelatedToVia annotation (using @RelatedToVia(type = "SOME_TYPE"))
or in the relationship entity class itself. In the present case, we’ve opted to specify the
type in the relationship entity class; see listing 11.7.

 At D you have the getter for modules. Spring Data Neo4j allows you to use either a
Set or an Iterable, depending on whether you want the collection to be read/write
or read-only. (Unfortunately, Lists are unsupported.) You use a Set here so you can
add modules directly.

 For teams, you use the read-only Iterable instead E. You certainly could use a
Set, but instead we opted to provide a convenient addTeam() method F to avoid forc-
ing your API users to create ApplicationTeam instances themselves. The addTeam()
method creates the ApplicationTeam instance and returns it in case the caller wants
to do anything with it.

 The following CIs are more of the same, but with variants on how you establish
relationships.

BUILDING OUT THE OTHER CIS AND THEIR RELATIONSHIPS

The next CI is a module. Modules provide a way to decompose an application into its
package-producing parts. A given app might have, for instance, a web module (gener-
ates WARs containing web app/service combo), a client module (client for the web
service, packaged as a JAR), and a domain module (domain classes shared by the web
and client modules, once again packaged as a JAR). Again, these are just examples.
Here’s how your module looks.

package com.springinpractice.ch11.model;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.springframework.data.neo4j.annotation.Indexed;

public class Module extends AbstractCI<Module> {
 private String name;
 private String shortDescription;

 @Indexed private String groupId;
 @Indexed private String moduleId;

 @NotNull
 @Size(max = 80)
 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 @Size(max = 200)
 public String getShortDescription() { return shortDescription; }

 public void setShortDescription(String shortDescription) {
 this.shortDescription = shortDescription;
 }

Listing 11.7 Module.java, representing a module of code

Extends
AbstractCI

B

Index supports
queriesC
www.it-ebooks.info

http://www.it-ebooks.info/

351Creating related configuration items
 public String getGroupId() { return groupId; }

 public void setGroupId(String groupId) { this.groupId = groupId; }

 public String getModuleId() { return moduleId; }

 public void setModuleId(String moduleId) { this.moduleId = moduleId; }

 ... compareTo(), toString() ...

 public String getDisplayName() { return name; }
}

As with the application CI, you extend AbstractCI B from listing 11.2. You also anno-
tate the groupId and moduleId fields with @Indexed C, which will allow you to per-
form lookups against them later.

 Notice that even though there’s a relationship between applications and modules
(you established it in your application CI), your module doesn’t know anything about
applications. The reason is that you might want to allow CIs beyond applications to
have modules: you might define, for example, a WebService CI that has modules. If
you were to do that, you wouldn’t want the module to know directly about applica-
tions and web services. Spring Data Neo4j allows you to establish a relationship from a
single side.9

 The following listing shows the next CI: the package. A package is a JAR, a WAR, an
EAR, and so forth, and it’s the result of building a module. As such, it references a
module, but it has a specific version too.

package com.springinpractice.ch11.model;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import org.neo4j.graphdb.Direction;
import org.springframework.data.neo4j.annotation.Fetch;
import org.springframework.data.neo4j.annotation.Indexed;
import org.springframework.data.neo4j.annotation.RelatedTo;

public class Package extends AbstractCI<Package> {

 @Fetch
 @RelatedTo(type = "FROM_MODULE", direction = Direction.OUTGOING)
 private Module module;

 @Indexed private String version;

 @NotNull
 public Module getModule() { return module; }

 public void setModule(Module module) { this.module = module; }

 @NotNull
 @Size(min = 1, max = 80)
 public String getVersion() { return version; }

9 It’s not unlike other object persistence frameworks, such as Hibernate, in this respect.

Listing 11.8 Package.java, representing a module package

Eager-loads
module

B

Indexes
versionC
www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 11 Building a configuration management database
 public void setVersion(String version) { this.version = version; }

 ... compareTo(), toString() ...

 public String getDisplayName() {
 return “Package”;
 }
}

The previous listing demonstrates the use of the @Fetch annotation B, which eagerly
loads the field so annotated. In this case, it makes sense to do so, because there aren’t
many (if any) contexts in which a module-free package would be useful. Once again,
you use @Indexed C to make the field available as a key for performing lookups.

 Now that your apps have modules and packages, let’s switch gears and create a
team CI that you can attach to your apps. The intent is to establish a many-many rela-
tionship between applications and teams. The next listing is a basic team CI, having
nothing more than a name (for example, Zkybase Development Team or Zkybase
Operations Team). A real team CI would have team members, but we’re suppressing
those here because you don’t need them for the current purpose.

package com.springinpractice.ch11.model;

import javax.validation.constraints.Size;
import org.springframework.data.neo4j.annotation.Indexed;

public class Team extends AbstractCI<Team> {

 @Indexed(indexType = IndexType.FULLTEXT, indexName="findByName")
 private String name;

 @Size(max = 80)
 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 // compareTo and equals

 public String getDisplayName() { return name; }
}

Even though you want applications and teams to be related, notice that neither the
application CI nor the team CI knows anything about the other. The reason is that
whenever you relate an app to a team, you want to attach a team type to qualify the
relationship. For this, you’ll need a separate entity—a relationship entity—that allows
you to represent not only the two related CIs, but also the type attribute.

package com.springinpractice.ch11.model.relationship;

import com.springinpractice.ch11.model.Application;
import com.springinpractice.ch11.model.Team;
import org.springframework.data.neo4j.annotation.EndNode;

Listing 11.9 Team.java, with team members suppressed

Listing 11.10 ApplicationTeam.java relationship entity
www.it-ebooks.info

http://www.it-ebooks.info/

353Creating related configuration items
import org.springframework.data.neo4j.annotation.Fetch;
import org.springframework.data.neo4j.annotation.GraphId;
import org.springframework.data.neo4j.annotation.RelationshipEntity;
import org.springframework.data.neo4j.annotation.StartNode;

@RelationshipEntity(type = "APPLICATION_TEAM")
public class ApplicationTeam {
 public enum TeamType {
 DEVELOPMENT(),
 OPERATIONS();

 }

 private String name;

 private TeamType(String name) { this.name = name; }

 public String toString() { return name; }

 @GraphId private Long id;
 @Fetch @StartNode private Application application;
 @Fetch @EndNode private Team team;
 private TeamType type;

 public ApplicationTeam() { }

 public ApplicationTeam(
 Application application, Team team, TeamType type) {

 this.application = application;
 this.team = team;
 this.type = type;
 }

 public Application getApplication() { return application; }

 public void setApplication(Application application) {
 this.application = application;
 }

 public Team getTeam() { return team; }

 public void setTeam(Team team) { this.team = team; }

 public TeamType getType() { return type; }

 public void setType(TeamType type) { this.type = type; }

 ... equals(), hashCode(), toString() ...
}

This entity, unlike the previous ones, represents a relationship between CIs, so you use
the @RelationshipEntity annotation to reflect that B. In this case you’re assuming
that only two types of teams are available, so you create a typesafe enum for the team
type C.

 Like all Neo4j relationships, this one is directed. It doesn’t matter which CI is the
start node and which is the end node. Here, you choose Application to be the
@StartNode D, and you eagerly fetch it. Similarly, Team is the @EndNode E, and you
eagerly fetch that as well.

Annotates as a
relationship entityB

Team type
enumC

Fetches
start node

D

Fetches
end nodeE
www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 11 Building a configuration management database
TIP The current example uses relationship entities to support attributes on
the relationship. But relationship entities are useful in at least one other situ-
ation: when you want to decouple the two node entities in question. Suppose,
for example, that you want a many-many relationship between packages and
server farms, where a package and a farm are related if the package is deployed
to the farm. It may be that you don’t want packages to know about farms and
vice versa. Here you could create a PackageFarm relationship entity to establish
the relationship, even if PackageFarm doesn’t have any additional attribute.

You’ve seen a variety of relationship scenarios with your small stable of CIs. Let’s create
some DAOs for the CIs.

CREATING DAOS FOR THE NEW CIS

You’ll create DAOs for modules and packages, because you’ll need those later in the
chapter. Your first DAO is the ModuleRepository.

package com.springinpractice.ch11.repository;

import com.springinpractice.ch11.model.Module;
import org.springframework.data.neo4j.annotation.Query;
import org.springframework.data.neo4j.repository.GraphRepository;

public interface ModuleRepository extends GraphRepository<Module> {

 @Query("start module=node:

➥ __types__('className=com.springinpractice.c11.model.Module')

➥ where module.groupId={0} and module.moduleId={1}

➥ return module")
 Module findByGroupIdAndModuleId(String groupId, String moduleId);
}

As with the ApplicationRepository, you have a custom finder B. This time you find
a module based on two properties.

 The next listing shows the DAO for packages.

package com.springinpractice.ch11.repository;

import java.util.List;
import com.springinpractice.ch11.model.Module;
import com.springinpractice.ch11.model.Package;
import org.springframework.data.neo4j.annotation.Query;
import org.springframework.data.neo4j.repository.GraphRepository;

public interface PackageRepository extends GraphRepository<Package> {

 @Query("start module=node({0}) match package-[:FROM_MODULE]->module
return package")

 List<Package> findByModule(Module module);

Listing 11.11 ModuleRepository.java

Listing 11.12 PackageRepository.java

Custom
finder

B

Finds
packages
by moduleB
www.it-ebooks.info

http://www.it-ebooks.info/

355Creating related configuration items
 @Query("start module=node({0}) match package-[:FROM_MODULE]->module where
package.version = {1} return package")

 Package findByModuleAndVersion(Module module, String version);
}

As with the DAOs, you have two custom finders: one to find a list of packages for a given
module B and one to find a specific package for a given module and version C.

 It’s time to create a service layer for your CIs. This will allow you to add transac-
tions, and it will let you execute certain bits of business logic. As with your CIs, there
are several service beans, so you’ll want to have useful abstractions in place.

CREATE A SERVICE ABSTRACTION AND BASE SERVICE

The following listing shows the interface for your CI service beans.

package com.springinpractice.ch11.service;

import java.util.List;
import com.springinpractice.ch11.model.CI;
import org.springframework.validation.Errors;

public interface CIService<T extends CI<T>> {

 void create(T ci);

 void create(T ci, Errors errors);

 List<T> findAll();

 T findOne(Long id);

 void update(T ci, Errors errors);

 void delete(T ci);

 void delete(Long id);
}

Your CI service interface exposes various CRUD operations, although individual ser-
vices can, of course, add more specific methods. The GraphRepository interface
exposes a save() method to handle creates and updates, but here you distinguish
the two because you can more conveniently target RESTful POSTs and PUTs that way. We
also include versions of create() B and update() C to support validation, such as
flagging duplicate CIs for creates or nonexistent CIs for updates.

 You’ll want a base class for implementing CI service beans, and that’s what the next
listing provides.

package com.springinpractice.ch11.service.impl;

import java.util.Date;
import java.util.List;

Listing 11.13 CIService.java service interface

Listing 11.14 AbstractCIService.java: base class for CI service beans

Finds package by
module and version C

Creates support
validation

B

Updates support
validationC
www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 11 Building a configuration management database
import javax.inject.Inject;
import com.springinpractice.ch11.exception.DuplicateCIException;
import com.springinpractice.ch11.exception.NoSuchCIException;
import com.springinpractice.ch11.model.CI;
import com.springinpractive.ch11.service.CIService;
import com.springinpractice.ch11.util.CollectionsUtil;
import org.springframework.data.neo4j.repository.GraphRepository;
import org.springframework.data.neo4j.support.Neo4jTemplate;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.validation.Errors;

@Transactional
public abstract class AbstractCIService<T extends CI<T>>
 implements CIService<T>

 @Inject protected Neo4jTemplate neo4jTemplate;

 protected abstract GraphRepository<T> getRepository();

 public void create(T ci) { createAddDate(ci); }

 public void create(T ci, Errors errors) {
 if (!errors.hasErrors()) {
 try {
 createAddDate(ci);
 } catch (DuplicateCIException e) {
 errors.reject("error.duplicateCI");
 }
 }
 }

 private void createAddDate(T ci) {
 checkForDuplicate(ci);
 ci.setDateCreated(new Date());
 getRepository().save(ci);
 }

 protected void checkForDuplicate(T ci) { }

 public List<T> findAll() {
 return CollectionsUtil.asSortedList(getRepository().findAll());
 }

 public T findOne(Long id) {
 T ci = getRepository().findOne(id);
 if (ci == null) { throw new NoSuchCIException(); }
 return ci;
 }

 public void update(T ci) { updateAddDate(ci); }

 public void update(T ci, Errors errors) {
 if (errors == null || !errors.hasErrors()) {
 updateAddDate(ci);
 }
 }

 private void updateAddDate(T ci) {
 ci.setDateModified(new Date());
 getRepository().save(ci);

Enables
transaction

B

Template for
subclasses

C

Subclasses
provide repoD

Subclasses check
for duplicates

E

www.it-ebooks.info

http://www.it-ebooks.info/

357Creating related configuration items
 }

 public void delete(T ci) { getRepository().delete(ci); }

 public void delete(Long id) { getRepository().delete(id); }
}

You annotate the base class with @Transactional B to ensure that you run your ser-
vice methods in a transactional context. (Neo4j supports full ACID transactions.)

 At C you inject a Neo4jTemplate, which subclasses can use because it has protected
visibility. This provides a programmatic interface for performing fine-grained persis-
tence operations against the Neo4j database, which sometimes comes in handy.10

 Subclasses must expose their backing repository through the getRepository()
abstract method D. This allows the AbstractCIService to implement general CRUD
operations against the repository, as the listing shows.11

 Subclasses may optionally implement the checkForDuplicate() method E. The
contract here is to throw a DuplicateCIException (see the code download) if the CI
already exists in the database. The default implementation is a no-op.

 You can see the service interface and base class in action by implementing a pack-
age service, which you’ll use in some of the following recipes.

CREATING A PACKAGE SERVICE

You implement a package service interface in the following listing. It’s little more than
a wrapper interface around the package repository you created earlier.

package com.springinpractice.ch11.service;

import java.util.List;
import com.springinpractice.ch11.model.Module;
import com.springinpractice.ch11.model.Package;

public interface PackageService extends CIService<Package> {

 List<Package> findByModule(Module module);

 Package findByModuleAndVersion(Module module, String version);
}

The implementation is more or less obvious.

package com.springinpractice.ch11.service.impl;

import java.util.List;
import javax.inject.Inject;
import com.springinpractice.ch11.exception.DuplicateCIException;
import com.springinpractice.ch11.model.Module;

10 The template has, for example, a fetch() method that helps when implementing programmatic eager
loading.

11 Due to type erasure, you can’t inject a GraphRepository<T>.

Listing 11.15 PackageService.java

Listing 11.16 PackageServiceImpl.java service bean
www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 11 Building a configuration management database

y

import com.springinpractice.ch11.model.Package;
import com.springinpractice.ch11.repository.PackageRepository;
import com.springinpractice.ch11.service.PackageService;
import org.springframework.data.neo4j.repository.GraphRepository;
import org.springframework.stereotype.Service;

@Service
public class PackageServiceImpl extends AbstractCIService<Package>
 implements PackageService {

 @Inject private PackageRepository packageRepo;

 protected GraphRepository<Package> getRepository() {
 return packageRepo;
 }

 protected void checkForDuplicate(Package pkg) {
 Package duplicate = packageRepo.findByModuleAndVersion(
 pkg.getModule(), pkg.getVersion());
 if (duplicate != null) {
 throw new DuplicateCIException(pkg);
 }
 }

 public List<Package> findByModule(Module module) {
 return packageRepo.findByModule(module);
 }

 public Package findByModuleAndVersion(Module module, String version) {
 return packageRepo.findByModuleAndVersion(module, version);
 }
}

At B you inject the PackageRepository. This gives the PackageService access to the
custom finder methods you specified. You expose it as a GraphRepository<Package> C
so the base class can make calls against it.

 You implement a custom duplicate-check method D, throwing an exception if a
lookup by module and version yields an existing package.

 Zkybase has other service beans, but this should be enough to give you a sense for
what they do and how to implement them. Don’t forget to add a <context:component-
scan> to beans-service.xml to capture the new service bean.

Discussion

Recipe 11.2 continued our exploration of using Neo4j and Spring Data Neo4j to
implement a CMDB domain model. In recipe 11.1 you created a basic CI and a corre-
sponding repository. In the current recipe, you elaborated the model to include more
CIs, relationships between them, more repositories, and transactional service beans.
Although this treatment merely scratches the surface of what a fully fledged CMDB
offers, it’s enough to equip you to build your own domain models and services.

 In the next recipe, you expose your package data through a RESTful web service.

Injects
PackageRepositor

B

Expose to
base classC

Dupe check D
www.it-ebooks.info

http://www.it-ebooks.info/

359Adding a RESTful web service
11.3 Adding a RESTful web service
PREREQUISITES

Recipe 11.1 Creating a simple configuration item
Recipe 11.2 Creating related configuration items

KEY TECHNOLOGIES

Spring Framework 3.1, Spring Web MVC, XML, JAXB 2, JSON, Jackson

Background

One of the major points of a CMDB is to enable the process, tools, and data integra-
tion that support a mature operational capability. Web services are helpful for tying
systems together. This recipe shows how you can expose configuration management
data through a RESTful web service.

Problem

Expose configuration management data through a RESTful web service, supporting
both XML and JSON.

Solution

In recipe 11.2 we showed how to create a simple package CI for your CMDB, with a focus
on data modeling and persistence. What’s missing is a web service view. This is important
because you want to make it possible to create automation around packages:

■ The continuous-integration build automation needs to be able to create pack-
age records in the CMDB following successful builds.

■ The deployment automation needs to be able to see which packages are avail-
able for deployment.

You’ll create both XML and JSON representations for your packages because both for-
mats are popular and because it’s easy to support them both. This will require a few steps.
First, you need to annotate your package and module CIs with JAXB annotations. (Recall
that packages reference modules, so you need to take care of the module mapping too.)
Second, you want to create a package controller with appropriate endpoints. Finally, you
need to update your Spring configuration to support your web service.

 You’ll begin by updating the package and module CIs.12

12 See also Willie Wheeler, “Configuring Jackson to use JAXB2 annotations with Spring,” Dec. 6, 2011, http://
mng.bz/vW7T.

Don’t you need to include Jackson annotations for JSON mappings?
Nope. Although it’s true that Jackson provides JSON-specific annotations for object/
JSON mapping, you can configure Jackson to understand JAXB annotations, and this
allows you to avoid parallel sets of JAXB and Jackson annotations. XML and JSON are
different, but they’re close enough that JAXB annotations are good enough for most
of what people need to do. You’ll see the configuration later in the recipe.12
www.it-ebooks.info

http:// mng.bz/vW7T
http:// mng.bz/vW7T
http://www.it-ebooks.info/

360 CHAPTER 11 Building a configuration management database
AUGMENTING THE PACKAGE AND MODULE CIS

Among other things, you want a way to view individual packages and lists of packages
as XML and as JSON. For the most part, this is a matter of adding JAXB annotations to
the package and module CIs and letting some mapping frameworks (namely, JAXB
and Jackson) do their thing. In the special case of mapping XML lists, JAXB needs a lit-
tle help. First you’ll create a ListWrapper interface that you can use for this purpose.

package com.springinpractice.ch11.model;

import java.util.List;

public interface ListWrapper<T extends CI<T>> {

 List<T> getList();

 void setList(List<T> list);
}

The idea is that if you want a root-level XML list, you have to create a wrapper object and
map it. Unfortunately, with JAXB, unless you want every such list to have the same root
element name (it would be something generic, like <list>), you have to create sepa-
rate wrapper objects with separate root element names. The point of ListWrapper is to
provide structure around these list wrapper objects.

 Let’s do one more bit of preparatory work. You have a bunch of CIs, and you want
to support XML and JSON mappings for all of them. Therefore you need to update the
AbstractCI accordingly.

package com.springinpractice.ch11.model;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import org.springframework.data.neo4j.annotation.GraphId;
import org.springframework.data.neo4j.annotation.NodeEntity;

@NodeEntity
@XmlAccessorType(XmlAccessType.NONE)
public abstract class AbstractCI<T extends CI<T>> implements CI<T> {
 @GraphId private Long id;

 @XmlAttribute
 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 ... equals(), hashCode(), compareTo() ...
}

You add only a couple of things to the original class. You indicate that the mapper
shouldn’t automatically map either fields or JavaBean properties B; you’ll specify all
mappings explicitly. At C you use @XmlAttribute to map the id property to an XML

Listing 11.17 ListWrapper.java: supporting XML lists

Listing 11.18 AbstractCI.java, updated to support XML and JSON mappings

Suppresses
default
mappings

B

Maps ID as
attributeC
www.it-ebooks.info

http://www.it-ebooks.info/

361Adding a RESTful web service
attribute, at least where XML is concerned. For JSON, there’s no element/attribute
distinction, and both @XmlElement and @XmlAttribute carry a Java property to a
JSON property.

 The next listing shows how you map the package CI, including how to use the
AbstractCI base class and the ListWrapper to map package lists. For more informa-
tion about the mapping annotations, please consult the JAXB 2 documentation.

package com.springinpractice.ch11.model;

import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import org.neo4j.graphdb.Direction;
import org.springframework.data.neo4j.annotation.Fetch;
import org.springframework.data.neo4j.annotation.Indexed;
import org.springframework.data.neo4j.annotation.RelatedTo;

@XmlRootElement
@XmlType(propOrder = { "module", "version" })
public class Package extends AbstractCI<Package> {

 @Fetch
 @RelatedTo(type = "FROM_MODULE", direction = Direction.OUTGOING)
 private Module module;

 @Indexed private String version;

 public Package() { }

 public Package(Module module, String version) {
 this.module = module;
 this.version = version;
 }

 @NotNull
 @XmlElement
 public Module getModule() { return module; }

 public void setModule(Module module) { this.module = module; }

 @NotNull
 @Size(min = 1, max = 80)
 @XmlElement
 public String getVersion() { return version; }

 public void setVersion(String version) { this.version = version; }

 ... compareTo(), toString() ...

 @XmlRootElement(name = "packages")
 public static class PackageListWrapper
 implements ListWrapper<Package> {

 private List<Package> list;

Listing 11.19 Updating Package.java to support XML and JSON mappings

Marks as root
element

B

Specifies
property orderC

Marks as XML
element

D

Marks as root
elementE
www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 11 Building a configuration management database
 @XmlElement(name = "package")
 public List<Package> getList() { return list; }

 public void setList(List<Package> list) { this.list = list; }
 }
}

The updated package CI is mostly the same as before, except now it includes annota-
tions and an inner class to support object/XML and object/JSON mapping.

 You use @XmlRootElement to mark this class as one that can be so mapped B. You
also use @XmlType C to specify the order of the properties in the mapping output.

 At D you annotate the getModule() method with @XmlElement to indicate that
you want to map this method to an element. As a last step, you create a root-level pack-
age list E by implementing the ListWrapper interface.

 The next listing shows the same thing for the module CI, which we include for
completeness.

package com.springinpractice.ch11.model;

import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

import org.springframework.data.neo4j.annotation.Indexed;

@XmlRootElement
@XmlType(propOrder = { "name", "shortDescription", "groupId", "moduleId" })
public class Module extends AbstractCI<Module> {
 private String name;
 private String shortDescription;

 @Indexed private String groupId;
 @Indexed private String moduleId;

 @NotNull
 @Size(max = 80)
 @XmlElement
 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 @Size(max = 200)
 @XmlElement
 public String getShortDescription() { return shortDescription; }

 public void setShortDescription(String shortDescription) {
 this.shortDescription = shortDescription;
 }

 @XmlElement
 public String getGroupId() { return groupId; }

Listing 11.20 Updating Module.java to support XML and JSON mappings
www.it-ebooks.info

http://www.it-ebooks.info/

363Adding a RESTful web service
 public void setGroupId(String groupId) { this.groupId = groupId; }

 @XmlElement
 public String getModuleId() { return moduleId; }

 public void setModuleId(String moduleId) { this.moduleId = moduleId; }

 public String getDisplayName() { return name; }

 ... compareTo(), toString() ...

 @XmlRootElement(name = "modules")
 public static class ModuleListWrapper implements ListWrapper<Module> {
 private List<Module> list;

 @XmlElement(name = "module")
 public List<Module> getList() { return list; }

 public void setList(List<Module> list) { this.list = list; }
 }
}

Again, this is pretty much the same as what you saw with packages, so there’s no need
to study the details. Let’s turn now to the task of creating web service endpoints for
your packages.

CREATING WEB SERVICE ENDPOINTS

You could create a variety of endpoints, but for now you’ll focus on the following read-
only endpoints:

■ JSON list
■ JSON details
■ XML list
■ XML details

(In recipe 11.4 we’ll look at an endpoint that creates a CI.) The following listing shows
how to implement each of these endpoints using an abstract base controller class.

package com.springinpractice.ch11.web.controller;

import java.util.List;
import com.springinpractice.ch11.model.CI;
import com.springinpractice.ch11.model.ListWrapper;
import com.springinpractice.ch11.service.CIService;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;

... other imports ...

public abstract class AbstractCrudController<T extends CI<T>>
 extends AbstractController {

 Class<T> ciClass;

Listing 11.21 Generic read-only endpoints in AbstractCrudController.java

Generic
controller

B

CI class fieldC
www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 11 Building a configuration management database

y

 ... other fields ...

 public AbstractCrudController() {
 ParameterizedType paramType =
 (ParameterizedType) getClass().getGenericSuperclass();
 this.ciClass =
 (Class<T>) paramType.getActualTypeArguments()[0];
 }

 protected abstract CIService<T> getService();

 @RequestMapping(
 value = "",
 method = RequestMethod.GET,
 params = "format=json")
 @ResponseBody
 public List<T> getListAsJson() { return getSortedList(); }

 @RequestMapping(
 value = "",
 method = RequestMethod.GET,
 params = "format=xml")
 @ResponseBody
 public ListWrapper<T> getListAsXml() throws Exception {
 String wrapperClassName = ciClass.getName() + "$"
 + ciClass.getSimpleName() + "ListWrapper";
 Class<ListWrapper<T>> wrapperClass =
 (Class<ListWrapper<T>>) Class.forName(wrapperClassName);
 ListWrapper<T> wrapper = wrapperClass.newInstance();
 wrapper.setList(getSortedList());
 return wrapper;
 }

 private List<T> getSortedList() { return getService().findAll(); }

 @RequestMapping(
 value = "/{id}",
 method = RequestMethod.GET,
 params = "format=json",
 produces = "application/json")
 public T getDetailsAsJson(@PathVariable Long id) {
 return getDetails(id);
 }

 @RequestMapping(
 value = "/{id}",
 method = RequestMethod.GET,
 params = "format=xml",
 produces = "application/xml")
 @ResponseBody
 public T getDetailsAsXml(@PathVariable Long id) {
 return getDetails(id);
 }

 private T getDetails(Long id) { return getService().findOne(id); }

 ... other methods ...
}

Sets CI classD

Service
accessor

E

JSON list
@RequestMappingF

JSON list
@ResponseBodG

XML listH

JSON detailsI

XML detailsJ
www.it-ebooks.info

http://www.it-ebooks.info/

365Adding a RESTful web service
Again, note that the controller in the listing is an abstract base-controller class. Each
controller instance provides CRUD operations for a given type of CI B. Here we’re
focusing on the web service operations; we’ve suppressed the others. The code for
those is available in the code download.

 One of the things complicating the base controller is the fact that you’re trying to
handle operations in a general fashion. By putting the complexity in the base class,
you help keep subclasses simple.

 To that end, you want to autodiscover the CI class based on the type argument in
the subclass, because this turns out to be useful. (You’ll see an example shortly.) At C
you have a ciClass field, and the constructor uses reflection to set it at D. A subclass
extending AbstractCrudController<Package>, say, would have the Package class
object as its ciClass.

 Another thing you need to be able to do is inject the right CI-specific service into
your controller. You’d want to inject a PackageService into your PackageController,
for instance. You handle this by leaving the injections up to the subclasses13 and
accessing the service through an abstract method E. This allows you to implement
generic operations against the service in the AbstractCrudController while giving
subclasses access to type-specific methods.

 With that setup done, you can get to the real meat. You handle requests to list all CIs
of the relevant type as JSON F. You assume that the subclass will provide a base path
through a class-level @RequestMapping, so the method-level value is the empty string
(meaning you won’t append anything to the class-level path). But you need a way to route
JSON requests to the getListAsJson() handler method. It would be nice if you could
map paths like /applications.json, /packages.json, and so forth here, but there’s
currently no generic way to do that.14 But you can do something that’s almost as good,
which is map paths like /applications?format=json and /packages?format=json, so
that’s what you do with params = "format=json".

 Notice also the produces = "application/json" definition. This is new with
Spring 3.1. It does a couple of things. It filters out requests whose Accept header is
incompatible with the specified media type (here, application/json). Second, it
ensures that the generated output has the correct media type. In this case, it turns
out that the method works without the produces definition, but there’s no harm in
being paranoid.15

 The @ResponseBody annotation G tells Spring to take the handler method’s
return value and directly map it to the response output, without involving either mod-
els or views. Normally, you put your objects on the model and return a logical view

13 You can’t inject CIService<T> in the base controller due to type erasure.
14 Read Willie Wheeler, “Add extension element to Spring Web MVC @RequestMapping annotation,”

Feb. 22, 2012, https://jira.springsource.org/browse/SPR-9153 for an explanation and desired enhance-
ment. Looks like Spring 3.2 will address the issue.

15 Spring gets the mapping right because the MappingJacksonHttpMessageConverter happens to be the
first match for the CI list, so the output is JSON. But that’s a happy accident. We suggest being explicit about
the expected output.
www.it-ebooks.info

https://jira.springsource.org/browse/SPR-9153
http://www.it-ebooks.info/

366 CHAPTER 11 Building a configuration management database

name. None of that here. We’ll discuss the mapping when we look at configuration,
because mapping is determined by that configuration.16

 The XML list H is similar to the JSON list, but this time you have to deal with the
XML list wrapper issue we mentioned. Here the CI class comes to the rescue. You use
it—along with a little reflection-based magic—to create an appropriately wrapped list
that will yield the root element name you want. Once again, paranoia drives you
toward an explicit produces definition, and you use @ResponseBody to effect a direct
mapping of your list wrapper to XML.

 With I and J you have JSON and XML details views, respectively. In the case of
the JSON details view, here you need the produces definition to avoid having the XML
converter preempt the JSON converter. (Spring won’t use the XML converter when
produces = "application/json").17

 Now let’s build one of the CRUD controllers, PackageCrudController. CRUD con-
trollers for other CIs follow the same general pattern, but you care about packages in
particular because you need the PackageCrudController for recipe 11.4.

package com.springinpractice.ch11.web.controller.pkg;

import javax.inject.Inject;
import com.springinpractice.ch11.model.Package;
import com.springinpractice.ch11.service.CIService;
import com.springinpractice.ch11.service.PackageService;
import com.springinpractice.ch11.web.controller.AbstractCrudController;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
@RequestMapping("/packages")
public class PackageCrudController
 extends AbstractCrudController<Package> {

 @Inject private PackageService packageService;

 public CIService<Package> getService() { return packageService; }
}

Because you did most of the hard work in the AbstractCrudController, there’s little to
do here. You annotate the controller with @Controller and a class-level @RequestMap-
ping B. You also extend the base controller, passing in the Package type argument C.
At D you inject your PackageService so the controller can use it in a typesafe way

16 See also Willie Wheeler, “Supporting XML and JSON web service endpoints in Spring 3.1 using @Response-
Body,” Feb. 22, 2012, http://mng.bz/Qte0.

17 As noted earlier, the produces element appeared in Spring 3.1. If you’re using an earlier version of Spring,
then produces isn’t available. An alternative is to have the JSON details method call the Jackson
ObjectMapper directly, writing its output to the response stream. That way you don’t have to depend on
Spring applying the correct HTTP message converter.

Listing 11.22 PackageCrudController.java: extending base CRUD controller

Maps package requestsB Extends the
abstract CRUD
controller

C

Injects package serviceD

Exposes package service E
www.it-ebooks.info

http://mng.bz/Qte0
http://www.it-ebooks.info/

367Adding a RESTful web service

n
r

(although here you don’t have any custom creators or queries), and at E you expose
the PackageService through getService() so the base controller can use it.

 The CRUD controllers for other CIs are essentially the same, so we don’t have to
review them all here. Instead, let’s see what the Spring configuration looks like.

CONFIGURING SPRING

The following listing shows how you configure your web application context for your
nascent RESTful web service.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.1.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm-3.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd">

 <mvc:default-servlet-handler />

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound name="com.springinpractice.ch11.model.Module"

/>
 <oxm:class-to-be-bound name="com.springinpractice.ch11.model.Package"

/>
 </oxm:jaxb2-marshaller>

 <bean id="jaxbAnnIntrospector"
 class="org.codehaus.jackson.xc.JaxbAnnotationIntrospector" />
 <bean id="jacksonObjectMapper"
 class="org.codehaus.jackson.map.ObjectMapper">
 <property name="serializationConfig.annotationIntrospector"
 ref="jaxbAnnIntrospector" />
 <property name="deserializationConfig.annotationIntrospector"
 ref="jaxbAnnIntrospector" />
 </bean>

 <mvc:annotation-driven conversion-service="conversionService">
 <mvc:message-converters>
 <bean class="org.springframework.http.converter.json.

Listing 11.23 beans-web.xml configuration for RESTful web service

Using
Spring 3.1

B

JAXB mapperC

JAXB support
for Jackson

D

Jackso
mappeE

Activates HTTP
message converters

F

Allows
overriding

G

Custom-configured converter H
www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 11 Building a configuration management database
➥ MappingJacksonHttpMessageConverter"
 p:objectMapper-ref="jacksonObjectMapper" />
 </mvc:message-converters>
 </mvc:annotation-driven>

 <context:component-scan
 base-package="com.springinpractice.ch11.web.controller" />

 ... converter/formatter stuff that we don't care about here ...

 ... view stuff that we don't care about here ...

</beans>

For this recipe, you configure the app for Spring 3.1 B because you’re using some
features that appeared in Spring 3.1. The web service needs a couple of mappers: an
object/XML mapper and an object/JSON mapper. Ultimately you use the mappers to
convert your CIs into JSON and XML. You define the object/XML mapper at C. You’re
using the oxm namespace to define a JAXB2 marshaller, which happens to be an
unmarshaller too. (That is, it’s a full object/XML mapper.) You enumerate the CIs that
you want to map using <oxm:class-to-be-bound>.18

 You also need an object/JSON mapper, but as we noted earlier, you need it to
understand JAXB annotations. That’s not a problem if you use the Jackson mapper.
First you create a JaxbAnnotationIntrospector D, and then you feed it to your Jack-
son mapper E on both the serializing side and the deserializing side.

TIP Notice the use of compound property names where you inject the intro-
spector into the mapper. It’s not a common technique, but Spring supports
it, and in certain situations it’s helpful. The current one is a case in point.
Creating new SerializationConfig and DeserializationConfig objects is
nontrivial, and we’d much rather inject the introspector into the existing
SerializationConfig and DeserializationConfig objects. With compound
property names, you can do that.

To activate your mappers, you need to define what are known as HTTP message converters.
Each such converter has a mapper that it uses for mapping objects to some format or
other. Spring applies HTTP message converters to methods annotated with @Response-
Body (and to method parameters annotated with @RequestBody, as you’ll see in the
next recipe).

 You can define these implicitly using the <mvc:annotation-driven> annotation
F, which places default HTTP message converters on the application context, among
them one for XML and another for JSON. The problem with using the default JSON
converter, though, is that it doesn’t know anything about the JAXB-enabled object
mapper you just created. You use the <mvc:message-converters> tag G (new as of

18 Jarno Walgemoed wrote an outstanding extension to the standard JAXB2 marshaller, which is his
ClasspathScanningJaxb2Marshaller. It scans a base package for classes annotated with
@XmlRootElement so you don’t have to enumerate them explicitly. See Willie Wheeler,
“ClasspathScanningJaxb2Marshaller,” Dec, 29, 2011, http://mng.bz/vfX2.

Component-scans
controllers

I

www.it-ebooks.info

http://mng.bz/vfX2
http://www.it-ebooks.info/

369Updating the CMDB after successful builds
Spring 3.1) to specify any HTTP message converters that you’d like to have override
the default. In your case, you create a MappingJacksonHttpMessageConverter, inject-
ing the JAXB-enabled object mapper H.

Finally, you component-scan your controller I the same way you generally do.
 At this point you have a simple but functional web service that returns package list

and details information, supporting both JSON and XML formats.

Discussion

Creating RESTful web services in Spring is similar to creating ordinary HTML-based ser-
vices in the sense that you do it with controllers, @RequestMappings, and so on. There
are differences: you can directly generate the HTTP response using @ResponseBody and
HTTP message converters instead of doing it indirectly through views (although the lat-
ter option is available too), and you need to handle object mapping, even if that’s a mat-
ter of including <mvc:annotation-driven> and going with the defaults. But by and
large, if you’re comfortable with Spring Web MVC for HTML pages, it shouldn’t be a
stretch to wrap your head around RESTful web services with Spring.

 The current recipe intentionally started with the simplest web service endpoints. In
the following recipe, you’ll elaborate your web service to support package creation, and
you’ll build a Maven plug-in that uses a Spring REST client to invoke the new endpoint.

11.4 Updating the CMDB after successful builds
PREREQUISITES

Recipe 11.1 Creating a simple configuration item
Recipe 11.2 Creating related configuration items
Recipe 11.3 Adding a RESTful web service

KEY TECHNOLOGIES

Spring Framework 3.1, Maven 3, Spring RestTemplate

Background

In some organizations, when the test team wants a new build for testing, they have to
coordinate with developers and, potentially, release engineers to get one. The tester
asks for a build, the developer makes one available a few hours later, and the release

Converters vs. HTTP message converters
Eagle-eyed readers will notice that the <mvc:annotation-driven> definition makes
reference to a conversion service, which deals with converters and formatters such
as you saw in recipe 11.3. The converters associated with the conversion service are
not the same thing as the HTTP message converters. Converters are general, per-
forming arbitrary type conversions. HTTP message converters, on the other hand,
convert HTTP requests to objects and objects to HTTP responses. (Formatters con-
vert objects to and from strings.)
www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 11 Building a configuration management database
engineer pushes it into the test environment a couple of hours after that. By the time
the build appears in test, several hours may have passed.

 A much better approach is for the tester to be able to deploy good builds on
demand. Lean methodology calls this a pull system. Such systems eliminate needless
delay by allowing workers to pull work instead of waiting for somebody else to push it.

 To implement a pull system for deployments, it’s useful to set up a CI server (such
as Bamboo, Hudson, or Jenkins) that makes good builds available for deployment. One
critical piece of this is to push good builds to a package repository (for example, Nexus,
Artifactory, or even a simple fileshare) where the deployment process can find them.

 In CMDB-based systems, another important step is to create a record for the pack-
age in the CMDB. This is useful if you want to join other data to the package. You
might want, for instance, to associate development issues with the package, to track
which packages are deployed to which servers in which environments, to schedule
future automated deployments, and so forth.

 In this recipe, you’ll look at how to create a package record in the CMDB.

Problem

Following a successful CI server build, create a package record in the CMDB.

Solution

Assume here that the CI process involves running a Maven-based build. After Maven
successfully compiles and tests the code, you want it to create a corresponding pack-
age record in the CMDB if one doesn’t already exist. To do this, you’ll implement a
custom Maven plug-in that makes a web service call to the CMDB. You need to do two
things: create an endpoint on the CMDB and create the Maven plug-in.

CREATING A “CREATE PACKAGE” ENDPOINT ON THE CMDB

Your first task is to create an endpoint capable of receiving web service requests to
create new packages. The following listing shows how to add this to your
PackageCrudController.

package com.springinpractice.ch11.web.controller.pkg;

import javax.inject.Inject;
import javax.servlet.http.HttpServletResponse;
import com.springinpractice.ch11.exception.DuplicateCIException;
import com.springinpractice.ch11.model.Module;
import com.springinpractice.ch11.model.Package;
import com.springinpractice.ch11.service.CIService;
import com.springinpractice.ch11.service.ModuleService;
import com.springinpractice.ch11.service.PackageService;
import com.springinpractice.ch11.web.controller.AbstractCrudController;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestBody;

Listing 11.24 PackageCrudController.java with endpoint for creating packages
www.it-ebooks.info

http://www.it-ebooks.info/

371Updating the CMDB after successful builds

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/packages")
public class PackageCrudController
 extends AbstractCrudController<Package> {

 @Inject private ModuleService moduleService;
 @Inject private PackageService packageService;

 @Value("#{config['app.baseUrl']}")
 private String appBaseUrl;

 public CIService<Package> getService() { return packageService; }

 // consumes : Spring 3.1
 @RequestMapping(
 value = "",
 method = RequestMethod.POST,
 consumes = "application/xml")
 public void postPackage(
 @RequestBody Package pkgData, HttpServletResponse res) {

 Module moduleData = pkgData.getModule();
 String groupId = moduleData.getGroupId();
 String moduleId = moduleData.getModuleId();
 Module module =
 moduleService.findByGroupIdAndModuleId(groupId, moduleId);
 pkgData.setModule(module);
 try {
 packageService.createPackage(pkgData);
 res.setHeader("Location",
 appBaseUrl + "/packages/" + pkgData.getId());
 } catch (DuplicateCIException e) {
 res.setStatus(HttpServletResponse.SC_OK);
 }
 }
}

At B you inject a base URL using @Value. You need the base URL to create a Location
header in response to create requests.

 The consumes element C tells Spring that you want to match requests having the
application/xml content type (Content-Type header). You pair this with the
@RequestBody annotation D, which indicates that the request’s body will be XML that
you can map to a Package instance.

 When creating the package, you need to associate the package with a module having
an ID. You use the group ID and module ID to look up the fully hydrated module E, then
replace the module data transfer object with the result.

 One issue you need to deal with is duplicate packages. You can either silently
ignore attempts to create a duplicate package or throw an exception. Here we’ve cho-
sen to ignore such attempts because the Maven plug-in won’t know whether the pack-
age has been created. You try to create the package F, and if the attempt succeeds,

Injects
base URL

B

Matches XML
payloads

C
Payload in
request
body

D

Finds module CI E

Creates
package CI

F
Sets

header
for REST

G

Ignores
duplicates

H

www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 11 Building a configuration management database
you set the HTTP Location header as per the HTTP spec G. Otherwise, you ignore
the attempt, responding with the OK status H.

 That’s the web service piece. Next is a client that calls the Zkybase web service.

package com.springinpractice.ch11.client;

import java.net.URI;
import java.util.List;
import com.springinpractice.ch11.model.Package;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.client.RestTemplate;

public class ZkybaseClient {
 private static final Logger log =
 LoggerFactory.getLogger(ZkybaseClient.class);

 private RestTemplate template;
 private String skybaseUrl;

 public ZkybaseClient(RestTemplate template, String skybaseUrl) {
 this.template = template;
 if (!skybaseUrl.endsWith("/")) { skybaseUrl += "/"; }
 this.skybaseUrl = skybaseUrl;
 }

 public RestTemplate getRestTemplate() { return template; }

 public String getZkybaseUrl() { return skybaseUrl; }

 public void createPackage(Package pkg) {
 URI location = template.postForLocation(getPackagesUrl(), pkg);
 log.info("Created package: {}", location);
 }

 public List<Package> getPackages() {
 return template
 .getForObject(
 getPackagesUrl() + "?format=xml",
 Package.PackageListWrapper.class)
 .getList();
 }

 private String getPackagesUrl() { return skybaseUrl + "packages"; }
}

The client is effectively a wrapper around Spring’s RestTemplate B, which applies the
template pattern to the task of calling web services. Your client supports two operations.
First, a createPackage() method issues an HTTP POST request against the template C
and logs the resulting resource location. Second, a getPackages() method makes an
HTTP GET request for the packages D. In a more robust implementation, you would
include pagination (for example, get 30 packages at a time, and provide for navigation
to get the previous and next 30), because the number of packages can grow large very
quickly. But this implementation should make the basic approach clear.

Listing 11.25 ZkybaseClient.java: client for the Zkybase web service

Calls RESTful
web services

B

Posts package C

Gets
package listD
www.it-ebooks.info

http://www.it-ebooks.info/

373Updating the CMDB after successful builds
 Having a client allows you to build the Maven plug-in that you want to build. That’s
what you’ll do next.

WRITING A MAVEN PLUG-IN THAT CALLS THE “CREATE PACKAGE” ENDPOINT

The next listing is a Maven plug-in package goal that calls the web service endpoint
you just created. You’ll configure it to record the existence of the new package in the
CMDB as part of the Maven build lifecycle’s deploy phase.

package com.springinpractice.ch11.maven;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;
import com.springinpractice.ch11.client.ZkybaseClient;
import com.springinpractice.ch11.model.Module;
import com.springinpractice.ch11.model.Package;
import org.springframework.web.client.RestTemplate;

/**
 * @goal package
 */
public class PackageMojo extends AbstractMojo {

 /**
 * @parameter expression="${zkybaseUrl}"
 */
 private String zkybaseUrl;

 /**
 * @parameter expression="${package.module}"
 */
 private Module module;

 /**
 * @parameter expression="${package.version}"
 */
 private String version;

 public void execute()
 throws MojoExecutionException, MojoFailureException {

 ZkybaseClient client =
 new ZkybaseClient(new RestTemplate(), zkybaseUrl);
 client.createPackage(new Package(module, version));
 }
}

We won’t go into the details of writing Maven plug-ins here, because this isn’t a book
on Maven, but do check the Maven reference if you’re interested in learning more. In
the execute() method, you instantiate your client B and use it to create a new pack-
age C against the web service.

 To configure the plug-in for use in your project (presumably a project that you run
as part of a continuous-integration build), include the following in your project’s
pom.xml file:

Listing 11.26 PackageMojo.java: Maven plug-in

Creates
client

B

Creates package C
www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 11 Building a configuration management database
<plugin>
 <groupId>com.springinpractice.ch11</groupId>
 <artifactId>zkybase-maven-plugin</artifactId>
 <version>${zkybase.version}</version>
 <configuration>
 <zkybaseUrl>${skybase.url}</zkybaseUrl>
 <module>
 <groupId>${project.groupId}</groupId>
 <moduleId>${project.artifactId}</moduleId>
 </module>
 <version>${project.version}</version>
 </configuration>
 <executions>
 <execution>
 <phase>deploy</phase>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You’ll of course need to provide appropriate values for ${zkybase.version} and
${zkybase.url}. This causes Maven to run the plug-in during the deploy phase of
the Maven build lifecycle.

Discussion

From a tools perspective, this recipe showed how to build a Maven plug-in that calls
the Zkybase web service and creates a package. The larger process significance,
though, is that you now have a way to make package information available to inter-
ested processes. Obvious examples are testing, deployment, and release management.
Although Maven can deploy packages to artifact repositories such as Nexus or Artifac-
tory, it’s useful to be able to deploy to a CMDB so you can more readily associate pack-
ages with application modules, deployment definitions, server farms, and so on.

 In the remaining recipes, you’ll follow the social trend in application development
and integrate the Zkybase CMDB with GitHub, a social software development web site.

11.5 Sourcing public GitHub data
PREREQUISITES

None

KEY TECHNOLOGIES

Spring Framework 3.1, GitHub API, Spring REST support, Spring Social, Spring Social
GitHub

Background

When designing a CMDB, it’s not necessary that all the data be in a single physical data
store. In fact, in larger organizations, it makes a lot of sense to assume that the data
won’t be in a single store. In a federated design, data lives in multiple stores, and you
bring it together in a unified UI.
www.it-ebooks.info

http://www.it-ebooks.info/

375Sourcing public GitHub data
 This recipe considers GitHub integration.19 This is useful in cases where you have
applications whose source code repos live at GitHub. You can present repo data (such
as the GitHub URLs, commits, repo collaborator, repo watchers, and so on), user data
(such as followers or whom a user is following), and more, alongside other app-related
data, such as build, deployment, and operational data. It’s even possible (although we
won’t pursue this here) to create automation on the basis of this data, such as automa-
tion that provisions a continuous-integration server based in part on GitHub data.

Problem

Expose GitHub repository information through the CMDB user interface.

Solution

To be concrete, we’ll show how to display a repository’s watchers in your CMDB inter-
face. We’ll focus on the data-integration piece; the code for the UI isn’t anything spe-
cial. Figure 11.4 shows what it will look like when you’re done.

 Getting the watcher data from GitHub requires a web service call to the GitHub
API (http://developer.github.com/v3/). It’s a REST-based API that uses JSON for data
transfer.

 You’ll use Spring Social to make the call to GitHub. Spring Social provides a pro-
grammatic, Java-based interface for making calls against social websites like Facebook,
Twitter, LinkedIn, and GitHub. SpringSource and other providers create bindings for
individual social sites, which makes it easy for Spring-based applications to interact
with the site in question. See www.springsource.org/spring-social for more informa-
tion about Spring Social.

19 It will help if you are familiar with Git and GitHub, although that may not be strictly required. GitHub is a
socially oriented Git hosting website at https://github.com.

Figure 11.4 Displaying GitHub repo watchers from your UI
www.it-ebooks.info

http://developer.github.com/v3/
https://github.com
www.springsource.org/spring-social
http://www.it-ebooks.info/

376 CHAPTER 11 Building a configuration management database
At the time of this writing, the Spring Social GitHub20 binding is in its infancy and
hasn’t yet had a 1.0 release. We’re going to use it here anyway to show how Spring
Social works. (The more mature Facebook, LinkedIn, and Twitter bindings work in
the same fashion.) We’ll also look at the actual framework implementation, based on
Spring’s RestTemplate, just in case you decide you want to do the integration but
you’re not comfortable building your app on top of an unreleased piece of software.
You’ll see that it’s easy to use the RestTemplate to accomplish your goals.

 First you need to set up Maven.

SETTING UP MAVEN

By the time you read this, the situation may have changed, but at the moment Spring
Social GitHub has only snapshots. To pull Spring snapshots, you need to add the
Spring Maven Snapshot Repository to your POM:

<repository>
 <id>spring-snapshot</id>
 <name>Spring Maven Snapshot Repository</name>
 <url>http://maven.springframework.org/snapshot</url>
</repository>

With that repository defined, you can now declare your Spring Social and Spring
Social GitHub dependencies:

<dependency>
 <groupId>org.springframework.social</groupId>
 <artifactId>spring-social-core</artifactId>
 <version>1.0.1.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.social</groupId>
 <artifactId>spring-social-github</artifactId>
 <version>1.0.0.BUILD-SNAPSHOT</version>
</dependency>

The Spring Social GitHub dependency allows you to use the GitHub client. Let’s build
a controller that does just this.

CALLING SPRING SOCIAL GITHUB FROM A CONTROLLER

The following listing presents a controller that loads an app from the app repository,
then uses the associated GitHub username and repo name to load the repo watchers
from GitHub itself.

package com.springinpractice.ch11.web.controller.application;

import java.util.List;
import javax.inject.Inject;

20 The source repo is at https://github.com/SpringSource/spring-social-github. Willie contributed the watcher
code under discussion to Spring Social GitHub.

Listing 11.27 ApplicationScmController.java
www.it-ebooks.info

https://github.com/SpringSource/spring-social-github
http://www.it-ebooks.info/

377Sourcing public GitHub data
import com.springinpractice.ch11.model.Application;
import com.springinpractice.ch11.repository.ApplicationRepository;
import org.springframework.social.github.api.GitHub;
import org.springframework.social.github.api.GitHubUser;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/applications")
public class ApplicationScmController {
 @Inject private ApplicationRepository applicationRepository;
 @Inject private GitHub gitHub;

 @RequestMapping(
 value = "/{id}/scm/watchers", method = RequestMethod.GET)
 public String getWatchers(@PathVariable Long id, Model model) {
 Application app = applicationRepository.findOne(id);
 String user = getScm().getUser();
 String repo = getScm().getRepo();
 List<GitHubUser> watchers =
 gitHub.repoOperations().getWatchers(user, repo);
 model.addAttribute(app);
 model.addAttribute(watchers);
 return "applicationScmWatchers";
 }
}

You start with a couple of injections: the application repository B from the previous
recipe and the GitHub client C from Spring Social GitHub. At D you get the app
from the repository, including the GitHub user and repo as we noted. Finally, you use
the GitHub client to grab the watchers E.

 Notice that the GitHub interface has a repoOperations() method. It also has user-
Operations(), gistOperations(), and so forth. (See the GitHub API for more
details.) The idea is to divide the client operations into groups so as to avoid having a
monster GitHub interface.

 You’ll need a GitHub implementation.

CONFIGURING THE APP

This part is easy. All you need is the following:

<bean class="org.springframework.social.github.api.impl.

➥ GitHubTemplate" />

In Spring Social, the general pattern is to have interface names like Facebook, LinkedIn,
Twitter, and GitHub, and to have implementation classes named FacebookTemplate,
LinkedInTemplate, TwitterTemplate, and GitHubTemplate.

 We noted that at the time of this writing, Spring Social GitHub hasn’t yet been
released. If you prefer not to use unreleased software, you can of course still call the
GitHub API, but you’ll need to use Spring’s RestTemplate, as you’ll see next.

Injects
app repo

B

Injects GitHub clientC

Gets
appD

Gets
watchersE
www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 11 Building a configuration management database
GETTING GITHUB DATA USING SPRING’S RESTTEMPLATE

The Spring Social GitHub implementation, like most other Spring Social implementa-
tions, uses Spring’s RestTemplate as a client for making RESTful web service calls.
Here’s the relevant code from Spring Social GitHub, edited to highlight the use of the
RestTemplate.

package org.springframework.social.github.api.impl;

import static java.util.Arrays.asList;

import java.util.List;
import org.springframework.social.github.api.GitHubRepo;
import org.springframework.social.github.api.GitHubUser;
import org.springframework.social.github.api.RepoOperations;
import org.springframework.web.client.RestTemplate;

public class RepoTemplate implements RepoOperations {
 private final RestTemplate restTemplate;

 ... constructor (accepts RestTemplate) ...

 public List<GitHubUser> getWatchers(String user, String repo) {
 GitHubUser[] watchers = restTemplate.getForObject(
 "https://api.github.com/repos/{user}/{repo}/watchers"),
 GitHubUser[].class,
 user,
 repo);
 return asList(watchers);
 }

 ... other repo operations ...
}

The listing shows how to call the GitHub API using a RestTemplate B. As with other
templates in the Spring Framework, it takes care of the boilerplate (for example,
establishing and terminating the connection, performing the object mapping, and so
on) so developers can focus on what’s interesting.

 Here, all you want to do is get the watchers for a given repository, which is speci-
fied by a username and a repo name. You call getForObject() C, which performs an
HTTP GET against the provided URI (RestTemplate substitutes the actual username
and repo name for the tokens) and returns an object of the specified type, which here
is a GitHubUser[]. You convert the array to a List before returning it.

 There are lots of other RestTemplate methods; see the Spring Javadoc for details.

Discussion

This recipe introduced the GitHub API as well as two different ways to call it: via
Spring Social GitHub and using the Spring RestTemplate directly. We showed the lat-
ter approach because the Spring Social GitHub binding is currently (early 2012) in its
infancy. Check on it from time to time, because it may have matured by the time you
read this.

Listing 11.28 RepoTemplate.java

RestTemplate
REST client

B

Calls GitHub API C
www.it-ebooks.info

http://www.it-ebooks.info/

379Sourcing private GitHub data
 You used the GitHubTemplate to invoke public endpoints on the GitHub API. This
is fine if all you need to do is call public endpoints. But if you want to use private end-
points, you need to introduce authorization. That’s what recipe 11.6 shows how to do.

 Keep in mind that even though Spring Social GitHub is in an early stage, other
bindings under the Spring Social umbrella have production-ready releases. These
include Facebook, LinkedIn, and Twitter. Craig Walls, the author of Spring in Action
(Manning, 2011), is the Spring Social project lead.

11.6 Sourcing private GitHub data
PREREQUISITES

Recipe 11.5 Sourcing public GitHub data

KEY TECHNOLOGIES

Spring Framework 3.1, GitHub API, Spring REST support, Spring Social, Spring Social
GitHub, Spring Security, OAuth 2, Spring JDBC

Background

In recipe 11.5, you learned how to call public endpoints on the GitHub API. But some-
times you want access to private endpoints. This might include sensitive read end-
points or perhaps endpoints that modify data. To accomplish this, you need to add
authorization to the mix.

Problem

Allow individual end users to authorize Zkybase to perform sensitive GitHub opera-
tions on their behalf.

Solution

GitHub has a concept of service hooks, which are integration points between GitHub
and other applications. You might create a hook, for instance, that posts a message to
Twitter every time somebody commits code to a repository.

 In this recipe we’ll show how Zkybase retrieves hooks from a GitHub repository.
Hooks are private information, so authorization is part of the story. We use OAuth 2 to
support the need here. In the following subsection we’ll take a high-level look at
OAuth 2, and then we’ll dive right into the code.

CONNECTING TO GITHUB VIA OAUTH 2

When we say we want to “connect to GitHub,” what we mean is that we want any given
user to be able to authorize Zkybase to perform potentially sensitive operations
against the GitHub API on behalf of that user. In the case at hand, you want Zkybase to
be able to read a GitHub repo’s service hooks, which aren’t normally public. That way
you can display the hooks in the Zkybase UI, and maybe even use them for other pur-
poses, such as provisioning continuous-integration servers with the hooks established.
But there are other sensitive operations as well, such as editing repos, writing gists,
and so on.
www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 11 Building a configuration management database
NOTE The authorization holds only for the user in question. Zkybase doesn’t
have carte blanche to perform sensitive operations for arbitrary GitHub users.
Also, the user can revoke the authorization at any time using the GitHub
admin console.

A bit of a protocol is involved in establishing the desired authorization. It’s sometimes
known as the OAuth 2 dance. Figure 11.5 shows the overall process flow schematically.

 The first thing is that you’ll need to go to your GitHub account settings and regis-
ter the Zkybase application. That allows Zkybase to get an access token as part of the
OAuth process. This is a one-time action, but it’s required.

 Now for the dance itself. It will help to consider the flow in terms of screenshots.
Figure 11.6 shows what the account page looks like at the beginning of the process,
before you’ve connected Zkybase to GitHub.

 After you click the Connect button, Spring Social redirects you to GitHub for
authorization. If you aren’t already authenticated into GitHub, you’ll obviously need
to log in first. But then you’ll get a GitHub screen that looks like figure 11.7.

 Here GitHub explains to the user exactly which capabilities it will grant to Zkybase,
should the user allow the authorization. Assuming the user allows the authorization,

Figure 11.5 OAuth 2 flow, with Zkybase as the consumer and GitHub as the service provider
www.it-ebooks.info

http://www.it-ebooks.info/

381Sourcing private GitHub data
GitHub creates a record of that
authorization in its own database.
As noted, the user can revoke this
at any time. GitHub then
redirects the user back to the Zky-
base app, passing the authoriza-
tion along.

 From here, Zkybase invokes
GitHub again, exchanging the
authorization for an access
token. Conceptually, the token is
the user’s connection, and it’s what
allows Zkybase to make autho-
rized calls against the GitHub
API. Once Zkybase has the token,
it stores it in its database. Among
other things, this record associates the current Zkybase user with the access token that
Zkybase uses to issue requests against the GitHub API. As long as the token remains valid
(not revoked or expired), Zkybase can do what it needs to do for the user.

 The Zkybase user account page now has the GitHub information shown in figure 11.8.
 Zkybase can use the access token to perform sensitive GitHub API operations on

behalf of a user, such as getting repository hooks. See figure 11.9.

Figure 11.6 The dance begins.

Figure 11.8 The Zky-
base user account
page after establishing
the current user’s con-
nection to GitHub

Figure 11.7 GitHub OAuth 2 authorization verification
www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 11 Building a configuration management database
Now that you’ve seen how the flow works, you’re ready to look at some code.

CREATING A DATABASE TABLE FOR USER CONNECTIONS

As a preliminary, Zkybase needs a place to persist user connections once the user has
established them. You use the default Spring Social DDL for this. The following listing
shows the DDL for MySQL.

CREATE TABLE `userconnection` (
 `userId` varchar(255) NOT NULL,
 `providerId` varchar(255) NOT NULL,
 `providerUserId` varchar(255) NOT NULL DEFAULT '',
 `rank` int(11) NOT NULL,
 `displayName` varchar(255) DEFAULT NULL,
 `profileUrl` varchar(512) DEFAULT NULL,
 `imageUrl` varchar(512) DEFAULT NULL,
 `accessToken` varchar(255) NOT NULL,
 `secret` varchar(255) DEFAULT NULL,
 `refreshToken` varchar(255) DEFAULT NULL,
 `expireTime` bigint(20) DEFAULT NULL,
 PRIMARY KEY (`userId`,`providerId`,`providerUserId`),
 UNIQUE KEY `UserConnectionRank` (`userId`,`providerId`,`rank`)
) ENGINE=InnoDB;

This table is the backing store for your connection repository, which you’ll see pres-
ently. First we’ll show how to use Spring Social GitHub to get the currently autho-
rized user. After that, you’ll get a repository’s service hooks. Both operations require
authorization.

CREATING THE USER ACCOUNT SERVICE BEAN

Recall that the user account page displays either a Connect or a Disconnect button,
depending on whether the user has established the connection between Zkybase and
GitHub. The first thing you need then is a way to tell whether the connection exists.

Listing 11.29 Creating the userconnection table

Figure 11.9 Zkybase displays the repository hooks it read from GitHub on behalf of the current Zkybase
user.
www.it-ebooks.info

http://www.it-ebooks.info/

383Sourcing private GitHub data

package com.springinpractice.ch11.service.impl;

import javax.inject.Inject;
import com.springinpractice.ch11.model.UserAccount;
import com.springinpractice.ch11.repository.UserAccountRepository;
import com.springinpractice.ch11.service.UserAccountService;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.ConnectionRepository;
import org.springframework.social.github.api.GitHub;
import org.springframework.social.github.api.GitHubUserProfile;
import org.springframework.social.github.api.impl.GitHubTemplate;
import org.springframework.stereotype.Service;

@Service
public class UserAccountServiceImpl extends AbstractCIService
 implements UserAccountService {

 @Inject private ConnectionRepository connectionRepo;

 public GitHubUserProfile getCurrentUserProfile() {
 if (gitHub().isAuthorized()) {
 return gitHub().userOperations().getUserProfile();
 } else {
 return null;
 }
 }

 private GitHub gitHub() {
 Connection conn =
 connectionRepo.findPrimaryConnection(GitHub.class);
 return (conn != null ? conn.getApi() : new GitHubTemplate());
 }

 ... various other fields and methods ...
}

Your first authorized service call grabs the current user’s profile from GitHub. To do
this, you need a connection repository B and an authorized API client, which you
acquire from the connection D. With these, getting the profile is a simple method
call C against the GitHub client.

 Let’s look at getting a repository’s service hooks.

RETRIEVING REPOSITORY HOOKS

The next listing shows how to get hooks from a repository.

package com.springinpractice.ch11.service.impl;

import java.util.List;
import javax.inject.Inject;
import com.springinpractice.ch11.model.Application;
import com.springinpractice.ch11.service.ApplicationService;
import org.springframework.social.connect.Connection;
import org.springframework.social.connect.ConnectionRepository;

Listing 11.30 UserAccountServiceImpl.java

Listing 11.31 ApplicationServiceImpl.java

Stores user
connections

B

Gets current
user if
authorizedC

Gets APID
www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 11 Building a configuration management database

r

au
import org.springframework.social.github.api.GitHub;
import org.springframework.social.github.api.GitHubHook;
import org.springframework.social.github.api.impl.GitHubTemplate;
import org.springframework.stereotype.Service;

@Service
public class ApplicationServiceImpl extends AbstractCIService
 implements ApplicationService {

 @Inject private ConnectionRepository connectionRepo;

 public List findHooks(String user, String repo) {
 return gitHub().repoOperations().getHooks(user, repo);
 }

 private GitHub gitHub() {
 Connection conn =
 connectionRepo.findPrimaryConnection(GitHub.class);
 return (conn != null ? conn.getApi() : new GitHubTemplate());
 }

 ... various other fields and methods ...
}

As you can see, the process is essentially identical to that of getting the currently
authenticated user.

 Spring Social includes some web components, including a connection-management
controller and a simple JSP tag library, to make it easier to build UIs for social apps. In
the next section you’ll see how this works.

DISPLAYING THE USER ACCOUNT PAGE

The following listing builds a user account details page.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="social"
 uri="http://www.springframework.org/spring-social/social/tags" %>

<c:url var="githubUrl" value="/connect/github" />

... various account details ...

<social:notConnected provider="github">
 <p>Your Zkybase and GitHub accounts are not yet connected. Connect them
 for additional Zkybase features.</p>
 <form method="post" action="${githubUrl}">
 <input type="hidden" name="scope" value="user, repo, gist" />
 <input type="submit" value="Connect to GitHub" />
 </form>
</social:notConnected>

<social:connected provider="github">
 <p>Your Zkybase and GitHub accounts are connected.</p>
 <p>Blog: <c:out value="${gitHubUserProfile.blog}" /></p>
 <p>Location: <c:out value="${gitHubUserProfile.location}" /></p>

Listing 11.32 userAccountDetails.jsp, for account details

ConnectControlle
endpointB

When not connected …C

… connect formD
Specifies

thorization
scope

E

When
connected …

F

… display profile info G
www.it-ebooks.info

http://www.it-ebooks.info/

385Sourcing private GitHub data

<form method="post" action="${githubUrl}">
 <input type="hidden" name="_method" value="delete" />
 <input type="submit" value="Disconnect from GitHub" />
 </form>
</social:connected>

The Spring Social project provides a ConnectController that manages the flow of
requests involved with the OAuth dance via a RESTful API. At B you have the URL for
interacting with the GitHub API service (Spring Social calls it a provider), which you’ll
use to connect to and disconnect from the service.

 In generating the UI for the user account page, the user is either connected to
GitHub or not. You use the Spring Social <social:connected> and <social:notCon-
nected> JSP tags to control what we show in each case.

 When the connection doesn’t exist C, you present a button that allows the user to
establish the connection D. The controller expects an HTTP POST here, so you use a
form. GitHub also expects you to request a certain scope for authorization. The
GitHub OAuth API describes the scopes in detail; here you want the user to grant Zky-
base to perform arbitrary operations on GitHub users, repos, and gists on that user’s
behalf. You specify that scope to the ConnectController E, which in turn passes it
along to GitHub.

 In the case where the connection exists F, you want to show data from the user pro-
file such as the user’s blog URL G and geographic location. You also want to display a
button that allows the user to disconnect from GitHub. The controller expects an HTTP
DELETE, so you use a form H along with the hidden _method=delete parameter I that
tells the service that this is an HTTP DELETE rather than an HTTP POST.

 There’s one more piece to the puzzle, and that’s the Spring configuration.

CONFIGURING SPRING

The last mile here is to make certain bits of the Spring Social infrastructure available
to the application. You need a way for the app to acquire connections for any given
user request, and this in turn involves having a connection repository (to store the
user connections), as well as a way to establish new connections if they don’t exist in
the repository.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-3.1.xsd
 http://www.springframework.org/schema/beans

Listing 11.33 beans-social.xml: Spring Social configuration

Disconnects formH

Hidden field for
HTTP DELETE I

Constructor
injection
namespace

B

www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 11 Building a configuration management database
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />
 <context:annotation-config />

 <jee:jndi-lookup id="dataSource" jndi-name="jdbc/ZkybaseDS" />

 ... other config not directly relevant to social ...

 <bean id="connectionFactoryLocator"
 class="org.springframework.social.connect.support.

➥ ConnectionFactoryRegistry">
 <property name="connectionFactories">
 <list>
 <bean class="org.springframework.social.github.connect.

➥ GitHubConnectionFactory"
 c:clientId="${gitHub.clientId}"
 c:clientSecret="${gitHub.clientSecret}" />
 </list>
 </property>
 </bean>

 <bean id="usersConnectionRepository"
 class="org.springframework.social.connect.jdbc.

➥ JdbcUsersConnectionRepository"
 c:dataSource-ref="dataSource"
 c:connectionFactoryLocator-ref="connectionFactoryLocator"
 c:textEncryptor-ref="textEncryptor" />

 <bean id="connectionRepository"
 factory-bean="usersConnectionRepository"
 factory-method="createConnectionRepository"
 scope="request"
 c:userId="#{request.userPrincipal.name}">

 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

 <bean id="textEncryptor"
 class="org.springframework.security.crypto.encrypt.Encryptors"
 factory-method="noOpText" />
</beans>

There is a lot happening in this configuration. To begin, you declare the c namespace
B, which is new with Spring 3.1. This namespace allows you to perform constructor
injection in the same way the p namespace allows you to perform property injection.
You’ll see some examples.

 At C you define a JDBC data source, which you’ll need for storing GitHub user
connections. You have a connection factory registry D, and you register a lone
GitHub connection factory E. If you needed connections for other Spring Social pro-
viders, such as Facebook, Twitter, or LinkedIn, you’d register them here as well.

JDBC data
source

C

Finds connection
factories

D

Connection factory E

Injects value
into constructorF

User connection
repo

G

Injects reference
into constructor

H

Request-scoped,
user-specificI

SpEL injectionJ

No-op
encryptor

1)
www.it-ebooks.info

http://www.it-ebooks.info/

387Sourcing private GitHub data
 Notice that you’re using the c namespace to perform constructor injection into
the GitHubConnectionFactory F. The names you use must match the parameter
name; in this case they’re clientId and clientSecret.

 At G is your user-connection repository. This grabs user-specific connections from
the database, creating them if necessary. Again you’re using constructor injection, this
time with a reference H.

 The connection repository I is a little different than the user-connection reposi-
tory. Here it’s a request-scoped factory bean. The reason it’s request-scoped is that dif-
ferent requests will have different Spring Security user principals, and you want to get
the user connection for the user making the request. Once again you’re using con-
structor injection at J, but this time the injection is into the createConnectionRe-
pository() factory method. Note also that you can use the Spring Expression
Language (SpEL) to perform the injection.

 You have a no-op text encryptor 1) to use for encrypting access tokens that Zky-
base gets from GitHub. Spring Social applies this encryptor before storing the access
tokens in the database. A no-op encryptor is fine for development but not for produc-
tion. Recipe 11.7 shows how to handle the production scenario.

 Figure 11.10 shows a bean-dependency diagram for the configuration. Recapping,
you have a request-scoped connection repository that grabs user-specific connections
from a user-connection repository, which in turn has references to a connection fac-
tory and a persistent connection store.

 You also need to add a Spring Social ConnectController to the beans-web.xml
configuration file. This is what handles the OAuth 2 web flow:

<bean class="org.springframework.social.connect.web.

➥ ConnectController" />

Figure 11.10 Spring Social GitHub bean dependency diagram
www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 11 Building a configuration management database
This reasonably modest configuration takes care of the OAuth 2 dance. Start the appli-
cation, and try it.

Discussion

In this recipe and the previous one, we showed how to use Spring Social to make calls
against GitHub’s public and private API. In the first case, all you need to do is make a
GitHubTemplate available to the app, and you can use it without having to configure it.
For making private API calls, the process is considerably more involved because it
requires OAuth 2, but Spring Social does a nice job of making this as simple as possible.

 Spring Social GitHub is still a work in progress at the time of this writing (no 1.0
release yet), and the number of apps that want to interact with GitHub is probably rel-
atively small compared to those that want to talk with Facebook, Twitter, or LinkedIn.
Fortunately, the Spring Social projects for those providers are much more mature.
You can easily apply what you’ve learned about Spring Social GitHub to the other
Spring Socials, because they all use the same general approach.

 The next recipe addresses a security issue with your work so far: you aren’t protect-
ing the access tokens in the database. In production, you definitely want to encrypt
them.

11.7 Encrypting access tokens for production use
PREREQUISITES

Recipe 11.5 Sourcing public GitHub data
Recipe 11.6 Sourcing private GitHub data

KEY TECHNOLOGIES

Spring Framework 3.1, Spring Security

Background

In recipe 11.6, you used a no-op text encryptor for GitHub access tokens. That’s fine
for development, but it’s no good for production-deployment scenarios where you
don’t want prying eyes to see user access tokens. An attacker with an access token can
perform sensitive actions against the victim’s GitHub account. In this recipe, we look
at repairing that situation.

Problem

Encrypt access tokens for production, but leave them unencrypted for development.

Solution

You’ll take advantage of the new profile feature in Spring 3.1. The idea behind this
feature is to support different bean definitions depending on the environment. This
goes beyond using different property values in different environments; here you want
to use different beans depending on the environment.

 Recall from recipe 11.6 that you used a no-op text encryptor:
www.it-ebooks.info

http://www.it-ebooks.info/

389Encrypting access tokens for production use
<bean id="textEncryptor"
 class="org.springframework.security.crypto.encrypt.Encryptors"
 factory-method="noOpText" />

Here you’ll continue using that for development, but you want to use the following
for production instead:

<bean id="textEncryptor"
 class="org.springframework.security.crypto.encrypt.Encryptors"
 factory-method="text"
 c:password="${security.encryptPassword}"
 c:salt="${security.encryptSalt}" />

The following listing has the new Spring Social configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:c="http://www.springframework.org/schema/c"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean id="connectionFactoryLocator"
 class="org.springframework.social.connect.support.

➥ ConnectionFactoryRegistry">
 <property name="connectionFactories">
 <list>
 <bean class="org.springframework.social.github.connect.

➥ GitHubConnectionFactory"
 c:clientId="${gitHub.clientId}"
 c:clientSecret="${gitHub.clientSecret}" />
 </list>
 </property>
 </bean>

 <bean id="usersConnectionRepository"
 class="org.springframework.social.connect.jdbc.

➥ JdbcUsersConnectionRepository"
 c:dataSource-ref="dataSource"
 c:connectionFactoryLocator-ref="connectionFactoryLocator"
 c:textEncryptor-ref="textEncryptor" />

 <bean id="connectionRepository"
 factory-bean="usersConnectionRepository"
 factory-method="createConnectionRepository"
 scope="request"
 c:userId="#{request.userPrincipal.name}">

 <aop:scoped-proxy proxy-target-class="false" />
 </bean>

Listing 11.34 Updated beans-social.xml with development and production profiles
www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 11 Building a configuration management database
 <beans profile="dev">
 <bean id="textEncryptor"
 class="org.springframework.security.crypto.encrypt.Encryptors"
 factory-method="noOpText" />
 </beans>

 <beans profile="prod">
 <bean id="textEncryptor"
 class="org.springframework.security.crypto.encrypt.Encryptors"
 factory-method="text"
 c:password="${security.encryptPassword}"
 c:salt="${security.encryptSalt}" />
 </beans>
</beans>

In listing 11.33, the text encryptor was defined alongside the other beans. In listing 11.34
that’s not true: it’s defined instead inside the development profile B, which you indicate
using a nested <beans profile="dev"> element. You define the production encryptor
in the production profile C. The values for security.encryptPassword and secu-
rity.encryptSalt come from your environment.properties file. Note that the text
encryptor expects the salt to be a valid hex-encoded value (for example, CAFED00D3141—
but choose your own for actual production use).

 You need a way to tell Spring which profile you want to use when you’re running
the app. There are different ways to do this, but in this case you want to pass the pro-
file in as a command-line argument when starting up the server because you obviously
don’t want to bake it into the configuration. You can do that with a JVM system prop-
erty as follows:

mvn -Dspring.profiles.active=prod -e clean jetty:run

Other alternatives are system environment variables (generally useful because most
systems target a specific profile), web.xml servlet context parameters (not as useful
because you don’t want to hardcode the profile in the configuration), and JNDI
entries. In each case the variable name remains spring.profiles.active. Note that
you can specify multiple profiles with a comma-delimited list.

Discussion

This recipe showed how to secure access tokens by encrypting them. Doing so involves
using different encryptor beans in the development and production profiles. There
are other examples where this sort of thing happens. For instance, an app may use
database-based authentication on the local machine but CAS-based authentication for
dev, test, staging, and production.

 Note that in a great many cases, the only things that change from environment to
environment are property values, such as passwords or web service URLs. In such
cases, there’s no need to use profiles: just use different properties files for different
environments.

Development profileB

Production profileC
www.it-ebooks.info

http://www.it-ebooks.info/

391Summary
11.8 Summary
This chapter concludes one of our favorite topics: configuration management. In it
you learned how to create a CMDB with CIs backed by Neo4j. You also saw how to cre-
ate a web service for your CMDB, as well as how to integrate tools like Maven with your
CMDB via the web service. Finally, you learned how to make outbound calls to social
apps like GitHub. These integrations are key to establishing an effective configuration
management infrastructure.

 The next chapter turns to the topic of content delivery in the form of an article-
delivery engine. In it, we continue our exploration of NoSQL data stores, this time
involving the Java Content Repository (JCR) and MongoDB/Spring Data MongoDB.
www.it-ebooks.info

http://www.it-ebooks.info/

Building
 an article-delivery engine
Among the tasks a content-management system (CMS) must support are the
authoring, editing, and deploying of content by nontechnical users. Examples
include articles (news, reviews, and so on), announcements, press releases, product
descriptions, and course materials.

 In this chapter, you’ll create an article-delivery engine following three recipes.

■ Recipe 12.1 builds an article repository using Jackrabbit, Java Content Repos-
itory (JCR), and Spring Modules JCR.

■ Recipe 12.2 builds a web front end to upload and display the articles.
■ Recipe 12.3 replaces the JCR repository with a MongoDB-based implementa-

tion using Spring Data MongoDB.

Figure 12.1 is the roadmap in graphical form. It shows how the various pieces fit
together architecturally.

This chapter covers
■ Building an article repository
■ Enabling web upload and article display
■ Using a MongoDB database
392

www.it-ebooks.info

http://www.it-ebooks.info/

393
Although it’s not strictly required, to get the best value from this chapter you’ll find it
helpful to have experience with JCR, Jackrabbit, and MongoDB. If those are new areas
for you, be prepared to do some self-study because we won’t be covering them in
detail. But we do provide sample code—be sure to make use of it, especially as regards
the nontrivial Maven setup. The following resources are also available:

■ For JCR and Jackrabbit, see the Jackrabbit website at http://jackrabbit.apache.org/.
■ For MongoDB, see MongoDB in Action by Kyle Banker (Manning, 2011).1 2 3

Before we continue, let’s pause to discuss Spring Modules JCR.

1 See, for example, java.net/projects/springmodules and http://se-jcr.sourceforge.net/.
2 Personally, we’d be excited to see a Spring Data JCR project emerge, but Spring Data seems to focus more on

newer data technologies. There is a Spring Data JPA project, though, so you never know…
3 See https://github.com/williewheeler/spring-modules-jcr. It’s not a bad idea for you to search out other

forks that may be further along and then create your own fork to ensure its availability for your project.

Figure 12.1 Chapter
roadmap and architec-
tural relationships

A word about how we’re using Spring Modules JCR
Spring Modules is a defunct project that includes several useful Spring-style libraries
for integrating with various noncore APIs and codebases, including Ehcache, OS-
Cache, Lucene, and JCR. Unfortunately, various promising attempts to revive Spring
Modules, either in whole or in part, appear to have stalled.1

It’s unclear whether Spring will ever directly support JCR,2 but there’s a lot of good
Spring/JCR code in the Spring Modules project, and we wanted to take advantage of
it instead of starting from scratch. Toward that end, we forked an existing Spring Mod-
ules JCR effort on GitHub to serve as a stable-ish basis for the book’s code.3 We’ve
made some minor enhancements (mostly around cleaning up the POM and elaborat-
ing support for namespace-based configuration) to make Spring/JCR integration eas-
ier. But note that we don’t plan to elaborate this fork beyond merging any useful pull
requests that people might want to submit.
www.it-ebooks.info

http://jackrabbit.apache.org/
http://se-jcr.sourceforge.net/
https://github.com/williewheeler/spring-modules-jcr
http://www.it-ebooks.info/

394 CHAPTER 12 Building an article-delivery engine
You’ll begin your explorations by setting up the article repository.

12.1 Storing articles in a content repository
PREREQUISITIES

None. Previous experience with JCR and Jackrabbit will be helpful.

KEY TECHNOLOGIES

JCR 2.0 (JSR 283), Jackrabbit 2.x, Spring Modules JCR

Background

Your first order of business is to establish a place to store your content, so let’s start
with that. In subsequent recipes, we’ll build on this early foundation.

Problem

Build an article repository supporting article import and retrieval. Future plans4 are to
support more advanced capabilities such as article authoring, versioning, and work-
flows involving fine-grained access control.

Solution

Although it’s often fine to use files or databases for content storage, sometimes you
must support advanced content-related operations such as fine-grained access control,
author-based versioning, content observation (for example, watches), advanced que-
rying, and locking. A content repository builds on a persistent store by adding direct
support for such operations.

 You’ll use a JSR 283 content repository to store and deliver the articles. JSR 283,
better known as the JCR 2.0 specification,5 defines a standard architecture and API for
accessing content repositories. You’ll use the open source Apache Jackrabbit 2.x JCR
reference implementation at http://jackrabbit.apache.org/.

 This isn’t a book on JCR, so we’ll limit our treatment of JCR to an overview. For
more information, please see the Jackrabbit website or check out the JSR 283 home
page at http://jcp.org/en/jsr/detail?id=283.

4 We don’t pursue them in this chapter. The future plans merely motivate the choice of JCR as opposed to a
simpler approach.

5 The specification for JCR 1.0 is JSR 170. See http://jcp.org/en/jsr/detail?id=170.

(continued)
To be perfectly clear, recipe 12.1 isn’t about Spring Modules JCR. It’s about Spring/
JCR integration, and we use Spring Modules JCR because it’s helpful and it’s current-
ly a sensible approach to take if you need to perform Spring/JCR integration. The re-
ality is that integrating Spring and JCR requires extra effort because there isn’t to
date an established project for doing that.
www.it-ebooks.info

http://jcp.org/en/jsr/detail?id=170
http://jackrabbit.apache.org
http://jcp.org/en/jsr/detail?id=283
http://www.it-ebooks.info/

395Storing articles in a content repository
JCR BASICS

The JCR specification aims to provide a standard API for accessing content reposito-
ries. According to the JSR 283 home page:

A content repository is a high-level information management system that is a superset of
traditional data repositories. A content repository implements “content services” such as:
author-based versioning, full textual searching, fine-grained access control, content
categorization and content-event monitoring. It’s these “content services” that differentiate
a content repository from a Data Repository.

Architecturally, so-called content applications (such as a content authoring system, a
CMS, and so on) involve the three layers shown figure 12.2.

Do you need JCR just to import and retrieve articles?
No. If all you need is the ability to import and deliver articles, JCR is overkill. But we’re
assuming for the sake of discussion that you’re treating the minimal delivery capabil-
ity you establish in this chapter as a basis on which to build more advanced features.
Given that assumption, it makes sense to build JCR in from the beginning because
it’s not especially difficult to do.

If you know you don’t need anything advanced, you might consider using a traditional
relational database back end or even a NoSQL document repository such as CouchDB
or MongoDB. Either of those options is more straightforward than JCR. We don’t pursue
the relational approach here (the rest of the book equips you to pursue that yourself),
but recipe 12.3 shows how to use a MongoDB document repo instead of JCR.

Figure 12.2 JCR application
architecture. Content apps
make calls against the stan-
dardized JCR API, and reposi-
tory vendors provide
compliant implementations.
www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 12 Building an article-delivery engine
The uppermost layer contains the content applications. These might be CMS apps that
content developers use to create and manage content, or they might be content-delivery
apps that content consumers use. This app layer interacts with the content repository6

(for example, Jackrabbit) through the JCR API, which offers some key benefits:

■ The API specifies capabilities that repository vendors either must or should
provide.7

■ It allows content apps to insulate themselves from implementation specifics by
coding against a standard JCR API instead of a proprietary repository-specific API.

Apps can of course take advantage of vendor-specific features, but to the extent that
apps limit such excursions, it will be easier to avoid vendor lock-in.

 The content repository is organized as a tree of nodes. Each node can have any
number of associated properties. You can represent individual articles and pages as
nodes, for instance, and article and page metadata as properties.

 That’s a quick JCR overview, but it describes the basic idea. Let’s take a fast look at
the article repository, and after that you’ll start on the code.

ARTICLE REPOSITORY OVERVIEW

At the highest level, you can distinguish article development (for example, authoring,
version control, editing, and packaging) from article delivery. Our focus in this recipe
is article delivery, specifically the ability to import an article package (assets plus meta-
data) into a runtime repository and deliver it to readers. Obviously there has to be a
way to do the development too, but here you’ll assume the author uses their favorite
text editor, version-control system, and zip tool. In other words, development is out-
side the scope of this chapter.

 See figure 12.3 for an overview of this simple article-management architecture.
 That’s the repository overview. Now it’s time for specifics. As a first step you’ll set

up a Jackrabbit repository to serve as the foundation for the article-delivery engine.

SETTING UP THE JACKRABBIT CONTENT REPOSITORY

If you’re knowledgeable about Jackrabbit, feel free to configure it as you wish. Other-
wise, the chapter’s code download has a sample repository.xml Jackrabbit configura-
tion file. (It’s in the sample_conf folder.) Create a fresh directory somewhere on your
filesystem, and drop the repository.xml configuration file there. You shouldn’t need to
change anything in the configuration if you’re trying to get something quick and dirty
to work.

 There isn’t anything you need to start up. Eventually you’ll point the app at the
directory you just created. The app, on startup, will create an embedded Jackrabbit
instance against your directory.

6 Be sure to distinguish content-management systems from content repositories. A content repository is a back-end sys-
tem that provides a content storage abstraction and also various services around that, such as read/write, que-
rying, transactions, and versioning. A CMS provides a UI for working with a content repository.

7 The JCR spec defines three levels of compliance, and providers target one of those levels.
www.it-ebooks.info

http://www.it-ebooks.info/

397Storing articles in a content repository
To model the articles, you’ll need a couple of domain objects: articles and pages.
That’s the topic of our next discussion.

BUILDING THE DOMAIN OBJECTS

The articles include metadata and pages. The following listing shows an abbreviated
version of the basic article domain object covering the key parts; please see the code
download for the full class.

package com.springinpractice.ch12.model;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;

public class Article {
 private String id;
 private String title;
 private String author;
 private Date publishDate;
 private String description;
 private String keywords;
 private List<Page> pages = new ArrayList<Page>();

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 public String getTitle() { return title; }

Listing 12.1 Article.java: simple domain object for articles

Figure 12.3 An article CMS architecture with the bare essentials. The development environment has
authoring, version control, and a packager. The runtime environment supports importing article packages
(for example, article content, assets, and metadata) and delivering it to users. In this recipe, JCR is the
runtime article repository.
www.it-ebooks.info

http://www.it-ebooks.info/

398 CHAPTER 12 Building an article-delivery engine
 public void setTitle(String title) { this.title = title; }

 ... other getters and setters ...
}

There shouldn’t be anything too surprising about the article. You don’t need any
annotations for now. It’s a pure POJO.

 You’ll need a page domain object as well. It’s even simpler, as you can see.

package com.springinpractice.ch12.model;

public class Page {
 private String content;

 public String getContent() { return content; }

 public void setContent(String content) { this.content = content; }
}

It would probably be a nice addition to add a title to the page domain object, but this
is good enough for your current purpose.

 Next we want to look at the data access layer, which provides a domain-friendly API
into the repository.

BUILDING THE DATA ACCESS LAYER

Even though you’re using Jackrabbit instead of using
the Hibernate back end from other chapters, you can
continue to use the Dao abstraction. Figure 12.4 is a
class diagram for the DAO interfaces and class.

 The Hibernate DAOs had an AbstractHbnDao to fac-
tor out some of the code common to all Hibernate-
backed DAOs. In the current case you haven’t created
the analogous AbstractJcrDao because you have only a
single JCR DAO. But if you had more, it would make
sense to do the same thing.

 You’ll want a couple of extra operations on the
ArticleDao, as the next listing shows.

package com.springinpractice.ch12.dao;

import com.springinpractice.ch12.model.Article;
import com.springinpractice.dao.Dao;

public interface ArticleDao extends Dao<Article> {

 void createOrUpdate(Article article);

 Article getPage(String articleId, int pageNumber);
}

Listing 12.2 Page.java: page domain object

Listing 12.3 ArticleDao.java: data access object interface for articles

Saves using
a known ID

B

Gets article with
page hydratedC

Figure 12.4 DAO class diagram
www.it-ebooks.info

http://www.it-ebooks.info/

399Storing articles in a content repository

s

The articles have preset IDs (as opposed to being autogenerated following a save), so
the createOrUpdate() method B makes it convenient to save an article using a known
article ID. The getPage() method C supports displaying a single page (1-indexed). It
returns an article with the page in question eagerly loaded so you can display it. The
other pages have placeholder objects to ensure that the page count is correct.

 Next, here’s the JCR-based implementation of the ArticleDao.

package com.springinpractice.ch12.dao.jcr;

import static org.springframework.util.Assert.notNull;

import java.io.IOException;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.inject.Inject;
import javax.jcr.Node;
import javax.jcr.NodeIterator;
import javax.jcr.PathNotFoundException;
import javax.jcr.RepositoryException;
import javax.jcr.Session;
import org.springframework.dao.DataIntegrityViolationException;
import org.springframework.dao.DataRetrievalFailureException;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
import org.springmodules.jcr.JcrCallback;
import org.springmodules.jcr.SessionFactory;
import org.springmodules.jcr.support.JcrDaoSupport;
import com.springinpractice.ch12.dao.ArticleDao;
import com.springinpractice.ch12.model.Article;
import com.springinpractice.ch12.model.Page;

@Repository
@Transactional(readOnly = true)
public class JcrArticleDao extends JcrDaoSupport implements ArticleDao {
 @Inject private ArticleMapper articleMapper;

 @Inject
 public void setSessionFactory(SessionFactory sessionFactory) {
 super.setSessionFactory(sessionFactory);
 }

 @Transactional(readOnly = false)
 public void create(final Article article) {
 notNull(article);
 getTemplate().execute(new JcrCallback() {
 public Object doInJcr(Session session)
 throws IOException, RepositoryException {
 if (exists(article.getId())) {
 throw new DataIntegrityViolationException(
 "Article already exists");
 }
 articleMapper.addArticleNode(

Listing 12.4 JcrArticleDao.java: JCR-based DAO implementation

Class definition B

Maps between
articles and nodeC

Creates JCR sessions D

Write methodE

Uses
JcrTemplateF

Throws
DataAccessExceptionG
www.it-ebooks.info

http://www.it-ebooks.info/

400 CHAPTER 12 Building an article-delivery engine
 article, getArticlesNode(session));
 session.save();
 return null;
 }
 }, true);
 }

 ... various other DAO methods ...

 private String getArticlesNodeName() { return "articles"; }

 private String getArticlesPath() { return "/" + getArticlesNodeName(); }

 private String getArticlePath(String articleId) {
 return getArticlesPath() + "/" + articleId;
 }

 private Node getArticlesNode(Session session)
 throws RepositoryException {
 try {
 return session.getNode(getArticlesPath());
 } catch (PathNotFoundException e) {
 return session.getRootNode().addNode(getArticlesNodeName());
 }
 }
}

The JcrArticleDao class illustrates ways in which you can use Spring to augment JCR.
The first part is the high-level class definition B. You implement the ArticleDao
interface from listing 12.3 and also extend JcrDaoSupport, which is part of Spring
Modules JCR. JcrDaoSupport gives you access to JCR Sessions, a JcrTemplate, and a
convertJcrAccessException(RepositoryException) method that converts JCR
RepositoryExceptions to exceptions in the Spring DataAccessException hierarchy.
You also declare the @Repository annotation to support component scanning and the
@Transactional annotation to support transactions.

At C you inject an ArticleMapper, which is a custom class that converts back and
forth between articles and JCR nodes. You’ll see that in listing 12.5.

Transactions on the DAO?
It might surprise you that you’re annotating a DAO with @Transactional. After all,
you usually define transactions on service beans because any given service meth-
od might make multiple DAO calls that need to happen in the scope of a single
atomic transaction.

But in this chapter, you don’t have service beans—you’ll wire the ArticleDao right
into the controller. The reason is that the service methods would pass through to
ArticleDao, and in that sort of situation there’s no benefit to going through the cer-
emony of defining an explicit service layer. If you were to extend this simple app to
something with real service methods (as opposed to data access methods), you’d
build a transactional service layer.
www.it-ebooks.info

http://www.it-ebooks.info/

401Storing articles in a content repository
 You override JcrDaoSupport.setSessionFactory() at D. You do this to make the
property injectable through the component-scanning mechanism, because JcrDao-
Support doesn’t support that.

 The create() method E is one of the CRUD methods. We’ve suppressed the oth-
ers because we’re more interested in covering Spring than in covering the details of
using JCR, but the code download has the other methods. You annotate it with
@Transactional(readOnly = false) to override the class-level @Transactional
(readOnly = true) annotation. See the code download for the rest of the methods.

 You implement the DAO methods using the template method pattern common
throughout Spring (JpaTemplate, HibernateTemplate, JdbcTemplate, RestTemplate,
and so on). In this case, you’re using the Spring Modules JCR JcrTemplate (via
JcrDaoSupport.getTemplate()) and its corresponding JcrCallback interface F.
This template is helpful because it automatically handles concerns such as opening
and closing JCR sessions, managing the relationship between sessions and transac-
tions, and translating RepositoryExceptions and IOExceptions into the Spring
DataAccessException hierarchy.

 Finally, to maintain consistency with JcrDaoSupport’s exception-translation mech-
anism, you throw a DataIntegrityViolationException G (part of the aforemen-
tioned DataAccessException hierarchy) in the event of a duplicate article.

 In our discussion of the JcrArticleDao, we mentioned an ArticleMapper compo-
nent to convert between articles and JCR nodes. The following listing presents the
ArticleMapper.

package com.springinpractice.ch12.dao.jcr;

import java.util.Calendar;
import java.util.Date;
import javax.jcr.Node;
import javax.jcr.RepositoryException;
import org.springframework.stereotype.Component;
import com.springinpractice.ch12.model.Article;
import com.springinpractice.ch12.model.Page;

@Component
public class ArticleMapper {

 public Article toArticle(Node node) throws RepositoryException {
 Article article = new Article();
 article.setId(node.getName());
 article.setTitle(node.getProperty("title").getString());
 article.setAuthor(node.getProperty("author").getString());

 if (node.hasProperty("publishDate")) {
 article.setPublishDate(
 node.getProperty("publishDate").getDate().getTime());
 }

 if (node.hasProperty("description")) {

Listing 12.5 ArticleMapper.java: converts between articles and JCR nodes

Maps Node
to Article

B

www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 12 Building an article-delivery engine
 article.setDescription(
 node.getProperty("description").getString());
 }

 if (node.hasProperty("keywords")) {
 article.setKeywords(node.getProperty("keywords").getString());
 }

 return article;
 }

 public Node addArticleNode(Article article, Node parent)
 throws RepositoryException {

 Node node = parent.addNode(article.getId());
 node.setProperty("title", article.getTitle());
 node.setProperty("author", article.getAuthor());

 Date publishDate = article.getPublishDate();
 if (publishDate != null) {
 Calendar cal = Calendar.getInstance();
 cal.setTime(publishDate);
 node.setProperty("publishDate", cal);
 }

 String description = article.getDescription();
 if (description != null) {
 node.setProperty("description", description);
 }

 String keywords = article.getKeywords();
 if (keywords != null) {
 node.setProperty("keywords", keywords);
 }

 Node pagesNode = node.addNode("pages", "nt:folder");
 int numPages = article.getPages().size();
 for (int i = 0; i < numPages; i++) {
 Page page = article.getPages().get(i);
 addPageNode(pagesNode, page, i + 1);
 }

 return node;
 }

 private void addPageNode(Node pagesNode, Page page, int pageNumber)
 throws RepositoryException {

 Node pageNode = pagesNode.addNode(
 String.valueOf(pageNumber), "nt:file");
 Node contentNode = pageNode.addNode(
 Node.JCR_CONTENT, "nt:resource");
 contentNode.setProperty("jcr:data", page.getContent());
 }
}

The listing is more concerned with mapping code than with Spring techniques, but
we’re including it to give you a sense for what coding against JCR looks like in case
you’re unfamiliar with it. You use toArticle() B to map a JCR node to an article.

Maps Article
to Node

C

Maps Page
to Node

D

www.it-ebooks.info

http://www.it-ebooks.info/

403Storing articles in a content repository

Then you have addArticleNode() C and addPageNode() D to convert Articles and
Pages to Nodes, respectively.

 The next listing brings everything together with the Spring configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jcr="http://springmodules.dev.java.net/schema/jcr"
 xmlns:jackrabbit=
 "http://springmodules.dev.java.net/schema/jcr/jackrabbit"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
 http://springmodules.dev.java.net/schema/jcr
 http://springmodules.dev.java.net/schema/jcr/springmodules-jcr.xsd
http://springmodules.dev.java.net/schema/jcr/jackrabbit
http://springmodules.dev.java.net/schema/jcr/springmodules-jackrabbit.xsd">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <jackrabbit:repository id="repository"
 homeDir="${repository.dir}"
 configuration="${repository.conf}" />

 <bean id="credentials" class="javax.jcr.SimpleCredentials">
 <constructor-arg value="dummy" />
 <constructor-arg value="dummy" />
 </bean>

 <jcr:sessionFactory id="sessionFactory"
 repository="repository" credentials="credentials" />

 <context:component-scan
 base-package="com.springinpractice.ch12.dao.jcr" />

 <jackrabbit:transaction-manager sessionFactory="sessionFactory" />

 <tx:annotation-driven />
</beans>

As always, you begin by declaring the relevant namespaces and schema locations.
In this case you need to declare (among others) the Spring Modules jcr B and
jackrabbit C namespaces so you can use the custom namespace configuration they
provide.

Listing 12.6 beans-jcr.xml: Spring beans configuration for the JCR repository

JCR namespace B

Jackrabbit
namespace C

Repository
configuration
propertiesD

Creates Jackrabbit repositoryE

Repository
credentialsF

JCR session factory G

Scans for
DAOs

H

Jackrabbit
transaction

manager I

Activates
transactionsJ
www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 12 Building an article-delivery engine
 You need to pull in a couple of externalized properties so you can configure a Jack-
rabbit repository without resorting to hardcoding. You do that at D. The environ-
ment.properties file has only two properties:

repository.conf=file:/path/to/repository.xml
repository.dir=file:/path/to/repository

(Of course, you’ll need to adjust the values according to your own environment.)
Note that the property values here are Spring resources, and they don’t necessarily
have to be file resources. You can, for instance, create classpath resources, network
resources, and so forth.

 Now you can create the Jackrabbit repository. You use the <jackrabbit:repository>
element to do that E, along with the repository.conf and repository.dir properties
you grabbed from environment.properties. Behind the scenes, this reads the Jackrab-
bit repository.xml configuration file we mentioned earlier and then builds a repository
at whatever home directory you specify.

 The DAOs need a way to get JCR sessions, and for that you need a Spring Modules
SessionFactory. The SessionFactory gets sessions from the repository using creden-
tials. You define the credentials at F. For the repository.xml configuration it’s fine to
use dummy credentials, so that’s what you do. If you want to use real credentials,
update repository.xml and beans-jcr.xml appropriately. Pass the repository and cre-
dentials into the SessionFactory G, and then component-scan ArticleDao H,
which automatically injects the SessionFactory.

 For transactions, you define a Jackrabbit LocalTransactionManager (courtesy of
Spring Modules) I and use <tx:annotation-driven/> J to activate declarative
transaction management.

 Figure 12.5 shows the bean-dependency diagram for the configuration we just
reviewed. You now have a JCR-backed DAO for the article-delivery engine.

Figure 12.5 Bean-dependency diagram for the JCR-based article repository
www.it-ebooks.info

http://www.it-ebooks.info/

405Creating a web-based article-delivery engine
Discussion

This recipe showed how to use Spring Modules JCR to integrate Spring and Jackrabbit,
the JCR reference implementation. You followed this book’s usual practice of defining
a DAO interface and then implementing the DAO using a specific persistence technology.

 The DAO is, of course, only the first piece of what you need to build. It doesn’t do
anything yet. In the next recipe, you’ll create a simple, web-based article-delivery
engine that uses the DAO you just created.

12.2 Creating a web-based article-delivery engine
PREREQUISITIES

Recipe 12.1 Storing articles in a content repository

KEY TECHNOLOGIES

Spring Web MVC, file upload, REST

Background

In the previous recipe you created a repository for storing articles. To make the repos-
itory useful, however, you need a front end to present the articles to users. That’s what
this recipe covers.

Problem

Create an article-delivery engine supporting article importing, a master list view, and a
details view.

Solution

Of the three required features, the master list and the details views are both straight-
forward. They aren’t much more than calls straight to the DAO. The importer is a little
more involved, though. Let’s start by looking at the controller so you can get the mas-
ter list and details views out of the way. After that, we’ll go over the article importer.

BUILDING THE CONTROLLER

The following listing shows the ArticleController class.

package com.springinpractice.ch12.web;

import java.io.IOException;
import javax.inject.Inject;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.multipart.MultipartFile;
import com.springinpractice.ch12.dao.ArticleDao;

Listing 12.7 ArticleController.java: web controller for articles
www.it-ebooks.info

http://www.it-ebooks.info/

406 CHAPTER 12 Building an article-delivery engine
import com.springinpractice.ch12.model.Article;
import com.springinpractice.ch12.model.Page;

@Controller
@RequestMapping("/articles")
public class ArticleController {
 @Inject private ArticleConverter articleConverter;
 @Inject private ArticleDao articleDao;

 @RequestMapping(value = "", method = RequestMethod.POST)
 public String createArticle(
 @RequestParam("file") MultipartFile file) {
 if (file.isEmpty()) {
 return "redirect:/articles.html?upload=fail"; }
 Article article = articleConverter.convert(file);
 articleDao.createOrUpdate(article);
 return "redirect:/articles.html?upload=ok";
 }

 @RequestMapping(value = "", method = RequestMethod.GET)
 public String getArticleList(Model model) {
 model.addAttribute(articleDao.getAll());
 return getFullViewName("articleList");
 }

 @RequestMapping(value = "/{id}/{page}", method = RequestMethod.GET)
 public String getArticlePage(
 @PathVariable String id,
 @PathVariable("page") Integer pageNumber,
 Model model) {

 Article article = articleDao.getPage(id, pageNumber);
 Page page = article.getPages().get(pageNumber - 1);
 model.addAttribute(article);
 model.addAttribute("articlePage", page);
 model.addAttribute("pageNumber", pageNumber);
 return getFullViewName("articlePage");
 }

 private String getFullViewName(String viewName) {
 return "article/" + viewName;
 }
}

In the controller, you inject an ArticleConverter B for article importing (we’ll get to
that in a moment) and also the ArticleDao C you created in the previous recipe. Then
you have simple handler methods for each of the required functions: createArticle()
for importing articles D, getArticleList() for viewing the master list E, and get-
ArticlePage() for viewing an article page F. That’s the entire controller.

 Next we’ll look at the JSPs for viewing the article master list and the article details.

BUILDING THE MASTER LIST AND DETAILS VIEW JSPS

The article master list shows the articles in a simple list, with the title, author, publica-
tion date, and description. The titles are links to the first page of the individual arti-
cles. See figure 12.6.

Inject
converter

B

Injects DAOC

Imports using
MultipartFileD

Generates
master list

E

Generates
details viewF
www.it-ebooks.info

http://www.it-ebooks.info/

407Creating a web-based article-delivery engine
The code for the article master list is in the next listing. We’ve simplified the HTML
(by removing CSS stuff) to keep the listing short, but the full JSP is available in the
code download.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Articles</title></head>
<body>
<h1>Articles</h1>
<c:choose>
 <c:when test="${empty articleList}"><p>None</p></c:when>
 <c:otherwise>
 <c:forEach var="article" items="${articleList}">
 <c:url var="articleUrl"
 value="/articles/${article.id}/1.html" />
 <div>
 <c:out value="${article.title}" /></div>
 <div><c:out value="${article.author}" /></div>
 <div><fmt:formatDate value="${article.publishDate}" /></div>
 <div><c:out value="${article.description}" /></div>
 </c:forEach>
 </c:otherwise>
</c:choose>
</body>
</html>

The article details page is somewhat more involved but still not too complicated. You
need navigation, and the first page of the article should show the title, author, publica-
tion date, and description, as shown in figure 12.7.

Listing 12.8 articleList.jsp: displays the master list of articles

Figure 12.6 A screenshot of the article master list
www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 12 Building an article-delivery engine
The following listing shows the details view JSP. Again, we’ve taken some liberties with
the actual code listing to highlight what’s essential. See the code download for the full
version.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>
 <c:out value="${article.title}" />
 - Page <c:out value="${pageNumber}" />
</title>
</head>
<body>
<div><jsp:include page="pageNav.jsp" /></div>
<c:choose>
 <c:when test="${pageNumber == 1}">
 <h1><c:out value="${article.title}" /></h1>
 <div><c:out value="${article.author}" /></div>
 <div><fmt:formatDate value="${article.publishDate}" /></div>
 <div><c:out value="${article.description}" /></div>
 </c:when>
 <c:otherwise>
 <h4><c:out value="${article.title}" /></h4>
 </c:otherwise>
</c:choose>
<c:out value="${articlePage.content}" escapeXml="false" />

Listing 12.9 articlePage.jsp: displays a single article page with page navigation

Figure 12.7 The article details view must show page navigation, and the first page shows the title,
author, publication date, and description.
www.it-ebooks.info

http://www.it-ebooks.info/

409Creating a web-based article-delivery engine
<div><jsp:include page="pageNav.jsp" /></div>
</body>
</html>

As you can see, the page navigation appears at the top and bottom of the page. Next is
the JSP include that generates the page navigation.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<c:if test="${fn:length(article.pages) > 1}">
 <div class="pageNavigation">

 <c:choose>
 <c:when test="${pageNumber == 1}">
 «
 </c:when>
 <c:otherwise>
 «
 </c:otherwise>
 </c:choose>
 <c:forEach var="page"
 items="${article.pages}" varStatus="status">
 <c:set var="curr" value="${status.index + 1}" />
 <c:choose>
 <c:when test="${curr == pageNumber}">
 <a href="${curr}.html"
 class="currentPage">${curr}
 </c:when>
 <c:otherwise>
 ${curr}
 </c:otherwise>
 </c:choose>
 </c:forEach>
 <c:choose>
 <c:when test="${pageNumber < fn:length(article.pages)}">
 »
 </c:when>
 <c:otherwise>
 »
 </c:otherwise>
 </c:choose>

 </div>
</c:if>

With that, we’ve covered the article master list and details views. We still need to exam-
ine the topic of importing articles, so we’ll do that next.

IMPORTING ARTICLES

Recall from figure 12.3 that the article-import functionality assumes you’re importing
an article package. In this case, an article package is a zip file whose contents are the
following:

Listing 12.10 pageNav.jsp: page navigation
www.it-ebooks.info

http://www.it-ebooks.info/

410 CHAPTER 12 Building an article-delivery engine
■ A file article.xml that contains article metadata (ID, title, author, and so forth)
■ Individual HTML files 1.html, 2.html, …, n.html, corresponding to the article’s

n pages

The sample code includes three sample article packages; unzip them to see their con-
tents. For your convenience, here’s an example of an article.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<article id="spring-security-hash-salt-passwords">
 <category>Software Development</category>
 <title>Hashing and Salting Passwords with Spring Security 2</title>
 <author>Willie Wheeler</author>
 <publishDate>2008-10-11</publishDate>
 <description>
 Use Spring Security 2 to store your user passwords securely.
 </description>
 <keywords>
 spring,security,spring security,java,
 java security,hash,hashes,salt,
 crypto,storing passwords securely,md4,md5,sha-1,encryption,login,
 authentication
 </keywords>
 <thumbUrl>http://wheelersoftware.s3.amazonaws.com/articles/

➥ spring-security-hash-salt-passwords/ladybug-thumb2.jpg</thumbUrl>
</article>

The file should be fairly self-explanatory. The main advantage of this format is that
you can use object/XML mapping to map between the Article class from listing 12.1
and the XML from listing 12.11. We’ll get to that in a moment.

 The HTML pages are normal HTML pages, although they use certain CSS classes to
achieve various presentational effects. See the code download for those.

 To understand how article importing works, you need to be familiar with the flow
starting from an article package on the user’s desktop to an article ending up in the
article repository. Figure 12.8 explains how this flow works.

Listing 12.11 Example of an article.xml file for the article package

Figure 12.8 How an article package on the user’s machine ends up as an article in the article repository
www.it-ebooks.info

http://www.it-ebooks.info/

411Creating a web-based article-delivery engine
You’ve already seen the controller and the DAO. Let’s look at the article-upload form
first and then the ArticleConverter.

 From a UI perspective, you’ll put the article-upload form at the top of the article
master list. Figure 12.9 shows what the form looks like.

 To implement this, you need to add a form to articleList.jsp. You’ll add a couple of
alert messages as well to indicate success or failure when uploading an article. Review
the controller in listing 12.7 to see how you activate these alerts. Here’s a slightly sim-
plified version of what you need to add to articleList.jsp; see the code download for
the full version:

<c:url var="uploadUrl" value="/articles" />

<c:if test="${param.upload == 'fail'}">
 <div class="error alert">The upload failed.</div>
</c:if>
<c:if test="${param.upload == 'ok'}">
 <div class="info alert">Uploaded.</div>
</c:if>
<form action="${uploadUrl}" method="post" enctype="multipart/form-data">
 <input name="file" type="file" />
 <input type="submit" value="Upload" />
</form>

That part isn’t too bad. The important parts are the form’s enctype attribute and the
file-input field—these are what make this a file-upload form.

 When the user uploads an article package, the browser sends the package to the
ArticleController, whose createArticle() method picks it up as a MultipartFile
object. The createArticle() method uses the ArticleConverter to convert the
MultipartFile into an Article. See figure 12.10 to understand what’s happening
behind the scenes. The following listing offers the details of this process.

package com.springinpractice.ch12.web;

import java.io.*;
import java.util.*;

Listing 12.12 ArticleConverter.java: extracts an Article from the file upload

Figure 12.9 The article-upload form

Figure 12.10 How ArticleConverter converts an article package to an Article
www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 12 Building an article-delivery engine
import javax.inject.Inject;
import javax.servlet.ServletContext;
import javax.xml.transform.stream.StreamSource;
import org.springframework.core.convert.converter.Converter;
import org.springframework.oxm.Unmarshaller;
import org.springframework.stereotype.Component;
import org.springframework.web.context.ServletContextAware;
import org.springframework.web.multipart.MultipartFile;
import com.springinpractice.ch12.model.Article;
import com.springinpractice.ch12.model.Page;

@Component
public class ArticleConverter
 implements Converter<MultipartFile, Article>, ServletContextAware {

 private static final int BUFFER_SIZE = 4096;

 @Inject private Unmarshaller unmarshaller;
 private ServletContext servletContext;
 private Random random = new Random();

 public void setServletContext(ServletContext servletContext) {
 this.servletContext = servletContext;
 }

 public Article convert(MultipartFile zipFile) {
 try {
 File tempDir = createTempDir();
 unzip(zipFile, tempDir);
 Article article = assembleArticle(tempDir);
 tempDir.delete();
 return article;
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

 private File createTempDir() {
 File tempDir = (File) servletContext.getAttribute(
 "javax.servlet.context.tempdir");
 File articleDir;
 int count = 0;
 while ((articleDir = new File(
 tempDir, "article-" +
 Math.abs(random.nextLong()))).exists()) {
 if (count++ > 5) {
 throw new RuntimeException(
 "Can't create a temporary directory. " +
 "Something is very wrong.");
 }
 }
 articleDir.mkdirs();
 return articleDir;
 }

 private void unzip(MultipartFile zipFile, File destDir)
 throws IOException {
 byte[] buffer = new byte[BUFFER_SIZE];

Interface declarations B

OXM UnmarshallerC

For ServletContextAware D

Primary conversion
methodE

Creates temporary
directory

F

Unzips file into
temp directory

G

www.it-ebooks.info

http://www.it-ebooks.info/

413Creating a web-based article-delivery engine
 ZipInputStream zis = new ZipInputStream(
 new ByteArrayInputStream(zipFile.getBytes()));
 ZipEntry entry;
 while ((entry = zis.getNextEntry()) != null) {
 File entryFile = new File(destDir, entry.getName());
 BufferedOutputStream bos = new BufferedOutputStream(
 new FileOutputStream(entryFile), BUFFER_SIZE);
 int len;
 while ((len = zis.read(buffer)) > 0) {
 bos.write(buffer, 0, len); }
 bos.flush();
 bos.close();
 }
 zis.close();
 }

 private Article assembleArticle(File articleDir)
 throws IOException {
 File articleFile = new File(articleDir, "article.xml");
 StreamSource articleSrc = new StreamSource(articleFile);
 Article article = (Article) unmarshaller.unmarshal(articleSrc);

 List<Page> pages = article.getPages();
 File pageFile;
 int pageNumber = 1;
 while ((pageFile = new File(articleDir, pageNumber +
 ".html")).exists()) {
 StringBuilder builder = new StringBuilder(4096);
 BufferedReader br = new BufferedReader(
 new FileReader(pageFile));
 String line;
 while ((line = br.readLine()) != null) {
 builder.append(line);
 builder.append('\n');
 }

 String htmlPage = builder.toString();
 int startIndex = htmlPage.indexOf("<body>") + 6;
 int endIndex = htmlPage.indexOf("</body>");

 if (startIndex == -1 || endIndex == -1) {
 throw new RuntimeException(
 "Invalid HTML page: " + pageFile +
 " must have <body> and </body> tags.");
 }

 String content = htmlPage.substring(startIndex, endIndex);
 Page page = new Page();
 page.setContent(content);
 pages.add(page);

 pageNumber++;
 }

 return article;
 }
}

Builds article from
zip contents

H

Unmarshals
article.xml
with OXM I Reads HTML

pages manuallyJ
www.it-ebooks.info

http://www.it-ebooks.info/

414 CHAPTER 12 Building an article-delivery engine
The ArticleConverter class contains a fair bit of code, and we’ll go over the key ele-
ments here. First, the interface declarations include the Spring Converter and
ServletContextAware interfaces B. The Converter interface is for classes that con-
vert objects from one type to another. You need ServletContextAware to get a refer-
ence to the ServletContext, which gives you a way to get the servlet context’s
temporary directory.

 At C is an Object/XML mapping (OXM) Unmarshaller, which unmarshals XML
into Java objects. You use it to convert article.xml to an Article.

 The setServletContext() method at D is required by ServletContextAware.
Spring automatically injects the ServletContext using this method.

 The primary conversion method is convert() E. It’s the single method that the
Converter interface declares. At a high level, its logic follows the logic presented in
figure 12.10. It creates a temporary directory F, unzips the article package into the
temporary directory G, and, finally, builds the Article from the article package
contents H. Note that you use OXM to build the Article I, but you build the
pages manually J. This is because you care about the XML structure in article.xml,
but you don’t care about anything other than what’s between the <body> tags in the
HTML files.

 You use Java Architecture for XML Binding (JAXB) to accomplish the OXM map-
ping. To make this work, you need to revisit the Article class and add some annota-
tions. Because the structure of the XML matches the structure of the Article class
almost exactly, you don’t have to add many annotations. You add a class-level @Xml-
RootElement annotation:

@XmlRootElement(name = "article")
public class Article { ... }

In article.xml, the ID is an attribute rather than an element, so you add the corre-
sponding annotation:

@XmlAttribute
public String getId() { return id; }

Finally, you aren’t OXM mapping the pages, so you add the following:

@XmlTransient
public List<Page> getPages() { return pages; }

You’re almost done. To make everything work, you need to create a beans-web.xml
configuration.

CONFIGURING THE APPLICATION

The following listing shows how to put everything together at the web tier.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"

Listing 12.13 beans-web.xml: Spring beans web configuration
www.it-ebooks.info

http://www.it-ebooks.info/

415Creating a web-based article-delivery engine
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm-3.0.xsd">

 <mvc:annotation-driven />
 <mvc:default-servlet-handler />
 <mvc:view-controller path="" view-name="redirect:/articles.html" />

 <context:component-scan base-package="com.springinpractice.ch12.web" />

 <bean id="multipartResolver"
 class="org.springframework.web.multipart.commons.CommonsMultipartResolver"
 p:maxUploadSize="4096000"
 p:maxInMemorySize="4096" />

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound
 name="com.springinpractice.ch12.model.Article" />
 </oxm:jaxb2-marshaller>

 <bean class=
 "org.springframework.web.servlet.view.InternalResourceViewResolver"
 p:viewClass="org.springframework.web.servlet.view.JstlView"
 p:prefix="/WEB-INF/jsp/"
 p:suffix=".jsp" />

 <bean id="messageSource"
 class="org.springframework.context.support.

➥ ReloadableResourceBundleMessageSource"
 p:basename="classpath:/spring/messages" />
</beans>

The previous listing is similar to other beans-web.xml configurations you’ve seen.
There are a couple of noteworthy pieces here, though. You need to handle file uploads
and OXM. You handle OXM by declaring the namespace B and using it to declare a
JAXB marshaller D, which happens to double as an unmarshaller. To enable file
uploads, you place a CommonsMultipartResolver C on the application context under
the ID multipartResolver. You use some of the configuration options available; see the
Javadoc for CommonsMultipartResolver for the full list of options. Figure 12.11 shows
the combined beans-jcr.xml and beans-web.xml.

 Congratulations—you’ve built a simple but useful article-delivery engine. Start up
the app, and give it a try. You can find the article packages in the sample_articles
directory in the code download. Import the article packages directly rather than
unzip them.

OXM
namespaceB

Multipart
resolver

for file
upload C

JAXB
(un)marshaller

D

www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 12 Building an article-delivery engine
Discussion

Over the last two recipes, you’ve put together a basic article-delivery engine based on
JCR, a powerful repository technology. The engine doesn’t currently use any of the
advanced features of JCR, but the idea behind using JCR is that it allows you to elabo-
rate the article engine into a more full-blown article-management system, with author-
ing, versioning, fine-grained access controls, and more.

 But it may be that all you want is an article-delivery engine of the sort you just built.
It is, after all, a useful application as it stands, and technical users might prefer to edit
content using a text editor, manage it using an existing source-control system, and
package it with a zip utility. In such a situation, you might prefer to use a simpler
approach on the back end. In the next recipe, you’ll see how to replace the JCR repos-
itory with MongoDB using Spring Data MongoDB.

12.3 Storing articles in a document repository
PREREQUISITES

Recipe 2.6 Spring Data JPA overview
Recipe 12.2 Creating a web-based article-delivery engine

KEY TECHNOLOGIES

MongoDB, Spring Data MongoDB

Background

In recipes 12.1 and 12.2, you built a simple but useful article-delivery engine. The
approach was to provide a basis for building a more sophisticated set of management
capabilities, such as authoring, versioning, fine-grained access controls, and more. But
if that’s not required, then there are repository options that greatly simplify the data-
access code. This recipe shows how to do that using MongoDB and Spring Data Mon-
goDB. It’s a short recipe, because Spring Data MongoDB does almost all of the work.

Figure 12.11 The combined beans-jcr.xml and beans-web.xml bean-dependency diagram
www.it-ebooks.info

http://www.it-ebooks.info/

417Storing articles in a document repository
 You’ll find it helpful to review the Spring Data JPA overview in chapter 2 if you’re
unfamiliar with Spring Data.

Problem

All you need is article delivery, not advanced content-management functions. Choose
a repository technology that allows you to simplify the data-access code.

Solution

You’ll replace the JCR repository with MongoDB, a scalable document repository with
much to recommend it. It has a nice query API and it’s very easy to set up and admin-
ister. MongoDB is a good match for your needs because the articles are documents.

 In chapter 2, we presented a brief overview of Spring Data JPA. You saw how the
framework automatically generates DAO implementations for you, simplifying the cre-
ation of the data access layer. The Spring Data portfolio includes several other proj-
ects, including Spring Data MongoDB, which assists with the creation of a data access
layer based on MongoDB.

 As we mentioned in the background for this recipe, there isn’t much to do here.
We’ll break it down into a handful of short, easy steps, a few of which are absolutely
trivial.

STEP 1: SETTING UP A MONGODB INSTANCE

Go to the MongoDB website (www.mongodb.org/), download the MongoDB package,
install it, and start up the instance. Even if you’ve never heard of MongoDB, you
should be able to get the entire thing up and running in under 30 minutes using the
MongoDB Quickstart guide.

STEP 2: REMOVING JCR CODE

If you completed recipe 12.1 before coming to this recipe, you’ll want to get rid of the
JCR-related code. You can take out ArticleDao, JcrArticleDao, ArticleMapper, and
the beans-jcr.xml configuration. Between JcrArticleDao and ArticleMapper, that’s a
decent chunk of code you’re eliminating. You can also remove JCR-related dependen-
cies from the Maven POM.

STEP 3: CREATING A NEW ARTICLEDAO INTERFACE

The following listing is the new ArticleDao interface. It’s similar to the one it
replaces, but this time it uses Spring Data MongoDB.

package com.springinpractice.ch12.dao;

import org.springframework.data.mongodb.repository.MongoRepository;
import com.springinpractice.ch12.model.Article;

public interface ArticleDao extends MongoRepository<Article, String> { }

The MongoRepository interface already declares save(), findAll(), and findOne()
methods, and these support your use cases, so you don’t need to declare additional

Listing 12.14 ArticleDao.java, revised to work with Spring Data MongoDB
www.it-ebooks.info

www.mongodb.org/
http://www.it-ebooks.info/

418 CHAPTER 12 Building an article-delivery engine
methods. All you have to do is parameterize the MongoRepository interface with the
domain object type (Article) and the ID type (String).

 Also, you don’t have to implement the interface yourself because Spring Data
MongoDB will generate an implementation for you automatically using Java’s dynamic
proxy machinery. Finally, you don’t need to worry about mapping the Java Article
object to MongoDB’s native BSON format,8 because Spring Data MongoDB also han-
dles that for you. Bravo!

STEP 4: UPDATING ARTICLECONTROLLER

Because you’ve changed the method names on the ArticleDao, you need to make the
corresponding changes in ArticleController, which calls the methods. Only three
such changes are required, and they’re straightforward, so we won’t cover them here.
See the code download.9

STEP 5: CREATING BEANS-MONGODB.XML

The next listing is effectively the replacement for beans-jcr.xml from recipe 12.1.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mongo="http://www.springframework.org/schema/data/mongo"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/data/mongo
 http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">

 <mongo:mongo />

 <!-- More advanced configuration -->
 <!--
 <mongo:mongo host="localhost" port="27017">
 <mongo:options
 connections-per-host="10"
 threads-allowed-to-block-for-connection-multiplier="5"
 max-wait-time="12000"
 connect-timeout="0"
 socket-timeout="0"
 auto-connect-retry="false" />
 </mongo:mongo>
 -->

8 BSON is short for binary JSON. See www.mongodb.org/display/DOCS/BSON and http://bsonspec.org/ for
more information.

9 Note that we haven’t pursued the getPage() optimization here, which eagerly loads a single page instead of
loading the entire article. So, call findOne() (find one article with all pages eagerly loaded) instead of
getPage() (find one article with one page eagerly loaded).

Listing 12.15 beans-mongodb.xml: Spring beans configuration for MongoDB

MongoDB
namespace B

Defines MongoDB
instanceC

Advanced instance
configurationD
www.it-ebooks.info

http://bsonspec.org/
www.mongodb.org/display/DOCS/BSON
http://www.it-ebooks.info/

419Storing articles in a document repository
 <bean id="mongoTemplate"
 class="org.springframework.data.mongodb.core.MongoTemplate"
 p:writeResultChecking="EXCEPTION">

 <constructor-arg ref="mongo" />
 <constructor-arg value="techsite" />
 </bean>

 <mongo:repositories base-package="com.springinpractice.ch12.dao" />

 <context:annotation-config />
</beans>

To use Spring Data MongoDB, it’s useful to employ the namespace configuration, so you
declare the namespace and the schema location B. Next you use <mongo:mongo/> to
declare a Mongo instance with bean ID mongo running on the localhost, port 27017 (the
defaults) C. Various instance configuration
options are available; D is a partial list.
(Consult the Spring Data MongoDB docu-
mentation for more information.)

 Once you have an instance, you need a
MongoTemplate to access the instance E.
This template is like other templates in
Spring, such as HibernateTemplate and
RestTemplate. You call the template
mongoTemplate to support automatic dis-
covery, which you’ll see shortly. You pass the
mongo instance into the constructor, and you
choose techsite as the name of the database
you want to use in the MongoDB instance.10

 At F you tell Spring Data MongoDB to
scan com.springinpractice.ch12.dao for
DAO interfaces (that is, interfaces that
extend the MongoRepository interface)
and to generate implementations dynami-
cally. Finally, G tells Spring to activate
exception-translation in the generated DAO
implementations. This will translate Mongo-
Exceptions into exceptions in the DataAc-
cessException hierarchy.

 Figure 12.12 is the bean-dependency dia-
gram corresponding to the configuration.

10 Databases and collections are key MongoDB concepts. An instance hosts a set of databases, and each database
has a set of collections. Consult the MongoDB documentation for more information.

MongoTemplate E

Generates DAO
implementations F

Activates
exception
translationG

Figure 12.12 The bean-dependency diagram
for the Spring Data MongoDB configuration
www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 12 Building an article-delivery engine
STEP 6: UPDATING WEB.XML

Don’t forget to update web.xml to reflect the new app context configuration file:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:/spring/beans-mongodb.xml
 </param-value>
</context-param>

That’s all there is to it. Restart the app, import the article packages, and be amazed.
Other than ArticleConverter (the component that extracts an article from a file
upload), the Java code in the app is close to trivial.

Discussion

This recipe showed how to simplify the data access layer using Spring Data MongoDB.
You saw that the framework handles DAO implementation and persistence mapping
for you. The result is a much streamlined codebase.

 The Spring Data portfolio includes support for many of the new NoSQL offerings
that have been appearing over the past few years. We looked at JPA in chapter 2 and
MongoDB (an example of a document repository) here. Other database types include
key/value stores, big data stores, graph databases, and several other general catego-
ries. See the Spring Data section of the SpringSource website for more information
(www.springsource.org/spring-data).

 Another popular document store is CouchDB. At the time of this writing, Spring
Data CouchDB is planned, but it doesn’t exist. Several comparisons between CouchDB
and MongoDB are available on the web, so read those and choose the document store
that makes the most sense for your project.

12.4 Summary
In this chapter, you learned how to use Spring to create an article-delivery engine.
The work you did here falls under the more general category of content manage-
ment, and you can apply the techniques you used here to building other CMS domains
and functions.

JCR is a nice option if you have more advanced content-management needs that
you don’t want to build yourself. It’s also useful if you need to offer support for differ-
ent back-end stores, because JCR is a standard implemented by several vendors in the
content-management space.

 But be sure to explore the newer NoSQL document stores, including MongoDB
and CouchDB. They’re promising alternatives to some of the more traditional
approaches to content management, including relational back ends and JCR. In addi-
tion, because NoSQL stores are especially well-suited to addressing issues of scale,
there is a lot of industry excitement around their use. Thus you can expect over time
that NoSQL stores will become even more capable.
www.it-ebooks.info

www.springsource.org/spring-data
http://www.it-ebooks.info/

421Summary
 In the next chapter, we take a whirlwind tour of enterprise integration, building a
Spring-based help desk system.

 We’ll use Spring Data REST, Spring HATEOAS, Spring Integration, and Spring
AMQP/Rabbit to complete our task of building an external-facing but internally devel-
oped customer portal.
www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise integration
An enterprise of any size might have hundreds of different software systems, such
as monitoring tools, ticketing systems, collaboration platforms, and so forth. And if
it appears that there isn’t much rhyme or reason to the specific mix of tools, that’s
often because there isn’t. In a perfect world, there might be a fixed set of business
processes, and the systems chosen to support those processes would play nicely
together. But this isn’t a perfect world.

 There are many reasons why the systems in an environment might be a jumbled
mess. Among them:

■ Business needs change. Those changes drive tool changes.
■ Different teams in an organization have different tool preferences.
■ A single vendor may offer a highly integrated tool suite, but the IT organization

may prefer a best-of-breed tool strategy, or may prefer to keep multiple vendors
in the game just to keep any one vendor from gaining too much leverage.

This chapter covers
■ Shared database integration using Spring Data JPA
■ Integrating web services with Spring Data REST
■ Messaging via Spring Integration with RabbitMQ

and JavaMail
422

www.it-ebooks.info

http://www.it-ebooks.info/

423A whirlwind tour of Spring Integration
■ Throw in some vendor-sponsored lunches, events, and outings, and suddenly the
systems start to look as if they were deliberately chosen not to work together!

Those are some of the realities of enterprise IT. And despite the difficulty, the need
for systems integration is very much alive and well.

 In this chapter you’ll imagine that you’re building a Spring-based help desk system
to support an external-facing, internally developed customer portal. On the inbound
side, you have the following requirements:

■ Customers must be able to create tickets in a self-service fashion.
■ The help desk system must have an internal-facing UI that lets support reps cre-

ate tickets on behalf of customers who call the help desk on the phone.
■ You need to support self-service ticket creation through a legacy email address

that some customers still use even though it is no longer published.

On the outbound side, you’ll suppose
that the help desk must send the cus-
tomer a confirmation email regardless of
whether the customer or a support rep
creates the ticket. Figure 13.1 shows a
conceptual overview of your eventual
goal in this chapter.

 A real help desk system has lots of
other functionality, such as workflows,
reporting, and so on. But we’re more con-
cerned with showing how to perform
integrations than with creating an actual
ticketing system, so we’re sticking to a
basic structure.

 Although you’ll use a variety of inte-
gration technologies—including Spring
Data REST, Spring HATEOAS, Spring Inte-
gration, Spring AMQP, Spring Rabbit, and
RabbitMQ—you’re going to use Spring
Integration (SI) particularly heavily. That being the case, let’s pause for a quick tour.
Although it’s outside the scope of this chapter to present SI comprehensively,1 a better
picture will emerge as you work through the recipes.

A whirlwind tour of Spring Integration
SI is an implementation of the patterns described in Enterprise Integration Patterns by
Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2003). EIP is a comprehensive cata-
log of patterns helpful in getting applications that weren’t initially designed to work

1 Please see Spring Integration in Action by Mark Fisher, et al., (Manning, 2012) for a more detailed treatment of
Spring Integration.

Figure 13.1 Overview of your help desk system
and its integrations as they appear at the end of the
chapter
www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 13 Enterprise integration
together to do so. Note that we assume some familiarity with these patterns and the
integration domain in general; see www.eaipatterns.com/ for more background if you
require it.

 Something interesting about SI is the way it uses dependency injection. The typical
Spring application uses DI in what might be called a vertical fashion: the application is
organized as a set of layers, and you inject beans at layer n into beans at layer n+1. For
example, you inject DAOs into service beans and service beans into web controllers.

SI applies dependency injection primarily in a horizontal way. The idea is to build an
integration layer just above an application’s services and implement the integration
layer in the pipes and filters architectural style.2 In SI, the pipes are called channels and
the filters are called endpoints, and the overall pipeline is a messaging system supporting
the integration of connected services. Endpoints perform message routing and pro-
cessing, whereas channels convey messages from endpoint to endpoint. You can build
an entire messaging system out of chan-
nels and endpoints by injecting channels
into endpoints. Figure 13.2 shows how
this works.

 This horizontal use of DI is entirely
compatible with the vertical use. Espe-
cially when you’re integrating internally
developed apps, it’s sometimes helpful
to have service activators in the integra-
tion layer invoke your Java service beans
directly. You link service activators to
service beans through DI.

 But in general, SI uses dependency injection as a way to build a horizontal layer of
integration flows. Most of the communication with underlying services happens
through the application’s coarse-grained external interfaces (for example, web ser-
vices and messaging endpoints) rather than through the fairly fine-grained mecha-
nism of Java DI.

 Note that although SI provides ready-made implementations of the various EIP pat-
terns, there are architecturally different approaches to applying those patterns, and SI
isn’t prescriptive about it. You can use SI to implement a simple, in-process messaging

2 For more information on the pipes-and-filters architectural style, see Pipes and Filters, Enterprise Integration
Patterns, www.eaipatterns.com/PipesAndFilters.html.

Integration and services: an architectural perspective
One of the things I (Willie) struggled with when I was first learning about integration
was understanding just what it is that’s being integrated. It can get confusing be-
cause there are multiple ways of talking about services, and they often come up in a
single conversation.

Figure 13.2 Two channels dependency-injected
into an endpoint. The channels correspond to pipes
in the pipes-and-filters architectural style, and the
endpoint corresponds to a filter.
www.it-ebooks.info

www.eaipatterns.com/
www.eaipatterns.com/PipesAndFilters.html
http://www.it-ebooks.info/

425Integrating applications via a shared database
infrastructure that a given app uses to communicate with external resources. Alterna-
tively, you can use it to communicate with an external message broker (ActiveMQ,
RabbitMQ, SonicMQ, and so on), which usually provides better decoupling, flexibility,
and resiliency. You’ll see examples of both of those in the recipes ahead.34

 The first recipe starts you off by illustrating a common form of application integra-
tion: a shared database.

13.1 Integrating applications via a shared database
PREREQUISITES

Recipe 2.6 Spring Data JPA overview

KEY TECHNOLOGIES

Database

Background

In many cases, multiple apps need to work with the same data. One app might capture
leads, another might qualify the leads, and a third might present the leads to salespeo-
ple trying to close. Especially when the apps in question are developed internally, it’s
often easiest and most appropriate to have the apps all work with a shared database.

3 Don’t laugh. There are major, revenue-critical systems that work exactly this way.
4 There are other possibilities as well. For instance, you could stand up a dedicated (that is, not directly attached

to any existing app) integration bus based on Spring Integration. We won’t explore that here, but by the end
of this chapter it should be obvious how to do it.

(continued)
I won’t attempt a definition here, but a loose characterization will help. Services in an
integration context refers to the coarse-grained interfaces that different apps/
systems happen to expose to the world and that provide integration hooks. This could
be SOAP/REST web services, messaging endpoints, HTML forms, file-based, email-
based, and so forth. Obviously this is a permissive conception, and not one you would
use to prescribe for a green field, service-oriented architecture. But for integration it’s
appropriate because it’s sometimes the case that the only way to talk to an app is
to post data into an HTML form that it provides.3

Services in this sense refers to something larger than the service beans we often find
in Spring-based applications, because (for example) RESTful endpoints live above the
service beans. There are certainly cases where the integration layer has direct access
to an application’s Java code, and so the integration layer might call that code direct-
ly, but this is a special instance. The more general case is an integration layer inter-
acting with apps/systems through whatever interfaces they expose.

You’ll see in this chapter, for instance, how creating a ticket in the portal app causes
the creation of a ticket in the help desk app, which in turn generates a confirmation
email. These apps and systems were independently conceived, but you use integra-
tion to make them work together.
www.it-ebooks.info

http://www.it-ebooks.info/

426 CHAPTER 13 Enterprise integration
Problem

Integrate applications by having them work against a shared database.

Solution

For your current purposes, assume that your help desk and portal applications need
to work with common customer and ticket data. Customers need to be able to create
tickets using the portal, and those tickets need to show up in the help desk app for
processing by support representatives.

 The approach here, as noted, will be to use a shared database. This approach gen-
erally requires that you control the apps in question because you have to be able to
make them agree on the database schema. But where that’s true, a shared database is
an option to consider. At small scale, the coordination between apps on schema-
related issues is generally manageable, and this allows you to avoid having to build out
separate abstraction layers such as web services. See figure 13.3.

 There isn’t anything too special about having two different apps use the same data-
base. You have to pay attention to transactions, but that’s usually true for single apps.
Point your apps at the same database, and you’re in business.

 Your real goal in this recipe is to establish a code baseline for subsequent recipes.
To that end, you use Spring Data JPA as described in recipe 2.6, rather than working
directly with the Hibernate API. (You still use Hibernate as a JPA provider.) The reason
is that you want to set the stage for using Spring Data REST in recipe 13.2, and this
depends on Spring Data JPA. Feel free to review recipe 2.6 or look at the sample code.

 One special case comes up in the context of shared database integrations, and it’s
worth investigating.

GETTING A SINGLE APP TO WORK WITH MULTIPLE DATABASES

Even though this is a recipe about having multiple apps work with a shared database,
sometimes that plays out via an app with a dedicated database, and the app needs
data from another app’s database as well. Now you have an app that has to work with
two databases.

 In this case, the portal app owns the customer database, and the help desk app owns
the ticket database. But the help desk app needs customer data so it can resolve customer
usernames in the tickets to the customer’s full information (name, contact information,

Figure 13.3 Application integration
through a shared database
www.it-ebooks.info

http://www.it-ebooks.info/

427Integrating applications via a shared database
and so on). So the help desk app will use the
customer database in addition to its own
ticket database. See figure 13.4.

 Let’s discuss the help desk for a
moment. One possibility for working with
multiple databases is to use distributed
transactions. Even though you’re only
reading customer data, in theory transac-
tions could be useful for proper isolation,
setting lock modes, and setting timeouts.
You might use them, for instance, to han-
dle the case where the portal changes a
customer username or deletes a customer
entirely, either of which would break the
soft association (based on usernames) between tickets and their customers.

 But in fact there’s no worry here, because the portal doesn’t allow users to change
their usernames, and it also doesn’t delete customers. (With customer data, you’d
probably want soft deletes, where you keep the customer record but use a flag to indi-
cate whether the customer has been deleted.) And even if you were for whatever rea-
son to allow these things, they would presumably be insufficiently common to warrant
the performance overhead of distributed transactions.

 Instead, your help desk will use two different transaction managers: one for work-
ing with tickets and the other for working with customers. You haven’t seen that yet, so
let’s look at how the help desk app does it. First, the following listing shows the help
desk’s configuration for the ticket database.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa-1.2.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd">

 <jee:jndi-lookup id="helpDeskDS"
 jndi-name="jdbc/Sip13HelpDeskDS" resource-ref="true" />

 <bean id="entityManagerFactory"

Listing 13.1 beans-repo.xml: configuration for the ticket database

Using JPAB

Figure 13.4 The portal and help desk applica-
tions share customer data through direct ac-
cess to a shared customer database. For small-
scale integrations, this can be a clean and sim-
ple solution.
www.it-ebooks.info

http://www.it-ebooks.info/

428 CHAPTER 13 Enterprise integration

 class="org.springframework.orm.jpa.

➥ LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="helpDeskDS">

 <property name="packagesToScan">
 <list>
 <value>com.springinpractice.ch13.helpdesk.model</value>
 <value>com.springinpractice.ch13.sitemap.model</value>
 </list>
 </property>
 <property name="persistenceProvider">
 <bean class="org.hibernate.ejb.HibernatePersistence" />
 </property>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5Dialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 </bean>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="entityManagerFactory" />

 <tx:annotation-driven transaction-manager="transactionManager" />

 <jpa:repositories
 base-package="com.springinpractice.ch13.helpdesk.repo"
 entity-manager-factory-ref="entityManagerFactory"
 transaction-manager-ref="transactionManager" />

 <jpa:repositories
 base-package="com.springinpractice.ch13.sitemap.repo"
 entity-manager-factory-ref="entityManagerFactory"
 transaction-manager-ref="transactionManager" />
</beans>

You’re using Spring Data JPA, so you set up a factory for JPA entity managers at B. At
C you’re explicit about the entity manager factory (EMF) because you want to avoid
ambiguities with the EMF you’re about to create in the next listing. Similarly for D.
You’re also explicit at E and F where you define the Spring Data JPA repositories.
Spring Data JPA will apply the specified EMF and transaction manager to the reposito-
ries it generates. Your single transaction manager can handle multiple repositories
just fine, because repositories correspond to tables, not to databases.5

 The help desk app has a repository configuration file for the customer database as
well.

5 The JtaTransactionManager can handle multiple databases in support of distributed transactions, but you
aren’t using that here.

Explicit entity
manager factory

C

Explicit
transaction

manager

D

Explicit entity
manager
factory

E

Explicit
transaction
managerF
www.it-ebooks.info

http://www.it-ebooks.info/

429Integrating applications via a shared database
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa-1.2.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.1.xsd">

 <jee:jndi-lookup id="portalDS"
 jndi-name="jdbc/Sip13PortalDS" resource-ref="true" />

 <bean id="portalEMF"
 class="org.springframework.orm.jpa.

➥ LocalContainerEntityManagerFactoryBean"
 p:dataSource-ref="portalDS"
 p:packagesToScan="com.springinpractice.ch13.helpdesk.portal.model">

 <property name="persistenceProvider">
 <bean class="org.hibernate.ejb.HibernatePersistence" />
 </property>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQL5Dialect
 </prop>
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 </bean>

 <bean id="portalTxManager"
 class="org.springframework.orm.jpa.JpaTransactionManager"
 p:entityManagerFactory-ref="portalEMF" />

 <tx:annotation-driven transaction-manager="portalTxManager" />

 <jpa:repositories
 base-package="com.springinpractice.ch13.helpdesk.portal.repo"
 entity-manager-factory-ref="portalEMF"
 transaction-manager-ref="portalxTxManager" />
</beans>

In the previous listing you’re explicit about the EMF and transaction manager, just as
you were in listing 13.1.

Sometimes there’s only one database, and all the apps use it, but the configura-
tions show how to deal with multi-database scenarios where distributed transactions
aren’t a concern.

Listing 13.2 beans-repo-portal.xml: configuration for the customer database

Explicit entity
manager

Explicit
transaction

manager
www.it-ebooks.info

http://www.it-ebooks.info/

430 CHAPTER 13 Enterprise integration
CONFIGURING AND RUNNING THE APPLICATIONS

You’re dealing with two separate applications here, and each has its own configuration
location and configuration files. The configuration approach is essentially the same as
the one the other chapters use (the one from appendix A), but instead of a single
sip13 folder, you’ll need a sip13/helpdesk folder for the help desk configuration files
and a sip13/folder for the portal configuration files.

Because you’re dealing with two applications here, the URLs are different than
other URLs in the book:

■ Help desk application—http://localhost:8080/helpdesk/
■ Portal application—http://localhost:8180/portal/

Run the apps, and try things out. You should see that they’re both sharing the portal’s
customer data.

Discussion

In this recipe we looked at the common approach of using a shared database to inte-
grate multiple applications. This didn’t require any special technology beyond what
the database natively provides with respect to transaction management.

 Despite its simplicity, it’s important to consider reasons why you might choose not
to adopt this approach, even initially:

■ A shared database works well enough at small scale, but as you add applications
it becomes increasingly difficult to coordinate changes. One app may need a
schema change that would break other apps, and so the change can’t occur
until all apps are ready for it.

■ Depending on the database technology, it may be difficult to scale out as you
add apps.

■ The shared database quickly becomes a single point of failure.
■ By the time you decide to pursue a different integration approach, the apps are

generally tightly coupled to the database.
■ If you don’t control the apps in question, then a shared database probably isn’t

an option for you in the first place.
■ Even if you do control the apps, there’s a good chance that you have third-party

apps that also need to work with the same data. So you may need to come up
with an integration solution that doesn’t require a shared database anyway.

Web services are a popular and effective solution for some of the challenges
described. They make it possible to decouple the client view of the data from the
details of the actual database implementation, which provides needed flexibility. The
next recipe shows how to integrate applications using RESTful web services.

13.2 Decoupling applications with RESTful web services
PREREQUISITES

Integrating applications via a shared database
www.it-ebooks.info

http://www.it-ebooks.info/

431Decoupling applications with RESTful web services
KEY TECHNOLOGIES

Spring Data JPA, Spring Data REST, Spring HATEOAS

Background

In recipe 13.1 you saw that although shared database integrations may be simple at
small scale, the approach can quickly run into both development and operational
issues with increasing scale. Web services are a battle-tested technique for decoupling
clients from the data they use. Originally SOAP-based web services were the “official”
approach, but over time the growing consensus was that SOAP was too heavyweight for
many purposes, and so the REST-based approach to web services took the lead. But
SOAP or REST, the idea is to create an abstraction layer in front of core capabilities and
data so the owners of those capabilities and data can make back-end changes without
breaking their clients and without being held hostage by those clients (that is, being
prevented from making changes).

 With the REST approach in particular, service designers try to minimize the
amount of knowledge that clients must have to work with the service. For example,
REST’s Hypermedia as the Engine of Application State (HATEOAS) principle says that
clients shouldn’t require anything beyond a general knowledge of working with hyper-
media-based systems.6 This constraint, properly observed, further decouples clients
from the services they use.

Problem

Integrate applications without the tight coupling entailed by shared database integrations.

Solution

This recipe takes a first step in the direction of decoupling your apps by eliminating
their common dependency on the details of the shared customer database schema.
You’ll learn how to do the following:

■ Use Spring Data REST to implement (as part of the portal app) a RESTful web
service API in front of your customer data

■ Use Spring HATEOAS to implement data transfer objects
■ Use RestTemplate to implement (as part of the help desk app) a client for your

web service

In the sample code we introduce a dependency in the other direction as well: the portal
needs to get data (ticket statuses, ticket categories) from the help desk’s ticket database
to allow customers to create self-service tickets through the portal UI. See figure 13.5 for
the updated, point-to-point integration architecture.

 Because both directions are entirely symmetrical, we’ll cover only one direction
here: the one where the help desk calls the portal web service API to get customer
data. Refer to the sample code if you want to see the other direction as well.

6 HATEOAS, Wikipedia, http://en.wikipedia.org/wiki/HATEOAS.
www.it-ebooks.info

http://en.wikipedia.org/wiki/HATEOAS
http://www.it-ebooks.info/

432 CHAPTER 13 Enterprise integration

p

You’ll begin by implementing the web service on the portal app.

IMPLEMENTING A RESTFUL WEB SERVICE USING SPRING DATA REST

Spring Data REST (SDR) is a relatively recent addition to the Spring family.7 It builds
on Spring Data JPA (SDJ) to expose SDJ repositories through a RESTful, JSON-based
web service API. SDR does this using an exporter servlet that knows how to interpret
special REST annotations declared on the SDJ repository interfaces.

 Let’s look first at the portal app’s single repository interface, UserRepository. This
is the repo for customer data.

package com.springinpractice.ch13.portal.repo;

import java.util.Collection;
import java.util.List;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.repository.query.Param;
import org.springframework.data.rest.repository.annotation.RestResource;
import com.springinpractice.ch13.portal.model.User;

@RestResource(path = "users")
public interface UserRepository extends JpaRepository<User, Long> {

 @RestResource(path = "find-by-username")
 User findByUsername(@Param("username") String username);

 @RestResource(path = "find-by-username-in")
 List<User> findByUsernameIn(
 @Param("username") Collection<String> usernames);
}

At B you use the SDR @RestResource annotation to specify a path to the resource, rel-
ative to the servlet path. You’re specifying "users" because otherwise SDR defaults to
"user" (based on UserRepository), which you don’t want. At C you attach an SDR
path to your custom SDJ finder query. You specify its HTTP parameter at D. You do
the same thing at E and F for a collection-driven custom finder query.

7 At the time of this writing, it’s still a release candidate, so it may change a bit by the time you read this.

Listing 13.3 UserRepository: SDJ repository annotated for exporting by SDR

Figure 13.5 The point-to-point integration architecture for this recipe. The apps hide their databases
from one another but expose RESTful web service APIs for data access.

Path to
resource

B

Query pathCQuery
arameter

D

Another query pathE

Query
parameterF
www.it-ebooks.info

http://www.it-ebooks.info/

433Decoupling applications with RESTful web services
 You’re almost done. All that remains is to define the exporter servlet in web.xml.

<web-app ...>

 ...

 <servlet>
 <servlet-name>api</servlet-name>
 <servlet-class>org.springframework.data.rest.webmvc.

➥ RepositoryRestExporterServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>api</servlet-name>
 <url-pattern>/api/*</url-pattern>
 </servlet-mapping>
</web-app>

That’s all there is to it. Let’s look at what it does. First, start up the portal app. Now go
to http://localhost:8180/portal/api/users:

{
 "links" : [{
 "rel" : "users.search",
 "href" : "http://localhost:8180/portal/api/users/search"
 }],
 "content" : [{
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8180/portal/api/users/1"
 }],
 "lastName" : "Jenson",
 "username" : "paul",
 "email" : "paul@example.com",
 "firstName" : "Paul"
 }, {
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8180/portal/api/users/2"
 }],
 "lastName" : "Henshaw",
 "username" : "aimee",
 "email" : "aimee@example.com",
 "firstName" : "Aimee"
 }],
 "page" : {
 "size" : 20,
 "totalElements" : 2,
 "totalPages" : 1,
 "number" : 1
 }
}

Listing 13.4 Defining RepositoryRestExporterServlet in web.xml
www.it-ebooks.info

http://www.it-ebooks.info/

434 CHAPTER 13 Enterprise integration
True to HATEOAS form, the resources specify links that you can follow to get further
results. Let’s see what happens when you hit the search endpoint:

{
 "links" : [{
 "rel" : "users.find-by-username-in",
 "href" :
 "http://localhost:8180/portal/api/users/search/find-by-username-in"
 }, {
 "rel" : "users.find-by-username",
 "href" :
 "http://localhost:8180/portal/api/users/search/find-by-username"
 }],
 "content" : []
}

Let’s try finding by a username in a collection. If you do http://localhost:8180/
portal/api/users/search/find-by-username-in?username=aimee you get:

{
 "links" : [],
 "content" : [{
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8180/portal/api/users/2"
 }],
 "lastName" : "Henshaw",
 "username" : "aimee",
 "email" : "aimee@example.com",
 "firstName" : "Aimee"
 }]
}

Try it with http://localhost:8180/portal/api/users/search/find-by-username-in?user-
name=aimee&username=paul. You get the idea. For anybody who has ever imple-
mented a RESTful web service, you can see that Spring Data REST is powerful, and that
it saves a lot of effort.

 To take advantage of the new web service, the help desk app will find it useful to
have data transfer objects (DTOs) for data binding. You’ll use Spring HATEOAS to cre-
ate those.

IMPLEMENTING DATA TRANSFER OBJECTS USING SPRING HATEOAS

SDR uses Spring HATEOAS behind the scenes to generate the JSON representation for
requested resources. Besides the actual payload, Spring HATEOAS supports links,
which you would expect because that’s a big part of the HATEOAS idea.

NOTE At the time of this writing, Spring HATEOAS has not been officially
released, so there may be material changes by the time you read this.

On the client side, you want those links because SDR uses URIs for resource identifica-
tion (again, no surprise) rather than the database IDs.
www.it-ebooks.info

http://www.it-ebooks.info/

435Decoupling applications with RESTful web services
 You can use Spring HATEOAS to implement the desired DTOs on the client side.
Because both individual users and collections of users have associated link informa-
tion, you need separate DTOs for each. The next listing shows the resource for an indi-
vidual user, which the help desk refers to as a customer rather than a user because the
help desk’s users are support representatives.

package com.springinpractice.ch13.helpdesk.integration.resource;

import org.springframework.hateoas.ResourceSupport;

public class CustomerResource extends ResourceSupport {
 public String username;
 public String firstName;
 public String lastName;
 public String email;

 public String getUsername() { return username; }

 public String getFirstName() { return firstName; }

 public String getLastName() { return lastName; }

 public String getEmail() { return email; }

 public String getFirstNameLastName() {
 return firstName + " " + lastName;
 }
}

You extend the Spring HATEOAS ResourceSupport class at B, which does the heavy
linking around generating links and such. The DTO’s fields need to be public in order
for data binding to work, so that’s what you do at C. JSPs don’t know how to deal with
public fields, so you create getters at D.

 Here’s the same thing for a collection of customers.

package com.springinpractice.ch13.helpdesk.integration.resource;

import org.springframework.hateoas.Resources;

public class CustomerResources extends Resources<CustomerResource> { }

Here all you do is extend the Resources class, specifying CustomerResource as the
type argument. The last step is to implement a client for the help desk app.

IMPLEMENTING A RESTFUL CLIENT USING RESTTEMPLATE

In integration parlance, a gateway provides an application with an interface to the
underlying messaging infrastructure without the application realizing it. Because you
want the help desk to be able to get customer data from the portal without realizing
that it’s making a web service call, you’ll create a PortalGateway interface for the help
desk to use, along with an implementation that makes the web service call using Rest-
Template and your resource DTOs. Here’s the interface.

Listing 13.5 CustomerResource.java: HATEOAS-oriented DTO

Listing 13.6 CustomerResources.java: another HATEOAS-oriented DTO

Extends
ResourceSupport

B

Public
fieldsC

Getters
for JSPsD
www.it-ebooks.info

http://www.it-ebooks.info/

436 CHAPTER 13 Enterprise integration
package com.springinpractice.ch13.helpdesk.integration.gateway;

import java.util.Collection;
import com.springinpractice.ch13.helpdesk.integration.resource.

➥ CustomerResource;

public interface PortalGateway {

 CustomerResource findCustomerByUsername(String username);

 Collection<CustomerResource> findCustomersByUsernameIn(
 Collection<String> usernames);
}

The following listing contains the implementation.

package com.springinpractice.ch13.helpdesk.integration.gateway.impl;

import java.util.Collection;
import org.springframework.web.client.RestTemplate;
import com.springinpractice.ch13.helpdesk.integration.gateway.
 PortalGateway;
import com.springinpractice.ch13.helpdesk.integration.resource.
 CustomerResource;
import com.springinpractice.ch13.helpdesk.integration.resource.
 CustomerResources;

public class PortalGatewayImpl implements PortalGateway {
 private RestTemplate restTemplate;
 private String baseUrl;

 public PortalGatewayImpl(RestTemplate restTemplate, String baseUrl) {
 this.restTemplate = restTemplate;
 this.baseUrl = baseUrl;
 }

 @Override
 public CustomerResource findCustomerByUsername(String username) {
 String url = baseUrl +
 "/users/search/find-by-username?username={username}";
 CustomerResources customers = restTemplate
 .getForObject(url, CustomerResources.class, username);
 CustomerResource customer =
 customers.getContent().iterator().next();
 return customer;
 }

 @Override
 public Collection<CustomerResource> findCustomersByUsernameIn(
 Collection<String> usernames) {

 StringBuilder builder = new StringBuilder(
 baseUrl + "/users/search/find-by-username-in?");
 for (String username : usernames) {
 builder.append("username=");

Listing 13.7 PortalGateway: hides messaging details from the help desk app

Listing 13.8 PortalGatewayImpl: uses RestTemplate to get customer data

RestTemplateB

API base URLC

Gets
customers

D

Gets single
customerE

Builds
URLF
www.it-ebooks.info

http://www.it-ebooks.info/

437Decoupling applications with RESTful web services
 builder.append(username);
 builder.append("&");
 }
 String url = builder.substring(0, builder.length() - 1);
 CustomerResources customers =
 restTemplate.getForObject(url, CustomerResources.class);
 return customers.getContent();
 }
}

You use Spring’s RestTemplate B to invoke the portal’s web service API, located at the
baseUrl C. The gateway has two methods, corresponding to the two custom queries
you implemented for the web service. The first one returns a single customer, which
the help desk app uses to resolve a username to a customer record on a ticket details
page. You use the CustomerResources D you wrote earlier to get the wrapper con-
tainer, because Spring Data REST doesn’t know that customer usernames are unique.
Then you get and return the desired CustomerResource E.

 The second method returns a collection of customers corresponding to a collection
of usernames. You use this one for the ticket summary page, because there are a bunch
of tickets, each with its own username. You build out the URL from scratch at F because
there are arbitrarily many usernames (limited generally by paging the ticket summary).
You drop the trailing ? or & at G and then get the CustomerResources H. Finally
you return the underlying collection of CustomerResource instances I to match the
API signature.

 That does it for the help desk app’s PortalGatewayImpl. Although we didn’t cover
it here, the portal app has an analogous TicketGateway and TicketGatewayImpl to han-
dle calls against the ticket service’s REST API. Take a look at the sample code for details.

 One final note on gateways before we close the recipe. We mentioned earlier that
gateways hide the details of the messaging approach from the app. Gateway imple-
mentations are part of the integration infrastructure, not part of the app. They allow
you to change the integration approach with minimal disruption to the app. You’ll do
exactly this in the next recipe.

RUNNING THE APPLICATIONS

Again, the URLs are

■ Help desk application—http://localhost:8080/helpdesk/
■ Portal application—http://localhost:8180/portal/

Note that you have to run both apps at the same time in order for either to work,
because they make web service calls against one another. We’ll touch on this in the fol-
lowing discussion.

Discussion

The RESTful web service approach adopted in this recipe decouples the apps from the
shared database from recipe 13.2. It also decouples the apps to some extent from one

Removes trailing ? or & G
Gets

customers
resource

H

Returns
customers
collectionI
www.it-ebooks.info

http://www.it-ebooks.info/

438 CHAPTER 13 Enterprise integration
another because now it’s possible for the apps to make back-end changes to their
respective database schemas without impacting one another.

 Unfortunately, the apps are still fairly tightly coupled to one another:

■ From a development perspective, they need to coordinate with each other on
changes to the web service API.

■ From a configuration perspective, both apps have to know each other’s location.
■ From an operational perspective, both

apps have to be up for either app to work
properly. So instead of a single point of
failure, you have two.

In addition to the coupling that remains, there’s
another problem. The point-to-point integra-
tion approach breaks down because it scales as
O(n2) in the number of applications to be inte-
grated. If you have more than a handful of appli-
cations to integrate, you’ll need to manage a lot
of development, configuration, and operational
linkages, as you can see in figure 13.6.

 Recipe 13.3 shows how you can use a cen-
tralized messaging infrastructure to alleviate
much of the pain.

13.3 Implementing a message bus using RabbitMQ and
Spring Integration
PREREQUISITES

Recipe 13.2 Decoupling applications with RESTful web services
Familiarity with the integration domain and Enterprise Integration Patterns in partic-
ular; see www.eaipatterns.com/ for background.

KEY TECHNOLOGIES

SI, RabbitMQ, Spring Rabbit, Advanced Message Queuing Protocol (AMQP), Spring
AMQP

Background

Recipe 13.2 explored the use of RESTful web service APIs as a way to decouple applica-
tions from one another. Web service APIs provide a layer of abstraction over underly-
ing capabilities and data, which makes it easier to change the implementations
without impacting clients. In addition, the RESTful approach supports decoupling by
reducing the knowledge that clients must have of the services they consume.

 We noted in the discussion that improvements are possible in two major areas. First,
the apps still have to know quite a bit about each other from development, configura-
tion, and operational perspectives. Second, the point-to-point integration strategy

Figure 13.6 The point-to-point integration
strategy scales as O(n2). Managing all
the integrations can become unwieldy
over time.
www.it-ebooks.info

www.eaipatterns.com/
http://www.it-ebooks.info/

439Implementing a message bus using RabbitMQ and Spring Integration
scales poorly as you incorporate different apps. This recipe presents a broker-based
approach that addresses both of these issues.

Problem

Further decouple your apps, and address scalability issues associated with the point-to-
point integration strategy.

Solution

The solution is to use a centralized message broker to serve as the basis for your appli-
cation integrations. Message brokers are specifically designed to address application
integration, and they solve the previous issues as follows:

■ Centralizing the integration infrastructure allows you to transform the O(n2)
integration topology to an O(n) topology. (Each app has a link to the central
integration infrastructure.)

■ The characteristics of message brokers promote decoupling through the use of
asynchronous messaging with guaranteed delivery, well-known messaging end-
points, and so forth.

■ Message brokers are generally reliable, runtime-configurable, and horizon-
tally scalable, which helps with availability and performance. This largely miti-
gates the single-point-of-failure issues associated with being a central location
in the architecture.

There are lots of options for message brokers, but you’ll use RabbitMQ, which imple-
ments the AMQP messaging protocol. The advantage over the Java Message Service
(JMS) API is that using a protocol decouples messaging clients from the broker. With
JMS, the clients are Java clients (although any given broker has APIs for other plat-
forms as well). With AMQP, any platform with an AMQP client can communicate with
the broker, in much the same way that any web browser can communicate with any
web server, regardless of the client and server platforms. Because most platforms have
AMQP clients,8 AMQP has outstanding interoperability.

 We won’t go into the details of RabbitMQ; fortunately it’s fast and easy to set up a
development instance.9 You can also consult RabbitMQ in Action by Alvaro Videla and
Jason J.W. Williams (Manning, 2012) for further information.

 Recall from the previous recipe that you used gateways to hide the messaging sys-
tem from the help desk and portal apps. In this recipe, you’ll realize the advantage of
that approach: you’ll throw away the point-to-point REST implementations entirely
and replace them with SI–generated proxies that use AMQP to speak to RabbitMQ.10

8 Java, Ruby, Python, .NET, Perl, PHP, C/C++, Erlang, Lisp, Haskell . . .
9 See www.rabbitmq.com/download.html for download and installation instructions.
10 Although it would be possible to use Spring Integration to bridge web services to RabbitMQ, here there’s no

point. There are fewer moving parts if you remove the web services and connect the apps directly to the bro-
ker. In other situations it might be desirable to keep the web services around.
www.it-ebooks.info

www.rabbitmq.com/download.html
http://www.it-ebooks.info/

440 CHAPTER 13 Enterprise integration
Figure 13.7 shows the goal for this recipe. Let’s get started by looking at message buses
and canonical data models.

MESSAGE BUSES AND CANONICAL DATA MODELS

You’re going to use RabbitMQ to implement the message bus integration pattern. The
idea behind this pattern is to provide a central medium through which applications
can communicate with one another. Conceptually it’s based on the hardware bus
concept: plug in, and you’re good to go. Hohpe and Woolf define a message bus
as follows:

A Message Bus is a combination of a Canonical Data Model, a common command set,
and a messaging infrastructure to allow different systems to communicate through a
shared set of interfaces.

 —Enterprise Integration Patterns, p. 139

You’ll use message queues as the shared set of interfaces. But what’s missing so far is
the so-called canonical data model (CDM), which is the lingua franca that allows you to
get away with O(n)—or even O(1)—message translations instead of O(n2). In the pre-
vious recipe, the two apps had their own data representations. Now you’ll standardize
those by creating a separate Maven module for the CDM.

 In real life there are sometimes significant business, technical, and organizational
challenges surrounding the creation of a CDM, but you can ignore those because
you’re lucky enough to have a simple data model. You’ll use XML for your format
because it’s widely supported, although JSON would be another plausible option. Ide-
ally you’d create XML schemas for the model, but you won’t mess around with that
here. Instead you’ll create new DTOs (the Spring HATEOAS DTOs are more oriented

Figure 13.7 Integrating applications
via a centralized RabbitMQ message
broker. This improves scalability and
enhances decoupling.
www.it-ebooks.info

http://www.it-ebooks.info/

441Implementing a message bus using RabbitMQ and Spring Integration
around RESTful web services), define XML bindings, and treat the implied schema as
constituting your CDM.

 You have a handful of message types, but it will suffice to look at one. The follow-
ing listing shows the DTO for tickets.

package com.springinpractice.ch13.cdm;

import java.util.Date;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Ticket {
 private TicketCategory category;
 private TicketStatus status;
 private String description;
 private String createdBy;
 private Date dateCreated;

 public TicketCategory getCategory() { return category; }

 public void setCategory(TicketCategory category) {
 this.category = category;
 }

 public TicketStatus getStatus() { return status; }

 public void setStatus(TicketStatus status) { this.status = status; }

 public String getDescription() { return description; }

 public void setDescription(String description) {
 this.description = description;
 }

 public String getCreatedBy() { return createdBy; }

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;
 }

 public Date getDateCreated() { return dateCreated; }

 public void setDateCreated(Date dateCreated) {
 this.dateCreated = dateCreated;
 }
}

There isn’t much to say here. It’s a bare-bones DTO with some JAXB annotations to
bind it to the CDM’s XML representation.

 You have DTOs for other message types as well, such as ticket categories, ticket sta-
tuses, customers, and so forth. Consult the sample code for details.

Listing 13.9 Ticket.java: DTO for tickets
www.it-ebooks.info

http://www.it-ebooks.info/

442 CHAPTER 13 Enterprise integration
 Now that you have a CDM in place along with a central set of DTOs, you need to make
an interesting design decision. One possibility is for the existing apps to continue using
their existing data models, and perform translations as messages enter and exit the bus.
The other is for apps to adopt the central DTOs as their own data model, at least in cases
where you have control over that (for example, internally developed apps).

 In this case the choice is fairly clear because the Spring HATEOAS DTOs are more
oriented to support RESTful web services.11 The benefit is that you can avoid message
translation between apps. You do need to modify the gateways to use the new DTOs, so
let’s do that now.

REVISITING THE GATEWAY INTERFACES

In recipe 13.3 you worked on the help desk side with the PortalGateway. For variety,
this time you’ll work on the portal side with the TicketGateway.

 It happens that the gateway interfaces are slightly leaky: through the DTOs they
use, they expose the fact that you’re designing for Spring Data REST-based implemen-
tations with URIs instead of database IDs.12

 Let’s replace the Spring HATEOAS DTOs with the ones you created for the CDM.
The next listing presents the new TicketGateway.

package com.springinpractice.ch13.portal.integration.gateway;

import com.springinpractice.ch13.cdm.Ticket;
import com.springinpractice.ch13.cdm.TicketCategory;
import com.springinpractice.ch13.cdm.TicketCategory.TicketCategoryList;
import com.springinpractice.ch13.cdm.TicketStatus;

public interface TicketGateway {

 void createTicket(Ticket ticket);

 TicketStatus findOpenTicketStatus();

 TicketCategoryList findTicketCategories();

 TicketCategory findTicketCategory(Long id);
}

See the sample code for a similar treatment of the PortalGateway. Let’s turn now to
the gateway implementations.

REIMPLEMENTING THE PORTAL’S TICKETGATEWAY USING SPRING INTEGRATION

SI allows you to implement gateways dynamically. SI allows you to build integration
logic that allows the portal app to send requests to other systems, and also to respond
to requests from other systems. You can of course do the same thing for the help desk

11 HATEOAS is a general architectural principle and might make sense outside the context of RESTful web ser-
vices. But you don’t have any use for links here, so you’ll go with plain-vanilla DTOs. Spring HATEOAS may
be useful for implementing message-bus CDMs in addition to REST APIs.

12 See Joel Spolsky, “The Law of Leaky Abstractions,” Nov. 11, 2002, http://www.joelonsoftware.com/articles/
LeakyAbstractions.html.

Listing 13.10 TicketGateway.java: using CDM DTOs
www.it-ebooks.info

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.it-ebooks.info/

443Implementing a message bus using RabbitMQ and Spring Integration
app. In effect, you can use SI to create app-specific adapters to the RabbitMQ messag-
ing infrastructure. Review figure 13.7 for a visual.

 This section focuses on implementing the portal app’s outbound messages; that is,
you’ll implement the TicketGateway interface. To complete the circuit, you also need
to handle inbound messages into the help desk, so you’ll do that as well.

 We won’t cover requests originating from the help desk app because the logic
involved is more of the same. Refer to the sample code if you want to see it.

 Let’s start by implementing the integration logic for the portal’s self-service ticket
creation feature.

IMPLEMENTING SELF-SERVICE TICKET CREATION: PORTAL’S OUTBOUND MESSAGING

TicketGateway has a createTicket(Ticket) method that serves as a nice starting
point because it’s fairly straightforward. The idea is that the customer creates a ticket
using the portal’s web interface, and the portal passes it along to TicketGateway.
Behind the scenes, the gateway does an asynchronous fire-and-forget at the messaging
infrastructure, meaning that the call returns immediately. Later we’ll look at the mes-
sage-handling code on the help desk side, but to keep things simple let’s focus on the
portal’s fire-and-forget code.

 Figure 13.8 shows what this looks
like using the EIP graphical lan-
guage. Note that the Spring Tool
Suite generates these diagrams
automatically from the SI configu-
ration files; click the Integration-
Graph tab in the configuration file
editor.

 The pipeline is straightforward.
At the front end is a TicketGateway proxy that accepts requests from the application
through the TicketGateway interface. It passes ticket creation requests to the AMQP
channel adapter by way of a channel, and the channel adapter in turn pushes the mes-
sage to a RabbitMQ exchange.13 In the case of ticket creation, all of this is completely
asynchronous, so control returns to the portal immediately after invoking the Ticket-
Gateway. The following listing shows how to implement the pipeline using SI, Spring
Rabbit, and Spring AMQP.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-amqp="http://www.springframework.org/schema/integration/amqp"

13 If the exchange concept is new to you, you might want to take a few minutes to read up on it. See www.rab-
bitmq.com/tutorials/tutorial-three-java.html for a quick overview.

Listing 13.11 beans-integration.xml: portal application

Figure 13.8 A portal-integration pipeline supporting fire-
and-forget ticket creation. The channel adapter pushes
ticket-creation messages onto the bus.
www.it-ebooks.info

www.rabbitmq.com/tutorials/tutorial-three-java.html
www.rabbitmq.com/tutorials/tutorial-three-java.html
http://www.it-ebooks.info/

444 CHAPTER 13 Enterprise integration
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/

➥ spring-integration-2.2.xsd
 http://www.springframework.org/schema/integration/amqp
 http://www.springframework.org/schema/integration/amqp/

➥ spring-integration-amqp-2.2.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm-3.1.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit-1.1.xsd
 ">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <rabbit:connection-factory id="rabbitConnectionFactory"
 username="${rabbitMq.username}"
 password="${rabbitMq.password}" />

 <rabbit:admin connection-factory="rabbitConnectionFactory" />

 <rabbit:queue name="createTicketRequest.queue" />

 <rabbit:template id="amqpTemplate"
 connection-factory="rabbitConnectionFactory"
 message-converter="marshallingMessageConverter" />

 <bean id="marshallingMessageConverter"
 class="org.springframework.amqp.support.converter.

➥ MarshallingMessageConverter"
 p:contentType="application/xml">

 <constructor-arg ref="marshaller" />
 </bean>

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.Ticket" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategory" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketStatus" />
 </oxm:jaxb2-marshaller>

 <int:gateway
 service-interface="com.springinpractice.ch13.portal.integration.

➥ gateway.TicketGateway"
 default-request-timeout="2000">

RabbitMQ
connection
factory

B

Supports dynamic queue creation CQueue
for ticket
creation
requests

D

Template for
Rabbit messaging

E

Message
converter,
using OXMF

OXM configurationG

Gateway dynamic proxy H
www.it-ebooks.info

http://www.it-ebooks.info/

445Implementing a message bus using RabbitMQ and Spring Integration
 <int:method name="createTicket"
 request-channel="createTicketRequestChannel" />
 </int:gateway>

 <int:channel id="createTicketRequestChannel" />

 <int-amqp:outbound-channel-adapter
 amqp-template="amqpTemplate"
 channel="createTicketRequestChannel"
 routing-key="createTicketRequest.queue" />
</beans>

Quite a bit is happening in this listing, but you can break the configuration into three
sections: RabbitMQ, Object/XML mapping (OXM), and SI.

 First, the RabbitMQ configuration begins with a connection factory B. (Note that
the default credentials for a fresh RabbitMQ installation are guest/guest.)

 You use <rabbit:admin/> at C to create queues dynamically if they don’t already
exist. At D you declare a single queue for ticket-creation requests.

 At E you create a template for sending messages to Rabbit. This follows Spring’s
general practice of template-based communication with external systems and
resources. The template uses a MarshallingMessageConverter (part of Spring AMQP)
at F to perform OXM on message payloads. By default, the Rabbit template uses a Sim-
pleMessageConverter, which handles strings, Serializable instances, and byte arrays.
Because you want an XML-based CDM, you need a converter that performs OXM.

 You configure a JAXB marshaller at G, declaring the Ticket, TicketCategory, and
TicketStatus DTOs for OXM binding. The MarshallingMessageConverter uses this
marshaller.

 The rest of the configuration is for SI. At H you define a dynamic proxy for the
TicketGateway interface. The configuration at I routes tickets coming in through
the createTicket() method to the createTicketRequestChannel J, where the
AMQP outbound channel adapter 1) receives it and pushes it to Rabbit’s default
exchange, because you haven’t specified an exchange explicitly. This channel adapter,
like all channel adapters, is unidirectional. (Gateways support bidirectional, request/
reply messaging, but you don’t require that here.) The channel adapter’s routing key
is set to createTicketRequest.queue, so the default exchange routes it to that queue.
The message payload is ticket XML in the canonical format because the adapter uses
the Rabbit template, which in turn uses the MarshallingMessageConverter.

 That takes care of the fire-and-forget implementation of ticket creation on the por-
tal side. Now there’s a message with an XML ticket payload sitting in a request queue
on your bus. The next step is to implement integration logic on the help desk side to
receive and service the request.

IMPLEMENTING SELF-SERVICE TICKET CREATION: HELP DESK’S INBOUND MESSAGING

This section shows how to process inbound ticket-creation requests. See figure 13.9
for a diagram showing how this works.

 Here’s what’s happening. An inbound channel adapter receives the request from
Rabbit, maps the ticket XML to a ticket DTO, and passes it to a processing chain. The

Per-method routingI

Channel for ticket
creation requests

J

AMQP outbound
channel adapter1)
www.it-ebooks.info

http://www.it-ebooks.info/

446 CHAPTER 13 Enterprise integration
chain is a wrapper around a linear sequence of endpoints, obviating the need to
define explicit channels connecting the chain’s members. The chain’s first endpoint
is a transformer (SI’s terminology for EIP’s message translator) that maps the DTO to a
ticket entity. Then a service activator invokes the TicketRepository.save(TicketEn-
tity) method to save the ticket to the database. The repository’s save() method
returns the saved instance, but the chain discards that message by dropping it onto
the global nullChannel, which is essentially a black hole like /dev/null in Unix.
Here’s the configuration for the integration logic just described.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-amqp="http://www.springframework.org/schema/integration/amqp"
 xmlns:int-xml="http://www.springframework.org/schema/integration/xml"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/

➥ spring-integration-2.2.xsd

Listing 13.12 beans-integration.xml: help desk application

Figure 13.9 A help desk integration pipeline that receives ticket-creation messages from the bus and
creates tickets in the help desk database
www.it-ebooks.info

http://www.it-ebooks.info/

447Implementing a message bus using RabbitMQ and Spring Integration

h
t

Tr
 http://www.springframework.org/schema/integration/amqp
 http://www.springframework.org/schema/integration/amqp/

➥ spring-integration-amqp-2.2.xsd
 http://www.springframework.org/schema/integration/xml
 http://www.springframework.org/schema/integration/xml/

➥ spring-integration-xml-2.2.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm-3.1.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit-1.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd
 ">

 <context:property-placeholder
 location="classpath:/spring/environment.properties" />

 <rabbit:connection-factory id="rabbitConnectionFactory"
 username="${rabbitMq.username}"
 password="${rabbitMq.password}" />

 <rabbit:admin connection-factory="rabbitConnectionFactory" />

 <rabbit:queue name="createTicketRequest.queue" />

 <bean id="marshallingMessageConverter
 class="org.springframework.amqp.support.converter.

➥ MarshallingMessageConverter"
 p:contentType="application/xml">

 <constructor-arg ref="marshaller" />
 </bean>

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.Ticket" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategory" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketStatus" />
 </oxm:jaxb2-marshaller>

 <context:component-scan base-package="com.springinpractice.ch13.

➥ helpdesk.integration.transformer" />

 <int-amqp:inbound-channel-adapter
 queue-names="createTicketRequest.queue"
 channel="createTicketRequestChannel"
 message-converter="marshallingMessageConverter" />

 <int:channel id="createTicketRequestChannel" />

 <int:chain input-channel="createTicketRequestChannel"
 output-channel="nullChannel">
 <int:transformer ref="ticketTransformer" method="toEntity" />
 <int:service-activator

➥ expression="@ticketRepository.save(payload)" />
 </int:chain>
</beans>

RabbitMQ
configuration

B

OXM
configuration

C

Scans for
transformersD

Receives ticket-
creation requestsE

Channel for ticket-
creation requests

F

Chain wit
null outpu
channelG

ansformer H

Service
activatorI
www.it-ebooks.info

http://www.it-ebooks.info/

448 CHAPTER 13 Enterprise integration

As with the portal application, you have an initial RabbitMQ configuration B,
although this time you don’t need a template. You also have the OXM configuration
C. This time around you have some transformers (more on that in a minute), so you
scan for them at D.

 In listing 13.11 you had an AMQP outbound channel adapter to send messages to
the bus, so here you have the inbound counterpart E. The inbound channel adapter
receives ticket-creation requests from createTicketRequest.queue and passes them
via a channel F to a chain G.

 A chain is a linear sequence of endpoints connected by implicit channels. The first
endpoint is a transformer H that transforms the ticket DTO into a ticket entity, as
you’ll see. The second endpoint is a service activator I that saves the ticket entity to
the Spring Data JPA ticket repository using a Spring Expression Language (SpEL)
expression. The variables headers and payload are available for use, although you’re
using only payload here. The payload is the ticket entity that the transformer gener-
ated. The call to save() returns the saved entity, but you don’t want to return that to
the original caller; you send it to the global nullChannel G, which sends the message
to a black hole.

 Next is the transformer that converts ticket DTOs into ticket entities.

package com.springinpractice.ch13.helpdesk.integration.transformer;

import javax.inject.Inject;
import org.springframework.stereotype.Component;
import com.springinpractice.ch13.cdm.Ticket;
import com.springinpractice.ch13.helpdesk.model.TicketEntity;

@Component
public class TicketTransformer {
 @Inject private TicketCategoryTransformer ticketCategoryTransformer;
 @Inject private TicketStatusTransformer ticketStatusTransformer;

 public TicketEntity toEntity(Ticket ticketDto) {
 TicketEntity ticketEntity = new TicketEntity();
 ticketEntity.setCategory(
 ticketCategoryTransformer.toEntity(ticketDto.getCategory()));

 Customer customerDto = ticketDto.getCreatedBy();
 String username = customerDto.getUsername();
 if (username != null) {
 ticketEntity.setCustomerUsername(username);
 } else {
 ticketEntity.setCustomerEmail(customerDto.getEmail());
 ticketEntity.setCustomerFullName(getFullName(customerDto));
 }

 ticketEntity.setDateCreated(ticketDto.getDateCreated());
 ticketEntity.setDescription(ticketDto.getDescription());
 ticketEntity.setStatus(
 ticketStatusTransformer.toEntity(ticketDto.getStatus()));
 return ticketEntity;

Listing 13.13 TicketTransformer.java

Transform method B

Transformer
delegation C

Transformer
delegation

D

www.it-ebooks.info

http://www.it-ebooks.info/

449Implementing a message bus using RabbitMQ and Spring Integration
 }

 private String getFullName(Customer customerDto) {
 String firstName = customerDto.getFirstName();
 String lastName = customerDto.getLastName();
 if (firstName == null) {
 return (lastName == null ? "[Unknown]" : lastName).trim();
 } else {
 return (lastName == null ?
 firstName : firstName + " " + lastName).trim();
 }
 }
}

The transformer is a POJO. Although it’s possible to use annotations to configure SI
components, you’re using XML because I (Willie) find it easier to understand when
the SI configuration is in one place.

 At B you have a transformer method. This is the toEntity() method specified in
listing 13.12. When there’s a single public method, you don’t have to specify the trans-
former method explicitly in the XML, but you do it anyway. Because the ticket DTO
has references to category and status DTOs, you delegate the transformation to corre-
sponding transformers C and D.

 With that, you have a full asynchronous flow from the portal application through
the message bus and ending with the help desk. To be sure, there are some details
we’ve neglected, such as error handling. But the basic integration is in place. The next
section looks at a more complex case: implementing synchronous finder methods.

IMPLEMENTING THE FINDERS: PORTAL’S OUTBOUND MESSAGING

Finder methods involve a request/reply communication style, which takes more effort
to implement in a messaging environment than the fire-and-forget style does. In this
case you’ll implement synchronous request/replies, meaning the caller will block
until the reply arrives; but note that SI also supports asynchronous request/replies,
which are based on a callback mechanism. We won’t cover that here, though.

Integration and services: an architectural perspective
You might fairly ask why you would implement synchronous request/reply on top of a
fundamentally asynchronous messaging infrastructure. Wouldn’t it be simpler to have
the caller invoke a web service on the target system?

In many cases it’s indeed simpler to make a web service call. You can avoid imple-
menting a bunch of integration patterns on the bus, as well as avoid forcing the re-
quest and reply messages to pass through the message bus.

But the arguments for using a bus for asynchronous communications mostly apply
even for synchronous communications: (1) client systems can decouple themselves
from service-specific locations, message formats, authentication schemes, and so
on; and (2) you avoid the aforementioned O(n2) problem associated with point-to-point
messaging.
www.it-ebooks.info

http://www.it-ebooks.info/

450 CHAPTER 13 Enterprise integration
You’ll add support for three finder methods. Figure 13.10 augments the portal-side
pipeline you established in figure 13.8. Originally you had a single path to an AMQP
outbound channel adapter. This time you add a couple of new paths to an AMQP out-
bound gateway.

Channel adapters and gateways are alike in that they’re both interfaces to external sys-
tems, but not alike in that channel adapters are unidirectional (fire-and-forget) while
gateways support request/reply communications. In this case, the external system is the
message bus. The following listing shows how to implement the pipeline in figure 13.10.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 ... RabbitMQ configuration from listing 13.11, plus the following ...

 <rabbit:queue name="findTicketStatusRequest.queue" />
 <rabbit:queue name="findTicketCategoriesRequest.queue" />
 <rabbit:queue name="findTicketCategoryRequest.queue" />

Listing 13.14 beans-integration.xml: portal application

(continued)
One pro-bus argument that doesn’t apply in the case of synchronous messaging is
the runtime decoupling argument. In the asynchronous case, it doesn’t matter if a
message receiver is offline when the sender sends the message, because the mes-
saging system queues the message until the receiver is available. With synchronous
communications, the receiver must be available when the sender sends it a request.

We won’t settle the issue here, but suffice it to say there’s a design decision to con-
sider. The rest of the recipe shows how to implement synchronous messaging with-
out necessarily claiming that it’s the right approach for all cases.

Figure 13.10 The portal’s outbound pipeline with support for the TicketGateway’s finder methods

Additional queues for finders B
www.it-ebooks.info

http://www.it-ebooks.info/

451Implementing a message bus using RabbitMQ and Spring Integration
 ... OXM configuration from listing 13.11, plus the following ...

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.DummyPayload" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.Ticket" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategory" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.

➥ TicketCategory$TicketCategoryList" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategoryRequest" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketStatus" />
 <oxm:class-to-be-bound

➥ name="com.springinpractice.ch13.cdm.TicketStatusRequest" />
 </oxm:jaxb2-marshaller>

 <int:gateway
 service-interface="com.springinpractice.ch13.portal.integration.

➥ gateway.TicketGateway"
 default-request-channel="helpDeskRequestChannel"
 default-request-timeout="2000"
 default-reply-timeout="2000">

 <int:method name="createTicket"
 request-channel="createTicketRequestChannel" />
 <int:method name="findOpenTicketStatus"
 payload-expression="new com.springinpractice.ch13.cdm.

➥ TicketStatusRequest('open')">
 <int:header name="requestType"
 value="findTicketStatusRequest" />
 </int:method>
 <int:method name="findTicketCategories"
 payload-expression="new com.springinpractice.ch13.cdm.

➥ DummyPayload()">
 <int:header name="requestType"

➥ value="findTicketCategoriesRequest" />
 </int:method>
 <int:method name="findTicketCategory"

➥ request-channel="findTicketCategoryRequestChannel">
 <int:header name="requestType"

➥ value="findTicketCategoryRequest" />
 </int:method>
 </int:gateway>

 <int:channel id="createTicketRequestChannel" />

 <int-amqp:outbound-channel-adapter
 amqp-template="amqpTemplate"
 channel="createTicketRequestChannel"
 routing-key="createTicketRequest.queue" />

 <int:channel id="findTicketCategoryRequestChannel" />

 <int:transformer

Additional
DTOs for
bindingC

Gateway dynamic
proxy D

Per-method
enrichment
and routing

E

Per-method
enrichment
and routing

F

Per-method
enrichment
and routing

G

ChannelH
Expression-based transformerI
www.it-ebooks.info

http://www.it-ebooks.info/

452 CHAPTER 13 Enterprise integration
 input-channel="findTicketCategoryRequestChannel"
 output-channel="helpDeskRequestChannel"
 expression="new com.springinpractice.ch13.cdm.

➥ TicketCategoryRequest(payload)" />

 <int:channel id="helpDeskRequestChannel" />

 <int-amqp:outbound-gateway
 amqp-template="amqpTemplate"
 request-channel="helpDeskRequestChannel"
 routing-key-expression="headers['requestType'] + '.queue'"
 mapped-request-headers="requestType" />
</beans>

You add three new queues at B to support your new finder methods. At C you add
more classes to be bound to the OXM configuration. You’ll see why you’re adding the
dummy payload and special request objects in a moment.

 You modify the gateway definition at D. You specify that by default all requests com-
ing into the gateway will land on the helpDeskRequestChannel. You also set a default
reply timeout, expressed in milliseconds, because now you’re expecting replies.

 On replies: unless you specify an explicit default-reply-channel (which you’re not
doing here), the gateway creates for any given request a temporary, anonymous reply
channel, and adds the channel to the request message as a header called replyChannel.
That way, reply-generating downstream endpoints know where to place the reply.

 The first finder method is findOpenTicketStatus() E. You use a SpEL payload
expression to create a TicketStatusRequest DTO for the open status. The reason you
create a special request DTO is that you need the request to be XML. This is because
the AMQP gateway expects an XML reply from the bus (recall your CDM), which it
maps to an object via the AMQP template, which in turn uses the MarshallingMes-
sageConverter. The template applies the converter to both the request and the reply,
so the request needs to be a mappable DTO as opposed to a simple string.

 In addition to the SpEL payload, the finder method definition includes a custom
requestType header (custom in the sense that you invented it). Both SI and
RabbitMQ support message headers, but here, the header is an SI header. You’ll use
this header to route finder requests to the right queue, as you’ll see.

 At F is the second finder method. This time you get a list containing all ticket cat-
egories, which is useful for populating the category drop-down in the new ticket form.
There is a small problem, though. By default, SI treats no-arg gateway methods as con-
necting to pollable (receive-only) channels, as opposed to no-arg request/reply (send-
then-receive) channels. To implement a request/reply communication, you need to
provide a dummy payload using payload-expression. Normally you can pass in a
dummy string or a Date:

payload-expression="new java.util.Date()"

But here that doesn’t work because you’re using MarshallingMessageConverter,
which expects payloads to be mappable XML. That’s why you have the DummyPayload
class, and you use payload-expression to create an instance here. Once again you
enrich your message with a requestType header for routing purposes.

ChannelJ
AMQP outbound
gateway1)
www.it-ebooks.info

http://www.it-ebooks.info/

453Implementing a message bus using RabbitMQ and Spring Integration
 The third finder retrieves a specific ticket category by ID G. Once again you need
to represent the payload ID using XML rather than a Long. You’ll need a transformer
for this. You override the gateway’s default request channel with a new channel called
findTicketCategoryRequestChannel and then pass the message over that channel H
to the transformer at I. Here you take advantage of the transformer’s expression
attribute to wrap the Long ID in a mappable request DTO. Finally the message goes to
the helpDeskRequestChannel J like the other help desk requests.

 The next stop is an AMQP outbound gateway 1). You use the AMQP template to do
the actual request and reply. Then there are a couple of header-related attributes.
First you use routing-key-expression to specify a dynamic, message-driven routing
key that allows Rabbit’s default exchange to route messages to queues. In this case, the
expression is a SpEL expression that appends .queue to the value of the requestType
SI header you’ve been using.

 You use mapped-request-headers to indicate that you want the SI requestType
header to appear as an AQMP header as well once the message hits the bus. This is
because you’ll have further use for this header for routing on the help desk side.

 As with the initial gateway, the AMQP outbound gateway generates a reply. Here’s
how this works behind the scenes. For any given request, the outbound gateway cre-
ates a temporary reply queue and sets the AMQP message’s reply_to property to the
queue’s name. This tells downstream endpoints where to place the reply when it mate-
rializes. Once the reply appears in that queue, the AMQP outbound gateway grabs it
and places it on the request message’s reply channel. You’ll recall from our discussion
that the request message maintains a reference to the reply channel as the value of its
replyChannel header.

IMPLEMENTING THE FINDERS: HELP DESK’S INBOUND MESSAGING

Now the portal sends finder requests to the bus, so the help desk needs to pick those
up and service them. The supporting help desk pipeline appears in figure 13.11.

Figure 13.11 The help desk’s inbound pipeline to support the TicketGateway’s finder methods. Al-
though it’s not shown here, each chain contains a service activator followed by a transformer.
www.it-ebooks.info

http://www.it-ebooks.info/

454 CHAPTER 13 Enterprise integration

This help desk pipeline receives finder requests at an AMQP inbound gateway and for-
wards them to a router, which uses the requestType header to pass the request to one
of three chains. Each chain invokes a finder method on the TicketRepository and
uses a transformer to convert the result into a DTO before returning it to the caller.
Here’s the configuration you use to implement the help desk pipeline.

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 ... RabbitMQ configuration from listing 13.12, plus the following ...

 <rabbit:queue name="findTicketStatusRequest.queue" />
 <rabbit:queue name="findTicketCategoriesRequest.queue" />
 <rabbit:queue name="findTicketCategoryRequest.queue" />

 ... OXM configuration from listing 13.12, plus the following ...

 <oxm:jaxb2-marshaller id="marshaller">
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.DummyPayload" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.Ticket" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategory" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.

➥ TicketCategory$TicketCategoryList" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketCategoryRequest" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketStatus" />
 <oxm:class-to-be-bound
 name="com.springinpractice.ch13.cdm.TicketStatusRequest" />
 </oxm:jaxb2-marshaller>

 <context:component-scan base-package="com.springinpractice.ch13.

➥ helpdesk.integration.transformer" />

 ... inbound create ticket pipeline from listing 13.12 ...

 <int-amqp:inbound-gateway
 queue-names="findTicketStatusRequest.queue,

➥ findTicketCategoriesRequest.queue,

➥ findTicketCategoryRequest.queue"
 request-channel="helpDeskRequestChannel"
 mapped-request-headers="requestType"
 message-converter="marshallingMessageConverter" />

 <int:channel id="helpDeskRequestChannel" />

 <int:header-value-router input-channel="helpDeskRequestChannel"
 header-name="requestType">
 <int:mapping value="findTicketStatusRequest"
 channel="findTicketStatusRequestChannel" />
 <int:mapping value="findTicketCategoriesRequest"
 channel="findTicketCategoriesRequestChannel" />

Listing 13.15 beans-integration.xml: help desk application

Additional
queues for
findersB

Additional
DTOs for
bindingC

Scans for
transformers D

AMQP inbound
gatewayE

Routes by message
header value

F

www.it-ebooks.info

http://www.it-ebooks.info/

455Implementing a message bus using RabbitMQ and Spring Integration

 <int:mapping value="findTicketCategoryRequest"
 channel="findTicketCategoryRequestChannel" />
 </int:header-value-router>

 <int:channel id="findTicketStatusRequestChannel" />

 <int:chain input-channel="findTicketStatusRequestChannel">
 <int:service-activator
 expression="@ticketStatusRepository.findByKey(payload.key)" />
 <int:transformer ref="ticketStatusTransformer" method="toDto" />
 </int:chain>

 <int:channel id="findTicketCategoriesRequestChannel" />

 <int:chain input-channel="findTicketCategoriesRequestChannel">
 <int:service-activator
 expression="@ticketCategoryRepository.findAll()" />
 <int:transformer ref="ticketCategoryListTransformer"
 method="toDto" />
 </int:chain>

 <int:channel id="findTicketCategoryRequestChannel" />

 <int:chain input-channel="findTicketCategoryRequestChannel">
 <int:service-activator
 expression="@ticketCategoryRepository.findOne(payload.id)" />
 <int:transformer ref="ticketCategoryTransformer" method="toDto" />
 </int:chain>
</beans>

As was true with the portal SI configuration, you declare the three queues for finder
requests at B to ensure that they exist. You also declare the same set of DTOs for OXM
at C because you’ll need to convert back and forth between the bus CDM and Java.

 You need a few transformers to convert the entities you find into DTOs, so you scan
for them at D. The entry point for synchronous messages into the pipeline is the
AMQP inbound gateway at E. You specify its three feeder queues using the queue-
names attribute. Just as you used mapped-request-headers in listing 13.14 to convert
the custom SI requestType header into an AMQP header, you use it here to convert
the AMQP header back into a custom SI requestType header.

 The AMQP inbound gateway supports replies. When the gateway receives a mes-
sage from a queue, it creates an anonymous reply channel and attaches it to the mes-
sage using the replyChannel message header. Eventually some downstream
component responsible for producing the reply will place the reply in that channel.

 The gateway passes requests to a router that uses header values to drive routing F.
As you’ve guessed, you’re using the requestType header for that. The <mapping> ele-
ments provide the routing definitions.

 Once the request leaves the router, it goes to one of three chains you’ve defined,
corresponding to the three finder requests. First is a chain for the ticket status
requests G. The chain has an expression-driven service activator that unpacks the key
from the request object (recall that you wrapped the key with a TicketStatusRequest
in listing 13.14) and calls the findByKey() method on the TicketStatusRepository.
The result is an entity, so you use a transformer to convert the entity back to a DTO for

Chain to
find ticket
status

G

Chain to find
ticket categories

H

Chain to
find single

category

I

www.it-ebooks.info

http://www.it-ebooks.info/

456 CHAPTER 13 Enterprise integration
subsequent mapping to the XML-based CDM on the return trip. See the sample code
for the transformers, which are similar to the one from listing 13.13.

 Because you haven’t specified an explicit output channel for the chain, the chain
sends the transformer’s output to the channel you’re storing under the replyChannel
header. The circuit is now complete: the help desk AMQP inbound gateway receives
the reply from the channel and sends it to the specified exchange and queue (as spec-
ified by the routing key). The portal AMQP outbound gateway receives the reply from
the queue and places it on the replyChannel. Finally the initial portal gateway
receives the reply and returns it to the caller. The chains at H and I are essentially
similar to the one at G.

 With that, you’re done. You now have the plumbing on both the portal and the
help desk sides to support both asynchronous and synchronous communications over
Rabbit. Although we didn’t cover it here, note that the help desk also requests cus-
tomer information from the portal, using largely the same set of patterns, but in the
opposite direction. See the sample code.

Discussion

Over the past three recipes we’ve shown how to integrate applications in a progres-
sively more decoupled way. Though we’ve considered only two apps here, the archi-
tecture’s power becomes more obvious as you place additional apps on the message
bus. The number of potential integrations grows quadratically in the number of apps,
but the integration complexity increases only linearly.

 In this recipe you used RabbitMQ as the bus-implementation technology and SI as
a way to implement app-specific bus adapters. But this isn’t the only way to use SI. You
can use SI itself to implement buses. In the recipes that follow, you’ll reposition the
help desk’s SI pipeline as an application bus in its own right and then add both
inbound and outbound email by attaching them to the application bus.

13.4 Sourcing tickets from an IMAP store
PREREQUISITES

Recipe 13.3 Implementing a message bus using RabbitMQ and Spring Integration
(There’s no conceptual dependency on RabbitMQ, but you use the code from rec-
ipe 13.3.)

KEY TECHNOLOGIES

SI, JavaMail, IMAP

Background

Email-based support is a common requirement. Although many sites offer a form-
based option to better structure the ticket and to avoid email spam, email can be an
attractive option because it’s so easy to implement: all it requires is an inbox.

 In this recipe, imagine that you only recently rolled out the form-based approach
from recipe 13.1, but you still want to support a legacy support email address that was
www.it-ebooks.info

http://www.it-ebooks.info/

457Sourcing tickets from an IMAP store
your primary ticket source prior to introducing the form. We’ll show how to create
help desk tickets based on incoming customer email.

Problem

Automatically create help desk tickets based on customer email.

Solution

Building on figure 13.7, figure 13.12 shows what you want to add to the integration
landscape in this recipe.

 One question you might be asking is why you wouldn’t attach inbound email to the
RabbitMQ bus instead of attaching it to the help desk’s SI adapter. After all, the portal
is a ticket source, and you’ve attached it to the RabbitMQ bus. And in the help desk,
you’re using SI as an adapter to the RabbitMQ bus, so accepting email from a source
other than the bus seems to conflict with this design.

 You could certainly do that, but one reason you’re not is that you’d need a sepa-
rate adapter to connect the inbound email channel to RabbitMQ, and that’s a com-
plexity you don’t currently require. Only the help desk cares about inbound email,
and if the help desk isn’t available to receive email, then messages sit in the mailbox
until the help desk is available again. (In effect, the mailbox functions as a persistent
message queue.)

 As to the design conflict, the conflict is only apparent. All the help desk sees are
the gateway interfaces you happen to have in place; the app doesn’t know anything
about SI or RabbitMQ. Instead of thinking of the SI pipeline strictly as an adapter to
the RabbitMQ bus, you can consider it to be an application bus in a federated bus

Figure 13.12 You’ll add an email-
based ticket channel using SI’s sup-
port for inbound email.
www.it-ebooks.info

http://www.it-ebooks.info/

458 CHAPTER 13 Enterprise integration
architecture, one that connects the app to external buses and systems.14 This includes
RabbitMQ, but it can also include systems whose use is limited to specific applications,
like inbound email in the current instance.

Figure 13.13 presents graphically the pipeline you’re going to create. It builds on the
pipeline from figure 13.9.

 You’re adding an IMAP inbound channel adapter to receive email messages from
an IMAP mailbox. Then you pass the email messages to a transformer, which converts
them into ticket DTOs. (The DTOs are the canonical data model for the help desk’s
application bus.) The transformer drops the DTOs onto the existing createTicketRe-
questChannel, which allows you to take advantage of the downstream chain for saving
tickets you created in recipe 13.3, and also to use it as a single location for making
changes to the integration logic. You’ll see this benefit in action when you add confir-
mation emails in recipe 13.5.

 As before, you use SI to implement the pipeline.

SPRING INTEGRATION CONFIGURATION

Listing 13.16 shows what you need to add to your help desk beans-integration.xml con-
figuration to support the pipeline depicted. But first, please read the following warning.

14 For an interesting discussion on bus federation, see Jack van Hoof, “A Federated Service Bus Infrastructure,”
March 27, 2009, http://mng.bz/Qfx7. Also, Service Oriented Architecture Demystified: A Pragmatic Approach to SOA
for the IT Executive by Girish Juneja et al. (Intel Press, 2007) draws a related distinction between “big buses” and
“little buses.”

Spring Integration supports multiple integration architectures
The preceding discussion highlights the fact that SI is flexible; it doesn’t prescribe a
specific integration architecture. You can have a single central message broker with
SI adapters if you like. You can have federated, hierarchical buses. Or you can even
use SI itself as a central bus.

Figure 13.13 You’ll augment the inbound pipeline to include support for IMAP messages.
www.it-ebooks.info

http://mng.bz/Qfx7
http://www.it-ebooks.info/

459Sourcing tickets from an IMAP store
Now that you’ve read the warning and created a test account, please see the following
listing to add support for inbound email.

<?xml version="1.0" encoding="UTF-8"?>
<beans
 xmlns:int-mail="http://www.springframework.org/schema/integration/mail"

 ... other namespaces ...

 xsi:schemaLocation="
 http://www.springframework.org/schema/integration/mail
 http://www.springframework.org/schema/integration/mail/

➥ spring-integration-mail-2.2.xsd
 ... other schema locations ... ">

 ... configuration from recipe 13.3 ...

 <int-mail:imap-idle-channel-adapter
 channel="newMailChannel"
 store-uri="${email.store.uri}"
 should-delete-messages="${email.shouldDeleteMessages}" />

 <int:channel id="newMailChannel" />

 <int:transformer input-channel="newMailChannel"
 output-channel="createTicketRequestChannel"
 expression="@ticketTransformer.toDto(payload)" />
</beans>

Little is involved here. You have the IMAP inbound channel adapter B. This is a spe-
cial IMAP IDLE adapter, which supports the IMAP IDLE notification mechanism. If your
provider doesn’t support IMAP IDLE, then you can use a standard IMAP inbound chan-
nel adapter with a poller:

<int-mail:inbound-channel-adapter
 channel="newMailChannel"
 store-uri="${email.store.uri}"
 should-delete-messages="${email.shouldDeleteMessages}">

 <int:poller max-messages-per-poll="3" fixed-rate="30000" />
</int-mail:inbound-channel-adapter>

In any event, you specify the IMAP store (mailbox) URI and also tell the channel
adapter to go ahead and delete messages from the mailbox after pulling them down.

Listing 13.16 Help desk’s beans-integration.xml, with support for inbound email

WARNING: listing 13.16 deletes all of your email!
The following configuration treats your IMAP mailbox as a message queue. The IMAP
channel adapter treats every email in the mailbox as a message to be processed and
deleted. Please use a test email account, not your personal or work account. I (Willie)
learned this the hard way by stupidly deleting several years of Gmail messages from
my personal inbox.

IMAP IDLE
channel adapter

B

Transforms
email to DTOC
www.it-ebooks.info

http://www.it-ebooks.info/

460 CHAPTER 13 Enterprise integration
(See the earlier warning.) Different services will have different URIs. For Gmail, it looks
like this:

imaps://username:password@imap.gmail.com:993/Inbox

Notice the use of IMAPS, which is IMAP over SSL (standard port is 993).15 Obviously
you need to replace username and password with the actual credentials associated
with the account.

 After the channel adapter receives an email message, it sends it to a transformer
C so that it can be converted into a DTO. You’re using the transformer’s expres-
sion attribute to select the transformation. After that it goes to the createTicket-
RequestChannel, where the chain from recipe 13.3 receives it and saves it to the
TicketRepository.

 The transformer code is important, so let’s look at that.

UPDATING THE TICKETTRANSFORMER

The transformer is an updated version of TicketTransformer from listing 13.13.
Here’s the new version.

package com.springinpractice.ch13.helpdesk.integration.transformer;

import java.io.IOException;
import javax.annotation.PostConstruct;
import javax.inject.Inject;
import javax.mail.BodyPart;
import javax.mail.MessagingException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;
import org.springframework.stereotype.Component;
import com.springinpractice.ch13.cdm.Ticket;
import com.springinpractice.ch13.cdm.TicketCategory;
import com.springinpractice.ch13.cdm.TicketStatus;
import com.springinpractice.ch13.helpdesk.model.TicketCategoryEntity;
import com.springinpractice.ch13.helpdesk.model.TicketEntity;
import com.springinpractice.ch13.helpdesk.model.TicketStatusEntity;
import com.springinpractice.ch13.helpdesk.repo.TicketCategoryRepository;
import com.springinpractice.ch13.helpdesk.repo.TicketStatusRepository;

@Component
public class TicketTransformer {
 @Inject private TicketCategoryRepository ticketCategoryRepo;
 @Inject private TicketStatusRepository ticketStatusRepo;
 @Inject private TicketCategoryTransformer ticketCategoryTransformer;
 @Inject private TicketStatusTransformer ticketStatusTransformer;

15 If you run into PKIX/certificate trust issues, you may need to import the Gmail IMAP certificate into your
truststore. See Willie Wheeler, “Fixing PKIX path building issues when using JavaMail and SMTP,” Spring in
Practice, http://mng.bz/W4w8. This discussion involves SMTP, but with minor modifications it applies to
IMAP as well.

Listing 13.17 Updated version of TicketTransformer.java
www.it-ebooks.info

http://mng.bz/W4w8
http://www.it-ebooks.info/

461Sourcing tickets from an IMAP store
 private TicketCategory generalCategoryDto;
 private TicketStatus openStatusDto;

 @PostConstruct
 public void postConstruct() {
 TicketCategoryEntity generalCategoryEntity =
 ticketCategoryRepo.findByKey("general");
 this.generalCategoryDto =
 ticketCategoryTransformer.toDto(generalCategoryEntity);

 TicketStatusEntity openStatusEntity =
 ticketStatusRepo.findByKey("open");
 this.openStatusDto =
 ticketStatusTransformer.toDto(openStatusEntity);
 }

 public TicketEntity toEntity(Ticket ticketDto) {
 ... same as listing 13.13 ...
 }

 public Ticket toDto(MimeMessage email)
 throws MessagingException, IOException {

 InternetAddress from = (InternetAddress) email.getFrom()[0];
 MimeMultipart content = (MimeMultipart) email.getContent();
 BodyPart body = content.getBodyPart(0);

 Ticket ticketDto = new Ticket();
 ticketDto.setCategory(generalCategoryDto);

 Customer customerDto = new Customer();
 customerDto.setEmail(from.getAddress());
 customerDto.setFirstName(null);
 customerDto.setLastName(from.getPersonal());
 ticketDto.setCreatedBy(customerDto);

 ticketDto.setDateCreated(email.getSentDate());
 ticketDto.setDescription(
 "[" + email.getSubject() + "] " + body.getContent());
 ticketDto.setStatus(openStatusDto);
 return ticketDto;
 }

 ... getFullName() same as listing 13.13 ...
}

You use the @PostConstruct annotation B to declare a method for Spring to run
after creating and injecting the bean. You use this to preload the General ticket cate-
gory (the support rep can change it to something more appropriate) and the Open
ticket status.

 The actual transformation occurs at C. The IMAP channel adapter produces a
MimeMessage, so you transform that into a DTO so the downstream chain can save it.

 That’s it for the code and configuration. It’s time to try it out.

TRY THE CODE

Choose a test account for your IMAP store, and, if you’re using GitHub code, change
should-delete-messages from false to true on the IMAP inbound channel adapter.

Post-construct
method

B

Transforms
email to DTO

C

www.it-ebooks.info

http://www.it-ebooks.info/

462 CHAPTER 13 Enterprise integration
Then start up the help desk app and send an email to the test account. The channel
adapter should see the email, grab it, delete it from the mailbox, and then turn it into
a ticket. You can see the ticket by viewing the ticket list in the help desk’s UI.

Discussion

In this recipe, you learned that it’s easy to add support for inbound email to a Spring-
enabled application. This is useful because email is still a popular way to allow users to
submit support requests and other communications.

 In the following recipe, we’ll revisit the topic of confirmation emails, which you
saw in chapter 8. This time you’ll use SI to send the confirmation email.

13.5 Send confirmation messages over SMTP
PREREQUISITES

Recipe 13.4 Sourcing tickets from an IMAP store

KEY TECHNOLOGIES

SI, JavaMail, SMTP

Background

Generally, when users submit support tickets, you want to send them a confirmation
message thanking them for their ticket and letting them know when they can expect
to hear back from you.

Problem

Send the user a confirmation email when they submit a ticket.

Solution

Figure 13.14 shows the last step in the
evolution of your integration environ-
ment. This time you’re adding support
for confirmation emails, which you
send by way of SMTP. This is the same as
figure 13.1, but it’s reproduced here for
your convenience.

 As it happens, you can add confir-
mation emails without changing any
app code. Recall from recipe 13.4 that
you connected the IMAP inbound chan-
nel adapter to a chain that your AMQP
inbound channel adapter was already
using for creating tickets. Because
they’re both using the same pipeline,
you can modify that pipeline a bit to

Figure 13.14 Adding outbound SMTP messaging to
support confirmation emails
www.it-ebooks.info

http://www.it-ebooks.info/

463Send confirmation messages over SMTP
generate confirmation emails, regardless of whether the ticket came from the web
form or an email. Figure 13.15 shows how. The following listing shows the required
configuration updates.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:jee="http://www.springframework.org/schema/jee"

 ... other namespaces ...

 xsi:schemaLocation="
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-3.1.xsd
 ... other schema locations ... ">

 ... configuration from recipe 13.4 ...

 <jee:jndi-lookup id="mailSession"
 jndi-name="mail/Sip13HelpDeskMailSession"
 resource-ref="true" />

 <bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:session-ref="mailSession" />

 <int:publish-subscribe-channel id="createTicketRequestChannel" />

 <int:transformer input-channel="createTicketRequestChannel"
 output-channel="confirmationEmailChannel"
 expression="@ticketTransformer.toConfirmationEmail(payload)" />

 <int:channel id="confirmationEmailChannel" />

 <int-mail:outbound-channel-adapter
 channel="confirmationEmailChannel" mail-sender="mailSender" />
</beans>

First you have some JavaMail configuration B. This is the same as what you saw in rec-
ipe 8.2.16

Listing 13.18 Help desk’s beans-integration.xml, with support for confirmation emails

16 As before, if you run into PKIX issues, see “Fixing PKIX path building issues when using JavaMail and SMTP,”
http://mng.bz/W4w8.

Figure 13.15 Modifying the pipeline to support confirmation emails whenever somebody creates a new
ticket. No change to the app is required.

JavaMail
configuration

B

Now a pub/sub
channel

C

Transforms to
confirmation email D

SMTP
channel
adapter

E

www.it-ebooks.info

http://mng.bz/W4w8
http://www.it-ebooks.info/

464 CHAPTER 13 Enterprise integration
 You replace the original point-to-point channel C with a publish/subscribe (pub/
sub) channel. The difference between them is that a point-to-point channel can have
at most one consumer, whereas a pub/sub channel broadcasts messages to any num-
ber of consumers. Here you want to continue broadcasting to the chain that saves the
ticket, but you want to add a new consumer pipeline to generate confirmation emails.

 The start of that new pipeline is the transformer at D. It converts ticket DTOs into
outbound confirmation emails. Then you pass the emails along to an SMTP outbound
channel adapter E, which sends the email.

 Next you update TicketTransformer to support confirmation emails.

package com.springinpractice.ch13.helpdesk.integration.transformer;

... imports from listing 13.17 ...

import org.springframework.beans.factory.annotation.Value;
import org.springframework.mail.MailMessage;
import org.springframework.mail.SimpleMailMessage;

@Component
public class TicketTransformer {

 ... dependencies from listing 13.17 ...

 @Value("${confirmation.from}")
 private String confirmationFrom;

 @Value("${confirmation.subject}")
 private String confirmationSubject;

 ... methods from listing 13.17 ...

 public MailMessage toConfirmationEmail(Ticket ticketDto) {
 MailMessage msg = new SimpleMailMessage();

 Customer customerDto = ticketDto.getCreatedBy();
 String customerFullName = getFullName(customerDto);
 String customerEmail = customerDto.getEmail();
 String to = (customerFullName == null ? customerEmail :
 customerFullName + " <" + customerEmail + ">");
 msg.setTo(to);

 msg.setFrom(confirmationFrom);
 msg.setSubject(confirmationSubject);
 msg.setSentDate(new Date());

 String desc =
 "Thank you for reporting this issue. We will contact you " +
 "within one business day.\n\nYour message:\n\n" +
 ticketDto.getDescription();
 msg.setText(desc);

 return msg;
 }
}

Listing 13.19 TicketTransformer.java with a transform method for confirmation emails

Injects
confirmation
configuration

B

Transform
method

C

Creates
messageD

Sets
message
fieldsE

Sets
description

F

www.it-ebooks.info

http://www.it-ebooks.info/

465Summary
You use @Value to inject a couple of confirmation email parameters into the trans-
former at B. The new transform method creates a confirmation email from a ticket
DTO C. You create the email D and then use the DTO to populate its fields E. With
respect to the description F, you hardcode the confirmation message, but in a more
realistic example you would use a template engine (Velocity, FreeMarker, and so on)
as you did in recipe 8.2.

 Start up the help desk and the portal, and try creating messages through the por-
tal, help desk, and email interfaces. In each case you should see the help desk generat-
ing confirmation emails. Note that you’ll need to change the email addresses of the
sample portal users to your own email address if you want to receive confirmation
emails when submitting tickets involving those users.

Discussion

This recipe demonstrated that it’s possible to perform integrations without having to
modify the apps. You added confirmation emails by replacing a point-to-point channel
for ticket creation with a pub/sub channel and then attaching both the help desk ser-
vice and the confirmation email pipeline to that channel.

 Where you control the apps being integrated, it makes sense to consider combin-
ing integration logic with app modifications to eliminate redundancy and simplify
integration. But this isn’t always possible. In general, this means you’ll want to create
abstract representations of key actions on the bus. For example, before the integra-
tion, the “create ticket” action lived with the help desk. But to add a confirmation
email, you had to represent that action in the bus and treat the actual ticket creation
as just one flow out of the bus. Ultimately, the services become implementation details
to the logical representations on the bus, which makes the architecture and services
easier to evolve over time.

13.6 Summary
Integration is an important concern in enterprise environments, where there is gener-
ally a bewildering array of both complementary and competing tools in place, often
with little hope of long-term harmonization. Integration becomes that harmonization—
it provides a practical way to connect tools and their data to support higher-level pro-
cess and workflow integration.

 There are many approaches to integrating systems, and we’ve covered some of the
important ones here. When custom, internally developed code is involved, shared
databases can offer a simple and quick way to make data broadly available. But this
approach scales poorly, and so the next step is often to use web services to enhance
decoupling. Finally, domain- or even enterprise-level, broker-based messaging is a
powerful way to increase decoupling even further, which becomes important as the
number of collaborators in the integration grows.

 Spring provides a number of APIs useful for integration styles, including Spring Data
REST, Spring HATEOAS, Spring Integration, and Spring AMQP/Rabbit. Integration is
www.it-ebooks.info

http://www.it-ebooks.info/

466 CHAPTER 13 Enterprise integration
such a large topic that it’s impossible for a single chapter to do more than touch on the
complexities and solutions involved, but we’ve tried to offer a starting point to support
further exploration and study. Spring Integration in Action and RabbitMQ in Action, both
published by Manning, are great places to start.

 In the next and final chapter of the book, you’ll learn how to use Spring to create
your own framework, complete with annotations and namespace configuration.
www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Spring-based
 “site-up” framework
This final chapter covers the advanced topic of creating your own Spring-based
“site-up” framework based on the circuit-breaker pattern, described by Michael
Nygard in his book Release It! (Pragmatic, 2012). We’ll begin a quick overview of the
pattern, then jump right into the parts that build your framework. The code for
this chapter is at https://github.com/springinpractice/sip14.1

This chapter covers
■ Creating a circuit-breaker template
■ Managing the circuit breaker through JMX
■ Enabling interceptors and supporting AOP

configuration
■ Establishing a custom namespace
■ Supporting annotation configuration

1 The code in this chapter is based on the open source Kite framework at https://github.com/springinprac-
tice/kite.
467

www.it-ebooks.info

https://github.com/springinpractice/sip14
https://github.com/springinpractice/kite
https://github.com/springinpractice/kite
http://www.it-ebooks.info/

468 CHAPTER 14 Creating a Spring-based “site-up” framework
Circuit-breaker overview
Integration points between systems are a common source of production issues. It’s
common for problems with a service to create performance and availability issues for
clients. Similarly, it’s common for misbehaving clients to create performance and
availability issues for the services they use.

 Here are possible scenarios:

■ Unavailable service makes client unavailable—Service unavailability often propa-
gates across an integration point to render the client unavailable.

■ Slow service depletes client resources—When a service is merely slow rather than
unavailable, client threads may spend a lot of time blocking on connections to
the service, leaving fewer threads available for servicing new requests.

■ Client responds to slow service by hammering—Sometimes clients include aggressive
retry logic. When a service is having capacity issues, aggressive retrying only
exacerbates the situation.

Figure 14.1 illustrates the second and third scenarios.

You can use the circuit-breaker pattern to prevent failure from propagating across
integration points. A software circuit breaker is like its counterpart in the physical
world in that under normal conditions it’s closed, and requests (analogous to current)
flow freely across the breaker. But when the request failure rate crosses a given thresh-
old, the breaker transitions into an open state for a period of time, during which cli-
ent requests fail fast, protecting both the client and the service. See figure 14.2.

Figure 14.1 Fault propagation from service to client, and from client to service

Figure 14.2 The breaker on the left is in the closed state, which is normal. Requests flow freely across
a closed breaker. The breaker on the right is open. Requests can’t flow across an open breaker.
www.it-ebooks.info

http://www.it-ebooks.info/

469Creating a circuit-breaker template and callback
Besides the closed and open state, circuit breakers have a third state: half-open. The
breaker goes half-open after the open state’s timeout has elapsed. A half-open breaker
allows a single request to pass through. If the request succeeds, the breaker resets
itself back to the normal and healthy closed state; otherwise, the breaker trips again
(it goes open) and waits for the next timeout. See figure 14.3 for the state diagram.

 You typically create multiple breakers, with any given breaker protecting all inte-
grations against a specific resource. For instance, if you have an application that calls
two web services and two databases, you might create four distinct breakers. All meth-
ods backended by a given resource go through a single breaker.

 That’s enough background to get you started. The first recipe shows how to imple-
ment a breaker using the template pattern.

14.1 Creating a circuit-breaker template and callback
PREREQUISITES

None

KEY TECHNOLOGIES

Template design pattern

Background

The template pattern is a well-known means for factoring out repetitive boilerplate
code, especially in cases where repetitive pre- and post-execution code is involved. It
works by placing the boilerplate code in a template class and the interesting code in a
callback class. The template class has a so-called template method that accepts the
callback as an argument and executes the pre-execution boilerplate, the callback,

Figure 14.3 Circuit-breaker state diagram showing all three states and their transitions
www.it-ebooks.info

http://springinpractice.com/schema/kite
http://springinpractice.com/schema/kite
http://springinpractice.com/schema/kite
http://www.it-ebooks.info/

470 CHAPTER 14 Creating a Spring-based “site-up” framework
and, finally, the post-execution boilerplate. Figure 14.4 is a sequence diagram showing
how the template pattern works.

 In this recipe we’ll show how to implement a circuit breaker as a template.

Problem

Create a circuit breaker to protect against integration point faults.

Solution

From the background it should be clear that templates are ready-made for circuit
breakers. You’ll begin by creating a circuit-breaker template along the lines of
JdbcTemplate, HibernateTemplate, and TransactionTemplate.

A LITTLE FRAMEWORK SETUP

Spring makes liberal use of the template pattern, and because it’s a perfect fit for
circuit breakers, you’ll use it too. But first you’ll do a little framework setup code. In
this chapter all we’re worried about is circuit breakers, but we want to make it easy
to expand this to other similar components. We call such components guards
because they guard integration points.2 So you’ll start by defining a simple interface
for guards generally.

2 Other examples are rate-limiting throttles, concurrency throttles, and user blockers.

Figure 14.4 Sequence diagram illustrating the template pattern
www.it-ebooks.info

http://springinpractice.com/schema/kite
http://springinpractice.com/schema/kite
http://www.it-ebooks.info/

471Creating a circuit-breaker template and callback
package com.springinpractice.ch14.kite;

public interface Guard {

 String getName();

 <T> T execute(GuardCallback<T> action) throws Exception;
}

Each guard has a name. That will be useful when you expose the guards through JMX
in recipe 14.2. The execute() method reflects the fact that you’re implementing a
template here. You’ll also require a callback interface.

package com.springinpractice.ch14.kite;

public interface GuardCallback<T> {

 T doInGuard() throws Exception;
}

The next listing provides a simple base implementation.

package com.springinpractice.ch14.kite;

import org.springframework.beans.factory.BeanNameAware;

public abstract class AbstractGuard implements Guard, BeanNameAware {
 private String name;

 public String getName() { return name; }

 public void setBeanName(String beanName) { this.name = beanName; }
}

That’s it for the framework code. Now let’s use it to create a circuit breaker.

IMPLEMENTING A CIRCUIT BREAKER USING A TEMPLATE

It’s time to write the circuit breaker. Because there’s a fair amount of code, we’ll break
it into two pieces. The next listing presents what is mostly breaker configuration code.
Listing 14.5 will treat state management.

package com.springinpractice.ch14.kite.guard;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.util.Assert;
import com.springinpractice.ch14.kite.AbstractGuard;

Listing 14.1 Guard.java: template interface for circuit breakers

Listing 14.2 GuardCallback.java: corresponding callback interface

Listing 14.3 AbstractGuard.java: simple base implementation

Listing 14.4 CircuitBreakerTemplate.java, part 1: breaker configuration
www.it-ebooks.info

http://www.it-ebooks.info/

472 CHAPTER 14 Creating a Spring-based “site-up” framework

d3

import com.springinpractice.ch14.kite.GuardCallback;
import com.springinpractice.ch14.kite.exception.CircuitOpenException;

public class CircuitBreakerTemplate extends AbstractGuard {
 private static final long NO_SCHEDULED_RETRY = Long.MAX_VALUE;
 private static Logger log =
 LoggerFactory.getLogger(CircuitBreakerTemplate.class);

 private int exceptionThreshold = 5;
 private long timeout = 30000L;
 private List<Class<? extends Exception>> handledExceptions =
 new ArrayList<Class<? extends Exception>>();

 public CircuitBreakerTemplate() {
 handledExceptions.add(Exception.class);
 }

 public int getExceptionThreshold() {
 return exceptionThreshold;
 }

 public void setExceptionThreshold(int threshold) {
 Assert.isTrue(threshold >= 1, "threshold must be >= 1");
 this.exceptionThreshold = threshold;
 }

 public long getTimeout() { return timeout; }

 public void setTimeout(long timeout) {
 Assert.isTrue(timeout >= 0L, "timeout must be >= 0");
 this.timeout = timeout;
 }

 public List<Class<? extends Exception>> getHandledExceptions() {
 return handledExceptions;
 }

 public void setHandledExceptions(
 List<Class<? extends Exception>> exceptions) {

 Assert.notNull(exceptions, "handledExceptions can't be null");
 this.handledExceptions = exceptions;
 }

 private boolean isHandledException(
 Class<? extends Exception> exceptionClass) {

 for (Class<? extends Exception> handledExceptionClass :
 handledExceptions) {

 if (handledExceptionClass.isAssignableFrom(exceptionClass)) {
 return true;
 }
 }
 return false;
 }

 ... see listing 14.5 for state management ...
}

TemplateB

Trips when
threshold reacheC

Retries
after

0,000 ms

D

Exceptions
to processE
www.it-ebooks.info

http://www.it-ebooks.info/

473Creating a circuit-breaker template and callback

There’s a lot happening here. At B you name the class CircuitBreakerTemplate to
keep with Spring’s template-naming convention. The reason you care about the bean
name is that circuit breakers are state machines, and they ought to log all state transi-
tions because that’s important for monitoring and diagnostic purposes. The name
allows you to indicate exactly which breaker underwent a state transition.

 There are three important configuration parameters. One is the exception thresh-
old C, which specifies how many consecutive exceptions it takes to trip the breaker.
You’ve set the default to five. The next parameter is the timeout D, which you’ve set
to 30 seconds. This is how much time must pass before an open breaker tries to reset
itself. The list of handled exceptions E indicates which exception classes cause the
exception count to increment. This gives you a way to focus attention on exceptions
that indicate a problem with the underlying resource.

 That concludes the examination of breaker configuration, but you’re not done
with the breaker yet. The meat of the circuit breaker is the state-management and
transition logic.

...

public enum State { CLOSED, OPEN, HALF_OPEN };

private volatile State state = State.CLOSED;
private final AtomicInteger exceptionCount = new AtomicInteger();
private volatile long retryTime = NO_SCHEDULED_RETRY;

public State getState() {
 if (state == State.OPEN) {
 if (System.currentTimeMillis() >= retryTime) {
 log.info("Setting circuit breaker half-open: {}",
 getName());
 this.state = State.HALF_OPEN;
 }
 }
 return state;
}

// For testing
void setState(State state) { this.state = state; }

public void reset() {
 log.info("Resetting circuit breaker: {}", getName());
 this.state = State.CLOSED;
 this.exceptionCount.set(0);
}

public void trip() { trip(true); }

public void tripWithoutAutoReset() { trip(false); }

private void trip(boolean autoReset) {
 log.warn("Tripping breaker {}, autoReset={}", getName(),
 autoReset);
 this.state = State.OPEN;

Listing 14.5 CircuitBreakerTemplate.java, part 2: breaker state

Breaker
states

B Volatile for
visibility and
performance

C

Supports atomic
check/incrementD

Volatile for visibility
and performanceE

Go half-open?F

Resets
breaker

G

Trips
breaker

H

www.it-ebooks.info

http://www.it-ebooks.info/

474 CHAPTER 14 Creating a Spring-based “site-up” framework
 this.retryTime = (autoReset ?
 System.currentTimeMillis() + timeout : NO_SCHEDULED_RETRY);
}

public <T> T execute(GuardCallback<T> action) throws Exception {
 final State currState = getState();
 switch (currState) {

 case CLOSED:
 try {
 T value = action.doInGuard();
 this.exceptionCount.set(0);
 return value;
 } catch (Exception e) {
 if (isHandledException(e.getClass()) &&
 exceptionCount.incrementAndGet() >=
 exceptionThreshold) { trip(); }

 throw e;
 }

 case OPEN:
 throw new CircuitOpenException();

 case HALF_OPEN:
 try {
 T value = action.doInGuard();
 reset();
 return value;
 } catch (Exception e) {
 if (isHandledException(e.getClass())) { trip(); }
 throw e;
 }

 default:
 throw new IllegalStateException("Unknown state: " + currState);
 }
}

public int getExceptionCount() { return exceptionCount.get(); }

public long getRetryTime() { return retryTime; }

void setExceptionCount(int exceptionCount) {
 this.exceptionCount.set(exceptionCount);
}

...

You use a typesafe enum for the three circuit-breaker states B. You have three state
variables. First you have the breaker state itself C, declared as volatile. Without going
into all the gory concurrency details, the idea is that you want threads to see each oth-
ers’ state updates without creating a synchronization bottleneck, which would impact
performance negatively. The volatile keyword accomplishes this: it forces reads and
writes to the variable to go all the way out to main memory (where they’re visible to all
threads), but there’s no mutex.

Gets stateI

Handle
closedJ

Handle
open

1)

Handle
half-open1!
www.it-ebooks.info

http://www.it-ebooks.info/

475Creating a circuit-breaker template and callback
 For exceptionCount D you also want cross-thread visibility coupled with high per-
formance, but you additionally need an atomic check/increment operation. Although
the expression exceptionCount++ looks atomic, when translated down to machine code
it actually isn’t, and so volatile isn’t enough. AtomicInteger provides an atomic, lock-
free incrementAndGet() method (which you’ll see) that you can use to get the job done.

attemptResetAfter E contains a timestamp indicating when it’s OK for the
breaker to try to reset itself. Once again you need visibility and performance, but you
don’t need an atomic check/set operation, so volatile is fine. Note that even though
this is a long (64 bits), reads and writes to volatile longs are always atomic.3

 The getState() method F is interesting because it doesn’t return the state.
Instead, it uses the opportunity to check whether the breaker needs to transition from
the open state to the half-open state. Only after that’s done does getState() return
the state. Normally, getter methods shouldn’t have side-effects like this, but this is
arguably a case where it makes sense.

 The reset() method G forces the breaker into the closed state and clears out the
exception count. The trip() method H is similar, but it forces the breaker into the
open state and sets a variable indicating when the breaker gets to attempt a reset.

 The execute() method is the heart and soul of the circuit breaker. It starts by get-
ting the current state I. Once you have the state, you handle each of the three possi-
bilities in turn. If the breaker is in its closed state (the normal state) J, you attempt
the action. A successful action clears the exception count and returns the result. Oth-
erwise you increment the counter and trip if there are too many exceptions.

 If the breaker is open 1), you fail fast. This is how the breaker protects both the cli-
ent and the service: it prevents them from communicating at all.

 If the breaker is half-open 1!, it gets one shot to perform the action. If the action
succeeds, then the breaker resets back to its closed state. If the action fails, then the
breaker trips again and must wait for the next timeout period to elapse before trying
again. See figure 14.5 for a sequence diagram illustrating how it works.

 For completeness, here’s the CircuitOpenException class you reference from the
template:

package com.springinpractice.ch14.kite.exception;

public class CircuitOpenException extends GuardException {
 public CircuitOpenException() { super("Circuit open"); }
}

And here’s its superclass:

package com.springinpractice.ch14.kite.exception;

import org.springframework.core.NestedRuntimeException;

public class GuardException extends NestedRuntimeException {
 public GuardException(String msg) { super(msg); }
}

3 See “Non-atomic Treatment of double and long,” http://mng.bz/oaUo.
www.it-ebooks.info

http://mng.bz/oaUo
http://mng.bz/oaUo
http://www.it-ebooks.info/

476 CHAPTER 14 Creating a Spring-based “site-up” framework
With modest effort, you’ve created a component that promises to reduce the pro-
duction support responsibilities. To accomplish that goal, you need to see how to
apply the circuit breaker to the integra-
tion points.

CREATING A SAMPLE INTEGRATION POINT

To demo the circuit breaker, you’ll need
to create a toy transactional app with a cli-
ent and a flaky service. The app will be a
simple home page that calls a message ser-
vice to get a couple of different kinds of
messages: a message of the day (MotD)
and a list of important messages. After the
app gets the messages from the service, it
displays them to the end user on the home
page. Figure 14.6 shows the key elements
of the app’s bean-dependency diagram.

Figure 14.5 Sequence diagram illustrating tripping, timeouts, and resetting

Figure 14.6 HomeController uses a circuit
breaker to protect against problems with
the MessageService.
www.it-ebooks.info

http://www.it-ebooks.info/

477Creating a circuit-breaker template and callback
 Because you want to see the circuit breaker trip every now and then, you need a
way to make the message service slightly flaky. The following listing is the component
you’ll use to do that.

package com.springinpractice.ch14.kite.sample.service.impl;

import org.springframework.stereotype.Component;

@Component
public class Flakinator {
 private volatile boolean up = true;

 public void simulateFlakiness() {
 if (up) {
 if (Math.random() < 0.05) {
 this.up = false;
 }
 } else {
 if (Math.random() < 0.2) {
 this.up = true;
 }
 }

 if (!up) {
 throw new RuntimeException("Oops, service down");
 }
 }
}

The idea is that if the service is up, there’s a fairly low probability (0.05) that any given
call to simulateFlakiness() will transition the service to a down state. If the service is
down, the probability that it goes back up with any given call is somewhat low (0.2).

 In the next listing you have the simple Message class that you’ll use for the message
of the day and the important messages.

package com.springinpractice.ch14.kite.sample.model;

public class Message {
 private String htmlText;

 public String getHtmlText() { return htmlText; }

 public void setHtmlText(String htmlText) { this.htmlText = htmlText; }
}

Here’s the interface for the message service.

package com.springinpractice.ch14.kite.sample.service;

import java.util.List;

Listing 14.6 Flakinator.java: component to make the service flaky

Listing 14.7 Message.java: simple message object

Listing 14.8 MessageService.java: simple message service interface
www.it-ebooks.info

http://www.it-ebooks.info/

478 CHAPTER 14 Creating a Spring-based “site-up” framework
import com.springinpractice.ch14.kite.sample.model.Message;

public interface MessageService {

 Message getMotd();

 List<Message> getImportantMessages();
}

Now things get more interesting. This is the message service implementation: it shows
how to use the CircuitBreakerTemplate class.

package com.springinpractice.ch14.kite.sample.service.impl;

import java.util.ArrayList;
import java.util.List;
import javax.inject.Inject;
import org.springframework.stereotype.Service;
import com.springinpractice.ch14.kite.GuardCallback;
import com.springinpractice.ch14.kite.guard.CircuitBreakerTemplate;
import com.springinpractice.ch14.kite.sample.model.Message;
import com.springinpractice.ch14.kite.sample.service.MessageService;

@Service
public class MessageServiceImpl implements MessageService {
 @Inject private CircuitBreakerTemplate breaker;
 @Inject private Flakinator flakinator;

 public Message getMotd() {
 try {
 return breaker.execute(new GuardCallback<Message>() {
 public Message doInGuard() throws Exception {
 return doGetMotd();
 }
 });
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private Message doGetMotd() {
 flakinator.simulateFlakiness();
 return createMessage("<p>Welcome to Aggro's Towne!</p>");
 }

 public List<Message> getImportantMessages() {
 try {
 return breaker.execute(new GuardCallback<List<Message>>() {
 public List<Message> doInGuard() throws Exception {
 return doGetImportantMessages();
 }
 });
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

Listing 14.9 MessageServiceImpl.java: simple message service implementation

Injects
breaker

B

Injects flakinessC

Protects MotD
with breakerD

Protects important
messages

E

www.it-ebooks.info

http://www.it-ebooks.info/

479Creating a circuit-breaker template and callback
 private List<Message> doGetImportantMessages() {
 flakinator.simulateFlakiness();
 List<Message> messages = new ArrayList<Message>();
 messages.add(createMessage("<p>Important message 1</p>"));
 messages.add(createMessage("<p>Important message 2</p>"));
 messages.add(createMessage("<p>Important message 3</p>"));
 return messages;
 }

 private Message createMessage(String htmlText) {
 Message message = new Message();
 message.setHtmlText(htmlText);
 return message;
 }
}

You inject the breaker B and the flakiness-generator C. At D you wrap the breaker
around a method that gets the MotD. The breaker decides whether to invoke the call-
back based on the breaker’s internal state. You apply the same approach at E when
getting the important messages.

 Next is the controller that calls the message service.

package com.springinpractice.ch14.kite.sample.web;

import javax.inject.Inject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import com.springinpractice.ch14.kite.sample.service.MessageService;

@Controller
public class HomeController {
 private static final Logger log =
 LoggerFactory.getLogger(HomeController.class);

 @Inject private MessageService messageService;

 @RequestMapping(value = "", method = RequestMethod.GET)
 public String getHome(Model model) {
 loadMotd(model);
 loadImportantMessages(model);
 return "home";
 }

 private void loadMotd(Model model) {
 try {
 model.addAttribute("motd", messageService.getMotd());
 } catch (Exception e) {
 log.error("Unable to load MOTD");
 }
 }

Listing 14.10 HomeController.java: home-page controller

ParanoiaB
www.it-ebooks.info

http://www.it-ebooks.info/

480 CHAPTER 14 Creating a Spring-based “site-up” framework

 private void loadImportantMessages(Model model) {
 try {
 model.addAttribute("importantMessages",
 messageService.getImportantMessages());
 } catch (Exception e) {
 log.error("Unable to load important messages");
 }
 }
}

Because you want to be able to handle message-service failures gracefully, the Home-
Controller implementation is paranoid: it calls both getMotd() B and getImpor-
tantMessages() C in separate try/catch blocks. This avoids failure propagation.

 You carry this paranoia over to home.jsp.

<!DOCTYPE html>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:url var="loginUrl" value="/login" />
<c:url var="logoutUrl" value="/j_spring_security_logout" />

<html lang="en">
 <head>
 <title>Aggro's Towne BBS</title>
 </head>
 <body>
 <header>
 <h1>Aggro's Towne BBS</h1>
 </header>

 <section>
 <header>
 <h2>Message of the day</h2>
 </header>
 <c:choose>
 <c:when test="${not empty motd}">
 <c:out value="${motd.htmlText}" escapeXml="false" />
 </c:when>
 <c:otherwise>
 <p>[Message unavailable]</p>
 </c:otherwise>
 </c:choose>
 </section>
 <section>
 <header>
 <h2>Important messages</h2>
 </header>
 <c:choose>
 <%-- Empty means no messages; null means no service --%>
 <c:when test="${importantMessages != null}">
 <c:forEach var="message" items="${importantMessages}">
 <div style="margin:20px 0">
 <c:out value="${message.htmlText}"

Listing 14.11 home.jsp: home-page view

More paranoiaC

Still more
paranoia

Paranoia is good
www.it-ebooks.info

http://www.it-ebooks.info/

481Creating a circuit-breaker template and callback
 escapeXml="false" />
 </div>
 </c:forEach>
 </c:when>
 <c:otherwise>
 <p>[Important messages unavailable]</p>
 </c:otherwise>
 </c:choose>
 </section>
 </body>
</html>

As promised, home.jsp adopts defensive coding practices to ensure that the page
remains available even if messages aren’t.

 The final step is to take care of the app configuration.

CONFIGURING THE CIRCUIT BREAKER

You have a handful of configuration files to create to make the app work. The beans-
service.xml, beans-web.xml, and web.xml files are all fairly nondescript; they just set
up the web app. They’re in the code download if you want to see them. The beans-
kite.xml file, however, contains the breaker definition.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

 <bean class="com.springinpractice.ch14.kite.guard.

➥ CircuitBreakerTemplate"
 p:exceptionThreshold="4"
 p:timeout="30000" />
</beans>

Notice that you’ve overridden the default exception threshold (5) with a new value (4).
 Even though the app has only one breaker, an app that uses multiple resources

might have a breaker for each one.
 Let’s run the app.

RUNNING THE APP

Go to the top-level project folder and type

mvn -e clean install

to install the project to your local repository, and then go to the sample module and
type

mvn -e clean jetty:run

Once the server starts up, point your browser to http://localhost:8080/sip/.

Listing 14.12 beans-kite.xml: circuit-breaker configuration
www.it-ebooks.info

http://www.it-ebooks.info/

482 CHAPTER 14 Creating a Spring-based “site-up” framework
 You should see a simple Aggro’s Towne BBS home page.4 If you refresh the page
several times, you should notice that periodically one or the other message is unavail-
able. This reflects the flakiness of the underlying service. Occasional flakiness won’t
cause the breaker to trip, but ongoing flakiness (four consecutive exceptions, per the
configuration) will. It may take a little patience before you see a trip. If you like, hold
down the reload/refresh key for your browser until the messages become unavailable.
On the console you should see that the circuit goes open.

Discussion

Templates are a convenient way to avoid repeating boilerplate code everywhere, such
as boilerplate code to apply circuit-breaker logic. Template methods have the addi-
tional benefit of being flexible, as you can place whatever code you like inside the call-
back method.

 But a downside of templates is that they’re invasive. Recipes 14.3 and 14.5 present
declarative techniques (AOP and annotations, respectively) for installing circuit break-
ers, with the benefit that they’re much less invasive.

 Before we get to those, let’s plug a gap in the current implementation: there isn’t any
way to control the breaker from a management console. That’s the subject of recipe 14.2.

14.2 Exposing the circuit breaker as a JMX MBean
PREREQUISITES

Recipe 14.1 Creating a circuit-breaker template and callback

KEY TECHNOLOGIES

JMX, Spring JMX support, Java VisualVM

Background

For various reasons, it’s sensible to provide a means by which your Network Opera-
tions Center or other operational staff can modify breaker timeouts and manually trip
and reset circuit breakers through a management console. You might be trying to
troubleshoot a production incident, or you might want to relieve pressure on a data-
base. This recipe shows how to expose the circuit breaker as a JMX MBean so you can
manage it through a JMX-enabled management console.

Problem

Expose CircuitBreakerTemplate as a JMX MBean.

Solution

Spring makes it easy to accomplish the goal. The first step is to add Spring JMX anno-
tations to some of the classes. The following listing shows the modification required
on the AbstractGuard class.

4 Willie wrote a bulletin board system (BBS) called Aggro’s Towne when he was a kid, and this is his way of hon-
oring its memory.
www.it-ebooks.info

http://www.it-ebooks.info/

483Exposing the circuit breaker as a JMX MBean
package com.springinpractice.ch14.kite;

import org.springframework.beans.factory.BeanNameAware;
import org.springframework.jmx.export.annotation.ManagedAttribute;

public abstract class AbstractGuard implements Guard, BeanNameAware {
 private String name;

 @ManagedAttribute(description = "Guard name")
 public String getName() { return name; }

 public void setBeanName(String beanName) { this.name = beanName; }
}

We’ll consider the meaning of the @ManagedAttribute annotation momentarily. But
first, here’s the modification required for CircuitBreakerTemplate.

package com.springinpractice.ch14.kite.guard;

... various imports ...

import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;

@ManagedResource
public class CircuitBreakerTemplate extends AbstractGuard {

 ... State enum, various fields, various methods ...

 @ManagedAttribute(
 description = "Breaker trips when threshold is reached")
 public int getExceptionThreshold() { ... }

 @ManagedAttribute(
 description = "Breaker trips when threshold is reached",
 defaultValue = "5")
 public void setExceptionThreshold(int threshold) { ... }

 @ManagedAttribute(
 description = "Delay in ms before open breaker goes half-open")
 public long getTimeout() { ... }

 @ManagedAttribute(
 description = "Delay in ms before open breaker goes half-open",
 defaultValue = "30000")
 public void setTimeout(long timeout) { ... }

 @ManagedAttribute(
 description = "Breaker state (closed, open, half-open)")
 public State getState() { ... }

 @ManagedAttribute(
 description = "Number of exceptions since last reset")
 public int getExceptionCount() { ... }

 @ManagedAttribute(

Listing 14.13 Updating AbstractGuard.java for JMX

Listing 14.14 Updating CircuitBreakerTemplate.java for JMX

Spring JMX imports B

Managed
resourceC

Managed
attributeD
www.it-ebooks.info

http://www.it-ebooks.info/

484 CHAPTER 14 Creating a Spring-based “site-up” framework
 description = "Breaker will retry circuit at or after this time")
 public long getRetryTime() { ... }

 @ManagedOperation(description = "Resets the breaker")
 public void reset() { ... }

 @ManagedOperation(
 description = "Trips the breaker, auto-resetting after timeout")
 public void trip() { ... }

 @ManagedOperation(
 description = "Trips the breaker without auto-resetting")
 public void tripWithoutAutoReset() { ... }

At B you import the various Spring JMX annotations you’ll use. Then you annotate
the breaker with @ManagedResource C to indicate that you want all breaker instances
to be MBeans. At D and elsewhere you annotate various properties with @ManagedAt-
tribute, which allows you to view and set the property values through the JMX con-
sole. Annotating a getter allows you to view the values, and annotating a setter allows
you to edit the values. Finally, you annotate reset(), trip(), and tripWithoutAu-
toReset() E with @ManagedOperation to indicate that you want to be able to call
them through the JMX console. You set descriptions on the managed attributes and
operations as well, to assist the console operator; the descriptions are typically dis-
played alongside the attributes and operations in the console.5

 You’ll also need to update the beans-kite.xml configuration to include the context
namespace, along with a <context:mbean-export> tag.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:mbean-export />

 <bean id="messageServiceBreaker"
 class="com.springinpractice.ch14.kite.guard.CircuitBreakerTemplate"
 p:exceptionThreshold="4"
 p:timeout="30000" />
</beans>

5 In addition to the annotations described here, there are @ManagedOperationParameter and
@ManagedOperationParameters annotations. Moreover, the annotations support various elements that we
aren’t using here. Consult the Spring Framework Reference Documentation for more information.

Listing 14.15 Updating beans-kite.xml for JMX

Managed
operationE

MBean
exporter

B

Breaker IDC
www.it-ebooks.info

http://www.it-ebooks.info/

485Exposing the circuit breaker as a JMX MBean
The <context:mbean-export> tag B tells Spring to register any MBeans with what-
ever MBean server happens to be running. In this case, the Maven POM includes the
Jetty plug-in, so the configuration causes Spring to register the MBeans with Jetty’s
MBean server.6 You add an ID to the breaker C so that it appears with the same ID in
the JMX console.

 Those are the mods you need. Now let’s start the app and use JMX to manage it.

RUNNING THE APP

Start the app in Jetty as follows:

mvn -Djava.rmi.server.hostname=127.0.0.1

➥ -Dcom.sun.management.jmxremote.authenticate=false

➥ -Dcom.sun.management.jmxremote.ssl=false

➥ jetty:run

You start it in this manner so you can connect a local JMX console (like JConsole or
Java VisualVM) to it. For production use, you’d normally want a remote JMX console
to avoid competing with the app for resources. (If you want to use the console that
way, please consult the JMX documentation.7) For development, it’s fine to use a local
console with authentication and SSL disabled.

 With the app started, you’re ready to launch the JMX console.

USING A JMX CONSOLE TO CONNECT TO THE APP

The Java platform comes with a couple of JMX console options. One is JConsole,
which is a no-frills console that gets the JMX job done.8 Another option, available
since JDK 6 update 7, is Java VisualVM. Although it isn’t primarily a JMX console—
indeed, the JMX console is a plug-in that you have to install yourself—it supports JMX
just fine.9

 To run Java VisualVM, do the following:

1 Make sure you have JDK 6 update 7 or higher.
2 Type jvisualvm on the command line. It should be on your path if your other

JDK executables are.
3 If you haven’t already done so, go to Tools > Plugins and install the VisualVM-

MBeans plug-in. This will cause an MBeans tab to appear as an option, as shown
in figure 14.7.

4 Start the sample app. It should appear in the Java VisualVM Applications pane.
5 Find your app’s JMX connection, and double-click it. If you’re running Java

VisualVM on the same host where you’re running your app, it should be under
the Local node of the Applications hierarchy. If you’re running the app using

6 When running in a container without an MBean server, or when running in standalone mode, you’ll need to
create your own MBean server. Consult the Spring Framework Reference Documentation for details.

7 See “Monitoring and Management Using JMX,” http://mng.bz/Pgz6.
8 See http://mng.bz/mFs0 for information on using JConsole, should you decide to use that.
9 See Mick Knutson, “Java Profiling with VisualVM,” DZone, http://mng.bz/iZFR, for more information on

Java VisualVM.
www.it-ebooks.info

http://mng.bz/Pgz6
http://mng.bz/mFs0
http://mng.bz/iZFR
http://www.it-ebooks.info/

486 CHAPTER 14 Creating a Spring-based “site-up” framework
the Maven Jetty plug-in, the correct child node should be org.codehaus
.classworlds.Launcher.

6 Click the MBeans tab.
7 Drill down to com.springinpractice.ch14.kite.guard > CircuitBreaker-

Template > messageServiceBreaker.
8 Click the Attributes, Operations, Notifications, and Metadata tabs, and explore.

In particular, try tripping and resetting the breaker using the Operations tab,
and notice how it impacts the service when the browser requests it.

Figure 14.7 shows the JMX attribute view in Java VisualVM. The attributes appearing
here correspond to the properties annotated by @ManagedAttribute in listing 14.14.

 In addition to the attribute view, there are views for exposing operations (like
trip() and reset()) as well as notifications and management metadata. See fig-
ure 14.8.

JMX provides an important capability for your operations staff. We consider it criti-
cal because it’s generally wise to support manual overrides. If, for example, some mali-
cious user were to figure out how to induce exceptions on a service, then they could
potentially create a denial of service using the breaker. With JMX, you could poten-
tially increase the exception threshold or even (in an extended implementation) dis-
able tripping altogether.

Discussion

JMX support is probably a must-have for any reasonable circuit-breaker implementa-
tion, and now you have it. And you can use the breaker as is to positive effect.

 But we noted in the recipe 14.1 discussion that the template-based implementa-
tion is invasive. You had to inject a circuit breaker into HomeController, and you also

Figure 14.7 Viewing and editing MBean attributes using Java VisualVM
www.it-ebooks.info

http://www.it-ebooks.info/

487Supporting AOP-based configuration
had to directly modify loadMotd() and loadImportantMessages(). Although this
works, it’s less than desirable, partly due to the invasiveness, and partly because it’s
potentially a lot of work to modify every integration point in an application.

 With Spring, other options are of course available. In recipe 14.3 we’ll explore the
first such option, which is AOP-based configuration.

14.3 Supporting AOP-based configuration
PREREQUISITES

Recipe 14.1 Creating a circuit-breaker template and callback

KEY TECHNOLOGIES

Spring AOP

Background

One of the demerits of the template-based approach to circuit breakers is that you
have to change the client code to effect the protection. Although it’s useful to have
the template option available, it’s also highly desirable to have a means by which you
can install breakers without changing application code. This recipe shows how to do
that with Spring AOP.

 Of necessity, we assume a basic working knowledge of Spring AOP. Please see chap-
ter 4 of Spring in Action, 3rd ed. by Craig Walls (Manning, 2011) for more information.

Figure 14.8 Management operations via Java VisualVM
www.it-ebooks.info

http://www.it-ebooks.info/

488 CHAPTER 14 Creating a Spring-based “site-up” framework
Problem

Support declarative installation of circuit breakers.

Solution

As just discussed, you’ll put together some code to support declarative, AOP-based
configuration. You proceed in three steps:

1 Implement AOP advice as an interceptor.
2 Revert the client code to remove the programmatic template references.
3 Update the Spring configuration.

You begin by building the circuit-breaker advice using the template you’ve already
created.

IMPLEMENTING BREAKER ADVICE

In recipe 14.1 you created the Cir-
cuitBreakerTemplate class. Although
the primary use case is the program-
matic creation of circuit breakers by
the library’s users, you can use it to
develop further framework code. Spe-
cifically, you’ll use it to implement
interceptor-based advice using Spring
AOP. See figure 14.9.

 That’s the idea. The following list-
ing shows how to do it.

package com.springinpractice.ch14.kite.interceptor;

import java.lang.reflect.Method;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.springinpractice.ch14.kite.Guard;
import com.springinpractice.ch14.kite.GuardCallback;

public class GuardListInterceptor implements MethodInterceptor {
 private static final Logger log =
 LoggerFactory.getLogger(GuardListInterceptor.class);

 private GuardListSource source;

 public GuardListSource getSource() { return source; }

 public void setSource(GuardListSource source) { this.source = source; }

Listing 14.16 GuardListInterceptor.java advice implementation

Implements
MethodInterceptor

B

Guard list
sourceC

Figure 14.9 Interceptor-based advice using the
breaker template
www.it-ebooks.info

http://www.it-ebooks.info/

489Supporting AOP-based configuration
 public Object invoke(final MethodInvocation invocation)
 throws Throwable {

 List<Guard> guards = getGuards(invocation);

 if (guards == null || guards.isEmpty()) {
 log.debug("Executing method {} without guards",
 invocation.getMethod().getName());
 return invocation.proceed();
 }

 LinkedList<Guard> guardStack = new LinkedList<Guard>(guards);
 Collections.reverse(guardStack);

 Guard lastGuard = guardStack.pop();
 Interceptor interceptor =
 new LastInterceptor(lastGuard, invocation);

 while (!guardStack.isEmpty()) {
 Guard guard = guardStack.pop();
 interceptor = new NotLastInterceptor(guard, interceptor);
 }

 return interceptor.invoke();
 }

 private List<Guard> getGuards(MethodInvocation invocation) {
 Method method = invocation.getMethod();
 Object thisObj = invocation.getThis();
 Class<?> clazz = (thisObj != null ? thisObj.getClass() : null);
 return source.getGuards(method, clazz);
 }

 private static interface Interceptor {
 Object invoke() throws Throwable;
 }

 private static class NotLastInterceptor implements Interceptor {
 private Guard guard;
 private Interceptor interceptor;

 public NotLastInterceptor(Guard guard, Interceptor interceptor) {
 this.guard = guard;
 this.interceptor = interceptor;
 }

 public Object invoke() throws Throwable {
 return guard.execute(new GuardCallback<Object>() {

 public Object doInGuard() throws Exception {
 try {
 log.debug("Entered guard: {}", guard.getName());
 return interceptor.invoke();
 } catch (Exception e) {
 throw e;
 } catch (Error e) {
 throw e;
 } catch (Throwable t) {
 throw new RuntimeException(t);
 } finally {

Invokes
methodD

Gets
guards E No guards

caseF

Guards case G

Class can
be null

H

Gets guards
from sourceI
www.it-ebooks.info

http://www.it-ebooks.info/

490 CHAPTER 14 Creating a Spring-based “site-up” framework
 log.debug("Exiting guard: {}", guard.getName());
 }
 }
 });
 }
 }

 private static class LastInterceptor implements Interceptor {
 private Guard guard;
 private MethodInvocation invocation;

 public LastInterceptor(Guard guard, MethodInvocation invocation) {
 this.guard = guard;
 this.invocation = invocation;
 }

 public Object invoke() throws Throwable {
 return guard.execute(new GuardCallback<Object>() {

 public Object doInGuard() throws Exception {
 try {
 log.debug("Entered guard: {}", guard.getName());
 log.debug("Executing target method: {}",
 invocation.getMethod().getName());
 return invocation.proceed();
 } catch (Exception e) {
 throw e;
 } catch (Error e) {
 throw e;
 } catch (Throwable t) {
 throw new RuntimeException(t);
 } finally {
 log.debug("Exiting guard: {}", guard.getName());
 }
 }
 });
 }
 }
}

Recall from recipe 14.1 that you’re treating breakers more generically as guards. This
makes it easier to extend the framework to handle other components, such as rate
limiters.10 Because it’s possible to apply multiple guards to an integration point (for
example, you might want a breaker and a rate limiter at some integration point), you
deal with guard lists here instead of dealing with single breakers or even single guards.

 In Spring AOP, you use interceptors to implement AOP advice B. You’ll use Guard-
ListInterceptor to apply guard lists at specified pointcuts.

 You get guard lists from a GuardListSource C. You’ll see more in a minute.
 The invoke() method D does the advising. The high-level logic is to get the rele-

vant guard list E and then process it according to two cases. First, if there aren’t any
guards F, proceed with the method invocation. Otherwise, there are guards G, so

10 See https://github.com/springinpractice/kite for examples.
www.it-ebooks.info

https://github.com/springinpractice/kite for examples
http://www.it-ebooks.info/

491Supporting AOP-based configuration
you have to apply them. You do that by wrapping the guards with individual intercep-
tors and invoking them in reverse order.

 Getting a little into the details, the GuardListSource interface requires that you
provide a method and an optional class so the GuardListSource can determine the
guard list. (The reason is that when you get to annotation-based configuration in rec-
ipe 14.5, you’ll want to look up the guard list using an annotation on the method.)
You obtain the method and class from the MethodInvocation in the manner shown
H. If the method is static, then thisObj will be null, and the source object will get the
guard list based on the method alone. At I you get the breaker from the source, pass-
ing in the method and class you just derived.

 The following listing presents the GuardListSource interface.

package com.springinpractice.ch14.kite.interceptor;

import java.lang.reflect.Method;
import java.util.List;
import com.springinpractice.ch14.kite.Guard;

public interface GuardListSource {

 List<Guard> getGuards(Method method, Class<?> targetClass);
}

The initial implementation returns a specified guard list every time, independently of
the supplied method and class, as shown next.

package com.springinpractice.ch14.kite.interceptor;

import java.lang.reflect.Method;
import java.util.List;
import com.springinpractice.ch14.kite.Guard;

public class DefaultGuardListSource implements GuardListSource {
 private List<Guard> guards;

 public List<Guard> getGuards() { return guards; }

 public void setGuards(List<Guard> guards) { this.guards = guards; }

 public List<Guard> getGuards(Method method, Class<?> targetClass) {
 return guards;
 }
}

The new interceptor and its support classes allow you to forgo the programmatic cir-
cuit-breaker approach you adopted in recipe 14.1. You’ll have to undo some of the
work you did earlier and update the configuration as well.

REVERTING THE CLIENT CODE

Recall from recipe 14.1 that you had to inject a circuit breaker into MessageServiceImpl
and also add template client code to getMotd() and getImportantMessages(). You

Listing 14.17 GuardListSource.java: interface for obtaining guard lists

Listing 14.18 DefaultGuardListSource.java: returns a configured guard list
www.it-ebooks.info

http://www.it-ebooks.info/

492 CHAPTER 14 Creating a Spring-based “site-up” framework
don’t want that anymore because you’re now using a noninvasive AOP-based approach.
Here’s the new MessageServiceImpl class.

package com.springinpractice.ch14.kite.sample.service.impl;

import java.util.ArrayList;
import java.util.List;
import javax.inject.Inject;
import org.springframework.stereotype.Service;
import com.springinpractice.ch14.kite.sample.model.Message;
import com.springinpractice.ch14.kite.sample.service.MessageService;

@Service
public class MessageServiceImpl implements MessageService {
 @Inject private Flakinator flakinator;

 public Message getMotd() {
 flakinator.simulateFlakiness();
 return createMessage("<p>Welcome to Aggro's Towne!</p>");
 }

 public List<Message> getImportantMessages() {
 flakinator.simulateFlakiness();
 List<Message> messages = new ArrayList<Message>();
 messages.add(createMessage("<p>Important message 1</p>"));
 messages.add(createMessage("<p>Important message 2</p>"));
 messages.add(createMessage("<p>Important message 3</p>"));
 return messages;
 }

 private Message createMessage(String htmlText) {
 Message message = new Message();
 message.setHtmlText(htmlText);
 return message;
 }
}

As you can see by comparing listings 14.19 and 14.9, the new service is much cleaner.
You’ve evicted the circuit-breaker code from the service.

 Finally you need to update beans-kite.xml to include the AOP-namespace
configuration.

UPDATING THE SPRING CONFIGURATION

In the next listing you supplement the breaker definition from recipe 14.1 with the
Spring AOP interceptor bean (representing advice in general AOP parlance), a point-
cut, and a Spring AOP advisor (representing an aspect in general AOP parlance).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"

Listing 14.19 MessageServiceImpl.java, revised to remove breaker code

Listing 14.20 beans-kite.xml, illustrating declarative configuration via AOP

Declares AOP
namespace

B

www.it-ebooks.info

http://www.it-ebooks.info/

493Supporting AOP-based configuration
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd">

 <context:mbean-export />

 <bean id="messageServiceBreaker"
 class="com.springinpractice.ch14.kite.guard.CircuitBreakerTemplate"
 p:exceptionThreshold="4"
 p:timeout="30000" />

 <bean id="messageServiceGuardListAdvice"
 class="com.springinpractice.ch14.kite.interceptor.

➥ GuardListInterceptor">
 <property name="source">
 <bean class="com.springinpractice.ch14.kite.interceptor.

➥ DefaultGuardListSource">
 <property name="guards">
 <list>
 <ref bean="messageServiceBreaker" />
 </list>
 </property>
 </bean>
 </property>
 </bean>

 <aop:config>
 <aop:pointcut id="messageServicePointcut"
 expression="execution(* com.springinpractice.ch14.kite.sample.

➥ service.impl.MessageServiceImpl.*(..))" />
 <aop:advisor advice-ref="messageServiceGuardListAdvice"

➥ pointcut-ref="messageServicePointcut" />
 </aop:config>
</beans>

Because you’re using AOP, you begin by declaring the AOP namespace B and schema
location. The breaker definition is the same as before, but now you add a definition
for the associated AOP advice, implemented as an interceptor C. The interceptor def-
inition includes a DefaultGuardListSource inner bean that makes the breaker avail-
able to the interceptor. The breaker is the guard list’s single guard.

 Next is the AOP configuration section D. You want to define an aspect, which
requires both a pointcut and an advice. You already have the advice, so you need to
create the pointcut and the aspect. You define the pointcut at E using the AspectJ
pointcut notation. Then you define the aspect at F, which in Spring AOP you imple-
ment as an advisor, using both the advice and pointcut you created earlier.

 Using <aop:config> will trigger Spring AOP’s powerful autoproxying mechanism.
We won’t get into all the details because you don’t need them here, but essentially

Advice
definition

C

AOP
configuration

D
Pointcut
definition

E

Aspect
definition F
www.it-ebooks.info

http://www.it-ebooks.info/

494 CHAPTER 14 Creating a Spring-based “site-up” framework
autoproxying automatically wraps beans with proxies as required by the aspects you
define explicitly. In this case, autoproxying proxies the message service and applies
the guard-list aspect to the MessageServiceImpl methods specified in the pointcut.

Discussion

AOP-based circuit breakers are much more convenient and noninvasive than the
purely programmatic approach you saw in recipe 14.1. It’s much easier to specify a
pointcut than it is to go into a bunch of client methods and wrap then in callbacks and
template methods.

 In the next two recipes, you’ll learn how you can simplify configuration even fur-
ther. You’ll do this in two phases. In recipe 14.4 you’ll create a custom namespace that
allows you to use a domain-specific language to simplify the circuit-breaker configura-
tion. After that you’ll learn in recipe 14.5 how to add support for annotation-driven
configuration, which tidies up the Spring configuration considerably.

14.4 Supporting custom namespaces
PREREQUISITES

Recipe 14.1 Creating a circuit-breaker template and callback
Recipe 14.2 Support AOP-based configuration

KEY TECHNOLOGIES

Spring configuration infrastructure, XML Schema (XSD), Spring tool schema, Spring-
Source Tool Suite

Background

Although Spring’s bean-based configuration provides a general configuration mecha-
nism, it doesn’t always rank high on the usability front. Configuring DAOs, service
beans, and web MVC controllers is intuitive enough, but when you start adding infra-
structural beans to the mix, it can quickly become unclear exactly which beans you
need to place on the context in order to get everything to work.

 Spring 2 introduced custom namespaces, which essentially allow you to accomplish
configuration tasks without having to know exactly which beans are required behind
the scenes. Each custom namespace defines a domain-specific language (DSL) that
simplifies configuration. Moreover, the custom namespace tags hide the details of
what’s going on, such as the fact that multiple beans were created, or that various post-
processors were created, and so forth. This can make configuration easier.

Problem

Simplify configuration by supporting DSL-based configuration.

Solution

This recipe explains how to create your own custom namespace in Spring. For now
we’ll keep it simple: you’ll create tags for the circuit breaker from recipe 14.1 and the
www.it-ebooks.info

http://www.it-ebooks.info/

495Supporting custom namespaces

s
interceptor (advice) from recipe 14.3. These new tags correspond almost exactly to
the raw bean definitions, which may leave you wondering what the point is. Never
fear; recipe 14.5 will expand the custom namespace in such a way that the benefit
becomes clear.

 Essentially, you need to do three things to implement a custom namespace:

■ Create an XML schema for the DSL
■ Create a NamespaceHandler and BeanDefinitionParsers to parse the custom

tags
■ Tell Spring where to find the schema and the NamespaceHandler

You’ll begin with the third of those items.

CREATING THE POINTER FILES

To tell Spring where to find the XSD file, you create a properties file called
spring.schemas inside the kite module’s src/main/resources/META-INF:

http\://springinpractice.com/schema/kite/kite-1.0.xsd=

➥ com/springinpractice/ch14/kite/config/kite-1.0.xsd
http\://springinpractice.com/schema/kite/kite.xsd=

➥ com/springinpractice/ch14/kite/config/kite-1.0.xsd

This is mapping an XSD file to two different URIs. The file is a classpath resource and
is thus relative to the kite module’s src/main/resources. You have to escape the
colon character because the colon is a permissible key/value separator in Java proper-
ties files, even though it seems as though everybody always uses the equals sign.

 Besides the pointer to the XSD file, you also need a pointer to the NamespaceHan-
dler. Once again you use a properties file. This time it’s spring.handlers, also located
in the src/main/resources/META-INF folder of the kite module:

http\://springinpractice.com/schema/kite=

➥ com.springinpractice.ch14.kite.config.xml.KiteNamespaceHandler

With the two properties files you just created, Spring knows where to find the schema
and NamespaceHandler for the custom schema. You of course need to create those
things, so let’s do that now.

CREATING AN XML SCHEMA

For 13 chapters, you’ve managed to avoid creating an XML Schema, but the time has
come. The following listing shows the first half of the XSD that specifies the DSL.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://springinpractice.com/schema/kite"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:tool="http://www.springframework.org/schema/tool"
 targetNamespace="http://springinpractice.com/schema/kite"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

Listing 14.21 kite-1.0.xsd: DSL definition

Declares bean
namespace

B

Declares tool
namespaceC
www.it-ebooks.info

http://www.it-ebooks.info/

496 CHAPTER 14 Creating a Spring-based “site-up” framework
 <xsd:import namespace="http://www.springframework.org/schema/beans"
 schemaLocation="http://www.springframework.org/schema/beans/

➥ spring-beans-3.1.xsd"/>
 <xsd:import namespace="http://www.springframework.org/schema/tool"
 schemaLocation="http://www.springframework.org/schema/tool/

➥ spring-tool-3.1.xsd"/>

 <xsd:element name="circuit-breaker">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.springinpractice.ch14.kite.

➥ guard.CircuitBreakerTemplate" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="beans:identifiedType">
 <xsd:attribute name="exceptionThreshold"
 type="xsd:integer" />
 <xsd:attribute name="timeout" type="xsd:long" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 ... guard list advice definition (see below) ...

</xsd:schema>

You’re looking at some schema setup along with a circuit-breaker element definition.
In the setup, two of the namespaces you declare are Spring’s beans B and tool C
namespaces. You import both. You’ll see why in a moment.

 At D you begin the definition of the new circuit-breaker custom tag you want to
create. You use an XSD annotation to embed a tool annotation E that indicates to
tools—like SpringSource Tool Suite—that this element creates a CircuitBreakerTem-
plate bean. Tools can do whatever they like with that information.11

 You need to define attributes for the new tag. You don’t have to define the id
attribute explicitly because you declare the element to have the beans:identified-
Type base type F, which automatically provides an id attribute of type xsd:ID.12

After that, you define a couple of attributes G corresponding to CircuitBreaker-
Template properties.

 In addition to defining a custom tag for the circuit breaker, you want one for the
guard list advice.

11 Spring IDE, as of version 2.3.1, doesn’t seem to do much with it other than display it as a tooltip when you
hover over the circuit-breaker node in the bean-dependency graph. Note that to make the node show up at
all, you’ll need to go (in Eclipse 3.5) to Window > Preferences > Spring > Beans Support and select the Display
Infrastructure Beans check box.

12 You can see this in the beans XSD: www.springframework.org/schema/beans/spring-beans-3.1.xsd.

Circuit-breaker
definitionD

Spring IDE
integration E

Sets base
type

F

Defines attributes G
www.it-ebooks.info

www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.it-ebooks.info/

497Supporting custom namespaces
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema ...>

 ...

 <xsd:element name="guard-list-advice">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation>
 <tool:exports type="com.springinpractice.ch14.kite.

➥ interceptor.GuardListInterceptor" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="beans:identifiedType">
 <xsd:attribute name="guards" type="xsd:string"
 use="required">
 <xsd:annotation>
 <xsd:appinfo>
 <tool:annotation kind="ref">
 <tool:expected-type
 type="java.util.List" />
 </tool:annotation>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Here you’re defining the schema for guard list advice B, which behind the scenes
you’ve implemented as a Spring AOP interceptor. As before, you use the tool
namespace to indicate the bean class associated with this custom tag C.

 The advice definition is fairly similar to the circuit-breaker definition, but notice at
D that you’re defining a guards attribute even though the GuardListInterceptor
doesn’t itself have a guards property. (You may recall from the previous recipe that
the interceptor has a GuardListSource that it uses to get a breaker. It’s the Default-
GuardListSource that has a guards property.) The idea is that when a user creates an
advice using this custom tag, you want to wrap the referenced guards with a Default-
GuardListSource automatically so the user doesn’t have to do it. You’ll learn how to
pull that off in the next subsection, but for now it’s enough to notice that you can
define the element in whatever way you think will be most convenient for the user,
which is the main point of a DSL.

 In addition to telling tools about the beans that specific tags generate, you can also
provide information about custom tag attributes. Here you have hints to provide about
the guards attribute. One hint is <tool:annotation kind="ref">, which indicates that

Listing 14.22 kite-1.0.xsd, continued, with guard list advice definition

Advice
definition

B

Tool integration C

Guards reference D

Tool
annotation

E

Expected
typeF
www.it-ebooks.info

http://www.it-ebooks.info/

498 CHAPTER 14 Creating a Spring-based “site-up” framework

this attribute is a bean reference E. Another hint is that the expected type for this ref-
erence is com.springinpractice.ch14.kite.interceptor.GuardListInterceptor
F. Taken together, SpringSource Tool Suite uses these to offer content assistance,
hyperlink navigation, hover information, and validation.

 You’ve now defined the DSL in XSD form. But you still need a way to parse the DSL
into Spring beans. That’s where the NamespaceHandler and BeanDefinitionParsers
come into play.

CREATING A NAMESPACEHANDLER AND BEANDEFINITIONPARSERS

The entry point for custom namespaces is the namespace handler. This is where you
register different bean-definition parsers that convert XML bean definitions into
actual beans on the context. A namespace handler will include a registration for each
custom tag you define. You create a KiteNamespaceHandler class that extends
NamespaceHandlerSupport, which in turn implements NamespaceHandler.

package com.springinpractice.ch14.kite.config.xml;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class KiteNamespaceHandler extends NamespaceHandlerSupport {
 private static Logger log =
 LoggerFactory.getLogger(KiteNamespaceHandler.class);

 public void init() {
 log.info("Initializing KiteNamespaceHandler");
 registerBeanDefinitionParser(
 "annotation-config", new AnnotationConfigParser());
 registerBeanDefinitionParser(
 "guard-list-advice", new GuardListAdviceParser());
 registerBeanDefinitionParser(
 "circuit-breaker", new CircuitBreakerParser());
 }
}

You extend NamespaceHandlerSupport to facilitate handler implementation B. To
keep the superclass happy, you implement init() C. The support class gives you a
means by which to register bean-definition parsers (for top-level tags) and bean-
definition decorators (for custom nested tags). In this case you have only two regis-
trations, both for parsers: one for guard-list-advice D and one for circuit-
breaker E. In a more full-fledged framework there could be many more, but here
it’s just two for the moment.

 To finish the namespace handler, you’ll need to create the two parsers you refer-
enced from KiteNamespaceHandler. Spring provides some helpful base implementa-
tions for implementing parser classes. Table 14.1 offers high-level guidance on the
best BeanDefinitionParser base class to use in a given situation.

 The first parser will be CircuitBreakerParser, and it’s a parser for the circuit-
breaker tag. Because you’re only creating a single CircuitBreakerTemplate bean,

Listing 14.23 KiteNamespaceHandler.java: entry point into the DSL

Extends
NamespaceHandlerSupport

B

Overrides
init()

C

Registers
advice
parser

D

Registers
breaker parserE
www.it-ebooks.info

http://www.it-ebooks.info/

499Supporting custom namespaces
and because the tag attributes precisely match the bean properties, you can avail your-
self of the AbstractSimpleBeanDefinitionParser base class.

package com.springinpractice.ch14.kite.config.xml;

import org.springframework.beans.factory.xml.

➥ AbstractSimpleBeanDefinitionParser;
import org.w3c.dom.Element;
import com.springinpractice.ch14.kite.guard.CircuitBreakerTemplate;

class CircuitBreakerParser extends AbstractSimpleBeanDefinitionParser {

 protected Class<?> getBeanClass(Element elem) {
 return CircuitBreakerTemplate.class;
 }
}

All you have to do is tell Spring which class has the matching properties, so that’s
exactly what getBeanClass() does. Also note that you define the class as having pack-
age-private visibility. That’s a best practice, because KiteNamespaceHandler is the
façade into the custom namespace-handling capability, and nobody other than Kite-
NamespaceHandler needs to use or even see CircuitBreakerParser.

 The second parser is GuardListAdviceParser. Again you’re creating a single bean,
this time a GuardListInterceptor. Here you’ll need to get slightly more sophisticated
(and we do mean slightly) because the XSD has a guards attribute whereas the actual
interceptor class has a source property. The approach is similar to the AbstractSim-
pleBeanDefinitionParser approach, except that this time you need to build a
DefaultGuardListSource around the guard list name in the DSL.

package com.springinpractice.ch14.kite.config.xml;

import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.config.RuntimeBeanReference;

Table 14.1 BeanDefinitionParser base implementations

Base class Description

AbstractSimpleBeanDefinitionParser Easiest implementation to extend. Appropriate
when the tag’s attribute names exactly match the
bean’s property names.

AbstractSingleBeanDefinitionParser Appropriate when the tag corresponds to a single
bean, but the tag’s attribute names don’t exactly
match the bean’s property names.

AbstractBeanDefinitionParser Appropriate when the tag needs to create more
than one bean. Takes more work to implement, but
it’s more flexible than the other implementations.

Listing 14.24 CircuitBreakerParser.java: parses the breaker DSL into breakers

Listing 14.25 GuardListAdviceParser.java
www.it-ebooks.info

http://www.it-ebooks.info/

500 CHAPTER 14 Creating a Spring-based “site-up” framework
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.RootBeanDefinition;
import org.springframework.beans.factory.xml.

➥ AbstractSingleBeanDefinitionParser;
import org.w3c.dom.Element;
import com.springinpractice.ch14.kite.interceptor.DefaultGuardListSource;
import com.springinpractice.ch14.kite.interceptor.GuardListInterceptor;

class GuardListAdviceParser extends AbstractSingleBeanDefinitionParser {

 protected Class<?> getBeanClass(Element elem) {
 return GuardListInterceptor.class;
 }

 protected void doParse(Element elem, BeanDefinitionBuilder builder) {
 builder.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);

 RootBeanDefinition srcDef =
 new RootBeanDefinition(DefaultGuardListSource.class);
 srcDef.setSource(elem);
 srcDef.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
 srcDef.getPropertyValues().add("guards",
 new RuntimeBeanReference(elem.getAttribute("guards")));
 builder.addPropertyValue("source", srcDef);
 }
}

Figure 14.10 presents a class diagram showing the relationship between the parsers
you just implemented and the framework base classes that Spring provides.

 Now you’ll update the sample app to use the guard framework enhancements.

UPDATING THE SAMPLE APP

You’ll update the sample app as follows. In beans-kite.xml, you need to declare the
namespace and its schema location, and you’ll replace the CircuitBreakerTemplate
and GuardListInterceptor bean definitions with the custom tags you just created.
While you’re at it, let’s make the new namespace the default namespace for this

Figure 14.10 BeanDefinition-
Parser hierarchy and the parsers
www.it-ebooks.info

http://www.it-ebooks.info/

501Supporting custom namespaces

r
configuration file, because most of the configuration will eventually be custom
namespace configuration. The following listing displays the result.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns=http://springinpractice.com/schema/kite
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-3.1.xsd
 http://springinpractice.com/schema/kite
 http://springinpractice.com/schema/kite/kite-1.0.xsd">

 <context:mbean-export />

 <circuit-breaker id="messageServiceBreaker" exceptionThreshold="4"
 timeout="30000" />

 <util:list id="guardList">
 <beans:ref bean="messageServiceBreaker" />
 </util:list>

 <guard-list-advice id="messageServiceGuardListAdvice"
 guards="guardList" />

 <aop:config>
 <aop:pointcut id="messageServicePointcut"
 expression="execution(* com.springinpractice.ch14.kite.sample.

➥ service.impl.MessageServiceImpl.*(..))" />
 <aop:advisor advice-ref="messageServiceGuardListAdvice"
 pointcut-ref="messageServicePointcut" />
 </aop:config>
</beans:beans>

You may find it interesting to compare listing 14.26 to listing 14.20. Listing 14.26 is sig-
nificantly cleaner, owing to the new custom namespace.

 You declare the namespace B and schema location C just like you have to do with
any namespace. You make the kite namespace the default because this configuration
file focuses specifically on Kite components. You define the CircuitBreakerTemplate
D and GuardListInterceptor E using custom tags that roughly resemble the explicit
bean definitions they replace, although the advice definition conveniently hides the
GuardListSource configuration. The AOP configuration remains untouched F.

Listing 14.26 Namespace-based beans-kite.xml configuration

Default
namespace
declarationB

Schema
location

C

CircuitBreakerTemplate
definition D

GuardListIntercepto
definition

E

AOP config
untouched

F

www.it-ebooks.info

http://www.it-ebooks.info/

502 CHAPTER 14 Creating a Spring-based “site-up” framework
 There you have it. Although custom namespaces can certainly get more compli-
cated, the techniques you’ve just learned provide a solid foundation for further study.

Discussion

Custom namespaces are a useful mechanism for limiting the complexity of XML-based
configuration, which addresses a common criticism that Spring Framework friends
and foes alike have leveled against Spring over the years. But there is an even more
powerful approach you can use to limit complexity, and that’s annotation-based con-
figuration. This is the topic of the next recipe.

14.5 Supporting annotation-based configuration
PREREQUISITES

Recipe 14.1 Creating a circuit-breaker template and callback
Recipe 14.3 Supporting AOP-based configuration
Recipe 14.4 Supporting custom namespaces

KEY TECHNOLOGIES

Spring configuration infrastructure, Spring custom namespaces, Java 5 annotations

Background

We generally prefer declarative configuration to programmatic configuration because
it’s simpler and less invasive. In recipe 14.3, you added support for declarative config-
uration based on AOP. In this recipe we’ll explore the other major approach that
Spring-based frameworks often support, which is declarative configuration based
on annotations.

Problem

Configure circuit breakers using Java 5 annotations.

Solution

This recipe extends the infrastructure you’ve already created to add support for anno-
tation-based configuration. Annotations are popular in both Java in general and
Spring in particular, and many framework users have come to expect support for
annotation-based configuration.

 Design-wise, there are different approaches you might take. Spring’s transaction
support, for instance, uses annotations to specify transaction attributes such as isola-
tion and rollback behavior. For the circuit breaker, the annotation will target methods
(not types), and it will reference the associated breaker by name. The intent is that
each separate resource has its own circuit breaker, and each method accessing that
resource will use that breaker.

 We’ll need to cover several steps, but the overall process is in line with what you’ve
already done. The first thing you’ll need, of course, is an annotation.
www.it-ebooks.info

http://www.it-ebooks.info/

503Supporting annotation-based configuration
CREATING THE ANNOTATION

You create an annotation called @GuardedBy as follows.

package com.springinpractice.ch14.kite;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Target({ ElementType.METHOD })
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface GuardedBy {

 String[] value() default "";
}

The annotation takes a single value, which is the name of the guard list guarding the
annotated method.

 Next you’ll create a new GuardListSource implementation to source guards from
annotations, along with a corresponding pointcut and advisor.

IMPLEMENTING A NEW CIRCUITBREAKERSOURCE AND POINTCUT

In recipe 14.3 you created a GuardListInterceptor class whose job was in essence to
wrap method calls with guard lists. You could have injected guards directly into inter-
ceptors, but you instead created a GuardListSource abstraction to give you flexibility
in sourcing the guards. The original DefaultGuardListSource implementation held
a guard list and returned it on demand, and so to use it you would need to create a
separate interceptor for each guard list.

 For annotations you’ll do something different. You’ll still use the GuardListSource
abstraction, but the new implementation will use the @GuardedBy annotation to dis-
cover the guard list instead of directly referencing it. In addition to enabling annota-
tion-based configuration, this allows you to use a single interceptor across all guard
lists instead of creating separate interceptors for each one. Figure 14.11 shows the
source hierarchy.

Listing 14.27 GuardedBy.java for annotation-based configuration

Figure 14.11 The
GuardListSource hierarchy,
which includes two concrete im-
plementations
www.it-ebooks.info

http://www.it-ebooks.info/

504 CHAPTER 14 Creating a Spring-based “site-up” framework

y-

s
d
ds
The following listing presents the new AnnotationGuardListSource.

package com.springinpractice.ch14.kite.interceptor;

import static org.springframework.util.Assert.notNull;

import java.io.Serializable;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.List;
import org.springframework.beans.BeansException;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.BeanFactoryAware;
import org.springframework.core.BridgeMethodResolver;
import org.springframework.util.ClassUtils;
import com.springinpractice.ch14.kite.Guard;
import com.springinpractice.ch14.kite.GuardedBy;

public class AnnotationGuardListSource
 implements GuardListSource, BeanFactoryAware, Serializable {

 private BeanFactory beanFactory;

 public void setBeanFactory(BeanFactory beanFactory)
 throws BeansException { this.beanFactory = beanFactory; }

 public List<Guard> getGuards(Method method, Class<?> targetClass) {
 notNull(method, "method can't be null");
 Method specificMethod =
 ClassUtils.getMostSpecificMethod(method, targetClass);
 specificMethod =
 BridgeMethodResolver.findBridgedMethod(specificMethod);
 List<Guard> guards = parseAnnotation(specificMethod);
 return (guards != null ? guards : parseAnnotation(method));
 }

 private List<Guard> parseAnnotation(AnnotatedElement elem) {
 assert (elem != null);
 return parseAnnotation(elem.getAnnotation(GuardedBy.class));
 }

 private List<Guard> parseAnnotation(GuardedBy ann) {
 if (ann == null) { return null; }
 List<Guard> guards = new ArrayList<Guard>();
 String[] guardNames = ann.value();
 for (String guardName : guardNames) {
 guards.add(beanFactory.getBean(guardName, Guard.class));
 }
 return guards;
 }
}

This source is BeanFactoryAware B so you can resolve the bean names embedded
in the @GuardedBy value to actual guards. The getGuards() method finds the
@GuardedBy annotation, if any, and returns the associated guards. First you use

Listing 14.28 AnnotationGuardListSource.java, for annotation-based sourcing

BeanFactor
Aware

B

Finds
most

specific
method C

Handle
bridge
metho

D

Falls back
to method E

Finds
annotationF
www.it-ebooks.info

http://www.it-ebooks.info/

505Supporting annotation-based configuration
getMostSpecificMethod() C to start the search with implementation methods; that
is, you want to look for annotations on implementing methods before examining the
corresponding interface methods.

 The call to findBridgedMethod() D deals with bridge and bridged methods. We
won’t go into the details of this advanced topic here, but suffice it to say that in certain
situations (especially involving generics) the most specific method will be a bridge
method, which won’t have the annotation you’re looking for. Instead you want to look
for the annotation on the bridged method—that is, the method that the bridge
method is bridging.

 If the search for the annotation fails on the most specific method, you want to go
back and check the passed method E. Usually this means looking at the interface
method to see if the annotation is there.

 The parseAnnotation() method F is the one that looks up the guard list and
returns it. If there’s no annotation on the passed method, you return null.

 The AnnotationGuardListSource gives the GuardListInterceptor a way to get a
guard list according to the method being invoked. But you’ll need to create a custom
pointcut class as well. You didn’t have to do that in recipe 14.3, but you have to do it
here. The reason has to do with Spring’s autoproxy mechanism, which you used
implicitly in recipe 14.3 and which you’ll use again here. In a nutshell, autoproxying
figures out which advisors (aspects) apply to which beans by examining advisor point-
cuts. In recipe 14.3 you used a pointcut expression to select the desired joinpoints, but
here the placement of the @GuardedBy annotation determines the joinpoints. You
have to give the autoproxying mechanism a pointcut that knows whether a given
method has an associated guard list, indicating that a proxy must be created.

 The GuardListSourcePointcut in listing 14.28 comes to the rescue. All you need
is a pointcut with a reference to a GuardListSource. The next listing shows how to
accomplish this.

package com.springinpractice.ch14.kite.interceptor;

import java.io.Serializable;
import java.lang.reflect.Method;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.aop.support.StaticMethodMatcherPointcut;
import org.springframework.util.ObjectUtils;

public class GuardListSourcePointcut extends StaticMethodMatcherPointcut
 implements Serializable {

 private static final Logger log =
 LoggerFactory.getLogger(GuardListSourcePointcut.class);

 private GuardListSource source;

 public GuardListSource getSource() { return source; }

 public void setSource(GuardListSource source) { this.source = source; }

Listing 14.29 GuardListSourcePointcut.java

Guard-list
sourceB
www.it-ebooks.info

http://www.it-ebooks.info/

506 CHAPTER 14 Creating a Spring-based “site-up” framework
 public boolean matches(Method method, Class<?> targetClass) {
 if (source == null) {
 throw new IllegalStateException("source can't be null");
 }

 boolean match = (source.getGuards(method, targetClass) != null);
 if (match) {
 log.debug("Found pointcut match for {}.{}",
 targetClass.getName(), method.getName());
 }
 return match;
 }

 public boolean equals(Object other) {
 if (this == other) { return true; }
 if (!(other instanceof GuardListSourcePointcut)) { return false; }
 GuardListSourcePointcut otherPc = (GuardListSourcePointcut) other;
 return ObjectUtils.nullSafeEquals(source, otherPc.source);
 }

 public int hashCode() {
 return GuardListSourcePointcut.class.hashCode();
 }

 public String toString() {
 return getClass().getName() + ": " + source;
 }
}

The pointcut maintains a GuardListSource B for getting a guard-list reference. The
matches() method C allows the autoproxy mechanism to determine whether a given
method matches the pointcut, in which case a proxy would be created.

 Following a general Spring convention, you’ll create a new kite namespace ele-
ment, <annotation-config>, to activate annotation-based configuration. Add the fol-
lowing element definition to kite-1.0.xsd:

<xsd:element name="annotation-config">
 <xsd:complexType>
 <xsd:attribute name="order" type="xsd:integer" />
 </xsd:complexType>
</xsd:element>

You’ll also need a parser to parse that element. The parser, as you might expect, is
much more involved than the element definition. This makes sense, of course,
because the DSL aims to hide complex configurations from the app developer.

CREATING THE BEANDEFINITIONPARSER

The following listing shows the BeanDefinitionParser implementation responsible
for parsing the new <annotation-config> element.

package com.springinpractice.ch14.kite.config.xml;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Listing 14.30 AnnotationConfigParser.java core

Tests for matches C
www.it-ebooks.info

http://www.it-ebooks.info/

507Supporting annotation-based configuration

n

import org.springframework.aop.config.AopNamespaceUtils;
import org.springframework.aop.support.DefaultBeanFactoryPointcutAdvisor;
import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.config.RuntimeBeanReference;
import org.springframework.beans.factory.parsing.BeanComponentDefinition;
import org.springframework.beans.factory.parsing.

➥ CompositeComponentDefinition;
import org.springframework.beans.factory.support.BeanDefinitionRegistry;
import org.springframework.beans.factory.support.RootBeanDefinition;
import org.springframework.beans.factory.xml.BeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Element;
import com.springinpractice.ch14.kite.interceptor.

➥ AnnotationGuardListSource;
import com.springinpractice.ch14.kite.interceptor.GuardListInterceptor;
import com.springinpractice.ch14.kite.interceptor.GuardListSourcePointcut;

class AnnotationConfigParser implements BeanDefinitionParser {
 private static final String GUARD_LIST_ADV_BEAN_NAME =
 "com.springinpractice.ch14.kite.interceptor.

➥ internalGuardListAdvisor";
 private static final Logger log =
 LoggerFactory.getLogger(AnnotationConfigParser.class);

 public BeanDefinition parse(Element elem, ParserContext parserCtx) {
 new AopAutoProxyConfigurer(elem, parserCtx);
 return null;
 }

 private static class AopAutoProxyConfigurer {
 private final String tagName;
 private final ParserContext parserCtx;
 private final BeanDefinitionRegistry reg;
 private final Object src;
 private final int baseOrder;

 public AopAutoProxyConfigurer(Element elem,
 ParserContext parserCtx) {

 this.tagName = elem.getTagName();
 this.parserCtx = parserCtx;
 this.reg = parserCtx.getRegistry();
 this.src = parserCtx.extractSource(elem);

 this.baseOrder = elem.hasAttribute("order") ?
 Integer.parseInt(elem.getAttribute("order")) : 0;
 AopNamespaceUtils
 .registerAutoProxyCreatorIfNecessary(parserCtx, elem);
 configureGuardList();
 }

 private void configureGuardList() {
 if (reg.containsBeanDefinition(GUARD_LIST_ADV_BEAN_NAME)) {
 return;
 }

 RootBeanDefinition sdef =
 createDef(AnnotationGuardListSource.class);

Parser
implementatioB

Inner
class

C

For ordering
advisors

D

Autoproxy
creator

E

Test for guard-
list advisor

F

Creates
source

G

www.it-ebooks.info

http://www.it-ebooks.info/

508 CHAPTER 14 Creating a Spring-based “site-up” framework
 String sname = registerWithGeneratedName(sdef);

 RootBeanDefinition idef =
 createDef(GuardListInterceptor.class);
 addRuntimeProp(idef, "source", sname);
 String iname = registerWithGeneratedName(idef);

 RootBeanDefinition pdef =
 createDef(GuardListSourcePointcut.class);
 addRuntimeProp(pdef, "source", sname);
 String pname = registerWithGeneratedName(pdef);

 RootBeanDefinition adef =
 createDef(DefaultBeanFactoryPointcutAdvisor.class);
 addProp(adef, "adviceBeanName", iname);
 addRuntimeProp(adef, "pointcut", pname);
 addOrderProp(adef, 0);
 reg.registerBeanDefinition(GUARD_LIST_ADV_BEAN_NAME, adef);

 doLogicalView(sdef, sname, idef, iname, adef,
 GUARD_LIST_ADV_BEAN_NAME);
 }

 ... helper methods in listing 14.31 ...
 }
}

The parser implements BeanDefinitionParser (fig-
ure 14.12) directly B as opposed to using one of the base
classes from table 14.1, just because the implementation is
more complex than the base classes support. It’s package-
private because only KiteNamespaceHandler needs to access
it, as you’ll see. Basically, all the parse() method does is del-
egate to an autoproxy configurer (just its constructor really)
and return a null bean definition.

 You implement AopAutoProxyConfigurer as an inner
class C. This is related to the distinction between class-
and interface-based proxying. Class-based proxying
doesn’t use AOP, and so if you were to select class-based
proxying, you wouldn’t want to load AOP-related classes. By isolating the AOP refer-
ences to an inner class, the class-based approach can avoid loading the AOP classes by
not using the inner class. As it happens, you aren’t supporting the class-based
approach here—you’re supporting only interface-based proxies—but the implemen-
tation is set up to make it easy enough to add support for class-based proxying. See
Spring’s AnnotationDrivenBeanDefinitionParser class (part of Spring’s transaction
support) for an illustration showing how to do that.

 Autoproxying needs to have some way to figure out how to order the different
advisors it applies, whether those advisors are Kite advisors or some other type. For
example, you’d generally want guard-list advisors to wrap transaction advisors rather
than the other way around. To that end, the parser supports an order attribute that
allows you to order Kite advisors relative to other advisors D. The value is a base order

Creates
interceptorH

Creates
pointcutI

Creates advisor J

Figure 14.12 Complex
parsers often implement
BeanDefinitionParser
directly.
www.it-ebooks.info

http://www.it-ebooks.info/

509Supporting annotation-based configuration

ng
(default is 0), and each advisor is the base plus some offset determined by the compo-
nent type; for example, circuit breakers have offset 0.

 At E you tell Spring to register the autoproxy creator if it hasn’t already been reg-
istered by some other framework code, like the aforementioned transaction support.
Then you launch into the guard-list configuration. If the guard-list advisor already
exists, you return F. Otherwise, you create an annotation-based guard list source G, an
interceptor H, a pointcut I, and an advisor J, using the following helper methods.

private RootBeanDefinition createDef(Class<?> clazz) {
 RootBeanDefinition def = new RootBeanDefinition(clazz);
 def.setSource(src);
 def.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
 return def;
}

private void addProp(RootBeanDefinition def, String name,
 Object value) {

 def.getPropertyValues().add(name, value);
}

private void addRuntimeProp(RootBeanDefinition def, String name,
 String value) {

 addProp(def, name, new RuntimeBeanReference(value));
}

private void addOrderProp(RootBeanDefinition def, int offset) {
 addProp(def, "order", baseOrder + offset);
}

private String registerWithGeneratedName(RootBeanDefinition def) {
 return parserCtx.getReaderContext()
 .registerWithGeneratedName(def);
}

private void doLogicalView(
 RootBeanDefinition sdef, String sname,
 RootBeanDefinition idef, String iname,
 RootBeanDefinition adef, String aname) {

 CompositeComponentDefinition ldef =
 new CompositeComponentDefinition(tagName, src);
 addComp(ldef, sdef, sname);
 addComp(ldef, idef, iname);
 addComp(ldef, adef, aname);
 parserCtx.registerComponent(ldef);
 log.info("Registered {} components", tagName);
}

private void addComp(CompositeComponentDefinition ldef,
 RootBeanDefinition def, String name) {

 ldef.addNestedComponent(
 new BeanComponentDefinition(def, name));
}

Listing 14.31 AopAutoProxyConfigurer.java helper methods

Sets definition
source

B

Sets
bean roleC

Sets bean
propertyD

Sets bean
referenceE

For orderi
advisorsF

Autogenerates bean names G
www.it-ebooks.info

http://www.it-ebooks.info/

510 CHAPTER 14 Creating a Spring-based “site-up” framework
The AopAutoProxyConfigurer uses several helper methods to help keep the config-
urer’s logic clear. The first helper creates a new definition, setting its source to the
<annotation-config> element’s source object B and the role to mark it as an infra-
structure bean C. (BeanDefinition also offers ROLE_APPLICATION, indicating a
major application bean, and ROLE_SUPPORT, indicating a level of importance between
a top-level application bean and a purely infrastructural bean that the user wouldn’t
care about.)

 The addProp() helper method adds a name/value pair to the bean definition D.
In the special case where the value is a bean reference, you can use addRun-
timeProp(), which uses a RuntimeBeanReference to establish the link E. Also, at F
you provide a helper for setting an advisor’s order, as explained.

 In the cases of the source, interceptor, and pointcut beans, you don’t care what the
bean name is, so you use registerWithGeneratedName() to autogenerate names
instead of having to provide them yourself G.

 We’re in the home stretch. Just a few more things to take care of to make the shiny
new annotation-based configuration work. We’ll take them one at a time.

UPDATING THE NAMESPACEHANDLER

Add the following registration to the KiteNamespaceHandler.init() method:

registerBeanDefinitionParser(
 "annotation-config", new AnnotationConfigParser());

That’s it for the Kite part. Now you just need to update the client code and configuration.

UPDATING THE CLIENT CODE

For the client code, you add an annotation to the methods you want to protect.

package com.springinpractice.ch14.kite.sample.service.impl;

import java.util.ArrayList;
import java.util.List;
import javax.inject.Inject;
import org.springframework.stereotype.Service;
import com.springinpractice.ch14.kite.GuardedBy;
import com.springinpractice.ch14.kite.sample.model.Message;
import com.springinpractice.ch14.kite.sample.service.MessageService;

@Service
public class MessageServiceImpl implements MessageService {
 @Inject private Flakinator flakinator;

 @GuardedBy({ "messageServiceBreaker" })
 public Message getMotd() {
 flakinator.simulateFlakiness();
 return createMessage("<p>Welcome to Aggro's Towne!</p>");
 }

 @GuardedBy({ "messageServiceBreaker" })
 public List<Message> getImportantMessages() {

Listing 14.32 MessageServiceImpl.java, with annotations
www.it-ebooks.info

http://www.it-ebooks.info/

511Supporting annotation-based configuration
 flakinator.simulateFlakiness();
 List<Message> messages = new ArrayList<Message>();
 messages.add(createMessage("<p>Important message 1</p>"));
 messages.add(createMessage("<p>Important message 2</p>"));
 messages.add(createMessage("<p>Important message 3</p>"));
 return messages;
 }

 private Message createMessage(String htmlText) {
 Message message = new Message();
 message.setHtmlText(htmlText);
 return message;
 }
}

This configuration protects the getMotd() and getImportantMessages() methods
using the messageServiceBreaker breaker you’ve already defined. But you must
update the beans-kite.xml configuration to activate the annotations.

UPDATING THE CLIENT CONFIGURATION

In the next listing you replace the explicit AOP configuration with the new <annota-
tion-config> element you just created.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://springinpractice.com/schema/kite"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/

➥ spring-context-3.1.xsd
 http://springinpractice.com/schema/kite
 http://springinpractice.com/schema/kite/kite-1.0.xsd">

 <context:mbean-export />
 <annotation-config />
 <circuit-breaker id="messageServiceBreaker"
 exceptionThreshold="4"
 timeout="30000" />
</beans:beans>

This configuration style is very much along the lines offered by Spring transaction
support, Spring Integration, and so forth. The <annotation-config> element causes
the AnnotationConfigParser to kick in, thanks to the registration you added to Kite-
NamespaceHandler. Then the parser creates the source, interceptor, pointcut, and
advisor as you saw in listing 14.30.

Listing 14.33 beans-kite.xml, updated for annotations
www.it-ebooks.info

http://www.it-ebooks.info/

512 CHAPTER 14 Creating a Spring-based “site-up” framework
Discussion

Annotation-based configuration is one of the key configuration styles in Spring, and
now you know how to roll your own. Although annotation-based configuration doesn’t
have to involve a custom namespace, it typically does. You normally define one or more
custom annotations, along with a custom namespace, a parser, and bean definitions to
handle converting configuration into actual annotation-processing machinery.

 You may have noticed that the more sophisticated (from a framework develop-
ment perspective) configuration approaches build on the simpler ones. This is, of
course, by design. You started with a template and then built an AOP-based approach
off of that by using the template from an interceptor. Similarly, the annotation-based
configuration uses annotations to decide where to apply interceptors. This is a com-
mon way of building Spring-based frameworks.

 Whether you use annotation-based configuration is largely a matter of style, and
your preference may vary depending on what’s being configured. You might feel, for
instance, that it’s nice to be able to see your circuit-breaker annotations right where
they’re being used. Or you might instead prefer to manage such configuration cen-
trally using the techniques from recipe 14.3. It’s up to you.

14.6 Summary
We’ve completed our foray into the world of implementing Spring-based frameworks.
We covered creating template methods, AOP- and annotation-based configuration,
custom namespaces, and integration with SpringSource Tool Suite. We also looked at
JMX and some interesting concurrent programming concepts along the way. Although
creating a framework isn’t necessarily the kind of thing a developer does every day,
sometimes it’s exactly what you want to do. Spring provides such powerful framework-
building infrastructure and idioms that it pays to know how to use them. And even if
you don’t plan to roll your own framework anytime soon, it can help you as a user of
the Spring Framework to understand how things work under the hood.

 This chapter brings us almost to the end of the book. We hope you’ve enjoyed
reading it as much as we’ve enjoyed writing it. We welcome any comments, questions
or thoughts you may have for us:

■ Manning author forum: www.manning.com/wheeler/
■ Spring in Practice blog: http://springinpractice.com/

We look forward to hearing from you, and thanks for reading.
www.it-ebooks.info

http://springinpractice.com/
www.manning.com/wheeler/
http://www.it-ebooks.info/

appendix
Working with the sample code

This appendix explains how this book’s sample code is organized and how to con-
figure it. These are areas where we had to come up with some kind of sensible
scheme to support the needs of the book, and that scheme may not be completely
transparent at first glance.

A.1 IDE and environment setup
As regards the IDE, we used the Spring Tool Suite for the development of this
book, which is essentially a branded version of Eclipse with additional support for
Spring-based development. You can of course use your preferred IDE. Although we
can’t speak to the details of what you’ll need when using standard Eclipse, IntelliJ
IDEA, NetBeans, or other IDEs, in general you’ll need the following:

■ Maven support
■ Git support, if you plan to use Git to work with the code

Spring-specific support (such as bean-dependency graphs, Spring AOP, configura-
tion files, custom configuration views for Spring Integration, Spring Web Flow, and
so on) isn’t strictly required, but you’ll find it very helpful. The major Java IDEs all
have Spring-specific support, either built in or as a plug-in. Consult your IDE docu-
mentation for details.

 In terms of your broader system environment, you’ll need to install Maven, and
Git if you want to use it.

A.2 How the code is organized
The book’s code is organized as a set of Git repositories managed at GitHub. The
projects are all Maven projects conforming to Maven’s conventions around internal
project structure.
513

www.it-ebooks.info

http://www.it-ebooks.info/

514 APPENDIX Working with the sample code
 Most of the repositories are per-chapter repositories with names like sip01 and
sip02. Each per-chapter repository has per-recipe branches with names like 01, 02, and
so on. In addition, there are tags representing released versions of the recipe code.
They have names like recipe_7.1-1.0 (recipe 7.1, version 1.0).

 One of the repositories is a top-level project, called sip-top, that factors out what’s
common to the chapter repositories, such as dependencies and plug-ins. It’s a multi-
module project with support for Hibernate, JPA, DAOs, and web app development.
There is also a Spring Modules JCR repository that we use in chapter 12.

 From time to time we may release bug fixes or even enhancements. These may
appear as new tags on existing branches, or they may appear as entirely new branches
if the changes diverge from what’s in the book. In the event of changes that conflict
with what’s in the book, we’ll indicate this in the branch and tag names using alt. For
example, an alternative version of recipe 4 will have a branch called 04-alt.

A.3 Getting the code
The source code is available at https://github.com/springinpractice. You have a cou-
ple of options for downloading the code.

OPTION 1: DOWNLOAD THE TARBALL OR ZIP
If you’re not already familiar with Git, then the easiest option is to go to the GitHub site,
download the tarball or ZIP file for a given tag, and import it into your IDE. The down-
loads are all Maven projects, so you should import your project as a Maven project.

OPTION 2: CLONE THE GIT REPOSITORY

If you’re familiar with Git and GitHub, then perhaps a better option is to fork the var-
ious repositories and create local clones. This will give you more flexibility in working
with the code.

 Suppose your GitHub username is “felix” and you’ve forked the sip13 repo. Here’s
how you can create a local clone of that fork:

git clone
git@github.com:felix/sip13.git

This checks out the master branch, making it locally available.
 If you want to switch to the branch for recipe 1, then go into the clone’s directory

and type the following:

git checkout 01

You can see a list of all the branches (local and remote) by typing

git branch -a

Information about using Git and GitHub is beyond the scope of this book, but a great
deal of high-quality Git documentation is available both online and in book form.

 Next we’ll look at how to build the code.
www.it-ebooks.info

https://github.com/springinpractice
http://www.it-ebooks.info/

515Configuring the app
A.4 Building the code
We use Maven for the projects in this book. If you aren’t familiar with Maven, you’ll
find it useful (and probably necessary) to look for a quick online tutorial to get you up
to speed on the basics.

 Most of the projects in this book are small, single-module web applications. Here
are the commands most useful for this book:

■ mvn clean—Cleans the build
■ mvn compile—Compiles the source code
■ mvn package—Packages the compiled source code (executes the compile

phase automatically)
■ mvn jetty:run—Runs the app (discussed shortly)

Most of the chapters don’t include unit tests, so even though mvn test is useful in
general, we don’t use it much in this book. The same is true for integration tests.
Note however that we do have a recipe on unit tests and an entire chapter (chap-
ter 10) on integration testing. In those special cases, the recipes explain how to run
the relevant tests.

 Chapters 11, 13, and 14 are multimodule projects, as is the top-level sip-top proj-
ect. Here you’ll need the following additional command:

■ mvn install—Installs packages into the local Maven repo

For example, you’ll need to run mvn install in the sip-top project to make the packages
it generates visible to the other projects, which all depend upon the sip-top packages.

 We use Maven to support configuration as well. The next section explains how this
works.

A.5 Configuring the app
The projects are set up to work with externalized configuration files. That means you
should be able to download the source code and place some configuration files in a
location outside the project, and the app should run. This decoupling keeps environ-
ment-specific configuration out of source control and makes it easier to refresh your
project without losing your configuration.

 It works by adding an external file path to the Jetty plug-in’s configuration. This
allows the plug-in to find jetty-env.xml (JNDI resource configurations, among other
things) as well as environment-specific app configuration files that need to be on the
classpath. The sip-top project already handles this for you; see sip-top/pom.xml. But
you’ll need to provide a base path to allow the plug-in to find the various configura-
tion files we just mentioned.

 To do this, you’ll need to create a Maven settings.xml file in your local .m2 Maven
repo, if you don’t already have one. The .m2 folder is typically in the user directory (it
may be hidden). The settings.xml file appears directly underneath the .m2 folder.
Here’s a sample .m2/settings.xml file:
www.it-ebooks.info

http://www.it-ebooks.info/

516 APPENDIX Working with the sample code
<?xml version="1.0" encoding="utf-8"?>
<settings>
 <profiles>
 <profile>
 <id>default</id>
 <properties>
 <sip.conf.dir>
 /Users/williewheeler/projects/sip/conf
 </sip.conf.dir>
 </properties>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>default</activeProfile>
 </activeProfiles>
</settings>

(See the online Maven documentation for more information about settings.xml:
http://maven.apache.org/settings.html.)

 The /Users/williewheeler/projects/sip/conf directory is obviously specific to our
example development environment; use whichever root folder you want to use.

 Once you have this set up, the sample code will expect you to create chapter-
specific folders in your root configuration folder. To give you an idea what this looks
like, here’s an example subset of configuration folders and files relative to the con-
figuration root:

./sip08

./sip08/classes

./sip08/classes/log4j.xml

./sip08/classes/spring

./sip08/classes/spring/contactService.properties

./sip08/classes/spring/mailingListService.properties

./sip08/jetty-env.xml

./sip09

./sip09/classes

./sip09/classes/log4j.xml

./sip09/classes/spring

./sip09/classes/spring/environment.properties

./sip09/jetty-env.xml

You don’t have to do them all up front. You can set up the folder for chapter 5 when
you are working with chapter 5.

 The Jetty plug-in configuration for any given project knows how to find the class-
path resources (log4j.xml, various environment-specific properties files, and so on).
In addition, projects that use jetty-env.xml know to find it at the top of the chapter-
specific folders.

 Most of the recipes have a top-level folder called sample_conf that shows you
which files you need to put in the chapter configuration folders. Copy the contents of
sample_conf into the chapter-specific folder before working through a chapter’s first
recipe, preserving its internal structure. Then modify the externalized configuration
as needed. As you progress through the chapter’s recipes, modify your configuration
www.it-ebooks.info

http://maven.apache.org/settings.html
http://www.it-ebooks.info/

517Running the app
to reflect any additions to files in sample_conf. In general, these should be purely
additive, meaning that if you decide to run something in recipe 1 against the configu-
ration in recipe 5, it should still work.

 You shouldn’t need to modify the files in sample_conf, and you shouldn’t need to
copy them into the project.

A.6 Running the app
Use the Maven Jetty plug-in to run the app. All you have to do is type

mvn jetty:run

from the project or module whose WAR you want to run. If you want to clean the code
before building and running it, you can type

mvn clean jetty:run

In most cases, you can then access the application by pointing your browser at http://
localhost:8080/sip/. There are some instances where that’s not true; in those cases,
the book gives explicit instruction on which URLs to use.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

index
Symbols

@Async 259
activating 262

@Autowired 26
@Column 45, 127
@Component 29
@ContextConfiguration 320

locations, rules for specifying 321
@Controller 29, 72, 85, 108, 366
@DirtiesContext 327
@Email 121
@EndNode 353
@Entity 45, 127
@ExpectedException 320, 327
@Fetch 352
@GeneratedValue 127
@GenerationStrategy 45
@GraphId 345
@GuardedBy 503
@Id 45, 127
@IfProfileValue 329
@Ignore 332
@Indexed 346
@InitBinder 80, 116–117, 265
@Inject 321
@ManagedAttribute 483–484
@ManagedOperation 484
@ManagedOperationParameter 484
@ManagedResource 484
@ModelAttribute 77, 120
@NamedQuery 45
@NodeEntity 345
@NotEmpty 164
@NotNull 121
@PersistenceContext 59

@PostAuthorize 213, 232
@PostConstruct 461
@PostFilter 231, 233
@PreAuthorize 213, 231
@PreFilter 231–232
@Qualifier 207
@RelatedTo 349
@RelatedToVia 349
@RelationshipEntity 353
@Repeat 320, 329
@Repository 29, 56, 128, 400
@RequestBody 371
@RequestMapping 29, 72, 85, 108, 365–366
@RequestParam 75
@ResponseBody 365
@RestResource 432
@RunWith 304, 319
@ScriptAssert 119
@Service 29
@Size 121
@StartNode 353
@Table 127
@Test 329
@Test(expected=...) 327
@Timed 320, 329
@Transaction 321
@Transactional 47–48, 132, 239, 357, 400

method-level vs. class-level 50
@TransactionConfiguration 321
@Transient 45, 127
@Valid 120, 164, 248
@Value 371, 465
@XmlAttribute 360, 414
@XmlElement 361
@XmlRootElement 362, 414
@XmlTransient 414
519

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX520
@XmlType 362
/WEB-INF 90
/WEB-INF/jsp 90
/WEB-INF/views 90
/WEB-INF/views.xml 91
#paramName 231
% 37
ˆPreFilter(value=expression [, filterTarget=

collection]) 231
${} placeholder 19

A

AbstractAction 158
AbstractAtomFeedView 272
AbstractBeanDefinitionParser 499
AbstractCIService 357
AbstractContextLoader#modifyLocations 321
AbstractFeedView 272
AbstractHandlerMapping 87
AbstractHbnDao 55
AbstractHibernateDao 290
AbstractJcrDao 398
AbstractJUnit4SpringContextTests 304
AbstractRssFeedView 272
AbstractSimpleBeanDefinitionParser 499
AbstractSingleBeanDefinitionParser 499
access control entry. See ACE
access control list. See ACL
access rule

ACL-based, for Java methods 231
activating 233
defining 212, 221, 224, 226
first-match evaluation 221
for URLs 220

access token 381
encrypting for production 388

AccessControlListTag 243
Account

adapting to UserDetails 194
accountDao property 17
AccountService

adapting to UserDetailsService 197
wiring DAO to 17

ACE 223
one per permission 229
order 230

Acegi. See Spring Security
ACL 223

creating 239
database schema 226
definition, optimizing 236
deleting 240
displaying navigation and content based on 241
for domain objects 226

lookups 235
manipulating programmatically 237
module 226
permissions 229, 235
updating 240

Acl interface 243
ACL schema

keeping objects in sync 237
linking to user schema 227

acl_class table 227
acl_object_identity table 227–228
acl_sid table 227
ACL-based authorization 211
Acl.isGranted(...) 243
AclAuthorizationStrategy 236
AclAuthorizationStrategyImpl 235
AclImpl 230
AclImpl.isGranted() 230
AclPermissionEvaluator 234
AclService 243
action 157

state 137, 139
Action interface 156

execute() method 157
addAttribute(String name, Object value) 248
addProp() 510
addRuntimeProp() 510
Advanced Message Queuing Protocol. See AMQP
advice, defining 493
AMQP 438
annotation-based configuration 25, 502

stereotype annotations 28
vs. XML 31

annotation-config 26
AnnotationConfigParser 511
AnnotationDrivenBeanDefinitionParser 508
annotations

activating 511
and circuit breakers 502
BeanDefinitionParser 506
configuring objects with 12
creating 503
stereotype 29

AnnotationSessionFactoryBean 51
AOP 3
<aop:config> 493
AopAutoProxyConfigurer 508, 510
Apache Commons Database Connection Pool 5
application

configuring for validation 123
context 79, 131
integrating via shared database 425

ApplicationContext 15
applicationContext.xml 12, 14
ApplicationContextAware 304
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 521
architecture
persistence, layering of 34

article-delivery engine 392
configuring 414
content repository 394

data access layer 398
Jackrabbit 396
overview 396

controller 405
creating 405
importing articles 409
JSPs 406
MongoDB document repository 416

Artifactory 370
aspect-oriented programming. See AOP
aspect, defining 493
AspectJ 3
association mapping 45
Atom feed 272
AtomicInteger 475
Attacklab 295
AttributeMap 156
authenticate() 207
authentication

automatic 206
custom user database schema 191
manager 176
provider 176
remember-me 173
sourcing from database 188

authentication-based authorization 211
authentication-failure-url attribute 184
<authentication-manager> 175, 178, 191
<authentication-provider> element 176
AuthenticationManager 176, 207
AuthenticationProvider 176
authorities property 196
authorization

access rules 212
based on ACLs 223
blacklisting 214
of domain objects 223
of Java methods 211
of JSP views 217
of web resources 220
role-based vs. ACL-based 224
separate roles and permissions 214
styles 211
targets 210
whitelisting 214

auto-config 175
autoproxy 132
autoproxying 493, 505

advisors 508
autowiring 26

B

Bamboo 370
base-package attribute 30
BasePermission 229
BasicDataSource 18, 38
BasicLookupStrategy 235
bean

autowiring 26
configuring with XML 12
element 13, 16
properties 18
wiring together 17

bean scope 20
global session scope 22
prototype scope 21
request scope 22
session scope 22
singleton scope 21

bean-service.xml 60
BeanCreationException 28
BeanDefinition

ROLE_APPLICATION 510
ROLE_SUPPORT 510

BeanDefinitionParser 495, 498, 506
base implementations 498

BeanFactoryAware 504
BeanNameGenerator 30
BeanNameUrlHandlerMapping 85
BeanNameViewResolver 91, 275
beans namespace 16, 496
<beans profile> 390
beans schema 13
beans-security-acl.xml 233
beans-security.xml 174
beans-web.xml

configuration for RESTful web service 367
view controller 183

beans:identifiedType 496
behavioral mismatch 46
<binder> 161
BindingResult 116, 120
blacklist 117, 214
bridge method 505
business tier 249

C

c namespace 24–25, 386
<c:out> 284
<c:url> 183
canonical data model (CDM) 440
Cascading Style Sheets. See CSS
Castor 3
chain 448
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX522
channel 424
channel adapter 445

IMAP 458
SMTP 464
vs. gateway 450

checkbox tag 110
checkForDuplicate() 357
circuit breaker

annotation 502
AOP-based configuration 487
controlling 482
execute() 475
exposing as JMX bean 482
implementing as template 470
implementing with template 471
integration point 476
methods 475
overview 468
states 474
template and callback 469

circuit-breaker pattern 467
class

attribute 13
importing with stereotypes 29
marking as Spring Web MVC 29

class-level mapping
overriding 108

ClasspathScanningJaxb2Marshaller 368
ClassPathXmlApplicationContext 15
Clover 332
CMDB 373

configuration items 342
GitHub integration 374
introduction 339
package record 370
RESTful web service 359
updating after successful builds 369

CMS
MongoDB document repository 416
presenting articles to users 405
storing articles in 394
vs. content repository 396
See also article-delivery engine

Cobertura 332
code-coverage tool 332
comma-separated values. See CSV file
comment engine

basic, creating 278
bean configuration 285
database schema 278
displaying comment list 284
domain objects 280
filtering comment text 283
grouping comments by target 281
HTML filter, testing 302

integrating with article-delivery service 287
posting new comments 285
rich-text support 295
service bean 282

CommonJS 297
CommonsMultipartResolver 415
component

guard 470
scanning 29

configuration
annotation-based 25, 502
centralizing 342
drift 339
file 12, 14
message template 252
schema 13

configuration item
abstraction 344
application 345, 348
autodiscovery 365
creating 342
CRUD controllers 366
DAOs 354
mapping 361
module

augmenting 360
modules 350
package

augmenting 360
package service 357
packages 351
service beans 355
team 352
validation 355

configuration management 338–390
architecture 340
data, exposing with RESTful web service 359
definition 339
issues without 338

configuration management database. See CMDB
ConnectController 385
Connection

pooled, releasing 38
connection pool

sharing 40
constructor injection 17, 24
Contact Us form 245
ContactMailSender 259
contactRowMapper 37
ContactServiceImpl 259
content

application 395
displaying based on ACLs 241

content repository 394
data access layer 398
Jackrabbit 396
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 523
content repository (continued)
overview 396
vs. CMS 396

content-management system. See CMS
context namespace 26, 28

and configuration issues 27
context schema 26
context:annotation-config 27
<context:component-scan> 29, 132, 146
<context:mbean-export> 485
contextConfigLocation 82, 190
continuous integration, testing during 328
ControllerBeanNameHandlerMapping 85
ControllerClassNameHandlerMapping 85
controllers 66

bundling methods in 74
for a form 76
intercepting 87
mapping to 85
POJO 71, 74
separating from view 76
whitelists 80

controlling
writing 71

conversationScope 143
convert() 414
converter

vs. HTTP message converter 369
convertJcrAccessException

(RepositoryException) 400
convertPasswordError() 120
CookieSitePreferenceRepository 99
Core Container 2, 5
CouchDB vs. MongoDB 420
create() 55
createAcl() 239
createConnectionRepository() 387
cross-site scripting. See XSS
cryptography 201
CSS 93, 108

customize based on device 102
cssClass 123
cssErrorClass 123
CSV file 10–11

reading accounts from 11
CsvAccountDao 13
csvFile 16
csvResource 13
currentEvent 155

D

DAO
application 346
creating 17

discovering 132
entity-specific 55
general interface 52
getting JCR sessions 404
importing 29
JPA interfaces 58
replacing framework with Spring Data JPA 61
transactions 400
types, distinguishing 28

Dao interface 53
DaoAuthenticationProvider 176
data access layer, creating 52
data access, using JDBC 35
Data Access/Integration module 3
data injection

guarding against 117
data transfer object. See DTO
data, saving to persistent store 115
DataAccessException 29, 61
database

custom user schema 191
embedded, in integration tests 332
exposing with JNDI 190
ID-generation strategy 127
schema for comment engine 278

DataIntegrityViolationException 401
DataSource 5, 27, 38

configuring 35, 40
exposing with JNDI 132
looking up 190
looking up with JNDI 39

DataSource.close() 38
DDD 124
decision state 137, 139
declarative transaction management 49
default-reply-channel 452
DefaultAnnotationHandlerMapping 85–86, 111
DefaultAuthenticationEventPublisher 178
DefaultGuardListSource 493, 497
DefaultMessageCodesResolver 121
DefaultRequestToViewNameTranslator 92, 184
defense-in-depth 211
DelegatingFilterProxy 168, 179
deleteAcl() 239
denyAll 212, 221
dependency 5

chain 8
dependency injection. See DI
DeserializationConfig 368
destroy-method 38
Device interface 95
DeviceResolver 95
DeviceResolverHandlerInterceptor 97
DeviceWebArgumentResolver 98
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX524
DI 2, 6, 424
beans namespace 16
example 9
mock dependencies 306

dictionary attack, protecting against 204
digest 268
DispatcherService 132
DispatcherServlet 68, 145, 184

application context 82
configuration options 82–83
configuring 81
handler mappings 84
multiple handler mappings 86
strategy interfaces 83

document repository
MongoDB 416

domain logic 47
in service bean 57
isolating from persistence logic 52

domain object
ACL 226
authorization 211
authorizing 223
marking as persistent 127
owner 239
security, SpEL expressions 231
using as form bean 251

domain-driven design. See DDD
domain-specific language. See DSL
dotMobi 102
DSL 494
DTO, implementing with Spring

HATEOAS 431, 434
DuplicateCIException 357

E

EBR 311
EclipseLink 58
EL 72
email

autogenerated, speeding up 258
confirmation message template 252
creating and sending 255
digest 268
mailing list 262
response and notification, autogenerating 252

email-based help desk 456
confirmation emails 462

EMMA 332
encryptor 387
enctype attribute 411
end state 137, 139

endpoint 370, 424
create package, Maven plug-in 373
read-only 363

Enterprise Bundle Repository. See EBR
enterprise integration 423

gateway. See gateway
message broker 438
point-to-point, scaling 438
single application and multiple databases 426

distributed transactions 427
transaction managers 427

using Spring Data JPA 426
via RESTful web services 430
via shared database 425

configuring apps 430
reasons not to use 430

entity manager factory (EMF) 428
EntityManager 58–59
EntityManagerFactory 58
environment.properties file 39
error code 120
error message 130

configuring 121
default, overriding 121
displaying 122
dividing into resource bundles 121
global 123

<evaluate> element 141
evaluate statement 139
event ID

specifying 138
_eventId 137
exception, testing for 325
execute() 475
expression language. See EL
ExtendedModelMap 321

F

factory pattern 15
Failsafe plug-in, filename patterns 312
FeedBurner 275
field

filtering 116
validation 116–117

filter proxying 179
FilterChainProxy 179
filterObject 231
filterTarget 232
FilterToBeanProxy 179
findBridgedMethod() 505
finder method

inbound messaging 453
outbound messaging 449
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 525
Firefox 95
flashScope 142
flow 103

as controller 156
data 141
defining 136
ending 139
executor 148
ID 138, 149
inheritance 165
registry 148
securing 167, 170
states 136
subflow 139

flow-builder-services 163
flow-execution-listener 170
<flow:flow-builder-services> 148
<flow:flow-executor> 148
<flow:flow-location> 149
flowExecutionUrl 138
FlowHandlerAdapter 149
FlowHandlerMapping 149
flowRequestContext 157
flowScope 143
form

avoiding resubmission 111
bean 74

creating 106
prepopulating 77
using domain objects as 74

controller 76
data binding 160
data, saving 124
element, binding to form bean properties 109
persisting data 115
redirect-after-post 79
serving and processing 74
submission, redirect-after-post 111
tag library 115
validating 81
validation 162

configuring app for 123
field filtering 116
field validation 116–117
in service tier 124
in web tier 115

form-backing bean. See form bean
form-binding

API 116
whitelisting 80

<form-login> 184
form:errors 249
<form:input> 123

form. See form bean
FormAction 159

bind() 160
bindAndValidate() 160
resetForm() 160
setupForm() 160
validate() 160

forward:role 91
FOSS 96
free and open source software. See FOSS
FreeMarker 258

G

gateway 435
AMQP outbound 450
fire-and-forget 443
implementations 437
implementing dynamically 442
replies 455
vs. channel adapter 450

GeneratedKeyHolder 37
GenerationType 127
generic type parameter 53
getAll() 53
getBean() 21
getCurrentSession() 47
getForObject() 378
getListAsJson() 365
getMostSpecificMethod() 505
getRepository() 357
getSalt() 205
getService() 367
getSession() 55
getState() 475
gistOperations() 377
GitHub

API 374
authorization 379
CMDB integration 374
connecting to via OAuth 2 379
getting data with RestTemplate 378
interface

implementation 377
service hooks 379

getting from repository 383
sourcing private data 379
sourcing public data 374
user account service bean 382

GitHubConnectionFactory 387
<global-method-security> 233
global-transitions element 141
GrantedAuthority 215
GraphRepository 346, 358
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX526
guard
callback interface 471
interface 470
lists, obtaining 491
sourcing from annotations 503

GuardListInterceptor 490, 497
GuardListSource 490, 503, 506

hierarchy 503

H

HandlerAdapter 83
configuring 89

HandlerExceptionResolver 83
configuring 89

HandlerExecutionChain 87
HandlerInterceptor 87, 97
HandlerMapping 83

configuring 84
implementations 84
interceptors 87

happy path behavior, testing for 313
hasAnyRole(role1, role2, ..., role n) 212
hashing 201
hasIpAddress 212
hasPermission (domainObject, permission) 231
hasRole() 219
hasRole(role) 212
HATEOAS. See Spring HATEOAS
HbnUserDao 259
help desk

confirmation emails 462
email based 456
example application 423
form based 425
message bus 438
web services 430

Hibernate 3
eager loading 291
mapping 42
object states 46
Session API 46
session state vs. database state 324
Validator 118, 162

error messages 121
Hibernate.initialize() 291
hibernateProperties 336
HibernateTemplate 401, 470
HibernateTransactionManager 51
HTML

converting Markdown to 299
filter, testing 302

<http> element 175
HTTP message converter 368

vs. converter 369

HTTP request, anatomy of 94
Hudson 370
Hypermedia as the Engine of Application State

(HATEOAS). See Spring HATEOAS

I

iBATIS 3
ID, generation strategy 127
id attribute 13
IMAP

ichannel adapter 458
impedance mismatch 42
incrementAndGet() 475
infrastructure issues 338
InitializingBean 158
InMemoryDaoImpl 176
input tag 110
integration

and services 424
layer 424
See also enterprise integration

integration test
contextConfigLocation 316
DataSource bean 316
happy path 313, 318, 322, 324
ignoring 331
marking context as dirty 327
running against embedded database 332
separating from unit tests 308
source and resource folders 309
to verify performance 328
verify phase 321
verifying exception handling 326

integration testing 302, 306
annotated POJOs 319
configuring apps to facilitate 313
configuring Maven for 307
for exceptions 325
framework 312
key Maven lifecycle phases 310
SQL scripts 317
time-bounded, during continuous-integration

builds 328
intercept-url 170, 220
interceptors property 89
interface, multiple implementations 28
InternalResourceView 90–91
InternalResourceViewResolver 90, 146, 184

redirect: and forward: 90
inversion of control. See IoC
IoC 5, 8
isAnonymous() 212, 219
isAuthenticated() 212, 219
isFullyAuthenticated() 212
isRememberMe() 212
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 527
J

Jackrabbit 394
content repository 396
data access layer 398
domain objects 397
repository 404

jackrabbit namespace 403
<jackrabbit:repository> 404
Jackson 359

mapper 368
Java Architecture for XML Binding. See JAXB
Java Content Repository. See JCR
Java Data Objects. See JDO
Java Database Connectivity API. See JDBC
Java Message Service. See JMS
Java method, authorizing 211
Java Persistence API. See JPA
Java Persistence Query Language. See JPQL
Java VisualVM 485
java.beans.PropertyEditor 18
java.sql.ResultSet 3
java.util.Properties 11
JavaMail 257
JavaMailSender 255
JavaMailSender.send() 255
JavaScript

customize based on device 102
frameworks 100

JavaServer Pages Standard Tag Library. See JSTL
javax.persistence 45
javax.sql.DataSource 18
javax.validation.Validator 163
javax.validation.ValidatorFactory 163
JAXB 3

OXM mapping 414
JAXB2 marshaller 368
JaxbAnnotationIntrospector 368
JConsole 485
JCR 392, 394

application architecture 395
basics 395
benefits 396
content repository 396
DAO implementation DAA 399
repository

replacing with MongoDB 417
Spring configuration 403

JCR 2.0 394
jcr namespace 403
JcrCallback 401
JcrDaoSupport 400–401
JcrDaoSupport.getTemplate() 401
JcrDaoSupport.setSessionFactory() 401
JcrTemplate 400

JDBC 3
data access 35
operations object 37

jdbc namespace 317, 333
<jdbc-user-service> 191

custom queries 192
<jdbc:embedded-database> 333
<jdbc:initialize-database> 317
JdbcAccountDao 5, 17
JdbcDaoImpl 188, 191

default SQL queries 191
JdbcMutableAclService 234
JdbcTemplate 128, 401, 470
JDO 3
jee namespace 40, 257
jee:jndi-lookup 40
Jenkins 370
JiBX 3
JMS 3
JMX

console, launching 485
support for circuit breakers 482

JNDI
looking up DataSource with 39

jndi-name attribute 41
JPA 3, 57

annotations for mapping 45
jpa namespace 63
<jpa:repositories> 63
JpaRepository 61
JpaTemplate 401
JpaTransactionManager 60
JPQL 43
jQuery Mobile 100
JSF, integration with 103
JSP

best places to store 90
expression language 72
fragment 181
view, authorizing 217
views 70

JSPF page 181
JSR 283 394
JSR 303 Bean Validation 81, 116

error messages 121
placing implementation on classpath 118

JSR 303 Bean Validation API 162
error codes 164
implementation, bootstrapping 162
using in SWF 163

jsr250-annotations 216
JSTL 90

and view name 91
JstlView 90
JtaTransactionManager 428
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX528
JUnit
and integration tests 312
integration test 302

K

key holder 37
Kite, advisors 508
known state, resetting to 339

L

LiteDevice 95
LiteDeviceResolver 95
loadUserByUsername() 177
LocalContainerEntityManagerFactoryBean 60
LocaleResolver 84, 93
LocalTransactionManager 404
LocalValidatorFactoryBean 163
login form 173

always-resident 185
auto-authentication 206
connecting to database 188
customizing 182
JSP 182

login-page attribute 184
login-required page 186
LookupStrategy 235

M

m. subdomain 102
mailing list

authentication 267
digest 268
letting users subscribe to 262
privacy 267

main-servlet.xml 96
mapped-request-headers 453
mapper 368
<mapping> 455
mapping 37

association 45
mapRow() 37
MapSqlParameterSource.addValue() 37
Markdown 283, 296

converting to HTML 299
Markdown.Converted.Modified 302
Markdown.Sanitizer.Modified 302
MarshallingMessageConverter 445
matches() 506
Maven

Build Helper plug-in 309
dependencies 312

Failsafe plug-in
deploying 311
filename patterns 312
goals 311
running tests 320
vs. Surefire plug-in 310

integration testing with 307
key lifecycle phases for integration testing 310
lifecycle 308
Surefire plug-in

filename patterns 312
MBean

attributes, viewing 486
server 485

message
bus 438

integration pattern 440
code 120
translator 446

messaging
inbound 445, 453
outbound 443, 449

method
as authorization target 210
bridge and bridged 505

MethodInvocation 491
MimeMessage 255, 461
MimeMessageHelper 256
.mobi top-level domain 102
mobile device

detecting 94
detecting with Spring Mobile 95
handling site preferences 98
simulating 95

Mockito
inducing failure condition 327
mocking out dependencies 312

model 66
autogenerated name 73
name/value pairs 72

model-view-controller. See MVC pattern
modelAttribute 78, 109
module 350

augmenting 360
<mongo:mongo/> 419
MongoDB 416

BSON format 418
instance, setting up 417
vs. CouchDB 420

MongoRepository 417
MongoTemplate 419
MultiAction 158
MultipartResolver 84, 93
MutableAclService 238
mvc namespace 111
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 529
MVC pattern 66
<mvc:annotation-driven> 111, 368–369
<mvc:message-converters> 368
<mvc:resources> 146
<mvc:view-controller> 111

N

name-generator attribute 30
NamedParameterJdbcOperations 35, 38
NamedParameterJdbcTemplate 39
namespace

beans 16, 496
c 24–25, 386
context 26–28
custom 494

DSL 494
handler 498
pointer files 495
XML schema 495

jackrabbit 403
jcr 403
jdbc 317, 333
jee 40, 257
jpa 63
mvc 111
oxm 368
p 23, 25
task 262
tool 496–497
util 51, 336

NamespaceHandler 495, 498
NamespaceHandlerSupport 498
navigation

avoiding access rule duplication 222
displaying based on ACLs 241
visibility, binding to access 219

Neo4j 343
direction 349
edges 349
relationships 349

Neo4jTemplate 357
news feed, publishing 272
Nexus 370
nullChannel 446
Nygard, Michael 467

O

OAuth 2 dance 380
Object Graph Navigation Language. See OGNL
object-relational mapping. See ORM
object, configuring with XML 12

object/JSON mapper 368
object/XML mapper 368
Object/XML mapping. See OXM
OGNL 145
OID 228
OpenSessionInViewFilter 292
OpenSessionInViewInterceptor 292
org.hibernate.dialect 132
org.springframework.security.acls.model.Acl 230
org.springframework.security.core

.Authentication 181
org.springframework.security.core.userdetails

.User 181
org.springframework.validation.Validator 163
org.springframework.web.servlet 115
org.springframework.webflow.execution.Action

interface 157
ORM 3

and Hibernate 42
impedance mismatch 42

orphanRemoval 282
OXM 3

mapping 414
Unmarshaller 414

oxm namespace 368
OXM, mapping 445
<oxm:class-to-be-bound> 368

P

p namespace 23, 25
injecting beans 24
specifying properties 23

package 351
augmenting 360
duplicates 371
pagination 372
service 357

PackageRepository 358
PackageService 358
PageDown 295
ParameterizableViewController 111
parseAnnotation() 505
<password-encoder> 203
PasswordEncoder 202
passwords

hashing 201
legacy, preserving 205
retrieving from database 196
salting 204
storing securely 201
tag 110

path-type attribute 221
payload-expression 452
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX530
permission
evaluator 234
masks 229
separating from roles 214

permitAll 212
persistence

application context 131
architecture layering 34
configuration, JPA-based 59
lifecycle 46
logic, isolating from domain logic 52

plain old Java object. See POJO
point-to-point channel 464
POJO 4

and a Spring bean 16
controller 247
controllers 71, 74
keeping clean 31
keeping insulated 24

preHandle() 97
profile

feature 388
specifying 390

programmatic transaction management 49
properties file 19
property

compound name 368
element 17
specifying as attribute 23

PropertyEditor 18
PropertyPlaceholderConfigurer 18, 23
ProviderManager 176
publish/subscribe (pub/sub) channel 464
pull system 370

Q

qualifier element 28
Query interface 56
query mapping 43
query() 37
queue-names 455

R

r.js 299
<rabbit:admin/> 445
RabbitMQ 439, 445

asynchronous and synchronous
communications 438

exchange 443
implementing message bus 438

redirect 79, 90
RedirectView 79, 91

ref attribute 14
referer 248
reflection 13
ReflectionTestUtils 320
ReflectionTestUtils.setField() 328
registerWithGeneratedName() 510
reject() 120
reject(String) 248
rejectValue() 120
relationship entity 349, 352
remember-me authentication 173, 175
replyChannel 452, 455
repoOperations() 377
request mapping 108
request/reply communication 449
RequestContext 157
RequestContextFilter 23
RequestContextListener 22
RequestMethod enum 104
requestScope 142
RequestToViewNameTranslator 84

configuring 92
requestType 454–455
RequireJS 297

running on Rhino 299
reset() 475
resource 41

bundle, for externalized strings 113
ResourceSupport 435
REST HATEOAS. See Spring HATEOAS
RESTful client, implementing with

RestTemplate 435
RESTful web services 104

exposing configuration management data 359
integration via 430
Spring configuration 367
using Spring Data REST 432

RestTemplate 372, 376, 401, 435
getting GitHub data 378
implementing client for web service 431

returnObject 232
returnValue 231
reverse-lookup table 204
Rhino 299
role

role-based authorization 211
separating from permissions 214

role-based authorization 211
ROME API 272
routing-key-expression 453
RowMapper 35, 37
RSS feed, publishing 272
RuntimeBeanReference 510
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 531
S

salting 204
SaltSource 205
scope attribute 20
SDJ. See Spring Data JPA
SDR. See Spring Data REST
<secured> 170
secured-annotations 216
security

annotations 213
by obscurity 219
identity. See SID

<security:accesscontrollist> 241–242
<security:authentication> 181
<security:authorize> 181, 219, 222
SecurityContext 207
separation of concerns 67
SerializationConfig 368
service

activator, linking to service beans 424
and integration 424
layer 47
method 47

service bean
discovering 132
domain logic 57
read-only transaction at service level 130

service provider interface. See SPI
servlet filter, injecting 179
ServletContext 414
ServletContextAware 414
Session.save() 46
SessionFactory 47, 51, 132, 404
<set> element 142
setAccountDao() 17
setAllowedFields() 117
setServletContext() 414
setter injection 17
setText() 256
SHA-256 203
ShaPasswordEncoder 203
SI. See Spring Integration
SID 227
SimpleJdbcTemplate 324
SimpleMessageConverter 445
SimpleUrlHandlerMapping 85–86, 111
Sitemesh filter 180
SitePreference 99
SitePreferenceHandler 99
SitePreferenceHandlerInterceptor 99
SitePreferenceUtils 99
SitePreferenceWebArgumentResolver 100
SiteSwitcherHandlerInterceptor 102

SMTP
channel adapter 464
confirmation emails 462

<social:connected> 385
<social:notConnected> 385
soft delete 427
SpEL 175, 181

expressions for domain object 231
predicates for defining access rules 212

SPI 89
Spring

configuration, RESTful web service 367
framework 2
introduction 2
reasons to use 4

Spring 3
controllers 67
namespace support for embedded

databases 333
Spring AOP

autoproxying 493
circuit breakers 487
interceptor-based advice 488

Spring Data
JPA 61, 417, 432

and enterprise integration 426
MongoDB 416

configuration options 419
Spring Data Neo4j 345

@Indexed 346
@RelatedTo 349
@RelatedToVia 349
configuration items 342
creating DAO 346
getter 350
GraphRepository 346

Spring Data REST
implementing RESTful web service API

431–432
Spring Expression Language. See SPeL
Spring Faces 103
Spring HATEOAS, implementing DTOs 431, 434
Spring Integration 423

asynchronous request/reply 449
dependency injection 424
implementing gateways dynamically 442
implementing message bus 438
support for integration architectures 458

Spring JavaScript 103
Spring Maven Snapshot Repository 376
Spring Mobile

configuring 96
detecting mobile devices 95
DeviceResolver 94
handling site preferences 98
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX532
Spring Mobile (continued)
site switching 102
technology preview 93

Spring Modules 272
JCR 394

use in this book 393
SessionFactory 404

Spring Roo 124
Spring Security 104

access-control annotations 231
ACL module 224
and Spring Web Flow 170
configuring 168
password hashing 202
permissions 229
user schema 188

Spring Security 3 173
configuring 174
filter mapping 180

Spring Social 375
385

configuration 385
ConnectController 385
dependencies 376
encryptor 387
provider 385
<social:connected> 385
web components 384

Spring Social GitHub 375
calling from controller 376
dependency 376
user account service bean 382

spring tag library 115
Spring Tool Suite 513

EIP diagrams 443
Spring Web Flow 103

action classes 156
action state 139
and Spring Security 170
data binding 160
decision state 139
end state 139
example application 143
flow

as controller 156
builder services 148
data 141
executor 148
registry 148
See also flow

form validation 162
making Spring MVC aware of 149
overview 135
right for you? 135
states 136, 149

managing 141
transitions between 140

subflow state 139
support for view technologies 137
variables

declaring 141
scopes 142

view state 137
web flows, securing 167

Spring Web Form
configuring to use JSR-303 validation 163
flow inheritance 165
state inheritance 167

Spring Web MVC 67
architecture 68
automatic form binding 80
background 66
configuring

application context 83
web.xml 81

example application 69
flexibility 67
flexible method signatures 73
related technologies 103
separation of concerns 67
strategy implementations 83

<spring:authorize access> 218
<spring:message> 114–115
spring.handlers 495
spring.profiles.active 390
spring.schemas 495
SpringJUnit4ClassRunner 320
SpringSource Enterprise Bundle Repository

See EBR
StandardSitePreferenceHandler 99
start state 137
stereotype annotations 29
string

externalizing in view 112
hardcoded, converting into references 114

String.trim() 281
StringUtils.trimWhitespace() 281
structural mismatch problem 46
subflow state 137, 139
subhead.jspf 185
supportedMethods 88
Surefire plug-in

filename patterns 312
SWF. See Spring Web Flow
synchronous request/reply communication 449
system configuration, visibility into 338
<systemPropertyVariables> 330
systems integration. See enterprise integration
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 533
T

Task Execution API 258
task namespace 262
<task:annotation-driven/> 262
<task:executor> 262
TDD 302
template method 469
template pattern 469

framework setup 470
test-driven development. See TDD
TestContext 302, 306

dependency 312
services 320
transaction rollback 323

testing integration. See integration testing
TextFilter 283
ThemeResolver 84, 93
ThreadPoolExecutor 262
ThreadPoolTaskExecutor 262
Thymeleaf 258
tool namespace 496–497
transaction

boundaries 48
declarative management 49
manager 51, 132
on DAOs 400
programmatic management 49
semantics 48

Transaction module 3
transactional proxy 51
TransactionTemplate 470
transition element 140
trimWhitespace() 281
trip() 475
<tx:annotation-driven> 132
<tx:annotation-driven/> 404
type parameter, generic 53

U

unified expression language 145
UnsupportedEncodingException 256
update operation 37
update() 37
updateAcl() 239
URL access rules 220
UrlBasedViewResolver 90
use-expressions 175
user

account, database schema for storing 125
input, capturing with a form 138
principal, custom 193
registration form, building 105
service, custom 193

User Agent Switcher 94–95
<user-service> element 176
UserDetails 194
UserDetailsAdapter 194
UserDetailsDao 196
UserDetailsManager 177
UserDetailsService 176
UserMessageDao 251
UserMessageDao.save() 255
userOperations() 377
util namespace 51, 336

V

validation API 116
ValidationMessages.properties 121
value attribute 13
<var> element 141
Velocity Template Language. See VTL
Velocity, defining email templates 252
VelocityEngine 255
VelocityEngineFactoryBean 257
VelocityEngineUtils 256
View 91
view 66

as authorization target 210
attribute 137
externalizing strings in 112
name 78
name, automating generation of 92
naming 73
resolution 90
resolvers, chaining 92
separating from controller 76
state 137

View classes 272
viewNameTranslator 92
ViewResolver 70, 83, 91

chaining 92
configuring 89

viewScope 142
visibility into system configuration 338
VM

sprawl 339
volatile keyword 474
VTL 252

W

Walgemoed, Jarno 368
Walls, Craig 379
WAP 95
web

controller, creating 107
form, displaying 105
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX534
web (continued)
resources

as authorization target 210
authorizing 220

services
endpoints 363
RESTful 104
RESTful, integration via 430

tier 246
Web module 3
web-based form 245
web.xml

configuration 81
configuring for web security 178

WebArgumentResolver 98
WebContentInterceptor 87
WebDataBinder 116–117

whitelists 117, 214, 221
for controllers 80

Wireless Access Protocol. See WAP
WURFL 96
WurflDeviceResolver 96

X

XML
configuring objects with 12, 16
vs. annotations 31

XMLBeans 3
XmlViewResolver 91
XmlWebApplicationContext 23
xsd:ID 496
XSS attack, preventing 284, 295, 302
XStream 3
www.it-ebooks.info

http://www.it-ebooks.info/

S
pring in Practice covers 66 Spring development techniques
and the practical issues you will encounter when using them.
Th e book starts with three carefully craft ed introductory

chapters to get you up to speed on the fundamentals. And then,
the core of the book takes you step-by-step through the impor-
tant, practical techniques you will use no matter what type of
application you’re building. You’ll hone your Spring skills with
examples on user accounts, security, NoSQL data stores, and
application integration. Along the way, you’ll explore Spring-
based approaches to domain-specifi c challenges like CRM,
confi guration management, and site reliability.

What’s Inside
Covers Spring 3
Successful outcomes with integration testing
Dozens of web app techniques using Spring MVC

Practical examples and real-world context
 How to work eff ectively with data

Each technique highlights something new or interesting about
Spring and focuses on that concept in detail. Th is book assumes
you have a good foundation in Java and Java EE. Prior exposure
to Spring Framework is helpful but not required.

Willie Wheeler is a Principal Applications Engineer with 16 years
of experience in Java/Java EE and Spring Framework. Joshua
White is a Solutions Architect in the fi nancial and health services
industries. He has worked with Spring Framework since 2002.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/SpringinPractice

$44.99 / Can $47.99 [INCLUDING eBOOK]

JAVA

M A N N I N G

“Th is is the Spring
introduction you’ve

 been waiting for.”—John Tyler, PROS Inc.

“Practice, practice,
 practice makes perfect!
 An excellent read.”

—George Franciscus, Securefact

“Useful both as a guide
 and as a reference.”—John Guthrie
VMware’s vFabric Group

“Th e best Spring book
 I’ve ever read!”—Kenrick Chien

Blue Star Soft ware

Wheeler White

Spring IN PRACTICE
SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Spring in Practice
	brief contents
	contents
	preface
	acknowledgments
	about Spring
	about this book
	Roadmap
	Who should read this book?
	Code conventions and downloads
	Author Online
	About the authors

	about the cover illustration
	Chapter 1: Introducing Spring: the dependency injection container
	1.1 What is Spring, and why use it?
	1.1.1 The major pieces of the framework
	1.1.2 Why use it?

	1.2 Flexible configuration via dependency injection
	1.2.1 Configuring dependencies the old way
	1.2.2 Dependency injection
	1.2.3 Inversion of control

	1.3 A simple bean configuration example
	1.3.1 Creating the account domain object
	1.3.2 Creating the account DAO interface and implementation
	1.3.3 Configuring CsvAccountDao with Spring
	1.3.4 Creating the account service that finds delinquent accounts
	1.3.5 Wiring up the AccountService to CsvAccountDao

	1.4 Wiring beans using XML
	1.4.1 An overview of the beans namespace
	1.4.2 Bean scopes
	1.4.3 The p namespace
	1.4.4 The c namespace

	1.5 Autowiring and component scanning using annotations
	1.5.1 @Autowired
	1.5.2 Stereotype annotations
	1.5.3 Component scanning
	1.5.4 XML vs. annotations: which is better?

	1.6 Summary

	Chapter 2: Data persistence, ORM, and transactions
	2.1 Data access using JDBC
	Background
	Problem
	Solution
	Discussion

	2.2 Looking up a DataSource with JNDI
	Background
	Problem
	Solution
	Discussion

	2.3 Object-relational mapping and transactions via Hibernate
	Background
	Problem
	Solution
	Discussion

	2.4 Creating a data access layer
	Background
	Problem
	Solution
	Discussion

	2.5 Working with JPA (optional)
	Background
	Problem
	Solution
	Discussion

	2.6 Spring Data JPA overview (optional)
	Background
	Problem
	Solution
	Discussion

	2.7 Summary

	Chapter 3: Building web applications with Spring Web MVC
	3.1 Spring Web MVC background
	3.1.1 A review of the model-view-controller (MVC) pattern
	3.1.2 What is Spring Web MVC?
	3.1.3 An architectural overview of Spring Web MVC

	3.2 Creating your first Spring Web MVC application
	3.2.1 Configuring the application
	3.2.2 A simple domain object
	3.2.3 Writing a basic controller
	3.2.4 Implementing the master and details views

	3.3 Serving and processing forms
	3.3.1 Using domain objects as form beans
	3.3.2 Adding a controller
	3.3.3 Adding a form JSP and a “thanks” JSP
	3.3.4 Updating the application context
	3.3.5 Adding redirect-after-post behavior
	3.3.6 Adding form-binding whitelisting
	3.3.7 Adding form validation

	3.4 Configuring Spring Web MVC: web.xml
	3.5 Configuring Spring Web MVC: the application context
	3.5.1 Configuring HandlerMappings
	3.5.2 Configuring HandlerAdapters
	3.5.3 Configuring HandlerExceptionResolvers
	3.5.4 Configuring ViewResolvers
	3.5.5 Configuring a RequestToViewNameTranslator
	3.5.6 Configuring other resolvers

	3.6 Spring Mobile technology preview
	3.6.1 A brief anatomy of an HTTP request
	3.6.2 Detecting a mobile device with Spring Mobile
	3.6.3 Configuring Spring Mobile
	3.6.4 Handling site preferences
	3.6.5 Using JavaScript frameworks for enhanced look and feel
	3.6.6 Switching to a separate mobile site

	3.7 Related technologies
	3.7.1 Spring Web Flow
	3.7.2 Spring JavaScript
	3.7.3 Spring Faces
	3.7.4 Spring Security
	3.7.5 RESTful web services

	3.8 Summary

	Chapter 4: Basic web forms
	4.1 Displaying a web form
	Background
	Problem
	Solution
	Discussion

	4.2 Externalizing strings in the view
	Background
	Problem
	Solution
	Discussion

	4.3 Validating form data
	Background
	Problem
	Solution
	Discussion

	4.4 Saving form data
	Background
	Problem
	Solution
	Discussion

	4.5 Summary

	Chapter 5: Enhancing Spring MVC applications with Web Flow
	5.1 Is Spring Web Flow right for you?
	5.2 An overview of Spring Web Flow
	5.2.1 Defining a flow
	5.2.2 The five types of states
	5.2.3 Transitions between states
	5.2.4 Flow data

	5.3 The Spring Soccer Club demo application
	5.3.1 Installing and configuring SWF
	Background
	Problem
	Solution

	5.3.2 Creating flows with different state types
	Background
	Problem
	Solution

	5.4 Using action classes
	Background
	Problem
	Solution

	5.5 Form data binding
	Background
	Problem
	Solution

	5.6 Form validation
	Background
	Problem
	Solution

	5.7 Flow and state inheritance
	Background
	Problem
	Solution

	5.8 Securing web flows
	Background
	Problem
	Solution

	5.9 Summary

	Chapter 6: Authenticating users
	6.1 Implementing login and logout with remember-me authentication
	Background
	Problem
	Solution
	Discussion

	6.2 Customizing the login page
	Background
	Problem
	Solution
	Discussion

	6.3 Implementing an always-resident login form
	Background
	Problem
	Solution
	Discussion

	6.4 Sourcing user data from a database
	Background
	Problem
	Solution
	Discussion

	6.5 Customizing the user database schema
	Background
	Problem
	Solution
	Discussion

	6.6 Using a custom user service and user principal
	Background
	Problem
	Solution
	Discussion

	6.7 Secure user passwords in the database
	Background
	Problem
	Solution
	Discussion

	6.8 Auto-authenticating the user after a successful registration
	Background
	Problem
	Solution
	Discussion

	6.9 Summary

	Chapter 7: Authorizing user requests
	7.1 Authorizing Java methods using authentication levels, roles, and permissions
	Background
	Problem
	Solution
	Discussion

	7.2 Authorizing JSP views using authentication levels, roles, and permissions
	Background
	Problem
	Solution
	Discussion

	7.3 Authorizing web resources using authentication levels, roles, and permissions
	Background
	Problem
	Solution
	Discussion

	7.4 Authorizing method invocations based on ACLs
	Background
	Problem
	Solution
	Discussion

	7.5 Displaying web navigation and content based on ACLs
	Background
	Problem
	Solution
	Discussion

	7.6 Summary

	Chapter 8: Communicating with users and customers
	8.1 Create a web-based Contact Us form
	Background
	Problem
	Solution
	Discussion

	8.2 Autogenerate an email response and email notification
	Background
	Problem
	Solution
	Discussion

	8.3 Speeding up autogenerated emails
	Background
	Problem
	Solution
	Discussion

	8.4 Allowing users to subscribe to a mailing list
	Background
	Problem
	Solution
	Discussion

	8.5 Publishing a news feed
	Background
	Problem
	Solution
	Discussion

	8.6 Summary

	Chapter 9: Creating a rich-text comment engine
	9.1 Creating a basic user comment engine
	Background
	Problem
	Solution
	Discussion

	9.2 Integrating the comment engine with an article-delivery service
	Background
	Problem
	Solution
	Discussion

	9.3 Adding rich-text support to the comment engine
	Background
	Problem
	Solution
	Discussion

	9.4 Testing the HTML filter
	Background
	Problem
	Solution
	Discussion

	9.5 Summary

	Chapter 10: Integration testing
	10.1 Configuring Maven for integration testing
	Background
	Problem
	Solution
	Discussion

	10.2 Writing transactional happy-path integration tests
	Background
	Problem
	Solution
	Discussion

	10.3 Verifying that code under test throws an exception
	Background
	Problem
	Solution
	Discussion

	10.4 Creating integration tests that verify performance
	Background
	Problem
	Solution
	Discussion

	10.5 Ignoring a test
	Background
	Problem
	Solution
	Discussion

	10.6 Running integration tests against an embedded database
	Background
	Problem
	Solution
	Discussion

	10.7 Summary

	Chapter 11: Building a configuration management database
	11.1 Creating a simple configuration item
	Background
	Problem
	Solution
	Discussion

	11.2 Creating related configuration items
	Background
	Problem
	Solution
	Discussion

	11.3 Adding a RESTful web service
	Background
	Problem
	Solution
	Discussion

	11.4 Updating the CMDB after successful builds
	Background
	Problem
	Solution
	Discussion

	11.5 Sourcing public GitHub data
	Background
	Problem
	Solution
	Discussion

	11.6 Sourcing private GitHub data
	Background
	Problem
	Solution
	Discussion

	11.7 Encrypting access tokens for production use
	Background
	Problem
	Solution
	Discussion

	11.8 Summary

	Chapter 12: Building an article-delivery engine
	12.1 Storing articles in a content repository
	Background
	Problem
	Solution
	Discussion

	12.2 Creating a web-based article-delivery engine
	Background
	Problem
	Solution
	Discussion

	12.3 Storing articles in a document repository
	Background
	Problem
	Solution
	Discussion

	12.4 Summary

	Chapter 13: Enterprise integration
	13.1 Integrating applications via a shared database
	Background
	Problem
	Solution
	Discussion

	13.2 Decoupling applications with RESTful web services
	Background
	Problem
	Solution
	Discussion

	13.3 Implementing a message bus using RabbitMQ and Spring Integration
	Background
	Problem
	Solution
	Discussion

	13.4 Sourcing tickets from an IMAP store
	Background
	Problem
	Solution
	Discussion

	13.5 Send confirmation messages over SMTP
	Background
	Problem
	Solution
	Discussion

	13.6 Summary

	Chapter 14: Creating a Spring-based “site-up” framework
	14.1 Creating a circuit-breaker template and callback
	Background
	Problem
	Solution
	Discussion

	14.2 Exposing the circuit breaker as a JMX MBean
	Background
	Problem
	Solution
	Discussion

	14.3 Supporting AOP-based configuration
	Background
	Problem
	Solution
	Discussion

	14.4 Supporting custom namespaces
	Background
	Problem
	Solution
	Discussion

	14.5 Supporting annotation-based configuration
	Background
	Problem
	Solution
	Discussion

	14.6 Summary

	Appendix: Working with the sample code
	A.1 IDE and environment setup
	A.2 How the code is organized
	A.3 Getting the code
	A.4 Building the code
	A.5 Configuring the app
	A.6 Running the app

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

