

Sonar Code Quality Testing
Essentials

Achieve higher levels of Software Quality with Sonar

Charalampos S. Arapidis

 BIRMINGHAM - MUMBAI

Sonar Code Quality Testing Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1190812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-786-7

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Charalampos S. Arapidis

Reviewers
Christopher Bartling

Efraim Kyriakidis

Kosmas Mackrogamvrakis

Lefteris Ntouanoglou

Acquisition Editor
Usha Iyer

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Prasad Dalvi

Veronica Fernandes

Manasi Poonthottam

Project Coordinator
Sai Gamare

Proofreader
Sandra Hopper

Indexer
Monica Ajmera Mehta

Graphics
Manu Joseph

Production Coordinators
Aparna Bhagat

Nilesh R. Mohite

Cover Work
Aparna Bhagat

About the Author

Charalampos S. Arapidis is a Senior Software Engineer located at Athens,
Greece. He specializes in J2EE enterprise application design and implementation.
His other specialties include data-mining/visualization techniques and tuning
continuous integrated environments.

From a very early age, Charalampos showed particular interest in advanced
Mathematics and software development and has been honored twice at the
Panhellenic Mathematical Contest for providing prototype and innovative solutions.
He graduated in Computer and Software Engineering from the Polytechnic School of
the Aristotle University.

After graduation, he dynamically entered the enterprise field, where he helped
his organization make the transition from legacy client server ERP and CRM
applications to full-stack J2EE web applications, all in a streamlined and integrated
development environment.

The development of the Proteus Web Document Management System for the Greek
Public Sector and his solutions to Kallikratis—the largest data integration project
ever conceived in the latter years of Greece's public sector—are two of his most
recognizable achievements nationwide.

Charalampos currently works at Siemens Enterprise Communications as a
Senior Software Applications Engineer, designing and implementing Unified
Communications software at multinational level.

When not working he enjoys blogging, playing the classical guitar, and composing
music, exploring new ways to translate polynomial equations to sound.

I would like to thank and express my gratitude to Lefteris
Ntouanoglou for providing me with guidance and vision in the IT
field especially in the last two years, and Olivier Gaudin and Fabrice
Bellingard for their interest in the book. From the Packt Publishing
staff, I would like to thank, in particular, Newton Sequeira, Ashwin
Shetty, Sai Gamare, and Usha Iyer for supporting and guiding me
through the writing process, and all the technical reviewers for their
helpful suggestions. Finally, I would like to thank Kostas Vasiliou,
Christos Chrysos, Vassilis Arapidis, and Evangelia Vlachantoni for
their support.

About the Reviewers

Christopher Bartling has been in the IT industry since 1995. He has served in the
roles of application developer, mentor, and agile coach. He also has experience in
biometrics, genomics and computational biology, healthcare, insurance, and
legal/regulatory domains. He also helps develop and deliver training for
DevJam (http://www.devjam.com). Prior to his career in IT, he was involved
in electrophysiology and biomedical research at the Mayo Clinic in Rochester
Minnesota. You can find his blog at http://bartling.blogspot.com and tweets
at @cbartling.

Efraim Kyriakidis is a skilled software engineer with over seven years of
experience in developing and delivering software solutions for diverse customers.
He's well versed in all stages of the software development lifecycle. His first
acquaintance with computers and programming was a state-of-the-art Commodore
64, back in the '80s as a kid. Since then he has grown and received his Diploma
in Electrotechnic Engineering from Aristotle University, Thessaloniki. Through
his career, he mainly worked with Microsoft Technologies and has an interest
in technologies such as Silverlight and Windows Phone. He currently works for
Siemens AG in Germany as a Software Developer.

Kosmas Mackrogamvrakis was born in 1971 on the island of Crete in Greece.
He moved at an early age to the capital of Greece, Athens. There he attended public
school and graduated as an engineer in Automatic Electronics. Later, he continued
his studies at the Technical School of Computers in Athens, but he was forced to
interrupt, as he was obliged to join the army.

In the army he served as a Sergeant in the artillery section and trained in
computer-guided canon targeting, based on his previous knowledge of
computer technology.

Even before high school, he was highly interested in computer science, and he
managed to learn Basic, Pascal, and Assembly language.

After his army obligations, he was employed by Athens News Agency, where he
worked as a technician and desktop-publishing employee. There he was trained
by Unibrain, in Ventura Publishing software, Photoshop, and Corel Draw. In
parallel, he installed a Fax distribution network with Canada, for redistribution
of a FAX newspaper.

After three years he moved to Hellenic Scientific S.A., as a technician. There he
managed to get trained and show his natural talent in computer engineering. He
was trained on the job and successfully undertook all the responsibilities of a Senior
Systems Engineer after six years, and learned and used the following operating
systems and software and services: Microsoft Windows 98/2000/XP/Vista,
Microsoft Windows Server NT/2000/2003, Novel, Unix/Xenix, Mac OS/X, Linux,
AIX, AS/400; Networks including WAN/LAN Protocols, TCP/IP, DNS,
FTP, HTTP, IMAP/POP3, SMTP, VPN; E-mail systems Sendmail, Microsoft
Exchange, Postfix, and clients such as Outlook, Mozilla Thunderbird, Kmail,
and Evolution. He specialized in the hardware of IBM, HP, Dell, Fujitsu Servers,
Desktops, and Notebooks.

He got certifications on Exchange Server from Microsoft, AIX from IBM, Tivoli IT
Director from IBM, and AS/400 from IBM.

After seven years, and due to market needs and degradation of the company's share
in the market, he moved to freelancing.

As a freelancer, he supported a large number of small-to medium-sized companies,
as systems engineer, consultant, and technician.

Some of the companies that he was supporting included Rothmans, Adidas, Kraft
Hellas, Vivechrom (Akzo), Public Sector (ministries and prefectures), Pan Systems.

After seven years of freelancing, he was asked by Siemens to undertake the position
of Systems Engineer for the public sector and later Project Manager.

After three years in Siemens, the public sector IT support stopped in Greece, and he
left the company.

Lately, and right after Siemens, he undertook the position of IT Services Manager for
southeast Europe in Adidas.

Lefteris Ntouanoglou is a co-founder and the CEO of Schoox Inc, a Delaware
company based in Austin, Texas, which developed schooX—a Social Academy for
Self-learners (www.schoox.com). He has extensive administrative and management
experience in the software sector. Prior to Schoox Inc, he joined a European startup
company, OTS SA, which developed administrative and financial software for
the Public Sector. He served the company from a various number of managerial
positions and as the COO of the company he built one of the largest software
companies in Greece.

During his PhD, he developed computer algorithms for fast computation of
holographic patterns and graduated with Honor. In 1998, he was praised with the
Award of Innovation from the Association of Holographic Techniques in Germany
for inventing and implementing an innovative anticounterfeiting system based on a
coded Holographic Label and a Web Application.

He is a highly skilled engineer and a visionary entrepreneur. Creativity and
innovative thinking is part of his personality. Implementing new ideas and turning
them into successful business by building and motivating strong and result-oriented
teams is one of his strengths.

He was born and grew up in Germany and speaks fluent Greek, German,
and English.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

To my parents, Simeon Arapidis and Ioanna Tsonona

Table of Contents
Preface 1
Chapter 1: An Overview of Sonar 7

What is Sonar 7
How it works 8
What makes Sonar different 9
Sonar in the lifecycle 11

Features of Sonar 12
Overview of all projects 12
Coding rules 13
Standard software metrics 13
Unit tests 14
Drill down to source code 15
Time Machine 15
Maven ready 16
User friendly 16
Unified components 16
Security measures 17
Extensible plugin system 17

Covering software quality on Seven Axes 19
How Sonar manages quality 20

Architecture of Sonar 21
Source code analyzers 23

Squid 23
Checkstyle 24
PMD 24
FindBugs 25
Cobertura and Clover 25

The Sonar community and ecosystem 25

Table of Contents

[ii]

The SonarSource company 26
Awards and conferences 27
Sonar license 27

Summary 27
Chapter 2: Installing Sonar 29

Prerequisites for Sonar 30
Checking your Java installation 31
Installing Maven on Linux 32
Installing Maven on Windows 32
Installing MySQL on Linux 33
Installing MySQL on Windows 34

Downloading Sonar 34
Installing the Sonar web server 35

Sonar server basic configuration 36
Configuring MySQL 37

Creating the database 37
Setting up Sonar with MySQL 37

Starting Sonar as a service 38
Run as a service on Linux 38
Run as a service on Windows 39

Logging in to Sonar for the first time 39
Securing your Sonar instance 40

Sonar authentication and sources visibility 41
Creating users and groups 42

Managing project roles 42
Backing up your data 43

Sonar instance configuration backup 44
Filesystem backup 44
Backing up the MySQL sonar database 45

Extending Sonar with plugins 45
Installing the Useless Code Tracker plugin 46

Upgrading Sonar from the Update Center section 48
Checking compatibility of plugins 48
Upgrading to latest Sonar version 48

Summary 49
Chapter 3: Analyzing your First Project 51

Using a Java runner 52
Configuring the runner 52
Setting up a Sonar server for remote connections 53
Configuring the project 54

Table of Contents

[iii]

Analysis with the Sonar Maven plugin 57
Installing Maven 57
Configuring the Sonar Maven plugin 58
Performing the analysis 60

Analysis with Ant 61
Installing Ant 61
Configuring and running Sonar analysis task 62

Browsing the Sonar web interface 63
The treemap gadget 65
Filtering your projects 66
The "What Coverage?" filter 68

Sonar components— an overview 70
Dashboard 70
Components 71
Violations drilldown 71
Time Machine 72
Clouds 74
Design 75
Hotspots 76
Libraries 76

Anatomy of the dashboard 77
Layout and widget arrangement 79

Eliminating your first violations 80
Unused modifier violation 80

Modified Order violation 81
Correctness - Repeated conditional tests 81

Creating your first analysis event 82
Getting visual feedback 82

Summary 83
Chapter 4: Following Coding Standards 85

A brief overview of coding standards and conventions 86
Java standards 87

Sonar profiles, rules, and violations 87
The Rules Compliance Index 88

Managing quality profiles 89
Creating a profile 90
Associating projects to profiles 90

Managing rules 91
Adding a rule 91
Configuring a rule 92

Regular expressions 92

Table of Contents

[iv]

Boolean expressions 93
Token and value-based rules 93

Backing up and restoring profiles 94
Creating a coding standards profile 94

Selecting the rules 95
Naming conventions and declarations rules 96

Declaration order 97
Abstract class name 99
Variable, parameter, and method names 99
Multiple variable declarations 100
Local home naming 100
Variable lengths 100
Naming - Avoid field name matching method name 101
Naming - Suspicious equals method name 101

Standards rules 102
Unused imports 102
Unnecessary final modifier 102
Unused modifier 103
Magic number 103
Final class 104
Missing constructor 104
Abstract class without any methods 104

Code layout and indentation 105
Avoid inline conditionals 105
Left Curly 106
Paren Pad 106
Trailing comment 106
Multiple String literals 107
The for loops must use braces 108

Inspecting violations with the Radiator component 108
Installing the Radiator plugin 108

Watch the quality improving 110
Configuring the Timeline widget 110

Summary 111
Chapter 5: Managing Measures and Getting Feedback 113

Reviewing code 114
Sonar manual reviews 115

Assigning reviews 115
Browsing reviews 117

Configuring notifications 117
Defining metric thresholds and alerts 119

The Build Breaker 120
Sonar manual measures 120

Creating the Story Points measure 121
Managing manual measures 122

Table of Contents

[v]

Quality reporting on your project 123
Installing the PDF report plugin 124
Getting the project report 125
Customizing the report 127

Getting visual feedback 127
Timeline plugin 128
Motion Chart plugin 130

Bubble chart 131
Bar chart 132

Summary 133
Chapter 6: Hunting Potential Bugs 135

Potential bugs violations 135
Dodgy code rules 136

Use notifyAll instead of notify 138
StringBuffer instantiation with char 138
Use StringBuffer for String appends 138
Constructor calls overridable method 139
Close Resource 140
Ambiguous invocation of either an inherited or outer method 141
Consider returning a zero length array rather than null 141
Method ignores return value 141
Method does not release lock on all paths 142
Null pointer dereference 142
Suspicious reference comparison 142
Misplaced null check 143
Impossible cast 143

Program flow rules 144
Do not throw exception in finally 145
Finalize does not call Super Finalize 145
Avoid calling finalize 146
Avoid catching NPE 146
Method ignores exceptional return value 146
Switch statement found where default case is missing 147
Missing break in switch 148
Avoid catching Throwable 148

Security rules 149
Class exposes synchronization and semaphores in its public interface 149
Method returns internal array 149
Hardcoded constant database password 150

Installing the Violation Density plugin 152
Integrating Sonar to Eclipse 152

Installing the Sonar Eclipse plugin 153
Linking an Eclipse project to Sonar server 157
Using the Sonar perspective 158

Summary 160

Table of Contents

[vi]

Chapter 7: Refining Your Documentation 161
Writing effective documentation 161

Comments structure 162
Javadoc block comment 162
Javadoc line comment 162

Javadoc common tags 162
Documentation metrics definitions 164

Comment lines 165
Commented-out Lines of Code 165
Density of Comment Lines 165
Density of Public Documented API 166

Monitoring documentation levels 166
Statements 167

Overview of Sonar documentation violations 168
Javadoc rules 168

Undocumented API 169
Javadoc Method 169
Javadoc Package 169
Javadoc Style 170
Javadoc Type 170
Javadoc Variable 171
Uncommented Empty Constructor 171
Uncommented Empty Method 171
Uncommented Main 172

Locating undocumented code 172
Creating the documentation filter 173

Generating documentation automatically 174
Installing Graphviz 175
Installing Doxygen 176
Using the Sonar Documentation plugin 177

Summary 179
Chapter 8: Working with Duplicated Code 181

Code duplication 182
Don't Repeat Yourself (DRY) 182

Sonar code duplication metrics 182
Creating Duplicated Code Alert 183

Locating duplicated code with Sonar 183
Cross-project duplication detection 185
Using the Radiator component to detect duplication 185

The Useless Code Tracker plugin 188
Tracking duplicated lines 188
Tracking dead code 188
Installing the Useless Code plugin 189

Table of Contents

[vii]

Using extraction and inheritance to attack duplication 190
The Extract Method refactoring pattern 190
Refactoring with inheritance 194

Summary 195
Chapter 9: Analyzing Complexity and Design 197

Measuring software complexity 197
The Cyclomatic Complexity metric 198

Cohesion and coupling 200
Afferent coupling 200
Efferent coupling 201

Sonar Code Complexity metrics 201
Boolean Expression Complexity 202
Class Data Abstraction Coupling 203
Class Fan Out Complexity 203
Cyclomatic Complexity 203
JavaNCSS 203
Nested For Depth 204
Simplify Boolean Return 204
Too many methods 204
Too many fields 204
Avoid too complex class 204
Avoid too deep inheritance tree 204

The Response for Class metric 205
Lack of Cohesion in Methods and the LCOM4 metric 208

Exceptions to the LCOM4 metric 211
Locating and eliminating dependencies 211

Using the Sonar design matrix 213
Summary 221

Chapter 10: Code Coverage and Testing 223
Measuring code coverage 224
Code coverage tools 224

Selecting a code coverage tool for Sonar 225
Cobertura 226
JaCoCo 228
Clover Sonar plugin 229
Emma Sonar plugin 230

Code coverage analysis 231
Statement coverage 232
Branch/decision coverage 232
Condition coverage 233

Table of Contents

[viii]

Path coverage 233
Assessing the impact of your tests 234

Uncovered lines 235
Uncovered branches 236

Using the coverage tag cloud component 237
Quick wins mode 237
Top risk mode 237
Where to start testing 238

The Top risk approach 238
jUnit Quickstart 239

Writing a simple unit test 239
Reviewing test results in Sonar 241
Summary 243

Chapter 11: Integrating Sonar 245
The Continuous Inspection paradigm 245

Continuous integration servers 246
Installing Subversion 246

Ubuntu/Debian Subversion installation 247
Red Hat Subversion installation 247
Installing Subversion on other Linux distributions 248
Windows Subversion installation 248

Setting up a Subversion server 248
Creating a Subversion repository 248
Subversion security and authorization 249
Importing a project into Subversion 249

Installing the Jenkins CI server 252
Ubuntu/Debian Jenkins installation 253
Redhat/Fedora/CentOS Jenkins installation 255
Windows Jenkins installation 255

Configuring Jenkins 256
JDK configuration 256
Maven configuration 257
Repository configuration 257
E-mail server configuration 258
Securing Jenkins 258

Creating a build job 260
Cron expression and scheduling 261

Installing the Sonar plugin 262
Building and monitoring your project 264

Summary 266

Table of Contents

[ix]

Appendix: Sonar Metrics Index 267
Sonar metrics 267

Complexity metrics 268
Design metrics 269
Documentation metrics 271
Duplication metrics 272
General metrics 273
Code Coverage and Unit Test metrics 273
Rules Compliance metrics 275
Size metrics 278
Management metrics 278

Index 279

Preface
Developers continuously strive to achieve higher levels of source code quality. It
is the holy grail in the software development industry. Sonar is an all-out platform
confronting quality from numerous aspects as it covers quality on seven axes,
provides an abundance of hunting tools to pinpoint code defects, and continuously
generates quality reports following the continuous inspection paradigm in an
integrated environment. It offers a complete and cost-effective quality management
solution, an invaluable tool for every business.

Sonar is an open source platform used by development teams to manage source
code quality. Sonar has been developed with this main objective in mind: make code
quality management accessible to everyone with minimal effort. As such, Sonar
provides code analyzers, reporting tools, manual reviews, defect-hunting modules,
and Time Machine as core functionalities. It also comes with a plugin mechanism
enabling the community to extend the functionality, making Sonar the one-stop-shop
for source code quality by addressing not only the developer's requirements, but also
the manager's needs.

Sonar Code Quality Testing Essentials will help you understand the different
factors that define code quality and how to improve your own or your team's
code using Sonar.

You will learn to use Sonar effectively and explore the quality of your source code on
the following axes:

•	 Coding standards
•	 Documentation and comments
•	 Potential bugs and defects
•	 Unit-testing coverage
•	 Design and complexity

Preface

[2]

Through practical examples, you will customize Sonar components and widgets to
identify areas where your source code is lacking. The book goes on to propose good
practices and common solutions that you can put to use to improve such code.

You will start with installing and setting up a Sonar server and performing your
first project analysis. Then you will go through the process of creating a custom and
balanced quality profile exploring all Sonar components through practical examples.
After reading the book, you will be able to analyze any project using Sonar and know
how to read and evaluate quality metrics.

Hunting potential bugs and eliminating complexity are the hottest topics regarding
code quality. The book will guide you through the process of finding such
problematic areas, leveraging and customizing the most appropriate components.
Knowing the best tool for each task is essential.

While you improve code and design through the book, you will notice that metrics
go high and alerts turn green. You will use the Time Machine and the Timeline to
examine how your changes affected the quality.

Sonar Code Quality Testing Essentials will enable you to perform custom quality
analysis on any Java project and quickly gain insight on even large code bases, as
well as provide possible solutions to code defects and complexity matters.

What this book covers
Chapter 1, An Overview of Sonar, covers the Sonar quality management platform and
its features. It also discusses the different aspects of quality and the role of metrics.

Chapter 2, Installing Sonar, guides you to successfully installing the Sonar platform,
and how to perform basic administration tasks such as backing up project data and
installing plugins.

Chapter 3, Analyzing Your First Project, walks you through setting up a project for
analysis and showcasing the Sonar dashboard. Finally, you will eliminate violations
and further reflect on project quality and progression.

Chapter 4, Following Coding Standards, introduces coding standards and Sonar rules.
You will learn how to detect coding standards errors and eliminate code violations
through practical examples.

Chapter 5, Managing Measures and Getting Feedback, introduces Sonar quality profiles
and discusses different development needs and rule sets. Additionally, the reader
will learn how to create custom metric alerts and get visual feedback on quality and
review historical data.

Preface

[3]

Chapter 6, Hunting Potential Bugs, covers code violations that can lead to potential
software bugs. You will learn how to use Sonar hunting tools to detect such
violations following practical examples.

Chapter 7, Refining Your Documentation, teaches how to find undocumented source
code. We then discuss documentation practices and documentation-generation tools.

Chapter 8, Working with Duplicated Code, discusses code duplication and guides you
on how to spot duplicated code and possible methods to eliminate it.

Chapter 9, Analyzing Complexity and Design, covers how software complexity is
presented in Sonar and further discusses complexity metrics. You will get a good
grasp of complexity metrics and learn how to identify and review them with Sonar.

Chapter 10, Code Coverage and Testing, covers how Sonar measures code coverage and
how it helps in writing cost-effective unit tests covering complexity that matters.

Chapter 11, Integrating Sonar, introduces you to the Continuous Inspection Paradigm
and serves as a reference guide on how to set up and enable an integrated build
environment providing constant Sonar quality reporting.

Appendix, Sonar Metrics Index, has reference to software metrics supported
by Sonar.

What you need for this book
You will need the following software to follow the examples:

•	 Java JDK 1.6+
•	 Sonar latest version (http://www.sonarsource.org)
•	 Eclipse (http://www.eclipse.org)
•	 Apache Maven build tool (http://maven.apache.org/)
•	 Apache Ant build tool (http://ant.apache.org/)

Who this book is for
This book is for you if you are a Java developer or a Team Manager familiar with
Java and want to ensure the quality of your code using Sonar. You should have a
background with Java and unit testing in general. The book follows a step-by-step
tutorial enriched with practical examples and the necessary screenshots for easy and
quick learning.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Open a command prompt and type the
telnet command."

A block of code is set as follows:

327 if (!Token.containsTokenWithValue(tokens, y) && years != 0) {
 while (years != 0) {
 months += 12 * years;
 years = 0;
 }
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[INFO] Database dialect class org.sonar.jpa.dialect.MySql
[INFO] Initializing Hibernate
[INFO] ------------- Analyzing Commons Lang 3
[INFO] Selected quality profile : [name=Sonar way,language=java]
[INFO] Configure maven plugins...
[INFO] Compare to previous analysis
[INFO] Compare over 5 days (2011-11-09)
[INFO] Compare over 30 days (2011-10-15)
[INFO] Sensor JavaSourceImporter...
[INFO] Sensor JavaSourceImporter done: 32279 ms
…
[INFO] Sensor TrackerSensor done: 1889 ms
[INFO] Execute decorators...
[INFO] ANALYSIS SUCCESSFUL, you can browse http://IP_ADDRESS:9000/
sonar

Any command-line input or output is written as follows:

$ $SONAR_RUNNER_HOME/bin/sonar-runner -h

usage: sonar-runner [options]

Options:

 -h,--help Display help information

 -X,--debug Produce execution debug output

 -D,--define <arg> Define property

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
Add filter to navigate to filter configuration settings screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you would report this to
us. By doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on the
errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded
to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

An Overview of Sonar
This chapter provides an overview of Sonar, presenting the objectives and features
of the platform, and highlighting how developers and software quality benefit
from it. It follows an overview of the platform's architecture, so as to gain a better
understanding about how Sonar analyzes and measures quality. Finally, the chapter
closes by discussing the Sonar community and its ecosystem. In this chapter we cover:

•	 What is Sonar?
•	 Features of Sonar
•	 Covering software quality on Seven Axes
•	 Architecture of Sonar
•	 Source code analyzers
•	 The Sonar community and ecosystem

What is Sonar
Sonar is a software quality management platform primarily for Java programming
language, enabling developers to access and track code analysis data ranging
from styling errors, potential bugs, and code defects to design inefficiencies, code
duplication, lack of test coverage, and excess complexity. Everything that affects
our code base, from minor styling details to critical design errors, is inspected and
evaluated by Sonar.

Consider Sonar as your team's quality and improvement agent. While the primary
supported language is Java, more languages are supported with extensions or
commercial plugins, for example C, PHP, and JavaScript. At the time of writing,
more than 10 languages were supported with plans to add more in the future. The
additional languages are supported in the form of plugins, taking advantage
of the platform's extensible and flexible architecture.

An Overview of Sonar

[8]

How it works
Sonar collects and analyzes source code, measuring quality and providing reports for
your projects. It combines static and dynamic analysis tools and enables quality to
be measured continuously over time. More than 600 code rules are incorporated into
the platform, checking the code from different perspectives.

Rules are separated into different logical groups and each one contributes at a
different level towards the overall quality of the project in case. Analysis results,
code violations, and historical data are all available and accessible through a
well-thought-out user interface consisting of different components, with each
one serving and fulfilling different needs and scopes.

The Sonar platform analyzes source code from different aspects. To achieve this,
Sonar drills down to your code layer by layer, moving from module level down to
class level. Picture this as a vertical movement through your source code from top to
bottom components. At each level, Sonar performs both static and dynamic analysis
producing metric values and statistics, revealing problematic areas in the source that
require inspection or improvement. The analysis is not a monolithic procedure but
examines code from different perspectives, introducing the concept of axes of quality.
The results are then interpreted and consolidated in a very informative and visually
appealing dashboard, enabling you to form an opinion about defective code and
quality testing over projects. You can now take educated decisions as to where to
start fixing things in a cost-effective manner, reducing the technical debt.

Although Sonar can be run as a one-off auditor, where the platform really shines
is when you have it track and check your source code continuously. While a single
inspection proves to be useful at times, it does not make the most out of the platform.
The intended use is to have Sonar integrated into the team's development process,
exploiting the platform's true capabilities.

If all these sound complex and advanced, they are not. It is a matter of a single
download and running a script to have Sonar up and running, waiting to assess our
code. Afterward, we can choose among different methods of how to import projects
into the platform for analysis.

Chapter 1

[9]

What makes Sonar different
What makes Sonar really stand out is that it not only provides metrics and statistics
about your code but translates these nondescript values to real business values such
as risk and technical debt. This conversion plays a major role in the philosophy of the
platform enabling a new business dimension to unfold, which is invaluable to project
management. Sonar not only addresses to core developers and programmers but to
project managers and even higher managerial levels as well, due to the management
aspect it offers. This concept is strengthened more by Sonar's enhanced reporting
capabilities and multiple views addressing source code from different perspectives.

From a managerial perspective, transparent and continuous access on historical data
enables the manager to ask the right questions.

To better illustrate this, the following are some possible cases discussing quality and
source code matters based on feedback from Sonar, either visual or textual:

Case 1: Complexity has jumped up lately; should we further examine the design
and implementation of the recently added features? (Notice the line that represents
overall complexity increasing close to 9.000.)

An Overview of Sonar

[10]

Case 2: Many major violations popped up during the last iteration. Are things
moving too fast? Is the team taking more than it can handle? What about pace?
(Sonar reports 589 major code violations.)

Case 3: Documentation is lacking and team composition is about to change. Let us
clarify and better explain what our code is about. At least the public API! (Big red
boxes represent undocumented public APIs.)

Chapter 1

[11]

Sonar in the lifecycle
Sonar in the development environment acts as a quality management center. It is the
place of reference when code quality matters arise, and sessions with team members
drilling down views, exploring deficiencies and discussing software design and
its implementation are not uncommon. The ease of the installation process and the
broad accessibility by the web interface make it a perfect choice to inspect and share
code quality among managers and developers.

An extra step is added to the developers' lifecycle, that of quality review and
inspection. After updating and committing code, tests are executed within the context
of the build server, producing a fresh artifact. Then, Sonar takes over collecting and
analyzing source code and test results. Once the analysis process is complete, the
Sonar dashboard is updated with inspection data reflecting the latest changes.

It is vital not to force Sonar into the development process but let the team embrace it.

Let us put technical details and issues aside for a moment and focus more on
the psychological aspect of this process as a whole. There is no more rewarding
experience for a developer than watching the results of his/her work on a daily
basis, experiencing how his/her actions directly reflect upon the improvisation of
the final product. Eventually, Sonar proves to be an essential part of a development
setup, while the whole process becomes second nature to the developer.

There is one obstacle though that every development team will meet, that of the fear
barrier and how to get over it. And by fear, we mean the fear to expose the quality of
team members' source code, or most importantly the lack of it. And this is perfectly
normal and expected.

Overcoming the fear barrier

What you can do is run Sonar undercover for a couple of iterations,
touching and bettering only your code, escaping comments and
reviews on team members. Another approach would be to use it
only as an information tool, without emphasizing it. Once you start
writing better code, and have substantially improved and corrected
errors, you can then host a team session highlighting the platform,
presenting the positive effects upon the project, in an effort to
encourage team members to use it for improvisation.
One good point would be to emphasize on how rewarding the
experience is to watch quality grow over time in response to code
corrections and design changes. This warm feeling is the best
incentive for each and every developer.

An Overview of Sonar

[12]

Features of Sonar
The Sonar platform comes with a vast array of components in order to provide
insightful and accurate information. Moreover, its flexible architecture allows
functionality to be added on demand via a plugin system.

Let's take a closer look at the features the core platform has to offer:

Overview of all projects
With Sonar's project dashboard, you gain quick access to and insight about all your
projects through a comprehensive dashboard. The dashboard presents vital quality
metrics in an efficient way, highlights sections which require your attention, and
finally includes common interface practicalities, such as sorting, adding, or removing
columns to make browsing easier. The majority of the user interface is implemented
in AJAX and the transitions between the different views and drilldowns are quick
and smooth. Likewise, the components of the platform from simple to more complex
ones are very responsive and react in a timely fashion to your actions.

The dashboard is fully customizable, and you can select which metric columns
each view contains and reorder them as you like. The ability to internationalize
the platform is a huge plus allowing you to present a total solution covering
every aspect, from pleasant and practical interface to language settings. Generally
speaking, language friendliness is very much welcomed if you intend to provide a
Sonar instance to a less-technical audience.

Chapter 1

[13]

If you want to take look at the Sonar dashboard in full swing, point your
browser at Nemo, a Sonar demo instance by SonarSource S.A. hosting the
platform's own source code among other well-known open source projects at
http://nemo.sonarsource.org.

Coding rules
More than 600 rules are incorporated into Sonar, performing simple checks
to complex calculations. Rules can be fully parameterized to meet different
development needs, and if this is not enough, with a little help from the lively
community, you can even implement your own, covering every possible need.

The strictest Sonar profile includes about 720 rules, but probably you won't ever
need to activate it. It is not even suggested to use all of them at all. The objective
is to provide as many coding rules as possible and let the developer make choices
accordingly, assigning them to custom profiles for projects. Obviously, there is
the ability to host multiple different profiles with specific sets of rules and further
assign these profiles to different projects for maximum flexibility.

Standard software metrics
Metrics are necessary to form objective and reliable opinion on any piece of software.
Like in every science or process, metrics are essential to measure and reproduce
behavior and functionality, and help evaluate/compare source code, establishing a
common ground among different pieces of software. In other words, metrics form a
common denominator for all software and they have become an integral part of the
development process.

Not a magic bullet
Sonar is not a magic bullet. A solid development process,
creativity, dedication, and practical design are still some of the
necessary virtues to create a successful and quality product.
Writing code for the sake of metrics is basically cheating.
Tricking the system to produce desirable results, disconnected
from the functional requirements, is as you understand under-
productive. Such a bad practice only detracts from the final
product instead of improving it.

An Overview of Sonar

[14]

One use for software metrics, which does not have to do directly with quality is that
they can also provide insight and deeper knowledge about the source code, revealing
potential pitfalls, and providing a safe guideline for new developers to follow. Sonar
includes all classical metrics related to software development, some of them being:

•	 Lines of code
•	 Documented API
•	 Cyclomatic complexity
•	 Test coverage
•	 Duplicated code

Unit tests
If you have at least a couple of development years under your belt at some time
or another, you have probably wondered how you could ever manage without
writing any tests for your code. Untested software results in an unstable product, not
working as expected. Experience shows that the first thing the end user does with
an untested feature ends up to be unexpected and never taken into consideration
during development. Random input, experimenting, or using the feature/component
for something other than what it was designed for, are all viable and very real cases.
While clients demand dynamic help systems and comprehensive manuals, they never
ever read them, expecting the software to meet their expectations one way or another.

Software testing verifies that a feature will work as expected and meets design
requirements. However, writing tests for the sake of testing only to cheat the metrics,
covering low-risk code, and leaving out crucial areas, is pointless. This kind of
testing, while it consumes time and resources, adds nothing to the final quality
of your product.

Sonar identifies high-risk software pieces and locates untested code not only at
line, but even at branch level, taking into consideration all possible outcomes of a
conditional operation. Additionally, Sonar provides useful statistics concerning test
successes and total duration.

Chapter 1

[15]

Drill down to source code
Knowing where quality suffers and what aspects of your software need to be
strengthened is one thing, specifically locating these problematic areas is another.
Sonar features smart components as the metrics radiator that in combination with the
dashboard allow you to drill down effortlessly to your source code reaching classes
that require attention quickly. It may sound like a complex investigative task or an
alternative search tool for your source code but this is not the case.

Drill down is a standard professional method used to browse code. You set a focal
point, undocumented code for example, and move downwards from summary
information to more detailed data, subsequently exploring modules, packages,
and classes.

Time Machine
Sonar stores all analysis results in a database, preserving historical data for future
reference and comparison, enabling you to track the evolution of your code. At any
time you can check out a past version of your codebase from the repository and
add it to the project's time line for comparison. Examining a data point in isolation
can enlighten your team about the state of the code in the given time frame, but the
information accumulated by the historical data proves to be invaluable in the long
run, helping to determine the best approach for the health of your project.

You can examine the progress of your code using one of the three different
components available: the Time Machine, the Motion Chart, and the Timeline. Each
component can be dynamically customized to access historical data on all metrics
supported. The Motion Chart, the fanciest of the components, features an animated
bubble chart tracking metrics in four different dimensions: the X and Y axes, plus the
color and size of the bubbles.

An Overview of Sonar

[16]

Maven ready
Maven is a build automation tool like Ant, streamlining the steps of the build process
in software development. Checking out code, compiling, generating documentation
and reports, running tests, producing artifacts, and finally deploying them, are some
of the goals supported by Maven and implemented via plugins. Different profiles
described in XML configuration files dictate the execution steps that take place
during the build process while providing configuration details.

The Sonar platform takes advantage of the Maven goal-oriented philosophy,
simplifying configuration. All you have to do is add the Sonar Maven Plugin into your
project to get support for Sonar-oriented goals. The only requirement is to have the
Sonar server up whenever the goal is executed. Basically, the setup requires zero or
minimal configuration if you are familiar with Maven.

User friendly
Much thought and work has been put into the platform's user interface in regards
to both appearance and behavior. The clean interface is mostly self-explanatory but
if you have any queries or feel like clarifying some things more, there is plenty of
documentation and media available within the Sonar community covering many
topics, from traditional getting started wikis to screencasts exploring advanced Sonar
features. It is important to note here the web nature of the user interface, accessible
straight from your browser.

Unified components
Sonar introduces a new paradigm on measuring quality without trying to reinvent
the wheel in the field of metrics and rules. While it features its own implemented set
of rules, under the hood most work is handled by familiar and long-trusted tools.
Sonar unifies these tools, leveraging existing functionality, collecting output, and
finally refining the results to follow suit with the platform's objective.

As SonarSource puts it:

Sonar can transparently orchestrate all those components for you.

Obviously, the procedure of running these tools manually in sequence to produce
raw values and statistics is now rendered obsolete, since Sonar automatically
streams the whole process in one combined analysis step.

Chapter 1

[17]

Security measures
Sonar features a standard role-based authentication system allowing you to secure
your instance, create as many users as required, and assign them to groups. A user
can belong to more than one group, while access to the various Sonar services and
functionality can be fine-grained by assigning appropriate roles.

Two groups have a special status in Sonar:

•	 Anyone: is a group that exists in the system but cannot be managed. Every
user belongs to this group.

•	 Sonar-users: is the default group to which every user exists. It is not possible
to configure the name of this group.

Of the four roles available in Sonar, one is global, referring to the instance, and the
three others are attached to projects:

•	 Global Administrators: Can perform all administration functions for the
instance: global configuration, personalization of the Time Machine, and the
home page

•	 Project Administrators: Can perform administration functions for a project
by accessing its settings

•	 Project Users: Can navigate through every service of a project, except
viewing source code and settings

•	 Project Code Viewers: Can view the source code of a project

If a global security system exists within your environment, such as Atlassian Crowd
SSO, LDAP, or Microsoft Active Directory, you can delegate all Sonar authentication
function to these systems using the appropriate plugins.

Extensible plugin system
The Sonar platform is extensible via a plugin system. More functionality can be
added using plugins, either open source or commercial. A dedicated repository
located at http://sonar-plugins.codehaus.org/ hosts the Sonar plugin library.
From there, you can choose and download the plugins you require for your Sonar
instance and read documentation and installation instructions specifically written for
each one separately. Plugins enable Sonar to measure more programming languages,
add more metrics and rules, and integrate the platform with third-party systems
such as LDAP or Continuous Integration build servers.

An Overview of Sonar

[18]

Some of the more interesting plugins and a brief description of what they do are
shown in the following list:

•	 Additional languages:
	° PHP: Analysis using PHP Unit, PHP Depend, PHP MD, and SQLI

CodeSniffer
	° Groovy
	° JavaScript
	° C, C#
	° Web: currently supports analysis for JSF and JSP pages.

•	 Additional metrics:
	° Build stability: Reports on stability of project build using Continuous

Integration engine data
	° Rules meter: Gives information on the level of activation of projects'

quality profiles
	° Sonargraph: Provides architecture governance features accompanied

by metrics about cyclic dependencies and other structural aspects
	° Useless code: Reports on the number of lines that can be reduced in

an application

•	 Visualization/Reporting:
	° PDF Report: Generates a PDF report with analysis results
	° Timeline: Displays measures history using a Google Timeline Chart

to replay the past

•	 Governance:
	° Quality Index: Calculates a global Quality Index based on coding

rules, style, complexity, and unit-testing coverage
	° Technical debt: Calculates the technical debt on every component

with breakdown by duplications, documentation, coverage,
and complexity

	° SQALE—Quality Model (Commercial): An implementation of the
SQALE Methodology

Chapter 1

[19]

•	 Integration:
	° Hudson/Jenkins and Bamboo: Enables to configure and launch Sonar

analysis from Hudson or Jenkins continuous integration engines
	° Crowd and LDAP: Enables delegation of Sonar authentication

to Atlassian Crowd and to LDAP or Microsoft Active Directory
respectively

	° Switch off violations: Excludes some violations in a fine-grained way

•	 IDE:
	° Eclipse: Accesses information gathered by Sonar directly in Eclipse

and fixes them on the spot

•	 Localization:

	° Supports French and Spanish languages

Covering software quality on Seven Axes
First of all, it is important to point out that quality is a perceptional concept and quite
subjective. One way to define software quality is through abstractions and examining
it from different perspectives.

Take a moment to read the following lines:

I cdnuolt blveiee taht I cluod aculaclty uesdnatnrd waht I was rdgnieg. The phaonmneal
pweor of the hmuan mnid. It deosn't mttaer in waht oredr the leteerrs in a wrod are, the olny
iprmoatnt tihng is taht the frist and lsat ltteer be in the rghit pclae. The rset can be a taotl
msess and you can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn mnid deos not
raed ervey lteter by istlef, but the wrod as a wlohe.

The preceding text does not contain one single word spelled correctly but proves to
be readable. The preceding paragraph tests the human brain's ability to recognize
common patterns rather than convey a message to the reader. From a product
perspective, someone could support that although the text is flawed it does the
job, since it manages to remain understandable. But this has the side effect of
deteriorating the final reading experience, requiring additional effort to reconstruct
the words and phrases. The reader unconsciously stresses his mind in an effort to
adapt and decipher the messed-up words, sharing focus between restructuring text,
and understanding what is actually written, a not-so-pleasant user experience. On
the other hand, the editor assigned to improve or add to the text would have to cope
with this non-standard writing practice delaying the whole process.

An Overview of Sonar

[20]

Switch the corrupt text for a software product's source code. The reader is now the
end user of the product and the editor the developer. They both experience product
quality differently, each one from their own views. The end user from a functional
perspective while the developer from a structural one.

Generally speaking, it is common to separate quality into:

•	 External quality—assures that the product obeys to the functional
requirements/specifications

•	 Internal quality—assures that the software's structure supports the delivery
of the functional requirements

To measure external quality the product is treated like a black box, testing and
interacting its exposed features, observing behavior, and reassuring that it
works as expected according to the requirements.

EXTERNAL

QUALITY

INTERNAL

QUALITY

end user developer

To measure internal quality, esoteric inspection of the software is required. The
structure of the source code is analyzed and evaluated against coding standards
and practices. As for software design, it is necessary to examine at what level it
adheres to basic principles of software architecture. This approach of measuring
quality is referred to as a white box approach because it deals with the software's
internal workings, peeking inside source code. The Sonar platform does exactly
that, measuring the internal quality of a software piece. However, it is important to
note that high internal quality does not enforce or guarantee external quality, but it
indirectly betters it in terms of its overall outcome.

How Sonar manages quality
Software quality measurement is a quantitative process summing up weighted
attribute values, which in part describe specific software characteristics. For each
characteristic, a set of such measurable attributes is defined, and the existence
of such characteristic, or its quality factor, is directly correlated to those attributes.

Chapter 1

[21]

As a matter of fact, quality is rated along many different dimensions. Likewise, Sonar
classifies associated attributes and metrics in seven dimensions, seven technical axes
of quality which the Sonar team prefers to cal them as:

The seven deadly sins of a developer.

Overall, Sonar defines the following technical axes:

•	 Coding standards—respect coding standards and follow best practices
•	 Potential bugs—eliminate code violations to prevent vulnerabilities
•	 Documentation and comments—provide documentation especially for the

Public API, the source code
•	 Duplicated code—isolates and refines duplications, Don't Repeat Yourself
•	 Complexity—equalizes disproportionate distributed complexity among

components; eliminates complexity if possible
•	 Test coverage—writes unit tests, especially for complex parts of the software
•	 Design and architecture—minimize dependencies

DRY—Don't Repeat Yourself
Don't Repeat Yourself is a programming principle aimed at
reducing repetition of code. The DRY principle is stated as:

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.
Source code written with this principle in mind is obviously
easier to maintain. When a bug arises, there is only one
single point in the source responsible for the malfunction
and patching this point would suffice, without the need to
modify other parts of the software.

Architecture of Sonar
The core engine of the platform, Squid, is supported by additional code analyzers
which Sonar orchestrates together to measure quality.

An Overview of Sonar

[22]

The following diagram represents the upper-level components of the platform and
how they interact with each other:

Source Code

Checkstyle

PMD

FindBugs

Squid

Surefire

Cobertura

Clover

Maven

Plugin

Ant

Task

Java

Runner

Web

Dashboard

IDE:Eclipse,

IDEA

1

2 3

4

Sonar

Database

User Interface

Runners

Analyzers

1. An analysis request is triggered using one of three possible methods:
	° Maven Plugin
	° Ant Task
	° Java Runner

2. Sonar receives the request and starts analyzing the project's source code.
The analysis is based on the project's Sonar profile activating any additional
plugins or reporting capabilities, if any.

3. When the analysis is over, results are stored to a database for future reference
and history tracking.

4. Finally, the user interface and its components are updated with the new
data. You can access data from your browser and the web dashboard.
Conveniently, Sonar reporting is also made available within your IDE,
either Eclipse or IDEA, allowing you to review and correct code violations
on the spot.

Chapter 1

[23]

In a continuously integrated environment, the analysis process is triggered by the
build server. The server checks out source code from the repository, compiles and
executes all unit or integration tests, after which it produces the necessary builds.
Finally, Sonar takes over analyzing the source. A good practice for a time-consuming
process such as this is to trigger it once a day, when developers are inactive. The
process is then called a nightly job and the final build produced a nightly snapshot.
Next time, developers will have access to the latest data and reports about the
project, enabling them to review how recent changes affected the overall quality
of the project.

Source code analyzers
To analyze code, Sonar utilizes some of the most popular and proven tools
available in the open source community. These tools pass through source code
performing standard checks reviewing errors and possible bugs, each from their own
perspective. The nature of the checks range from minor styling ones, for example the
detection of unwanted trailing spaces, to more complex ones that easily promote to
potential bugs, such as unchecked variables eligible to result in null references. Since
version 2.1 Sonar provides its own rules engine too, based on Squid.

Sonar includes the following five analyzers:

•	 Squid—http://docs.codehaus.org/display/SONAR/Documentation

•	 Checkstyle—http://checkstyle.sourceforge.net/

•	 PMD—http://pmd.sourceforge.net/

•	 FindBugs—http://findbugs.sourceforge.net/

•	 Cobertura—http://cobertura.sourceforge.net/

•	 Clover—http://www.atlassian.com/software/clover/

Squid
Sonar's core analyzer Squid, works on Java dependencies and calculates
object-oriented metrics. It implements the visitor pattern to visit dependencies
between methods, fields, classes, and packages. Some of the metrics calculated
are the following:

•	 RFC—Response for Class
•	 LCOM4—Lack of Cohesion Methods
•	 DIT—Depth of Inheritance Tree
•	 NOC—Number of Children

An Overview of Sonar

[24]

Checkstyle
Checkstyle ensures that all source code adheres to coding standards. Its main duty
is to check code from an aesthetic perspective with emphasis on layout and styling.
However, during its development more checks were added straying away from the
initial coding style and standards concept. Now Checkstyle is capable of performing
broader checks like identifying class design problems, duplication, and common
bug patterns. Checkstlyle, and the rest of the tools we are going to examine here, can
also run standalone.

Bug patterns
A bug pattern is badly structured code that under certain
circumstances can produce errors. These vulnerabilities may
not always fail a test case but can potentially lead to memory
outage, performance degradation, security breaches, and many
other problems. Such common error-prone structures have been
identified and standardized, so that they can be identified easily
by source code analyzers.

PMD
According to its creator, a standard definition for the PMD acronym does not exist.
In any case, the following are some interpretations taken straight away from the
What does it mean section of the project 's SourceForge page:

Project Mess Detector

Programs of Mass Destruction

Project Meets Deadline

Head on to PMD's home page for a more comprehensive list.

PMD scans Java source code and reports on problems such as the following:

•	 Possible bugs—empty / try / catch / finally / switch statements
•	 Dead code—unused local variables, parameters, and private methods
•	 Suboptimal code—wasteful String / StringBuffer code
•	 Complex expressions—unnecessary if statements, for loops instead

of while
•	 Duplicate code—copied/ pasted code

Chapter 1

[25]

FindBugs
FindBugs performs static analysis to check source code and trace bugs and defects. It
covers many different aspects such as vulnerabilities, malicious code, performance,
and coding standards.

Cobertura and Clover
Cobertura, based on the jcoverage Java library, is used to calculate the percentage
of code accessed by tests and identify which parts of your source code lack test
coverage. Additionally, it calculates cyclomatic complexity for each class and the
average cyclomatic complexity for each package.

Clover emphasizes more on test coverage, providing a rich user interface and can be
easily used as a standalone tool, offering a complete quality testing solution.

The Sonar community and ecosystem
Sonar, like every respectable open source project, comes with a thriving community
and a vibrant ecosystem built around it.

The community features four separate mailing lists to discuss everything Sonar:

•	 scm@sonar.codehaus.org

•	 user@sonar.codehaus.org

•	 dev@sonar.codehaus.org

•	 announce@sonar.codehaus.org

A dedicated issue tracker to track Sonar development and submit tickets can be
found at the following URL:

http://jira.codehaus.org/browse/SONAR

A comprehensive documentation wiki maintained by Sonar's team members can be
found at:

http://docs.codehaus.org/display/SONAR/Documentation

The official Sonar blog can be found at:

http://www.sonarsource.org/category/blog/

An Overview of Sonar

[26]

Additionally, Sonar has a strong presence across social networks:

•	 Linkedin: http://www.linkedin.com/company/sonarsource/products
•	 Twitter: @SonarSource

If you want to learn more about Sonar or even write your own plugins for the
platform, Sonar's plugin ecosystem in combination with a friendly and welcoming
community provides everything you will need.

You can subscribe to the developers' list, request access to Sonar's source control
management system Forge, and benefit from the continuous integration environment
that has been set up to serve development needs by navigating to the following URL:

•	 Forge: http://www.sonarsource.org/forge/

The SonarSource company
Sonar was founded in 2008 by SonarSource S.A., a Swiss company that brought forth
a bold statement:

SonarSource S.A.: democratize access to software quality management

http://www.sonarsource.com/

Thus Sonar was born, in an effort to fulfill the company's objective to create a
platform that would enable easy and continuous access to code quality metrics.
The big picture was the platform to achieve such high adoption rates, capable of
establishing it as a commodity in development teams along with IDEs.

The company did not only succeed, but pushed things further with the introduction
of the Continuous Inspection paradigm similar to the Continuous Integration
practices, a movement that is now considered to be a best practice among
development teams and members especially in the context of an agile environment.

The SonarSource team:

•	 CEO and Founder at SonarSource: Olivier Gaudin @gaudol
•	 Co-Founder and Product Manager: Freddy Mallet @FreddyMallet
•	 Co-Founder and Technical Lead: Simon Brandhof @SimonBrandhof
•	 Software Gardener: Evgeny Mandrikov @_godin_
•	 Product Manager: Fabrice Bellingar @bellingard

Chapter 1

[27]

Awards and conferences
SonarSource, since its inception has jolted the software industry, creating an innovative
platform that caused significant impact as long as quality management is considered.
In comparison to other tools, the Sonar platform was revolutionary, inventing a new
method towards quality inspection, which later became a standard practice under the
term Continuous Inspection. Therefore, in 2010 it received the Jolt Productivity Award
for providing a manager's best friend with highlights on the detailed dashboard, the
tracking of historical data, and code analysis from different perspectives.

After initial versions of the platform were publicly released, Sonar was presented
at numerous JavaOne conferences and was recommended as the tool of choice to
measure, track, and gain access to code quality data. In most cases, the platform was
sitting next to a Hudson/Jenkins build server in a continuous integration setup.

Sonar license
The Sonar platform is open source and distributed under the GNU Lesser General
Public License Version 3, the most widely used license for free software. This means
that you can modify and redistribute the platform freely as long as all software and
modifications released still remain under the GPL Version 3.

Apart from the core platform and the free plugins developed and gardened by
the community, SonarSource company offers commercial products built around
the extensible Sonar ecosystem. Worth mentioning is the SQALE plugin, a full
implementation of the Software Quality Assessment method based on Lifecycle
Expectations. If you want to learn more about this method you can point your browser
at http://www.sonarsource.com and navigate from there to the plugins section.

Additionally, among other services, SonarSource company offers professional
support carried out by Sonar's core contributors and accepts requests to develop
plugins on demand in case additional functionality is required.

Summary
This chapter gave an overview of the Sonar platform, its history, and its features. We
further explored the concept of quality in software products and how it is measured.

We analyzed the methodology of covering quality on seven axes and detailed the
Sonar architecture along with the code analyzers it provides. Finally, we took a
closer look around the Sonar community and its ecosystem.

In the next chapter, we will focus on setting up the environment and installing Sonar
along with plugins.

Installing Sonar
In this chapter, we will install Sonar along with required software in either Linux or
Windows. We will need to install MySQL, create a new database to store Sonar data,
install Maven to import projects easily into Sonar, configure it to run as a service, and
finally secure our instance by creating groups and users. Then, we will go through
the process of installing plugins, updating Sonar from the update center, and backing
up our data.

In this chapter we will cover:

•	 Prerequisites for Sonar
•	 Installing the Sonar web server
•	 Configuring MySQL
•	 Starting Sonar as a service
•	 Logging in to Sonar for the first time
•	 Securing your Sonar instance
•	 Creating users and groups
•	 Backing up your data
•	 Extending Sonar with plugins
•	 Upgrading Sonar

Installing Sonar

[30]

Prerequisites for Sonar
Before installing Sonar, it is necessary to check that our host system meets all
the requirements.

Sonar comes bundled with the Apache Derby database, but it is highly
recommended to use an enterprise database, especially when deploying on to a
production environment. A minimum of 512 MB of RAM and sufficient data space
to store Sonar's analysis results and historical data are required. The last requirement
should not be an issue since the public Nemo instance of Sonar uses 4 GB of RAM
to analyze more than 6 million lines of code within a two-year lifespan according
to SonarSource. Users will interact with Sonar through web browsers and it is
recommended to enable JavaScript if not already enabled. Finally, installing the
Maven project builder is highly recommended to make the process of adding new
projects for analysis much easier.

The following list presents all supported platforms by Sonar:

•	 Java Oracle JDK
	° 1.5
	° 1.6
	° 1.7 (not tested yet)

•	 Database
	° Microsoft SQL Server 2005
	° MySQL 5.x and 6.x
	° Oracle 10g, 11g, and XE Editions
	° PostgreSQL 8.3, 8.4, 9.0, and 9.1

•	 Applications servers
	° Jetty 6 (bundled with Sonar)
	° Apache Tomcat 5.5, 6.0, and 7.0 (has not been tested yet)

•	 Web browsers
	° Microsoft IE 7 and 8—Sonar v. 2.12 will fully support IE 9.0
	° Mozilla Firefox (all versions)
	° Google Chrome (latest stable version 12 supported)
	° Safari (latest stable version supported)
	° Opera (not tested)

Chapter 2

[31]

•	 Build runners
	° Maven 2+
	° Ant
	° Java Runner

Before moving on, let's make sure that Java, Maven, and MySQL are properly
installed and configured. We will adopt the following setup:

•	 Java 1.6
•	 MySQL 5
•	 Maven 3.0.3

Checking your Java installation
To check your Java installation, open up a terminal or a command prompt if you are
in Windows and enter the following command:

$ java -version

If Java is installed and correctly configured, the output will be something like this:

Java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03)
Java HotSpot(TM) Server VM (build 20.1-b02, mixed mode)

If is not installed, visit Oracle's official website and follow the installation
instructions for your system (http://www.java.com/en/download/manual.jsp).

After the installation process is complete, we have to set the JAVA_HOME system
variable. In Linux, edit the .bashrc or .bash_profile configuration files, and
append the following lines and substitute the path highlighted in the following
snippet with yours:

Java Home
export JAVA_HOME=/usr/lib/jvm/java-6-sun-1.6.0.26
export PATH=$JAVA_HOME/bin:$PATH

Next, for the changes to take place, we have to reload the configuration files by
typing the following command:

$ source ~/.bashrc

Installing Sonar

[32]

Installing Maven on Linux
Download Maven from http://maven.apache.org/download.html and unzip
it. Next, the M2_HOME variable has to be set. Edit .bashrc or .bash_profile, and
append the following lines and replace the path highlighted in the following code
snippet with yours:

Maven Home
export M2_HOME=/usr/local//apache-maven-3.0.3
export PATH=$M2_HOME/bin:$PATH

Again, reload the configuration files by using the following command:

$ source ~/.bashrc

Then, verify the installation by entering the following command:

$ mvn -version

If everything is done right, the console should show output something like this:

Apache Maven 3.0.3 (r1075438; 2011-02-15 19:31:09+0200)
Maven home: /usr/local/apache-maven-3.0.3
Java version: 1.6.0_26, vendor: Sun Microsystems Inc.
Java home: /usr/lib/jvm/java-6-sun-1.6.0.26/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "2.6.32-5-686", arch: "i386", family:
"unix"

Installing Maven on Windows
The installation process in Windows is exactly the same as in Linux, with one
difference. In Windows, we create the environment variables JAVA_HOME and
M2_HOME, and add them to the Windows system PATH variable, using the
Environment Variables user interface. To verify that the variables are set,
open a command prompt and type:

> echo %JAVA_HOME%
> echo %M2_HOME%

Chapter 2

[33]

Installing MySQL on Linux
To install MySQL on a Debian or Ubuntu-based Linux distribution, open a terminal
and enter the following command:

$ apt-get install mysql-client-5.1 mysql-server-5.1

When the installation process finishes, the MySQL service starts automatically. You
can start/stop the service with the following command:

$ service mysql [start|stop]

To install for Red Hat distributions such as Fedora or CentOS, open a terminal and
enter the following yum command as root:

yum install mysql mysql-server

You can start/stop the service with the following command:

service mysqld [start|stop]

Installing Sonar

[34]

To create a root account with the MySQL admin utility, enter the following
command, substituting password with one of your choice:

mysqladmin -u root -p password

To connect to the MySQL Server, type the following command, and enter the root
password when prompted:

$ mysql -u root -p

To check the version of the MySQL Server install, use the MySQL command with the
version switch:

$ mysql –version

mysql Ver 14.14 Distrib 5.1.49, for debian-linux-gnu (i486) using
readline 6.1

Installing MySQL on Windows
On Windows, download the MSI installer for the MySQL Community Server from
http://dev.mysql.com/downloads/mysql/ and double-click on the msi or exe file
to start the installation process. An installation wizard will guide you through the
process of creating a new MySQL service and a root account. The official MySQL
website provides comprehensive documentation and detailed installation guides for
all operating systems, just in case.

Downloading Sonar
Sonar is updated frequently, with each release packing a couple of new features
and improvements. Visit http://www.sonarsource.org/downloads/ to get an
overview of the releases and download links. From there download the latest
version—notice that whether you are on Linux or Windows, the download is the
same, since Sonar is based on Java and it is compatible with both. All downloads
are zip archives named after Sonar's version following this convention:

sonar-x.yy..zip, where x is the major release number and yy is the minor one.

As of October 15, 2011, the latest version was 2.11 and about 60 MB in size. For the
needs of this book, we will go with Sonar v. 2.11.

After the download is complete, extract the zip archive into a directory of our choice.
It is a good practice to create a servers directory and extract Sonar in there. An
exemplary directory setup could be /development/servers/sonar-2.11/.

Chapter 2

[35]

Do not unzip Sonar into a directory starting with a digit.

Installing the Sonar web server
Place the downloaded file in the directory to which you want to install Sonar, open
the terminal window, and enter the following command to unzip it:

$ unzip sonar-2.11.zip

Important Sonar directories to take a note of are:

•	 conf: Sonar, database, and logging configuration in the form of XML and
property files are stored here.

•	 extensions: JDBC drivers and Sonar plugins are located here.
•	 logs: All logging goes to this directory; this is the place to check when

something goes wrong with our Sonar instance.
•	 bin: This directory contains Sonar startup scripts for different Windows and

Linux platforms.

To start the Sonar server in Linux, open a terminal, navigate in to the bin directory,
and execute the startup script for your platform. For example:

$ bin/linux-x86-32/sonar.sh console

On Windows 32-bit, execute the following command:

$ bin\windows-x86-32\StartSonar.bat

When Sonar starts for the first time, it creates and populates the embedded Apache
Derby database, so it is natural for it to take a while. This is what the logs/sonar.
log file looks like after Sonar has been started successfully:

INFO org.sonar.INFO Enable profiles...
INFO org.sonar.INFO Enable profiles done: 40 ms
INFO org.sonar.INFO Activate default profile for java
INFO org.sonar.INFO Register quality models...
INFO org.sonar.INFO Register quality models done: 0 ms
INFO org.sonar.INFO Start services done: 14641 ms
INFO org.sonar.INFO Sonar started: http://0.0.0.0:9000/

Installing Sonar

[36]

Open a browser and go at http://localhost:9000/ to take a first look at the Sonar
dashboard. To stop the Sonar server type, execute the following command:

$ bin/linux-x86-32/sonar.sh stop

Alternatively, you can press Ctrl + C in the console/terminal, to make the Sonar
server exit gracefully:

Notice that, if you close the command-line window, the server will stop.

Sonar server basic configuration
The Sonar server listens at port 9000 and binds to all network interfaces 0.0.0.0.0.
The context path is /.To change these settings, edit the conf/sonar.properties
configuration file accordingly. Open it with an editor and look for the WEB SETTINGS
section inside the file. To have the server listening at port 80 under the context
sonar/ and bound at 192.168.1.1, make the following edits:

#---
WEB SETTINGS - STANDALONE MODE ONLY
These settings are ignored when the war file is deployed to a JEE
server.
#---
Listen host/port and context path (for example / or /sonar). Default
values are 0.0.0.0:9000/.
#sonar.web.host: 192.168.1.1
sonar.web.port: 80
sonar.web.context: sonar/

Chapter 2

[37]

Sonar can be run inside a J2EE server and deployed as any other web application.
To do this, browse into Sonar's war directory and execute build-war.sh or
build-war.bat on Windows to create the Sonar server war application. Afterwards,
deploy the sonar.war file to the application server. Notice that when deploying to
an application server, the Sonar home directory is still needed to store data and host
plugins. Thus, the application server must have read/write access to this directory.

Configuring MySQL
While the embedded Apache Derby database is ideal for tests, in a production
development environment it is recommended to switch to an enterprise database.

Creating the database
Sonar comes bundled with an SQL script to create the database and the sonar user
with the password sonar. The script is located at @SONAR_HOME/extras/database/
mysql/create_database.sql. To execute the script, open up a terminal and execute
the following command, (enter your root password or sonar when prompted):

$ mysql -u root -p < create_database.sql

The script creates a new Sonar database with UTF8 encoding and user sonar with
password sonar.

Setting up Sonar with MySQL
Having the database up and running, we then must deactivate the embedded
Apache Derby and enable MySQL in the conf/sonar.properties configuration
file. Stop the server if running, and comment the following lines to disable
Apache Derby:

Comment the following lines to deactivate the default embedded
database.
sonar.jdbc.url: jdbc:derby://localhost:1527/
sonar;create=true
sonar.jdbc.driverClassName: org.apache.derby.jdbc.
ClientDriver
#sonar.jdbc.validationQuery: values(1)

Installing Sonar

[38]

Find the MySQL configuration section in the same file and uncomment the following
lines to enable MySQL:

#----- MySQL 5.x/6.x
Comment the embedded database and uncomment the following
#properties to use MySQL. The validation query is optional.
sonar.jdbc.url:jdbc:mysql://localhost:3306/sonar?
 useUnicode=true&characterEncoding=utf8
sonar.jdbc.driverClassName: com.mysql.jdbc.Driver
sonar.jdbc.validationQuery: select 1

Next time the sever launches, it will establish connection to the MySQL sonar
database as user sonar/sonar and create all required tables.

Wait for the MySQL database to initialize, and enter the following commands in a
terminal to view the tables created (when asked for your password enter sonar):

$ mysqlshow sonar -u sonar -p

+---------------------------+

| Tables |

+---------------------------+

| active_dashboards

| active_filters

| active_rule_changes

| active_rule_param_changes

| active_rule_parameters

|...

Starting Sonar as a service
It is most convenient to have the Sonar server start automatically at each boot time.
Thus, the final step of the setup is to have it installed as a service.

Run as a service on Linux
Create the file /etc/init.d/sonar with the Vim or Nano editor:

sudo nano /etc/init.d/sonar

Append the following lines and save it:

#! /bin/sh
/usr/bin/sonar $*

Chapter 2

[39]

Open a terminal and enter the following commands:

sudo ln -s /home/user/development/servers/sonar-2.11/bin/linux-x86-32/
sonar.sh /usr/bin/sonar

sudo chmod 755 /etc/init.d/sonar

sudo update-rc.d sonar defaults

Reboot, open a browser, and go to http://localhost:9000/ to verify that the
server is running.

Run as a service on Windows
To install or uninstall the Windows service, simply execute one of the following
scripts as administrator respectively:

•	 To install:
$ SONAR_HOME/bin/windows-x86-32/InstallNTService.bat

•	 To uninstall:
$ SONAR_HOME/bin/windows-x86-32/UninstallNTService.bat

You can start/stop the service from Windows Services Administration or execute the
start/stop scripts bundled with Sonar:

•	 To start:
$ SONAR_HOME/bin/windows-x86-32/StartNTService.bat

•	 To stop:
$ SONAR_HOME/bin/windows-x86-32/StopNTService.bat

If you experience problems in starting the service due to the missing directory
C:\Windows\system32\config\systemprofile\AppData\Local\Temp\ in
Windows 7, create it manually and restart the service.

Logging in to Sonar for the first time
After a fresh reboot, it is finally time to log in to Sonar as an administrator. One of
the first things that you should do is change the administrator's credentials.

Sonar, by default, creates an Administrator account with
username admin and password admin.

Installing Sonar

[40]

Point your browser at http://localhost:9000/. At the top right of the dashboard,
click on the Log in link and fill in the form with username as admin and password
as admin.

To change the default password, click on the Administrator link on top and then on
My Profile on the left. Fill in the Change Password form and click on the Change
Password button to save the changes:

Securing your Sonar instance
In an enterprise environment, a good practice would be to limit access to
administration settings and project analysis data according to different members'
responsibilities. Administrators should have access to everything, project managers
and developers to projects they belong to, while public users could be further limited
by preventing them from browsing source code.

Chapter 2

[41]

Apart from Sonar's standard authentication mechanism, delegation to third-party
systems is possible with the use of plugins. If a configured Active Directory or
Atlassian's JIRA Crowd Single Sign On solution is already available, you might be
interested in the following plugins, which leverage authentication functionality of
the aforementioned systems:

•	 LDAP plugin: http://docs.codehaus.org/display/SONAR/LDAP+Plugin
•	 Crowd plugin: http://docs.codehaus.org/display/SONAR/Crowd+Plugin

Sonar authentication and sources visibility
First of all, you have to configure the level of security for your Sonar instance.
By default, the instance is accessible without any authentication. To force user
authentication, browse to Configuration | SYSTEM:General Settings | Security
and set the Force user authentication property to true:

From now on, each time a user browses to http://localhost:9000, he/she will be
prompted to fill in his/her credentials in order to gain access to the instance.

To allow a new user to sign up, simply set the Allow users to sign up online
property to true. Signed up users will be automatically added to the default
sonar-users group. You can specify another group by filling in the Default
user group property.

Installing Sonar

[42]

Finally, you have to take the visibility of the source code into consideration. To
prevent source code from getting displayed, set the Import sources property to
false. You can later assign the special Code viewers role to allow specific groups
or users to browse and view source code.

Creating users and groups
Log in as Administrator and click on the Users link, located under SECURITY,
to get an overview of existing users. From here you can edit, delete, or add a new
user. Group management can be found under SECURITY:Groups.

Browse to the Groups management screen and create a new group named
packt-group. Users belonging to this group will be granted access to the code
presented in this book. Next, create a user packt with password packt. Now,
the user list will be repopulated, including the new user:

From the Groups column, click on select to add packt-group to the user's groups
and save.

Managing project roles
Sonar manages security at four standard levels as shown under
Configuration | SECURITY:

•	 Users
•	 Groups
•	 Global Roles
•	 Project Roles

Global Roles include one default Administrator role that grants a user every
administrative right that has to do with the configuration and personalization of
the instance. As a global administrator, you may configure every aspect of the
instance, but you may not access some projects depending on their configuration.

Chapter 2

[43]

Sonar features three default Project Roles—Administrators, Users, and Code
viewers. Every project in Sonar is attached with a set of these three roles and
different user groups can be assigned to each one. For example, if there are two
teams, A and B, working on separate projects, you could create two groups,
group-a and group-b, and assign them to roles on their corresponding projects.

Backing up your data
It is crucial for the administrator to prepare a back up and restore plan in case of data
loss or corruption. Sonar offers a backup and restore solution for its configuration
data, but filesystem and database backups have to be taken care of manually, by the
system's administrator.

Installing Sonar

[44]

Sonar instance configuration backup
Log in to Sonar as administrator, click on the Configuration link on the top of
the dashboard, and then click on Backup from the left-hand side menu under
the SYSTEM options. Click on the Backup button to download the instance's
configuration in XML format. Restore the downloaded XML file in another Sonar
instance to duplicate the configuration of a previous install.

Filesystem backup
At filesystem level, keep a backup of the $SONAR_HOME directory at frequent
intervals. This can be automated via cron jobs on Linux or by using Windows
Backup on Windows.

For more sophisticated backup solutions, have a look at Wikipedia's
comprehensive list of backup software at http://en.wikipedia.org/
wiki/List_of_backup_software, either free or proprietary, for various
operating systems.

Chapter 2

[45]

Backing up the MySQL sonar database
Backup and restore on MySQL is done with the mysqldump and mysqlimport
command-line tools respectively:

•	 mysqldump:
 $ mysqldump -u [username] -p [password] [dbname] > [backup.sql]

•	 mysqlimport:
 $ mysqlimport -u [username] -p [password] [dbname] backup.sql

To create the sonar database, open a terminal or get a command prompt if you are
on Windows, and enter the following command:

$ mysqldump -u sonar -p sonar > sonar-backup.sql

To restore an existing sonar database, import the sonar-backup.sql file by entering
the following command:

$ mysqlimport -u sonar -p sonar sonar-backup.sql

To rebuild the database from scratch type:

$ mysql -u sonar -p sonar < sonar-backup.sql

When executing the preceding commands, enter your MySQL's administrator
password when prompted. Exercise caution, especially with the import
command, as it can overwrite existing schemas.

Extending Sonar with plugins
Sonar features a very streamlined plugin installation process from within the
platform's web update center—although a server restart is still mandatory. Next,
we will install the Useless Code Tracker plugin by Olivier Gaudin. In short, this
plugin calculates and reports on total duplicated lines inside a Java project. After
installation, a new Useless Code widget will be available for customizing the
Sonar dashboard.

To manage plugins, log in to Sonar as administrator and click on the Update Center
link under the SYSTEM section. The Update Center section provides plugins and
system information separated on the following four tabs:

•	 Installed Plugins: List of currently installed plugins
•	 Available Plugins: All available plugins in the Sonar library

Installing Sonar

[46]

•	 Plugin Updates: List of plugins that need updating
•	 System Updates: Information on new platform updates

Installing the Useless Code Tracker plugin
From the Update Center section, click on the Available Plugins tab and scroll down
to find the Useless Code Tracker plugin under the Additional Metrics category.
Click on the plugin's name to expand a nested panel containing detailed information
about the plugin such as Author, License, Links, and Version:

Chapter 2

[47]

Click on the Install button to initiate the installation process. When the installation
has been completed, you will be prompted to restart the Sonar server in order to pick
up the new plugin. In Windows, simply restart the service from Windows services.
In Linux, stop the server by entering the following command:

$SONAR_HOME/bin/linux-x86-32/sonar.sh stop

Wait for the server to stop:

Stopping sonar...

Waiting for sonar to exit...

Stopped sonar.

Then start it again:

$SONAR_HOME/bin/linux-x86-32/sonar.sh start

To verify if the plugin is installed correctly, log in again and browse to the Installed
Plugins screen from the Update Center section:

If everything works as expected, you will notice a new entry under Plugins featuring
the newly installed plugin. To uninstall a plugin, simply click on its name to expand
a details panel and then click on the Uninstall button. Uninstallation and plugin
updates both require a restart of the Sonar server.

Installing Sonar

[48]

Upgrading Sonar from the Update
Center section
To check if a new version of the platform has been released, visit the Update Center
section and select the System Updates tab. If there is a new version available, an
information panel with release information and installation details appears similar
to the one depicted in the following screenshot:

Checking compatibility of plugins
It is possible for some plugins to require an update before upgrading to the new
Sonar version or to be rendered obsolete and uninstalled. The How to upgrade
section under the System Updates tab lists these plugins which should all be
updated or uninstalled before proceeding with the platform's upgrade. After
updating/uninstalling said plugins, stop the Sonar server or the Sonar service,
if you are in Windows:

$ SONAR_HOME/bin/linux-x86-32/sonar.sh stop

Upgrading to latest Sonar version
Next, download the new Sonar version and unzip it in a new separate directory, let's
say $NEW_SONAR_HOME.

Before proceeding, make sure that the Sonar server is stopped
and back up both the Sonar server and the MySQL database as
described earlier in this chapter.

Chapter 2

[49]

Copy the sonar.properties and wrapper.conf files from $SONAR_HOME/conf to
$NEW_SONAR_HOME/conf.

Copy the extensions/plugins and extensions/rules directories from
$SONAR_HOME/conf to $NEW_SONAR_HOME/conf.

If Sonar is deployed inside a J2EE Application Server, build the Sonar web
application by executing the following script and deploy the generated war
file to the application server:

$ NEW_SONAR_HOME/war/build-war

If you are in Windows, start the Sonar service from Windows services. In Linux, start
the new server instance by using the following command:

$ NEW_SONAR_HOME/bin/linux-x86-32/sonar.sh start

Then, browse to http://localhost:9000/setup and follow the instructions.

Completing the upgrade process
For the upgrade process to complete, it is necessary to perform
an analysis on one of your projects.

Summary
In this chapter, we went through the installation process of the Sonar platform,
configured a MySQL database to store Sonar data, and made a backup of our new
instance. To meet the needs of an enterprise development environment, we further
secured our instance, limited access to configuration and system settings, and
created sample groups and users.

Finally, we focused on maintenance tasks such as installing plugins and updating
the platform by using Sonar's Update Center.

In the next chapter, we will put our fresh instance to the test by analyzing projects
with all available methods, customize the Sonar dashboard, and configure its
widgets and interface components.

Analyzing your First Project
In this chapter, we will go through the process of analyzing a project, using all three
methods that Sonar offers. We will take a closer look at the parameterization of each
method and ways to run it. Having analyzed a project, it is time to get familiar with
the dashboard. So next, we will browse to the dashboard, configure it to our liking,
and manage all the available widgets that come with the default Sonar installation.
Then, we will look at all the widgets and the insight they provide in greater detail.

Knowing how to set up an analysis and configure the dashboard, it is time to feed
Sonar with some more projects to analyze. Having populated the dashboard with a
handful of projects, a reorganization of the view is in order.

Finally, we will eliminate some common violations and apply a version change
to one of our projects by triggering a Sonar event during the next analysis. The
Sonar Time Machine component tracks and shows these events along with other
information about the project's lifetime.

In this chapter we will cover:

•	 Installing and using a Java runner
•	 Installing and analyzing a project with Maven
•	 Project analysis with Ant
•	 Browsing the Sonar web interface
•	 Sonar components—an overview
•	 Anatomy of the dashboard
•	 Eliminating your first violations

The commons-lang Apache library will serve as the first test project to be imported
into the Sonar platform. So, before we start, head to http://commons.apache.org/
lang/download_lang.cgi, download the commons-lang3-3.0.1-src.zip ZIP file,
and extract it.

Analyzing your First Project

[52]

Alternatively, if you are using a source code repository system such as Subversion,
you can check out the source code with the following svn command:

svn checkout http://svn.apache.org/repos/asf/commons/proper/lang/trunk
commons-lang3

If the repository has been relocated, browse to http://commons.apache.org/lang/
source-repository.html.

Using a Java runner
Project analysis via java-runner is ideal for quick one-offs, especially for projects
that are not under constant development, and continuous inspection of quality is not
a requirement. A scenario would be to fire the procedure once, assess the results, and
then decide whether the project will be put under deeper monitoring followed by a
new development cycle.

While this method is ideal for quick one-off code auditions, it is not recommended
in the long run, because it does not take any unit tests into account and does not
integrate well in team environments. Consider java-runner as a supplement and
not the core method of the platform.

Configuring the runner
First download the Sonar java-runner plugin from http://repository.
codehaus.org/org/codehaus/sonar-plugins/sonar-runner/1.1/
sonar-runner-1.1.zip and unzip it. Do not unzip it within Sonar's plugins
directory, because it will be detected as a plugin by the server, and the server
will throw an exception. We will refer back to the plugin's installation directory
with the $SONAR_RUNNER_HOME system variable.

Next open the $SONAR_RUNNER_HOME/conf/sonar-runner.properties file and edit
the Default Sonar Server and MySQL sections as follows:

#----- Default Sonar server
sonar.host.url=http://SERVER_IP_ADDRESS:9000/sonar
…
#----- MySQL
sonar.jdbc.url=jdbc:mysql://SERVER_IP_ADDRESS:3306/sonar?useUnicode=tr
ue&characterEncoding=utf8
sonar.jdbc.driver=com.mysql.jdbc.Driver
….
#----- Global database settings
sonar.jdbc.username=sonar
sonar.jdbc.password=sonar

Chapter 3

[53]

Now the runner is configured. To verify this, execute the java-runner command
with the -h switch to display basic usage information—the command is the same
for Windows:

$ $SONAR_RUNNER_HOME/bin/sonar-runner -h

usage: sonar-runner [options]

Options:

 -h,--help Display help information

 -X,--debug Produce execution debug output

 -D,--define <arg> Define property

Setting up a Sonar server for remote
connections
Before moving on, it is vital to ensure that if the client machine from which the
runner will execute, can connect to the remote Sonar server and the hosted MySQL
instance. This has to be ensured in order to post analysis results back to the Sonar
server and persist them in the configured database.

If you are using Windows, whenever you are instructed
to open a command prompt or a terminal to execute a
command, run the cmd command to open a Windows
terminal and continue from there.

Open a command prompt and type the telnet command:

$ telnet IP_ADDRESS PORT

IP_ADDRESS is the Sonar's server IP and PORT is the port on which the server listens,
defaulted to 9000. If the telnet connection fails, ensure that the Sonar server is up and
running, and that no firewall is blocking incoming connections at port 9000.

To test MySQL connectivity, enter the following command, filling in sonar as the
password when prompted:

$ mysql IP_ADDRESS -u sonar -p

If MySql is installed on the same machine, you can alternatively enter the
following command:

$ mysql -h localhost -u sonar -p

Analyzing your First Project

[54]

If a connection is established, the mysql> command prompt should appear ready
to accept user input. We are now ready to configure and start java-runner from
the client machine. If the connection is refused, read on on how to set up MySQL
properly in order to accept remote connections.

First, you have to locate the my.cnf MySQL configuration file, which resides inside
MySQL's installation directory. On Linux systems, this file is usually under the
/etc/mysq/ directory. In Windows, the file is located under C:\Program Files\
MySQL—the default installation directory.

Open the file with the command, or use the editor of your choice to edit the file:

$ sudo nano /etc/mysql/my.cnf

Then, with Ctrl + W, search for the bind keyword until you locate the following line:

bind-address =IP_ADDRESS

Replace the preceding line with a commented one like:

bind-address =IP_ADDRESS

Next, connect to MySQL and grant privileges to the client machine from where the
java-runner will run:

$ mysql -u sonar -p

mysql> GRANT ALL on sonar.* TO sonar@'CLIENT_IP_ADDRESS' IDENTIFIED BY
'sonar';

Finally, edit the /etc/hosts file and add the client's IP address and hostname
as follows:

CLIENT_IP_ADDRESS CLIENT_HOSTNAME

Configuring the project
So far we have configured the java-runner, and the Sonar server is now ready to
accept incoming projects. The final step of the process is to create a configuration file
for the commons-lang project. Notice that every project up for analysis requires its
own configuration file located under its base directory and specifically named after
sonar-project.properties.

Chapter 3

[55]

The following snippet is a version of the file broken up into four sections and edited
for the commons-lang project. The $COMMONS_LANG variable is the project's base
directory and you will have to substitute it with a real filesystem location:

Section 1: required metadata
sonar.projectKey=commons lang
sonar.projectName=Commons Lang 3
sonar.projectVersion=3.0

Section 2: project directories
path to source directories (required)
sources=$COMMONS_LANG/src/main/java

path to test source directories (optional)
tests=$COMMONS_LANG/src/test/java

path to project binaries (optional), for example directory of Java
bytecode
binaries=$COMMONS_LANG/target/classes

Section 3: Java and libraries settings
optional comma-separated list of paths to libraries. Only path to
JAR file
and path to directory of classes are supported.
#libraries=path/to/library.jar

Uncomment those lines if some features of java 5 or java 6 like
annotations, enum, ...
are used in the source code to be analysed
sonar.java.source=1.5
sonar.java.target=1.5

Section 4: Advanced parameters
Uncomment this line to analyse a project which is not a java
project.
The value of the property must be the key of the language.
#sonar.language=cobol

Advanced parameters
#my.property=value

Analyzing your First Project

[56]

It's mandatory to use forward slashes (/), even in
Windows, wherever you enter path names in configuration
files. For example, path C:\dev would become C:/dev.

The preceding snippet has been broken into the following sections:

•	 Section 1: required metadata: This section provides basic information
about the project. These values show up on the dashboard. Changing the
version number and rerunning the analysis triggers an event, which is shown
on the dashboard and the Time Machine.

•	 Section 2: project directories: Fill in paths for source, test, and classes
directories in this section. You can enter multiple source paths separated by
commas. Although the test path is valid, the runner never runs them.

•	 Section 3: Java and libraries settings: In this section, enter paths to
the library dependencies, if any. The Java 1.5 properties are uncommented
because commons-lang uses Java 1.5 features.

•	 Section 4: Advanced parameters: For non-Java projects, uncomment and
set the sonar.language property. Some valid settings would be php, js, and
even cobol.

Moreover, with the sonar.profile property, you can overload the default
server's setting and specify another profile for the project at hand. Use the sonar.
exclusions property to exclude files in a comma-separated list from analysis—it
supports wildcards and patterns. Finally, if security is an issue, set the sonar.
importIssues to false to prevent project source code from being saved and
displayed on the dashboard. The analysis results remain unaffected.

To run the analysis, save the sonar-project.properties file under the
$COMMONS_LANG directory, open a command prompt, and execute the
sonar-runner within the $COMMONS_LANG base directory:

commons-lang3$ /~/development/tools/sonar-runner-1.1/bin/sonar-runner

Sonar will immediately start scanning and analyzing code:

[INFO] Database dialect class org.sonar.jpa.dialect.MySql
[INFO] Initializing Hibernate
[INFO] ------------- Analyzing Commons Lang 3
[INFO] Selected quality profile : [name=Sonar way,language=java]
[INFO] Configure maven plugins...
[INFO] Compare to previous analysis
[INFO] Compare over 5 days (2011-11-09)

Chapter 3

[57]

[INFO] Compare over 30 days (2011-10-15)
[INFO] Sensor JavaSourceImporter...
[INFO] Sensor JavaSourceImporter done: 32279 ms
…
[INFO] Sensor TrackerSensor done: 1889 ms
[INFO] Execute decorators...
[INFO] ANALYSIS SUCCESSFUL, you can browse http://IP_ADDRESS:9000/
sonar

Analysis with the Sonar Maven plugin
Maven is a build system tool allowing developers and teams to build their projects
in a uniform way. It is based on a common Project Object Model standardizing the
structure of Java projects. Build settings, plugins, and library dependencies, all stored
in a single pom.xml configuration file—the core of the Maven build system.

The mechanism of the Maven build system follows the notion of goals. For example,
if you want to compile a project, you run Maven's mvn command with the compile
goal as a parameter. Similarly, the mvn test command will compile and execute the
project's unit tests, while mvn package builds go through the whole process from
compiling and executing unit tests to packaging your final application. Its elegant
build model enables extensions and plugins for every need and purpose. The Sonar
Maven plugin adds the sonar goal, which triggers project analysis.

Installing Maven
Maven is available at http://maven.apache.org/download.html. Download any
3.x version (Maven 2 is still compatible with Sonar if you have it already installed),
and extract it in the directory to which you wish to install Maven.

On Linux, add the MAVEN_HOME environment variable by adding the following lines
to your .bashrc or .bash_profile. For example:

maven MAVEN_HOME path
MAVEN_HOME=/usr/lib/apache-maven/apache-maven-3.0.3
PATH=$PATH:$MAVEN_HOME/bin
export PATH
optional maven settings
MAVEN_OPTS="-Xms256m -Xmx512m"

Analyzing your First Project

[58]

To reload the configuration, open a terminal and enter:

$ source ~/.bashrc

or

$ source ~/.bash_profile

respectively.

Finally, run:

$ mvn --version

to verify that Maven was installed successfully.

Apache Maven 3.0.3 (r1075438; 2011-02-28 19:31:09+0200)

Maven home: /usr/lib/apache-maven/apache-maven-3.0.3

To install Maven on Windows, follow the same steps by adding the MAVEN_HOME
environment variable:

C:\Program Files\Apache Software Foundation\apache-maven-3.0.3

Some of the more important Maven commands are :

•	 mvn compile: Compiles java classes
•	 mvn test: Runs unit tests
•	 mvn package : Builds the project and creates a JAR file

Simply navigate to a Maven project's directory and run these commands from there.

Configuring the Sonar Maven plugin
The Sonar Maven plugin adds the following two new goals:

•	 sonar:help: Displays helpful information
•	 sonar:sonar: Performs project analysis

To activate the plugin, you will have to edit the settings.xml Maven configuration
file located at $MAVEN_HOME/conf/settings.xml. Locate the <profiles> section
and a new profile entry for the sonar goal as shown in the following snippet:

<profiles>
...
 <profile>
 <id>sonar</id>

Chapter 3

[59]

 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>

 <!-- MySQL Settings -->
 <sonar.jdbc.url>
 jdbc:mysql://localhost:3306/sonar?useUnicode=true&
 amp;characterEncoding=utf8
 </sonar.jdbc.url>
 <sonar.jdbc.driverClassName>com.mysql.jdbc.Driver</
 sonar.jdbc.driverClassName>
 <sonar.jdbc.username>sonar</sonar.jdbc.username>
 <sonar.jdbc.password>sonar</sonar.jdbc.password>

 <!-- Sonar server URL -->
 <sonar.host.url>
 http://localhost:9000
 </sonar.host.url>
 </properties>
 </profile>
...
</profiles>

The new profile is identified by its unique id element named sonar. The properties
define MySQL connection settings and the URL of the Sonar server.

Memory size
If your machine runs out of memory, you can increase
the Java heap memory size by using the MAVEN_OPTS
environment variable as follows:

MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=128m"

The Sonar Maven goal is now activated and can be run by using the
following command:

 $ mvn sonar:sonar

Remember to navigate to the project's root directory, that is, where the pom.xml file
resides for all Maven projects, before executing the command, and that the Sonar
server is running.

Analyzing your First Project

[60]

If you wish to read more about the plugin, you can always visit the official website at
http://mojo.codehaus.org/sonar-maven-plugin/.

Apart from Sonar, numerous Maven plugins offer different functionalities and useful
additions for every taste and need, such as:

•	 javadoc generation in both HTML and PDF format
•	 Automatic class diagrams and call graphs
•	 Applying patch files to the source code

Performing the analysis
To perform a Sonar analysis for the commons-lang project, open a terminal, change
directory to $COMMONS_LANG, and run mvn sonar:sonar. Here is some sample output
from the console during the analysis to get a better idea of the process (the whole
procedure should last for a couple of minutes):

[INFO] Scanning for projects...
[INFO]
[INFO] --

[INFO] Building Commons Lang 3.1-SNAPSHOT
[INFO] --

[INFO]
[INFO] --- sonar-maven-plugin:2.0:sonar (default-cli) @ commons-lang3

[INFO] Sonar version: 2.11
[INFO] Database dialect class org.sonar.jpa.dialect.MySql
[INFO] Initializing Hibernate
...
[INFO] Sensor CoberturaSensor done: 2018 ms
[INFO] Sensor Maven dependencies...
[INFO] Sensor Maven dependencies done: 601 ms
[INFO] Execute decorators...
[INFO] ANALYSIS SUCCESSFUL, you can browse http://localhost:9000
...
[INFO] BUILD SUCCESS
...

Notice that Maven goes through the package goal first, executing tests and
producing a new build, followed by sonar analysis.

Chapter 3

[61]

After the analysis has been finished, the project is added to the web dashboard at
http://localhost:9000.

Analysis with Ant
Apache Ant, ant in the command line, is one of the oldest Java build tools around.
Chances are you might be using it already or have switched to a more modern
system such as Maven or Gradle. To perform a Sonar analysis, you need to create a
new Sonar Ant Task and define the configuration inside an ant script file. Then, add
a new Ant target referencing the sonar configured task inside your project's build
script and provide path information for source, binaries, and project libraries.

First, let's go through the installation process.

Installing Ant
In order to use Ant in conjunction with Sonar, the following requirements must
be met:

•	 Ant 1.7.1 or higher
•	 Java 1.5 or higher
•	 Sonar 2.8 or higher

Download the latest Ant release from http://ant.apache.org/bindownload.
cgi and uncompress it into a directory. On Linux, add the ANT_HOME environment
variable to your PATH by editing .bashrc (or .bash_profile) accordingly. On
Windows, add the variable by right-clicking on My Computer | System
Properties | Environment Variables.

The section of the .bashrc file declaring the ANT_HOME variable is as follows:

ANT_HOME environment variable
ANT_HOME=/usr/lib/ant/apache-ant-1.8.2
export ANT_HOME
PATH=$PATH:$ANT_HOME/bin
export PATH

Analyzing your First Project

[62]

Finally, reload the .bashrc configuration and run ant -version to verify
the installation:

$ source ~/.bashrc

$ ant -version

Configuring and running Sonar analysis task
Download the Sonar Ant Task, sonar-ant-task-1.2.jar, from http://docs.
codehaus.org/display/SONAR/Analyse+with+Ant+Task and put in your
$ANT_HOME/lib directory.

Ant's build files are essentially XML files. We are not going to go into the details
right now, all you need to know is that in Ant, we define tasks and targets pointing
back to these tasks. Task definitions contain all necessary configurations required for
a task to execute while the target parameterizes the task to meet each project's needs.

For Sonar, we must first define a task with server and database connection
configuration. Every task is identified by a Uniform Resource Identifier—antlib:org.
sonar.ant for the Sonar one. The target configuration section refers to the task by its
URI and holds sources and binaries path configuration.

Modify the build.xml Ant script of your project and add the following section for
Sonar (the highlighted lines should be modified to match your environment):

<project name="Your Project" >
...
 <!-- Define the Sonar task -->
 <taskdef uri="antlib:org.sonar.ant" resource="org/sonar/ant/
 antlib.xml">
 <classpath path="path/to/sonar/ant/task/lib" />
 </taskdef>

 <!-- Sonar MySQL connection -->
 <property name="sonar.jdbc.url" value="jdbc:mysql://localhost:
 3306/sonar?useUnicode=true&characterEncoding=utf8" />
 <property name="sonar.jdbc.driverClassName" value="
 com.mysql.jdbc.Driver" />
 <property name="sonar.jdbc.username" value="sonar" />
 <property name="sonar.jdbc.password" value="sonar" />

 <!-- Sonar server URL -->
 <property name="sonar.host.url" value="http://localhost:9000" />

 <!-- Sonar target -->
 <target name="sonar">

Chapter 3

[63]

 <!-- the sources path is required -->
 <property name="sonar.sources" value="list of source
 directories separated by a comma" />

 <!-- optional paths for compiled classes, tests, and
 libraries -->
 <property name="sonar.projectName" value="this value overrides
 the name defined in Ant root node" />
 <property name="sonar.binaries" value="compiled classses
 directory" />
 <property name="sonar.tests" value="unit tests" />
 <property name="sonar.libraries" value="project library
 dependencies separated by comma" />
 ...
 <sonar:sonar key="org.example:example" version="0.1-SNAPSHOT"
 xmlns:sonar="antlib:org.sonar.ant"/>

 </target>
...
</project>

Notice that the sonar.sources property is mandatory. Before running the task,
make sure to build the project once so as to generate compiled classes and unit tests
results. Otherwise, they will be omitted from the Sonar analysis task.

To run the analysis, move to the project base directory and execute the
following command:

$ ant sonar

Browsing the Sonar web interface
Now you can add your own project to Sonar, or download open source ones to demo
the platform and play with the dashboard. Verify that the Sonar server is running,
point your browser at http://localhost:9000, and log in to Sonar.

The Sonar home page represents all analyzed projects in a table list form. Click on
any table column to sort the project list or click on the leftmost star icon to make
a project favorite.

This project list is essentially the default view, or filtered, configured, and defaulted
by Sonar. The following list gives a brief explanation of each column:

•	 Name: The name of the project is defined inside the pom.xml Maven file
under the <name/> element.

•	 Version: This is the <version/> element from pom.xml.

Analyzing your First Project

[64]

•	 Lines of code (LOC): This specifies the total lines of code excluding
documentation.

•	 Rules compliance: This is a percentile aggregated value reflecting
overall quality.

•	 Build date: This specifies the date on which the analysis took place. It
displays only a time HH:MM value, if the project was analyzed today.

•	 Links: This specifies the Maven configurable project links pointing
to sources, project home site, bug tracker, and so on.

Rules Compliance Index (RCI)
Sonar collects data from three different analysis engines, which
evaluate different weighted code violations. Each rule is configurable
and affects quality at different levels based on its configuration.
Sonar processes the collected data and finalizes the calculation by
aggregating all results into one single metric, the Rules Compliance
Index. The evaluation formula for the RCI is as follows:

RCI = 100 (* 100)
weighted violations

lines of code

To point out changes through time, small arrows sit next to the columns to show
whether a measure has decreased or increased since the last analysis.

Additionally, you can view changes over a given period of time by selecting the
desired period from the top-right drop-down list. Differential values next to each
measure will appear by showing how each measure has changed over the selected
period of time:

Chapter 3

[65]

Each tab on top of the Sonar home page browses to a different filter. Sonar comes
with three preconfigured filters:

•	 Projects: Tabular list of all analyzed projects
•	 Treemap: Color and size-sensitive treemap project view
•	 Favorites: Your favorite projects are stored here for quick access

We have already detailed the Projects filter with Favorites being an identical subset
of the first. Next, we will examine the Treemap gadget.

The treemap gadget
To better grasp the usefulness of the treemap gadget, add a few more projects into
your Sonar installation:

•	 Enforcer: http://maven.apache.org/enforcer/source-repository.html
•	 Commons BeanUtils: http://commons.apache.org/beanutils/

source-repository.html

•	 Commons Chain: http://commons.apache.org/chain/
source-repository.html

•	 Commons Collections: http://commons.apache.org/collections/
source-repository.html

Download and extract each project's source, move into the base directory, and run
the following two commands to build and perform sonar analysis:

$ mvn package

$ mvn sonar:sonar

When the goals have been completed, browse to the Sonar home page to view the
new analyzed projects and click on the second Treemap tab.

The treemap displays information at project level, drilling down to package and class
level. The size and color of the boxes are project-sensitive measures and qualities.
Simply select a measure from the corresponding drop-down lists and watch the
treemap adapting to the new values. In the following map, the size of the boxes is
proportional to the total lines of code while the color's green hue is proportional
to test coverage.

Large boxes mean more lines of code, while greener boxes interpret to a higher test
coverage percentage.

Analyzing your First Project

[66]

The color levels range in the following scale from worst to best:

Red > Yellow > Green

The treemap gadget is not a static component; on the contrary, its generic design
allows visualization of different resources. As a matter of fact, you can treemap at
project, package, and even at class level.

Filtering your projects
To manage filters, you have to log in to Sonar as an administrator. Now, on the
top-right section, the filters management hotbar becomes available. Next, create a
new filter including only the Apache Commons projects, leaving out Enforcer and
any other projects that you own.

Select Add filter to navigate to the filter configuration settings screen:

Fill in the Name field with the value Apache Commons. This will be the name of the
filter and the tab's title. Check the Shared checkbox, if you wish to make it available
to everyone, or leave it unchecked to keep it private.

Next, in the Search for section, verify that the Projects checkbox is checked and click
on the Advanced Search link at the bottom to open up additional filtering settings.
From here, you can filter resources such as projects, packages, classes, and static files
by name.

Chapter 3

[67]

To include only the Apache Commons libraries, fill in the Resource key like
input field with the value *commons-* and click on Save & Preview (it supports
the * wildcard):

Now, at the bottom of the Display panel, only the four Apache Commons projects
appear. From here, you can select how the projects will be rendered, either as a Table
or with the Treemap component. Add new metric columns and select the Default
sorted column. When you are happy with the settings, click on Save & Close to save
the filter. Then notice how it is added next to the Favorites tab.

Analyzing your First Project

[68]

Use the column controls to rearrange columns or remove them from the list. In the
example screen, the Build Date column was removed, and the Public documented
API (%) column was added with its order altered and bringing it forward
immediately after Lines of code.

The "What Coverage?" filter
Having learned the basics of filter management, it is time to create a metrics-oriented
filter focusing on Test Coverage. We want a view with all complex class files
regardless of the projects they belong to and lack in unit tests. Again, navigate to the
filter configuration settings by following the Add filter link on the right.

Name the filter as What Coverage? and check only the Files/Classes checkbox. Then,
add two criteria rows. For the first one select Coverage from the drop-down list
with a Value Less than 25.0—for the Coverage metric the 25 value is treated as a
percentage. For the second one select Complexity with a Value Greater than
100.0—we are looking for really complex classes here. Finally, click on Save &
Preview to move on to the Display settings.

Chapter 3

[69]

For this kind of filter, visual feedback is appropriate. Select the Treemap radio button
to have the classes rendered by the treemap gadget. We want complex and untested
classes appearing as large and red boxes. To achieve this effect, select Complexity
from the drop-down list for Size and Coverage for Color. Click on Change to view
the final result and Save & Close to save the filter:

Each box inside the treemap represents a complex and untested class. Mouse over
the boxes to get the exact complexity and coverage values. To drill down to the
source code, click on any box and a new window pops up presenting the file's source
code. The regions where test coverage is lacking, are highlighted.

As you can see, large red boxes are fairly complex classes with minimum test
coverage and they require attention.

Analyzing your First Project

[70]

Sonar components— an overview
Clicking on a project's name from the home page gets you to the project's dashboard.
The default configuration consists of a two-column layout with the basic widgets.
The menu on the left is split into two sections—project navigation and configuration.
Configuration settings and dashboard/widgets management are available to project
administrators only. Before we go into dashboard details, let's have a quick look at
the available components starting with the top left:

•	 Dashboard: Every project's entry point
•	 Components: Drill down one level, for example, from project to package

level
•	 Violations Drilldown: Violations indexer
•	 Time Machine
•	 Clouds
•	 Design
•	 Hotspots
•	 Libraries

Dashboard
This is the default view when you browse into a project. It is a portlet-like setup
hosting numerous Sonar widgets. It is fully configurable and enables you to create
customized dashboards suited to your needs. For instance, you can change the
layout from a single column up to a three-columns layout; rearrange, add, or remove
widgets limiting information or extending it; and of course, you can preserve
these changes to a new custom dashboard leaving the default as it is. Every new
dashboard you create or share with other users will appear immediately under the
default one on the left menu:

Chapter 3

[71]

Components
The components view drills down one level to project level. For example, when
viewing a Java project's dashboard by clicking on a component, Sonar drills down to
package level. The project along with some accumulated metrics appears on the top
of the components view. Then, below the project, a data table breaks down all project
packages. Turning Customize ON at the top left allows editing of the columns of the
data table. Besides the data table, the packages are also visualized via the treemap
gadget. Click on the treemap to drill down further to a class-level dashboard.

Violations drilldown
The Violations Drilldown component acts as an indexer, displaying all project
violations sorted from different perspectives. The component features four different
sections—two at the top and two at the bottom. The top left-panel provides an
overview of violation totals by Severity from Blocked down to the less significant
Info. On the top-right, the actual violations appear ordered again by Severity. The
counter next to each violation represents how many times it was encountered in the
source code. Clicking on Severity or a specific violation causes the component to
filter and refresh the presented data. For example, if you click on Major, only major
violations and their totals will appear. The filter also applies to the bottom section
showing only packages and classes with Major violations.

Analyzing your First Project

[72]

The bottom section is self-explanatory. On the left, there are packages and violation
totals per package, while the right section lists classes sorted by violation count.
Select any package and the right panel will refresh to present its violated classes.
Select a class and the source code viewer component will render a highlighted
version of the file's source right below. Try it and see for yourself, how the source
viewer is clever enough to precisely highlight the lines that have violations.
Moreover, along with the highlight at line level, Sonar offers additional advice on
what caused the violation and some common methods on how to fix it.

Finally, you can adjust the view to represent violation for a given period of time by
selecting the appropriate period from the Time changes drop-down list at the top:

Time Machine
The Sonar Time Machine is one of the most valuable and interesting components in
the Sonar family.

Data metrics are useful, but they are isolated from a project's lifetime as they hold
little information in the long run. What matters the most is the evolution of code
and how the seven axes of quality are affected during the development period in
accordance to team size, implemented features, project requirements, and working
man hours.

Chapter 3

[73]

As SonarSource.com puts it, "replaying the past" is an essential key feature, which
enables the manager to observe development progress in time, and drive resources
with increased efficiency. For example, suppose evaluation of a Sonar analysis
of your new project reveals a fair amount of uncovered and untested complex
code. This on its own does not say much. Was it always this way? Is this how
this development team approaches projects? Or something else has happened?
Examining the history on the Time Machine reveals that in the past code coverage
was always increasing proportionally to complexity. There were some minor gaps
here and there, but basically at all milestones coverage was above a healthy 75
percent. So, the team used to respect and treat complexity with care. A thorough
investigation reveals that team composition has changed and the i-write-tests
developer has been moved to the Q&A department.

Metrics are created from code, but the code is written by people. The Time Machine
connects numbers and measures to real life development matters such as project
requirements, team composition, development trends, and management. Indeed, it
is a worthy manager's assistant.

The following screenshot depicts the Time Machine component in detail. By default,
the component focuses on historical data about Complexity, Coverage, and Rules
compliance. But you are not restricted only to these. Below the component sits the
measurements list from which you can select the metrics you need. All measures are
indexed by topics such as Documentation, Rules, and Duplication among others.
Click on the Compare on chart button at the bottom of the page to refresh the Time
Machine and display the evolution of your selected metrics. If you are logged in as
an administrator, click on the Set as default link to save your preferences as defaults
for the component.

Analyzing your First Project

[74]

Major project events such as version and quality profile changes are displayed on
top of the chart. You can hide or select specific events from the drop-down list.
Alternatively, click through the calendar to select specific dates. Only dates on
which an analysis was performed will be active though.

Clouds
Clouds is an extremely informational component that allows identifying dangerous
classes at a glance. It represents classes as a tag-cloud with tag size and color
depending on the selected measure—Coverage or Rules compliance—and the
selected aspect—Quick wins or Top risk. Make your selections from the drop-down
list and the radio buttons, and the Cloud will re-render instantly.

These are the options that you can select from the Color section:

•	 Coverage: Color is more red when Coverage is lacking
•	 Rules Compliance: Color is more red when violations increase

Chapter 3

[75]

The following are the radio buttons available:

•	 Quick wins: Tag font size is proportional to lines of code
•	 Top Risk: Tag font size is proportional to complexity

To put it bluntly, big red classes require attention.

Click on any class to view its source code inside the Sonar source viewer. The code is
highlighted accordingly, based on the selected measure:

Design
Usually, warnings in the design department tend to be the most serious and
difficult to resolve. One of them is the dependency cycle. A dependency cycle occurs
when Class A constructs or calls a method of Class B and vice versa. It is a basic
hierarchy problem, which if left unmanaged ends up with non-modularized code
that cannot be re-used. Lack of cohesion and unneeded coupling is a tight knot to
solve, especially if it reaches Gordian levels. Refer to the component often, and cut
dependencies early before they accumulate.

Analyzing your First Project

[76]

Horizontal rows represent modules, packages, or files. Select a row to highlight the
matrix according to incoming and outgoing dependencies. The matrix values count
file dependencies among packages. The dependency path is color-coded:

Green > uses Blue > uses Yellow

The sample project, as shown in the following screenshot, has some issues since the
*.jaipur.core package depends on the *.jaipur.impl package and vice versa.
Cycling dependencies are identified by the red highlighted values inside the matrix.

Select the highlighted dependency numbers to view the dependency relationships of
the java classes at the bottom of the component.

Hotspots
The Hotspots component collects and sorts violation totals and measures.
Essentially, it is a collection of the top five listed widgets with each widget focusing
on a different axis of quality. The Hotspots lists help illuminate where to start fixing
things cost-wise. Use it to answer the following questions:

•	 Which is the class with the most violations?
•	 Which class contains the most duplicated code?
•	 Which class lacks coverage or has the highest complexity?

Libraries
The Libraries component simply lists project's library dependencies. You can use the
filter at the top of the page to search for a specific library or click on the Usages link
to view projects that use the selected library.

Chapter 3

[77]

Anatomy of the dashboard
The Sonar dashboard is the entry point for every project. The default two-column
layout hosts numerous widgets that describe quality and give you insight on
different metrics. The top two widgets provide statistics on code size and violation
totals by severity.

As shown in the following screenshot, the commons-lang project takes up 19,499
lines of code across 99 files. There are 147 classes in total featuring 2.173 methods
via 52 accessors.

Accessors methods
Accessors are all getter methods that follow the standard
JavaBean pattern. Such methods expose private objects'
properties. For example, the public String getMessage();
method is an accessor to the the private string message property.
The higher the accessor count, the more open an API is.

Selecting a severity from the violations summary on the right, browse to the
violations drill-down component already filtered by the selected level.

The next group of widgets displays general information about Documentation,
Design, and Complexity. Select any measurement in the Comments or Duplications
sections to open the resource viewer and identify the undocumented and duplicated
lines of code. The dependencies widget is an overview of dependencies and package
cycling. Click on a measurement to navigate to the Design component.

On the second row on the left, the Complexity widget breaks down the complexity
at package, class, and method level. Click on a value to drill down to classes
ordered in a descending order by complexity—method or class total. Also, watch
the distribution chart for any suspicious spikes. A healthy distribution for methods
would be to have a few complex methods and many simpler ones, while for classes
a linear to average distribution seems more normal.

Analyzing your First Project

[78]

Through the book, we will thoroughly discuss and utilize the object-oriented
LCOM4 and Response for class (RFC) metrics, which govern architecture and
design. LCOM4 is one of the four variations in the Lack of cohesion methods
(LCOM) family.

The code coverage widget displays unit test statistics over successes, failures, and
duration. Click on the coverage links to inspect classes that lack testing. Then, select
any class to have the resource viewer highlight untested lines and branches.

The event widget highlights events during the lifetime of the project. Version and
quality profile changes are automatically registered by Sonar, but you can also add
manual project events by clicking on the Add an event link at the bottom of the
widget. Fill in the form with the event's details by giving it a name and description,
and click on Create to save it.

Chapter 3

[79]

Layout and widget arrangement
Log in as an administrator and browse any project dashboard. Click on the Manage
Dashboards link located at the top of the page to manage your dashboards. A list
with all your custom dashboards will appear allowing you to edit them, delete, or
configure widgets.

To create a new dashboard, fill in the Name and Description (optional) fields inside
the form at the right of the page and click on the Create Dashboard link. If you want
to share the dashboard with other sonar users, do not forget to check the shared
checkbox. Your dashboard will be created and Sonar will prompt you to select the
widgets you want it to host from a comprehensive list. You can filter the list by
clicking one of the top None, Design, History, Rules, or Tests links. Read
the available widget description and click on the Add widget link to add it to
the dashboard:

Some widgets allow further parameterization by clicking on the Edit link on top
of them. For example, if you select the Timeline widget, you can edit which three
metrics will be displayed. Another useful and fully customizable widget is the
Custom Measures widget. Add it and select which metrics you want it to display.
Notice that a widget can be added many times. It is possible to add two Timeline
widgets tracking historical data on different aspects, for instance having two
timelines tracking metrics on Complexity and Unit Testing. Finally, click-and-drag
around any widget by its header to reposition it either vertically or horizontally on
a different column. When you are done, click on the Back button to navigate to the
dashboard link.

For complex projects, you could create separate dashboards
entirely focused on a single aspect featuring the Overview
dashboard, Coverage dashboard, and so on.

To reconfigure the widgets, click on the Configure widgets link at the top. To change
the dashboard's layout, click on the Edit layout link and select one from the available
five. Avoid the single column one because in most cases it produces dashboards that
require excessive scrolling in order to view all widgets.

Analyzing your First Project

[80]

Eliminating your first violations
Now we will pick the commons-lang project that we imported into Sonar earlier and
eliminate a few violations. Then, we'll run a new analysis and get visual feedback
afterwards through the web interface. Of course, you are free to choose any project
and try to eliminate similar violations. Before we start the process of editing source
files, here is what the Violations widget reads:

Unused modifier violation
From the left menu, select the Violations Drilldown component. Select the Info
severity, find the Unused Modifier violations on the right panel, and click them to
see the exact classes at which they are encountered. Sonar will find Builder.java
inside the package org.apache.commons.lang3.builder and ExceptionContext.
java in the package org.apache.commons.lang3.exception. Click on the
filenames to open up the source viewer and drill down to the exact line where each
violation is encountered.

Open the Builder.java file and delete the public declaration at line 88, since it will
be calculated by the java compiler:

88 public T build();

This line will become:

88 T build();

Do the same for the ExceptionContext.java interface and delete the public
declaration at line 49:

49 public ExceptionContext addContextValue(String label, Object
50 value);

This line will become:

49 ExceptionContext addContextValue(String label, Object value);

Chapter 3

[81]

Filter again by selecting the Major severity to review major violations. Among others
Sonar finds:

•	 Modified Order: Major violation in FormatCache.java inside the package
org.apache.commons.lang3.time

•	 Correctness - Repeated conditional tests: Major violation in
DurationFormatUtils,java in the package org.apache.commons.lang3.
time

Modified Order violation
The Modified Order violation means that a method or a variable declaration does
not follow Java standards. For example, in FormatCache.java at line 104 protected
should precede abstract:

104 abstract protected F createInstance(String pattern, TimeZone
timeZone, Locale locale);

So correct it and save the file.
104 protected abstract F createInstance(String pattern, TimeZone
timeZone, Locale locale);

Correctness - Repeated conditional tests
The Correctness - Repeated conditional tests violation means there are unnecessary
conditionals that were already resolved earlier. The Sonar source viewer highlights
the source file at line 327 by highlighting the conditional:

327 if (!Token.containsTokenWithValue(tokens, y) && years !=
 0) {
 while (years != 0) {
 months += 12 * years;
 years = 0;
 }
 }

The years != 0 check at line 327 is unnecessary, since it is checked by the while
loop too. We can safely remove the check and reduce the complexity of the if
conditional. The block becomes:

327 if (!Token.containsTokenWithValue(tokens, y)) {
 while (years != 0) {
 months += 12 * years;
 years = 0;
 }
 }

Analyzing your First Project

[82]

Having eliminated the violations, we are ready to apply a version change to the
project. Sonar will catch the change and trigger a version change event, which
will appear in the Time Machine component.

Of course, in a real case scenario such edits would not
justify a version change but would be incorporated in
the same SNAPSHOT build.

Creating your first analysis event
Locate and edit the pom.xml file inside the $COMMONS_LANG directory. In the
beginning of the file, find the following line:

<version>3.1-SNAPSHOT</version>

Change it to:

<version>3.1.1-SNAPSHOT</version>

Then save the file.

Then, repackage the project and execute a Sonar analysis with:

$ mvn package

$ mvn sonar:sonar

Getting visual feedback
When the analysis is complete, visit the commons-lang dashboard to review changes.
Select the previous analysis from the drop-down list at the top of the dashboard to
display the difference between the current and the previous analysis.

Violations dropped by a total of 19—Major (-2), Minor (-9), and Info (-8).
Additionally, the version change now appears at the top of the Events widget
as the latest event. This event will now appear on all historical Sonar components.

Chapter 3

[83]

What was not planned was the minor drop of complexity per file by 0.1 percent.
Indeed, it was unexpected that eliminating a few violations would even touch
complexity given the size of the project—weighing at 20,000 lines—but still. This
is the most rewarding part of the whole process.

Summary
In this chapter, we covered all three methods that the Sonar platform offers to
analyze projects such as Maven, Ant, and Java Runners. We configured the Sonar
server and its MySQL database to accept remote connections, and installed and
configured the Maven and Ant build tools. To test the set up, we downloaded and
imported some popular open source libraries into Sonar for Sonar inspection.

With some projects already analyzed, we went through the Sonar web interface from
the home page, down to components and project dashboard. We created a custom
filter to help us track lack of test coverage across all projects and further customized
the dashboard by adding widgets and rearranging the layout. Towards the end of
the chapter, we eliminated a couple of violations and triggered a version change
event. After a fresh analysis, we browsed to Sonar again to get visual feedback on the
aforementioned changes.

In the next chapter, we will focus on coding standards, the rules that enforce them,
and how to use Sonar to effectively track and eliminate them.

Following Coding Standards
In this chapter, we will discuss coding standards and the way Sonar monitors such
violations. We will use Sonar to track down coding standards violations and correct
them. To better understand the process, a small project containing classes lacking in
standards department will be inspected by Sonar. Then, we will go over identifying
and eliminating the violations one by one, examining the cause of each violation and
providing a possible solution on how to eliminate it or overcome it. To fine grain
Sonar output, we will define a custom profile focused on coding standards violations.

Before diving into the whole process, a general discussion about coding standards is
necessary, exploring the purpose they serve, and why projects need to follow them
and respect them at one point or another. Then, we will take a closer look at what a
Sonar Rule is, how it correlates to Violations and Levels, and the Rules Compliance
Metric. Under certain circumstances, some rules may not apply, triggering false
positives. We will explore a couple of false positive cases and disable some rules
not be taken into account by Sonar when aggregating results to produce the Rules
Compliance measure. In other words, such rules should not affect project quality
at all.

In this chapter we cover:

•	 A brief overview of coding standards and conventions
•	 Sonar profiles, rules, and violations
•	 Managing quality profiles
•	 Managing rules
•	 Creating a coding standards profile
•	 Inspecting violations with the radiator component
•	 Watching the quality improving

Following Coding Standards

[86]

A brief overview of coding standards
and conventions
Coding standards are defined by sets of rules governing programming style for a
particular programming language. Although they differ from language to language,
the objective is the same—to provide consistent, clean, readable code. Of course,
development teams have different requirements and develop their own rule sets
customized to their own preferences and programming habits. However, while the
coding standards matter is subjective, the goal remains the same and many common
rules apply to all projects among different programming languages.

Standards were not invented and simply handed to programmers. They matured
through time, following programming languages' evolution and needs. Each
language features its own standards and idioms, growing and being revised along
with the language. Standards and conventions do not touch how features are
designed or implemented but how they are presented to the coder. Clean-cut code
often means error-free code because information and structure is more apparent to
the developer. Badly written/structured code, apart from slowing the development
process, discourages new developers who have to not only fight and comprehend a
wall of lines and random notations but to add to this mess their own. Provide them
with tight and clean code and watch them easily adjust and improve.

Following coding conventions through your project's code
base should not be considered as an add-on or a luxury.
Follow some common guidelines and development will
become more pleasant and effective.
Software, during its lifetime, is not maintained by the
original author. Standards allow developers to understand
code more quickly.

In other words, from the moment your software project starts following some
standards and common conventions, it will gradually become immune to non-
standard writings, since most developers tend to respect other peoples' sources
and try to provide quality at the same levels.

Moreover, coding conventions enable a more accurate static analysis of the code for
reasons other than compiling. For example, counting the number of lines/statements
or generating source code documentation, either with the javadoc tool or third-party
software such as Doxygen, available at http://www.stack.nl/~dimitri/doxygen/.

Chapter 4

[87]

Java standards
Java features a thorough set of standards across its specification covering
organization and presentation aspects:

•	 Naming conventions
•	 Class and variables declarations
•	 Statements: methods, loops, conditionals
•	 Layout: indentation and white space

Sonar platform integrates rules covering all of the preceding areas. The default
Sonar Way profile does include Java standards rules but for a more comprehensive
inspection, Sonar Way with Findbugs is recommended. Sonar uses three separate
source code analyzers, all of which feature rules on coding standards. However,
Checkstyle is dedicated to standards' inspection, covering almost everything from
common rules to right curls indentation and parameters padding.

Next, we will learn how to manage Sonar Quality Profiles and create a new one
covering coding standards issues and examine how Sonar rules are defined and
configured. Knowing how Sonar rules work enables us to create very specialized
quality profiles, which in turn act as filters on quality axes.

Sonar profiles, rules, and violations
Sonar validates source code against a quality profile. Based on profile settings, the
source code analyzers take turns parsing code and apply numerous rules. When a
rule is broken, a violation is created, but what is a rule and how does it correlate to
the overall quality?

Each Sonar profile consists of a collection of rules. Think of these rules as constraints
to your source code. Each time Sonar parses, your code checks whether a rule is
followed or not. In case the rule's criteria are not met, a new violation is created at
a predefined Severity. The severity or level of the violation is a weighted value that
affects overall quality of the Rules Compliance Index (RCI).

Following Coding Standards

[88]

The Rules Compliance Index
We have already talked about the RCI and now it is time to take a closer look at how
it is calculated in practice. Sonar features a total of five different Severity Levels with
their respective multiplier values:

Sonar Severity Levels
Severity Level Severity Value (Weight)
Blocker 5
Critical 4
Major 3
Minor 2
Info 1

For example, four violations of Minor severity would produce a total Violations'
value of 8 based on the following formula:

Or

Now assume a project of 15,000 lines with the following violation to severity
levels distribution:

Total LOC: 15,000
No. Violations Severity Level Weight (Severity Cost) Weighted Value
0 Blocker 5 0
9 Critical 4 36
543 Major 3 1629
241 Minor 2 482
18 Info 1 18
Total Weighted Value 2165

Chapter 4

[89]

Therefore, the project of 15,000 lines has violations at a weighted cost of 2,165 and
converting this to percentage values:

As you might have guessed the RCI value equals to:

This is the total quality of the project at a nice high of 85.56 percent. The following is
the consolidated formula:

 percent

A lot of thought has been put into severity levels and their respective values in
order to produce accurate and representative results. Obviously, it is more efficient
to spend time and energy eliminating high-level violations, which have the most
impact on quality.

Managing quality profiles
Sonar comes with three predefined profiles—they are not editable but you can use
them as a basis for a new custom one. Go to Configuration from the top of the page
and then click Quality Profiles on the left.

You can select the default quality profile, copy an existing one and use it as a
template for a custom profile, or create a new one from scratch.

Following Coding Standards

[90]

Creating a profile
Throughout the book, we will create a new Packt profile from scratch, adding rules
chapter by chapter. By the end of the book, you will have configured a complete
professional profile and have a deep understanding of the most common and
important rules the platform offers. From that point on, you will be able to adjust
or create numerous profiles customized down to the finest detail.

To create a new quality profile, click the Create link from the main profile
management screen. Sonar will prompt for a profile Name; name it under
Packt profile and click on the Create Java Profile button to save it. A new empty
profile has been created.

Profile inheritance

Notice that the Sonar platform allows profile inheritance,
minimizing profile management and modification. Inherit
from a base profile and modify according to your needs.

Associating projects to profiles
Click on a profile's Name and then the Projects tab to view a list of associated
projects with that profile. From here, you can specifically associate a project to the
selected profile, otherwise unassociated projects will be analyzed by the default one.

Chapter 4

[91]

Managing rules
Click on Packt profile from the profile management screen to browse to the main
configuration screen. Currently, the profile is empty, thus not containing any rules.
The Coding Rules tab section features three list boxes from which you can filter rules
by Analyzer Plugin, severity level, and whether the rule is activated or not.

•	 Plugin: Select one of the available Sonar analyzers
•	 Severity filter rules by severity level (Info, Minor, Major, Critical, Blocker)
•	 Select active, inactive, or all rules the current plugin analyzer supports

For now, select any rules of minor severity for the Checkstyle plugin and click on
the Search button. Wait for the page to refresh and a complete list of all Checkstyle
rules will render. All rules are currently deactivated and checkboxes on the left
are deselected.

Adding a rule
To add the rule to the profile, simply check the Ajax checkbox on the left. There is
no need to do anything more and the rule has been added. From the top right of the
rules list you can Bulk Change rules by either activating or de-activating them all at
once. Clicking on the rule's name opens up a configuration panel.

Following Coding Standards

[92]

Configuring a rule
Now scroll down the list and locate the Constant Name Rule. Add it to the profile
and click on its name to review the configuration settings:

The most important part is the severity level. You can select the desired level from
the drop-down menu on the left and the format of the rule. Most rules in Sonar come
in three general formats:

•	 Regular expression rules
•	 Boolean true/false values
•	 Token/numeric values

Each rule's implementation logic uses these predetermined token values or regular
expressions to decide whether to raise a violation or not at the given severity
level, thus raising the total severity cost.

Regular expressions
The evaluation expression for the Constant Name rule reads:

^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$

This means that constant names should start with a letter and consist only of
uppercase letters and numbers with words separated by an underscore, for example:

static MARGIN_TOP_50

If we want to raise a violation when a constant name contains a number, we would
alter the preceding expression as follows:

^[A-Z]*(_[A-Z]+)*$

Chapter 4

[93]

Boolean expressions
Expand the Checkstyle Member name rule to view its configuration panel. The
regular expression checks the field's name against Java standards and the Boolean
expressions control to what extent the rule will apply (private, protected, public
members, and so on).

Token and value-based rules
The Line Length rule (Checkstyle: Major) checks for the maximum length and
registers a violation if it is exceeded. However, it can be configured to your liking
by adjusting the maximum line length, the number of expanded spaces for tab
characters, and an optional ignore expression pattern. Lines that match this pattern
will be ignored no matter how long they are.

Review your IDE settings and make sure that the maximum
line length is in sync with the Line Length rule. If not,
adjust accordingly.

Following Coding Standards

[94]

Backing up and restoring profiles
To transfer or share quality profile configurations among different Sonar instances,
you can Backup a source configuration in XML format and restore it to any target
instance by clicking on the Restore link from the profile management screen. Select
the XML source configuration file exported earlier and click on Restore profile to
upload the file. Sonar will parse the XML and create a new identical profile. If a
profile with the same name already exists, delete it before restoring. To back up a
profile to XML, click on the Backup button.

From the same screen, it is possible to compare two different profiles and get an
overview on how much they differ in respect to rules composition.

Creating a coding standards profile
To create a coding standards profile, it is necessary to know the responsibilities and
specialization of each code analyzer, along with the rules it incorporates.

Sonar's source code analyzers have different responsibilities. There are some
overlapping rules, but in general each analyzer has a separate focus. At the time of
writing, Checkstyle has 122 rules, mainly checking Java standards and conventions.

Findbugs features 384 rules grouped by category. It specializes in locating vulnerable
code that could lead to potential bugs or defects.

Findbugs Rules Breakdown
Category Count
Bad Practice 77
Correctness 139
Multithreaded Correctness 41
Dodgy 58
Experimental 10

Chapter 4

[95]

Findbugs Rules Breakdown
Category Count
Malicious code vulnerability 12
Performance 26
Security 9
Other 12
Total 384

From the Coding Rules tab, you can use the Name/Key to filter your search.
For example, you can set the Name/Key value to correctness and filter all Correctness
and Multithreaded Correctness rules.

PMD comes with a total of 224 rules distributed among all quality axes such as
complexity, potential bugs, and standards.

Sonar's own analyzer consists of 12 rules and focuses on complexity. One rule
that is worth mentioning is the Avoid use of //NOSONAR marker rule. Quoting the
rule's definition:

Any violation to quality rule can be deactivated with the //NOSONAR marker.
This marker is pretty useful to exclude false-positive results but sometimes it can
abusively be used to hide real quality flaws.

This rule allows to track and/or forbid use of this marker.

During the source code parsing process, whenever Sonar reaches a line containing an
inline //NOSONAR comment, it will ignore it. For example, the following violation will
be ignored:

if (true) { //NOSONAR
…
}

Without the //NOSONAR tag, Sonar would normally produce a violation because the
if condition defaults to true.

Selecting the rules
What rules are we going to include in our new profile? Assume a total Severity cost
valued at 100. We are going to spend this total among the most common rules on
coding standards and we will follow this process for the rest of the book in order to
create a fairly balanced profile equal in all aspects.

Following Coding Standards

[96]

To give you an idea of how it will turn out, here is a table presenting the
cost-based breakdown:

Coding Standards Profile Distribution
Severity Rules Count Cost
Info 5 5
Minor 8 16
Major 25 75
Critical 1 4
Blocker 0 0
Total Cost 100

That's a total of 39 rules with a Severity cost of 100. Rules have been grouped into
three general categories for profile design needs:

•	 Naming conventions and declarations
•	 Basic standards
•	 Code layout and indentation

Add the rules presented in the following sections to the Packt profile we created
earlier by selecting the checkbox on the left of each rule.

Do not change the severity level, and add Avoid use of //NOSNAR marker from the
Sonar analyzer.

Naming conventions and declarations rules
Naming conventions and declarations rules are sorted from lower to higher severity
in the following listing. Next, we will provide some examples for some of the rules
as to exactly understand how a violation is generated and what to do in order to
eliminate it.

Naming Conventions and Declarations
Severity Name Analyzer
Info Declaration Order Checkstyle
Minor Constant Name Checkstyle
Minor Naming - Avoid dollar signs PMD
Major Abstract Class Name Checkstyle

Chapter 4

[97]

Naming Conventions and Declarations
Severity Name Analyzer
Major Local Variable Name Checkstyle
Major Final Variable Name Checkstyle
Major Static Variable Name Checkstyle
Major Member Name Checkstyle
Major Method Name Checkstyle
Major Parameter Name Checkstyle
Major Multiple Variable Declarations Checkstyle
Major Local Home Naming PMD
Major Long Variable PMD
Major Naming - Avoid field name matching method name PMD
Major Naming - Class naming conventions PMD
Major Naming - Method naming conventions PMD
Major Naming - Variable naming conventions PMD
Major Naming - Short method name PMD
Major Short Variable PMD
Critical Naming - Suspicious equals method name PMD

Declaration order
According to the rule's description:

Checks that the parts of a class or interface declaration appear in the order
suggested by the code convention for the Java Programming Language:

•	 Class (static) variables: First the public class variables, next protected, then
package level (no access modifier), and then private

•	 Instance variables: First the public class variables, next protected, then
package level (no access modifier), and then private

•	 Constructors
•	 Methods

To better illustrate the specification, the following is an exemplary Foo class:

package com.packt.arapidhs;

public class DeclarationOrder {

 /**
 * <p>
 * Order static variables first
 *

Following Coding Standards

[98]

 * public
 * protected
 * no access
 * private
 *
 * </p>
 */
 public static String FOO;
 protected static String BAR;
 static String FOO_BAR;
 private static String BAR_FOO;

 /**
 * <p>Order instance variables.</p>
 */
 public String boo;
 protected String far;
 String boo_far;
 private String far_boo;

 /** Default empty constructor. */
 public Foo(){
 //
 }

 /* Order static methods.*/

 public static void foo(){
 //
 }

 protected static void bar(){
 //
 }

 static void fooBar(){
 //
 }

 private static void barFoo(){
 //
 }

Chapter 4

[99]

 /* Order instance methods.*/

 public void boo(){
 //
 }

 protected void far(){
 //
 }

 void booFar(){
 //
 }

 private void farBoo(){
 //
 }
}

This structure is all you need to know in order to lay out a Java class according to the
specification. Usually, developers look at the top of the class for static and constant
variables and move to the bottom to find more restricted fields and methods, moving
from public down to private access.

Abstract class name
In Java, abstract classes have to start with the Abstract keyword, for example
AbstractResource. The rule identifies wrongly named abstract classes using the
following regular expression:

^Abstract.*$|^.*Factory$

What about the Factory part? This means that abstract classes ending with the
Factory keyword do not require the Abstract prefix. So the AbstractResource
and ResourceFactory class names are both valid names for abstract classes.

Variable, parameter, and method names
All variables except constants, parameters, and methods follow a simple rule. The
first letter is in lower case, words inside a declaration start with an uppercase letter:

•	 String foo;

•	 String fooBar;
•	 void foo();

Following Coding Standards

[100]

•	 void fooBar();

•	 void foo(String foo)

•	 void foo(String fooBar)

All these declarations are valid. Sonar checks this naming convention with the
following regular expression:

^[a-z][a-zA-Z0-9]*$

Constant names
Remember that constant names are all uppercase letters
and words are separated with an underscore, for example
FOO or FOO_BAR.

Multiple variable declarations
This rule ensures that each variable is declared in its own statement and on its own
line. Some developers have the habit of declaring many variables in one statement at
once but this degrades readability.

String foo, bar, fooBar;

Becomes:

String foo;
String bar;
String fooBar;

Local home naming
Local session EJB interfaces extending the javax.ejb.EJBLocalHome interface
should be suffixed by the LocalHome keyword as follows:

public interface HelloLocalHome extends EJBLocalHome {
 public HelloLocal create() throws CreateException;

}

Variable lengths
The Long Variable and Short Variable rules detect the length of a variable or a
parameter and report accordingly. If a variable's length is less than three or greater
than 17, then a violation is registered.

The Naming - Short method name is similar but applies to method names.

Chapter 4

[101]

Naming - Avoid field name matching method name
Similar names for methods and variables prove to be confusing. This rule detects
such naming patterns and reports violations. The following class declaration would
violate this rule:

public class Foo {

 String bar;

 void bar() {
 }

Naming - Suspicious equals method name
The equals method is very important in Java language because it is used to compare
and identify equal objects. When it is overridden, the method's signature should be
identical to the inherited one; otherwise, equality will not work as expected.

A very common mistake is to declare the parameter as a String and not an object.
Sonar identifies the following method declaration assuming that the developer
wanted to override the equals method:

public class Foo {

 public int equals(Object o) {
 // oops, this probably was supposed to be boolean equals
 }

 public boolean equals(String s) {
 // oops, this probably was supposed to be equals(Object)
 }
}

The correct method would be:

 public boolean equals(Object obj) {
 //
 }

Following Coding Standards

[102]

Standards rules
In this section, we will discuss the second set of rules that we are going to add to the
Packt profile:

Standards and Practice Rules
Severity Name Analyzer
Info Unused Imports Checkstyle
Info Unnecessary Final Modifier PMD
Info Unused Modifier Checkstyle
Minor Magic Number Checkstyle
Major Final Class Checkstyle
Major Missing Constructor Checkstyle
Major Assignment in Operand PMD
Major Abstract class without any methods PMD

Unused imports
Leaving unused imports in a class simply clutters the file. Fortunately, modern
IDEs have functions to detect and automatically remove them. This rule triggers
a violation in case some of them have been forgotten.

Unnecessary final modifier
When a class is declared final, this means that inheritance is not allowed and so
methods cannot be overridden in any way. Obviously, declaring a method final
is not necessary and the following code would cause a violation:

public final class Foo {

 final void bar() {
 //
 }

}

Chapter 4

[103]

Unused modifier
From the rule's definition:

Fields in interfaces are automatically public static final, and methods are public
abstract. Classes or interfaces nested in an interface are automatically public
and static (all nested interfaces are automatically static). For historical reasons,
modifiers which are implied by the context are accepted by the compiler, but are
superfluous.

And the following code:

public interface Foo {

 public void bar();
 }

 }

Becomes:

public interface Foo {

 void bar();
 }

 }

Magic number
According to this rule, all references to numbers apart from -1, 0, 1, and 2 cause
a violation. The meaning of this rule is that when you have to change this value,
change it only in one place, where the number's variable is declared and not all
over the place.

What you can do is create a static MagicNumber class and hold numbers there or
declare them as constants in the class:

public interface Foo {

 public void bar(int input);
 return input * 20;
 }

 }

Following Coding Standards

[104]

Declare number 20 as a FACTOR constant variable inside the FOO class. Additionally,
make it public so other classes can access it referring Foo.FACTOR:

public interface Foo {

public static int FACTOR = 20;

 public int bar(int input);
 return input * FACTOR;
 }

 }

Final class
A class that has only private constructors should be declared as private because the
private constructor prevents inheritance anyway. For example:

public final class Foo {

 /* Default private constructor */
 private Foo(){
 //
 }
 }

Missing constructor
This rule checks that classes (except abstract ones) define a constructor and don't rely
on the default one.

Abstract class without any methods
If a class does not contain any methods, thus not providing functionality but
only members, it is probable that it plays the role of a Container. It is better not to
instantiate such classes. To prevent instantiation, a private or a protected constructor
should exist, as shown in the following code:

public abstract class AbstractFooBar {

 private String foo;

 private int bar;

 /* Default private constructor */

Chapter 4

[105]

 private FooBar(){
 //
 }

 }

Code layout and indentation
Finally, add rules that check code layout and whitespace:

Standards and Practice Rules
Severity Name Analyzer
Minor Avoid Inline Conditionals Checkstyle
Minor Left Curly Checkstyle
Minor Paren Pad Checkstyle
Minor Whitespace Around Checkstyle
Minor Trailing Comment Checkstyle
Major Line Length Checkstyle
Major Multiple String Literals Checkstyle
Major For Loops Must Use Braces PMD
Major While Loops Must Use Braces PMD
Major If Else Stmts Must Use Braces PMD

Avoid inline conditionals
Inline conditionals are essentially if else statements expressed in one line. While
they make efficient use of text, space prove to be difficult to read. This rule detects
such one liners and raises violations.

Thus the following one liner:

max = (a > b) ? a : b;

Has to be rewritten in its clearer full form as follows:

if (a > b) {
 max = a;
}
else {
 max = b;
}

Following Coding Standards

[106]

Left Curly
Checkstyle's definition for the Left Curly rule states:

Checks for the placement of left curly braces for code blocks. The policy to verify is
specified using property option. Policies eol and nlow take into account property
maxLineLength.

You can configure this rule to your liking, since the left curl placement has proved to
be a very subjective matter, by selecting the appropriate policy:

•	 eol (end of line): Brace must always be placed at the end of the line.
•	 nl (new line): Brace must always be placed at the start of a new line.
•	 nlow (new line on wrap): If the line's length allows to fit on one line, then the

brace must be placed at the end of the line. Otherwise, the line is wrapped
and the brace is placed at the start of a new line.

Configure your IDE to lay out braces in sync with the above configuration.

Paren Pad
The Paren Pad rules check the padding of parentheses, that is, whether a space is
required after a left parenthesis and before a right parenthesis.

Unpadded statement:

int result = (a + b) *c

Padded statement:

int result = (a + b) *c

Trailing comment
A comment is trailing when it is on the same line as a statement. This rule ensures
that all comments are on separate lines.

For example:

int result = (a + b) *c //calculates final result

Becomes:

// calculates final result

int result = (a + b) *c

Chapter 4

[107]

Multiple String literals
This rules checks whether a String literal occurs in multiple places within a single
file. This is a form of code duplication and renders code maintenance quite difficult.
Imagine having to replace a String literal appearing multiple times in a large file all
over the place.

A better tactic is to define a constant and when a change is required, just redefine
the constant.

For example:

public final class FooBar {

 /* Default private constructor */
 private Foo(){
 //
 }

 public String getFoo(){
 return "foo";
 }

 public String addBar(){
 return "foo" + "bar";
 }

 }

Would be rewritten as:

public final class FooBar {

 static String FOO = "foo";

 /* Default private constructor */
 private Foo(){
 //
 }

 public String getFoo(){
 return FOO;
 }

 public String addBar(){
 return FOO + "bar";
 }

 }

Following Coding Standards

[108]

The for loops must use braces
This is same as the Inline Conditionals rule only for for loops.

PMD's example is self-explanatory:

for (int i=0; i<42; i++) foo();

Should be:

for (int i=0; i<42; i++) {

 foo();

}

Rules While Loops Must Use Braces and If Else Stmts Must Use Braces recommend
exactly the same practice.

Inspecting violations with the Radiator
component
The Radiator component is very similar to the treemap one, with three
main differences:

•	 It is bigger—expands to full screen
•	 Left-click drills down to class level, eventually opening the sonar

source viewer
•	 Right-click drills up

In treemap, you only drill down one level and it redirects you to the dashboard.

Before installing the plugin, you can associate one of your
projects to the coding standards profile we just created and
perform a Sonar analysis. Then you may examine your
project with the Radiator component.

Installing the Radiator plugin
Log in as an administrator and click on Configuration from the top and go to SYSTEM
| Update Center from the left navigation menu. Click on the Available Plugins tab
and scroll to the bottom until you reach the Visualization/Reporting section.

Chapter 4

[109]

Click install and wait for Sonar to notify you that it is ready to install the plugin and
you need to restart the server for the installation process to take place.

Now, to review how your project measures in the Rules Compliance department,
click on Radiator on the left of the project's dashboard.

The radiator widget
The radiator can be also added directly to the project dashboard as a
widget. Click Configure Widget from the dashboard screen, locate the
radiator, and click on Add Widget.

The following screen shows what JDK 7 looks like (size is for LOC and color for
Rules compliance):

Following Coding Standards

[110]

Mouse over a box to view the exact RCI percentage or click on it to drill down one
level from project to package and so on. SonarSource hosts the complete JDK7, so
you can watch a live demonstration at http://nemo.sonarsource.org/.

Basically, you:

1. Drill down to class level using the radiator.
2. Identify the packages lacking in coding standards.
3. Drill to class level—click the box to open the source viewer.
4. Identify violations and correct them.
5. Run a Sonar analysis again to review the results.

Watch the quality improving
To closely monitor how the RCI metrics fluctuate during development along with
the Violations count and Lines of Code, you can add the Timeline widget to the
dashboard. Navigate to the dashboard and click on the Configure Widgets link.
If the Timeline widget is not present, select it from the upper yellowish panel by
clicking on Add Widget.

Configuring the Timeline widget
In edit mode, select the Edit link from the widget's header bar and name it as Coding
Standards and for the three metric values select:

•	 Lines of code
•	 Rules compliance
•	 Violations

Chapter 4

[111]

Click on Save and Back to the dashboard from the top to return to view mode.

The following is the Timeline widget in action:

Summary
In this chapter, we reviewed Java coding standards and conventions, and the way
Sonar applies them to your source code. We went through the process of creating a
new cost-based quality profile detailing rules configuration. Finally, we installed the
Radiator plugin from Sonar's update center and configured the Timeline widget on
the project dashboard.

In the next chapter, we will discuss Sonar code reviews and how they can contribute
to a project's lifecycle. We will further explore some of the visual components Sonar
offers and enable reporting capabilities.

Managing Measures and
Getting Feedback

In this chapter, we will discuss code reviews, how they are beneficial to development
teams, and what the Sonar platform can do to ease the review process. Next, we will
configure the notification system to subscribe to code review events registered and
raised by Sonar.

Having already detailed violations, it is time to introduce metric thresholds to better
control quality and custom measures. While calculated metrics exist in abundance
within the platform, there are business measures that are not applicable in an
automated process. Custom measures help extend information and cover this aspect
too. Finally, we will continue our journey through the platform's visual components,
such as the Timeline and Motion Chart, along with PDF reporting capabilities.

In this chapter, we cover:

•	 Reviewing code
•	 Sonar manual reviews
•	 Configuring notifications
•	 Defining metric thresholds and alerts
•	 Sonar manual measures
•	 Quality reporting on your project
•	 Getting visual feedback

Managing Measures and Getting Feedback

[114]

Reviewing code
Writing code is not a monolithic procedure and is never written once. At least a
couple of revisions take place before we consider it to be final. Of course, when a
bug arises we are forced to revise and correct or improve the code but it is best to
code and develop pro-actively. Adding code reviews as an additional process before
committing code helps identify problematic areas early and ensure better quality.
As a matter of fact, we could say that the Sonar platform reviews code from many
perspectives, generating results over different axes. But systematic examination
and code inspection by team developers is irreplaceable.

To quote Eric S. Raymond's Linus's Law named in honor of Linus Torvalds:

Linus's Law:

Given enough eyeballs, all bugs are shallow.

The most common ways to perform code reviews are:

•	 Via e-mail communication: Report on code expecting to hear back
•	 Pair programming: The developers work closely together
•	 Software Managed Reviews: Use tools to streamline the process

The review process using specifically designed software is very similar to
maintaining and using a bug tracking system. Instead of bugs, developers assign and
are assigned code reviews. A code review does not necessarily mean code changes.
The point is to begin a discussion of why something is written the way it is, whether
there is room for improvement, and what the alternatives are. There will be cases
where the code author has real reasons and needs to code things in a specific way,
but this is not always the case. A more experienced developer may foresee hidden
bugs and dangerous cases not covered in code, requiring changes.

Code reviews do not only help to improve code and quality but educate the
developers too. Less experienced developers gain insight on good practices and
techniques from their colleagues. Additionally, it is often a good idea to let new
developers review others' code straight away. Exposing them to source code
and in-house libraries early will help them integrate better with the team and
adopt a similar programming style. Finally, when developers know beforehand
that their code will get reviewed, they tend to be more careful and supply better
documentation in order to assist the reviewer.

The Sonar platform features code reviews management complementing the
automatically calculated metrics produced by the separate analyzers; thus
we have both machine and developer feedback in one single place.

Chapter 5

[115]

Sonar manual reviews
Similar to Bug Tracking systems, reviews are assigned to users and may have one of
four possible statuses:

•	 Open: The initial status
•	 Resolved: Mark the violation as resolved
•	 Reopened: Reopen the violation for review
•	 Closed: Automatic as long as the violation has been resolved

Initially the review is in the Open status. When code changes resolve, the violation
referenced by the review is marked as resolved and closed automatically. If the same
violation takes place again, Sonar reopens the review again.

If you do not intend to resolve the violation or you believe it does not qualify as a
violation, you can resolve it by flagging it as False-Positive.

Assigning reviews
First of all, drill down to the Java class level and open the source code with Sonar
Source Viewer by clicking on the class name. You can use the treemap/radiator
component to drill down to class level or browse violations from the project
dashboard.

When inside the Source Viewer, click on the rightmost Violations tab to view the
violated sections of the source code. Each violation has a light blue header with the
level and name. Move your mouse over the header to make the Review and Flag as
false-positive links appear.

You must be logged in and have the Users role to be
able to assign reviews.

Managing Measures and Getting Feedback

[116]

Locate the violation you want to review and click on the Review link. Enter review
details in the text area that opens and fill in the Assignee name — start typing
a username and a filtered list will pop up. When you are done, click on the Add
Comment button. For example, take a look at the following screenshot:

You can style your comments using special wiki style notations as seen on the right
under Help tips. The following shows how the previous review looks:

The review assignee is now visible and a new link appears on the right of the
violation header named after Review #ID. Click on the link for additional details
such as assignment date and original reporter—author. Additionally, you can
manually Resolve the review, flag it as False-Positive, or Reassign it to a different
user. In any case, the review will automatically resolve when the corresponding
violation resolves too.

Chapter 5

[117]

Browsing reviews
Sonar provides a comprehensive reviews search engine. When you log in to Sonar,
click on the Reviews link under Filters from the left menu to bring up the Reviews
browser. By default, only reviews assigned to you will display. Clear the Assigned to
text field and click on Search to browse all reviews. From here, you can filter reviews
by Status, Violation Severity, and of course project.

To find reviews reported by a specific user, type their name in the Created by field.
The results list, which appears below the search panel, is clickable and transfers you
to a more detailed screen allowing to resolve the review or to reassign it. You can
include or exclude False-Positive reviews by making the appropriate selection from
the red highlighted select menu.

Configuring notifications
Sonar features an e-mail notification mechanism allowing users to subscribe
to certain events. To activate notifications, you have to supply Sonar with
e-mail server configuration. Log in as an administrator and go to
Configuration | General Settings | Email.

Managing Measures and Getting Feedback

[118]

Fill in the fields with your e-mail server configuration and click on the Save Email
Settings button when done.

Users can now subscribe to notifications from their profile settings. Click on the
username link located on the top bar and check the events you want to subscribe
to under the Notifications section.

For example, you can subscribe to the reviews event and receive an e-mail whenever
a review has been assigned or was created by you.

Chapter 5

[119]

Defining metric thresholds and alerts
To further streamline and automate quality inspection, Sonar introduces dynamic
threshold alerts by assigning threshold values to specific metrics. Whenever a metric
exceeds the configured value or threshold, an alert is raised. Alerted projects are
specifically marked both in the projects list and in the dashboard to indicate the
threshold violation.

Each quality profile features its own separate set of alerts. Next, we will add two
alerts to Rules compliance and Testing Coverage. Click on Configuration, go to the
Quality Profiles page, and click on the Packt profile we have already created (if you
haven't created it, simply create a new one by clicking on Copy to copy the default
profile, named Sonar way). Then, click on the Alerts tab to navigate to the Alerts
management screen.

To create an alert, we need to define:

•	 The metric the threshold applies to
•	 Compare type: is greater than, is less than, equals, is not
•	 The Warning alert threshold: When this is reached a warning alert triggers
•	 The Error alert threshold: When this value is reached an error alert triggers

Similarly, we create a Rules compliance alert with warning and error thresholds at
75% and 70% respectively and a Coverage one with warning and error thresholds
at 75% and 60% respectively.

From now, projects associated with the Packt profile will trigger warning alerts when
either Coverage or Rules Compliance metrics fall below 75% and error alerts when
Coverage metric is below 60% or Rules Compliance metric is below 70%.

Managing Measures and Getting Feedback

[120]

Perform a new analysis and visit the dashboard. Click on the Configure widgets
link and add Alert widget. Navigate to your project's directory and enter mvn
sonar:sonar or ant sonar to perform a new analysis.

Next you can see how metrics that have exceeded above thresholds are highlighted
in red and a notification is visible inside the dashboard. To get rid of this irritating
reminder, we have to write some more tests :).

The Build Breaker
To create an even more strict development environment, you can install the Build
Breaker plugin and cause the build process to fail and report as broken whenever a
metric exceeds threshold values.

The plugin is available for installation from Configuration | Update Center under
the section Integration. Remember to restart the server in order to complete the
installation process.

Sonar manual measures
Apart from the metrics that are automatically collected during analysis, Sonar offers
more flexibility by allowing us to add custom ones. There are some factors that simply
cannot be calculated or automatically aggregated, such as team size, business value,
or story points of the features that are to be implemented in subsequent versions.
Nevertheless, such measures are necessary in order get the complete picture.

Chapter 5

[121]

Sonar comes with three predefined custom measures. Log in as administrator or the
packt user we have already created and go to Configuration | Manual Metrics to
take a look at the following measures:

•	 Burned Budget: The budget already used in the project
•	 Business Value: An indication of the value of the project for the business
•	 Team size: The size of the project team

Creating the Story Points measure
Let's create a new custom measure called Story Points. Fill in the form on the right
and click on the Create button when you are finished.

What are Story Points?
Planning Poker or Scrum Poker is a technique to estimate effort
and time on features implementation. Each developer assigns
Story Points to features based on how complex or difficult
they are to implement. When everyone has assigned points, a
discussion begins especially about features that were assigned
both low and high Story Points from the team.
Finally, a consensus is reached, Story Points are decided, and the
team has a better collective understanding about the features and
the effort required until the next version.

Managing Measures and Getting Feedback

[122]

The Story Points manual measure has been now created and is available to any
project in Sonar.

Managing manual measures
Visit the project dashboard and click on the Manual Measures link under the
CONFIGURATION section.

Currently, there are no measures associated with any project. Click on the Add
Measure link located on the top right, select the Team Size and Story Points from
the menu, and enter the measure's value and description respectively.

Click on Save to return to the previous screen and notice that both measures are
marked with an orange box as pending. An analysis is required before they become
available to the dashboard. Perform an analysis and browse to the dashboard to add
the Manual Measures widget.

Chapter 5

[123]

Click on the Configure Widgets link from top left, locate the Custom Measures
widget, and click on Add Widget. The widget initially is empty. Click on edit
from the widget's header to add the measures you want.

If the team size changes or a new set of feature demands different story points, you
can always go to the Manual Measures screen and edit the values accordingly.

This is how the widget will look on the dashboard:

Quality reporting on your project
Sonar offers reporting capabilities on project quality and metrics in the form of a
plugin. It aggregates project dashboard information in a presentable and readable
format inside a PDF document.

Managing Measures and Getting Feedback

[124]

The plugin, developed by Antonio Martin Muniz Martin, requires Sonar Version 2.4
or higher. To get some insight about the plugin's development, you can visit Martin's
blog at http://blog.klicap.es/en/products/sonarpdfreportplugin.

Have a look at some of the more advanced features available in the commercial
version of the plugin. Sonar includes the limited but still very valuable open
source version.

Installing the PDF report plugin
Log in to Sonar with administrator privileges, click on Configuration and then
Update Center from the left.

Navigate to the Available Plugins tab and scroll down to the Visualization/
Reporting section.

Click on Install to initiate the installation process and restart the Sonar server when
it is complete to make the plugin available. Next, from the project's dashboard, click
on the Configure widgets link to add the PDF report widget to the dashboard.

Chapter 5

[125]

Getting the project report
The plugin generates a PDF report based on Sonar analysis results. Run a Sonar
analysis by executing the Sonar Maven goal and visit the dashboard afterward to
browse the results and download the fresh PDF report.

$ mvn sonar:sonar

The PDF Report panel in the dashboard features a Download link to the
report's document. Click on it to download the document. If the report widget
is empty and displays No Data, make sure that a Sonar analysis was previously
executed successfully.

The reports consist of the following sections for each module in the project:

•	 Report Overview
•	 Violations Analysis
•	 Violations Details

Some of the notable features in the commercial version of the reporting are:

•	 Include timeline charts for selected metrics
•	 Include information provided by other external plugins
•	 Set a minimum-level priority for report
•	 Logotype customization — branding

Managing Measures and Getting Feedback

[126]

The following are some screens of an actual PDF report. Alternatively, you
can download a sample from http://docs.codehaus.org/download/
attachments/116359257/pdf-report-1.1.pdf.

The second section of the report breaks down and counts each violation sorted by
multiplicity, as shown next:

Chapter 5

[127]

Customizing the report
To produce reports for managers, it would be better to omit violations details from
the document, as they do not add any further useful information to them. The
PDF Report plugin comes with two layouts; workbook which is the default one and
executive. To change the report type to executive go to Configuration | General
Settings | PDF Report and fill in the field Type with the value executive as shown:

Click on the Save parameters button to save your changes and the next time an
analysis is run, the report generated will contain only the following sections:

•	 Report Overview
•	 Violations Analysis

Getting visual feedback
Sonar offers some very interesting and modern visual components to help the
developer or manager understand the progress and evolution of the code base
over time:

•	 Motion Chart plugin
•	 Timeline plugin

Managing Measures and Getting Feedback

[128]

You can find the plugins in the Update Center under the Reporting/Visualization
section. Install them and do not forget do restart the Sonar server after the
installation. Finally, run a new analysis of a project and launch your browser.

Timeline plugin
The Sonar Timeline plugin uses Google's Annotated Time Line component. It is
the same component that Google uses to render trends, stock analysis, and website
analytics. You can find more information about the component at Google Code
(http://code.google.com/intl/el-GR/apis/chart/interactive/docs/
gallery/annotatedtimeline.html).

To use the Timeline plugin, click on the Timeline link from the left menu when
browsing the project dashboard. The component renders an interactive time-series
chart featuring data on three default metrics: Coverage, Rules Compliance, and Lines
Of Code. You can change the time scale from one day to one year or more. You can
trace the lines with your mouse and review exact point values at the top left.

Project events are also flagged on the chart, so you can see when each event took place.
The legend on the left of the chart reads all project events since the first analysis.

Chapter 5

[129]

Let us zoom the previous screen to better understand what the timeline actually
shows and what we can learn about the project.

The default metrics charted are:

•	 Coverage: Bottom line (blue color)
•	 Rules Compliance: Middle line (red color)
•	 Lines of code: Top line (yellow color)

The timeline focuses on the middle five months of development. Lines of code
have been greatly reduced and stabilized (refactoring) and the source code
continuously improves in an effort to follow standards and conventions. The
same goes for code coverage, although the major drop during the second month
probably requires attention.

Managing Measures and Getting Feedback

[130]

We can change the metrics from the select menus on the top left to cover architecture
and complexity or any other aspect you desire. For example:

The metrics depicted are:

•	 Architecture: Top line (blue color)
•	 Complexity: Middle line (red color)
•	 Critical Violations: Bottom line (yellow color)

Complexity has almost dropped to half as a result of refactoring while Critical
Violations have been kept at a minimum. Architecture gradually reached 100
percent. So we learn that the project has greatly improved in terms of source code
size and complexity. There is room for improvement though in the testing and
coverage department.

Motion Chart plugin
The Motion Chart plugin is the most impressive plugin available for the platform.
It generates an animation of bubbles inside the chart, with each bubble representing
a project module. Size and bubble color can be parameterized from a plethora of
available metrics. The chart is available from the Motion Chart link on the left menu
when browsing the project dashboard. It also offers two more renditions, such as bar
chart and line chart.

Chapter 5

[131]

Bubble chart
The following screen shows the bubble chart in action. Each bubble is a separate
project module. You can toggle modules' visibility from the right-panel menu. Check
the Trails checkbox to cause the bubbles to leave a trail while the animation plays. To
start the animation, just click on the play button on the bottom left of the chart.

You can adjust the Period of the chart from the select menu on the top left in a range of
one month up to two years. Uncheck the Components checkbox to view the project as
one single bubble, leave it checked to break it down into its modules—components.

The above chart is configured as follows:

•	 Complexity (Size): Particle size is proportional to package complexity
•	 Lines of code (X axis): Total number of effective LOCs in the package

excluding comments, file header, and blanks
•	 Test Coverage (Y axis): Percentage value of Unit Test Coverage

Managing Measures and Getting Feedback

[132]

For greater effect, you can use the Color drop-down menu at the top right and map it
to an additional metric.

Bar chart
Click on the second bar icon at the top right to switch to the Bar Chart mode and
click on play to start the animation. Each bar or project module raises or lowers
respectively to the metric it represents. Likewise, you can configure a metric for the
color. The bars are sorted by a defined metric value too, and you can change this
value from the menu on the bottom right.

For example in the following screenshot, the bars are sorted by Lines of code in
descending order:

Chapter 5

[133]

Summary
In this chapter, we went through the code review process using the Sonar platform.
We configured the mail server to enable users subscribe to review events and
receive e-mail, and created thresholds on Coverage and Rules Compliance metrics.
Then, we covered custom measures and how we can use them to introduce new
metrics into the system. We created the Story Points custom measure and added
the appropriate widget to our project's dashboard. Finally, we installed Reporting
and Visualization plugins such as PDF Reporting, Timeline, and Motion Chart. We
detailed all three components and learned how to read and interpret the information
they provide.

In the next chapter, we will discuss violations that relate to potential bugs and how
best to eliminate them. We will use Sonar components to drill down to classes and
filter such violations in an effort to spot them and eliminate them. The Sonar Source
Viewer will prove to be an invaluable tool of great assistance and efficiency. We
will use some practical examples of violated code and provide possible solutions
to such violations.

Hunting Potential Bugs
In this chapter, we will review and detail some of the most common violations
that can lead to bugs or defects—unexpected behavior. We will then add coding
standards rules to complement the custom profile. Next, we will install the Violation
Density plugin, an alternate overall representation of project quality. Finally, we will
install the Sonar Eclipse plugin, an ultimate tool that brings Sonar measures directly
to our IDE.

In this chapter we cover:

•	 Potential bugs violations
•	 Installing the Violation Density plugin
•	 Integrating Sonar to Eclipse

Potential bugs violations
The three Sonar analyzers feature an extensive set of rules checking code that can
lead to potential bugs and deficiencies. We are going to add to the custom Packt
profile some of the most common and important rules. So far, we have added rules
for Coding Standards costing a total of 100 points. For potential bugs, we will add
rules to reach the target value of 200, as it is the most important part along
with complexity.

To calculate the total cost/profile value, remember that each violation has a rating
from 1 to 5. The higher the value, the stricter the profile becomes. For example,
adding five Critical checks would raise the value of the profile to 15.

Hunting Potential Bugs

[136]

The following table breaks down the rules we will use sorted by level. Most of these
checks are implemented by the Findbugs analysis engine.

Potential Bugs Profile Distribution
Severity Rules Count Cost
Major 25 75
Critical 25 100
Blocker 5 25
Total Cost 200

That's a total of 55 rules at a cost of 200. We tried to include important rules from all
analyzers, avoiding overlapping and similar checks. We can split the rules into the
following three general categories:

•	 Dodgy code
•	 Program flow
•	 Security issues

Next, we will present the rules in table form and further detail those that need some
clarification. Log in to Sonar and add the rules to the Packt profile as you read. Feel
free to change the severity of some rules to fit it to your needs.

Dodgy code rules
The following table shows the total 33 rules that cover dodgy code potentially
leading to bugs and unexpected behavior. This category features the most rules of all
three. Some of the checks identify code that will surely break while others suggest a
rewrite to provide clarity and performance.

Malicious Code
Severity Name Analyzer
Major Use Notify All Instead Of Notify PMD
Major String Buffer Instantiation With Char PMD
Major Use String Buffer For String Appends PMD
Major Use Equals To Compare Strings PMD
Major Constructor Calls Overridable Method PMD
Major Check ResultSet PMD
Major Close Resource PMD
Major Avoid StringBuffer field PMD

Chapter 6

[137]

Malicious Code
Severity Name Analyzer
Major Avoid Decimal Literals In Big Decimal

Constructor
PMD

Major Avoid Duplicate Literals PMD
Major Suspicious reference comparison to constant Findbugs
Major Ambiguous invocation of either an inherited

or outer method
Findbugs

Major Consider returning a zero length array rather
than null

Findbugs

Major Method ignores return value Findbugs
Major Usage of GetResource may be unsafe if class

is extended
Findbugs

Major Method ignores results of InputStream.
read()

Findbugs

Critical Method does not release lock on all paths Findbugs
Critical Code contains a hard coded reference to an

absolute pathname
Findbugs

Critical Invalid syntax for regular expression Findbugs
Critical Null pointer dereference Findbugs
Critical Nullcheck of value previously dereferenced Findbugs
Critical Don't use removeAll to clear a collection Findbugs
Critical Method may fail to close database resource Findbugs
Critical Method may fail to close stream Findbugs
Critical Method may fail to close database resource

on exception
Findbugs

Critical Method may fail to close stream on
exception

Findbugs

Critical Suspicious reference comparison Findbugs
Critical Misplaced Null Check PMD
Critical Equals Hash Code Checkstyle
Blocker Impossible cast Findbugs
Blocker Null value is guaranteed to be dereferenced Findbugs
Blocker close() invoked on a value that is always

null
Findbugs

Blocker equals(...) used to compare
incompatible arrays

Findbugs

Hunting Potential Bugs

[138]

Use notifyAll instead of notify
In Java we can signal other threads to wake up using the notify() and notifyAll()
methods. There is a lot of discussion on which is the most appropriate call. It all boils
down to how many threads you want to notify and if there is a reason for notifying
all waiting threads when a task has finished. Using notify(), only one monitoring
thread will be notified and will be chosen by the JVM. In the case of many waiting
threads, there is the slight possibility to lock out some of them. Using notifyAll()
guarantees that all monitoring threads on the object will wake up and start running.

So using notifyAll(), it is a safe play and does the job whether there are many or
only one thread to be notified. The trade-off is the slight performance cost for waking
up threads that can't do anything anyway. If you are not sure which call to use, then
always use notifyAll().

There are cases where calling notify() makes perfect sense
though. Consider the classic producer/consumer where the
producer produces a packet to be consumed by only one
consumer from the packet queue. There is no point in waking
any more threads using notifyAll(). You can flag the
violation as a false-positive.

StringBuffer instantiation with char
Instantiating a StringBuffer with char will not append the character to the buffer,
but it will be converted to int, which is used to define the buffer's size. For example:

StringBuffer buffer = new StringBuffer('c');

Character c will be automatically converted into int and the result is used to
initialize the buffer's length size. Alternatively, you can create the buffer and
append the char or construct it using double quotes.

Use StringBuffer for String appends
When concatenating Strings using the + operator, the compiler actually uses
StringBuffer to perform the operation. For example, the following statement:

String s = "foo" + "bar";

Compiles to:
StringBuffer buffer = new StringBuffer();
buffer.append("foo");
buffer.append("bar");
s = buffer.toString();

Chapter 6

[139]

For simple concatenations, this is fine but inside a loop would cause a StringBuffer
object to be instantiated in each iteration, wasting memory and degrading
performance. Consider the following loop:

String s = "";
for (int i = 0; i < 5; i ++){
 s = s + String.valueOf(i);
}

The compiler would instantiate five objects to perform the concatenation.
The preceding loop could be written as follows:

String s = "";
StringBuffer buffer = new StringBUffer();
for (int i = 0; i < 5; i ++){
 buffer.append(i);
}
s = buffer.toString();

Constructor calls overridable method
To better allow inheritance and provide a healthy framework, free of bugs, calling
overridable methods in class constructors is not acceptable and can cause many
problems from exceptions to inconsistent object state. Practically, this is instantiating
a subclass which overrides a method called in the superclass constructor. Consider
the following classes Base and Child:

public class Base {

 public Base(){
 printResult();
 }

 abstract void printResult();

}

The printResult() method to be implemented by subclasses of Base is called in
the constructor.

public class Child extends Base {

 String result;

 public Child(final String result){
 super(); // printResult() will be invoked
 this.result = result;

Hunting Potential Bugs

[140]

 }

 @Override
 public void printResult(){
 System.out.println(result);
 }

}

The Base constructor will invoke printResult() before the variable result has been
finalized, thus getting a null value.

Close Resource
When opening a Connection, Statement, or a ResultSet always close the resource in a
finally block, as shown in the following code:

Connection conn = openConnection();
Statement stmt = null;
String query = createQuery();

try {

 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);

} catch (){
...
} finally {

 if (rs!=null) rs.close();
 if (stmt!=null) stmt.close();
 if (conn!=null) conn.close();

}

Leaving open connections and result sets can very quickly exhaust the
connection pool.

Notice that close() calls may require further exception
handling in a try catch block. To keep the finally block
simple, you could create a static utility method to handle the
closing of resources:

static void close(Connection c, Statement st,
ResultSet rs)

Chapter 6

[141]

Ambiguous invocation of either an inherited or
outer method
When you are invoking a method of an inner class and want to be resolved to the
outer class implementation, use super to clarify this. Additionally, you can use the
this keyword to emphasize that the inherited method is the one called, which is the
default behavior nevertheless.

super.foo() // outer class

this.foo() // inner class

Consider returning a zero length array rather
than null
Instead of returning a null reference when there are no results, it is better to return
an empty array or an empty list. In this way, callers of the method will not have to
check for possible null returns.

public class Department {

 private final static Employees[] NULL_EMPLOYEES = new
Employees[0];

 private Employees[] employees;

 public Employees[] retrieveEmployees(){
 ...
 }

}

To prevent allocating additional heap space each time a zero length array return is
required, we can define a static zero length array, thus returning the same reference
without allocating any more memory.

Method ignores return value
When a method is invoked on an immutable object, the object is not updated but
a new one is returned. This is a very common mistake.

String s = "packt";
s.replace('a','i');

Hunting Potential Bugs

[142]

The internal state of the String object is not changed because the method
replace(..) returns a new String. The correct version is to reassign the
processed value as follows:

String s = "packt";
s = s.replace('a','i');

Method does not release lock on all paths
In a multithread environment, it is essential to ensure that thread locks are released
upon a task's completion. Otherwise, monitors could never access the object and get
locked out indefinitely. The best place to release a lock is in the finally block, as
shown in the following code:

Lock lock = ...;
lock.lock();

try {

 // do something

} finally {
 lock.unlock();
}

Null pointer dereference
A null pointer dereference causes NullPointerException to happen at runtime, so
this violation is quite important and has to be taken care of.

String role = user.getRole();

if (role.equals("admin")){
 ...
}

If the role is null, the highlighted code will throw NullPointerException. If the
role variable is checked for null after it has been dereferenced, a Nullcheck of value
previously dereferenced violation is triggered because the check is redundant.

Suspicious reference comparison
Another common mistake is to test objects for equality with the == or != operators.
These operators compare references and not values. Thus the equals() method and
the == operator perform two different operations. The correct way to compare two
objects and evaluate whether they have the same state/characteristics is to use the
equals() method.

Chapter 6

[143]

In the following example, the == operation reports that the the two String variables
are not the same in the sense that they refer to two different objects, while the
equals() method identifies them as equal because the values of those objects
are the same.

Public class TestEquals {

 public static void main(String args[]) {

 String s1 = "Hello";
 String s2 = new String(s1);

 System.out.println(s1.equals(s2)); // true

 System.out.println((s1 == s2)); // false

 }

}

Misplaced null check
A misplaced null check can lead to NullPointerException.

if (role.equals("admin") && role != null) {
 ..

}

The correct way is to place the null check in front of the if statement. The second
part of the statement will be evaluated only if the the role variable is not null:

if (role != null && role.equals("admin")) {
 ..
}

Impossible cast
Impossible cast means that ClassCastException will be thrown. To better
understand this violation, let's look at the following example. Suppose we
have the classes User and Administrator.

public class User {
 ...
}

public class Administrator extends User {
 ...
}

Object obj = new Administrator();

Hunting Potential Bugs

[144]

The variable obj is an Administrator but also a User and an Object, so casting obj
back to User and Object. Since Administrator is a subclass of User, the compiler
has enough information to perform the casting.

However, the opposite is not necessarily true. When we do casting, we provide
the compiler with a hint telling that the given object is of a specific type, but if the
compiler has not enough information to perform the operation a cast exception is
thrown. Casting User to Administrator will probably not work because it is higher
in the inheritance tree.

Apart from the hierarchy, another requirement to perform
casting is that both classes are loaded by the same classloader.

Program flow rules
The next set of 14 rules cover code handling program flow and general exception
handling violations.

Program Flow
Severity Name Analyzer
Major Do not throw exception in finally PMD
Major Finalize Does Not Call Super Finalize PMD
Major Dataflow Anomaly Analysis PMD
Major Avoid Calling Finalize PMD
Major Avoid Catching NPE PMD
Major Method ignores exceptional return value Findbugs
Major Switch statement found where default case is

missing
Findbugs

Critical Useless control flow Findbugs
Critical Exception created and dropped rather than

thrown
Findbugs

Critical An apparent infinite loop Findbugs
Critical An apparent infinite recursive loop Findbugs
Critical Missing break in switch PMD
Critical Avoid Catching Throwable PMD
Critical Method uses the same code for two branches Findbugs

Chapter 6

[145]

Do not throw exception in finally
Avoid throwing exceptions in the finally block because it might hide other more
important exceptions inside the try catch block. For example:

try {

 process();

} catch () {

 handleException();

} finally {

 cleanUp();

}

The preceding code is valid as long as the cleanUp() method does not throw an
exception. Otherwise, if process throws an exception and later in the finally block
one more exception is thrown by the cleanUp() method, the second exception will
bubble up hiding the more important exception thrown by the process() method.

A better practice would be to either handle or log all exceptions inside a finally
block and not throw new ones.

Finalize does not call Super Finalize
All Java classes inherit the finalize() method from java.lang.Object. This
method is invoked by the garbage collector when the JVM determines that the
object is eligible for collecting.

When overriding finalize() it is a good programming practice to use a
try-catch-finally block and always call super.finalize() to close all
resources used by the object.

protected void finalize() throws Throwable {

 try {

 close(); // close connections

 } finally {

 super.finalize();
 // add more code as needed
 }

 }

Hunting Potential Bugs

[146]

Two things about implementing the finalize() method:

•	 The Garbage Collector has to check the object twice: once to run
the finalize() method and then check that the object was not
resurrected during finalization.

•	 Objects with implemented finalize() methods are treated
by the Garbage Collector as special cases, slowing the process of
garbage collection.

Avoid calling finalize
A healthy application should not rely on explicitly invoking finalization methods
and it should leave the garbage collector take care of memory clean up. To quote
a fellow developer Charles Miller:

Java garbage collection is a very finely tuned tool. System.gc() is a
sledge-hammer.

Calling System.gc(), we force the garbage collector to take action but naturally
the automatic invocation of the collector should suffice and optimally manage
Java heap space.

Avoid catching NPE
NullPointerException (NPE) is a runtime unchecked exception and catching it is
almost always a bad idea. An exception to this rule is in situations when there is no
other choice and NPEs are thrown from third-party code/libraries.

Method ignores exceptional return value
When a method returns a value with special meaning, the returned value should
be checked and action taken. For example, the file.delete() method deletes
the files and returns a Boolean value. To verify that the file is deleted, you have to
check the return value of the delete method to be true. If the deletion operation
was unsuccessful, it returns false and the caller of the method should take action,
probably informing the end user that the file was not deleted.

public boolean delete(String filename){

 File file = readFile(filename);
 boolean deleted = file.delete(); // the return value is not checked

}

Chapter 6

[147]

Switch statement found where default case
is missing
When writing cases for a switch statement, always provide a default case; otherwise,
the logical errors may occur. For example, consider the following switch statement
where according to a car's model (int value), a color is selected:

public Color getCarColor(int model) {

 Color color = null;

 switch (model) {
 case 0:
 color = Color.BLACK;
 break;
 case 1:
 color = Color.BLUE;
 break;
 case 2:
 color = Color.RED;
 break;
 }

 return color;
}

Invoking getCarColor(1) returns BLUE but getCarColor(4) returns null
because 4 is not a valid case and is a non-existent car model. In this case, the caller
method has supplied an unsupported model number, and therefore this should
be notified. To handle all invalid cases, we can add a default case throwing an
IllegalArgumentException with an appropriate message, as shown in the
following code:

public Color getCarColor(int model)
 throws IllegalArgumentException{

 Color color = null;

 switch (model) {
 case 0:
 color = Color.BLACK;
 break;
 case 1:
 color = Color.BLUE;
 break;
 case 2:

Hunting Potential Bugs

[148]

 color = Color.RED;
 break;
 default:
 throw new IllegalArgumentException("Color for car model " +
model + " is undefined.");
 }

 return color;
}

Missing break in switch
Omitting break in a switch statement can obviously yield unexpected results. Let's
visit the previous example and assume that the break for case 0 is missing.

 switch (model) {
 case 0:
 color = Color.BLACK; // program flow will continue to case 1
 case 1:
 color = Color.BLUE;
 break;
 case 2:
 color = Color.RED;
 break;
 default:
 throw new IllegalArgumentException("Color for car model " +
model + " is undefined.");
 }

Calling getCarColor(0) will return BLUE instead of the expected BLACK because the
break statement for case 0 is missing and code will continue execution to case 1
until the first break.

Avoid catching Throwable
Catching Throwable is a bad form since it catches all kinds of exceptions—both
checked and runtime ones. Runtime exceptions are supposed to be thrown at
runtime and in most cases are unrecoverable, such as OutOfMemoryError.

The original Findbugs description of the violation explains the problem better in
the following one-liner:

Catching Throwable is dangerous because it casts too wide a net.

Chapter 6

[149]

Security rules
Finally, add eight more violations checking security issues.

Security
Severity Name Analyzer
Major HTTP Response splitting vulnerability Findbugs
Major HTTP cookie formed from untrusted input Findbugs
Critical Class exposes synchronization and

semaphores in its public interface
Findbugs

Critical Array is stored directly PMD
Critical Method returns internal array PMD
Critical Empty database password Findbugs
Critical A prepared statement is generated from a

non-constant String
Findbugs

Blocker Hardcoded constant database password Findbugs

Class exposes synchronization and semaphores
in its public interface
The Findbugs explanation on this rule is pretty clear:

A class uses synchronization along with wait(), notify() or notifyAll() on itself
(the this reference). Client classes that use this class, may, in addition, use an
instance of this class as a synchronizing object. Because two classes are using the
same object for synchronization, Multithread correctness is suspect. You should
not synchronize nor call semaphore methods on a public reference. Consider using
an internal private member variable to control synchronization.

Method returns internal array
When passing arrays between objects, it is safe to always return a clone of the array
and not the original one. That is because the caller can change the contents of the
array affecting the array's state across all objects that reference to it. The same is
applicable for lists.

Hunting Potential Bugs

[150]

If the array or list holds security-critical data then just passing it directly to a caller
that can modify the reference creates a potential security risk. If you can guarantee
that the caller is trusted, you can treat this violation as a false-positive.

public Users[] getUsers()
{
 return users;
}

Becomes:

public Users[] getUsers()
{
 return users.clone();
}

Hardcoded constant database password
Consider the following code where we connect using JDBC to a MySQL database:

public Connection createConnection() {

 try {

 // load the appropriate driver
 String driverName = "com.mysql.jdbc.Driver";
 Class.forName(driverName);

 // construct database url
 String serverName = "localhost";
 String database = "sonar";
 String url = "jdbc:mysql://" + serverName + "/" +
database;

 // database login
 String username = "username";
 String password = "password";

 Connection connection = DriverManager.getConnection(u
rl, username, password);

 return connection;
 }

 } catch (ClassNotFoundException ex) {
 ex1.printStackTrace();
 } catch (SQLException sqlex) {
 sqlex.printStackTrace();
 }

 }

Chapter 6

[151]

Notice the database credentials in the highlighted lines are hardcoded and this
triggers the violation. To resolve this, you could read the password from a
properties file accessible only to the software locally.

Reading the username and password from a properties file is shown in the
following code:

 try {

 // load properties file with database credentials
 Properties properties = new Properties();
 properties.load(new FileInputStream("database.properties"));

 // load the appropriate driver
 String driverName = "com.mysql.jdbc.Driver";
 Class.forName(driverName);

 // construct database url
 String serverName = "localhost";
 String database = "sonar";
 String url = "jdbc:mysql://" + serverName + "/" +
database;

 // database login
 String username = properties.getProperty("username");
 String password = properties.getProperty("password");

 Connection connection = DriverManager.getConnection(u
rl, username, password);

 return connection;
 } catch (…) {
 ...
 }

The preceding code loads the database.properties file calling properties.
load(...) and reads the corresponding username and password entries with
property.getProperty(...).

Sample properties file:

[database.properties]
username = sally
password = sally123

Hunting Potential Bugs

[152]

Installing the Violation Density plugin
The Violation Density plugin provides an alternative way to read quality for a
project. Instead of getting feedback about the overall quality (Rules Compliance
Index), the density plugin informs on how much the source code has violations
at percentage value.

Violation Density Formula:

To install the plugin, follow the same installation process for all plugins we have
installed so far, remembering to restart Sonar server after installation is complete.

Integrating Sonar to Eclipse
While writing code, it is convenient to have quality and violations feedback easily
available without the need to launch a web browser and review analysis results. The
ideal scenario would be to have live feedback right in your IDE. This is exactly what
Sonar Eclipse does, adding the Sonar perspective to your Eclipse installation. Next,
we will go through the installation process of the Eclipse plugin.

Chapter 6

[153]

Installing the Sonar Eclipse plugin
Launch Eclipse and go to Help and then click on Install New Software... from
the menu.

In the pop-up window, enter the URL (http://dist.sonar-ide.codehaus.
org/eclipse/) in the Work with field and press Enter as shown in the
following screenshot.

Hunting Potential Bugs

[154]

Eclipse will fetch available plugins hosted at the preceding address. Expand Sonar
from the list, check Sonar Integration for Eclipse (Required), and click on Next.

Chapter 6

[155]

Accept the license by clicking on the appropriate radio button and click on Next to
start the installation process.

Wait for the plugin to install and restart Eclipse when prompted.

Hunting Potential Bugs

[156]

Finally, having restarted Eclipse, we have to configure the plugin. Go to Window
from the Eclipse menu and click on Preferences. Find Sonar on the left list and click
on it to view a list of preconfigured servers. Select the localhost one and click on Edit.

Change the Sonar server URL as needed and fill in your Sonar user credentials.
Afterwards, click on Test Connection to verify the settings, and then click on
Finish to save them.

The Sonar Eclipse plugin is now fully configured and ready to use with your
Eclipse projects.

Chapter 6

[157]

Linking an Eclipse project to Sonar server
To associate a project with Sonar, right-click on a project inside the package explorer.
Click on Configure from the pop-up menu and select Associate with Sonar....

Select the Sonar server where the project is hosted from the drop-down menu, select
the project you want to associate to Sonar from the list, and click on Find on Server.
The Sonar server must be running. Wait a few moments for the plugin to locate the
hosted project and then click on Finish.

The project is now integrated with Sonar. Right-click on it in the package explorer
and locate the new Sonar option from the menu.

From here, you can open the Sonar dashboard inside Eclipse, perform a local
analysis, or disassociate the project from Sonar (Remove Sonar Nature).

Hunting Potential Bugs

[158]

Using the Sonar perspective
To open the new Sonar perspective, go to Window then Open Perspective and
select Other from the submenu. From the dialog that opens up, find and click
on the Sonar perspective.

The Sonar perspective looks as shown in the following screenshot:

The perspective is divided into three parts:

•	 The central window features the project dashboard
•	 The right panel dynamically reads measures for any project class
•	 At the bottom, you can switch among three tabs: Web, Hotspots,

and Violations

The Measures panel at the right gets continuously updated as you select and edit
different classes inside the eclipse IDE. On the topmost place sit measures you have
added to favorites for easy reference. To add a favorite measure, simply select it,
right-click, and click on Add to favorites.

Chapter 6

[159]

You can review violations for a class by clicking on the Violations tab located at the
bottom panel. Double-click on a violation and the editor will focus and highlight the
corresponding line in your source file. Mouse over the violation indicator on the left
of the line to read a brief description about the violation. To remove a violation (a
false-positive for example), right-click on it in the Violations tab and select Delete
from the menu.

The Hotspots tab provides an overview about high-level metrics such as
Complexity, Violations, and Duplicated lines. You can filter the list by selecting
the desired measure. The list features classes in descending order, for example from
most complex ones to simpler. Click on a class name to open it in the Java editor.

Hunting Potential Bugs

[160]

The Web tab hosts the Sonar Resource viewer and renders the class and all
information exactly as it is seen from inside the web browser.

Summary
In this chapter, we saw in detail and added more Sonar rules to the Packt profile to
cover potential bug violations. We added a new plugin to our Sonar installation,
the Violation Density one, and integrated Sonar to the Eclipse IDE to streamline the
development process.

In the next chapter, we will continue to work on the Packt profile, adding rules
to cover another quality axis, documentation. Then, we will focus on the Sonar
Source viewer. While we have used the component so far to locate violations, a
more thorough inspection of the component is essential so as to better leverage the
functionality it has to offer.

Refining Your Documentation
In this chapter, we will examine how we can use Sonar to evaluate results on
documentation and comments levels in our projects. We will detail Sonar's metrics
on documentation and comments size and add rules which govern documentation
in the Packt profile. We will go through the process of locating documentation
omissions using Sonar widgets and components, and finally we will configure
Maven to generate documentation automatically, embedding it inside Sonar using
the Sonar Doxygen plugin.

In this chapter, we cover:

•	 Writing effective documentation
•	 Documentation metrics definitions
•	 Overview of Sonar documentation violations
•	 Locating undocumented code
•	 Generating documentation automatically

Writing effective documentation
Undocumented code is useless code to anyone other than the developers. On the
other hand, excessive documentation explaining even minor details makes code
harder to read than helping the developer. All in all, the matter of writing precise
and adequate documentation is outside the scope of the book, but is essential to at
least provide some general pointers and references.

As you probably already know, Javadoc is the official documentation generation
system introduced by Sun Microsystems.

Refining Your Documentation

[162]

How to write documentation comments for the Javadoc tool
Make sure to visit Oracle's comprehensive Javadoc guide at the
following URL:
http://www.oracle.com/technetwork/java/javase/
documentation/index-137868.html

Comments structure
A Javadoc block comment starts with /** and ends with */. Lines between the
opening and closing tags start with *. Single line or inline comments start with //.

Javadoc block comment
/**
 * Description of Method.
 * This method is responsible for...
 */

Javadoc line comment
public String foo(){
 ...
 // TODO: return value for nulls
 return value;
}

Javadoc common tags
The following table lists the most commonly used Javadoc tags along with a
small description:

Tag and Parameter Usage Applies to Since

@author name Describes an author. Class, Interface,
Enum

@version version
Provides software version
entry. Max one per Class or
Interface.

Class, Interface,
Enum

@since since-text Describes when this
functionality first existed.

Class, Interface,
Enum, Field,
Method

Chapter 7

[163]

Tag and Parameter Usage Applies to Since

@see reference Provides a link to other
element of documentation.

Class, Interface,
Enum, Field,
Method

@param name description Describes a method
parameter. Method

@return description Describes the return value. Method
@exception classname
description
@throws classname
description

Describes an exception that
may be thrown from this
method (@exception and
@throws are synonyms).

Method

@deprecated description Describes an outdated
method. Method

{@inheritDoc} Copies the description from
the overridden method. Overriding Method 1.4.0

{@link reference} Link to other symbol.
Class, Interface,
Enum, Field,
Method

{@value} Return the value of a static
field. Static Field 1.4.0

The following is an example putting to use the previous tags:

/**
 * Validates a chess move.
 *
 * Use {@link #doMove(int, int, int, int)} to move a piece.
 *
 * @param theFromFile file from which a piece is being moved
 * @param theFromRank rank from which a piece is being moved
 * @param theToFile file to which a piece is being moved
 * @param theToRank rank to which a piece is being moved
 * @return true if the move is valid, otherwise false
 */
boolean isValidMove(int theFromFile, int theFromRank, int theToFile,
int theToRank)
{
 ...
}

/**
 * Moves a chess piece.
 *

Refining Your Documentation

[164]

 * @see java.math.RoundingMode
 */
boolean doMove(int theFromFile, int theFromRank, int theToFile, int
theToRank)
{
 ...
}

Documentation metrics definitions
Sonar features a set of metrics to measure project documentation and comments.
Before examining documentation rules, it is wise to first discuss and detail these
metrics. They are available from the project dashboard within the Comments &
Duplications widget, as shown in the following screenshot:

Documentation metrics are on the left section of the widget. Click on a metric to get a
list of packages/classes and their measured values.

Metrics which measure code and documentation size are as follows:

•	 Physical lines: Number of carriage returns
•	 Comment lines: Number of comment lines
•	 Commented-out lines of code: Number of code lines that have been

commented out

Chapter 7

[165]

•	 Lines of code: Number of actual lines of code without counting blank lines,
comments, commented-out code, and header file comment used for licensing

•	 Density of comment lines: Number of comment lines with respect to total
Lines Of Code

•	 Public undocumented API: Number of public APIs without Javadoc
documentation

•	 Density of public documented API: Number of public API comment lines
with respect to total Lines Of Code

•	 Statements: Number of statements as defined in the Java Language
Specification

Comment lines
Comment lines is the total number of comments inside Javadoc blocks, multi-line
comments, and single-line comments.

Empty comment lines and header comments usually used
for licensing purposes are not counted.

Commented-out Lines of Code
This metric equals to the total number of commented-out lines of code. Code inside
Javadoc blocks does not count towards the total. For example, the following lines
are not counted because they lie inside a Javadoc block:

/*
* bar();
* foo();
*/

Density of Comment Lines
To calculate the Density of Comment Lines metric, the following formula is used:

Refining Your Documentation

[166]

In the following screenshot, Sonar reports a density of 53.1%:

A DCL value of 50% means that the number of lines of comments are equal to the
number of lines of code. A value less than 50% reveals that comment lines are less,
while a value of 100% means that there are only comments and no code.

Density of Public Documented API
To calculate the Density of Public Documented API (DPDA), the following formula
is used:

This is one of the most vital metrics. A project may lack in documentation but at least
the public API documentation should be abundant and at high levels. That's why we
are going to create an alert monitoring this measure.

Monitoring documentation levels
Next, we will use Sonar's alerting mechanism to monitor documentation on public
APIs. From Configuration go to Quality Profiles and select the packt profile we have
already created. Move on to Alerts Tab and create the alert as shown:

Chapter 7

[167]

Here is how the alert shows in the project list (mouse over the icon to get
more information):

Statements
This is the number of statements as defined in the Java Language Specification but
without block definitions. The statements counter gets incremented by one each time
an expression (if, else, while, do, for, switch, break, continue, return, throw,
synchronized, catch, or finally) is encountered.

//
i = 0;
if (ok)
if (exit) {
if (3 == 4);
if (4 == 4) { ; }
} else {
try{}
while(true){}
for(...){}
...

The statements counter is not incremented by a class, method, field, annotation
definition, or by a package and import declaration.

Block definitions
In Java, any sequence of statements can be grouped together to
function as a single statement by enclosing the sequence in braces.
These groupings are called statement blocks. A statement block
may also include variable declarations. Sonar ignores such groups
and counts all distinct statements within the block.

Refining Your Documentation

[168]

Overview of Sonar documentation
violations
Sonar features a total of 10 rules that cover documentation and comments. Eight of
them are of Major severity and two of minor. We are going to convert them all to
Major level in order to get a rounded cost at 30 points.

Documentation and Comments Profile Distribution
Severity Rules Count Cost
Major 10 30
Total Cost 30

The rules though, can be further categorized in two main categories:

•	 Javadoc rules
•	 Inline comments rules

Javadoc rules
Javadoc Rules
Severity Name Analyzer
Major Undocumented API PMD
Major Javadoc Method Checkstyle
Major Javadoc Package Checkstyle
Major Javadoc Style Checkstyle
Major Javadoc Type Checkstyle
Major Javadoc Variable Checkstyle

When adding the following rules to the custom packt profile, change all minor
severities to major:

Chapter 7

[169]

Undocumented API
Check that each public class, interface, method, and constructor has a Javadoc
comment. The following public methods/constructors are not concerned by this rule:

•	 Getter/Setter
•	 Method with @Override annotation
•	 Empty constructor

Javadoc Method
Javadoc Method checks the Javadoc of a method or constructor. By default, it does
not check for unused throws. To allow documented java.lang.RuntimeExceptions
that are not declared, set the property allowUndeclaredRTE to true. The scope to
verify is specified using the Scope class and defaults to Scope.PRIVATE. To verify
another scope, set the property scope to a different scope.

Additionally, you can use the following parameters to better control the check:

Javadoc Parameter Description
allowMissingParamTags Suppress error messages about parameters and type

parameters for which no param tags are present
allowMissingThrowsTags Suppress error messages about exceptions which are

declared to be thrown, but for which no throws tag is
present

allowMissingReturnTag Suppress error messages about methods which return
non-void but for which no return tag is present

Javadoc is not required on a method that is tagged with the @Override annotation.
However, under Java 5 it is not possible to mark a method required for an interface
(this was corrected under Java 6). Hence, Checkstyle supports using the convention
of using a single {@inheritDoc} tag instead of all the other tags.

Note that only inheritable items will allow the {@inheritDoc} tag to be used in
place of comments. Static methods at all visibilities, private non-static methods, and
constructors are not inheritable.

Javadoc Package
Javadoc Package checks that each Java package has a Javadoc file used for
commenting. By default, it only allows the inclusion of a package-info.java file,
but can be configured to allow package.html files as well. An error will be reported
if both files exist, as this is not allowed by the Javadoc tool.

Refining Your Documentation

[170]

Javadoc Style
Javadoc Style validates Javadoc comments to help ensure they are well formed. The
following checks are performed:

•	 Ensure the first sentence ends with proper punctuation (that is a period,
question mark, or exclamation mark, by default). Javadoc automatically
places the first sentence in the method summary table and index. Without
proper punctuation, the Javadoc may be malformed. All items eligible for
the {@inheritDoc} tag are exempt from this requirement.

•	 Check text for Javadoc statements that do not have any description. This
includes both completely empty Javadoc, and Javadoc with only tags
such as @param and @return.

•	 Check text for incomplete HTML tags. Verify that HTML tags have
corresponding end tags and issues an Unclosed HTML tag found: error if
not. An Extra HTML tag found: error is issued if an end tag is found without
a previous open tag.

•	 Check that a package Javadoc comment is well formed (as described
previously) and not missing from any package-info.java files.

•	 Check for allowed HTML tags. The allowed HTML tags are a, abbr, acronym,
address, area, b, bdo, big, blockquote, br, caption, cite, code, colgroup,
del, div, dfn, dl, em, fieldset, "h1" to "h6", hr, i, img, ins, kbd, li, ol, p,
pre, q, samp, small, span, strong, sub, sup, table, tbody, td, tfoot, th,
thread, tr, tt, and ul.

Javadoc Type
Javadoc Type checks Javadoc comments for class and interface definitions. By
default, it does not check for author or version tags. The scope to verify is specified
using the Scope class and defaults to Scope.PRIVATE. To verify another scope, set
property scope to one of the scope constants. To define the format for an author tag
or a version tag, set property authorFormat or versionFormat respectively to a
regular expression.

Error messages about type parameters for which no param tags are present can be
suppressed by defining property allowMissingParamTags.

Chapter 7

[171]

Javadoc Variable
Javadoc Variable checks that a variable has Javadoc comment.

Inline Comments Rules
The following table lists the rules that check empty and uncommented
constructors/methods:

Inline Comments Rules
Severity Name Analyzer
Major Uncommented Empty Constructor PMD
Major Uncommented Empty Method PMD
Major Uncommented Main Checkstyle

Major Comment pattern matcher Checkstyle

Uncommented Empty Constructor
Uncommented Empty Constructor finds instances where a constructor does not
contain statements, but there is no comment. By explicitly commenting empty
constructors, it is easier to distinguish between intentional (commented) and
unintentional empty constructors.

public User() {
 // Default empty constructor.
}

Uncommented Empty Method
Uncommented Empty Method finds instances where a method does not contain
statements, but there is no comment. By explicitly commenting empty methods,
it is easier to distinguish between intentional (commented) and unintentional
empty methods.

public void init() {
 // empty initializer method.
}

Refining Your Documentation

[172]

Uncommented Main
Uncommented Main checks for uncommented main() methods (debugging leftovers).

Rationale: A main() method is often used for debugging purposes. When debugging
is finished, developers often forget to remove the method, which changes the API
and increases the size of the resulting class/jar file. With the exception of the real
program entry points, all main() methods should be removed/commented out of
the sources.

Locating undocumented code
The Comments & Duplications widget inside the project dashboard provides an
overview about documentation. From there we can further browse to undocumented
classes by clicking on a metric and finally getting down to source code. A typical
workflow would be to:

1. Click on the Comments or the Public Undocumented API metric displayed
in the widget.

2. Select a package to drill down or a class from the list.

If you select a class, the source viewer opens up focused on the Source tab.
Read on the header of the source viewer and locate the Comments metrics
and the Public documented API on the third and fourth column.

3. Click on the Violations tab.

Chapter 7

[173]

4. Filter the source viewer selecting Javadoc-related violations from the
select menu.

Creating the documentation filter
To provide a view regarding documentation and comments for all projects, we
can create a custom filter including filtered information on these topics. Log in as
Administrator and from Sonar's main page click on Add Filter at the top left. Name
it Documentation and check the Shared checkbox to make it available to other users.
Then, click on Save & Preview to save the filter and move onto its configuration.

Next from the Display panel, we can add value columns as we desire. Select a value
from the list, for example Public documented API (%), and click on Add.

Refining Your Documentation

[174]

You can preview the project list at the bottom of the panel. To remove a column, click
on the trashcan button and to rearrange it, click on the left/right arrow buttons.

Add the documentation and comments metrics you want and click on Save & Close
to save changes. The new filter is now available from the Sonar main page as a
separate view under the Documentation tab. The final result should look like the
following screenshot:

From now on you can use this filter to get a summary on documentation levels
across all your projects.

Generating documentation automatically
Both Ant and Maven use the Javadoc tool to automatically generate documentation.
If you are using Ant, simply navigate to a project's root directory and enter the
following command:

$ ant javadoc

 Buildfile: build.xml

javadoc:

Chapter 7

[175]

 [javadoc] Generating Javadoc

 [javadoc] Javadoc execution

 [javadoc] Loading source file /home/packt/...

 [javadoc] Constructing Javadoc information...

For Maven you first have to add the javadoc plugin. To do this, edit the pom.xml file
and add the following lines at the corresponding location:

<project>
 ...
 <reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.8</version>
 <configuration>
 ...
 </configuration>
 </plugin>
 </plugins>
 ...
 </reporting>
 ...
</project>

From now on whenever the site goal, a$ mvn site:site, is executed, project
Javadocs will be generated and included in a dedicated project site generated by
Maven along with other useful project information.

Next, to provide more complete documentation featuring class diagrams, call
graphs, and through class and method indexing embedded into Sonar, we will install
Graphviz and Doxygen. These tools are used by the Sonar Documentation plugin to
bring project documentation into the dashboard.

Installing Graphviz
Graphviz is a diagrams and networks visualization tool. It can be used to visualize
program flow and produce call graphs, in an effort to complement existing
documentation, and to better understand how objects interact with each other.
Doxygen leverages Graphviz functionality to produce class and object interaction
diagrams, including them in the final Javadoc. Visit the Graphviz official site at
http://www.graphviz.org/About.php.

Refining Your Documentation

[176]

To install Graphviz in Linux, (Debian or Ubuntu distributions), open a terminal and
enter the following command:

$ sudo apt-get install graphviz

For other Linux distributions, there are debian and rpm packages available at the
Graphviz download page. Download and install the appropriate package from
http://www.graphviz.org/Download..php.

In Windows, download the msi installation package from http://www.graphviz.
org/Download_windows.php and run it.

Warning for Vista users
Even if you are logged in as Administrator, double-clicking
on the MSI file or running the MSI file from a command
prompt may still not provide sufficient privileges. You have
to run the command msiexec /a graphviz-x.xx.msi.

Installing Doxygen
The Doxygen documentation system supports numerous programming languages
and can generate documentation from a set of documented source files in HTML,
RTF, hyperlinked PDF, and Unix man pages formats. Visit the official homepage at
http://www.stack.nl/~dimitri/doxygen/.

If you are on Linux, you can find rpm and debian packages available at the
following links:

•	 RPM packages: http://www.stack.nl/~dimitri/doxygen/download.
html#rpm

•	 Debian packages: http://www.stack.nl/~dimitri/doxygen/download.
html#deb

If you use the synaptic manager, you can install it by entering in the terminal the
following command:

$ sudo apt-get install doxygen

For Windows, you can download the installer from http://www.stack.
nl/~dimitri/doxygen/download.html#latestsrc.

Chapter 7

[177]

Using the Sonar Documentation plugin
Log in to Sonar and install the Sonar Doxygen plugin from the Update Center. You
need to restart the Sonar Server for the process to complete. The plugin generates
documentation using Doxygen and Graphviz. The generated documentation
can be browsed from the project dashboard. According to the level of drilldown
inside the dashboard—project, package, or class—an appropriate documentation
item is displayed, for example, list of packages, package documentation, or class
documentation respectively.

To configure the plugin, go to Configuration | General Settings. Under Doxygen
there are three global configuration properties as follows:

Property Name Mandatory Comments
Documentation Path
Generation

Yes Directory path where the documentation will be
generated.

If Sonar server is used to access the documentation, the
path should be set to /war/sonar-server.

Web Server
Deployment URL

Yes URL to display the generated documentation.

Sonar server can be used to access the documentation.
Directory Path No Directory Path containing header.html, footer.

html and doxygen.css in order to customize HTML
documentation.

Hosting Documentation
Plugin-generated documentation can be hosted within the
Sonar server but this could cause performance issues. It is
recommended to use an Apache server if available and change
properties Documentation Path Generation and Web Server
Deployment URL to <apache.install.dir>/www and
http://localhost:80 respectively.

Refining Your Documentation

[178]

From the project dashboard, click on the Documentation item from the left
navigation menu to browse generated documentation.

From there you can use the tabs to navigate through the documentation browsing
packages, classes, and methods. If Graphviz has been installed, class call and caller
graphs will be included at each page.

Chapter 7

[179]

The plugin can be further configured at project level, by clicking Documentation
under Configuration from the project dashboard. The following properties
are available:

Property Name Comments Default
Generate Doxygen
Documentation

disable: Do not generate documentation and
delete existing documentation
keep: Do not generate documentation but keep
previous documentation if existing
enable: Generate or regenerate documentation

<disable>

Excludes Specific Files Comma-separated list
Generate Class Graphs If true, Graphviz must be installed <false>

Generate Call Graphs If true, Graphviz must be installed <false>

Generate Caller Graphs If true, Graphviz must be installed <false>

Summary
In this chapter, we examined how Sonar manages and presents documentation levels
across our projects. Having reviewed Sonar's metrics and the formulae, we added
documentation and comments rules to the custom packt profile. We have seen how to
locate documentation violations and created a custom filter to provide a summarized
view on all projects regarding documentation and comments.

Finally, we installed and configured Maven's documentation plugin to automatically
generate Javadoc documentation and installed the Sonar Doxygen plugin to make
the project documentation available inside the project dashboard.

In the next chapter, we will learn about duplicated code and how to locate it. Sonar
offers some interesting widgets to easily pin down duplicated blocks of code and
lines, along with the Useless Code plugin, which aggregates duplicated source code
sections and presents them across all parts inside a project. Additionally, we will see
how Sonar detects duplication not only within one project but also across all of them.

Working with Duplicated Code
In this chapter, we will review how Sonar tracks duplication in our software
application. Sonar features four essential metrics to measure duplication across
projects and presents metrics in a widget format inside the project dashboard.
Knowing the metrics and having created an alert when duplication metrics , we
will take a look at the widget and use it to effectively drill down to our source
code, locating duplicated lines and blocks. To get a top-layer view, we will use the
Radiator component, as it is ideal to highlight duplication spread for large projects.

In this chapter, we will cover:

•	 Code duplication
•	 Sonar code duplication metrics
•	 Locating duplicated code with Sonar
•	 The Useless Code Tracker plugin
•	 Using extraction and inheritance to attack duplication

Working with Duplicated Code

[182]

Code duplication
Duplicated code is simply copied and pasted at various places across a software
project. When something "works", why not clone it and reuse by copying it? Code
duplication is a sign of bad design raising complexity with no reason. What if
the popular and duplicated code someday has to change or is buggy? Obviously,
duplicated code would have to be corrected at numerous places across your project.

There are some common techniques such as method extraction to attack the problem,
but in many cases, duplicated code highlights the inability of our design and the lack
of flexibility usually requiring more advanced solutions. Of course, when resources
are limited, refactoring and redesigning is a luxury. What we can do is correct
the bug and yes, duplicate code if necessary and put redesign issues to the back
burner. Sonar will trace duplicated blocks and remind us, and even alert us, when
duplication reaches dangerous levels.

Don't Repeat Yourself (DRY)
Don't Repeat Yourself is the software development practice where code duplication
is unacceptable. Similar to database systems, source code should be normalized
and with every piece of code representing a single and specific functionality. This
practice is better known by the DRY acronym and was introduced by Andy Hunt
and Dave Thomas in their book, The Pragmatic Programmer.

The DRY principle:

Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system.

Sonar code duplication metrics
Sonar uses the following four metrics to cover code duplication. Duplicated lines can
also be expressed as a percentage value and we will create an alert with a threshold
value of five percent.

Name Description
Duplicated Lines Number of physical lines touched by duplication.
Duplicated Blocks Number of duplicated blocks participating in duplication.
Duplicated Files Number of files containing duplicated lines or blocks.
Density of Duplicated
Lines

Chapter 8

[183]

Creating Duplicated Code Alert
Log in to Sonar and navigate to the custom packt profile configuration screen. Add a
new alert as shown in the following screenshot:

With the previous configuration, when duplication levels reach 10% or higher, an
alert at level error will be triggered. If duplication is higher than 5%, the alert will
be shown as a warning.

Locating duplicated code with Sonar
All duplication metrics are accessible from the project dashboard beside the
Comments section. Notice how the metric in the large font is highlighted to alert us
that the duplication levels are above five percent. All metrics are hyperlinks allowing
us to drill down and locate the source.

Working with Duplicated Code

[184]

Click any of the first two metrics (percentage and number of physical lines) to
navigate to the drill down screen. From left to right, you can see three panels
(Project, Package, and Class) with the leftmost one listing all classes that contain
duplicated code. The number next to a class name is the number of physical lines
duplicated. Similarly, the blocks and files metrics lead to the same three-panel
screen, although the numbers next to each class correspond to blocks of duplicated
lines instead of raw lines.

Then, click on a package to filter class results or on any class to examine it inside
the source viewer. As you can see, the source viewer automatically focuses on the
Duplication tab. The header of the tab presents the total number of lines, duplicated
lines, and blocks. Below the header, you can see where actual duplication occurs at
block and line level. Click on the Expand button to view the full block. On the left of
each block, there is a list of all files which contain the duplicated code. Click on them
to switch the view and examine the duplicated code in every file.

Chapter 8

[185]

Cross-project duplication detection
Sonar also detects duplicated code across different software projects. This feedback
could help us decide according to the spread of the duplication whether to export
such code to an external and common library. In the following two screenshots, we
see how Sonar has detected duplicated code between Spring XML library and a Camel
Components library:

Method parseInternal() is duplicated across two different classes,
StaxStreamXmlReader and StaxStreamXMLReader, an indication for a
possible extension opportunity.

Using the Radiator component to
detect duplication
The Radiator component is always useful when we want to get a top-down view
on metrics, allowing us to further drill down from project to line level. So let us
put it to use with duplication metrics. The component is available from any project
dashboard via link in the right-hand menu.

Working with Duplicated Code

[186]

Set the Size selection menu to Duplicated lines metric and the Color one to
Duplicated lines (%). Remember that you can drill down to packages with left-click
and move back up with right-click. Here is how a portion of the JDK7 looks:

Chapter 8

[187]

Left click on the javax.swing.plaf.multi package to inspect how duplication is
distributed among classes inside that package.

You can browse the whole JDK7 from the demo Sonar site at
http://nemo.sonarsource.org/.

Working with Duplicated Code

[188]

The Useless Code Tracker plugin
The Useless Code Tracker plugin is a nice addition, reporting on the total number
of lines that can potentially be removed from the source code. It examines and
tracks source code on the following three axes and aggregates the results into a
single number value:

•	 Duplicated lines
•	 Dead code
•	 Potential dead code

The following screenshot shows the Useless Code Tracker plugin in action. The bold
number is the total number of lines that can potentially be removed from your source
code. This value is then broken down into the three sections we mentioned. Note that
you can click on each section to drill down to class level and review the exact classes
with duplicated code.

Tracking duplicated lines
The number of lines that are duplicated and could be potentially eliminated depends
on how the duplication is distributed across the source code. What we want to know
is how many blocks of code are duplicated, along with a line count for each block.
For example, Sonar could report a block of code amounting to 100 lines of code
duplicated in three different areas in our source code.

Tracking dead code
Sonar tracks the unused code inside private methods with the
PMD:UnusedPrivateMethod or SQUID:UnusedPrivateMethod checks. Lines
within these methods are eligible to be included and reported by the tracker.
The same counts for unused protected methods, which are detected with the
PMD:UnusedProtectedMethod or SQUID:UnusedProtectedMethod rules.

Chapter 8

[189]

Check the configuration of the packt Sonar profile and make sure that the following
rules are enabled:

•	 Squid UnusedPrivateMethod

•	 Squid: UnusedProtectedMethod

The Squid rules are more effective and preferred to the PMD ones because they
generate less false-positives and detect more dead code.

The official description of the Squid rules concerning unused protected methods
explains thoroughly when a method is considered to be unused.

Protected methods that are never used by any class in the same project are strongly
suspected to be dead code. Dead code means unnecessary, inoperative code that
should be removed. This helps in maintenance by decreasing the maintained code
size, making it easier to understand the program, and preventing bugs from being
introduced. Also, it could save space and compile time.

In the following cases, unused protected methods are not considered as dead code
by Sonar:

•	 Protected methods which override a method from a parent class
•	 Protected methods of an abstract class

Installing the Useless Code plugin
To install the Useless Code plugin, log in to Sonar as administrator and go to
Configuration | Update Center | Available Plugins. Find the Useless Code Tracker
plugin, click on Install, and remember that the installation process completes after
a Sonar server restart. Then, from a project dashboard, click on Configure Widgets
at the top-left corner to bring up the widgets selection area and click on Add on the
plugin to add it to the dashboard.

Working with Duplicated Code

[190]

Using extraction and inheritance to
attack duplication
Eliminating code duplication is not always easy, but there are some pretty
straightforward refactoring techniques that help in resolving such problems. Once
duplicated lines are recognized, the next step is to examine whether the duplicated
code could be simply eliminated and replaced with a method call. If this is not
viable, then we could resort to the Extract Method refactoring practice.

The Extract Method refactoring pattern
For long parts of duplicated code, we could remove the duplication by moving
functionality and code to a single shared place inside our project. All parts of our
program could then utilize this shared part of code instead of duplicating it.

From Martin Fowler's Refactoring book:

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the method.

It is very important to provide a clear and descriptive name for the new extracted
method as it is to be used from many places—wherever duplication occurs—and
has to be easy to find.

Many modern IDEs support Extract Method capabilities to streamline the process.
To better illustrate the process let us go through a real life example. The following
code is part of a user-to-user recommendation system based on a custom user
model. The highlighted code inside the recommend() method configures a default
recommender before calling methods to perform recommendation. This chunk of
code is duplicated wherever recommendation takes place, so it could be extracted
to a public member method of the UserRecommender class.

public class UserRecommender {

 private static UserRecommender instance;
 private static DataModel model;
 private static final FileUserCloudReader reader;

 protected UserRecommender() {
 // Exists only to defeat instantiation.
 }

 public static UserRecommender getInstance() throws
 IOException {

Chapter 8

[191]

 if (instance == null) {

 instance = new UserRecommender();
 final String csv = "model.csv";
 model = new FileDataModel(new File(csv));
 }

 return instance;
 }

 public List<User> recommend(
 final long id, final int max) throws IOException {

 try {

 final List<User> users = new ArrayList<User>();

 final UserSimilarity userSimilarity =

 new LogLikelihoodSimilarity(model);

 final UserNeighborhood neighborhood =

 new NearestNUserNeighborhood(5, userSimilarity,
 model);

 final GenericUserBasedRecommender recommender =

 new GenericUserBasedRecommender(

 model, neighborhood, userSimilarity);

 for (long userId: recommender.mostSimilarUserIDs
 (id, max)){
 users.add(reader.read(userId));
 }

 return users;

 } catch (TasteException ex) {
 Logger.getLogger(UserRecommender.class.getName()).
 log(Level.SEVERE, null, ex);
 throw new IOException(ex.getMessage(),ex);
 }
 }

 public static DataModel getModel(){
 return model;
 }

}

Working with Duplicated Code

[192]

Inside the Eclipse IDE, we select the previous highlighted code fragment and right-
click to bring up the editor menu. Select Refactor (Shift + Alt + T) and Extract Method
(Shift + Alt + M). We will name the extracted method as getDefaultRecommender().

Clicking on the Preview button, we can see how our final class will be affected.
Notice how the configuration lines will be replaced by a single call to the new
extracted method.

Chapter 8

[193]

Click on OK to finalize the changes. Here is how the class looks like after
the extraction:

public class UserRecommender {

 private static UserRecommender instance;
 private static DataModel model;
 private static final FileUserCloudReader reader;

 protected UserRecommender() {
 // Exists only to defeat instantiation.
 }

 public static UserRecommender getInstance() throws
 IOException {

 if (instance == null) {

 instance = new UserRecommender();
 final String csv = "model.csv";
 model = new FileDataModel(new File(csv));
 }

 return instance;
 }

 public List<User> recommend(
 final long id, final int max) throws IOException {

 try {

 final List<User> users = new ArrayList<User>();

 final GenericUserBasedRecommender recommender =
 getDefaultRecommender();

 for (long userId: recommender.mostSimilarUserIDs
 (id, max)){
 users.add(reader.read(userId));
 }

 return users;

 } catch (TasteException ex) {
 Logger.getLogger(UserRecommender.class.getName()).
 log(Level.SEVERE, null, ex);
 throw new IOException(ex.getMessage(),ex);
 }
 }

 public GenericUserBasedRecommender
 getDefaultRecommender()
 throws TasteException {

 final UserSimilarity userSimilarity =
 new LogLikelihoodSimilarity(model);

Working with Duplicated Code

[194]

 final UserNeighborhood neighborhood =
 new NearestNUserNeighborhood
 (5, userSimilarity, model);
 final GenericUserBasedRecommender recommender =
 new GenericUserBasedRecommender(
 model, neighborhood, userSimilarity);

 return recommender;
 }

 public static DataModel getModel(){
 return model;
 }

}

Refactoring with inheritance
In another very simple example, let's suppose that we want to create a new
user recommender that configures or acts a little differently. Instead of copying
and pasting the existing one and duplicating code, we inherit the functionality
by subclassing.

The class UserCorrelation extends UserRecommender and changes the similarity
model in the following highlighted lines of code. All other methods and members
remain the same.

public class UserCorrelation extends UserRecommender {

 public GenericUserBasedRecommender getDefaultReccommender()
 throws TasteException {

 final UserSimilarity userSimilarity =
 new PearsonCorrelationSimilarity(getModel());

 final UserNeighborhood neighborhood =
 new NearestNUserNeighborhood
 (2, userSimilarity, getModel());
 final GenericUserBasedRecommender recommender =
 new GenericUserBasedRecommender(
 getModel(), neighborhood, userSimilarity);
 return recommender;
 }

}

Chapter 8

[195]

Summary
In this chapter, we saw what metrics Sonar uses to track code duplication and how
to use the code widget inside the project dashboard to locate duplicated code. Sonar
covers duplication not only at line block and file level in a single project but detects
duplicate code across separate projects too. We created an alert to notify us when
duplication reaches threshold values and used the Radiator component to get a
better synopsis on duplication and its spread.

Finally, we briefly discussed two of the most common techniques in an effort to
attack duplication problems such as method extraction and inheritance.

In the next chapter, we will discuss complexity and review some of the more
advanced and critical metrics Sonar features.

Analyzing Complexity
and Design

In this chapter, we will discuss how Sonar reports on complexity and the measures it
supports. Firstly, we will clarify how complexity in Java programs is calculated and
then look into the concepts of coupling, cohesion, and dependencies.

Finally, we will review how Sonar reports on those measures and especially detail
the design matrix, which is an essential component to manage dependencies in
complex software pieces.

In this chapter we will cover:

•	 Measuring software complexity
•	 Cohesion and coupling
•	 Sonar code complexity metrics
•	 The Response for Class metric
•	 Lack of cohesion and the LCOM4 metric
•	 Locating and eliminating dependencies

Measuring software complexity
Software and its complexity could be described as of how difficult it is to understand,
alter, or extend the internal interaction of its components. The more complex the
components of the software are, the more difficult it is to change them or add new
functionality and features, preserving stability. In some cases, large complexity can
even negate refactoring techniques because of the great effort required. A quicker
solution would be to totally rewrite those complex pieces of code.

Analyzing Complexity and Design

[198]

There are many different metrics to measure the complexity of a software component.
Cyclomatic Complexity evaluates the complexity of methods in isolation, while
Response for Class, Coupling, and Cohesion examine the complexity of the
component in correlation to other interacting components.

The Cyclomatic Complexity metric
Cyclomatic Complexity was introduced by Thomas J. McCabe, and is the most
popular and widely accepted method of measuring code complexity. The metric
defines a formula to calculate the complexity of code by taking into account all the
possible independent paths that program flow could follow. For instance, code
with multiple decision points (if - else) and loops will rank as more complex than
raw statements.

The execution path of a method could be laid out as a graph flow with nodes
representing statements, decision points, loops, and exit points. Edges connect
the nodes according to the code. To make this clear, let's look at following simple
method, which checks whether a number is prime or not. The method consists of a
few statements, a while loop, an if decision, and a return exit point:

public static boolean isPrime(int n) {
 boolean prime = true;
 int i = 2;
 while (i < n) {
 if (n % i == 0) {
 prime = false;
 }
 i++;
 }
 return prime;
}

To produce the graph, let's assign a node to each statement with letters from A to G,
to a total of seven nodes (N = 7).

Node Code
public static boolean isPrime(int n) {

A boolean prime = true;

B int i = 2;

C while (i < n) {

D if (n % i == 0) {

E prime = false;
 }

Chapter 9

[199]

Node Code
F i++;

 }

G return prime;
}

A graph representation for the given method would look like the one shown in the
following diagram. Following the statements of the code, we connect the nodes with
edges. For multiple outcomes (for example, an if condition), we connect all possible
nodes for each outcome. For example, from node C we could proceed to D in case i
< n. But if i >= n execution flow would skip the while block and continue to node G,
this is represented in the graph by connecting node C to both D and G.

The total number of connections or edges equals to 8 (E = 8).

Finally, the number of exit points equals to 1 for the single return call at the end of
the method (P = 1).

To calculate the Cyclomatic Complexity for this method, use the following formula:

M = E − N + 2*P = 8 – 7 + 2*1 = 3.

Hence, the Cyclomatic Complexity for the isPrime(..) method equals to 3 (CC = 3).

A

B

A

C

G

D E F

In general, when calculating Cyclomatic Complexity in Java, add one point of CC
each time you encounter one of the following:

Type Add one CC whenever you encounter:
Methods return

Control flow if, else, case, default
Loops for, do, while, break, continue

Analyzing Complexity and Design

[200]

Type Add one CC whenever you encounter:
Operators &&, ||, ?, :, ^, &, |
Exception handling catch, throw, throws, finally
Threads start()

For example, we can quickly calculate that the following method has CC of 3:

public int getValue(int param1) {

 int value = 0;
 if (param1 == 0) { (+1)
 value = 4;
 } else { (+1)
 value = 0;
 }
 return value; (+1)

}

Cohesion and coupling
In object-oriented programming (OOP), cohesion and coupling are two
fundamental concepts. The basic principle is to have classes with loose coupling and
high cohesion. Loose coupling enables modularized packages that do not heavily
rely on each other, while high cohesion provides tight and solid components with
clearly defined responsibilities. High coupling means that a class relies on many
other classes, while low cohesion signals for a class could be split into separate ones,
offering fine-grained functionality.

Afferent coupling
Afferent (incoming) coupling is the total number of classes that depend on a given
class. In Sonar, you can view afferent coupling within the Sonar source viewer
under the Dependencies tab. For example, the afferent coupling for the class
ReflectionToStringBuilder in the Apache commons-lang project equals to 4. Type
the class name in the top-right search box from Sonar to find the class and open it in
the source viewer. Then, click on the Dependencies tab to view the list of classes that
import ReflectionToStringBuilder:

Chapter 9

[201]

Efferent coupling
On the contrary, efferent (outgoing) coupling is the number of classes on which a
given class depends, and has to be imported. For ReflectionToStringBuilder, the
efferent coupling equals to 3 as you can see in the Dependencies tab:

Sonar Code Complexity metrics
Sonar hosts a wide selection of complexity-related rules to help us monitor our
software projects. Next, we are going to add 17 rules of major severity to the
custom packt profile.

Complexity rules profile distribution
Severity Rules count Value
Major 17 17 x 3 = 51
Total value 51

Analyzing Complexity and Design

[202]

Log in to Sonar as administrator and add the following rules to the custom
packt profile:

Complexity rules
Severity Name Analyzer
Major Boolean Expression Complexity Checkstyle
Major Class Data Abstraction coupling Checkstyle
Major Class Fan Out Complexity Checkstyle
Major Cyclomatic Complexity Checkstyle
Major JavaNCSS Checkstyle
Major Nested For Depth Checkstyle
Major Nested If Depth Checkstyle
Major Nested Try Depth Checkstyle
Major Simplify Boolean Expression Checkstyle
Major Simplify Boolean Return Checkstyle
Major Too many fields PMD
Major Too many methods PMD
Major Avoid too complex class Sonar
Major Avoid too complex method Sonar
Major Avoid too deep inheritance tree Sonar
Major Avoid using 'break' branching statement

outside a 'switch' statement
Sonar

Major Avoid using 'continue' branching statement Sonar

Boolean Expression Complexity
This rule restricts the total number of Boolean operators within an expression. The
default value is three, but can be overridden from the profile configuration screen.
Whenever an expression with more operators is parsed, a violation will be thrown.
The operators checked are ||, &&, |, &, and ^.

For example the following expression will raise a violation:

if ((a == b && c == d) || (e ==f && e==g) || a == g){
…
}

Too many conditions render code difficult to read and debug. Additionally, the effort
to unit test multiple conditions and achieve high-test coverage grows exponentially.

Chapter 9

[203]

Class Data Abstraction Coupling
Data Abstraction Coupling (DAC) measures the number of instantiations of other
classes within the given class—it is not caused by inheritance. If a class has a local
variable that is an instantiation (object) of another class, there is data abstraction
coupling. A DAC higher than 7 indicates an overly complicated class structure.

The maximum threshold allowed is 7 and can be configured to your liking from
Sonar profile configuration screen.

Class Fan Out Complexity
Class Fan Out Complexity (CFOC) measures the number of classes on which the
given class depends. A class with high CFOC has high responsibility featuring many
imported classes and high efferent coupling.

The default checkstyle threshold is 20. A value higher than this indicates a complex
class that could be refactored into separate components.

Cyclomatic Complexity
Checkstyle's default value for Cyclomatic Complexity is 10. Methods which report
higher values will trigger a violation.

JavaNCSS
JavaNCSS determines the complexity of methods, classes, and files by counting
the Non Commenting Source Statements (NCSS). This check adheres to the
specification for the JavaNCSS-Tool written by Chr. Clemens Lee. Roughly said, the
NCSS metric is calculated by counting the source lines that are not comments and
it is (nearly) equivalent to counting the semicolons and opening curly braces. The
NCSS for a class is summarized from the NCSS of all its methods, the NCSS of its
nested classes, and the number of member variable declarations. The NCSS for a file
is summarized from the NCSS of all its top-level classes, the number of imports, and
the package declaration.

Too large methods and classes are hard to read and costly to maintain. A large NCSS
number often means that a method or class has too many responsibilities and/or
functionalities, which should be decomposed into smaller units.

Analyzing Complexity and Design

[204]

Nested For Depth
This rule restricts nested for blocks to a specified depth – the default value is 1.
A loop within a loop will trigger a violation.

Simplify Boolean Return
This checks for overly complicated Boolean return statements. For example,
consider the following code:

if (valid())
 return false;
else
 return true;

This could be written as:

return !valid();

Too many methods
A class with too many methods is probably a good suspect for refactoring, in order
to reduce its complexity and find a way to have more fine-grained objects.

Too many fields
Classes that have too many fields could be redesigned to have fewer fields, possibly
through some nested object grouping of some of the information. For example, a
class with city, state, or zip fields could instead have one Address field.

Avoid too complex class
This check is similar to Checkstyle's Cyclomatic Complexity, but it is implemented
by the Squid rule engine. The default maximum complexity value per class is 200.

Avoid too deep inheritance tree
Inheritance is certainly one of the most valuable concepts of object-oriented
programming. It is a way to compartmentalize and re-use code by creating
collections of attributes and behaviors called classes, which can be based on
previously created classes. However, abusing this concept by creating a deep
inheritance tree can lead to very complex and unmaintainable source code.

Chapter 9

[205]

Most of the time, a too deep inheritance tree is due to bad object-oriented design,
which has led to systematic use of inheritance when composition would suit better.

To view the level of inheritance for a class, open it from Sonar and look at the header
for the Depth in Tree value:

The Response for Class metric
The Response for Class (RFC) metric is the total number of methods that can
potentially be executed in response to a message received by an object of a class. This
number is the sum of the methods of the class, and all distinct methods are invoked
directly within the class methods. Additionally, inherited methods are counted, but
overridden methods are not, because only one method of a particular signature will
always be available to an object of a given class.

The Response Set (RS) of a class is a set of methods that can
potentially be executed by an object of that class. RFC is the
count of these methods belonging to the set.

Notice that a given method is counted only once even if it is invoked many times
in the call graph as a response to a message. Classes with high RFC are more
complex and prove to be difficult to debug and test, because of high cross-object
communication and higher variance in the potential responses and call graphs, as
responses to messages received by that class.

Analyzing Complexity and Design

[206]

In Sonar, you can get information for the RFC metric from the project dashboard. The
following screenshot shows the average RFC for the Apache commons-lang project.
Below the Response for Class value, there is a distribution graph showing the RFC
value per class count in steps of five. From the graph, you can identify that most
classes fall in the 5 to 20 RFC area and that there are less than five classes with RFC
of 90 to 95. A healthy distribution is to have substantially more classes with low RFC,
and less as the RFC metric increases.

Click on the RFC metric value from the project dashboard to browse to a two-panel
screen listing packages on the left, and their respective classes on the right. The
number beside each class is the RFC for that class. The number inside the packages
panel is the average RFC for the classes of that package. Clicking in any package will
filter the classes' panel, while clicking on a class name will open up the class below
the panel, within the Sonar source browser.

Find and click on the org.apache.commons.lang3.text.translate package from the left
panel, and then click on the AggregateTranslator class from the right:

Chapter 9

[207]

To better understand how the RFC is calculated, let's examine the simple
AggregateTranslator class. The source code for the class is presented
below with header licensing details omitted for clarity. The RFC value for
AggregateTranslator equals to 4.

The class featured one constructor AggregateTranslator(...) (+1) and one
method int translate(...) (+1). This brings RFC to a total of 2. The highlighted
parts of the following code show the additional method calls that contribute to
RFC also.

+1 for ArrayUtils.clone(...) within the constructor
+1 for the translator.translate(...) method
within the int translate(...) method

These additional calls bring the total RFC value to 4.

package org.apache.commons.lang3.text.translate;

import java.io.IOException;
import java.io.Writer;

import org.apache.commons.lang3.ArrayUtils;

/**
 * Executes a sequence of translators one after the other. Execution
 ends whenever
 * the first translator consumes codepoints from the input.
 *
 * @since 3.0
 * @version $Id: AggregateTranslator.java 1088899 2011-04-05 05:31:27Z
 bayard $
 */
 public class AggregateTranslator extends CharSequenceTranslator {

 private final CharSequenceTranslator[] translators;

 /**
 * Specify the translators to be used at creation time.
 *
 * @param translators CharSequenceTranslator array to aggregate
 */
 public AggregateTranslator(CharSequenceTranslator... translators)
{
 this.translators = ArrayUtils.clone(translators);
 }

 /**

Analyzing Complexity and Design

[208]

 * The first translator to consume codepoints from the input is
 the 'winner'.
 * Execution stops with the number of consumed codepoints being
 returned.
 * {@inheritDoc}
 */
 @Override
 public int translate(CharSequence input, int index, Writer out)
 throws IOException {
 for (CharSequenceTranslator translator : translators) {
 int consumed = translator.translate(input, index, out);
 if(consumed != 0) {
 return consumed;
 }
 }
 return 0;
 }

}

The AggregateTranslator class extends the
CharSequenceTranslator which has an RFC of 20. Why
does AggregateTranslator end up with an RFC of only 4?

This is because Sonar does not take into account the parent
class when calculating RFC.

Lack of Cohesion in Methods and the
LCOM4 metric
The Lack of Cohesion in Methods (LCOM) metric measures the cohesion of a class
and it was first introduced in the Chidamber & Kemerer metrics suite in 1993. Since
then, the metric was redefined and revised numerous times, with LCOM5 being the
latest version.

Sonar incorporates version four of the metric, hence the LCOM4 naming. The metric
measures the degree to which methods and fields within a class are related to one
another, providing one or more components. To calculate the LCOM4 value, we have
to determine how many connected groups of related methods and fields exist in a class:

•	 LCOM4 = 1: The class is a solid component with all methods and fields related
•	 LCOM4 > 1: The class can be split to different classes
•	 LCOM4 = 0: The class has no methods

Chapter 9

[209]

According to the single responsibility principle, a class should provide a single
component with all methods and fields related. This is the case when LCOM4 = 1.
Otherwise, the class lacks cohesion and could be broken down to separate less
complex classes with single responsibilities.

To better understand how LCOM4 is calculated, consider a class consisting of
methods A, B, C, and D and fields x,y, and z. A method that invokes another class
method or accesses a field is considered connected to that method or field and
vice versa.

In the first example, method A invokes method B, which accesses field x, and method
C invokes method D, which accesses fields y and z:

A

B

x y

C

D

z

LCOM=2

As shown in the preceding diagram, the class contains two separate components and
could potentially be split into two different classes, one with methods A and B and
field x, and the other with methods C and D and fields x and z.

Analyzing Complexity and Design

[210]

If method C invokes method A or B or accesses field x, the result is one connected
component and the class has an LCOM4 equal to 1:

A

x y z

LCOM=1

B

C

D

Sonar reports LCOM4 from the project dashboard along with a distribution graph
similar to the one for the RFC metric. The first value is the average LCOM4 per class
and the second is the total percentage of classes that have an LCOM4 higher than 1;
hence they lack cohesion. Click on any of the two values to navigate to the two-panel
view with packages on the left and classes on the right.

Click on a class to open up the Sonar source browser with focus on the LCOM4 tab,
as shown in the following screenshot. Sonar will present the identified separately
connected components within the class in panels. Each block contains the related
methods and fields for that group—yellow circles mark the fields, and red circles
mark the methods.

Chapter 9

[211]

Exceptions to the LCOM4 metric
So far, the LCOM4 metric identifies broad classes that can be broken into smaller and
lighter ones. However, there are cases and practices where a high LCOM4 value is
natural, for example, classes with the responsibility to instantiate and configure other
objects such as Factories. The same stands for data structures—simple JavaBeans
classes that act as field containers—or utility classes that host static helper methods.
Sonar will report an expected high LCOM4 value.

At the time of writing, Sonar does not support marking such reporting as false-
positives, but there is an open ticket at Sonar's issue tracking system labeled No rule
"LCOM4 is too high" at http://jira.codehaus.org/browse/SONAR-2686 and this
will be implemented in a future version of Sonar.

According to the ticket, Sonar will introduce a new configurable LCOM4 rule. We
will be able to configure a low LCOM4 threshold value and a new violation will
be triggered whenever a class's LCOM4 exceeds this value. In the case of a false-
positive, we will be able to review the violation and define it as a false-positive from
within the Sonar source viewer.

Locating and eliminating dependencies
Sonar provides a widget to report on package and class dependencies. The following
screenshot shows what Sonar reports on the commons-lang project. This is the entry
point when you want to review highly coupled classes and locate dependencies that
deteriorate the modularization of your packages.

Analyzing Complexity and Design

[212]

Click on any number to navigate to Sonar's design matrix view. Alternatively, you
can click on the Design link from the left menu.

Sonar reports 5 dependencies between packages and 10 between files. The design
matrix lists all project packages on the left,. The right-hand side section is separated
into two triangular regions. You will notice that all dependencies to be cut are
located within the upper-right triangle. The circled area encloses all 5 package
dependencies and the sum of the numbers equals to 10, which is the dependency
between files. In Java, this means that there are ten imports spread in classes within
five packages that should be cut in order to preserve package modularization.

Packages at the bottom should not be depending on packages that reside above them
at a higher level. They should exist as standalone packages to enable modularization
and improve reusability.

Chapter 9

[213]

Click on any number within the triangles to open a new panel below the matrix,
further detailing the dependencies. For example, clicking on number 6 reveals the
following dependencies:

Dependent Package Source Package
org.apache.commons.lang3.AnnotationUtils org.apache.commons.lang3.

builder.ToStringBuilder

org.apache.commons.lang3.AnnotationUtils org.apache.commons.lang3.
builder.ToStringStyle

org.apache.commons.lang3.ArrayUtils org.apache.commons.lang3.
builder.EqualsBuilder

org.apache.commons.lang3.ArrayUtils org.apache.commons.lang3.
builder.HashCodeBuilder

org.apache.commons.lang3.ArrayUtils org.apache.commons.lang3.
builder.ToStringBuilder

org.apache.commons.lang3.ArrayUtils org.apache.commons.lang3.
builder.ToStringStyle

Using the Sonar design matrix
Next, we will focus on the functionality of the Sonar design matrix. It is essential
to understand how it works in order to efficiently identify and understand
a project's dependencies.

From the left column, click on the package named org.apache.commons.lang.
Now, the triangular region of the matrix is highlighted to denote this package's
dependencies. Package rows above the selected one will be highlighted on their tip
with a striped box if they depend on it—the legend on the top of the matrix explains
the different highlights. In this case, we see that all packages above lang3 are striped
and hence they are dependent. To find how many files depend on lang3, cross
reference the packages with the numbers in the horizontal highlighted row.

Analyzing Complexity and Design

[214]

In the following screen, two of the total nine dependent packages are marked with
lines to their respective number in the horizontal row:

•	 org.apache.commons.lang3.event has 1 file dependency
•	 org.apache.commons.lang3.tuple has 2 file dependencies

The following table lists all packages dependent on org.apache.commons.lang3
and shows the number of their file dependencies.

Package name Total dependencies
org.apache.commons.lang3.concurrent 1
org.apache.commons.lang3.event 1
org.apache.commons.lang3.exception 5
org.apache.commons.lang3.math 1
org.apache.commons.lang3.reflect 7
org.apache.commons.lang3.text 12
org.apache.commons.lang3.time 2
org.apache.commons.lang3.tuple 2
org.apache.commons.lang3.builder 8

Chapter 9

[215]

Packages on which our selected lang3 depends have their rows highlighted on
their tip with a solid square—not striped. These rows are located below our selected
package. The matrix shows that package org.apache.commons.lang3 depends on
*.mutable and *.translate. The number of the file dependencies equals to the
corresponding box within the vertical highlighted row:

The following table lists all packages on which org.apache.commons.lang3
depends and shows the number of their file dependencies:

Package name Total dependencies
org.apache.commons.lang3.mutable 2
org.apache.commons.lang3.text.translate 8

So far, we have seen how to read package dependencies by using the design matrix.
To view class dependencies, you can click on any number within the triangular
region to open a panel listing class dependencies for the corresponding package. For
example, click on the lower-right box numbered 8. Notice that the box 8 and and its
upper diagonal box numbered 1 have different color shades and are the points where
the two highlighted lines cross (striped line and solid line intersect).

Analyzing Complexity and Design

[216]

The number 8 means that package org.apache.commons.lang3 has eight
dependencies on package org.apache.commons.lang3.text.translate (remember
that striped boxes depend on solid ones). The number 1 in the upper triangular
region alerts us to a cross dependency back to package *.lang3 which is eligible for
elimination. You can click on all numbers in the upper triangular region to further
inspect potential cross dependencies:

The following table lists all class dependencies from the package org.apache.
commons.lang3 to org.apache.commons.lang3.text.translate:

Dependent Package Source Package
org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.AggregateTranslator

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.CharSequenceTranslator

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.EntityArrays

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.LookupTranslator

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.NumericEntityUnescaper

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.OctalUnescaper

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.UnicodeEscaper

org.apache.commons.lang3.
StringEscapeUtils

org.apache.commons.lang3.text.
translate.UnicodeUnescaper

Chapter 9

[217]

To better understand the process, we will pinpoint one dependency at line level. To
do so, click on the box numbered 1 as shown in the following screenshot, and then
click on the org.apache.commons.lang3.text.translate.AggregateTranslator class to
open it in the Sonar source viewer.

As you can see from the highlighted parts in the following code, the translator
imports ArrayUtils to clone an array of translators in the method translate(...):

package org.apache.commons.lang3.text.translate;

import java.io.IOException;
import java.io.Writer;

import org.apache.commons.lang3.ArrayUtils;

/**
 * Executes a sequence of translators one after the other. Execution
 ends whenever
 * the first translator consumes codepoints from the input.
 *
 * @since 3.0
 * @version $Id: AggregateTranslator.java 1088899 2011-04-05 05:31:27Z
 bayard $
 */
public class AggregateTranslator extends CharSequenceTranslator {

 private final CharSequenceTranslator[] translators;

 /**
 * Specify the translators to be used at creation time.
 *
 * @param translators CharSequenceTranslator array to aggregate
 */
 public AggregateTranslator(CharSequenceTranslator... translators)
{

Analyzing Complexity and Design

[218]

 this.translators = ArrayUtils.clone(translators);
 }

 /**
 * The first translator to consume codepoints from the input is
 the 'winner'.
 * Execution stops with the number of consumed codepoints being
 returned.
 * {@inheritDoc}
 */
 @Override
 public int translate(CharSequence input, int index, Writer out)
 throws IOException {
 for (CharSequenceTranslator translator : translators) {
 int consumed = translator.translate(input, index, out);
 if(consumed != 0) {
 return consumed;
 }
 }
 return 0;
 }

}

As the dependency is not widespread and if you want to move the *.lang3.text.
translate package to another library or make it standalone, you can implement the
ArrayUtils.clone method within AggregateTranslator as a private method and
lose the dependency, especially, when it is only a few lines of code:

private <T> T[] clone(T[] array) {
 if (array == null) {
 return null;
 }
 return array.clone();
 }

Next, double-click on the org.apache.commons.lang3.text.translate package row
from the left-hand side of the matrix to drill down to class level. The design matrix
represents dependencies in the same manner, but only for the classes within the
selected package.

Chapter 9

[219]

As you can see, CharSequenceTranslator has an illegal dependency
on AggregateTrnalstor. To investigate further, double-click on
CharSequenceTranslator to view its source code—highlighted code shows that a
new instance of AggregateTranslator is returned from the translate method.
As you can see, CharSequenceTranslator is an abstract class, which is extended
by AggregateTranslator. It is quite restrictive to use an instance of a child class
within the abstract. Additionally, the responsibility to use aggregated translation
methods from many translators can be moved in the abstract class or exclusively
in the AggregateTranslator:

package org.apache.commons.lang3.text.translate;

import java.io.IOException;
import java.io.StringWriter;
import java.io.Writer;
import java.util.Locale;

/**
 * An API for translating text.
 * Its core use is to escape and unescape text. Because escaping and
 unescaping
 * is completely contextual, the API does not present two separate
 signatures.
 *
 * @since 3.0
 * @version $Id: CharSequenceTranslator.java 1146844 2011-07-14
 18:49:51Z mbenson $
 */
public abstract class CharSequenceTranslator {

Analyzing Complexity and Design

[220]

 ...

 /**
 * Helper method to create a merger of this translator with
 another set of
 * translators. Useful in customizing the standard functionality.
 *
 * @param translators CharSequenceTranslator array of translators
 to merge with this one
 * @return CharSequenceTranslator merging this translator with the
 others
 */
 public final CharSequenceTranslator with(CharSequenceTranslator...
 translators) {
 CharSequenceTranslator[] newArray = new CharSequenceTranslator
 [translators.length + 1];
 newArray[0] = this;
 System.arraycopy(translators, 0, newArray, 1, translators.
 length);
 return new AggregateTranslator(newArray);
 }

 ...
}

Ideally, when all dependencies are resolved the design matrix would have an empty
upper triangle, with all dependencies sitting in the lower one. Moreover, packages
at lower levels tend to be more used and imported from packages at higher levels.
So, the lower rows of the triangle would naturally be more populated with numbers
denoting dependencies on upper packages.

Chapter 9

[221]

Summary
In this chapter, we discussed software complexity. We also discussed how it is
measured and what Sonar can offer in order to help us identify complex constructs.
We saw some core measures and metrics that govern complexity such as Cyclomatic
Complexity, Coupling and Cohesion, Response for Class, and Lack of Cohesion.
Then, we added the appropriate rules to the Sonar profile and examined all widgets
reporting such measures. At the end of the chapter, we focused on dependencies and
detailed the Sonar design matrix, an invaluable component, which, once mastered,
will enable you to isolate dependencies in a quick and efficient way.

In the next chapter, we will discuss how Sonar measures Test Coverage and
Testing, as it is an essential and vital practice towards quality software. Testing and
coverage is the countermeasure towards complex software ensuring stability and
expected behavior.

Code Coverage and Testing
In this chapter, we will discuss how Sonar analyzes our unit tests, evaluating
different code coverage criteria. The goal is to have Sonar identify untested code and
guide developers as to what tests need to be written to improve the software quality.
The platform leverages the functionality of popular Java code coverage engines and
analyzes the collected coverage data taking into account other software measures
such as complexity. Thus, Sonar enhances the monolithic code coverage analysis, as
it adds more layers of information on top of percentile coverage results.

For example, low-complexity statements or blocks of untested code that are rarely
executed pose a lesser threat than complex and frequently executed methods.
With limited resources, we would probably want to invest time testing and
fixing the second crucial part of source code, rather than the first. Sonar helps in
disambiguating such cases.

In this chapter we cover:

•	 Measuring code coverage
•	 Code coverage tools
•	 Code coverage analysis
•	 Assessing the impact of your tests
•	 Using the coverage tag cloud component
•	 jUnit Quickstart
•	 Reviewing test results in Sonar

Code Coverage and Testing

[224]

Measuring code coverage
Measuring code coverage is essentially the evaluation of how effective our unit or
integration tests are and whether they test statements, conditions, and functions for
all possible results and arguments. When calculating code coverage, the coverage
engine launches test suites with special instrumented code at runtime so as to
measure which statements of the code were reached or not.

Some of the basic coverage criteria are as follows:

•	 Method coverage: Call to each method of a class
•	 Condition coverage: Evaluation of Boolean expressions to true or false
•	 Decision coverage: Reach all different branches within a control flow; for

example, all cases in a switch statement are covered, code tests both if and
else execution paths

•	 Statement coverage: All statements within a method or block were reached
by the test suite

Code coverage tools
There are many different code coverage tools specifically for Java, the most popular
of them, either free or commercial, being:

•	 Cobertura (free): http://cobertura.sourceforge.net/
•	 Clover (Commercial): http://www.atlassian.com/software/

clover/overview

•	 EMMA (free): http://emma.sourceforge.net/
•	 JaCoCo (free): http://www.eclemma.org/jacoco/

Chapter 10

[225]

Sonar uses Cobertura and JaCoCo but there is support for Clover and EMMA via
Sonar plugins. The basic lifecycle of a code coverage analysis process consists of the
following steps:

•	 Byte code instrumentation—injects custom code to enable measurements
•	 Test execution—performs the tests with the injected code
•	 Analysis report generation—generates a test report in formats such as

XML, HTML, PDF
•	 Sonar data collecting—Sonar collects reporting data

For the needs of the book, we will use the default Cobertura engine.

Performance tests run by the Sonar team on the four tools in 2010 show that Clover is
the slower one, consuming twice the time especially when analyzing large projects.
Next, we will review all four tools in more detail, and we will also see how we can
activate them in Sonar.

For more information on code coverage tools and their
performance, read the excellent article Pick your code coverage
tool in Sonar by the Sonar team at http://www.sonarsource.
org/pick-your-code-coverage-tool-in-sonar-2-2.

Selecting a code coverage tool for Sonar
To review the selected code coverage engine that will process the tests, log in to
Sonar as administrator and click on General Settings from the left menu to navigate
to the Sonar settings screen. From the category column, click on Code Coverage.
From here, you can view which coverage tool is currently active (default: Cobertura).

To change it, enter the corresponding key value for the desired coverage tool and
click on the Save Code Coverage Settings button. Notice that EMMA and Clover
tools require installing the respective plugins first. You can also override this global
setting, by setting a different coverage tool at project level. To do this, navigate to
a project's dashboard and click on Settings on the left. These configuration settings
will override global ones. Then, click on Code Coverage and enter the key value that
matches the desired code coverage tool to be used for this project.

Code Coverage and Testing

[226]

The four possible key values are as follows:

•	 cobertura—Cobertura (default)
•	 clover—Clover (requires plugin installation first)
•	 emma—EMMA (requires plugin installation first)
•	 jacoco—JaCoCo (it comes preinstalled with Sonar version 2.12+)

Cobertura
Cobertura is the preselected code coverage tool on a fresh Sonar installation and no
additional configuration is necessary, apart from the memory allocation size for the
Cobertura processes. The default one at 64m is enough most of the time, but for large
projects with many test suites, it is advisable to increase it to 128m if applicable.

Chapter 10

[227]

To change Cobertura memory settings, log in to Sonar as administrator and click on
General Settings from the menu on the left-hand side. Then, click on the Cobertura
link to navigate to its configuration screen and enter in the Maxmem text field the
value 128m. Finally, click on Save Cobertura Settings to save.

Cobertura is based on the jcoverage tool created by the company jcoverage Ltd
and its development has ceased since 2010. Main features of the Cobertura tool
are as follows:

•	 Ant, Maven, and command-line support
•	 Byte code instrumentation
•	 Branch coverage
•	 Report generation in HTML and XML format
•	 HTML reports support extensive sort functionality per class name/

percentage of lines covered/percentage of branches covered
•	 Calculate McCabe metric: Cyclomatic code complexity for each class,

package, and for the overall product

Code Coverage and Testing

[228]

McCabe metric
The cyclomatic complexity metric was introduced by Thomas
McCabe, in an effort to measure complexity of software systems
with accuracy. The method calculates complexity about the control
flow diagram of the software and directly correlates to it (source:
http://en.wikipedia.org/wiki/McCabe_Metric).

The following is a sample Cobertura report (visit http://cobertura.sourceforge.
net/sample/ for a live demo):

JaCoCo
JaCoCo code coverage tool is a subproject of the EclEmma coverage tool for the
Eclipse IDE. It is a rather new project and its development is very active. If you
develop a project on Eclipse and are interested in code coverage analysis data
that is integrated straight into your IDE, visit the EclEmma official website at
http://www.eclemma.org.

Chapter 10

[229]

Since Sonar version 2.12, JaCoCo is preinstalled and you can activate it from the
administration settings screen (key value: jacoco). Otherwise, the JaCoCo plugin
has to be installed first (Administrator | Update Center | Available Plugins |
JaCoCo). Remember to restart the Sonar server to complete the installation process.
In standalone mode, JaCoCo generates a report like the following one (demo report
available at http://www.eclemma.org/jacoco/trunk/coverage/):

The report includes two more sections displaying coverage data on methods
and classes. Each section includes a total coverage percentage, a Missed value
(for example, how many lines were missed by tests), and complexity for the total
complexity of the missed code areas.

Clover Sonar plugin
Clover is a commercial offering by Atlassian (http://www.atlassian.com/
software/clover/overview) and is available as a Sonar plugin. The main product
integrates with Eclipse and IDEA in addition to Ant and Maven plugins. The demo
videos at Clover's official page highlight the attention to detail, especially to the user
interface. Lots of information are organized within intuitive screens. If you want to
see it in action, you can download a free 30-day trial version and see for yourself.

Code Coverage and Testing

[230]

If you have purchased a Clover license key and want to use it in Sonar, you will
have to install the Sonar Clover plugin from the Update Center. Once the installation
process is complete, restart the server and go to Configuration | General Settings |
Clover. Fill in the License text field with your license key and click on Save Clover
Settings. Next, click on the Code Coverage link, fill in the Key text field with the
value clover, and click Save Code Coverage Settings.

Emma Sonar plugin
Emma is a free code coverage tool and came to life back in 2005. Development has
now ceased with a final release in June 2005. To use Emma in Sonar, go to General
Settings from Administration and set the Code Coverage property value to emma.

A brief overview of Emma features:

•	 Byte code instrumentation, both offline and at runtime
•	 Coverage at line, block, method, and class level
•	 Coverage stats from method to package level
•	 Report generation in HTML and XML format
•	 Works in any Java 2 JVM (1.2+)

Chapter 10

[231]

The following screen is a sample Emma coverage report for the Apache Velocity
version 1.4 project:

The report consolidates coverage percentage data into four different sections for each
level respectively—class, method, block, and line. For more sample reports, visit
Emma's official site at http://emma.sourceforge.net/samples.html.

Code coverage analysis
To better understand how Sonar works and to be in a position to better evaluate
code coverage results, it is necessary to take a closer look at how code coverage tools
analyze tests and calculate total coverage. The result of the coverage analysis process,
although expressed as a single percentage number in Sonar, is based on many
different coverage metrics.

Next, we will examine four fundamental coverage metrics used by all code coverage
tools supported by Sonar:

•	 Statement coverage
•	 Branch coverage (also known as decision coverage)
•	 Condition coverage
•	 Path coverage

Code Coverage and Testing

[232]

Statement coverage
Statement coverage is the most basic metric of the analysis process. It is the building
block element for the rest of the metrics. The metric reports whether a statement
was encountered during test execution. Usually, statements and lines coincide,
thus the metric is also known as line coverage. Once a line of code is encountered,
it is considered as covered. This has the side effect of not taking into account the
possibility of different execution paths for control flow statements such as the if
else blocks.

For example, consider the following block of code:

if (condition){
 …
 … // 99 statements in total
 …
} else {
 … // one single statement
}

If during unit testing, condition always evaluates to true then the statement
coverage metric will report 99 percent coverage, missing the single statement inside
the else block. This 99 percent is misleading though as the else execution path is
left out from unit tests completely.

Branch/decision coverage
Branch or decision coverage expands on statement coverage by reporting whether
Boolean expressions were tested sufficiently—evaluated to true or false—so as to
enable all possible execution paths in control structures.

For example, branch coverage reports a 100 percent result when a unit test's
condition evaluates to true in one case and false in another.

if (condition){
...
} else {
...
}

Chapter 10

[233]

Condition coverage
Condition coverage reports on the true or false outcome of an expression. To
report 100 percent, all the operands of the expression must be tested for all possible
values. The only disadvantage of this metric is that it does not guarantee that all
edges of the program will be visited. For example, an expression evaluates always to
true or false regardless of the operand values. Combining condition coverage with
decision coverage resolves this issue.

Path coverage
Path coverage is the most thorough metric because it tests whether all possible
combinations of control flow were visited during unit testing from the entry point of
a method to the exit.

For example, in the following block of code, path coverage will report four different
unique execution paths:

if (conditionA) {
 …

 if (conditionB){
 ...
 } else {
 ...
 }

} else {
 ...
}

Adding another if else block would raise the total paths exponentially to a
total of 8.

Code Coverage and Testing

[234]

Assessing the impact of your tests
After a Sonar analysis, the first place to review testing coverage is within the project
dashboard. A dedicated widget reports total coverage in percentage form, breaking
down to line and branch coverage as shown in the following screenshot:

Click on any metric from the left widget section to drill down to package level.
Packages are listed along with the coverage metric as a percentage and clicking on
them lists their respective classes and coverage value on the right side of the panel.

Click on a class to open the Sonar source viewer with focus on the coverage tab.
You can view a summary of the following metrics at the top of the tab for the
corresponding class. Below the metrics, you can select from the menu on the right
which parts of the source are displayed, for example, the lines or branches to cover.

•	 Line coverage—in percentage
•	 Branch coverage—in percentage
•	 Uncovered lines—absolute values
•	 Uncovered branches—absolute values

Chapter 10

[235]

Statements reached by a unit test are covered and highlighted with a green number.
The number for single statements is one. For control flow statements, it is higher
depending on the number of the conditions. For a single Boolean expression, there
are two conditions to cover, true and false, and the number has a maximum value
of two, meaning that there are two paths that must be covered by unit tests..

Uncovered lines
Uncovered statements are highlighted in red. In the following screen, we see that
both if else blocks and inner statements are untested. Because neither clause is ever
visited, the number in red is two, which means that the block was not tested at all.

Code Coverage and Testing

[236]

Uncovered branches
In cases where branches were covered partially and not tested for all possible
outcomes, Sonar highlights them with a yellow number, denoting the number of
the conditions that were covered. For example, an expression with two Boolean
conditions allows four possible combinations. A yellow number 3 means that one
combination was never tested. The green number on the left simply means that the
line was reached.

Chapter 10

[237]

Using the coverage tag cloud component
The coverage cloud component provides information in a quick and efficient way.
Java classes are represented as tags a in tag cloud, while tag colors and font sizes
correspond to different metrics depending on the selected mode: Quick wins or
Top risk.

To view the coverage cloud, visit the dashboard of a project, click on the link Clouds
from the menu on the left, and set the Color property to Coverage. The following
screenshot shows the coverage cloud for the Apache Commons library. Mouse over
a class to get metric values or click on its tag to open it in the Sonar source viewer.

Quick wins mode
In Quick wins mode, the coverage cloud represents:

•	 Font size: Total lines of code
•	 Color: Code coverage ranging from red (0 percent) to blue (100 percent)

Top risk mode
In Top risk mode, the coverage cloud represents:

•	 Font size: Average complexity/method (absolute value)
•	 Color: Code coverage ranging from red (0 percent) to blue (100 percent)

Code Coverage and Testing

[238]

Where to start testing
The coverage cloud proves to be a great tool when it comes to deciding what
tests to write next, since the visual representation allows quick comparisons at a
glance. Writing tests with no real value to the software product, only to technically
increase coverage, is not uncommon. It is essential that unit tests are written from a
production perspective in an effort to simulate real-case scenarios and method calls.

The Top risk approach
Switching to Top risk mode, we are presented with a cloud that is substantially
different from the Quick wins one. It is recommended to use this view, as it takes
into account the complexity of each class irrespective of the line count. It is more
important to provide tests for complex methods that control and dictate the program
flow, and take care of standalone statements later.

The following screen is the same as the previous one, the only difference being that
it is switched to Top risk mode. Obviously, the clouds are quite different. After
examining the second one, a quick assessment would be that converters lack coverage
in general and should be tested extensively since they are fairly complex classes.

Chapter 10

[239]

jUnit Quickstart
jUnit is a framework for writing and running test cases—http://junit.org/.
A test is a Java class containing jUnit annotations to set up the test and identify test
methods. Basically, you annotate test methods with the @Test annotation and verify
results using assertion. When you want to check a value dependent on the nature of
the check and the type of the value, you call the appropriate assertion.

For example, if you want to check that the value of a Boolean variable is true, you
would write: assertTrue(var). There are many different assertions located in
package import org.junit.Assert.*. Notice that you have to import this package
statically to each test class. Methods containing test code are annotated with
@org.junit.Test. For example:

@Test
public void testFoo(){
 ..
}

To start writing your own tests, download junit-4.xx.jar from https://github.
com/KentBeck/junit/downloads and add it to the class path.

Writing a simple unit test
Next, we will go through a basic test example and use the most important jUnit
annotations such as:

•	 @Before

•	 @After

•	 @Test

•	 @Test(expected = parameter)

Consider the following simple Calculator.java class:

/*
 * Calculator.java
 */

public class Calculator {

 /**
 * Converts passed arguments to integers
 * and performs addition.
 * @param stra first argument
 * @param strb second argument
 * @return addition result of arguments
 * @throws NumberFormatException

Code Coverage and Testing

[240]

 */
 public int addition(final String stra,
 final String strb)
 throws NumberFormatException{

 final int a = Integer.valueOf(stra);
 final int b = Integer.valueOf(strb);
 return a + b;
 }
}

And its corresponding annotated CalculatorTest.java test case:

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import junit.framework.TestCase;

/* CalculatorTest.java
 */

public class CalculatorTest extends TestCase {

 private Calculator calculator;

 public CalculatorTest(String name) {
 super(name);
 }

 @Before
 public void setUp() {
 calculator = new Calculator();
 }

 @After
 public void tearDown() {
 calculator = null;
 }

 @Test
 public void testAddition(){
 String stra = "2";
 String strb = "3";
 int expected = 5;
 int actual = calculator.addition(stra, strb);
 assertEquals(expected, actual);
 }

 @Test(expected = NumberFormatException.class)
 public void testAdditionEx(){
 String stra = "str";
 String strb = "3";
 calculator.addition(stra, strb);
 }

}

Chapter 10

[241]

The CalculatorTest class declares a Calculator field and two methods, which test
the addition method. Before we start executing test methods, we have to initialize
the calculator inside the setUp method. The setUp method annotated with @Before
will be conveniently invoked before any actual testing takes place. Similarly, the
@After annotation causes the tearDown method to be invoked after the testing is
complete and is responsible for cleaning up resources.

The next two methods testAddition and testAdditionEx are annotated with
@Test and this is where the testing code resides. The Calculator field has already
been initialized, and therefore we can use it now for testing purposes.

The first method simply tests the result of 2 + 3 and performs assertEquals to
check whether the return value is 5. However, at runtime, there is the potential
of passing invalid String arguments, for example not numbers, causing
NumberFormatException to be thrown. To cover this possibility for testing purposes,
we can pass invalid arguments and verify that a NumberFormatException exception
is thrown by the program. We can achieve this by defining the expected parameter
of the @Test annotation equal to NumberFormatException.class and write code
that intentionally throws this exception. This is a common practice to test exception
handling and verify correct program behavior.

Reviewing test results in Sonar
When unit tests fail and success rate falls below 100 percent, the code coverage
widget highlights the percentage value to notify us that something did not test as
expected. Below the percentile value, you can view the number of total test failures.
A failure means that a method inside a test annotated with @Test did not pass the
assertion check. Click on the percentage value or the failures number to get an
overview of the affected classes. From there you can drill down from package level
to class level and pinpoint the failing test. The numbers next to packages, classes, or
methods are the total number of failures at the respective level.

Code Coverage and Testing

[242]

When you click on test class, the Sonar source viewer opens below the drill down
panel with focus on the Tests tab. The header of the tab includes the following
information from left to right:

•	 Test success rate as percentile value
•	 Total number of tests executed
•	 Total number of failures
•	 Total test duration in seconds

Chapter 10

[243]

In this example, the test method testSSlHtmlConnection() has failed and therefore
it is specifically highlighted, as shown in the following screenshot:

Whenever a test fails due to assertion failure, jUnit logs a message with the expected
and actual values in order to assist the developer understand what went wrong.
Click on the expand link to review the assertion message. For assertEquals(), the
output would be similar to the following code:

expected:<1> but was:<0>
junit.framework.AssertionFailedError: expected:<1> but was:<0>
at junit.framework.Assert.fail(Assert.java:47)
at junit.framework.Assert.failNotEquals(Assert.java:277)
at junit.framework.Assert.assertEquals(Assert.java:64)
at junit.framework.Assert.assertEquals(Assert.java:195)
at junit.framework.Assert.assertEquals(Assert.java:201)
at org.apache.ahc.MonitoringTest.testSSLHtmlConnection(MonitoringTest.
java:70)

Summary
In this chapter, we discussed what code coverage is and reviewed the tools that
Sonar uses to perform such an analysis. After a more detailed look at specific
coverage metrics such as decision, condition, and path coverage, we examined the
Sonar interface and how it helps us identify complex classes lacking tests. Finally,
we covered basic concepts of the jUnit testing library as a first step towards unit
test writing.

In the next chapter, we will review the process of creating an integrated development
environment complete with a source code repository, a build server, and Sonar
according to the continuous inspection paradigm.

Integrating Sonar
In this chapter, we will discuss continuous integration and inspection processes and
set up a continuous integration environment to enable these practices. We will install
Software Configuration Management (SCM), and learn how to import and manage the
source code hosted in it. Then, we will install the Jenkins Continuous Integration
server (Jenkins CI) and connect a project in the repository to the build server to
automate the build process. Finally, we will install the Jenkins Sonar plugin and
configure a build job in Jenkins so as to automatically execute a Sonar analysis after
each build.

In this chapter, we cover:

•	 The Continuous Inspection paradigm
•	 Installing Subversion
•	 Setting up a Subversion server
•	 Installing Jenkins CI Server
•	 Configuring Jenkins
•	 Creating a build job
•	 Installing the Sonar plugin
•	 Building and monitoring your project

The Continuous Inspection paradigm
Continuous integration is a software development practice where team developers
integrate their code frequently. Each time a change is committed to the source code
a new build is provided, usually through an automated process. The project grows
incrementally, a stable build is always available for every iteration, and build errors
can be identified by team members quickly.

Integrating Sonar

[246]

Continuous inspection expands and builds upon this practice, adding a layer of
quality analysis at each iteration. While continuous integration ensures stability
and minimizes the effort of merging source code within the project, continuous
inspection tracks quality requirements in an effort to control the quality of the final
product. To enable continuous inspection, data collection and analysis is required
after each build is produced by the build server.

Continuous integration servers
A continuous integration server or build server is responsible for executing build
jobs and storing historical data and artifacts for each build. Builds can be triggered
either manually or automatically. A common practice is to have the build server
build the project automatically by polling a source code repository whenever
modifications are detected. The build server pulls all changes and starts a new build.
The goal is to provide a quick build and verify that new code has not harmed the
project. To provide a daily snapshot of the project, we can configure the server to
build the project at a specified time each day, running all post-build unit tests and
quality tools. The goal is to have a daily stable build that has passed all unit tests and
quality requirements and a simpler continuous one to help identify errors.

Installing Subversion
Subversion is a version control system developed by the Apache Software
Foundation. A central Subversion server manages different versions of files/projects,
while developers connect to the server via command line or GUI tools to commit
their changes to the code. For more information on Subversion, visit the project's
home page at http://subversion.apache.org/.

For the needs of the book, we will only use basic commands to import a project into
Subversion and commit changes to files. To learn more about Subversion, download
the free book Version Control with Subversion from http://svnbook.red-bean.com/
or visit Apache's Subversion documentation page at http://subversion.apache.
org/docs/.

Next, we will install the Subversion server and its client on Linux and Windows.

Chapter 11

[247]

Ubuntu/Debian Subversion installation
Ubuntu and Debian distributions maintain Subversion projects and are available
within the Synaptic Package Manager tool. To install both the Subversion server and
client, open a terminal and enter the following commands:

$ sudo apt-get install subversion

$ sudo apt-get install libapache2-svn

For more information on Debian Subversion packages visit
http://packages.debian.org/search?keywords=subversion&exact=1.

Ubuntu Subversion package information can be found at
http://packages.ubuntu.com/search?keywords=subversion&exact=1.

Red Hat Subversion installation
For Red Hat Linux, you can choose between three different releases, namely Redhat
standard Subversion package, WANdisco, or SummerSoft. WANdisco provides one
release to cover all Red Hat versions and requires registration, while SummerSoft
hosts multiple rpm packages and does not require registration.

To install Redhat's standard Subversion package, open the terminal and enter the
following command as root:

yum install mod_dav_svn subversion

If you don't have Apache installed already, this command also installs it.

To install the SummerSoft release, visit http://the.earth.li/pub/subversion/
summersoft.fay.ar.us/pub/subversion/latest/, select the directory with the
highest version number, and download and install the rpm package for your Red
Hat distribution.

To install WANdisco's release go to http://www.wandisco.com/subversion/
download#redhat and click on the Download Subversion Installer link. Complete
the registration form and download the installer. Then, open a terminal and enter the
following commands as root:

chmod +x svninstall_rhel5_wandisco.sh

./svninstall_rhel5_wandisco.sh

If you wish to update your installation, you can at any time use the yum update
command:

yum upgrade

Integrating Sonar

[248]

Installing Subversion on other
Linux distributions
If you wish to install Subversion on a Linux distribution not covered here, visit
Apache's official page for a comprehensive list and installation instructions on
all supported Subversion binary packages at http://subversion.apache.org/
packages.html.

Windows Subversion installation
For Windows we will install CollabNet's Subversion Edge 2.3.0.

Visit http://www.open.collab.net/downloads/subversion/, and scroll down to
find the CollabNet Subversion Edge 2.3.0 sections for Windows 32-bit or 64-bit.

Click on the Download button to register for a CollabNet account and when the
download is complete, run the installer. After the installation process has finished,
you will have a new Subversion service running, ready to host repositories.

More Windows Subversion installation binaries are available at
http://subversion.apache.org/packages.html#windows.

Setting up a Subversion server
Next, we will create a repository for our projects, configure a user named svnpackt
to have access to the repository, and import a dummy Maven project named
packt-app into the repository. The process is the same for Linux and Windows.

Creating a Subversion repository
A Subversion repository is simply a directory in the filesystem containing repository
configuration files and our project's files. To create a repository, open a terminal and
enter the following command:

$ svnadmin create $PATH_REPO

Replace $PATH_REPO with a directory, for example, /home/dev/repo.

Chapter 11

[249]

To verify the creation of the repository, navigate to $PATH_REPO. The following
directories should have been created:

•	 conf: Subversion configuration files
•	 db: Project data files and revisions
•	 hooks: Templates for useful automation commands
•	 locks: Logs of locked files, checked out and modified by developers
•	 format (file): Contains information about the repository's layout
•	 README.txt (file): Getting started configuration information

Subversion security and authorization
Subversion supports different authorization schemes, with the simplest one being
password-file-based authentication. User names and passwords are stored in
a passwd file stored inside the repository's conf directory. Navigate to the
$PATH_REPO/conf directory, open the svnserve.conf file, and uncomment
the line password-db = passwd:

If SASL is enabled (see below), this file will NOT be used.
Uncomment the line below to use the default password file.

password-db = passwd

To create the user svnpackt with password svnpackt, open the passwd file inside
the $PATH_REPO/conf directory and add the line svnpackt = svnpackt:

[users]
harry = harryssecret
sally = sallyssecret
svnpackt = svnpackt

Importing a project into Subversion
To create a simple Maven project, open the terminal and enter the following
command:

mvn archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DgroupId=com.packt.app \

 -DartifactId=packt-app

Notice that the previous command is a single line broken down with backslashes only
for formatting purposes. You should enter it as one line, omitting the backslashes.

Integrating Sonar

[250]

Maven will start downloading the necessary archetype definition files, and
eventually you will be prompted to choose the version of the quickstart
Maven archetype to use:

1: 1.0-alpha-1
2: 1.0-alpha-2
3: 1.0-alpha-3
4: 1.0-alpha-4
5: 1.0
6: 1.1

Choose a number: 6: 6

Enter 6 and press Enter to continue.

[INFO] Using property: groupId = com.packt.app
[INFO] Using property: artifactId = packt-app

Define value for property 'version': 1.0-SNAPSHOT: : 1.0

When prompted for version, type 1.0 and then hit Enter.

Confirm properties configuration:
groupId: com.packt.app
artifactId: packt-app
version: 1.0
package: com.packt.app

 Y: : Y

Finally, press Y to complete the process. Maven has created the packt-app project
directory along with all necessary directories. The project contains one main class, in
package com.packt.app:

package com.packt.app;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Chapter 11

[251]

Before we import the project into Subversion, we must create a packt-app directory
within the repository. To do this, enter the following commands—the first one is to
start the Subversion server in case it is not running. When prompted for password,
enter svnpackt. Remember to replace the $PATH_REPO variable with the real location
of the repository in your system.

$ svnserve -d

$ svn mkdir svn://localhost/$PATH_REPO/packt-app --username svnpackt

..

Store password unencrypted (yes/no)? yes
Committed revision 1.

Next, open a terminal and change directory (cd) to one level up from where the
packt-app directory was created earlier by Maven. You should be able to list the
directory by typing ls in Linux or dir in Windows.

Then, enter the following command to import the project into Subversion:

$ svn import packt-app svn://localhost/$PATH_REPO/packt-app --username
svnpackt

Adding packt-app/src

Adding packt-app/src/test

Adding packt-app/src/test/java

Adding packt-app/src/test/java/com

Adding packt-app/src/test/java/com/packt

...

Adding packt-app/src/main/java/com/packt/app/App.java

Adding packt-app/pom.xml

Committed revision 2.

Now that the packt-app project is stored into the Subversion repository, we can
delete the local copy and check it out again directly from the server. Open the
terminal, change directory (cd) to where you want to check out the project, and
enter the following command:

$ svn co svn://localhost/$PATH_REPO/packt-app

A packt-app/src

A packt-app/src/test

A packt-app/src/test/java

A packt-app/src/test/java/com

A packt-app/src/test/java/com/packt

Integrating Sonar

[252]

A packt-app/src/test/java/com/packt/app

A packt-app/src/test/java/com/packt/app/AppTest.java

A packt-app/src/main

A packt-app/src/main/java

A packt-app/src/main/java/com

A packt-app/src/main/java/com/packt

A packt-app/src/main/java/com/packt/app

A packt-app/src/main/java/com/packt/app/App.java

A packt-app/pom.xml

Checked out revision 2.

Whenever you want to commit changes or execute Subversion commands regarding
the project, open a terminal within the project's directory and enter them from there.
For example, invoking svn with the info parameter inside the packt-app directory
lists the following information:

$ svn info

Path: .

URL: svn://localhost/$PATH_REPO/packt-app
Repository Root: svn://$PATH_REPO
Repository UUID: 376b09b6-4792-4d11-81d4-d4c6ca5824dc
Revision: 2
Node Kind: directory
Schedule: normal
Last Changed Author: svnpackt
Last Changed Rev: 2

Installing the Jenkins CI server
The Jenkins Continuous Integration server, formerly known as Hudson before
the renaming of the project took place, has been created by Kohsuke Kawaguchi.
The official site of the project is available at http://jenkins-ci.org/. At the
end of the installation process, you will have a running Jenkins server at
http://localhost:8080/.

Chapter 11

[253]

Here is how the welcome page looks:

Ubuntu/Debian Jenkins installation
Enter the following command to add the necessary key for the Jenkins Debian
package repository:

$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key | sudo
apt-key add -

To add the repository, add the following APT line entry in your /etc/apt/
sources.list:

deb http://pkg.jenkins-ci.org/debian binary/

Integrating Sonar

[254]

Alternatively, you can run the Synaptic Package Manager tool and select
Repositories from the Settings menu. Select the Third-Party Software tab and click
on the Add button to enter the repository's APT line. Click on Add Source and Close
to close the Repositories pop-up:

Finally, open a terminal and enter the following commands to perform
the installation:

$ sudo apt-get update

$ sudo apt-get install jenkins

When the installation process completes, navigate to http://localhost:8080/ to
verify that Jenkins is up and running.

As for the Jenkins service, it is good to know that:

•	 Jenkins will be launched as a daemon up on start. See /etc/init.d/jenkins
for more details.

•	 The Jenkins user is created to run this service.
•	 Log files will be placed in /var/log/jenkins/jenkins.log. Check this file

if you are troubleshooting Jenkins.

For more information, visit Jenkins's Ubuntu installation wiki at https://wiki.
jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu.

Chapter 11

[255]

Redhat/Fedora/CentOS Jenkins installation
To use the Jenkins rpm repository, open a terminal and enter the
following commands:

sudo wget -O /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.org/
redhat/jenkins.repo

sudo rpm --import http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key

Then, the Jenkins package can be installed with:

$ yum install jenkins

When the installation process completes, navigate to http://localhost:8080/ to
verify that Jenkins is up and running.

To start, stop, or restart the service use:

$ sudo service jenkins start/stop/restart

The Jenkins service runs as follows:

•	 Jenkins will be launched as a daemon up on start. See /etc/init.d/jenkins
for more details.

•	 The Jenkins user is created to run this service.
•	 Log files will be placed in /var/log/jenkins/jenkins.log. Check this file

if you are troubleshooting Jenkins.

For more information, visit Jenkins's RedHat installation wiki at
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Red
Hat+distributions.

Windows Jenkins installation
Download and run the Jenkins installer from http://mirrors.jenkins-ci.
org/windows/latest to install Jenkins as a Windows service configured to start
automatically upon boot. To start/stop it manually, use the service manager from
the control panel, or the sc command-line tool.

When the installation process completes, navigate to http://localhost:8080/ to
verify that Jenkins is up and running.

Integrating Sonar

[256]

Configuring Jenkins
Ensure that the Jenkins service is running and go to http://localhost:8080/.
From there, click on the Manage Jenkins link on the left menu to view the list of
links leading to different configuration pages. Click on the top one, Configure
System, to navigate to the configuration dashboard. This dashboard features
many different sections which we will configure one by one.

JDK configuration
Click on the Add JDK button to expand this section. If your installed JDK has not
been auto-detected by Jenkins, you have to enter it manually in the Name field.
Unless, of course, you want Jenkins to install JDK automatically for you, in which
case you check the Install automatically checkbox.

Chapter 11

[257]

Maven configuration
Click on the Add Maven button and fill in the Name and MAVEN_HOME fields
to match your own Maven installation. Jenkins will use this Maven installation to
execute builds. Alternatively, you can check the Install automatically checkbox and
have Jenkins install it automatically from Apache.

Repository configuration
Next, configure the Subversion section as shown in the following screen:

Integrating Sonar

[258]

E-mail server configuration
Jenkins supports user notification on various build events such as build failed or build
restored. To enable the notification support, you have to configure the SMTP server
and SMPT authentication if applicable—check your e-mail server settings before
making changes to this section. The Sender E-mail Address field value will be the
address Jenkins will use to e-mail users.

Securing Jenkins
By default, Jenkins is open for use and configuration by anyone, requiring no
authentication. Scroll up to the top and check the Enable Security checkbox to
expand the security configuration section.

Chapter 11

[259]

From Security Realm, select Jenkins's own user database and if you wish, check the
Allow users to sign up checkbox.

Click on the Matrix-based security radio button, type packt in the User/group
to add input field, and click on the Add button. On the new row, check all the
privileges to make sure that this user has rights to everything.

Finally, click on the Save button to preserve configuration changes and click again
on the top-left Jenkins logo to return home. Now, you will be prompted to log in. Do
not log in, click on the Create Account link instead, and fill in the form with your
account details entering packt as the username. Afterwards, you will be able to log
in with your packt account normally.

Integrating Sonar

[260]

Creating a build job
Next, we will create a new build job for the packt-app Maven project. Log in
to Jenkins and click on the New Job link from the left. Enter a job name and
select the maven2/3 radio button. Then, click on OK to proceed to the job's
configuration screen.

Click on the Subversion radio button and enter the Repository URL of the packt
project. Remember to replace the $PATH_REPO environment variable with the
repository directory as it is configured in your own system. Leave the rest of the
fields to their default values.

Chapter 11

[261]

Configure the Build Triggers section as shown in the following screenshot:

The Poll SCM value 5 * * * * is a cron expression and means that Jenkins will
poll the Subversion server every five minutes and if any changes are detected, it
will update the source code to pull the changes and automatically execute the
packt-app build job. Click on the question mark beside the Poll SCM field for
more configuration options.

Cron expression and scheduling
Cron is a time-based job scheduler in Unix operating systems that allows you to
schedule jobs using expressions. A cron expression is a string of five fields with
each field representing a different unit of time as follows:

•	 Minutes: 0-59
•	 Hours: 0-23
•	 Day of month: 0-23, use ? if not applicable
•	 Month: 1-12
•	 Day of week: 0-6 or SUN-SAT (by name)

Take a look at the following examples:

•	 0 5 ? * MON (every Monday at 05:00 AM)
•	 30 18 * * ? (every day at 06:00 PM)

Integrating Sonar

[262]

Finally, click on the Save button and navigate back to the Jenkins home page by
clicking on the top-left logo. Your new job now appears in the job list at the center
of the page. You can click on the rightmost play button to start the job, or click on
the job's name—for example, packt-app—to go to the dashboard. To reconfigure
the job, click on Configure from the menu on the left. To browse build artifacts,
click on Workspace.

Installing the Sonar plugin
Before we test our new job, let's install the Sonar plugin. The Sonar plugin enables
Jenkins to initiate a Sonar analysis after each build. From the Jenkins home page
http://localhost:8080/, click on the Manage Jenkins link, and Manage Plugins
from the next screen. Click on the Available tab and search (Ctrl + F) for Sonar to
find and select the Sonar plugin. Then, click on the Install without restart button to
start the installation process.

While Jenkins is downloading and installing the plugin, make sure to check the
Restart Jenkins option as shown in the following screenshot. This will ensure that
Jenkins restarts immediately once the installation is complete.

Chapter 11

[263]

With the Sonar plugin installed, go to Manage Jenkins | Configure System and
scroll down to the Sonar section. Provide a name for the Sonar server and click
on Save. If the Sonar server is installed at a URL other than the default one
(http://localhost:9000/), click on the Advanced... button and enter your
Sonar server's URL in the Server URL input field.

Next, we will enable the Sonar analysis as a post-build action for our packt-app job.
Go back to the Jenkins home page and from the job list, select the packt-app job by
clicking on its name. Click on Configure from the left menu and scroll down to the
bottom of the page. Check the Sonar checkbox from the Post-build Actions section
to enable Sonar analysis. Hover over the question mark icons for information on the
rest of the options—archive the build artifact, build other dependent projects, install
the artifact to a Maven artifact repository, and so on. Additionally, you can enable
E-mail Notification and provide a list of user's e-mails to notify whenever a build
event is triggered by this build job.

Integrating Sonar

[264]

Finally, click on Save to preserve your changes and return to the job's dashboard.

Building and monitoring your project
To test our new job, go to the Jenkins homepage at http://localhost:8080/
and click on the play button, as shown in the following screenshot, to execute the
building process. The Build Executor Status panel on the left of the page displays
the progress of the build. You can click on the build number and then on the Console
Output link on the left to inspect the build log as it runs. Notice that after the build
completes, a Sonar analysis is triggered and executed.

Chapter 11

[265]

Once the build has finished successfully, the status of the job turns blue. Click on the
project's name to navigate to the details page.

From here, you can access all past build data, download build artifacts, and review
test results. Click on the Workspace link to download artifacts and review the
build logs.

Click the Sonar link to go straight to the project's Sonar dashboard:

Integrating Sonar

[266]

Summary
In this chapter, we went through the process of setting up and configuring an
integrated build and quality analysis environment. We installed Subversion,
Jenkins Continuous Integration server, and the necessary Sonar plugin.

We configured Jenkins to poll the source code repository and execute a build process
and Sonar analysis whenever changes are detected. From now on, every time a
developer commits a change to the repository, a new build and Sonar analysis will
be available.

Sonar Metrics Index
This appendix lists all Sonar metrics in separate categories along with a brief
description for each metric and information on where to locate it within the
Sonar user interface.

Sonar metrics
Sonar metrics are categorized into the following categories:

•	 Complexity
•	 Design and Architecture
•	 Documentation
•	 Duplication
•	 General
•	 Unit Tests
•	 Rules Compliance and Violations
•	 Project Size
•	 Management

Sonar Metrics Index

[268]

Complexity metrics
Complexity metrics are available in the Complexity and Quality Index widgets in the
dashboard. The Quality Index widget is available as a plugin.

Metric name Definition Sonar component
Complexity The total Cyclomatic

Complexity number was
introduced by McCabe.
For each of the following
java statements the number
increments by one:
if, for, while, case, catch,
throw, return, &&, ||, and ?.

This is available via the
Complexity widget. Navigate
to Dashboard | Complexity
Widget | Total.

Complexity / class Average Cyclomatic
Complexity per class.

This is available via the
Complexity widget. Navigate
to Dashboard | Complexity
widget | Per Class metric.

Complexity / file Average Cyclomatic
Complexity per file.

This is available via the
Complexity widget. Navigate
to Dashboard | Complexity
widget | Per File metric.

Complexity / method Average Cyclomatic
Complexity per method.

This is available via the
Complexity widget. Navigate
to Dashboard | Complexity
widget | Per Method metric.

Complexity Factor Density of complexity in
methods in percentage.

This is available via the
Quality Index widget.
Navigate to Dashboard |
Quality Index widget |
Complexity factor percentage.

Complexity Factor Methods Methods with high complexity
density.

These are available via
the Quality Index widget.
Navigate to Dashboard |
Quality Index widget |
Complexity Factor Methods
total.

QI Complexity Complexity rating in respect
to total LOC.

This is available via the
Quality Index widget.
Navigate to Dashboard |
Quality Index widget | QI
Complexity Bar

Appendix

[269]

The formula for the QI Complexity metric is:

(Complexity > 30 *10 + Complexity > 20 * 5 + Complexity > 10 * 3 + Complexity >
1) / effective lines of code

Design metrics
Abstractness and Instability design metrics as specified by Robert C. Martin have not
been implemented yet; however, there is an open ticket by the Sonar development
team at http://jira.codehaus.org/browse/SONAR-94.

Metric name Definition Sonar component
Abstractness The ratio of the number of

abstract classes (and interfaces)
to the total number of classes
in the analyzed package.

To be implemented—open
ticket SONAR-94.

Afferent couplings Number of other classes that
use this class.

These are available via the
Sonar Sourcecode viewer

Drill down to Class level |
Open in Sourcecode viewer |
Dependencies tab.

Depth in tree (DIT) Number of parent classes. To be implemented—open
ticket SONAR-94

Efferent couplings Number of classes that are
used by this class.

This is available via the Sonar
source code viewer.

Drill down to Class level |
Open in Sourcecode viewer |
Dependencies tab

File dependencies to cut Total number of dependencies
between files.

This is available via the
Package Design widget.

Navigate to Dashboard |
Package Design widget |
Total dependencies between
files.

Instability The number of classes inside
a package that depend on
classes outside the package.

This is available via the Sonar
source code viewer.

Drill down to Class level |
Open in Sourcecode viewer |
Dependencies tab

Sonar Metrics Index

[270]

Metric name Definition Sonar component
Lack of cohesion of methods
(LCOM4)

Correlation between the
methods and the local instance
variables of a class.

Methods not related to local
fields increase the class LCOM
number by one.

These are available via the
Sonar source code viewer.
Drill down to Class level |
Open in Sourcecode viewer |
LCOM4 tab
Alternatively, navigate to
Dashboard | Chidamber
and Kemerer widget | Files
having LCOM4 greater than 1.

Number of Children (NOC) Number of descendants of the
class.

This is available via the Sonar
source code viewer
Drill down to Class level |
Open in Sourcecode viewer
| Source tab (on the left-hand
side of the header)

Package cycles The minimum number of
package cycles detected
while traversing a package to
identify dependencies.

These are available via the
Package Design widget.
Navigate to Dashboard |
Package Design widget |
Total cycles.

Package dependencies to cut Total number of dependencies
between packages.

This is available via the
Package Design widget.
Navigate to Dashboard |
Package Design widget |
Total dependencies between
packages.

Package tangle index Level of tangle of the
packages; the best is 0 percent.

This is available via the
Package Design widget.
Navigate to Dashboard |
Package Design widget |
Package tangle index in
percentage.

Response For Class (RFC) Total number of methods that
can be potentially executed by
an object of this class counting
distinct calls made by the
methods in the class.

This is available via the
Chidamber and Kemerer
widget.
Navigate to Dashboard |
Chidamber and Kemerer
widget | Response for Class |
value/class.

Appendix

[271]

Documentation metrics
Documentation-related metrics are available via the Comments and
Duplications widget.

Metric name Definition Sonar component
Blank comments Empty comment lines. These are available via the

Treemap.

Navigate to Dashboard |
Components | Treemap on
the right | Set size to Blank
Comments metric.

Comment lines Number of Javadoc, multi-
comment, and single-comment
lines. Empty comment lines,
header file comments, and
commented-out lines of code
are not included.

These are available via the
Comments and Duplications
widget.

Navigate to Dashboard |
Comments and Duplications
widget | total lines.

Commented-out LOC Commented out lines of
code. The Javadoc blocks are
excluded.

This is available via the
Comments and Duplications
widget.

Navigate to Dashboard |
Comments and Duplications
widget | total commented
LOCs.

Density of Comments (%) Number of comment lines / (lines
of code + number of comments
lines) * 100.

This is available via the
Comments and Duplications
widget.

Navigate to Dashboard |
Comments and Duplications
widget | comments
percentage value.

Density of Public documented
API (%)

(Number of public API - Number
of undocumented public API) /
Number of public API * 100.

This is available via the
Comments and Duplications
widget.

Navigate to Dashboard |
Comments and Duplications
widget | documented API
percentage value.

Sonar Metrics Index

[272]

Metric name Definition Sonar component
Public undocumented API Number of public API without

Javadoc.
This is available via the
Comments and Duplications
widget.

Navigate to Dashboard |
Comments and Duplications
widget | undocumented API
total value.

Duplication metrics
Duplication metrics are available via the Comments and Duplications widget and
the Useless Code Tracker is available as a plugin.

Metric name Definition Sonar component
Duplicated blocks Number of comment lines / (lines

of code + number of comments
lines) * 100.

This is available via the Comments
and Duplications widget.
Navigate to Dashboard | Comments
and Duplications widget | number
of blocks.

Duplicated files Number of files containing
duplicated code.

This is available via the Comments
and Duplications widget.
Navigate to Dashboard | Comments
and Duplications widget | number
of files.

Duplicated lines Number of physical lines
touched by duplication.

This is available via the Comments
and Duplications widget.
Navigate to Dashboard | Comments
and Duplications widget | number
of lines.

Density of duplicated
lines (%)

Duplicated lines / Physical
lines * 100.

This is available via the Comments
and Duplications widget.
Navigate to Dashboard |
Comments and Duplications widget
| percentage value.

Useless code Total number of lines that can
potentially be reduced via
refactoring.

This is available via the Useless
Code Tracker widget.

Navigate to Dashboard | Useless
Code Tracker widget | total number
of useless LOCs.

Appendix

[273]

General metrics
The Quality Index metric is available through the Quality Index plugin. Install it
from http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin or
from Sonar Update Center | Plugin Library.

Metric name Definition Sonar component
Profile version Version of the Sonar analysis

profile.
This is available via the
Description widget.

Navigate to Dashboard |
Description widget | Profile
Version value.

Quality Index A value on scale of 0 to 10
based on the following four
weighted axes of quality:

Coding Violations,
Complexity, Coverage, and
Checkstyle Standards

This is available via the Quality
Index widget.

Navigate to Dashboard |
Quality Index Widget | Total
Quality value.

Code Coverage and Unit Test metrics
Code Coverage and Unit Test metrics are displayed with the Coverage widget from
the project dashboard. In differential mode, the widget reports only on new/updated
code, as you can see in the following screenshot:

Sonar Metrics Index

[274]

In the following table, the Sonar Component column is omitted because all metrics
are available from the same widget—the Code Coverage widget.

Metric name Definition
Branch Coverage Percentage value of covered branches in program flow

structures (Boolean expressions).
Coverage Percentage value of total coverage combining line and branch

coverage.
Line Coverage Percentage value of number of lines executed/covered in unit

tests.
Lines to cover Total number of uncovered LOCs in unit tests.
New branch coverage As Branch Coverage but only for new/updated code.
New branches to cover Total number of uncovered branches only in new/updated

code.
New coverage As Coverage but only for new/updated code.
New line coverage As Line Coverage but only for new/updated code.
New lines to cover As Lines to cover but only for new/updated code.
Uncovered branches Total number of branches not covered by unit tests.
Uncovered lines Total number of lines of code that are not covered by unit

tests.
New uncovered branches As Uncovered branches to cover but only for new/updated

code.
New uncovered lines As Uncovered lines to cover but only for new/updated code.
Skipped unit tests Number of skipped unit tests.
Unit tests Total number of unit tests.
Unit test errors Number of unit test errors—assertion errors.
Unit test failures Number of unit tests that failed with an unhandled exception.
Unit test success (%) Percentage value of successful unit tests—excluding errors

and failures.
Unit tests duration Total duration of unit tests' execution time.

The formula for the Coverage metric as implemented by the Sonar development
team is:

Coverage = (CT + CF + LC) / (2*B + EL)

Appendix

[275]

Where:

•	 CT: Branches that evaluated to true at least once
•	 CF: Branches that evaluated to false at least once
•	 LC: Lines covered (lines_to_cover - uncovered_lines)
•	 B: Total number of branches (2*B = conditions_to_cover)
•	 EL: Total number of executable lines (lines_to_cover)

Rules Compliance metrics
You can review Rules and Violations metrics from the project dashboard by using
the default Rules Compliance widget and Useless Code Tracker with Quality Index
widgets available as plugins. Notice that the widgets report on new violations and
metric values when in differential mode for new/updated code.

Metric name Definition Sonar component
Rules Compliance Weighted violations

percentage value.
This is available via the Rules
Compliance widget.

Navigate to Dashboard |
Rules Compliance widget |
percentage value

Violations Total number of code
violations.

This is available via the Rules
Compliance widget.

Navigate to Dashboard |
Rules Compliance widget |
Total number

Weighted Violations Total sum of weighted violations
(number of violations * weight
value)

This is available via the Rules
Compliance widget.

Navigate to Dashboard |
Rules Compliance widget.

Blocker Violations Total value of Blocker level
code violations.

This is available via the Rules
Compliance widget.

Navigate to Dashboard |
Rules Compliance widget |
Blocker.

Sonar Metrics Index

[276]

Metric name Definition Sonar component
Critical Violations Total value of Critical-level

code violations.
This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Critical

Major Violations Total value of Major-level code
violations.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Major.

Minor Violations Total value of Minor-level
code violations.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Minor.

Info Violations Total value of Info-level code
violations.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Info.

New Blocker Violations Same as Blocker Violations but
for new/updated code only.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Blocker in differential mode.

New Critical Violations Same as Critical violations but
for new/updated code only.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Critical in differential mode.

New Major Violations Same as Info violations but for
new/updated code only.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Major in differential mode.

Appendix

[277]

Metric name Definition Sonar component
New Minor Violations Same as Major violations but

for new/updated code only.
This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Minor in differential mode.

New Info Violations Same as Minor violations but
for new/updated code only.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Info in differential mode.

New Violations Total number of violations in
new code only.

This is available via the Rules
Compliance widget.
Navigate to Dashboard |
Rules Compliance widget |
Added in differential mode.

Dead Code Total lines of code in unused
private methods.

This is available via the
Useless Code Tracker widget.
Navigate to Dashboard |
Useless Code Tracker widget
| total number of LOCs.

Potential Dead Code Total lines of code in unused
protected methods.

This is available via the
Useless Code Tracker widget.
Navigate to Dashboard |
Useless Code Tracker widget
| total number of LOCs.

Quality Index Coding
Weighted Violations

Quality Index on Coding
violations calculated is by the
formula:

(Blocker * 10 + Critical * 5 +
Major * 3 + Minor + Info) /
LOCs

This is available via the
Quality Index widget.
Navigate to Dashboard |
Quality Index widget |
Coding Bar.

Quality Index Style Weighted
Violations

Quality Index on Checkstyle
violations is calculated by the
formula:

QI Style = (Errors*10 +
Warnings) / LOCs * 10

This is available via the
Quality Index widget.
Navigate to Dashboard |
Quality Index widget | Style
Bar.

Sonar Metrics Index

[278]

Size metrics
The following metrics are displayed in the Size widget from the project dashboard.
On the left-hand side of the widget there is information on line levels and statements,
while on the right-hand side of the widget there is information on packages
and classes.

Metric name Definition
Accessors Number of getter and setter methods.
Classes Number of classes including nested classes, interfaces, enums, and

annotations.
Directories Number of analyzed directories.
Files Number of analyzed files.
Lines Number of carriage returns.
Lines of code Number of physical lines of code excluding blanks, comments, and

commented-out code.
Methods Total number of methods excluding accessors.
Packages Total number of packages.
Statements Total number of statements.

The statements counter gets incremented by one each time one of the
following is encountered:
expression, if, else, while, do, for, switch, break,
continue, return, throw, synchronized, catch, and finally.

Management metrics
The next three metrics are business oriented and you can add them to the Custom
Measures widget. You can also add it to the dashboard.

Metric name Definition
Burned Budget The budget already used in the project.
Business Value An indication of the value of the project to the business.
Team size The size of the project team.

Index
Symbols
$COMMONS_LANG base directory 56
$COMMONS_LANG directory 56
$COMMONS_LANG variable 55
@author name tag 162
@deprecated description tag 163
@exception classname description tag 163
-h switch 53
{@inheritDoc} tag 163, 169
{@link reference} tag 163
@Override annotation 169
@param name description 163
@return description tag 163
@see reference tag 163
@since since-text tag 162
@Test annotation 239
@throws classname de-scription 163
{@value} tag 163
@version version tag 162

A
abstractness metric 269
Accessors methods 77
accessors metric 278
Add Comment button 116
Add JDK button 256
Advanced... button 263
afferent couplings metric 200, 269
AggregateTranslator class 206, 207
alerts

creating 119
allowMissingParamTags, Javadoc

parameter 169

allowMissingReturnTag, Javadoc
parameter 169

allowMissingThrows-Tags, Javadoc
parameter 169

analysis event
creating 82
visual feedback, getting 82

analyzers
about 23
Checkstyle 23, 24
Clover 23-25
Cobertura 23-25
FindBugs 23-25
PMD 24
Squid 23

Ant
analysis 61
installing, steps for 61, 62
Sonar analysis task, configuring 62, 63
Sonar analysis task, running 62, 63

ANT_HOME environment variable 61
anyone, group 17
Apache Commons libraries 67
Apache's Subversion documentation page

URL, for downloading 246
architecture 130
ArrayUtils.clone method 218

B
backing up

about 43
Filesystem backup 44
MySQL sonar database 45
Sonar instance configuration backup 44

bar chart, Motion Chart plugin 132

[280]

bind keyword 54
blank comments metric 271
blocker violations metric 275
blog, Sonar

URL 25
Boolean Expression Complexity 202
Boolean expressions 93, 232
branch coverage metric 232, 274
bubble chart, Motion Chart plugin 132

about 131
Complexity (Size) 131
Lines of code (X axis) 131
Test Coverage (Y axis) 131

bug pattern 24
Build Breaker 120
Build Executor Status panel 264
build job

creating 260, 261
Bulk Change rules 91
Burned Budget metric 121, 278
Business Value metric 121, 278

C
Calculator field 241
CalculatorTest class 241
catch block 140
catching Throwable

avoiding 148
CentOS Jenkins installation 255
CFOC 203
Checkstyle analyzer 24
ClassCastException 143
classes metric 278
Class Fan Out Complexity. See CFOC
classical metrics 14
cleanUp() method 145
close() 137
closed status 115
close resource 140
clouds component 74
Clover

URL 224
Clover analyzer

about 25
URL 23

Clover Sonar plugin 229, 230

Cobertura
about 226, 227
sample 228

Cobertura analyzer 25
code complexity metrics

about 201
Boolean Expression Complexity 202
Class Data Abstraction Coupling

(DAC) 203
Class Fan Out Complexity (CFOC) 203
complex class, avoiding 204
complexity rules 202
complexity rules profile distribution 201
cyclomatic complexity 203
inheritance tree (deep), avoiding 204, 205
JavaNCSS 203
multiple fields 204
multiple methods 204
nested for depth 204
Response for Class (RFC) metric 205
simplify boolean return 204

code coverage
analysis 231
branch coverage 232
condition coverage 224, 233
decision coverage 224, 232
lifecycle 225
measuring 224
method coverage 224
path coverage 233
statement coverage 224, 232
tools 224
tool, selecting for Sonar 225

code coverage and unit tests metrics,
Sonar metrics

about 273, 274
branch coverage metric 274
coverage metric 274
line coverage metric 274
lines to cover metric 274
new branch coverage metric 274
new branches to cover metric 274
new coverage metric 274
new line coverage metric 274
new lines to cover metric 274
new uncovered branches metric 274
new uncovered lines metric 274

[281]

skipped unit tests metric 274
uncovered branches metric 274
uncovered lines metric 274
unit tests duration metric 274
unit tests errors metric 274
unit tests failures metric 274
unit tests metric 274
Unit test success (%) metric 274

code duplication
about 182
eliminating 190
locating, with Sonar 183, 184

code layout and indentation 105
code review

adding 114
ways, for performing 114

Coding Rules tab 13, 91
coding standards 86
coding standards profile

abstract class name 99
abstract class, without any methods 104
code layout and indentation 105
comment, trailing 106
constructor, missing 104
creating 94, 95
declaration order 97, 99
equals method name 101
field name matching method name,

avoiding 101
final class 104
final modifier 102
for loops 108
Left Curly rule 106
local home naming 100
magic number 103
method names 99
multiple string literals 107
multiple variable declarations 100
naming conventions and declarations

rules 96
parameter 99
Paren Pad rule 106
rules, setting 95
standards rules 102
unused imports 102
unused modifier 103
variable 99

variable lengths 100
cohesion

and coupling 200
comment

Javadoc block comment 162
Javadoc line comment 162

commented-out lines of code,
documentation metrics 165

commented-out LOC metric 271
comment lines, documentation metrics

density 165, 166
Commons BeanUtils

URL 65
Commons Chain

URL 65
Commons Collections

URL 65
commons-lang Apache library 51
commons-lang project 54, 211
community features, Sonar 25
complexity 130
Complexity Factor Methods metric 268
complexity metrics, Sonar metrics

about 268
Complexity / class 268
complexity Factor 268
Complexity Factor Methods 268
complexity / file 268
complexity / method 268
QI Complexity 268

components, Sonar
about 70
clouds component 74
components view 71
dashboard view 70
design component 75
hotspots component 76
libraries component 76
time machine component 72, 74
violations drilldown component 71

components view 71
condition coverage 224, 233
conf directory 249
Configure widgets link 79, 123
Console Output link 264
constructor calls overridable method 139
continuous inspection paradigm 26, 245, 246

[282]

continuous integration 245, 246
continuous integration servers 246
correctness - repeated conditional tests

violation 81, 82
coupling

and cohesion 200
coverage metric 274
coverage tag cloud component

Quick wins mode 237
Top risk mode 237
using 237

Create Dashboard link 79
critical violations metric 130, 276
cron 261
cross-project duplication

cross-project duplicationdetecting 185
Crowd plugin

URL 41
cyclomatic complexity metric

about 14, 198, 199, 203
calculating 199
calculating, in Java 199, 200
example 200

D
DAC 203
dashboard view 70
Data Abstraction Coupling. See DAC
database.properties file 151
db directory 249
dcomment lines metric 271
dead code metric

about 277
tracking 188

Debian Jenkins installation 253, 254
Debian Subversion installation 247
Debian Subversion packages

URL 247
decision coverage 224, 232
declaration order 97, 99
declarations rules 96
Density of Comments (%) metric 271
Density of duplicated lines (%) metric 272
Density of Public documented API (%)

metric 271

dependencies
eliminating 211-213
locating 211-213
packages 213

Depth in tree (DIT) metric 269
Depth in Tree value 205
design component 75
design matrix 213-220
design metrics, Sonar metrics

abstractness metric 269
afferent couplings metric 269
Depth in tree (DIT) metric 269
efferent couplings metric 269
File dependencies to cut metric 269
instability metric 269
Lack of cohesion of methods (LCOM4)

metric 270
Number of Children (NOC) metric 270
package cycles metric 270
package dependencies to cut metric 270
package tangle index metric 270
Response For Class (RFC) metric 270

directories metric 278
Directory Path property 177
documentation

about 161
auto generation 174, 175
comments, structure 162
filter, creating 173, 174
Javadoc block comment 162
Javadoc, common tags 162-164
Javadoc line comment 162
levels, monitoring 166, 167
metrics 164

documentation, auto-generation
about 174, 175
Doxygen, installing 176
Graphviz, installing 175
Sonar Documentation plugin,

using 177-179
documentation metrics

about 164, 165
commented-out lines of code 165
comment lines 165
comment lines, density 165, 166
documentation levels, monitoring 166, 167

[283]

public documented API (DPDA),
density 166

statements 167
documentation metrics, Sonar metrics

about 271
blank comments metric 271
commented-out LOC metric 271
comment lines metric 271
Density of Comments (%) metric 271
Density of Public documented API (%)

metric 271
Public undocumented API metric 272

Documentation Path Generation
property 177

documentation violations
about 168
Javadoc rules 168

documentation wiki, Sonar
URL 25

Documented API metric 14
Dodgy code rules, potential bugs violations

about 136, 137
casts 143
close resource 140
constructor calls overridable method 139
inherited method 141
lock on all paths, not released by

method 142
method, ignoring return value 141
notifyAll, using 138
null check, misplaced 143
null pointer dereference 142
outer method 141
reference comparison 142
StringBuffer, instantiation with char 138
StringBuffer, using for string appends 138
zero length array, returning 141

Don't Repeat Yourself. See DRY
Download button 248
Download Subversion Installer link 247
Doxygen

installing 176
URL 86

drill down 15
DRY 21, 182
duplicated blocks metric 182, 272

duplicated code alert
creating 183

Duplicated code metric 14
duplicated files metric 182, 272
duplicated lines

about 182
density 182
tracking 188

duplicated lines metric 272
Duplicated lines metric 186
duplication

detecting, radiator component
used 185, 187

duplication metrics, Sonar metrics
Density of duplicated lines (%) metric 272
duplicated blocks metric 272
duplicated files metric 272
duplicated lines metric 272
useless code metric 272

Duplication tab 184

E
Eclipse project

linking, to Sonar server 157
Edit layout link 79
efferent couplings metric 201, 269
e-mail notification 117
E-mail server configuration 258
EMMA

URL 224
Emma Sonar plugin

about 230
features 230

Enforcer
URL 65

eol (end of line) 106
equals(...) 137
equals() method 142, 143
equals method name 101
Excludes Specific Files property 179
Expand button 184
external quality

about 20
measuring 20

Extract Method refactoring pattern 190-193

[284]

F
Fedora Jenkins installation 255
file.delete() method 146
File dependencies to cut metric 269
files metric 278
Filesystem backup 44
filters

managing 66-68
final class 104
finalize() method 145, 146
finally block

about 140
exception 145

final modifier 102
FindBugs analyzer 25
Forge

Sonar 26
format directory 249

G
general metrics, Sonar metrics

profile version metric 273
quality index metric 273

Generate Caller Graphs property 179
Generate Call Graphs property 179
Generate Class Graphs property 179
Generate Doxygen Do-cumentation

property 179
global administrators role 17
GNU Lesser General Public License

Version 3 27
Google Code

URL 128
Graphviz

installing 175
URL 175

groups
creating 42

H
high coupling 200
hooks directory 249
hotspots component 76
Hotspots tab 159

I
if else blocks 235
incoming coupling. See afferent

coupling metric
info violations metric 276
inheritance tree 204
inherited method 141
InputStream.read() 137
instability metric 269
Install without restart button 262
internal quality

about 20
measuring 20

IP_ADDRESS 53
isPrime(..) method 199
issue tracker, Sonar

URL 25

J
JaCoCo

about 228
URL 224

Javadoc
block comment 162
line comment 162
method 169
package 169
style 170
type 170
variable 171

Javadoc common tags
@author name 162
@deprecated description 163
@exception classname description 163
{@inheritDoc} 163
{@link reference} 163
@param name description tag 163
@return description 163
@see reference 163
@since since-text 162
@throws classname de-scription tag 163
{@value} 163
@version version 162

Javadoc parameter
allowMissingParamTags 169

[285]

allowMissingReturnTag 169
allowMissingThrows-Tags 169

Javadoc rules, documentation violations
about 168
Javadoc method 169
Javadoc package 169
Javadoc style 170
Javadoc type 170
Javadoc variable 171
uncommented empty constructor 171
uncommented empty method 171
uncommented main 172
undocumented API 169

Java installation
checking 31

JavaNCSS 203
Java runner

configuring 52, 53
project, configuring 54-56
Sonar server, setting up for remote

connections 53, 54
using 52

Java standards 87
javax.swing.plaf.multi package 187
Jenkins

configuring 256
securing 258

Jenkins CI server
CentOS Jenkins installation 255
Debian Jenkins installation 253, 254
Fedora Jenkins installation 255
installing 252
Ubuntu Jenkins installation 253, 254
Windows Jenkins installation 255

Jenkins configuration
about 256
E-mail server configuration 258
Jenkins, securing 258, 259
Maven configuration 257
Repository configuration 257

jUnit Quickstart
about 239
simple unit test, writing 239-241

L
Lack of cohesion methods. See LCOM

Lack of cohesion of methods (LCOM4)
metric 270

LCOM 208, 210
LCOM4 metric

about 208, 210, 211
exceptions 211

LDAP plugin
URL 41

Left Curly rule 106
libraries component 76
line coverage metric 232, 274
Line Length rule 93
lines metric 278
lines of code metric 14, 278
lines to cover metric 274
Linkedin

Sonar 26
Linux

Maven, installing on 32
MySQL, installing 33, 34
Sonar, running as a service 38

Linux distributions
Subversion, installing on 248

local home naming 100
locks directory 249

M
magic number 103
main() method 172
major violations metric 276
Manage Dashboards link 79
management metrics, Sonar metrics

Burned Budget metric 278
Business Value metric 278
Team size metric 278

manual measures
about 120
managing 122, 123

Maven
about 16
installing, on Linux 32
installing, on Windows 32

MAVEN_HOME environment variable 57
MAVEN_OPTS environment variable 59
Maximum memory text field 227
McCabe metric 228

[286]

Measures panel 158
method

exceptional return value, ignoring 146
lock on all paths, not releasing 142
returning, ignore value 141
returning internal array 149, 150

method coverage 224
method names 99
methods metric 278
metrics

about 13
classical metrics 14
rules meter 18
software metrics 14
sonargraph 18

metric thresholds 119
minor violations metric 276
modifier order violation 81
Motion Chart plugin

about 130
Bar chart 132
bubble chart 131, 132

multiple string literals 107
multiple variable declarations 100
mvn compile command 58
mvn package builds 57
mvn package command 58
mvn test command 57, 58
MySQL

installing, on Linux 33, 34
installing, on Windows 34
Sonar, setting up with 37, 38

mysql> command prompt 54
MySQL configuration

database, creating 37
Sonar, setting up with MySQL 37, 38

MySQL sonar database 45

N
naming conventions 96
NCSS 203
Nested For Depth 204
new blocker violations metric 276
new branch coverage metric 274
new branches to cover metric 274
new coverage metric 274

new critical violations metric 276
new info violations metric 277
new line coverage metric 274
new lines to cover metric 274
new major violations metric 277
new uncovered branches metric 274
new uncovered lines metric 274
new violations metric 277
nightly job 23
nightly snapshot 23
nl (new line) 106
nlow (new line on wrap) 106
Non Commenting Source

Statements. See NCSS
notifications

configuring 117, 118
notifyAll() method 138
notify() method 138
NPE

catching, avoiding 146
null check

misplaced 143
null pointer dereference 142
NullPointerException. See NPE
NumberFormatException exception 241
Number of Children (NOC) metric 270

O
object-oriented programming (OOP) 200
open source projects

URL 13
open status 115
org.apache.commons.lang3.text.translate

package 218
outer method 141
outgoing coupling. See efferent

coupling metric

P
package cycles metric 270
package dependencies to cut metric 270
packages metric 215, 278
package tangle index metric 270
parameter 99
Paren Pad rule 106
parseInternal() method 185

[287]

path coverage 233
PDF Report panel 125
PDF report plugin

installing 124
play button 131
plugins

additional languages 18
additional metrics 18
governance 18
IDE 19
integration 19
visualization/reporting 18

plugin system extensibility, Sonar 17
PMD analyzer

about 24
URL 23

Post-build Actions section 263
potential bugs violations

about 135
Dodgy code rules 136, 137
profile distribution 136
Program flow rules 144
security rules 149

potential dead code metric 277
Preview button 192
printResult() method 139
process() method 145
proerty.getProperty(...) 151
profiles

backing up 94
creating 90
projects, associating 90
restoring 94
Sonar 87

profile version metric 273
program flow rules, potential

bugs violations
about 144
break in switch statement, missing 148
catching Throwable, avoiding 148
exception in finally block, avoiding 145
finalize, avoiding 146
finalize() method 145, 146
method, ignoring exceptional return

value 146
NPE, avoiding 146
switch statement, finding 147, 148

project
report, customizing 127
report, getting 125, 126
report, overview 125
report, quality 123
violations analysis 125
violations details 125

project administrators role 17
project code viewers role 17
project roles

managing 42
projects

overview 12
project users role 17
properties.load(...) 151
public documented API (DPDA),

documentation metrics
density 166

Public undocumented API metric 272

Q
QI Complexity metric 268
quality. See software quality
quality index 18
Quality Index Coding Weighted Violations

metric 277
quality index metric 273

URL 273
Quality Index Style Weighted

Violations metric 277
quality profiles

managing 89
quality, project

reporting 123
Quick wins mode 237

R
radiator component

using, to detect duplication 185, 187
Radiator plugin

about 108
installing 108, 110

radiator widget 109
RCI 64, 88, 89
README.txt directory 249
recommend() method 190

[288]

Redhat Jenkins installation
wiki, URL 255

Red Hat Subversion installation 247
reference comparison

suspicious 142
regular expressions 92
remote connections

Sonar server, setting up for 53
reopened status 115
Repository configuration 257
resolved status 115
Response For Class (RFC) metric 270
Response Set (RS) 205
Restart Jenkins option 262
RFC metric 205-208
rules

adding 91
configuring 92
managing 91
selecting 95, 96

Rules Compliance Index. See RCI
rules compliance metrics, Sonar metrics

about 275
blocker violations metric 275
critical violations metric 276
dead code metric 277
info violations metric 276
major violations metric 276
minor violations metric 276
new blocker violations metric 276
new critical violations metric 276
new info violations metric 277
new major violations metric 277
new violations metric 277
potential dead code metric 277
Quality Index Coding Weighted Violations

metric 277
Quality Index Style Weighted Violations

metric 277
violations metric 275
weighted violations metric 275

Rules Compliance widget 275
rules, configuring

boolean expressions 93
regular expressions 92
token and value-based rules 93

S
Save button 262
Save Code Coverage Settings button 225
sc command line tool 255
security levels, Sonar 88
security rules, potential bugs violations

about 149
hardcoded constant database password

150, 151
method, returning internal array 149, 150

setUp method 241
simplify boolean return 204
size metrics, Sonar metrics

about 278
accessors metric 278
classes metric 278
directories metric 278
files metric 278
lines metric 278
lines of code metric 278
methods metric 278
packages metric 278
statements metric 278

skipped unit tests metric 274
software

complexity, measuring 197, 198
cyclomatic complexity metric 198, 199

Software Configuration Management
(SCM) 245

software metrics 14
software quality

about 19
external quality 20
internal quality 20
managing 20, 21
measuring, white box approach used 20
technical axes 21

Sonar
about 7
architecture 21-23
authentication and sources visibility 41, 42
blog, URL 25
code coverage tools, selecting 225
code duplication, locating with 183, 184
components 70
community, features 25

[289]

design matrix 213-220
development cycle 11
directories 35
documentation violations 168
documentation wiki, URL 25
downloading 34
extending, with plugins 45
features 9-12
instance, securing 40
issue tracker, URL 25
logging in to 39, 40
manual measures 120
manual reviews 115
on Forge 26
on Linkedin 26
on Twitter 26
perspective, using 158-160
prerequisites, for installing 30
profiles 87
quality management 20, 21
running, as a service on Linux 38, 39
running, as a service on Windows 39
security levels 88
starting, as a service 38
test results, viewing 241, 243
Timeline plugin 128, 129
upgrading, from update center section 48
upgrading, from Update Center section 48
upgrading, to latest version 48
working 8

sonar:help 58
sonar:sonar 58
Sonar analysis task

configuring 62, 63
running 62, 63

Sonar dashboard 77, 78
Sonar development team

URL 269
Sonar, directories

bin 35
conf 35
extensions 35
logs 35

Sonar Eclipse plugin
installing 153-156

Sonar, features
about 12

anyone, group 17
coding, rules 13
drill down, to source code 15
global administrators role 17
Maven ready 16
metrics 13
plugin system, extensible 17, 18
project administrators role 17
project code viewers role 17
projects, overview 12
project users role 17
security measures 17
Sonar-users, group 17
time machine 15
unified components 16
unit tests 14
user friendly 16

Sonar instance configuration backup 44
sonar.language property 56
Sonar manual reviews

about 115
assigning 115, 116
browsing 117
closed status 115
open status 115
reopened status 115
resolved status 115

Sonar Maven plugin
analysis 57
analysis, performing 60, 61
configuring 58-60
installing 57, 58

Sonar metrics
code coverage and unit tests

metrics 273, 274
complexity metrics 268
design metrics 269, 270
documentation metrics 271
duplication metrics 272
general metrics 273
management metrics 278
rules compliance metrics 275-277
size metrics 278

Sonar option 157
Sonar plugin

installing 262-264

[290]

Sonar, prerequisites
Java installation, checking 31
Maven, installing on Linux 32-34
Maven, installing on Windows 32
MySQL, installing on Windows 34

sonar-project.properties 54
Sonar server

Eclipse project, linking to 157
Sonar site

demo, URL for 187
SonarSource company

about 26
awards and conferences 27
CEO and Founder 26
Co-Founder and Product Manager 26
Co-Founder and Technical Lead 26
Product Manager 26
Software Gardener 26
Sonar license 27
SonarSource team 26

sonar.sources property 63
Sonar-users, group 17
Sonar web interface

browsing 63, 64
projects, filtering 66-68
treemap gadget 65, 66

Sonar web server
basic configuration 36, 37
installing 35, 36

source code analyzers. See analyzers
SQALE 18
SQALE plugin 27
SQUID:UnusedPrivateMethod 188
Squid: UnusedProtectedMethod 189
Squid analyzer

about 23
URL 23

standards rules 102
statement coverage 224, 232
statements

levels, monitoring 167
statements metric 278
story points measures

about 121, 122
creating 121

string arguments 241

StringBuffer
instantiation, with char 138
using, for strong appends 138

string variable 143
Subversion

Debian Subversion installation 247
installing 246
installing, on other Linux distributions 248
Red Hat Subversion installation 247
Ubuntu Subversion installation 247
Windows Subversion installation 248

subversion repository
creating 248

Subversion server
project, importing 249-252
Subversion authorization 249
Subversion repository, creating 248
Subversion security 249

SummerSoft release
installing, URL for 247

svn command 52
switch statement

break, missing 148
finding 147

T
Team size metric 121, 278
tearDown method 241
technical axes, software quality

coding standards 21
complexity 21
design and architecture 21
documentation and comments 21
duplicated code 21
potential bugs 21
test coverage 21

technical debt 18
telnet command 53
testAdditionEx method 241
testAddition method 241
Test coverage metric 14
testSSlHtmlConnection() test method 243
this keyword 141
timeline 18

[291]

duplicated lines, tracking 188
installing 189

Useless Code Tracker plugin
installing 46, 47

UserCorrelation class 194
user friendly 16
UserRecommender class 190
users

creating 42

V
variable 99
variable lengths 100
Version Control with Subversion book

URL, for downloading 246
violation

about 80
correctness - repeated conditional tests

violation 81, 82
modifier order violation 81
unused modifier violation 80, 81

Violation Density plugin
about 152
installing 152

violations drilldown component 71, 80
violations metric 275
Violations tab 159

W
WANdisco's release

installing, URL for 247
Web Server Deploy-ment URL property 177
Web tab 160
What Coverage filter 68, 69
while block 199
white box approach

used, for measuring quality 20
Windows

Maven, installing on 32
MySQL, installing on 34
Sonar, running as a service 39

Windows Jenkins installation 255
Windows Subversion installation 248
Work with field 153

Timeline plugin
about 128, 129
default metrics 129, 130

Timeline widget
about 79
configuring 110

time machine 15
time machine component 72, 74
Token and value-based rules 93
Top risk mode 237, 238
Treemap radio button 69
Treemap tab 65
try catch block 145
Twitter

Sonar 26

U
Ubuntu Jenkins installation 253, 254
Ubuntu Subversion installation 247
uncommented empty constructor 171
uncommented empty method 171
uncommented main 172
uncovered branches metric 236, 274
uncovered lines metric 235, 274
undocumented API, Javadoc rules 169
undocumented code

about 161
documentation filter, creating 173, 174
locating 172, 173

unit tests duration metric 274
unit tests errors metric 274
unit tests failures metric 274
unit tests metric 14, 274
unit test success (%) metric 274
unused imports 102
unused modifier 103
unused modifier violation 80, 81
Update Center section

about 45
latest Sonar version, upgrading to 48, 49
plugins compatibility, checking 48
Sonar, updating from 48

useless code metric 272
useless code tracker plugin

about 188
dead code, tracking 188

Thank you for buying
Sonar Code Quality Testing Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Selenium 1.0 Testing Tools:
Beginner's Guide
ISBN: 978-1-849510-26-4 Paperback: 232 pages

Test your web applications with multiple browsers
using the Selenium Framework to ensure the quality
of web applications

1. Save your valuable time by using Selenium to
record, tweak and replay your test scripts

2. Get rid of any bugs deteriorating the quality of
your web applications

3. Take your web applications one step closer to
perfection using Selenium tests

4. Packed with detailed working examples that
illustrate the techniques and tools for debugging

Jenkins Continuous Integration
Cookbook
ISBN: 978-1-849517-40-9 Paperback: 344 pages

Over 80 recipes to maintain, secure, communicate,
test, build, and improve the software development
process with Jenkins

1. Explore the use of more than 40 best of
breed plugins

2. Use code quality metrics, integration testing
through functional and performance testing to
measure the quality of your software

3. Get a problem-solution approach enriched
with code examples for practical and easy
comprehension

Please check www.PacktPub.com for information on our titles

Apache Maven 3 Cookbook
ISBN: 978-1-849512-44-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2. Implement engineering practices in your
application development process with
Apache Maven

3. Collaboration techniques for Agile teams with
Apache Maven

4. Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

NetBeans Platform 6.9
Developer's Guide
ISBN: 978-1-849511-76-6 Paperback: 288 pages

Create professional desktop rich-client Swing
applications using the world's only modular Swing
application framework

1. Create large, scalable, modular Swing
applications from scratch

2. Master a broad range of topics essential to
have in your desktop application development
toolkit, right from conceptualization to
distribution

3. Pursue an easy-to-follow sequential and
tutorial approach that builds to a complete
Swing application

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of Sonar
	What is Sonar?
	How it works
	What makes Sonar different
	Sonar in the lifecycle

	Features of Sonar
	Overview of all projects
	Coding rules
	Standard software metrics
	Unit tests
	Drill down to source code
	Time machine
	Maven ready
	User friendly
	Unified components
	Security measures
	Extensible plugin system

	Covering software quality on Seven Axes
	How Sonar manages quality

	Architecture of Sonar
	Source code analyzers
	Squid
	Checkstyle
	PMD
	FindBugs
	Cobertura and Clover

	The Sonar community and ecosystem
	The SonarSource company
	Awards and conferences
	Sonar license

	Summary

	Chapter 2: Installing Sonar
	Prerequisites for Sonar
	Checking your Java installation
	Installing Maven on Linux
	Installing Maven on Windows
	Installing MySQL on Linux
	Installing MySQL on Windows

	Downloading Sonar
	Installing the Sonar web server
	Sonar server basic configuration

	Configuring MySQL
	Creating the database
	Setting up Sonar with MySQL

	Starting Sonar as a service
	Run as a service on Linux
	Run as a service on Windows

	Logging in to Sonar for the first time
	Securing your Sonar instance
	Sonar authentication and sources visibility

	Creating users and groups
	Managing project roles

	Backing up your data
	Sonar instance configuration backup
	Filesystem backup
	Backing up the MySQL sonar database

	Extending Sonar with plugins
	Installing the Useless Code Tracker plugin

	Upgrading Sonar from the Update Center section
	Checking compatibility of plugins
	Upgrading to latest Sonar version

	Summary

	Chapter 3: Analyzing your First Project
	Using a Java runner
	Configuring the runner
	Setting up a Sonar server for remote connections
	Configuring the project

	Analysis with the Sonar Maven plugin
	Installing Maven
	Configuring the Sonar Maven plugin
	Performing the analysis

	Analysis with Ant
	Installing Ant
	Configuring and running Sonar analysis task

	Browsing the Sonar web interface
	The treemap gadget
	Filtering your projects
	The "What Coverage?" filter

	Sonar components— an overview
	Dashboard
	Components
	Violations drilldown
	Time Machine
	Clouds
	Design
	Hotspots
	Libraries

	Anatomy of the dashboard
	Layout and widget arrangement

	Eliminating your first violations
	Unused modifier violation
	Modified Order violation
	Correctness - Repeated conditional tests

	Creating your first analysis event
	Getting visual feedback

	Summary

	Chapter 4: Following Coding Standards
	A brief overview of coding standards and conventions
	Java standards

	Sonar profiles, rules, and violations
	The Rules Compliance Index

	Managing quality profiles
	Creating a profile
	Associating projects to profiles

	Managing rules
	Adding a rule
	Configuring a rule
	Regular expressions
	Boolean expressions
	Token and value-based rules

	Backing up and restoring profiles

	Creating a coding standards profile
	Selecting the rules
	Naming conventions and declarations rules
	Declaration order
	Abstract class name
	Variable, parameter, and method names
	Multiple variable declarations
	Local home naming
	Variable lengths
	Naming - Avoid field name matching method name
	Naming - Suspicious equals method name

	Standards rules
	Unused imports
	Unnecessary final modifier
	Unused modifier
	Magic number
	Final class
	Missing constructor
	Abstract class without any methods

	Code layout and indentation
	Avoid inline conditionals
	Left Curly
	Paren Pad
	Trailing comment
	Multiple String literals
	The for loops must use braces

	Inspecting violations with the Radiator component
	Installing the Radiator plugin

	Watch the quality improving
	Configuring the Timeline widget

	Summary

	Chapter 5: Managing Measures and Getting Feedback
	Reviewing code
	Sonar manual reviews
	Assigning reviews
	Browsing reviews

	Configuring notifications
	Defining metric thresholds and alerts
	The Build Breaker

	Sonar manual measures
	Creating the Story Points measure
	Managing manual measures

	Quality reporting on your project
	Installing the PDF report plugin
	Getting the project report
	Customizing the report

	Getting visual feedback
	Timeline plugin
	Motion Chart plugin
	Bubble chart
	Bar chart

	Summary

	Chapter 6: Hunting Potential Bugs
	Potential bugs violations
	Dodgy code rules
	Use notifyAll instead of notify
	StringBuffer instantiation with char
	Use StringBuffer for String appends
	Constructor calls overridable method
	Close Resource
	Ambiguous invocation of either an inherited or outer method
	Consider returning a zero length array rather
than null
	Method ignores return value
	Method does not release lock on all paths
	Null pointer dereference
	Suspicious reference comparison
	Misplaced null check
	Impossible cast

	Program flow rules
	Do not throw exception in finally
	Finalize does not call Super Finalize
	Avoid calling finalize
	Avoid catching NPE
	Method ignores exceptional return value
	Switch statement found where default case
is missing
	Missing break in switch
	Avoid catching Throwable

	Security rules
	Class exposes synchronization and semaphores
in its public interface
	Method returns internal array
	Hardcoded constant database password

	Installing the Violation Density plugin
	Integrating Sonar to Eclipse
	Installing the Sonar Eclipse plugin
	Linking an Eclipse project to Sonar server
	Using the Sonar perspective

	Summary

	Chapter 7: Refining Your Documentation
	Writing effective documentation
	Comments structure
	Javadoc block comment
	Javadoc line comment

	Javadoc common tags

	Documentation metrics definitions
	Comment lines
	Commented-out Lines of Code
	Density of Comment Lines
	Density of Public Documented API
	Monitoring documentation levels

	Statements

	Overview of Sonar documentation violations
	Javadoc rules
	Undocumented API
	Javadoc Method
	Javadoc Package
	Javadoc Style
	Javadoc Type
	Javadoc Variable
	Uncommented Empty Constructor
	Uncommented Empty Method
	Uncommented Main

	Locating undocumented code
	Creating the documentation filter

	Generating documentation automatically
	Installing Graphviz
	Installing Doxygen
	Using the Sonar Documentation plugin

	Summary

	Chapter 8: Working with Duplicated Code
	Code duplication
	Don't Repeat Yourself (DRY)

	Sonar code duplication metrics
	Creating the Duplicated Code Alert

	Locating duplicated code with Sonar
	Cross-project duplication detection
	Using the Radiator component to
detect duplication

	The Useless Code Tracker plugin
	Tracking duplicated lines
	Tracking dead code
	Installing the Useless Code plugin

	Using extraction and inheritance to attack duplication
	The Extract Method refactoring pattern
	Refactoring With inheritance

	Summary

	Chapter 9: Analyzing Complexity
and Design
	Measuring software complexity
	The Cyclomatic Complexity metric

	Cohesion and coupling
	Afferent coupling
	Efferent coupling

	Sonar Code Complexity metrics
	Boolean Expression Complexity
	Class Data Abstraction Coupling
	Class Fan Out Complexity
	Cyclomatic Complexity
	JavaNCSS
	Nested For Depth
	Simplify Boolean Return
	Too many methods
	Too many fields
	Avoid too complex class
	Avoid too deep inheritance tree

	The Response for Class metric
	Lack of Cohesion in Methods and the LCOM4 metric
	Exceptions to the LCOM4 metric

	Locating and eliminating dependencies
	Using the Sonar design matrix

	Summary

	Chapter 10: Code Coverage and Testing
	Measuring code coverage
	Code coverage tools
	Selecting a code coverage tool for Sonar
	Cobertura
	JaCoCo
	Clover Sonar plugin
	Emma Sonar plugin

	Code coverage analysis
	Statement coverage
	Branch/decision coverage
	Condition coverage
	Path coverage

	Assessing the impact of your tests
	Uncovered lines
	Uncovered branches

	Using the coverage tag cloud component
	Quick wins mode
	Top risk mode
	Where to start testing
	The Top risk approach

	jUnit Quickstart
	Writing a simple unit test

	Reviewing test results in Sonar
	Summary

	Chapter 11: Integrating Sonar
	The Continuous Inspection paradigm
	Continuous integration servers

	Installing Subversion
	Ubuntu/Debian Subversion installation
	Red Hat Subversion installation
	Installing Subversion on other
Linux distributions
	Windows Subversion installation

	Setting up a Subversion server
	Creating a Subversion repository
	Subversion security and authorization
	Importing a project into Subversion

	Installing the Jenkins CI server
	Ubuntu/Debian Jenkins installation
	Redhat/Fedora/CentOS Jenkins installation
	Windows Jenkins installation

	Configuring Jenkins
	JDK configuration
	Maven configuration
	Repository configuration
	E-mail server configuration
	Securing Jenkins

	Creating a build job
	Cron expression and scheduling

	Installing the Sonar plugin
	Building and monitoring your project

	Summary

	Appendix: Sonar Metrics Index
	Sonar metrics
	Complexity metrics
	Design metrics
	Documentation metrics
	Duplication metrics
	General metrics
	Code Coverage and Unit Test metrics
	Rules Compliance metrics
	Size metrics
	Management metrics

	Index

