

EJB 3 in Action

EJB 3 in Action

DEBU PANDA
REZA RAHMAN

 DEREK LANE

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-34-7

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

 To my wife Renuka, without whose encouragement and support
this book would not have seen light

 and to Nistha and Nisheet, who sacrificed more than a year
of their childhood while I worked on the book

 —D.P.

 To my loving wife Nicole, for her enduring patience and unwavering support
 —R.R.

 To my Dad, for always helping me keep things in perspective

 —D.L.

brief contents

PART 1 OVERVIEW OF THE EJB LANDSCAPE 1

1 ■ What’s what in EJB 3 3

2 ■ A first taste of EJB 33

PART 2 BUILDING BUSINESS LOGIC WITH EJB 3 69

3 ■ Building business logic with session beans 71

4 ■ Messaging and developing MDBs 110

5 ■ Learning advanced EJB concepts 140

6 ■ Transactions and security 176

PART 3 DIVING INTO THE JAVA PERSISTENCE API (JPA) 215

7 ■ Implementing domain models 217

8 ■ Object-relational mapping 250

9 ■ Manipulating entities with EntityManager 293

10 ■ Using the query API and JPQL to
retrieve entities 340
vii

viii BRIEF CONTENTS
PART 4 PUTTING EJB 3 INTO ACTION 385

11 ■ Packaging EJB 3 applications 387

12 ■ Effectively integrating EJB 3 across your
application tiers 425

13 ■ Taming wild EJBs: performance and scalability 455

PART 5 MIGRATION AND INTEROPERABILITY ISSUES 497

14 ■ Migrating to EJB 3 499

15 ■ Exposing EJBs as web services 537

16 ■ EJB 3 and Spring 568

contents

preface xix
acknowledgments xxi
about this book xxiv

PART 1 OVERVIEW OF THE EJB LANDSCAPE 1

1 What’s what in EJB 3 3
1.1 EJB overview 5

EJB as a component 5 ■ EJB as a framework 7
Layered architectures and EJB 9 ■ Why choose EJB 3? 12

1.2 Understanding EJB types 14
Session beans 16 ■ Message-driven beans 16 ■ Entities and
the Java Persistence API 17

1.3 Getting inside EJB 19
Accessing EJB services: the EJB container 20 ■ Accessing JPA
services: the persistence provider 20 ■ Gaining functionality with
EJB services 21
ix

x CONTENTS
1.4 Renaissance of EJB 23
HelloUser Example 24 ■ Simplified programming
model 25 ■ Annotations instead of deployment
descriptors 26 ■ Dependency injection vs. JNDI
lookup 27 ■ Simplified persistence API 27 ■ Unit-testable
POJO components 29 ■ EJB 3 and Spring 30

1.5 Summary 32

2 A first taste of EJB 33
2.1 New features: simplifying EJB 35

Replacing deployment descriptors with
annotations 35 ■ Introducing dependency injection 40

2.2 Introducing the ActionBazaar application 41
Starting with the architecture 42 ■ An EJB 3–based
solution 43

2.3 Building business logic with session beans 45
Using stateless beans 45 ■ The stateless bean client 47
Using stateful beans 50 ■ A stateful bean client 54

2.4 Messaging with message-driven beans 56
Producing a billing message 57 ■ Using the order billing
message processor MDB 59

2.5 Persisting data with EJB 3 JPA 61
Working with the Java Persistence API 62 ■ Using the
EntityManager 65

2.6 Summary 67

PART 2 BUILDING BUSINESS LOGIC WITH EJB 3.................. 69

3 Building business logic with session beans 71
3.1 Getting to know session beans 72

Why use session beans? 73 ■ Session beans: the basics 75
Understanding the programming rules 78 ■ Conversational
state and session bean types 79 ■ Bean lifecycle callbacks 79

3.2 Stateless session beans 83
The BidManagerBean example 84 ■ Using the
@Stateless annotation 86 ■ Specifying bean
business interfaces 87 ■ Using bean lifecycle callbacks 90

CONTENTS xi
3.3 Stateful session beans 93
Additional programming rules 94
The BidderAccountCreatorBean example 94
Business interfaces for stateful beans 98 ■ Stateful bean
lifecycle callbacks 98

3.4 Session bean clients 102
Using the @EJB annotation 104 ■ Injection and stateful
session beans 104

3.5 Performance considerations for stateful beans 105
Using stateful session beans effectively 105 ■ Stateful session
bean alternatives 107

3.6 Session bean best practices 108

3.7 Summary 109

4 Messaging and developing MDBs 110
4.1 Messaging concepts 111

Message-oriented middleware 112 ■ Messaging in
ActionBazaar 112 ■ Messaging models 114

4.2 Introducing Java Messaging Service 117
Developing the JMS message producer 117 ■ The JMS
message interface 119

4.3 Working with message-driven beans 121
Why use MDBs? 122 ■ Programming rules 124
Developing a message consumer with MDB 124 ■ Using the
@MessageDriven annotation 127 ■ Implementing the
MessageListener 127 ■ Using ActivationConfigProperty 128
Using bean lifecycle callbacks 132 ■ Sending JMS messages
from MDBs 135 ■ Managing MDB transactions 136

4.4 MDB best practices 137

4.5 Summary 139

5 Learning advanced EJB concepts 140
5.1 EJB internals 141

EJB behind the scenes 141 ■ EJB context: accessing
the runtime environment 143

xii CONTENTS
5.2 Accessing resources using DI and JNDI 146
Resource injection using @Resource 146 ■ The @Resource
annotation in action 152 ■ Looking up resources and EJBs 155

5.3 AOP in the EJB world: interceptors 157
What is AOP? 157 ■ What are interceptors? 158
Specifying interceptors 160 ■ Implementing business
interceptors 162 ■ Lifecycle callback methods in the
interceptor class 165

5.4 Scheduling: the EJB 3 timer service 167
What are timers? 168 ■ Using the timer service 169
When to use EJB timers 174

5.5 Summary 175

6 Transactions and security 176
6.1 Understanding transactions 177

A transactional solution in ActionBazaar 178
ACID properties 178 ■ Transaction management
internals 181 ■ Two-phase commit 183
Transaction management in EJB 184

6.2 Container-managed transactions 185
Snag-It ordering using CMT 185
The @TransactionManagement annotation 186
The @TransactionAttribute annotation 187 ■ Marking a CMT
for rollback 191 ■ Transaction and exception handling 193

6.3 Bean-managed transactions 196
Snag-It ordering using BMT 196 ■ Getting a
UserTransaction 198 ■ Using UserTransaction 199
The pros and cons of BMT 201

6.4 Exploring EJB security 202
Authentication vs. authorization 202 ■ Users, groups,
and roles 203 ■ A security problem in ActionBazaar 203
EJB 3 and Java EE security 205 ■ Declarative
security 208 ■ Using EJB programmatic security 210

6.5 Summary 213

CONTENTS xiii
PART 3 DIVING INTO THE JAVA PERSISTENCE API (JPA)..... 215

7 Implementing domain models 217
7.1 Domain modeling and the JPA 218

Introducing domain models 219 ■ The ActionBazaar
 problem domain 219 ■ Domain model actors 222
The EJB 3 Java Persistence API 224 ■ Domain objects
as Java classes 225

7.2 Implementing domain objects with JPA 227
The @Entity annotation 228 ■ Persisting entity data 229
Specifying entity identity 233
The @Embeddable annotation 238

7.3 Entity relationships 239
@OneToOne 240 ■ @OneToMany and
@ManyToOne 244 ■ @ManyToMany 247

7.4 Summary 249

8 Object-relational mapping 250
8.1 The impedance mismatch 251

Mapping objects to databases 252
Introducing O/R mapping 257

8.2 Mapping entities 258
Specifying the table 261 ■ Mapping the columns 262
Using @Enumerated 264 ■ Mapping CLOBs
and BLOBs 265 ■ Mapping temporal types 265
Mapping an entity to multiple tables 266
Generating primary keys 267
Mapping embeddable classes 270

8.3 Mapping entity relationships 273
Mapping one-to-one relationships 273 ■ One-to-many and
many-to-one 278 ■ Many-to-many 281

8.4 Mapping inheritance 284
Single-table strategy 285 ■ Joined-tables
strategy 287 ■ Table-per-class strategy 288
Mapping polymorphic relationships 291

8.5 Summary 292

xiv CONTENTS
9 Manipulating entities with EntityManager 293
9.1 Introducing the EntityManager 294

The EntityManager interface 294 ■ The lifecycle of
an entity 297 ■ Persistence contexts, scope, and
the EntityManager 301 ■ Using the EntityManager
in ActionBazaar 303

9.2 Creating EntityManager instances 304
Container-managed EntityManagers 305
Application-managed EntityManager 308

9.3 Managing persistence operations 313
Persisting entities 314 ■ Retrieving entities by primary key 319
Updating entities 325 ■ Deleting entities 328
Controlling updates with flush 330 ■ Refreshing entities 331

9.4 Entity lifecycle listeners 333
Using an entity listener 334 ■ Default listener classes 336
Listener class execution order and exclusion 337

9.5 Entity operations best practices 338

9.6 Summary 338

10 Using the query API and JPQL to retrieve entities 340
10.1 Introducing the query API 341

The big picture 341 ■ Anatomy of a query 343
Defining named queries 344

10.2 Executing the queries 345
Creating a query instance 346 ■ Working with the
Query interface 347 ■ Specifying query hints 353

10.3 Introducing JPQL 354
Defining statement types 356 ■ Using the FROM clause 358
Conditional expressions and operators 362 ■ Working with
JPQL functions 367 ■ Using a SELECT clause 370
Using aggregations 372 ■ Ordering the query result 374
Using subqueries 374 ■ Joining entities 376
Bulk updates and deletes 379

10.4 Native SQL queries 380
Using dynamic queries with native SQL 381 ■ Using a named
native SQL query 382

10.5 Summary 383

CONTENTS xv
PART 4 PUTTING EJB 3 INTO ACTION 385

11 Packaging EJB 3 applications 387
11.1 Packaging your applications 389

Dissecting the EAR file 391 ■ Loading the EAR module 392

11.2 Exploring class loading 394
Class-loading basics 394 ■ Exposing the classic parent
delegation model 396 ■ Class loading in
Java EE applications 398 ■ Dependencies between
Java EE modules 398

11.3 Packaging session and message-driven beans 400
Packaging EJB-JAR 400 ■ Deployment descriptors
vs. annotations 402 ■ Overriding annotations with
deployment descriptors 406 ■ Specifying default
interceptor settings 407 ■ Using vendor-specific
annotations and descriptors 408

11.4 Packaging entities 410
Exposing the persistence module 410 ■ Describing the persistence
module with persistence.xml 411 ■ Performing O/R mapping
with orm.xml 418

11.5 Best practices and common deployment issues 422
Packaging and deployment best practices 422
Troubleshooting common deployment problems 423

11.6 Summary 424

12 Effectively integrating EJB 3 across
your application tiers 425

12.1 Design patterns and web technologies 426
Presentation tier 427 ■ Using the Entity Access Object
pattern 429 ■ Visiting the Session Façade pattern 434

12.2 Accessing session beans from the web tier 439
Accessing session beans using dependency injection 441
Referencing session beans from helper classes 442 ■ Dealing with
transactions 445 ■ Working with stateful session beans 446

xvi CONTENTS
12.3 Using JPA from the web tier 447
Using a container-managed entity manager 448 ■ Using an
application-managed EntityManager with JTA transactions 450
Accessing an application-managed EntityManager outside
the container 451

12.4 Summary 454

13 Taming wild EJBs: performance and scalability 455
13.1 Handling entity locking issues 457

Understanding locking types 458 ■ Optimistic locking and
entity versioning 461 ■ EntityManager and lock modes 462

13.2 Improving entity performance 464
Remodeling and schema redesign 464 ■ Tuning the
JDBC layer 468 ■ Reducing database operations 470
Improving query performance 474 ■ Caching 478

13.3 Improving performance of EJB 3 components 483
Session bean performance 484
Improving MDB performance 487

13.4 Clustering EJB applications 488
Collocated architecture 489 ■ Load-balancing stateless
session beans 490 ■ Clustering stateful session beans 493
Entities and clustered cache 495

13.5 Summary 496

PART 5 MIGRATION AND INTEROPERABILITY ISSUES 497

14 Migrating to EJB 3 499
14.1 Backward compatibility and interoperability

with EJB 2 500
Packaging EJB 2 and EJB 3 together 501 ■ Invoking EJB 2
from EJB 3 502 ■ Using EJB 3 from EJB 2 503

14.2 Migrating session beans 505
Converting interface and bean classes 506
Resource usage 510 ■ Transactions and security settings 511
Client applications 511

CONTENTS xvii
14.3 Migrating message-driven beans 513

14.4 Migrating CMP 2 entity beans to the EJB 3 JPA 513
Redesign your domain model 514 ■ Using DTOs
as entities 517 ■ Entity bean classes
and interfaces 519 ■ Client applications 526

14.5 Migrating JDBC DAOs to use the EJB 3 JPA 529
Identifying entities 529 ■ Reworking a DAO implementation
class to use the EntityManager API 530 ■ Swapping SQL
queries for JPQL 531

14.6 Helping O/R frameworks to use the EJB 3 JPA 533

14.7 Approaches to migration 535
Strategies 535 ■ Manual vs. automated 536

14.8 Summary 536

15 Exposing EJBs as web services 537
15.1 What is a web service? 539

Identifying web service components 541
Web services styles 547 ■ Approaches to
developing web services 548

15.2 JAX-WS: Java EE 5 web services platform 549
Introducing the web services platform 549 ■ Why choose
EJB over a POJO for a web service? 550

15.3 Developing EJB web services with JAX-WS 2.0 551
Using the @WebService annotation 553 ■ Specifying the
web service style with @SOAPBinding 555
Using @WebMethod 557 ■ Using the
@WebParam annotation 558 ■ Using the
@WebResult annotation 560 ■ Using @OneWay
and @HandlerChain 561

15.4 Accessing a web service from an EJB 562
Accessing the PlaceBid web service 562 ■ EJB as a web
service client 564

15.5 Best practices for web service development 565

15.6 Summary 567

xviii CONTENTS
16 EJB 3 and Spring 568
16.1 Introducing the Spring framework 570

Benefits of the Spring framework 571 ■ The inversion of
control principle 571 ■ The separation of
concerns principle 572

16.2 Using JPA with Spring 573
Building JPA EAOs for Spring 574 ■ Configuring Spring
to use the JPA 577

16.3 Combining the power of EJB 3 and Spring 581
Developing Spring-enabled EJBs 581 ■ Using session
beans from Spring beans 583

16.4 Summary 585

appendix A RMI and JNDI 587
appendix B Reviewing relational databases 596
appendix C Annotations reference 603
appendix D Deployment descriptors reference 623
appendix E Installing and configuring the Java EE 5 SDK 646

 resources 660
 index 663

preface
In its early days, EJB was inspired by the distributed computing ideas of tech-
nologies such as CORBA and was intended to add scalability to server-side
applications. EJB and J2EE enjoyed some of the greatest buzz in the industry
during the dot.com boom.

 The initial goal for EJB was to provide a simpler alternative to CORBA
through components and framework benefits—but the component benefits
were oversold. By the time EJB 2 was released, it became apparent that EJB could
be used as a framework to make server-side development easier—but it was com-
plicated. It became a heavy framework that provided features such as remoting,
transaction management, security, state maintenance, persistence, and web ser-
vices. It was loaded with more features with each release, and while the devel-
opment tools matured, its inventors failed to address the growing complexity.

 As the community became disenchanted with the limitations of EJB 2,
innovative open source tools like Spring and Hibernate emerged. They, along
with the creeping dominance of Microsoft.NET and the rise of scripting
frameworks like Ruby on Rails, were signs of the increasing discontent with
the complexities of Java. It was time for JCP and expert groups to work on the
simplification of Java development. That was the sole motivation behind Java
EE 5 and the goal of the EJB 3 Expert through Group.

 For a technology with a wide deployment base, the changes to EJB 3 are
nothing short of stunning. EJB 3 successfully melds innovative techniques to
xix

xx PREFACE
make component development as easy as possible. These techniques include
Java 5 annotations, metadata programming, dependency injection, AspectJ-like
interceptors, as well as intelligent defaulting. The heavyweight inheritance-based
programming model was abandoned in favor of POJO programming and the
verbose XML descriptor was now out of the developer’s way.

 The changes to the persistence model were particularly dramatic. EJB 3 leaves
behind the flawed Entity Beans model in favor of the lightweight Java Persistence
API (JPA). Unlike Entity Beans, JPA is not container-based. It has more in com-
mon with Object Relational Mapping tools such as Hibernate, Oracle TopLink,
and JDO than it does with EJB2 CMP Entity Beans. It can be used either inside or
outside the container and aims to become the de-facto persistence standard for
Java. Its Java Persistence Query Language (JPQL) standardizes object relational
queries and supports native SQL queries.

 We liked the changes made in EJB 3. The simplification of the EJB 3 specifica-
tion has been well received in the Java community. Even the competing Spring
framework has integrated with JPA and is implementing some features of EJB 3.

 Since EJB is POJO-based, every Java developer can easily become an EJB devel-
oper! We felt the need for an EJB 3 book that presents the technology with a fresh
approach without too much legacy EJB 2. Together, the three of us have signifi-
cant experience using EJB 3, ORM, and lightweight frameworks like Spring. We
have strived to keep our book different from other books on EJB 2 and EJB 3 by
providing practical examples, best practices, and tips for performance tuning. We
do not overlook the case made for competing frameworks such as Spring and do
not hesitate to recommend them when these frameworks make sense. In fact, we
have dedicated a complete chapter on the interoperability of Spring with EJB 3.

 We hope that you can use this book to quickly learn how to use EJB 3 effec-
tively in your next enterprise applications.

acknowledgments
Authoring a book requires great effort and it is difficult to list everyone who
helped us during this project. First and foremost we would like to thank every-
one at Manning, especially publisher Marjan Bace and development editor
Jackie Carter, for their encouragement and support during the past year. We
would also like to thank others at Manning who worked on different stages of
the project: editors Lianna Wlasiuk and Betsey Henkels, review editor Karen
Tegtmayer, and project editor Mary Piergies. Our sincere thanks also to King
Wang of Oracle who performed the technical review of the book before it went
to press, to Liz Welch who copyedited our prose, and to typesetter Denis
Dalinnik who converted our Word documents into a real book!

 Many reviewers spent their valuable time reading the manuscript at various
stages of development and their feedback greatly improved the quality of the
book. They are Glenn Stokol, Deiveehan Nallazhagappan, Peter George, Berndt
Hamboeck, Pat Dennis, Vincent Yin, Thomas Scheuchzer, Chuk Munn, TVS
Murthy, Norman Richards, Eric Raymond, Rob Abbe, Bas Vodde, Awais Bajwa,
Kunal Mittal, Riccardo Audano, Dan Dobrin, King Wang, Alan Mackenzie,
Deren Ebdon, Andrus Adamchik, Matt Payne, Vinny Carpenter, Alex Pantaleev,
and Chris Richardson. Finally we would like to thank Micah Silverman who ini-
tiated this project but could not stay involved due to lack of time.
xxi

xxii ACKNOWLEDGMENTS
DEBU PANDA

I would like to thank my wife, Renuka, for her immense support and continuous
encouragement and for her patience with all the late-night, early-morning, and
weekend hours I spent on the book in the past 16 months. I would also like to
thank my kids, Nistha and Nisheet, who had to share their bapa with the computer.

 I would like to thank my in-laws, Hari Shankar Mishra and Premsila Mishra,
who took care of the children, helping me to focus on the book. Thanks also to
my parents, Ganga Narayan and Ratnamani Panda, for developing my interest
in writing.

 Many thanks to Mike Lehmann, Director of Product Management and Steve
G. Harris, Vice President of Oracle Application Server Development for allowing
me to fit this book into my busy schedule, and for their constant encouragement.
Thanks to Robert Campbell, Jason Haley, and the entire EJB Container and
TopLink development team at Oracle for quickly addressing product issues that
helped me to build code samples before the EJB 3 specification was finalized. I
would also like to thank King Wang for agreeing to be the technical editor of the
book and for his help in fixing the errors in our code examples.

 My special thanks to my previous manger Rob Clark who encouraged me to
venture into the world of blogging and evangelizing that helped me gain recog-
nition in the Java community.

 Finally, I would like to thank my coauthors Reza Rahman and Derek Lane for
their hard work and dedication in transforming my drafts into a great book.

REZA RAHMAN

I am grateful to my family, friends, and colleagues for supporting me throughout
the arduous task of writing this book. I am thankful to my mentors Jason Hughes
at Fry Communications, Narayan Natarajan at Accenture, and Rob Collier at
Accenture for their guidance and encouragement. It is your hard work over the
past few years that inspired me to take on this project. Words cannot do justice to
the spirited help provided by Ray Case on chapters 6 and 7. Thank you my
friend, and I hope your family works through the turbulent waters you are navi-
gating right now.

 Editor Betsey Henkels deserves special thanks for giving us leeway to experi-
ment in the early stages and to distill our ideas. I am grateful to Debu Panda for
his leadership, humility, and foresight. Thanks to Derek Lane for his sincere and
much needed efforts. Last but not least, I am grateful to Marjan Bace, Jackie
Carter, and the entire team at Manning for seeing the value in this book, for all

ACKNOWLEDGMENTS xxiii
the back-breaking work on their part, for demanding nothing short of the best
from us, and for being patient through the tough moments.

DEREK LANE

I would like to thank the Manning team and Jackie Carter for asking me to be a
part of this project. Thanks also to Debu Panda and Reza Rahman for the tre-
mendous amount of work they put into the book.

 I am amazed and grateful for the work done by the reviewers of our book,
whose names are listed above. Many of them read the manuscript several times
at different stages of development and offered detailed suggestions and guid-
ance. A special word of thanks goes to Craig Walls, who took precious time away
from working on the second edition of Spring in Action, to provide a much
needed sounding board for some of the more advanced sections of this book.
Reviewers rarely get the full credit they deserve, yet they represent the interests
of you, our readers, during the writing process. Having been a reviewer on
numerous works myself, I fully appreciate their remarkable efforts.

about this book
EJB 3 is meant to recast Java server-side development into a mold you
might not expect. And so have we tried to make this an EJB book you might
not anticipate.

 Most server-side Java books tend to be serious affairs—heavy on theory,
slightly preachy, and geared toward the advanced developer. Nine out of ten
EJB 2.x books follow this pattern. While we easily fit the stereotype of geeks
and aren’t the funniest comedians or entertainers, we have tried to add some
color to our writing to keep this book as lighthearted and down-to-earth as
possible. The tone is intended to be friendly, conversational, and informal. We
made a conscious effort to drive the chapter content with examples that are
close to the real world problems you deal with every day. In most cases, we
introduce a problem that needs to be solved, show you the code to solve it
using EJB 3, and explore features of the technology using the code as a crutch.

 We do cover theory when it is unavoidable and we don’t assume that you
have a Ph.D. in computer science. We try to avoid theory for theory’s sake and
try to make the discussion as lively, and short, as we can make it. The goal of
this book is to help you learn EJB 3 quickly and effectively, not to be a compre-
hensive reference book. We don’t cover features you are unlikely to use.
Instead, we provide deep coverage of the most useful EJB 3 features, discuss
various options so you can make educated choices, warn you about common
pitfalls, and tell you about battle-hardened best practices.
xxiv

ABOUT THIS BOOK xxv
 If you’ve picked up this book, it is unlikely you are a complete newcomer to
Java. We assume you’ve done some work in Java, perhaps in the form of web
development using a presentation tier technology like JSF, Struts, JSP, or Servlets.
If you come from the client-side end of the spectrum using technologies like
Swing and AWT, don’t worry. A web development background isn’t a requirement
for EJB. We do assume you are familiar with database technologies such as JDBC,
and have at least a casual familiarity with SQL. We don’t assume you are familiar
with middleware-centric technologies like Spring, Hibernate, TopLink, JDO, iBA-
TIS, or AspectJ. You don’t need to be an EJB 2.x expert to pick up this book. We
don’t even assume you know any of the Java EE technologies that EJB is depen-
dent on, such as the Java Naming and Directory Interface (JNDI), Java Remote
Method Invocation (RMI), or the Java Messaging Service (JMS). In fact, we
assume you are not familiar with middleware concepts like remoting, pooling,
concurrent programming, security, or distributed transactions. This book is ide-
ally suited for a Java developer with a couple of years’ experience who is curious
about EJB 3. By the same token, there is enough depth here to keep an EJB 2.x
or Spring/Hibernate veteran engaged. Familiar material is placed in a logical
sequence so that it can easily be skipped.

 You might find this book different from others in one more important way.
EJB is a server-side middleware technology. This means that it doesn’t live in a
vacuum and must be integrated with other technologies to fulfill its mission.
Throughout the book, we talk about how EJB 3 integrates with technologies like
JSF, JSP, Servlets, Ajax, and even Swing-based Java SE clients. We also talk about
how EJB 3 aligns with complementary technologies like Spring.

 This book is about EJB 3 as a standard, not a specific application server tech-
nology. For this reason, we will avoid tying our discussion around any specific
application server implementation. Instead, the code samples in this book are
designed to run with any EJB 3 container or persistence provider. The website
accompanying this book at www.manning.com/panda will tell you how you can
get the code up and running in GlassFish and Oracle Application Server 10g.
Maintaining the application server-specific instructions on the publisher’s web-
site instead of in the book will allow us to keep the instructions up-to-date with
the newest implementation details.

http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/panda

xxvi ABOUT THIS BOOK
Roadmap
This book is divided into five parts.

 Part 1 provides an overview of EJB. Chapter 1 introduces EJB 3 and EJB types
and makes the case for EJB 3. Chapter 2 explores core concepts such as metadata
annotations, dependency injection, and provides code examples of each EJB type.

 Part 2 covers the building of business logic with session beans and MDB.
Chapter 3 dives into the details of session beans and outlines best practices.
Chapter 4 gives a quick introduction to messaging, JMS, and covers MDB in
detail. Chapter 5 covers advanced topics such as dependency injection, intercep-
tors, and timers. Chapter 6 discusses transaction and security.

 Part 3 provides in-depth coverage of the EJB 3 Java Persistence API. Chapter 7
introduces concepts on domain modeling and describes implementing domain
models with JPA. Chapter 8 covers object-relational mapping with JPA. Chapter 9
provides in-depth coverage manipulating entities using EntityManager API.
Chapter 10 covers querying entities using Query API and JPQL.

 Part 4 provides guidelines for effectively using EJB 3 in your enterprise appli-
cations. Chapter 11 discusses packaging of EJBs and entities. It introduces all
XML descriptors. Chapter 12 covers using EJB 3 design patterns and JPA from
other application tiers. Chapter 13 turns to advanced topics such as entity lock-
ing and performance tuning of EJB 3 applications.

 Part 5 looks at interoperability and integration issues with EJB 3 and
other frameworks. Chapter 14 covers interoperability with EJB 2 and migra-
tion of EJB 2 applications to EJB 3. Chapter 15 introduces web services and
discusses web services applications with EJB 3 and JAX WS 2.0. Chapter 16
uncovers how you can integrate EJB 3 with the Spring framework to build
great enterprise applications.

 The book has five appendixes. Appendix A is a tutorial on JNDI and RMI and
appendix B provides a primer to databases. Appendixes C and D cover refer-
ences to annotations and XML descriptors. We also provide instructions on how
to install and configure Java EE RI (Glassfish) and how to deploy the code sam-
ples in appendix E.

Source Code Downloads
In addition to the setup instructions for the Java EE 5 Reference Implementa-
tion server based on Glassfish and the Oracle Application Server, the publisher’s
website houses all of the source code presented in this book. The source code for

http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/panda

ABOUT THIS BOOK xxvii
each chapter is downloadable as a separate zip file, each one containing instruc-
tions on how to deploy the code to an application server and get it running. You
can download the code from the book’s web page: www.manning.com/panda or
www.manning.com/EJB3inAction.com.

Source Code Conventions
Because of the example-driven style of this book, the source code was given a
great deal of attention. Larger sections of code in the chapters are presented as
their own listings. All code is formatted using the fixed-width Courier font for
visibility. All inside code, such as XML element names, method names, Java type
names, package names, variable names, and so on are also formatted using the
Courier font. Some code is formatted as Courier Bold to highlight important sec-
tions. In some cases, we’ve abbreviated the code to keep it short and simple. In
all cases, the full version of the abbreviated code is contained in the download-
able zip files. We encourage you to set up your development environment for
each chapter before you begin reading it. The setup instructions for the develop-
ment environment are also included on the website.

Author Online
Purchase of EJB 3 in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/panda.
This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialog between individual readers and between readers and the author
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions, lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

http://www.manning.com/panda
http://www.manning.com/panda
http://www.manning.com/EJ3inAction.com

xxviii ABOUT THIS BOOK
About the Authors
DEBU PANDA is a Lead Product Manager of the Oracle Application Server devel-
opment team where he drives development of the Java EE container. He has
more than 15 years of experience in the IT industry and has published numerous
articles on enterprise Java technologies in several magazines and has presented
at many conferences. His J2EE-focused weblog can be found at debupanda.com.

REZA RAHMAN is an architect at Tripod Technologies. Reza has been working
with Java EE since its inception in the mid-nineties. He has developed enterprise
systems in the publishing, financial, telecommunications, and manufacturing
industries and has worked with Enterprise Java Beans, Spring, and Hibernate.

DEREK LANE is the CTO for Semantra, Inc. He has over 20 years’ experience in
the IT arena. He is the founder of both the Dallas/Fort Worth, Texas MicroJava
User Group and the Oklahoma City Java User Groups, and is active in numerous
technology groups in the southwestern United States.

About the Title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action guide is
that it is example-driven. It encourages the reader to try things out, to play with
new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.

http://debupanda.com/

ABOUT THIS BOOK xxix
About the Cover Illustration
The figure on the cover of EJB 3 in Action is a “Russian Girl with Fur,” taken from
a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and travel guides
such as this one were popular, introducing both the tourist as well as the armchair
traveler to the inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of
the uniqueness and individuality of the world’s towns and provinces just 200
years ago. This was a time when the dress codes of two regions separated by a few
dozen miles identified people uniquely as belonging to one or the other. The
travel guide brings to life a sense of isolation and distance of that period and of
every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life
two centuries ago brought back to life by the pictures from this travel guide.

Part 1

Overview of the
EJB landscape

This book is about EJB 3, the shiny new version of the Enterprise Java-
Beans standard. The timely rebirth of EJB is made possible through innova-
tions introduced in Java SE 5, such as metadata annotations as well as the
adoption of ideas like dependency injection and object-relational mapping
(ORM)-based persistence.

 Chapter 1 introduces EJB as a technology. The chapter also touches on the
unique strengths EJB has as a development platform and the great new fea-
tures that promote productivity and ease of use. Chapter 2 provides realistic
code samples and presents the ActionBazaar application, the imaginary
enterprise system developed throughout the book. Chapter 2 is easily the
most code-intensive chapter in the book. Our goal is to give you a feel for
how EJB 3 looks as quickly and as easily as possible.

 This part presents EJB 3 as a powerful and highly usable platform worth
its place as the de facto standard for mission-critical enterprise development.
We also offer a first glimpse into the impressive Java Persistence API, a prom-
ising technology that aims to standardize Java ORM and expand EJB 3
beyond the traditional boundaries of web-based client-server applications
managed by containers.

What’s what in EJB 3
This chapter covers
■ EJB as component and framework
■ Types of EJBs
■ EJB containers and persistence provider
■ Reasons for choosing EJB 3
3

4 CHAPTER 1
What’s what in EJB 3
One day, when God was looking over his creatures, he noticed a boy named
Sadhu whose humor and cleverness pleased him. God felt generous that day and
granted Sadhu three wishes. Sadhu asked for three reincarnations—one as a lady-
bug, one as an elephant, and the last as a cow. Surprised by these wishes, God
asked Sadhu to explain himself. The boy replied, “I want to be a ladybug so that
everyone in the world will admire me for my beauty and forgive the fact that I do
no work. Being an elephant will be fun because I can gobble down enormous
amounts of food without being ridiculed. I will like being a cow the best because I
will be loved by all and useful to mankind.” God was charmed by these answers
and allowed Sadhu to live through the three incarnations. He then made Sadhu a
morning star for his service to humankind as a cow.

 EJB too has lived through three incarnations. When it was first released, the
industry was dazzled by its innovations. But like the ladybug, EJB 1 had limited
functionality. The second EJB incarnation was just about as heavy as the largest of
our beloved pachyderms. The brave souls who could not do without its elephant
power had to tame the awesome complexity of EJB 2. And finally, in its third
incarnation, EJB has become much more useful to the huddled masses, just like
the gentle bovine that is sacred for Hindus and respected as a mother whose milk
feeds us well.

 Many people have put in a lot of hard work to make EJB 3 as simple and light-
weight as possible without sacrificing enterprise-ready power. EJB components
are now little more than plain old Java objects (POJOs) that look a lot like code in
a Hello World program. We hope you agree with us as you read through the next
chapters that EJB 3 has all the makings of a star.

 We’ve strived to keep this book as practical as possible without skimping on
content. The book is designed to help you learn EJB 3 as quickly and easily as
possible. At the same time, we won’t neglect the basics where needed. We’ll also
dive into deep waters with you where we can, share with you all the amazing sights
we’ve discovered, and warn you about any lurking dangers.

 This book is about the radical transformation of an important and uniquely
influential technology in the Java world. We suspect you are not picking this book
up to learn too much about EJB 2. You probably either already know EJB or are
completely new to the world of EJB. In either case, spending too much time on
previous versions is a waste of your time—you won’t be surprised to learn that EJB
3 and EJB 2 have very little in common. If you are curious about the journey that
brought us to the current point, we encourage you to pick up one of the many
good books on the previous versions of EJB.

EJB overview 5
 Our goal in this chapter is to tell you what’s what in EJB 3, explain why you
should consider using it, and, for EJB 2 veterans, outline the significant improve-
ments the newest version offers. We’ll then jump right into code in the next chap-
ter to build on the momentum of this one. With these goals in mind, let’s now
start with a broad overview of EJB.

1.1 EJB overview

In very straightforward terms, Enterprise JavaBeans (EJB) is a platform for build-
ing portable, reusable, and scalable business applications using the Java program-
ming language. Since its initial incarnation, EJB has been touted as a component
model or framework that lets you build enterprise Java applications without hav-
ing to reinvent services such as transactions, security, automated persistence, and
so on that you may need for building an application. EJB allows application devel-
opers to focus on building business logic without having to spend time on build-
ing infrastructure code.

 From a developer’s point of view, an EJB is a piece of Java code that executes in
a specialized runtime environment called the EJB container, which provides a
number of component services. The persistence services are provided by a spe-
cialized framework called the persistence provider. We’ll talk more about the EJB
container, persistence provider, and services in section 1.3.

 In this section, you’ll learn how EJB functions as both a component and a
framework. We’ll also examine how EJB lends itself to building layered applica-
tions. We’ll round off this section by listing a few reasons why EJB might be right
for you.

1.1.1 EJB as a component

In this book, when we talk about EJBs, we are referring to the server-side compo-
nents that you can use to build parts of your application, such as the business logic
or persistence code. Many of us tend to associate the term component with devel-
oping complex and heavyweight CORBA, Microsoft COM+ code. In the brave new
world of EJB 3, a component is what it ought to be—nothing more than a POJO
with some special powers. More importantly, these powers remain invisible until
they are needed and don’t distract from the real purpose of the component. You
will see this firsthand throughout this book, especially starting with chapter 2.

 The real idea behind a component is that it should effectively encapsulate
application behavior. The users of a component aren’t required to know its inner
workings. All they need to know is what to pass in and what to expect back.

6 CHAPTER 1
What’s what in EJB 3
There are three types of EJB components: session beans, message-driven beans,
and entities. Session beans and message-driven beans are used to implement
business logic in an EJB application, and entities are used for persistence.

 Components can be reusable. For instance, suppose you’re in charge of build-
ing a website for an online merchant that sells technology books. You implement
a module to charge the credit card as part of a regular Java object. Your company
does fairly well, and you move on to greener pastures. The company then decides
to diversify and begins developing a website for selling CDs and DVDs. Since the
deployment environment for the new site is different, it can’t be located on the
same server as your module. The person building the new site is forced to dupli-
cate your credit card module in the new website because there’s no easy way to
access your module. If you had instead implemented the credit card–charging
module as an EJB component as shown in figure 1.1 (or as a web service), it would
have been much easier for the new person to access it by simply making a call to it
when she needed that functionality. She could have reused it without having to
understand its implementation.

 Given that, building a reusable component requires careful planning because,
across enterprise applications within an organization, very little of the business
logic may be reusable. Therefore, you may not care about the reusability of EJB
components, but EJB still has much to offer as a framework, as you’ll discover in
the next section.

Figure 1.1
EJB allows development of
reusable components. For
example, you can implement the
credit card–charging module as an
EJB component that may be
accessed by multiple applications.

EJB overview 7
1.1.2 EJB as a framework

As we mentioned, EJB components live in a container. Together, the components,
or EJBs, and the container can be viewed as a framework that provides valuable
services for enterprise application development.

 Although many people think EJBs are overkill for developing relatively simple
web applications of moderate size, nothing could be further from the truth. When
you build a house, you don’t build everything from scratch. Instead, you buy
materials or even the services of a contractor as you need it. It isn’t too practical to
build an enterprise application from scratch either. Most server-side applications
have a lot in common, including churning business logic, managing application
state, storing and retrieving information from a relational database, managing
transactions, implementing security, performing asynchronous processing, inte-
grating systems, and so on.

 As a framework, the EJB container provides these kinds of common function-
ality as out-of-the-box services so that your EJB components can use them in your
applications without reinventing the wheel. For instance, let’s say that when you
built the credit card module in your web application, you wrote a lot of complex
and error-prone code to manage transactions and security access control. You
could have avoided that by using the declarative transaction and security services
provided by the EJB container. These services, as well as many others you’ll learn
about in section 1.3, are available to the EJB components when they are deployed
in the EJB container, as you can see in figure 1.2. This means writing high-quality,
feature-rich applications much faster than you might think.

 The container provides the services to the EJB components in a rather elegant
new way: metadata annotations are used to preconfigure the EJBs by specifying
the type of services to add when the container deploys the EJBs. Java 5 introduced

Figure 1.2
EJB as a framework provides
services to EJB components.

8 CHAPTER 1
What’s what in EJB 3
metadata annotations, which are property settings that mark a piece of code, such
as a class or method, as having particular attributes. This is a declarative style of
programming, in which the developer specifies what should be done and the sys-
tem adds the code to do it.

 In EJB, metadata annotations dramatically simplify development and testing
of applications, without having to depend on an external XML configuration file.
It allows developers to declaratively add services to EJB components as and
when they need. As figure 1.3 depicts, an annotation transforms a simple POJO
into an EJB.

 As you’ll learn, annotations are used extensively throughout EJB, and not only
to specify services. For example, an annotation can be used to specify the type of
the EJB component.

 Although it’s sometimes easy to forget, enterprise applications have one more
thing in common with a house. Both are meant to last, often much longer than
anyone expects. Being able to support high-performance, fault-tolerant, scalable
applications is an up-front concern for the EJB platform instead of being an after-
thought. Not only will you be writing good server-side applications faster, but also
you can expect your platform to grow with the success of your application. When
the need to support a larger number of users becomes a reality, you won’t have to
rewrite your code. Thankfully these concerns are taken care of by EJB container
vendors. You’ll be able to count on moving your application to a distributed, clus-
tered server farm by doing nothing more than a bit of configuration.

 Last, but certainly not least, with a world that’s crazy about service-oriented
architecture (SOA) and interoperability, EJB lets you turn your application into a
web services powerhouse with ease when you need to.

 The EJB framework is a standard Java technology with an open specification. If
it catches your fancy, you can check out the real deal on the Java Community Proc-
ess (JCP) website at www.jcp.org/en/jsr/detail?id=220. EJB is supported by a large
number of companies and open source groups with competing but compatible
implementations. On the one hand, this indicates that a large group of people will
work hard to keep EJB competitive. On the other hand, the ease of portability

Figure 1.3
EJBs are regular Java objects
that may be configured using
metadata annotations.

EJB overview 9
means that you get to choose what implementation suits you best, making your
application portable across EJB containers from different vendors.

 Now that we’ve provided a high-level introduction to EJB, let’s turn our atten-
tion to how EJB can be used to build layered applications.

1.1.3 Layered architectures and EJB

Most enterprise applications contain a large number of components. Enterprise
applications are designed to solve a unique type of customer problem, but they
share many common characteristics. For example, most enterprise applications
have some kind of user interface and they implement business processes, model a
problem domain, and save data into a database. Because of these commonalities,
you can a follow a common architecture or design principle for building enter-
prise applications known as patterns.

 For server-side development, the dominant pattern is layered architectures. In a
layered architecture, components are grouped into tiers. Each tier in the applica-
tion has a well-defined purpose, sort of like a profession but more like a section of
a factory assembly line. Each section of the assembly line performs its designated
task and passes the remaining work down the line. In layered architectures, each
layer delegates work to a layer underneath it.

 EJB allows you to build applications using two different layered architectures:
the traditional four-tier architecture and domain-driven design (DDD). Let’s take
a brief look at each of these architectures.

Traditional four-tier layered architecture
Figure 1.4 shows the traditional four-tier server architecture. This architecture is
pretty intuitive and enjoys a wide popularity. In this architecture, the presentation
layer is responsible for rendering the graphical user interface (GUI) and handling
user input. The presentation layer passes down each request for application
functionality to the business logic layer. The business logic layer is the heart of the
application and contains workflow and processing logic. In other words, business
logic layer components model distinct actions or processes the application can
perform, such as billing, searching, ordering, and user account maintenance.
The business logic layer retrieves data from and saves data into the database by
utilizing the persistence tier. The persistence layer provides a high-level object-ori-
ented (OO) abstraction over the database layer. The database layer typically con-
sists of a relational database management system (RDBMS) like Oracle, DB2, or
SQL Server.

10 CHAPTER 1
What’s what in EJB 3
EJB is obviously not a presentation layer technology. EJB is all about robust sup-
port for implementing the business logic and persistence layers. Figure 1.5 shows
how EJB supports these layers via its services.

 In section 1.3 we’ll go into more detail on EJB services. And in section 1.2
we’ll explore EJB bean types. For now, just note that the bean types called session
beans and message-driven beans (MDBs) reside in and use the services in the

Figure 1.4
Most traditional enterprise applications
have at least four layers. 1) The
presentation layer is the actual user
interface and can either be a browser or a
desktop application. 2) The business logic
layer defines the business rules. 3) The
persistence layer deals with interactions
with the database. 4) The database layer
consists of a relational database such as
Oracle that stores the persistent objects.

Figure 1.5
The component services
offered by EJB 3 at each
supported application layer.
Note that each service is
independent of the other, so
you are for the most part free
to pick the features important
for your application. You’ll
learn more about services in
section 1.3.

EJB overview 11
business logic tier, and the bean types called entities reside in and use services in
the persistence tier.

 The traditional four-tier layered architecture is not perfect. One of the most
common criticisms is that it undermines the OO ideal of modeling the business
domain as objects that encapsulate both data and behavior. Because the tradi-
tional architecture focuses on modeling business processes instead of the domain,
the business logic tier tends to look more like a database-driven procedural appli-
cation than an OO one. Since persistence-tier components are simple data hold-
ers, they look a lot like database record definitions rather than first-class citizens
of the OO world. As you’ll see in the next section, DDD proposes an alternative
architecture that attempts to solve these perceived problems.

Domain-driven design
The term domain-driven design (DDD) may be relatively new but the concept is not
(see Domain-Driven Design: Tackling Complexity in the Heart of Software, by Eric
Evans [Addison-Wesley Professional, 2003]). DDD emphasizes that domain objects
should contain business logic and should not just be a dumb replica of database
records. Domain objects are known as entities in EJB 3 (see section 1.2 for a dis-
cussion on entities). With DDD, the Catalog and Customer objects in a trading
application are typical examples of entities, and they may contain business logic.

 In his excellent book POJOs in Action (Manning, 2006), author Chris Richard-
son points out the problem in using domain objects just as a data holder.

Some developers still view persistent objects simply as a means to get data in
and out of the database and write procedural business logic. They develop what
Fowler calls an “anemic domain model”.... Just as anemic blood lacks vitality,
anemic object models only superficially model the problem and consist of
classes that implement little or no behavior.

Yet, even though its value is clear, until this release of EJB, it was difficult to imple-
ment DDD. Chris goes on to explain how EJB 2 encouraged procedural code:

… J2EE developers write procedural-style code [because] it is encouraged by
the EJB architecture, literature, and culture, which place great emphasis on
EJB components. EJB 2 components are not suitable for implementing an
object model.

Admittedly, implementing a real domain model was almost impossible with EJB 2
because beans were not POJOs and did not support many OO features. such as inher-
itance and polymorphism. Chris specifically targets entity beans as the problem:

12 CHAPTER 1
What’s what in EJB 3
EJB 2 entity beans, which are intended to represent business objects, have
numerous limitations that make it extremely difficult to use them to implement
a persistent object model.

The good news is that EJB 3 enables you to easily follow good object-oriented
design or DDD. The entities defined by EJB 3 Java Persistence API (JPA) support
OO features, such as inheritance or polymorphism. It’s easy to implement a per-
sistence object model with the EJB 3 JPA. More importantly, you can easily add
business logic to your entities, so that implementing a rich domain model with
EJB 3 is a trivial task.

 Note, though, that many people don’t like adding complex business logic in
the domain object itself and prefer creating a layer for procedural logic referred to
as the service layer or application layer (see Patterns of Enterprise Application Architec-
ture, by Martin Fowler [Addison-Wesley Professional, 2002]). The application layer
is similar to the business logic layer of the traditional four-tier architecture, but is
much thinner. Not surprisingly, you can use session beans to build the service
layer. Whether you use the traditional four-tier architecture or a layered architec-
ture with DDD, you can use entities to model domain objects, including modeling
state and behavior. We’ll discuss domain modeling with JPA entities in chapter 7.

 Despite its impressive services and vision, EJB 3 is not the only act in town. You
can combine various technologies to more or less match EJB services and infra-
structure. For example, you could use Spring with other open source technologies
such as Hibernate and AspectJ to build your application, so why choose EJB 3?
Glad you asked...

1.1.4 Why choose EJB 3?

At the beginning of this chapter, we hinted at EJB’s status as a pioneering technol-
ogy. EJB is a groundbreaking technology that has raised the standards of server-
side development. Just like Java itself, EJB has changed things in ways that are
here to stay and inspired many innovations. In fact, up until a few years ago the
only serious competition to EJB came from the Microsoft .NET framework.

 In this section, we’ll point out a few of the compelling EJB 3 features that we
feel certain will have this latest version at the top of your short list.

Ease of use
Thanks to the unwavering focus on ease of use, EJB 3 is probably the simplest
server-side development platform around. The features that shine the bright-
est are POJO programming, annotations in favor of verbose XML, heavy use of

EJB overview 13
sensible defaults, and JPA, all of which you will be learning about in this book.
Although the number of EJB services is significant, you’ll find them very intui-
tive. For the most part, EJB 3 has a practical outlook and doesn’t demand that
you understand the theoretical intricacies. In fact, most EJB services are
designed to give you a break from this mode of thinking so you can focus on
getting the job done and go home at the end of the day knowing you accom-
plished something.

Integrated solution stack
EJB 3 offers a complete stack of server solutions, including persistence, messag-
ing, lightweight scheduling, remoting, web services, dependency injection (DI),
and interceptors. This means that you won’t have to spend a lot of time looking
for third-party tools to integrate into your application. In addition, EJB 3 provides
seamless integration with other Java EE technologies, such as JDBC, JavaMail,
Java Transaction API JTA (JTA), Java Messaging Service (JMS), Java Authentication
and Authorization Service (JAAS), Java Naming and Directory Interface (JNDI),
Java Remote Method Invocation (RMI), and so on. EJB is also guaranteed to seam-
lessly integrate with presentation-tier technologies like JavaServer Pages (JSP),
servlets, JavaServer Faces (JSF), and Swing.

Open Java EE standard
EJB is a critical part of the Java EE standard. This is an extremely important con-
cept to grasp if you are to adopt EJB 3. EJB 3 has an open, public API specifica-
tion, which organizations are encouraged to use to create a container or
persistence provider implementation. The EJB 3 standard is developed by the
Java Community Process (JCP), consisting of a nonexclusive group of individuals
driving the Java standard. The open standard leads to broader vendor support
for EJB 3, which means you don’t have to depend on a proprietary solution.

Broad vendor support
EJB is supported by a large and diverse variety of independent organizations.
This includes the technology world’s largest, most respected, and most financially
strong names, such as Oracle and IBM, as well as passionate and energetic open
source groups like JBoss and Geronimo.

 Wide vendor support translates to three important advantages for you. First,
you are not at the mercy of the ups and downs of a particular company or group
of people. Second, a lot of people have concrete long-term interests to keep the
technology as competitive as possible. You can essentially count on being able to

14 CHAPTER 1
What’s what in EJB 3
take advantage of the best-of-breed technologies both in and outside the Java
world in a competitive timeframe. Third, vendors have historically competed
against one another by providing value-added nonstandard features. All of these
factors help keep EJB on the track of continuous healthy evolution.

Stable, high-quality code base
Although EJB 3 is a groundbreaking step, most application server implementa-
tions will still benefit from a relatively stable code base that has lived through
some of the most demanding enterprise environments over a prolonged period
of time. Most persistence provider solutions like JDO, Hibernate, and TopLink
are also stable products that are being used in many mission-critical production
environments. This means that although EJB 3 is very new, you can expect stable
implementations relatively quickly. Also, because of the very nature of standards-
based development, the quality of EJB 3 container implementations is generally
not taken lightly by vendors. To some degree, this helps ensure a healthy level of
inherent implementation quality.

Clustering, load balancing, and failover
Features historically added by most application server vendors are robust support
for clustering, load balancing, and failover. EJB application servers have a proven
track record of supporting some of the largest high-performance computing
(HPC)-enabled server farm environments. More importantly, you can leverage
such support with no changes to code, no third-party tool integration, and rela-
tively simple configuration (beyond the inherent work in setting up a hardware
cluster). This means that you can rely on hardware clustering to scale up your
application with EJB 3 if you need to.

 EJB 3 is a compelling option for building enterprise applications. In the fol-
lowing sections, we explain more about EJB types and how to use them. We also
discuss containers and persistence providers and explore the services they pro-
vide. By the time you finish reading sections 1.2 and 1.3, you’ll have a good
idea of what EJBs are and where they run, and what services they offer. So let’s
get started!

1.2 Understanding EJB types

If you’re like most developers, you always have a tight deadline to meet. Most of
us try to beg, borrow, or steal reusable code to make our lives easier. Gone are
those days when developers had the luxury to create their own infrastructure

Understanding EJB types 15
when building a commercial application. While several commercial and open
source frameworks are available that can simplify application development, EJB is
a compelling framework that has a lot to offer.

 We expect that by now you’re getting excited about EJB and you’re eager to
learn more. So let’s jump right in and see how you can use EJB as a framework
to build your business logic and persistence tier of your applications, starting
with the beans.

 In EJB-speak, a component is a “bean.” If your manager doesn’t find the Java-
“coffee bean” play on words cute either, blame Sun’s marketing department. Hey,
at least we get to hear people in suits use the words “enterprise” and “bean” in
close sequence as if it were perfectly normal…

 As we mentioned, EJB classifies beans into three types, based on what they are
used for:

■ Session beans
■ Message-driven beans
■ Entities

Each bean type serves a purpose and can use a specific subset of EJB services. The
real purpose of bean types is to safeguard against overloading them with services
that cross wires. This is akin to making sure the accountant in the horn-rimmed
glasses doesn’t get too curious about what happens when you touch both ends of a
car battery terminal at the same time. Bean classification also helps you under-
stand and organize an application in a sensible way; for example, bean types help
you develop applications based on a layered architecture.

 As we’ve briefly mentioned, session beans and message-driven beans (MDBs)
are used to build business logic, and they live in the container, which manages
these beans and provides services to them. Entities are used to model the persis-
tence part of an application. Like the container, it is the persistence provider that
manages entities. A persistence provider is pluggable within the container and is
abstracted behind the Java Persistence API (JPA). This organization of the EJB 3
API is shown in figure 1.6.

 We’ll discuss the container and the persistence provider in section 1.3. For the
time being, all you need to know is that these are separate parts of an EJB imple-
mentation, each of which provide support for different EJB component types.

 Let’s start digging a little deeper into the various EJB component types, start-
ing with session beans.

16 CHAPTER 1
What’s what in EJB 3
1.2.1 Session beans

A session bean is invoked by a client for the purpose of performing a specific busi-
ness operation, such as checking the credit history for a customer. The name session
implies that a bean instance is available for the duration of a “unit of work” and
does not survive a server crash or shutdown. A session bean can model any appli-
cation logic functionality. There are two types of session beans: stateful and stateless.

 A stateful session bean automatically saves bean state between client invoca-
tions without your having to write any additional code. A typical example of a
state-aware process is the shopping cart for a web merchant like Amazon. In con-
trast, stateless session beans do not maintain any state and model application ser-
vices that can be completed in a single client invocation. You could build stateless
session beans for implementing business processes such as charging a credit card
or checking customer credit history.

 A session bean can be invoked either locally or remotely using Java RMI. A
stateless session bean can be exposed as a web service.

1.2.2 Message-driven beans
Like session beans, MDBs process business logic. However, MDBs are different in
one important way: clients never invoke MDB methods directly. Instead, MDBs are
triggered by messages sent to a messaging server, which enables sending asyn-
chronous messages between system components. Some typical examples of mes-
saging servers are IBM WebSphere MQ, SonicMQ, Oracle Advanced Queueing,
and TIBCO. MDBs are typically used for robust system integration or asynchro-
nous processing. An example of messaging is sending an inventory-restocking

Figure 1.6 Overall organization of the EJB 3 API. The Java persistence API is completely separable
from the EJB 3 container. The business logic processing is carried out by through two component
types: session beans and message-driven beans. Both components are managed by the container.
Persistence objects are called entities, which are managed by the persistent provider through the
EntityManager interface.

Understanding EJB types 17
request from an automated retail system to a supply-chain management system.
Don’t worry too much about messaging right now; we’ll get to the details later in
this book.

 Next we’ll explain the concept of persistence and describe how object-rela-
tional frameworks help enable automated persistence.

1.2.3 Entities and the Java Persistence API

One of the exciting new features of EJB 3 is the way it handles persistence. We
briefly mentioned persistence providers and the JPA earlier, but now let’s delve
into the details.

 Persistence is the ability to have data contained in Java objects automatically
stored into a relational database like Oracle, SQL Server, and DB2. Persistence in
EJB 3 is managed by the JPA. It automatically persists the Java objects using a
technique called object-relational mapping (ORM). ORM is essentially the process
of mapping data held in Java objects to database tables using configuration. It
relieves you of the task of writing low-level, boring, and complex JDBC code to
persist objects into a database.

 The frameworks that provide ORM capability to perform automated persis-
tence are known as ORM frameworks. As the name implies, an ORM framework
performs transparent persistence by making use of object-relational mapping
metadata that defines how objects are mapped to database tables. ORM is not a
new concept and has been around for a while. Oracle TopLink is probably the
oldest ORM framework in the market; open source framework JBoss Hibernate
popularized ORM concepts among the mainstream developer community.

 In EJB 3 terms, a persistence provider is essentially an ORM framework that
supports the EJB 3 Java Persistence API (JPA). The JPA defines a standard for

■ The creation of ORM configuration metadata for mapping entities to rela-
tional tables

■ The EntityManager API—a standard API for performing CRUD (create,
read, update, and delete)/persistence operations for entities

■ The Java Persistence Query Language (JPQL), for searching and retrieving
persisted application data

Since JPA standardizes ORM frameworks for the Java platform, you can plug in
ORM products like JBoss Hibernate, Oracle TopLink, or BEA Kodo as the under-
lying JPA “persistence provider” for your application.

18 CHAPTER 1
What’s what in EJB 3
 It may occur to you that automated persistence is something you’ll find use-
ful for all kinds of applications, not just server-side applications such as those
built with EJB. After all, JDBC, the grandfather of JPA, is used in everything from
large-scale real-time systems to desktop-based hacked-up prototypes. This is
exactly why JPA is completely separate from the rest of EJB 3 and usable in plain
Java SE environments.

 Entities are the session bean and MDB equivalent in the JPA world. Let’s take a
quick glance at them next, as well as the EntityManager API and the Java Persis-
tence Query Language (JPQL).

Entities
If you’re using JPA to build persistence logic of your applications, then you have to
use entities. Entities are the Java objects that are persisted into the database. Just
as session beans model processes, entities model lower-level application concepts
that high-level business processes manipulate. While session beans are the “verbs”
of a system, entities are the “nouns.” Examples include an Employee entity, a User
entity, an Item entity, and so on. Here’s another perfectly valid (and often simpler-
to-understand) way of looking at entities: they are the OO representations of the
application data stored in the database. In this sense, entities survive container
crashes and shutdown. You must be wondering how the persistence provider
knows where the entity will be stored. The real magic lies in the ORM metadata; an
entity contains the data that specifies how it is mapped to the database. You’ll see
an example of this in the next chapter. JPA entities support a full range of rela-
tional and OO capabilities, including relationships between entities, inheritance,
and polymorphism.

The EntityManager
The JPA EntityManager interface manages entities in terms of actually providing
persistence services. While entities tell a JPA provider how they map to the data-
base, they do not persist themselves. The EntityManager interface reads the
ORM metadata for an entity and performs persistence operations. The Entity-
Manager knows how to add entities to the database, update stored entities, and
delete and retrieve entities from the database. In addition, the JPA provides the
ability to handle lifecycle management, performance tuning, caching, and trans-
action management.

Getting inside EJB 19
The Java Persistence Query Language
JPA provides a specialized SQL-like query language called the Java Persistence
Query Language (JPQL) to search for entities saved into the database. With a
robust and flexible API such as JPQL, you won’t lose anything by choosing auto-
mated persistence instead of handwritten JDBC. In addition, JPA supports native,
database-specific SQL, in the rare cases where it is worth using.

 At this point, you should have a decent high-level view of the various parts
of EJB. You also know that you need an EJB container to execute session beans
and MDBs as well as a persistence provider to run your entities, so that these
components can access the services EJB 3 provides. The container, the persis-
tence provider, and the services are the central concepts in EJB 3, and we’ll
address them next.

1.3 Getting inside EJB

When you build a simple Java class, you need a Java Virtual Machine (JVM) to exe-
cute it. In a similar way (as you learned in the previous section) to execute session
beans and MDBs you need an EJB container, and to run your entities you need a
persistence provider. In this section we give you a bird’s-eye view of containers
and persistence providers and explain how they are related.

 In the Java world, containers aren’t just limited to the realm of EJB 3. You’re
probably familiar with a web container, which allows you to run web-based appli-
cations using Java technologies such as servlets, JSP, or JSF. A Java EE container is
an application server solution that supports EJB 3, a web container, and other
Java EE APIs and services. BEA WebLogic Server, Sun Microsystems’s GlassFish,
IBM WebSphere, JBoss Application Server, and Oracle Application Server 10g are
examples of Java EE containers. The relationship between the Java EE container,
web container, EJB container, and JPA persistence provider is shown in figure 1.7.

 If you install a Java EE–compliant application server such as GlassFish, it will
contain a preconfigured web container, EJB container, and a JPA provider. How-
ever, some vendors and open source projects may provide only a web container
such as Tomcat or an EJB 3–compliant persistence provider such as Hibernate.
These containers provide limited functionality compared to what you get with a
complete Java EE 5 container.

 In this section, we’ll focus on how the EJB container and the persistence pro-
vider work, and we’ll finish with a more complete discussion of EJB services. First,
let’s tackle the EJB container.

20 CHAPTER 1
What’s what in EJB 3
1.3.1 Accessing EJB services: the EJB container

Think of the container as simply an extension of the basic idea of a JVM. Just
as the JVM transparently manages memory on your behalf, the container trans-
parently provides EJB component services such as transactions, security man-
agement, remoting, and web services support. As a matter of fact, you might
even think of the container as a JVM on steroids, whose purpose is to execute
EJBs. In EJB 3, the container provides services applicable to session beans and
MDBs only. The task of putting an EJB 3 component inside a container is called
deployment. Once an EJB is successfully deployed in a container, it can be used
in your applications.

 The persistence provider is the container counterpart in JPA. We’ll briefly talk
about it next.

1.3.2 Accessing JPA services: the persistence provider

In section 1.2.3, we mentioned that the persistence provider’s job is to provide
standardized JPA services. Let’s explore how it does that. Instead of following the
JVM-like container model, JPA follows a model similar to APIs, like JDBC. JPA pro-
vides persistence services such as retrieving, adding, modifying, and deleting JPA
entities when you explicitly ask for them by invoking EntityManager API methods.

 The “provider” terminology comes from APIs such as JDBC and JNDI too. If
you’ve worked with JDBC, you know that a “provider” is essentially the vendor
implementation that the JDBC API uses under the covers. Products that provide
JPA implementation are persistence providers or persistence engines. JBoss Hibernate
and Oracle TopLink are two popular JPA providers.

Figure 1.7 Java EE container typically contains web and EJB containers and a persistence provider.
The stateless session bean (Credit Check EJB) and stateful session bean (Cart EJB) are deployed and
run in the EJB container. Entities (Customer and Catalog) are deployed and run within an EJB
persistence provider and can be accessed by either web or EJB container components.

Getting inside EJB 21
 Since JPA is completely pluggable and separable, the persistence provider and
container in an EJB 3 solution need not come from the same vendor. For exam-
ple, you could use Hibernate inside a BEA WebLogic container if it suits you bet-
ter, instead of the Kodo implementation WebLogic ships with.

 But without services, what good are containers? In the next section, we explore
the services concept critical to EJB.

1.3.3 Gaining functionality with EJB services

The first thing that should cross your mind while evaluating any technology is
what it really gives you. What’s so special about EJB? Beyond a presentation-layer
technology like JSP, JSF, or Struts, couldn’t you create your web application using
just the Java language and maybe some APIs like JDBC for database access? The
plain answer is that you could—if deadlines and cutthroat competition were not
realities. Indeed, before anyone dreamed up EJB this is exactly what people did.
What the resulting long hours proved is that you tend to spend a lot of time solv-
ing very common system-level problems instead of focusing on the real business
solution. These bitter experiences emphasized the fact that there are common
solutions that can be reused to solve common development problems. This is
exactly what EJB brings to the table.

 EJB is a collection of “canned” solutions to common server application devel-
opment problems as well as a roadmap to common server component patterns.
These “canned” solutions, or services, are provided by either the EJB container or
the persistence provider. To access those services, you build the application com-
ponents and deploy them into the container. Most of this book will be spent
explaining how you can exploit EJB services.

 In this section, we briefly introduce some of the services EJB offers. Obviously,
we can’t explain the implementation details of each service in this section. Nei-
ther is it necessary to cover every service EJB offers right now. Instead, we briefly
list the major EJB 3 services in table 1.1 and explain what they mean to you from
a practical perspective. This book shows you how to use each of the services
shown in table 1.1 in your application.

 Despite its robust features, one of the biggest beefs people had with EJB 2 was
that it was too complex. It was clear that EJB 3 had to make development as sim-
ple as possible instead of just continuing to add additional features or services. If
you have worked with EJB 2 or have simply heard or read that it is complex, you
should be curious as to what makes EJB 3 different. Let’s take a closer look.

22 CHAPTER 1
What’s what in EJB 3
Table 1.1 Major EJB 3 component services and why they are important to you. The persistence
services are provided by the JPA provider.

Service Applies To What It Means for You

Integration Session
beans and
MDBs

Helps glue together components, ideally through simple configuration
instead of code. In EJB 3, this is done through dependency injection
(DI) as well as lookup.

Pooling Stateless
session
beans, MDBs

For each EJB component, the EJB platform creates a pool of component
instances that are shared by clients. At any point in time, each pooled
instance is only allowed to be used by a single client. As soon as an
instance is finished servicing a client, it is returned to the pool for reuse
instead of being frivolously discarded for the garbage collector to reclaim.

Thread-safety Session
beans and
MDBs

EJB makes all components thread-safe and highly performant in ways
that are completely invisible. This means that you can write your server
components as if you were developing a single-threaded desktop
application. It doesn’t matter how complex the component itself is;
EJB will make sure it is thread-safe.

State
management

Stateful
session beans

The EJB container manages state transparently for stateful components
instead of having you write verbose and error-prone code for state man-
agement. This means that you can maintain state in instance variables
as if you were developing a desktop application. EJB takes care of all
the details of session maintenance behind the scenes.

Messaging MDBs EJB 3 allows you to write messaging-aware components without hav-
ing to deal with a lot of the mechanical details of the Java Messaging
Service (JMS) API.

Transactions Session
beans and
MDB

EJB supports declarative transaction management that helps you add
transactional behavior to components using simple configuration
instead of code. In effect, you can designate any component method
to be transactional. If the method completes normally, EJB commits
the transaction and makes the data changes made by the method per-
manent. Otherwise the transaction is rolled back.

Security Session
beans

EJB supports integration with the Java Authentication and Authoriza-
tion Service (JAAS) API, so it is very easy to completely externalize
security and secure an application using simple configuration instead
of cluttering up your application with security code.

Interceptors Session
beans and
MDBs

EJB 3 introduces AOP in a very lightweight, accessible manner using
interceptors. This allows you to easily separate out crosscutting con-
cerns such as logging, auditing, and so on in a configurable way.

Remote
access

Session
beans

In EJB 3, you can make components remotely accessible without writ-
ing any code. In addition, EJB 3 enables client code to access remote
components as if they were local components using DI.

continued on next page

Renaissance of EJB 23
1.4 Renaissance of EJB

Software is organic. Much like carbon-based life forms, software grows and
evolves. Features die. New features are born. Release numbers keep adding up
like the rings of a healthy tree. EJB is no exception to the rule of software evolu-
tion. In fact, as far as technologies go, the saga of EJB is more about change than
it is about stagnation. Only a handful of other technologies can boast the robust
metamorphosis and continuous improvements EJB has pulled off.

 It’s time to catch a glimpse of the new incarnation of EJB, starting with an
example of a simple stateless session bean and then revealing the features
changes that make EJB an easy-to-use development tool.

 To explore the new features of EJB 3, we’ll be pointing out some of the prob-
lems associated with EJB 2. If you are not familiar with EJB 2, don’t worry—the
important thing to remember is how the problems have been resolved in EJB 3.

 The problems associated with EJB 2 have been widely discussed. In fact, there
have been entire books, such as Bitter EJB (Manning Publications, 2003) written
about this topic. Chris Richardson in POJOs in Action rightfully identified the
amount of sheer code you had to write to build an EJB:

You must write a lot of code to implement an EJB—You must write a home inter-
face, a component interface, the bean class, and a deployment descriptor, which
for an entity bean can be quite complex. In addition, you must write a number
of boilerplate bean class methods that are never actually called but that are
required by the interface the bean class implements. This code isn’t conceptually
difficult, but it is busywork that you must endure.

Web services Stateless ses-
sion beans

EJB 3 can transparently turn business components into robust web
services with minimal code change.

Persistence Entities Providing standards-based, 100 percent configurable automated per-
sistence as an alternative to verbose and error-prone JDBC/SQL code
is a principal goal of the EJB 3 platform.

Caching and
performance

Entities In addition to automating persistence, JPA transparently provides a
number of services geared toward data caching, performance optimi-
zation, and application tuning. These services are invaluable in sup-
porting medium to large-scale systems.

Table 1.1 Major EJB 3 component services and why they are important to you. The persistence
services are provided by the JPA provider. (continued)

Service Applies To What It Means for You

24 CHAPTER 1
What’s what in EJB 3
In this section, we’d like to walk through some of those points and show you how
they have been resolved in EJB 3. As you will see, EJB 3 specifically targets the
thorniest issues in EJB 2 and solves them primarily through bold adoption and
clever adaptation of the techniques widely available in popular open source solu-
tions such as Hibernate and Spring. Both of which have passed the “market incu-
bation test” without getting too battered. In many ways, this release primes EJB
for even further innovations by solving the most immediate problems and creat-
ing a buffer zone for the next metamorphosis.

 But first, let’s look at a bit of code. You will probably never use EJB 2 for build-
ing simple applications such as Hello World. However, we want to show you a sim-
ple EJB implementation of the ubiquitous Hello World developed using EJB 3.
We want you to see this code for a couple reasons: first, to demonstrate how sim-
ple developing with EJB 3 really is, and second, because this will provide context
for the discussions in the following sections and make them more concrete.

1.4.1 HelloUser Example

Hello World examples have ruled the world since they first appeared in The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice Hall
PTR, 1988). Hello World caught on and held ground for good reason. It is very
well suited to introducing a technology as simply and plainly as possible. While
almost every technology book starts with a Hello World example, to keep things
lively and relevant we plan to deviate from that rule and provide a slightly differ-
ent example.

 In 2004, one of the authors, Debu, wrote an article for the TheServerSide.com
in which he stated that when EJB 3 was released, it would be so simple you could
write a Hello World in it using only a few lines of code. Any experienced EJB 2
developer knows that this couldn’t be accomplished easily in EJB 2. You had to
write a home interface, a component interface, a bean class, and a deployment
descriptor. Well, now that EJB 3 has been finalized, let’s see if Debu was right in
his prediction (listing 1.1).

 package ejb3inaction.example;
public interface HelloUser {
 public void sayHello(String name);
}

package ejb3inaction.example;
import javax.ejb.Stateless;

Listing 1.1 HelloUser Session bean

 b HelloUser POJI

Renaissance of EJB 25
@Stateless
public class HelloUserBean implements HelloUser {
 public void sayHello(String name) {
 System.out.println("Hello " + name + " welcome to EJB 3!");
 }
}

Listing 1.1 is indeed a complete and self-contained example of a working EJB!
Note that for simplicity we have kept both the interface and class as part of the
same listing. As you can see, the EJB does not look much more complex than your
first Java program. The interface is a plain old Java interface (POJI) b and the
bean class is a plain old Java object (POJO) D. The funny @Stateless symbol in
listing 1.1 is a metadata annotation C that converts the POJO to a full-powered
stateless EJB. If you are not familiar with metadata annotations, we explore them
in chapter 2. In effect, they are “comment-like” configuration information that
can be added to Java code.

 To execute this EJB, you have to deploy it to the EJB container. If you want
to execute this sample, download the zip containing code examples from www.
manning.com/panda and follow the online instructions to deploy and run it in
your favorite EJB container.

 However, don’t worry too much about the details of this code right now; it’s
just a simple illustration. We’ll dive into coding details in the next chapter. Our
intent for the Hello World example is to use it as a basis for discussing how EJB 3
addresses the thorniest issues that branded EJB 2 as ponderous.

 Let’s move on now and take a look at what has transformed the EJB elephant
into the EJB cow.

1.4.2 Simplified programming model

We heartily agree with Chris Richardson’s quote: one of the biggest problems
with EJB 2 was the sheer amount of code you needed to write in order to imple-
ment an EJB.

 If we had attempted to produce listing 1.1 as an EJB 2 example, we would
have had to work with several classes and interfaces just to produce the simple
one-line output. All of these classes and interfaces had to either implement or
extend EJB API interfaces with rigid and unintuitive constraints such as throw-
ing java.rmi.RemoteException for all methods. Implementing interfaces like
javax.ejb.SessionBean for the bean implementation class was particularly time
consuming since you had to provide an implementation for lifecycle callback

 C Stateless annotation
 D HelloUserBean POJO

26 CHAPTER 1
What’s what in EJB 3
methods like ejbCreate, ejbRemove, ejbActivate, ejbPassivate, and setSession-
Context, whether or not you actually used them. In effect, you were forced to
deal with several mechanical steps to accomplish very little. IDE tools like
JBuilder, JDeveloper, and WebSphere Studio helped matters a bit by automating
some of these steps. However, in general, decent tools with robust support were
extremely expensive and clunky.

 As you saw in listing 1.1, EJB 3 enables you to develop an EJB component
using POJOs and POJIs that know nothing about platform services. You can then
apply configuration metadata, using annotations, to these POJOs and POJIs to
add platform services such as remoteability, web services support, and lifecycle
callbacks only as needed.

 The largely redundant step of creating home interfaces has been done away
with altogether. In short, EJB service definitions have been moved out of the type-
safe world of interfaces into deploy and runtime configurations where they are
suited best. A number of mechanical steps that were hardly ever used have now
been automated by the platform itself. In other words, you do not have to write a
lot of code to implement an EJB!

1.4.3 Annotations instead of deployment descriptors

In addition to having to write a lot of boilerplate code, a significant hurdle in
managing EJB 2 was the fact that you still had to do a lot of XML configuration for
each component. Although XML is a great mechanism, the truth is that not every-
one is a big fan of its verbosity, poor readability, and fragility.

 Before the arrival of Java 5 metadata annotations, we had no choice but to use
XML for configuration. EJB 3 allows us to use metadata annotations to configure a
component instead of using XML deployment descriptors. As you might be able
to guess from listing 1.1, besides eliminating verbosity, annotations help avoid
the monolithic nature of XML configuration files and localize configuration to the
code that is being affected by it. Note, though, you can still use XML deployment
descriptors if they suit you better or simply to supplement annotations. We’ll talk
more about this in chapter 2.

 In addition to making the task of configuration easier, EJB 3 reduces the total
amount of configuration altogether by using sensible defaults wherever possible.
This is especially important when you’re dealing with automated persistence
using ORM, as you’ll see in chapters 7, 8, 9, and 10.

Renaissance of EJB 27
1.4.4 Dependency injection vs. JNDI lookup

One of the most tedious parts of EJB 2 development was writing the same few
lines of boilerplate code many times to do a JNDI lookup whenever you needed to
access an EJB or a container-managed resource, such as a pooled database con-
nection handle. In POJOs in Action, Chris Richardson sums it up well:

A traditional J2EE application uses JNDI as the mechanism that one compo-
nent uses to access another. For example, the presentation tier uses a JNDI
lookup to obtain a reference to a session bean home interface. Similarly, an EJB
uses JNDI to access the resources that it needs, such as a JDBC DataSource. The
trouble with JNDI is that it couples application code to the application server,
which makes development and testing more difficult.

In EJB 3, JNDI lookups have been turned into simple configuration using meta-
data-based dependency injection (DI). For example, if you want to access the
HelloUser EJB that we saw in listing 1.1 from another EJB or servlet, you could
use code like this:

...
@EJB
private HelloUser helloUser;

void hello(){
 helloUser.sayHello("Curious George");
}
...

Isn’t that great? The @EJB annotation transparently “injects” the HelloUser EJB
into the annotated variable. EJB 3 dependency injection essentially gives you a
simple abstraction over a full-scale enterprise JNDI tree. Note you can still use
JNDI lookups where they are unavoidable.

1.4.5 Simplified persistence API

A lot of the problems with the EJB 2 persistence model were due to the fact that it
was applying the container paradigm to a problem for which it was ill suited. This
made the EJB 2 entity bean programming model extremely complex and unintu-
itive. Enabling remote access was one of the prime motivators behind making
entity beans container-managed. In reality, very few clients made use of this fea-
ture because of performance issues, opting to use session beans as the remote
access point.

28 CHAPTER 1
What’s what in EJB 3
 Undoubtedly entity beans were easily the worst part of EJB 2. EJB 3 solves
the problem by using a more natural API paradigm centered on manipulating
metadata-based POJOs through the EntityManager interface. Moreover, EJB 3
entities do not carry the unnecessary burden of remote access.

 Another limitation with EJB 2 was that you couldn’t send an EJB 2 entity bean
across the wire in different tiers. EJB developers discovered an anti-pattern for
this problem: adding another layer of objects—the data transfer objects (DTOs).
Chris sums it up nicely:

You have to write data transfer objects—A data transfer object (DTO) is a dumb
data object that is returned by the EJB to its caller and contains the data the
presentation tier will display to the user. It is often just a copy of the data from
one or more entity beans, which cannot be passed to the presentation tier
because they are permanently attached to the database. Implementing the
DTOs and the code that creates them is one of the most tedious aspects of
implementing an EJB.

Because they are POJOs, entities can be transferred between different tiers with-
out having to resort to anti-patterns such as data transfer objects.

 The simplification of the persistence API leads to several other benefits, such
as standardization of persistence frameworks, a separable persistence API that
can be used outside EJB container, and better support of object-oriented features
such as inheritance and polymorphism. We’ll see EJB 3 persistence in action in
chapter 2, but now let’s take a close look at some of the main features of the per-
sistence API.

Standardized persistence
One of the major problems with EJB 2 entity beans was that ORM was never stan-
dardized. EJB 2 entity beans left the details of database mapping configuration to
the provider. This resulted in entity beans that were not portable across container
implementations. The EJB 2 query mechanism, EJB-QL, had a similar unfinished
feel to it. These standardization gaps have in effect given rise to highly divergent
alternative ORM paradigms like Hibernate, Oracle TopLink, and JDO.

 A major goal of JPA is to close the standardization gaps left by EJB 2. EJB 3
solidifies automated persistence with JPA in three distinct ways. First, it provides a
robust ORM configuration set capable of handling most automated persistence
complexities. Second, the Java Persistence Query Language (JPQL) significantly
improves upon EJB-QL, standardizing divergent OR query technologies. Third,

Renaissance of EJB 29
the EntityManager API standardizes ORM CRUD operations. But standardization
isn’t the only benefit of the simplified API: another great feature is that it can run
outside the container.

The cleanly separated Java Persistence API
As we touched on in section 1.2.3, API persistence isn’t just a solution for server-
side applications. Persistence is a problem that even a standalone Swing-based
desktop application has to solve. This is the realization that drove the decision to
make JPA a cleanly separated API in its own right, that can be run outside an EJB 3
container. Much like JDBC, JPA is intended to be a general-purpose persistence
solution for any Java application. This is a remarkably positive step in expanding
the scope of EJB 3 outside the traditional realm of server applications.

Better persistence-tier OO support
Because EJB 2 entity beans were record oriented, they didn’t support rich OO fea-
tures like inheritance and polymorphism, and they didn’t permit the mixing of
persistent state and domain logic. As you saw in section 1.1.3, this made it impos-
sible to model the domain layer in DDD architecture.

 EJB 3 entities have robust OO support, not just because they are POJOs but also
because the JPA ORM mapping scheme is designed with OO in mind. JPQL has
robust support for OO as well. Getting impatient to learn more about JPA? Stick
with us and we’ll have many discussions on JPA throughout the book; part 3 is
devoted to discussions on JPA.

 Test-driven development has become quite popular because it can dramati-
cally improve performance of software applications. Let’s see how EJB 3 improves
the testability of applications.

1.4.6 Unit-testable POJO components

Being able to unit-test component state or logic in response to simulated input is
a critical technique in increasing code quality. In EJB 2, only functional testing of
components was possible since components had to be deployed to the container
to be executed. While functional testing simulating user interactions with the sys-
tem is invaluable, it is not a good substitute for lower-level unit testing.

 Because all EJB 3 components are POJOs, they can easily be executed outside
the container. This means that it is possible to unit-test all component business
logic using testing frameworks such as JUnit or TestNG.

 These are just the primary changes to EJB 3; there are many more that we’ll
cover throughout the book.

30 CHAPTER 1
What’s what in EJB 3
 Just in case you thought you had to choose between Spring and EJB 3, we
thought we’d mention why they don’t necessarily need to be regarded as compet-
ing technologies.

1.4.7 EJB 3 and Spring

As we mentioned earlier, EJB 3 and Spring are often seen as competitors; how-
ever, if you look more closely, you can see that they can also be complementary.
Spring has some particularly strong points: support for inversion of control (IoC)
for components with simple lifecycles such as singletons; feature-heavy (but
slightly more complex) aspect-oriented programming (AOP) support; a number
of simple interfaces such as JDBCTemplate and JMSTemplate utilizing common
usage patterns of low-level Java EE APIs; and so on.

 EJB 3, on the other hand, provides better support for transparent state man-
agement with stateful session beans, pooling, thread-safety, robust messaging
support with MDBs, integrated support for distributed transaction management,
standardized automated persistence through JPA, and so on.

 From a levelheaded, neutral point of view, EJB 3 and Spring can be comple-
mentary technologies. The good news is that parts of both the Spring and Java EE
communities are working diligently to make Spring/EJB 3 integration a reality.
This is particularly good news if you have a significant investment in Spring but
want to utilize the benefits of EJB 3. We’ll talk about Spring/EJB 3 integration in
more detail in chapter 16. However, we’d like to list the possibilities now.

Treating EJB 3 business-tier components as Spring beans
It is possible to treat EJB 3 business-tier components as Spring beans. This trans-
lates into an architecture shown in figure 1.8. In this architecture, Spring is used
for gluing together the application that contains EJB 3 business-tier components.

 The Spring Pitchfork project, part of Spring 2, is meant to make such an
integration scenario completely transparent. The Spring framework plans to

Figure 1.8
Spring/EJB 3 integration strategy. It is
possible to use EJB 3 business-tier
components as if they were Spring beans.
This allows you to use the complementary
strengths of both technologies in a
“hybrid” fashion.

Renaissance of EJB 31
support EJB 3 annotation metadata specifying stateless session beans, intercep-
tors, resource injection, and so on.

Integrating the JPA into Spring
Suppose that you find Spring is a good fit for your business-tier needs and you
simply want to standardize your persistence layer. In this case, it is easy to inte-
grate JPA directly into Spring, much like Spring/Hibernate or Spring/JDO inte-
gration. This scheme is shown in figure 1.9.

In addition to using Spring with JPA, you may find yourself in a situation where
you would like to use both Spring and EJB 3 session beans together. Let’s examine
the possibilities of such integration.

Using Spring interfaces inside EJB 3 components
Yet another interesting idea is to use some of the Spring interfaces like JDBC-
Template and JMSTemplate or even Spring beans inside EJB 3 components. You
can do this either through direct instantiation or access through the Spring appli-
cation context. Container vendors like JBoss, Oracle, and BEA are working to pro-
vide seamless support for integrating Spring beans into session beans and MDBs.
This kind of integration is visualized in figure 1.10. We’ll discuss combining the
power of EJB 3 and Spring in chapter 16.

Figure 1.9
Spring/JPA integration. Because JPA is a
cleanly separable API, you can integrate
Spring with JPA just as you would
integrate Hibernate.

Figure 1.10
In certain cases, it might be a good idea
to use Spring from EJB 3. Although it is
possible to do so today, such support is
likely to be much better in the future.

32 CHAPTER 1
What’s what in EJB 3
1.5 Summary

You should now have a good idea of what EJB 3 is, what it brings to the table, and
why you should consider using it to build server-side applications. We gave you an
overview of the new features in EJB 3, including these important points:

■ EJB 3 components are POJOs configurable through simplified meta-
data annotations.

■ Accessing EJBs from client applications has become very simple using
dependency injection.

■ EJB 3 standardizes the persistence with the Java Persistence API, which
defines POJO entities that can be used both inside and outside the container.

We also provided a taste of code to show how EJB 3 addresses development pain
points that were inherent with EJB 2, and we took a brief look at how EJB 3 can be
used with Spring.

 Armed with this essential background, you are probably eager to look at more
code. We aim to satisfy this desire, at least in part, in the next chapter. Get ready
for a whirlwind tour of the entire EJB 3 API that shows just how easy the code
really is.

A first taste of EJB
This chapter covers
■ Metadata annotations
■ Dependency injection
■ The ActionBazaar application
■ Code examples of session beans, MDBs,

and entities
33

34 CHAPTER 2
A first taste of EJB
In this age of hyper-competitiveness, learning a new technology by balancing a
book on your lap while hacking away at a business problem on the keyboard has
become the norm. Let’s face it—somewhere deep down you probably prefer this
“baptism by fire” to trudging the same old roads over and over again. This chap-
ter is for the brave pioneer in all of us, eager to peek over the horizon into the
new world of EJB 3.

 The first chapter gave you a 20,000-foot view of the EJB 3 landscape from on
board a hypersonic jet. We defined EJB, described the services it offers as well as
the EJB 3 architectural vision, and listed the different parts of EJB 3. This chapter
is a low-altitude fly-over with a reconnaissance airplane. Here, we’ll take a quick
look at the code for solving a realistic problem using EJB 3. The example solution
will use all of the EJB 3 components types, a layered architecture, and some of the
services we discussed in chapter 1.

 EJB 3 offers a wide range of features and services. To keep things sane, the
examples in this chapter are designed to show you the high-level features and ser-
vices of EJB 3, and to introduce you to the major players: the beans and clients.
Thanks to the almost invisible way most EJB 3 services are delivered, this is pretty
easy to do. You’ll see exactly how easy and useful EJB 3 is and how quickly you could
pick it up.

 We start by covering some basic concepts necessary for understanding the
examples, and then we introduce the application that runs throughout the book:
ActionBazaar. In the rest of the chapter, we illustrate each EJB type with an example
from the ActionBazaar application. We implement business logic with session
beans and then we add the power of asynchronous messaging by adding a message-
driven bean (MDB). Finally you’ll discover the most powerful innovation of EJB 3
by looking at a simple example of a Java Persistence API (JPA) entity.

 If you aren’t a big fan of views from heights, don’t worry too much. Think of
this chapter as that first day at a new workplace, shaking hands with the
stranger in the next cubicle. In the chapters that follow, you’ll get to know more
about your new coworkers’ likes, dislikes, and eccentricities; and you’ll learn how
to work around these foibles. All you are expected to do right now is put names
to faces.

NOTE In the examples in this chapter, we won’t explore the solutions beyond
what is necessary for discussing the EJB 3 component types but will leave
some of it for you as a brainteaser. If you want to, you can peek at the entire
solution by downloading the zip containing code examples file from
www.manning.com/panda. In fact, we highly recommend that you follow

New features: simplifying EJB 35
the tutorial on the site to set up your development environment using the
code. That way, you can follow along with us and even tinker with the code
on your own—including running it inside a container.

EJB 3 is a fundamental paradigm shift from previous versions. A number of inno-
vations, some familiar and some unfamiliar, make this paradigm shift possible. A
good place to start this chapter is with an exploration of three of the most impor-
tant innovations.

2.1 New features: simplifying EJB

There are three primary sources of complexities in EJB 2: the heavyweight pro-
gramming model, direct use of the Java Naming Directory Interface (JNDI), and
a verbose XML deployment descriptor. Three primary techniques in EJB 3 elim-
inate these sources of complexity: metadata annotations, minimal deployment
descriptors, and dependency injection. In the following sections, we introduce
all three of these major innovations that make developing EJB 3 as quick and
easy as possible. Let’s begin by looking at how annotations and deployment
descriptors work.

2.1.1 Replacing deployment descriptors with annotations

Service configuration using Java metadata annotations is easily the most impor-
tant change in EJB 3. As you’ll see throughout the book, annotations simplify the
EJB programming model, remove the need for detailed deployment descriptors,
and act as an effective delivery mechanism for dependency injection.

 In the next few years, it’s likely that annotations will play a greater role in
improving Java Standard Edition (SE) and Java Enterprise Edition (EE) usability
by leaps and bounds. In case you aren’t familiar with the metadata annotation
facility added in Java SE 5.0, let’s review it first.

Java metadata annotations: a brief primer
Annotations essentially allow us to “attach” additional information (officially called
attributes) to a Java class, interface, method, or variable. The additional informa-
tion conveyed by annotations can be used by a development environment like
Eclipse, the Java compiler, a deployment tool, a persistence provider like Hiber-
nate, or a runtime environment like the Java EE container. Another way to think
about annotations is that they are “custom” Java modifiers (in addition to private,
public, static, final, and so on) that can be used by anything handling Java
source or byte code. This is how annotations look:

36 CHAPTER 2
A first taste of EJB
import mypackage.Author;

@Author("Debu Panda, Reza Rahman and Derek Lane")
public class EJB3InAction implements ManningBook

The @Author symbol is the annotation. It essentially tells whoever is using the
EJB3InAction Java class that the authors are Debu Panda, Reza Rahman, and
Derek Lane. More interestingly, it adds this bit of extra information about the
class without forcing us to implement an interface, extend a class, or add a mem-
ber variable or method. Since an annotation is a special kind of interface, it must
be imported from where it is defined. In our case, the @Author annotation is
defined in the mypackage.Author.class file. This is all there is to making the com-
piler happy. The runtime environment decides how the @Author annotation
should be used. For example, it could be used by the Manning website engine to
display the author names for this book.

 Like many of the Java EE 5.0 innovations, annotations have humble begin-
nings. The @ character is a dead giveaway to the grandparent of annotations—
JavaDoc tags. The next step in the evolution of the annotation from the lumber-
ing caveman JavaDoc tag was the XDoclet tool. If you’ve done a significant
amount of work with EJB 2, you are likely already familiar with XDoclet. XDoclet
acted as a source code preprocessor that allowed to you to process custom Java-
Doc tags and do whatever you needed to do with the tagged source code, such as
generate PDF documentation, additional source code, or even EJB 2 deployment
descriptors. XDoclet referred to this paradigm as attribute-oriented programming. In
case you’re curious, you can find out more about XDoclet at http://xdoclet.source-
forge.net/xdoclet/index.html.

 The sleek new annotation facility essentially makes attribute-oriented pro-
gramming a core part of the Java language. Although this is entirely possible, it is
probably unlikely you’ll be creating your own annotations. If your inner geek just
won’t leave you alone, feel free to explore Jason Hunter’s article, Making the Most
of Java’s Metadata (www.oracle.com/technology/pub/articles/hunter_meta.html).
You can find out more about annotations in general at http://java.sun.com/j2se/
1.5.0/docs/guide/language/annotations.html.

 Note that, just like anything else, annotations and attribute-oriented program-
ming have a few weaknesses. Specifically, it isn’t always a good idea to mix and
match configuration with source code such as annotations. This means that you
would have to change source code each time you made a configuration change to
something like a database connection resource or deployment environment entry.

New features: simplifying EJB 37
EJB 3 solves this problem by allowing you to override annotations with XML
deployment descriptors where appropriate.

Know your deployment descriptor
A deployment descriptor is simply an XML file that contains application configura-
tion information. Every deployment unit in Java EE can have a deployment
descriptor that describes its contents and environment. Some typical examples of
deployment units are the Enterprise Archive (EAR), Web Application Archive
(WAR), and the EJB (ejb-jar) module. If you have ever used EJB 2, you know how
verbose the XML (ejb-jar.xml) descriptor was. Most elements were required even
if they were trivial. This added to the complexity of using EJB. For example, you
could have had the following deployment descriptor for the HelloUserBean that
we saw in chapter 1:

<enterprise-beans>
 <session>
 <ejb-name>HelloUserBean</ejb-name>
 <local>ejb3inaction.example.Hello</local>
 <ejb-class>ejb3inaction.example.HelloUserBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
</enterprise-beans>

We’ll discuss deployment descriptors in greater detail when we talk about EJB
packaging in chapter 11. The good news is that EJB 3 makes deployment descrip-
tors completely optional. You can now use metadata annotations instead of
descriptor entries, thus making the development experience much simpler. Note
that we’ll primarily use annotations throughout this book. This is not because we
think deployment descriptors are unimportant or outdated, but because concepts
are more easily explained using annotations. As a matter of fact, although deploy-
ment descriptors involve dealing with often confusing and verbose XML, we think
they can be an excellent mechanism for separating coding concerns from deploy-
ment and configuration concerns. With this fact in mind, we present the deploy-
ment descriptor counterparts for each of the annotations described in the
chapter (and more) in appendix D.

 You can use deployment descriptor entries only for corner cases where you
need them. (A corner case is a problem or situation that occurs only outside normal
operating parameters.)

38 CHAPTER 2
A first taste of EJB
Mixing annotations and deployment descriptors
Annotations and descriptors are not mutually exclusive. In fact, in EJB 3 they’re
designed for harmonious coexistence. Deployment descriptor entries override
configuration values hard-coded into EJB components. As an example, we could
override the @Author annotation we just introduced with the following imaginary
deployment descriptor:

<ManningBooks>
 <ManningBook>
 <BookClass>EJB3InAction</BookClass>
 <Author>Larry, Moe and Curly</Author>
 </ManningBook>
</ManningBooks>

At runtime, the Manning website engine would detect that the authors of the
EJB3InAction book really are Larry, Moe, and Curly, and not Debu Panda, Reza
Rahman, and Derek Lane.

 This is an invaluable feature if you develop enterprise applications that can be
deployed to a variety of environments. In the simplest case, the differing environ-
ments could be a test and a production server. In the most complex case, you
could be selling shrink-wrapped enterprise applications deployed to an unknown
customer environment. The most obvious way of mixing and matching annota-
tion and XML metadata is to use XML for deployment environment–specific con-
figurations while using annotations for everything else. If you really don’t like
annotations, that’s fine too. You can avoid using them completely in favor of XML
deployment descriptors. We’ll primarily focus on annotations rather than deploy-
ment descriptors in this book simply because they are so much more intuitive to
look at and explain.

Common metadata annotations
Obviously, EJB defines its own set of standard annotations. We’ll be discussing
these annotations throughout this book.

 During the course of developing Java EE 5.0, it became apparent that the Java
EE container as a whole could use some of the annotations geared toward EJB 3.
In particular, these annotations are extremely useful in integrating EJB with the
web/servlet tier. Some of these annotations were separated out of the EJB 3 spec
and christened common metadata annotations. These annotations are a core part of
what makes EJB 3 development, including dependency injection, easy. Table 2.1
lists some of the major common metadata annotations. We’ll discuss them
throughout this part of the book, starting with some of the most fundamental
ones in this chapter.

New features: simplifying EJB 39
As you can see, dependency injection is front and center of the common meta-
data annotations, including the @Resource, @EJB, @WebServiceRef, @Persistence-
Context, and @PersistenceUnit annotations. Just as metadata annotations take
the ugliness of descriptors away from the developer’s view, dependency injection
solves the complexities surrounding manual JNDI lookups. Let’s take a look at
this concept next.

Table 2.1 Major metadata annotations introduced in Java EE. Although primarily geared toward
EJB, these annotations apply to Java EE components such as servlets and JSF managed beans as
well as application clients. Annotations defined in the javax.annotation.* package are defined
by the Common Metadata Annotations API (JSR-250).

Annotations Usage
Components That

Can Use Them

javax.annotation.Resource Dependency injection of
resources such as Data-
Source, JMS objects, etc.

EJB, web,
application client

javax.ejb.EJB Dependency injection of
session beans

EJB, web,
application client

javax.jws.WebServiceRef Dependency injection of
web services

EJB, web,
application client

javax.persistence.PersistenceContext Dependency injection
of container-managed
EntityManager

EJB, web

javax.persistence.PersistenceUnit Dependency injection of
EntityManagerFactory

EJB, web

javax.annotation.PostConstruct Lifecycle method EJB, web

javax.annotation.PreDestroy Lifecycle method EJB, web

javax.annotation.security.RunAs Security EJB, web

javax.annotation.security.
RolesAllowed

Security EJB

javax.annotation.security.PermitAll Security EJB

javax.annotation.security.DenyAll Security EJB

javax.annotation.security.
DeclareRoles

Security EJB, web

40 CHAPTER 2
A first taste of EJB
2.1.2 Introducing dependency injection

Almost every component uses another component or resource to implement
functionality. The primary goal of dependency injection (DI) is to make compo-
nent interdependencies as loosely coupled as possible. In real terms, this means
that one component should call another component or resource only through an
interface and that components and resources should be glued together using
configuration instead of code. As a result, component implementations can easily
be swapped out as necessary simply by reconfiguring the application.

 If you’ve used JNDI extensively in EJB 2, you’ll appreciate how much this
means. We won’t talk about JNDI very much here since in most cases you can get
away without knowing anything about it. If you don’t know about JNDI and are
curious to learn more, we discuss it in some length in appendix A. Figure 2.1
shows the difference between manual JNDI lookups and DI.

 In a sense, injection is lookup reversed. As you can see, in the manual JNDI
lookup model, the bean explicitly retrieves the resources and components it
needs. As a result, component and resource names are hard-coded in the bean.
With DI, on the other hand, the container reads target bean configuration, figures
out what beans and resources the target bean needs, and injects them into the

Figure 2.1 When you’re using JNDI, it’s the responsibility of the client to do a lookup and obtain a
reference to the object. In EJB 3, you may think dependency injection is the opposite of JNDI. It is the
responsibility of the container to inject an object based on the dependency declaration.

Introducing the ActionBazaar application 41
bean at runtime. In the end, you write no lookup code and can easily change con-
figuration to swap out beans and resources as needed.

 In essence, DI allows you to declare component dependencies and lets the
container deal with the complexities of service or resource instantiation, initial-
ization, sequencing, and supplies the service or resource references to the clients
as required. As we work our way through the examples in this chapter, you’ll see
several places where we use DI, including @EJB to inject EJBs in section 2.3,
@Resource to inject JMS resources in section 2.4, and @PersistenceContext to
inject container-managed EntityManager in section 2.5.

NOTE Lightweight application containers like the Spring Framework and Pico-
Container popularized the idea of DI. To learn more about the roots of
DI itself, visit www.martinfowler.com/articles/injection.html. This article,
by Martin Fowler, faithfully examines the pros and cons of DI over JNDI-
style manual lookups. Since the article was written before EJB 3 was con-
ceived, you might find the discussion of EJB 2 cool as well!

Now that we’ve covered some of the most fundamental concepts of EJB 3, it is
time to warm up to code. The problem we solve in this chapter utilizes an essen-
tial element of this book—ActionBazaar. ActionBazaar is an imaginary enterprise
system around which we’ll weave most of the material in this book. In a sense, this
book is a case study of developing the ActionBazaar application using EJB 3.

 Let’s take a quick stroll around the bazaar to see what it is all about.

2.2 Introducing the ActionBazaar application

ActionBazaar is a simple online auctioning system like eBay. Sellers dust off the
treasures hidden away in basement corners, take a few out-of-focus pictures, and
post their item listings on ActionBazaar. Eager buyers get in the competitive
spirit and put exorbitant bids against each other on the hidden treasures with the
blurry pictures and misspelled descriptions. Winning bidders pay for the items.
Sellers ship sold items. Everyone is happy, or so the story goes.

 As much as we would like to take credit for it, the idea of ActionBazaar was first
introduced in Hibernate in Action by Christian Bauer and Gavin King (Manning,
2004) as the CaveatEmptor application. Hibernate in Action primary dealt with
developing the persistence layer using the Hibernate object-relational mapping
(ORM) framework. The idea was later used by Patrick Lightbody and Jason Car-
reira in WebWork in Action (Manning, 2005) to discuss the open source presenta-
tion-tier framework. We thought this was a pretty good idea to adopt for EJB 3.

42 CHAPTER 2
A first taste of EJB
 The next two parts of this book roughly follow the course of developing each
layer of the ActionBazaar application as it relates to EJB 3. We’ll use EJB 3 to
develop the business logic tier in part 2, and then the persistence tier in part 3.
We’ll deal with the presentation layer as necessary as well.

 This section will introduce you to the ActionBazaar application. We start with a
subset of the architecture of ActionBazaar, and then we’ll design a solution based
on EJB 3 and JPA. After this section, the rest of the chapter explores some of the
important features of EJB 3, using examples from the ActionBazaar application to
introduce you to the various bean types and show how they are used.

 Let’s begin by taking a look at the requirements and design of our example.

2.2.1 Starting with the architecture

For the purposes of introducing all three EJB 3 component types across the busi-
ness logic and persistence layers, let’s focus on a small subset of ActionBazaar
functionality in this chapter—starting from bidding on an item and ending with
ordering the item won. This set of application functionality is shown in figure 2.2.

 The functionality represented in figure 2.2 encompasses the “essentials” of
ActionBazaar. The major functionalities not covered are: posting an item for sale,
browsing items, and searching for items. We’ll save these pieces of functionality
for parts 2 and 3. This includes presenting the entire domain model, which we’ll

Figure 2.2 A chain of representative ActionBazaar functionality used to quickly examine a cross
section of EJB 3. The bidder bids on a desired item, wins the item, orders it, and instantaneously
receives confirmation. Parallel with order confirmation, the user is billed for the item. Upon
successful receipt of payment, the seller ships the item.

Introducing the ActionBazaar application 43
discuss in chapter 7 when we start talking about domain modeling and persis-
tence using JPA.

 The chain of actions in figure 2.2 starts with the user deciding to place a bid on
an item. Our user, Jenny, spots the perfect Christmas gift for Grandpa and quickly
puts down a starting bid of $5.00. After the timed auction ends, the highest bid-
der wins the item. Jenny gets lucky and no one else bids on the item, so she wins
it for the grand sum of $5.00. As the winning bidder, Jenny is allowed to order the
item from the seller, Joe. An order includes all the items we’ve come to expect
from online merchants—shipping information, billing details, a total bill with cal-
culated shipping and handling costs, and so on. Persuasive Jenny gets Mom to
foot the bill with her credit card and has the order shipped directly to Grandpa’s
address. Not unlike many e-businesses such as Amazon.com and eBay, ActionBa-
zaar does not make the user wait for the billing process to finish before confirming
an order. Instead, the order is confirmed as soon as it is reasonably validated and
the billing process is started in parallel in the background. Jenny gets an order
confirmation number back as soon as she clicks the Order button. Although Jenny
doesn’t realize it, the process to charge Mom’s credit card starts in the background
as she is receiving the confirmation. After the billing process is finished, both
Jenny and the seller, Joe, are sent e-mail notifications. Having been notified of the
receipt of the money for the order, Joe ships the item, just in time for Grandpa to
get it before Christmas!

 In the next section, you’ll see how the business logic and persistence compo-
nents for this set of actions can be implemented using EJB 3. Before peeking at
the solution diagram in the next section, you should try to visualize how the com-
ponents might look with respect to an EJB-based layered architecture. How do
you think session beans, MDBs, entities, and the JPA API fit into the picture, given
our discussion? Chances are, with the probable exception of the messaging com-
ponents, your design will closely match ours.

2.2.2 An EJB 3–based solution

Figure 2.2 shows how the ActionBazaar scenario in the previous section can be
implemented using EJB 3 in a traditional four-tier layering scheme. For our
purposes, the presentation tier is essentially an amorphous blob that generates
business-tier requests in response to user actions. If you examine the scenario in
figure 2.2, you’ll see that only two processes are triggered by the user—adding a
bid to an item and ordering items won. One more process might be apparent:
the background billing process to charge the order, triggered by order confir-
mation. If you guessed that the billing process is triggered through a message,

44 CHAPTER 2
A first taste of EJB
you guessed right. As you can see in figure 2.3, the bidding and ordering proc-
esses are implemented as session beans (PlaceBidBean and PlaceOrderBean) in
the business logic tier. On the other hand, the billing process is implemented as
an MDB (OrderBillingMDB) since it is triggered by a message sent from the
PlaceOrderBean instead of a direct user request.

 All three of the processes persist data. The PlaceBidBean needs to add a bid
record to the database. Similarly, the PlaceOrderBean must add an order record.
Alternatively, the OrderBillingMDB updates the order record to reflect the results
of the billing process. These database changes are performed through two enti-
ties in the JPA-managed persistence tier—the Bid and Order entities. While the
PlaceBidBean uses the Bid entity, the PlaceOrderBean and OrderBillingMDB use
the Order entity.

Figure 2.3 The ActionBazaar scenario implemented using EJB 3. From the EJB 3 perspective, the
presentation layer is an amorphous blob that generates business-tier requests. The business-logic
tier components match up with the distinct processes in the scenario—putting a bid on an item,
ordering the item won, and billing the user. The billing MDB is triggered by a message sent by the
order confirmation process. The business-tier components use JPA entities to persist application
state into the database.

Building business logic with session beans 45
Recall that although JPA entities contain ORM configuration, they do not persist
themselves. As you’ll see in the actual code solutions, the business-tier compo-
nents have to use the JPA EntityManager API to add, delete, update, and retrieve
entities as needed.

 If your mental picture matches up with figure 2.3 pretty closely, it is likely the
code we are going to present next will seem intuitive too, even though you don’t
know EJB 3.

 In the following sections, we explore each of the EJB 3 component types using
our scenario. Without further ado, we can now begin our whirlwind tour of EJB 3
component types, starting with the session beans in the business-logic tier.

2.3 Building business logic with session beans

Session beans are meant to model business processes or actions, especially as per-
ceived by the system user. This is why they are ideal for modeling the bidding and
ordering processes in our scenario. Session beans are the easiest but most versa-
tile part of EJB.

 Recall that session beans come in two flavors: stateful and stateless. We’ll
take on stateless session beans first, primarily because they are simpler. You’ll
then discover how you can add statefulness to the ActionBazaar application by
using a stateful session bean. Along the way, we introduce you to an example of
a session bean client in a web tier, and then build a standalone Java client for a
session bean.

2.3.1 Using stateless beans

Stateless session beans are used to model actions or processes that can be done in
one shot, such as placing a bid on an item in our ActionBazaar scenario. The
addBid bean method in listing 2.1 is called from the ActionBazaar web tier when a
user decides to place a bid. The parameter to the method, the Bid object, repre-
sents the bid to be placed. The Bid object contains the ID of the bidder placing
the bid, the ID of the item being bid on, and the bid amount. As we know, all the
method needs to do is save the passed-in Bid data to the database. In a real appli-
cation, you would see more validation and error-handling code in the addBid
method. Since the point is to show you what a session bean looks like and not to
demonstrate the über geek principles of right and proper enterprise develop-
ment, we’ve conveniently decided to be slackers. Also, as you’ll see toward the end
of the chapter, the Bid object is really a JPA entity.

46 CHAPTER 2
A first taste of EJB
package ejb3inaction.example.buslogic;

import javax.ejb.Stateless;
import ejb3inaction.example.persistence.Bid;

@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 public PlaceBidBean() {}

 public Bid addBid(Bid bid) {
 System.out.println("Adding bid, bidder ID=" +
 bid.getBidderID()
 + ", item ID=" + bid.getItemID() + ",
 bid amount="
 + bid.getBidAmount() + ".");

 return save(bid);
 }
 ...
}
...
package ejb3inaction.example.buslogic;

import javax.ejb.Local;
import ejb3inaction.example.persistence.Bid;

@Local
public interface PlaceBid {
 Bid addBid(Bid bid);
}

The first thing that you have probably noticed is how plain this code looks. The
PlaceBidBean class is just a plain old Java object (POJO) and the PlaceBid interface
is a plain old Java interface (POJI). There is no cryptic EJB interface to implement,
class to extend, or confusing naming convention to follow. In fact, the only nota-
ble features in listing 2.1 are the two EJB 3 annotations: @Stateless and @Local:

■ @Stateless—The @Stateless annotation tells the EJB container that Place-
BidBean is a stateless session bean. This means that the container automat-
ically provides such services to the bean as automatic concurrency control,
thread safety, pooling, and transaction management. In addition, you can
add other services for which stateless beans are eligible, such as transparent
security and interceptors.

Listing 2.1 PlaceBid stateless session bean code

Marks POJO as stateless
session bean

Marks EJB business
interface as local

Building business logic with session beans 47
■ @Local—The @Local annotation on the PlaceBid interface tells the con-
tainer that the PlaceBid EJB can be accessed locally through the interface.
Since EJB and servlets are typically collocated in the same application, this
is probably perfect. Alternatively, we could have marked the interface with
the @Remote annotation. Remote access through the @Remote annotation is
provided under the hood by Java Remote Method Invocation (RMI), so
this is the ideal means of remote access from Java clients.

If the EJB needs to be accessed by non-Java clients like Microsoft .NET applica-
tions, web services–based remote access can be enabled using the @WebService
annotation applied either on the interface or the bean class.

 That’s pretty much all we’re going to say about stateless session beans for now.
Let’s now turn our attention to the client code for using the PlaceBid EJB.

2.3.2 The stateless bean client

Virtually any client can use the PlaceBid EJB in listing 2.1. However, the most
likely scenario for EJB usage is from a Java-based web tier. In the ActionBazaar
scenario, the PlaceBid EJB is probably called from a JavaServer Page (JSP) or serv-
let. For simplicity, let’s assume that the PlaceBid EJB is used by a servlet named
PlaceBidServlet. Listing 2.2 shows how the code might look. The servlet’s ser-
vice method is invoked when the user wants to place a bid. The bidder’s ID, item
ID, and the bid amount are passed in as HTTP request parameters. The servlet
creates a new Bid object, sets it up, and passes it to the EJB addBid method.

package ejb3inaction.example.buslogic;

import javax.ejb.EJB;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import ejb3inaction.example.persistence.Bid;

public class PlaceBidServlet extends HttpServlet {
 @EJB
 private PlaceBid placeBid;

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 int bidderID = Integer.parseInt(
 request.getParameter("bidder_id"));

Listing 2.2 A simple servlet client for the PlaceBid EJB

Injects instance
of PlaceBid EJB

48 CHAPTER 2
A first taste of EJB
 int itemID = Integer.parseInt(
 request.getParameter("item_id"));
 double bidAmount = Double.parseDouble(
 request.getParameter("bid_amount"));

 Bid bid = new Bid();
 bid.setBidderID(bidderID);
 bid.setItemID(itemID);
 bid.setBidAmount(bidAmount);

 placeBid.addBid(bid);
 ...
 }
 ...
}

As you can see in listing 2.2, EJB from the client side looks even simpler than
developing the component code. Other than the @EJB annotation on the place-
Bid private variable, the code is no different than using a local POJO.

NOTE When the servlet container sees the @EJB annotation as the servlet is first
loaded, it looks up the PlaceBid EJB behind the scenes and sets the
placeBid variable to the retrieved EJB reference. If necessary, the con-
tainer will look up the EJB remotely over RMI.

The @EJB annotation works in any component that is registered with the Java EE
container, such as a servlet or JavaServer Faces (JSF) backing bean. As long as you
are using the standard Java EE stack, this is probably more than sufficient.

 There are a couple other interesting items in this code that illustrate concepts
we introduced earlier. Let’s take a closer look.

EJB 3 dependency injection
Although we mentioned DI in the beginning of the chapter, if you are not familiar
with it you may think that what the @EJB annotation is doing is a little unusual—in
a nifty, “black-magic” kind of way. In fact, if we didn’t tell you anything about the
code, you might have been wondering if the placeBid private variable is even
usable in the servlet’s service method since it is never set! If fact, if the container
didn’t intervene we’d get the infamous java.lang.NullPointerException when we
tried to call the addBid method in listing 2.2 since the placeBid variable would still
be null. One interesting way to understand DI is to think of it as “custom” Java
variable instantiation. The @EJB annotation in listing 2.2 makes the container

Building business logic with session beans 49
“instantiate” the placeBid variable with the EJB named PlaceBid before the vari-
able is available for use.

 Recall our discussion in section 2.1.2 that DI can be viewed as the opposite of
JNDI lookup. Recall also that JNDI is the container registry that holds references
to all container-managed resources such as EJBs. Clients gain access to session
beans like our PlaceBid EJB directly or indirectly through JNDI. In EJB 2, you
would have to manually populate the placeBid variable using JNDI lookup code
that looks like the following:

Object ejbHome = new InitialContext().lookup("java:comp/env/PlaceBid");
PlaceBidHome placeBidHome = (PlaceBidHome)
 PortableRemoteObject.narrow(ejbHome, PlaceBidHome.class);
PlaceBid placeBid = placeBidHome.create();

It isn’t easy to fully appreciate DI until you see code like this. EJB 3 DI using the
@EJB annotation reduces all this mechanical JNDI lookup code to a single state-
ment! In a nontrivial application, this can easily translate to eliminating hun-
dreds of lines of redundant, boring, error-prone code. You can think of EJB 3 DI
as a high-level abstraction over JNDI lookups.

Understanding statelessness
An interesting point about the PlaceBid stateless bean is that as long as calling the
addBid method results in the creation of a new bid record each time, the client
doesn’t care about the internal state of the bean. There is absolutely no need for
the stateless bean to guarantee that the value of any of its instance variables will
be the same across any two invocations. This property is what statelessness means
in terms of server-side programming.

 The PlaceBid session bean can afford to be stateless because the action of plac-
ing a bid is simple enough to be accomplished in a single step. The problem is
that not all business processes are that simple. Breaking a process down into mul-
tiple steps and maintaining internal state to “glue together” the steps is a com-
mon technique to present complex processes to the user in a simple way.
Statefulness is particularly useful if what the user does in a given step in a process
determines what the next step is. Think of a questionnaire-based setup wizard.
The user’s input for each step of the wizard is stored behind the scenes and is
used to determine what to ask the user next. Stateful session beans make main-
taining server-side application state as easy as possible.

50 CHAPTER 2
A first taste of EJB
2.3.3 Using stateful beans

Unlike stateless session beans, stateful session beans guarantee that a client can
expect to set the internal state of a bean and count on the state being maintained
between any number of method calls. The container makes sure this happens by
doing two important things behind the scenes.

Maintaining the session
First, the container ensures that a client can reach a bean dedicated to it across
more than one method invocation. Think of this as a phone switchboard that
makes sure it routes you to the same customer service agent if you call a techni-
cal support line more than once in a given period of time (the period of time is
the “session”).

 Second, the container ensures that bean instance variable values are main-
tained for the duration of a session without your having to write any session main-
tenance code. In the customer service example, the container makes sure that
your account information and call history in a given period of time automatically
appear on your agent’s screen when you call technical support. This “automagic”
maintenance of session state is a huge leap from having to fiddle with the HTTP
session, browser cookies, or hidden HTML form variables to try to accomplish the
same thing. As we’ll see in the coming code samples, you can develop stateful
beans as if you are developing in a “Hello World” application, not a web applica-
tion with verbose code to maintain session state. The ActionBazaar ordering proc-
ess is a great example for stateful session beans since it is broken up into four
steps, each of which correspond to a screen presented to the user:

1 Adding items to the order. If the user started the ordering process by
clicking the Order Item button on the page displaying an item won, the
item is automatically added to the order. The user can still add addi-
tional items in this step.

2 Specifying shipping information, including the shipping method, ship-
ping address, insurance, and so on.

3 Adding billing information, such as credit card data and the billing
address.

4 Confirming the order after reviewing the complete order, including
total cost.

Building business logic with session beans 51
Figure 2.4 depicts these ordering steps. With a stateful bean, the data the user
enters at each step can be cached into bean variables until the ordering workflow
completes, when the user confirms the order.

 Now that we know what we want, let’s see how we can implement it.

Implementing the solution
Listing 2.3 shows a possible implementation of the ActionBazaar ordering work-
flow using a bean named PlaceOrderBean. As you can see, each of the ordering

Figure 2.4 To make an otherwise overwhelming process manageable, the ActionBazaar ordering
process is broken down into several steps. The first of these steps is to add one or more item to the
order. The second step is to specify shipping information for the order. The third is to specify the
billing information. Reviewing and confirming the order finishes the ordering process.

52 CHAPTER 2
A first taste of EJB
steps maps to a method in the PlaceOrderBean implementation. The addItem, set-
ShippingInfo, setBillingInfo, and confirmOrder methods are called in sequence
from the web tier in response to user actions in each step. The setBidderID
method essentially represents an implicit workflow setup step. It is called at the
beginning of the workflow behind the scenes by the web application to identify the
currently logged-in user as the bidder placing the order. Except for the confirm-
Order method, the remaining methods do little more than simply save user input
into stateful instance variables. In a real application, of course, these methods
would be doing a lot more, such as error handling, validation, figuring out the
user’s options for a given step, calculating costs, and so on. The confirmOrder
method does several things using the data accumulated throughout the session:
the complete order is saved into the database, the billing process is started in par-
allel, and an order ID is returned to the user as confirmation.

package ejb3inaction.example.buslogic;

import javax.ejb.*;
import java.util.ArrayList;
import java.util.List;

@Stateful
public class PlaceOrderBean implements PlaceOrder {
 private Long bidderID;
 private List<Long> items;
 private ShippingInfo shippingInfo;
 private BillingInfo billingInfo;

 public PlaceOrderBean () {
 items = new ArrayList<Long>();
 }

 public void setBidderID(Long bidderId) {
 this.bidderId = bidderId;
 }

 public void addItem(Long itemId) {
 items.add(itemId);
 }

 public void setShippingInfo(ShippingInfo shippingInfo) {
 this.shippingInfo = shippingInfo;
 }

Listing 2.3 PlaceOrderBean stateful session bean

Marks POJO
as stateful

 B

Defines stateful
instance
variables

 C

Building business logic with session beans 53
 public void setBillingInfo(BillingInfo billingInfo) {
 this.billingInfo = billingInfo;
 }

 @Remove
 public Long confirmOrder() {
 Order order = new Order();
 order.setBidderId(bidderId);
 order.setItems(items);
 order.setShippingInfo(shippingInfo);
 order.setBillingInfo(billingInfo);

 saveOrder(order);
 billOrder(order);

 return order.getOrderId();
 }
 ...
}
...
package ejb3inaction.example.buslogic;
import javax.ejb.Remote;
@Remote
public interface PlaceOrder {
 void setBidderId(Long bidderId);
 void addItem(Long itemId);
 void setShippingInfo(ShippingInfo shippingInfo);
 void setBillingInfo(BillingInfo billingInfo);
 Long confirmOrder();
}

As you can see, overall there is no big difference between developing a stateless
and a stateful bean. In fact, from a developer’s perspective, the only difference is
that the PlaceOrderBean class is marked with the @Stateful annotation instead of
the @Stateless annotation b. As we know, though, under the hood this makes a
huge difference in how the container handles the bean’s relationship to a client
and the values stored in the bean instance variables C. The @Stateful annotation
also serves to tell the client-side developer what to expect from the bean if behav-
ior is not obvious from the bean’s API and documentation.

 It is also important to note the @Remove annotation D placed on the confirm-
Order method. Although this annotation is optional, it is critical from a server
performance standpoint.

Contains remove
method

 D

 E Defines remote business interface

54 CHAPTER 2
A first taste of EJB
NOTE The @Remove annotation marks the end of the workflow modeled by a
stateful bean. In our case, we are telling the container that there is no
longer a need to maintain the bean’s session with the client after the
confirmOrder method is invoked. If we didn’t tell the container what
method invocation marks the end of the workflow, the container could
wait for a long time until it could safely time-out the session. Since state-
ful beans are guaranteed to be dedicated to a client for the duration of a
session, this could mean a lot of “orphaned” state data consuming pre-
cious server resources for long periods of time!

There is virtually no difference between the bean interfaces for our stateless and
stateful bean examples. Both are POJIs marked with the @Remote annotation to
enable remote client access E.

 Let’s now take a quick look at stateful beans from the client perspective. As you
might expect, compared to stateless beans there are no major semantic differences.

2.3.4 A stateful bean client

It is clear that the PlaceOrder EJB is called from the ActionBazaar web tier. How-
ever, to give a slightly more colorful perspective on things, we’ll deliberately stay
out of web-tier client examples this time. We’ll use a thick Java application that
functions as a test script to run through the entire workflow of the PlaceOrder EJB
using some dummy data. This test script could have just as easily been part of a
very high-level regression test suite using a framework like JUnit or NUnit.

NOTE If you have management buy-in to invest in extensive unit testing, you
might also note the fact that because of the POJO-centric nature of
EJB 3, our example application could be easily modified to a full-scale
unit test using dummy data sources and the like. We’ll leave this for you
as an exercise in case you are interested in exploring further by tweak-
ing the source code available for download from www.manning.com/
panda. If unit testing and code coverage are not viable topics to bring
up in your work environment, don’t worry; we don’t assume you do a
ton of unit testing.

Listing 2.4 shows the code for the stateful session bean client.

package ejb3inaction.example.buslogic;

import javax.ejb.EJB;

Listing 2.4 Stateful session bean client

Building business logic with session beans 55
public class PlaceOrderTestClient {
 @EJB
 private static PlaceOrder placeOrder;

 public static void main(String [] args) throws Exception {
 System.out.println("Exercising PlaceOrder EJB...");
 placeOrder.setBidderId(new Long(100));
 placeOrder.addItem(new Long(200));
 placeOrder.addItem(new Long(201));
 placeOrder.setShippingInfo(
 new ShippingInfo("123 My Sweet Home",
 "MyCity","MyState"));
 placeOrder.setBillingInfo(
 new BillingInfo("123456789","VISA","0708"));
 Long orderId = placeOrder.confirmOrder();
 System.out.println("Order confirmation number: " + orderId);

 }
}

There is nothing special you need to do from the client side to use stateful beans.
As a matter of fact, there is virtually no difference in the client code between using
a stateless and a stateful bean, other than the fact that the client can safely assume
that the EJB is maintaining state even if it is sitting on a remote application server.
The other remarkable thing to note about listing 2.4 is the fact that the @EJB
annotation is injecting a remote EJB into a standalone client. This is accom-
plished by running the client in the application client container (ACC).

NOTE The application client container is a mini Java EE container that can be
run from the command line. Think of it as a souped-up Java Virtual
Machine (JVM) with some Java EE juice added. You can run any Java SE
client such as a Swing application inside the ACC as if you were using a
regular old JVM. The beauty of it is that the ACC will recognize and pro-
cess most Java EE annotations such as the @EJB DI annotation. Among
other things, the client container can look up and inject EJBs on remote
servers, communicate with remote EJBs using RMI, provide authentica-
tion, perform authorization, and so forth. The application client really
shines if you need to use EJBs in an SE application or would like to inject
real resources into your POJO during unit testing.

Any Java class with a main method can be run inside the ACC. Typically, though,
an application client is packaged in a JAR file that must contain a MainClass in
the Manifest file. Optionally, the JAR may contain a deployment descriptor

Injects an instance of EJB

56 CHAPTER 2
A first taste of EJB
(application-client.xml) and a jndi.properties file that contains the environ-
ment properties for connecting to a remote EJB container. Let’s assume you
packaged up your application client classes in a JAR file named chapter2-client.
jar. Using Sun Microsystems’s GlassFish application server, you could launch
your application client inside the ACC as follows:

appclient -client chapter2-client.jar

This finishes our brief introduction to session beans using our ActionBazaar sce-
nario. We are now ready to move on to the next business-tier EJB component:
message-driven beans.

2.4 Messaging with message-driven beans

Just as session beans process direct business requests from the client, MDBs
process indirect messages. In enterprise systems, messaging has numerous uses,
including system integration, asynchronous processing, and distributed system
communication. If you’ve been working on enterprise development for some
time, you’re probably familiar with at least the idea of messaging. In the most
basic terms, messaging involves communicating between two separate pro-
cesses, usually across different machines. Java EE messaging follows this same
idea—just on steroids. Most significantly, Java EE makes messaging robust by
adding a reliable middleman between the message sender and receiver. This
idea is illustrated in figure 2.5.

 In Java EE terms, the reliable middleman is called a messaging destination, pow-
ered by message-oriented middleware (MOM) servers like IBM’s MQSeries or
Progress Software’s SonicMQ. Java EE standardizes messaging through a well-known
API, Java Messaging Service (JMS), upon which MDBs are heavily dependent.

Figure 2.5 The Java EE “pony express” messaging model. Java EE adds reliability to messaging by
adding a middleman that guarantees the delivery of messages despite network outages, even if the
receiver is not present on the other end when the message is sent. In this sense, Java EE messaging
has much more in common with the postal service than it does with common RPC protocols like RMI.
We’ll discuss this model in much greater detail in chapter 4.

Messaging with message-driven beans 57
We’ll discuss messaging, JMS, and MDBs in much greater detail in chapter 4. For
the moment, this is all you really need to know.

 Next, we’ll build a simple example of message producer and an MBD. In our
ActionBazaar example, we enable asynchronous order billing through messaging.
To see how this is done, let’s revisit the parts of the PlaceOrderBean introduced in
listing 2.3 that we deliberately left hidden, namely the implementation of the
billOrder method.

2.4.1 Producing a billing message

As we discussed in our high-level solution schematic in section 2.2, the Place-
OrderBean accomplishes asynchronous or “out-of-process” order billing by gen-
erating a message in the confirmOrder method to request that the order billing
be started in parallel. As soon as this billing request message is sent to the mes-
saging middleman, the confirmOrder method returns with the order confirma-
tion to the user. We’ll now take a look at exactly how this piece is implemented.
As you can see in listing 2.5, the billing request message is sent to a messaging
destination named jms/OrderBillingQueue. Since you have already seen most of
the implementation of the PlaceOrder bean, we won’t repeat a lot of the code
shown in listing 2.3 here.

package ejb3inaction.example.buslogic;

...
import javax.annotation.Resource;
import javax.ejb.Remove;
import javax.ejb.Stateful;
import javax.jms.*;
...

@Stateful
public class PlaceOrderBean implements PlaceOrder {
 @Resource(name="jms/QueueConnectionFactory")
 private ConnectionFactory connectionFactory;

 @Resource(name="jms/OrderBillingQueue")
 private Destination billingQueue;
 ...
 @Remove
 public Long confirmOrder() {
 Order order = new Order();
 order.setBidderId(bidderId);
 order.setItems(items);

Listing 2.5 PlaceOrderBean that produces the JMS message

Injects JMS
resources

 B

58 CHAPTER 2
A first taste of EJB
 order.setShippingInfo(shippingInfo);
 order.setBillingInfo(billingInfo);

 saveOrder(order);
 billOrder(order);

 return order.getOrderId();
 }
 ...
 private billOrder(Order order) {
 try {
 Connection connection =
 connectionFactory.createConnection();
 Session session =
 connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer =
 session.createProducer(billingQueue);
 ObjectMessage message =
 session.createObjectMessage();
 message.setObject(order);
 producer.send(message);
 producer.close();
 session.close();
 connection.close();
 } catch(Exception e){
 e.printStackTrace();
 }
 }
}

Not surprisingly, the code to send the message in listing 2.5 is heavily dependent
on the JMS API. In fact, that’s all that the code in the billOrder method consists of.
If you’re familiar with JDBC, the flavor of the code in the method might seem famil-
iar. The end result of the code is that the newly created Order object is sent as a mes-
sage to a JMS destination named jms/OrderBillingQueue. We won’t deal with the
intricacies of JMS immediately, but we’ll save a detailed discussion of this essential
messaging API for chapter 4. It is important to note a few things right now, though.

 The first thing is that two JMS resources, including the message destination,
are injected using the @Resource annotation b instead of being looked up.

NOTE As we stated earlier, in addition to the @EJB annotation the @Resource
annotation provides DI functionality in EJB 3. While the @EJB annotation
is limited to injecting EJBs, the @Resource annotation is much more
general purpose and can be used to inject anything that the container
knows about.

Contains JMS
setup code

 C

Creates and
sends the
message

 D

Releases JMS
resources

 E

Messaging with message-driven beans 59
As shown in listing 2.5, the container looks up the JMS resources specified through
the name parameter and injects them into the connectionFactory and billingQueue
instance variables. The name parameter values specify what resources are bound to
the EJB’s environment naming context. Then the PlaceOrderBean establishes a
connection to the JMS provider, and creates a session and a message producer C.
Secondly, it is important to realize that the MessageProducer.send method D
doesn’t wait for a receiver to receive the message on the other end. Because the
messaging server guarantees that the message will be delivered to anyone inter-
ested in the message, this is just fine. In fact, this is exactly what enables the billing
process to start in parallel to the ordering process, which continues on its merry
way as soon as the message is sent. You should also note how loosely coupled the
ordering and billing processes are. The ordering bean doesn’t even know who
picks up and processes its message; it simply knows the message destination!
Finally, PlaceOrderBean cleans up all resources used by it E.

 As we know from our solution schematic in section 2.2, the OrderBillingMDB
processes the request to bill the order. It continuously listens for messages sent to
the jms/OrderBillingQueue messaging destination, picks up the messages from
the queue, inspects the Order object embedded in the message, and attempts to
bill the user. We’ll depict this scheme in figure 2.6 to reinforce the concept.

Let’s take a look now at how the OrderBillingMDB is implemented.

2.4.2 Using the order billing message processor MDB

The OrderBillingMDB’s sole purpose is to attempt to bill the bidder for the total
cost of an order, including the price of the items in the order, shipping, handling,
insurance costs, and the like. Listing 2.6 shows the abbreviated code for the order
billing MDB. Recall that the Order object passed inside the message sent by the
PlaceOrder EJB contains a BillingInfo object. The BillingInfo object tells
OrderBillingMDB how to bill the customer—perhaps by charging a credit card or

Figure 2.6 Asynchronously billing orders using MDBs. The stateful session bean processing the
order sends a message to the order-billing queue. The billing MDB picks up this message and
processes it asynchronously.

60 CHAPTER 2
A first taste of EJB
crediting against an online bank account. However the user is supposed to be
charged, after attempting to bill the user the MDB notifies both the bidder and
seller of the results of the billing attempt. If billing is successful, the seller ships to
the address specified in the order. If the billing attempt fails, the bidder must cor-
rect and resubmit the billing information attached to the order.

 Last but not least, the MDB must also update the order record to reflect what
happened during the billing attempt. Feel free to explore the complete code sam-
ple and deployment descriptor entries containing the JMS resource configuration
in the zip containing code examples.

package ejb3inaction.example.buslogic;

import javax.ejb.MessageDriven;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import ejb3inaction.example.persistence.Order;
import ejb3inaction.example.persistence.OrderStatus;

@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationName",
 propertyValue="jms/OrderBillingQueue")
 }
)
public class OrderBillingMDB implements MessageListener {
 ...
 public void onMessage(Message message) {
 try {
 ObjectMessage objectMessage = (ObjectMessage) message;
 Order order = (Order) objectMessage.getObject();

 try {
 bill(order);
 notifyBillingSuccess(order);
 order.setStatus(OrderStatus.COMPLETE);
 } catch (BillingException be) {
 notifyBillingFailure(be, order);
 order.setStatus(OrderStatus.BILLING_FAILED);
 } finally {
 update(order);
 }

Listing 2.6 OrderBillingMDB

Marks POJO as MDB

Specifies JMS
destination to get
messages from

Implements javax.jms.
MessageListener interface

Persisting data with EJB 3 JPA 61
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 ...
}

As you might have noticed from the code, MDBs are really session beans in JMS
disguise. Like stateless beans, MDBs are not guaranteed to maintain state. The
@MessageDriven annotation is the MDB counterpart of the @Stateless and
@Stateful annotations—it makes the container transparently provide messaging
and other EJB services into a POJO. The activation configuration properties
nested inside the @MessageDriven annotation tells the container what JMS desti-
nation the MDB wants to receive messages from.

NOTE Behind the scenes, the container takes care of several mechanical
details to start listening for messages sent to the destination specified
by the activation configuration properties. As soon as a message arrives
at the destination, the container forwards it to an instance of the MDB.

Instead of implementing a remote or local business interface, MDBs implement the
javax.jms.MessageListener interface. The container uses this well-known JMS
interface to invoke an MDB. The onMessage method defined by the interface has a
single javax.jms.Message parameter that the container uses to pass a received
message to the MDB. Believe it or not, this is more or less all you need to know to
get by when using MDBs, as long as you have a decent understanding of messaging
and JMS.

 This wraps up this chapter’s discussion of the EJB 3 business-tier components.
As we mentioned earlier, we’ll devote the entirety of the next part of the book to
this vital part of the EJB platform. For now, let’s move on to the other major part
of EJB, the Persistence API.

2.5 Persisting data with EJB 3 JPA

The Java Persistence API (JPA) is the persistence-tier solution for the Java EE plat-
form. Although a lot has changed in EJB 3 for session beans and MDBs, the
changes in the persistence tier have truly been phenomenal. In fact, other than
some naming patterns and concepts, JPA has very little in common with the EJB 2
entity bean model. JPA does not follow the container model (which is just not very

62 CHAPTER 2
A first taste of EJB
well suited to the problem of persistence);
instead, it follows an API paradigm similar
to JDBC, JavaMail, or JMS. As you’ll soon
see, the JPA EntityManager interface defines
the API for persistence while JPA entities
specify how application data is mapped to
a relational database. Although JPA takes a
serious bite out of the complexity in sav-
ing enterprise data, ORM-based persis-
tence is still a nontrivial topic. We’ll devote
the entire third part of this book to JPA,
namely chapters 7 through 10.

 In almost every step of our ActionBa-
zaar scenario, data is saved into the data-
base using JPA. We won’t bore you by going
over all of the persistence code for the sce-
nario. Instead, we’ll introduce JPA using a
representative example and leave you to
explore the complete code on your own.
You’ll see what EJB 3 persistence looks like
by revisiting the PlaceBid stateless session
bean. As a reminder to how the bidding
process is implemented, figure 2.7 depicts
the various components that interact with
one another when a bidder creates a bid in
ActionBazaar.

 Recall that the PlaceBidServlet calls
the PlaceBidBean’s addBid method to add a
Bid entity into the database. The Place-
BidBean uses the JPA EntityManager’s per-
sist method to save the bid. Let’s first
take a look at the JPA, and then we’ll see the EntityManager in action.

2.5.1 Working with the Java Persistence API

You might have noticed in listing 2.1 that we kept the code to save a bid into the
database conveniently out of sight. The PlaceBid EJB’s addBid method references
the hidden save method to persist the Bid object to the database. Listing 2.8 will
fill in this gap by showing you what the save method actually does. The save

Figure 2.7 PlaceBidServlet invokes the
addBid method of PlaceBid EJB and passes
a Bid object. The PlaceBidEJB invokes the
persist method of EntityManager to save
the Bid entity into the database. When the
transaction commits, you’ll see that a
corresponding database record in the BIDS
table will be stored.

Persisting data with EJB 3 JPA 63
method uses the JPA EntityManager to save the Bid object. But first let’s take a
quick look at the fourth and final kind of EJB—the JPA entity. Listing 2.7 shows
how the Bid entity looks.

package ejb3inaction.example.persistence;

import java.io.Serializable;
import java.sql.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.GenerationType;
import javax.persistence.GeneratedValue;

@Entity
@Table(name="BIDS")
public class Bid implements Serializable {
 private Long bidID;
 private Long itemID;
 private Long bidderID;
 private Double bidAmount;
 private Date bidDate;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 @Column(name="BID_ID")
 public Long getBidID() {
 return bidID;
 }

 public void setBidID(Long bidID) {
 this.bidID = bidID;
 }

 @Column(name="ITEM_ID")
 public Long getItemID() {
 return itemID;
 }

 public void setItemID(Long itemID) {
 this.itemID = itemID;
 }

 @Column(name="BIDDER_ID")
 public Long getBidderID() {
 return bidderID;
 }

Listing 2.7 Bid entity

 b Marks POJO as entity
 C Specifies table mapping

Contains entity ID D

 E Generates ID value

 F Specifies
column
mappings

64 CHAPTER 2
A first taste of EJB
 public void setBidderID(Long bidderID) {
 this.bidderID = bidderID;
 }

 @Column(name="BID_AMOUNT")
 public Double getBidAmount() {
 return bidAmount;
 }

 public void setBidAmount(Double bidAmount) {
 this.bidAmount = bidAmount;
 }

 @Column(name="BID_DATE")
 public Date getBidDate() {
 return bidDate;
 }

 public void setBidDate(Date bidDate) {
 this.bidDate = bidDate;
 }
}

You probably have a good idea of exactly how object-relational mapping in JPA
works just by glancing at listing 2.7, even if you have no familiarity with ORM
tools such as Hibernate. Think about the annotations that mirror relational con-
cepts such as tables, columns, and primary keys.

 The @Entity annotation signifies the fact that the Bid class is a JPA entity b.
Note that Bid is a POJO that does not require a business interface, unlike ses-
sion and message-driven beans. The @Table annotation tells JPA that the Bid
entity is mapped to the BIDS table C. Similarly, the @Column annotations F indi-
cate which Bid properties map to which BIDS table fields. Note that entities need
not use getter- and setter-based properties. Instead, the field mappings could
have been placed directly onto member variables exposed through nonprivate
access modifiers. (You’ll learn more about access via entity properties and fields
in chapter 7.) The @Id annotation is somewhat special. It marks the bidID prop-
erty as the primary key for the Bid entity D. Just like a database record, a primary
key uniquely identifies an entity instance. We have used the @GeneratedValue
annotation with strategy set to GenerationType.AUTO E to indicate that the per-
sistence provider should automatically generate the primary key when the entity
is saved into the database.

 F Specifies
column
mappings

Persisting data with EJB 3 JPA 65
NOTE If you have used EJB 2 you may remember that it was almost rocket sci-
ence to generate primary key values with container-managed persistence
(CMP) entity beans. With EJB 3 JPA, the generation of primary keys is a
snap; you have several options, such as table, sequence, identity key, and
so on. We’ll discuss primary-key generation in chapter 8.

The Bid entity could have been related to a number of other JPA entities by hold-
ing direct object references (such the Bidder and Item entities). EJB 3 JPA allows
such object reference–based implicit relationships to be elegantly mapped to the
database. We’ve decided to keep things simple for now and not dive into this
topic quite so early; we’ll discuss entity relationship mapping in chapter 8.

 Having looked at the Bid entity, let’s now turn our attention to how the entity
winds up in the database through the PlaceBid bean.

2.5.2 Using the EntityManager

You’ve probably noticed that the Bid entity doesn’t have a method to save itself
into the database. The JPA EntityManager performs this bit of heavy lifting by
reading ORM configuration and providing entity persistence services through an
API-based interface.

NOTE The EntityManager knows how to store a POJO entity into the database
as a relational record, read relational data from a database, and turn it
into an entity; update entity data stored in the database; and delete data
mapped to an entity instance from the database. As you’ll see in chap-
ters 9 and 10, the EntityManager has methods corresponding to each
of these CRUD (Create, Read, Update, Delete) operations, in addition to
support for the robust Java Persistence Query Language (JPQL).

As promised earlier, listing 2.8 shows how the PlaceBid EJB uses EntityManager
API to persist the Bid entity.

package ejb3inaction.example.buslogic;

...
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
...

@Stateless

Listing 2.8 Saving a bid record using the EJB 3 JPA

66 CHAPTER 2
A first taste of EJB
public class PlaceBidBean implements PlaceBid {
 @PersistenceContext(unitName="actionBazaar")
 private EntityManager entityManager;
 ...
 public Bid addBid(Bid bid) {
 System.out.println("Adding bid, bidder ID=" + bid.getBidderID()
 + ", item ID=" + bid.getItemID() + ", bid amount="
 + bid.getBidAmount() + ".");

 return save(bid);
 }

 private Bid save(Bid bid) {
 entityManager.persist(bid);
 return bid;
 }
}

The true magic of the code in listing 2.8 lies in the EntityManager interface. One
interesting way to think about the EntityManager interface is as an “interpreter”
between the object-oriented and relational worlds. The manager reads the ORM
mapping annotations like @Table and @Column on the Bid entity and figures out how
to save the entity into the database. The EntityManager is injected into the Place-
Bid bean through the @PersistenceContext annotation b. Similar to the name
parameter of the @Resource annotation in listing 2.5, the unitName parameter of
the @PersistenceContext annotation points to the persistence unit specific to
ActionBazaar. A persistence unit is a group of entities packaged together in an appli-
cation module. You’ll learn more about persistence units in chapters 9 and 11.

 In the save method, the EntityManager persist method is called to save the
Bid data into the database C. After the persist method returns, a SQL statement
much like the following is issued against the database to insert a record corre-
sponding to the bid:

INSERT INTO BIDS (BID_ID, BID_DATE, BIDDER_ID, BID_AMOUNT, ITEM_ID)
VALUES (52, NULL, 60, 20000.50, 100)

It might be instructive to look back at listing 2.7 now to see how the EntityMan-
ager figures out the SQL to generate by looking at the object-relational mapping
annotations on the Bid entity. Recall that the @Table annotation specifies that the
bid record should be saved in the BIDS table while each of the @Column annota-
tions in listing 2.7 tells JPA which Bid entity field maps to which column in the
BIDS table. For example, the bidId property maps to the BIDS.BID_ID column,
the bidAmount property maps to the BIDS.BID_AMOUNT column, and so on. As we

Injects instance of
EntityManager B

 C Persists entity instance

Summary 67
discussed earlier, the @Id and @GeneratedValue value annotations specify that the
BID_ID column is the primary key of the BIDS table and that the JPA provider
should automatically generate a value for the column before the INSERT state-
ment is issued (the 52 value in the SQL sample). This process of translating an
entity to columns in the database is exactly what object-relational mapping and
JPA is all about.

 This brings us to the end of this brief introduction to the EJB 3 Java Persis-
tence API—and to the end of this whirlwind chapter. At this point, it should be
clear to you how simple, effective, and robust EJB 3 is, even from a bird’s-eye view.

2.6 Summary

As we stated in the introduction, the goal of this chapter was not to feed you the
“guru pill” for EJB 3, but rather to show you what to expect from this new version
of the Java enterprise platform.

 This chapter introduced the ActionBazaar application, a central theme to this
book. Using a scenario from the ActionBazaar application, we showed you a cross
section of EJB 3 functionality, including stateless session beans, stateful session
beans, message-driven beans, and the EJB 3 Java Persistence API. You also
learned some basic concepts such as deployment descriptors, metadata annota-
tions, and dependency injection.

 We used a stateless session bean (PlaceBidBean) to implement the business
logic for placing a bid for an item in an auctioning system. To access the bean, we
built a very simple servlet client that used dependency injection. We then saw a
stateful session bean (PlaceOrderBean) that encapsulated the logic for ordering an
item, and we built an application client that accesses the PlaceOrderBean. We saw
an example of an MDB, OrderBillingMDB, that processes a billing request when a
message arrives on a JMS queue. Finally, we built an entity for storing bids and
used the EntityManager API to persist the entity to the database.

 Most of the rest of this book roughly follows the outline of this chapter. Chap-
ter 3 revisits session beans; chapter 4 discusses messaging, JMS and MDBs; chap-
ter 5 expands on dependency injection and discusses such topics as interceptors
and timers; and chapter 6 explores transactions and security management in EJB.
Chapters 7 through 10 are devoted to a detailed exploration of the Persistence
API. Finally, chapters 11 through 16 cover advanced topics in EJB.

 In the next chapter, we’ll shift to a lower gear and dive into the details of ses-
sion beans.

Part 2

Building business
logic with EJB 3

Part 2 of this book covers how you can use EJB 3 components (session beans
and message-driven beans) to build business logic for your enterprise Java
applications. Chapter 3 covers session beans in detail and describes the devel-
opment of both stateless and stateful beans and their clients. The chapter pro-
vides guidelines to help you decide whether to use stateless or stateful session
beans. Asynchronous communication is accomplished by messaging, and
chapter 4 explores messaging and message-driven beans. You can use several
advanced features, such as dependency injection, interceptors, and timers;
these topics are examined in chapter 5. Chapter 6 covers enterprise applica-
tions development concerns, such as transaction and security.

Building business
logic with session beans
This chapter covers
■ Development of stateless and stateful

session beans
■ Session bean lifecycle
■ Session bean clients
■ Session bean performance considerations

and best practices
71

72 CHAPTER 3
Building business logic with session beans
At the heart of any enterprise application lies its business logic. In an ideal world,
application developers should only be concerned with defining and implement-
ing the business logic, while concerns like presentation, persistence, or integra-
tion should largely be window dressing. From this perspective, session beans are
the most important part of the EJB technology because their purpose in life is to
model high-level business processes.

 If you think of a business system as a horse-drawn chariot with a driver carry-
ing the Greco-Roman champion to battle, session beans are the driver. Session
beans utilize data and system resources (the chariot and the horses) to implement
the goals of the user (the champion) using business logic (the skills and judgment
of the driver). For this and other reasons, sessions beans, particularly stateless ses-
sion beans, have been popular, even despite the problems of EJB 2. EJB 3 makes
this vital bean type a lot easier to use.

 In chapter 1 we briefly introduced session beans. In chapter 2 we saw simple
examples of these beans in action. In this chapter, we’ll discuss session beans in
much greater detail, focusing on their purpose, the different types of session
beans, how to develop them, and some of the advanced session bean features
available to you.

 We start this chapter by exploring some basic session bean concepts, and then
discuss some fundamental characteristics of session beans. We then cover each
type—stateful and stateless—in detail before introducing bean client code.
Finally, we examine session bean best practices at the end of the chapter.

3.1 Getting to know session beans

A typical enterprise application will have numerous business activities or proc-
esses. For example, our ActionBazaar application has processes such as creating a
user, adding an item for auctioning, bidding for an item, ordering an item, and
many more. Session beans can be used to encapsulate the business logic for all
such processes.

 The theory behind session beans centers on the idea that each request by a cli-
ent to complete a distinct business process is completed in a session. So what is a
session? If you have used a Unix server you may have used Telnet to connect to
the server from a PC client. Telnet allows you to establish a login session with the
Unix server for a finite amount of time. During this session you may execute sev-
eral commands in the server. Simply put, a session is a connection between a client
and a server that lasts for a finite period of time.

Getting to know session beans 73
 A session may either be very short-lived, like an HTTP request, or span a long
time, like a login session when you Telnet or FTP into a Unix server. Similar to a
typical Telnet session, a bean may maintain its state between calls, in which case it
is stateful, or it may be a one-time call, in which case it’s stateless. A typical exam-
ple of a stateful application is the module that a bidder uses to register himself in
the ActionBazaar application. That process takes place in multiple steps. An
example of a stateless business module is the application code that is used to
place a bid for an item. Information, such as user ID, item number, and amount,
is passed in and success or failure is returned. This happens all in one step. We’ll
examine the differences between stateless and stateful session beans more closely
in section 3.1.4.

 As you might recall, session beans are the only EJB components that are
invoked directly by clients. A client can be anything, such as a web application
component (servlet, JSP, JSF, and so on), a command-line application, or a Swing
GUI desktop application. A client can even be a Microsoft .NET application using
web services access.

 At this point you might be wondering what makes session beans special.
After all, why use a session bean simply to act as a business logic holder? Glad
that you asked. Before you invest more of your time, let’s address this question
first. Then we’ll show you the basic anatomy of a session bean and explore the
rules that govern it before examining the differences between stateless and
stateful session beans.

3.1.1 Why use session beans?

Session beans are a lot more than just business logic holders. Remember the EJB
services we briefly mentioned in chapter 1? The majority of those services are
specifically geared toward session beans. They make developing a robust, feature-
rich, impressive business logic tier remarkably easy (and maybe even a little fun).
Let’s take a look at some of the most important of these services.

Concurrency and thread safety
The whole point of building server-side applications is that they can be shared by
a large number of remote clients at the same time. Because session beans are spe-
cifically meant to handle client requests, they must support a high degree of con-
currency safely and robustly. In our ActionBazaar example, it is likely thousands
of concurrent users will be using the PlaceBid session bean we introduced in
chapter 2. The container employs a number of techniques to “automagically”

74 CHAPTER 3
Building business logic with session beans
make sure you don’t have to worry about concurrency or thread safety. This
means that we can develop session beans as though we were writing a standalone
desktop application used by a single user. You’ll learn more about these
“automagic” techniques, including pooling, session management, and passiva-
tion, later in this chapter.

Remoting and web services
Session beans support both Java Remote Method Invocation (RMI)-based native
and Simple Object Access Protocol (SOAP)-based web services remote access.
Other than some minor configuration, no work is required to make session bean
business logic accessible remotely using either method. This goes a long way
toward enabling distributed computing and interoperability. You’ll see session
bean remoteability in action in just a few sections.

Transaction and security management
Transactions and security management are two enterprise-computing mainstays.
Session beans, with their pure configuration-based transactions, authorization,
and authentication, make supporting these requirements all but a nonissue. We
won’t discuss these services in this chapter, but chapter 6 is devoted to EJB trans-
action management and security.

Timer services and interceptors
Interceptors are EJB’s version of lightweight aspect-oriented programming
(AOP). Recall that AOP is the ability to isolate “crosscutting” concerns into their
own modules and apply them across the application through configuration.
Crosscutting concerns include things like auditing and logging that are repeated
across an application but are not directly related to business logic. We’ll discuss
interceptors in great detail in chapter 5.

 Timer services are EJB’s version of lightweight application schedulers. In
most medium- to large-scale applications, you’ll find that you need some kind of
scheduling services. In ActionBazaar, scheduled tasks could be used to monitor
when the bidding for a particular item ends and determine who won an auc-
tion. Timer services allow us to easily turn a session bean into a recurring or
nonrecurring scheduled task. We’ll save the discussion of timer services for
chapter 5 as well.

 Now that you are convinced you should use session beans, let’s look at some of
their basic characteristics.

Getting to know session beans 75
3.1.2 Session beans: the basics

Although we briefly touched on session beans in the previous chapter, we didn’t
go into great detail about developing them. Before we dive in, let’s revisit the
code in chapter 2 to closely examine some basic traits shared by all session beans.

A session bean alternative: Spring

Clearly, EJB 3 session beans are not your only option in developing your applica-
tion’s business tier. POJOs managed by lightweight containers such as Spring could
also be used to build the business logic tier. Before jumping on either the EJB 3
session bean or Spring bandwagon, think about what your needs are.

If your application needs robust support for accessing remote components or the
ability to seamlessly expose your business logic as web services, EJB 3 is the clear
choice. Spring also lacks good equivalents of instance pooling, automated session
state maintenance, and passivation/activation. Because of heavy use of annotations,
you can pretty much avoid “XML Hell” using EJB 3; the same cannot be said of Spring.
Moreover, because it is an integral part of the Java EE standard, the EJB container
is natively integrated with components such as JSF, JSP, servlets, the JTA transaction
manager, JMS providers, and Java Authentication and Authorization Service (JAAS)
security providers of your application server. With Spring, you have to worry whether
your application server fully supports the framework with these native components
and other high-performance features like clustering, load balancing, and failover.

If you aren’t worried about such things, then Spring is not a bad choice at all and
even offers a few strengths of its own. The framework provides numerous simple,
elegant utilities for performing many common tasks such as the JdbcTemplate
and JmsTemplate. If you plan to use dependency injection with regular Java
classes, Spring is great since DI only works for container components in EJB 3.
Also, Spring AOP or AspectJ is a much more feature-rich (albeit slightly more com-
plex) choice than EJB 3 interceptors.

Nevertheless, if portability, standardization, and vendor support are important to
you, EJB 3 may be the way to go. EJB 3 is a mature product that is the organic
(though imperfect) result of the incremental effort, pooled resources, shared own-
ership, and measured consensus of numerous groups of people. This includes the
grassroots Java Community Process (JCP); some of the world’s most revered com-
mercial technology powerhouses like IBM, Sun, Oracle, and BEA; and spirited open-
source organizations like Apache and JBoss.

76 CHAPTER 3
Building business logic with session beans
The anatomy of a session bean
Each session bean implementation has two distinct
parts—one or more bean interfaces and a bean
implementation class. In the PlaceBid bean example
from chapter 2, the bean implementation consisted
of the PlaceBid interface and the PlaceBidBean class,
as shown in figure 3.1.

 All session beans must be divided into these two
parts. This is because clients cannot have access to the
bean implementation class directly. Instead, they must
use session beans through a business interface. None-
theless, interface-based programming is a sound idea any-
way, especially when using dependency injection.

 Interface-based programming is the practice of
not using implementation classes directly whenever
possible. This approach promotes loose coupling
since implementation classes can easily be swapped
out without a lot of code changes. EJB has been a
major catalyst in the popularization of interface-based programming; even the
earliest versions of EJB followed this paradigm, later to form the basis of DI.

The session bean business interface
An interface through which a client invokes the bean is called a business interface.
This interface essentially defines the bean methods appropriate for access
through a specific access mechanism. For example, let’s revisit the PlaceBid inter-
face in chapter 2:

@Local
public interface PlaceBid {
 Bid addBid(Bid bid);
}

Since all EJB interfaces are POJIs, there isn’t anything too remarkable in this code
other than the @Local annotation specifying that it’s a local interface. Recall that a
business interface can be remote or even web service-accessible instead. We’ll talk
more about the three types of interfaces in section 3.2.3. The interesting thing to
note right now is the fact that a single EJB can have multiple interfaces. In other
words, EJB implementation classes can be polymorphic, meaning that different cli-
ents using different interfaces could use them in completely different ways.

Figure 3.1 Parts of the
PlaceBid session bean. Each
session bean has one or more
interfaces and one
implementation class.

Getting to know session beans 77
The EJB bean class
Just like typical OO programming, each interface that the bean intends to sup-
port must be explicitly included in the bean implementation class’s implements
clause. We can see this in the code for the PlaceBidBean from chapter 2:

@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 public PlaceBidBean() {}

 public Bid addBid(Bid bid) {
 System.out.println("Adding bid, bidder ID=" + bid.getBidderID()
 + ", item ID=" + bid.getItemID() + ", bid amount="
 + bid.getBidAmount() + ".");

 return save(bid);
 }
 ...
}

The PlaceBidBean class provides the concrete implementation of the addBid
method required by the PlaceBid interface. Session bean implementation classes
can never be abstract, which means that all methods mandated by declared busi-
ness interfaces must be implemented in the class.

 Note that EJB implementation classes can have nonprivate methods that are
not accessible through any interface. Such methods can be useful for creating
clever unit-testing frameworks and while implementing lifecycle callback, as
you’ll learn in section 3.2.5. Also, an EJB bean class can make use of OO inherit-
ance. You could use this strategy to support a custom framework for your appli-
cation. For example, you could put commonly used logic in a parent POJO class
that a set of beans inherits from.

Unit-testing your session beans

It is clear that session beans are POJOs. Since EJB annotations are ignored by the
JVM, session beans can be unit-tested using a framework like JUnit or TestNG with-
out having to deploy them into an EJB container. For more information on JUnit,
browse www.junit.org.

On the other hand, since several container-provided services such as dependency
injection cannot be used outside the container, you cannot perform functional test-
ing of applications using EJBs outside the container—at least not easily.

78 CHAPTER 3
Building business logic with session beans
Now that we’ve looked at the basic structure of session beans, we’ll outline rela-
tively simple programming rules for a session bean.

3.1.3 Understanding the programming rules
Like all EJB 3 beans, session beans are POJOs that follow a small set of rules. The
following summarizes the rules that apply to all types of session beans:

■ As we discussed earlier in section 3.1.2, a session bean must have at least
one business interface.

■ The session bean class must be concrete. You cannot define a session bean
class as either final or abstract since the container needs to manipulate it.

■ You must have a no-argument constructor in the bean class. As we saw, this
is because the container invokes this constructor to create a bean instance
when a client invokes an EJB. Note that the compiler inserts a default no-
argument constructor if there is no constructor in a Java class.

■ A session bean class can subclass another session bean or any other POJO.
For example, a stateless session bean named BidManager can extend
another session bean PlaceBidBean in the following way:

@Stateless
public BidManagerBean extends PlaceBidBean implements BidManager {
 ...
}

■ The business methods and lifecycle callback methods may be defined
either in the bean class or in a superclass. It’s worth mentioning here that
annotation inheritance is supported with several limitations with EJB 3 ses-
sion beans. For example, the bean type annotation @Stateless or @State-
ful specified in the PlaceBidBean superclass will be ignored when you
deploy the BidManagerBean. However, any annotations in the superclasses
used to define lifecycle callback methods (more about that later in this sec-
tion) and resource injections will be inherited by the bean class.

■ Business method names must not start with “ejb.” For example, avoid a
method name like ejbCreate or ejbAddBid because it may interfere with
EJB infrastructure processing. You must define all business methods as
public, but not final or static. If you are exposing a method in a remote
business interface of the EJB, then make sure that the arguments and the
return type of the method implement the java.io.Serializable interface.

You’ll see these rules applied when we explore concrete examples of stateless and
stateful session beans in sections 3.2 and 3.3, respectively.

Getting to know session beans 79
 Now that we’ve looked at the basic programming rules for the session beans,
let’s discuss the fundamental reasons behind splitting them into two groups.

3.1.4 Conversational state and session bean types

Earlier, we talked about stateful and stateless session beans. However, we have so
far avoided the real differences between them. This grouping of bean types cen-
ters on the concept of the conversational state.

 A particular business process may involve more than one session bean method
call. During these method calls, the session bean may or may not maintain a con-
versational state. This terminology will make more sense if you think of each ses-
sion bean method call as a “conversation,” or “exchange of information,”
between the client and the bean. A bean that maintains conversational state
“remembers” the results of previous exchanges, and is a stateful session bean. In
Java terms, this means that the bean will store data from a method call into
instance variables and use the cached data to process the next method call. State-
less session beans don’t maintain any state. In general, stateful session beans tend to
model multistep workflows, while stateless session beans tend to model general-
purpose, utility services used by the client.

 The classic example of maintaining conversational state is the e-commerce
website shopping cart. When the client adds, removes, modifies, or checks out
items from the shopping cart, the shopping cart is expected to store all the items
that were put into it while the client was shopping. As you can imagine, except for
the most complex business processes in an application, most session bean inter-
actions don’t require a conversational state. Putting in a bid at ActionBazaar, leav-
ing buyer or seller feedback, and viewing a particular item for bid are all
examples of stateless business processes.

 As you’ll soon see, however, this does not mean that stateless session beans
cannot have instance variables. Even before we explore any code, common sense
should tell us that session beans must cache some resources, like database connec-
tions, for performance reasons. The critical distinction here is client expectations.
As long as the client does not need to depend on the fact that a session bean uses
instance variables to maintain conversational state, there is no need to use a state-
ful session bean.

3.1.5 Bean lifecycle callbacks

A session bean has a lifecycle. This mean that beans go through a predefined set
of state transitions. If you’ve used Spring or EJB 2, this should come as no sur-
prise. If you haven’t, the concept can be a little tricky to grasp.

80 CHAPTER 3
Building business logic with session beans
 To understand the bean lifecycle, it is important to revisit the concept of man-
aged resources. Recall that the container manages almost every aspect of session
beans. This means that neither the client nor the bean is responsible for deter-
mining when bean instances are created, when dependencies are injected, when
bean instances are destroyed, or when to take optimization measures. Managing
these actions enables the container to provide the abstractions that constitute
some of the real value of using EJBs, including DI, automated transaction man-
agement, AOP, transparent security management, and so on.

The lifecycle events
The lifecycle of a session bean may be categorized into several phases or events.
The most obvious two events of a bean lifecycle are creation and destruction. All EJBs
go through these two phases. In addition, stateful session beans go through the
passivation/activation cycle, which we discuss in depth in section 3.3.5. Here, we take
a close look at the phases shared by all session beans: creation and destruction.

 The lifecycle for a session bean starts when a bean instance is created. This
typically happens when a client receives a reference to the bean either by doing
a JNDI lookup or by using dependency injection. The following steps occur
when a bean is initialized:

1 The container invokes the newInstance method on the bean object. This
essentially translates to a constructor invocation on the bean implemen-
tation class.

2 If the bean uses DI, all dependencies on resources, other beans, and envi-
ronment components are injected into the newly created bean instance.

Figure 3.2 depicts this series of events.
 After the container determines that an instance is no longer needed, the

instance is destroyed. This sounds just fine until you realize that the bean might
need to know when some of its lifecycle transitions happen. For example, suppose
that the resource being injected into a bean is a JDBC data source. That means
that it would be nice to be able to know when it is injected so you can open the
JDBC database connection to be used in the next business method invocation. In
a similar way, the bean would also need to be notified before it is destroyed so that
the open database connection can be properly closed.

 This is where callbacks come in.

Getting to know session beans 81
Understanding lifecycle callbacks
Lifecycle callbacks are bean methods (not exposed by a business interface) that
the container calls to notify the bean about a lifecycle transition, or event. When
the event occurs, the container invokes the corresponding callback method, and
you can use these methods to perform business logic or operations such as initial-
ization and cleanup of resources.

 Callback methods are bean methods that are marked with metadata annota-
tions such as @PostContruct and @PreDestroy. They can be public, private,
protected, or package-protected. As you might have already guessed, a Post-
Construct callback is invoked just after a bean instance is created and depen-
dencies are injected. A PreDestroy callback is invoked just before the bean is
destroyed and is helpful for cleaning up resources used by the bean.

 While all session beans have PostConstruct and PreDestroy lifecycle events,
stateful session beans have two additional ones: PrePassivate and PostActivate.
Since stateful session beans maintain state, there is a stateful session bean instance
for each client, and there could be many instances of a stateful session bean in the
container. If this happens, the container may decide to deactivate a stateful bean
instance temporarily when not in use; this process is called passivation. The

Figure 3.2
The lifecycle of an EJB starts when a method is invoked. The
container creates a bean instance and then dependencies on
resources are injected. The instance is then ready for method
invocation.

82 CHAPTER 3
Building business logic with session beans
container activates the bean instance again when the client needs it; this process is
called activation. The @PrePassivate and @PostActivate annotations apply to the
passivation and activation lifecycle events.

NOTE You can define a lifecycle callback method either in the bean class or in a
separate interceptor class.

Table 3.1 lists the lifecycle callback method annotations, where they are applied,
and what the callback methods are typically used for.

 In sections 3.2.4 and 3.3.4, you’ll learn how to define lifecycle callback meth-
ods in the bean class for stateless and stateful beans. We’ll defer our discussion of
lifecycle callback methods in the interceptor classes to chapter 5.

Table 3.1 Lifecycle callbacks are created to handle lifecycle events for an EJB. You can create
these callback methods either in the bean class or in an external interceptor class.

Callback Annotation Type of EJB Typically Used For...

javax.annotation.
PostConstruct

Stateless, stateful,
MDB

This annotated method is invoked after
a bean instance is created and depen-
dency injection is complete. Generally
this callback is used to initialize
resources (for example, opening data-
base connections).

javax.annotation.
PreDestroy

Stateless, stateful,
MDB

This annotated method is invoked prior
to a bean instance being destroyed.
Generally this callback is used to clean
up resources (for example, closing
database connections).

javax.ejb.PrePassivate Stateful This annotated method is invoked prior
to a bean instance being passivated.
Generally this callback is used to clean
up resources, such as database con-
nections, TCP/IP sockets, or any
resources that cannot be serialized dur-
ing passivation.

javax.ejb.PostActivate Stateful This annotated method is invoked after
a bean instance is activated. Generally
this callback is used to restore
resources, such as database connec-
tions that you cleaned up in the Pre-
Passivate method.

Stateless session beans 83
At this point, let’s launch our detailed exploration with the simpler stateless ses-
sion bean model and save stateful session beans for later.

3.2 Stateless session beans

As noted earlier, stateless session beans model tasks don’t maintain conversa-
tional state. This means that session beans model tasks can be completed in a
single method call, such as placing a bid. However, this does not mean that all
stateless session beans contain a single method, as is the case for the PlaceBid-
Bean in chapter 2. In fact, real-world stateless session beans often contain several
closely related business methods, like the BidManager bean we’ll introduce soon.
By and large, stateless session beans are the most popular kind of session beans.
They are also the most performance efficient. To understand why, take a look at
figure 3.3, which shows a high-level schematic of how stateless session beans are
typically used by clients.

 As you’ll learn in section 3.2.4, stateless beans are pooled. This means that for
each managed bean, the container keeps a certain number of instances handy in
a pool. For each client request, an instance from the pool is quickly assigned to
the client. When the client request finishes, the instance is returned to the pool
for reuse. This means that a small number of bean instances can service a rela-
tively large number of clients.

 In this section you’ll learn more about developing stateless session beans. We’ll
develop part of the business logic of our ActionBazaar system using a stateless
session to illustrate its use. You’ll learn how to use @Stateless annotations as well
as various types of business interfaces and lifecycle callbacks supported with state-
less session beans.

Figure 3.3
Stateless session bean
instances can be pooled and
may be shared between clients.
When a client invokes a method
in a stateless session bean, the
container either creates a new
instance in the bean pool for
the client or assigns one from
the bean pool. The instance is
returned to the pool after use.

84 CHAPTER 3
Building business logic with session beans
Before we jump into analyzing code, let’s briefly discuss the ActionBazaar busi-
ness logic that we’ll implement as a stateless session bean.

3.2.1 The BidManagerBean example

Bidding is a critical part of the ActionBazaar functionality. Users can bid on an
item and view the current bids, while ActionBazaar administrators and customer
service representatives can remove bids under certain circumstances. Figure 3.4
depicts these bid-related actions.

 Because all of these bid-related functions are simple, single-step processes, a
stateless session bean can be used to model all of them. The BidManagerBean pre-
sented in listing 3.1 contains methods for adding, viewing, and canceling (or
removing) bids. This is essentially an enhanced, more realistic version of the basic
PlaceBid EJB we saw earlier. The complete code is available for download from
www.manning.com/panda in the zip containing code examples.

Figure 3.4
Some ActionBazaar bid-related actions. While bidders can
place bids and view the current bids on an item, admins
can remove bids when needed. All of these actions can be
modeled with a singe stateless session bean.

Stateless session beans 85
NOTE We are using JDBC for simplicity only because we have not introduced
the EJB 3 Java Persistence API (JPA) in any detail quite yet, and we don’t
assume you already understand ORM. Using JDBC also happens to dem-
onstrate the usage of dependency injection of resources and the stateless
bean lifecycle callbacks pretty nicely! In general, you should avoid using
JDBC in favor of JPA once you are comfortable with it.

@Stateless(name="BidManager")
public class BidManagerBean implements BidManager {
 @Resource(name="jdbc/ActionBazaarDS")
 private DataSource dataSource;
 private Connection connection;
 ...
 public BidManagerBean() {}

 @PostConstruct
 public void initialize() {
 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void addBid(Bid bid){
 try {
 Long bidId = getBidId();
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO BIDS ("
 + "BID_ID, "
 + "BID_AMOUNT, "
 + "BID_BIDDER_ID, "
 + "BID_ITEM_ID) "
 + "VALUES ("
 + bidId + ", "
 + bid.getAmount() + ", "
 + bid.getBidder().getUserId() + ", "
 + bid.getItem().getItemId()+ ")");

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @PreDestroy
 public void cleanup() {

Listing 3.1 Stateless session bean example

 b Marks as stateless bean

 C Injects data source

Receives PostConstruct
callback

 D

Receives PreDestroy callback E

86 CHAPTER 3
Building business logic with session beans
 try {
 connection.close();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 private Long getBidId() { ... }

 public void cancelBid(Bid bid) {...}

 public List<Bid> getBids(Item item) {...}
 ...
}
...
@Remote
public interface BidManager {
 void addBid(Bid bid);
 void cancelBid(Bid bid);
 List<Bid> getBids(Item item);
}

As you’ve seen before, the @Stateless annotation marks the POJO as a stateless
session bean b. The BidManagerBean class implements the BidManager interface,
which is marked @Remote F. We use the @Resource annotation to perform injec-
tion of a JDBC data source C. The BidManagerBean has a no-argument construc-
tor that the container will use to create instances of BidManagerBid EJB object.
The PostConstruct D and PreDestroy E callbacks are used to manage a JDBC
database connection derived from the injected data source. Finally, the addBid
business method adds a bid into the database.

 We’ll start exploring the features of EJB 3 stateless session beans by analyzing
this code next, starting with the @Stateless annotation.

3.2.2 Using the @Stateless annotation

The @Stateless annotation marks the BidManagerBean POJO as a stateless session
bean. Believe it or not, other than marking a POJO for the purposes of making
the container aware of its purpose, the annotation does not do much else. The
specification of the @Stateless annotation is as follows:

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateless {
 String name() default "";

Designates remote
business interface

 F

Stateless session beans 87
 String mappedName() default "";
 String description() default "";

}

The single parameter, name, specifies the name of the bean. Some containers use
this parameter to bind the EJB to the global JNDI tree. Recall that JNDI is essen-
tially the application server’s managed resource registry. All EJBs automatically
get bound to JNDI as soon as they catch the container’s watchful eye. You’ll see
the name parameter in use again in chapter 11 when we discuss deployment
descriptors. In listing 3.1, the bean name is specified as BidManager. As the anno-
tation definition shows, the name parameter is optional since it is defaulted to an
empty String. We could easily omit it as follows:

@Stateless
public class BidManagerBean implements BidManager {

If the name parameter is omitted, the container assigns the name of the class to
the bean. In this case, the container assumes the bean name is BidManager-
Bean. mappedName is a vendor-specific name that you can assign to your EJB;
some containers, such as the GlassFish application server, use this name to
assign the global JNDI name for the EJB. As we noted, the BidManagerBean
implements a business interface named BidManager. Although we’ve touched on
the idea of a business interface, we haven’t dug very deeply into the concept.
This is a great time to do exactly that.

3.2.3 Specifying bean business interfaces

In section 3.1, we introduced you to EJB interfaces. Now let’s explore a bit more
how they work with stateless session beans. Client applications can invoke a state-
less session bean in three different ways. In addition to local invocation within the
same JVM and remote invocation through RMI, stateless beans can be invoked
remotely as web services.

 Three types of business interfaces correspond to the different access types;
each is identified through a distinct annotation. Let’s take a detailed look at
these annotations.

Local interface
A local interface is designed for clients of stateless session beans collocated in the
same container (JVM) instance. You designate an interface as a local business
interface by using the @Local annotation. The following could be a local interface
for the BidManagerBean class in listing 3.1:

88 CHAPTER 3
Building business logic with session beans
@Local
public interface BidManagerLocal {
 void addBid(Bid bid);
 void cancelBid(Bid bid);
 List<Bid> getBids(Item item);
}

Local interfaces don’t require any special measures in terms of either defining or
implementing them.

Remote interface
Clients residing outside the EJB container’s JVM instance must use some kind of
remote interface. If the client is also written in Java, the most logical and resource-
efficient choice for remote EJB access is Java Remote Method Invocation (RMI).
In case you are unfamiliar with RMI, we provide a brief introduction to RMI in
appendix A. For now, all you need to know is that it is a highly efficient, TCP/IP-
based remote communication API that automates most of the work needed for
calling a method on a Java object across a network. EJB 3 enables a stateless
bean to be made accessible via RMI through the @Remote annotation. The Bid-
Manager business interface in our example uses the annotation to make the bean
remotely accessible:

@Remote
public interface BidManager extends Remote {
 ...
}

A remote business interface may extend java.rmi.Remote as we’ve done here,
although this is optional. Typically the container will perform byte-code enhance-
ments during deployment to extend java.rmi.Remote if your bean interface does
not extend it. Remote business interface methods are not required to throw
java.rmi.RemoteException unless the business interface extends the java.rmi.
Remote interface. Remote business interfaces do have one special requirement: all
parameters and return types of interface methods must be Serializable. This is
because only Serializable objects can be sent across the network using RMI.

Web service endpoint interface
The third type of interface is specific to stateless session beans that you haven’t
seen yet: the web service endpoint interface (also known as SEI). The ability to expose
a stateless session bean as a SOAP-based web service is one of the most powerful
features of EJB 3. All you need to do to make a bean SOAP accessible is mark a

Stateless session beans 89
business interface with the @javax.jws.WebService annotation. The following
defines a simple web service endpoint interface for the BidManagerBean:

@WebService
public interface BidManagerWS {
 void addBid(Bid bid);
 List<Bid> getBids(Item item);
}

Note we have omitted the cancelBid bean method from the interface; we don’t
want this functionality to be accessible via a web service, although it is accessible
locally as well as remotely through RMI. The @WebService annotation doesn’t
place any special restrictions on either the interface or the implementing bean.
We discuss EJB web services in greater detail in chapter 15.

Working with multiple business interfaces
Although it is tempting, you cannot mark the same interface with more than one
access type annotation. For example, you cannot mark the BidManager interface
in listing 3.1 with both the @Local and @Remote annotations instead of creating
separate BidManagerLocal (local) and BidManager (remote) interfaces, although
both interfaces expose the exact same bean methods.

 However, a business interface can extend another interface, and you can
remove code duplication by creating a business interface that has common meth-
ods and business interfaces that extend the common “parent” interface. For
example, you can create a set of interfaces utilizing OO inheritance as follows:

public interface BidManager{
 void addBid(Bid bid);
 List<Bid> getBids(Item item);
}

@Local
public interface BidManagerLocal extends BidManager {
 void cancelBid(Bid bid);
}

@Remote
public interface BidManagerRemote extends BidManagerLocal {
}

@WebService
public interface BidManagerWS extends BidManager {
}

If you want, you can apply the @Local, @Remote, or @WebService annotation in the
bean class without having to implement the business interface as follows:

90 CHAPTER 3
Building business logic with session beans
@Remote(BidManager.class)
@Stateless
public class BidManagerBean {
 ...
}

The preceding code marks the BidManager interface as remote through the bean
class itself. This way, if you change your mind later, all you’d have to do is change
the access type specification in the bean class without ever touching the interface.

 Next, we move on to discussing the EJB lifecycle in our example.

3.2.4 Using bean lifecycle callbacks

We introduced you to lifecycle callback methods, or callbacks, earlier in the chap-
ter; now let’s take a deeper look at how they are used with stateless session beans.
As far as EJB lifecycles go, stateless session beans have a simple one, as depicted
in figure 3.5. In effect, the container does the following:

Figure 3.5
The chicken or the egg—the stateless
session bean lifecycle has three states: does
not exist, idle, or busy. As a result, there are
only two lifecycle callbacks corresponding to
bean creation and destruction.

Stateless session beans 91
1 Creates bean instances using the default constructor as needed.

2 Injects resources such as database connections.

3 Puts instances in a managed pool.

4 Pulls an idle bean out of the pool when an invocation request is
received from the client (the container may have to increase the pool
size at this point).

5 Executes the requested business method invoked through the business
interface by the client.

6 When the business method finishes executing, pushes the bean back into
the “method-ready” pool.

7 As needed, retires (a.k.a. destroys) beans from the pool.

An important point to note from the stateless session bean lifecycle is that since
beans are allocated from and returned to the pool on a per-invocation basis,
stateless session beans are extremely performance friendly and a relatively
small number of bean instances can handle a large number of virtually concur-
rent clients.

 As you know, there are two types of stateless session bean lifecycle callback
methods: (1) callbacks that are invoked when the PostConstruct event occurs
immediately after a bean instance is created and set up, and all the resources are
injected; and (2) callbacks that are invoked when the PreDestroy event occurs,
right before the bean instance is retired and removed from the pool. Note that
you can have multiple PostConstruct and PreDestroy callbacks for a given bean
(although this is seldom used) in a class or in a separate interceptor class (dis-
cussed in chapter 5).

 In listing 3.1, the lifecycle callback methods embedded in the bean are ini-
tialize and cleanup. Callbacks must follow the pattern of void <METHOD>().
Unlike business methods, callbacks cannot throw checked exceptions (any excep-
tion that doesn’t have java.lang.RuntimeException as a parent).

 Typically, these callbacks are used for allocating and releasing injected
resources that are used by the business methods, which is exactly what we do in
our example of BidManagerBean in listing 3.1. In listing 3.1 we open and close
connections to the database using an injected JDBC data source.

 Recall that the addBid method in listing 3.1 inserted the new bid submitted by
the user. The method created a java.sql.Statement from an open JDBC connec-
tion and used the statement to insert a record into the BIDS table. The JDBC con-
nection object used to create the statement is a classic heavy-duty resource. It is

92 CHAPTER 3
Building business logic with session beans
expensive to open and should be shared across calls whenever possible. It can
hold a number of native resources, so it is important to close the JDBC connection
when it is no longer needed. We accomplish both these goals using callbacks as
well as resource injection.

 In listing 3.1, the JDBC data source from which the connection is created is
injected using the @Resource annotation. We explore injecting resources using the
@Resource annotation in chapter 5; for now, this is all that you need to know.

 Let’s take a closer look at how we used the callbacks in listing 3.1.

PostConstruct callback
The setDataSource method saves the injected data source in an instance variable.
After injecting all resources, the container checks whether there are any desig-
nated PostConstruct methods that need to be invoked before the bean instance is
put into the pool. In our case, we mark the initialize method in listing 3.1 with
the @PostConstruct annotation:

@PostConstruct
public void initialize() {
 ...
 connection = dataSource.getConnection();
 ...
}

In the initialize method, we create a java.sql.Connection from the injected
data source and save it into the connection instance variable used in addBid each
time the client invokes the method.

PreDestroy callback
At some point the container decides that our bean should be removed from the
pool and destroyed (perhaps at server shutdown). The PreDestroy callback gives
us a chance to cleanly tear down bean resources before this is done. In the cleanup
method marked with the @PreDestroy annotation in listing 3.1, we tear down the
open database connection resource before the container retires our bean:

@PreDestroy
public void cleanup() {
 ...
 connection.close();
 connection = null;
 ...
}

Since bean instances from the pool are assigned randomly for each method invo-
cation, trying to store client-specific state across method invocations is useless

Stateful session beans 93
since the same bean instance may not be used for subsequent calls by the same cli-
ent. On the other hand, stateful session beans, which we’ll discuss next, are ideally
suited for this situation.

3.3 Stateful session beans

Stateful session beans are guaranteed to maintain conversational state. They are
not programmatically very different from their stateless cousins: as a matter of fact,
the only real difference between stateless and stateful beans is how the container
manages their lifecycle. Unlike with stateless beans, the container makes sure that
subsequent method invocations by the same client are handled by the same stateful
bean instance. Figure 3.6 shows the one-to-one mapping between a bean instance
and a client enforced behind the scenes by the container. As far as you are con-
cerned, this one-to-one relation management happens “automagically.”

 The one-to-one mapping between a client and a bean instance makes saving
bean conversational state in a useful manner possible. However, this one-to-one
correlation comes at a price. Bean instances cannot be readily returned to the
pool and reused while a client session is still active. Instead, a bean instance must
be squirreled away in memory to wait for the next request from the client owning
the session. As a result, stateful session bean instances held by a large number of
concurrent clients can have a significant memory footprint. An optimization
technique called passivation, which we’ll discuss soon, is used to alleviate this prob-
lem. Stateful session beans are ideal for multistep, workflow-oriented business
processes. In this section, we explore stateful beans by using the ActionBazaar
bidder account creation workflow as an example.

Figure 3.6
Stateful bean session
maintenance. There is a bean
instance reserved for a client
and each instance stores the
client’s state information. The
bean instance exists until
either removed by the client or
timed out.

94 CHAPTER 3
Building business logic with session beans
We describe a use case of our ActionBazaar application and implement it using a
stateful session bean. We show you additional programming rules for stateful ses-
sion beans, and then we examine stateful bean lifecycle callback methods and
the @Remove annotation. Finally, we summarize differences between stateless and
stateful session beans.

 However, before we jump into code, let’s briefly examine the rules specific to
developing a stateful session bean.

3.3.1 Additional programming rules
In section 3.1.3, we discussed the programming rules that apply to all session
beans. Stateful session beans have a few minor twists on these rules:

■ Stateful bean instance variables used to store conversational state must be
Java primitives or Serializable objects. We’ll talk more about this require-
ment when we cover passivation.

■ Since stateful session beans cannot be pooled and reused like stateless
beans, there is a real danger of accumulating too many of them if we don’t
have a way to destroy them. Therefore, we have to define a business
method for removing the bean instance by the client using the @Remove
annotation. We’ll talk more about this annotation soon.

■ In addition to the PostConstruct and PreDestroy lifecycle callback meth-
ods, stateful session beans have the PrePassivate and PostActivate lifecy-
cle callback methods. A PrePassivate method is invoked before a stateful
bean instance is passivated and PostActivate is invoked after a bean
instance is brought back into the memory and is method ready.

You’ll see these rules applied when we explore a concrete stateful session beans
example next. As we did for stateless beans, we’ll utilize the example as a jump-
ing-off point to detail stateful features.

3.3.2 The BidderAccountCreatorBean example
The process to create an ActionBazaar bidder account is too involved to be imple-
mented as a single-step action. As a result, account creation is implemented as a
multistep process. At each step of the workflow, the would-be bidder enters
digestible units of data. For example, the bidder may enter username/password
information first; then biographical information such as name, address, and con-
tact information; then billing information such as credit card and bank account
data; and so forth. At the end of a workflow, the bidder account is created or the
entire task is abandoned. This workflow is depicted in figure 3.7.

Stateful session beans 95
Each step of the workflow is implemented as a method of the BidderAccountCre-
atorBean presented in listing 3.2. Data gathered in each step is incrementally
cached into the stateful session bean as instance variable values. Calling either
the cancelAccountCreation or createAccount method ends the workflow. The
createAccount method creates the bidder account in the database and is sup-
posed to be the last “normal” step of the workflow. The cancelAccountCreation
method, on the other hand, prematurely terminates the process when called by
the client at any point in the workflow and nothing is saved into the database.
The full version of the code is available for download in the zip containing code
examples from this book’s website.

@Stateful(name="BidderAccountCreator")
public class BidderAccountCreatorBean
 implements BidderAccountCreator {

Listing 3.2 Stateful session bean example

Figure 3.7 The ActionBazaar bidder account creation process is broken up into multiple steps:
entering username/password, entering biographical information, entering billing information, and
finally creating the account. This workflow could be implemented as a stateful session bean.

 b Marks POJO stateful

96 CHAPTER 3
Building business logic with session beans
 @Resource(name="jdbc/ActionBazaarDS")
 private DataSource dataSource;

 private LoginInfo loginInfo;
 private BiographicalInfo biographicalInfo;
 private BillingInfo billingInfo;

 private Connection connection;

 public BidderAccountCreatorBean () {}

 @PostConstruct
 @PostActivate
 public void openConnection() {
 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void addLoginInfo(LoginInfo loginInfo) {
 this.loginInfo = loginInfo;
 }

 public void addBiographicalInfo(
 BiographicalInfo biographicalInfo) {
 this.biographicalInfo = biographicalInfo;
 }

 public void addBillingInfo(BillingInfo billingInfo) {
 this.billingInfo = billingInfo;
 }

 @PrePassivate
 @PreDestroy
 public void cleanup() {
 try {
 connection.close();
 connection = null;
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 @Remove
 public void cancelAccountCreation() {
 loginInfo = null;
 biographicalInfo = null;
 billingInfo = null;
 }

 @Remove

Contains stateful
instance
variables

 C

 D Receives PostConstruct callback

Receives PostActivate
callback E

 F Receives PrePassivate callback

Receives PreDestroy
callback G

 H Designates remove
methods

Stateful session beans 97
 public void createAccount() {
 try {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO BIDDERS(" +
 "username, " +
 ...
 "first_name, " +
 ...
 "credit_card_type, " +
 ...
 ") VALUES (" +
 "’" + loginInfo.getUsername() + "’, " +
 ...
 "’" + biographicalInfo.getFirstName() + "’, " +
 ...
 "’" + billingInfo.getCreditCardType() + "’, " +
 ...

 ")");
 statement.close();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }
}
...
@Remote
public interface BidderAccountCreator implements Remote {
 void addLoginInfo(LoginInfo loginInfo);
 void addBiographicalInfo(BiographicalInfo biographicalInfo);
 void addBillingInfo(BillingInfo billingInfo);
 void cancelAccountCreation();
 void createAccount();
}

As we mentioned earlier, it should not surprise you that the code has a lot in com-
mon with the stateless session bean code in listing 3.1.

NOTE As before, we are using JDBC for simplicity in this example because we
want you to focus on the session bean code right now and not JPA.
We’ll cover JPA in the part 3 of this book. An interesting exercise for
you is to refactor this code using JPA and notice the radical improve-
ment over JDBC!

98 CHAPTER 3
Building business logic with session beans
We are using the @Stateful annotation to mark the BidderAccountCreatorBean
POJO b. Other than the annotation name, this annotation behaves exactly like the
@Stateless annotation, so we won’t mention it any further. The bean implements
the BidderAccountCreator remote business interface. As per stateful bean pro-
gramming rules, the BidderAccountCreatorBean has a no-argument constructor.

 Just like in listing 3.1, a JDBC data source is injected using the @Resource anno-
tation. Both the PostConstruct D and PostPassivate E callbacks prepare the
bean for use by opening a database connection from the injected data source. On
the other hand, both the PrePassivate F and PreDestroy G callbacks close the
cached connection.

 The loginInfo, biographicalInfo, and billingInfo instance variables are
used to store client conversational state across business method calls C. Each of
the business methods models a step in the account creation workflow and incre-
mentally populates the state instance variables. The workflow is terminated when
the client invokes either of the @Remove annotated methods H.

 There is no point to repeating our discussion of the features that are identical
to the ones for stateless session beans, so we’ll avoid doing so. However, let’s
explore the features unique to stateful session beans next, starting with the state-
ful bean business interfaces.

3.3.3 Business interfaces for stateful beans

Specifying stateful bean business interfaces works in almost exactly the same way
as it does for stateless beans—with a couple of exceptions. Stateful session beans
support local and remote invocation through the @Local and @Remote annota-
tions. However, a stateful session bean cannot have a web service endpoint inter-
face. This is because SOAP-based web services are inherently stateless in nature.
Also, you should always include at least one @Remove annotated method in your
stateful bean’s business interface. The reason for this will become clear as we dis-
cuss the stateful bean lifecycle next.

3.3.4 Stateful bean lifecycle callbacks

As we mentioned in section 3.1, the lifecycle of the stateful session bean is very
different from that of a stateless session bean because of passivation. In this sec-
tion, we explain this concept in more depth. Let’s start by looking at the lifecycle
of a stateful bean, as shown in figure 3.8. The container follows these steps:

1 Always creates new bean instances using the default constructor when-
ever a new client session is started.

Stateful session beans 99
2 Injects resources.

3 Stores the instance in memory.

4 Executes the requested business method invoked through the business
interface by the client.

5 Waits for and executes subsequent client requests.

6 If the client remains idle for a period of time, the container passivates the
bean instance. Essentially, passivation means that the bean is moved out
of active memory, serialized, and stored in temporary storage.

7 If the client invokes a passivated bean, it is activated (brought back into
memory from temporary storage).

8 If the client does not invoke a passivated bean instance for a period of
time, it is destroyed.

9 If the client requests the removal of a bean instance, it is first activated if
necessary and then destroyed.

Figure 3.8 The lifecycle of a stateful session bean. A stateful bean maintains client state and cannot
be pooled. It may be passivated when the client is not using it and must be activated when the client
needs it again.

100 CHAPTER 3
Building business logic with session beans
Like a stateless session bean, the stateful session bean has lifecycle callback meth-
ods, or callbacks, that are invoked when the PostConstruct event occurs (as an
instance is created) and when the PreDestroy event occurs (before the instance is
destroyed). But now we have two new callback events for which we can have call-
backs: PrePassivate and PostActivate, which are part of the passivation process.
We’ll discuss them next.

 Just as in listing 3.1, we use a PostConstruct callback in listing 3.2 to open a
database connection from the injected data source so that it can be used by busi-
ness methods. Also as in listing 3.1, we close the cached connection in preparation
for bean destruction in a PreDestroy callback. However, you should note that we
invoke the very same method for both the PreDestroy and PrePassivate callbacks:

@PrePassivate
@PreDestroy
public void cleanup() {
 ...
}

Similarly, the exact same action is taken for both the PostConstruct and Post-
Activate callbacks:

@PostConstruct
@PostActivate
public void openConnection() {
 ...
}

To see why this is the case, let’s discuss activation and passivation in a little
more detail.

Passivation and activation
If clients don’t invoke a bean for a long enough time, it is not a good idea to con-
tinue keeping it in memory. For a large number of beans, this could easily make
the machine run out of memory. The container employs the technique of passiva-
tion to save memory when possible.

NOTE Passivation essentially means saving a bean instance into disk instead of
holding it in memory. The container accomplishes this task by serializ-
ing the entire bean instance and moving it into permanent storage like
a file or the database. Activation is the opposite of passivation and is
done when the bean instance is needed again. The container activates
a bean instance by retrieving it from permanent storage, deserializing
it, and moving it back into memory. This means that all bean instance

Stateful session beans 101
variables that you care about and should be saved into permanent stor-
age must either be a Java primitive or implement the java.io. Seri-
alizable interface.

The point of the PrePassivate callback is to give the bean a chance to prepare
for serialization. This may include copying nonserializable variable values into
Serializable variables and clearing unneeded data out of those variables to save
total disk space needed to store the bean. Most often the prepassivation step
consists of releasing heavy-duty resources such as open database, messaging
server, and socket connections that cannot be serialized. A well-behaved bean
should ensure that heavy-duty resources are both closed and explicitly set to null
before passivation takes place.

 From the perspective of a bean instance, there isn’t much of a difference
between being passivated and being destroyed. In both cases, the current instance
in memory would cease to exist. As a result, in most cases you’ll find that the same
actions are performed for both the PreDestroy and PrePassivate callbacks, as we
do in listing 3.2. Pretty much the same applies for the PostConstruct–Post-
Activate pair. For both callbacks, the bean needs to do whatever is necessary to
make itself ready to service the next incoming request. Nine times out of ten, this
means getting hold of resources that either are not instantiated or were lost dur-
ing the serialization/deserialization process. Again, listing 3.2 is a good example
since the java.sql.Connection object cannot be serialized and must be reinstan-
tiated during activation.

Destroying a stateful session bean
In listing 3.2, the cancelAccountCreation and createAccount methods are marked
with the @Remove annotation. Beyond the obvious importance of these methods in
implementing vital workflow logic, they play an important role in maintaining
application server performance. Calling business methods marked with the
@Remove annotation signifies a desire by the client to end the session. As a result,
invoking these methods triggers immediate bean destruction.

 To gain an appreciation for this feature, consider what would happen if it
did not exist. If remove methods were not an option, the client would have no
way of telling the container when a session should be ended. As a result, every
stateful bean instance ever created would always have to be timed out to be
passivated (if the container implementation supports passivation) and timed
out again to be finally destroyed. In a highly concurrent system, this could
have a drastic performance impact. The memory footprint for the server would

102 CHAPTER 3
Building business logic with session beans
constantly be artificially high, not to mention how there would be wasted CPU
cycles and disk space used in the unnecessary activation/passivation process.
This is why it is critical that you remove stateful bean instances when the client
is finished with its work instead of relying on the container to destroy them
when they time out.

 Believe it or not, these are the only few stateful bean–specific features that we
needed to talk about! Before concluding this section on stateful beans, we’ll
briefly summarize the differences between stateful and stateless session beans as a
handy reference in table 3.2.

Thus far we have explored how to develop session beans. In the next section, we
discuss how session beans are actually accessed and used by clients.

3.4 Session bean clients

A session bean works for a client and may either be invoked by local clients collo-
cated in the same JVM or by a remote client outside the JVM. In this section we
first discuss how a client accesses a session bean and then see how the @EJB anno-
tation is used to inject session bean references.

 Almost any Java component can be a session bean client. POJOs, servlets, JSPs,
or other EJBs can access session beans. In fact, stateless session beans exposed

Table 3.2 The main differences between stateless and stateful session beans

Features Stateless Stateful

Conversational state No Yes

Pooling Yes No

Performance problems Unlikely Possible

Lifecycle events PostConstruct,
PreDestroy

PostConstruct, PreDestroy,
PrePassivate, PostActivate

Timer
(discussed in chapter 5)

Yes No

SessionSynchronization for
transactions (discussed in chapter 6)

No Yes

Web services Yes No

Extended PersistenceContext
(discussed in chapter 9)

No Yes

Session bean clients 103
through web services endpoints can even be accessed by non-Java clients such as
.NET applications. However, in this section we concentrate on clients that access
session beans either locally or remotely through RMI. In chapter 15 you’ll see how
EJB web service clients look.

 Fortunately, in EJB 3 accessing a remote or local session bean looks exactly
the same. As a matter of fact, other than method invocation patterns, stateless
and stateful session beans pretty much look alike from a client’s perspective too.
In all of these cases, a session bean client follows these general steps to use a
session bean:

1 The client obtains a reference to the beans directly or indirectly from JNDI.

2 All session bean invocations are made through an interface appropriate
for the access type.

3 The client makes as many method calls as are necessary to complete the
business task at hand.

4 In case of a stateful session bean, the last client invocation should be a
remove method.

To keep things as simple as possible, let’s explore a client that uses the BidMan-
agerBean stateless session bean to add a bid to the ActionBazaar site. We’ll leave it
as an exercise for you to extend the client code to use the BidderAccountCreator-
Bean stateful session bean. For starters, let’s see how the code to use the BidMan-
agerBean from another EJB might look:

@Stateless
public class GoldBidderManagerBean implements GoldBidderManager {
 @EJB
 private BidManager bidManager;

 public void addMassBids(List<Bid> bids) {
 for (Bid bid : bids) {
 bidManager.addBid(bid);
 }
 }
}

This code uses dependency injection through the @javax.ejb.EJB annotation to
obtain a reference to the BidManagerBean. This is by far the easiest method of pro-
curing a reference to a session bean. Depending on your client environment, you
might have to use one of the two other options available for obtaining EJB refer-
ences: using EJB context lookup or using JNDI lookup. Since neither of these
options is used often in real life, we’ll focus on DI for right now. However, we’ll

104 CHAPTER 3
Building business logic with session beans
discuss both EJB context lookup and JNDI lookup in greater detail in coming
chapters, as well as in appendix A.

3.4.1 Using the @EJB annotation

Recall from our discussion on DI in chapter 2 that the @EJB annotation is specifi-
cally intended for injecting session beans into client code. Also recall that since
injection is only possible within managed environments, this annotation only
works inside another EJB, in code running inside an application-client container
(ACC), or in components registered with the web container (such as a servlet or
JSF backing bean). However, some application servers will support injection of
EJB references into POJOs as a vendor-specific extension. Here is the specification
for the @EJB annotation:

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {
 String name() default "";
 Class beanInterface() default Object.class;
 String beanName() default "";
}

All three of the parameters for the @EJB annotation are optional. The name element
suggests the JNDI name that is used to bind the injected EJB in the environment-
naming context. The beanInterface specifies the business interface to be used to
access the EJB. The beanName element allows us to distinguish among EJBs if mul-
tiple EJBs implement the same business interface. In our GoldBidManagerBean
code, we chose to use the remote interface of the BidManagerBean. If we want to use
the local interface of the BidManagerBean EJB instead, we can use the following:

@EJB
private BidManagerLocal bidManager;

We have not specified the name parameter for the @EJB annotation in this code
and the JNDI name is derived from the interface name (BidManagerLocal in our
case). If we want to inject an EJB bound to a different JNDI name, we can use the
@EJB annotation as follows:

@EJB(name="BidManagerRemote")
private BidManager bidManager;

3.4.2 Injection and stateful session beans

For the most part, using DI is a no-brainer. There are a few nuances to keep an eye
on while using DI with stateful beans, though. You can inject a stateful session into
another stateful session bean instance if you need to. For example, you can inject

Performance considerations for stateful beans 105
the BidderAccountCreator stateful EJB from UserAccountRegistration EJB that is
another stateful session bean as follows:

@Stateful
public class UserAccountRegistrationBean
 implements UserAccountRegistration {
 @EJB
 private BidderAccountCreator bidderAccountCreator;
 ...
}

This code will create an instance of BidderAccountCreatorBean which will be
specifically meant for the client accessing the instance of the UserAccount-
RegistrationBean. If the client removes the instance of UserAccountRegistra-
tionBean, the associated instance of BidderAccountCreatorBean will also be
automatically removed.

 Keep in mind that you must not inject a stateful session bean into a stateless
object, such as a stateless session bean or servlet that may be shared by multiple
concurrent clients (you should use JNDI in such cases instead). However, injecting
an instance of a stateless session bean into a stateful session bean is perfectly
legal. Chapter 12 discusses in much greater detail how you can use EJB from
other tiers.

 This concludes our brief discussion on accessing session beans. Next, we’ll
briefly explore potential performance issues of stateful session beans.

3.5 Performance considerations for stateful beans

Whether or not they deserve it, stateful session beans have received a bad rap as
performance bottlenecks. There is truth behind this perception, quite possibly
due to poor initial implementations for most popular application servers. In
recent years, these problems have been greatly alleviated with effective under-
the-hood optimizations as well as better JVM implementations. However, you still
have to keep a few things in mind in order to use session beans effectively. More
or less, these techniques are essential for using any stateful technology, so pay
attention even if you decide against using stateful beans. In this section you’ll
learn techniques to effectively use stateful session beans and other alternatives for
building stateful applications.

3.5.1 Using stateful session beans effectively

There is little doubt that stateful session beans provide extremely robust business
logic processing functionality if maintaining conversational state is an essential

106 CHAPTER 3
Building business logic with session beans
application requirement. In addition, EJB 3 adds extended persistence contexts
specifically geared toward stateful session beans (discussed in chapters 9 and 13),
significantly increasing their capability. Most popular application servers such as
WebSphere, WebLogic, Oracle, and JBoss provide high availability by clustering
EJB containers running the same stateful bean. A clustered EJB container repli-
cates session state across container instances. If a clustered container instance
crashes for any reason, the client is routed to another container instance seam-
lessly without losing state. Such reliability is hard to match without using stateful
session beans. Nonetheless, there are a few things to watch out for while using
stateful session beans.

Choosing session data appropriately
Stateful session beans can become resource hogs and cause performance prob-
lems if not used properly. Since the container stores session information in mem-
ory, if you have thousands of concurrent clients for your stateful session bean you
may run out of memory or cause a lot of disk thrashing by the container as it pas-
sivates and activates instances to try to conserve memory. Consequently, you have
to closely examine what kind of data you are storing in the conversation state and
make sure the total memory footprint for the stateful bean is as small as possible.
For example, it may be a lot more efficient to store just the itemId for an Item
instead of storing the complete Item object in an instance variable.

 If you cluster stateful beans, the conversational state is replicated between dif-
ferent instances of the EJB container. State replication uses network bandwidth.
Storing a large object in the bean state may have a significant impact on the per-
formance of your application because the containers will spend time replicating
objects to other container instances to ensure high availability. We’ll discuss more
about EJB clustering in chapter 13.

Passivating and removing beans
The rules for passivation are generally implementation specific. Improper use of
passivation policies (when passivation configuration is an option) may cause per-
formance problems. For example, the Oracle Application Server passivates bean
instances when the idle time for a bean instance expires, when the maximum
number of active bean instances allowed for a stateful session bean is reached, or
when the threshold for JVM memory is reached. You have to check the documen-
tation for your EJB container and appropriately set passivation rules. For exam-
ple, if we set the maximum number of active instances allowed for a stateful bean

Performance considerations for stateful beans 107
instance to 100 and we usually have 150 active clients, the container will continue
to passivate and activate bean instances, thus causing performance problems.

 You can go a long way toward solving potential memory problems by explicitly
removing the no longer required bean instances rather than depending on the
container to time them out. As discussed earlier, you can annotate a method with
the @Remove annotation that signals the container to remove the bean instance.

 Given the fact that stateful session beans can become performance bottlenecks
whether through improper usage or under certain circumstances, it is worth
inspecting the alternatives to using them.

3.5.2 Stateful session bean alternatives

This section examines a few alternative strategies to implementing stateful busi-
ness processing, as well as some issues you may need to consider when using them.

 The first alternative to stateful beans is replacing them with a combination of
persistence and stateless processing. In this scheme, we essentially move state
information from memory to the database on every request.

 You should carefully examine whether you want to maintain state between
conversations in memory. Base your decision completely based on your applica-
tion requirements and how much tolerance of failure you have. For example, in
the BidderAccountCreator EJB you can probably avoid the use of conversational
state by not maintaining instance variables to store the user information in mem-
ory and save data in the database on each method call.

 Second, you may choose to build some mechanism at the client side to main-
tain state. This requires additional coding, such as storing the state as an object in
client memory or in a file.

 The downside of these two approaches is that it is difficult to guarantee high
availability and they may not be viable options for your application. In fact, you
would lose all of the advantages that the container provides by hand-coding pro-
prietary solutions such as the ones outlined here, including automated passiva-
tion and robust, transparent state maintenance.

 Third, you may choose to maintain session state in the web container if you’re
building a web application. Although HTTP is a stateless protocol, the Java Serv-
let API provides the ability to maintain state by using the HttpSession object. The
servlet container does not have to do heavy lifting like passivation and activation,
and may perform better in certain situations. Be aware that too much data in the
HttpSession could decrease performance of the servlet container as well, so this is
not a silver bullet either. Moreover, you cannot use this option with thick or Java
SE clients.

108 CHAPTER 3
Building business logic with session beans
 So when you need to maintain state in your applications and your clients
are Java SE clients, then the first two options we discussed earlier may be more
difficult to implement. Hence, stateful session beans are probably the only via-
ble option as long as you carefully weigh the performance considerations we
outlined earlier.

 We’ll close our discussion on session beans by outlining some best practices for
session beans that you can use to build your application’s business logic.

3.6 Session bean best practices

In this section we outline some of the best practices for session beans that you can
use while building the business logic tier for your application.

 Choose your bean type carefully. Stateless session beans will be suitable most of
the time. Carefully examine whether your application needs stateful session
beans, because it comes with a price. If the EJB client lies in the web tier, then
using HttpSession may be a better choice than stateful session beans under
some circumstances.

 Carefully examine interface types for session beans. Remote interfaces involve net-
work access and may slow down your applications. If the client will always be used
within the same JVM as the bean, then use a local interface.

 If you are using DI, make sure you don’t inject a stateful session bean into a stateless ses-
sion bean or servlet. Injected EJB instances are stored in an instance variable and
are available globally for subsequent clients even if a stateless bean instance is
returned to the pool, and an injected stateful bean instance may contain inaccu-
rate state information that will be available to a different client. It’s legal to inject
a stateful bean instance to another stateful session bean or an application client.

 Separate crosscutting concerns such as logging and auditing using business inter-
ceptors (which we discuss in chapter 5) instead of spreading them all over the
business logic.

 Closely examine what kind of data you are storing in the conversation state. Try to use
small, primitive instance variables in a stateful bean whenever possible as
opposed to large nested composite objects.

 Don’t forget to define remove methods in a stateful session bean.
 Tune passivation and timeout configurations to find the optimal values for your

application.

Summary 109
3.7 Summary

In this chapter, we examined the various session bean types and how stateless ses-
sion beans and stateful session beans differ. We looked at the programming rules
for both stateless and stateful session beans, and you saw comprehensive exam-
ples of both bean types. As you learned, stateless session beans have a simple life-
cycle and can be pooled. Stateful beans require instances for each client, and for
that reason they can consume a lot of resources. In addition, passivation and acti-
vation of stateful beans can impact performance if used inappropriately.

 You learned about alternatives for using stateful session beans, and that session
bean clients can be either local or remote. We showed you that dependency injec-
tion simplifies the use of EJB and saves you from having to perform complex JNDI
lookups. Finally, we provided some best practices for developing session beans.

 At this point you have all the ammunition necessary to build the business
logic of your application using stateless and stateful session beans. In the next
chapter we’ll discuss how you can build messaging applications with message-
driven beans.

Messaging and
developing MDBs
This chapter covers
■ Introducing messaging concepts
■ Building a message producer using JMS
■ Developing MDBs
110

Messaging concepts 111
In this chapter we’ll take a closer look at developing message-driven beans
(MDBs) as well as provide you with an overview of the concepts and technologies
these powerful EJB 3 components build on. First we’ll introduce you to basic
messaging concepts, and then we’ll explore the Java Messaging Service (JMS) by
creating a message producer. Finally, we’ll take a look at MDBs, the EJB 3 answer
to messaging.

 You should gain an understanding of messaging and JMS before diving into
MDB for two reasons. First, most MDBs you’ll encounter are glorified JMS message
consumers implementing JMS interfaces (such as javax.jms.MessageListener)
and using JMS components (such as javax.jms.Message). Second, for most solu-
tions with MDB your messaging will involve much more than simply consuming
messages. For the simplest of these tasks, such as sending messages, you’ll have to
understand JMS. This chapter assumes a basic familiarity with JMS and we offer
only a brief description of it.

 If you’re comfortable with messaging and JMS, feel free to skip to the sections
on MDBs. It is good to reinforce what you know from time to time, though, so you
just might want to quickly jog through the first few sections with us anyway.

4.1 Messaging concepts

When we talk about messaging in the Java EE context, what we really mean is the
process of loosely coupled, asynchronous communication between system components.
Most communication between components is synchronous, such as simple
method invocation or Java RMI. In both cases, the invoker and the invocation tar-
get have to be present for the communication to succeed. Synchronous commu-
nication also means that the invoker must wait for the target to complete the
request for service before proceeding.

 As an analogy, you’re communicating synchronously when you (the invoker)
call and talk to someone over the phone. But what if the person (the invocation
target) isn’t available? If possible, you leave a voicemail message. The voicemail
service makes the communication asynchronous by storing your message so that
the receiver can listen to it later and respond. Message-oriented middleware
(MOM) enables messaging in much the same way that a voicemail service does—
by acting as the middleman between a message sender and the receiver so that
they don’t have to be available simultaneously. In this section, we briefly intro-
duce MOM, show how messaging is used in our ActionBazaar application, and
examine popular messaging models.

112 CHAPTER 4
Messaging and developing MDBs
4.1.1 Message-oriented middleware

Message-oriented middleware is software that enables asynchronous messages
between system components. When a message is sent, the software stores the
message in a location specified by the sender and acknowledges receipt immedi-
ately. The message sender is called a producer, and the location where the message
is stored is called a destination. At a later point in time, any software component
interested in messages at that particular destination can retrieve currently stored
messages. The software components receiving the messages are called the mes-
sage consumers. Figure 4.1 depicts the various components of MOM.

 MOM is not a new concept by any means. MOM products include IBM Web-
Sphere MQ, TIBCO Rendezvous, SonicMQ, ActiveMQ, and Oracle Advanced
Queuing.

 To flesh out messaging concepts a bit more, let’s explore a problem in the
ActionBazaar application. We’ll continue working on this problem as we progress
through the chapter.

4.1.2 Messaging in ActionBazaar

As an additional source of revenue, ActionBazaar will list items for bid when the
company is able to find good bulk deals through its extensive purchasing net-
work. These items, displayed on the site as “ActionBazaar Specials,” come with
“complete satisfaction” guarantees. ActionBazaar automatically ships these items
from their warehouse to winning bidders as soon as they order them. When

Figure 4.1 Basic MOM message flow. When the producer sends a message to the software, it is
stored immediately and later collected by the consumer. Looks a lot like e-mail, doesn’t it?

Messaging concepts 113
ActionBazaar started as a two-person Internet operation, Joe and John, the two
founders, made a sweet deal with Turtle Shipping Company’s founder Dave Tur-
tle. As a part of the deal, Joe and John agreed to ship with Turtle for a few years.

 As soon as a user places an order for an “ActionBazaar Special,” a shipping
request is sent to the Turtle system via a business-to-business (B2B) connection, as
shown in figure 4.2. The order confirmation page loads only after Turtle confirms
receipt. Now that the number of ActionBazaar customers has gone through the
roof, the slow Turtle servers and B2B connection simply cannot keep up and com-
pleting a shipping order takes what seems like forever. To make matters worse, the
Turtle server occasionally goes down, causing orders to fail altogether.

 Taking a closer look at things, we see that we could make the forwarding process
of the shipping request asynchronous and solve this problem. Instead of commu-
nicating directly with the Turtle server, the ActionBazaar ordering process could
send a message containing the shipping request to MOM, as depicted in figure 4.3.
As soon as the message is stored in MOM, the order can be confirmed without mak-
ing the user wait. At a later point in time, the Turtle server could request pending
shipping request messages from MOM and process them at its own pace.

 In this case, the most obvious advantage MOM is offering is an increase in reli-
ability. The reliability stems from not insisting that both the ActionBazaar and
Turtle servers be up and running at the same time. Also, the servers are not
expected to function at the same processing rate. In the most extreme case, even

Figure 4.2 ActionBazaar ordering before MOM is introduced. Slow B2B processing is causing
customer dissatisfaction.

114 CHAPTER 4
Messaging and developing MDBs
if the Turtle server is down at any given time the shipping request is not lost and
is simply delivered later. Another significant advantage of messaging is loosely
coupled system integration. We could, if we wanted to, easily switch from the Tur-
tle Shipping Company to O’Hare Logistics once our current contract runs out.
Note how different this is from having to know the exact interface details of the
Turtle servers for synchronous communication technologies like RMI or even
remote session beans.

 So far we’ve described a particular form of messaging known as point-to-point
to explain basic messaging concepts. This is a good time to move away from this
simplification and fully discuss messaging models.

4.1.3 Messaging models

A messaging model is simply a way of messaging when a number of senders and
consumers are involved. It will be more obvious what this means as we describe
each model. Two popular messaging models are standardized in Java EE: point-
to-point (PTP) messaging and publish-subscribe messaging. We’ll discuss each of
these messaging models next.

Point-to-point
You can probably guess from the names of the messaging models how they func-
tion. In the PTP scheme, a single message travels from a single producer (point A)

Figure 4.3 ActionBazaar ordering after MOM is introduced. Messaging enables both fast customer
response times and reliable processing.

Messaging concepts 115
to a single consumer (point B). PTP message destinations are called queues. Note
that PTP doesn’t guarantee that messages are delivered in any particular order—
the term queue is more symbolic than anything else. Also, if more than one poten-
tial receiver exists for a message, a random receiver is chosen, as figure 4.4 shows.
The classic message-in-a-bottle story is a good analogy of PTP messaging. The
message in a bottle is set afloat by the lonely castaway (the producer). The ocean
(the queue) carries the message to an anonymous beach dweller (the consumer)
and the message can only be “found” once.

 The ActionBazaar shipping request forwarding problem is an excellent candi-
date for the PTP model, as we want to be guaranteed that the message is received
once and only once.

Publish-subscribe (pub-sub)
Publish-subscribe messaging is much like posting to an Internet newsgroup. As
shown in figure 4.5, a single producer produces a message that is received by any
number of consumers who happen to be connected to the destination at the time.
Much like Internet postings, the message destination in this model is called a topic
and a consumer is called a subscriber.

 Pub-sub messaging works particularly well in broadcasting information across
systems. For example, it could be used to broadcast a system maintenance notifi-
cation several hours before an outage to all premium sellers whose systems are
directly integrated with ActionBazaar and who are listening at the moment.

Figure 4.4 The PTP messaging model with one producer and two consumers

116 CHAPTER 4
Messaging and developing MDBs
At this point, you should have a good conceptual foundation of messaging and
are perhaps eager to get a taste of some code. Next, we take a brief look at JMS
and implement the ActionBazaar message producer for sending the message.

The request-reply model

In the ActionBazaar example, you might want a receipt confirmation from Turtle
once they have the shipping request you sent to the queue.

A third kind of model called request-reply comes in handy in these kinds of situa-
tions. In this model, we give the message receiver enough information so that they
might “call us back.” This is known as an overlay model because it is typically
implemented on top of either the PTP or pub-sub models.

For example, in the PTP model the sender specifies a queue to be used to send a
reply to (in JMS, this is called the reply to queue) as well as a unique ID shared by
both the outgoing and incoming messages (known as the correlation ID in JMS).
The receiver receives the message and sends a reply to the reply queue, copying
the correlation ID. The sender receives the message in the reply queue and deter-
mines which message received a reply by matching the correlation ID.

Figure 4.5 The publish-subscribe messaging model with one producer and three consumers. Each
topic subscriber receives a copy of the message.

Introducing Java Messaging Service 117
4.2 Introducing Java Messaging Service

In this section we provide an overview to JMS API by building a basic message pro-
ducer. JMS is a deceptively simple and small API to a very powerful technology.
The JMS API is to messaging what the Java Database Connectivity (JDBC) API is to
database access. JMS provides a uniform, standard way of accessing MOM in Java
and is therefore an alternative to using product-specific APIs. With the exception
of Microsoft Message Queuing (MSMQ), most major MOM products support JMS.

 The easiest way to learn JMS might be by looking at code in action. We’re
going to explore JMS by first developing the ActionBazaar code that sends out the
shipping request. We develop a message producer using JMS and learn about
structure of the message interface; then in the next section, we develop the mes-
sage consumer using MDBs.

4.2.1 Developing the JMS message producer

As we described in our scenario in section 4.1.2, when a user places an order for
an “ActionBazaar Special,” a shipping request is sent to a queue shared between
ActionBazaar and Turtle. The code in listing 4.1 sends the message out and could
be part of a method in a simple Java object invoked by the ActionBazaar applica-
tion. All relevant shipping information—such as the item number, shipping
address, shipping method, and insurance amount—is packed into a message and
sent out to ShippingRequestQueue.

@Resource(name="jms/QueueConnectionFactory")
 private ConnectionFactory connectionFactory;

@Resource(name="jms/ShippingRequestQueue")
 private Destination destination;

Connection connection = connectionFactory.createConnection();
Session session = connection.createSession(true,
 Session.AUTO_ACKNOWLEDGE);

MessageProducer producer = session.createProducer(destination);

ObjectMessage message = session.createObjectMessage();
ShippingRequest shippingRequest = new ShippingRequest();
shippingRequest.setItem(item);
shippingRequest.setShippingAddress(address);
shippingRequest.setShippingMethod(method);
shippingRequest.setInsuranceAmount(amount);

Listing 4.1 JMS code that sends out shipping requests from ActionBazaar

Injects connection
factory and
destination

Connects,
creates
session,
producer

Creates message

Creates
payload

118 CHAPTER 4
Messaging and developing MDBs
message.setObject(shippingRequest);

producer.send(message);

session.close();
connection.close();

As we explain each logical step of this code in the following sections, we’ll go
through a large subset of the JMS API components and see usage patterns. Note
that for simplicity we have removed the code for exception handling.

Retrieving the connection factory and destination
In JMS, administrative objects are similar to JDBC javax.sql.DataSource objects.
These are resources that are created and configured outside the code and stored
in JNDI. JMS has two administrative objects: javax.jms.ConnectionFactory and
javax.jms.Destination, both of which we use in listing 4.1. We then retrieve the
connection factory using dependency injection with the @Resource annotation,
and the connection factory encapsulates all the configuration information
needed to connect to MOM. We also inject the queue to forward the shipping
request to, aptly named, ShippingRequestQueue. With EJB 3, using resources is
much easier; you don’t have to deal with the complexity of JNDI or configure
resource references in deployment descriptors. Chapter 5 discusses dependency
injection in greater detail.

 The next step in listing 4.1 is creating a connection to MOM and getting a new
JMS session.

Opening the connection and session
The javax.jms.Connection object represents a live MOM connection, which we
create using the createConnection method of the connection factory. Connec-
tions are thread-safe and designed to be sharable because opening a new connec-
tion is resource intensive. A JMS session (javax.jms.Session), on the other hand,
provides a single-threaded, task-oriented context for sending and receiving mes-
sages. We create a session from the connection using the createSession method.
The first parameter of the method specifies whether the session is transactional.
We’ve decided that our session should be transactional and therefore set the
parameter to true. This means that the requests for messages to be sent won’t be
realized until either the session’s commit method is called or the session is closed.
(If the session isn’t transactional, messages will be sent as soon as the send method
is invoked.) The second parameter of the createSession method specifies the

Sets payload

Sends message

Introducing Java Messaging Service 119
acknowledge mode and only has an effect for nontransactional sessions receiving
messages, which we’ll discuss later. Having set up the session, we are now ready to
take on the meat of the matter: sending the message.

Preparing and sending the message
The session is not directly used for sending or receiving messages (we could argue
that having it do so would simplify the JMS API). Instead, a javax.jms.Message-
Producer needed to send messages to the shipping request queue is constructed
using the session’s createProducer method. Then we create and populate the
javax.jms.Message to be sent. In our example, we send the Serializable Java
object ShippingRequest to Turtle, so the most appropriate message type for us
is javax.jms.ObjectMessage (which we create using the createObjectMessage
method). We then create an instance of the ShippingRequest object and set the
item number, shipping address, shipping method, and insurance amount fields.
Once ShippingRequest is set up, we set it as the payload of the message using set-
Object. Finally, we instruct the message producer to send the message out using
the send method.

Releasing resources
A large number of resources are allocated under the hood for both the session
and connection objects, so it is important to explicitly close both once we’ve fin-
ished with them, as we do with

session.close();
connection.close();

This step is even more important in our case since no messages are sent out until
our transactional session is committed when we close the session.

 If all goes well, a message containing the shipping request winds up in the
queue. Before we look at the message consumer code that receives this message,
let’s discuss the javax.jms.Message object in a little more detail.

4.2.2 The JMS message interface

The Message interface standardizes what is exchanged across JMS and is an
extremely robust data encapsulation mechanism. As figure 4.6 shows, a JMS mes-
sage has the following parts: the message header, message properties, and the
message body, each of which is detailed in the sections that follow.

 A good analogy for JMS messages is mailing envelopes. Let’s see how this anal-
ogy fits next.

120 CHAPTER 4
Messaging and developing MDBs
Message headers
Headers are name-value pairs common to all messages. In our envelope analogy,
the message header is the information on an envelope that is pretty standard: the
to and from addresses, postage, and postmark. For example, the JMS message
version of a postmark is the JMSTimestamp header. MOM sets this header to the
current time when the message is sent.

 Here are some other commonly used JMS headers:

■ JMSCorrelationID

■ JMSReplyTo
■ JMSMessageID

 Message properties
Message properties are just like headers, but are explicitly created by the applica-
tion instead of being standard across messages. In the envelope analogy, if you
decide to write “Happy Holidays” on the envelope to let the receiver know the
envelope contains a gift or note, the text is a property instead of a header. In the
ActionBazaar example, one way to mark a shipping request as fragile would be to
add a boolean property called Fragile and set it to true. The code to do this
would look like this:

message.setBooleanProperty("Fragile", true);

A property can be a boolean, byte, double, float, int, long, short, String, or Object.

Figure 4.6
Anatomy of a message. A
JMS message has a header,
properties, and a body.

Working with message-driven beans 121
Message body
The message body contains the contents of the envelope; it is the payload of the
message. What you’re trying to send in the body determines what message type
you should use. In listing 4.1, we chose javax.jms.ObjectMessage because we
were sending out the ShippingRequest Java object. Alternatively, we could have
chosen to send BytesMessage, MapMessage, StreamMessage, or TextMessage. Each
of these message types has a slightly different interface and usage pattern. There
are no hard-and-fast rules dictating the choice of message types. Explore all the
choices before making a decision for your application.

We just finished reviewing most of the major parts of JMS that you need to send
and use with MDB. While full coverage of JMS is beyond the scope of this chapter,
we encourage you to fully explore the fascinating JMS API by visiting http://
java.sun.com/products/jms/docs.html. In particular, you should explore how JMS
message consumers work.

 Having taken a closer look at JMS messages, the time is right to look at the
Turtle server message consumer, which we’ll build using an MDB.

4.3 Working with message-driven beans

We’ll now build on our brief coverage of MDBs in chapters 1 and 2 and explore
MDBs in detail, why you should consider using them, and how to develop them.
We’ll also discuss some best practices as well as pitfalls to avoid when develop-
ing MDBs.

 Message-driven beans are EJB components designed to consume the asynchro-
nous messages we’ve been discussing. Although MDBs are intended to handle

The Spring JmsTemplate

Spring’s JmsTemplate greatly simplifies common JMS tasks like sending mes-
sages by automating generic code. Using JmsTemplate, our entire message pro-
ducer code could be reduced to a few lines. This is a great way to take care of
tasks, as long as you aren’t doing anything too complicated such as using tempo-
rary queues, JMS headers, and properties.

At the time of this writing, Spring doesn’t have very robust asynchronous message-
processing capabilities when compared to MDB. Any future MDB-like features in
Spring are likely to utilize the relatively arcane JCA container, which leaves room for
a great Spring/EJB 3 integration case.

122 CHAPTER 4
Messaging and developing MDBs
many different kinds of messages (see the sidebar “JCA Connectors and Messag-
ing”), we’ll primarily focus on MDBs that process JMS messages because most
enterprise applications use JMS. From this perspective, you might ask why we’d
need to employ EJBs to handle the task of consuming messages at all when we
could use the code we just developed for the JMS message consumer. We’ll address
this question next. We’ll develop a simple message consumer application using
MDBs and show you how to use the @MessageDriven annotation. You’ll also learn
more about the MessageListener interface, activation configuration properties,
and the MDB lifecycle.

4.3.1 Why use MDBs?

Given the less-than-stellar reputation of EJB 2, you might question the value of
EJB 3 MDBs. The truth is, MDBs have enjoyed a reasonable degree of success even
in the darkest hours of EJB. In this section, we’ll explain why you should take a
serious look at MDBs.

JCA connectors and messaging

Although by far JMS is the primary messaging provider for MDBs, as of EJB 2.1 it is
not the only one. Thanks to the Java EE Connector Architecture (JCA), MDBs can
receive messages from any enterprise information system (EIS), such as People-
Soft HR or Oracle Manufacturing, not just MOMs that support JMS.

Suppose you have a legacy application that needs to send messages to an MDB.
You can do this by implementing a JCA-compliant adapter/connector that includes
support for message inflow contract. Once your JCA resource adapter or connector
is deployed to a Java EE container, you can use the message inflow contract to
have an asynchronous message delivered to an endpoint inside the container. A
JCA endpoint is essentially the same as a JMS destination—it acts as a server
proxy to an MDB (a message consumer/listener in JMS terms). As soon as a mes-
sage arrives at the endpoint, the container triggers any registered MDBs listening
to the endpoint and delivers the message to it.

For its part, the MDB implements a listener interface that is appropriate to the JCA
connector/message type and passes activation configuration parameters to the
JCA connector and registers as a listener to the JCA connector (we’ll discuss mes-
sage listeners and activation configuration parameters shortly). JCA also enables
MOM providers to integrate with Java EE containers in a standardized manner using
a JCA-compliant connector or resource adapter.

For more information on JCA, visit http://java.sun.com/j2ee/connector/index.jsp.

Working with message-driven beans 123
Multithreading
Your business application may require multithreaded message consumers that
can process messages concurrently. MDBs help you avoid complexity because they
handle multithreading right out of the box, without any additional code. They
manage incoming messages among multiple instances of beans (in a pool) that
have no special multithreading code themselves. As soon as a new message
reaches the destination, an MDB instance is retrieved from the pool to handle the
message, as figure 4.7 shows. This is popularly known as MDB pooling, which
you’ll learn about when we discuss the MDB lifecycle later in this chapter.

Simplified messaging code
In addition, MDBs relieve you from coding the mechanical aspects of processing
messages—tasks such as looking up connection factories or destinations, creating
connections, opening sessions, creating consumers, and attaching listeners. As
you’ll see when we build the Turtle message consumer MDB, all these tasks are
handled behind the scenes for you. In EJB 3, using sensible defaults for common
circumstances eliminates most of the configuration. In the worst-case scenario,
you’ll have to supply configuration information using simple annotations or
through the deployment descriptor.

Starting message consumption
To start picking up messages from the shipping request queue, someone needs to
invoke the appropriate method in your code. In a production environment, it is
not clear how this will be accomplished. Starting message consumption through a
user-driven manual process obviously is not desirable. In a server environment,
almost every means of executing the method on server startup is highly system
dependent, not to mention awkward. The same is true about stopping message

Figure 4.7 As soon as a message arrives at its destination, the container retrieves it and assigns a
servicing MDB instance from the pool.

124 CHAPTER 4
Messaging and developing MDBs
receipt manually. On the other hand, registered MDBs would be bootstrapped or
torn down gracefully by the container when the server is started or stopped.

 We’ll continue consolidating these three points as we start investigating a real
example of developing MDBs soon. Before we do that, though, let’s list the simple
rules for developing an MDB.

4.3.2 Programming rules

Like all EJBs, MDBs are plain Java objects that follow a simple set of rules and
sometimes have annotations. Don’t take these rules too seriously yet; simply note
them in preparation for going through the code-intensive sections that follow.

■ The MDB class must directly (by using the implements keyword in the class
declaration) or indirectly (through annotations or descriptors) implement
a message listener interface.

■ The MDB class must be concrete. It cannot be either a final or an abstract class.
■ The MDB must be a POJO class and not a subclass of another MDB.
■ The MDB class must be declared public.
■ The bean class must have a no-argument constructor. If you don’t have any

constructors in your Java class, the compiler will create a default construc-
tor. The container uses this constructor to create a bean instance.

■ You cannot define a finalize method in the bean class. If any cleanup code
is necessary, it should be defined in a method designated as PreDestroy.

■ You must implement the methods defined in the message listener inter-
face. These methods must be public and cannot be static or final.

■ You must not throw the javax.rmi.RemoteException or any runtime excep-
tions. If a RuntimeException is thrown, the MDB instance is terminated.

We’ll apply these rules next in developing our example MDB.

4.3.3 Developing a message consumer with MDB

Let’s now explore developing an MDB by reworking the Turtle server JMS mes-
sage consumer as an MDB. To make the code a bit more interesting, we’ll actually
implement the processShippingRequest method mentioned in the JMS code.
Listing 4.2 shows the MDB code that first retrieves shipping requests sent to the
queue and then saves each request in the Turtle database table named
SHIPPING_REQUEST. Note that we’re using JDBC for simplicity’s sake and because it
lets us demonstrate the MDB lifecycle methods for opening and closing JDBC

Working with message-driven beans 125
connections. We recommend that you consider EJB 3 Java Persistence API (dis-
cussed in part 3) for persisting your data instead of using straight JDBC.

package ejb3inaction.example.buslogic;

import javax.ejb.MessageDriven;
import javax.ejb.ActivationConfigProperty;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import java.sql.*;
import javax.sql.*;

@MessageDriven(
 name="ShippingRequestProcessor",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="destinationName",
 propertyValue="jms/ShippingRequestQueue")
 }
)
public class ShippingRequestProcessorMDB
 implements MessageListener {
 private java.sql.Connection connection;
 private DataSource dataSource;

 @Resource
 private MessageDrivenContext context;

 @Resource(name="jdbc/TurtleDS")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @PostConstruct
 public void initialize() {
 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 @PreDestroy

Listing 4.2 Turtle server shipping request processor MDB

Defines
@MessageDriven
annotation

 B

 C Implements message listener

Injects MessageDrivenContext D

Uses resource
injection

 E

 F Implements
onMessage
method

126 CHAPTER 4
Messaging and developing MDBs
 public void cleanup() {
 try {
 connection.close();
 connection = null;
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void onMessage(Message message) {
 try {
 ObjectMessage objectMessage = (ObjectMessage)message;
 ShippingRequest shippingRequest =
 (ShippingRequest)objectMessage.getObject();
 processShippingRequest(shippingRequest);
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 context.setRollBackOnly();();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 context.setRollBackOnly();
 }
 }

 private void processShippingRequest(ShippingRequest request)
 throws SQLException {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO "
 + "SHIPPING_REQUEST ("
 + "ITEM, "
 + "SHIPPING_ADDRESS, "
 + "SHIPPING_METHOD, "
 + "INSURANCE_AMOUNT) "
 + "VALUES ("
 + request.getItem() + ", "
 + "\'" + request.getShippingAddress() + "\', "
 + "\' " + request.getShippingMethod() + "\', "
 + request.getInsuranceAmount() + ")");
 }
}

The @MessageDriven annotation b identifies this object as an MDB and specifies
the MDB configuration, including the fact that we are listening on the shipping
request queue. Our code then marks this MDB as a JMS message listener C. The
onMessage method implements the message listener interface F and processes
incoming messages. A message-driven context is injected D and used inside the

 G Defines lifecycle callbacks

Processes business logic H

Working with message-driven beans 127
onMessage method F to roll back transactions as needed. A database resource is
injected E. The lifecycle callbacks G open and close a connection derived from
the database resource. Finally, the shared JDBC connection is used by the business
logic H called in onMessage to save each shipping request into the database.

 Next, we’ll examine the major MDB features by analyzing this code in greater
detail, starting with the @MessageDriven annotation.

4.3.4 Using the @MessageDriven annotation

MDBs are one of the simplest kinds of EJBs to develop, and they support the
smallest number of annotations. In fact, the @MessageDriven annotation and the
@ActivationConfigProperty annotation nested inside it are the only MDB-specific
annotations. The @MessageDriven annotation in our example represents what
you’ll typically use most of the time. The annotation is defined as follows:

@Target(TYPE)
@Retention(RUNTIME)
public @interface MessageDriven {
 String name() default "";
 Class messageListenerInterface default Object.class;
 ActivationConfigProperty[] activationConfig() default {};
 String mappedName();
 String description();

}

Notice that all three of the annotation’s arguments are optional. If you are a min-
imalist, you can keep the annotation as simple as this:

@MessageDriven
public class ShippingRequestProcessorMDB

and leave any details to be added elsewhere, such as in the deployment descriptor.
 The first element, name, specifies the name of the MDB—in our case, Shipping-

RequestProcessor. If the name element is omitted, the code uses the name of the
class, ShippingRequestProcessorMDB, in our example. The second parameter,
messageListenerInterface, specifies which message listener the MDB imple-
ments. The last parameter, activationConfig, is used to specify listener-specific
configuration properties. Let’s take a closer look at the two last parameters.

4.3.5 Implementing the MessageListener

An MDB implements a message listener interface for the very same reason our
plain JMS consumer implemented the javax.jms.MessageListener interface. The
container uses the listener interface to register the MDB with the message provider

128 CHAPTER 4
Messaging and developing MDBs
and to pass incoming messages by invoking implemented message listener meth-
ods. Using the messageListenerInterface parameter of the @MessageDriven anno-
tation is just one way to specify a message listener; we could have done the
following instead:

@MessageDriven(
 name="ShippingRequestJMSProcessor",
 messageListenerInterface="javax.jms.MessageListener")
public class ShippingRequestProcessorMDB {

However, we chose to omit this parameter and specified the interface using the
implements keyword:

public class ShippingRequestProcessorMDB implements MessageListener {

Yet another option is to specify the listener interface through the deployment
descriptor and leave this detail out of our code altogether. The approach you
choose is largely a matter of taste. We prefer the second approach because it
resembles our JMS example.

 MDBs let you specify a message listener with relative flexibility, which is espe-
cially cool if you consider the following scenario: suppose that we decide to switch
messaging technologies and use Java API for XML Messaging (JAXM) to send
shipping requests instead of JMS. (JAXM is essentially a SOAP-based XML messag-
ing API. For more information, visit http://java.sun.com/webservices/jaxm/.)
Thanks to JCA support, we can use still use MDBs to receive shipping requests (see
the sidebar “JCA Connectors and Messaging” to learn how this might be done).
All we have to do is switch to the JAXM message listener interface, javax.jaxm.
OneWayMessageListener, instead of using javax.jms.MessageListener. We can
reuse most of the MDB code and configuration:

public class ShippingRequestProcessorMDB implements
 javax.jaxm.OneWayMessageListener {

However you choose to specify the message listener, make sure you provide a valid
implementation of all methods required by your message listener—especially
when using the deployment descriptor approach, where there are no compile-
time checks to watch your back. Next, let’s take a look at the last (but definitely not
least) parameter of the @MessageDriven annotation: activationConfig.

4.3.6 Using ActivationConfigProperty

The activationConfig property of the @MessageDriven annotation allows you to
provide messaging system–specific configuration information through an array

Working with message-driven beans 129
of ActivationConfigProperty instances. ActivationConfigProperty is defined
as follows:

public @interface ActivationConfigProperty {
 String propertyName();
 String propertyValue();
}

Each activation property is essentially a name-value pair that the underlying mes-
saging provider understands and uses to set up the MDB. The best way to grasp
how this works is through example. Here, we provide three of the most common
JMS activation configuration properties: destinationType, connectionFactory-
JndiName, and destinationName:

@MessageDriven(
 name="ShippingRequestProcessor",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="connectionFactoryJndiName",
 propertyValue="jms/QueueConnectionFactory"
),
 @ActivationConfigProperty(
 propertyName="destinationName",
 propertyValue="jms/ShippingRequestQueue")
 }
)

First, the destinationType property tells the container this JMS MDB is listening to
a queue. If we were listening to a topic instead, the value could be specified as
javax.jms.Topic. Next, connectionFactoryJndiName specifies the JNDI name of
the connection factory that should be used to create JMS connections for the MDB.
Finally, the destinationName parameter specifies that we are listening for mes-
sages arriving at a destination with the JNDI name of jms/ShippingRequestQueue.

 There are a few other configuration properties for JMS that we’ll describe in
the sections that follow. Visualizing what happens behind the scenes can help you
remember these configuration properties. The container does something similar
to our JMS message consumer setup steps (as shown in listing 4.2) to bootstrap
the MDB. Most of the method parameters that we specify during those steps are
made available as configuration properties in the MDB world.

130 CHAPTER 4
Messaging and developing MDBs
acknowledgeMode
Messages are not actually removed from the queue until the consumer acknowledges
them. There are many “modes” through which messages can be acknowledged. By
default, the acknowledge mode for the underlying JMS session is assumed to be
AUTO_ACKNOWLEDGE, which means that the session acknowledged messages on
our behalf in the background. This is the case for our example (since we omitted
this property). All of the acknowledgment modes supported by JMS are listed in
table 4.1. We could change the acknowledge mode to DUPS_OK_ACKNOWLEDGE
(or any other acknowledge mode we discuss in table 4.1) using the following:

@ActivationConfigProperty(
 propertyName="acknowledgeMode",
 propertyValue="DUPS_OK_ACKNOWLEDGE")

subscriptionDurability
If our MDB is listening on a topic, we can specify whether the topic subscription is
durable or nondurable.

 Recall that in the pub-sub domain, a message is distributed to all currently
subscribed consumers. In general, this is much like a broadcast message in that
anyone who is not connected to the topic at the time does not receive a copy of
the message. The exception to this rule is what is known as a durable subscription.

Table 4.1 JMS session acknowledge modes. For nontransacted sessions, you should choose the
mode most appropriate for your project. In general, AUTO_ACKNOWLEDGE is the most common and
convenient. The only other mode supported with MDB is DUPS_OK_ACKNOWLEDGE.

Acknowledgment Mode Description Supported with MDB

AUTO_ACKNOWLEDGE The session automatically acknowledges receipt
after a message has been received or is success-
fully processed.

YES

CLIENT_ACKNOWLEDGE You have to manually acknowledge the receipt of
the message by calling the acknowledge
method on the message.

NO

DUPS_OK_ACKNOWLEDGE The session can lazily acknowledge receipt of the
message. This is similar to AUTO_ACKNOWLEDGE
but useful when the application can handle deliv-
ery of duplicate messages and rigorous acknowl-
edgment is not a requirement.

YES

SESSION_TRANSACTED This is returned for transacted sessions if the
Session.getAcknowledgeMode method is
invoked.

NO

Working with message-driven beans 131
Once a consumer obtains a durable subscription on a topic, all messages sent to
the topic are guaranteed to be delivered to that consumer. If the durable subscriber
is not connected to a topic when a message is received, MOM retains a copy of the
message until the subscriber connects and delivers the message. The following
shows how to create a durable subscriber:

MessageConsumer playBoySubscriber = session.createDurableSubscriber(
 playBoyTopic, "JoeOgler");

Here, we are creating a durable subscription message consumer to the javax.
jms.Topic playBoyTopic with a subscription ID of JoeOgler. From now on, all mes-
sages to the topic will be held until a consumer with the subscription ID JoeOgler
receives them. You can remove this subscription with the following code:

session.unsubscribe("JoeOgler");

If you want the MDB to be a durable subscriber, then ActivationConfigProperty
would look like this:

@ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Topic"),
@ActivationConfigProperty(
 propertyName="subscriptionDurability",
 propertyValue="Durable")

For nondurable subscriptions, explicitly set the value of the subscriptionDura-
bility property to NonDurable, which is also the default.

messageSelector
The messageSelector property is the MDB parallel to applying a selector for a
JMS consumer. Our current code consumes all messages at the destination. If
we prefer, we could filter the messages we retrieve by using a message selector—
a criterion applied to the headers and properties of messages specifying
which messages the consumer wants to receive. For example, if we want to
receive all shipping requests whose Fragile property is set to true, we use the
following code:

MessageConsumer consumer = session.createConsumer(destination,
 "Fragile IS TRUE");

As you might have noticed, the selector syntax is almost identical to the WHERE
clause in SQL 92, but the selector syntax uses message header and property names
instead of column names. Selector expressions can be as complex and expressive

132 CHAPTER 4
Messaging and developing MDBs
as you need them to be. They can include literals, identifiers, whitespace, expres-
sions, standard brackets, logical and comparison operators, arithmetic operators,
and null comparisons.

 Using our JMS message selector example, we could specify in our MDB that we
want to handle only fragile shipping requests as follows:

@ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue="Fragile IS TRUE")

Table 4.2 summarizes some common message selector types.

We’re now ready to examine lifecycle callbacks in MDBs.

4.3.7 Using bean lifecycle callbacks

As you recall from chapter 3, similar to stateless session beans, MDBs have a
simple lifecycle (see figure 4.8 for a refresher). The container is responsible for
the following:

Table 4.2 Commonly used message selector types. The selector syntax is almost identical to the
SQL WHERE clause.

Type Description Example

Literals Can be strings, exact or approximate
numeric values, or booleans.

BidManagerMDB
100
TRUE

Identifiers Can be a message property or header name;
case sensitive.

RECIPIENT
NumOfBids
Fragile
JMSTimestamp

Whitespace Same as defined in the Java language
specification: space, tab, form feed, and
line terminator.

Comparison
operators

Comparison operators, such as =, >, >=,
<=, <>.

RECIPIENT='BidManagerMDB'
NumOfBids>=100

Logical
operators

All three types of logical operators—NOT,
AND, OR—are supported.

RECIPIENT='BidManagerMDB'
AND NumOfBids>=100

Null comparison IS NULL and IS NOT NULL comparisons. FirstName IS NOT NULL

True/false
comparison

IS [NOT] TRUE and IS [NOT] FALSE
comparisons.

Fragile IS TRUE
Fragile IS FALSE

Working with message-driven beans 133
■ Creates MDB instances and sets them up
■ Injects resources, including the message-driven context (discussed in the

next chapter in detail)
■ Places instances in a managed pool
■ Pulls an idle bean out of the pool when a message arrives (the container

may have to increase the pool size at this point)
■ Executes the message listener method; e.g., the onMessage method
■ When the onMessage method finishes executing, pushes the idle bean back

into the “method-ready” pool
■ As needed, retires (or destroys) beans out of the pool

Figure 4.8 The MDB lifecycle has three states: does not exist, idle, and busy. There are only two
lifecycle callbacks corresponding to bean creation and destruction; you can use PostConstruct and
PreDestroy methods to receive these callbacks.

134 CHAPTER 4
Messaging and developing MDBs
The MDB’s two lifecycle callbacks are (1) PostConstruct, which is called immedi-
ately after an MDB is created and set up and all the resources are injected, and (2)
PreDestroy, which is called right before the bean instance is retired and removed
from the pool. These callbacks are typically used for allocating and releasing
injected resources that are used by the onMessage method, which is exactly what
we do in our example.

 The processShippingRequest method saves shipping requests that the onMes-
sage method extracts from the incoming JMS message:

private void processShippingRequest(ShippingRequest request)
 throws SQLException {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO "
 + "SHIPPING_REQUEST ("
 …
 + request.getInsuranceAmount() + ")");
}

The method creates a statement from an open JDBC connection and uses it to
save a record into the SHIPPING_REQUEST table containing all the fields from the
ShippingRequest object. The JDBC connection object used to create the statement
is a classic heavy-duty resource. It is expensive to open and should be shared
whenever possible. On the other hand, it can hold a number of native resources,
so it is important to close the connection when it is no longer needed. We accom-
plish both these goals using callback methods as well as resource injection.

 First, the JDBC data source that the connection is created from is injected
using the @Resource annotation:

@Resource(name="jdbc/TurtleDS")
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
}

The @Resource annotation tells the EJB container that it should look up a
java.sql.DataSource named jdbc/TurtleDS from JNDI and pass it to the set-
DataSource method after creating a new instance of the bean. The setDataSource
method, in turn, saves the data source in an instance variable. After injecting
resources, the container checks whether there are any designated PostConstruct
methods that need to be invoked before the MDB is put into the pool. In our
case, we mark the initialize method with the @PostConstruct annotation:

@PostConstruct
public void initialize() {

Working with message-driven beans 135
 ...
 connection = dataSource.getConnection();
 ...
}

In the initialize method, we are obtaining a java.sql.Connection from the
injected data source and saving it into the connection instance variable used in
processShippingRequest. At some point, the container decides that our bean
should be removed from the pool and destroyed (perhaps at server shutdown).
The PreDestroy callback gives us a chance to cleanly tear down bean resources
before this is done. In the cleanup method marked with the @PreDestroy annota-
tion, we tear down the database connection resource before the container retires
our bean:

@PreDestroy
public void cleanup() {
 ...
 connection.close();
 connection = null;
 ...
}

Although database resources and their management are the primary uses of
resource injection and lifecycle methods in MDBs, another important resource
being used in the JMS sections are also important for MDB. We’re referring to the
JMS destination and connection factory administrative objects, as well as the JMS
connections. Let’s explore how these are utilized in MDBs.

4.3.8 Sending JMS messages from MDBs

Somewhat ironically, a task you’ll find yourself performing time and again in
an MDB is sending JMS messages. As a simple example, suppose that we have an
incomplete shipping request and we need to communicate that to Action-
Bazaar from ShippingRequestProcessorMDB. The easiest way to handle this noti-
fication is via JMS messages sent to an error queue that ActionBazaar listens to.
Fortunately, you’ve already seen how to send a JMS message in listing 4.1. This
task is even simpler and more robust in MDBs. We can inject the queue named
jms/ShippingErrorQueue and the connection factory named jms/QueueConnec-
tionFactory by using the @Resource annotation:

 @Resource(name="jms/ShippingErrorQueue")
 private javax.jms.Destination errorQueue;
 @Resource(name="jms/QueueConnectionFactory")
 private javax.jms.ConnectionFactory connectionFactory;

136 CHAPTER 4
Messaging and developing MDBs
We can then create and destroy a shared javax.jms.Connection instance using life-
cycle callbacks, just as we managed the JDBC connection in the previous section:

 @PostConstruct
 public void initialize() {
 ...
 jmsConnection = connectionFactory.createConnection();
 ...
 }
 @PreDestroy
 public void cleanup() {
 ...
 jmsConnection.close();
 ...
 }

Finally, the business method that sends the error message looks much like the rest
of the JMS session code in listing 4.1:

 private void sendErrorMessage(ShippingError error) {
 Session session = jmsConnection.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(errorQueue);
 ...
 producer.send(message);
 session.close();
 }

Although we didn’t explicitly show it in our example, there is one more MDB fea-
ture you should know about: MDB transaction management. We’ll discuss EJB
transactions in general in much more detail in the next chapter, so here we’ll give
you the “bargain basement” version.

4.3.9 Managing MDB transactions

In our plain JMS examples, we specified whether the JMS session would be trans-
actional when we created it. On the other hand, if you look closely at the MDB
example it doesn’t indicate anything about transactions. Instead, we’re letting the
container use the default transactional behavior for MDBs. By default, the con-
tainer will start a transaction before the onMessage method is invoked and will
commit the transaction when the method returns, unless the transaction was
marked as rollback through the message-driven context. You’ll learn more about
transactions in chapter 6.

 This brief discussion of transaction management concludes our analysis of
the basic features that MDBs offer. We’ve discussed how you can use MDBs to
leverage the power of messaging without dealing with the low-level details of the

MDB best practices 137
messaging API. As you’ve seen, MDBs provide a host of EJB features for free, such
as multithreading, resource injection, lifecycle management, and container-man-
aged transactions. We’ve formulated our code samples so that you can use them
as templates for solving real business problems. At this point, we’ll give you tips
for dealing with the nuances of MDBs.

4.4 MDB best practices

Like all technologies, MDBs have some pitfalls to watch for and some best prac-
tices that you should keep in mind. This is particularly true in demanding envi-
ronments where messaging is typically deployed.

 Choose your messaging models carefully. Before you wade knee deep in code, con-
sider your choice of messaging model carefully. You might find that PTP will solve
your problem nine times out of ten. In some cases, though, the pub-sub approach
is better, especially if you find yourself broadcasting the same message to more
than one receiver (such as our system outage notification example). Luckily, most
messaging code is domain independent, and you should strive to keep it that way.
For the most part, switching domains should be just a matter of configuration.

 Remember modularization. Because MDBs are so similar to session beans, it is
natural to start putting business logic right into message listener methods. Busi-
ness logic should be decoupled and modularized away from messaging-specific
concerns. We followed this principle by coding the processShippingRequest
method and invoking it from onMessage. An excellent practice (but one that
would have made this chapter unnecessarily complicated) is to put business logic
in session beans and invoke them from the onMessage method.

 Make good use of message filters. There are some valid reasons for using a single
messaging destination for multiple purposes. Message selectors come in handy in
these circumstances. For example, if you’re using the same queue for both ship-
ping requests and order cancellation notices, you can have the client set a mes-
sage property identifying the type of request. You can then use message selectors
on two separate MDBs to isolate and handle each kind of request.

 Conversely, in some cases, you might dramatically improve performance and
keep your code simple by using separate destinations instead of using selectors.
In our example, using separate queues and MDBs for shipping requests and can-
cellation orders could make message delivery much faster. In this case, the client
would have to send each request type to the appropriate queue.

 Choose message types carefully. The choice of message type is not always as
obvious as it seems. For example, it is a compelling idea to use XML strings for

138 CHAPTER 4
Messaging and developing MDBs
messaging. Among other things, this tends to promote loose coupling between
systems. In our example, the Turtle server would know about the format of the
XML message and not the ShippingRequest object itself.

 The problem is that XML tends to bloat the size of the message, significantly
degrading MOM performance. In certain circumstances, it might even be the
right choice to use binary streams in the message payload, which puts the least
amount of demand on MOM processing as well as memory consumption.

 Be wary of poison messages. Imagine that a message is handed to you that your
MDB was not able to consume. Using our example, let’s assume that we receive a
message that’s not an ObjectMessage. As you can see from this code snippet, if this
happens the cast in onMessage will throw a java.lang.ClassCastException:

try {
 ObjectMessage objectMessage = (ObjectMessage)message;
 ShippingRequest shippingRequest =
 (ShippingRequest)objectMessage.getObject();
 processShippingRequest(shippingRequest);
} catch (JMSException jmse) {
 jmse.printStackTrace();
 context.setRollBackOnly();
}

Since onMessage will not complete normally, the container will be forced to roll
back the transaction and put the message back on the queue instead of acknowl-
edging it (in fact, since a runtime exception is thrown, the bean instance will be
removed from the pool). The problem is, since we are still listening on the queue,
the same message will be delivered to us again and we will be stuck in the accept/
die loop indefinitely! Messages that cause this all-too-common scenario are called
poison messages.

 The good news is that many MOMs and EJB containers provide mechanisms
that deal with poison messages, including “redelivery” counts and “dead mes-
sage” queues. If you set up the redelivery count and dead message queue for the
shipping request destination, the message delivery will be attempted for the spec-
ified number of times. After the redelivery count is exceeded, the message will be
moved to a specially designated queue for poison messages called the “dead mes-
sage” queue. The bad news is that these mechanisms are not standardized and are
vendor specific.

 Configure MDB pool size. Most EJB containers let you specify the maximum
number of instances of a particular MDB the container can create. In effect, this
controls the level of concurrency. If there are five concurrent messages to proc-
ess and the pool size is set to three, the container will wait until the first three

Wrong
message type
fails cast

Summary 139
messages are processed before assigning any more instances. This is a double-
edged sword and requires careful handling. If you set your MDB pool size too
small, messages will be processed slowly. At the same time, it is desirable to place
reasonable limits on the MDB pool size so that many concurrent MDB instances do
not choke the machine. Unfortunately, at the time of this writing, setting MDB
pool sizes is not standardized and is provider specific.

4.5 Summary

In this chapter, we covered basic messaging concepts, JMS, and MDBs. Messaging
is an extremely powerful technology for the enterprise, and it helps build loosely
coupled systems. JMS allows you to use message-oriented middleware (MOM)
from enterprise Java applications. Using the JMS API to build a message con-
sumer application can be time consuming, and MDBs make using MOM in a stan-
dardized manner through Java EE extremely easy.

 Note, however, that messaging and MDBs are not right for all circumstances
and can be overused. One such case is using the request/reply model (discussed in
the sidebar “The request-reply model”), which entails a lot of extra complexity
compared to simple PTP or pub-sub messaging. If you find yourself using this
model extensively and in ways very close to synchronous messaging, it might be
worth thinking about switching to a synchronous technology such as RMI, SOAP,
or remote session bean calls.

 A few major EJB features we touched on in this chapter are dependency injec-
tion, interceptors, timers, transaction, and security. As you’ve seen, EJB 3 largely
relieves us from these system-level concerns while providing extremely robust and
flexible functionality. We’ll discuss dependency injection, timers, and interceptors
in the next chapter.

Learning advanced
EJB concepts
This chapter covers
■ EJB internals
■ Dependency injection of the @Resource

annotation
■ Crosscutting concerns with interceptors
■ Task scheduling with the EJB timer
140

EJB internals 141
In the previous two chapters we focused on developing session beans and mes-
sage-driven beans (MDBs). Although we discussed a few bean type-specific fea-
tures in detail, we generally avoided covering topics not closely related to
introducing the basics. In this chapter we build on the material in the previous
chapters and introduce advanced concepts applicable to MDBs and session beans.
It is very likely that you’ll find these EJB 3 features extremely helpful while using
EJB in the real world.

 We begin by discussing the how containers provide the services behind the
scenes and how to access environment information. We then move on to advanced
use of dependency injection, JNDI lookups, EJB interceptors, and the EJB timer
service. As you’ll learn, EJB 3 largely relieves you from these system-level concerns
while providing extremely robust and flexible functionality.

 As a foundation for the rest of the chapter, we briefly examine these EJB inter-
nals first.

5.1 EJB internals

Although we’ve talked about the role of the container and the concept of man-
aged services, we haven’t explained how most containers go about providing
managed services. The secret to understanding these and the other EJB services
is knowing how the container provides them. Without going into too much detail,
we’ll discuss EJB objects—which perform the magic of providing the service—and
then examine the EJB context—which a bean can use to access runtime environ-
ment and use container services.

5.1.1 EJB behind the scenes
EJB centers on the idea of managed objects. As we saw in the previous chapters,
EJB 3 beans are just annotated POJOs themselves. When a client invokes an EJB
method using the bean interface, it doesn’t work directly on the bean instance.
The container makes beans “special” by acting as a proxy between the client and
the actual bean instance. This enables the container to provide EJB services to the
client on behalf of the bean instance.

NOTE For each bean instance, the container automatically generates a proxy
called an EJB object. The EJB object has access to all the functionality of
the container, including the JNDI registry, security, transaction manage-
ment, thread pools, session management, and pretty much anything else
that is necessary to provide EJB services. The EJB object is aware of the
bean configuration and what services the POJO is supposed to provide.

142 CHAPTER 5
Learning advanced EJB concepts
Since all requests to the EJB instance are passed through the EJB object proxy, the
EJB object can “insert” container services to client requests as needed, including
managing all aspects of the bean lifecycle. Figure 5.1 is a typical representation of
this technique.

 As you’ve seen in the previous chapters, the beauty of this technique is that all
the service details are completely transparent to bean clients and even to bean
developers. In fact, a container implementation is free to implement the services
in the most effective way possible and at the same time provide vendor-specific
feature and performance enhancements. This is fundamentally all there is to the
“magic” parts of EJB. For session beans, the client interacts with the EJB object
through the business interface. For MDBs, however, the EJB object or message
endpoint sits between the message provider and the bean instance.

 Let’s now take a look at how EJBs access the container environment in which
the EJB object itself resides.

Figure 5.1 The “magic” of EJB. The container-generated EJB object receives all EJB client requests
as the proxy, and reads configuration and inserts container services as required before forwarding
client requests to the bean instance.

EJB internals 143
5.1.2 EJB context: accessing the runtime environment

EJB components are generally meant to be agnostic of the container. This means
that in the ideal case, EJB components should merely hold business logic and
never access the container or use container services directly. As you’ll recall, ser-
vices like transaction management, security, dependency injection, and so forth
are meant to be “overlaid” on the bean through configuration.

 However, in the real world, it is sometimes necessary for the bean to explicitly
use container services in code. These are the situations the EJB context is designed
to handle. The javax.ejb.EJBContext interface is essentially your backdoor into
the mystic world of the container. In this section, we define EJBContext, explain its
use, and show you how to use dependency injection to retrieve EJBContext.

Defining the EJBContext Interface

As you can see in listing 5.1, the EJBContext interface allows direct programmatic
access to services such as transaction and security, which are typically specified
through configuration and completely managed by the container.

public interface EJBContext {
 public Principal getCallerPrincipal();
 public boolean isCallerInRole(String roleName);
 public EJBHome getEJBHome();

 public EJBLocalHome getEJBLocalHome();
 public boolean getRollbackOnly();
 public UserTransaction getUserTransaction();
 public void setRollbackOnly();
 public TimerService getTimerService();

 public Object lookup(String name);
}

Let’s look briefly at what each of these methods do (table 5.1). We’ll save a
detailed analysis for later, when we discuss the services that each of the methods is
related to. For now, you should note the array of services offered through the EJB
context as well as the method patterns.

Listing 5.1 javax.ejb.EJBContext interface

Bean-managed
security

transaction
management

Access to timer service

JNDI lookup

144 CHAPTER 5
Learning advanced EJB concepts
Both session and message-driven beans have their own subclasses of the javax.
ejb.EJBContext interface. As shown in figure 5.2, the session bean–specific sub-
class is javax.ejb.SessionContext, and the MDB-specific subclass is javax.ejb.
MessageDrivenContext.

Table 5.1 You can use javax.ejb.EJBContext to access runtime services.

Methods Description

getCallerPrincipal
isCallerInRole

These methods are useful when using in bean-managed secu-
rity. We discuss these two methods further in chapter 6 when
we discuss programmatic security.

getEJBHome getEJBLocalHome These methods are used to obtain the bean’s “remote home”
and “local home” interfaces, respectively. Both are optional for
EJB 3 and are hardly used beyond legacy EJB 2.1 beans. We
won’t discuss these methods beyond this basic introduction.
They are mainly provided for backward compatibility.

getRollbackOnly,
setRollbackOnly

These methods are used for EJB transaction management in
the case of container-managed transactions. We discuss con-
tainer-managed transactions in greater detail in chapter 6.

getUserTransaction This method is used for EJB transaction management in the
case of bean-managed transactions. We discuss bean-man-
aged transactions in greater detail in chapter 6.

getTimerService This method is used to get access to the EJB timer service. We
discuss EJB timers later in this chapter.

lookup This method is used to get references to objects stored in the
JNDI registry. With the introduction of DI in EJB 3, direct JNDI
lookup has been rendered largely unnecessary. However, there
are some edge cases that DI cannot handle, or perhaps DI is
simply not available. This method proves handy in such circum-
stances. We discuss this topic later in this section.

Figure 5.2 The EJB context interface has a subclass for each session and message-driven bean type.

EJB internals 145
Each subclass is designed to suit the particular runtime environment of each
bean type. As a result, they either add methods to the superclass or invalidate
methods not suited for the bean type. For example, it doesn’t make sense to call
the isCallerInRole method from an MDB because the MDB is not invoked
directly by a user.

Using EJBContext
As we discussed earlier, you can gain access to several container services such as
transaction or security by using EJBContext. Interestingly, you can access EJB-
Context through DI. For example, a SessionContext could be injected into a
bean as follows:

@Stateless
public class PlaceBidBean implements PlaceBid {
 @Resource
 SessionContext context;
 ...
}

In this code snippet, the container detects the @Resource annotation on the con-
text variable and figures out that the bean wants an instance of its session con-
text. The SessionContext adds a number of methods specific to the session bean
environment, including getBusinessObject, getEJBLocalObject, getEJBObject,
getInvokedBusinessInterface, and getMessageContext. All of these are fairly
advanced methods that are rarely used. Note that the getEJBLocalObject and
getEJBObject methods are meant for EJB 2 beans and will generate exceptions if
used with EJB 3 beans. We won’t discuss these methods further and will leave
them for you to explore on your own.

 MessageDrivenContext adds no methods specific to MDB. Rather, it throws
exceptions if the isCallerInRole, getEJBHome, or getEJBLocalHome methods are
called since they make no sense in a messaging-based environment (recall that a
message-driven bean has no business interface and is never invoked directly by
the client). Much like a session context, a MessageDrivenContext can be injected
as follows:

@MessageDriven
public class OrderBillingMDB {
 @Resource MessageDrivenContext context;
 ...
}

146 CHAPTER 5
Learning advanced EJB concepts
NOTE It is illegal to inject a MessageDrivenContext into a session bean or a
SessionContext into an MDB.

This is about as much time as we need to spend on the EJB context right now. Rest
assured that you’ll see more of it in chapter 6. In the meantime, let’s turn our
attention back to a vital part of EJB 3—dependency injection. We provided a brief
overview of DI in chapter 2 and have been seeing EJB DI in action in the last few
chapters. We just saw an intriguing use case in injecting EJB contexts. In reality,
EJB DI is a like a Swiss army knife: it is an all-in-one tool that can be used in unex-
pected ways. Let’s take a look at some of these advanced uses next.

5.2 Accessing resources using DI and JNDI

We’ve seen EJB 3 DI in its primary incarnations already—the @javax.ejb.EJB and
@javax.annotation.Resource annotations. EJB 3 DI comes in two more forms—the
@javax.persistence.PersistenceContext and @javax.persistence.Persistence-
Unit annotations. We’ll see these two annotations in action in part 3 of this book.

 We’ve also witnessed only a small part of the power of the @Resource annota-
tion. So far, we’ve used the @Resource annotation to inject JDBC data sources, JMS
connection factories, and JMS destinations. Unlike some lightweight containers
such as Spring, EJB 3 does not permit injection of POJOs that aren’t beans. How-
ever, the @Resource annotation allows for a variety of other uses, some of which we
cover in the coming section. In this section we’ll show you how to use the
@Resource annotation and its parameters. You’ll learn the difference between set-
ter and field injection, and you’ll see the @Resource annotation in action when we
inject a variety of resources such as e-mail, environment entries, and the timer
service. Finally, you’ll learn how to look up resources using JNDI and the lookup
method in EJBContext.

5.2.1 Resource injection using @Resource

The @Resource annotation is by far the most versatile mechanism for DI in EJB 3.
As we noted, in most cases the annotation is used to inject JDBC data sources, JMS
resources, and EJB contexts. However, the annotation can also be used for e-mail
server resources, environment entries, ORB reference, or even EJB references.
Let’s take a brief look at each of these cases. For convenience, we’ll use the famil-
iar JDBC data source example to explain the basic features of the @Resource anno-
tation before moving on to the more involved cases. The following code injects a
data source into the PlaceBid bean from chapter 2:

Accessing resources using DI and JNDI 147
@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 @Resource(name="jdbc/actionBazaarDB")
 private javax.sql.DataSource dataSource;

In this case, the container would not have to work very hard to figure out what
resource to inject because the name parameter is explicitly specified. As we know,
this parameter specifies the JNDI name of the resource to be injected, which in
our case is specified as jdbc/actionBazaarDB. Although we didn’t mention this lit-
tle detail before, the value specified by the name parameter is actually interpreted
further by the container similar to a value specified in the res-ref-name in the
<resource-ref> tag in the deployment descriptor, as in the following example:

<resource-ref>
 <res-ref-name>jdbc/actionBazaarDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
</resource-ref>

The value of the name parameter in @Resource (or res-ref-name) is translated to a
fully qualified JNDI mapping in the form java:comp/env/[value of the name
parameter] (see the accompanying sidebar). In our example, the complete JNDI
path for the resource will be java:comp/env/jdbc/actionBazaarDB. If you don’t
specify the name element in the @Resource annotation, the JNDI name for the
resource will be of the form java:comp/env/ [bean class name including package]/
[name of the annotated field/property]. If we didn’t specify the name element in
the @Resource annotation, the container would use java:comp/env/action-
bazaar.buslogic.PlaceBidBean/dataSource as the JNDI name.

The environment naming context and
resolving global JNDI names

If you know how JNDI references worked in EJB 2, you’re familiar with the envi-
ronment naming context (ENC). ENC allows portability of the application with-
out having to depend on global JNDI names. Global JNDI names for resources
differ between application server implementations, and ENC allows you to use
a JNDI location that starts with java:comp/env/ instead of hard-coding the
actual global JNDI name. EJB 3 essentially assumes that all JNDI names used
in code are local references and automatically prepends names with the java:
comp/env/ prefix.

148 CHAPTER 5
Learning advanced EJB concepts
Behind the scenes, the container resolves the JNDI references to the resources
and binds the resource to the ENC during deployment. If the resource is not
found during injection, the container throws a runtime exception and the bean
becomes unusable.

 Beyond JNDI name mapping, the @Resource annotation is meant to be a lot
more flexible when it needs to be than what is apparent in our deliberately
straightforward data source injection example. To illustrate some of these robust
features, let’s take a look at the definition for the annotation:

This automatic interpretation of EJB 3 JNDI names into local references is a nice
alternative to mentioning the local ENC (java:comp/env) prefix over and over
again. However, this convenience does come at a price. Since you cannot use glo-
bal names with the name parameter, you have to make sure that you perform the
mapping between the ENC and global JNDI names in all cases. Fortunately, many
application servers will automatically resolve the ENC name to the global JNDI
name if a resource with the same global JNDI name exists. For example, if you are
using the Sun GlassFish or Oracle Application Server and you define a data source
as shown here, the application server will automatically map the data source to the
global JNDI resource bound to jdbc/ActionBazaarDS, even if you didn’t explicitly
map the resource:

@Resource(name="jdbc/ActionBazaarDS")
private javax.jdbc.DataSource myDB;

Moreover, application servers allow you to explicitly specify a global JNDI name using
the mappedName parameter of the @Resource annotation. For example, if you’re
using the JBoss Application Server and you have a data source with a global JNDI
name of java:/DefaultDS, you can specify the resource mapping as follows:

@Resource(name="jdbc/ActionBazaarDS", mappedName="java:/DefaultDS")
private javax.jdbc.DataSource myDB;

In this case, the container will look up the data source with the global JNDI name
of java:/DefaultDS when the ENC java:comp/env/jdbc/ActionBazaarDS
is resolved.

However, remember that using the mappedName parameter makes code less por-
table. Therefore, we recommend you use deployment descriptors for mapping glo-
bal JNDI names instead.

Note that, similar to the @Resource annotation, the @EJB annotation has a
mappedName parameter as well.

Accessing resources using DI and JNDI 149
@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface Resource {
 public enum AuthenticationType {
 CONTAINER,
 APPLICATION
 }
 String name() default "";
 Class type() default Object.class;
 AuthenticationType authenticationType() default
AuthenticationType.CONTAINER;
 boolean shareable() default true;
 String mappedName() default "";
description() default "";
}

The first point you should note from the definition of the @Resource annotation is
that it is not limited to being applied to instance variables. As the @Target value
indicates, it can be applied to setter methods, and even classes.

Setter vs. field injection
Other than field injection, setter injection is the most commonly used option for
injection. To see how it works, let’s transform our data source example to use set-
ter injection:

@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 private DataSource dataSource;
 ...
 @Resource(name="jdbc/actionBazaarDB")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

As you can see, setter injection relies on JavaBeans property-naming conventions.
In case you are unfamiliar with them, the conventions dictate that the instance
variables of an object should always be private so that they cannot be externally
accessible. Instead, an instance variable named XX should have corresponding
nonprivate methods named getXX and setXX that allow it to be accessed and set
externally. We’ve seen how the setter for the PlaceBidBean dataSource variable
looks. The getter could look like this:

public DataSource getDataSource() {
 return dataSource;
}

150 CHAPTER 5
Learning advanced EJB concepts
Just as in instance variable injection, the container inspects the @Resource anno-
tation on the setDataSource method before a bean instance becomes usable,
looks up the data source from JNDI using the name parameter value, and calls the
setDataSource method using the retrieved data source as parameter.

NOTE Whether or not to use setter injection is largely a matter of taste.
Although setter injection might seem like a little more work, it provides
a couple of distinct advantages. First, it is easier to unit-test by invoking
the public setter method from a testing framework like JUnit. Second, it
is easier to put initialization code in the setter if you need it.

In our case, we can open a database connection in the setDataSource method as
soon as injection happens:

private DataSource dataSource;
private Connection connection;
...
@Resource(name="jdbc/actionBazaarDB")
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.connection = dataSource.getConnection();
}

The optional type parameter of the @Resource annotation can be used to explic-
itly set the type of the injected resource. For example, we could have chosen to tell
the container that the injected resource is of type javax.sql.DataSource:

@Resource(name="jdbc/actionBazaarDB",
 type=javax.sql.DataSource.class)
private DataSource dataSource;

If omitted, the type of the injected resource is assumed to be the same as the type
of the instance variable or property.

 The type element is mandatory when the @Resource annotation is used at
the class level and uses JNDI to obtain a reference to the resource. Let’s take a
closer look.

Using @Resource at the class level
You may recall from our earlier discussion that DI is supported only in the man-
aged classes and that you cannot use injection in helper or utility classes. In most
applications, you can use helper classes, and you have to use JNDI to look up a
resource. (If you aren’t familiar with JNDI, refer to appendix A for a brief discus-
sion.) To look up a resource from the helper class, you have to reference the
resource in the EJB class as follows:

Accessing resources using DI and JNDI 151
@Resource(name="jdbc/actionBazaarDB",mappedName="jdbc/actionBazaarDS",
 type=javax.sql.DataSource.class)
@Stateless
public class PlaceBidBean implements PlaceBid

You can look up the resource either from the EJB or the helper class as follows:

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/ActionBazaarDB")

Before we conclude this section, let’s look at some remaining parameters of the
@Resource annotation (table 5.2). The other parameters—authenticationType,
shareable, description, and mappedName—are not used often and we won’t cover
them in great detail.

Using injection for JDBC data sources is just the tip of the iceberg. We’ll look at
the other uses of EJB DI next. In general, we avoid talking about how the
resources are defined in the deployment descriptor for now; we’ll discuss that in
much greater detail when we examine application packaging and deployment
descriptor tags in chapter 11.

Table 5.2 The @Resource annotation can be used to inject resources. The parameters in the table
are not used regularly and are included for your reference in case you need them.

Parameter Type Description Default

authentication-
Type

enum
Authentication-
Type {CONTAINER,
APPLICATION}

The type of authentication required
for accessing the resource. The
CONTAINER value means that the
container’s security context is used
for the resource. The APPLICATION
value means that authentication for
the resource must be provided by the
application. We discuss EJB security
at greater length in chapter 6.

CONTAINER

shareable boolean Specifies whether the resource can
be shared.

true

description String The description of the resource. ""

mappedName String A vendor-specific name that the
resource may be mapped to, as
opposed to the JNDI name. See
the sidebar “The environment
naming context and resolving glo-
bal JNDI names” for details on this
parameter.

""

152 CHAPTER 5
Learning advanced EJB concepts
5.2.2 The @Resource annotation in action

In the previous sections we discussed the various parameters of the @Resource
annotation, and you learned how to use field or setter injection with @Resource to
inject JDBC data sources. Next you’ll see how to use the @Resource annotation to inject
resources such as JMS objects, mail resources, EJBContext, environment entries,
and the timer service.

Injecting JMS resources
Recall the discussion on messaging and MDBs in chapter 4. If your application has
anything to do with messaging, it is going to need to use JMS resources such as
javax.jms.Queue, javax.jms.Topic, javax.jms.QueueConnectionFactory, or javax.
jms.TopicConnectionFactory. Just like JDBC data sources, these resources are
stored in the application server’s JNDI context and can be injected through the
@Resource annotation. As an example, the following code injects a Queue bound to
the name jms/actionBazaarQueue to the queue field:

@Resource(name="jms/actionBazaarQueue")
private Queue queue;

EJBContext
Earlier (section 5.2) we discussed the EJBContext, SessionContext, and Message-
DrivenContext interfaces. One of the most common uses of injection is to gain
access to EJB contexts. The following code, used in the PlaceBid session bean,
injects the EJB type specific context into the context instance variable:

@Resource SessionContext context;

Note that the injected session context is not stored in JNDI. In fact, it would be
incorrect to try to specify the name parameters in this case at all and servers will
probably ignore the element if specified. Instead, when the container detects the
@Resource annotation on the context variable, it figures out that the EJB context
specific to the current bean instance must be injected by looking at the variable
data type, javax.ejb.SessionContext. Since PlaceBid is a session bean, the result
of the injection would be the same if the variable were specified to be the parent
class, EJBContext. In the following code, an underlying instance of javax.ejb.
SessionContext is still injected into the context variable, even if the variable data
type is javax.ejb.EJBContext:

@Resource EJBContext context;

Accessing resources using DI and JNDI 153
Using this code in a session bean would make a lot of sense if you did not plan to
use any of the bean-type specific methods available through the SessionContext
interface anyway.

Accessing environment entries
If you have been working with enterprise applications for any length of time, it is
likely you have encountered situations where some parameters of your applica-
tion change from one deployment to another (customer site information, prod-
uct version, and so on). It is overkill to save this kind of “semi-static” information
in the database. This is exactly the situation environment entry values are
designed to solve.

 For example, in the ActionBazaar application, suppose we want to set the cen-
sorship flag for certain countries. If this flag is on, the ActionBazaar application
checks items posted against a censorship list specific to the country the applica-
tion deployment instance is geared toward. We can inject an instance of an envi-
ronment entry as follows:

@Resource
private boolean censorship;

Environment entries are specified in the deployment descriptor and are accessi-
ble via JNDI. The ActionBazaar censorship flag could be specified like this:

<env-entry>
 <env-entry-name>censorship</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>

Environment entries are essentially meant to be robust application constants
and support a relatively small range of data types. Specifically, the values of the
<env-entry-type> tag are limited to these Java types: String, Character, Byte,
Short, Integer, Long, Boolean, Double, and Float. Because environment entries
are accessible via JNDI they can be injected by name. We could inject the censor-
ship flag environment entry into any EJB by explicitly specifying the JNDI name
as follows:

@Resource(name="censorship")
private boolean censorship;

As you might gather, the data types of the environment entry and the injected
variable must be compatible. Otherwise, the container throws a runtime excep-
tion while attempting DI.

154 CHAPTER 5
Learning advanced EJB concepts
Accessing e-mail resources
In addition to JDBC data sources and JMS resources, the other heavy-duty
resource that enterprise applications often use is the JavaMail API, javax.mail.
Session. JavaMail Sessions that abstract e-mail server configuration can be stored
in the application server JNDI registry. The Session can then be injected into an
EJB (with the @Resource annotation) and used to send e-mail. In the ActionBazaar
application, this is useful for sending the winning bidder a notification after bid-
ding on an item is over. The DI code to inject the mail Session looks like this:

@Resource(name="mail/ActionBazaar")
private javax.mail.Session mailSession;

We’ll leave configuring a mail session using the deployment descriptor as an
exercise for you, the reader. You can find the one-to-one mapping between anno-
tations and deployment descriptors in appendix D.

Accessing the timer service
The container-managed timer service gives EJBs the ability to schedule tasks in a
simple way. (You’ll learn more about timers in section 5.4.) We inject the con-
tainer timer service into an EJB using the @Resource annotation:

@Resource
javax.ejb.TimerService timerService;

Just as with the EJB context, the timer service is not saved in JNDI, but the con-
tainer resolves the resource by looking at the data type of the injection target.

 The @Resource annotation may be used for injecting EJB references accessible
via JNDI into other EJBs. However, the @EJB annotation is intended specifically for
this purpose and should be used in these circumstances instead. Refer to the dis-
cussion in chapter 3 for details about this annotation.

EJB 3 and POJO injection
As you might have noted, the one DI feature glaringly missing is the ability to inject
resources into POJOs and to inject POJOs that are not EJBs. You can still indirectly
accomplish this by storing POJOs in the JNDI context (not a particularly easy thing
to do) or using proprietary extension of your container vendor. We hope that a
future version of EJB 3 will provide expanded support for POJO injection similar to
other lightweight DI-capable frameworks like Spring.

You can also use POJO injection with Spring-enabled EJB 3 beans if you really need
POJO injection in your EJB applications. We’ll save the topic of EJB 3 and Spring for
chapter 16. We have provided a workaround for POJO injection in chapter 12.

Accessing resources using DI and JNDI 155
@Resource and annotation inheritance
In chapter 3, you learned that an EJB bean class may inherit from another EJB
class or a POJO. If the superclass defines any dependencies on resources using
the @Resource annotation, they are inherited by the subclass. For example, Bid-
ManagerBean extends another stateless EJB, PlaceBidBean, where PlaceBidBean
defines a resource, as in this example:

@Stateless
public class PlaceBidBean implements PlaceBid{
@Resource(name="censorship")
 private boolean censorship;
..
}

@Stateless
public class BidManagerBean extends PlaceBidBean implements BidManager{
..
}

The environment entry defined in the PlaceBidBean will be inherited by the
BidManagerBean and dependency injection will occur when an instance of Bid-
ManagerBean is created.

 As useful as DI is, it cannot solve every problem. There are some cases where
you must programmatically look up resources from a JNDI registry yourself. We’ll
talk about some of these cases next, as well as show you how to perform program-
matic lookups.

5.2.3 Looking up resources and EJBs

Although you can use the @EJB or @Resource annotation to inject resource
instances, you may still need to look up items from JNDI in several advanced
cases (if you are unfamiliar with JNDI itself, check out the brief tutorial in appen-
dix A). You can use the @EJB or @Resource annotation at the EJB class level to
define dependency on an EJB or a resource. There are two ways of using pro-
grammatic lookups—using either the EJB context or a JNDI initial context. We’ll
look at both methods.

 Recall from our earlier discussion that you can look up any object stored in
JNDI using the EJBContext.lookup method (including session bean references).
This technique can be used to accomplish one extremely powerful feature that DI
cannot accomplish: using lookups instead of DI allows you to determine which
resource to use dynamically at runtime instead of being constrained to using
static configuration that cannot be changed programmatically. All you have to do

156 CHAPTER 5
Learning advanced EJB concepts
is specify a different name in the lookup method to retrieve a different resource.
As a result, program logic driven by data and/or user input can determine depen-
dencies instead of deploy-time configuration.

 The following code shows the EJB context lookup method in action:

@EJB(name="ejb/BidderAccountCreator", beanInterface =
BidderAccountCreator.class)

@Stateless
public class GoldBidderManagerBean implements GoldBidderManager {
@Resource SessionContext sessionContext;
...
BidderAccountCreator accountCreator
 = (BidderAccountCreator)
 sessionContext.lookup(
 "ejb/BidderAccountCreator");
...
accountCreator.addLoginInfo(loginInfo);
...
accountCreator.createAccount();

Note that while using the class-level reference annotation you must explicitly
specify the reference name as the complete JNDI pathname. Also note that once
an EJB context is injected (as in the sample lookup code), it could be passed into
any non-bean POJO to perform the actual lookup.

 While both DI and lookup using the EJB context are relatively convenient, the
problem is that they are only available inside the Java EE container (or an appli-
cation client container). For POJOs outside a container, you are limited to the
most basic method of looking up JNDI references—using a JNDI initial context.
The code to do this is a little mechanical, but it isn’t too complex:

Context context = new InitialContext();
BidderAccountCreator accountCreator
 = (BidderAccountCreator)
 context.lookup("java:comp/env/ejb/BidderAccountCreator");
...
accountCreator.addLoginInfo(loginInfo);
...
accountCreator.createAccount();

The InitialContext object can be created by any code that has access to the JNDI
API. Also, the object can be used to connect to a remote JNDI server, not just a
local one.

 Although this code probably looks harmless enough, you should avoid it if at
all possible. Mechanical JNDI lookup code was one of the major pieces of avoid-
able complexity in EJB 2, particularly when these same bits of code are repeated
hundreds of times across an application.

AOP in the EJB world: interceptors 157
 In the next section, we cover one of the most exciting new features in
EJB 3: interceptors.

5.3 AOP in the EJB world: interceptors

Have you ever been in a situation in which your requirements changed toward the
end of the project and you were asked to add some common missing feature, such
as logging or auditing, for EJBs in your application? Adding logging code in each
of your EJB classes would be time consuming, and this common type of code also
causes maintainability issues and requires you to modify a number of Java classes.
Well, EJB 3 interceptors solve this problem. In our example you simply create a
logging interceptor that does the logging, and you can make it the default inter-
ceptor for your application. The logging interceptor will be executed when any
bean method is executed. If the requirement for logging changes, then you have
to change only one class. In this section, you’ll learn how interceptors work.

5.3.1 What is AOP?

It is very likely you have come across the term aspect-oriented programming (AOP).
The essential idea behind AOP is that for most applications, common application
code repeated across modules not necessarily for solving the core business prob-
lem are considered as infrastructure concerns.

 The most commonly cited example of this is logging, especially at the basic
debugging level. To use our ActionBazaar example, let’s assume that we log the
entry into every method in the system. Without AOP, this would mean adding log-
ging statements at the beginning of every single method in the system to log the
action of “entering method XX”! Some other common examples where AOP
applies are auditing, profiling, and statistics.

 The common term used to describe these cases is crosscutting concerns—con-
cerns that cut across application logic. An AOP system allows the separation of
crosscutting concerns into their own modules. These modules are then applied
across the relevant cross section of application code, such as the beginning of
every method call. Tools like AspectJ have made AOP relatively popular. For great
coverage of AOP, read AspectJ in Action by Ramnivas Laddad (Manning, 2003).

 EJB 3 supports AOP-like functionality by providing the ability to intercept busi-
ness methods and lifecycle callbacks. Now buckle up and get ready to jump into
the world of EJB 3 interceptors, where you’ll learn what interceptors are and how
to build business method and lifecycle callback interceptors.

158 CHAPTER 5
Learning advanced EJB concepts
5.3.2 What are interceptors?

Essentially the EJB rendition of AOP, interceptors are objects that are automatically
triggered when an EJB method is invoked (interceptors are not new concepts and
date back to technologies like CORBA). While EJB 3 interceptors provide suffi-
cient functionality to handle most common crosscutting concerns (such as in our
logging example), they do not try to provide the level of functionality that a full-
scale AOP package such as AspectJ offers. On the flip side, EJB 3 interceptors are
also generally a lot easier to use.

 Recall our discussion in section 5.1 on how the EJB object provides services
such as transactions and security. In essence, the EJB object is essentially a sophis-
ticated built-in interceptor that makes available a whole host of functionality. If
you wanted to, you could create your own EJB-esque services using interceptors.

 In the pure AOP world, interception takes place at various points (called point
cuts) including at the beginning of a method, at the end of a method, and when an
exception is triggered. If you are familiar with AOP, an EJB interceptor is the most
general form of interception—it is an around invoke advice. EJB 3 interceptors are
triggered at the beginning of a method and are around when the method returns;
they can inspect the method return value or any exceptions thrown by the method.
Interceptors can be applied to both session and message-driven beans.

 Let’s examine business method interceptors further by implementing basic
logging on the PlaceBid session bean from chapter 2. Once you understand
how this works, applying it to an MDB should be a snap. Figure 5.3 shows a

Figure 5.3 Business interceptors are typically used to implement common code. The Action-
BazaarLogger implements common logging code used by all EJBs in the ActionBazaar system.

AOP in the EJB world: interceptors 159
business method interceptor that implements common logging code in the
ActionBazaar application.

 Listing 5.2 contains the code for our interceptors. The interceptor attached to
the addBid method will print a log message to the console each time the method
is invoked. In a real-world application, this could be used as debugging informa-
tion (and perhaps printed out using java.util.logging or Log4J).

@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 @Interceptors(ActionBazaarLogger.class)
 public void addBid(Bid bid) {
 ...
 }
}

public class ActionBazaarLogger {
 @AroundInvoke
 public Object logMethodEntry(
 InvocationContext invocationContext)
 throws Exception {
 System.out.println("Entering method: ”
 + invocationContext.getMethod().getName());
 return invocationContext.proceed();
 }
}

Let’s take a bird’s-eye view of this code before analyzing each feature in detail in
the coming sections. The interceptor class, ActionBazaarLogger, is attached to
the addBid method of the PlaceBid stateless session bean using the @javax.
interceptor.Interceptors annotation b. The ActionBazaarLogger object’s log-
MethodEntry method is annotated with @javax.interceptor.AroundInvoke and
will be invoked when the addBid method is called C. The logMethodEntry method
prints a log message to the system console, including the method name entered
using the javax.interceptor.InvocationContext. Finally, the invocation con-
text’s proceed method is invoked to signal to the container that the addBid invo-
cation can proceed normally.

 We will now start a detailed analysis of the code, starting with attaching the
interceptor using the @Interceptors annotation.

Listing 5.2 EJB business method interceptors

 b Attaching interceptor

 C Specifying interceptor method

160 CHAPTER 5
Learning advanced EJB concepts
5.3.3 Specifying interceptors

The @Interceptors annotation allows you to specify one or more interceptor
classes for a method or class. In listing 5.2 we attach a single interceptor to the
addBid method:

@Interceptors(ActionBazaarLogger.class)
public void addBid (...

You can also apply the @Interceptors annotation to an entire class. When you do,
the interceptor is triggered if any of the target class’s methods are invoked. For
example, if the ActionBazaarLogger is applied at the class level as in the following
code, our logMethodEntry method will be invoked when the PlaceBid class’s
addBid or addTimeDelayedBid method is called by the client (imagine that the
addTimeDelayedBid method adds a bid after a specified interval of time):

@Interceptors(ActionBazaarLogger.class)
@Stateless
public class PlaceBidBean implements PlaceBid {
 public void addBid (...
 public void addTimeDelayedBid (...
}

As we explained, the @Interceptors annotation is fully capable of attaching more
than one interceptor either at a class or method level. All you have to do is pro-
vide a comma-separated list as a parameter to the annotation. For example, a
generic logger and a bidding statistics tracker could be added to the PlaceBid ses-
sion bean as follows:

@Interceptors({ActionBazaarLogger.class, BidStatisticsTracker.class})
public class PlaceBidBean { ... }

Besides specifying method- and class-level interceptors, you can create what is
called a default interceptor. A default interceptor is essentially a catchall mecha-
nism that attaches to all the methods of every bean in the EJB module. Unfortu-
nately, you cannot specify these kinds of interceptors by using annotations and
must use deployment descriptor settings instead. We won’t discuss deployment
descriptors in any great detail at this point, but we’ll show you how setting the
ActionBazaarLogger class as a default interceptor for the ActionBazaar applica-
tion might look:

<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 actionbazaar.buslogic.ActionBazaarLogger

AOP in the EJB world: interceptors 161
 </interceptor-class>
 </interceptor-binding>
</assembly-descriptor>

An interesting question that might have already
crossed your mind is what would happen if you
specified default, class-, and method-level inter-
ceptors for a specific target method (yes, this is
perfectly legal). In which order do you think the
interceptors would be triggered?

 Somewhat counterintuitive to how Java scop-
ing typically works, the interceptors are called
from the larger scope to the smaller scope. That is,
the default interceptor is triggered first, then the
class-level interceptor, and finally the method-
level interceptor. Figure 5.4 shows this behavior.

 If more than one interceptor is applied at any
given level, they are executed in the order in
which they are specified. In our ActionBazaar-
Logger and BidStatisticsTracker example, the
ActionBazaarLogger is executed first since it
appears first in the comma-separated list in the
@Interceptors annotation:

@Interceptors({ActionBazaarLogger.class,
BidStatisticsTracker.class})

Unfortunately, the only way to alter this execu-
tion order is to use the interceptor-order ele-
ment in the deployment descriptor; there are no
annotations for changing interceptor order.
However, you can disable interceptors at the
default or class levels if you need to. Applying the @javax.interceptor.Exclude-
DefaultInterceptors annotation on either a class or a method disables all default
interceptors on the class or method. Similarly the @javax.interceptor.Exclude-
ClassInterceptors annotation disables class-level interceptors for a method. For
example, both default and class-level interceptors may be disabled for the addBid
method using the following code:

@Interceptors(ActionBazaarLogger.class)
@ExcludeDefaultInterceptors

Figure 5.4 The order in which
business method interceptors are
invoked. Default interceptors
apply to all methods of all EJBs in
an ejb-jar package. Class-level
interceptors apply to all methods of
a specific class. Method-level
interceptors apply to one specific
method in a class. Default
application-level interceptors are
invoked first, then class-level
interceptors, then method-level
interceptors.

162 CHAPTER 5
Learning advanced EJB concepts
@ExcludeClassInterceptors
public void addBid (...

Next we’ll take a detailed look at the interceptor classes themselves.

5.3.4 Implementing business interceptors
Like the EJB lifecycle callback methods that we discussed in chapters 3 and 4,
business interceptors can be implemented either in the bean class itself or in sep-
arate classes. However, we recommend that you create interceptor methods exter-
nal to the bean class, because that approach allows you to separate crosscutting
concerns from business logic and you can share the methods among multiple
beans. After all, isn’t that the whole point of AOP?

 As you can see in listing 5.2, following the general EJB 3 philosophy, an inter-
ceptor class is simply a POJO that may have a few annotations.

Around invoke methods
It’s important to realize that an interceptor must always have only one method
that is designated as the around invoke (AroundInvoke) method. Around invoke
methods must not be business methods, which means that they should not be
public methods in the bean’s business interface(s).

 An around invoke method is automatically triggered by the container when a
client invokes a method that has designated it to be its interceptor. In listing 5.2,
the triggered method is marked with the @AroundInvoke annotation:

@AroundInvoke
public Object logMethodEntry(
 InvocationContext invocationContext)
 throws Exception {
 System.out.println("Entering method: "
 + invocationContext.getMethod().getName());
 return invocationContext.proceed();
}

In effect, this means that the logMethodEntry method will be executed whenever
the ActionBazaarLogger interceptor is triggered. As you might gather from this
code, any method designated AroundInvoke must follow this pattern:

Object <METHOD>(InvocationContext) throws Exception

The InvocationContext interface passed in as the single parameter to the method
provides a number of features that makes the AOP mechanism extremely flexible.
The logMethodEntry method uses just two of the methods included in the inter-
face. The getMethod().getName() call returns the name of the method being
intercepted—addBid in our case.

AOP in the EJB world: interceptors 163
 The call to the proceed method is extremely critical to the functioning of the
interceptor. In our case, we always return the object returned by Invocation-
Context.proceed in the logMethodEntry method. This tells the container that it
should proceed to the next interceptor in the execution chain or call the inter-
cepted business method. On the other hand, not calling the proceed method will
bring processing to a halt and avoid the business method (and any other inter-
ceptor down the execution chain) from being called.

 This feature can be extremely useful for procedures like security validation.
For example, the following interceptor method prevents the intercepted business
method from being executed if security validation fails:

@AroundInvoke
public Object validateSecurity(InvocationContext invocationContext)
 throws Exception {
 if (!validate(...)) {
 throw new SecurityException("Security cannot be validated. " +
 "The method invocation is being blocked.");
 }

 return invocationContext.proceed();
}

The InvocationContext interface
The InvocationContext interface has a number of other useful methods. Here is
the definition of the interface:

public interface InvocationContext {
 public Object getTarget();
 public Method getMethod();
 public Object[] getParameters();
 public void setParameters(Object[]);
 public java.util.Map<String,Object> getContextData();
 public Object proceed() throws Exception;
}

The getTarget method retrieves the bean instance that the intercepted method
belongs to. This method is particularly valuable for checking the current state of
the bean through its instance variables or accessor methods.

 The getMethod method returns the method of the bean class for which the inter-
ceptor was invoked. For AroundInvoke methods, this is the business method on the
bean class; for lifecycle callback interceptor methods, getMethod returns null.

 The getParameters method returns the parameters passed to the intercepted
method as an array of objects. The setParameters method, on the other hand,
allows us to change these values at runtime before they are passed to the method.

164 CHAPTER 5
Learning advanced EJB concepts
These two methods are helpful for interceptors that manipulate bean parameters
to change behavior at runtime.

 An interceptor in ActionBazaar that transparently rounds off all monetary val-
ues to two decimal places for all methods across the application could use the
getParameters and setParameters methods to accomplish its task.

 The key to understanding the need for the InvocationContext.getContext-
Data method is the fact that contexts are shared across the interceptor chain for a
given method. As a result, data attached to an InvocationContext can be used to
communicate between interceptors. For example, assume that our security valida-
tion interceptor stores the member status into invocation context data after the
user is validated:

invocationContext.getContextData().put("MemberStatus", "Gold");

As you can see, the invocation context data is simply a Map used to store name-
value pairs. Another interceptor in the invocation chain can now retrieve this data
and take specific actions based on the member status. For example, a discount
calculator interceptor can reduce the ActionBazaar item listing charges for a Gold
member. The code to retrieve the member status would look like this:

String memberStatus =
 (String) invocationContext.getContextData().get("MemberStatus");

The following is the AroundInvoke method of the DiscountVerifierInterceptor
that actually uses the invocation context as well as most of the methods we dis-
cussed earlier:

@AroundInvoke
public Object giveDiscount(InvocationContext context)
 throws Exception {
 System.out.println("*** DiscountVerifier Interceptor"
 + " invoked for " + context.getMethod().getName() + " ***");

 if (context.getMethod().getName().equals("chargePostingFee")
 && (((String)(context.getContextData().get("MemberStatus")))
 .equals("Gold"))) {
 Object[] parameters = context.getParameters();
 parameters[2] = new Double ((Double) parameters[2] * 0.99);
 System.out.println (
 "*** DiscountVerifier Reducing Price by 1 percent ***");
 context.setParameters(parameters);
 }

 return context.proceed();
}

AOP in the EJB world: interceptors 165
You can throw or handle a runtime or checked exception in a business method
interceptor. If a business method interceptor throws an exception before invoking
the proceed method, the processing of other interceptors in the invocation chain
and the target business method will be terminated.

 Recall our discussion on lifecycle callback methods in chapters 3 and 4. This
isn’t readily obvious, but lifecycle callbacks are a form of interception as well.
While method interceptors are triggered when a business method is invoked, life-
cycle callbacks are triggered when a bean transitions from one lifecycle state to
another. Although this was not the case in our previous lifecycle examples, in
some cases such methods can be used for crosscutting concerns (e.g., logging and
profiling) that can be shared across beans. For this reason, you can define lifecycle
callbacks in interceptor classes in addition to business method interceptors. Let’s
take a look at how to do this next.

5.3.5 Lifecycle callback methods in the interceptor class

Recall that the @PostConstruct, @PrePassivate, @PostActivate, and @PreDestroy
annotations can be applied to bean methods to receive lifecycle callbacks. When
applied to interceptor class methods, lifecycle callbacks work in exactly the same
way. Lifecycle callbacks defined in an interceptor class are known as lifecycle call-
back interceptors or lifecycle callback listeners. When the target bean transitions lifecy-
cles, annotated methods in the interceptor class are triggered.

 The following interceptor class logs when ActionBazaar beans allocate and
release resources when beans instances are constructed and destroyed:

public class ActionBazaarResourceLogger {
 @PostConstruct
 public void initialize (InvocationContext context) {
 System.out.println ("Allocating resources for bean: "
 + context.getTarget());
 context.proceed();
 }

 @PreDestroy
 public void cleanup (InvocationContext context) {
 System.out.println ("Releasing resources for bean: "
 + context.getTarget());
 context.proceed();
 }
}

As the code sample shows, lifecycle interceptor methods cannot throw checked
exceptions (it doesn’t make sense since there is no client for lifecycle callbacks to
bubble a problem up to).

166 CHAPTER 5
Learning advanced EJB concepts
 Note that a bean can have the same lifecycle callbacks both in the bean itself as
well as in one or more interceptors. That is the whole point of calling the Invoca-
tionContext.proceed method in lifecycle interceptor methods as in the resource
logger code. This ensures that the next lifecycle interceptor method in the invo-
cation chain or the bean lifecycle method is triggered. There is absolutely no dif-
ference between applying an interceptor class with or without lifecycle callbacks.
The resource logger, for example, is applied as follows:

@Interceptors({ActionBazaarResourceLogger.class})
public class PlaceBidBean { ... }

You might find that you will use lifecycle callbacks as bean methods to manage
resources a lot more often than you use interceptor lifecycle callbacks to encapsu-
late crosscutting concerns such as logging, auditing, and profiling. However,
interceptor callbacks are extremely useful when you need them.

 As a recap, table 5.3 contains a summary of both business method interceptors
and lifecycle callbacks.

Table 5.3 Differences between lifecycle and business method interceptors. Lifecycle interceptors
are created to handle EJB lifecycle callbacks. Business method interceptors are associated with busi-
ness methods, and are automatically invoked when a user invokes the business method.

Supported Feature Lifecycle Callback Methods Business Method Interceptor

Invocation Gets invoked when a certain lifecycle
event occurs.

Gets invoked when a business method
is called by a client.

Location In a separate Interceptor class or in the
bean class.

In the class or an interceptor class.

Method signature void <METHOD>(InvocationCon-
text)–in a separate interceptor class.

void <METHOD>()–in the bean class.

Object <METHOD>(Invocation-
Context) throws Exception

Annotation @PreDestroy, @PostConstruct,
@PrePassivate, @PostActivate

@AroundInvoke

Exception handling May throw runtime exceptions but must
not throw checked exceptions.
May catch and swallow exceptions.
No other lifecycle callback methods are
called if an exception is thrown.

May throw application or runtime
exception.
May catch and swallow runtime
exceptions.
No other business interceptor meth-
ods or the business method itself are
called if an exception is thrown before
calling the proceed method.

continued on next page

Scheduling: the EJB 3 timer service 167
This is all we want to say about interceptors right now. Clearly, interceptors are an
extremely important addition to EJB. It is likely that the AOP features in future
releases of EJB will grow more and more robust. Interceptors certainly have the
potential to evolve into a robust way of extending the EJB platform itself, with
vendors offering new out-of-the-box interceptor-based services.

 Let’s move on to the final vital EJB 3 feature we’ll cover in this chapter: the
timer service. Timers can be used only by stateless session beans and MDBs.

5.4 Scheduling: the EJB 3 timer service

Scheduled tasks are a reality for most nontrivial applications. For example, your
business application may have to run a daily report to determine inventory levels
and automatically send out restocking requests. For most legacy applications, it is
typical to have a batch job to clean up temporary tables at the start or end of each
day. If fact, it is fair to say schedulers are an essential holdover from the main-
frame days of batch computing. As a result, scheduling tools, utilities, and frame-
works have been a development mainstay for a long time. The Unix cron utility is
probably the most popular and well-loved scheduling utility. The System Task
Scheduler, generally lesser known, is the Microsoft Windows counterpart of cron.

 In the Java EE world, you have a few options for scheduling tasks and activities.
Most Java EE application servers come with a scheduling utility that is sufficiently
useful. There are also a number of feature-rich, full-scale scheduling packages
available for enterprise applications. Flux is an excellent commercial scheduling
package, while Quartz is a good-quality open source implementation. EJB timer
services are the standard Java EE answer to scheduling. As you’ll soon learn, while
it does not try to compete with full-scale scheduling products, the EJB 3 timer ser-
vice is probably sufficient for most day-to-day application development require-
ments. Because it is so lightweight, the service is also extremely easy to use.

 In the next few sections, we’ll build a scheduling service using EJB 3 timers
and show you how to use the @Timeout annotation.

Transaction and
security context

No security and transaction context.
Transaction and security are discussed
in chapter 6.

Share the same security and transac-
tion context within which the original
business method was invoked.

Table 5.3 Differences between lifecycle and business method interceptors. Lifecycle interceptors
are created to handle EJB lifecycle callbacks. Business method interceptors are associated with busi-
ness methods, and are automatically invoked when a user invokes the business method. (continued)

Supported Feature Lifecycle Callback Methods Business Method Interceptor

168 CHAPTER 5
Learning advanced EJB concepts
5.4.1 What are timers?

In a sense, the EJB 3 timer service is based on the idea of time-delayed callbacks.
In other words, the service allows you to specify a method (appropriately called
the timeout method) that is automatically invoked after a specified interval of time.
The container invokes the timeout method on your behalf when the time interval
you specify elapses. As you’ll see, you can use the timer service to register for call-
backs triggered once at a specific time or at regular intervals.

 We can only use timers in stateless session beans and MDBs because of their
asynchronous, stateless nature. However, unlike stateless session beans and MDBs,
timers are persistent and can survive a container crash or restart. Timers are also
transactional, that is, a transaction failure in a timeout method rolls back the
actions taken by the timer. Figure 5.5 illustrates how timers work.

Figure 5.5 How an EJB timer works. A client may invoke an EJB method which creates a timer that
registers a callback in the EJB timer service. The EJB container invokes the timeout method in the
bean instance when the timer expires.

Scheduling: the EJB 3 timer service 169
As the figure demonstrates, an EJB method can register a time-driven callback
with the container timer service. When the time interval specified by the EJB
expires, the timer service invokes the timeout method pointed to by the EJB. We’ll
show you how this works with a simple example next.

5.4.2 Using the timer service

Let’s explore the features of the EJB 3 timer service by adding a timer to the
PlaceBid EJB we introduced in chapter 2. We’ll add a timer in the addBid method
to check the status of the newly placed bid every 15 minutes. Although we won’t
code it, another compelling use case is to create a timer when an item is added for
bidding. Such a timer could be triggered when the auction time expired and
would determine the winning bidder. We’ll leave the implementation of this
timer as an exercise for you.

 Among other things, the timer we’ll implement will notify the bidder via
e-mail if they have been outbid. We have omitted most of the code that is not
absolutely necessary to explain timer functionality in listing 5.3. The com-
plete code is included in the downloadable code samples if you are interested
in exploring further.

public class PlaceBidBean implements PlaceBid {
 ...
 @Resource TimerService timerService;
 ...
 public void addBid(Bid bid) {
 ... Code to add the bid ...
 timerService.createTimer(15*60*1000, 15*60*1000, bid);
 ...
 }
 ...
 @Timeout
 public void monitorBid(Timer timer) {
 Bid bid = (Bid) timer.getInfo();
 ... Code to monitor the bid ...
 }
}

We use EJB 3 resource injection to gain access to the timer service b. In the
addBid method, after we add the bid we schedule a timer service callback to
occur every 15 minutes C. The newly added Bid is attached as timer information
when the timer is registered. At regular intervals, the monitorBid method is

Listing 5.3 Using the EJB 3 timer service

 B Timer service injected

 CTimer created

Timeout method D

170 CHAPTER 5
Learning advanced EJB concepts
called by the timer service, which is designated with the @Timeout annotation D.
The monitorBid method retrieves the Bid instance attached as timer information
and monitors the bid.

 We’ll explore EJB timer services details using listing 5.3 as a jumping-off point
in the next few sections, starting with ways to get access to the EJB 3 timer service.

Accessing the timer service
As you just saw in listing 5.3, the EJB timer service can be injected into a Java EE
component using the @Resource annotation. Alternatively, you can get access to
the container timer service through the EJB context:

@Resource SessionContext context;
...
TimerService timerService = context.getTimerService();

Which method you choose is largely a matter of taste. In general, if you are
already injecting an EJB context, you should avoid injecting the timer service as
well, in order to avoid redundant code. Instead, you should use the getTimer-
Service method as in the previous code. However, if you aren’t using the EJB con-
text for anything else, it makes perfect sense to simply inject the TimerService as
we did in listing 5.3.

 Next let’s take a closer look at the injected timer service.

Using the TimerService interface
In listing 5.3, we use the TimerService interface to register a Timer. As you’ll
soon see, a Timer is simply a Java EE representation of a scheduled task. The
createTimer method used in listing 5.3 is one of four overloaded methods pro-
vided in the TimerService interface to add Timers. The one we used specified
that the Timer should initially trigger in 15*60*1000 milliseconds (15 min-
utes), repeat every 15*60*1000 milliseconds (15 minutes), and added a Bid
instance as Timer information:

timerService.createTimer(15*60*1000, 15*60*1000, bid);

Let’s take a look at the complete definition of the TimerService interface to get a
clearer picture of the range of options available (listing 5.4).

public interface javax.ejb.TimerService {
 public Timer createTimer(long duration,
 java.io.Serializable info);

Listing 5.4 Specification for the TimerService interface is used to create either
single-event or recurring timers

 B

Scheduling: the EJB 3 timer service 171
 public Timer createTimer(long initialDuration,
 long intervalDuration, java.io.Serializable info);
 public Timer createTimer(java.util.Date expiration,
 java.io.Serializable info);
 public Timer createTimer(java.util.Date initialExpiration,
 long intervalDuration, java.io.Serializable info);
 public Collection getTimers();
}

The first version of the createTimer method b allows us to create a single-event
timer that is fired only once and not repeated. The first parameter, duration, spec-
ifies the time in milliseconds, after which the timeout method should be invoked.
The second parameter, info, allows us to attach an arbitrary piece of information
to the timer. Note that timer info objects must always be Serializable, as is the Bid
object we used in listing 5.3. Note also that the info parameter can be left null if
it is not really needed.

 You’ve already seen the second version of the createTimer method C in action
in listing 5.3. It allows us to create recurring timers with initial timeout and interval
durations set in milliseconds. The third version D is similar to the first in that it
allows us to create a timer that fires once and only once. However, this version
allows us to specify the expiration value as a specific instant in time represented by
a java.util.Date instead of a long time offset. The fourth E and second versions
of the createTimer method differ from each other in the same way. Using a con-
crete date instead of an offset from the current time generally makes sense for
events that should be fired at a later time. However, this is largely a matter of taste.
All of these methods return a generated Timer reference. In general, this returned
value is not used very often. Behind the scenes, all of the TimerService methods
associate the current EJB as the callback receiver for the generated Timers. The
final method of the TimerService interface, getTimers F, retrieves all of the active
Timers associated with the current EJB. This method is rarely used, and we won’t
discuss it further.

 Having looked at the TimerService interface and how to create timers, let’s
now take a closer look at how to implement timeout methods.

Implementing timeout methods
In listing 5.3, we mark monitorBid to be the timeout method using the @Time-
out annotation:

@Timeout
public void monitorBid(Timer timer) {

 C

 D

 E
 F

172 CHAPTER 5
Learning advanced EJB concepts
When the timer or timers created for the PlaceBid EJB expire, the container
invokes the designated timeout method—monitorBid. Using the @Timeout anno-
tation is by far the simplest, but not the only way to specify timeout methods. As
you might have guessed, methods marked with the @Timeout annotation are
expected to follow this convention:

void <METHOD>(Timer timer)

A bean can have at most one timeout method, which can be specified (through
annotation @Timeout or deployment descriptor timeout-method) either on the
bean class or on a superclass. If the bean class implements the javax.ejb.Timed-
Object interface, the ejbTimeout method is the bean’s timeout method.

 The Timer for which the callback was invoked is passed in as a parameter
for the method as processing context. This is because multiple Timers, espe-
cially in the case of repeating intervals, may invoke the same timeout method.
Also, as you saw in listing 5.3, it is often necessary to use the TimerService
interface to pass around data to the timeout methods as Timer information.

 We’ll finish our analysis of the EJB 3 timer service code by taking a closer look
at the Timer interface next.

Using the Timer interface
As we mentioned, the container passes us back the Timer instance that triggered
the timeout method. In the monitorBid method, we use the interface to retrieve
the Bid instance stored as timer information through the getInfo method:

@Timeout
public void monitorBid(Timer timer) {
 Bid bid = (Bid) timer.getInfo();
 ... Code to monitor the bid ...
}

A number of other useful methods are defined in the Timer interface. We’ll
explore them through the definition of the Timer interface (listing 5.5).

public interface javax.ejb.Timer {
 public void cancel();

 public long getTimeRemaining();

 public java.util.Date getNextTimeout();

 public javax.ejb.TimerHandle getHandle();

Listing 5.5 The javax.ejb.Timer interface

Scheduling: the EJB 3 timer service 173
 public java.io.Serializable getInfo();
}

The cancel method is particularly useful in canceling a timer prior to its expira-
tion. You can use this method to stop timers prematurely. In our bid-monitoring
example, we can use this method to stop the chain of recurring callbacks when
bidding on the item is over.

 It is vital to invoke the cancel method for recurring Timers when they are no
longer needed. Otherwise, the EJB will spin in an infinite loop unnecessarily. This
is a subtle, common, and easy mistake to make.

 The getTimeRemaining method can be used on either a single-use or interval
timer. The return value of this method indicates the remaining time for the timer
to expire, in milliseconds. You might find that this method is rarely used. The
getNextTimeout method indicates the next time a recurring Timer will time out, as
a java.util.Date instead of a long time offset. Similar to the getTimeRemaining
method, this method is useful in the rare instance that you might need to deter-
mine whether to cancel a Timer based on when it will fire next.

 The getHandle method returns a Timer handle. javax.ejb.TimerHandle is a
serialized object that you can store and then use to obtain information about the
Timer (by using the getTimer method available through TimerHandle). This is a
relatively obscure method that we’ll leave for you to explore on your own if you
want to. You have already seen the getInfo method in action. This method is
extremely useful in writing nontrivial timeout functions and accessing extra pro-
cessing information attached to the Timer by the bean method creating the Timer.

 Let’s now discuss situations where EJB Timers are an appropriate fit.

EJB timers and transactions

EJB Timers are transactional objects. If the transaction that a timer is triggered
under rolls back for some reason (e.g., as a result of a runtime exception in the
timeout method), the timer creation is undone. In addition, the timeout method
can be executed in a transactional context. You can specify a transactional
attribute for the timeout method—Required or RequiresNew—and the container
will start a transaction before invoking the timeout method. If the transaction
fails, the container will make sure the changes made by the failed method do not
take effect and will retry the timeout method.

We’ll talk about EJB transactions in much greater detail in the next chapter.

174 CHAPTER 5
Learning advanced EJB concepts
5.4.3 When to use EJB timers

Clearly, although EJB timers are relatively feature-rich, they are not intended to
go toe-to-toe against full-fledged scheduling solutions like Flux or Quartz. How-
ever, under some circumstances they are sufficient if not ideal. Like almost all
other technology choices, this decision comes down to weighing features against
needs for your specific situation and environment.

Merits of timers
Here are some of the merits of using EJB 3 timers:

■ Timers are part of the EJB specification. Hence, applications using EJB
timers will remain portable across containers instead of being locked into
the nonstandard APIs of job schedulers like Quartz.

■ Since the EJB timer service comes as a standard part of a Java EE applica-
tion server, using it incurs no additional cost in terms of time or money.
No extra installation or configuration is required as would be the case for
an external job scheduler, and you won’t need to worry about integration
and support.

■ The timer is a container-managed service. No separate thread pools or
user threads are required for it, as would be the case with an external
scheduler. For the same reasons, the EJB timer service is likely to have bet-
ter out-of-the-box performance than third-party products.

■ Transactions are fully supported with timers (see the sidebar titled “EJB
timers and transactions”), unlike external job schedulers, in which you may
need to do extra setup for supporting JTA.

■ By default, EJB timers are persisted and survive EJB lifecycles and con-
tainer restarts. The same cannot be said of all third-party schedulers.

Limitations for timers
The following are the primary limitations of EJB timers:

■ EJB timers are meant for long-running business processes and not real-
time applications where precision timing is absolutely critical. Commercial
schedulers may provide much better guarantees in terms of precision than
the EJB 3 timer service.

■ EJB timers lack support for extremely flexible cron-type timers, blackout
dates, workflow modeling for jobs, and so on. These advanced features are
commonly available with external job schedulers.

Summary 175
■ There is no robust GUI admin tool to create, manage, and monitor EJB 3
timers. Such tools are generally available for third-party job schedulers.

This concludes our analysis of EJB 3 timers and marks the end of this chapter. In
general, you should attempt to use EJB 3 timers first. Resort to third-party sched-
ulers only if you run into serious limitations that cannot be easily overcome.

 Although robust schedulers are a compelling idea, in general they are com-
plex and should not be used frivolously. However, there are many complex,
scheduling-intensive applications where robust schedulers are a must, especially
in industries like banking and finance.

5.5 Summary

In this chapter, we covered a few advanced concepts common to all EJB types:

■ The EJB object acts as a proxy between clients and container where you can
use EJBContext to access container runtime information and services.

■ Interceptors are lightweight AOP features in EJB 3 for dealing with cross-
cutting concerns such as logging and auditing. You can use interceptors at
the EJB module level, class level, or method level.

■ EJB timers provide a lightweight scheduling service that you can use in
your applications.

You’ll find these advanced features useful in moderate-sized, real-life applications.
 The only two features common to session and MDBs that we did not cover in

this chapter are transaction and security management. You’ll learn more about
these features in the next chapter.

Transactions
and security
This chapter covers
■ Overview of transaction concepts
■ Container and bean-managed transactions
■ Security concepts
■ Declarative and programmatic security
176

Understanding transactions 177
Transaction and security management are important aspects of any serious enter-
prise development effort. By the same token, both are system-level concerns
rather than true business application development concerns, which is why they
often become an afterthought. In the worst-case scenario, these critical aspects of
application development are overlooked altogether. Given these facts, you’ll be
glad to know that EJB 3 provides functionality in both realms that is robust
enough for the most demanding environments, and yet simple enough for those
who prefer to focus on developing business logic. Although we have briefly men-
tioned these features in previous chapters, we haven’t dealt with them in any
detail until this chapter.

 The first part of this chapter is devoted to exploring the rich transaction man-
agement features of EJB 3. We’ll briefly discuss transactions and explore con-
tainer-managed and bean-managed transactions support in EJB. The remainder
of the chapter deals with EJB security features, and you’ll learn about declarative
and programmatic security support.

6.1 Understanding transactions

We engage in transactions almost every day—when withdrawing money from an
ATM or paying a phone bill, for example. Transactions in computing are a closely
related concept but differ slightly and are a little harder to define. In the most
basic terms, a transaction is a grouping of tasks that must be processed as an insep-
arable unit. This means every task that is part of the transaction must succeed in
order for the transaction to succeed. If any of the tasks fail, the transaction fails as
well. You can think of a transaction as a three-legged wooden stool. All three legs
must hold for the stool to stand. If any of them break, the stool collapses. In addi-
tion to this all-or-nothing value proposition, transactions must guarantee a degree
of reliability and robustness. We will come back to what this last statement means
when we describe what are called the ACID (atomicity, consistency, isolation, and
durability) properties of transactions. A successful transaction is committed, mean-
ing its results are made permanent, whereas a failed transaction is rolled back, as if
it never happened.

 To explore transaction concepts further, let’s take a look at a sample problem
in the ActionBazaar application. Before exploring transaction support in EJB,
we’ll briefly discuss ACID properties, transaction management concepts such as
resource and transaction managers, and two-phase commits.

178 CHAPTER 6
Transactions and security
6.1.1 A transactional solution in ActionBazaar

Some items on ActionBazaar have a “Snag-It” ordering option. This option
allows a user to purchase an item on bid at a set price before anyone else bids on
it. As soon as the first bid is placed on an item, the Snag-It option disappears.
This feature has become popular because neither the buyer nor the seller needs
to wait for bidding to finish as long as they both like the initial Snag-It price tag.
As soon as the user clicks the Snag-It button, the ActionBazaar application makes
sure no bids have been placed on the item, validates the buyer’s credit card,
charges the buyer, and removes the item from bidding. Imagine what would hap-
pen if one of these four actions failed due to a system error, but the rest of the
actions were allowed to succeed. For example, assume that we validate and charge
the customer’s credit card successfully. However, the order itself fails because the
operation to remove the item from bid fails due to a sudden network outage and
the user receives an error message. Since the credit card charge was already final-
ized, the customer is billed for a failed order! To make matters worse, the item
remains available for bidding. Another user can put a bid on the item before any-
one can fix the problem, creating an interesting situation for the poor customer
support folks to sort out. We can see this situation in figure 6.1.

 While creating ad hoc application logic to automatically credit the customer
back in case of an error is a Band-Aid for the problem, transactions are ideally
suited to handle such situations. A transaction covering all of the ordering steps
ensures that no actual ordering operation changes are finalized until the entire
operation finishes successfully. If any errors occur, all pending data changes,
including the credit card charge, are aborted. On the other hand, if all the oper-
ations succeed the transaction is marked successful and all ordering changes are
made permanent.

 Although this all-or-nothing value proposition is a central theme of transac-
tional systems, it is not the only attribute. A number of properties apply to trans-
actional systems; we’ll discuss them next.

6.1.2 ACID properties

The curious acronym ACID stands for atomicity, consistency, isolation, and durability.
All transactional systems are said to exhibit these four characteristics. Let’s take a
look at each of these characteristics.

Understanding transactions 179
Atomicity
As we’ve seen in our ActionBazaar scenario, transactions are atomic in nature;
they either commit or roll back together. In coding terms, you band together
an arbitrary body of code under the umbrella of a transaction. If something
unexpected and irrecoverable happens during the execution of the code, the
result of the attempted execution is completely undone so that it has no effect
on the system. Otherwise, the results of a successful execution are allowed to
become permanent.

Consistency
This is the trickiest of the four properties because it involves more than writing
code. This is the most common way of describing the consistency property: if the
system is in a state consistent with the business rules before a transaction begins,

Figure 6.1 Because the ordering process is not covered by a transaction, ActionBazaar reaches a
strange state when a Snag-It order fails halfway through. The customer is essentially billed for a
failed order.

180 CHAPTER 6
Transactions and security
it must remain in a consistent state after the transaction is rolled back or commit-
ted. A corollary to this statement is that the system need not be in a consistent state
during the transaction. Think of a transaction as a sandbox or sanctuary—you are
temporarily protected from the rules while inside it. As long as you make sure all
the business rules in the system remain intact after the last line of code in a trans-
action is executed, it doesn’t matter if you are in an inconsistent state at an arbi-
trary point in the transaction. Using our example, it is fine if we charge the
customer even though we really haven’t removed the item from bidding yet,
because the results of our code will have no impact on the system until and unless
our transaction finishes successfully. In the real world, setting up rules and con-
straints in the database (such as primary keys, foreign key relationships, and field
constraints) ensures consistency so that transactions encountering error condi-
tions are rejected and the system is returned to its pretransactional state.

Isolation
If you understand thread synchronization or database locking, you already know
what isolation is. The isolation property makes sure transactions do not step on
one another’s toes. Essentially, the transaction manager (a concept we’ll define
shortly) ensures that nobody touches your data while you are in the transaction.
This concept is especially important in concurrent systems where any number of
processes can be attempting to manipulate the same data at any given time. Usu-
ally isolation is guaranteed by using low-level database locks hidden away from
the developer. The transaction manager places some kind of lock on the data
accessed by a transaction so that no other processes can modify them until the
transaction is finished.

 In terms of our example, the transaction isolation property is what guaran-
tees that no bids can be placed on the item while we are in the middle of execut-
ing the Snag-It ordering steps since our “snagged” item record would be locked
in the database.

Durability
The last of the four ACID properties is durability. Transaction durability means
that a transaction, once committed, is guaranteed to become permanent. This is
usually implemented by using transaction logs in the database server. (The appli-
cation server can also maintain a transaction log. However, we’ll ignore this fact
for the time being.) Essentially, the database keeps a running record of all data
changes made by a transaction before it commits. This means that even if a sud-
den server error occurs during a commit, once the database recovers from the

Understanding transactions 181
error changes can be reverted to be properly reapplied (think of untangling a cas-
sette tape and rewinding it to where the tape started tangling). Changes made
during the transaction are applied again by executing the appropriate entries
from the transaction log (replaying the rewound tape to finish). This property is
the muscle behind transactions ensuring that commit really does mean commit.

 In the next section, we’ll examine the internals of transaction management
and define such concepts as distributed transactions, transaction managers, and
resource managers.

6.1.3 Transaction management internals

As you have probably already guessed, application servers and enterprise resources
like the database management system do most of the heavy lifting in transaction
management. Ultimately, everything that you do in code translates into low-level
database operations such as locking and unlocking rows or tables in a database,

Isolation levels

The concept of isolation as it pertains to databases is not as cut and dried as we
just suggested. As you might imagine, making transactions wait for one another’s
data locks limits the number of concurrent transactions that can run on a system.
However, different isolation strategies allow for a balance between concurrency
and locking, primarily by sacrificing lock acquisition strictness. Each isolation strat-
egy corresponds to an isolation level. Here are the four most common isolation lev-
els, from the highest level of concurrency to the lowest:

■ Read uncommitted—At this isolation level, your transaction can read the
uncommitted data of other transactions, also known as a “dirty” read. You
should not use this level in a multithreaded environment.

■ Read committed—Your transaction will never read uncommitted changes
from another transaction. This is the default level for most databases.

■ Repeatable read—The transaction is guaranteed to get the same data on
multiple reads of the same rows until the transaction ends.

■ Serializable—This is the highest isolation level and guarantees that none of
the tables you touch will change during the transaction, including adding
new rows. This isolation level is very likely to cause performance bottlenecks.

A good rule of thumb is to use the highest isolation level that yields an acceptable
performance level. Generally, you do not directly control isolation levels from
EJBs—the isolation level is set at the database resource level instead.

182 CHAPTER 6
Transactions and security
beginning a transaction log, committing a transaction by applying log entries, or
rolling back a transaction by abandoning the transaction log. In enterprise trans-
action management, the component that takes care of transactions for a particular
resource is called a resource manager. Remember that a resource need not just be a data-
base like Oracle. It could be a message server like IBM MQSeries or an enterprise
information system (EIS) like PeopleSoft CRM.

 Most enterprise applications involve only a single resource. A transaction that
uses a single resource is called a local transaction. However, many enterprise appli-
cations use more than one resource. If you look carefully at our Snag-It order
example, you’ll see that it most definitely involves more than one database: the
credit card provider’s database used to charge the customer, as well as the Action-
Bazaar database to manage bids, items, and ordering. It is fairly apparent that for
sane business application development some kind of abstraction is needed to
manage multiple resources in a single transaction. This is exactly what the trans-
action manager is—a component that, under the hood, coordinates a transaction
over multiple distributed resources.

 From an application’s view, the transaction manager is the application server
or some other external component that provides simplified transaction services.
As figure 6.2 shows, the application program (ActionBazaar) asks the transaction

Figure 6.2 Distributed transaction management. The application program delegates transaction
operations to the transaction manager, which coordinates between resource managers.

Understanding transactions 183
manager to start, commit, and roll back transactions. The transaction manager
coordinates these requests among multiple resource managers, and each transac-
tion phase may translate to numerous low-level resource commands issued by the
resource managers.

 Next, we’ll discuss how transactions are managed across multiple resources. In
EJB, this is done with two-phase commits.

6.1.4 Two-phase commit

How transactions are managed in a distributed environment involving more than
one resource is extremely interesting. The protocol commonly used to achieve
this is called the two-phase commit.

 Imagine what would happen if no special precautions were taken while attempt-
ing to commit a transaction involving more than one database. Suppose that the
first database commits successfully, but the second fails. It would be difficult to go
back and “undo” the finalized changes to the first database. To avoid this problem,
the two-phase commit protocol performs an additional preparatory step before
the final commit. During this step, each resource manager involved is asked if the
current transaction can be successfully committed. If any of the resource managers
indicate that the transaction cannot be committed if attempted, the entire trans-
action is abandoned (rolled back). Otherwise, the transaction is allowed to proceed
and all resource managers are asked to commit. As table 6.1 shows, only distrib-
uted transactions use the two-phase commit protocol.

 We have just reviewed how transactions work and what makes them reli-
able; now let’s take a look at how EJB provides these services for the applica-
tion developer.

Table 6.1 A transaction may be either local or global. A local transaction involves one resource and
a global transaction involves multiple resources.

Property Local Global Transaction

Number of resources One Multiple

Coordinator Resource Manager Transaction manager

Commit protocol Single-Phase Two-phase

184 CHAPTER 6
Transactions and security
6.1.5 Transaction management in EJB

Transaction management support in EJB is provided through the Java Transac-
tion API (JTA). JTA is a small, high-level API exposing functionality at the distrib-
uted transaction manager layer, typically provided by the application server. As a
matter of fact, for the most part, as an EJB developer you will probably need to
know about only one JTA interface: javax.transaction.UserTransaction. This is
because the container takes care of most transaction management details behind
the scenes. As an EJB developer, you simply tell the container where the transac-
tion begins and ends (called transaction demarcation or establishing transaction
boundaries) and whether to roll back or commit.

 There are two ways of using transactions in EJB. Both provide abstractions
over JTA, one to a lesser and one to a greater degree. The first is to declaratively
manage transactions through container-managed transaction (CMT); this can be
done through annotations or the deployment descriptor. On the other hand,
bean-managed transaction (BMT) requires you to explicitly manage transactions
programmatically. It is important to note that in this version of EJB, only session
beans and MDBs support BMT and CMT. The EJB 3 Java Persistence API is not
directly dependent on either CMT or BMT but can transparently plug into any
transactional environment while used inside a Java EE container. We’ll cover this
functionality when we discuss persistence in upcoming chapters. In this chapter,
we’ll explore CMT and BMT as they pertain to the two bean types we discussed in
chapter 3 (session beans) and chapter 4 (MDBs).

The XA protocol

To coordinate the two-phase commit across many different kinds of resources, the
transaction manager and each of the resource managers must “talk the same
tongue,” or use a common protocol. In the absence of such a protocol, imagine
how sophisticated even a reasonably effective transaction manager would have to
be. The transaction manager would have to be developed with the proprietary com-
munication protocol of every supported resource.

The most popular distributed transaction protocol used today is the XA protocol,
which was developed by the X/Open group. Java EE uses this protocol for imple-
menting distributed transaction services.

Container-managed transactions 185
Container-managed transactions are by far the simplest and most flexible way of
managing EJB transactions. We’ll take a look at them first.

6.2 Container-managed transactions

In a CMT, the container starts, commits, and rolls back a transaction on our
behalf. Transaction boundaries in declarative transactions are always marked by
the start and end of EJB business methods. More precisely, the container starts a
JTA transaction before a method is invoked, invokes the method, and depending
on what happened during the method call, either commits or rolls back the man-
aged transaction. All we have to do is tell the container how to manage the trans-
action by using either annotations or deployment descriptors and ask it to roll
back the transaction when needed. By default, the container assumes that you will
be using CMT on all business methods. This section describes CMT in action.
We’ll build the Snag-It ordering system using CMT and you’ll learn how to use the
@TransactionManagement and @TransactionAttribute annotations. Also, you’ll
learn both how to roll back a transaction using methods of EJBContext and when
an application exception is raised.

6.2.1 Snag-It ordering using CMT

Listing 6.1 implements the Snag-It ordering scenario as the method of a stateless
session bean using CMT. This is fine since the user can order only one item at a
time using the Snag-It feature and no state information has to be saved between
calls to the OrderManagerBean. The bean first checks to see if there are any bids on
the item, and if there are none, it validates the customer’s credit card, charges the
customer, and removes the item from bidding. To keep the code sample as simple

JTS vs. JTA

These like-sounding acronyms are both related to Java EE transaction manage-
ment. JTA defines application transaction services as well as the interactions
among the application server, the transaction manager, and resource managers.
Java Transaction Service (JTS) deals with how a transaction manager is imple-
mented. A JTS transaction manager supports JTA as its high-level interface and
implements the Java mapping of the OMG Object Transaction Service (OTS) spec-
ification as its low-level interface.

As an EJB developer, there really is no need for you to deal with JTS.

186 CHAPTER 6
Transactions and security
as possible, we’ve omitted all details that are not directly necessary for our expla-
nation of CMT.

@Stateless
@TransactionManagement(TransactionManagementType.CONTAINER)
public class OrderManagerBean {
 @Resource
 private SessionContext context;
...
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void placeSnagItOrder(Item item, Customer customer){
 try {
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
 } catch (CreditValidationException cve) {
 context.setRollbackOnly();
 } catch (CreditProcessingException cpe){
 context.setRollbackOnly();
 } catch (DatabaseException de) {
 context.setRollbackOnly();
 }
 }
}

First we tell the container that it should manage the transactions for this bean b.
If we do not specify the @TransactionManagement annotation or the transaction-
type element in the deployment descriptor, the container assumes that we intend
to use a CMT. The EJB context is injected into the bean C. A transaction is
required for the placeSnagItOrder method D and one should be started by the
container when needed. If an exception stops us from completing the Snag-It
order, we ask the container to roll back the transaction using the injected EJB-
Context object’s setRollbackOnly method E.

 Let’s take a closer look at the TransactionManagement annotation b.

6.2.2 The @TransactionManagement annotation

The @TransactionManagement annotation specifies whether CMT or BMT is to be
used for a particular bean. In our case, we specify the value TransactionManage-
mentType.CONTAINER—meaning the container should manage transactions on the

Listing 6.1 Implementing Snag-It using CMT

 B Uses CMT
Injects EJB context C

 D
Defines Transaction

attribute for method

Rolls back on
exception

 E

Container-managed transactions 187
bean’s behalf. If we wanted to manage transactions programmatically instead,
we’d specify TransactionManagementType.BEAN for the TransactionManagement
value. Notably, although we have explicitly included the annotation in our exam-
ple, if we leave it out the container will assume CMT anyway. When we explore BMT,
it will be more obvious why a CMT is the default and most commonly used choice.

 Next, we’ll look at the second transaction-related annotation in listing 6.1:
@TransactionAttribute.

6.2.3 The @TransactionAttribute annotation

Although the container does most of the heavy lifting in CMT, you still need to tell
the container how it should manage transactions. To understand what this means,
consider the fact that the transaction which wraps around your bean’s method
could be started by the container specifically when calling your method, or it
could be inherited from a client calling your method (otherwise called joining a
transaction). Let’s explore this idea a little more using our example. The place-
SnagItOrder method in listing 6.1 calls a number of methods such as bidsExist-
ing, validateCredit, chargeCustomer, and removeItemFromBidding. As figure 6.3
shows, these method calls could simply be forwarded to other session bean invo-
cations, such as BidManagerBean.bidsExist, BillingManagerBean.validateCredit,
BillingManagerBean.chargeCustomer, and ItemManagerBean.removeFromBidding.

 We already know that the placeSnagItOrder method is managed by a transac-
tion. What if all the session beans we are invoking are also managed by CMT?
Should the container reuse the transaction created for our method to invoke the
other methods? Should our existing transaction be independent of the other ses-
sion beans’ transactions? What happens if any of the methods cannot support
transactions? The @TransactionAttribute annotation tells the container how to
handle all these situations. The annotation can be applied either to individual
CMT bean methods or to the entire bean. If the annotation is applied at the bean

Figure 6.3 The method invocations from the CMT session bean is actually forwarded to other session
beans that may be using various transaction attributes.

188 CHAPTER 6
Transactions and security
level, all business methods in the bean inherit the transaction attribute value spec-
ified by it. In listing 6.1, we specify that the value of the @TransactionAttribute
annotation for the placeSnagItOrder method should be TransactionAttribute-
Type.REQUIRED. There are six choices for this annotation defined by the enumer-
ated type TransactionAttributeType. Table 6.2 summarizes their behavior.

Let’s take a look at what each value means and where each is applicable.

REQUIRED
REQUIRED is the default and most commonly applicable transaction attribute value.
This value specifies that the EJB method must always be invoked within a transac-
tion. If the method is invoked from a nontransactional client, the container will
start a transaction before the method is called and finish it when the method
returns. On the other hand, if the caller invokes the method from a transactional
context, the method will join the existing transaction. In case of transactions

Table 6.2 Effects of transaction attributes on EJB methods

Transaction Attribute
Caller Transaction

Exists?
Effect

REQUIRED No Container creates a new transaction.

Yes Method joins the caller’s transaction.

REQUIRES_NEW No Container creates a new transaction.

Yes Container creates a new transaction and the caller’s
transaction is suspended.

SUPPORTS No No transaction is used.

Yes Method joins the caller’s transaction.

MANDATORY No javax.ejb.EJBTransactionRequired-
Exception is thrown.

Yes Method joins the caller’s transaction.

NOT_SUPPORTED No No transaction is used.

Yes The caller’s transaction is suspended and the method is
called without a transaction.

NEVER No No transaction is used.

Yes javax.ejb.EJBException is thrown.

Container-managed transactions 189
propagated from the client, if our method indicates that the transaction should be
rolled back, the container will not only roll back the whole transaction but will also
throw a javax.transaction.RollbackException back to the client. This lets the cli-
ent know that the transaction it started has been rolled back by another method.
Our placeSnagItOrder method is most likely invoked from a nontransactional web
tier. Hence, the REQUIRED value in the @TransactionAttribute annotation will
cause the container to create a brand-new transaction for us when the method is
executed. If all the other session bean methods we invoke from our bean are also
marked REQUIRED, when we invoke them they will join the transaction created for
us. This is just fine, since we want the entire ordering action to be covered by a sin-
gle “umbrella” transaction. In general, you should use the REQUIRED value if you
are modifying any data in your EJB method and you aren’t sure whether the client
will start a transaction of its own before calling your method.

REQUIRES_NEW
The REQUIRES_NEW value indicates that the container must always create a new
transaction to invoke the EJB method. If the client already has a transaction, it is
temporarily suspended until our method returns. This means that the success or
failure of our new transaction has no effect on the existing client transaction.
From the client’s perspective:

1 Its transaction is paused.

2 Our method is invoked.

3 Our method either commits or rolls back its own transaction.

4 The client’s transaction is resumed as soon as our method returns.

The REQUIRES_NEW attribute has limited uses in the real world. You should use it if
you need a transaction but don’t want a rollback to affect the client. Also use this
value when you don’t want the client’s rollback to affect you. Logging is a great
example. Even if the parent transaction rolls back, you want to be able to record
the failure in your logs. On the other hand, failing to log a minor debugging mes-
sage should not roll back your entire transaction and the problem should be
localized to the logging component.

SUPPORTS
The SUPPORTS attribute essentially means the EJB method will inherit whatever the
transactional environment of the caller is. If the caller does not have a transaction,
the EJB method will be called without a transaction. On the other hand, if the

190 CHAPTER 6
Transactions and security
caller is transactional, the EJB method will join the existing transaction and won’t
cause the exiting transaction to be suspended. This approach avoids any needless
overhead in suspending or resuming the client transaction. The SUPPORTS attribute
is typically useful for methods that perform read-only operations such as retriev-
ing a record from a database table. In our Snag-It example, the session bean
method for checking whether a bid exists on the item about to be ordered can
probably have a SUPPORTS attribute since it modifies no data.

MANDATORY
MANDATORY really means requires existing—that is, the caller must have a transaction
before calling an EJB method and the container should never create a transaction
on behalf of the client. If the EJB method using the MANDATORY attribute is
invoked from a nontransactional client, the container throws an EJBTransaction-
RequiredException. This value is also very rarely used. You should use this value
if you want to make sure the client fails if you request a rollback. We can make a
reasonable case to require a MANDATORY transaction on a session bean method that
charges the customer. After all, we want to make sure nothing is accidentally
given away for free if the client neglects to detect a failure in the method charg-
ing the customer, and the invoker’s transaction can be forcibly rolled back by us
when necessary.

NOT_SUPPORTED
If we assign NOT_SUPPORTED as the transaction attribute, the EJB method cannot be
invoked in a transactional context. If a caller with an associated transaction invokes
the method, the container will suspend the transaction, invoke the method, and
then resume the transaction when the method returns. This attribute is typically
useful only for an MDB supporting a JMS provider in nontransactional, auto-
acknowledge mode. To recap from chapter 5, in such cases the message is acknowl-
edged as soon as it is successfully delivered and the MDB has no capability or
apparent need to support rolling back message delivery.

NEVER
In a CMT, NEVER really means never. In other words, this attribute means that the
EJB method can never be invoked from a transactional client. If such an attempt
is made, a javax.ejb.EJBException is thrown. This is probably the least-used
transaction attribute value. It could be used if your method is changing a non-
transactional resource (such as a text file) and you want to make sure the client
knows about the nontransactional nature of the method.

Container-managed transactions 191
Transaction attributes and MDBs
As we mentioned in chapter 4, MDBs don’t support all of the six transaction
attributes we just discussed. Although you can apply any of the attributes to a state-
ful or stateless session bean, MDBs only support the REQUIRED and NOT_SUPPORTED
attributes. This relates to the fact that no client ever invokes MDB methods
directly; it is the container that invokes MDB methods when it receives an incom-
ing message. Since there is no existing client transaction to suspend or join,
REQUIRES_NEW, SUPPORTS, and MANDATORY make no sense (refer to table 6.2). NEVER
makes no sense either, since we don’t need that strong a guard against the con-
tainer. In effect, depending on message acknowledgment on method return, we
need only tell the container of two conditions: we need a transaction (REQUIRED)
that encapsulates the message listener method, or we do not need transaction sup-
port (NOT_SUPPORTED).

 So far, we’ve taken a detailed look at how transactions are created and man-
aged by the container. We know that the successful return of a CMT method
causes the container to commit a method or at least not roll it back if it is a joined
transaction. We’ve explained how a CMT method can mark an available transac-
tion as rolled back, but we’ve not yet discussed the actual mechanics. Let’s dig
into the underpinnings next.

6.2.4 Marking a CMT for rollback
If the appropriate business conditions arise, a CMT method can ask the container
to roll back a transaction as soon as possible. The important thing to note here is
that the transaction is not rolled back immediately, but a flag is set for the con-
tainer to do the actual rollback when it is time to end the transaction. Let’s go
back to a snippet of our scenario in listing 6.1 to see exactly how this is done:

@Resource
private SessionContext context;
...
public void placeSnagItOrder(Item item, Customer customer){
 try {
 ...
 validateCredit(customer);
 ...
 } catch (CreditValidationException cve) {
 context.setRollbackOnly();
 ...

As this snippet shows, the setRollbackOnly method of the injected javax.ejb.
EJBContext marks the transaction to be rolled back when we are unable to validate
the user’s credit card, a CreditValidationException is thrown, and we cannot

192 CHAPTER 6
Transactions and security
allow the order to complete. If you go back and look at the complete listing, we
do the same thing to head off other serious problems, such as the database server
goes down or if we have trouble charging the credit card.

 To keep things simple, assume that the container starts a new transaction
because the placeSnagItOrder method is invoked from a nontransactional web
tier. This means that after the method returns, the container will check to see if it
can commit the transaction. Since we set the rollback flag for the underlying
transaction through the setRollbackOnly method, the container will roll back
instead. Because the EJB context in this case is really a proxy to the underlying
transaction, you should never call the setRollbackOnly method unless you are
sure there is an underlying transaction to flag. Typically, you can only be sure of
this fact if your method has a REQUIRED, REQUIRED_NEW, or MANDATORY transaction
attribute. If your method is not invoked in a transaction context, calling this
method will throw java.lang.IllegalStateException.

 Another EJBContext method you should know about is getRollbackOnly. The
method returns a boolean telling you whether the underlying CMT transaction
has already been marked for rollback.

NOTE The setRollbackOnly and getRollbackOnly methods can only be
invoked in an EJB using CMT with these transaction attributes: REQUIRED,
REQUIRES_NEW, or MANDATORY. Otherwise, the container will throw an
IllegalStateException.

If you suspect that this method is used very infrequently, you are right. There is
one case in particular when it is useful to check the status of the transaction you
are participating in: before engaging in a very long, resource-intense operation.
After all, why expend all that effort for something that is already going to be
rolled back? For example, let’s assume that ActionBazaar checks a potential
Power Seller’s creditworthiness before approving an account. Since this calcula-
tion involves a large set of data collection and business intelligence algorithms
that potentially involve third parties, it is undertaken only if the current transac-
tion has not already been rolled back. The code could look like this:

@Resource
private SessionContext context;
... checkCreditWorthiness(Seller seller) { ...
 if (!context.getRollbackOnly()) {
 DataSet data = getDataFromCreditBureauRobberBarons(seller);
 runLongAndConvolutedBusinessAnalysis(seller, data);
 ...
 } ...

Container-managed transactions 193
If the model of catching exceptions just to call the setRollbackOnly method
seems a little cumbersome, you’re in luck. EJB 3 makes the job of translating
exceptions into transaction rollback almost transparent using the Application-
Exception paradigm. We’ll examine the role of exception handling in transaction
management next.

6.2.5 Transaction and exception handling

The subject of transactions and exception handling in EJB 3 is intricate and often
confusing. However, properly used, exceptions used to manage transactions can
be extremely elegant and intuitive.

 To see how exceptions and transactions work together, let’s revisit the exception-
handling code in the placeSnagItOrder method:

try {
 // Ordering code throwing exceptions.
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
} catch (CreditValidationException cve) {
 context.setRollbackOnly();
} catch (CreditProcessingException cpe){
 context.setRollbackOnly();
} catch (DatabaseException de) {
 context.setRollbackOnly();
}

As you can see, the CreditValidationException, CreditProcessingException, and
DatabaseException exceptions being thrown are essentially the equivalent of the
managed transaction being rolled back. To avoid this all-too-common mechani-
cal code, EJB 3 introduces the idea of controlling transactional outcome through
the @javax.ejb.ApplicationException annotation. The best way to see how this
works is through an example. Listing 6.2 reimplements the placeSnagItOrder
method using the @ApplicationException mechanism to roll back CMTs.

public void placeSnagItOrder(Item item, Customer customer)
 throws CreditValidationException,
 CreditProcessingException, DatabaseException {
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);

Listing 6.2 Using @ApplicationException to roll back CMTs

Declares
exceptions on
throws clause

 B

Throws exceptions
from method body

 C

194 CHAPTER 6
Transactions and security
 removeItemFromBidding(item);
 }
}
...
@ApplicationException(rollback=true)
public class CreditValidationException extends Exception {
...
@ApplicationException(rollback=true)
public class CreditProcessingException extends Exception {
...
@ApplicationException(rollback=false)
public class DatabaseException extends
 RuntimeException {
...

The first change from listing 6.1 you’ll notice is the fact that the try-catch blocks
have disappeared and have been replaced by a throws clause in the method dec-
laration b. However, it’s a good idea for you to gracefully handle the application
exceptions in the client and generate appropriate error messages. The various
nested method invocations still throw the three exceptions listed in the throws
clause C. The most important thing to note, however, is the three @Application-
Exception specifications on the custom exceptions. The @ApplicationException
annotation D identifies a Java checked or unchecked exception as an applica-
tion exception.

NOTE In EJB, an application exception is an exception that the client is
expected to handle. When thrown, such exceptions are passed directly to
the method invoker. By default, all checked exceptions except for
java.rmi.RemoteException are assumed to be application exceptions.
On the other hand, all exceptions that inherit from either java.rmi.
RemoteExceptions or java.lang.RuntimeException are assumed to
be system exceptions (as you might already know, all exceptions that inherit
from java.lang.RuntimeException are unchecked). In EJB, it is not
assumed that system exceptions are expected by the client. When
encountered, such exceptions are not passed to the client as is but are
wrapped in a javax.ejb.EJBException instead.

In listing 6.2, the @ApplicationException annotations on CreditValidation-
Exception and CreditProcessingException do not change this default behavior
since both would have been assumed to be application exceptions anyway. How-
ever, by default, DatabaseException E would have been assumed to be a system

Throws exceptions
from method body C

 D Specifies
Application-
Exception

Marks RuntimeException
as ApplicationException

 E

Container-managed transactions 195
exception. Applying the @ApplicationException annotation to it causes it to be
treated as an application exception instead.

 More than the @ApplicationException annotation itself, the rollback ele-
ment changes default behavior in profound ways. By default, application excep-
tions do not cause an automatic CMT rollback since the rollback element is
defaulted to false. However, setting the element to true tells the container
that it should roll back the transaction before the exception is passed on to the
client. In listing 6.2, this means that whenever a CreditValidationException,
CreditProcessingException, or DatabaseException is thrown, the transaction
will be rolled back and the client will receive an exception indicating the cause
for failure, accomplishing exactly the same thing as the more verbose code in
listing 6.1 aims to do. If the container detects a system exception, such as an

Session synchronization

Although using CMT doesn’t give you full control over when a transaction is started,
committed, or rolled back, you can be notified about the transaction’s lifecycle
events. This is done simply by having your CMT bean implement the javax.
ejb.SessionSynchronization interface. This interface defines three methods:

■ void afterBegin()—Called right after the container creates a new trans-
action and before the business method is invoked.

■ void beforeCompletion()—Invoked after a business method returns but
right before the container ends a transaction.

■ void afterCompletion(boolean committed)—Called after the transac-
tion finishes. The boolean committed flag indicates whether a method was
committed or rolled back.

Implementing this interface in a stateful session bean can be considered close to
having a poor man’s persistence mechanism, because data can be loaded into the
bean when the transaction starts and unloaded right before the transaction fin-
ishes, while the afterCompletion callback can be used to reset default values.
However, you can make a valid argument that since session beans are supposed
to model processes, if it makes sense to cache some data and synchronize with
the database as a natural part of a process, then this practice is just fine, if not
fairly elegant.

Note this facility doesn’t make much sense in a stateless session bean or MDB
where data should not be cached anyway; therefore, the interface is not supported
for those bean types.

196 CHAPTER 6
Transactions and security
ArrayIndexOutOfBounds or NullPointerException that you didn’t plan for, it will
still roll back the CMT. However, in such cases the container will also assume
that the bean is in inconsistent state and will destroy the instance. Because
unnecessarily destroying bean instances is costly, you should never deliberately
use system exceptions.

 Although the simplified code is very tempting, we recommend that you use
application exceptions for CMT rollback carefully. Using the setRollbackOnly
method, however verbose, removes the guesswork from automated transaction
management, especially for junior developers who might have a hard time under-
standing the intricacies of exception handling in EJB. However, don’t interpret this
to mean you should avoid using custom application exceptions in general. In fact,
we encourage the use of this powerful and intuitive errror-handling mechanism
widely used in the Java realm.

 As you can clearly see, CMT relieves you from all but the most unavoidable
details of EJB transaction management. However, for certain circumstances, CMT
may not give you the level of control you need. BMT gives you this additional con-
trol while still providing a powerful, high-level API, as you’ll see next.

6.3 Bean-managed transactions

The greatest strength of CMT is also its greatest weakness. Using CMT, you are
limited to having the transaction boundaries set at the beginning and end of
business methods and relying on the container to determine when a transaction
starts, commits, or rolls back. BMT, on the other hand, allows you to specify
exactly these details programmatically, using semantics similar to the JDBC trans-
action model with which you might already be familiar. However, even in this
case, the container helps you by actually creating the physical transaction as well
as taking care of a few low-level details. With BMT, you must be much more aware
of the underlying JTA transaction API, primarily the javax.transaction.User-
Transaction interface, which we’ll introduce shortly. But first, we’ll redevelop the
Snag-It ordering code in BMT so that we can use it in the next few sections. You’ll
learn more about the javax.transaction.UserTransaction interface and how to
use it. We’ll also discuss the pros and cons of using BMT over CMT.

6.3.1 Snag-It ordering using BMT

Listing 6.3 reimplements the code in listing 6.1 using BMT. It checks if there are
any bids on the item ordered, validates the user’s credit card, charges the customer,

Bean-managed transactions 197
and removes the item from bidding. Note that the import statements are omitted
and error handling trivialized to keep the code sample short.

@Stateless)
@TransactionManagement(TransactionManagementType.BEAN)
public class OrderManagerBean {
 @Resource
 private UserTransaction userTransaction;

 public void placeSnagItOrder(Item item, Customer customer){
 try {
 userTransaction.begin();
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
 userTransaction.commit();
 } catch (CreditValidationException cve) {
 userTransaction.rollback();
 } catch (CreditProcessingException cpe){
 userTransaction.rollback();
 } catch (DatabaseException de) {
 userTransaction.rollback();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Briefly scanning the code, you’ll note that the @TransactionManagement annota-
tion specifies the value TransactionManagementType.BEAN as opposed to Transac-
tionManagementType.CONTAINER, indicating that we are using BMT this time b.
The TransactionAttribute annotation is missing altogether since it is applicable
only for CMT. A UserTransaction, the JTA representation of a BMT, is injected C
and used explicitly to begin D, commit E, or roll back F a transaction. The
transaction boundary is much smaller than the entire method and includes
only calls that really need to be atomic. The sections that follow discuss the code
in greater detail, starting with getting a reference to the javax.transaction.
UserTransaction.

Listing 6.3 Implementing Snag-It using BMT

 B Uses BMT

Injects UserTransaction C

 D Starts transaction

Commits
transaction

 E

Rolls back
transaction on
exception

 F

198 CHAPTER 6
Transactions and security
6.3.2 Getting a UserTransaction

The UserTransaction interface encapsulates the basic functionality provided by
a Java EE transaction manager. JTA has a few other interfaces used under differ-
ent circumstances. We won’t cover them, as most of the time you’ll be dealing
with UserTransaction. (For full coverage of JTA, check out http://java.sun.com/
products/jta/.) As you might expect, the UserTransaction interface is too intri-
cate under the hood to be instantiated directly and must be obtained from the
container. In listing 6.3, we used the simplest way of getting a UserTransaction:
injecting it through the @Resource annotation. There are a couple of other ways
to do this: using JNDI lookup or through the EJBContext.

JNDI lookup
The application server binds the UserTransaction to the JNDI name java:comp/
UserTransaction. You can look it up directly using JNDI with this code:

Context context = new InitialContext();
UserTransaction userTransaction =
 (UserTransaction) context.lookup("java:comp/UserTransaction");
userTransaction.begin();
// Perform transacted tasks.
userTransaction.commit();

This method is typically used outside of EJBs—for example, if you need to use a
transaction in a helper or a nonmanaged class in the EJB or web tier where
dependency injection is not supported. If you find yourself in this situation, you
might want to think long and hard about moving the transactional code to an EJB
where you have access to greater abstractions.

EJBContext
You can also get a UserTransaction by invoking the getUserTransaction method
of the EJBContext. This approach is useful if you’re using a SessionContext or
MessageDrivenContext for some other purpose anyway, and a separate injection
just to get a transaction instance would be redundant. Note that you can only use
the getUserTransaction method if you’re using BMT. Calling this in a CMT envi-
ronment will cause the context to throw an IllegalStateException. The following
code shows the getUserTransaction method in action:

@Resource
private SessionContext context;
...
UserTransaction userTransaction = context.getUserTransaction();
userTransaction.begin();

Bean-managed transactions 199
// Perform transacted tasks.
userTransaction.commit();

On a related but relevant note, you cannot use the EJBContext getRollbackOnly
and setRollbackOnly methods in BMT, and the container will throw an Illegal-
StateException if accessed. Next, let’s see how the obtained UserTransaction
interface is actually used.

6.3.3 Using UserTransaction

You’ve already seen the UserTransaction interface’s most frequently used meth-
ods: begin, commit, and rollback. The UserTransaction interface has a few other
useful methods we should take a look at as well. The definition of the entire inter-
face looks like this:

public interface UserTransaction {
void begin() throws NotSupportedException, SystemException;
void commit() throws RollbackException,
HeuristicMixedException, HeuristicRollbackException, SecurityException,
 IllegalStateException, SystemException;

void rollback()
 throws IllegalStateException,
 SecurityException, SystemException;

void setRollbackOnly() throws IllegalStateException,
SystemException;

int getStatus() throws SystemException;
void setTransactionTimeout(int seconds) throws SystemException;
}

The begin method creates a new low-level transaction behind the scenes and
associates it with the current thread. You might be wondering what would hap-
pen if you called the begin method twice before calling rollback or commit. You
might think this is possible if you want to create a nested transaction, a para-
digm supported by some transactional systems. In reality, the second invocation
of begin would throw a NotSupportedException since Java EE doesn’t support
nested transactions. The commit and rollback methods, on the other hand, remove
the transaction attached to the current thread by using the begin method. While
commit sends a “success” signal to the underlying transaction manager, rollback
abandons the current transaction. The setRollbackOnly method on this interface
might be slightly counterintuitive as well. After all, why bother marking a trans-
action as rolled back when you can roll it back yourself?

200 CHAPTER 6
Transactions and security
 To understand why, consider the fact that we could call a CMT method from
our BMT bean that contains a lengthy calculation and checks the transactional
flag before proceeding (like our Power Seller credit validation example in
section 6.2.4). Since our BMT transaction would be propagated to the CMT
method, it might be programmatically simpler, especially in a long method, to
mark the transaction rolled back using the setRollbackOnly method instead of
writing an involved if-else block avoiding such conditions. The getStatus
method is a more robust version of getRollbackOnly in the CMT world. Instead
of returning a boolean, this method returns an integer-based status of the cur-
rent transactions, indicating a more fine-tuned set of states a transaction could
possibly be in. The javax.transaction.Status interface defines exactly what
these states are, and we list them in table 6.3.

 The setTransactionTimeout method specifies the time, in seconds, in which
a transaction must finish. The default transaction timeout value is set to differ-
ent values for different application servers. For example, JBoss has a default

Table 6.3 The possible values of the javax.transaction.Status interface. These are the status
values returned by the UserTransaction.getStatus method.

Status Description

STATUS_ACTIVE The associated transaction is in an active state.

STATUS_MARKED_ROLLBACK The associated transaction is marked for rollback, possibly due
to invocation of the setRollbackOnly method.

STATUS_PREPARED The associated transaction is in the prepared state because all
resources have agreed to commit (refer to the two-phase commit
discussion in section 6.1.4).

STATUS_COMMITTED The associated transaction has been committed.

STATUS_ROLLEDBACK The associated transaction has been rolled back.

STATUS_UNKNOWN The status for associated transaction is not known (very clever, don’t
you agree?).

STATUS_NO_TRANSACTION There is no associated transaction in the current thread.

STATUS_PREPARING The associated transaction is preparing to be committed and await-
ing response from subordinate resources (refer to the two-phase
commit discussion in section 6.1.4).

STATUS_COMMITTING The transaction is in the process of committing.

STATUS_ROLLING_BACK The transaction is in the process of rolling back.

Bean-managed transactions 201
transaction timeout value of 300 seconds whereas Oracle Application Server
10g has a default transaction timeout value of 30 seconds. You might want to
use this method if you’re using a very long-running transaction. Typically, it is
better to simply set the application server-wide defaults using vendor-specific
interfaces, however. At this point, you are probably wondering how to set a
transaction timeout when using CMT instead. This is only supported by con-
tainers using either an attribute in the vendor-specific deployment descriptor
or vendor-specific annotations.

 Comparing listings 6.1 and 6.3, you might ask if the additional complexity
and verbosity associated with BMT is really worth it. Let’s explore this issue in
detail next.

6.3.4 The pros and cons of BMT

CMT is the default transaction type for EJB transactions. In general, BMT should
be used sparingly because it is verbose, complex, and difficult to maintain. There
are some concrete reasons to use BMT, however. BMT transactions need not begin
and end in the confines of a single method call. If you are using a stateful session
bean and need to maintain a transaction across method calls, BMT is your only
option. Be warned, however, that this technique is complicated and error prone
and you might be better off rewriting your application rather than attempting
this. Can you spot a bug in listing 6.3? The last catch block did not roll back the
transaction as all the other catch blocks did. But even that is not enough; what if
the code throws an error (rather than an exception)? Whichever way you do it, it
is error prone and we recommend using CMT instead.

 Another argument for BMT is that you can fine-tune your transaction bound-
aries so that the data held by your code is isolated for the shortest time possible.
Our opinion is that this idea indulges in premature optimization, and again, you
are probably better off refactoring your methods to be smaller and more specific
anyway. Another drawback for BMT is the fact that it can never join an existing
transaction. Existing transactions are always suspended when calling a BMT
method, significantly limiting flexible component reuse.

 This wraps up our discussion of EJB transaction management. It is now
time to turn our attention to another critical aspect of enterprise Java develop-
ment: security.

202 CHAPTER 6
Transactions and security
6.4 Exploring EJB security

Securing enterprise data has always been a primary application development
concern. This is especially true today in the age of sophisticated cyber-world
hackers, phishers, and identity/data thieves. Consequently, security is a major
concern in developing robust Java EE solutions. EJB has a security model that is
elegant, flexible, and portable across heterogeneous systems.

 In the remainder of this chapter, we’ll explore some basic security concepts
such as authentication and authorization, users, and groups, and we’ll investigate
the Java EE/EJB security framework. We’ll also take a look at both declarative and
programmatic security in EJB 3.

 Let’s start with two of the most basic ideas in security: authentication and
authorization.

6.4.1 Authentication vs. authorization
Securing an application involves two primary functions: authentication and
authorization. Authentication must be done before authorization can be per-
formed, but as you’ll see, both are necessary aspects of application security. Let’s
explore both of these concepts.

Authentication
Authentication is the process of verifying user identity. By authenticating your-
self, you prove that you are who you say you are. In the real world, this is usually
accomplished through visual inspection/identity cards, signature/handwriting,
fingerprint checks, and even DNA tests. In the computer world, the most com-
mon method of authentication is by checking username and password. All secu-
rity is meaningless if someone can log onto a system with a false identity.

Authorization
Authorization is the process of determining whether a user has access to a partic-
ular resource or task, and it comes into play once a user is authenticated. In an
open system, an authenticated user can access any resource. In a realistic security
environment, this all-or-nothing approach would be highly ineffective. There-
fore, most systems must restrict access to resources based on user identity.
Although there might be some resources in a system that are accessible to all,
most resources should be accessed only by a limited group of people.

 Both authentication and authorization, but especially authorization, are closely
tied to other security concepts, namely users, groups, and roles, which we’ll look
at next.

Exploring EJB security 203
6.4.2 Users, groups, and roles

To perform efficient and maintainable authorization, it is best if you can organize
users into some kind of grouping. Otherwise, each resource must have an associ-
ated list of all the users that can access it. In a nontrivial system, this would easily
become an administrator’s nightmare. To avoid this problem, users are organized
into groups and groups as a whole are assigned access to resources, making the
access list for an individual resource much more manageable.

 The concept of role is closely related to the concept of group, but is a bit tricky to
understand. For an EJB application, roles are much more critical than users and
groups. To understand the distinction, consider the fact that you might not be
building an in-house solution but a packaged Java EE application. Consequently,
you might not know the exact operational environment your application will be
deployed in once it is purchased by the customer. As a result, it’s impossible for
you to code for the specific group names a customer’s system administrator will
choose. Neither should you care about groups. What you do care about is what role
a particular user in a group plays for your application. In the customer system,
user Joe might belong to the system group called peons. Now assume that an
ActionBazaar integrated B2B Enterprise Purchasing System is installed on the
customer’s site. Among other things, this type of B2B installation transparently
logs in all existing users from the customer system into the ActionBazaar site
through a custom desktop shortcut. Once logged in, from ActionBazaar’s per-
spective, Joe could simply be a buyer who buys items online on behalf of the B2B
customer company. To another small application in the operational environment,
user Joe might be an administrator who changes system-wide settings. For each
deployed application in the operational environment, it is the responsibility of
the system administrator to determine what system group should be mapped to
what application role. In the Java EE world, this is typically done through vendor-
specific administrative interfaces. As a developer, you simply need to define what
roles your application’s users have and leave the rest to the assembler or deployer.
For ActionBazaar, roles can be buyers, sellers, administrators, and so on.

 Let’s solidify our understanding of application security in EJB using an Action-
Bazaar example.

6.4.3 A security problem in ActionBazaar

At ActionBazaar, customer service representatives (CSRs) are allowed to cancel a
user’s bid under certain circumstances (for example, if the seller discloses some-
thing in answer to an e-mail question from the bidder that should have been

204 CHAPTER 6
Transactions and security
mentioned on the item description). However, the cancel bid operation doesn’t
check if the user is actually a CSR as long as the user can locate the functionality
on the ActionBazaar site—for example, by typing in the correct URL. Figure 6.4
illustrates the security problem in ActionBazaar.

 A clever hacker breaks into the ActionBazaar web server logs and figures out
the URL used by CSRs to cancel bids. Using this knowledge, he devises an even
cleverer “shill bidding” scheme to incite users to overpay for otherwise cheap
items. The hacker posts items on sale and uses a friend’s account to incite a bid-
ding war with genuine bidders. If at any point genuine bidders give up bidding
and a fake bid becomes the highest bid, the hacker avoids actually having to pay
for the item and losing money in posting fees by canceling his highest fake bid
through the stolen URL. No one is any wiser as the genuine bidders as well as the
ActionBazaar system think the highest bid was canceled for legitimate reasons.
The end result is that an honest bidder is fooled into overpaying for otherwise
cheap items.

 After a while, ActionBazaar customer service finally catches onto the scheme
thanks to a few observant users and makes sure the bid canceling action is autho-
rized for CSRs only. Now if a hacker tries to access the functionality, the system
simply denies access, even if the hacker has a registered ActionBazaar account

Figure 6.4 A security breach in ActionBazaar allows a hacker to shill bids by posting an item, starting
a bidding war from a fake account and then at the last minute canceling the highest fake bid. The end
result is that an unsuspecting bidder winds up with an overpriced item.

Exploring EJB security 205
and accesses the functionality through the URL or otherwise. As we discuss how
security is managed by EJB in the next section, you will begin to see what an actual
solution looks like.

6.4.4 EJB 3 and Java EE security

Java EE security is largely based on the Java Authentication and Authorization Ser-
vice (JAAS) API. JAAS essentially separates the authentication system from the Java
EE application by using a well-defined, pluggable API. In other words, the Java EE
application need only know how to talk to the JAAS API. The JAAS API, in contrast,
knows how to talk to underlying authentication systems like Lightweight Directory
Access Protocol (LDAP), such as Microsoft Active Directory or Oracle Internet
Directory (OID) using a vendor plug-in. As a result, you can easily swap between
authentication systems simply by swapping JAAS plug-ins without changing any
code. In addition to authentication, the application server internally uses JAAS to
perform authorization for both the web and EJB tiers. When we look at program-
matic EJB security management, we’ll directly deal with JAAS very briefly when we
discuss the JAAS javax.security.Principal interface. Feel free to explore JAAS at
http://java.sun.com/products/jaas/ since our discussion is limited to what is needed
for understanding EJB security.

 JAAS is designed so that both the authentication and authorization steps can
be performed at any Java EE tier, including the web and EJB tiers. Realistically,
however, most Java EE applications are web accessible and share an authentica-
tion system across tiers, if not across the application server. JAAS fully leverages
this reality and once a user (or entity, to use a fancy security term) is authenticated
at any Java EE tier, the authentication context is passed through tiers whenever
possible, instead of repeating the authentication step. The Principal object we
already mentioned represents this sharable, validated authentication context.
Figure 6.5 depicts this common Java EE security management scenario.

 As shown in figure 6.5, a user enters the application through the web tier. The
web tier gathers authentication information from the user and authenticates the
supplied credentials using JAAS against an underlying security system. A success-
ful authentication results in a valid user Principal. At this point, the Principal is
associated with one or more roles. For each secured web/EJB tier resource, the
application server checks if the principal/role is authorized to access the resource.
The Principal is transparently passed from the web tier to the EJB tier as needed.

 A detailed discussion of web tier authentication and authorization is beyond
the scope of this book, as is the extremely rare scenario of standalone EJB authen-
tication using JAAS. However, we’ll give you a basic outline of web tier security to

206 CHAPTER 6
Transactions and security
serve as a starting point for further investigation before diving into authorization
management in EJB 3.

Web tier authentication and authorization
The web tier servlet specification (http://java.sun.com/products/servlet/) success-
fully hides a great many low-level details for both authentication and authoriza-
tion. As a developer, you simply need to tell the servlet container what resources
you want secured, how they are secured, how authentication credentials are gath-
ered, and what roles have access to secured resources. The servlet container, for
the most part, takes care of the rest. Web tier security is mainly configured using the
login-config and security-constraint elements of the web.xml file. Listing 6.4
shows how securing the administrative module of ActionBazaar might look using
these elements.

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>ActionBazaarRealm</realm-name>
</login-config>

...
<security-constraint>
 <web-resource-collection>
 <web-resource-name>

Listing 6.4 Sample web.xml elements to secure order canceling and other
ActionBazaar admin functionality

Figure 6.5
Most common Java EE security management scenario using JAAS

 B
 C

Exploring EJB security 207
 ActionBazaar Administrative Component
 </web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>CSR</role-name>
 </auth-constraint>
</security-constraint>

Listing 6.4 specifies how the web container should gather and validate authenti-
cation b. In our case, we have chosen the simplest authentication mechanism,
BASIC. BASIC authentication uses an HTTP header–based authentication scheme
that usually causes the web browser to gather username/password information
using a built-in prompt. Other popular authentication mechanisms include FORM
and CLIENT-CERT. FORM is essentially the same as BASIC except for the fact that
the prompt used is an HTML form that you create. CLIENT-CERT, on the other
hand, is an advanced form of authentication that bypasses username/password
prompts altogether. In this scheme, the client sends a public key certificate stored
in the client browser to the web server using Secured Socket Layer (SSL) and the
server authenticates the contents of the certificate instead of a username/password.
The credentials are then validated by the JAAS provider.

 Next we specify the realm the container should authenticate against C. A
realm is essentially a container-specific abstraction over a JAAS-driven authentica-
tion system. We then specify that all URLs that match the pattern /admin/* should
be secured D. Finally, we specify that only validated principals with the CSR role
can access the secured pages E. In general, this is all there really is to securing a
web application using JAAS, unless you choose to use programmatic security,
which essentially follows the same pattern used in programmatic EJB security.

EJB authentication and authorization
At the time of writing, authenticating and accessing EJBs from a standalone client
without any help from the servlet container is still a daunting task that requires
you to thoroughly understand JAAS. In effect, you’d have to implement all of the
authentication steps that the servlet container nicely abstracts away from you.
Thankfully, this task is not undertaken very often and most application servers
provide a JAAS login module that can be used by applications.

 On the other hand, the authorization model in EJB 3 is simple yet powerful.
Much like authorization in the web tier, it centers on the idea of checking whether
the authenticated Principal is allowed to access an EJB resource based on the

 D

 E

208 CHAPTER 6
Transactions and security
Principal’s role. Like transaction management, authentication can be either
declarative or programmatic, each of which provides a different level of control
over the authentication process. In addition, like the transaction management
features discussed in this chapter, security applies to session beans and MDBs, and
not the JPA entities.

 We’ll first explore declarative security management by coding our bid-canceling
scenario presented in 6.4.3 and then move on to exploring programmatic secu-
rity management.

6.4.5 Declarative security
Listing 6.5 applies authentication rules to the BidManagerBean that includes the
cancelBid method our clever hacker used for his shill-bidding scheme. Now, only
CSRs are allowed to use this method. Note that we have omitted method imple-
mentation since this is not relevant to our discussion.

@DeclareRoles("BIDDER", "CSR", "ADMIN")
@Stateless
public class BidManagerBean implements BidManager {
 @RolesAllowed("CSR, ADMIN")
 public void cancelBid(Bid bid, Item item) {...}

 @PermitAll
 public List<Bid> getBids(Item item) {...}
}

Listing 6.5 features some of the most commonly used security annotations defined
by common metadata annotations for Java Platform Specification JSR-250, javax.
annotation.security.DeclareRoles, javax.annotation.security.RolesAllowed,
and javax.annotation.security.PermitAll. Two other annotations that we have
not used but will discuss are javax.annotation.security.DenyAll and javax.anno-
tation.security.RunAs. Let’s start our analysis of the code and security annota-
tions with the @DeclareRoles annotation.

Declaring roles
We highly recommend that you declare the security roles to be employed in your
application, EJB module, EJB, or business methods. There are a few ways of declar-
ing roles, one of which is through the @DeclareRoles annotation, which we use in
listing 6.5 b. This annotation applies at either the method or the class level and
consists of an array of role names. We are specifying that the BidManagerBean use

Listing 6.5 Securing bid cancellation using declarative security management

 b Declares roles for bean

Specifies roles with
access to method C

Permits all system roles
access to method D

Exploring EJB security 209
the roles of BIDDER, CSR, and ADMIN. Alternatively, we could have specified roles for
the entire enterprise application or EJB module through deployment descriptors.
The ActionBazaar application could use the roles of guests, bidders, sellers, Power
Sellers, CSRs, admins, and so on. If we never declare roles, the container will auto-
matically build a list of roles by inspecting the @RolesAllowed annotation. Remem-
ber, when the application is deployed, the local system administrator must map
each role to groups defined in the runtime security environment.

Specifying authenticated roles
The @RolesAllowed annotation is the crux of declarative security management.
This annotation can be applied to either an EJB business method or an entire
class. When applied to an entire EJB, it tells the container which roles are allowed
to access any EJB method. On the other hand, we can use this annotation on a
method to specify the authentication list for that particular method. The tremen-
dous flexibility offered by this annotation becomes evident when you consider
the fact that you can override class-level settings by reapplying the annotation
at the method level (for example, to restrict access further for certain methods).
However, we discourage such usage because at best it is convoluted and at worst it
can cause subtle mistakes that are hard to discern. In listing 6.5, we specify that
only CSR and ADMIN roles be allowed to cancel bids through the cancelBid method
C. The @PermitAll and @DenyAll annotations are conveniences that perform
essentially the same function as the @RolesAllowed annotation.

@PermitAll and @DenyAll
We can use the @PermitAll annotation to mark an EJB class or a method to be
invoked by any role. We use this annotation in listing 6.5 D to instruct the con-
tainer that any user can retrieve the current bids for a given item. You should use
this annotation sparingly, especially at the class level, as it is possible to inadvert-
ently leave security holes if it is used carelessly. The @DenyAll annotation does
exactly the opposite of @PermitAll. That is, when used at either the class or the
method level, it renders functionality inaccessible by any role. You might be won-
dering why you would ever use this annotation. Well, the annotation makes sense
when you consider the fact that your application may be deployed in wide-rang-
ing environments that you did not envision. You can essentially invalidate meth-
ods or classes that might be inappropriate for a particular environment without
changing code by using the @DenyAll annotation. Just as with the @RolesAllowed
annotation, when applied at the method level these annotations will override
bean-level authorization settings.

210 CHAPTER 6
Transactions and security
NOTE The three security annotations, @PermitAll, @DenyAll, and @Role-
Allowed, cannot simultaneously be applied to the same class or the
same method.

Let’s now wrap up our discussion of declarative security management by discuss-
ing our final annotation, @RunAs.

@RunAs
The @RunAs annotation comes in handy if you need to dynamically assign a new
role to the existing Principal in the scope of an EJB method invocation. You
might need to do this, for example, if you’re invoking another EJB within your
method but the other EJB requires a role that is different from the current Prin-
cipal’s role. Depending on the situation, the new “assumed” role might be either
more restrictive, lax, or neither. For example, the cancelBid method in listing 6.5
might need to invoke a statistics-tracking EJB that manages historical records in
order to delete the statistical record of the canceled bid taking place. However,
the method for deleting a historical record might require an ADMIN role. Using the
@RunAs annotation, we can temporarily assign a CSR an ADMIN role so that the sta-
tistics-tracking EJB thinks an admin is invoking the method:

@RunAS("ADMIN")
@RolesAllowed("CSR")
public void cancelBid(Bid bid, Item item) {...}

You should use this annotation sparingly since like the @PermitAll annotation, it
can open up security holes you might not have foreseen.

 As you can see, declarative security gives you access to a powerful authentica-
tion framework while staying mostly out of the way. The flexibility available to you
through the relatively small number of relevant annotations should be apparent
as well. If you have ever rolled out your own security or authentication system, one
weakness might have crossed your mind already. The problem is that although
you can authenticate a role using declarative security, what if you need to provide
security settings specific to individuals, or even simple changes in method behav-
ior based on the current Principal’s role? This is where programmatic EJB secu-
rity steps onto the stage.

6.4.6 Using EJB programmatic security

In effect, programmatic security provides direct access to the Principal as well
as a convenient means to check the Principal’s role in the code. Both of these
functions are made available through the EJB context. We’ll begin exploring

Exploring EJB security 211
programmatic security by redeveloping the bid-canceling scenario as a starting
point. Listing 6.6 implements the scenario.

@Stateless
public class BidManagerBean implements BidManager {
 @Resource SessionContext context;
 ...
 public void cancelBid(Bid bid, Item item) {
 if (!context.isCallerInRole("CSR")) {
 throw new SecurityException(
 "No permissions to cancel bid");
 }
 ...
 }
 ...
}

Listing 6.6 first injects the EJB context b. We use the isCallerInRole method
of the EJBContext to see if the underlying authenticated principal has the CSR
role C. If it does not, we throw a java.lang.SecurityException notifying the
user about the authorization violation D. Otherwise, the bid cancellation
method is allowed to proceed normally. We discuss both the security manage-
ment related methods provided in the EJB context next, namely isCaller-
InRole and getCallerPrincipal.

isCallerInRole and getCallerPrincipal
Programmatic security is made up solely of the two previously mentioned secu-
rity-related methods. The methods are defined in the javax.ejb.EJBContext
interface as follows:

public interface EJBContext {
 ...
 public java.security.Principal getCallerPrincipal();
 public boolean isCallerInRole(java.lang.String roleName);
 ...
}

You’ve already seen the isCallerInRole method in action; it is fairly self-
explanatory. Behind the scenes, the EJB context retrieves the Principal associ-
ated with the current thread and checks if any of its roles match the name you
provided. The getCallerPrincipal method gives you direct access to the java.
security.Principal representing the current authentication context. The only

Listing 6.6 Securing bid cancellation using programmatic security

Injects EJB context B

Checks authorization C

Throws exception
on violation

 D

212 CHAPTER 6
Transactions and security
method of interest in the Principal interface is getName, which returns the
name of the Principal. Most of the time, the name of the Principal is the login
name of the validated user. This means that just as in the case of a homemade
security framework, you could validate the individual user if you needed to.

 For example, let’s assume that we had a change of heart and decided that in
addition to the CSRs, bidders can cancel their own bids as long as the cancellation
is done within a minute of putting in the bid. We could implement this using the
getCallerPrincipal method as follows:

public void cancelBid(Bid bid, Item item) {
 if (!context.isCallerInRole("CSR")
 && !(context.getCallerPrincipal().getName().equals(
 bid.getBidder().getUsername()) && (bid.getTimestamp() >=
 (getCurrentTime() - 60*1000))))) {
 throw new SecurityException(
 "No permissions to cancel bid");
 }
 ...
}

Note, though, that there is no guarantee exactly what the Principal name might
return. In some environments, it can return the role name, group name, or any
other arbitrary String that makes sense for the authentication system. Before you
use the Principal.getName method, you should check the documentation of your
particular security environment. As you can see, the one great drawback of pro-
grammatic security management is the intermixing of security code with business
logic as well as the potential hard-coding of role and Principal names. In previ-
ous versions of EJB, there was no way of getting around these shortfalls. However,
in EJB 3 you can alleviate this problem somewhat by using interceptors. Let’s see
how to accomplish this next.

Using interceptors for programmatic security
As you know, in EJB 3 you can set up interceptors that are invoked before and
after (around) any EJB business method. This facility is ideal for crosscutting con-
cerns that should not be duplicated in every method, such as programmatic secu-
rity (discussed in chapter 5) . We could reimplement listing 6.6 using interceptors
instead of hard-coding security in the business method (see listing 6.7).

public class SecurityInterceptor {
 @AroundInvoke
 public Object checkUserRole(InvocationContext context)

Listing 6.7 Using interceptors with programmatic security

Marks intercepted invocation B

Summary 213
 throws Exception {
 if (!context.getEJBContext().isCallerInRole("CSR")) {
 throw new SecurityException(
 "No permissions to cancel bid");
 }

 return context.proceed();
 }
}

@Stateless
public class BidManagerBean implements BidManager {
 @Interceptors(actionbazaar.security.SecurityInterceptor.class)
 public void cancelBid(Bid bid, Item item) { ... }

The SecurityInterceptor class method checkUserRole is designated as Around-
Invoke, meaning it would be invoked whenever a method is intercepted b. In the
method, we check to see if the Principal is a CSR C. If the role is not correct, we
throw a SecurityException. Our BidManagerBean, on the other hand, specifies the
SecurityInterceptor class as the interceptor for the cancelBid method D.

 Note that although using interceptors helps matters a bit in terms of removing
hard-coding from business logic, there is no escaping the fact that there is still a
lot of hard-coding going on in the interceptors themselves. Moreover, unless
you’re using a simple security scheme where most EJB methods have similar
authorization rules and you can reuse a small number of interceptors across the
application, things could become complicated very quickly. In effect, you’d have
to resort to writing ad hoc interceptors for method-specific authentication combi-
nations (just admin, CSR and admin, everyone, no one, and so on). Contrast this
to the relatively simple approach of using the declarative security management
annotations or deployment descriptors. All in all, declarative security manage-
ment is the scheme you should stick with, unless you have an absolutely unavoid-
able reason not to do so.

6.5 Summary

In this chapter, we discussed the basic theory of transactions, transaction manage-
ment using CMT and BMT, basic security concepts, as well as programmatic and
declarative security management. Both transactions and security are crosscutting
concerns that ideally should not be interleaved with business logic. The EJB 3
take on security and transaction management tries to reflect exactly this belief,
fairly successfully in our opinion, while allowing some flexibility.

Accesses
EJBContext from

InvocationContext C

Specifies
interceptor
for method

 D

214 CHAPTER 6
Transactions and security
 An important point to consider is the fact that even if you specify nothing for
transaction management in your EJB, the container still assumes default transac-
tional behavior. However, the container applies no default security settings if you
leave it out. The assumption is that at a minimum, an application server would be
authenticated and authorized at a level higher than EJB (for example, the web
tier). Nevertheless, we definitely recommend that you not leave yourself vulnera-
ble by ignoring security at the mission-critical EJB layer where most of your code
and data is likely to reside. Security vulnerabilities are insidious and you are bet-
ter safe than sorry. Most importantly, the security features of EJB 3 are so easy to
use that there is no reason to risk the worst by ignoring them.

 The discussion on security and transactions wraps up our coverage of session
and message-driven beans. Neither feature is directly applied to the EJB Persis-
tence API as they were for entity beans in EJB 2. You’ll see why this is the case as we
explore the persistence API in the next few chapters.

Part 3

Diving into the Java
Persistence API (JPA)

The goal of this part is to provide deep and broad coverage of JPA in a
digestible manner. After reading this part of the book, you will have all the
knowledge necessary to start developing robust business applications using JPA.

 Chapter 7, “Implementing domain models,” covers domain modeling, a
central concept in ORM. The chapter describes how a conceptual business
application domain model is translated to JPA entities, embedded objects, and
entity relationships.

 Chapter 8, “Object-relational mapping,” takes on the most complicated
aspects of ORM: mapping entities, embedded objects, and entity relationships
to databases. The chapter covers the annotations you can use for mapping
objects to tables and fields to table columns. It also explores mapping various
data types, primary keys, relationships, and OO inheritance to databases.

 Chapter 9, “Manipulating entities with EntityManager,” describes the JPA
EntityManager, a central interface that defines persistence operations. You’ll
learn how the EntityManager interface is used to create, update, delete, and
retrieve entities persisted in the database. The chapter also deals with the
entity lifecycle as it relates to ORM persistence operations.

 Chapter 10, “Using the query API and JPQL to retrieve entities,” covers
object-relational queries. The chapter explores the use of the JPA query inter-
face in detail. In addition, the chapter outlines how the Java Persistence Query
Language (JPQL) is used to retrieve entities from the database in an extremely
flexible and robust manner.

Implementing
domain models
This chapter covers
■ Domain modeling concepts
■ Entities and entity identity
■ Relationships between entities
217

218 CHAPTER 7
Implementing domain models
Most of today’s enterprise systems save their data into a relational database of
some kind. This is why persistence—the process of saving and retrieving data from
permanent storage—has been a major application development concern for many
decades. As a matter of fact, some authoritative sources claim that a great majority
of enterprise development efforts concentrate on the problem of persistence.

 Arguably, after JDBC, EJB 2 entity beans have been the most significant
groundbreaking solution to the problem of persistence in Java. Unfortunately,
many of us who developed entity beans experienced an API that felt overcompli-
cated, cumbersome, and unpolished. It is pretty fair to say entity beans were the
most weakly conceived part of EJB 2. In the past few years, lightweight persis-
tence solutions like Hibernate and TopLink successfully filled the gap left open
by entity beans. The EJB 3 Java Persistence API (JPA) brings the innovative ideas
created by these popular solutions into the Java EE standard and leaves behind
the entity beans paradigm.

 Domain modeling is a concept inseparably linked with persistence. In fact, it is
often the domain model that is persisted. As a result, it makes good sense to
present JPA by breaking things down into four chapters that might mirror the iter-
ative process of developing the domain model and persistence layer of the Action-
Bazaar application. We have decided on four convenient development phases:
defining, persisting, manipulating, and querying the domain model. In this chap-
ter, we briefly introduce domain modeling, present the ActionBazaar domain
model, and implement part of the domain model using the EJB 3 JPA. In chapter 8
we explain how entities in our domain model are persisted into a database by using
object-relational mapping. In chapter 9, we manipulate the entities using the
EntityManager API. Finally, in chapter 10, we query the persisted entities using
the EJB 3 query API.

7.1 Domain modeling and the JPA

Often the first step to developing an enterprise application is creating the
domain model—that is, listing the entities in the domain and defining the rela-
tionships between them.

 In this section we’ll first present a primer on domain modeling. Then we’ll
explore the ActionBazaar problem domain and identify actors in a domain
model, such as objects, relationships, and cardinality. We’ll provide a brief over-
view of how domain modeling is supported with the EJB 3 Java Persistence API
and then build a simple domain object as a Java class.

Domain modeling and the JPA 219
7.1.1 Introducing domain models

Although you may have been warned that domain modeling is complex, the idea
behind it is pretty simple. In effect, a domain model is a conceptual image of the
problem your system is trying to solve. Literally, it is made up of the objects in
the “system universe” and the relationships or associations between them. As you
can guess, an object in a domain model need not be a physical object but just a
concept used by your system. A relationship, on the other hand, is an imaginary
link between objects that need to “know” about one another. The critical thing to
remember is that the domain model describes the objects and how the objects
might relate to one another, but not how a system acts on the objects.

 We like to think of a domain model as a set of interlocking toy blocks. Each
uniquely shaped block in the set is an object. The shape of each block determines
how they fit with one another. Each such “fit” is a relationship. In the end, though,
you put together the blocks into whatever configuration sparks your imagination.
The master plan for putting together the final results forms the business rules of
the application. The business rules are implemented by the session beans and
MDBs we discussed in previous chapters, while the persistence API implements
the domain model that the business rules act on.

 We won’t talk about domain modeling much further than what is needed for
explaining the concepts we just introduced. However, we encourage you to
explore the topic further by checking out the excellent books written on the sub-
ject of domain modeling, most notably Patterns of Enterprise Applications Architec-
ture by Martin Fowler (Addison-Wesley, 2002). UML class diagrams are the most
popular method of creating the initial domain model. However, we are going to
avoid using formal class diagrams throughout this chapter and in the rest of the
book. Instead, we’ll use the simplest diagrams possible, which might have a shal-
low resemblance to UML.

7.1.2 The ActionBazaar problem domain

Modeling the entire ActionBazaar domain will introduce complexity that we
don’t need in order to explain JPA. To avoid this unnecessary complexity, we are
going to develop the core functionality of the ActionBazaar application that is
directly related to buying and selling items on bid online.

NOTE Admittedly, this is a slightly unoriginal example. We considered using
an example tangential to the central theme of ActionBazaar but decided
against it and remained true to the ActionBazaar core concept.

220 CHAPTER 7
Implementing domain models
As figure 7.1 shows, at the heart of it ActionBazaar centers on the following
activities:

■ Sellers post an item on ActionBazaar.
■ Items are organized into searchable and navigable categories.
■ Bidders place bids on items.
■ The highest bidder wins.

NOTE If you are familiar with use cases and the list looks a lot like use cases,
they really are.

In our artificially simplistic scenario, we can pick out the domain objects by scan-
ning the list of activities and looking for nouns: seller, item, category, bidder,
bid, and order. Our goal is to identify the domain objects or entities that we
want to persist in the database. In the real world, finding domain objects usually
involves hours of work and many iterations spent analyzing the business prob-
lem. We’ll make our initial diagram by randomly throwing together our objects
into figure 7.2.

Figure 7.1 The core functionality of ActionBazaar. Sellers post items into searchable and navigable
categories. Bidders bid on items and the highest bid wins.

Domain modeling and the JPA 221
Putting in the links between objects that should know about each other (these are
the infamously complex domain relationships) will complete our domain model.
We encourage you to spend some time looking at figure 7.2 guessing how the
objects might be related before peeking at the finished result in figure 7.3.

 We won’t spell out every relationship in figure 7.3, since most are pretty intui-
tive even with the slightly cryptic arrows and numbers. We’ll explain what is going
on with the arrows and numbers in just a bit when we talk about direction and

Figure 7.2
Entities are objects that can
be persisted in the database.
In the first step you identify
entities—for example,
entities in the ActionBazaar
domain.

Figure 7.3 The ActionBazaar domain model complete with entities and relationships. Entities are
related to one another and the relationship can be one-to-one, one-to-many, many-to-one, or many-
to-many. Relationships can be either uni- or bidirectional.

222 CHAPTER 7
Implementing domain models
multiplicity of relationships. For now, all you need to note is the text describing
how objects are related to one another. For example, an item is sold by a seller, a
seller may sell more than one item, the item is in one or more categories, each
category may have a parent category, a bidder places a bid on an item, and so on.
You should also note that although the domain model describes the possibilities
for cobbling objects together, it does not actually describe the way in which the
objects are manipulated. For instance, although you can see that an order consists
of one or more items and is placed by a bidder, you are not told how or when
these relationships are formed. But by applying a bit of common sense, it is easy
to figure out that an item won through a winning bid is put into an order placed
by the highest bidder. These relationships are probably formed by the business
rules after the bidding is over and the winner checks out the item won.

 We’ll clarify the concepts behind domain model objects, relationships, and
multiplicity next before moving on to the JPA.

7.1.3 Domain model actors
Domain modeling theory identifies four domain model “actors”: objects, rela-
tionships, the multiplicity of relationships, and the optionality of relationships.
Let’s fill in the details that we have left out so far about all four actors.

Objects
From a Java developer perspective, domain objects are closely related to Java
objects. Like Java objects, domain objects can have both behavior (methods in
Java terms) and state (instance variables in Java). For example, the category
domain object probably has the name, creation date, and modification date as
attributes. Similarly, a category probably also has the behavior of being renamed
and the modification date updated. There are likely hundreds of instances of
category domain objects in the ActionBazaar, such as “Junkyard Cars for Teen-
agers,” “Psychedelic Home Décor from the Sixties,” “Cheesy Romantic Novels
for the Bored,” and so on.

Relationships
In Java terms, a relationship is manifested as one object having a reference to
another. If the Bidder and BillingInfo objects are related, there is probably a
BillingInfo instance variable in Bidder, a Bidder instance variable in Billing-
Info, or both. Where the object reference resides determines the direction of the
arrows in figure 7.3. If Bidder has a reference to BillingInfo, the arrow should
point from Bidder to BillingInfo. Or suppose Item and Bid have references to
each other; an Item has Bids on it and Bids are placed on Items. Signifying this fact,

Domain modeling and the JPA 223
the arrow connecting Bid and Item points in both directions in figure 7.3. This
is what is meant by a bidirectional relationship or association between Bid and Item
as opposed to a unidirectional relationship or association between Seller and
BillingInfo. Typically, objects are nouns and relationships are verbs such as has,
is part of, is member of, belongs to, and so on.

Multiplicity, or cardinality
As you can probably infer from figure 7.3, not all relationships are one-to-one.
That is, there may be more than one object on either side of a relationship. For
example, a Category can have more than one Item. Multiplicity or cardinality
refers to this multifaceted nature of relationships. The multiplicity of a relation-
ship can be:

■ One-to-one—Each side of the relationship may have at most only one
object. An Employee object can have only one ID card and an ID card can
only be assigned to one employee.

■ One-to-many—A particular object instance may be related to multiple
instances of another. For example, an Item can have more than one Bid. Note
that, taken from the point of view of a Bid, the relationship is said to be many-
to-one. For example, many Bids can be placed by a Bidder in figure 7.3.

Rich vs. anemic domain models

As we mentioned, domain models are eventually persisted into the database. It
might already be obvious that it is easy to make the domain model objects look
exactly like database tables. As a matter of fact, this is exactly why data modeling is
often synonymous to domain modeling and DBAs (or data analysts) are often the
domain experts. In this mode of thinking, domain objects contain attributes (map-
ping to database table columns) but no behavior. This type of model is referred to
as the anemic model.

A rich domain model, on the other hand, encapsulates both object attributes and
behavior and utilizes objected-oriented design such as inheritance, polymorphism,
and encapsulation.

An anemic domain model may not necessarily be a bad thing for some applica-
tions. For one thing, it is painless to map objects to the database. As a rule of
thumb, the richer the domain model is, the harder it is to map it to the database,
particularly while using inheritance.

224 CHAPTER 7
Implementing domain models
■ Many-to-many—If both sides of the relationship can have more than one
object, the relationship is many-to-many. For example, an Item can be in
more than one Category and a Category can have multiple Items.

Ordinality, or optionality
Ordinality, or optionality, of a relationship determines whether an associated
entity exists. For example, we have a bidirectional one-to-one association between
User and BillingInfo, and every user need not always have billing information,
so the relationship is optional. However, BillingInfo always belongs to a User and
hence the optionality for the BillingInfo-User association is false.
Having established the basic concepts of domain modeling, we can now start dis-
cussing how the domain model is persisted using the EJB 3 Java Persistence API
and actually begin implementing our domain model.

7.1.4 The EJB 3 Java Persistence API

In contrast to EJB 2 entity beans, the EJB 3 Java Persistence API (JPA) is a meta-
data-driven POJO technology. That is, to save data held in Java objects into a
database, our objects are not required to implement an interface, extend a class,
or fit into a framework pattern. In fact, persisted objects need not contain a single
inline statement of JPA. All we have to do is code our domain model as plain Java
objects and use annotations or the XML to give the persistence provider the fol-
lowing information:

■ What our domain objects are (for example, using the @Entity and @Embed-
ded annotations)

■ How to uniquely identify a persisted domain object (for example, using the
@Id annotation)

■ What the relations between objects are (for example, using the @OneToOne,
@OneToMany, and @ManyToMany annotations)

■ How the domain object is mapped to database tables (for example, using
various object-relational mapping annotations like @Table, @Column, or
@JoinColumn)

As you can see, although O/R mapping using the JPA (or any other O/R frameworks
like Hibernate) is a great improvement over entity beans or JDBC, automated per-
sistence is still an inherently complex activity. The large number of persistence-
related annotations and wide array of possible arrangements is a result of this fact.
To make it all as digestible as possible, we’ll only cover the first three items in this

Domain modeling and the JPA 225
chapter, leaving the fourth (how the domain object is mapped to database tables)
to chapter 8. Moreover, we’ll stray from our pattern of presenting and then ana-
lyzing a complete example, since the wide breadth of the persistence API would not
yield to the pattern nicely. Instead, we are going to explore the persistence API by
visiting each step in our list using specific cases from the ActionBazaar example,
analyzing features and intricacies along the way. Not straying from previous chap-
ters, however, we’ll still focus on using annotations, leaving the description of
deployment descriptor equivalents for a brief discussion in chapter 11.

7.1.5 Domain objects as Java classes

Let’s now get our feet wet by examining some code for JPA. We’ll pick a represen-
tatively complex domain object, Category, and see what it might look like in Java
code. The Category class in listing 7.1 is a simple POJO class that is a domain
object built using Java. This is a candidate for becoming an entity and being per-
sisted to the database. As we mentioned earlier, the Category domain object may
have the category name and modification date as attributes. In addition, there
are a number of instance variables in the POJO class that express domain relation-
ships instead of simple attributes of a category. The id attribute also does more
than simply serving as a data holder for business logic and identifies an instance
of the Category object. You’ll learn about identity in the next section.

SQL-centric persistence: Spring JDBCTemplate and iBATIS

Like many of us, if you are comfortable with SQL and JDBC and like the control and
flexibility offered by do-it-yourself, hands-on approaches, O/R in its full-blown, black
magic, automated form may not be for you. As a matter of fact, O/R tools like
Hibernate and the EJB 3 Java Persistence API (JPA) might seem like overkill, even
despite the long-term benefits offered by a higher-level API.

If this is the case, you should give tools like Spring JDBCTemplate and iBATIS a
very close look. Both of these tools do an excellent job abstracting out really low-
level, verbose JDBC mechanics while keeping the SQL/database-centric feel of per-
sistence intact.

However, you should give O/R frameworks and JPA a fair chance. You just might
find that these options make your life a lot easier and OO-centric, freeing you to
use your neuron cycles to solve business problems instead.

226 CHAPTER 7
Implementing domain models
package ejb3inaction.actionbazaar.model;
import java.sql.Date;

public class Category {
 protected Long id;

 protected String name;
 protected Date modificationDate;

 protected Set<Item> items;
 protected Category parentCategory;
 protected Set<Category> subCategories;

 public Category() {}

 public Long getId() {
 return this.id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Date getModificationDate() {
 return this.modificationDate;
 }

 public void setModificationDate(Date modificationDate) {
 this.modificationDate = modificationDate;
 }

 public Set<Item> getItems() {
 return this.items;
 }

 public void setItems(Set<Item> items) {
 this.items = items;
 }

 public Set<Category> getSubCategories() {
 return this.subCategories;
 }

Listing 7.1 Category domain object in Java

Plain Java object B

 C Instance variable uniquely identifying object

Object attribute
instance variable

 D

Instance
variables for
relationships

 E

Getters and setters
for each instance

variable

 F

Implementing domain objects with JPA 227
 public void setSubCategories(Set<Category> subCategories) {
 this.subCategories = subCategories;
 }

 public Category getParentCategory() {
 return this.parentCategory;
 }

 public void setParentCategory(Category parentCategory) {
 this.parentCategory = parentCategory;
 }
}

The Category POJO b has a number of protected instance fields D E, each with
corresponding setters and getters that conform to JavaBeans naming conven-
tions F. In case you are unfamiliar with them, JavaBeans rules state that all
instance variables should be nonpublic and made accessible via methods that fol-
low the getXX and setXX pattern used in listing 7.1, where XX is the name of the
property (instance variable). Other than name and modificationDate, all the other
properties have a specific role in domain modeling and persistence. The id field
is used to store a unique number that identifies the category C. The items prop-
erty stores all the items stored under a category and represents a many-to-many
relationship between items and categories. The parentCategory property repre-
sents a self-referential many-to-one relationship between parent and child cate-
gories. The subCategories property maintains a one-to-many relationship
between a category and its subcategories.

 The Category class as it stands in listing 7.1 is a perfectly acceptable Java
implementation of a domain object. The problem is that the EJB 3 persistence
provider has no way of distinguishing the fact that the Category class is a domain
object instead of just another random Java object used for business logic, presen-
tation, or some other purpose. Moreover, note that the properties representing
relationships do not make direction or multiplicity clear. Lastly, the persistence
provider also needs to be told about the special purpose of the id property. We’ll
start solving some of these problems by using JPA annotations next, starting with
identifying the Category class as a domain object.

7.2 Implementing domain objects with JPA

In the previous few sections you learned about domain modeling concepts and
identified part of the ActionBazaar domain model. Also, we briefly introduced

Getters and setters
for each instance

variable

 F

228 CHAPTER 7
Implementing domain models
some commonly used metadata annotations supported by JPA. In this section,
you’ll see some of the JPA annotations in action as we implement part of the
domain model using the EJB 3 JPA. We’ll start with the @Entity: annotation that
converts a POJO to an entity. Then you’ll learn about field- and property-based
persistence and entity identity. Finally, we’ll discuss embedded objects.

7.2.1 The @Entity annotation
The @Entity annotation marks a POJO as a domain object that can be uniquely
identified. You may think of the annotation as the persistence counterpart of the
@Stateless, @Stateful, and @MessageDriven annotations. Mark the Category class
as an entity as follows:

@Entity
public class Category {
 ...
 public Category() { ... }
 public Category(String name) { ... }
 ...
}

As the code snippet demonstrates, all nonabstract entities must have either a
public or a protected no-argument constructor. The constructor is used to create
a new entity instance by using the new operator as follows:

Category category = new Category();

One of the coolest features of JPA is that since entities are POJOs, they support a full
range of OO features like inheritance and polymorphism, with a few persistence-
related nuances thrown in. You can have an entity extend either another entity or
even a nonentity class. For example, it would be good design to extend both the
Seller and Bidder domain object classes from a common User class, as shown in
figure 7.4.

 As the code snippet that follows shows, this class could store information com-
mon to all users like the user ID, username, and email address:

Figure 7.4
Inheritance support with entities.
Bidder and Seller entities extend
the User entity class.

Implementing domain objects with JPA 229
@Entity
public class User {
 ...
 String userId;
 String username;
 String email;
 ...
}

@Entity
public class Seller extends User { ...

@Entity
public class Bidder extends User { ...

Because the parent User class is declared an entity, all the inherited fields like
username and email are persisted when either the Seller or Bidder entity is saved.
A slightly counterintuitive nuance you should note is that this would not be the
case if the User class were not an entity itself. Rather, the value of the inherited
properties would be discarded when either Seller or Bidder is persisted. The pre-
ceding code snippet also demonstrates an interesting weakness—the User class
could be persisted on its own, which is not necessarily desirable or appropriate
application behavior. One way to avoid this problem is to declare the User class
abstract, since abstract entities are allowed but cannot be directly instantiated or
saved. In any case, this is probably better OO design anyway. Since JPA supports
entity inheritance, the relationship between entities and queries may be polymor-
phic. We discuss handling polymorphic queries in chapter 10.

 Obviously the ultimate goal of persistence is to save the properties of the
entity into the database (such as the name and modification date for the Category
entity in listing 7.1). However, things are not as simple as they seem, and there
are a few twists regarding entity data persistence that you need to have a good
grasp of.

7.2.2 Persisting entity data
An entity, because it is a persistent object, has some state that is stored into the
database. In this section we discuss access types, how to define a transient field,
and data types supported by JPA.

Field- vs. property-based persistence
An entity maintains its state by using either fields or properties (via setter and get-
ter methods). Although JavaBeans object property-naming conventions have been

Parent entity class

Entity
subclasses

230 CHAPTER 7
Implementing domain models
widely used in the Java platform for a good number of years, some developers
consider these conventions to be overkill and would rather access instance vari-
ables directly. The good news is that JPA supports this paradigm (whether it should
is an open question—we’ll express our viewpoint in a moment). Defining O/R
mapping using fields or instance variables of entity is known as field-based access,
and using O/R mapping with properties is known as property-based access.

 If you want to use field-based access, you can declare all your POJO persisted
data fields public or protected and ask the persistence provider to ignore getters/
setters altogether. You would only have to provide some indication on at least one
of the instance variables that they are to be used for persistence directly. You can
do this by using the @Id annotation that we’ll discuss next that applies to either a
property or a field. Depending on your inclination, this transparent flexibility
may or may not seem a little counterintuitive. In the early releases of the EJB 3
specification, the @Entity annotation had an element named accessType for
explicitly specifying the persistence data storage type as either FIELD or PROPERTY.
As you’ll see, O/R mapping using XML provides an element named access to
specify the access type. However, many developers do not like this element and
want the additional flexibility of having the JPA provider dynamically determine
the access type based on entity field usage patterns.

 The following snippet shows what field-based persistence might look like:

@Entity
public class Category {
 @Id
 public Long id;

 public String name;
 public Date modificationDate;

 public Category() {}
}

Here, the persistence provider would infer that the id, name, and modification-
Date public fields should be persisted since the @Id annotation is used on the id
field. The annotations would have been applied to getters if we did not intend to
use fields for persistence instead of properties.

NOTE Annotations used with a setter method are ignored by the persistence
provider for property-based access.

One caveat in choosing between field- and property-based persistence is that
both are one-way streets; you cannot mix and match access types in the same

Implementing domain objects with JPA 231
entity or in any entity in the POJO hierarchy. Field-based persistence is a one-way
street in another important way: you give up the OO benefits of encapsulation/
data hiding that you get from getters and setters if you expose the persistence
fields to be directly manipulated by clients. Even if you used field-based access, we
recommend that you make the fields private and expose the fields to be modified
by getter/setter method.

 For example, property setters are often used in nontrivial applications to vali-
date the new data being set or to standardize POJO data in some fashion. In our
example, we could automatically convert Category names to uppercase in the
setName method:

public void setName(String name) {
 this.name = name.toUpperCase();
}

In general, we highly recommend that you use field-based access with accessor
methods or property-based access. It is much easier to have it and not need it
than to find out that you need it later on and have to engage in a large-scale,
painful refactoring effort in the face of deadlines.

 By default, the persistence provider saves all entity fields or properties that
have JavaBeans-style public or protected setters and getters (for example, get-
Name and setName in listing 7.1). In addition, persisted setters and getters cannot
be declared final, as the persistence provider may need to override them.

Defining a transient field
If necessary, you can stop an entity property from being persisted by marking the
getter with the @Transient annotation. A transient field is typically useful for cach-
ing some data that you do not want to save in the database. For example, the Cate-
gory entity could have a property named activeUserCount that stores the number
of active users currently browsing items under the directory or a generatedName
field that is generated by concatenating the category ID and name. However, saving
this runtime information into the database would not make much sense. You could
avoid saving the property by using @Transient as follows:

@Entity
public class Category {
 ...
 @Transient
 protected Long activeUserCount;
 transient public String generatedName

 ...

232 CHAPTER 7
Implementing domain models
 public Long getActiveUserCount() {
 return activeUserCount;
 }

 public void setActiveUserCount(Long activeUserCount) {
 this.activeUserCount = activeUserCount;
 }
 ...
}

You could achieve the same effect by using the @Transient tag on the getter when
using property-based access.

 Note that defining a field with the transient modifier as we’ve done with
generatedName has the same effect as the @Transient annotation.

Persistent data types
Before we move on from the topic of persisted POJO data and start exploring
identity and relations, we need to discuss exactly what field data can be persisted.
Ultimately, persisted fields/properties wind up in a relational database table and
have to go through an extremely powerful, high-level API to get there. Because of
this fact, there are some restrictions on what data types can be used in a persisted
field/property. In general, these restrictions are not very limiting, but you should
be aware of them nonetheless. Table 7.1 lists the data types that can be used in a
persisted field/property.

Table 7.1 Data types allowable for a persisted field/property

Types Examples

Java primitives int, double, long

Java primitives wrappers java.lang.Integer, java.lang.Double

String type java.lang.String

Java API Serializable types java.math.BigInteger, java.sql.Date

User-defined Serializable types Class that implements java.io.Serializable

Array types byte[], char[]

Enumerated type {SELLER, BIDDER, CSR, ADMIN}

Collection of entity types Set<Category>

Embeddable class Classes that are defined @Embeddable

Implementing domain objects with JPA 233
We’ll discuss the @Embeddable annotation after we discuss entity identities. For
now, think of an embeddable object as a custom data type for an entity that
encapsulates persisted data.

 We have already touched on the issue of identity when we talked about
uniquely identifying the Category domain object through the id property. Let’s
now take up the topic of entity identity in greater detail.

7.2.3 Specifying entity identity
Every entity of the domain model must be uniquely identifiable. This require-
ment is due partly to the fact that at some point entities must be persisted into a
uniquely identifiable row in a database table (or set of rows in multiple tables). If
you are familiar with the concept of database table primary keys, this should come
as no surprise. Without primary keys, you would never be able to uniquely iden-
tify and retrieve the data you put into a record since you would not know which
row it went into after performing the save! The concept of being able to distin-
guish different instances of the same object holding a different set of data is not
completely alien to object-oriented programming either. Consider the equals
method in java.lang.Object, meant to be overridden by subclasses as necessary.
This method is the OO equivalent of comparing the primary keys of two distinct
database records. In most cases, the equals method is implemented by compar-
ing the data that uniquely identifies instances of the same object from one
another. In the case of the Category object, you might imagine that the equals
method would look like this:

public boolean equals (Object other) {
 if (other instanceof Category) {
 return this.name.equals(((Category)other).name)
 } else {
 return false;
 }
}

In this case, we would be assuming that the name instance variable uniquely iden-
tifies a Category. The name field therefore is the identity for the Category object. In
listing 7.1, however, we choose the id field as the identity for Category. This
choice will be more obvious when we talk about mapping the Category object into
a database table. As you’ll see, in effect, we choose this instance variable because
we get it free from the database as a unique Category identifier, and it is less
resource intensive than comparing the java.lang.String name field since it is a
numeric java. lang.Long. Another benefit of using the numeric type key is auto-
matic generation. There are several ways of telling the persistence provider where

234 CHAPTER 7
Implementing domain models
the identity of an entity is stored. Starting with the simplest and ending with the
most complex, these are as follows:

■ Using the @Id annotation
■ Using the @IdClass annotation
■ Using the @EmbeddedId annotation

Let’s look at each of these mechanisms next.

The @Id annotation
Using the javax.persistence.Id annotations is the simplest way of telling the per-
sistence provider where the entity identity is stored. The @Id annotation marks a
field or property as identity for an entity. Since we are using property-based per-
sistence for the Category entity, we could let the API know that we are using the id
property as the identity by applying the @Id annotation to the getId method as in
the following code snippet. In the case of field-based persistence, the @Id annota-
tion would have been applied directly to an instance variable instead.

@Entity
public class Category {
 ...
 protected Long id;
 ...

 @Id
 public Long getId() {
 return this.id;
 }

 public void setId(Long id) {
 this.id = id;
 }
 ...
}

Because the identity we specify will end up in a database primary key column, there
are limitations to what data types an identity might have. EJB 3 supports primi-
tives, primitive wrappers, and Serializable types like java.lang.String, java.
util.Date, and java.sql.Date as identities. In addition, when choosing numeric
types you should avoid types such as float, Float, double, and so forth because of
the indeterminate nature of type precision. For example, let’s assume that we are
using float data as the identity, and specify 103.789 and 103.787 as the identity
values for two separate entity instances. If the database rounds these values to
two-digit decimal precision before storing the record, both of these values would

Implementing domain objects with JPA 235
map to 103.79 and we would have a primary key violation! Another type you
should avoid choosing as identifier is TimeStamp.

 An important consideration to note is that using the @Id annotation on its own
works only for identities with just one field or property. In reality, you’ll often
have to use more than one property or field (known as composite key) to uniquely
identify an entity. For sake of illustration, assume that we changed our minds and
decided that a Category is uniquely identified by its name and creation date.
There are two ways we can accomplish this: by using either the @IdClass or
@EmbeddedId annotation.

The @IdClass annotation
In effect, the @IdClass annotation enables you to use more than one @Id annota-
tion in a sensible way. This is the basic problem with using more than one @Id field
or property in an entity class: it is not obvious how to compare two instances in an
automated fashion. This is especially true since in cases where composite keys are
necessary, one or more of the fields that constitute the primary key are often rela-
tionship or association fields (or foreign keys in database terminology). For exam-
ple, although this is not the case for us, the Bid domain object might have an
identity consisting of the item to bid on, the bidder, as well as a bid amount:

public class Bid {
 private Item item;
 private Bidder bidder;
 private Double amount;
 ...
}

In this snippet, both the item and bidder instance variables represent relation-
ship references to other entities. You could be tempted to combine item, bidder,
and amount as a composite key for Bid, but remember that it might be the case
that neither of the references is simple enough to compare instances using the
equals method, as it would be for a java.lang.String or java.lang.Long. This is
where a designated IdClass comes in. The best way to understand how this works
is through an example.

 For simplicity, we’ll return to our Category object with the name and creation
date identity. Listing 7.2 shows how the solution might look.

public class CategoryPK implements Serializable {
 String name;
 Date createDate;

Listing 7.2 Specifying category identity using IdClass

Stored identity fields B

236 CHAPTER 7
Implementing domain models
 public CategoryPK() {}

 public boolean equals(Object other) {
 if (other instanceof CategoryPK) {
 final CategoryPK otherCategoryPK = (CategoryPK)other;
 return (otherCategory.name.equals(name) &&
 otherCategoryPK.createDate.equals(createDate));
 }

 return false;
 }

 public int hashCode() {
 return super.hashCode();
 }
}

@Entity
@IdClass(CategoryPK.class)
public class Category {
 public Category() {}

 @Id
 protected String name;

 @Id
 protected Date createDate;
 ...
}

As shown in listing 7.2, the CategoryPK class is designated as the IdClass for
Category G. The Category class has two identity fields marked by the @Id annota-
tion: name and creationDate G. These two identity fields are mirrored in the
CategoryPK class b. The constructor C is used to create an instance of the primary
key object. The equals method implemented in CategoryPK compares the two mir-
rored identity fields to determine if two given identities are equal D. The magic
here is that at runtime, the persistence provider determines if two Category objects
are equal by copying the marked @Id fields into the corresponding fields of the
CategoryPK object and using CategoryPK.equals. Note that any IdClass must be
Serializable and must provide a valid hashCode implementation E. In effect, all
that is happening here is that we are specifying exactly how to compare multiple
identity fields using an external IdClass F. The disadvantage to using @IdClass is
the slight redundancy and associated maintainability problems in repeating the
definition of identity fields in the entity and the IdClass. In our case the name and

 C Empty constructor
equals method
comparing identity

 D

 E Hashcode implementation

 F IdClass specification

 G Identity
fields

Implementing domain objects with JPA 237
createDate fields are defined in both the Category and CategoryPK classes. How-
ever, the IdClass approach keeps your domain model clutter free, especially as
opposed to the slightly awkward object model proposed by the third approach,
which uses the @EmbeddedId annotation.

The @EmbeddedId annotation
Using the @EmbeddedId annotation is like moving the IdClass right into your
entity and using the identity fields nested inside it to store entity data. Take a look
at what we mean in listing 7.3, which rewrites listing 7.2 using @EmbeddedId.

@Embeddable
public class CategoryPK {
 String name;
 Date createDate;

 public CategoryPK() {}

 public boolean equals(Object other) {
 if (other instanceof CategoryPK) {
 final CategoryPK otherCategoryPK = (CategoryPK)other;
 return (otherCategory.name.equals(name) &&
 otherCategoryPK.createDate.equals(createDate));
 }

 return false;
 }

 public int hashCode() {
 return super.hashCode();
 }
}

@Entity
public class Category {
 public Category() {}

 @EmbeddedId
 protected CategoryPK categoryPK;
 ...
}

In listing 7.3, notice that the identity fields, name and createDate, are absent alto-
gether from the Category class. Instead, an Embeddable object instance, catego-
ryPK b, is designated as the identity using the @EmbeddedId annotation D. The

Listing 7.3 Specifying category identity using EmbeddedId

 b

 C

 D

238 CHAPTER 7
Implementing domain models
CategoryPK object itself is almost identical to the IdClass used in listing 7.1 and
contains the name and createDate fields. We still need to implement the equals
and hashCode methods C. The only difference is that the @Embedded object need
not be Serializable. In effect, the object designated as @EmbeddedId is expected to
be a simple data holder encapsulating only the identity fields. Note that the @Id
annotation is missing altogether since it is redundant. As a matter of fact, you are
not allowed to use Id or IdClass in conjunction with EmbeddedId. As you can see,
although this approach saves typing, it is a little awkward to justify in terms of
object modeling (even the variable name, categoryPK, is more reminiscent of rela-
tional databases than OO). It is a little unwieldy too. Imagine having to write
category.catetogyPK.name to use the name field for any other purpose than as a
primary key, as opposed to using category.name. However, whatever method you
choose is ultimately a matter of personal taste.

 Unless you really need a composite primary key because you are stuck with a
legacy database, we don’t recommend using it and instead recommend a simple
generated key (also known as surrogate key) that you’ll learn about in chapter 8.

 One concept is critical: identities can only be defined once in an entire entity
hierarchy. Having had a sufficient introduction to the idea of entities and identi-
ties, you are now ready to explore the @Embeddable annotation in greater detail.

7.2.4 The @Embeddable annotation

Let’s step back a second from the idea of identities into the world of pure OO
domain modeling. Are all domain objects always identifiable on their own? How
about objects that are simply used as convenient data holders/groupings inside
other objects? An easy example would be an Address object used inside a User
object as an elegant OO alternative to listing street address, city, zip, and so forth
directly as fields of the User object. It would be overkill for the Address object to
have an identity since it is not likely to be used outside a User object. This is
exactly the kind of scenario for which the @Embeddable annotation was designed.
The @Embeddable annotation is used to designate persistent objects that need
not have an identity of their own. This is because Embeddable objects are identi-
fied by the entity objects they are nested inside and never persisted or accessed
on their own. Put another way, Embeddable objects share their identities with
the enclosing entity. An extreme case of this is the @EmbeddedId situation where the
Embeddable object is the identity. Listing 7.4 contains a user/address example to
help you gain a better understanding of the most commonly used Embeddable
object semantic patterns.

Entity relationships 239
@Embeddable
public class Address {
 protected String streetLine1;
 protected String streetLine2;
 protected String city;
 protected String state;
 protected String zipCode;
 protected String country;
 ...
}

@Entity
public class User {
 @Id
 protected Long id;
 protected String username;
 protected String firstName;
 protected String lastName;
 @Embedded
 protected Address address;
 protected String email;
 protected String phone;
 ...
}

In listing 7.4, the embeddable Address object b is embedded inside a User entity
D and shares the identity marked with the @Id annotation C. It is illegal for an
@Embeddable object to have an identity. Also, the EJB 3 API does not support
nested embedded objects. In most cases, embedded objects are stored in the
same database record as the entity and are only materialized in the OO world.
We’ll show you how this works in chapter 8.

 Our discussion of embedded objects rounds out our coverage of domain
objects. We’ll take a look at domain object relationships next.

7.3 Entity relationships

Earlier in the chapter, we explored the concepts of domain relationships, direc-
tion, and multiplicity. As a review, we’ll summarize those concepts here before div-
ing into the details of how to specify domain relationships using JPA. As you might
have noted in our domain object code samples, a relationship essentially means
that one entity holds an object reference to another. For example, the Bid object

Listing 7.4 Using embedded objects

 B Embeddable address

 C Shared identity

 D Embedded address

240 CHAPTER 7
Implementing domain models
holds a reference to the Item object the bid was placed on. Therefore, a relation-
ship exists between the Bid and Item domain objects. Recall that relationships can
be either unidirectional or bidirectional. The relationship between Bidder and
Bid in figure 7.3 is unidirectional, since the Bidder object has a reference to Bid
but the Bid object has no reference to the Bidder. The Bid-Item relationship, on
the other hand, is bidirectional, meaning both the Bidder and Item objects have
references to each other. Relationships can be one-to-one, one-to-many, many-to-
one, or many-to-many. Each of these relationship types is expressed in JPA
through an annotation. Table 7.2 lists the relationship annotations we’ll discuss in
the following sections.

We explore each annotation using examples next.

7.3.1 @OneToOne

The @OneToOne annotation is used to mark uni- and bidirectional one-to-one
relationships. Although in most systems one-to-one relationships are rare, they
make perfect sense for domain modeling. In fact, our ActionBazaar example in
figure 7.3 has no one-to-one relationship. However, we can imagine that the
User domain object parent to both Seller and Bidder has a one-to-one relation-
ship with a BillingInfo object. The BillingInfo object might contain billing
data on a user’s credit card, bank account, and so on. Let’s start by seeing what a
unidirectional relationship would look like.

Unidirectional one-to-one
For the time, being, let’s assume that the User object has a reference to the Bill-
ingInfo but not vice versa. In other words, the relationship is unidirectional, as
shown in figure 7.5.

Table 7.2 Domain relation types and corresponding annotations

Type of relationship Annotation

One-to-one @OneToOne

One-to-many @OneToMany

Many-to-one @ManyToOne

Many-to-many @ManyToMany

Entity relationships 241
Listing 7.5 illustrates this relationship.

@Entity
public class User {
 @Id
 protected String userId;
 protected String email;
 @OneToOne
 protected BillingInfo billingInfo;
}

@Entity
public class BillingInfo {
 @Id
 protected Long billingId;
 protected String creditCardType;
 protected String creditCardNumber;
 protected String nameOnCreditCard;
 protected Date creditCardExpiration;
 protected String bankAccountNumber;
 protected String bankName;
 protected String routingNumber;
}

In listing 7.5, the User class holds a BillingInfo reference in the persisted
billingInfo field. Since the billingInfo variable holds only one instance of the
BillingInfo class, the relationship is one-to-one. The @OneToOne annotation indi-
cates that the persistence provider should maintain this relationship in the data-
base b. Let’s take a closer look at the definition of the @OneToOne annotation to
better understand its features:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;

Listing 7.5 Unidirectional one-to-one relationship

Figure 7.5 A one-to-one relationship between the User and BillingInfo entities. A User may have at
most one instance of the BillingInfo object and the BillingInfo object cannot exist without a User.

One-to-one relationship between
User and BillingInfo

 B

242 CHAPTER 7
Implementing domain models
 boolean optional() default true;
 String mappedBy() default "";
}

First, note that this annotation can be applied to either fields or properties since
the Target is specified to be METHOD, FIELD. We are using field-based persistence
for the examples to keep things simple. The targetEntity element tells the per-
sistence provider what the related entity class is. In most cases, this is redundant
since the container can infer the class from the class of the field or the return type
of the property getter and setter. However, you can specify it explicitly anyway if
you prefer. You’ll see a case in which this element is indispensable when we
explore one-to-many relations. The cascade and fetch parameters are best dis-
cussed after we introduce object-relational mapping in the next chapter. For now,
suffice it to say that cascade controls what happens to related data when the rela-
tionship is altered or deleted and fetch specifies when and how the related fields
are populated from database tables.

 Listing 7.6 shows an example of how the @OneToOne annotation might be
applied to a property instead of a field.

@Entity
public class User {
 private Long userId;
 private String email;
 private BillingInfo billing;
 ...
 @OneToOne
 public BillingInfo getBilling() {
 this.billing;
 }

 public void setBilling(BillingInfo billing) {
 this.billing = billing;
 }
}

@Entity
public class BillingInfo {
 private Long billingId;
 private String creditCardType;
 ...
}

Listing 7.6 Property-based unidirectional one-to-one relationship

One-to-one relationship
using properties

Entity relationships 243
The optional element tells the persistence provider if the related object must
always be present. By default, this is set to true, which means that a correspond-
ing related object need not exist for the entity to exist. In our case, not every user
always has billing information (for example if the user just signed up), so the rela-
tionship is optional and the billing field can sometimes be null. If the optional
parameter is set to false, the entity cannot exist if the relationship or association
does not hold. In other words, no User without BillingInfo could ever exist.
You’ll see the mappedBy parameter in action in the next section when we discuss
bidirectional associations.

Bidirectional one-to-one
The real point of having domain relationships between entities is to be able to
reach one entity from another. In our previous example, we can easily reach the
billing information through the billingInfo reference when we have an instance
of a User. In some cases, you need to be able to access related entities from either
side of the relationship (admittedly, this is rare for one-to-one relationships). For
example, the ActionBazaar application may periodically check for credit card
expiration dates and notify users of imminently expiring credit cards. As a result,
the application should be able to access user information from a given Billing-
Info entity and the User-BillingInfo relationship should really be bidirectional.
In effect, bidirectional one-to-one relationships are implemented using two @One-
ToOne annotations pointing to each other on either side of the bidirectional rela-
tionship. Let’s see how this works in listing 7.7 by refactoring the code from
listing 7.5.

@Entity
public class User {
 @Id
 protected String userId;
 protected String email;
 @OneToOne
 protected BillingInfo billingInfo;
}

@Entity
public class BillingInfo {
 @Id
 protected Long billingId;
 protected String creditCardType;
 ..

Listing 7.7 Bidirectional one-to-one relationship

One-to-one
relationship

 B

244 CHAPTER 7
Implementing domain models
 protected String routingNumber;
 @OneToOne(mappedBy="billingInfo", optional="false");
 protected User user;
}

In listing 7.7, the User class still has a relationship to the BillingInfo class through
the billingInfo variable b. However, in this case the relationship is bidirectional
because the BillingInfo class also has a reference to the User class through the
user field C. The @OneToOne annotation on the user field has two more interesting
things going on. The first is the mappedBy="billingInfo" specification C. This
tells the container that the “owning” side of the relationship exists in the User
class’s billingInfo instance variable. The concept of a relationship owner doesn’t
originate from domain modeling. It exists as a convenience to define the database
mapping for a relationship only once instead of repeating the same mapping for
both directions of a relationship. You’ll see this concept in action in chapter 8 when
we describe O/R mapping. For now, simply note the role of the mappedBy attribute.

 The second interesting feature of the @OneToOne annotation on the user field is
that the optional parameter is set to false this time. This means that a Billing-
Info object cannot exist without a related User object. After all, why bother stor-
ing credit card or bank account information that is not related to an existing user?

7.3.2 @OneToMany and @ManyToOne
As you might have gathered from the ActionBazaar domain model in figure 7.3,
one-to-many and many-to-one relationships are the most common in enterprise
systems. In this type of relationship, one entity will have two or more references of
another. In the Java world, this usually means that an entity has a collection-type
field such as java.util.Set or java.util.List storing multiple instances of another
entity. Also, if the association between two entities is bidirectional, one side of the
association is one-to-many and the opposite side of the association is many-to-one.

 In figure 7.6, the relationship between Bid and Item is one-to-many from the
perspective of the Item object, while it is many-to-one from the perspective of

Reciprocal
relationship
to User C

Figure 7.6 Every Item has one or more Bids where more than one Bid may be placed on an Item.
Therefore, the relationship between Item and Bid is one-to-many whereas the relationship between
Bid and Item is many-to-one.

Entity relationships 245
the Bid. Similar to the one-to-one case, we can mark the owning side of the rela-
tionship by using the mappedBy column on the entity that is not the owner of the
relationship. We’ll analyze these relationships further by actually coding the Bid-
Item relationship (see listing 7.8).

@Entity
public class Item {
 @Id
 protected Long itemId;
 protected String title;
 protected String description;
 protected Date postdate;
 ...
 @OneToMany(mappedBy="item")
 protected Set<Bid> bids;
 ...
}

@Entity
public class Bid {
 @Id
 protected Long bidId;
 protected Double amount;
 protected Date timestamp;
 ...
 @ManyToOne
 protected Item item;
 ...
}

One-to-many relationship
Listing 7.8 shows that the Item domain object has a Set of Bid objects that it has
references to. To signify this domain relationship, the bids field is marked with a
@OneToMany annotation. There are a few nuances about the @OneToMany annota-
tion we should talk about. To explore them, take a quick look at the definition of
the annotation:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

Listing 7.8 One-to-many bidirectional relationship

One-to-many
relationship

Corresponding
many-to-one
relationship

246 CHAPTER 7
Implementing domain models
As you’ll notice, this is literally identical to the definition of the @OneToOne
annotation, including the mappedBy element. As a matter of fact, the only ele-
ment we need to discuss further is targetEntity. Remember that this element is
used to specify the class of the related entity if it is not immediately obvious. In
the @OneToMany annotation used in listing 7.8, this parameter is omitted since
we are using Java generics to specify the fact that the bids variable stores a Set
of Bid objects:

@OneToMany(mappedBy="item")
protected Set<Bid> bids;

Imagine, however, what would happen if we did not use generics on the Set. In
this case, it would be impossible for the persistence provider to determine what
entity the Item object has a relation to. This is exactly the situation the target-
Entity parameter is designed for. We would use it to specify the entity at the other
end of the one-to-many relationship as follows:

@OneToMany(targetEntity=Bid.class,mappedBy="item")
protected Set bids;

Many-to-one as owning-side of relationship
Also, note the mappedBy="item" value on the @OneToMany annotation. This value
specifies the owning side of the bidirectional relationship as the items field of the
Bid entity.

 Because the relationship is bidirectional, the Bid domain object has a refer-
ence to an Item through the item variable. The @ManyToOne annotation on the
item variable tells the persistence provider that more than one Bid entity could
hold references to the same Item instance. For bidirectional one-to-many rela-
tionships, ManyToOne is always the owning side of the relationship. Because of
this fact, the mappedBy element does not exist in the definition of the @Many-
ToOne annotation:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

Other than this minor difference, all the other elements of the @ManyToOne anno-
tation have the same purpose and functionality as the elements in the @OneToOne
and @OneToMany annotations.

 The last type of domain relationship is many-to-many, which we’ll discuss next.

Entity relationships 247
7.3.3 @ManyToMany

While not as common as one-to-many, many-to-many relationships occur quite fre-
quently in enterprise applications. In this type of relationship, both sides might
have multiple references to related entities. In our ActionBazaar example, the
relationship between Category and Item is many-to-many, as shown in figure 7.7.

That is, a category can contain multiple items and an item can belong to multiple
categories. For example, a category named “Sixties Fashion” could contain items
like “Bellbottom Pants” and “Platform Shoes.” “Bellbottom Pants” and “Platform
Shoes” could also be listed under “Uncomfortable and Outdated Clothing.”
Although many-to-many relationships can be unidirectional, they are often bidi-
rectional because of their crossconnecting, mutually independent nature. Not too
surprisingly, a bidirectional many-to-many relationship is often represented by
@ManyToMany annotations on opposite sides of the relationship. As with the one-to-
one and one-many relationships, you can identify the owning side of the relation-
ship by specifying mappedBy on the “subordinate” entity; you may have to use the
targetEntity attribute if you’re not using Java generics.

 The definition for @ManyToMany is identical to OneToMany and holds no special
intricacies beyond those already discussed:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

To round off our discussion of many-to-many relationships, listing 7.9 shows how
the Item-Category relationship might look.

@Entity
public class Category {

Listing 7.9 Many-to-many relationship between Category and Items

Figure 7.7 The relationship between Category and Item is many-to-many because every category
may have one or more items, whereas each item may belong to more than one category.

248 CHAPTER 7
Implementing domain models
 @Id
 protected Long categoryId;
 protected String name;
 ...
 @ManyToMany
 protected Set<Item> items;
 ...
}

@Entity
public class Item {
 @Id
 protected Long itemId;
 protected String title;
 ...
 @ManyToMany(mappedBy="items")
 protected Set<Category> categories;
 ...
}

In listing 7.9, the Category object’s items variable is marked by the @ManyToMany
annotation and is the owning side of the bidirectional association. In contrast, the
Item object’s categories variable signifies the subordinate bidirectional many-to-
many association. As in the case of one-to-many relationships, the @ManyToMany
annotation is missing the optional attribute. This is because an empty Set or List
implicitly means an optional relationship, meaning that the entity can exist even
if no associations do.

 As a handy reference, we summarize the various elements available in the
@OneToOne, @OneToMany, @ManyToOne, and @ManyToMany annotations in table 7.3.

Table 7.3 Elements available in the @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany
annotations

Element @OneToOne @OneToMany @ManyToOne @ManyToMany

targetEntity Yes Yes Yes Yes

cascade Yes Yes Yes Yes

fetch Yes Yes Yes Yes

optional Yes No Yes No

mappedBy Yes Yes No Yes

Owning
many-to-many
relationship

Subordinate
many-to-many
relationship

Summary 249
7.4 Summary

In this chapter, we discussed basic domain modeling concepts: entities, relation-
ships, and how to define them using JPA. The lightweight API makes creating
rich, elegant, object-oriented domain models a simple matter of applying anno-
tations or deployment descriptor settings to plain Java objects. The even greater
departure from the heavyweight, framework code–laden approach of EJB 2 is the
fact that the new persistence API can be separated altogether from the container,
as you’ll see in upcoming chapters.

 It is interesting to note that the API doesn’t directly control relationship mul-
tiplicity. In the case of one-to-one and many-to-one relationships, the optional
element somewhat specifies the multiplicity of the relationship. However, in the
case of one-to-many and many-to-many relationships, the API does not enforce
multiplicity at all. It is instead the responsibility of the programmer to control the
size of the collection holding entity references (java.util.Set objects in our
examples) and therefore control multiplicity.

 In chapter 8 we move on to the next step in building the ActionBazaar persis-
tence layer and show you how to map the entities and relationships we created to
the database using object-relational mapping.

RIP: container-managed relationships

If you have used EJB 2, you might be familiar with the container-managed relation-
ship (CMR) feature of entity beans with bidirectional relationships. This feature mon-
itored changes on either side of the relationship and updated the other side
automatically. CMR is not supported in this version because entities can possibly be
used outside of containers. However, mimicking this feature is not too hard using a
few extra lines of code. Let us take the User-BillingInfo one-to-one relationship,
for example. The code for changing the BillingInfo object for a User and making
sure both sides of the relationship are still accurate would look like this:

user.setBilling(billing);
billing.setUser(user);

Object-relational
mapping
This chapter covers
■ Object-relational mapping concepts
■ Mapping entities to tables
■ Relationship mapping
■ Inheritance mapping strategies
250

The impedance mismatch 251
In the previous chapter, we used EJB 3 JPA features to create a POJO domain model
that supported a full range of OO features, including inheritance. We discussed
entities, embedded objects, and the relationships between them using EJB 3 anno-
tations. In this chapter, you’ll learn how to persist our domain model into a rela-
tional database using object-relational mapping (ORM), which is the basis for JPA.
In effect, ORM specifies how sets of Java objects, including references between
them, are mapped to rows and columns in database tables. The first part of this
chapter briefly discusses the difference between the object-oriented and relational
world, also known as “impedance mismatch.” Later sections of the chapter explore
the ORM features of the EJB 3 JPA.

 If you are a seasoned enterprise developer, you are probably comfortable with
relational databases. If this is not the case, then refer to appendix B for a primer
on some relatively obscure relational database concepts such as normalization
and sequence columns that you must grasp to have a clear understanding of the
intricacies of O/R mapping.

 We start our discussion by taking a look at the basic motivation behind O/R
mapping, the so-called impedance mismatch. Then we’ll begin our analysis by
mapping domain objects, and move on to mapping relations. Finally we’ll exam-
ine the concept of map inheritance and you’ll learn about the inheritance strate-
gies supported by JPA.

8.1 The impedance mismatch

The term impedance mismatch refers to the differences in the OO and relational
paradigms and difficulties in application development that arise from these dif-
ferences. The persistence layer where the domain model resides is where the
impedance mismatch is usually the most apparent. The root of the problem lies
in the differing fundamental objectives of both technologies.

 Recall that when a Java object holds a reference to another, the actual referred
object is not copied over into the referring object. In other words, Java accesses
objects by reference and not by value. For example, two different Item objects
containing the same category instance variable value really point to the same
Category object in the JVM. This fact frees us from space efficiency concerns in
implementing domain models with a high degree of conceptual abstraction. If
this were not the case, we’d probably store the identity of the referred Category
object (perhaps in an int variable) inside the Item and materialize the link when
necessary. This is in fact almost exactly what is done in the relational world.

252 CHAPTER 8
Object-relational mapping
 The JVM also offers the luxury of inheritance and polymorphism (by means
that are very similar to the object reference feature) that does not exist in the rela-
tional world. Lastly, as we mentioned in the previous chapter, a rich domain model
object includes behavior (methods) in addition to attributes (data in instance vari-
ables). Databases tables, on the other hand, inherently encapsulate only rows, col-
umns, and constraints, and not business logic. These differences mean that the
relational and OO model of the same conceptual problem look very different,
especially for an appropriately normalized database created by an experienced
DBA. Table 8.1 summarizes some of the overt mismatches between the object and
relational worlds.

In the following sections, we’ll crystallize the object-relational mismatch a little
more by looking at a few corner cases while saving a persistence layer domain
model into the database. (As you’ll recall from chapter 2, a corner case is a problem
or situation that occurs only outside normal operating parameters.) We’ll also dis-
cuss problems in mapping objects to database tables and provide a brief overview
of ORM.

8.1.1 Mapping objects to databases

The most basic persistence layer for a Java application could consist of saving and
retrieving domain objects using the JDBC API directly. To flush out the particu-
larly rough spots in the object-relational mismatch, we’ll assume automated ORM
does not exist and that we are following the direct JDBC route to persistence. Later
we’ll see that the EJB 3 Persistence API irons out these rough spots through simple
configuration. Scott Ambler has written an interesting article that discusses the

Table 8.1 The impedance mismatch: obvious differences between the object and relational worlds

OO Model (Java) Relational Model

Object, classes Table, rows

Attributes, properties Columns

Identity Primary key

Relationship/reference to other entity Foreign key

Inheritance/polymorphism Not supported

Methods Indirect parallel to SQL logic, stored procedures, triggers.

Code is portable Not necessarily portable, depending on vendor

The impedance mismatch 253
problem of mapping objects to a relational database (www.agiledata.org/essays/
mappingObjects.html).

One-to-one mapping
As we discussed in the previous chapter, one-to-one relationships between entities,
though rare in applications, make a great deal of sense in the domain-modeling
world. For example, the User and BillingInfo objects represent two logically sep-
arate concepts in the real world (we assume) that are bound by a one-to-one rela-
tionship. Moreover, we also know that it does not make very much sense for a
BillingInfo object to exist without an associated User. The relationship could be
unidirectional from User to BillingInfo. Figure 8.1 shows this relationship, and
listing 8.1 implements it.

public class User {
 protected String userId;
 protected String email;
 protected BillingInfo billing;
}

public class BillingInfo {
 protected String creditCardType;
 protected String creditCardNumber;
 protected String nameOnCreditCard;
 protected Date creditCardExpiration;
 protected String bankAccountNumber;
 protected String bankName;
 protected String routingNumber;
}

From an OO perspective, it would make sense for the database tables storing this
data to mirror the Java implementation in listing 8.1. In this scheme, two differ-
ent tables, USERS and BILLING_INFO, would have to be created, with the billing
object reference in the User object b translated into a foreign key to the BILLING_
INFO table’s key in the USERS table (perhaps called BILLING_ID). The problem is

Listing 8.1 One-to-one relationship between User and BillingInfo

Figure 8.1 A unidirectional one-to-one (optional) relationship between User and BillingInfo

Object reference for
one-to-one relationship B

254 CHAPTER 8
Object-relational mapping
that this scheme does not make complete sense in the relational world. As a mat-
ter of fact, since the objects are merely expressing a one-to-one relationship, nor-
malization would dictate that the USERS and BILLING_INFO tables be merged into
one. This would eliminate the almost pointless BILLING_INFO table and the redun-
dant foreign key in the USERS table. The extended USERS table could look like this:

USER_ID NOT NULL, PRIMARY KEY NUMBER
EMAIL NOT NULL VARCHAR2(255)
CREDIT_CARD_TYPE VARCHAR2(255)
CREDIT_CARD_NUMBER VARCHAR2(255)
NAME_ON_CREDIT_CARD VARCHAR2(255)
CREDIT_CARD_EXPIRATION DATE
BANK_ACCOUNT_NUMBER VARCHAR2(255)
BANK_NAME VARCHAR2(255)
ROUTING_NUMBER VARCHAR2(255)

In effect, our persistence layer mapping code would have to resolve this differ-
ence by pulling field data out of both the USERS and related BILLING_INFO tables
and storing it into the columns of the combined USERS table. A bad approach, but
an all-too-common one, would be to compromise your domain model to make it
fit the relational data model (get rid of the separate BillingInfo object). While
this would certainly make the mapping code simpler, you would lose out on a sen-
sible domain model. In addition, you would write awkward code for the parts of
your application that deal only with the BillingInfo object and not the User
object. If you remember our discussion in chapter 7, then you probably realize
that BillingInfo may make sense as an embedded object since you do not want to
have a separate identity, and want to store the data in the USERS table.

One-to-many relationships
The relational primary-key/foreign-key mechanism is ideally suited for a parent-
child one-to-many relationship between tables. Let’s take the probable relation-
ship between the ITEMS and BIDS tables, for example. The tables will probably
look like those shown in listing 8.2.

ITEMS
ITEM_ID NOT NULL, PRIMARY KEY NUMBER
TITLE NOT NULL VARCHAR2(255)
DESCRIPTION NOT NULL CLOB
INITIAL_PRICE NOT NULL NUMBER
BID_START_DATE NOT NULL TIMESTAMP
BID_END_DATE NOT NULL TIMESTAMP

Listing 8.2 One-to-many relationship between ITEMS and BIDS tables

The impedance mismatch 255
ITEM_SELLER_ID NOT NULL, NUMBER
 FOREIGN KEY (USERS(USER_ID))

BIDS
BID_ID NOT NULL, PRIMARY KEY NUMBER
AMOUNT NOT NULL NUMBER
BID_DATE NOT NULL TIMESTAMP
BID_BIDDER_ID NOT NULL, NUMBER
 FOREIGN KEY (USER(USER_ID))
BID_ITEM_ID NOT NULL, NUMBER
 FOREIGN KEY (ITEMS(ITEM_ID))

The ITEM_ID foreign key into the ITEMS table from the BIDS table means that mul-
tiple BIDS table rows can refer to the same record in the ITEMS table. This imple-
ments a many-to-one relationship going from the BIDS table to the ITEMS table,
and it is simple to retrieve an item given a bid record. On the other hand,
retrieval from ITEMS to BIDS will require a little more effort in looking for BIDS
rows that match a given ITEM_ID key. As we mentioned in the previous chapter,
however, the relationship between the Item and Bid domain objects is one-many
bidirectional. This means that the Item object has a reference to a set of Bid objects
while the Bid object holds a reference to an Item object. As a Java developer, you
might have expected the ITEMS table to contain some kind of reference to the BIDS
table in addition to the ITEM_ID foreign key in the BIDS table. The problem is that
such a table structure simply does not make sense in the relational world. Instead,
our ORM layer must translate the parent-child unidirectional database relation-
ship into a bidirectional one-to-many relationship in the OO world by using a
lookup scheme instead of simple, directional references.

Many-to-many
Many-to-many relationships are common in enterprise development. In our
ActionBazaar domain model presented in chapter 7, the relationship between the
Item and Category domain objects is many-to-many. That is, an item can belong in
multiple categories while a category can contain more than one item. This is fairly
easy to implement in the OO world with a set of references on either side of the
relationship. In the database world, on the other hand, the only way to implement
a relationship is through a foreign key, which is inherently one-to-many. As a
result, the only real way to implement many-to-many relationships is by breaking
them down into two one-to-many relationships. Let’s see how this works by taking
a look at the database table representation of the item-category relationship in
listing 8.3.

Foreign key signifying
one-to-many
relationship

256 CHAPTER 8
Object-relational mapping
ITEMS
ITEM_ID NOT NULL, PRIMARY KEY NUMBER
TITLE NOT NULL VARCHAR2(255)
...

CATEGORIES
CATEGORY_ID NOT NULL, PRIMARY KEY NUMBER
NAME NOT NULL VARCHAR2(255)
...

CATEGORIES_ITEMS
ITEM_ID NOT NULL, PRIMARY KEY NUMBER
 FOREIGN KEY(ITEMS(ITEM_ID))
CATEGORY_ID NOT NULL, PRIMARY KEY NUMBER
 FOREIGN KEY(CATEGORIES(CATEGORY_ID))

The CATEGORIES_ITEMS table is called an association or intersection table and accom-
plishes a pretty neat trick. The only two columns it contains are foreign key refer-
ences to the ITEMS and CATEGORIES tables (ironically the two foreign keys combined
are the primary key for the table). In effect, it makes it possible to match up arbi-
trary rows of the two related tables, making it possible to implement many-to-
many relationships. Since neither related table contains a foreign key, relationship
direction is completely irrelevant. To get to the records on the other side of the
relationship from either side, we must perform a join in the ORM layer involving
the association layer. For example, to get all the items under a category, we must
retrieve the CATEGORY_ID, join the CATEGORIES_ITEMS table with the ITEMS table,
and retrieve all item data for rows that match the CATEGORY_ID foreign key. Saving
the relationship into the database would involve saving a row CATEGORIES_ITEMS
table that links rows stored in CATEGORIES and ITEM tables. Clearly, the many-to-
many relationships are modeled differently in the relational world than they are in
the OO world.

Inheritance
Unlike the three previous cases (one-to-one, one-to-many, and many-to-many),
inheritance is probably the most severe case of the object-relational mismatch.
Inheritance therefore calls for solutions that are not elegant fits to relational the-
ory at all. The OO concept of inheritance has no direct equivalent in the rela-
tional world. However, there are a few creative ways that O/R solutions bridge this
gap, including:

Listing 8.3 Many-to-many relationship between ITEMS and CATEGORIES tables

ITEMS table primary key

CATEGORIES table
primary key

Table linking
CATEGORIES and ITEMS ITEMS table

foreign key CATEGORIES_
ITEMS table
foreign key

The impedance mismatch 257
■ Storing each object in the inheritance hierarchy in completely sepa-
rated tables

■ Mapping all classes into a single table
■ Storing superclass/subclasses in related tables

Because none of these strategies is simple, we’ll save a detailed discussion for
later in the chapter (section 8.4).

8.1.2 Introducing O/R mapping

In the most general sense, the term object-relational mapping means any process
that can save an object (in our case a Java Object) into a relational database. As we
mentioned, for all intents and purposes you could write home-brewed JDBC code
to do that. In the realm of automated persistence, ORM means using primarily
configuration metadata to tell an extremely high-level API which tables a set of
Java Objects are going to be saved into. It involves the hopefully simple act of fig-
uring out what table row an Object instance should be saved into and what field/
property data belongs in what column. In EJB 3, the configuration metadata obvi-
ously consists either of annotations or deployment descriptor elements, or both.
As our impedance mismatch discussion points out, there are a few wrinkles in the
idealistic view of automated persistence. Because of the inherent complexity of
the problem, EJB 3 cannot make the solution absolutely effortless, but it goes a
long way in making it less painful. In the next section, we start our discussion of
EJB 3 ORM by covering the simple case of saving an entity without regard to
domain relations or inheritance.

ORM portability in EJB 2

One of the greatest weaknesses of EJB 2 container-managed persistence (CMP)
entity beans was that EJB 2 never standardized the process of ORM. Instead, map-
ping strategies were left up to the individual vendors, whose approaches varied
widely. As a result, porting entity beans from one application server to another
more or less meant redoing O/R mapping all over again. This meant that the port-
ability that EJB 2 promised meant little more than empty words.

EJB 3 firmly standardizes O/R mapping and gets us much closer to the goal of port-
ability. As a matter of fact, as long as you are careful to steer clear of application
server-specific features, you can likely achieve portability.

258 CHAPTER 8
Object-relational mapping
Other than smoothing out the impedance problems by applying generalized strat-
egies behind the scenes, there are a few other benefits to using O/R. Even disre-
garding the edge cases discussed earlier, if you have spent any time writing
application persistence layers using JDBC, you know that substantial work is
required. This is largely because of the repetitive “plumbing” code of JDBC and the
large volume of complicated handwritten SQL involved. As you’ll soon see, using
ORM frees you from this burden and the task of persistence largely becomes an
exercise in simple configuration. The fact that the EJB 3 persistence provider gen-
erates JDBC and SQL code on your behalf has another very nice effect: because the
persistence provider is capable of automatically generating code optimized to
your database platform from your database-neutral configuration data, switching
databases becomes a snap. Accomplishing the same using handwritten SQL is
tedious work at best and impossible at worst. Database portability is one of the most
appealing features of the EJB 3 Java Persistence API that fits nicely with the Java
philosophy, but has been elusive for some time.

 Now that we’ve looked at the reasons for O/R mapping, let’s see how EJB 3
implements it.

8.2 Mapping entities

This section explores some of the fundamental features of EJB 3 O/R mapping by
taking a look at the implementation of the ActionBazaar User entity. You’ll see
how to use several ORM annotations such as @Table, @Column, @Enumerated, @Lob,
@Temporal, and @Embeddable.

NOTE If you remember from our discussion in chapter 7, User is the superclass
to both the Seller and Bidder domain objects. To keep this example
simple, we’ll ignore the inheritance and use a persistence field to identify
the user type in the table USERS. We will use the same example to dem-
onstrate inheritance mapping in section 8.4.

The User entity contains fields that are common to all user types in ActionBazaar,
such as the user ID, username (used for login and authentication), first name, last
name, user type (bidder, seller, admin, etc.), user-uploaded picture, and user
account creation date. All fields are mapped and persisted into the database for
the User entity in listing 8.4. We have used field-based persistence for the entity to
keep the code sample short.

Mapping entities 259
@Entity
@Table(name="USERS")
@SecondaryTable(name="USER_PICTURES",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="USER_ID"))
public class User implements Serializable {

 @Id
 @Column(name="USER_ID", nullable=false)
 protected Long userId;

 @Column(name="USER_NAME", nullable=false)
 protected String username;

 @Column(name="FIRST_NAME", nullable=false, length=1)
 protected String firstName;

 @Column(name="LAST_NAME", nullable=false)
 protected String lastName;

 @Enumerated(EnumType.ORDINAL)
 @Column(name="USER_TYPE", nullable=false)
 protected UserType userType;

 @Column(name="PICTURE", table="USER_PICTURES")
 @Lob
 @Basic(fetch=FetchType.LAZY)
 protected byte[] picture;

 @Column(name="CREATION_DATE", nullable=false)
 @Temporal(TemporalType.DATE)
 protected Date creationDate;

 @Embedded
 protected Address address;

 public User() {}
}

@Embeddable
public class Address implements Serializable {
 @Column(name="STREET", nullable=false)
 protected String street;

 @Column(name="CITY", nullable=false)
 protected String city;

 @Column(name="STATE", nullable=false)
 protected String state;

Listing 8.4 Mapping an entity

 B Column
mappings

Enumerated
column

 C

 D BLOB field

Lazy loading E

 F Temporal field

Embedded field G

Embeddable class with
column mapping

 H

260 CHAPTER 8
Object-relational mapping
 @Column(name="ZIP_CODE", nullable=false)
 protected String zipCode;

 @Column(name="COUNTRY", nullable=false)
 protected String country;
}

Briefly scanning listing 8.4, you see that the User entity is mapped to the USERS
table joined with the USER_PICTURES table using the USER_ID primary key. Each of
the fields is mapped to a database column using the @Column annotation b. We
deliberately made the listing feature-rich, and quite a few interesting things are
going on with the columns. The userType field is restricted to be an ordinal enu-
meration C. The picture field is marked as a binary large object (BLOB) D that
is lazily loaded E. The creationDate field is marked as a temporal type F. The
address field is an embedded object G. The column mapping for Address object
is defined in the object H using the @Column annotation. All in all, the @Table,
@SecondaryTable, @Column, @Enumerated, @Lob, @Basic, @Temporal, @Embedded, and
@Embeddable ORM annotations are used. Let’s start our analysis of O/R with the
@Table annotation.

Annotations vs. XML in O/R mapping

The difficulty of choosing between annotations and XML deployment descriptors
manifests itself most strikingly in the arena of EJB 3 O/R mapping. XML descriptors
are verbose and hard to manage, and most developers find them to be a pain-
point for Java EE. While O/R mapping with annotations makes life simpler, you
should keep in mind that you are hard-coding your database schema in your code
in a way similar to using JDBC. This means that the slightest schema change will
result in a recompilation and redeployment cycle as opposed to simple configura-
tion. If you have a stable database design that rarely changes or you are comfort-
able using JDBC data access objects (DAOs), then there is no issue here. But if
you have an environment where the database schema is less stable (subject to
change more often), you’re probably better off using descriptors. Luckily, you can
use XML descriptors to override ORM annotations after deploying to a production
environment. As a result, changing your mind in response to the reality on the
ground may not be a big deal.

Mapping entities 261
8.2.1 Specifying the table

@Table specifies the table containing the columns to which the entity is mapped.
In listing 8.4, the @Table annotation makes the USERS table’s columns available for
ORM. In fact, by default all the persistent data for the entity is mapped to the
table specified by the annotation’s name parameter. As you can see from the anno-
tation’s definition here, it contains a few other parameters:

@Target(TYPE)
@Retention(RUNTIME)
public @interface Table {
 String name() default "";
 String catalog() default "";
 String schema() default "";
 UniqueConstraint[] uniqueConstraints() default {};
}

The @Table annotation itself is optional. If it’s omitted, the entity is assumed to be
mapped to a table in the default schema with the same name as the entity class. If
the name parameter is omitted, the table name is assumed to be the same as the
name of the entity. This will be just fine if we are mapping to the USER table.

NOTE Most persistence providers include a great developer-friendly feature
known as automatic schema generation. The persistence provider will auto-
matically create database objects for your entities when they do not exist
in the database. This behavior is not mandated by specification and is
configured using vendor-specific properties. Most of our code examples
rely on automatic schema generation. In chapter 11, we’ll provide an
example configuration to enable automatic schema generation.

We won’t discuss the catalog and schema parameters in depth since they are
hardly ever used. In effect, they allow you to fully qualify the mapped table. For
example, we could have explicitly specified that the USERS table belongs in the
ACTIONBAZAAR schema like so:

@Table(name="USERS", schema="ACTIONBAZAAR")
public class User

NOTE We’ve already discussed what a schema is. For all intents and purposes,
you can think of a catalog as a “meta-schema” or a higher-level abstrac-
tion for organizing schemas. Often, a database will only have one com-
mon system catalog.

262 CHAPTER 8
Object-relational mapping
By default, it is assumed that the table belongs in the schema of the data source
used. You’ll learn how to specify a data source for a persistence module in chapter
11 when we discuss entity packaging. The uniqueConstraints parameter is not
used that often either. It specifies unique constraints on table columns and is only
used when table autocreation is enabled. Here’s an example:

@Table(name="CATEGORIES",
 uniqueConstraints=
 {@UniqueConstraint(columnNames={"CATEGORY_ID"})})

If it does not exist and autogeneration is enabled, the code puts a unique con-
straint on the CATEGORY_ID column of the CATEGORIES table when it is created dur-
ing deployment time. The uniqueConstraints parameter supports specifying
constraints on more than one column. It is important to keep mind, however,
that EJB 3 implementations are not mandated to support generation of tables,
and it is a bad idea to use automatic table generation beyond simple develop-
ment databases. Most entities will typically be mapped to a single table. The User
object happens to be mapped to two tables, as you might have guessed from the
@SecondaryTable annotation used in listing 8.4. We’ll come back to this later after
we take a look at mapping entity data using the @Column annotation.

8.2.2 Mapping the columns

The @Column annotation maps a persisted field or property to a table column.
All of the fields used in listing 8.3 are annotated with @Column. For example, the
userId field is mapped to the USER_ID column:

@Column(name="USER_ID")
protected Long userId;

It is assumed that the USER_ID column belongs to the USERS table specified by the
@Table annotation. Most often, this is as simple as your @Column annotation will
look. At best, you might need to explicitly specify which table the persisted column
belongs to (when you map your entity to multiple tables using the @SecondaryTable
annotation) as we do for the picture field in listing 8.4:

@Column(name="PICTURE", table="USER_PICTURES")
...
protected byte[] picture;

As you can see from the definition in listing 8.5, a number of other parameters
exist for the annotation.

Mapping entities 263
@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface Column {
 String name() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
 int length() default 255;
 int precision() default 0;
 int scale() default 0;
}

The insertable and updatable parameters are used to control persistence behav-
ior. If the insertable parameter is set to false, the field or property will not be
included in the INSERT statement generated by the persistence provider to create
a new record corresponding to the entity. Likewise, setting the updatable param-
eter to false excludes the field or property from being updated when the entity is
saved. These two parameters are usually helpful in dealing with read-only data,
like primary keys generated by the database. They could be applied to the userId
field as follows:

@Column(name="USER_ID", insertable=false, updatable=false)
protected Long userId;

When a User entity is first created in the database, the persistence provider does
not include the USER_ID as part of the generated INSERT statement. Instead, we
could be populating the USER_ID column through an INSERT-induced trigger on
the database server side. Similarly, since it does not make much sense to update a
generated key, it is not included in the UPDATE statement for the entity either. The
rest of the parameters of the @Column annotation are only used for automatic
table generation and specify column creation data. The nullable parameter
specifies whether the column supports null values C, the unique parameter b
indicates if the column has a unique constraint, the length parameter D specifies
the size of the database column, the precision parameter E specifies the preci-
sion of a decimal field, and the scale parameter F specifies the scale of a deci-
mal column. Finally, the columnDefinition parameter allows you to specify the
exact SQL to create the column.

Listing 8.5 The @Column annotation

Specifies unique constraint B

Specifies if column
allows nulls C

Length of column D

 E Decimal precision of column

Decimal scale of column F

264 CHAPTER 8
Object-relational mapping
 We won’t cover these parameters much further than this basic information
since we do not encourage automatic table creation. Note that the @Column anno-
tation is optional. If omitted, a persistent field or property is saved to the table
column matching the field or property name. For example, a property specified
by the getName and setName methods will be saved into the NAME column of the
table for the entity.

 Next, let’s take a look at a few more annotations applied to entity data, starting
with @Enumerated.

8.2.3 Using @Enumerated

Languages like C and Pascal have had enumerated data types for decades. Enu-
merations were finally introduced in Java 5. In case you are unfamiliar with them,
we’ll start with the basics. In listing 8.4, the user type field has a type of UserType.
UserType is a Java enumeration that is defined as follows:

public enum UserType {SELLER, BIDDER, CSR, ADMIN};

This effectively means that any data type defined as UserType (like our persistent
field in the User object) can only have the four values listed in the enumeration.
Like an array, each element of the enumeration is associated with an index called
the ordinal. For example, the UserType.SELLER value has an ordinal of 0, the User-
Type.BIDDER value has an ordinal of 1, and so on. The problem is determining
how to store the value of enumerated data into the column. The Java Persistence
API supports two options through the @Enumerated annotation. In our case, we
specify that the ordinal value should be saved into the database:

@Enumerated(EnumType.ORDINAL)
...
protected UserType userType;

This means that if the value of the field is set to UserType.SELLER, the value 0 will
be stored into the database. Alternatively, you can specify that the enumeration
value name should be stored as a String:

@Enumerated(EnumType.STRING)
...
protected UserType userType;

In this case a UserType.ADMIN value would be saved into the database as "ADMIN".
By default an enumerated field or property is saved as an ordinal. This would
be the case if the @Enumerated annotation is omitted altogether, or no parame-
ter to the annotation is specified.

Mapping entities 265
8.2.4 Mapping CLOBs and BLOBs

An extremely powerful feature of relational databases is the ability to store very
large data as binary large object (BLOB) and character large object (CLOB) types.
These correspond to the JDBC java.sql.Blob and java.sql.Clob objects. The
@Lob annotation designates a property of field as a CLOB or BLOB. For example,
we designate the picture field as a BLOB in listing 8.4:

@Lob
@Basic(fetch=FetchType.LAZY)
protected byte[] picture;

Whether a field or property designated @Lob is a CLOB or a BLOB is determined by
its type. If the data is of type char[] or String, the persistence provider maps the
data to a CLOB column. Otherwise, the column is mapped as a BLOB. An extremely
useful annotation to use in conjunction with @Lob is @Basic. @Basic can be marked
on any attribute with direct-to-field mapping. Just as we have done for the picture
field, the @Basic(fetch=FetchType.LAZY) specification causes the BLOB or CLOB
data to be loaded from the database only when it is first accessed. Postponing of
loading of entity data from the database is known as lazy loading. (You will learn
more about lazy loading in chapter 9.) This is a great feature since LOB data is usu-
ally very memory intensive and should only be loaded if needed. Unfortunately,
lazy loading of LOB types is left as optional for vendors by the EJB 3 specification
and there is no guarantee that the column will actually be lazily loaded.

8.2.5 Mapping temporal types

Most databases support a few different temporal data types with different granu-
larity levels corresponding to DATE (storing day, month, and year), TIME (storing
just time and not day, month, or year) and TIMESTAMP (storing time, day, month,
and year). The @Temporal annotation specifies which of these data types we want
to map a java.util.Date or java.util.Calendar persistent data type to. In list-
ing 8.3, we save the creationDate field into the database as a DATE:

@Temporal(TemporalType.DATE)
protected Date creationDate;

Note this explicit mapping is redundant while using the java.sql.Date, java.
sql.Time or java.sql.Timestamp Java types. If we do not specify a parameter for
@Temporal annotation or omit it altogether, the persistence provider will assume
the data type mapping to be TIMESTAMP (the smallest possible data granularity).

266 CHAPTER 8
Object-relational mapping
8.2.6 Mapping an entity to multiple tables

This is not often the case for nonlegacy databases, but sometimes an entity’s data
must come from two different tables. In fact, in some rare situations, this is a very
sensible strategy. For example, the User entity in listing 8.4 is stored across the
USERS and USER_PICTURES tables, as shown in figure 8.2.

 This makes excellent sense because the USER_PICTURES table stores large binary
images that could significantly slow down queries using the table. However, this
approach is rarely used. Isolating the binary images into a separate table in con-
junction with the lazy loading technique discussed in section 8.2.4 to deal with the
picture field mapped to the USER_PICTURE table can result in a significant boost in
application performance. The @SecondaryTable annotation enables us to derive
entity data from more than one table and is defined as follows:

Figure 8.2 An entity can be mapped to more than one table; for example, the User entity spans more
than one table: USERS and USER_PICTURES. The primary table is mapped using @Table and the
secondary table is mapped using @SecondaryTable. The primary and secondary tables must have the
same primary key.

Mapping entities 267
@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
 String name();
 String catalog() default "";
 String schema() default "";
 PrimaryKeyJoinColumn[] pkJoinColumns() default {};
 UniqueConstraint[] uniqueConstraints() default {};
}

Notice that other than the pkJoinColumns element, the definition of the annota-
tion is identical to the definition of the @Table annotation. This element is the key
to how annotation works. To see what we mean, examine the following code
implementing the User entity mapped to two tables:

@Entity
@Table(name="USERS")
@SecondaryTable(name="USER_PICTURES",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="USER_ID"))
public class User implements Serializable {
..}

Obviously, the two tables in @Table and @SecondaryTable are related somehow and
are joined to create the entity. This kind of relationship is implemented by creating
a foreign key in the secondary table referencing the primary key in the first table.
In this case, the foreign key also happens to be the primary key of the secondary
table. To be precise, USER_ID is the primary key of the USER_PICTURES table and it
references the primary key of the USERS table. The pkJoinColumns=@PrimaryKey-
JoinColumn(name="USER_ID") specification assumes this relationship. The name
element points to the USER_ID foreign key in the USER_PICTURES secondary table.
The persistence provider is left to figure out what the primary key of the USERS
table is, which also happens to be named USER_ID. The provider performs a join
using the detected primary key in order to fetch the data for the User entity. In the
extremely unlikely case that an entity consists of columns from more than two
tables, we may use the @SecondaryTables annotation more than once for the same
entity. We won’t cover this case here, but encourage you to explore it if needed.

 Before we conclude the section on mapping entities, let’s discuss a vital feature
of JPA: primary key generation.

8.2.7 Generating primary keys

When we identify a column or set of columns as the primary key, we essentially ask
the database to enforce uniqueness. Primary keys that consist of business data are
called natural keys. The classic example of this is SSN as the primary key for an
EMPLOYEE table. CATEGORY_ID or EMPLOYEE_ID, on the other hand, are examples of

268 CHAPTER 8
Object-relational mapping
surrogate keys. Essentially, surrogate keys are columns created explicitly to function
as primary keys. Surrogate keys are popular and we highly recommend them,
especially over compound keys.

 There are three popular ways of generating primary key values: identities,
sequences, and tables. Fortunately, all three strategies are supported via the
@GeneratedValue annotation and switching is as easy as changing the configura-
tion. Let’s start our analysis with the simplest case: using identities.

Identity columns as generators
Many databases such as Microsoft SQL Server support the identity column.
You can use an identity constraint to manage the primary key for the User
entity as follows:

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name="USER_ID")
protected Long userId;

This code assumes that an identity constraint exists on the USERS.USER_ID col-
umn. Note that when using IDENTITY as the generator type, the value for the
identity field may not be available before the entity data is saved in the database
because typically it is generated when a record is committed.

 The two other strategies, SEQUENCE and TABLE, both require the use of an exter-
nally defined generator: a SequenceGenerator or TableGenerator must be created
and set for the GeneratedValue. You’ll see how this works by first taking a look at
the sequence generation strategy.

Database sequences as generators
To use sequence generators, first define a sequence in the database. The follow-
ing is a sample sequence for the USER_ID column in an Oracle database:

CREATE SEQUENCE USER_SEQUENCE START WITH 1 INCREMENT BY 10;

We are now ready to create a sequence generator in EJB 3:

@SequenceGenerator(name="USER_SEQUENCE_GENERATOR",
 sequenceName="USER_SEQUENCE",
 initialValue=1, allocationSize=10)

The @SequenceGenerator annotation creates a sequence generator named USER_
SEQUENCE_GENERATOR referencing the Oracle sequence we created and matching its
setup. Naming the sequence is critical since it is referred to by the @GeneratedValue
annotation. The initialValue element is pretty self-explanatory: allocationSize
specifies by how much the sequence is incremented each time a value is generated.

Mapping entities 269
The default values for initialValue and allocationSize are 0 and 50, respec-
tively. It’s handy that the sequence generator need not be created in the same
entity in which it is used. As a matter of fact, any generator is shared among all
entities in the persistence module and therefore each generator must be uniquely
named in a persistence module. Finally, we can reimplement the generated key for
the USER_ID column as follows:

@Id
@GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="USER_SEQUENCE_GENERATOR")
@Column(name="USER_ID")
protected Long userId;

Sequence tables as generators
Using table generators is just as simple as with a sequence generator. The first
step is creating a table to use for generating values. The table must follow a gen-
eral format like the following one created for Oracle:

CREATE TABLE SEQUENCE_GENERATOR_TABLE
 (SEQUENCE_NAME VARCHAR2(80) NOT NULL,
 SEQUENCE_VALUE NUMBER(15) NOT NULL,
 PRIMARY KEY (SEQUENCE_NAME));

The SEQUENCE_NAME column is meant to store the name of a sequence, and the
SEQUENCE_VALUE column is meant to store the current value of the sequence. The
next step is to prepare the table for use by inserting the initial value manually
as follows:

INSERT INTO
 SEQUENCE_GENERATOR_TABLE (SEQUENCE_NAME, SEQUENCE_VALUE)
VALUES ('USER_SEQUENCE', 1);

In a sense, these two steps combined are the equivalent of creating the Oracle
sequence in the second strategy. Despite the obvious complexity of this approach,
one advantage is that the same sequence table can be used for multiple sequences
in the application. We are now prepared to create the TableGenerator utilizing
the table:

@TableGenerator (name="USER_TABLE_GENERATOR",
 table="SEQUENCE_GENERATOR_TABLE",
 pkColumnName="SEQUENCE_NAME",
 valueColumnName="SEQUENCE_VALUE",
 pkColumnValue="USER_SEQUENCE")

If you need to, you can specify the values for initialValue and allocationSize as
well. Finally, we can use the table generator for USER_ID key generation:

270 CHAPTER 8
Object-relational mapping
@Id
@GeneratedValue(strategy=GenerationType.TABLE,
 generator="USER_TABLE_GENERATOR")
@Column(name="USER_ID")
protected Long userId;

Default primary key generation strategy
The last option for key generation is to let the provider decide the best strategy
for the underlying database by using the AUTO specification as follows:

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
@Column(name="USER_ID")
protected Long userId;

This is a perfect match for automatic table creation because the underlying data-
base objects required will be created by the JPA provider.

NOTE You’d assume that if Oracle were the underlying database, the persis-
tence provider probably would choose SEQUENCE as the strategy; if SQL
Server were the underlying database, IDENTITY would likely be chosen
on your behalf. However, this may not be true, and we recommend that
you check the documentation of your persistence provider. For example,
TopLink Essentials uses a table generator as the default autogenerator
for all databases.

Keep in mind that although generated values are often used for surrogate keys,
you could use the feature for any persistence field or property. Before we move on
to discussing entity relations, we’ll tackle the most complicated case of mapping
basic entity data next—mapping embeddable objects.

8.2.8 Mapping embeddable classes

When discussing embeddable objects in chapter 7, we explained that an embed-
dable object acts primarily as a convenient data holder for entities and has no

Standardization of key generation

Just as EJB 3 standardizes O/R mapping, it standardizes key generation as well. This
is a substantial leap from EJB 2, where you had to resort to various sequence gen-
erator patterns to accomplish the same for CMP entity beans. Using sequences,
identity constraints, or tables was a significant effort, a far cry from simple config-
uration, not to mention a nonportable approach.

Mapping entities 271
identity of its own. Rather, it shares the identity of the entity class it belongs to.
Let’s now discuss how embeddable objects are mapped to the database (figure 8.3).

 In listing 8.4, we included the Address embedded object introduced in chap-
ter 7 in the User entity as a data field. The relevant parts of listing 8.4 are
repeated in listing 8.6 for easy reference.

@Table(name="USERS")
...
public class User implements Serializable {

 @Id
 @Column(name="USER_ID", nullable=false)
 protected Long userId;
 ...
 @Embedded
 protected Address address;
 ...
}
...

Listing 8.6 Using embeddable objects

Figure 8.3 Embeddable objects act as convenient data holders for entities and have no identity of
their own. Address is an embeddable object that is stored as a part of the User entity that is mapped
to the USERS table.

 B Table stores both entity and embeddable object

Shared identity C

Embedded field D

272 CHAPTER 8
Object-relational mapping
@Embeddable
public class Address implements Serializable {
 @Column(name="STREET", nullable=false)
 protected String street;
 ...
 @Column(name="ZIP_CODE", nullable=false)
 protected String zipCode;
 ...
}

The User entity defines the address field as an embedded object D. Notice that
unlike the User entity, the embeddable Address object E is missing an @Table
annotation. This is because EJB 3 does not allow embedded objects to be mapped
to a table different from the enclosing entity, at least not directly through the
@Table annotation. Instead, the Address object’s data is stored in the USERS table
that stores the enclosing entity b. Therefore, the @Column mappings applied to
the fields of the Address object F really refer to the columns in the USERS table. For
example, the street field is mapped to the USERS.STREET column, the zipCode
field is mapped to the USERS.ZIP_CODE column, and so on. This also means that the
Address data is stored in the same database row as the User data, and both objects
share the USER_ID identity column C. Other than this minor nuance, all data map-
ping annotations used in entities are available for you in embedded objects and
behave in exactly the same manner. In general, this is the norm and embedded
objects are often stored in the same table as the enclosing entity. However, if this
does not suit you, it is possible to store the embeddable object’s data in a separate
table and use the @SecondaryTable annotation to retrieve its data into the main
entity using a join. We won’t detail this solution, as it is fairly easy to figure out and
we’ll leave it for you to experiment with instead.

Sharing embeddable classes between entities

One of the most useful features of embeddable classes is that they can be shared
between entities. For example, our Address object could be embedded inside a
BillingInfo object to store billing addresses while still being used by the User
entity. The important thing to keep in mind is that the embeddable class definition
is shared in the OO world and not the actual data in the underlying relational tables.
As we noted, the embedded data is created/populated using the table mapping of
the entity class. However, this means that all the embeddable data must be
mapped to both the USERS and BILLING_INFO tables. In other words, both tables
must contain some mappable street, city, or zip columns.

 E Embeddable object

Embeddable object
field mappings

 F

Mapping entity relationships 273
We have now finished looking at all the annotations required for mapping enti-
ties except for mapping OO inheritance. Let’s now move on to looking at EJB 3
features for mapping entity relations.

8.3 Mapping entity relationships

In the previous chapter we explored implementing domain relationships between
entities. In section 8.1.1 we briefly discussed the problems translating relation-
ships from the OO world to the database world. In this section, you’ll see how these
solutions are actually implemented in EJB 3 using annotations, starting with one-
to-one relationships. We’ll explore mapping of all types of relationships: one-to-
one, one-to-many, many-to-one, and many-to-many.

8.3.1 Mapping one-to-one relationships

As you know, one-to-one relationships are mapped using primary/foreign key asso-
ciations. It should be pretty obvious that a parent-child relationship usually exists
between the entities of a one-to-one relationship. For example, in the User-
BillingInfo relationship mentioned earlier, the User entity could be characterized
as the parent. Depending on where the foreign key resides, the relationship could
be implemented in two different ways: using the @JoinColumn or the @Primary-
KeyJoinColumn annotation.

An interesting wrinkle to consider is the fact that the same embedded data could
be mapped to columns with different names in two separate tables. For example,
the “state” data column in BILLING_INFO could be called STATE_CODE instead of
STATE. Since the @Column annotation in Address maps to a column named
STATE, how will this column be resolved? The solution to the answer is overriding
the column mapping in the enclosing entity using the AttributeOverride anno-
tation as follows:

@Embedded
@AttributeOverrides({@AttributeOverride(
 name="state",
 column=@Column(name="STATE_CODE"))})
protected Address address;

In effect, the AttributeOverride annotation is telling the provider to resolve the
embedded “state” field to the STATE_CODE table for the enclosing entity.

274 CHAPTER 8
Object-relational mapping
Using @JoinColumn
If the underlying table for the referencing entity is the one containing the foreign
key to the table to which the referenced “child” entity is mapped, you can map the
relationship using the @JoinColumn annotation (figure 8.4).

 In our User-BillingInfo example shown in figure 8.4, the USERS table contains
a foreign key named USER_BILLING_ID that refers to the BILLING_INFO table’s
BILLING_ID primary key. This relationship would be mapped as shown in listing 8.7.

@Entity
@Table(name="USERS")
public class User {
 @Id
 @Column(name="USER_ID")
 protected String userId;
 ...
 @OneToOne
 @JoinColumn(name="USER_BILLING_ID",
 referencedColumnName="BILLING_ID", updatable=false)

Listing 8.7 Mapping a one-to-one unidirectional relationship using @JoinColumn

Figure 8.4 User has a one-to-one unidirectional relationship with BillingInfo. The User and BillingInfo
entities are mapped to the USERS and BILLING_INFO tables, respectively, and the USERS table has
a foreign key reference to the BILLING_INFO table. Such associations are mapped using
@JoinColumn.

Foreign key B

Mapping entity relationships 275
 protected BillingInfo billingInfo;
}

@Entity
@Table(name="BILLING_INFO")
public class BillingInfo {
 @Id
 @Column(name="BILLING_ID")
 protected Long billingId;
 ...
}

The @JoinColumn annotation’s name element refers to the name of the foreign
key in the USERS table b. If this parameter is omitted, it is assumed to follow
this form:

<relationship field/property name>_<name of referenced primary key column>

In our example, the foreign key name would be assumed to be BILLINGINFO_
BILLING_ID in the USERS table. The referencedColumnName element specifies the
name of the primary key or a unique key the foreign key refers to. If you don’t
specify the referencedColumnName value, it is assumed to be the column contain-
ing the identity of the referenced entity. Incidentally, this would have been fine in
our case as BILLING_ID is the primary key for the BILLING_INFO table C.

 Like the @Column annotation, the @JoinColumn annotation contains the updat-
able, insertable, table, and unique elements. The elements serve the same pur-
pose as the elements of the @Column annotation. In our case, updatable is set to
false, which means that the persistence provider would not update the foreign key
even if the billingInfo reference were changed. If you have more than one col-
umn in the foreign key, you can use the JoinColumns annotation instead. We won’t
cover this annotation since this situation is very unlikely, if not bad design.

 If you have a bidirectional one-to-one relationship, then the entity in the
inverse side of the relationship will contain the mappedBy element, as we discussed
in chapter 7. If the User and BillingInfo entities have a bidirectional relation-
ship, we must modify the BillingInfo entity to have the one-to-one relationship
definition pointing to the User entity as follows:

@Entity
public class BillingInfo {
 @OneToOne(mappedBy="billingInfo")
 protected User user;
..

}

 C Primary key

276 CHAPTER 8
Object-relational mapping
As you can see, the mappedBy element identifies the name of the association field
in the owning side of the relationship. In a bidirectional relationship, the owning
side is the entity that stores the relationship in its underlying table. In our exam-
ple, the USERS table stores the relationship in the USER_BILLING_ID field and thus
is the relationship owner. The one-to-one relationship in BillingInfo has the
mappedBy element specified as billingInfo, which is the relationship field defined
in the User entity that contains the definition for @JoinColumn.

 Note that you do not have to define @JoinColumn in the entities of both sides of
one-to-one relationships.

 Next we’ll discuss how you define the one-to-one relationship when the for-
eign key is in the table to which the child entity is mapped.

Using @PrimaryKeyJoinColumn
In the more likely case that the foreign key reference exists in the table to which
the referenced entity is mapped, the @PrimaryKeyJoinColumn would be used
instead (figure 8.5).

Figure 8.5 User has a one-to-one unidirectional relationship with BillingInfo. The User and
BillingInfo entities are mapped to the USERS and BILLING_INFO tables, respectively, and the
BILLING_INFO and USERS tables share the same primary key; the primary key of the BILLING_INFO
table is also a foreign key referencing the primary key of the USERS table. Such associations are
mapped using @PrimaryKeyJoinColumn.

Mapping entity relationships 277
Typically, @PrimaryKeyJoinColumn is used in one-to-one relationships when both
the referenced and referencing tables share the primary key of the referencing
table. In our example, as shown in figure 8.5, the BILLING_INFO table would con-
tain a foreign key reference named BILLING_USER_ID pointing to the USER_ID pri-
mary key of the USERS table. In addition, BILLING_USER_ID would be the primary
key of the BILLING_INFO table. The relationship would be implemented as shown
in listing 8.8.

@Entity
@Table(name="USERS")
public class User {
 @Id
 @Column(name="USER_ID")
 protected Long userId;
 ...
 @OneToOne
 @PrimaryKeyJoinColumn(name="USER_ID",
 referencedColumnName="BILLING_USER_ID")
 protected BillingInfo billingInfo;
}

@Entity
@Table(name="BILLING_INFO")
public class BillingInfo {
 @Id
 @Column(name="BILLING_USER_ID")
 protected Long userId;
 ...
}

The @PrimaryKeyJoinColumn annotation’s name element refers to the primary key
column of the table storing the current entity. On the other hand, the refer-
encedColumnName element refers to the foreign key in the table holding the refer-
enced entity. In our case, the foreign key is the BILLING_INFO table’s BILLING_
USER_ID column, and it points to the USERS.USER_ID primary key. If the names of
both the primary key and foreign key columns are the same, you may omit the
referencedColumnName element since this is what the JPA provider will assume by
default. In our example, if we rename the foreign key in the BILLING_INFO table
from BILLING_USER_ID to USER_ID to match the name of the primary key in the
USERS table, we may omit the referencedColumnName value so that the provider can
default it correctly.

Listing 8.8 Mapping a one-to-one relationship using @PrimaryKeyJoinColumn

Parent primary
key join

278 CHAPTER 8
Object-relational mapping
 If you have a composite primary key in the parent table (which is rare if you
are using surrogate keys), you should use the @PrimaryKeyJoinColumns annotation
instead. We encourage you to explore this annotation on your own.

 You’ll learn how to map one-to-many and many-to-one relationships next.

8.3.2 One-to-many and many-to-one
As we mentioned in the previous chapter, one-to-many and many-to-one relation-
ships are the most common in enterprise systems and are implemented using the
@OneToMany and @ManyToOne annotations. For example, the Item-Bid relationship
in the ActionBazaar system is one-to-many, since an Item holds references to a
collection of Bids placed on it and a Bid holds a reference to the Item it was placed
on. The beauty of EJB 3 persistence mapping is that the same two annotations we
used for mapping one-to-one relationships are also used for one-to-many rela-
tionships. This is because both relation types are implemented as a primary-key/
foreign-key association in the underlying database. Let’s see how to do this by
implementing the Item-Bid relationship shown in listing 8.9.

@Entity
@Table(name="ITEMS")
public class Item {
 @Id
 @Column(name="ITEM_ID")
 protected Long itemId;
 ...
 @OneToMany(mappedBy="item")
 protected Set<Bid> bids;
 ...
}

@Entity
@Table(name="BIDS")
public class Bid {
 @Id
 @Column(name="BID_ID")
 protected Long bidId;
 ...
 @ManyToOne
 @JoinColumn(name="BID_ITEM_ID",
 referencedColumnName="ITEM_ID")
 protected Item item;
 ...
}

Listing 8.9 One-to-many bidirectional relationship mapping

 B One-to-many

Many-to-one C

Mapping entity relationships 279
Since multiple instances of BIDS records would refer to the same record in the
ITEMS table, the BIDS table will hold a foreign key reference to the primary key
of the ITEMS table. In our example, this foreign key is BID_ITEM_ID, and it
refers to the ITEM_ID primary key of the ITEMS table. This database relationship
between the tables is shown in figure 8.6. In listing 8.9 the many-to-one rela-
tionship is expressed in ORM using @JoinColumn annotations. In effect, a @Join-
Column annotation’s job is to specify a primary/foreign key relationship in the
underlying data model. Note that the exact @JoinColumn specification could
have been repeated for both the Bid.item and Item.bids persistent fields on
either side of the relationship. In @ManyToOne C, the name element specifies the
foreign key, BID_ITEM_ID, and the referencedColumnName element specifies the pri-
mary key, ITEM_ID. From the Item entity’s perspective, this means the persis-
tence provider would figure out what Bid instances to put in the bids set by
retrieving the matching BIDS_ITEM_ID in the BIDS table.

 After performing the join, the JPA provider will see what BIDS records are
retrieved by the join and populate them into the bids set. Similarly, when it is
time to form the item reference in the Bid entity, the persistence provider would
populate the @JoinColumn-defined join with the available BID_ITEM_ID foreign key,
retrieve the matched ITEMS record, and put it into the item field.

 Instead of repeating the same @JoinColumn annotation, we have used the
mappedBy element B we mentioned but did not describe in chapter 7.

Figure 8.6 The one-to-many relationship between the Item and Bid entities is formed through a
foreign key in the BIDS table referring to the primary key of the ITEMS table.

280 CHAPTER 8
Object-relational mapping
NOTE The persistence provider will generate deployment-time errors if
you specify @JoinColumn on both sides of a bidirectional one-to-
many relationship.

You can specify this element in the OneToMany element on the Item.bids variable
as follows:

public class Item {
 ...
 @OneToMany(mappedBy="item")
 protected Set<Bid> bids;
 ...
}

The mappedBy element is essentially pointing to the previous relationship field
Bid.item with the @JoinColumn definition. In a bidirectional one-to-many rela-
tionship, the owner of the relationship is the entity side that stores the foreign
key—that is, the many side of the relationship.

 The persistence provider will know to look it up appropriately when resolving
Bid entities. In general, you have to use the mappedBy element wherever a bidirec-
tional relationship is required. If you do not specify the mappedBy element with
the @OneToOne annotation, the persistence provider will treat the relationship as a
unidirectional relationship. Obviously, this would not be possible if the one-to-
many relationship reference were unidirectional since there would be no owner of
the relationship to refer to.

 Unfortunately, JPA does not support unidirectional one-to-many relationships
using a foreign key on the target table and you cannot use the following mapping
if you have a unidirectional one-to-many relationship between Item and Bid:

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="ITEM_ID", referencedColumnName="BID_ITEM_ID")
 protected Set<Bid> bids;

Although many persistence providers will support this mapping, this support
is not standardized and you have to use a join or intersection table using the
@JoinTable annotation similar to the many-to-many relationship that we dis-
cuss in section 8.3.3. Unidirectional one-to-many relationships are scarce, and
we’ll leave this you to explore on your own. We recommend that you convert
your relationship to bidirectional thereby avoiding the complexities involved in
maintaining another table.

 Also, the @ManyToOne annotation does not support the mappedBy element since
it is always on the side of the relationship that holds the foreign key, and the
inverse side can never be the relationship owner.

Mapping entity relationships 281
 A final point to remember is that foreign keys can refer back to the primary
key of the same table it resides in. There is nothing stopping a @JoinColumn anno-
tation from specifying such a relationship. For example, the many-to-one rela-
tionship between subcategories and parent categories could be expressed as
shown in listing 8.10.

@Entity
@Table(name="CATEGORIES")
public class Category implements Serializable {
 @Id
 @Column(name="CATEGORY_ID")
 protected Long categoryId;
 ...
 @ManyToOne
 @JoinColumn(name="PARENT_ID",
 referencedColumnName="CATEGORY_ID")
 Category parentCategory; ...

In listing 8.10, the Category entity refers to its parent through the PARENT_ID for-
eign key pointing to the primary key value of another record in the CATEGORY
table. Since multiple subcategories can exist under a single parent, the @Join-
Column annotation specifies a many-one relationship b.

 We’ll conclude this section on mapping domain relationships by dealing with
the most complex relationship mapping: many-to-many.

8.3.3 Many-to-many

As we mentioned in section 8.1.1, a many-to-many relationship in the database
world is implemented by breaking it down into two one-to-many relationships
stored in an association or join table. In other words, an association or join table
allows you to indirectly match up primary keys from either side of the relation-
ship by storing arbitrary pairs of foreign keys in a row. This scheme is shown in
figure 8.7.

 The @JoinTable mapping in EJB 3 models this technique. To see how this is
done, take a look at the code in listing 8.11 for mapping the many-to-many rela-
tionship between the Item and Category entities. Recall that a Category can con-
tain multiple Items and an Item can belong to multiple Category entities.

Listing 8.10 Many-to-one self-referencing relationship mapping

 B

282 CHAPTER 8
Object-relational mapping
@Entity
@Table(name="CATEGORIES")
public class Category implements Serializable {
 @Id
 @Column(name="CATEGORY_ID")
 protected Long categoryId;

 @ManyToMany
 @JoinTable(name="CATEGORIES_ITEMS",
 joinColumns=
 @JoinColumn(name="CI_CATEGORY_ID",
 referencedColumnName="CATEGORY_ID"),
 inverseJoinColumns=
 @JoinColumn(name="CI_ITEM_ID",
 referencedColumnName="ITEM_ID"))
 protected Set<Item> items;
 ...
}

@Entity
@Table(name="ITEMS")
public class Item implements Serializable {
 @Id
 @Column(name="ITEM_ID")
 protected Long itemId;
 ...
 @ManyToMany(mappedBy="items")

Listing 8.11 Many-to-many relationship mapping

Figure 8.7 Many-to-many relationships are modeled in the database world using join tables. A join
table essentially pairs foreign keys pointing to primary keys on either side of the relationship.

Owning many-
to-many

 B

 C Subordinate many-to-many

Mapping entity relationships 283
 protected Set<Category> categories;
 ...
}

The @JoinTable annotation’s name element specifies the association or join table,
which is named CATEGORIES_ITEMS in our case b. The CATEGORIES_ITEMS table
contains only two columns: CI_CATEGORY_ID and CI_ITEMS_ID. The CI_CATEGORY_
ID column is a foreign key reference to the primary key of the CATEGORIES table,
while the CI_ITEM_ID column is a foreign key reference to the primary key of the
ITEMS table. The joinColumns and inverseJoinColumns elements indicate this.
Each of the two elements describes a join condition on either side of the many-to-
many relationship. The joinColumns element describes the “owning” relationship
between the Category and Item entities, and the inverseJoinColumns element
describes the “subordinate” relationship between them. Note the distinction of
the owning side of the relationship is purely arbitrary.

 Just as we used the mappedBy element to reduce redundant mapping for one-to-
many relationships, we are using the mappedBy element on the Item.categories
field C to point to the @JoinTable definition in Category.items. We can specify
more than one join column with the @JoinColumns annotation if we have more than
one column that constitutes the foreign key (again, this is an unlikely situation that
should be avoided in a clean design). From the perspective of the Category entity,
the persistence provider will determine what Item entities go in the items collec-
tion by setting the available CATEGORY_ID primary key against the combined joins
defined in the @JoinTable annotation, figuring out what CI_ITEM_ID foreign keys
match, and retrieving the matching records from the ITEMS table.

 The flow of logic is essentially reversed for populating Item.categories. While
saving the relationship into the database, the persistence provider might need to
update all three of the ITEMS, CATEGORIES, and CATEGORIES_ITEMS tables as neces-
sary. For a typical change in relational data, the ITEMS and CATEGORIES tables will
remain unchanged while the foreign key references in the CATEGORIES_ITEMS table
will change. This might be the case if we move an item from one category to the
other, for example. Because of the inherent complexity of many-to-many map-
pings, the mappedBy element of the @ManyToMany annotation shines in terms of
reducing redundancy.

 If you have a unidirectional many-to-many relationship, then the only difference
is that the inverse side of the relationship does not contain the mappedBy element.

 We have now finished discussing entity relational mapping and will tackle
mapping OO inheritance next before concluding the chapter.

284 CHAPTER 8
Object-relational mapping
8.4 Mapping inheritance

In section 8.1.1 we mentioned the difficulties in mapping OO inheritance into
relational databases. We also alluded to the three strategies used to solve this
problem: putting all classes in the OO hierarchy in the same table, using joined
tables for the super- and subclasses, or using completely separate tables for each
class. We’ll explore how each strategy is actually implemented in this section.

 Recall from section 8.2.7 that we could easily utilize different strategies for
generating sequences more or less by changing configuration parameters for the
@GeneratedValue annotation. The @Inheritance annotation used to map OO
inheritance tries to follow the same philosophy of isolating strategy-specific set-
tings into the configuration. We’ll explore inheritance mapping using the three
strategies offered through the @Inheritance annotation by implementing a famil-
iar example.

 As we mentioned earlier, the ActionBazaar system has several user types,
including sellers and bidders. We have also introduced the idea of creating a User
superclass common to all user types. In this scheme of things, the User entity
would hold data and behavior common to all users, while subclasses like Bidder
and Seller would hold data and behavior specific to user types. Figure 8.8 shows
a simplified class diagram for this OO hierarchy.

 In this section you’ll learn how all the entities in the hierarchy in figure 8.8 can
be mapped to database tables using different types of inheritance mapping strat-
egies supported by JPA:

■ Single table
■ Joined tables
■ Table per class

You’ll also learn about polymorphic relationships.

Figure 8.8
The ActionBazaar user hierarchy.
Each user type like Bidder and
Seller inherit from the common
User superclass. The empty arrow
signifies there may be some other
subclasses of the User class.

Mapping inheritance 285
8.4.1 Single-table strategy

In the single-table strategy, all classes in the inheritance hierarchy are mapped to
a single table. This means that the single table will contain a superset of all data
stored in the class hierarchy. Different objects in the OO hierarchy are identified
using a special column called a discriminator column. In effect, the discriminator
column contains a value unique to the object type in a given row. The best way to
understand this scheme is to see it implemented. For the ActionBazaar schema,
assume that all user types, including Bidders and Sellers, are mapped into the
USERS table. Figure 8.9 shows how the table might look.

As figure 8.9 depicts, the USERS table contains data common to all users (such as
USER_ID and USERNAME), Bidder-specific data (such as BID_FREQUENCY) and Seller-
specific data (such as CREDIT_WORTH). Records 1 and 2 contain Bidder records while
record 3 contains a Seller record. This is indicated by the B and S values in the
USER_TYPE column. As you can imagine, the USER_TYPE discriminator column can
contain values corresponding to other user types, such as A for admin or C for
CSR. The persistence provider maps each user type to the table by storing persis-
tent data into relevant mapped columns, setting the USER_TYPE value correctly and
leaving the rest of the values NULL.

 The next step to understanding the single-table strategy is to analyze the
actual mapping implementation. Listing 8.12 shows the mapping for the User,
Bidder, and Seller entities.

@Entity
@Table(name="USERS")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="USER_TYPE",
 discriminatorType=DiscriminatorType.STRING, length=1)
public abstract class User ...

Listing 8.12 Inheritance mapping using a single table

Figure 8.9 Storing all ActionBazaar user types using a single table

Inheritance
strategy

 B

Discriminator
column C

286 CHAPTER 8
Object-relational mapping
@Entity
@DiscriminatorValue(value="S")
public class Seller extends User ...

@Entity
@DiscriminatorValue(value="B")
public class Bidder extends User

The inheritance strategy and discriminator column has to be specified on the root
entity of the OO hierarchy. In listing 8.12, we specify the strategy to be Inheritance-
Type.SINGLE_TABLE in the @Inheritance annotation on the User entity b. The
@Table annotation on the User entity specifies the name of the single table used for
inheritance mapping, USERS. The @DiscriminatorColumn annotation C specifies
the details of the discriminator column. The name element specifies the name of the
discriminator, USER_TYPE. The discriminatorType element specifies the data type
of the discriminator column, which is String, and the length element specifies the
size of the column, 1. Both subclasses of User, Bidder, and Seller specify a discrim-
inator value using the @DiscriminatorValue annotation. The Seller class specifies
its discriminator value to be S D. This means that when the persistence provider
saves a Seller object into the USERS table, it will set the value of the USER_TYPE col-
umn to S. Similarly, Seller entities would only be reconstituted from rows with a
discriminator value of S. Likewise, the Bidder subclass specifies its discriminator
value to be B E. Every subclass of User is expected to specify an appropriate dis-
criminator value that doesn’t conflict with other subclasses. If you don’t specify a
discriminator value for a subclass, the value is assumed to be the name of the sub-
class (such as Seller for the Seller entity).

 Single table is the default inheritance strategy for EJB 3. Although this strat-
egy is simple to use, it has one great disadvantage that might be apparent from
figure 8.5. It does not fully utilize the power of the relational database in terms of
using primary/foreign keys and results in a large number of NULL column values.

 To understand why, consider the Seller record (number 3) in figure 8.9. The
BID_FREQUENCY value is set to NULL for this record since it is not a Bidder record
and the Seller entity does not map this column. Conversely, none of the Bidder
records ever populate the CREDIT_WORTH column. It is not that hard to imagine the
quantity of redundant NULL-valued columns in the USERS table if there are a signif-
icant numbers of users (such as a few thousand).

NOTE For the very same reason, the strategy also limits the ability to enforce
data integrity constraints. For example, if you want to enforce a column

 D Seller discriminator

 E Bidder discriminator

Mapping inheritance 287
constraint that BID_FREQUENCY cannot be NULL for a Bidder, you would
not be able to enforce the constraint since the same column will contain
Seller records for which the value may be NULL. Typically, such con-
straints are enforced through alternative mechanisms such as database
triggers for the single-table strategy.

The second inheritance strategy avoids the pitfalls we’ve described and fully uti-
lizes database relationships.

8.4.2 Joined-tables strategy

The joined-tables inheritance strategy uses one-to-one relationships to model OO
inheritance. In effect, the joined-tables strategy involves creating separate tables
for each entity in the OO hierarchy and relating direct descendants in the hierar-
chy with one-to-one relationships. For a better grasp, let’s see how the data in fig-
ure 8.10 might look using this strategy.

 In the joined-tables strategy, the parent of the hierarchy contains only columns
common to its children. In our example, the USERS table contains columns com-
mon to all ActionBazaar user types (such as USERNAME). The child table in the hier-
archy contains columns specific to the entity subtype. Here, both the BIDDERS and
SELLERS tables contain columns specific to the Bidder and Seller entities, respec-
tively (for example, the SELLERS table contains the CREDIT_WORTH column). The
parent-child OO hierarchy chain is implemented using one-to-one relationships.
For example, the USERS and SELLERS tables are related through the USER_ID for-
eign key in the SELLERS table pointing to the primary key of the USERS table. A sim-
ilar relationship exists between the BIDDERS and USERS tables. The discriminator
column in the USERS table is still used, primarily as a way of easily differentiating

Figure 8.10 Modeling inheritance using joined tables. Each entity in the OO hierarchy corresponds
to a separate table and parent-child relationships are modeled using one-to-one mapping.

288 CHAPTER 8
Object-relational mapping
data types in the hierarchy. Listing 8.13 shows how the mapping strategy is imple-
mented in EJB 3.

@Entity
@Table(name="USERS")
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="USER_TYPE",
 discriminatorType=STRING, length=1)
public abstract class User ...

@Entity
@Table(name="SELLERS")
@DiscriminatorValue(value="S")
@PrimaryKeyJoinColumn(name="USER_ID")
public class Seller extends User ...

@Entity
@Table(name="BIDDERS")
@DiscriminatorValue(value="B")
@PrimaryKeyJoinColumn(name="USER_ID")
public class Seller extends User ...

Listing 8.13 uses the @DiscriminatorColumn and @DiscriminatorValue annota-
tions in exactly the same way as the single-table strategy. The @Inheritance anno-
tation’s strategy element is specified as JOINED, however. In addition, the one-to-
one relationships between parent and child tables are implemented through the
@PrimaryKeyJoinColumn annotations in both the Seller and Bidder entities. In
both cases, the name element specifies the USER_ID foreign key. The joined-tables
strategy is probably the best mapping choice from a design perspective. From a
performance perspective, it is worse than the single-table strategy because it
requires the joining of multiple tables for polymorphic queries.

8.4.3 Table-per-class strategy

Table-per-class is probably the simplest inheritance strategy for a layperson to
understand. However, this inheritance strategy is the worst from both a relational
and OO standpoint. In this strategy, both the superclass (concrete class) and sub-
classes are stored in their own table and no relationship exists between any of the
tables. To see how this works, take a look at the tables in figure 8.11.

 As figure 8.11 shows, entity data are stored in their own tables even if they are
inherited from the superclass. This is true even for the USER_ID primary key. As a

Listing 8.13 Inheritance mapping using joined tables

Inheritance strategy

Primary key join

Primary key join

Mapping inheritance 289
result, primary keys in all tables must be mutually exclusive for this scheme to
work. In addition, inherited columns are duplicated across tables, such as the
USERNAME column. Using this inheritance strategy, we define the strategy in the
superclass and map tables for all the classes. Listing 8.14 shows how the code
might look.

@Entity
@Table(name="USERS")
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public class User {
...
@Entity
@Table(name="SELLERS")
public class Seller extends User {
...
@Entity
@Table(name="BIDDERS")
public class Bidder extends User {

As you can see, the inheritance strategy C is specified in the superclass entity,
User. However, all of the concrete entities in the OO hierarchy are mapped to sep-
arate tables and each have a @Table specification B. The greatest disadvantage of
using this mapping type is that it does not have good support for polymorphic
relations or queries because each subclass is mapped to its own table.

Listing 8.14 Inheritance mapping using the table-per-class strategy

Figure 8.11
The table-per-class inheritance strategy.
Super- and subclasses are stored in their
own, entirely unrelated tables.

 B Table
mappings

Inheritance
strategy C

290 CHAPTER 8
Object-relational mapping
 The limitation is that when you want to retrieve entities over the persistence
provider, you must use SQL UNION or retrieve each entity with separate SQL for
each subclass in the hierarchy.

 Besides being awkward, this strategy is the hardest for an EJB 3 provider to
implement reliably. As a result, implementing this strategy has been made
optional for the provider by the EJB 3 specification. We recommend that you
avoid this strategy altogether.

 This completes our analysis of the three strategies for mapping OO inherit-
ance. Choosing the right strategy is not as straightforward as you might think.
Table 8.2 compares each strategy.

 The single-table strategy is relatively simple and is fairly performance friendly
since it avoids joins under the hood. Even inserts and updates in the single-table
strategy perform better when compared to the joined-tables strategy. This is
because in the joined-tables strategy, both the parent and child tables need to be
modified for a given entity subclass. However, as we mentioned, the single-table

Table 8.2 The EJB 3 JPA supports three different inheritance strategies. The table-per-class choice
is optional and the worst of these strategies.

Feature Single Table Joined Tables Table per Class

Table support One table for all classes
in the entity hierarchy:

■ Mandatory columns
may be nullable.

■ The table grows when
more subclasses are
added.

One for the parent class,
and each subclass has a
separate table to store
polymorphic properties

Mapped tables are nor-
malized.

One table for each
concrete class in the
entity hierarchy

Uses discriminator
column?

Yes Yes No

SQL generated for
retrieval of entity
hierarchy

Simple SELECT SELECT clause joining
multiple tables

One SELECT for
each subclass or
UNION of SELECT

SQL for insert and
update

Single INSERT or
UPDATE for all entities
in the hierarchy

Multiple INSERT,
UPDATE: one for the
root class and one for
each involved subclass

One INSERT or
UPDATE for every
subclass

Polymorphic relationship Good Good Poor

Polymorphic queries Good Good Poor

Support in EJB 3 JPA Required Required Optional

Mapping inheritance 291
strategy results in a large number of NULL-valued columns. Moreover, adding a
new subclass essentially means updating the unified table each time.

 In the joined-tables strategy, adding a subclass means adding a new child
table as opposed to altering the parent table (which may or may not be easier to
do). By and large, we recommend the joined-tables strategy since it best utilizes
the strengths of the relational database, including the ability to use normalization
techniques to avoid redundancy. In our opinion, the performance cost associated
with joins is relatively insignificant, especially with surrogate keys and proper
database indexing.

 The table-per-class strategy is probably the worst choice of the three. It is rel-
atively counterintuitive, uses almost no relational database features, and practi-
cally magnifies the object relational impedance instead of attempting to bridge it.
The most important reason to avoid this strategy, however, is that EJB 3 makes it
optional for a provider to implement it. As a result, choosing this strategy might
make your solution nonportable across implementations.

 Beside these inheritance strategies, the EJB 3 JPA allows an entity to inherit
from a nonentity class. Such a class is annotated with @MappedSuperClass. Like an
embeddable object, a mapped superclass does not have an associated table.

8.4.4 Mapping polymorphic relationships

In chapter 7 we explained that JPA fully supports inheritance and polymorphism.
Now that we have completed our examination of mapping relationships and
inheritance, you are probably anxious to learn about polymorphic associations. A
relationship between two entities is said to be polymorphic when the actual rela-
tionship may refer to instances of a subclass of the associated entity. Assume that
there is a bidirectional many-to-one relationship between the ContactInfo and

Eclipse ORM tool

As we mentioned earlier, EJB 3 makes O/R mapping a lot easier, but not quite pain-
less. This is largely because of the inherent complexity of ORM and the large number
of possible combinations to handle. The good news is that a project to create an
Eclipse-based EJB 3 mapping tool code-named Dali is under way (www.eclipse.org/
dali/). The project is led by Oracle and supported by JBoss and BEA. It will be a part
of Eclipse web tool project (WTP) and will support creating and editing EJB 3 O/R
mappings using either annotations or XML. Also, two commercial products, Oracle
JDeveloper and BEA Workshop, support development of EJB 3 applications.

292 CHAPTER 8
Object-relational mapping
User entities. We discussed earlier that User is an abstract entity and entities such
as Bidder, Seller, and so forth inherit from the User class. When we retrieve the
relationship field from the ContactInfo entity, the retrieved instance of the User
entity will be an instance of its subclass, either Bidder or Seller. The greatest ben-
efit of JPA is that you don’t have to do any extra work to map polymorphic asso-
ciations; you just define the relationship mapping between the superclass and the
associated entity and the association becomes polymorphic.

8.5 Summary

In this chapter, we explored basic database concepts and introduced the object-
relational impedance problem. We reviewed ORM annotations such as @Table and
@Column, and mapped some of the entities into database tables.

 We also reviewed the various types of primary key generation strategies as well
as the mapping of composite primary keys.

 In addition, we examined the different types of relationships introduced in the
previous chapter and showed you how to use JPA annotations such as @JoinColumn
and @PrimaryKeyColumn to map those into database tables. You learned that many-
to-many and unidirectional one-to-many relationships require association tables.
We hope that the limitation to support unidirectional relationships using a target
foreign key constraint will be addressed in a future release.

 We showed you the robust OO inheritance mapping features supported by JPA
and compared their advantages and disadvantages. Of the three inheritance
mapping strategies, using joined tables is the best from a design perspective.

 You should note, however, that we avoided some complexities in this chapter.
First, we used field-based persistence in all of our code samples to keep them as
short and simple as possible. Second, we only mentioned the most commonly used
elements for the annotations featured in the chapter. We felt justified in doing so
as most of the annotation elements we avoided are rarely used. We do encourage
you to check out the full definition of all the annotations in this chapter available
online at http://java.sun.com/products/persistence/javadoc-1_0-fr/javax/persistence/
package-tree.html.

 In the next chapter, you’ll learn how to manipulate the entity and relation-
ships we mapped in this chapter using the EntityManager API.

Manipulating entities
with EntityManager
This chapter covers
■ Persistence context and its scope
■ Container- and application-managed entity

managers
■ Entity lifecycle and CRUD operations
■ Detachment and merge operations
■ Entity lifecycle listeners
293

294 CHAPTER 9
Manipulating entities with EntityManager
In chapter 7 you learned how to develop the application domain model using JPA.
In chapter 8 you saw how domain objects and relationships are mapped to the data-
base. While the ORM annotations we explored in chapter 8 indicate how an entity
is persisted, the annotations don’t do the actual persisting. This is performed by
applications using the EntityManager interface, the topic of this chapter.

 To use an analogy, the domain model annotated with ORM configuration is
like a children’s toy that needs assembly. The domain model consists of the parts
of the toy. The ORM configuration is the assembly instructions. While the assem-
bly instructions tell you how the toy parts are put together, you do the actual
assembly. The EntityManager is the toy assembler of the persistence world. It fig-
ures out how to persist the domain by looking at the ORM configuration. More
specifically, the EntityManager performs CRUD (Create, Read, Update, Delete)
operations on domain objects. The Read part includes extremely robust search
and retrieval of domain objects from the database. This chapter covers each of
the CRUD operations that the EntityManager provides, with the exception of the
search part of search and retrieval. In addition to simple primary key–based
domain object retrieval, JPA provides SQL SELECT–like search capabilities through
the EJB 3 query API. The query API is so extensive and powerful that we’ll dedi-
cate chapter 10 to it while briefly touching on it in this one.

 Before we dive down into the persistence operations, you’ll learn about the
EntityManager interface, the lifecycle of entities, the concept of persistence con-
text, and how to obtain an instance of EntityManager. We’ll discuss entity lifecycle
callback listeners before concluding with best practices.

 Before we get into too much code, we’re going to gently introduce the Entity-
Manager and briefly cover some concepts useful in understanding the nuances
behind this critical part of JPA.

9.1 Introducing the EntityManager

The EntityManager API is probably the most important and interesting part of the
Java Persistence API. It manages the lifecycle of entities. In this section you’ll
learn about the EntityManager interface and its methods. We’ll explore the entity
lifecycle, and you’ll also learn about persistence contexts and their types.

9.1.1 The EntityManager interface

In a sense, the EntityManager is the bridge between the OO and relational worlds,
as depicted in figure 9.1. When you request that a domain entity be created, the
EntityManager translates the entity into a new database record. When you request

Introducing the EntityManager 295
that an entity be updated, it tracks down the relational data that corresponds to
the entity and updates it. Likewise, the EntityManager removes the relational data
when you request that an entity be deleted. From the other side of the translation
bridge, when you request that an entity be “saved” in the database, the Entity-
Manager creates the Entity object, populates it with relational data, and “returns”
the Entity back to the OO world.

 Besides providing these explicit SQL-like CRUD operations, the EntityManager
also quietly tries to keep entities synched with the database automatically as long
as they are within the EntityManager’s reach (this behind-the-scenes synchroniza-
tion is what we mean when we talk about “managed” entities in the next section).
The EntityManager is easily the most important interface in JPA and is responsi-
ble for most of the ORM black magic in the API.

 Despite all this under-the-hood power, the EntityManager is a small, simple,
and intuitive interface, especially compared to the mapping steps we discussed in
the previous chapter and the query API (which we explore in chapter 10). In fact,
once we go over some basic concepts in the next few sections, the interface might
seem almost trivial. You might already agree if you take a quick look at table 9.1.
The table lists some of the most commonly used methods defined in the Entity-
Manager interface.

Table 9.1 The EntityManager is used to perform CRUD operations. Here are the most commonly
used methods of the EntityManager interface.

Method Signature Description

public void persist(Object entity); Saves (persists) an entity into the database,
and also makes the entity managed.

public <T> T merge(T entity); Merges an entity to the EntityManager’s per-
sistence context and returns the merged entity.

continued on next page

Figure 9.1 The EntityManager acts as a bridge between the OO and relational worlds. It interprets
the O/R mapping specified for an entity and saves the entity in the database.

296 CHAPTER 9
Manipulating entities with EntityManager
public void remove(Object entity); Removes an entity from the database.

public <T> T find(Class<T> entityClass,
 Object primaryKey);

Finds an entity instance by its primary key.

public void flush(); Synchronizes the state of entities in the
EntityManager’s persistence context
with the database.

public void setFlushMode(FlushModeType
 flushMode);

Changes the flush mode of the
EntityManager’s persistent context. The
flush mode may either be AUTO or COMMIT.
The default flush mode is AUTO, meaning that
the EntityManager tries to automatically
synch the entities with the database.

public FlushModeType getFlushMode(); Retrieves the current flush mode.

public void refresh(Object entity); Refreshes (resets) the entity from the
database.

public Query createQuery(String
 jpqlString);

Creates a dynamic query using a JPQL
statement.

public Query createNamedQuery(String
 name);

Creates a query instance based on a named
query on the entity instance.

public Query createNativeQuery(String
 sqlString);

public Query createNativeQuery(String
 sqlString, Class result Class);

public Query createNativeQuery(String
 sqlString, String resultSetMapping);

Creates a dynamic query using a native SQL
statement.

public void close(); Closes an application-managed
EntityManager.

public boolean isOpen(); Checks whether an EntityManager
is open.

public EntityTransaction
 getTransaction();

Retrieves a transaction object that can be
used to manually start or end a transaction.

public void joinTransaction(); Asks an EntityManager to join an
existing JTA transaction.

Table 9.1 The EntityManager is used to perform CRUD operations. Here are the most commonly
used methods of the EntityManager interface. (continued)

Method Signature Description

Introducing the EntityManager 297
Don’t worry too much if the methods are not immediately obvious. Except for the
methods related to the query API (createQuery, createNamedQuery, and create-
NativeQuery), we’ll discuss them in detail in the coming sections. The few Entity-
Manager interface methods that we didn’t just cover are rarely ever used, so we
won’t spend time discussing them. Once you’ve read and understood the material
in this chapter, though, we encourage you to explore them on your own. The EJB
3 Java Persistence API final specification is available at http://jcp.org/en/jsr/
detail?id=220.

Even though JPA is not container-centric like session beans or MDBs, entities still
have a lifecycle. This is because they are “managed” by JPA in the sense that the
persistence provider keeps track of them under the hood and even automatically
synchronizes entity state with the database when possible. We’ll explore exactly
how the entity lifecycle looks in the following section.

9.1.2 The lifecycle of an entity
An entity has a pretty simple lifecycle. Making sense of the lifecycle is easy once you
grasp a straightforward concept: the EntityManager knows nothing about a POJO

The JPA entity: a set of trade-offs

Nothing in life is free…

As we mentioned (and will explore further in this and future chapters), the reworked
EJB 3 JPA entity model brings a whole host of features to the table: simplicity, OO
support, and unit testability, to name a few. However, the JPA entity loses some that
were available in the EJB 2 model because of its separation from the container.
Because the EntityManager and not the container manages entities, they cannot
directly use container services such as dependency injection, the ability to define
method-level transaction and declarative security, remoteability, and so on.

However, the truth of the matter is that most layered applications designed using
the EJB 2 CMP entity bean model never utilized container services directly anyway.
This is because entity beans were almost always used through a session bean
façade. This means that entity beans “piggybacked” over container services config-
ured at the session bean level. The same is true for JPA entities. In real terms, the
JPA model loses very little functionality.

Incidentally, losing the magic word “bean” means that JPA entities are no longer
EJB components managed by the container. So if you catch someone calling JPA
entities “beans,” feel free to gently correct them!

298 CHAPTER 9
Manipulating entities with EntityManager
regardless of how it is annotated, until you tell the manager to start treating the
POJO like a JPA entity. This is the exact opposite of POJOs annotated to be session
beans or MDBs, which are loaded and managed by the container as soon as the
application starts. Moreover, the default behavior of the EntityManager is to man-
age an entity for as short a time as possible. Again, this is the opposite of container-
managed beans, which remain managed until the application is shut down.

 An entity that the EntityManager is keeping track of is considered attached or
managed. On the other hand, when an EntityManager stops managing an entity,
the entity is said to be detached. An entity that was never managed at any point is
called transient or new. attached.

 Figure 9.2 summarizes the entity lifecycle.
 Let’s take a close look at the managed and detached states.

Managed entities
When we talk about managing an entity’s state, what we mean is that the Entity-
Manager makes sure that the entity’s data is synchronized with the database. The
EntityManager ensures this by doing two things. First, as soon as we ask an Entity-
Manager to start managing an entity, it synchronizes the entity’s state with the data-
base. Second, until the entity is no longer managed, the EntityManager ensures
that changes to the entity’s data (caused by entity method invocations, for example)
are reflected in the database. The EntityManager accomplishes this feat by hold-
ing an object reference to the managed entity and periodically checking for data

Figure 9.2 An entity becomes managed when you persist, merge, refresh, or retrieve an entity. It
may also be attached when we retrieve it. A managed entity becomes detached when it is out of
scope, removed, serialized, or cloned.

Introducing the EntityManager 299
freshness. If the EntityManager finds that any of the entity’s data has changed, it
automatically synchronizes the changes with the database. The EntityManager
stops managing the entity when the entity is either deleted or moves out of per-
sistence provider’s reach.

 An entity can become attached to the EntityManager’s context when you pass
the entity to the persist, merge, or refresh method. Also an entity becomes
attached when you retrieve using the find method or a query within a transaction.
The state of the entity determines which method you will use.

 When an entity is first instantiated as in the following snippet, it is in the new
or transient state since the EntityManager doesn’t know it exists yet:

Bid bid = new Bid();

Hence the entity instance is not managed yet. It will become managed if the
EntityManager’s persist method creates a new record in the database correspond-
ing to the entity. This would be the most natural way to attach the Bid entity in the
previous snippet to the EntityManager’s context:

manager.persist(bid);

A managed entity becomes detached when it is out of scope, removed, serialized,
or cloned. For example, the instance of the Bid entity will become detached when
the underlying transaction commits.

 Unlike entities explicitly created using the new operator, an entity retrieved
from the database using the EntityManager’s find method or a query is attached if
retrieved within a transactional context. A retrieved instance of the entity
becomes detached immediately if there is no associated transaction.

 The merge and refresh methods are intended for entities that have been
retrieved from the database and are in the detached state. Either of these meth-
ods attaches entities to the entity manager. EntityManager.merge updates the
database with the data held in the entity, and refresh does the opposite—it
resets the entity’s state with data from the database. We’ll discuss these meth-
ods in much greater detail in section 9.3.

Detached entities
A detached entity is an entity that is no longer managed by the EntityManager
and there is no guarantee that the state of the entity is in synch with the database.
Detachment and merge operations become handy when you want to pass an
entity across application tiers. For example, you can detach an entity and pass it

300 CHAPTER 9
Manipulating entities with EntityManager
to the web tier, then update it and send it back to the EJB tier, where you can
merge the detached entity to the persistence context.

 The usual way entities become detached is a little subtler. Essentially, an
attached entity becomes detached as soon as it goes out of the EntityManager con-
text’s scope. Think of this as the expiration of the invisible link between an entity
and the EntityManager at the end of a logical unit of work or a session. An Entity-
Manager session could be limited to a single method call or span an arbitrary
length of time. (Reminds you of session beans, doesn’t it? As you’ll soon see, this
is not entirely an accident.) For an EntityManager whose session is limited to a
method call, all entities attached to it become detached as soon as a method
returns, even if the entity objects are used outside the method. If this is not abso-
lutely crystal clear right now, it will be once we talk about the EntityManager per-
sistence context in the next section.

 Entity instances also become detached through cloning or serialization. This is
because the EntityManager quite literally keeps track of entities through Java
object references. Since cloned or serialized instances don’t have the same object
references as the original managed entity, the EntityManager has no way of know-
ing they exist. This scenario occurs most often in situations where entities are sent
across the network for session bean remote method calls.

 In addition, if you call the clear method of EntityManager, it forces all entities
in the persistence context to be detached. Calling the EntityManager’s remove
method will also detach an entity. This makes perfect sense since this method
removes the data associated with the entity from the database. As far as the Entity-
Manager is concerned, the entity no longer exists, so there is no need to continue
managing it. For our Bid entity, this would be an “apt demise”:

manager.remove(bid);

We’ll return to this discussion on detachment and merge operations in sec-
tion 9.3.3.

 A good way to remember the entity lifecycle is through a convenient analogy.
Think of an entity as an aircraft and the EntityManager as the air traffic controller.
While the aircraft is outside the range of the airport (detached or new), it is not
guided by the air traffic controller. However, when it does come into range (man-
aged), the traffic controller manages the aircraft’s movement (state synchronized
with database). Eventually, a grounded aircraft is guided into takeoff and goes out
of airport range again (detached), at which point the pilot is free to follow her own
flight plan (modifying a detached entity without state being managed).

Introducing the EntityManager 301
 The persistence context scope is the equivalent of airport radar range. It is critical
to understand how the persistence context works to use managed entities effec-
tively. We’ll examine the relationship between the persistence context, its scope,
and the EntityManager in the next section.

9.1.3 Persistence contexts, scope, and the EntityManager

The persistence context plays a vital role in the internal functionality of the Entity-
Manager. Although we perform persistence operations by invoking methods on the
EntityManager, the EntityManager itself does not directly keep track of the lifecycle
of an individual entity. In reality, the EntityManager delegates the task of manag-
ing entity state to the currently available persistence context.

 In a very simple sense, a persistence context is a self-contained collection of
entities managed by an EntityManager during a given persistence scope. The per-
sistence scope is the duration of time a given set of entities remains managed.

 The best way to understand this is to start by examining what the various per-
sistence scopes are and what they do and then backtracking to the meaning of the
term. We’ll explain how the persistence context and persistence scope relates to
the EntityManager by first exploring what the persistence context is.

 There are two different types of persistence scopes: transaction and extended.

Transaction-scoped EntityManager
An EntityManager associated with a transaction-scoped persistence context is
known as a transaction-scoped EntityManager. If a persistence context is under trans-
action scope, entities attached during a transaction are automatically detached
when the transaction ends. (All persistence operations that may result in data
changes must be performed inside a transaction, no matter what the persistence
scope is.) In other words, the persistence context keeps managing entities while
the transaction it is enclosed by is active. Once the persistence context detects that
a transaction has either been rolled back or committed, it will detach all managed
entities after making sure that all data changes until that point are synchronized
with the database. Figure 9.3 depicts this relationship between entities, the trans-
action persistence scope, and persistence contexts.

Extended EntityManager
The life span of the extended EntityManager lasts across multiple transactions. An
extended EntityManager can only be used with stateful session beans and lasts as
long as the bean instance is alive. Therefore, in persistence contexts with extended
scope, how long entities remain managed has nothing to do with transaction

302 CHAPTER 9
Manipulating entities with EntityManager
boundaries. In fact, once attached, entities pretty much stay managed as long as
the EntityManager instance is around. As an example, for a stateful session bean,
an EntityManager with extended scope will keep managing all attached entities
until the EntityManager is closed as the bean itself is destroyed. As figure 9.4
shows, this means that unless explicitly detached through a remove method to end
the life of the stateful bean instance, entities attached to an extended persistence
context will remain managed across multiple transactions.

Figure 9.3
Transaction-scoped
persistence contexts only
keep entities attached
within the boundaries of
the enclosing transaction.

Figure 9.4
For an extended persistence
context, once an entity is
attached in any given
transaction, it is managed for
all transactions in the lifetime
of the persistence context.

Introducing the EntityManager 303
The term scope is used for persistence contexts in the same manner that it is used
for Java variable scoping. It describes how long a particular persistence context
remains active. Transaction-scoped persistence contexts can be compared to
method local variables, in the sense that they are only in effect within the bound-
aries of a transaction. On the other hand, persistence contexts with extended
scope are more like instance variables that are active for the lifetime of an object—
they hang around as long as the EntityManager is around.

 At this point, we’ve covered the basic concepts needed to understand the
functionality of the EntityManager. We are now ready to see the EntityManager
itself in action.

9.1.4 Using the EntityManager in ActionBazaar
We’ll explore the EJB 3 EntityManager interface by implementing an Action-
Bazaar component. We’ll implement the ItemManagerBean stateless session bean
used to provide the operations to manipulate items. As listing 9.1 demonstrates,
the session bean provides methods for adding, updating, and removing Item
entities using the JPA EntityManager.

@Stateless
public class ItemManagerBean implements ItemManager {
 @PersistenceContext(unitName="actionBazaar")
 private EntityManager entityManager;

 public ItemManagerBean() {}

 public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 item.setDescription(description);
 item.setPicture(picture);
 item.setInitialPrice(initialPrice);
 Seller seller = entityManager.find(Seller.class, sellerId);
 item.setSeller(seller);
 entityManager.persist(item);

 return item;
 }

 public Item updateItem(Item item) {
 entityManager.merge(item);
 return item;
 }

Listing 9.1 ItemManagerBean using the container-managed, transaction-scoped
entity manager

Injects EntityManager
instance B

Retrieves entity
using primary key

 C

 D Persists entity instance

 E Merges changes to database

304 CHAPTER 9
Manipulating entities with EntityManager
 public Item undoItemChanges(Item item) {
 entityManager.refresh(entityManager.merge(item));
 return item;
 }

 public void deleteItem(Item item) {
 entityManager.remove(entityManager.merge(item));
 }
}

ItemManagerBean is a pretty good representation of the most common ways the
EntityManager API is used. First, an instance of the EntityManager is injected using
the @PersistenceContext annotation b and is used in all the session bean methods
that manipulate entities. As you might imagine, the addItem method is used by the
presentation layer to add an item posted by the seller to the database. The persist
method is used by addItem to add a new Item entity to the database D. The addItem
method also uses the EntityManager’s find method to retrieve the Seller of the
Item using the entity’s primary key C. The retrieved Seller entity is set as an asso-
ciation field of the newly instantiated Item entity along with all other item data.

 The updateItem method updates the Item entity data in the database using the
merge method E. This method could be invoked from an administrative interface
that allows a seller to update a listing after an item is posted. The EntityManager’s
refresh method is used in the undoItemChanges method to discard any changes
made to an Item entity and to reload it with the data stored in the database F.
The undoItemChanges method could be used by the same administrative interface
that uses the updateItem method to allow the user to start over with modifying a
listing (think of an HTTP form’s “reset” button).

 Lastly, an Item entity is removed from the database using the remove method
G. This method could be used by an ActionBazaar administrator to remove an
offending listing.

 Now that we’ve “surface-scanned” the code in listing 9.1, we’re ready to start
our in-depth analysis of the EntityManager API. We’ll start from the most logical
point: making an EntityManager instance available to the application.

9.2 Creating EntityManager instances

EntityManager is like the conductor of an orchestra who manages the show. Say
you’d like to bring the orchestra to your town for a performance. You first get in
touch with and attempt to hire the conductor. Similarly, the first obvious step to per-
forming any persistence operation is obtaining an instance of an EntityManager.

Refreshes entity
from database F

Removes
entity from
database G

Creating EntityManager instances 305
 In listing 9.1, we do this by injecting an instance using the @Persistence-
Context annotation. If you are using a container, this is more or less all you will
need to know about getting an instance of an EntityManager.

 All EntityManager instances injected using the @PersistenceContext annota-
tion are container managed. This means that the container takes care of the mun-
dane task of looking up, opening, and closing the EntityManager behind the
scenes. In addition, unless otherwise specified, injected EntityManagers have
transaction scope. Just as you aren’t limited to using the transaction scope, you
are not limited to using a container-managed EntityManager either.

 JPA fully supports creating application-managed EntityManagers that you
explicitly create, use, and release, including controlling how the EntityManager
handles transactions. This capability is particularly important for using JPA out-
side the container.

 In this section we’ll explore how to create and use both container- and
application-managed EntityManagers.

9.2.1 Container-managed EntityManagers
As you saw earlier, container-managed EntityManagers are injected using the
@PersistenceContext annotation. Let’s take a look at the definition of the anno-
tation to start exploring its features:

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface PersistenceContext {
 String name() default "";
 String unitName() default "";
 PersistenceContextType type default TRANSACTION;
 PersistenceProperty[] properties() default {};
}

The first element of the annotation, name, specifies the JNDI name of the persis-
tence context. This element is used in the unlikely case you have to explicitly
mention the JNDI name for a given container implementation to be able to look
up an EntityManager. In most situations, leaving this element empty is fine,
except when you use @PersistenceContext at the class level to establish reference
to the persistence context.

 The unitName element specifies the name of the persistence unit. A persistence
unit is essentially a grouping of entities used in an application. This idea is useful
when you have a large Java EE application and would like to separate it into sev-
eral logical areas (think Java packages). For example, ActionBazaar entities could
be grouped into general and admin units.

306 CHAPTER 9
Manipulating entities with EntityManager
 Persistence units cannot be set up using code, and you must configure them
through the persistence.xml deployment descriptor. We’ll return to the topic of
configuring persistence units in chapter 11; for now, all you need to understand
is that you can get an EntityManager for the admin unit using the unitName ele-
ment as follows:

@PersistenceContext(unitName="admin")
EntityManager entityManager;

In the typical case that a Java EE module has a single persistence unit, specifying
the unitName might seem redundant. In fact, most persistence providers will
resolve the unit correctly if you don’t specify a unitName. However, we recommend
specifying a persistence unit name even if you only have one unit. This ensures that
you are not dependent on container-specific functionality since the specification
doesn’t state what the persistence provider must do if the unitName is not specified.

EntityManager scoping
The element type specifies the EntityManager scope. As we noted, for a container-
managed EntityManager, scope can either be TRANSACTION or EXTENDED. If the type
element is left empty, the scope is assumed to be TRANSACTION. Not surprisingly, the
typical use of the type element is to specify EXTENDED for an EntityManager. The
code would look like this:

@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager entityManager;

You are not allowed to use extended persistence scope for stateless session beans
or MDBs. If you stop and think for second, the reason should be pretty obvious.
The real reason for using extended scope in a bean would be to manage entity
state across multiple method calls, even if each method call is a separate transac-
tion. Since neither sessions nor message-driven beans are supposed to implement
such functionality, it makes no sense to support extended scope for these bean
types. On the other hand, extended persistence scope is ideal for stateful session
beans. An underlying EntityManager with extended scope could be used to cache
and maintain the application domain across an arbitrary number of method calls
from a client. More importantly, you could do this and still not have to give up
method-level transaction granularity (most likely using CMT). We’ll return to our
discussion of how you can use an extended persistence context for stateful session
beans as an effective caching mechanism in chapter 13.

Creating EntityManager instances 307
NOTE The real power of container-managed EntityManagers lies in the high
degree of abstraction they offer. Behind the scenes, the container instan-
tiates EntityManagers, binds them to JNDI, injects them into beans on
demand, and closes them when they are no longer needed (typically
when a bean is destroyed).

It is difficult to appreciate the amount of menial code the container takes care of
until you see the alternative. Keep this in mind when looking at application-
managed EntityManagers in the coming section. Note that container-managed
EntityManagers are available to all components in a Java EE container, including
JSF-backing beans and servlets. However, be aware of the fact that Entity-
Managers are not thread-safe; thus, injecting them frivolously into presentation-
layer components can readily land you in some trouble. We’ll discuss this nuance
in the sidebar “EntityManagers and thread safety.”

EntityManagers and thread safety

It is very easy to forget the fact that web-tier components are meant to be used
by multiple concurrent threads. Servlet-based components like JSPs are deliber-
ately designed this way because they are intended to achieve high throughput
through statelessness.

However, this fact means that you cannot use resources that are not thread-safe as
servlet instance variables. The EntityManager falls under this category, so injecting
it into a web component is a big no-no. One way around this problem is to use the
SingleThreadModel interface to make a servlet thread-safe. In practice, this tech-
nique severely degrades application performance and is almost always a bad idea.

Some vendors might try to solve this problem. If you are extremely comfortable with
your container vendor, you could count on this. Remember, though, one very
important benefit of using EJB 3 is portability across container implementations.
You shouldn’t give up this advantage frivolously.

If you must use container-managed EntityManagers from your servlet, the best
option is to look up an instance of the EntityManager inside your method as follows:

@PersistenceContext(name="pu/actionBazaar",
 unitName="ActionBazaar")
public class ItemServlet extends HttpServlet {
 @Resource private UserTransaction ut;
 public void service (HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {

308 CHAPTER 9
Manipulating entities with EntityManager
Now that you are familiar with working with EntityManager inside the container,
let’s move on to the application-managed EntityManager.

9.2.2 Application-managed EntityManager
An application-managed EntityManager wants nothing to do with a Java EE con-
tainer. This means that you must write code to control every aspect of the Entity-
Manager’s lifecycle. By and large, application-managed EntityManagers are most
appropriate for environments where a container is not available, such as Java SE
or a lightweight web container like Tomcat.

 However, a justification to use application-managed EntityManagers inside a
Java EE container is to maintain fine-grained control over the EntityManager life-
cycle or transaction management. For this reason, as well as to maintain flexibil-
ity, the EJB 3 API provides a few conveniences for using application-managed
EntityManagers inside a container. This happens to suit us well too, because it
provides an effective approach to exploring application-managed Entity-

Managers (see listing 9.2) by reusing the code in listing 9.1.

@Stateless
public class ItemManagerBean implements ItemManager {
 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;
 private EntityManager entityManager;

 public ItemManagerBean() {}

 @PostConstruct

 Context ctx = new InitialContext();
 EntityManager em =(EntityManager)
 ctx.lookup(
 "java:comp/env/pu/actionBazaar");
 …
 ut.begin();
 em.persist(item);
 ut.commit();
 ...
 }
 …
}

The other alternative is to use an application-managed EntityManager with a JTA
transaction. It is worth noting that EntityManagerFactory is thread-safe.

Listing 9.2 ItemManagerBean using an application-managed EntityManager

Injects Entity-
ManagerFactory
instance B

Creating EntityManager instances 309
 public void initialize() {
 entityManager = entityManagerFactory.createEntityManager();
 }
 ...
 public Item updateItem(Item item) {
 entityManager.joinTransaction();
 entityManager.merge(item);
 return item;
 }
 ...
 @PreDestroy
 public void cleanup() {
 if (entityManager.isOpen()) {
 entityManager.close();
 }
 }
 ...
}

It should be fairly obvious that we are more or less explicitly doing what the con-
tainer did for us behind the scenes in listing 9.1. First we inject an instance of
EntityManagerFactory b. We create an EntityManager using the injected entity
manager factory after the bean is constructed C and close it E before the bean is
destroyed, mirroring what the container does automatically. The same is true
when we explicitly join a container-managed JTA transaction D before perform-
ing an EntityManager operation.

EntityManagerFactory
As you can see in listing 9.2, we get an instance of an application-managed Entity-
Manager using the EntityManagerFactory interface. If you have used JDBC, this is
essentially the same idea as creating a Connection from a DriverManager factory. In
a Java EE environment, you have the luxury of using the @PersistenceUnit anno-
tation to inject an instance of an EntityManagerFactory, just as we do in listing 9.2.
This useful annotation is defined as follows:

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface PersistenceUnit {
 String name() default "";
 String unitName() default "";
}

The name and unitName elements serve exactly the same purpose as they do for the
@PersistenceContext annotation. While the name element can be used to point to

Creates
EntityManager C

 D Explicitly joins JTA transaction

Closes EntityManager E

310 CHAPTER 9
Manipulating entities with EntityManager
the JNDI name of the EntityManagerFactory, the unitName element is used to spec-
ify the name of the underlying persistence unit.

 Figure 9.5 shows the relationships between important interfaces made avail-
able by JPA outside the container.

 The EntityManagerFactory’s createEntityManager method creates an
application-managed EntityManager. This is probably the most commonly used
method in the interface, in addition to the close method. We don’t explicitly
close the factory in listing 9.2 since the container takes care of cleaning up all
resources it injects (unlike the EntityManager, which is created programmatically
and is explicitly closed). Table 9.2 lists all the methods in the EntityManager-
Factory interface. As you can see, most of them are fairly self-explanatory.

Table 9.2 The EntityManager factory is used to create an instance of an application-managed
EntityManager.

Method Purpose

EntityManager
 createEntityManager()

Creates an application-managed EntityManager.

EntityManager
 createEntityManager(Map map)

Creates an application-managed EntityManager
with a specified Map. The Map contains vendor-specific
properties to create the manager.

void close() Closes the EntityManagerFactory.

boolean isOpen() Checks whether the EntityManagerFactory is open.

Figure 9.5
These relationships exist between various important classes in the
javax.persistence package for using JPA outside the Java EE container.

Creating EntityManager instances 311
We have seen the usage of most of the EntityManagerFactory methods in list-
ing 9.2. Perhaps the most interesting aspect of listing 9.2 is the entityManager.
joinTransaction() call in the updateItem method. Let’s discuss this method in
a little more detail.

 As we hinted in the beginning of this section, unlike container-managed
EntityManagers, application-managed EntityManagers do not automatically par-
ticipate in an enclosing transaction. Instead, they must be asked to join an
enclosing JTA transaction by calling the joinTransaction method. This method
is specifically geared to using application-managed EntityManagers inside a con-
tainer, where JTA transactions are usually available.

Application-managed EntityManagers outside the Java EE container
In Java SE environments, however, JTA is not a possibility. Resource-local transac-
tions must be used in place of JTA for such environments. The EntityTransaction
interface is designed with exactly this scenario in mind. We’ll explore this inter-
face by reimplementing the code to update an item from listing 9.2 for an SE
application. Listing 9.3 also serves the dual purpose of being a good template for
using application-managed EntityManagers without any help from the container.

EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory("actionBazaar");

EntityManager entityManager =
 entityManagerFactory.createEntityManager();

try
{

 EntityTransaction entityTransaction =
 entityManager.getTransaction();

 entityTransaction.begin();

 entityManager.persist(item);

 entityTransaction.commit();

}
finally
{
 entityManager.close();
 entityManagerFactory.close();
}

Listing 9.3 Using an application-managed EntityManager outside a container

Gets EntityManagerFactory instance B

Creates
EntityManager

 C

Creates
transaction

 D

 E Begins transaction

 F Merges Item

 G Commits transaction

Closes resources H

312 CHAPTER 9
Manipulating entities with EntityManager
The first thing that should strike you about listing 9.3 is the amount of boilerplate
code involved to accomplish exactly the same thing as the updateItem method in
listing 9.1 (cutting and pasting both code snippets into a visual editor and com-
paring the code side-by-side might be helpful in seeing the full picture at a glance).

 The javax.persistence.Persistence object’s createEntityManagerFactory
method used in listing 9.3 b is essentially a programmatic substitute for the
@PersistenceUnit annotation. The single parameter of the createEntity-

ManagerFactory method is the name of the EntityManagerFactory defined in the
persistence.xml deployment descriptor. Since the container is no longer help-
ing us out, it is now important to be sure to close the EntityManagerFactory
returned by the createEntityManagerFactory method when we are done, in addi-
tion to closing the EntityManager H. Just as in listing 9.2, the EntityManagerFac-
tory’s createEntityManager method is used to create the application-managed
EntityManager C.

 However, before merging the Item entity to the database F, we now create an
EntityTransaction by calling the getTransaction method of the EntityManager
D. The EntityTransaction is essentially a high-level abstraction over a resource-
local JDBC transaction, as opposed to the distributed JTA transaction we joined in
listing 9.2. At first it is natural to think that a joinTransaction call is still neces-
sary to make the EntityManager aware of the enclosing transaction. Remember
that since the EntityManager itself is creating the transaction instead of the con-
tainer, it implicitly keeps track of EntityTransactions, so the join is not necessary.
The rest of the transaction code—the begin E and the commit G—do exactly
what you’d expect. As might be obvious, the EntityTransaction interface also has
a rollback method to abort the transaction. Note that application-managed
EntityManagers are never transaction scoped. That is, they keep managing
attached entities until they are closed. Also the transaction-type must be set to
RESOURCE_LOCAL in the persistence.xml file for using the EntityTransaction
interface (we’ll discuss this further in chapter 11 when we talk about EJB 3 pack-
aging and deployment).

 Although there is little doubt that the code in listing 9.3 is pretty verbose and
error prone, being able to use application-managed EntityManagers outside the
confines of the container accomplishes the vital goal of making standardized
ORM accessible to all kinds of applications beyond server-side enterprise solu-
tions, including Java Swing-based desktop applications, as well as enabling inte-
gration with web containers such as Tomcat or Jetty.

Managing persistence operations 313
Using JPA in a web container and the ThreadLocal pattern
If you are using an application-managed entity manager in a web container such
as Tomcat or Jetty, some persistence providers such as Hibernate recommend
that you use the ThreadLocal pattern. This is widely known as the ThreadLocal
session pattern in the Hibernate community. It associates a single instance of the
EntityManager with a particular request. You have to bind the EntityManager to a
thread-local variable and set the EntityManager instance to the associated thread,
as shown here:

private static EntityManagerFactory emf;
 public static final ThreadLocal<EntityManager> _
 threadLocal = new ThreadLocal<EntityManager>();

 public static EntityManagerFactory getEntityManagerFactory() {
 if (emf == null) {
 emf =
 Persistence.createEntityManagerFactory("actionBazaar");
 }

 return emf;
 }

 public static EntityManager getEntityManager() {
 EntityManager entityManager = _threadLocal.get();

 if (entityManager == null) {
 entityManager = emf.createEntityManager();
 _threadLocal.set(entityManager);
 }
 return entityManager;
 }

Check your persistence provider’s documentation if it requires you to use the
ThreadLocal pattern.

 Next, we’ll tackle the most important part of this chapter: EntityManager
operations.

9.3 Managing persistence operations

The heart of the JPA API lies in the EntityManager operations, which we’ll discuss
in upcoming sections. As you might have noted in listing 9.1, although the
EntityManager interface is small and simple, it is pretty complete in its ability to
provide an effective persistence infrastructure. In addition to the CRUD (Create,

Stores
EntityManager
in ThreadLocal
variable

Creates
EntityManager

Associates EntityManager
with a thread

314 CHAPTER 9
Manipulating entities with EntityManager
Read, Update, and Delete) functionality we introduced in listing 9.1, we’ll cover a
few less-commonly used operations like flushing and refreshing.

 Let’s start our coverage in the most logical place: persisting new entities into
the database.

9.3.1 Persisting entities

Recall that in listing 9.1, the addItem method persists an Item entity into the
database. Since listing 9.1 was quite a few pages back, we’ll repeat the addItem
method body as reviewed in listing 9.4. Although it is not obvious, the code is
especially helpful in understanding how entity relationships are persisted,
which we’ll look at in greater detail in a minute. For now, let’s concentrate on
the persist method itself.

public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 item.setDescription(description);
 item.setPicture(picture);
 item.setInitialPrice(initialPrice);
 Seller seller = entityManager.find(Seller.class, sellerId);
 item.setSeller(seller);
 entityManager.persist(item);

 return item;
}

A new Item entity corresponding to the record being added is first instantiated
in the addItem method. All of the relevant Item entity data to be saved into the
database, such as the item title and description, is then populated with the data
passed in by the user. As you’ll recall from chapter 7, the Item entity has a many-
to-one relationship with the Seller entity. The related seller is retrieved using
the EntityManager’s find method and set as a field of the Item entity. The
persist method is then invoked to save the entity into the database, as shown in
figure 9.6. Note that the persist method is intended to create new entity
records in the database and not update existing ones. This means that you
should make sure the identity or primary key of the entity to be persisted
doesn’t already exist in the database.

Listing 9.4 Persisting entities

Persists entity

Managing persistence operations 315
If you try to persist an entity that violates the database’s integrity constraint, the
persistence provider will throw javax.persistence.PersistenceException, which
wraps the database exception.

 As we noted earlier, the persist method also causes the entity to become man-
aged as soon as the method returns. The INSERT statement (or statements) that
creates the record corresponding to the entity is not necessarily issued immedi-
ately. For transaction-scoped EntityManagers, the statement is typically issued
when the enclosing transaction is about to commit. In our example, this means
the SQL statements are issued when the addItem method returns. For extended-
scoped (or application-managed) EntityManagers, the INSERT statement is proba-
bly issued right before the EntityManager is closed. The INSERT statement can also
be issued at any point when the EntityManager is flushed.

 We’ll discuss automatic and manual flushing in more detail shortly. For now,
you just need to know that under certain circumstances, either you or the Entity-
Manager can choose to perform pending database operations (such as an INSERT
to create a record), without waiting for the transaction to end or the EntityMan-
ager to close. The INSERT statement corresponding to listing 9.4 to save the Item
entity could look something like this:

INSERT INTO ITEMS
 (TITLE, DESCRIPTION, SELLER_ID, ...)
VALUES
 ("Toast with the face of Bill Gates on it",
 "This is an auction for...", 1, ...)

As you may have noticed, the ITEM_ID primary key that is the identity for the Item
entity is not included in the generated INSERT statement. This is because the key-
generation scheme for the itemId identity field of the entity is set to IDENTITY. If
the scheme were set to SEQUENCE or TABLE instead, the EntityManager would have
generated a SELECT statement to retrieve the key value first and then include the
retrieved key in the INSERT statement. As we mentioned earlier, all persistence
operations that require database updates must be invoked within the scope of a

Figure 9.6 Invoking the persist method on the EntityManager interface makes an entity instance
managed. When the transaction commits, the entity state is synchronized with the database.

316 CHAPTER 9
Manipulating entities with EntityManager
transaction. If an enclosing transaction is not present when the persist method is
invoked, a TransactionRequiredException is thrown for a transaction-scoped
entity manager. If you are using an application-managed or extended entity man-
ager, invoking the persist method will attach the entity to persistence context. If
a new transaction starts, the entity manager joins the transaction and the changes
will be saved to the database when the transaction commits. The same is true for
the EntityManager’s flush, merge, refresh, and remove methods.

Persisting entity relationships
One of the most interesting aspects of persistence operations is the handling of
entity relationships. JPA gives us a number of options to handle this nuance in a
way that suits a particular application-specific situation.

 Let’s explore these options by revisiting listing 9.4. The addItem method is one
of the simplest cases of persisting entity relationships. The Seller entity is
retrieved using the find method, so it is already managed, and any changes to it
are guaranteed to be transparently synchronized. Recall from chapter 7 that there
is a bidirectional one-to-many relationship between the Item and Seller entities.
This relationship is realized in listing 9.4 by setting the Seller using the item.set-
Seller method. Let’s assume that the Seller entity is mapped to the SELLERS
table. Such a relationship between the Item and Seller entities is likely imple-
mented through a foreign key to the SELLERS.SELLER_ID column in the ITEMS table.
Since the Seller entity is already persisted, all the EntityManager has to do is set
the SELLER_ID foreign key in the generated INSERT statement. Examining the
INSERT statement presented earlier, this is how the SELLER_ID value is set to 1. Note
that if the seller property of Item were not set at all, the SELLER_ID column in the
INSERT statement would be set to NULL.

 Things become a lot more interesting when we consider the case in which the
entity related to the one we are persisting does not yet exist in the database. This
does not happen very often for one-to-many and many-to-many relationships. In
such cases, the related entity is more than likely already saved in the database.
However, it does occur a lot more often for one-to-one relationships. For pur-
poses of illustration, we’ll stray from our ItemManager example and take a look at
saving User entities with associated BillingInfo entities. Recall that we intro-
duced this unidirectional, one-to-one relationship in chapter 7. The method out-
lined in listing 9.5 receives user information such as username, e-mail, as well as
billing information such as credit card type and number, and persists both the
User and related BillingInfo entities into the database.

Managing persistence operations 317
public User addUser(String username, String email,
 String creditCardType, String creditCardNumber,
 Date creditCardExpiration) {
 User user = new User();
 user.setUsername(username);
 user.setEmail(email);

 BillingInfo billing = new BillingInfo();
 billing.setCreditCardType(creditCardType);
 billing.setCreditCardNumber(creditCardNumber);
 billing.setCreditCardExpiration(creditCardExpiration);

 user.setBillingInfo(billing);
 entityManager.persist(user);

 return user;
}

As you can see, neither the User entity nor the related BillingInfo entity is man-
aged when the persist method is invoked, since both are newly instantiated.
Let’s assume for the purpose of this example that the User and BillingInfo enti-
ties are saved into the USERS and BILLING_INFO tables, with the one-to-one rela-
tionship modeled with a foreign key on the USERS table referencing the
BILLING_ID key in the BILLING_INFO table. As you might guess from looking at list-
ing 9.5, two INSERT statements, one for the User and the other for the BillingInfo
entity, are issued by JPA. The INSERT statement on the USERS table will contain the
appropriate foreign key to the BILLING_INFO table.

Cascading persist operations
Perhaps surprisingly, it is not the default behavior for JPA to persist related entities.
By default, the BillingInfo entity would not be persisted and you would not see an
INSERT statement generated to persist the BillingInfo entity into the BILLING_
INFO table. The key to understanding why this is not what happens in listing 9.5 lies
in the @OneToOne annotation on the billing property of the User entity:

public class User {

@OneToOne(cascade=CascadeType.PERSIST)
 public void setBillingInfo(BillingInfo billing) {

Notice the value of the cascade element of the @OneToOne annotation. We deferred
the discussion of this element in chapter 7 so that we could discuss it in a more rel-
evant context here.

Listing 9.5 Persisting relationships

Persists both User and BillingInfo

318 CHAPTER 9
Manipulating entities with EntityManager
 Cascading in ORM-based persistence is similar to the idea of cascading in data-
bases. The cascade element essentially tells the EntityManager how, or if, to prop-
agate a given persistence operation on a particular entity into entities related to it.

 By default, the cascade element is empty, which means that no persistence
operations are propagated to related entities. Alternatively, the cascade element
can be set to ALL, MERGE, PERSIST, REFRESH, or REMOVE. Table 9.3 lists the effect of
each of these values.

Since in our case we have set the cascade element to PERSIST, when we persist the
User entity, the EntityManager figures out that a BillingInfo entity is associated
with the User entity and it must be persisted as well. As table 9.3 indicates, the
persist operation would still be propagated to BillingInfo if the cascade ele-
ment were set to ALL instead. However, if the element were set to any other value
or not specified, the operation would not be propagated and we would have to
perform the persist operation on the BillingInfo entity separately from the
User entity. For example, let’s assume that the cascade element on the @OneToOne
annotation is not specified. To make sure both related entities are persisted, we’d
have to change the addUser method as shown in listing 9.6.

public User addUser(String username, String email,
 String creditCardType, String creditCardNumber,
 Date creditCardExpiration) {
 User user = new User();

Table 9.3 Effects of various cascade type values.

CascadeType Value Effect

CascadeType.MERGE Only EntityManager.merge operations are
propagated to related entities.

CascadeType.PERSIST Only EntityManager.persist operations are
propagated to related entities.

CascadeType.REFRESH Only EntityManager.refresh operations are
propagated to related entities.

CascadeType.REMOVE Only EntityManager.remove operations are
propagated to related entities.

CascadeType.ALL All EntityManager operations are propagated to
related entities.

Listing 9.6 Manually persisting relationships

Managing persistence operations 319
 user.setUsername(username);
 user.setEmail(email);

 BillingInfo billing = new BillingInfo();
 billing.setCreditCardType(creditCardType);
 billing.setCreditCardNumber(creditCardNumber);
 billing.setCreditCardExpiration(creditCardExpiration);

 entityManager.persist(billing);

 user.setBillingInfo(billing);
 entityManager.persist(user);

 return user;
}

As you can see, the BillingInfo entity is persisted first. The persisted Billing-
Info entity is then set as a field of the User entity. When the User entity is per-
sisted, the generated key from the BillingInfo entity is used in the foreign key
for the generated INSERT statement.

 Having explored the persist operation, let’s now move on to the next opera-
tion in the EntityManager CRUD sequence—retrieving entities.

9.3.2 Retrieving entities by primary key

JPA supports several ways to retrieve entity instances from the database. By far the
simplest way is retrieving an entity by its primary key using the find method we
introduced in listing 9.1. The other ways all involve using the query API and
JPQL, which we’ll discuss in chapter 10. Recall that the find method was used in
the addItem method in listing 9.1 to retrieve the Seller instance corresponding to
the Item to add:

Seller seller = entityManager.find(Seller.class, sellerId);

The first parameter of the find method specifies the Java type of the entity to be
retrieved. The second parameter specifies the identity value for the entity instance
to retrieve. Recall from chapter 7 that an entity identity can either be a simple Java
type identified by the @Id annotation or a composite primary key class specified
through the @EmbeddedId or @IdClass annotation. In the example in listing 9.1, the
find method is passed a simple java.lang.Long value matching the Seller entity’s
@Id annotated identity, sellerId.

 Although this is not the case in listing 9.1, the find method is fully capable of
supporting composite primary keys. To see how this code might look, assume for

Persists BillingInfo

Persists User

320 CHAPTER 9
Manipulating entities with EntityManager
the sake of illustration that the identity of the Seller entity consists of the seller’s
first and last name instead of a simple numeric identifier. This identity is encap-
sulated in a composite primary key class annotated with the @IdClass annota-
tion. Listing 9.7 shows how this identity class can be populated and passed to the
find method.

SellerPK sellerKey = new SellerPK();

sellerKey.setFirstName(firstName);
sellerKey.setLastName(lastName);

Seller seller = entityManager.find(Seller.class, sellerKey);

The find method does what it does by inspecting the details of the entity class
passed in as the first parameter and generating a SELECT statement to retrieve the
entity data. This generated SELECT statement is populated with the primary key
values specified in the second parameter of the find method. For example, the
find method in listing 9.1 could generate a SELECT statement that looks some-
thing like this:

SELECT * FROM SELLERS WHERE seller_id = 1

Note that if an entity instance matching the specified key does not exist in the
database, the find method will not throw any exceptions. Instead, the Entity-
Manager will return null or an empty entity and your application must handle this
situation. It is not strictly necessary to call the find method in a transactional con-
text. However, the retrieved entity is detached unless a transaction context is avail-
able, so it is generally advisable to call the find method inside a transaction. One
of the most important features of the find method is that it utilizes EntityManager
caching. If your persistence provider supports caching and the entity already
exists in the cache, then the EntityManager returns a cached instance of the entity
instead of retrieving it from the database. Most persistence providers like Hiber-
nate and Oracle TopLink support caching, so you can more or less count on this
extremely valuable optimization.

 There is one more important JPA feature geared toward application optimiza-
tion—lazy and eager loading. The generated SELECT statement in our example
attempts to retrieve all of the entity field data when the find method is invoked.
In general, this is exactly what will happen for entity retrieval since it is the
default behavior for JPA. However, in some cases, this is not desirable behavior.

Listing 9.7 Find by primary key using composite keys

Managing persistence operations 321
Fetch modes allow us to change this behavior to optimize application performance
when needed.

Entity fetch modes
We briefly mentioned fetch modes in previous chapters but haven’t discussed
them in great detail. Discussing entity retrieval is an ideal place to fully explore
fetch modes.

 As we suggested, the EntityManager normally loads all entity instance data
when an entity is retrieved from the database. In ORM-speak, this is called eager
fetching, or eager loading. If you have ever dealt with application performance
problems due to premature or inappropriate caching, you probably already know
that eager fetching is not always a good thing. The classic example we used in
previous chapters is loading large binary objects (BLOBs), such as pictures. Unless
you are developing a heavily graphics-oriented program such as an online photo
album, it is unlikely that loading a picture as part of an entity used in a lot of
places in the application is a good idea. Because loading BLOB data typically
involves long-running, I/O-heavy operations, they should be loaded cautiously
and only as needed. In general, this optimization strategy is called lazy fetching.

 JPA has more than one mechanism to support lazy fetching. Specifying col-
umn fetch-mode using the @Basic annotation is the easiest one to understand.
For example, we can set the fetch mode for the picture property on the Item
entity to be lazy as follows:

@Column(name="PICTURE")
@Lob
@Basic(fetch=FetchType.LAZY)
public byte[] getPicture() {
 return picture;
}

A SELECT statement generated by the find method to retrieve Item entities would
not load data from the ITEMS.PICTURE column into the picture field. Instead, the
picture data will be automatically loaded from the database when the property is
first accessed through the getPicture method.

 Be advised, however, that lazy fetching is a double-edged sword. Specifying
that a column be lazily fetched means that the EntityManager will issue an addi-
tional SELECT statement just to retrieve the picture data when the lazily loaded
field is first accessed. In the extreme case, imagine what would happen if all entity
data in an application is lazily loaded. This would mean that the database would
be flooded with a large number of frivolous SELECT statements as entity data is
accessed. Also, lazy fetching is an optional EJB 3 feature, which means not every

322 CHAPTER 9
Manipulating entities with EntityManager
persistence provider is guaranteed to implement it. You should check your pro-
vider’s documentation before spending too much time figuring out which entity
columns should be lazily fetched.

Loading related entities
One of the most intricate uses of fetch modes is to control the retrieval of related
entities. Not too surprisingly, the EntityManager’s find method must retrieve all
entities related to the one returned by the method. Let’s take the ActionBazaar
Item entity, an exceptionally good case because it has a many-to-one, a one-to-
many, and two many-to-many relationships. The only relationship type not repre-
sented is one-to-one. The Item entity has a many-to-one relationship with the
Seller entity (a seller can sell more than one item, but an item can be sold by only
one seller), a one-to-many relationship with the Bid entity (more than one bid can
be put on an item), and a many-to-many relationship with the Category entity (an
item can belong to more than one category and a category contains multiple
items). These relationships are depicted in figure 9.7.

 When the find method returns an instance of an Item, it also automatically
retrieves the Seller, Bid, and Category entities associated with the instance and
populates them into their respective Item entity properties. As we see in listing 9.8,
the single Seller entity associated with the Item is populated into the seller
property, the Bid entities associated with an Item are populated into the bids
List, and the Category entities the Item is listed under are populated into the
categories property. It might surprise you to know some of these relationships
are retrieved lazily.

Figure 9.7 The Item entity is related to three other entities: Seller, Bid, and Category. The
relationships to Item are many-to-one, one-to-many, and many-to-many, respectively.

Managing persistence operations 323
All the relationship annotations we saw in chapter 8, including the @ManyToOne,
@OneToMany, and @ManyToMany annotations, have a fetch element to control fetch
modes just like the @Basic annotation discussed in the previous section. None of
the relationship annotations in listing 9.8 specify the fetch element, so the
default for each annotation takes effect.

public class Item {

 @ManyToOne
 public Seller getSeller(){
 ...

 @OneToMany
 public List<Bid> getBids(){
 ...

 @ManyToMany
 public List<Category> getCategories(){
 ...
}

By default, some of the relationship types are retrieved lazily while some are
loaded eagerly. We’ll discuss why each default makes sense as we go through each
relationship retrieval case for the Item entity. The Seller associated with an Item
is retrieved eagerly, because the fetch mode for the @ManyToOne annotation is
defaulted to EAGER. To understand why this make sense, it is helpful to understand
how the EntityManager implements eager fetching. In effect, each eagerly fetched
relationship turns into an additional JOIN tacked onto the basic SELECT statement
to retrieve the entity. To see what we mean, let’s see how the SELECT statement for
an eagerly fetched Seller record related to an Item looks (listing 9.9).

SELECT
 *
FROM
 ITEMS
INNER JOIN
 SELLERS
ON
 ITEMS.SELLER_ID = SELLERS.SELLER_ID
WHERE ITEMS.ITEM_ID = 100

Listing 9.8 Relationships in the Item entity

Listing 9.9 SELECT statement for eagerly fetched Seller related to an Item

Many-to-one with Seller

One-to-many with Bids

Many-to-many with Categories

Inner join for many-to-one

324 CHAPTER 9
Manipulating entities with EntityManager
As listing 9.9 shows, an eager fetch means that the most natural way of retrieving
the Item entity would be through a single SELECT statement using a JOIN between the
ITEMS and SELLERS tables. It is important to note the fact that the JOIN will result in
a single row, containing columns from both the SELLERS and ITEMS tables. In terms
of database performance, this is more efficient than issuing one SELECT to retrieve
the Item and issuing a separate SELECT to retrieve the related Seller. This is exactly
what would have happened in case of lazy fetching and the second SELECT for
retrieving the Seller will be issued when the Item’s seller property is first
accessed. Pretty much the same thing applies to the @OneToOne annotation, so the
default for it is also eager loading. More specifically, the JOIN to implement
the relationship would result in a fairly efficient single combined row in all cases.

Lazy vs. eager loading of related entities
In contrast, the @OneToMany and @ManyToMany annotations are defaulted to lazy
loading. The critical difference is that for both of these relationship types, more
than one entity is matched to the retrieved entity. Think about Category entities
related to a retrieved Item, for example. JOINs implementing eagerly loaded one-
to-many and many-to-many relationships usually return more than one row. In
particular, a row is returned for every related entity matched.

 The problem becomes particularly obvious when you consider what happens
when multiple Item entities are retrieved at one time (for example, as the result of
a JPQL query, discussed in the next chapter). (N1 + N2 + … + Nx) rows would be
returned, where Ni is the number of related Category entities for the ith Item
record. For nontrivial numbers of N and i, the retrieved result set could be quite
large, potentially causing significant database performance issues. This is why JPA
makes the conservative assumption of defaulting to lazy loading for @OneToMany
and @ManyToMany annotations.

 Table 9.4 lists the default fetch behavior for each type of relationship annotation.

Table 9.4 Behavior of loading of associated entity is different for each kind of association by
default. We can change the loading behavior by specifying the fetch element with the relationship.

Relationship Type Default Fetch Behavior Number of Entities Retrieved

One-to-one EAGER Single entity retrieved

One-to-many LAZY Collection of entities retrieved

Many-to-one EAGER Single entity retrieved

Many-to-many LAZY Collection of entities retrieved

Managing persistence operations 325
The relationship defaults are not right for all circumstances, however. While the
eager fetching strategy makes sense for one-to-one and many-to-one relation-
ships under most circumstances, it is a bad idea in some cases. For example, if an
entity contains a large number of one-to-one and many-to-one relationships,
eagerly loading all of them would result in a large number of JOINs chained
together. Executing a relatively large number of JOINs can be just as bad as load-
ing an (N1 + N2 + … + Nx) result set. If this proves to be a performance prob-
lem, some of the relationships should be loaded lazily. Here’s an example of
explicitly specifying the fetch mode for a relationship (it happens to be the famil-
iar Seller property of the Item entity):

@ManyToOne(fetch=FetchType.LAZY)
public Seller getSeller() {
 return seller;
}

You should not take the default lazy loading strategy of the @OneToMany and
@ManyToMany annotations for granted. For particularly large data sets, this can
result in a huge number of SELECTs being generated against the database. This is
known as the N+1 problem, where 1 stands for the SELECT statement for the orig-
inating entity and N stands for the SELECT statement that retrieves each related
entity. In some cases, you might discover that you are better off using eager load-
ing even for @OneToMany and @ManyToMany annotations. In chapters 10 and 13,
we’ll discuss how you can eagerly load related entities using JPQL query without
having to change the fetch mode on an association on a per-query basis.

 Unfortunately, the choice of fetch modes is not cut and dried, and depends on
a whole host of factors, including the database vendor’s optimization strategy,
database design, data volume, and application usage patterns. In the real world,
ultimately these choices are often made through trial and error. Luckily, with JPA,
performance tuning just means a few configuration changes here and there as
opposed to time-consuming code modifications.

 Having discussed entity retrieval, we can now move into the third operation of
the CRUD sequence: updating entities.

9.3.3 Updating entities

Recall that the EntityManager makes sure that changes made to attached entities
are always saved into the database behind the scenes. This means that, for the
most part, our application does not need to worry about manually calling any
methods to update the entity. This is perhaps the most elegant feature of ORM-
based persistence since this hides data synchronization behind the scenes and

326 CHAPTER 9
Manipulating entities with EntityManager
truly allows entities to behave like POJOs. Take the code in listing 9.10, which cal-
culates an ActionBazaar Power Seller’s creditworthiness.

public void calculateCreditWorthiness (Long sellerId) {
 PowerSeller seller = entityManager.find
 PowerSeller.class, sellerId);

 seller.setCreditWorth(seller.getCreditWorth()
 * CREDIT_FACTOR
 * getRatingFromCreditBureauRobberBarons(seller));
 seller.setCreditWorth(seller.getCreditWorth()
 + (seller.getCreditWorth()
 * FEEDBACK_FACTOR
 * seller.getBuyerFeedbackRating()));
 seller.setCreditWorth(seller.getCreditWorth()
 + (seller.getCreditWorth()
 * SELLING_FACTOR
 * getTotalHistoricalSales(seller)));
}

Other than looking up the PowerSeller entity, little else is done using the Entity-
Manager in the calculateCreditWorthiness method. As you know, this is because
the PowerSeller is managed by the EntityManager as soon as it is returned by the
find method. Throughout the relatively long calculation for determining credit-
worthiness, the EntityManager will make sure that the changes to the entity wind
up in the database.

Detachment and merge operations
Although managed entities are extremely useful, the problem is that it is difficult
to keep entities attached at all times. Often the problem is that the entities will
need to be detached and serialized at the web tier, where the entity is changed,
outside the scope of the EntityManager. In addition, recall that stateless session
beans cannot guarantee that calls from the same client will be serviced by the
same bean instance. This means that there is no guarantee an entity will be han-
dled by the same EntityManager instance across method calls, thus making auto-
mated persistence ineffective.

 This is exactly the model that the ItemManager session bean introduced in list-
ing 9.1 assumes. The EntityManager used for the bean has TRANSACTION scope.
Since the bean uses CMT, entities become detached when transactions end the
method. This means that entities returned by the session bean to its clients are

Listing 9.10 Transparent management of attached entities

Finds Seller
entity

Saves changes
to entity
transparently

Managing persistence operations 327
always detached, just like the newly created Item entity returned by the ItemMan-
ager’s addItem method:

public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);

 return item;
}

At some point we’ll want to reattach the entity to a persistence context to synchro-
nize it with the database. The EntityManager’s merge method is designed to do
just that (see figure 9.8).

 You should remember that like all attached entities, the entity passed to the
merge method is not necessarily synchronized with the database immediately, but
it is guaranteed to be synchronized with the database sooner or later. We use the
merge method in the ItemManager bean in the most obvious way possible, to
update the database with an existing Item:

public Item updateItem(Item item) {
 entityManager.merge(item);
 return item;
}

As soon as the updateItem method returns, the database is updated with the data
from the Item entity. The merge method must only be used for an entity that exists
in the database. An attempt to merge a nonexistent entity will result in an
IllegalArgumentException. The same is true if the EntityManager detects that the

Figure 9.8 An entity instance can be detached and serialized to a separate tier where the client
makes changes to the entity and sends it back to the server. The server can use a merge operation
to attach the entity to the persistence context.

328 CHAPTER 9
Manipulating entities with EntityManager
entity you are trying to merge has already been deleted through the remove
method, even if the DELETE statement has not been issued yet.

Merging relationships
By default, entities associated with the entity being merged are not merged as
well. For example, the Seller, Bid and Category entities related to the Item are
not merged when the Item is merged in the previous code snippet. However, as
mentioned in section 9.3.1, this behavior can be controlled using the cascade ele-
ment of the @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany annotations. If
the element is set to either ALL or MERGE, the related entities are merged. For
example, the following code will cause the Seller entity related to the Item to be
merged since the cascade element is set to MERGE:

public class Item {
 @ManyToOne(cascade=CascadeType.MERGE)
 public Seller getSeller() {

Note that as in most of the EntityManager’s methods, the merge method must
be called from a transactional context or it will throw a TransactionRequired-
Exception.

 We’ll now move on to the final element of the CRUD sequence: deleting an entity.

9.3.4 Deleting entities

The deleteItem method in the ItemManagerBean in listing 9.1 deletes an Item
from the database. An important detail to notice about the deleteItem method

Detached entities and the DTO anti-pattern

If you have spent even a moderate amount of time using EJB 2, you are probably
thoroughly familiar with the Data Transfer Object (DTO) anti-pattern. In a sense, the
DTO anti-pattern was necessary because of entity beans. The fact that EJB 3
detached entities are nothing but POJOs makes the DTO anti-pattern less of a
necessity of life. Instead of having to create separate DTOs from domain data just
to pass back and forth between the business and presentation layers, you may
simply pass detached entities. This is exactly the model we follow in this chapter.

However, if your entities contain behavior, you might be better off using the DTO
pattern anyway, to safeguard business logic from inappropriate usage outside a
transactional context. In any case, if you decide to use detached entities as a sub-
stitute to DTOs, you should make sure they are marked java.io.Serializable.

Managing persistence operations 329
(repeated next) is that the item to be deleted was first attached to the Entity-
Manager using the merge method:

public void deleteItem(Item item) {
 entityManager.remove(entityManager.merge(item));
}

This is because the remove method can only delete currently attached entities and
the Item entity being passed to the deleteItem method is not managed. If a
detached entity is passed to the remove method, it throws an IllegalArgument-
Exception. Before the deleteItem method returns, the Item record will be deleted
from the database using a DELETE statement like this:

DELETE FROM ITEMS WHERE item_id = 1

Just as with the persist and merge methods, the DELETE statement is not necessar-
ily issued immediately but is guaranteed to be issued at some point. Meanwhile,
the EntityManager marks the entity as removed so that no further changes to it are
synchronized (as we noted in the previous section).

Cascading remove operations
Just as with merging and persisting entities, you must set the cascade element of a
relationship annotation to either ALL or REMOVE for related entities to be removed
with the one passed to the remove method. For example, we can specify that the
BillingInfo entity related to a Bidder be removed with the owning Bidder entity
as follows:

@Entity
public class Bidder {
 @OneToOne(cascade=CascadeType.REMOVE)
 public BillingInfo setBillingInfo() {

From a common usage perspective, this setup makes perfect sense. There is no
reason for a BillingInfo entity to hang around if the enclosing Bidder entity it is
related to is removed. When it comes down to it, the business domain determines
if deletes should be cascaded. In general, you might find that the only relation-
ship types where cascading removal makes sense are one-to-one and one-to-
many. You should be careful when using the cascade delete because the related
entity you are cascading the delete to may be related to other entities you don’t
know about. For example, let’s assume that there is a one-to-many relationship
between the Seller and Item entities and you are using cascade delete to remove
a Seller and its related Items. Remember the fact that other entities such as the
Category entity also hold references to the Items you are deleting and those rela-
tionships would become meaningless!

330 CHAPTER 9
Manipulating entities with EntityManager
Handling relationships
If your intent was really to cascade delete the Items associated with the Seller,
you should iterate over all instances of Category that reference the deleted Items
and remove the relationships first. The following code does this:

List<Category> categories = getAllCategories();
List<Item> items = seller.getItems();
for (Item item: items) {
 for (Category category: categories) {
 category.getItems().remove(item);
 }
}
entityManager.remove(seller);

The code gets all instances of Category in the system and makes sure that all Items
related to the Seller being deleted are removed from referencing Lists first. It
then proceeds with removing the Seller, cascading the remove to the related Items.

 Not surprisingly, the remove method must be called from a transactional con-
text or it will throw a TransactionRequiredException. Also, trying to remove an
already removed entity will raise IllegalStateException.

 Having finished the basic EntityManager CRUD operations, let’s now move on
to the two remaining major persistence operations: flushing data to the database
and refreshing from the database.

9.3.5 Controlling updates with flush

We’ve been talking about EntityManager flushing on and off throughout the
chapter. It is time we discussed this concept fully. For the most part, you’ll proba-
bly be able to get away without knowing too much about this EntityManager fea-
ture. However, there are some situations where not understanding EntityManager
flushing could be a great disadvantage. Recall that EntityManager operations like
persist, merge, and remove do not cause immediate database changes. Instead,
these operations are postponed until the EntityManager is flushed. The true moti-
vation for doing things this way is performance optimization. Batching SQL as
much as possible instead of flooding the database with a bunch of frivolous
requests saves a lot of communication overhead and avoids unnecessarily tying
down the database.

 By default, the database flush mode is set to AUTO. This means that the Entity-
Manager performs a flush operation automatically as needed. In general, this
occurs at the end of a transaction for transaction-scoped EntityManagers and
when the persistence context is closed for application-managed or extended-
scope EntityManagers. In addition, if entities with pending changes are used in a

Managing persistence operations 331
query, the persistence provider will flush changes to the database before execut-
ing the query.

 You can set the flush mode to COMMIT if you don’t like the idea of autoflushing
and want greater control over database synchronization. You can do so using the
EntityManager’s setFlushMode method as follows:

entityManager.setFlushMode(FlushModeType.COMMIT);

If the flush mode is set to COMMIT, the persistence provider will only synchronize
with the database when the transaction commits. However, you should be careful
with this, as it will be your responsibility to synchronize entity state with the data-
base before executing a query. If you don’t do this and an EntityManager query
returns stale entities from the database, the application can wind up in an incon-
sistent state.

 In reality, resetting flush mode is often overkill. This is because you can explic-
itly flush the EntityManager when you need to, using the flush method as follows:

entityManager.flush();

The EntityManager synchronizes the state of every managed entity with the data-
base as soon as this method is invoked. Like everything else, manual flushing
should be used in moderation and only when needed. In general, batching data-
base synchronization requests is a good optimization strategy to try to preserve.

 We’ll now move on to the last persistence operation to be discussed in this
chapter: refreshing entities.

9.3.6 Refreshing entities

The refresh operation repopulates entity data from the database. In other words,
given an entity instance, the persistence provider matches the entity with a record
in the database and resets the entity with retrieved data from the database as
shown in figure 9.9.

 While this EntityManager method is not used frequently, there are some cir-
cumstances where it is extremely useful. In listing 9.1, we use the method to
undo changes made by the ItemManager client and return fresh entity data from
the database:

Figure 9.9
The refresh operation repopulates
the entity from the database,
overriding any changes in the entity.

332 CHAPTER 9
Manipulating entities with EntityManager
public Item undoItemChanges(Item item) {
 entityManager.refresh(entityManager.merge(item));
 return item;
}

The merge operation is performed first in the undoItemChanges method because
the refresh method only works on managed entities. It is important to note that
just like the find method, the refresh method uses the entity identity to match
database records. As a result, you must make sure the entity being refreshed exists
in the database.

 The refresh method really shines when you consider a subtle but very com-
mon scenario. To illustrate this scenario, let’s go back to the addItem method in
listing 9.1:

public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);

 return item;
}

Note a subtle point about the method: it assumes that the Item entity is not
altered by the database in any way when the record is inserted into the database.
It is easy to forget that this is seldom the case with relational databases. For most
INSERT statements issued by the usual application, the database will fill in column
values not included in the INSERT statement using table defaults. For example,
assume that the Item entity has a postingDate property that is not populated by
the application. Instead, this value is set to the current database system time
when the ITEMS table record is inserted. This could be implemented in the data-
base by utilizing default column values or even database triggers.

 Since the persist method only issues the INSERT statement and does not load
the data that was changed by the database as a result of the INSERT, the entity
returned by the method would not include the generated postingDate field. This
problem could be fixed by using the refresh method as follows:

public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);
 entityManager.flush();

Entity lifecycle listeners 333
 entityManager.refresh(item);

 return item;
}

After the persist method is invoked, the EntityManager is flushed immediately so
that the INSERT statement is executed and the generated values are set by the data-
base. The entity is then refreshed so that we get the most up-to-date data from the
database and populate it into the inserted Item instance (including the posting-
Date field). In most cases you should try to avoid using default or generated values
with JPA due to the slightly awkward nature of the code just introduced. Luckily,
this awkward code is not necessary while using fields that use the JPA @Generated-
Value annotation since the persist method correctly handles such fields.

 Before we wrap up this chapter, we’ll introduce entity lifecycle-based listeners.

9.4 Entity lifecycle listeners

You saw in earlier chapters that both session and message-driven beans allow you
to listen for lifecycle callbacks like PostConstruct and PreDestroy. Similarly, enti-
ties allow you to receive callbacks for lifecycle events like persist, load, update,
and remove. Just as in session and message-driven beans, you can do almost any-
thing you need to in the lifecycle callback methods, including invoking an EJB, or
using APIs like JDBC or JMS. In the persistence realm, however, lifecycle callbacks
are typically used to accomplish such tasks as logging, validating data, auditing,
sending notifications after a database change, or generating data after an entity
has been loaded. In a sense, callbacks are the database triggers of JPA. Table 9.5
lists the callbacks supported by the API.

Table 9.5 Callbacks supported by JPA and when they are called

Lifecycle Method When It Is Performed

PrePersist Before the EntityManager persists an entity instance

PostPersist After an entity has been persisted

PostLoad After an entity has been loaded by a query, find, or refresh operation

PreUpdate Before a database update occurs to synchronize an entity instance

PostUpdate After a database update occurs to synchronize an entity instance

PreRemove Before EntityManager removes an entity

PostRemove After an entity has been removed

334 CHAPTER 9
Manipulating entities with EntityManager
Entity lifecycle methods need not be defined in the entity itself. Instead, you can
choose to define a separate entity listener class to receive the lifecycle callbacks. We
highly recommend this approach, because defining callback methods in the enti-
ties themselves will clutter up the domain model you might have carefully con-
structed. Moreover, entity callbacks typically contain crosscutting concerns rather
than business logic directly pertinent to the entity. For our purposes, we’ll explore
the use of entity callbacks using separate listener classes, default listeners, and the
execution order of entity listeners if you have multiple listeners.

9.4.1 Using an entity listener

Let’s see how entity lifecycle callbacks look by coding an entity listener on the
Item entity that notifies an ActionBazaar admin if an item’s initial bid amount is
set higher than a certain threshold. It is ActionBazaar policy to scrutinize items
with extremely high initial prices to check against possible fraud, especially for
items such as antiques and artwork. Listing 9.11 shows the code.

public class ItemMonitor {
 ...
 public ItemMonitor() {}
 @PrePersist
 @PreUpdate
 public void monitorItem(Item item) {
 if (item.getInitialBidAmount() >
 ItemMonitor.MONITORING_THRESHOLD) {
 notificationManager.sendItemPriceEmailAlert(item);
 }
 }
}

@Entity
@EntityListeners(actionbazaar.persistence.ItemMonitor.class)
public class Item implements Serializable {

As you can see in listing 9.11, our listener, ItemMonitor, has a single method,
monitorItem, which receives callbacks for both the PrePersist and PreUpdate
events. The @EntityListeners annotation on the Item entity specifies ItemMonitor
to be the lifecycle callback listener for the Item entity. It’s worth noting that the lis-
tener callbacks can be defined on an entity class or mapped superclass. All we
have to do to receive a callback is to annotate our method with a callback annota-
tion such as @PrePersist, @PostPersist, @PreUpdate, and so on. The monitorItem

Listing 9.11 ItemMonitor entity listener

Specifies callbacks

Registers
listener

Entity lifecycle listeners 335
method checks to see if the initial bid amount set for the item to be inserted
or updated is above the threshold specified by the ItemMonitor.MONITORING_
THRESHOLD variable and sends the ActionBazaar admin an e-mail alert if it is. As
you might have guessed by examining listing 9.11, entity listener callback meth-
ods follow the form void <METHOD>(Object). The single method parameter of type
Object specifies the entity instance for which the lifecycle event was generated. In
our case, this is the Item entity.

 If the lifecycle callback method throws a runtime exception, the intercepted
persistence operation is aborted. This is an extremely important feature to vali-
date persistence operations. For example, if you have a listener class to validate
that all entity data is present before persisting an entity, you could abort the per-
sistence operation if needed by throwing a runtime exception.

 Listing 9.12 shows an example listener class that can be used to validate an
entity state before an entity is persisted. You can build validation logic in a Pre-
Persist callback, and if the callback fails the entity will not be persisted. For
example, ActionBazaar sets a minimum price for the initialPrice for items
being auctioned, and no items are allowed to be listed below that price.

public class ItemVerifier{

…

 public ItemVerifier() {
 }
 @PrePersist
 public void newItemVerifier(Item item){
 if (item.getInitialPrice()<MIN_INITIAL_PRICE)
 throw new ItemException(
 "Item Price is lower than "+
 " Minimum Price Allowed"); }
}

All entity listeners are stateless in nature and you cannot assume that there is a
one-to-one relationship between an entity instance and a listener instance.

NOTE One great drawback of entity listener classes is that they do not support
dependency injection. This is due to the fact that entities may be used
outside containers, where DI is not available.

Listing 9.12 ItemVerifier, which validates the price set for an item

336 CHAPTER 9
Manipulating entities with EntityManager
For crosscutting concerns like logging or auditing, it is inconvenient to have to
specify listeners for individual entities. Given this problem, JPA enables you to
specify default entity listeners that receive callbacks from all entities in a persis-
tence unit. Let’s take a look at this mechanism next.

9.4.2 Default listener classes

ActionBazaar audits all changes made to entities. You can think of this as an
ActionBazaar version of a transaction log. This feature can be implemented using
a default listener like the following:

public class ActionBazaarAuditor {
 ...
 @PrePersist
 @PostPersist
 ...
 @PostRemove
 public void logOperation(Object object) {
 Logger.log("Performing Persistence Operation on: "
 + object.getName());

The ActionBazaarAuditor listens for all persistence operations for all entities
in the ActionBazaar persistence unit, and logs the name of the entity that the
callback was generated on. Unfortunately, there is no way to specify default
entity listeners using annotations, and we must resort to using the persistence.
xml deployment descriptor. Since we have not yet fully described the persis-
tence deployment descriptor, we’ll simply note the relevant descriptor snippet
here, leaving a detailed analysis to chapter 11:

<persistence-unit name="actionBazaar">
 ...
 <default-entity-listeners>
 actionbazaar.persistence.ActionBazaarAuditor.class
 </default-entity-listeners>
 ...

In this snippet, the default-entity-listeners element lists the default entity lis-
teners for the actionBazaar persistence unit. Again, do not worry too much about
the specific syntax at the moment, as we’ll cover it in greater detail later.

 This brings us to the interesting question of what happens if there is both a
default listener and an entity-specific listener for a given entity, as in the case of
our Item entity. The Item entity now has two lifecycle listeners: the default Action-
BazaarAuditor listener and the ItemMonitor listener. How do you think they inter-
act? Moreover, since entities are POJOs that can inherit from other entities, both
the superclass and subclass may have attached listeners. For example, what if the

Entity lifecycle listeners 337
User entity has an attached listener named UserMonitor and the Seller subclass
also has an attached listener, SellerMonitor? How these listeners relate to each
other is determined by the order of execution as well as exclusion rules.

9.4.3 Listener class execution order and exclusion

If an entity has default listeners, entity class–specific lis-
teners, and inherited superclass listeners, the default
listeners are executed first. Following OO constructor
inheritance rules, the superclass listeners are invoked
after the default listeners. Subclass listeners are
invoked last. Figure 9.10 depicts this execution order.

 If more than one listener is listed on any level, the
execution order is determined by the order in which they
are listed in the annotation or deployment descriptor.
For example, in the following entity listener annotation,
the ItemMonitor listener is called before ItemMonitor2:

EntityListeners({actionbazaar.persistence.
 ItemMonitor.class, actionbazaar.persistence.
 ItemMonitor2.class})

You cannot programmatically control this order of exe-
cution. However, if needed, you can exclude default and
superclass listeners from being executed at all. Let’s
assume that we need to disable both default and superclass listeners for the
Seller entity. You can do this with the following code:

@Entity
@ExcludeDefaultListeners
@ExcludeSuperClassListeners
@EntityListeners(actionbazaar.persistence.SellerMonitor.class)
public class Seller extends User {

As you can see from the code, the @ExcludeDefaultListeners annotation disables
any default listeners while the @ExcludeSuperClassListeners annotation stops
superclass listeners from being executed. As a result, only the SellerMonitor lis-
tener specified by the @EntityListeners annotation will receive lifecycle callbacks
for the Seller entity. Unfortunately, neither the @ExcludeDefaultListeners nor
the @ExcludeSuperClassListeners annotation currently enables us to block spe-
cific listener classes. We hope that this is a feature that will be added in a future
version of JPA.

Figure 9.10 Entity
listener execution order.
Default entity listeners
are executed first, then
superclass and subclass
listeners.

338 CHAPTER 9
Manipulating entities with EntityManager
9.5 Entity operations best practices

Throughput this chapter, we have provided you with some hints on the best
practices of using the EntityManager interface. Before we conclude, let’s solid-
ify the discussion of best practices by exploring a few of the most important
ones in detail.

 Use container-managed entity managers. If you’re building an enterprise applica-
tion that will be deployed to a Java EE container, we strongly recommend that you
use container-managed entity managers. Furthermore, if you are manipulating
entities from the session bean and MDB tier, you should use declarative transac-
tions in conjunction with container-managed EntityManagers. Overall, this will
let you focus on application logic instead of worrying about the mundane details
of managing transactions, managing EntityManager lifecycles, and so on.

 Avoid injecting entity managers into the web tier. If you’re using the EntityManager
API directly from a component in the web tier, we recommend that you avoid
injecting entity managers because the EntityManager interface is not thread-safe.
Instead, you should use a JNDI lookup to grab an instance of a container-managed
EntityManager. Better yet, use the session Façade pattern discussed in chapter 12
instead of using the EntityManager API directly from the web tier and take advan-
tage of the benefits offered through session beans such as declarative transaction
management.

 Use the Entity Access Object pattern. Instead of cluttering your business logic with
EntityManager API calls, use a data access object (we call it entity access object)
discussed in chapter 12. This practice allows you to abstract the EntityManager
API from the business tier.

 Separate callbacks into external listeners. Don’t pollute your domain model with
crosscutting concerns such as auditing and logging code. Use external entity lis-
tener classes instead. This way, you could swap listeners in and out as needed.

9.6 Summary

In this chapter, we covered the most vital aspect of JPA: persistence operations
using entity managers. We also explored persistence contexts, persistence scopes,
various types of entity managers, and their usage patterns. We even briefly covered
entity lifecycles and listeners. We highly recommend Java EE container-managed
persistence contexts with CMT-driven transactions. In general, this strategy min-
imizes the amount of careful consideration of what is going on behind the scenes
and consequent meticulous coding you might have to engage in otherwise. How-

Summary 339
ever, there are some valid reasons for using application-managed EntityManagers.
In particular, the ability to use the EntityManager outside the confines of a Java EE
container is an extremely valuable feature, especially to those of us with light-
weight technologies like Apache Tomcat and the Spring Framework or even Java
SE Swing-based client/server applications.

 We avoided covering a few relatively obscure EntityManager features like lazily
obtaining entity references via the getReference method, or using the clear
method to force detachment of all entities in a persistence context. We encourage
you to research these remaining features on your own. However, a critical feature
that we did not discuss yet is robust entity querying using the powerful query API
and JPQL. We’ll examine this in detail in the next chapter.

Using the query API and
JPQL to retrieve entities
This chapter covers
■ Creating and executing queries
■ The Java Persistence Query Language
■ Using SQL queries
340

Introducing the query API 341
Chapters 8 and 9 discussed how the EJB 3 Java Persistence API (JPA) O/R mapping
mechanism shields developers from having to write SQL to directly manipulate
data. Chapter 8 explained how to map entities to relational tables, and chapter 9
revealed how to manipulate those entities using the EntityManager API. The next
couple of topics we’ll tackle in our quest for JPA mastery are the query API and
the Java Persistence Query Language (JPQL). We’ll continue to use ActionBazaar
to explore these new concepts, incorporating JPQL into our auction system as
well as looking at how the various one-to-many and many-to-one mappings work
with JPA.

 With JPA, you can use the following methods to retrieve entities and related data:

■ EntityManager.find with the entity’s primary key
■ Queries written in JPQL

■ SQL queries native to the underlying database

We discussed the first option, retrieving entities using a primary key, in chapter 9.
In this chapter we’ll focus on retrieving entities using the latter two methods:
JPQL and SQL queries. First we’ll look at the query API and show you how to exe-
cute queries; then we’ll explore the basics of JPQL. The chapter concludes by
exploring the use of SQL queries with EJB 3.

10.1 Introducing the query API

Queries are as important as storing data. Therefore, a flexible query language is
an important aspect of ORM. One of the primary problems in EJB 2 was that its
query capabilities were limited. EJB 3 greatly improves the query capabilities of
entities. In this section we introduce the query API and two types of queries:
dynamic and named.

10.1.1 The big picture

In the previous chapter, we used the EntityManager.find method to retrieve enti-
ties. This method only retrieves entities by their ID or primary key. However, there
are many instances when you need more powerful queries. The query API allows
developers to write custom queries to retrieve either one or a collection of entities.

 The EntityManager interface has several methods designed for creating que-
ries to retrieve entities. The EntityManager methods are used together with the
javax.persistence.Query interface methods, which perform the actual query def-
inition, parameter binding, execution, and pagination.

342 CHAPTER 10
Using the query API and JPQL to retrieve entities
The JPA query API allows you to use either JPQL or SQL to create the queries.
We’ll cover JPQL in detail in section 10.3. SQL is the standard for querying
relational data; we’ll discuss how to use SQL to create queries with JPA in sec-
tion 10.4. If you are not familiar with SQL, refer to appendix B. Most of the
time when you use the Query interface, you will likely choose to work with JPQL
rather than SQL, since a SQL query returns database records and a JPA query
returns entities.

 The EntityManager interface methods for creating query instances, the Query
interface methods that define and execute the query, and JPQL are referred to as
the query API. This is shown in figure 10.1.

 As we dive deeper into the query API, you will start to realize that building que-
ries to retrieve entities is often the most challenging task of building any enter-
prise applications, and almost every aspect of an application requires some data
retrieval. The query API supports building and using queries in several ways, as
you’ll learn in the next few sections. Depending on what you are trying to accom-
plish, you may devise some interesting ways to utilize queries.

 The steps you follow to create a JPA query are similar to those of a traditional
JBDC query. Table 10.1 compares using a JDBC query to the basic flow of a JPA
query. As you can see, the primary differences lie in the way you obtain the data-
base connection and the way in which you manipulate the query itself. In JDBC it
is normal to employ a database connection directly. Conversely, JPA hides the
database connection behind the EntityManager.

Figure 10.1 The JPA query API includes EntityManager methods to create queries, the methods in
the Query interface for executing the query, and the Java Persistence Query Language.

Introducing the query API 343
By now, you must be eager to see what a query looks like. Let’s do that next.

10.1.2 Anatomy of a query

The query API supports two types of queries: named and dynamic. Named and
dynamic queries have different purposes. Named queries are intended to be
stored and reused. For instance, suppose your application requires you to list the
most popular item in a specific category. Since this requirement occurs in several
places in your application, you know this query will be executed by multiple mod-
ules. You’d probably want to create a named query so you wouldn’t have to build
the query every time you wanted to query the most popular item in that category.
On the other hand, say you have a requirement to build a query screen for items
and you want to dynamically create the query statement based on user inputs or
some conditions in your application logic. In this case, you’d have to use a
dynamic query. Dynamic (or ad hoc) queries are different from named queries in
that they are created on the fly.

 In either case, the format of the queries is similar. For a first taste of how a
query works, let’s look at an example, starting with a dynamic query. Suppose we
want to retrieve all the categories in the system. The following code will perform
the desired task:

@PersistenceContext em;
...
public List findAllCategories() {
 Query query = em.createQuery("SELECT c FROM Category c"); ...

 return query.getResultList();
}

In this example, we first grab an instance of an EntityManager provided by
dependency injection b. Then we create an instance of a Query object for query-
ing entities using the EntityManager.createQuery method C, passing it the query

Table 10.1 Comparing a JDBC basic query to a JPA query. The JDBC SQL query returns the data in
the database table whereas the JPQL query returns JPA entities.

Basic Steps for JDBC Query Using SQL Basic Steps for a JPA Query Using JPQL

1. Obtain a database connection. 1. Obtain an instance of an entity manager.

2. Create a query statement. 2. Create a query instance.

3. Execute the statement. 3. Execute the query.

4. Retrieve the results (database records). 4. Retrieve the results (entities).

 B Injects EntityManager Creates query
instance

 C

 D Retrieves result

344 CHAPTER 10
Using the query API and JPQL to retrieve entities
string. (In section 10.2 we discuss the Query interface in more detail.) Once we
have a query instance, the final step is to return the results list D using its get-
ResultList method.

 Note that in this example we used JPQL to query the entities. You can use
either JPQL or native SQL in both named and dynamic queries.

 A named query will be almost the same: the only difference is that it uses
createNamedQuery rather than createQuery, and you must pass it a query object
that has already been created rather than a query string. In the next section,
you’ll learn how to create that object for JPQL queries. We’ll discuss creating the
named query object for SQL queries in section 10.4.

10.1.3 Defining named queries

You must create a named (or static) query before you can use it. It is defined
either in the entity using annotations, or in the XML file defining O/R mapping
metadata. You’ll learn about O/R mapping and how to define a named query with
XML in chapter 11. A named query is accessed by its name when you create an
instance of it. Any query that is used in multiple components of your applications
is a candidate for a named query.

 Named queries have three primary benefits:

■ They improve reusability of queries.
■ They improve maintainability of code; queries are not scattered among the

business logic.
■ They can enhance performance because they are prepared once and can

be efficiently reused.

Although a named query can also be stored in the ORM XML file, in this chapter
we focus on using it with metadata annotations. Let’s look at an example. Say you
want to create a named query on the Category entity to retrieve all categories by
passing a category name. To achieve this, use the @javax.persistence.Named-
Query annotation:

@Entity
@NamedQuery(
 name = "findAllCategories",
 query = "SELECT c FROM Category c WHERE c.categoryName
 LIKE :categoryName ")

public class Category implements Serializable {
..
}

Executing the queries 345
For a complex application, you’ll probably have multiple named queries. In that
case, you can use the @javax.persistence.NamedQueries annotation to specify
multiple named queries like this:

@Entity
@NamedQueries({
 @NamedQuery(
 name = "findCategoryByName",
 query = "SELECT c FROM Category c WHERE c.categoryName
 LIKE :categoryName order by c.categoryId"
),
 @NamedQuery(
 name = "findCategoryByUser",
 query = "SELECT c FROM Category c JOIN c.user u
 WHERE u.userId = ?1"
)})
@Table(name = "CATEGORIES")

public class Category implements Serializable {
}

NOTE Keep in mind that a named query is scoped with a persistence unit and
therefore must have a unique name. We recommend that you devise a
naming convention for your applications that will avoid duplicate names
for named queries.

So now you know the difference between named and dynamic queries. Next we’ll
show you how to execute your queries.

10.2 Executing the queries

If you’ve used Hibernate or TopLink, you’ll note many similarities between the
query APIs in those frameworks and the EJB 3 Java Persistence API. As you saw in
section 10.1.2, there are three steps to running a query in EJB 3:

■ Create an instance of the EntityManager.
■ Create an instance of the query.
■ Execute the query.

In chapter 9, you saw how to create an instance of EntityManager. (To recap,
you can either inject an instance of a container-managed EntityManager or cre-
ate an application-managed EntityManager from an EntityManagerFactory.) In
this section we focus on the last two steps. First we’ll look at creating a query

346 CHAPTER 10
Using the query API and JPQL to retrieve entities
instance and then explore the methods in the Query interface designed for exe-
cuting queries.

10.2.1 Creating a query instance

As our first example showed, before you can execute a named or dynamic query
using JPQL, you must create the query instance to retrieve persistent data. The
EntityManager interface provides methods for creating a query instance, as well as
methods for creating native SQL queries. Table 10.2 lists the methods.

In table 10.2, some of the methods for creating query instances use JPQL and oth-
ers use with native SQL queries. Section 10.3 explores JPQL, and section 10.4
shows you how to work with native SQL queries. In this section, the sample que-
ries are JPQL based. We suggest you use native SQL only as a last resort.

NOTE You do not need an active transaction to create or execute a query; if one
does not exist, the retrieved entities become detached instances.

Table 10.2 The EntityManager interface provides several methods to create queries using either
JPQL or native SQL statements.

Method Purpose

public Query createQuery(String qlString); Creates a dynamic query using a
JPQL statement.

public Query createNamedQuery(String name); Creates a query instance based on
a named query. This method can
be used for both JPQL and native
SQL queries.

public Query createNativeQuery(
 String sqlString);

Creates a dynamic query using a
native SQL statement with UPDATE
or DELETE.

public Query createNativeQuery(
 String sqlString,Class result-class);

Creates a dynamic query using a
native SQL statement that retrieves a
single entity type.

public Query createNativeQuery(
 String sqlString,String result-setMapping);

Creates a dynamic query using a
native SQL statement that retrieves a
result set with multiple entity types.

Executing the queries 347
Creating a named query instance
As we discussed earlier, named queries are globally scoped. You can create a
named query instance from any component that has access to the persistence unit
to which the entity belongs. You must have an open EntityManager instance to
create a named query instance. To use a named query stored on the entity, you
invoke the EntityManager.createNamedQuery method, passing the name of the
desired named query as the parameter. In the previous example when we created
the stored query, we stored the findAllCategories named query in the Category
entity. Creating a named query from that stored query is as easy as this:

Query query = em.createNamedQuery("findAllCategories");

The EntityManager instance em takes care of all the details of fetching our named
query findAllCategories and returning a reference, which we assign to the
query object.

Creating a dynamic query instance
A dynamic query can be created wherever the EntityManager is available. This
includes using it in session beans, MDBs, web applications, or even outside the
container (as long as you can you can access the EntityManager). EJB 2 did
not support dynamic queries, and many developers found that to be a signifi-
cant limitation.

 We can use the EntityManager.createQuery method to create a dynamic query.
The only requirement is to pass a valid JPQL statement. It makes no difference
whether the EntityManager is a container- or application-managed entity man-
ager. The following shows how to create a dynamic query:

Query query = em.createQuery("SELECT i FROM Item i");

You can see that the JPQL syntax resembles SQL, but JPA recommends that you
use JPQL. The differences in notation between SQL and JPQL will be more evi-
dent later in section 10.3, when we explore JPQL by itself.

 Let’s recap where we are now. We’ve created an instance of the EntityManager,
and we’ve created an instance of the query. The next step is the actual execution
of the query. The Query interface provides the methods we need.

10.2.2 Working with the Query interface

The Query interface defines several methods for executing a query. It pro-
vides methods to set parameters for a Query instance, specify pagination prop-
erties for the result, control the flush mode, and so forth. The Query interface

348 CHAPTER 10
Using the query API and JPQL to retrieve entities
does not differentiate between JPQL and native SQL, and the same interface
can be used for both types of queries. Table 10.3 lists all methods of the
Query interface.

 You can use these methods on the query instance for setting parameters for
the query or for executing the query or iterating through the results after you
retrieve them. Here is a quick example of some commonly used Query methods
in action:

Table 10.3 The javax.persistence.Query interface enables developers to set parameters for a
query, set pagination properties, control the flush mode, and retrieve results for the query.

Method Signature Purpose

public List getResultList() Retrieves a result set for a query

public Object getSingleResult() Retrieves a single result or object

public int executeUpdate() Executes a JPQL UPDATE or DELETE
statement

public Query setMaxResults(
 int maxResult)

Sets the maximum number of objects
to be retrieved

public Query setFirstResult(
 int startPosition)

Sets the initial position for the first
result being retrieved by the query

public Query setHint(String hintName,
 Object value)

Sets a vendor-specific hint for
the query

public Query setParameter(String name,
 Object value)

Sets the value for a named
parameter

public Query setParameter(String name,
 Date value, TemporalType temporalType)

Sets the value for a named parame-
ter when the parameter is of the
Date type

public Query setParameter(String name,
 Calendar value, TemporalType temporalType)

Sets the value for a named parame-
ter when the parameter is of the
Calendar type

public Query setParameter(int position,
 Object value)

Sets the value for a positional
parameter

public Query setParameter(int position,
 Calendar value, TemporalType temporalType)

Set the value for a positional parame-
ter when the parameter is of the
Calendar type

public Query setFlushMode(
 FlushModeType flushMode)

Sets the flush mode

Executing the queries 349
query = em.createNamedQuery("findCategoryByName");
query.setParameter("categoryName", categoryName);
query.setMaxResults(10);
query.setFirstResult(3);
List categories = query.getResultList();

In this example, we create a query instance from a named query that was defined
earlier. Here we want to retrieve a List of Category entities by name and hence we
set the parameter b. We limit the maximum number of items returned to 10, and
we position the first entity to be returned at the third item. Finally we retrieve the
result C.

 In this section we examine all aspects of executing a query: setting parameters,
retrieving either a single entity or a list of entities, and setting vendor-specific
query hints to improve query performance.

Setting parameters for a query
The number of entities retrieved in a query can be limited by specifying a WHERE
clause. If we want to retrieve all instances of the Item entity with a specific price,
the JPQL would look like this:

SELECT i FROM Item i WHERE i.initialPrice = ?1

In this statement, we’ve used a parameter (?1) for the WHERE clause. There are
two ways we can specify this parameter: by number or by name. When we have
an integer in the parameter, we call it a positional (or numbered) parameter. Posi-
tional parameters are common in query languages. EJBQL 2 also supported
positional parameters.

 Before we execute a query, we have to set the parameter for the query:

query.setParameter(1, 100.00);

In some cases you’ll want to specify multiple parameters for a query. Say you want
to retrieve all items with an initialPrice that falls within a particular range:

SELECT i FROM Item i WHERE i.initialPrice > ?1 AND i.initialPrice < ?2

The following code should do the trick:

query.setParameter(1, 100.00);
query.setParameter(2, 200.00);

Here we set the first parameter in position 1 to 100.00. This is the lower limit of
the range in our query. The upper limit is loaded by setting the parameter in
position 2 to 200.00.

 B Sets parameter

 C Retrieves result

350 CHAPTER 10
Using the query API and JPQL to retrieve entities
NOTE Always double-check the positions of parameters when using numbered
parameters. If you have trouble with your queries using positional
parameters, probably one or more of the positions are incorrect, which
nearly always forces a data type mismatch. For this reason, we recom-
mend that you use named parameters instead of positional parameters
when possible.

When you specify a specific name for a parameter, it’s called a named parameter.
Named parameters improve the readability of code tremendously and make trou-
bleshooting your queries much easier. The previous query can be written using
named parameters as follows:

SELECT i FROM Item i WHERE i.initialPrice = :price

As you can see, the only difference between the positional parameter and the
named parameter is the notation of the parameter itself. A positional parameter
starts with a ? followed by the parameter’s position. A named parameter starts
with : and is followed by the name of the parameter. To populate a named param-
eter, you have to pass the name of the parameter when calling the setParameter
method on the query like this:

query.setParameter("price", 100.00);

This code sets the named price parameter to a value of 100.00. It also makes the
developer’s intent a little clearer to those reading the code.

Retrieving a single entity
You can retrieve a single entity instance by using the Query.getSingleResult
method. Be sure that the query retrieves only one entity when using this method.
For example, if we are absolutely sure that no two categories in the ActionBazaar
application have exactly the same name and we are retrieving an instance of the
Category by its name, we can retrieve it by using

query.setParameter(1, "Recycle from Mr. Dumpster");
Category cat = (Category)query.getSingleResult();

NOTE If your query retrieves multiple instances of Category entities with the
same name, it will throw NonUniqueResultException. The persistence
provider will throw NoResultException when your query does not
retrieve any result.

These exceptions will not roll back the active transactions. You must handle these
exceptions as follows:

Executing the queries 351
try {
 ...
 query.setParameter(1, "Recycle from Mr. Dumpster");
 Category cat = (Category)query.getSingleResult();
 ...
}catch (NonUniqueResultException ex) {
 handleException(ex);
}
catch (NoResultException ex) {
 handleException(ex);
}

Retrieving an entity using getSingleResult does not require an active transaction.
However, if no transactions are available, the retrieved entity will be detached
after retrieval. It’s worth mentioning that the persistence provider will throw
IllegalStateException if Query contains an UPDATE or DELETE statement.

Retrieving a collection of entities
Most queries normally retrieve more than one instance of an entity in what is
commonly called a result set or result list. You can use the getResultList method
of the Query interface to retrieve the results of a query. For example, to retrieve all
instances of Item with an initial price between 100 and 200 using named param-
eters, use the following:

query.setParameter("lowPrice", lowPriceValue)
query.setParameter("highPrice", highPriceValue)
 List items = query.getResultList();

NOTE If getResultList does not retrieve any results for a query, it returns an
empty list. No exceptions are thrown.

Here you see that lowPrice is the name parameter for the lower range parameter,
and the value is provided by lowPriceValue. The upper range parameter is
named highPrice in the query, and its value is specified by highPriceValue. The
query.getResultsList method returns the list of items that fall within this range.

 As with retrieving a single entity, retrieving a collection does not require an
active transaction, and if one isn’t available, the retrieved entities will be detached
after retrieval.

Paginating through a result list
A query may retrieve hundreds, or even millions of entities, and processing a
retrieved list of entities is not necessarily straightforward. Here’s a common way
to iterate through a list of items:

352 CHAPTER 10
Using the query API and JPQL to retrieve entities
Iterator l = items.iterator();
while (l.hasNext()) {
 Item item = (Item)l.next();
 System.out.println("Id:" + item.getItemId() +
 " Initial Price:"+item.getInitialPrice());
}

This code does not provide any logic to paginate through a specific set of results.
But suppose you need to create a report in which every page is limited to a display
of 50 entities, and when the user clicks the Next button, the succeeding 50 entities
are displayed. If you used the previous method, you’d have two issues. First, the code
would be more complicated than necessary to handle the 50-item page require-
ment. Second, you’d retrieve all entities from the database at one time, which might
consume a lot of memory depending on how many items were returned.

 The good news is that JPA provides the ability to paginate through the result
set. You can use the following code to specify the pagination property for a query:

query.setMaxResults(50);
query.setFirstResult(0);
List items = query.getResultList();

The setMaxResults method lets you specify the maximum number of entities
being retrieved in the result list, and setFirstResult lets you set the position of the
first result in the ResultList. The previous code returns the first 50 entities
retrieved by the query. If you want to retrieve the next 50 entities, use the following:

query.setMaxResults(50);
query.setFirstResult(50);
List items = query.getResultList();

The only difference between the previous two code snippets is the starting offset
of the result list.

 Instead of hard-coding the offset and page size, you can create a method that
takes these settings as a parameter:

public List getPagedItems(int pageIndex, int pageSize) {
 ...
 query.setMaxResults(pageSize) ;
 query.setFirstResult(pageIndex) ;
 return query.getResultList();
}

You can use this method from your application code to paginate through
the entities.

 This is starting to look familiar, isn’t it? Now let’s turn our attention to
another topic: controlling the flush mode of the query.

Executing the queries 353
Controlling the query flush mode
You may remember from our discussion in chapter 9 that the flush mode deter-
mines how the EntityManager performs the database writes. The results of a query
can vary depending on the flush mode setting. Chapter 9 discussed setting Flush-
Mode for the persistence context. FlushMode can be changed for a specific query by
using the Query.setFlushMode method. The default flush mode is AUTO, as shown
in table 10.4. In AUTO mode, when queries are executed within a transaction the
persistence provider is responsible for making sure that all entities are updated in
the persistence context. This is true whether FlushModeType.AUTO is set on the
Query object or the flush mode is AUTO for the persistence context.

If the Query is set to FlushModeType.COMMIT, the effect of updates made to entities
in the persistence context is not defined by the specification, and the actual
behavior is implementation specific. This means your mileage may vary depend-
ing on which persistence provider you are using.

 The default behavior of the flush mode is acceptable for most cases, and you
should not change it unless you absolutely need to tweak this setting.

10.2.3 Specifying query hints

Persistence providers typically include a vendor-specific extension that can be
used while executing a query. Such extensions are usually performance optimiza-
tions and are passed as query hints. A query hint is a tip that is used by the persis-
tence provider while executing queries or retrieving entities. For example, a hint
can be a directive to the persistence provider whether to use a cache while execut-
ing a query. You can provide a hint for a query by using the Query.setHint
method. Unfortunately, the hints are implementation specific. If you want to set
the timeout for a query to 10 seconds when using Oracle TopLink, you do so with

query.setHint("toplink.jdbc.timeout", new Integer(10000));

Table 10.4 Defined flush modes for persistence providers and how the flush mode affects the
results of a query

Flush Mode Description

AUTO (default) The persistence provider is responsible for updates to entities in the
persistence context.

COMMIT Updates made to entities in the persistence context are undefined.

354 CHAPTER 10
Using the query API and JPQL to retrieve entities
You can do the same with Hibernate by using

query.setHint("org.hibernate.timeout", new Integer(10));

Notice the difference in how the timeout of 10 seconds is specified for each pro-
vider? Be sure to verify the format for the provider you are using by checking the
documentation provided by the vendor. Look for hints that may be supported by
the container. Table 10.5 lists some commonly used hints for two of the leading
JPA providers.

If you are using named queries, then you can optionally specify the vendor-
specific hints using the hints element of @NamedQuery. This element is speci-
fied as a name-value pair using the @QueryHint annotation:

@NamedQuery(
name = "findUserWithNoItems",
query = "SELECT DISTINCT u FROM User u WHERE u.items is EMPTY",
hints = { @QueryHint(name = "org.hibernate.timeout", value = "10") }
)

Whew! How do you feel now that you know all the basics of the JPA query API?
Well, there’s more where that came from! We’ll bet you’re ready for an adventur-
ous trek into the winding trails of the Java Persistence Query Language. Lace up
your high-tops—those trails are just ahead!

10.3 Introducing JPQL

The meat of this chapter covers the ins and outs of the Java Persistence Query
Language. We’ll start with a definition of the language, provide numerous exam-
ples illustrating almost every aspect, and include some little-known tips along

Table 10.5 You can use the setHint method of the Query interface to specify query hints to the per-
sistence provider. Common query hints are supported by two popular ORM frameworks.

TopLink Hibernate Purpose

toplink.jdbc.fetch-size org.hibernate.fetchSize Specifies the number of rows
fetched by the JDBC driver

toplink.cache-usage org.hibernate.cacheMode Specifies how to use the cache

toplink.refresh CacheMode.REFRESH Specifies whether the cache
should be refreshed from
the database

toplink.jdbc.timeout org.hibernate.timeout Specifies the query timeout

Introducing JPQL 355
the way. Can you handle a little heavy lifting? Proceed with caution if you think
you can; and make sure you have your work gloves on…

 Hibernate provides HSQL, while JDO-compliant providers such as BEA’s Kodo
support JDO QL to query entities. There was not much debate among the EJB 3
Expert Group on which to use as the standard query language for JPA, and it was
agreed to use JPQL. JPQL is an extension of EJB QL, the query language of EJB 2.
It didn’t make sense to invent yet another language for such a well-known
domain, so the group voted unanimously to make EJBQL the query language of
choice and to address all its previous limitations. It’s good news that yet another
query language was not forced upon the developer community. The use of JPQL
will make the migration of EJB 2 entity beans to EJB 3 persistence easier.

The JPQL Query Parser or Processor Engine of a persistence provider, as shown
in figure 10.2, translates the JPQL query into native SQL for the database being
used by the persistence provider.

 JPQL looks so much like SQL that it’s easy to forget you are looking at JPQL
when you’re reviewing source code. Just remember that although JPQL may look
like SQL, you’ll need to be aware of the differences discussed in this chapter to
effectively use and troubleshoot JPQL in your programs.

 All this talk about JPQL queries has piqued your interest, hasn’t it? What do
you say we continue this line of thinking by going over the types of statements
JPQL supports? Then we’ll discuss different elements of a JPQL statement, such as
FROM and SELECT clauses, conditional statements, subqueries, and various types of
functions. Finally, we’ll take a look at updates and delete statements.

How is JPQL Different from SQL?

JPQL operates on classes and objects (entities) in the Java space. SQL operates on
tables, columns, and rows in the database space. While JPQL and SQL look similar
to us humans, they operate in two very different worlds.

Figure 10.2 Each JPQL query is translated to a SQL query by the JPQL query processor and executed
by the database. The query processor is supplied by the JPA provider, most likely the application
server vendor.

356 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.3.1 Defining statement types

JPQL supports three types of statements, as shown in table 10.6. You can use JPQL
to perform selects, updates, and deletes in your queries.

Let’s first focus on retrieving entities using a SELECT statement with JPQL.

Defining and using SELECT
Suppose we get jump-started with a simple JPQL query:

SELECT c
FROM Category c
WHERE c.categoryName LIKE :categoryName
ORDER BY c.categoryId

This JPQL query has (or can have) the following:

■ A SELECT clause that specifies the object type or entity or values being
retrieved

■ A FROM clause that specifies an entity declaration that is used by other
clauses

■ An optional WHERE clause to filter the results returned by the query
■ An optional ORDER BY clause to order the results retrieved by the query
■ An optional GROUP BY clause to perform aggregation
■ An optional HAVING clause to perform filtering in conjunction with

aggregation

Defining UPDATE and DELETE
In chapter 9, we discussed updating and removing entities using the Entity-
Manager API. But these were limited to only one entity instance. What about when
you want to remove more than one entity in a single call? Like SQL, JPQL also pro-
vides UPDATE and DELETE statements to perform updates and deletions of entities,
and we can continue to specify a condition using a WHERE clause. These statements

Table 10.6 Statement types supported by the Java Persistence Query Language

Statement Type Description

SELECT Retrieves entities or entity-related data

UPDATE Updates one or more entities

DELETE Deletes one or more entities

Introducing JPQL 357
are quite similar to their SQL relatives. They are referred to as bulk updates or
deletes because you’ll primarily use these to update or delete a set of entities
matching a specific condition. In this section we’ll limit our discussion to the JPQL
syntax for update and delete, and we’ll discuss the implications of using bulk
updates and deletes in section 10.3.10.

Using UPDATE
Only one entity type can be specified with an UPDATE statement, and we should
provide a WHERE clause to limit the number of entities affected by the statement.
Here is the syntax for the UPDATE statement:

UPDATE entityName indentifierVariable
SET single_value_path_expression1 = value1, ...

single_value_path_expressionN = valueN
WHERE where_clause

You can use any persistence field and single value association field in the SET
clause of the UPDATE statement. Assume that we want to provide Gold status and a
commissionRate of 10 percent to all Sellers whose lastName starts with Packrat.
Start with the following JPQL statement:

UPDATE Seller s
SET s.status = 'G', s.commissionRate = 10
WHERE s.lastName like 'PackRat%'

It is clear from this statement that the WHERE clause of an UPDATE behaves exactly
the same as the one we used in the SELECT statement. We will return to a detailed
discussion on the WHERE clause later in this chapter.

Using DELETE
Like UPDATE, DELETE in JPQL resembles its SQL cousin. You can specify only one
entity type with a DELETE statement, and again you should specify a WHERE clause
to limit the number of entities affected by the statement. Here is the syntax for
the DELETE statement:

DELETE entityName indentifierVariable
WHERE where_clause

For example, if we want to remove all instances of Seller with Silver status we’d
use this:

DELETE Seller s
WHERE s.status = 'Silver'

358 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.3.2 Using the FROM clause

The FROM clause of JPQL is by far the most important clause. It defines the domain
for the query—that is, the names for the entities that will be used in the query. In
the previous example we specified the FROM clause as follows:

FROM Category c

Category is the domain that we want to query, and here we have specified c as an
identifier of type Category.

Identifying the query domain: naming an entity
You specify the entity name defined for the entity using the @Entity annotation as
the domain type. As you learned in chapter 7, you could define the name for an
entity using the name element of the @Entity annotation. If you don’t specify the
name element, it defaults to the name of the entity class. The name of entity must
be unique within a persistence unit. In other words, you cannot have two entities
with the same name or the persistence provider will generate a deployment error.
This makes sense because the persistence provider would not be able to identify
which entity domain to use if duplicate names for entities are allowed.

EJB 2’s EJBQL compared to EJB 3’s JPQL

If you have used EJBQL with EJB 2, you’ll see a significant difference with the
new version. Some of the major enhancements in EJB 3 with respect to JPQL
are as follows:

■ Use of named parameters
■ Simplification of syntax
■ Support for JOIN operations
■ Support for subqueries
■ Bulk updates and deletes
■ Support for GROUP BY and HAVING

The good news is that these JPQL enhancements may also be available to EJB 2.1
entity beans, because most application servers probably share the same JPQL
parser for both EJB 2.1 entity beans and EJB 3 entities.

One of the greatest shortcomings of EJB 2 CMP entity beans is the inability to use
dynamic queries and native SQL. Both of these limitations have been addressed
by JPQL.

Introducing JPQL 359
In the previous example, we are assuming the Category entity class that we dis-
cussed in earlier chapters does not define a name. If we assume that the Category
class defines an entity name using the name element as follows:

@Entity(name = "CategoryEntity")
public class Category

then we must change the FROM clause of the query as follows:

FROM CategoryEntity c

This change is required in order for JPQL to map the correct entity type as
defined by the annotation.

Identifier variables
In our JPQL example, we defined an identifier variable named c, and we used
that variable in other clauses, such as SELECT and WHERE. A simple identifier vari-
able is defined using the following general syntax:

FROM entityName [AS] identificationVariable

The square brackets ([]) indicate that the AS operator is optional. The identifier
variable (which is not case sensitive) must be a valid Java identifier, and it must
not be a JPQL reserved identifier. Table 10.7 lists all of the JPQL reserved identi-
fiers for your convenience. Keep in mind that the identifier cannot be another
entity name packaged in the same persistence unit.

Table 10.7 JPQL keywords reserved by the specification. You are not allowed to give any of your
variables these names.

Types Reserved Words

Statements and clauses SELECT, UPDATE, DELETE, FROM, WHERE, GROUP,
HAVING, ORDER, BY, ASC, DESC

Joins JOIN, OUTER, INNER, LEFT, FETCH

Conditions and operators DISTINCT, OBJECT, NULL, TRUE, FALSE, NOT, AND, OR,
BETWEEN, LIKE, IN, AS, UNKNOWN, EMPTY, MEMBER, OF, IS, NEW,
EXISTS, ALL, ANY, SOME

Functions AVG, MAX, MIN, SUM, COUNT, MOD, UPPER, LOWER, TRIM,
POSITION, CHARACTER_LENGTH, CHAR_LENGTH, BIT_LENGTH,
CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP

360 CHAPTER 10
Using the query API and JPQL to retrieve entities
Thus, we cannot define the FROM clause like this:

FROM Category User

or like this:

FROM Category Max

because we already have an entity named User in the ActionBazaar application,
and MAX is a reserved identifier.

 You can define multiple identifiers in the FROM clause, and you’ll see how to use
them when we discuss joining multiple entities by association or field name later
in this chapter.

What is a path expression?
In our JPQL example we used expressions such as c.categoryName and c.cate-
goryId. Such expressions are known as path expressions. A path expression is an
identifier variable followed by the navigation operator (.), and a persistence or
association field. We normally use a path expression to narrow the domain for
a query by using it in a WHERE clause, or order the retrieved result by using an
ORDER BY clause.

 An association field can contain either a single-value object or a collection.
The association fields that represent one-to-many and many-to-many associa-
tions are collections of types, and such a path expression is a collection-value
path expression. For example, if we have a many-to-many relationship between
Category and Item, we can utilize a query to find all Category entities that have
associated Items as follows:

SELECT distinct c
FROM Category c
WHERE c.items is NOT EMPTY

Here c.items is a collection type. Such expressions are known as collection-value
expressions. If the association is either many-to-one or one-to-one, then the asso-
ciation fields are of a specific object type, and those types are known as single-
value path expressions.

 You can navigate further to other persistence fields or association fields using
a single-value path expression. For example, say we have a many-to-one relation-
ship between Category and User; we can navigate to a persistence field such as
firstName using association field user as follows:

c.items.user.firstName

Introducing JPQL 361
We may also want to navigate to the association field contactDetails to use its
e-mail address:

c.items.user.contactDetails.email

While using path expressions, keep in mind that you cannot navigate through the
collection-value path expressions to access a persistence or association field as in
the following example:

c.items.itemName or c.items.seller

This is due to the fact you cannot access an element of a Collection, and items is
in fact is a collection of items. Using c.items.itemName in JPQL is similar to using
category.getItems().getItemName(), and this is not allowed.

 Next we’ll see how you can use path expressions in a WHERE clause.

Filtering with WHERE
The WHERE clause allows you to filter the results of a query. Only entities that match
the query condition specified will be retrieved. Say we want to retrieve all instances
of the Category entity; we can use a JPQL statement without a WHERE clause:

SELECT c
FROM Category c

Using this code will probably result in thousands of Category instances. But say we
actually want to retrieve instances of a Category by a specific condition. To
retrieve the Category instances that have a categoryId greater than 500, we’d have
to rewrite the query like this:

SELECT c
FROM Category c
WHERE c.categoryId > 500

Almost all types of Java literals such as boolean, float, enum, String, int, and so
forth are supported in the WHERE clause. You cannot use numeric types such as
octal and hexadecimals, nor can you use array types such as byte[] or char[] in
the WHERE clause. Remember that JPQL statements are translated into SQL; SQL is
actually imposing the restriction that BLOB and CLOB types cannot be used in a
WHERE clause.

Passing parameters: positional and named
Recall from our earlier discussion that JPQL supports two types of parameters:
positional and named. Later in this chapter we’ll show you how to set values for
both named and positional parameters.

362 CHAPTER 10
Using the query API and JPQL to retrieve entities
 The value of the parameter is not limited to numeric or String types; the value
depends on the type of path expression used in the WHERE clause. The parameter
can take more complex types, such as another entity type; however, you are limited
to using conditional expressions that involve a single-value path expression.

10.3.3 Conditional expressions and operators

A condition in the WHERE clause that filters results from a query is known as a con-
ditional expression. You can build a conditional expression using path expressions
and operators supported by the language. JPQL can evaluate a path expression
with numeric, string, or boolean values using relational operators. Here’s an
example of a conditional expression:

c.categoryName = 'Dumped Cars'

Table 10.8 lists the types of operators supported by JPQL, in order of precedence.

A complex conditional expression may include other expressions that are com-
bined for evaluation using logical operators such as AND or OR. For instance, we
can retrieve a Category that meets either of these conditional expressions:

WHERE c.categoryName = 'Dumped Cars'
 OR c.categoryName = 'Furniture from Garbage'

We can use all types of relational operators with numeric types of path expres-
sions. String and Boolean operands can use the relational operators: equality (=)
and nonequality (<>).

Table 10.8 Operators supported by JPQL

Operator Type Operator

Navigational .

Unary sign +, -

Arithmetic *, /
+, -

Relational =, >, >=, <, <=, <>,
[NOT] BETWEEN, [NOT] LIKE,
[NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

Logical NOT
AND
OR

Introducing JPQL 363
Using a range with BETWEEN
You can use the BETWEEN operator in an arithmetic expression to compare a vari-
able with a range of values. You can also use the BETWEEN operator in arithmetic,
string, or DATETIME expressions to compare a path expression to a lower and
upper limit using the following syntax:

path_expression [NOT] BETWEEN lowerRange and upperRange

Suppose you want to filter the results so that categoryId falls within a specified
range. You can use a WHERE clause and named parameters for the range this way:

WHERE c.categoryId BETWEEN :lowRange AND :highRange

NOTE The lower and upper range used in a BETWEEN operator must be the
same data type.

Using the IN operator
The IN operator allows you to create a conditional expression based on whether a
path expression exists in a list of values. Here is the syntax for the IN operator:

path_expression [NOT] IN (List_of_values)

The list of values can be a static list of comma-separated values, or a dynamic list
retrieved by a subquery. Suppose you want to retrieve the results for userId that
exist in a static list of userIds. This WHERE clause will do the trick:

WHERE u.userId IN ('viper', 'drdba', 'dumpster')

If you want to retrieve the information from users that do not exist in the same
static list, then you can use this WHERE clause:

WHERE u.userId NOT IN ('viper', 'drdba', 'dumpster')

A subquery is a query within a query. A subquery may return a single or multiple
values. You’ll learn more about subqueries in section 10.3.8. Let’s review an
example of a subquery with an IN operator:

WHERE c.user IN (SELECT u
 FROM User u
 WHERE u.userType = 'A')

In this expression you are trying to evaluate the User field with a list of users
retrieved by the subquery. When a query contains a subquery, the subquery is exe-
cuted first, and then the parent query is evaluated against the result retrieved by
the subquery.

364 CHAPTER 10
Using the query API and JPQL to retrieve entities
Using the LIKE operator
The LIKE operator allows you to determine whether a single-value path expres-
sion matches a string pattern. The syntax for the LIKE operator is

string_value_path_expression [NOT] LIKE pattern_value_

Here pattern_value is a string literal or an input parameter. The pattern_value
may contain an underscore (_) or a percent sign (%). The underscore stands for a
single character. Consider the following clause:

WHERE c.itemName LIKE '_ike'

This expression will return true when c.itemName has values such as mike, bike,
and so forth. You should be able to extend this technique to embed a space into
any search string, effectively making the space a wildcard. If you search for a sin-
gle space, it will only match a single character.

 The percent sign (%) represents any numbers of characters. Whenever you
want to search for all Category entities with a name that starts with Recycle, use
this WHERE clause:

WHERE c.categoryName LIKE 'Recycle%'

The expression will return true when c.categoryName has values such as Recycle
from Garbage, Recycle from Mr. Dumpster, and RecycleMania – the Hulkster
strikes again!.

 Suppose you want to retrieve a result set in which a string expression does not
match a literal. You can use the NOT operator in conjunction with the LIKE opera-
tor as in the following example:

WHERE c.categoryName NOT LIKE '%Recycle%'

The expression will return false when c.categoryName has any values that
includes Recycle as any part of the return value, because in this example you used
% before and after the filter string. Some examples that match this situation are Dr.
T will Recycle your face and Recycle from the Garbage, it's the American Way.

 In most applications you probably want to supply a parameter for flexibility
rather than use a string literal. You can use positional parameters as shown here
to accomplish this:

WHERE c.categoryName NOT LIKE ?1

Here, the result set will contain all c.categoryNames that are not like values bound
to the positional parameter ?1.

Introducing JPQL 365
Dealing with null values and empty collections
So far we have been able to avoid discussing null and how an expression deals
with null values. Alas, now it is time to deal with this little mystery. You have to
remember that null is different from an empty string, and JPQL treats them dif-
ferently. However, not all databases treat an empty string and null differently. We
already know that JPQL is translated into SQL by the persistence provider. If the
database returns true when an empty string is compared with null, you cannot
rely on consistent results from your queries across two different databases. We rec-
ommend that you test this situation with your database.

 When a conditional expression encounters a null value, the expression evalu-
ates to null or unknown. A complex WHERE clause that combines more than one
conditional expression with a boolean operator such as AND may produce a result
that is unknown. Table 10.9 lists the results of a conditional expression when it is
compared with a null value.

You can use the IS NULL or IS NOT NULL operator to check whether a single-value
path expression contains null or not null values. If a single-value path expression
contains null, then IS NULL will return true and IS NOT NULL will return false. If
you want to compare whether the single-value path expression is not null, use the
following WHERE clause:

WHERE c.parentCategory IS NOT NULL

You cannot use the IS NULL expression to compare a path expression that is of type
collection; in other words, IS NULL will not detect whether a collection type path
expression is an empty collection. JPQL provides the IS [NOT] EMPTY comparison

Table 10.9 Results of boolean operations involving null

Expression 1 Value Boolean Operator Expression 2 Value Result

TRUE AND null UNKNOWN

FALSE AND null FALSE

Null AND null UNKNOWN

TRUE OR null TRUE

Null OR null UNKNOWN

FALSE OR null UNKNOWN

NOT null UNKNOWN

366 CHAPTER 10
Using the query API and JPQL to retrieve entities
operator to check whether a collection type path expression is empty. The follow-
ing WHERE clause would work when you want to retrieve all Category entities that
do not have any Items:

WHERE c.items IS EMPTY

As we explained earlier, JPQL statements are translated to SQL statements by the
persistence provider. There is no equivalent of the IS EMPTY clause in SQL. So, you
must be wondering what SQL statement is generated when IS EMPTY is used. The
IS EMPTY clause is used with a collection-valued path expression that is typically an
association field, and therefore the generated SQL statement will be determining
whether the JOIN for the association retrieves any record in a subquery. To clarify,
let’s examine this JPQL query:

SELECT c
FROM Category c
WHERE c.items IS EMPTY

If you recall our discussions from chapters 7 and 8, a many-to-many relation-
ship exists between Category and Item entities, with CATEGORIES_ITEMS as the
intersection table. This means the persistence provider will generate the follow-
ing SQL statement:

SELECT
 c.CATEGORY_ID, c.CATEGORY_NAME, c.CREATE_DATE,
 c.CREATED_BY, c.PARENT_ID
FROM CATEGORIES c
WHERE (
 (SELECT COUNT(*)
 FROM CATEGORIES_ITEMS ci, ITEMS i
 WHERE (
 (ci.CATEGORY_ID = c.CATEGORY_ID) AND
 (i.ITEM_ID = ci.ITEM_ID))) = 0)

From this generated SQL, you can see that the persistence provider uses a sub-
query to retrieve the number of associated items for a category by using the COUNT
group function, and then compares the result with 0. This means that if no items
are found, the collection must be empty, and the IS EMPTY clause is true.

 Have you ever had an occasion to detect the presence of a single value in a col-
lection? Sure you have! In JPQL you can use the MEMBER OF operator for just that
purpose. Let’s take a look at how it works.

Introducing JPQL 367
Checking for the existence of an entity in a collection
You can use the MEMBER OF operator to test whether an identifier variable, a single-
value path expression, or an input parameter exists in a collection-value path
expression. Here is the syntax for the MEMBER OF operator:

entity_expression [NOT] MEMBER [OF] collection_value_path_expression

The OF and NOT keywords are optional and can be omitted. Here is an example of
using an input parameter with MEMBER OF:

WHERE :item MEMBER OF c.items

This condition will return true if the entity instance passed (as:item) in the query
exists in the collection of c.items for a particular Category c.

10.3.4 Working with JPQL functions
JPQL provides several built-in functions for performing string or arithmetic oper-
ations. These functions can be used either in the WHERE or HAVING clause of a JPQL
statement. You’ll learn more about the HAVING clause when we cover aggregate
functions later in this chapter.

String functions
You can use string functions in the SELECT clause of a JPQL query; table 10.10 lists
all string functions supported by JPQL. These functions are only meant to be used
to filter the results of the query. You have to use the functions available in the Java
language if you want to perform any string manipulations on your data. The pri-
mary reason is that in-memory string manipulation in your application will be
much faster than doing the manipulation in the database.

Table 10.10 JPQL String functions

String Functions Description

CONCAT(string1, string2) Returns the value of concatenating two strings
or literals together.

SUBSTRING(string, position, length) Returns the substring starting at position
that is length long.

TRIM([LEADING | TRAILING | BOTH]
 [trim_character] FROM]
 string_to_trimmed)

Trims the specified character to a new length.
The trimming can either be LEADING,
TRAILING, or from BOTH ends. If no
trim_character is specified, then a blank
space is assumed.

continued on next page

368 CHAPTER 10
Using the query API and JPQL to retrieve entities
Let’s look at a couple of common string function examples. Suppose we want to
compare the result of concatenating of two string expressions with a string literal.
The following WHERE clause will perform the task well:

WHERE CONCAT(u.firstName, u.lastName) = 'ViperAdmin'

If the concatenation of u.firstName and u.lastName does not result in ViperAdmin
then the condition will return false.

 You can use the SUBSTRING function to determine if the first three letters of
u.lastName start with VIP:

WHERE SUBSTRING(u.lastName, 1, 3) = 'VIP'

The name of each string function is a good indicator of the functional operation
it can perform. The direct analog of string functions is arithmetic functions. We’ll
look at what JPQL supports in this area next.

Arithmetic functions
Although math is rarely used to perform CRUD operations, it is useful when
trying to manipulate data for reports. JPQL only supports a bare minimum set
of functions in this regard, and some vendors may choose to add functions to
enhance their reporting capabilities. As with all vendor-specific features, be
aware that using them will make your code less portable should you decide to
change vendors in the future. You can use arithmetic functions in either the
WHERE or HAVING clause of JPQL. Table 10.11 lists all arithmetic functions sup-
ported by JPQL.

LOWER(string) Returns the string after converting to lowercase.

UPPER(string) Returns the string after converting to
uppercase.

LENGTH(string) Returns the length of a string.

LOCATE(searchString,
 stringToBeSearched[initialPosition])

Returns the position of a given string
within another string. The search starts at
position 1 if initialPosition is
not specified.

Table 10.10 JPQL String functions (continued)

String Functions Description

Introducing JPQL 369
Most of the arithmetic functions are self-explanatory, such as this example of SIZE:

WHERE SIZE(c.items) = 5

This expression will return true when the SIZE of c.items is 5, and false otherwise.

Temporal functions
Most languages provide functions that retrieve the current date, time, or time-
stamp. JPQL offers the temporal functions shown in table 10.12. These functions
translate into database-specific SQL functions, and the requested current date,
time, or timestamp is retrieved from the database.

Note that because JPQL time values are retrieved from the database, they may
vary slightly from the time retrieved from your JVM, if they aren’t both running
on the same server. This is only an issue if you have a time-sensitive application.
You can resolve this issue by running a time service on all servers that are part of
your environment.

 Next we’ll look at the SELECT clause of JPQL.

Table 10.11 JPQL arithmetic functions

Arithmetic Functions Description

ABS(simple_arithmetic_expression) Returns the absolute value of
simple_arithmetic_expression

SQRT(simple_arithmetic_expression) Returns the square root value of simple_
arithmetic_expression as a double

MOD(num, div) Returns the result of executing the modulus
operation for num, div

SIZE(collection_value_path_expression) Returns the number of items in a collection

Table 10.12 JPQL temporal functions

Temporal Functions Description

CURRENT_DATE Returns current date

CURRENT_TIME Returns current time

CURRENT_TIMESTAMP Returns current timestamp

370 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.3.5 Using a SELECT clause

Although you saw some examples of the SELECT clause at the beginning of this
chapter, we avoided a detailed discussion of the SELECT clause until now. From
the previous examples it is evident that the SELECT clause denotes the result of the
query. Here is the JPQL syntax of SELECT clause:

SELECT [DISTINCT] expression1, expression2, expressionN

A SELECT clause may have more than one identifier variable, one or more single-
value path expressions, or aggregate functions separated by commas. Earlier we
used an identifier in the SELECT clause as follows:

SELECT c
FROM Category AS c

You can also use one or more path expressions in the SELECT clause:

SELECT c.categoryName, c.createdBy
FROM Category c

The expressions used in the SELECT clause have to be single value. In other words,
you cannot have a collection-value path expression in the clause. The path expres-
sions can be an association field, as in the previous example, where c.createdBy is
an association field of the Category entity.

 The previous query may return duplicate entities. If you want the result not to
contain duplicate data, use the DISTINCT keyword in this way:

SELECT DISTINCT c.categoryName, c.createdBy
FROM Category c

The following SELECT statement is invalid:

SELECT c.categoryName, c.items
FROM Category

because c.items is a collection-type association field, and collection-value path
expressions are not allowed in a SELECT clause. We’ll talk about using aggregate
functions in the SELECT clause in the next section.

Using a constructor expression in a SELECT clause
You can use a constructor in a SELECT clause to return one or more Java instances.
This is particularly useful when you want to create instances in a query that are
initialized with data retrieved from a subquery:

SELECT NEW actionbazaar.persistence.ItemReport (c.categoryID, c.createdBy)
FROM Category
WHERE categoryId.createdBy = :userName

Introducing JPQL 371
The specified class does not have to be mapped to the database, nor is it required
to be an entity.

Polymorphic queries
You may be surprised to find out that JPA supports polymorphism, and that JPQL
queries are polymorphic. This means a JPQL query to retrieve a parent entity in an
entity hierarchy is not just limited to the entity, but retrieves all subclasses as well.
For example, in ActionBazaar any query to retrieve User entities will retrieve its
subclasses, such as Seller, Bidder, and Admin.

Suppose we have a query like this:

SELECT u
FROM User u
WHERE u.firstName LIKE :firstName

The query will retrieve all instances of Seller, Bidder, Admin, and so forth that
match this query condition. How do you handle a polymorphic query in your client
code? Consider the following:

 query = em.createNamedQuery("findUserByName");
 query.setParameter("firstName", firstName);
 List<User> users = query.getResultList();

 Iterator i = users.iterator();
 while (i.hasNext()) {
 User user = (User) i.next();
 System.out.print("User:"+emp.getUserId());
 if (user instanceof Seller) {
 Seller seller = (Seller) user;
 System.out.println("Seller:" +
 seller.getCommissionRate());
 }
 else if (user instanceof Bidder) {
 Bidder bidder = (Bidder) bidder;
 System.out.println("Bidder:" +
 bidder.getDiscountRate());
 }
 }

This code snippet uses the instanceof keyword to test user. Some Java gurus
recommend you avoid using instanceof, but we use it here as a last resort.
You have to ensure that your operations are just as polymorphic as your que-
ries! In our example, you can easily convert the operations to be polymorphic by
adding a getRate method in all entities. The getRate method will return the
commissionRate for the Seller entity, whereas it will return the discount-
Rate for the Bidder entity. The resulting code should look like this:

372 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.3.6 Using aggregations

Aggregations are useful when writing report queries that deal with a collection of
entities. In this section we’ll discuss support of aggregate functions in JPQL.

Aggregate functions
JPQL provides these aggregate functions: AVG, COUNT, MAX, MIN, and SUM. Each func-
tion’s name suggests its purpose. The aggregate functions are commonly used in
creating report queries. You can only use a persistence field with the AVG, MAX, MIN,
and SUM functions, but you can use any type of path expression or identifier with
the COUNT function.

 Table 10.13 shows all the aggregate functions supported by JPQL.

If we want to find the MAX value for the i.itemPrice field among all Items, use the
following query:

SELECT MAX(i.itemPrice)
FROM Item i

Iterator i = users.iterator();
while (i.hasNext()) {
 User user = (User)i.next();
 System.out.print("User:" + emp.getUserId());
 System.out.println(user.getRate());
}

Table 10.13 JPQL aggregate functions

Aggregate Functions Description Return Type

AVG Returns the average value of all values of
the field it is applied to

Double

COUNT Returns the number of results returned by
the query

Long

MAX Returns the maximum value of the field it is
applied to

Depends on the type of the
persistence field

MIN Returns the minimum value of the field it is
applied to

Depends on the type of the
persistence field

SUM Returns the sum of all values on the field it
is applied to

May return either Long or
Double

Introducing JPQL 373
If you want to find out how many Category entities exist in the system, use COUNT
like this:

SELECT COUNT(c)
FROM Category c

You’ve just seen some simple examples of aggregate functions. In the next section
you’ll learn how to aggregate results based on a path expression.

Grouping with GROUP BY and HAVING
In an enterprise business application, you may need to group data by some per-
sistence field. Assuming that there is a one-many relationship between User and
Category, this query will generate a report that lists the number of Category enti-
ties created by each c.user:

SELECT c.user, COUNT(c.categoryId)
FROM Category c
GROUP BY c.user

As you can see, we have grouped by an associated entity. You can group by a sin-
gle-value path expression that is either a persistence or an association field. Only
aggregate functions are allowed when you perform aggregation using GROUP BY.
You can also filter the results of an aggregated query with a HAVING clause. Sup-
pose you want to retrieve only the Users who have created more than five Category
entities. Simply modify the previous query as follows:

SELECT c.user, COUNT(c.categoryId)
FROM Category c
GROUP BY c.user
HAVING COUNT(c.categoryId) > 5

In addition, you can have a WHERE clause in a query along with a GROUP BY clause
such as

SELECT c.user, COUNT(c.categoryId)
FROM Category c
WHERE c.createDate is BETWEEN :date1 and :date2
GROUP BY c.user
HAVING COUNT(c.categoryId) > 5

A WHERE clause in a query containing both the GROUP BY and HAVING clauses results
in multistage processing. First, the WHERE clause is applied to filter the results.
Then, the results are aggregated based on the GROUP BY clause. Finally, the HAVING
clause is applied to filter the aggregated result.

374 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.3.7 Ordering the query result

You can control the order of the values and objects retrieved by a query by using
the ORDER BY clause:

ORDER BY path_expression1 [ASC | DESC], ... path_expressionN
 [ASC | DESC]

Here is an example JPQL query with an ORDER BY clause. In this case we want to
retrieve all Category entities and sort them alphabetically by c.categoryName.

SELECT c
FROM Category c
ORDER BY c.categoryName ASC

By specifying ASC, we’ve indicated that we want the result set to be ordered in
ascending order by c.categoryName. Specifying ASC is optional; if you leave it off,
then the persistence provider will assume you want ascending order by default.

 If you want results sorted in descending order, then specify DESC for the path
expression. You can use compound ordering to further customize the sorting of
the query results by using

SELECT c.categoryName, c.createDate
FROM Category c
ORDER BY c.categoryName ASC, c.createDate DESC

Keep in mind that if you use single-value path expressions instead of an identifier
variable, the SELECT clause must contain the path expression that is used in the
ORDER BY clause. The previous example used c.categoryName and c.createDate in
the ORDER BY clause. Therefore, c.categoryName and c.createDate must also be
used in the SELECT clause unless you use the identifier variable in the SELECT state-
ment. This next JPQL snippet is invalid because the ORDER BY clause contains
c.createDate but the SELECT clause does not:

SELECT c.categoryName, c.createDate
FROM Category c
ORDER BY c.categoryName ASC, c.createDate DESC

In a JPQL query that contains both ORDER BY and WHERE clauses, the result is fil-
tered based on the WHERE clause first, and then the filtered result is ordered using
the ORDER BY clause.

10.3.8 Using subqueries

A subquery is a query inside a query. You use a subquery in either a WHERE or HAVING
clause to filter the result set. Unlike SQL subqueries, EJB 3 subqueries are not sup-
ported in the FROM clause. If you have a subquery in a JPQL query, the subquery

Introducing JPQL 375
will be evaluated first, and then the main query is retrieved based on the result of
the subquery.

 Here is the syntax for the subquery:

 [NOT] IN / [NOT] EXISTS / ALL / ANY / SOME (subquery)

From the syntax of the language, it is clear that you can use IN, EXISTS, ALL, ANY, or
SOME with a subquery. Let’s look at some examples of subqueries in more detail.

Using IN with a subquery
We’ve already discussed using the IN operator where a single-value path expres-
sion is evaluated against a list of values. You can use a subquery to produce a list
of results:

SELECT i
FROM Item i
WHERE i.user IN (SELECT c.user
 FROM Category c
 WHERE c.categoryName LIKE :name)

In this query, first the subquery (in parentheses) is executed to retrieve a list of
users, and then the i.item path expression is evaluated against the list.

EXISTS
EXISTS (or NOT EXISTS) tests whether the subquery contains any result set. It
returns true if the subquery contains at least one result and false otherwise. Here
is an example illustrating the EXISTS clause:

SELECT i
FROM Item i
WHERE EXISTS (SELECT c
 FROM Category c
 WHERE c.user = i.user)

If you look carefully at the result of this subquery, you’ll notice that it is the same
as the query example we used in the previous section with the IN operator. An
EXISTS clause is generally preferred over IN, particularly when the underlying
tables contain a large number of records. This is because databases typically per-
form better when using EXISTS. Again, this is due to the work of the query proces-
sor translating JPQL queries into SQL by the persistence provider.

ANY, ALL, and SOME
Using the ANY, ALL, and SOME operators is similar to using the IN operator. You
can use these operators with any numeric comparison operators, such as =, >, >=,
<, <= and <>.

376 CHAPTER 10
Using the query API and JPQL to retrieve entities
 Here is an example of a subquery demonstrating the ALL operator:

SELECT c
FROM Category c
WHERE c.createDate >= ALL
 (SELECT i.createDate
 FROM Item i
 WHERE i.user = c.user)

If we include the ALL predicate, the subquery returns true if all the results
retrieved by the subquery meet the condition; otherwise, the expression returns
false. In our example the subquery returns false if any item in the subquery has
a createDate later than the createDate for the category in the main query.

 As the name suggests, if we use ANY or SOME, the expression returns true if
any of the retrieved results meet the query condition. We can use ANY in a query
as follows:

SELECT c
FROM Category c
WHERE c.createDate >= ANY
 (SELECT i.createDate
 FROM Item i
 WHERE i.seller = c.user)

SOME is just an alias (or a synonym) for ANY, and can be used anywhere ANY can
be used.

10.3.9 Joining entities

If you’ve used relational databases and SQL, you must have some experience with
the JOIN operator. You can use JOIN to create a Cartesian product between two
entities. Normally you provide a WHERE clause to specify the JOIN condition
between entities instead of just creating a Cartesian product.

 You have to specify the entities in the FROM clause to create a JOIN between two
or more entities. The two entities are joined based either on their relationships or
any arbitrary persistence fields. When two entities are joined, you may decide to
retrieve results that match the JOIN conditions. For example, suppose we join
Category and Item using the relationships between them and retrieve only enti-
ties that match the JOIN condition. Such joins are known as inner joins. Conversely,
suppose we need to retrieve results that satisfy the JOIN conditions but also
include entities from one side of the domain that don’t have matching entities on
the other side. For example, we may want to retrieve all instances of Category
even if there is no matching instance of Item. This type of join is called an outer
join. Note that an outer join can be left, right, or both.

Introducing JPQL 377
 Let’s first look at some examples of different types of inner joins. Then we’ll
see examples of joins based on arbitrary persistence fields and relationships, and
finally we’ll look at outer joins and fetch joins.

Theta-joins
Theta-joins are not very common, and are based on arbitrary persistence or asso-
ciation fields in the entities being joined, rather than the relationship defined
between them. For example, in the ActionBazaar system we have a persistence
field named rating that stores the rating for a Category. The values for rating
include DELUXE, GOLD, STANDARD, and PREMIUM. We also have a persistence field
named star that we use to store a star rating for an Item; the values for star also
include DELUXE, GOLD, STANDARD, and PREMIUM. Assume that both persistence fields
store some common values in these fields, such as GOLD, and we want to join these
two entities based on the rating and star fields of Category and Item, respec-
tively. To accomplish this, we use this query:

SELECT i
FROM Item i, Category c
WHERE i.star = c.rating

Although this type of join is less common in applications, it cannot be ruled out.

Relationship joins
A more common situation in applications is the need to join two or more entities
based on their relationships. Here is the syntax for INNER JOIN:

[INNER] JOIN join_association_path_expression [AS]
 identification_variable

In ActionBazaar, Category and User entities have a many-to-one association. To
retrieve all users that match a specific criterion we could try this query:

SELECT u
FROM User u INNER JOIN u.Category c
WHERE u.userId LIKE ?1

The INNER clause is optional.

Remember that when you use the JOIN operator by itself, an inner join is always
performed. Now let’s move to the other end of the spectrum: outer joins.

Outer joins
Outer joins allow you to retrieve additional entities that do not match the JOIN
conditions when associations between entities are optional. Outer joins are

378 CHAPTER 10
Using the query API and JPQL to retrieve entities
particularly useful in reporting. Let’s assume that there is an optional relation-
ship between User and Category and we want to generate a report that prints
all the Category names for the user. If the user doesn’t have any Category, then
we want to print NULL. If we specify the User on the left side of the JOIN, we
can use either the LEFT JOIN or LEFT OUTER JOIN keyword phrases with a JPQL
query as follows:

SELECT u
FROM User u LEFT OUTER JOIN u.Category c
WHERE u.userId like ?1

This will also retrieve User entities that do not have a matching Category, as well
as Users that do. It’s worth noting that, if an outer join is not used, the query
would only retrieve the users with the matching Category, but would fail to
retrieve users that do not have a matching Category.

 Are there any other types of JOINs supported by JPQL? We’re glad you asked!
The final type is called the fetch join.

Fetch joins
In a typical business application, you may want to query for a particular entity but
also retrieve its associated entities at the same time. For example, when we
retrieve a Bid in the ActionBazaar system, we want to eagerly load and initialize
the associated instance of Bidder. We can use a fetch join in JPQL to retrieve an
associated entity as a side effect of the retrieval of an entity:

SELECT b
FROM Bid b FETCH JOIN b.bidder
WHERE b.bidDate >= :bidDate

A fetch join is generally useful when you have lazy loading enabled for your rela-
tionship but you want to eagerly load the related entities in a specific query. You
can use FETCH JOIN with both inner and outer joins.

 Did you have any idea there was so much to JPQL? If you didn’t know any bet-
ter you might think it was a whole other language… Oh wait, it is! And it’s just
waiting for you to give it a test drive. We hope you were able to get your bearings
so that you can get started with JPQL and put it to work in your applications.

 We’re in the home stretch of this chapter, with only a couple of topics left. We
still need to discuss native SQL queries, but first we’ll talk about bulk updates
and deletes.

Introducing JPQL 379
10.3.10 Bulk updates and deletes

ActionBazaar categorizes its users by Gold, Platinum, and similar terms based on
the number of successful trades in a year. At the end of the year, an application
module is executed that appropriately set the user status. You could run a query
to retrieve the collection of User entities and then iterate through the collection
and update the status. An easier way is to use a bulk UPDATE statement to update
the collection of entities matching the condition, as in this example:

UPDATE User u
SET u.status = 'G'
WHERE u.numTrades >=?1

You’ve seen some examples of DELETE and UPDATE statements in JPQL in previous
sections, but we avoided any in-depth discussion until now. Let’s assume that
ActionBazaar administrators need functionality to remove instances of entities
such as Users based on certain conditions. We start with the following code:

@PersistenceContext em;
. . .
// start transaction
Query query = em.createQuery("DELETE USER u WHERE u.status = :status ");
query.setParameter("status", 'GOLD');
int results = query.executeUpdate();
//end transaction

In this code, the use of UPDATE and DELETE statements is quite similar to using any
other JPQL statements, except for two significant differences. First, we use the
executeUpdate method of the Query interface to perform bulk updates and
deletes instead of getResultList or getSingleResult. Second, we must invoke
executeUpdate within an active transaction.

 Because bulk updates and deletes involve many pitfalls, we recommend that
you isolate any bulk operations to a discrete transaction, because they are directly
translated into database operations and may cause inconsistencies between man-
aged entities and the database. Vendors are only required to execute the update
or delete operations, and not required to modify any changes to the managed
entities according the specification. In other words, the persistence provider
won’t remove any associated entities when an entity is removed as a result of a
bulk operation.

 At this point, we’ve covered a lot of ground: queries, annotations, and JPQL.
There’s only one topic left to discuss in this arena: using regular SQL queries
in EJB 3.

380 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.4 Native SQL queries

Just what is native SQL? It’s the SQL understood by the specific database server—
Oracle, MySQL, Derby, etc.—that you are using. This section provides what you
need to start using native SQL with EJB 3 right now.

NOTE In EJB 2 CMP entity beans, almost every vendor supported their own way
of using SQL to perform queries. The many limitations in EJBQL were
the primary driver for the vendor-specific extension for native SQL in
EJB 2. Although JPA standardizes use of native SQL queries you should
think twice about using native SQL in your applications, unless you are
very proficient in SQL and you are trying to take advantage of the pro-
prietary features of your database. Also keep in mind that the use of
native SQL will make your applications less portable, if you decide to
change your underlying database.

Suppose you want to generate a hierarchical list of categories, each showing its
subcategories; it’s impossible to do that in JPQL because JPQL does not support
recursive joins, similar to databases like Oracle. This means you have to take
advantage of native SQL.

 Let’s assume you’re using an Oracle database and you want to retrieve all sub-
categories of a particular Category by using recursive joins in the form of a START
WITH … CONNECT BY … clause as follows:

SELECT CATEGORY_ID, CATEGORY_NAME
FROM CATEGORY
START WITH parent_id = ?
CONNECT BY PRIOR category_id = category_id

Ideally, you should limit your use of native SQL to queries that you cannot express
using JPQL (as in our Oracle database–specific SQL query). However, for demon-
stration purposes, in our example in the next section, we’ve used a simple SQL
statement that can be used with most relational databases.

NOTE A JPA provider just executes SQL statements as JDBC statements and
does not track whether the SQL statement updated data related to any
entities. You should avoid using SQL INSERT, UPDATE, and DELETE state-
ments in a native query because your persistence provider will have no
knowledge of such changes in the database and it may lead to inconsis-
tent/stale data if your JPA provider uses caching.

Native SQL queries 381
As in JPQL, you can use both dynamic queries and named queries with SQL. You
have to remember the subtle differences between JPQL and SQL. JPQL returns an
entity, or set, of scalar values, but a SQL query returns database records. Therefore,
a SQL query may return more than entities, because you may join multiple tables
in your SQL. Let’s see how to use native SQL with both dynamic and native queries.

10.4.1 Using dynamic queries with native SQL

You can use the createNativeQuery method of the EntityManager interface to cre-
ate a dynamic query using SQL as follows:

Query q = em.createNativeQuery("SELECT user_id, first_name, last_name "
 + " FROM users WHERE user_id IN (SELECT seller_id FROM "
 + "items GROUP BY seller_id HAVING COUNT(*) > 1)",
 actionbazaar.persistence.User.class);

return q.getResultList();

In this statement, the createNativeQuery method takes two parameters: the SQL
query and the entity class being returned. This will become an issue if the query
returns more than one entity class—which is why JPA allows a @SqlResultSet-
Mapping to be used with the createNativeQuery method instead of passing an
entity class. A @SqlResultSetMapping may be mapped to one or more entities.

 For example, if we want to create a SqlResultSetMapping for the User entity
and use in our native query, then we can use the @SqlResultSetMapping annota-
tion as follows:

@SqlResultSetMapping(name = "UserResults",
 entities = @EntityResult(
 entityClass = actionbazaar.persistence.User.class))

Then we can specify the mapping in the Query as follows:

Query q = em.createNativeQuery("SELECT user_id, first_name, last_name "
 + " FROM users WHERE user_id IN (SELECT seller_id FROM "
 + "items GROUP BY seller_id HAVING COUNT(*) > 1)",
 "UserResults");

return q.getResultList();

This is useful when the SQL query returns more than one entity. The persistence
provider will automatically determine the entities being returned based on the
SqlResultSetMapping, instantiate the appropriate entities, and initialize those
entities with values based on the O/R mapping metadata.

 Once you create a query, it makes no difference whether you retrieve the
results from a native SQL or a JPQL query.

382 CHAPTER 10
Using the query API and JPQL to retrieve entities
10.4.2 Using a named native SQL query
Using a named native query is quite similar to using a named JPQL query. To use
a named native query, you must first create it. You can use the @NamedNativeQuery
annotation to define a named query:

public @interface NamedNativeQuery {
 String name();
 String query();
 QueryHint[] hints() default {};
 Class resultClass() default void.class;
 String resultSetMapping() default ""; // name of SQLResultSetMapping
}

You can either use an entity class or a result set mapping with the @NamedNative-
Query annotation. Suppose we want to convert the query that we used earlier to a
named native query. The first step is to define the named native query in the
User entity:

@NamedNativeQuery(
 name = "findUserWithMoreItems",
 query = "SELECT user_id , first_name , last_name,
 birth_date
 FROM users
 WHERE user_id IN
 (SELECT seller_id
 FROM items
 GROUP BY seller_id HAVING COUNT(*) > ?)",
 hints = {@QueryHint(name = "toplink.cache-usage",
 value="DoNotCheckCache")},
 resultClass = actionbazaar.persistence.User.class)

Next, if our query returns more than one entity class, we must define SqlResult-
SetMapping in the entity class using resultSetMapping as follows:

@NamedNativeQuery(
 name = "findUserWithMoreItems",
 query = "SELECT user_id , first_name , last_name,
 birth_date
 FROM users
 WHERE user_id IN
 (SELECT seller_id
 FROM items
 GROUP BY seller_id
 HAVING COUNT(*) > ?)",
 resultSetMapping = "UserResults")

You can provide a vendor-specific hint using the queryHint element of the
NamedNativeQuery. It is similar to the hints element for NamedQuery discussed in
section 10.2.4.

Summary 383
NOTE There is no difference in executing a named native SQL query and a
JPQL named query—except that a named parameter in native SQL query
is not required by the JPA spec.

To illustrate how similar the execution of JPQL and native SQL queries is, let’s
execute the named native query findUserWithMoreItems (which we defined ear-
lier in a session bean method):

 return em.createNamedQuery("findUserWithMoreItems")
 .setParameter(1, 5)
 .getResultList();

This statement first creates a query instance for the named native query find-
UserWithMoreItems. Next, the required positional parameter is set. Finally, we
return the result set.

Well, it appears you made it through the jungle of native SQL queries relatively
unscathed. We hope you can see that while it is possible to drop down into the
bowels of SQL from JPA, we don’t recommend it. Embedding SQL into Java
strings can be very time-consuming when it comes to debugging. And you lose all
the benefits that JPQL affords you. However, if you really do need to go native,
JPA will make it possible.

10.5 Summary

Queries are an important piece of the persistence puzzle, and in this chapter we
explored the various query capabilities provided by the EJB 3 Java Persistence
API. JPA uses the following three methods to query entities:

■ EntityManager.find with the entity’s primary key
■ Queries written in JPQL

■ SQL queries native to the underlying database

JPA and database stored procedures

If you’re a big fan of SQL, you may be willing to exploit the power of database-
stored procedures. Unfortunately, JPA doesn’t support stored procedures, and you
have to depend on a proprietary feature of your persistence provider. However, you
can use simple stored functions (without out parameters) with a native SQL query.

384 CHAPTER 10
Using the query API and JPQL to retrieve entities
You can either create ad hoc queries dynamically or use named queries that are
stored with their associated entities. The EntityManager interface provides meth-
ods to create JPQL- or SQL-based queries, and the Query interface provides
methods to execute a query. You can set parameters, pagination properties, and
flush mode, and retrieve query results using methods in the Query interface.
JPQL is the safest bet for writing queries, as it addresses the major limitations of
EJBQL and is the only way to build applications that are portable across data-
bases. Avoid using native SQL unless you have to use a vendor-specific feature.

 This chapter concludes part 3 of this book. Part 4 assembles everything
we’ve covered thus far, and allows you to apply these new skills in interesting,
practical ways. We’ll also delve into packaging concerns and explore some EJB
design patterns.

Part 4

Putting EJB 3
into action

Part 4 of this book provides guidelines for using EJB 3 effectively in your
enterprise Java applications. Chapter 11 offers in-depth coverage of packag-
ing EJB 3 applications and introduces deployment descriptors. Chapter 12
explores design patterns and explains how to use EJB 3 components and JPA
from the web tier. In chapter 13, you’ll learn best practices for building scal-
able applications using EJB 3.

Packaging EJB 3
applications
This chapter covers
■ Class loading concepts
■ Packaging EJB 3 components
■ Packaging EJB 3 entities
■ O/R mapping with XML
■ Deployment issues and best practices
387

388 CHAPTER 11
Packaging EJB 3 applications
In the previous chapters you learned how to build a business-logic tier with ses-
sion and message-driven beans, and you used entities to support the persistence
tier. The real success of Java EE applications lies in assembly and deployment, as
this is the key to delivering on Java’s promise of write once, run anywhere
(WORA). If you fail to fully grasp this step, your application may not realize this
level of portability.

 A typical application has a handful of Java classes, and maintenance can be a
nightmare if you are shipping your applications from one environment to another.
To simplify maintenance you can create a Java archive (JAR) file. Typically, a JAR

Java platform roles: it’s all about juggling hats

The Java EE platform defines different roles and responsibilities relating to develop-
ment, assembly, and deployment of Java EE applications. In this book we are mainly
interested in the Developer, Assembler, and Deployer roles, but we introduce you to
all the roles so that you can be familiar with them. The roles defined by the speci-
fications are

■ Enterprise Bean Provider
■ Application Assembler
■ Deployer
■ EJB Server Provider
■ EJB Container Provider
■ Persistence Provider
■ System Administrator

The database administrator is not one of the defined Java EE roles. The database
administrator may not even understand a line of Java code. However, the impor-
tance of this role cannot be overlooked, especially in large corporations where rela-
tional databases are outside the control of the application developers. Developers,
Assemblers, and Deployers may need to work with the DBAs in order to success-
fully build and release Java EE applications.

It’s all about the division of labor. Many believe that the difficulties of earlier EJB
practices were a result of the division of the EJB roles. In reality, the previous EJB
specifications were not the real culprit—the source of all the confusion is the Java
EE specification. While the Java EE and EJB specifications define seven roles, the
problem is that many project teams do not even have seven people—how can a
two- or three-person team wear that many hats?

Packaging your applications 389
file is a file in zip format that contains classes. However, enterprise Java applica-
tions are packaged as specialized versions of JAR files—EAR, WAR, and EJB-JAR
modules—before they can be deployed to a Java EE–compliant application server.

 In this chapter we begin with a discussion of application packaging and
deployment. The chapter also provides critical information on class loading, so
that you can appreciate why the archives are packaged as they are. This is
intended to provide you a better understanding of the packaging requirements
for EJBs that include entities. We explain the need for deployment descriptors,
and look at how to use them. Finally, we look at a persistence unit and how to per-
form object-relational (O/R) mapping using XML.

11.1 Packaging your applications

A typical enterprise Java application may contain several Java classes of different
types, such as EJBs, servlets, JavaServer Faces (JSF) managed beans, and entity
classes, as well as static files such as JSPs and HTML files. As we discussed in chap-
ter 1, EJBs run in the EJB container whereas web applications such as servlets and
JSF managed beans run in the web container. To run your application you have to
make it available to the Java EE application server. This is known as deployment.
Since EJB is a core part of the Java EE specification, you have to follow the Java EE
standard for deployment.

 To understand EJB packaging, you must consider how it fits into the bigger
picture of Java EE packaging and know what constitutes a complete enterprise
Java application. Up to this point we have focused on using EJB components such
as session beans and MDBs to build business logic and JPA entities to implement
your persistence code. However, your application will not be complete without a
presentation tier that accesses the business logic you built with EJBs. For example,
the EJBs we built for ActionBazaar do not make sense unless we have a client
application accessing them. Most likely, you’ve used standard technologies such
as JSP or JSF to build the web tier of your applications. These web applications,
together with EJBs, constitute an enterprise application that you can deploy to an
application server.

 To deploy and run an application, you have to package the complete applica-
tion together—the web module and EJBs—and deploy to an application server.
Usually you will group similar pieces of the application together in modules. Java
EE defines a standard way of packaging these modules in JAR files, and specifies
the formats for these JARs. One of the advantages of having these formats defined
as part of the specification is that they are portable across application servers.

390 CHAPTER 11
Packaging EJB 3 applications
 Table 11.1 lists the archives or modules supported by Java EE 5 and their con-
tents. Note that each archive type is used for packaging a specific type of module,
such as EJB or web. For instance, a WAR is used to package a web-tier application
module, and the EAR file is intended to be the über archive containing all the
other archives so that in the end, you’re only deploying one file. The application
server will scan the contents of the EAR and deploy it. We discuss how an EAR is
loaded by the server in section 11.1.2.

To create these files, you can use the jar utility that comes with JDK. The final
step is to assemble all the JAR files into one EAR file for deployment. In 11.3.1 we
show you a build script that creates a JAR file. Each of these JAR types contains an
optional deployment descriptor that describes the archive. As we have been dis-
cussing throughout this book, you can use metadata annotations instead of a
deployment descriptor.

 In this chapter, we focus primarily on the EAR file and the EJB-JAR file, which
contains the session and message-driven beans, as well as entities.

 It’s worth mentioning that entities can be packaged in most archive types. For
example, the ability to package entities in WARs allows you to use the EJB 3 JPA in

Table 11.1 Enterprise Java applications need to be assembled into specific types of JAR files
before they can be deployed to an application server. These are the available module types as spec-
ified by Java EE.

Type Description Descriptor Contents

CAR Client application
archives

application-client.xml Thick Java client for EJBs.

EAR Enterprise appli-
cation archive

application.xml Other Java EE modules such as
EJB-JARs.

EJB-JAR EJB Java archive ejb-jar.xml Session beans, message-driven
beans, and optionally entities.
Needs a persistence.xml if
entities are packaged.

RAR Resource adapter
archives

ra.xml Resource adapters.

WAR Web application
archives

web.xml Web application artifacts such as
servlets, JSPs, JSF, static files, etc.
Entities can also be packaged in this
module. Needs a persistence.
xml if entities are packaged.

Packaging your applications 391
simple web applications or with lightweight frameworks such as Spring. Note that
entities are not supported in RAR modules. This statement, however, begs the
question of why Java EE does not have a different archive type to package EJB 3
entities, just as JBoss has the Hibernate Archive (HAR) to package persistence
objects with Hibernate’s O/R framework.

 You may know the answer to this question if you have followed the evolution of
the EJB 3 specification. For those who haven’t, we now regale you with Tales from
the Expert Group (cue spooky music)…

 During the evolution of the EJB 3 Public Draft, the PAR (Persistence Archive)
was introduced, which mysteriously vanished in the Proposed Final Draft. A huge,
emotional battle was fought in the EJB and Java EE expert groups over whether to
introduce a module type for a persistence module at the Java EE level, and sug-
gestions were sought from the community at large, as well as from various devel-
oper forums. Many developers think a separate persistence module is a bad idea
because entities are supported both outside and inside the container. Consider-
ing that persistence is inherently a part of any enterprise application, it makes
sense to support packaging entities with most module types, instead of introduc-
ing a new module type specialized for packaging entities.

 Now that you know what modules are supported and a little about how they
were arrived at, shall we take a quick peek under the hood of an EAR module?

11.1.1 Dissecting the EAR file

To understand how deployment works, let’s take a closer look at the EAR file, the
top-level archive file that contains other Java EE archives when it is deployed to
the application server. For instance, the ActionBazaar application contains an
EJB module, a web module, a JAR containing helper classes, and an application
client module. The file structure of the EAR file that ActionBazaar uses looks
like this:

META-INF/application.xml
actionBazaar-ejb.jar
actionBazaar.war
actionBazaar-client.jar
lib/actionBazaar-commons.jar

application.xml is the deployment descriptor that describes the standard Java
EE modules packaged in each EAR file. The contents of application.xml look
something like listing 11.1.

392 CHAPTER 11
Packaging EJB 3 applications
<application>
 <module>
 <ejb>actionBazaar-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>actionBazaar.war</web-uri>
 <context-root>ab</context-root>
 </web>
 </module>
 <module>
 <java>actionBazaar-client.jar</java>
 </module>
</application>

If you review the EAR file descriptor in listing 11.1, you’ll see that it explicitly
identifies each of the artifacts as a specific type of module. When you deploy this
EAR to an application server, the application server uses the information in the
deployment descriptor to deploy each of the module types.

 Java EE 5 made the deployment descriptor optional, even in the EAR. This is a
departure from previous versions of Java EE, where it was mandatory. The Java EE
5.0–compliant application servers deploy by performing automatic detection
based on a standard naming convention or reading the content of archives; see
http://java.sun.com/blueprints/code/namingconventions.html.

 Next, let’s take a look at how application servers deploy an EAR module.

11.1.2 Loading the EAR module

During the deployment process, the application server determines the module
types, validates them, and takes appropriate steps so that the application is avail-
able to users. Although all application servers have to accomplish these goals, it’s
up to the individual vendor exactly how to implement it. One area where server
implementations stand out is in how fast they can deploy the archives.

 While vendors are free to optimize their specific implementation, they all fol-
low the specification’s rules when it comes to what is required to be supported and
in what order the loading occurs. This means that your application server will use
the algorithm from figure 11.1 when attempting to load the EAR file that contains
modules or archives from table 1.1.

 Before we delve into how EJB components and entities are packaged, let’s
briefly discuss what class loading is and how it works in the Java EE environment.

Listing 11.1 Deployment descriptor for the ActionBazaar EAR module

EJB module

Web module

Application client module

Packaging your applications 393
Figure 11.1 Rules followed by application servers to deploy an EAR module. Java EE 5 does not
require a deployment descriptor in the EAR module that identifies the type of modules packaged. It
is the responsibility of Java EE container to determine the type of module based on its name
(extension) and its content. It does so by following this algorithm.

394 CHAPTER 11
Packaging EJB 3 applications
11.2 Exploring class loading

There is a misconception among many developers that all classes are loaded into
memory when the JVM starts up; this is not true. Classes are loaded dynamically as
and when they are needed at runtime. This process of locating the byte code for a
given class name and converting that code into a Java class instance is known as
class loading. Your application may have hundreds of EJBs and other resources;
loading all these classes into the JVM consumes a lot of memory. Most application
servers use a sophisticated mechanism to load classes as and when needed. There-
fore, your EJB class will be loaded into memory only when a client accesses it.
However, it is implementation specific. Application servers support the bean
pooling mechanism, so EJB classes would be loaded into memory while some
instances would be instantiated and put into the pool during deployment time.

 When you build an application using EJB 3, you may use third-party libraries
such as Log4J or you may depend on an in-house shared library configured in the
application server. You may have web applications that depend on your EJB com-
ponents and entities. As you can see, a complex application may depend on librar-
ies available at several places. This means that you may run into many deployment
errors such as ClassNotFoundException or ClassNoDefException. Understanding
the class-loading concepts will educate you on effectively packaging your EJB 3
applications and help you troubleshoot any deployment-related issues.

 In this section, we introduce the concept of class loading and look at the class-
loader hierarchy in an application server. We then expose the parent delegation
model. Finally, we examine class loading in Java EE and explore the dependen-
cies between different modules.

11.2.1 Class-loading basics

If you’ve built simple applications with Java, you must be aware that when you run
your application, the classes that make it up (often packaged in a standard JAR
file) are made available to the JVM through the CLASSPATH environment variable.
When a particular class is invoked, the JVM loads that class into memory by locat-
ing it from the available byte code files provided either via JAR files in the CLASSATH
or a specified directory structure.

 Class loading is initially performed by the JVM when it starts up. It loads the
essential classes required, and then subclasses of the java.lang.ClassLoader class
take the lead. These class loaders allow applications to load classes dynamically
that may not be required during the compilation process. By default, the JVM

Exploring class loading 395
utilizes a few different class loaders. As an illustration, the Sun JVM has a hierar-
chy of three loaders, as shown in figure 11.2

 The boot class loader loads all platform classes that the Java language requires,
such as classes in the java.lang or java.util package. You can optionally use the
bootclasspath command-line option of the JVM to instruct the boot class loader
to load additional classes from other JAR files.

 The extension class loader is a child class loader of the boot class loader, and
loads classes from any JARs placed in the $JAVA_HOME/jre/lib/ext directory, or in
a separate directory specified with the –Djava.ext.dir system property. By
default, it loads the Java cryptography library, as well as the security classes.

Figure 11.2
The default class loaders used by Sun’s JVM. The bootstrap class
loader (sometimes called the boot class loader) is at the top of the
hierarchy and loads all platform classes.

396 CHAPTER 11
Packaging EJB 3 applications
The system class loader actually loads application classes as specified by an appli-
cation, and is also known as the application class loader. You can use several
mechanisms to specify the location from which the system class loader loads
classes. One way is to specify the CLASSPATH environment variable. Another is to
specify the manifest Class-Path entry of a JAR file that is being executed or that is
in the CLASSPATH.

 For example, the JAR file actionBazaar-client.jar has a Manifest.mf file in
the META-INF directory that has this entry:

Class-Path: lib/actionBazaar-utility.jar.

When the class loader loads the classes, it will search not only for the required
class in the actionBazaar-client.jar, but also in the actionBazaar-utility.jar.
The location of the JAR specified in the manifest Class-Path is relative to the JAR
file that contains it.

 For a simple Java application, this process is probably as simple as packag-
ing the classes in a JAR and making the file available in the CLASSPATH. How-
ever, in a sophisticated environment such as Java EE, the application servers
utilize several mechanisms to load the classes from a variety of locations, such as
an application module, a library module, or a shared library configured in the
application server environment.

 When you start up an application server, a Java process starts loading classes
required for the application server. When you deploy and execute an application
in a Java application server, the application server loads the classes dynamically
by creating new instances of class loaders.

11.2.2 Exposing the classic parent delegation model

You must be curious as to why JVM always loads the class from the parent class
loader. In this section we will uncover the reason.

 Let’s review the scenario for ActionBazaar in order to understand the class-
loading delegation model. The ActionBazaar website is built with JSP pages that
invoke EJBs. When a user visits the ActionBazaar website and browses the items
listed for auction, the application server uses class loaders to dynamically load
required classes from application modules. All class loaders follow a standard
algorithm to load classes, as illustrated in figure 11.3.

 A class loader loads a class dynamically on an as-needed basis. It first looks
at its local cache to see if it was loaded earlier. If not, it asks its parent to load
the class. If its parent cannot load the class, it attempts to load it from its local
code sources. Simply put, a code source is a base location, such as a JAR file,

Exploring class loading 397
which the JVM searches for classes. This approach is called the Parent First dele-
gation model.

 Now that we’ve reviewed the basics of Java class loading, let’s quickly review
how class loading works in a Java EE application.

Figure 11.3
The class loader by default follows Parent First Delegation model.
When a class is required, it first asks its parent to load the class.

398 CHAPTER 11
Packaging EJB 3 applications
11.2.3 Class loading in Java EE applications

As we discussed earlier, an EJB application may make use of third-party libraries.
In order to enable that, most Java EE containers use sophisticated mechanisms to
load classes from a variety of places. You may remember from previous discussions
that we follow standard practices to package our application components into
standard-compliant archives such as EAR, EJB-JAR, WAR, and so forth. Table 11.2
lists the code sources for commonly used Java EE modules. For simplicity we are
ignoring resource adapter (RAR) modules.

The sooner you develop a good understanding of how the packaging standards
work, the easier the whole packaging and deployment process will be.

11.2.4 Dependencies between Java EE modules

Unfortunately, no Java EE specification provides a standard for class loading, and
each application server implements class loaders in whatever way seems best to
the vendor. However, Java EE defines the visibility and sharing of classes between
different modules, and we can depict the dependency between different modules
as shown in figure 11.4.

 As illustrated in figure 11.4, the EAR class loader loads all JARs in the lib
directory that is shared between multiple modules. Typically a single EJB class
loader loads all EJB classes packaged in all EJB-JAR modules. The EJB class loader
is often the child of the application class loader, and loads all EJB classes. Because
the EJB is a child to the EAR class loader, all classes loaded at the EAR level will be
visible to the EJBs.

Table 11.2 A standard archive may load classes either packaged inside it or from any other
archives it is dependent on.

Module Code Sources

EAR 1. All JARs in the /lib directory of the EAR
2. Manifest Class-Path of any JARs in 1

EJB-JAR 1. EJB-JAR file itself
2. JARs referenced by manifest Class-Path of EJB-JAR
3. JARs referenced by manifest Class-Path of above JARs (in 2)

WAR 1. WEB-INF/classes
2. JARs in WEB-INF/lib
3. JARs referenced by manifest Class-Path of WAR
4. JARs referenced by manifest Class-Path of JARs in 2 and 3

Exploring class loading 399
Figure 11.4 Illustration of class visibility of an EAR file containing multiple web modules, EJBs, and
shared library modules. The EAR class loader loads the classes in the JARs packaged as library
modules, and all classes loaded by the EAR class loader are visible to the EJBs. The classes loaded
by EJB class loader are typically visible to the web module in most containers because the WAR class
loader is a child of the EJB class loader.

400 CHAPTER 11
Packaging EJB 3 applications
EJBs are accessible from WAR modules. Furthermore, the EJB class loader is the
parent of the WAR application class loader, and all EJB classes will be visible to
the WAR module by default.

 So before we move on to packaging EJBs, let’s recap how this is going to help
in packaging EJB 3 applications. If you package classes in a specific EJB module,
it will probably be visible to only that module. If you want your classes (helper and
utility) to be visible to all modules in the EAR file, you can package them as a
library module in the EAR.

 Armed with this knowledge on class loading, we can now return to the
discussion on packaging EJBs. First we’ll talk about the packaging of session
and message-driven beans, and quickly proceed to the packaging of persis-
tence entities.

11.3 Packaging session and message-driven beans

A car manufacturer has to assemble all essential parts of a car before it can run. As
an EJB developer you build core classes that make your application, and you have
to assemble them as an EJB-JAR and deploy them into your application server
before your customers can execute the application.

 Throughout this book we have used annotations and avoided deployment
descriptors. The EJB deployment descriptor (ejb-jar.xml) describes the contents
of an EJB-JAR, such as beans, interceptors, the resource they use, security, trans-
action settings, and so forth. For every annotation we have discussed in this book
there is an element in the descriptor. You’ll recall from chapter 2 that deployment
descriptors can be used to override settings in metadata annotations. Let’s now
uncover the elements of ejb-jar.xml and explain how you can define default inter-
ceptors. We’ll conclude this section with a discussion on vendor-specific descriptors
and annotations.

11.3.1 Packaging EJB-JAR
Session beans and MDBs can be packaged in a Java standard JAR file as defined in
the Java Archive specification at http://java.sun.com/j2se/1.5.0/docs/guide/jar/. To
create an EJB-JAR file to package your EJB components, you have to compile your
EJB classes and then create a JAR file using the jar tool supplied by JDK. For
example, you can use the following command to create the adventure-ejb.jar:

jar cvf adventure-ejb.jar *

This will create a JAR file containing all class files in the current directory, and
any subdirectories below the current directory. You can automate building JAR

Packaging session and message-driven beans 401
files using several tools. Most modern IDEs support building EJB-JAR modules,
and make the creation of JAR modules somewhat transparent to you. A number
of specialized utilities in addition to IDEs also support the build process. Today,
the most frequently used tool to assist with builds is Apache Ant (http://ant.
apache.org/), although there is a strong movement toward Apache Maven (http://
maven.apache.org/). Listing 11.2 shows a sample Ant build script that was cre-
ated to automate building an EJB-JAR module. Ant build scripts are provided
with our code examples and can be downloaded from this book’s website (www.
manning.com/panda).

...
 <target name="compile-ejb-classes" depends="setup">
 <echo message="-----> Compiling EJBs"/>
 <javac srcdir="${src.ejb.dir}"
 destdir="${bld.ejb.dir}"
 debug="on">
 <classpath>
 <pathelement path="${common.j2ee.class.path}"/>
 <pathelement location="${bld.ejb.dir}"/>
 <pathelement location="${lib.dir}/${ejb.name}.jar"/>
 </classpath>
 </javac>
 </target>

 <target name="ejb-descriptor" depends="setup">
 <copy todir="${bld.ejb.dir}/META-INF">
 <fileset dir="${etc.dir}"
 includes="ejb-jar.xml, persistence.xml"/>
 </copy>
 </target>

 <target name="package-ejb"
 depends="compile-ejb-classes,ejb-descriptor">
 <echo message="-----> Create EJB JAR file"/>
 <jar jarfile="${bld.ear.dir}/${ejb.name}.jar">
 <fileset dir="${bld.ejb.dir}" includes="**"/>
 </jar>
 </target>
...

The EJB-JAR file must include the interfaces and bean classes. It may also include
any helper classes. Optionally the helper classes may be packaged in a separate
JAR file in the EAR file. You have two options:

Listing 11.2 Sample script for building an EJB-JAR file

Compiles EJB
classes

Copies deployment
descriptors

Builds
EJB-JAR

402 CHAPTER 11
Packaging EJB 3 applications
■ The JAR containing helper classes may be packaged in the lib directory of
the EAR file. Using this approach, the packaged classes will be automati-
cally visible to all modules in the EAR module.

■ If you want to limit the visibility to only a specific EJB-JAR or WAR module,
you can create an entry in the Manifest.mf file of the module that contains
a Class-Path attribute to the JAR file.

Now that you know the structure of EJB-JAR and how to package it, let’s look at
the elements of ejb-jar.xml.

11.3.2 Deployment descriptors vs. annotations

An EJB deployment descriptor (ejb-jar.xml) describes the contents of an EJB
module, any resources used by it, and security transaction settings. The deploy-
ment descriptor is written in XML, and because it is external to the Java byte
code, it allows you to separate concerns for development and deployment.

 The deployment descriptor is optional and you could use annotations instead,
but we don’t advise using annotations in all cases for several reasons. Annotations
are great for development, but may not be well suited for deployments where set-
tings may change frequently. During deployment it is common in large companies
for different people to be involved for each environment (development, test, pro-
duction, etc.). For instance, your application requires such resources as DataSource
or JMS objects, and the JNDI names for these resources change between these
environments. It does not make sense to hard-code these names in the code using
annotations. The deployment descriptor allows the deployers to understand the
contents and take appropriate action. Keep in mind that even if the deployment
descriptor is optional, certain settings such as default interceptors for an EJB-JAR
module require a deployment descriptor. An EJB-JAR module may contain

■ A deployment descriptor (ejb-jar.xml)
■ A vendor-specific deployment descriptor, which is required to perform cer-

tain configuration settings in a particular EJB container

The good news is that you can mix and match annotations with descriptors by
specifying some settings in annotations and others in the deployment descrip-
tor. Be aware that the deployment descriptor is the final source and overrides
settings provided through metadata annotations. To clarify, you could set the
TransactionAttribute for an EJB method as REQUIRES_NEW using an annotation,
and if you set it to REQUIRED in the deployment descriptor, the final effect will
be REQUIRED.

Packaging session and message-driven beans 403
Although we won’t delve deeply into deployment descriptors, let’s look at some
quick examples to see what deployment descriptors look like so that you can
package a deployment descriptor in your EJB module if you need to. Listing 11.3
shows a simple example of a deployment descriptor for the BazaarAdmin EJB.

<ejb-jar version="3.0">
 <enterprise-beans>
 <session>
 <ejb-name>BazaarAdmin</ejb-name>
 <remote>actionbazaar.buslogic.BazaarAdmin</remote>
 <ejb-class>actionbazaar.buslogic.BazaarAdminBean</ejb-class>
 <session-type>stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
...
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BazaarAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <security-role>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-JAR>

Annotations vs. XML descriptors: the endless debate

Sugar or sugar substitute? It’s a matter of choice. Zero calories versus the risk of
cancer? The debate may well be endless, and the same applies to the debate
between annotations and deployment descriptors. Some people find annotations
elegant, while they see XML as verbose, ugly, and hard to maintain. Others find
annotations unsightly, and complain that annotations complicate things by making
configurations reside closer to the code. The good thing is that you have a choice,
and Java EE allows you to override annotation settings in the code with deploy-
ment descriptors if you desire. We suggest you weigh the pros and cons of these
options with a clear mind.

Listing 11.3 A simple ejb-jar.xml

 B Specifies version element (must be 3.0)

Identifies EJB C

Specifies
bean type D

Specifies
transaction type E

 F Contains transaction attribute setting

 G Specifies security setting

404 CHAPTER 11
Packaging EJB 3 applications
If you are familiar with EJB 2, you may have noticed that the only notable differ-
ence between this deployment descriptor and one in EJB 2 is that the version
attribute must be set to 3.0, and the home element is missing because EJB 3 does
not require a home interface.

 If you are using deployment descriptors for your EJBs, make sure that you set
the ejb-jar version to 3.0 b because this will be used by the Java EE server to
determine the version of the EJBs being packaged in an archive. The name ele-
ment C identifies an EJB and is the same as the name element in the @Stateless
annotation. These must match if you are overriding any values specified in the
annotation with a descriptor. The session-type element D determines the type
of session bean. This value can be either stateless or stateful. You can use
transaction-type E to specify whether the bean uses CMT (Container) or BMT
(Bean). The transaction, security, and other assembly details are set using the
assembly-descriptor tag of the deployment descriptor F and G.

 Table 11.3 lists commonly used annotations and their corresponding descriptor
tags. Note that as we mentioned earlier there is an element for every annotation.
You will need only those which make sense for your development environment.
Some of the descriptor elements you’ll probably need are for resource references,
interceptor binding, and declarative security. We encourage you to explore these
on your own.

Table 11.3 One-to-one mapping between annotations and XML descriptor elements

Annotation Type
Annotation

Element
Corresponding Descriptor

Element

@Stateless EJB type <session-type>Stateless

name ejb-name

@Stateful EJB type <session-type>Stateful

ejb-name

@MessageDriven EJB type message-driven

name ejb-name

@Remote Interface type remote

@Local Interface type local

@Transaction-
Management

Transaction management
type at bean level

transaction-type

continued on next page

Packaging session and message-driven beans 405
@Transaction-
Attribute

Transaction
settings method

container-transaction
trans-attribute

@Interceptors Interceptors interceptor-binding
interceptor-class

@ExcludeClass-
Interceptors

Interceptors exclude-class-
interceptor

@ExcludeDefault-
Interceptors

Interceptors exclude-default-
interceptors

@AroundInvoke Custom interceptor around-invoke

@PreConstruct Lifecycle method pre-construct

@PostDestroy Lifecycle method post-destroy

@PostActivate Lifecycle method post-activate

@PrePassivate Lifecycle method pre-passivate

@DeclareRoles Security setting security-role

@RolesAllowed Security setting method-permission

@PermitAll Security setting unchecked

@DenyAll Security setting exclude-list

@RunAs Security setting security-identity
run-as

@Resource Resource references
(DataSource, JMS,
Environment, mail, etc.)

resource-ref
resource-env-ref
message-destination-ref
env-ref

Resource injection Setter/field
injection

injection-target

@EJB EJB references ejb-ref
ejb-local-ref

@Persistence-
Context

Persistence context
reference

persistence-context-ref

@PresistenceUnit Persistence unit reference persistence-unit-ref

Table 11.3 One-to-one mapping between annotations and XML descriptor elements (continued)

Annotation Type
Annotation

Element
Corresponding Descriptor

Element

406 CHAPTER 11
Packaging EJB 3 applications
You can find the XML schema for the EJB 3 deployment descriptor at http://
java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd.

11.3.3 Overriding annotations with deployment descriptors

As we explained, you can mix and match deployment descriptors with annota-
tions and use descriptors to override settings originally specified using anno-
tations. Keep in mind that the more you mix the two, the more likely you are
to make mistakes and create a debugging nightmare.

NOTE The basic rule to remember is that the name element in stateless, stateful,
and message-driven annotations is the same as the ejb-name element in
the descriptor. If you do not specify the name element with these annota-
tions, the name of the bean class is understood to be the ejb-name ele-
ment. This means that when you are overriding an annotation setting
with your deployment descriptor, the ejb-name element must match the
bean class name.

Suppose we have a stateless session bean that uses these annotations:

@Stateless(name = "BazaarAdmin")
public class BazaarAdminBean implements BazaarAdmin {
...
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public Item addItem() {
 }
}

The value for the name element specified is BazaarAdmin, which is the same as the
value of the ejb-name element specified in the deployment descriptor:

<ejb-name>BazaarAdmin</ejb-name>

If you do not specify the name element, the container will use the name of
BazaarAdminBean as the name of the bean class, and in order to override annota-
tions you have to use that name in the deployment descriptor:

<ejb-name>BazaarAdminBean</ejb-name>

We used @TransactionAttribute to specify that the transaction attribute for a
bean method be REQUIRES_NEW. If we want to override it to use REQUIRED,1 then we
use the following descriptor:

1 Keep in mind the impact of changing a transaction attribute from RequiresNew to Required, as shown
in this example. We investigated this effect in greater detail in chapter 6.

Packaging session and message-driven beans 407
<assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BazaarAdmin</ejb-name>
 <method-name>getUserWithItems</method-name>
 <method-params></method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
</assembly-descriptor>

In this example, we used the assembly-descriptor element to specify a trans-
action attribute C. In addition, the ejb-name element b in the assembly-
descriptor matches the original name specified with the @Stateless annota-
tion in the bean class.

11.3.4 Specifying default interceptor settings

Interceptors (as you’ll recall from chapter 5) allow you to implement cross-cutting
code in an elegant manner. An interceptor can be defined at the class or method
level, or a default interceptor can be defined at the module level for all EJB
classes in the EJB-JAR. We mentioned that default interceptors for an EJB module
can only be defined in the deployment descriptor (ejb-jar.xml). Listing 11.4
shows how to specify default interceptors for an EJB module.

...
<interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 actionbazaar.buslogic.CheckPermissionInterceptor
 </interceptor-class>
 <interceptor-class>
 actionbazaar.buslogic.ActionBazaarDefaultInterceptor
 </interceptor-class>
</interceptor-binding>
...

The interceptor-binding b tag defines the binding of interceptors to a particu-
lar EJB with the ejb-name element. If we want to define the default interceptor or
an interceptor binding for all EJBs in the EJB module, then we can specify * as
the value for ejb-name C. We specify a class to use as the interceptor with the
<interceptor-class> tag. As evident from the listing, you can specify multiple

Specifies ejb-name b

Changes transaction
attribute setting C

Listing 11.4 Default interceptor setting in ejb-jar.xml

Defines interceptor binding b

 C Applies binding to all EJBs

408 CHAPTER 11
Packaging EJB 3 applications
interceptors in the same binding, and the order in which they are specified in
the deployment descriptor determines the order of execution for the intercep-
tor. In our example, CheckPermissionInterceptor will be executed prior to
ActionBazaarDefaultInterceptor when any EJB method is executed.

 If you want a refresher on how interceptors work, make a quick detour back to
chapter 5 and then rejoin us here. We’ll wait…

11.3.5 Using vendor-specific annotations and descriptors

We’ve already explained that stateless session beans and MDBs may be pooled. In
addition, you can configure passivation for stateful session beans, and you can set
up the handling of poisonous messages for MDBs. However, we have not dis-
cussed configuration details for either of these scenarios. Unfortunately, these
configurations are left to the vendors as proprietary features, and they can be
supported with proprietary annotations, proprietary deployment descriptors, or
both. Table 11.4 lists the name of the deployment descriptor file for some popu-
lar application servers.

Many developers shun deployment descriptors as a matter of inconvenience.
Application server vendors will continue to provide support for annotations that
match deployment descriptor elements, as developers voice their preference for
these features. Chances are that each vendor has a set of proprietary annotations
to set configuration information with the code.

 For example, you can use the oracle.j2ee.ejb.StatelessDeployment propri-
etary annotation to provide configuration information such as pooling and trans-
action management for stateless session beans. Look at the following code, which
configures pooling with Oracle’s proprietary annotation:

Table 11.4 Vendor-specific deployment descriptors for popular application servers

Application Server Vendor-Specific Deployment Descriptor

BEA WebLogic weblogic-ejb-jar.xml

IBM WebSphere ibm-ejb-jar.xml

JBoss jboss.xml

Oracle Application Server orion-ejb-jar.xml

Sun GlassFish sun-ejb-jar.xml

Packaging session and message-driven beans 409
import oracle.j2ee.ejb.StatelessDeployment;

@StatelessDeployment(
 minInstances = 100, maxInstances = 500, poolCacheTimeout = 120)
@Stateless(name = "BazaarAdmin")
public class BazaarAdminBean implements BazaarAdmin {
}

As other Java EE vendors create their implementations of EJB 3, we anticipate that
each vendor will devise its own subset of corresponding annotations as well.

 You should review these proprietary annotations with caution for a couple of
reasons. First, adding configuration information in the code is not a good idea,
although application servers provide the ability to override this information with
their proprietary deployment descriptors. This is not desirable because in order
to make a change to the setting, the code must be edited and compiled, and in
most organizations it must go through a significant quality assurance effort before
being released to production. Another reason is that as the code is promoted
across different environments (Development, Test, Production, etc.), the deployer
may change the configuration to accommodate different servers and environ-
mental configurations.

 Second, this defeats the goal of portability of applications. Deployment descrip-
tors serve as a guideline to the deployer to understand the contents, the applica-
tions, and the suggested configurations. Deployers manage the deployment to
each environment by tweaking the configuration. We recommend using the pro-
prietary deployment descriptors instead of using deployment annotations. If
you’re using Oracle, you could use the following element in Oracle’s proprietary
descriptor (orion-ejb-jar.xml) element as follows:

<session-deployment
 name = "BazaarAdmin"
 tx-retry-wait = "60"
 max-instances = "500"
 min-instances = "100"
 pool-cache-timeout = "120"
 location = "BazaarAdmin">
</session-deployment>

This concludes our discussion on packaging session beans and message-driven
beans. Next we take a peek at packaging entities. Can you feel the anticipa-
tion building?

410 CHAPTER 11
Packaging EJB 3 applications
11.4 Packaging entities

Can’t you package EJB 3 entities in the same way? Afraid not. We’re sure you’ve
noticed that while session and message-driven beans share a lot of characteristics,
entities are quite another beast. You may remember from our discussion in chap-
ter 1 that JPA can be used directly from the web container. That means entities will
need some additional care and feeding with respect to packaging, so that deploy-
ment will work as expected.

 This section covers some new deployment files, persistence.xml and orm.xml,
and provides a slew of tips and information on how to position your entities for
maximum deployment enjoyment. You do want deployment enjoyment, don’t
you? We know we do. Let’s begin by looking at the packaging structure for entities.

11.4.1 Exposing the persistence module

With EJB 3, entities can be used inside either the EJB or web container, or in a
Java SE application. Thus, entities may be packaged in a standard Java EE mod-
ule such as an EJB-JAR, WAR, or JAR file in the root of the EAR module or as a
library module in an EAR. When using entities in your applications, you have to
package entity classes into a Java EE module such as an EJB-JAR or WAR of simple
JAR files, with a simple deployment descriptor named persistence.xml.

 If you are using entities within an EJB module, then the EJB (session beans,
MDBs) classes and entities need to be packaged together in the same EJB module.
Therefore, the EJB-JAR module will contain a persistence.xml file to designate
that the module contains one or more persistence units. Recall from our discus-
sion in chapter 9 that a persistence unit is a logical group of entities used
together. For example, you may create a persistence unit for all entities in the
ActionBazaar application.

 Let’s look at the structure of a JAR that contains a simple persistence unit, as
shown in listing 11.5.

ActionBazaar-ejb.jar:
META-INF/
 persistence.xml
orm.xml (optional)
actionbazaar/
 persistence/
 Category.class
 Item.class
 ...

Listing 11.5 Structure of a sample EJB-JAR file containing entities

 b Default O/R mapping file

Packaging entities 411
 BazaarAdmin.class
...
 secondORMap.xml

persistence.xml is the deployment descriptor for a persistence module, which is
discussed in the next section. The orm.xml b file defines the object-relational
mapping (if you use XML mapping). You may package an additional mapping file
C that defines O/R mapping for entities that was not defined in orm.xml. We dis-
cuss O/R mapping with XML in section 11.5.2. The JAR also contains entity
classes—Category.class and Item.class—and another class, BazaarAdmin.class,
that is needed in order to make persistence work. Now that you know the structure
of a persistence module, let’s drill down and learn more about persistence.xml.

11.4.2 Describing the persistence module with persistence.xml

In chapter 9 we showed you how to group entities as a persistence unit and how to
configure that unit using persistence.xml. Now that you know how to package
entities, it’s time to learn more about persistence.xml, the descriptor that trans-
forms any JAR module into a persistence module. It’s worth mentioning that per-
sistence.xml is the only mandatory deployment descriptor that you have to deal
with. We hope the Java EE specification will ease this requirement in future
releases of the specification.

 At the time of this writing, some EJB containers such as Oracle and JBoss sup-
port proprietary extensions of persistence modules without persistence.xml in
EJB-JAR modules. Although user-friendly, this feature will not be portable across
EJB 3 containers. You can find the schema for persistence.xml online at http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd.

 Listing 11.6 is an example of a simple persistence.xml that we can use with
the ActionBazaar application; it should successfully deploy to any Java EE 5 con-
tainer that supports JPA. The first thing the file does is define a persistence unit
and package it to your deployment archive—for example, WAR or EJB-JAR.

<persistence>
 <persistence-unit name = "actionBazaar"
 transaction-type = "JTA">
 <provider>
 oracle.toplink.essentials.PersistenceProvider
 </provider>

 c Additional O/R mapping file

Listing 11.6 An example persistence.xml

 b Persistence unit

 c Factory class for JPA provider

412 CHAPTER 11
Packaging EJB 3 applications
 <jta-data-source>jdbc/ActionBazaarDS
 </jta-data-source>
 <mapping-file>secondORMap.xml</mapping-file>
 <jar-file>entities/ShippingEntities.jar</jar-file>
 <class>ejb3inaction.persistence.Category</class>
 <class>ejb3inaction.persistence.Bid</class>.
...
 <properties> <property name = "toplink.ddl-generation"
 value = "drop-and-create-tables"/>

 </properties>
 </persistence-unit>
</persistence>

Let’s run through a quick review of the code before we drill down into the
details. We define a persistence unit by using the persistence-unit element b.
We can specify an optional factory class for the persistence provider c. The JPA
provider connects to the database to store retrieved entities; we specified the
data source for the persistence provider d. If you have multiple persistence
units in a single archive, you may want to identify the entity classes that comprise
the persistence unit e. Optionally, you can specify vendor-specific configuration
using the properties element f.

 We hope you’re ready for a detailed exploration on the use of each of the ele-
ments in persistence.xml from listing 11.6—you’ll find it pretty straightforward.
After reading the next few pages, you should be fairly comfortable with this new
part of the EJB standard.

Naming the persistence unit
Each persistence unit must have a name, and that name must be unique across the
Java EE module. The name is important because the container uses it to create an
entity manager factory, and then again to create the entity manager instances
using the factory to access the entities specified inside the unit. Also, you access
the persistence unit by using its name when you attempt to perform CRUD opera-
tions with the entities packaged in the module. All other elements in a persis-
tence unit can be defaulted.

 You can define more than one persistence unit for an application module in
persistence.xml. All entities identified in a persistence unit are managed by a
single set of entity instances. Thus, a persistence.xml may have multiple persis-
tence units in a particular JAR module as follows:

DataSource used by
persistence unit

 d

Entity classes
included in unit

 E

Vendor-specific
properties f

Packaging entities 413
<persistence>
 <persistence-unit name = "actionBazaar">
...
 </persistence-unit>
 <persistence-unit name = "humanResources">
...
 </persistence-unit>
</persistence>

Again, the name element is important because it is what you use to access the enti-
ties. As shown in chapter 9, we use unitName to inject a container-managed Entity-
Manager as follows:

Persistence unit scoping

You can define a persistence unit in a WAR, EJB-JAR, or JAR at the EAR level. If you
define a persistence unit in a module, it is only visible to that specific module. How-
ever, if you define the unit by placing a JAR file in the lib directory of the EAR, the
persistence unit will automatically be visible to all modules in the EAR. For this to
work, you must remember the restriction that if the same name is used by a per-
sistence unit in the EAR level and at the module level, the persistence unit in the
module level will win.

Assume you have an EAR file structure like this:

lib/actionBazaar-common.jar
actionBazaar-ejb.jar
actionBazaar-web.war

actionBazaar-common.jar has a persistence unit with the name actionBa-
zaar and actionBazaar-ejb.jar has also a persistence unit with the name
actionBazaar.

The actionBazaar persistence unit is automatically visible to the web module,
and you can use as follows:

@PersistenceUnit(unitName = "actionBazaar")
private EntityManagerFactory emf;

However, if you use this code in the EJB module, the local persistence unit will be
accessed because the local persistence unit has precedence. If you want to access
the persistence unit defined at the EAR level, you have to reference it with the spe-
cific name as follows:

PersistenceUnit(unitName =
 "lib/actionBazaar-common.jar#actionBazaar")
private EntityManagerFactory emf;

414 CHAPTER 11
Packaging EJB 3 applications
@PersistenceContext(unitName = "actionBazaar")
private EntityManager entityManager;

Refer to the sidebar “Persistence unit scoping” for more on how a persistence unit
is scoped depending on its presence.

Specifying the transaction type
You can specify transaction-type in persistence.xml (as in listing 11.6) by
using the transaction-type attribute. transaction-type can either be JTA or
RESOURCE_LOCAL. If you do not specify transaction-type, the container will
assume the default transaction-type is JTA. You must utilize JTA as the transac-
tion-type for a persistence unit packaged in a Java EE module. RESOURCE_LOCAL
should be specified as a transaction type only when you’re exercising JPA out-
side a Java EE container. As you may recall, we discussed the javax.persis-
tence.EntityTransaction interface in chapter 9; we recommend you avail
yourself of EntityTransaction only when you use EJB 3 persistence outside of a
Java EE environment.

Using a specific persistence provider
The provider element specifies the factory class of the EJB 3 persistence provider,
such as Hibernate or TopLink. You do not have to specify the persistence provider
if you’re using the default persistence provider integrated with your Java EE 5
container. For example, if you want Hibernate’s persistence provider in the JBoss
Application Server or TopLink Essentials persistence provider with Sun GlassFish
or the Oracle Application Server, you don’t have to define the provider element
in persistence.xml. But if you decide to go with the EJB 3 persistence provider
from the GlassFish project with either JBoss or Apache Geronimo, then you must
specify the provider element as follows:

<provider>oracle.toplink.essentials.PersistenceProvider</provider>

Obviously this example specifies Oracle TopLink as the persistence provider; you
can specify the provider element for Hibernate as follows:

<provider>org.hibernate.ejb.HibernatePersistence</provider>

This is helpful when using JPA outside the container.

Setting up a DataSource
Our entities are persistence objects that access databases. Chapters 7 through 10
discussed how O/R mappings are defined with metadata annotations, and how an

Packaging entities 415
entity interacts with one or more database tables. We have not, however, broached
the subject of how entities interact with a database connection. Back in chapters 3
and 4 we briefly discussed what a DataSource is and how it can be used in an appli-
cation server by accessing it through JNDI. In addition, you saw examples of ses-
sion and message-driven beans accessing a DataSource using resource injection.
In spite of this, entities cannot use injection, connect to the database themselves,
or perform any operation directly; the persistence provider does all that magic
behind the scenes. When you persist an instance of an entity, the persistence pro-
vider will open or reuse a pooled connection to the database and execute the SQL
on your behalf.

 To configure a persistence unit to connect to a database, you first have to cre-
ate a DataSource in your Java EE container. For scalability, each DataSource is
commonly associated with a connection pool, and the connection pool contains
the information for connecting to the database.

Configuring an application DataSource
Every Java EE application server provides the ability to create and manage Data-
Sources and connection pools. Here is an example of a DataSource and a connec-
tion pool used by Sun’s GlassFish open source project:

<jdbc-connection-pool
 connection-validation-method = "auto-commit"
 datasource-classname = "oracle.jdbc.pool.OracleDataSource"
 max-pool-size = "32"
 max-wait-time-in-millis = "60000"
 name = "ActionBazaarDS"
 res-type = "javax.sql.DataSource"
 steady-pool-size = "8">
 <property name = "user" value = "ejb3ina"/>
 <property name = "port" value = "1521"/>
 <property name = "password" value = "ejb3ina"/>
 <property name = "networkProtocol" value = "thin"/>
 <property name = "databaseName" value = "ORCL"/>
 <property name = "serverName" value = "localhost"/>
</jdbc-connection-pool>

<jdbc-resource enabled = "true"
 jndi-name = "jdbc/ActionBazaarDS"
 pool-name = "ActionBazaarDS"/>

The DataSource uses the JNDI name and connection pool information for the
specified database instance. In this example, the DataSource has a jndi-name of
jdbc/ActionBazaarDS. Two common naming techniques are to name the pool

416 CHAPTER 11
Packaging EJB 3 applications
either the DataSource name without the JNDI reference (ActionBazaarDS), or to
use the pool in the DataSource name (ActionBazaarPooledDS). We’ll illustrate the
first approach here.

Telling the persistence unit about the DataSource
You can specify the DataSource for a persistence unit using either the jta-data-
source or non-jta-data-source element in the persistence.xml (as we did in
listing 11.6). Typically, Java EE containers support two types of DataSources:
Java Transaction API (JTA) and non-JTA. A JTA (or global) DataSource is one
that supports JTA or distributed transactions. A non-JTA (or local) DataSource
only supports local transactions that are limited to the process/server where
they begin. For example, we can specify the name of the JTA DataSource we cre-
ated earlier using the jta-data-source element as follows:

<jta-data-source>jdbc/ActionBazaarDS</jta-data-source>

NOTE You have to specify global JNDI names for the data source in the jta-
data-source and non-jta-data-source elements of persistence.
xml. If you do not specify a DataSource for the persistence unit, the
persistence unit will try to use the default DataSource for the applica-
tion server. The default DataSource for a Java EE application is typi-
cally specified using a proprietary mechanism.

Many application servers such as BEA WebLogic Server and Oracle Application
Server also allow the packaging of DataSource configurations in an EAR.

Identifying entity classes
If you are using JPA within a Java EE container, the persistence provider reads the
module and determines which entity classes are annotated with the @Entity anno-
tation. You can identify the entity classes that constitute a persistence unit (as we
did in listing 11.6). This is useful when you want to divide the packaged entities
into more than one persistence unit as follows:

<persistence>
 <persistence-unit name = "actionBazaar">
 <class>ejb3inaction.persistence.Category</class>
 <class>ejb3inaction.persistence.Bid</class>
 ...
 </persistence-unit>
 <persistence-unit name = "humanResources">
 <class>ejb3inaction.persistence.Employee</class>
 <class>ejb3inaction.persistence.Department</class>

Packaging entities 417
 ...
 </persistence-unit>
</persistence>

Packaging at this more granular level may seem like more work at first glance. In
reality, it makes sharing the persistence units across applications much easier.

Specifying vendor-specific extensions
Most JPA providers will provide extensions such as caching, logging, and auto-
matic table creation. You can use the property element in persistence.xml to
specify these vendor-specific extensions. The persistence provider will read such
configurations while creating the entity manager factory and configure the per-
sistence unit accordingly.

 In listing 11.6 we enabled automatic schema generation for the persistence
unit when using TopLink:

<properties>
 <property name = "toplink.ddl-generation"
 value = "drop-and-create-tables"/>
 <property name =
 "toplink.ddl-generation.output-mode"
 value = "database"/>
 </properties>

Remember that automatic schema generation is a developer-friendly feature and,
when it’s turned on, the JPA provider creates the underlying database schema
(tables, sequences, etc.) when the persistence unit is deployed. If you want to turn
on automatic schema generation for Hibernate, you can do so by adding the fol-
lowing in persistence.xml:

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

Similarly you can pass configuration parameters for caching, logging, and JDBC
configuration when using an outside container as a property. Check your vendor
documentation for details.

Specifying additional mapping and JAR files
There may be times when you want to use multiple O/R mapping files for your
project. Doing this supports the packaging of smaller functional units into
separate JAR files to allow a more granular deployment scheme. Of course,
regardless of how many JARs make up your application, they will all need to
be in the classpath of the application in order for all the components to be
found by the class loader.

418 CHAPTER 11
Packaging EJB 3 applications
 For example, if you have mapping information in a separate XML file named
secondORMap.xml, you can specify as much by using the mapping-file element that
we saw in listing 11.6. It is vital to remember that additional mapping files are not
packaged in the META-INF directory of the persistence module, but also that these
files may be packaged inside the JAR as a resource (as shown in listing 11.5).

 You can include additional JAR files (such as ShippingEntities.jar in list-
ing 11.6). The JAR file location is relative to the persistence module; that is,
the JAR file that contains the persistence.xml.

11.4.3 Performing O/R mapping with orm.xml

Chapter 8 discussed how to perform O/R mapping using metadata annotations.
Believe it or not, for a large application the use of O/R mapping metadata within
the code is not a good idea. Using O/R mapping annotations hardwires your rela-
tional schema to your object model. Some folks feel it’s perfectly okay to hard-
code schema information, because they see it as being similar to JDBC. Others
consider it a very bad idea. It is also quite possible that for certain projects you
may be directed to implement O/R mapping with an XML file. As mentioned ear-
lier (in listing 11.1), you can specify O/R mapping information in a file named
orm.xml packaged in the META-INF directory of the persistence module, or in a
separate file packaged as a resource and defined in persistence.xml with the
mapping-file element.

 The source that takes precedence is always the deployment descriptor. EJB 3 per-
sistence specifies that the deployment descriptor can override O/R mapping spec-
ified using annotations, the orm.xml file, or any other XML mapping. Listing 11.7
shows an example of an O/R mapping file (orm.xml) used in ActionBazaar.

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings version="1.0"
 xmlns=http://java.sun.com/xml/ns/persistence/orm
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 orm_1_0.xsd">

 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <schema>ACTIONBAZAAR</schema>
 <access>PROPERTY</access>
 <entity-listeners>
 <entity-listener

Listing 11.7 An orm.xml that specifies default values for a persistence unit and O/R
mapping information

 b Defines persistence unit defaults

 c Specifies default entity listeners

Packaging entities 419
 class = "actionbazaar.persistence.DefaultListener">
 ...
 </entity-listener>
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

 <package>actionbazaar.persistence</package>
 <access>PROPERTY</access>

 <named-query name = "findAllCategories">
 <query>SELECT c FROM Category AS c</query>
 <hint name = "refresh" value = "true"/>
 </named-query>

 <entity name = "Category" class = "Category" metadata-complete = "false">
 <table name = "CATEGORIES" />
 <sequence-generator name = "CATEGORY_SEQ_GEN"
 sequence-name = "CATEGORY_SEQ"
 allocation-size = "1"
 initial-value = "1"/>
 <exclude-default-listeners/>
 <exclude-superclass-listeners/>
 <attributes>
 <id name = "categoryId">
 <column name = "CATEGORY_ID"/>
 <generated-value strategy = "SEQUENCE"
 generator = "CATEGORY_SEQ_GEN"/>
 </id>
 <basic name = "categoryName">
 <column name = "CATEGORY_NAME"/>
 </basic>
 <basic name = "createDate">
 <column name = "CREATE_DATE"/>
 </basic>
 <many-to-many name = "items" target-entity = "Item">
 <cascade>
 <cascade-all/>
 </cascade>
 <join-table name = "CATEGORY_ITEMS">
 <join-column name = "CATEGORY_ID"
 referenced-column-name = "CATEGORY_ID"/>
 <inverse-join-column name = "ITEM_ID"
 referenced-column-name = "ITEM_ID"/>
 </join-table>
 </many-to-many>
 </attributes>
 </entity>
</entity-mappings>

Specifies entity
mapping

 d

420 CHAPTER 11
Packaging EJB 3 applications
The orm.xml file defines the actual O/R mapping with XML for the entities
packaged in an EAR. Listing 11.7 b shows how to define defaults for a persis-
tence unit using the persistence-unit-defaults element. This element defines
schema, catalog, and access, default entity listeners, and cascade type. We men-
tioned schema and catalog types in chapter 8 when we discussed the @Table
and @SecondaryTable annotations. You can define the default values for the
schema and catalog type in persistence-unit-defaults, and this can be over-
ridden by each entity.

 The access type may either be FIELD or PROPERTY.
 In chapter 9 you learned that entity listeners can be defined to handle lifecy-

cle callbacks for entities, and that a default listener for all entities in a persis-
tence module can be defined by using the entity-listeners subelement in
persistence-unit-defaults c. Use @ExcludeDefaultListener on the entity or a
mapped superclass if you need to exclude the default entity listener. The name
element d identifies the name of the entity and is the equivalent of the name in
@Entity. This value is used in the from clause in JPQL queries.

 The other O/R mapping elements in orm.xml are somewhat self-explanatory,
and we won’t discuss them in detail.

 Table 11.5 lists the one-to-one mapping between the most often used annota-
tions and their associated deployment descriptors. You’ll probably notice imme-
diately that the XML element is usually quite similar to its annotation cousin.

Table 11.5 Mapping of persistence annotations to associated deployment descriptor
elements

Annotations Grouped by Type XML Element

Object type

 @Entity entity

 @MappedSuperClass mapped-superclass

 @Embedded embedded

 @Embeddable embeddable

Table mapping

 @Table table

 @SecondaryTable secondary-table

continued on next page

Packaging entities 421
Query

 @NamedQuery named-query

 @NamedNativeQuery named-native-query

 @SqlResultsetMapping sql-result-set-mapping

Primary key and column mapping

 @Id id

 @IdClass id-class

 @EmbeddedId embedded-id

 @TableGenerator table-generator

 @SequenceGenerator sequence-generator

 @Column column

 @PrimaryKeyJoinColumn primary-key-join-column

 @GeneratedValue generated-value

Relationship mapping

 @ManyToMany many-to-many

 @OneToOne one-to-one

 @OneToMany one-to-many

 @ManyToOne many-to-one

 @JoinTable join-table

 @JoinColumn join-column

 @InverseColumn inverse-join-column

Listeners

 @ExcludeDefaultListeners exclude-default-listeners

 @ExcludeSuperClassListeners exclude-superclass-listeners

 @PreUpdate pre-update

continued on next page

Table 11.5 Mapping of persistence annotations to associated deployment descriptor
elements (continued)

Annotations Grouped by Type XML Element

422 CHAPTER 11
Packaging EJB 3 applications
Manually performing O/R mapping using XML can be quite arduous, error-
prone, and difficult to troubleshoot. You may want to investigate tools that will
assist with this effort.

NOTE The goal of the Eclipse Dali project (http://wiki.eclipse.org/index.php/
Dali_Project) is to provide developer support for O/R mapping of EJB 3
persistence objects, and help generate O/R mappings with annotations
and XML descriptors.

Our trek through packaging EJB 3 is nearing the end. Before we finish, we want
to highlight some things you should keep in mind when packaging your shiny
new EJB 3 applications.

11.5 Best practices and common deployment issues

After reading this chapter it may appear that a lot of little pieces are required in
order to deploy EJB 3 components. That may not be all that far from the truth. The
reality, though, is that you don’t have to keep track of all the pieces yourself; tools
provided by the application servers help, and much of the glue code can be auto-
mated. You need to keep in mind some key principles, regardless of which com-
ponents your application makes use of and which server you plan to deploy it to.

11.5.1 Packaging and deployment best practices

The following list of best practices can make your life easier while you’re building
and deploying your applications:

Listeners (continued)

 @PostUpdate post-update

 @PrePersist pre-persist

 @PostPersist post-persist

 @PreRemove pre-remove

 @PostRemove post-remove

 @PostLoad post-load

Table 11.5 Mapping of persistence annotations to associated deployment descriptor
elements (continued)

Annotations Grouped by Type XML Element

Best practices and common deployment issues 423
■ Understand your application and its dependencies. Make sure that resources are
configured before you deploy the application in your target environment.
If an application requires a lot of resources, it is a good idea to use the
deployment descriptor to communicate the dependencies for the deployer
to resolve before attempting to deploy the application. Improper packag-
ing of classes and libraries causes a lot of class-loading issues. You also
need to understand the dependency of your applications on helper classes
and third-party libraries and package them accordingly. Avoid duplication
of libraries in multiple places. Instead, find a way to package your applica-
tions, and configure your application server such that you can share com-
mon libraries from multiple modules within the same application.

■ Avoid using proprietary APIs and annotations. Don’t use vendor-specific tags
or annotations unless it’s the only way to accomplish your task. Weigh
doing so against the disadvantages, such as making your code less porta-
ble. If you are depending on proprietary behavior, check whether you can
take advantage of a proprietary deployment descriptor.

■ Leverage your DBA. Work with your DBA to automate creation of any database
schemas for your application. Avoid depending on the automatic table cre-
ation feature for entities, as it may not meet your production deployment
requirement. Make sure that the database is configured properly, and that it
does not become a bottleneck for your application. Past experience indicates
that making friends with the DBA assigned to your project really helps! If
your application requires other resources such as a JMS provider or LDAP-
compliant security provider, then work with the appropriate administrators
to configure them correctly. Again, using O/R mapping with XML and
resource dependencies with XML descriptors can help you troubleshoot con-
figuration issues without having to fiddle with the code.

Now that you have some best practices in place, what do you do when that’s still
not enough? We’ll let you in on a few secrets from the trenches that will make solv-
ing those packaging problems easier.

11.5.2 Troubleshooting common deployment problems

This section examines some common deployment problems that you may run
into. Most can be addressed by properly assembling your application.

■ ClassNotFoundException occurs when you’re attempting to dynamically
load a resource that cannot be found. The reason for this exception can be

424 CHAPTER 11
Packaging EJB 3 applications
a missing library at the correct loader level; you know, the JAR file contain-
ing the class that can’t be found. If you’re loading a resource or property file
in your application, make sure that you use Thread.currentThread().get-
ContextClassLoader().getResourceAsStream().

■ NoClassDefFoundException is thrown when code tries to instantiate an
object, or when dependencies of a previously loaded class cannot be
resolved. Typically, you run into this issue when all dependent libraries are
not at the same class loader level.

■ ClassCastException normally is the result of duplication of classes at dif-
ferent levels. This occurs in the same-class, different-loader situation; that
is, you try to cast a class loaded by class loader (L1) with another class
instance loaded by class loader (L2).

■ NamingException is typically thrown when a JNDI lookup fails, because the
container tries to inject a resource for an EJB that does not exist. The stack
trace for this exception gives the details about which lookup is failing.
Make sure that your dependencies on DataSources, EJBs, and other
resources resolve properly.

■ Your deployment may fail due to an invalid XML deployment descriptor.
Make sure that your descriptors comply with the schema. You can do this
by using an IDE to build your applications instead of manually editing
XML descriptor files.

11.6 Summary

At the heart of Java EE applications lies the art of assembly and packaging enter-
prise applications. This chapter briefly introduced the concepts of class loading
and code sources used by various application archives. We also explained how to
package all of the EJB types, including persistence entities. You learned about the
deployment descriptor of an EJB-JAR module, and how you can use descriptors to
override settings specified in metadata annotations. You saw that persis-
tence.xml is the only required deployment descriptor in Java EE 5. We also tack-
led persistence modules and the various configurations required for a persistence
unit, as well as O/R mapping with XML.

 Finally, we provided some best practices on packaging, and identified some
common deployment issues that you may run into. In the next chapter we discuss
how you can use EJBs across tiers.

Effectively integrating
EJB 3 across your

application tiers
This chapter covers
■ Design patterns
■ Accessing session beans from the web tier
■ Packaging and using JPA from web applications
425

426 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
If you’ve made it this far, you’ve come a long way on our journey to the center of
EJB 3. So far we’ve seen how to use session and message-driven beans for business
logic, and how to use various facets of JPA to store and retrieve data. So what’s
next, you ask?

 Most enterprise applications are distributed across various tiers: presentation,
application (or business logic), persistence. The names and number of tiers varies
somewhat depending on the application and its runtime environment, as well as
the scalability expectations it is designed to handle. Each of these tiers can utilize
a number of possible frameworks, which vary radically due to their purpose and
creator’s intent. Sprinkle in a few new mechanisms such as dependency injection
and the whole thing can leave a developer asking, “Just how can I get all these
new toys to work together?”

 In this chapter we demonstrate how to integrate EJB 3 into your applications
at specific tier boundaries. While drawing the tiers of a distributed application on
a diagram is relatively straightforward, making various technologies work to inte-
grate those tiers and coaxing an application to life is usually somewhat more
involved. This chapter will expose the core concepts you need to understand
regarding multi-tier development with EJB 3, and provide examples of specific
combinations you can put to work in your applications.

 To start with, we introduce some design patterns to make implementing
these concepts easier. Then we discuss various options for invoking EJBs from
the presentation tier. And finally, we look at how you can use JPA from web appli-
cations and outside of a Java EE container. Let’s start by donning our applica-
tion developer hat and looking at some proven design patterns you can leverage
in your applications.

12.1 Design patterns and web technologies

Design patterns are generally accepted solutions that typically work for common
problems. They help avoid “Rediscovering the Wheel Syndrome,” and offer
advice for when and how they should be used. Sun’s Java Blueprints Program
provides a catalog of core design patterns for building Java EE applications. You
can access the catalog of Java patterns online at http://java.sun.com/blueprints/
corej2eepatterns/Patterns/index.html.

 We’ll introduce some important design patterns and technologies in this sec-
tion by tier:

Design patterns and web technologies 427
■ For the presentation tier, we’ll discuss the Model-View-Controller (MVC)
pattern.

■ For the persistence tier, we’ll introduce the Entity Access Object (EAO) pat-
tern, a version of the Data Access Object pattern, updated for JPA.

■ For the application or business logic tier, the Session Façade pattern will be
covered. (Sorry, but there’s no cool acronym for this pattern…)

Shall we get started? First on deck: the presentation tier.

12.1.1 Presentation tier
While EJB 3 is primarily designed to deal with server-side functionality, it has to
be integrated with a front end at some point in order for the whole application
to do anything useful as far as an end user is concerned. This section covers a
pattern for this tier that focuses primarily on a web point of view, since Java EE
functionality is most often accessed from a web tier. Please note that we use the
terms presentation tier and web tier interchangeably. Because EJB 3 is not a presen-
tation-tier technology, this pattern is not demonstrated with EJB 3; we mention
it only for completeness and to provide some perspective for how EJB 3 fits into
the distributed landscape.

Reviewing the Model-View-Controller pattern
Since you’ll need to call all that special business logic you’ve so cleverly placed in
your EJBs from somewhere, there’s a good chance it will be from a web application,
given the universal drive to “webify” almost everything these days. That means
you’ll be in the market for a good practice to manage all these EJB calls, and it just
so happens there’s a great, industry-accepted design pattern for doing this: the
Model-View-Controller (MVC) pattern.

 Traditionally, the MVC design pattern has been quite popular among Java
developers for building web applications, specifically for the presentation tier.
This pattern involves three main components, each designed to isolate code into
a specific area of responsibility. The Model represents the enterprise data and
business logic. You may use session beans and entities for business logic for creat-
ing the model of your application. The View is what a user interacts with, and the
Controller is the traffic cop in the middle, making sure things work together in an
orderly, predictable manner. The MVC pattern commonly has multiple models
and multiple views, but usually has only one controller for any specific grouping of
models and views at runtime.

 You can do all heavy-duty work and implement the MVC pattern in your appli-
cations by building your own web framework. However, many frameworks are

428 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
available to help you do so without your having to reinvent the wheel. Next, we
discuss web frameworks and briefly introduce Ajax.

Determining if you need a web framework
Although a web framework isn’t required, it’s a good place to start when investi-
gating how your web tier will interact with your EJBs in your application tier. Hav-
ing a solid understanding of design patterns helps during this evaluation; it
allows you to not only understand each framework’s inner workings, but also to
better predict how each may impact design decisions you still need to make.

 The market for web frameworks is quite muddled, with more than 50 open
source web frameworks from which to choose. By far the most popular framework
in this arena is Struts. Other popular frameworks available for your applications
are Apache Tapestry, WebWork, Spring MVC, and the heir apparent to Struts:
JavaServer Faces (JSF). On the other hand, you may be tempted to build your own
web framework, but unless you have very peculiar requirements, we recommend
you go with one of the aforementioned frameworks instead of spending your time
and energy reproducing others’ work.

 Manning has published several books on popular web frameworks:

■ WebWork in Action, by Patrick Lightbody and Jason Carreira
■ JavaServer Faces in Action, by Kito D. Mann
■ Tapestry in Action, by Howard M. Lewis Ship
■ Art of Java Web Development, by Neal Ford
■ Struts in Action, by Ted Husted, Cedric Dumoulin, George Franciscus, and

David Winterfeldt

As far as ActionBazaar goes, we’re neutral with respect to which web framework
you decide to use. However, we do realize that most web frameworks utilize serv-
lets and possibly JSPs as the respective Controller and View mechanisms of these
frameworks, so we’ll focus our discussion on servlets. You can easily integrate the
web tier with EJBs to provide business logic for your applications by turning these
servlets into clients that invoke your EJBs. We’ll cover how to invoke EJBs directly
from your servlets in this chapter. If you want to see how to invoke EJBs exposed
as a web service, drop by chapter 15 when you’re done here.

 It’s worth mentioning that JSF 1.1 is included in Java EE 5 and provides
respectable tool support for the majority of Java EE tool vendors. Because it’s a
part of Java EE 5, JSF integrates well with EJB 3 and we expect to see JSF grow in
popularity in the future.

Design patterns and web technologies 429
Introducing Ajax and Web 2.0
Since Tim O’Reilly’s article (www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/
30/what-is-web-20.html) pondered the possibility of a Web 2.0 on the horizon,
it seems as if the whole Internet has been one big buzz trying to define what
Web 2.0 might consist of. While we’re not sure anyone has arrived at the defini-
tive answer yet, it does appear that one technology which folks can agree on for
building Web 2.0 applications is Ajax (Asynchronous JavaScript and XML). You
can use Ajax with practically any web framework, and we believe using EJBs with
Java EE–based Ajax applications is not significantly different than using other
web frameworks. You can easily expose stateless session beans as web services
and access them from Ajax-based applications using some popular APIs such as
JavaScript Object Notation (JSON).

That’s a quick overview of MVC design patterns and technologies used in the pre-
sentation tier. Let’s jump to the persistence tier to see what useful patterns we can
find there.

12.1.2 Using the Entity Access Object pattern

Before ORM frameworks like Hibernate gained popularity, many application
developers went with straight JDBC to develop data access code. Use of JDBC
from business logic led to several maintenance problems, and the Data Access
Object (DAO) design pattern was invented to decouple data access code from
business logic. The DAO design pattern has been quite popular and has worked

More on Ajax

If you are interested in learning more about Ajax, check out the following resources:

■ Wikipedia (http://en.wikipedia.org/wiki/Ajax)
■ “Ajax: A New Approach to Web Applications,” by Jesse James Garrett (www.

adaptivepath.com/publications/essays/archives/000385.php)
■ Ajax in Action, by Dave Crane and Eric Pascarello with Darren James (Man-

ning, 2005)
■ Ajax Matters (www.ajaxmatters.com/r/welcome)
■ Ajaxian.com (www.ajaxian.com/)
■ AjaxPatterns.org (http://ajaxpatterns.org/)
■ Mozilla Ajax tutorial (http://developer.mozilla.org/en/docs/Ajax:Getting_Started)

430 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
not only with JDBC but also with ORM frameworks and CMP entity beans. The
Entity Access Object pattern is a new incarnation of the DAO pattern that you
can use with JPA.

NOTE While both DAO and EAO are variations of the same pattern, the EAO
pattern has been updated to refer to EJB 3 entities. Since EJB 3 entities
are POJOs, there is no need to continue the use of the Transfer Object/
Data Transfer Object pattern in conjunction the EAO pattern. Therefore,
be aware that no transfer object is required for the EAO pattern.

Introducing the Entity Access Object pattern
Chapter 9 demonstrated how to use the EntityManager API directly from the busi-
ness logic in a session bean. The problem with this approach is that entity access
code gets sprinkled throughout the business logic, which is a maintenance night-
mare. The Entity Access Object (EAO) pattern decouples the entity access logic
from the business logic and improves code maintainability. It allows you to easily
change your underlying entity access code without affecting the business logic. If
you implement the EAO pattern in your applications, it is significantly easier to
change your persistence-tier mechanism from JDBC, EJB 2 CMP, or some propri-
etary persistence mechanism to JPA.

 You can learn more about data access objects from Sun’s blueprints web-
site (http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.
html). Just replace all references to DAO with EAO, and references to transfer
objects with entities.

 The EAO pattern abstracts data access code, for example, using JPA from the
business logic code. Usually you have one EAO object for every domain object
(entity) that performs the CRUD operations for the domain objects (entities). Fig-
ure 12.1 shows the class diagram of the EAO defined for the Bid entity of the
ActionBazaar system.

 As shown in figure 12.1, BidEAO is the entity access object that manipulates the
Bid entity. A business object such as the PlaceBid EJB will persist and retrieve
instances of the Bid entity by using BidEAO. It hides from the PlaceBid EJB the
actual persistence mechanism used to store the entity.

 Now let’s explore how to implement an entity access object for the Bid entity.

Design patterns and web technologies 431
Implementing the entity access object
The following code for the BidEAO interface exposes the operations that can be
performed on a Bid:

public interface BidEAO {
 public Bid addBid(Item item, String bidderId, double bidPrice);
 public Bid cancelBid(Long bidId);
 ...
}

Some developers believe that using an interface for the entity access object is
too much trouble. However, you’ll learn just how advantageous it is do so when
we discuss using the EJB 3 JPA with Spring in chapter 16. An interface allows
you to change the underlying persistence provider with no effect on the classes
that use the EAO interface.

 Listing 12.1 shows the implementation class for the EAO that performs the
CRUD operations.

public class BidEAOImpl implements BidEAO {

 private static String EM_NAME = "java:comp/env/actionBazaar";

 public BidEAOImpl() {
 }

 private EntityManager getEntityManager() {
 try {

Listing 12.1 JPA-specific implementation class for BidEAO

Figure 12.1 BidEAO is the interface for the EAO object. BidEAOImpl is the EAO class that
implements the logic for CRUD operations for the Bid entity.

 b Looks up
container-managed
EntityManager

432 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 Context ctx = new InitialContext();
 return (EntityManager)ctx.lookup(EM_NAME);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 public Bid addBid(Item item, String bidderId, double bidPrice)
 throws BidException {
 EntityManager em = getEntityManager();
 if (em != null) {
 Bid bid = new Bid();
 ...
 em.persist(bid);
 return bid;
 }
 ...
 }

 public Bid cancelBid(Long bidId) {
 ...
 }
}

The code in the implementation class is straightforward. The getEntityManager
method b uses JNDI lookup to grab an instance of a container-managed Entity-
Manager. Note that because the EAO is a regular POJO, you cannot use DI, so we
have used JNDI to look up and grab an instance of an EntityManager. You’ll need
to make appropriate changes if you want to use an application-managed entity
manager. The rest of the code is nothing but moving the entity access code into
the EAO instead of embedding it in your business logic. The addBid method uses
the getEntityManager to get an instance of EntityManager c and then persist an
instance of Bid entity d.

 Let’s assume that the client for your EAO code is the PlaceBid EJB. Listing 12.2
shows how the code will look.

@PersistenceContext(unitName = "actionBazaar",
 name = "actionBazaar")
@Stateless
public class PlaceBidBean implements PlaceBid {
 public Long addBid(String userId, Long itemId, double bidPrice)
 throws BidException {
 ...

Listing 12.2 Using BidEAO from the PlaceBid EJB

 c
Gets EntityManager
instance

 D Persists Entity

 b
Declares dependency on
persistence unit

Design patterns and web technologies 433
 BidEAO bidEAO = EAOFactory.jpa.getBidEAO();
 Bid bid = bidEAO.addBid(item, userId, bidPrice);
 return bid.getBidId();
 }
}

Listing 12.2 references the persistence unit using the @PersistenceContext anno-
tation b because we used JNDI lookup in the EAO to grab an instance of Entity-
Manager. We then used the EAOFactory to create an instance of an EAO c. After
creating an instance of the EAO, we can use it to perform entity operations d.

 In the code c we used an EAOFactory to create EAO instances. Here is a simple
EAO factory that you can use to create instances of EAOs via JPA:

public abstract class EAOFactory {
 public static final EAOFactory jpa = new JPAEAOFactory();
 public abstract ItemEAO getItemEAO();
 public abstract BidEAO getBidEAO();
 ...
}

public class JPAEAOFactory extends EAOFactory {
 public JPAEAOFactory(){}
 public BidEAO getBidEAO() {
 return (new BidEAOImpl());
 }
}

The advantage of having loose coupling between your business logic and your
persistence code should be obvious. If you want to change to a different persis-
tence tier, then you only have to modify your EAO implementation classes. Many
tools and utilities such as FireStorm/DAO and Hibernate’s hbm2java are available
that will help generate EAOs for your entities, so adopting EAOs should be rela-
tively painless. This is a good practice to follow, although it may require some
additional coding to manage a few extra classes.

Using session beans as EAOs
Since EJB 3 session beans are POJOs, they are clear candidates for EAOs if you are
deploying your enterprise applications to a Java EE container. EAOs can simplify
things via injection and do not require using an EAOFactory. If you decide to
implement your EAOs using session beans, then the code will look like this:

@Stateless
public class BidEAOImpl implements BidEAO {
 @PersistenceContext(unitName = "actionBazaar")
 private EntityManager em;

 c Creates an instance of EAO

 d
Uses EAO to add
a new Bid

434 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 public BidEAOImpl() {
 }

 public Bid addBid(Item item, String bidderId, double bidPrice) {
 Bid bid = new Bid();
 ...
 em.persist(bid);
 return bid;
 }

 public Bid cancelBid(Long bidId) {
 ...
 }
}

This code looks much simpler than the earlier code and is easier to maintain.
The code that uses the EAOs is simpler too:

@Stateless
public class PlaceBidBean implements PlaceBid {
@EJB
 private BidEAO bidEAO;

 public Long addBid(String userId, Long itemId, Double bidPrice)
 throws BidException {
 ...
 Bid bid = bidEAO.addBid(item, userId, bidPrice);
 return bid.getBidId();
 }
}

Implementing EAOs using session beans looks lean and mean. Some purists will
resent you considering this approach, but we recommend that you seriously con-
template it because, as a side effect of using session beans for your EAOs, you
automatically receive declarative transactions and a container-managed Entity-
Manager. That’s nothing to sneeze at!

 We’ll discuss how the Spring framework uses the JpaTemplate to provide EAO
support in chapter 16, when we discuss JPA with Spring applications. But now,
let’s review the Session Façade pattern.

12.1.3 Visiting the Session Façade pattern

One of the primary reasons the Session Façade pattern was invented was to
reduce the number of remote calls for previous EJB incarnations, and this still
holds true for EJB 3. In EJB 2 entity beans were remotely accessible by the clients.
However, the remoteness comes at a price—namely reduced performance and
tight coupling of clients with domain data. With a session bean façade, you can

Design patterns and web technologies 435
use entity beans locally and expose the session beans to the clients. This cuts a sig-
nificant number of RMI calls and encourages loose coupling between client and
entity beans, thus improving code maintenance. Figure 12.2 shows the class dia-
gram for the Session Façade design pattern.

 Whipping up a session façade amounts to nothing more than designing a
coarse-grained session bean and making it available to the client. If you think
about it, there are several benefits to making a session bean coarse-grained. One
advantage is that it makes managing the transactional and security aspects of
your business logic a lot less work than implementing the same functionality for
every operation using the fine-grained approach. Let’s take a closer look.

Using a session façade for ActionBazaar
Figure 12.3 shows how you might start with the basic Session Façade pattern, and
use it for the ActionBazaar application. Instead of using the EntityManager API
from the client applications, you can create a session façade that manipulates the
entities. The client applications access the session façade to manipulate the enti-
ties. For example, the ActionBazaar web module uses a stateless session bean (the
PlaceBid EJB) to manipulate the entities instead of having to manipulate the enti-
ties directly from the web applications, such as JSF backing beans. If you have too
many fine-grained session beans that you invoke from your web application, you

Figure 12.2 The Session Façade design pattern. Client applications may need to access entities or
business logic remotely. JPA entities are POJOs and cannot be accessed remotely. You can use a
session bean as a façade to the entities and consolidate the logic to manipulate entities in the
session façade. Then, using other beans, you can let the clients access the session façade. A coarse-
grained session façade also becomes a good candidate for being exposed as a web service.

436 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
will be better off creating a coarse-grained session façade that uses the session
beans and expose the coarse-grained session façade to the clients.

 So how would you actually code this? We’ll first show some fine-grained ses-
sion beans that use entities and illustrate how using the fine-grained session
beans creates tight coupling between the web and the application tiers. You’ll also
see how using these fine-grained session beans will increase the number of
remote calls. Then we’ll demonstrate how you can create a coarse-grained session
façade using the fine-grained session beans, thus improving your application
design, achieving better performance, and reducing maintenance costs.

 Listing 12.3 shows some examples of fine-grained session beans that can be
used by a web client such as a servlet or JSF managed bean.

@Stateless
public class ItemManagerBean implements ItemManager {
 ...
 Item findByItemId(Long itemId) {
 ...
 }
}

@Stateless
public class BidManagerBean implements BidManager {
 Bid findHighestBid(Item item) {
 ...
 }

Listing 12.3 Fine-grained session beans

Figure 12.3 Applying the Session Façade pattern to ActionBazaar. Using this pattern improves loose
coupling between the client and the business-logic tier. If you access EJBs remotely using the Session
Façade pattern, it reduces the number of RMI calls, thus improving application performance.

ItemManager
EJB b

BidManager
EJB c

Design patterns and web technologies 437
 Bid createBid(Item item, Bidder bidder, Double bidPrice) {
 ...
 }
}

@Stateless
public class UserManagerBean implements UserManager {
 Bidder findByUserId(String userId) {
 }
}

In listing 12.3, we have three fine-grained session beans. UserManagerBean d has
a method named findByUserId, ItemManagerBean b has a findItemByItemId
method that helps find items by Id, and BidManagerBean c exposes two methods:
findHighestBid and createBid, to find the highest bid item and create a new bid,
respectively. You can expose these session beans to the client, and expect the cli-
ent to perform the business logic as follows:

public class ActionBazaarServlet implements GenericServlet {
@EJB private ItemManager itemManager;
@EJB private UserManager userManager;
@EJB private BidManager bidManager;
...

 public void createBid(String userId, Long itemId, Double bidPrice)
 throws BidException {
 Item item = itemManager.findByItemId(itemId);
 Bid highBid = bidManager.findHighestBid(item);
 if (bidPrice <= highBid.getBidPrice()) {
 throw new
 BidException("Bid Price is lower than the current bid price");
 }
 ...
 Bid bid = bidManager.createBid(item, bidder, bidPrice);
 }
}

The problem with this approach is that the client is coupled to the persistence
and internals of the business logic layer. It quickly becomes a nightmare to man-
age the security for so many session beans. Also, some of the real business logic
gets scattered in multiple places in the code. A better option is to create a session
façade like the PlaceBidBean EJB shown here, which uses these operations and
exposes PlaceBidBean to the client:

@PersistenceContext(unitName = "actionBazaar", name = "actionBazaar")
@Stateless(name = "PlaceBid")
public class PlaceBidBean implements PlaceBid {

UserManager
EJB d

438 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 public PlaceBidBean() {
 }

 public Long addBid(String userId, Long itemId, Double bidPrice)
 throws BidException {
 ...
 Item item = itemEAO.findByItemId(itemId);
 Bid highBid = itemEAO.findHighestBidForItem(item);
 if (bidPrice <= highBid.getBidPrice()) {
 throw new
 BidException("Bid Price is lower than the current bid price");
 }
 ...
 return bidEAO.addBid(item, userId, bidPrice);
 }
}

There are several merits to the Session Façade pattern. First, it centralizes the
real business logic in a single place instead of duplicating it many times. Second,
with this pattern the clients don’t have to know the internal design of the system.
Third, it helps to manage transactions and security centrally instead of managing
it for multiple session beans. A final advantage is that it makes the client code
much simpler. Take a look at how much the client knowledge is reduced using
this approach:

@EJB
private PlaceBid placeBid;
...
Bid bid = placeBid.addBid(itemId, userId, bidPrice);

If you decide to expose EJBs to remote clients, you will see a dramatic improve-
ment in performance. In addition, such EJBs may be good candidates for being
exposed as web services, enhancing reusability and the ability to distribute your
enterprise applications.

Stateful vs. stateless session façade
As we saw in the PlaceBid EJB example, most business logic spans only a single
method call; therefore, most of your session façades will be stateless in nature.
You may choose to make your session façade stateful if your business requires
multiple method invocations as a part of some business process and you must
maintain conversational state. A stateful session façade also has the benefit of an
extended persistence context (discussed in chapter 9) that helps you keep the
entities in a managed state that may span across a transaction, and the persis-
tence context is automatically closed when the bean instance is removed. For
example, the user registration process is a multistep process. You want to keep the

Accessing session beans from the web tier 439
entities managed during the registration process and end the persistence context
when the user has completed the registration process. A stateful session façade
may be useful in such situations.

 This finishes our discussion on EJB design patterns. If you are interested in
exploring other design patterns from Sun’s blueprints website, please visit http://
java.sun.com/reference/blueprints/index.html.

 A book about EJB must have an EJB-centric view of the world, mustn’t it? In
other words, you are probably using a Java EE container with EJBs, or you are
using a totally different framework that is incompatible with everything related to
EJB 3, right? These statements are true neither of the authors nor of reality. It is
useful to know that many aspects of the EJB 3 specification are both available and
compatible with alternate approaches to enterprise Java development. The next
section delves into some of the options that you may be interested in implement-
ing on your next project.

12.2 Accessing session beans from the web tier

You may remember from our discussion in chapter 1 that EJB helps build appli-
cations with tiered architecture. You can use session beans to build the business
logic of your applications and access the session beans from the presentation or
web tier of your enterprise application. Figure 12.4 illustrates where EJBs fit into
the architecture of ActionBazaar and how EJBs are accessed from the ActionBa-
zaar web module.

 As we discussed in chapter 3, session beans can be accessed using either depen-
dency injection or JNDI lookup. Dependency injection is supported only with
managed classes—classes such as servlets, whose lifecycle is managed by the con-
tainer. While both managed and nonmanaged classes can use JNDI lookup, you’ll
probably use it only with classes that are not managed. Table 12.1 provides some
insight as to types which of classes can access EJBs using dependency injection.

 Regardless of which method you use to access your EJBs, you’ll interact with
them in the same manner after you have obtained an EJB reference.

 Your web application may contain a mixture of managed and nonmanaged
application components, and in the next sections we’ll discuss how you can
access session beans from both types of application components. We’ll show you
how to invoke an EJB 3 session bean from managed classes, such as a servlet, and
nonmanaged classes, such as a helper class. We’ll also explore what you have to
do to demarcate a transaction and the steps required to build a stateful applica-
tion using stateful session beans.

440 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
Table 12.1 An EJB can be accessed from different types of classes in the web tier.
Only managed classes can use dependency injection; nonmanaged application com-
ponents have to use JNDI lookup to obtain a reference to a session bean.

Class Type Injection

Servlets, filters, event listeners Yes

JSP tag handlers, library event listeners Yes

JSF managed beans Yes

Helper classes, JSPs No

Figure 12.4 ActionBazaar application architecture. The ActionBazaar web module accesses the EJBs
that implement the business logic and manipulate entities.

Accessing session beans from the web tier 441
12.2.1 Accessing session beans using dependency injection

Dependency injection is by far the easiest way to access an EJB 3 session bean. In
this section you’ll see how to use dependency injection from the web module to
access a session bean. You learned about the @EJB annotation in chapter 3, and
you probably want to jump into using dependency injection for all your session
beans. However, we’ll explain why you would want to avoid using dependency
injection when accessing a stateful session bean from a multithreaded client.

 You can obtain a reference to an EJB in your managed class by using injection
in one of two ways:

■ By using the @EJB annotation
■ By using the ejb-ref or ejb-local-ref element in the web.xml deploy-

ment descriptor

Assume that ActionBazaar uses a controller servlet. You can use @EJB to inject a
reference to an EJB as follows:

public class ActionBazaarBidControllerServlet extends HttpServlet {
 @EJB private PlaceBid placebid;

 ...
 placeBid.addBid(bidderId, itemId, bidPrice);
 ...
}

This example shows the PlaceBid EJB being injected into the ActionBazaarBid-
ControllerServlet. The @EJB annotation here is clean and straightforward.

 If instead we use the ejb-ref or ejb-local-ref element in the deployment
descriptor, we would have a web.xml like this:

 <ejb-ref>
 <ejb-ref-name>PlaceBid</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <remote>actionbazaar.buslogic.PlaceBid</remote>
 <injection-target>
 <injection-target-name>placeBid</injection-target-name>
 <injection-target-class>
 actionbazaar.web.ActionBazaarBidControllerServlet
 </injection-target-class>
 </injection-target>
 </ejb-ref>

Compare these two examples. Which one makes more sense to you?

442 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
Avoid injecting stateful session beans
If you are using stateful session beans, then you must avoid injecting them into
classes that are multithreaded in nature, such as servlets and JSF managed beans.

 Let’s look at an example. Suppose you inject the BidderAccountCreator bean
into a servlet that is multithreaded, as shown here:

@Stateful(name = "BidderAccountCreator")
public class BidderAccountCreatorBean {

 private LoginInfo loginInfo;
 private BiographicalInfo biographicalInfo;
 private BillingInfo billingInfo;

 @Remove
 public void cancelAccountCreation() {
 ...
 }
}

In this case, the single BidderAccountCreator instance will be shared by all users
of the servlet. This is not the desired behavior since loginInfo, biographicalInfo,
and billingInfo are designed to be specific to an individual client.

 This becomes trickier when we have a method annotated with the @Remove
annotation. When a particular user invokes the cancelAccountCreation method,
the EJB instance will be destroyed. The next time a user tries to access the Bidder-
AccountCreator EJB, the container will generate a javax.ejb.NoSuchEJBException.

 If you want to use stateful session beans in your web application, then you
need to perform a JNDI lookup and store the returned EJB instance in the
HttpSession object. This way, the same user reaches the same bean instance for
future activity. This also scopes the EJB instance to the user’s session, avoiding the
possibility of other sessions acquiring or deleting it. We’ll explain more about
working with stateful session beans in section 12.2.4.

12.2.2 Referencing session beans from helper classes

Sometimes you’ll find that you need to access a session bean from a class that is
not managed. Dependency injection is not supported in nonmanaged classes. For
example, your JSF managed bean may be using some utility classes that are not
managed by the container. You cannot inject an instance of an EJB into those
classes. Again, in this case you must use JNDI lookup to access your session bean.
This method is also used by managed classes when you want to avoid injection.
For looking up an EJB from a helper class you have to do the following:

Accessing session beans from the web tier 443
1 Establish the reference to EJB by using the @EJB annotation at the class
level or the ejb-ref (ejb-local-ref) descriptor element.

2 Look up the session bean.

Remember from our discussion in part 2 of this book that the @EJB annotation
can be used for injecting session bean references to a field or a setter method or
can be applied at the class level to establish a reference that can be used with
JNDI lookup.

 The class where you use the @EJB annotation should be the managed class
that uses a helper class. For example, say you have a helper class named Bid-
Processor that is used by ActionBazaarBidControllerServlet. The BidProcessor
class looks up the PlaceBid EJB. You cannot use the @EJB annotation with the Bid-
Processor class because it is not a managed class. Here the entry point for the
BidProcessor class is ActionBazaarBidControllerServlet, and that’s the reason
we can use the @EJB annotation as follows:

@EJB (name = "ejb/PlaceBid", beanInterface = PlaceBid.class)
public class ActionBazaarBidControllerServlet extends HttpServlet {
}

Then look up the EJB in the helper class (BidProcessor) like this:

PlaceBid placeBid = (PlaceBid)context.lookup("java:comp/env/ejb/PlaceBid");

placeBid.addBid(bidderId, itemId, bidPrice);

In other cases the entry point of your web framework may be a managed class, but
you may not be able to modify the code in a way that allows you to use an anno-
tation to establish EJB references. For example, if you are using a framework such
as Struts, the entry point for your application is the controller class in the frame-
work, and modifying such frameworks to establish EJB references may not be part
of your project. In this case you can use the ejb-ref element in web.xml to estab-
lish the EJB references so that the EJBs being used will be bound to the JNDI tree,
and thereby visible to your classes via JNDI lookup.

Using the global JNDI name
With some application servers, you may be able to work around specifying refer-
ences using the @EJB annotation or the web.xml descriptor element by using the
global JNDI name. Recall from our discussion earlier that many vendors allow EJB
access using global JNDI names, such as the EJB name or by using an EJB class
name without having to specify the ejb-ref or ejb-local-ref.

444 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 For example, some application servers will allow the lookup of an EJB as follows:

PlaceBid placeBid = (PlaceBid)context.lookup("PlaceBid");

while others may allow the following type of lookup:

PlaceBid placeBid =
 (PlaceBid)context.lookup("actionbazaar.buslogic.PlaceBid");

Keep in mind that these approaches are not portable across containers and we
recommend you use an EJB reference during lookup.

JNDI and Service Locator design pattern

If you have used EJB 2 or J2EE 1, then you are probably very familiar with service
locators. If you haven’t used them, take a look at http://java.sun.com/blueprints/
corej2eepatterns/Patterns/ServiceLocator.html.

Simply put, the Service Locator design pattern is used to abstract the complexities
of JNDI by helping reduce repetitive JNDI code, enforcing a single point of control for
lookup, and improving performance of EJB lookups with caching. Many developers
believe that the Service Locator pattern will no longer be used with EJB 3 due to
dependency injection taking a front-row seat. However, the reality is that EJB 3
dependency injection is not supported in all circumstances and you may still need to
rely on good ol’ JNDI lookup. Therefore, service locators may not be dead just yet.

There are alternatives to using the Service Locator pattern and JNDI for using
resources or EJBs. One such alternative is injecting a bean instance in the man-
aged class and passing it to the helper class as a parameter to its constructor. For
example, the BidManager EJB uses a helper class, BidManagerHelper, that
invokes a method in the ItemManager EJB. BidManagerHelper is a regular POJO,
so we cannot inject the ItemManager instance. However, we can inject the Item-
Manager EJB into BidManagerEJB and pass it to the helper class as follows:

@Stateless
public class BidManagerBean implements BidManager {
@EJB ItemManagerLocal itemManager;

 public Bid placeBid() {
 BidManagerHelper helper = new BidManagerHelper (itemManager);
 ...
 }
}

Be sure you evaluate such alternatives before deciding which one best meets
your needs.

Accessing session beans from the web tier 445
12.2.3 Dealing with transactions

Remember from our discussion in chapter 6 that in your EJB applications you
can use either container-managed transactions (CMT) or bean-managed transac-
tions, in which you programmatically manage transactions using the User-
Transaction API. While CMT is not available in the web container, if your
application uses session beans they allow you to use CMTs and avoid User-
Transaction. We highly recommend you take advantage of CMT. For example,
if you want to make multiple EJB method calls from the same transaction, then
you may be tempted to do the following:

public class ActionBazaarRegistrationControllerServlet
 extends HttpServlet {
...
//--- Do NOT do this!!! This is NOT recommended!!!
@EJB ItemManager itemManager;
@EJB categoryManager categoryManager;
@Resource private UserTransaction ut;
...
public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
...
ut.begin();
...
categoryManager.addCategory(category);
itemManager.addItem();
itemManager.setCategory(category);
...
ut.commit();

}
...
}

In this example we are injecting the instances ItemManager and CategoryManager
and then invoking several methods on injected session beans. The first issue here
is that you have to write error-prone code to demarcate the transaction. Second,
because your EJBs are fine-grained, the business logic gets scattered between the
EJBs and the web module. Finally, if the EJBs are remote, these translate to three
RMI calls, which can be expensive from a performance perspective. We suggest
you avoid this practice. If your application includes such a requirement, we rec-
ommend you create a session façade and use that to perform all operations, and
then invoke that EJB from the web tier. (We covered the Session Façade design
pattern earlier in this chapter.)

446 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
12.2.4 Working with stateful session beans
If you are building an application that requires maintaining client state end-to-
end, you’ll most likely use stateful session beans. In section 12.2.1 we listed some
reasons why you must avoid injecting instances of stateful session beans into mul-
tithreaded classes and use JNDI instead. In this section we’ll look at how you can
successfully use JNDI and stateful session beans from your web application.

 In order to look up a session bean, you have to establish a reference or depen-
dency using the @EJB annotation at the class level and then look up the bean from
the environment naming context (discussed in chapter 5) using the reference
name specified. If you have worked with EJB 2, using @EJB at the class level is the
same as using ejb-ref. The session beans get bound to the environment naming
context, or ENC (see chapter 5) as java:comp/env/<name specified with @EJB>.

 To begin, you can use the @EJB annotation at the class level to establish an EJB
reference or dependency on EJB as follows:

@EJB(name = "UserRegistrationBean",
 beanInterface = UserRegistration.class)
public class ActionBazaarRegistrationControllerServlet
 extends HttpServlet {
...
}

You must make a JNDI lookup and store the EJB object in the HttpSession
object. This will ensure that the same user session gets back the desired bean
instance as follows:

try {
 InitialContext ctx = new InitialContext();
 userReg = (UserRegistration)ctx.lookup(
 "java:comp/env/UserRegistrationBean");
 session.setAttribute("user_reg", userReg);
} catch (Exception e) {
 handleException(e);
}

Now the reference to the session bean can invoke any number of methods. The
container ensures that there is a bean instance reserved for a user session and
that the bean instance is not shared between multiple user sessions. Be sure to
remove the EJB object from the HttpSession when you are invoking a method
that is annotated with @Remove. Here’s the code that removes the bean instance
from the session:

userReg.createAccount();
session.removeAttribute("user_reg");

Using JPA from the web tier 447
Note that the createAccount method has been annotated with @Remove (see chap-
ter 3), and we must remove the reference to the stateful EJB when the bean
instance is destroyed. Otherwise, if we try to use it in the future all we’ll get will be
the aforementioned javax.ejb.NoSuchEJBException. And we wouldn’t want that
now, would we?

 Understanding how clients can best access session beans is great, but what
about times when we need to access the persistence mechanism directly?

12.3 Using JPA from the web tier

You may not need the power or additional complexity of EJBs for every Java EE
application, and therefore decide to forego session beans on occasion. For
instance, you may choose to stick with POJOs and servlets to implement business
logic, and include the entities directly in the web module (or WAR). In this sec-
tion, we’ll show you how to use entities directly from the web tier.

 In chapter 11, we explained that entities can be packaged in the web module,
but we skipped over the details of how to do it. You can make your entity classes
available to your web module in one of two ways:

■ Place entity classes directly in WEB-INF/classes. When you package classes in
the WEB-INF/classes directory of a WAR module, the persistence.xml and
optional orm.xml are placed in the WEB-INF/classes/META-INF/ directory.

■ Alternatively, you can package entity classes in a JAR file and place the file
in the WEB-INF/lib directory. That way, you can package the persistence.
xml and optional orm.xml descriptors in the META-INF directory of the JAR.

This means the structure of your WAR module will look something like this:

html/
jsp/
WEB-INF/web.xml
WEB-INF/classes
 actionbazaar/persistence/Bid.class
 ...
 acionbazaar/web/ActionBazaarActionController.class
 META-INF/persistence.xml
 META-INF/orm.xml
WEB-INF/lib/entities.jar

If you don’t package entities in the WEB-INF/classes, then you don’t have to pack-
age persistence.xml and the optional orm.xml in the WAR file. The entities.jar
packaged in our example contains entities.

Required
Optional

448 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 As you can see, packaging the entities with the web module is easy, but you
may be wondering how to use them. There are three common scenarios for using
EJB 3 JPA from the web container:

■ Using a container-managed entity manager in a Java EE 5 container
■ Using an application-managed entity manager with a JTA transaction man-

ager in a Java EE 5 container
■ Using an application-managed entity manager with local transactions out-

side the container

The first two cases will be more prevalent because of the power of container-man-
aged entity managers and JTA transactions, but for completeness we’ll discuss all
three scenarios in this section.

12.3.1 Using a container-managed entity manager

Many developers think developing session beans is complex and primarily useful
for large applications, and they want to use JPA directly from the web application.
If you choose this approach, and if you’re using JPA within a Java EE container, a
container-managed entity manager is probably the best option, but you still must
be careful in the way you use it. For instance, you should avoid dependency injec-
tion. Let’s look at why this is so.

 If you’re planning to use JPA from a managed class like a servlet, you may be
tempted to inject an instance of an EntityManager by using the @PersistenceCon-
text annotation like this:

//--- Do NOT do this!!! This is NOT recommended!!!
public class ActionBazaarBidControllerServlet extends HttpServlet {
 @PersistenceContext(unitName = "actionBazaar")
 private EntityManager entityManager;
 ...
}

If you use this and test your application, it will probably run successfully in your
first few attempts. However, you’ll likely run into issues when more users try to
access the servlet at the same time. You may remember that in chapter 9, we
explained that EntityManager is not designed to be thread-safe in nature. When
you inject an instance of EntityManager into a class like a servlet, it is stored in an
instance variable at the servlet class level and may be shared by multiple users at
the same time. This can result in unexpected errors. Because of this you must
avoid injecting an instance of EntityManager unless your container vendor (such

Using JPA from the web tier 449
as Oracle Application Server) guarantees that their EntityManager implementa-
tion is thread safe. You also have to remember that your code may not be portable
when you depend on the thread safety of EntityManager.

NOTE You may want to work around this by having your servlets implement
SingleThreadModel. Although doing so may seem harmless, keep in
mind that this is a deprecated feature (since servlet 2.4) and we don’t rec-
ommend using it because of the many limitations it imposes on applica-
tions. This topic is beyond the scope of this book (see www.esus.com/
javaindex/j2ee/servlets/servletdiffthread.html).

The right way to use a container-managed EntityManager is by avoiding depen-
dency injection and instead performing a JNDI lookup. Bear in mind that the
JNDI lookup mechanism can be used in any nonmanaged or managed class.

 To use a container-managed EntityManager, you must first establish the refer-
ences to the persistence unit using either the @PersistenceContext annotation at
the class level or the persistence-context-ref element in web.xml.

 If you’re using a managed class such as a servlet or JSF managed bean, then
you can establish the reference as follows:

@PersistenceContext(name = "actionBazaar/EntityManager",
 unitName = "actionBazaar")
public class ActionBazaarBidControllerServlet extends HttpServlet {
 private EntityManager entityManager;
...
}

If you are using a web framework like Struts where the action classes are not man-
aged, then you can’t use annotations to establish references to the persistence
context. In this case you will have to use the persistence-context-ref element in
the web.xml as follows:

<persistence-context-ref>
 <persistence-context-ref-name>
 actionBazaar/EntityManager
 </persistence-context-ref-name>
 <persistence-unit-name>actionBazaar</persistence-unit-name>
</persistence-context-ref>

Regardless of which previous approach you use, your next step is to grab an
instance of an EntityManager by using JNDI:

Context context = new InitialContext();
EntityManager entityManager =

450 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 (EntityManager)context.lookup(
 "java:comp/env/actionBazaar/EntityManager");

One thing you need to remember when you don’t use session beans to access the
entities is that you have to programmatically manage your transactions since
CMT is not available in the web container. You must use the UserTransaction API
in the following way:

@Resource private UserTransaction ut;
...
ut.begin();
...
entityManager.persist(item);
...
ut.commit();

You’ll recall that in chapter 6 we discussed the disadvantages of programmatic
transaction; it’s also evident from the previous code that you have to write error-
prone code to manage transactions. If you plan to deploy your web module to a
Java EE container, an EJB container is included as well. We recommend that you
take full advantage of your container by using a session bean to façade your entity
operations. With this approach, you don’t have to worry about programmatic
transactions, and you receive extra benefits, such as the ability to inject Entity-
Manager and the power of extended persistence context.

 Next we’ll discuss how you can use an application-managed EntityManager
with the JTA transaction manager.

12.3.2 Using an application-managed EntityManager
with JTA transactions

As you know, we don’t typically recommend using an application-managed
EntityManager, but in some cases it’s your best choice. For instance, you may not
want to use JNDI to grab a container-managed EntityManager instance because
you are a fan of dependency injection. In that case, there is another option. You
can consider using the @PersistenceUnit annotation to inject an instance of an
EntityManagerFactory, and then create an application-managed instance of Enti-
tyManager as follows:

public class ActionBazaarBidControllerServlet extends HttpServlet {
 @PersistenceUnit(unitName = "actionBazaar")
 private EntityManagerFactory emf;
 ...

}

Using JPA from the web tier 451
Just remember that you have to manage the lifecycle of an application-man-
aged EntityManager (see listing 12.4); the container is not going to do it for you
in this situation.

try {
...
 ut.begin();
 em = emf.createEntityManager();
 em.persist(item);
 ...
 ut.commit();
 ...
} catch (Exception e) {
 try {
 ut.rollback();
 } catch (Exception e) {
 } finally {
 em.close();
 }
}

In listing 12.4 we are doing a lot of housekeeping to manage the lifecycle of the
EntityManager and to manually manage transactions. Unless you have a specific
reason to use an application-managed EntityManager, we recommend using the
Session Façade design pattern (discussed in 12.2.3) with CMT, and a container-
managed EntityManager. The EJB 3 incarnation of session beans are lightweight
POJOs, which make life easier by not requiring the developer to manage the life-
cycle of entity managers or transactions.

12.3.3 Accessing an application-managed EntityManager
outside the container

Developers write all sorts of applications. You might have some applications, such
as a Swing or SWT application, for which you’d prefer to use JPA outside the EJB 3
container. Or perhaps you just want to utilize web containers like Tomcat or Jetty
that are not Java EE 5 containers, or one of the other lightweight containers that
do not have support for a container-managed EntityManager or JTA transactions.

 Another case in which you might want to use JPA outside the EJB 3 con-
tainer is when you’re testing your entities. You can use the approach we discuss
here in conjunction with a test framework such as JUnit and to test entities out-
side the container.

Listing 12.4 Using an application-managed entity manager with a JTA transaction

Begins
transaction Creates

EntityManager

Closes EntityManager

452 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 It’s simple to use JPA without an EJB 3 container. All you need to do is create a
persistence unit and create an EntityManager from the EntityManagerFactory
obtained from the Persistence class. Let’s look at an example.

Defining a persistence unit
As you know from chapters 9 and 11, a persistence unit requires a DataSource
configured in the application server that is used by the persistence provider to
connect to the database. Normally, the Java EE container will provide this, but if
you are using JPA outside the container, you must provide the JDBC configuration
as vendor-specific properties in the persistence.xml file.

 Listing 12.5 shows a sample persistence.xml that illustrates the JDBC config-
uration for the GlassFish server. The property names will vary depending on
which persistence provider you’re using.

<persistence
 xmlns = "http://java.sun.com/xml/ns/persistence" version = "1.0">
 <persistence-unit name = "actionBazaar">
 <provider>oracle.toplink.essentials.PersistenceProvider</provider>
 <class>actionbazaar.persistence.Bid</class>
 <class>actionbazaar.persistence.Item</class>
 <properties>
 <property name = "toplink.jdbc.driver"
 value = "oracle.jdbc.OracleDriver"/>
 <property name = "toplink.jdbc.url"
 value = "jdbc:oracle:thin:@//localhost:1521/ORCL"/>
 <property name = "toplink.jdbc.user" value = "scott"/>
 <property name = "toplink.jdbc.password" value = "tiger"/>
 </properties>
 </persistence-unit>
</persistence>

Creating an application-managed EntityManager
To perform CRUD operations on entities, you need to grab an instance of an
EntityManager. An EntityManager may not be available in the JNDI registry or
accessible by dependency injection when using JPA outside the Java EE container.
In such cases, you have to create an EntityManager from the EntityManagerFactory
that can be created from the javax.persistence.Persistence factory class. This is
typically the case when you’re trying to use JTA in environments such as Java SE or
when you’re using a web container like Tomcat. (JTA transactions are unavailable
outside the Java EE container.)

Listing 12.5 JPA outside a container: an example persistence.xml

JDBC configuration

Using JPA from the web tier 453
 Listing 12.6 shows an example of how you can use entities outside the con-
tainer when JTA transactions are not available.

public class PlaceBidBeanJavaSE {
 private static EntityManagerFactory emf;
 private static EntityManager em;

 public static void main(String[] args) {
 String userId = "idiot";
 Long itemId = new Long(100);
 Double bidPrice = 2001.50;
try
{
 //Create EntityManagerFactory
 emf = Persistence.createEntityManagerFactory("actionBazaar");

 getEntityManager();
 em.getTransaction().begin();
 addBid(userId, itemId, bidPrice);

 em.getTransaction().commit();
 }
finally
{
closeEntityManager();
emf.close();
}

 private static void getEntityManager() {
 em = emf.createEntityManager();
 }

 private static void closeEntityManager() {
 em.close();
 }
}

Note that we are using the javax.persistence.Persistence class b to create an
instance of EntityManagerFactory. Persistence is the bootstrap class outside the
Java EE container that allows us to access the EntityManagerFactory by invoking
the createEntityManagerFactory method. You can create an EntityManager
instance c after initializing the factory. Keep in mind that you have to use the
EntityTransaction interface to begin and commit a transaction d and e. Finally
we close the EntityManager f.

Listing 12.6 Persistence outside the container: a Java SE class using the EJB 3 JPA

Creates
EntityManagerFactory

 B

Begins EntityTransaction d

 e Commits EntityTransaction

Creates EntityManager c

Closes EntityManager f

454 CHAPTER 12
Effectively integrating EJB 3 across your application tiers
 When running JPA outside the container, you have to make sure you include
all the required files in the CLASSPATH. Check the appropriate documentation for
your persistence provider to determine any additional requirements it may have.

12.4 Summary

In this chapter you learned how to use EJBs from other tiers. We first looked at
how you can use EJB 3 session beans and JPA from the web tier. We described
some design patterns that you can use to build better applications. The Model-
View-Controller pattern helps separate code based on lines of responsibility. It is
most commonly used in frameworks dealing with user interfaces (such as web
frameworks). The Entity Access Object design pattern upgrades the trusted DAO
pattern to support EJB 3 entities. EAO reduces tight coupling between application
tiers, and provides the ability to change persistence code without impacting busi-
ness logic. Similarly, the Session Façade design pattern reduces the presentation
tier’s dependencies on the internal workings of the application tier, and improves
centralization of transaction management and security. You can access EJB 3 ses-
sion beans using either dependency injection or JNDI lookup, but you must avoid
injecting stateful session beans into multithreaded clients. JPA can be used from
web applications without having to depend on session beans. As we showed you in
this chapter, you have to use UserTransaction to demarcate transactions when
using JPA directly from the web tier.

 The next chapter discusses performance and scalability issues around real
EJB 3 applications.

Taming wild EJBs:
performance and

scalability
This chapter covers
■ Entity locking
■ Performance improvement of JPA entities
■ Tuning of session beans and MDB performance
■ EJB clustering
455

456 CHAPTER 13
Taming wild EJBs: performance and scalability
When it comes to building software systems, it’s the end that matters—not the
means. Working, reliable software that is usable is what it all boils down to. In
the end, what customers care about is that your product produces consistent
results, performs well, and meets scalability and availability requirements. Most
developers and users can agree on that. But then there’s the part they can’t
always agree on—the part that’s implied and expected by the users, but not
always understood by the developers. Surely you’ve seen it before. You just finish
plopping your latest new-fangled application into production and the e-mails
start flying and the calls come rolling in. It turns out that the users had some
other expectations as well. Something about how they expected the program to
perform. Sure, the application has the features they asked for, and everything
appeared to work during user acceptance testing (UAT), but now that it’s in pro-
duction everything’s so slow. Can anything be done?

 In the final assessment, how well your applications perform is important.
Users have expectations for performance, even when they don’t articulate or just
don’t communicate them well. In most application development projects, perfor-
mance goals are ignored during development. While making something work is
the first step development should take, some attention must also be paid to per-
formance concerns during development, to avoid the potential rework that will
occur if they are completely ignored until the system is deployed. According to
some surveys,1,2 around half of software development projects fail to deliver their
performance objectives.

 Up to this point we have focused on how to build EJB applications. However,
you also need to consider the performance aspects of your application in order to
effectively build, configure, and deploy your applications.

 In this chapter you’ll learn about general performance tuning of all the EJB 3
components and issues surrounding scalability and availability for EJB 3 applica-
tions. We’ll start by looking at how to handle entity locking. You may remember
from our discussion in chapter 6 that consistency is a critical aspect of transac-
tional applications and improper locking mechanisms not only lead to inconsis-
tent data but also may cause performance degradation. An athlete makes sure
that he runs within his track before running faster; otherwise he’ll be disqualified.

1 According to the Wily Tech 2003 Survey of Java Applications, 60 percent fail to meet performance
expectations (http://www.wilytech.com/news/releases/031120.html).

2 Forrester (2004) reports that 66 percent of the time, developers find out about performance problems
from support calls.

Handling entity locking issues 457
Similarly an application is useless if it has consistency issues. We’ll begin by dis-
cussing entity locking.

13.1 Handling entity locking issues

When you build a high-end transactional trading application like ActionBazaar,
you need to understand concurrency issues so that you can take appropriate
actions during development. Too many users trying to read or update the same
piece of data can cause havoc with system performance. Or even worse, one user
is working with data that is no longer valid due to the data having been changed
or deleted by another user. Dealing with concurrency is a nontrivial problem
domain and requires a certain amount of forethought before the coding begins.

 When these scenarios have occurred in the past, have they been docu-
mented? Are there recommended patterns and terminology on how to discuss
and resolve such problems? It turns out that there are some known approaches
to handling such problems. Before we discuss them, though, let’s get some ter-
minology straight. In a concurrent system, you may run into one or more of the
following issues when isolating actions involving multiple users:

■ Dirty read—Occurs when a user sees some uncommitted transactions from
another user. For example, in the ActionBazaar system, suppose a Seller
reads an Item in transaction T1 and makes some changes without commit-
ting them, and a Bidder gets a copy of the uncommitted changes in a sepa-
rate transaction T2. Then the Seller decides to cancel his change, rolling
back the transaction T1. Now we have a situation where the Bidder has a
copy of an Item that never existed.

■ Nonrepeatable read—Occurs when a user is allowed to change data employed
by another user in a separate transaction. Suppose a Bidder reads an Item in
transaction T1 and keeps a copy of the Item while at the same time the
Seller removes the Item in transaction T2. The Bidder now has a copy of
the Item that no longer exists and any attempt to create a Bid on the Item
will fail with unexpected (and unexplainable, unrepeatable) errors.

■ Phantom read—Occurs when a user receives inconsistent results in two dif-
ferent attempts of the same query, in the same transaction. For instance, a
Bidder runs one query to retrieve a list of Items available for bidding on
within a specific Category in transaction T1, and a Seller creates a new
Item in that Category in transaction T2. When the Bidder runs the query
again, he gets a larger list of Items than originally retrieved.

458 CHAPTER 13
Taming wild EJBs: performance and scalability
You may recall that we briefly discussed transaction isolation levels in chapter 6,
and that we encouraged you to choose the appropriate transactional isolation
level supported by the underlying database system(s). Additionally, a highly
transactional system must enforce appropriate locking strategies to make sure
that users don’t step on one another.

 Now we’re ready to cover the known patterns on how to deal with concurrency.
Given how important locking is to multiuser applications, let’s discuss the various
types of locking next. Then we’ll focus on optimistic locking with JPA and show
how you can obtain locks on entities using the EntityManager API.

13.1.1 Understanding locking types
To avoid concurrency issues, applications must use appropriate locking mecha-
nisms. Locking strategies are generally grouped into two camps: optimistic and
pessimistic. Optimistic locking can be viewed as a “cure it” mind-set, whereas pes-
simistic locking is more of a “prevent it” concept. This section examines the dif-
ferences between these two locking approaches.

Pessimistic locking
Pessimistic locking is a strategy reflective of a pessimistic state of mind, where you
prevent users from doing certain things, assuming that they will go wrong. When
using pessimistic locking, you lock all involved database rows for the entire span
of time a user shows an interest in modifying an entity.

NOTE JPA does not have support for pessimistic locking strategies. However,
some persistence providers will have vendor-specific extensions to use
pessimistic locking.

Figure 13.1 illustrates pessimistic locking. A user may acquire two types of lock on
an entity: write or read. A write lock prevents users from attempting any kind of
operations such as read, update, or delete, on the locked row(s). A read lock allows
others to read the locked data but they are unable to update or delete it.

 A pessimistic lock is relatively easy to implement, since most databases allow
you to lock tables, rows, and so forth. You can use the SELECT FOR UPDATE semantics
in the database to implement pessimistic locking.

 Pessimistic locking has many disadvantages. For instance, it may make your
applications slower because all users have to wait for an entity’s locks to be
released. It may also introduce deadlock conditions into your system. If a system
has several users, transactions involve a greater number of objects, or transactions
are long-lived, then the chance of having to wait for a lock to be released

mailto:hints={@QueryHint(name=\"toplink.cache-usage\",value
mailto:hints={@QueryHint(name=\"toplink.cache-usage\",value
mailto:hints={@QueryHint(name=\"toplink.cache-usage\",value

Handling entity locking issues 459
increases. Pessimistic locking therefore limits the practical number of concurrent
users that the system can support.

Optimistic locking
By contrast, optimistic locking is a strategy that assumes that concurrency problems
will occur rarely, and you should detect and resolve each problem when it hap-
pens. The optimistic locking mechanism is more difficult to implement, but is a
popular approach to enforce control while allowing full data access concurrency.
JPA supports the optimistic locking strategy. Although the ActionBazaar system is
a high-transaction system, rarely do concurrency problems happen.

 In the ActionBazaar system, a Seller (as well as the system administrator) is
allowed to update her item. Several Bidders may bid for the same item since they
are not allowed to change the item. It is less likely that a Seller and an adminis-
trator will be updating the same item at the same time, so an optimistic locking
strategy makes sense.

 Figure 13.2 depicts how optimistic locking works. When a user retrieves an
entity for update, a copy of the object is provided and changes are made to the
copy. After the user makes some changes to the entity, he is ready to save it. The
application now obtains a write lock on the object and checks whether data has
been updated since the user obtained it. If there has been no update to the orig-
inal data, then the user is allowed to commit the copy of the entity to the data-
base. Otherwise, the application should throw an exception.

 The optimistic locking strategy is typically implemented by adding a column
to the database table for the entity, and either storing a version number or a

Figure 13.1 In pessimistic locking, when a user wants to update the data the underlying records are
locked and no other user can perform any operation on the data. It is typically implemented using
SELECT ... FOR UPDATE semantics.

mailto:hints={@QueryHint(name=\"toplink.cache-usage\",value

460 CHAPTER 13
Taming wild EJBs: performance and scalability
timestamp to track changes. The version number approach is preferred and quite
reliable, because it could be that two users may be trying to update the same
data—at the same instant (timestamp).

 Every time a specific database row is updated, the version column is incre-
mented by the application. When a user reads the entity, the version column is
retrieved and stored with the entity instance. After making changes in the entity
object, as the user tries to save the entity to the database, the application com-
pares the version attribute of the entity object with that of the database. If the
version attributes are the same, then the user is allowed to hold a write lock on
the object, saves the object to the database, increments the version attribute, and
then releases the write lock. If the version attributes are different, then it is
assumed the entity has since been updated by someone else and the update
is rejected with an OptimisticLockingException.

 If you’re building an application with JDBC, then you’ll have to implement a
locking strategy yourself. However, if you’re using the EJB 3 JPA, the persistence
provider makes your life much simpler. The EJB 3 JPA persistence providers are
required to support the optimistic locking strategy using a version number col-
umn in the database table. Let’s take a closer look at how this is done.

Figure 13.2 How optimistic locking strategy is implemented by a persistence provider. If the locking
mode is set to WAIT, the User2 would wait until User1 releases the lock.

Handling entity locking issues 461
13.1.2 Optimistic locking and entity versioning

If any of your entities are accessed concurrently in your applications, or detached
entity instances are merged, then you must enable optimistic locking for those
entities. For example, in the ActionBazaar application entities such as Item and
Category are accessed concurrently. You must enable optimistic locking for these
entities by adding a version attribute in these entities.

NOTE The JPA specification does not mandate supporting optimistic locking
without a version field on the entity.

 We can define a version attribute in the Entity item as follows:

@Entity
@Table(name = "ITEMS")
public class Item implements Serializable {
 @Id
 @Column(name = "ITEM_ID")
 protected Long itemId;
 ...
 @Version
 @Column(name = "OPT_LOCK")
 private Long version;
 ...
}

As this code shows, you can use @javax.persistence.Version on a persistence
field or property. The persistence field should be a numeric field of type long,
Long, int, or Integer, and it should be mapped to a database column on the pri-
mary table to which the entity is mapped. In our example, the version property is
mapped to the OPT_LOCK column. You may see some resistance from your DBA to
adding an extra column to store the version, but you will have to persuade her
that you need this column to support optimistic locking in your applications.

 Applications cannot set the version attribute, as it is used directly by the per-
sistence provider. The version column is automatically incremented when the
persistence provider commits changes to the database. When you merge an entity
instance to a persistence context, the persistence provider will check the version
column to ensure that the detached entity has not become stale.

 If you are using TopLink Essentials, you can enable logging to see SQL state-
ments when a detached entity instance is merged as follows:

--Assign return row DatabaseRecord(ITEMS.OPT_LOCK => 2)
... Connection (
...)

Stores version in
OPT_LOCK column

Specifies version property

462 CHAPTER 13
Taming wild EJBs: performance and scalability
--UPDATE ITEMS SET ITEM_NAME = ?, OPT_LOCK = ?
WHERE ((ITEM_ID = ?) AND (OPT_LOCK = ?))
 bind => [New Title: Vintage Cars from junkyard, 2, 902, 1]

In this code, the persistence provider is incrementing the value for the version
attribute (ITEMS.OPT_LOCK) and updating the ITEMS table with the new value in the
OPT_LOCK column. The WHERE clause includes the OPT_LOCK column and com-
pares it with the old value. If the WHERE clause fails, then the persistence provider
will throw an OptimisticLockException.

 Some persistence providers may choose to support additional mechanisms to
check optimistic locking and, depending on their implementation, may render
your applications less portable.

13.1.3 EntityManager and lock modes
Although you will very rarely need it, the EntityManager provides a lock method
to explicitly acquire a lock on an entity:

// begin transaction...
entityManager.lock(item, LockModeType.READ);
 ...
System.out.println(item.getInitialPrice());

NOTE The lock mode can be one of two types: READ or WRITE. You must have
version attributes on any entity to be locked using the lock method,
and the entity must be managed.

As mentioned earlier, some persistence providers may use alternate mechanisms
to support an optimistic lock on objects. If you have not created version attributes
on your entities and you are attempting to lock them, your persistence provider
won’t be able to acquire the lock. It will notify the application of this situation by
throwing a javax.persistence.PersistenceException. The EntityManager auto-
matically translates these locks to the appropriate database locks.

NOTE If you use LockModeType.READ, then your application acquires a READ
lock on an entity. You are ensured that neither of the issues such as dirty
reads or nonrepeatable reads will occur in your applications.

One common use of the READ lock is when your application generates reports. You
obviously don’t want other users updating entities when you are reading them to
populate the report.

 In addition to this behavior, when you use LockModeType.WRITE, the persistence
provider will check for conflicts. When you acquire a WRITE lock on an entity, no

Handling entity locking issues 463
UPDATE or DELETE operation is performed on the entity, even from separate trans-
actions. The persistence provider will generate an OptimisticLockException if
another user tries to update the locked entity from a separate transaction. The
persistence provider will automatically increment the value for the version col-
umn when the transaction successfully commits or roll backs. LockModeType.WRITE
is useful when you are trying to manage relationships between two entities that
may be updated in different transactions and you want to avoid inconsistencies.

 Here is an example of using LockModeType.WRITE:

...
Item item = em.find(Item.class, itemId);
em.lock(item, LockModeType.WRITE);
item.addBid(bid);
bid.setItem(item);
...

Performance tuning: an iterative approach

Performance tuning is neither an art nor an exact science. There is no silver bullet
that you can use to hunt down your application’s performance issues. A typical
enterprise application that uses EJB components probably has multiple tiers. When
you experience performance issues, where do you start? In our experience organi-
zational groups spend more time finger-pointing than trying to investigate and iden-
tify the real issues. Sometimes the developers are blamed, sometimes the database
group, and sometimes the support personnel. Instead, these groups should spend
more time working with one another to find a mutually beneficial resolution.

Performance tuning is a very iterative process. We recommend that you limit
changes to a single modification; you should understand the impact of each
change by rerunning the whole scenario. Only then can you determine if another
change is needed, if further tuning is required, or if the change you made had an
unexpected or adverse effect and needs to be reversed. Changing multiple items is
uncontrolled and can lead to an unstable, sometimes even unrecoverable, situa-
tion. The result of changing one thing at a time is that you can determine if you
need to reverse the last change before proceeding to the next. Otherwise, you can
accumulate random behavior, which can leave your application in a more unstable
state than when it started.

Finding bottlenecks for multitier applications is not an easy task and may involve
looking for several things. Several books have been written on tuning the different
tiers of distributed applications.

464 CHAPTER 13
Taming wild EJBs: performance and scalability
If you get an OptmisticLockException in your application, there is no way to
recover, and it probably makes sense to retrieve a fresh copy of the entity and try
to reapply the changes.

 To summarize, if you use the right locking strategy your application won’t suf-
fer from consistency issues. If you are trying to implement vendor-specific pessi-
mistic locking, you may have performance issues and we suggest you use
optimistic locking instead.

 This brings an end to our discussion on locking strategies for entities. It’s
important that a locking strategy be in place for your applications, and that it be
clearly communicated to the development team—especially when there is any
turnover within the team. Now that we’ve put locking strategies in perspective,
let’s turn our attention to how you can tune the performance of entities in your
EJB 3 applications.

13.2 Improving entity performance

Many would agree that the persistence tier remains the primary suspect of most
performance issues. Sometimes this is due to poor design or a failure to under-
stand the technologies in play and how they interact. Sometimes it can be due to
a weak vendor implementation or tool, or insufficient training on how to use the
tool properly the way it was intended. Yet another cause can be not getting your
database team involved during the design process. Your DBAs should have inti-
mate knowledge of the data and database server(s), and be able to give you some
insight on how best to interact with it, as well as be able to make modifications
that your application could benefit from.

 Our own experience has shown that the response time of applications will
improve from 2 to 10 times simply by tuning the data access layer. When you are
experiencing unacceptable performance, there might be several reasons to sus-
pect this layer. For instance, the SQL statements are generated by the persistence
provider, and unless you know how the persistence provider generates the SQL
statement, you put the blame on the JPA provider!

 You can take several actions to improve how your applications access the data-
base. In this section we’ll offer some advice on these design considerations.

13.2.1 Remodeling and schema redesign

Your entity model and the underlying table design may severely impact the
performance of your application. This means you must keep performance goals
for your applications in mind when designing your entity model and schema.

Improving entity performance 465
This section shows how you can align your design with your performance goals.
All teams involved in your project should review the design, and you may need
to introduce some non-domain-specific data into your domain model in order
to achieve your performance goals. This review should take place on a case-by-
case basis. Don’t hesitate to adjust your domain model to achieve your busi-
ness objectives.

Merging tables
You may improve performance by merging two small tables and making slight
adjustments to the domain model. While building ActionBazaar we found that a
one-to-one relationship exists between BillingInfo and Address. In the original
design, BillingInfo and Address were mapped to two different tables, BILLING_
DETAILS and ADDRESSES, as seen here:

@Entity
@Table(name = "BILLING_DETAILS")
public class BillingInfo implements java.io.Serializable {

 @Id
 protected long billingId;
 ...

 @OneToOne
 protected Address address;
...
}

@Entity
@Table(name = "ADDRESSES")
public class Address implements java.io.Serializable {

 @Id
 protected long addressId;
 ...

...
}

We realized that retrieving BillingInfo makes no sense without also retrieving
the Address information. In addition, Address is always eagerly loaded and there
is always a JOIN performed between the BILLING_DETAILS and ADDRESSES tables.
Performance can be improved in this case by merging the ADDRESSES table into the
BILLING_DETAILS table and making Address an embedded object like so:

@Entity
@Table(name = "BILLING_DETAILS")

466 CHAPTER 13
Taming wild EJBs: performance and scalability
public class BillingInfo implements java.io.Serializable {

 @Id
 protected long billingId;
 ...

 @Embedded
 protected Address address;
...
}

@Embeddable
public class Address implements java.io.Serializable {
...
}

In this way you can avoid a JOIN between two tables and achieve a little perfor-
mance boost as a bonus. Another option to consider is to remove secondary tables
by merging them into the primary table. This avoids a JOIN between the primary
table and secondary table when an entity is loaded.

Dividing a table into multiple tables
In ActionBazaar, a Seller may provide some additional information, such as
original purchase date, manufacturing date, warranty information, picture, or
video files for an Item. When we originally modeled ActionBazaar, the Item entity
had attributes for all these fields, and all the fields were stored in a single table as
shown here:

@Entity
@Table(name = "ITEMS")
public class Item implements Serializable {
 @Id
 private Long itemId;
 private String title;
 ...
 private String originalPurchaseDate;
 @Lob
 private byte[] itemPicture;
 ...
}

Most of this information is not frequently used, so we marked these fields to be
lazily loaded. However, what we did not realize is that lazy loading of BLOB fields
is not mandatory for EJB 3 persistence providers. In our case, the itemPicture
was retrieved when we tried to retrieve an Item instance, and performance was
poor. We were able to improve things by dividing ITEMS into two tables: ITEMS and
ITEM_DETAILS. Both ITEMS and ITEM_DETAILS share the same primary key, and we

Improving entity performance 467
remodeled our Item entity to carve out two entities: Item and ItemDetails. We
then established a one-to-one relationship between these entities and set the load
type for relationship to be LAZY as follows:

@Entity
@Table(name = "ITEMS")
public class Item implements Serializable {
 @Id
 private Long itemId;
 private String title;
 ...
 @OneToOne(fetch = FetchType.LAZY)
 @PrimaryKeyJoinColumn(name = "ITEM_ID",
 referencedColumnName = "ITEM_DETAIL_ID")
 private ItemDetails itemDetails;
}

@Entity
@Table(name = "ITEM_DETAILS")
public class ItemDetails implements Serializable {
 @Id
 private Long itemDetailsId;
 private String originalPurchaseDate;
 @Lob
 private byte[] itemPicture;
 ...
}

This change gives us the performance we are looking for, and helps us overcome
the reality that not all implementations of the EJB 3 specification are done the
same way. This way, we remain neutral with respect to application server ven-
dors, and therefore our application is more portable across persistence provider
implementations.

Choosing the right inheritance strategy
As you learned in chapter 8, EJB 3 supports three type of inheritance mapping
strategies. Each has its own advantages and disadvantages, but the single-table
strategy will probably give you the best performance. This is because all entities
are stored in a single table and JOINs between tables are avoided. As discussed in
chapter 8, we can create a single table named USERS for User and all its subclasses
such as Bidder, Seller, Admin, etc., and use a discriminator column to track the
subtypes. Consider the following:

@Table(name = "USERS")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

Sets inheritance
type strategy

 B

468 CHAPTER 13
Taming wild EJBs: performance and scalability
@DiscriminatorColumn(name = "USER_TYPE",
 discriminatorType = DiscriminatorType.STRING,
 length = 1)
public class User ...

@Entity
@DiscriminatorValue(value = "S")
public class Seller extends User ...

@Entity
@DiscriminatorValue(value ="B")
public class Bidder extends User

Notice c that discriminatorType has a data type of DiscriminatorType.STRING
and a length of 1. These are set in conjunction with the inheritance strategy b of
SINGLE_TABLE. This means that you can assign the actual value as a Java String
type, but the value will be whatever your application decides to use for the various
subtypes supported. In this case "S" is used to represent a Seller d and "B" rep-
resents a Bidder e. But then you already figured that out, didn’t you?

13.2.2 Tuning the JDBC layer

You remember from our discussion earlier in this book that JPA internally uses
JDBC to store and retrieve entities. When you deploy your applications using
the EJB 3 JPA in an application server environment, you are taking advantage
of the JDBC connection pooling configuration of the application server. Tun-
ing the application server may improve performance of your applications.

Properly sizing the connection pool
Every application server supports pooling connections, and you should not forget
to size the connection pool appropriately. In a high-transaction system, if there
are more concurrent users than the available number of connections, users have
to wait until connections are released in order for their requested functions to be
performed. This may degrade performance of your applications. You have to
properly size the pool’s startup and runtime characteristics (such as both the min-
imum and maximum number of connections in the pool, and the timeout before
an unused connection is automatically returned to the pool) based on your appli-
cation requirements. Review your vendor’s documentation for available options.

Caching SQL statements
The persistence provider executes SQL on your behalf. In a transaction-centric sys-
tem like ActionBazaar, it is likely that the same SQL statement will be executed by
the persistence provider many times. Applications servers such as BEA WebLogic

 cConfigures
discriminator column

Specifies Seller
discriminator value

 d

Specifies Bidder
discriminator value

 e

Improving entity performance 469
and Oracle Application Server provide the ability to cache SQL statements and
reuse them. This lowers the overhead of cursor creation as well as the parsing of
SQL statements—both of which can be very time consuming. Typically this is con-
figured in the data-source configuration of the application server as follows:

<data-source>
 ...
 num-cached-statements = "200"
 ...
</data-source>

Check your application server documentation to see whether it supports state-
ment caching and make the appropriate changes.

 You must use parameter binding for your queries in order to take advantage of
statement caching instead of concatenating the parameters in the query. For
example, you may choose to write your query as follows:

Query query = em.createQuery(
 "SELECT c FROM Category c" +
 "WHERE c.categoryName = " + categoryName);

The problem with this statement is that it does not use parameter binding, and
therefore cannot be cached by the persistence provider. Change your query to use
a parameter as follows:

Query query = em.createQuery(
 "SELECT c FROM Category c" +
 "WHERE c.categoryName = ?1");
query.setParameter(1, categoryName);

This allows your query to be a candidate for the cache. This small change to the
programming model of the developer can have a huge impact in the overall per-
formance of your application, depending on how many SQL statements your
application has, and how often they find their way into the cache at runtime. This
is one small change you can make in the early stages of development that can
help build better performance into your programs.

Using named queries
Instead of using dynamic queries, make sure that you use named queries in your
applications. A named query is prepared once and can be efficiently reused by the
persistence provider. Also, the generated SQL can be cached.

 You can convert the previous query to a named query like this:

@NamedQuery(
 name = "findCategoryByName",
 query = "SELECT c FROM Category c WHERE c.categoryName = ?1")

470 CHAPTER 13
Taming wild EJBs: performance and scalability
public class Category implements Serializable {
}

Then you can use the named query in your application as follows:

Query query = em.createNamedQuery("findCategoryByName");
query.setParameter(1, categoryName);

The named query findCategoryByName contains a placeholder for a value to be
passed at runtime (?1). This code snippet specifies that parameter 1 should
be categoryName. You provide the parameters to named queries in the same
way you would when using dynamic queries. However, named queries can be
optimized, so we recommend you use them whenever possible.

Avoiding transactions for read-only queries
Transaction management is an expensive affair. If the results of your queries
won’t be updated, then don’t use a transaction. By default the transaction
attribute for a session bean is REQUIRED. Change it to NOT_SUPPORTED for read-
only queries.

13.2.3 Reducing database operations

Reducing database operations directly improves performance of applications.
But while using the EJB 3 JPA you don’t directly write SQL since the SQL is gener-
ated by the persistence provider. At this point you’re asking yourself, “Then how
you can reduce the database operations?” We’re glad you asked…

Choosing the right fetch type
In chapter 9 you learned that a relationship may either be eagerly or lazily loaded.
Lazy loading leads to multiple SQL statements, whereas eager loading relates to a
SQL JOIN statement and translates to unnecessary data. If you’re using EJB 3, by
default the associated entities are eagerly loaded when you have a one-to-one or
many-to-one relationship, or lazily loaded when you have a one-to-many or many-
to-many relationship. However, there may be several situations when you don’t
need a related entity, such as the BillingInfo for a given User, or a related Item-
Details for a specific Item. In such cases you can disable eager loading.

 There may also be situations when you want a related collection of entities to
be loaded automatically, where a one-to-many relationship exists that forces you
to switch to EAGER loading. We warn you to be very careful when turning on eager
loading for one-to-many relationships.

 If you’re not sure whether eager loading is the right strategy for your associa-
tion, you may want to try setting eager loading in your JPQL query. Suppose you

Improving entity performance 471
want to eagerly load the BillingInfo for a User entity. We can use the FETCH clause
with a JOIN like this:

SELECT u
FROM User u JOIN FETCH u.billingInfo
WHERE u.firstName like ?1

This query will eagerly load the BillingInfo object for User even if fetch mode is
specified as LAZY in the association definition.

Deferring database updates until the end of transactions
By default the flush mode for EJB 3 is AUTO; that is, the EJB 3 persistence provid-
ers execute SQL statements to update the database at the end of the transaction
and whenever a query is executed that may retrieve updated data. The persis-
tence providers optimize SQL at the end of the transaction.

 You can control the database updates by using the EntityManager’s flush
method. Using flush in between a transaction may lead to multiple SQL state-
ments. Excessive use of flush may degrade the performance of your application,
so we recommend that you not use it unless you have exhausted all other options.

 You can optionally set the flush mode to COMMIT. This means that all updates are
deferred until the end of the transaction. In this situation the EntityManager
doesn’t check for pending changes. You can set FlushMode for the EntityManager em
as follows:

em.setFlushMode(FlushModeType.COMMIT)

This will set FlushMode to COMMIT for all queries executed within the active persis-
tence context.

 On the other hand, if you want to set FlushMode on a per-query basis, you can
do this:

Query query = em.createNamedQuery("findAllItems");
query.setFlushMode(FlushModeType.COMMIT);
List items = query.getResultList();

As you can see, you have the flexibility to manually control flushing by calling the
flush method, setting FlushMode on a persistence context basis (discussed in
chapter 9), or setting FlushMode on a per-query basis (discussed in chapter 10).
The EJB 3 Expert Group wants you to have your FlushMode “your way”!

Using the lowest-cost lock in the database
Although the EJB 3 JPA doesn’t require persistence providers to support pessimis-
tic locking, your persistence provider may support this lock mode as an extension.

472 CHAPTER 13
Taming wild EJBs: performance and scalability
We recommend you avoid pessimistic locking unless you really need it because the
database locks the record or page during the transaction. Even if you are using
optimistic locking, use the lowest lock (i.e., the READ lock) if it will satisfy your appli-
cation requirement.

Using DELETE_CASCADE appropriately
In chapter 8, we discussed setting the cascade type to REMOVE for one-to-many or
one-to-one relationships. If you set cascade to REMOVE or ALL, when you remove an
entity any associated entities are also automatically removed. For example, if we
remove a Seller entity, then the associated BillingInfo is also removed. This will
lead to at least two DELETE statements in the database.

public class Seller {
 ...
 @OneToOne(cascade = CascadeType.REMOVE)
 public BillingInfo getBillingInfo() {
 }
}

For a one-to-many relationship, it may lead to removal of multiple rows, which
could have a negative impact on performance. Many databases support enforcing
a CASCADE DELETE constraint on tables:

CREATE TABLE BillingInfo
(
 billing_id number(10) not null,
 ...

 CONSTRAINT fk_user
 FOREIGN KEY (user_id)
 REFERENCES supplier (user_id)
 ON DELETE CASCADE
)

We suggest you consider using CASCADE DELETE as a table constraint. This normally
yields better performance than a DELETE statement.

Using the cascade property
Remember from our discussions in part 3 that you can set the cascade type of
relationships to NONE, PERSIST, MERGE, REFRESH, REMOVE, or ALL, as in this example:

public class Seller {
 ...
 @OneToMany(cascade = CascadeType.ALL)
 public Items getItems() {
 }
}

Cascading delete constraint

Improving entity performance 473
Each of these options impacts how the related entities are handled when an entity
operation is performed. For example, when set to ALL, the persistence provider
will try each operation (persist, merge, refresh, etc.) on the target entity. These
may result in unnecessary database operations when you have several associated
entities, and each of the operations is cascaded. So when setting the cascade
property, take into account the needs of your applications.

Bulk updates
Your application may require changes to multiple entities within one transaction.
You may wish to retrieve a collection of entities and iterate through each to make
changes. If we want to give Gold status to all Sellers who have been members of
ActionBazaar for longer than five years, we can do it like this:

Query query = em.createQuery(
 "SELECT s FROM Seller s WHERE s.createDate <= ?1");
...
List sellers = query.getResultList();
Iterator i = seller.iterator();
while (i.hasNext()) {
 Seller seller = (seller) i.next();
 Seller.setStatus("Gold");
}

This will lead to many UPDATE statements being generated by the persistence pro-
vider. You can reduce this to a single UPDATE statement by using the bulk Update
feature of JPQL as follows:

Update Seller s
SET s.status = 'Gold' WHERE s.createDate <= ?1

This JPQL statement will update all Sellers to a Gold status with the creation date
specified—in one fell swoop. If 10,000 sellers meet this criterion, executing this
in one SQL statement instead of 10,000 is a huge performance improvement.

Avoiding association tables in one-to-many relationships
Association tables are commonly used to store unidirectional, one-to-many rela-
tionships. This is supported in EJB 3 with the @JoinTable annotation. Using an
association table will require extra SQL statements to manage the relationship, as
well as unnecessary JOINs between the base tables and association tables. You can
gain some performance benefit by avoiding association tables.

474 CHAPTER 13
Taming wild EJBs: performance and scalability
13.2.4 Improving query performance
Even trivial applications can make extensive use of queries. When using EJB 3,
you write queries in JPQL and they are translated to SQL. Although you develop
in JPQL, you can take certain actions to ensure that the corresponding queries will
perform well. DBAs can certainly play a big part in helping improve queries.

 You may also be interested in enabling a higher level of logging in your per-
sistence provider to expose and capture the generated SQL statements, and run
them through a “tuning utility” provided by your database vendor. This can help
you determine whether the SQL can be improved. Certain databases provide an
automatic SQL tuning utility that provides suggestions for improving the SQL
executed by an application. You can work with your DBA to use such tools and get
their recommendations on how to improve query performance.

 There is no magic sequence of steps that address all query issues, but we’ll dis-
cuss some of the more common scenarios.

Avoiding full-table scans
Unless your entity is mapped to a very small table, you must avoid using SELECT
statements that perform full-table scans. For example, you can retrieve all items
in a query like this:

SELECT FROM Item I

Next, you retrieve the returned collection, iterate through the collection, and
perform one or more operations on the resulting data. The persistence provider
will generate the following SQL:

SELECT *
FROM ITEMS

There are two problems here. First, this code will retrieve and bring in a lot of
rows into the middle tier and consume a lot of memory. Second, it will cause a
FULL TABLE SCAN in your database and the query will be very slow. Your DBA will
advise you to avoid such SQL. Realistically, the number of available items you
want is much less than the total number of items in your database. You must uti-
lize the full potential of database filtering by changing your query to limit the
number of rows retrieved as follows:

SELECT i
FROM Item i
WHERE i.status = "Available"

The query will be much faster and you don’t have to do any extra filtering work in
the middle tier.

Improving entity performance 475
Using indexes to make queries faster
Indexes make your query faster. Your DBAs are probably responsible for build-
ing the indexes on tables, but there’s a good chance that they don’t know the
details of how your application works. You should work with them so that they
understand the queries used by your application. Only then can they build
appropriate indexes for your application. Queries that include the primary key
always use an indexed scan, meaning that no additional indexes are required. In
spite of this, here are some additional cases where you’ll want to use an index to
improve performance.

Filtering based on a nonidentity field
This is very prevalent in applications. For example, suppose you want to retrieve
your Item entities by itemTitle as follows:

SELECT i
FROM Item i
WHERE i.itemTitle = ?1

This JPQL statement will be translated to SQL as follows:

SELECT *
FROM ITEMS
WHERE ITEMS.ITEM_TITLE = ?1

If you do not have an index on ITEM_TITLE, the query will include a FULL TABLE
SCAN. Therefore, we recommend you create an index in these situations. In this
case, the index would be created on ITEM_TITLE.

Using indexes for relationship fields
Relationships are implemented in the database by using foreign key constraints.
However, you may not have indexes on the foreign key column(s). When you
retrieve an associated entity, a JOIN between the two underlying tables is per-
formed. But this is slow because a FULL TABLE SCAN will be executed on the associ-
ated entities. Creating an index on the underlying table will allow the database to
use that index while joining the tables, which is must faster than joining two large
tables without an index.

 In ActionBazaar, Item and Bid have a one-to-many relationship due to eager
loading. If you have a JPQL query that uses a JOIN clause, the persistence provider
could generate the following SQL statement:

SELECT *
FROM BIDS INNER JOIN ITEMS ON ITEMS.ITEM_ID = BIDS.ITEM_ID
WHERE ITEMS.ITEM_ID = ?1

476 CHAPTER 13
Taming wild EJBs: performance and scalability
If we assume that there is no index on the BIDS.ITEM_ID, the Oracle database han-
dles this SQL statement like so:

SELECT STATEMENT ()
NESTED LOOPS ()
 TABLE ACCESS (BY INDEX ROWID ITEMS)
 INDEX (UNIQUE SCAN) ITEM_PK
 TABLE ACCESS (FULL) BIDS

If you add an index on the ITEM_ID column for the BIDS table, you’ll see the query
plan for our SQL statement change as follows:

SELECT STATEMENT ()
 NESTED LOOPS ()
 TABLE ACCESS (BY INDEX ROWID ITEMS)
 INDEX (UNIQUE SCAN) ITEMS_PK
 TABLE ACCESS (BY INDEX ROWID BIDS)
 INDEX (RANGE SCAN) BID_ITEM_IDX

Review your queries with your DBAs and they should be able to determine
whether adding an index for a column makes sense.

Ordering a collection of entities
You can order the entities retrieved in a collection by using the @OrderBy annota-
tion. In ActionBazaar, if we want to retrieve Bids in descending order of bidPrice,
we can do this:

@OneToMany
@OrderBy("order by bidPrice DESC")
public List<Bids> getBids() {
 return bids;
}

Ordering of rows is an expensive operation in the database, especially when a lot
of rows are retrieved. Therefore, it doesn’t always make sense to retrieve the enti-
ties in an ordered collection. Unless another sort order is required, let’s set the
default order using a JPQL query as follows:

SELECT b
FROM Bid b
WHERE b.item = ?1
ORDER BY b.bidPrice

The database will try to order the matching records by BID_PRICE. We expect your
DBA will agree that adding an index on BID_PRICE for the BIDS table will improve
query performance.

Improving entity performance 477
Using functions in the WHERE clause of JPQL
You can use JPQL functions in the WHERE clause of a query. For example, you can
create a JPQL query as follows:

SELECT u
FROM User u
WHERE upper(u.firstName) = ?1

This statement will be translated to SQL as follows:

SELECT *
FROM USERS
WHERE UPPER(FIRST_NAME) = ?1

Remember that when you use a function in the WHERE clause, the database won’t
use an indexed scan, even if an index exists on the FIRST_NAME column. Because of
this, you should avoid using functions in the WHERE clause. Some databases sup-
port creating function-based indexes and you can use them if needed. Just be
aware that the function-based indexes may not be portable.

 For our example, you could consider storing the names in uppercase instead
of using the JPQL Upper function.

Reducing round-trips to the database
If your query retrieves a lot of entities, that means a lot of rows are retrieved from
the database, and this translates into multiple round-trips between your applica-
tion and the database. Some JDBC drivers provide facilities to reduce the number
of round-trips to the database by setting the number of rows to be prefetched in
the middle tier while a result set is being populated. This improves performance
of queries that retrieve a large number of rows.

 You can pass the JDBC fetch size as a vendor-specific @QueryHint in either a
named query or dynamic query as follows. If you’re using TopLink or Hibernate,
you can use toplink.jdbc.fetch-size or org.hibernate.fetchSize, respectively.
The following code snippet demonstrates using @QueryHint for Hibernate:

@NamedQuery(
name = "findUserWithNoItems",
query = "SELECT distinct u FROM User u WHERE u.items is EMPTY",
hints = {@QueryHint(name = "org.hibernate.fetchSize ", value = "50")}
)

Check the documentation for your persistence provider to find out whether set-
ting the JDBC fetch size is supported.

478 CHAPTER 13
Taming wild EJBs: performance and scalability
13.2.5 Caching

The EJB 3 JPA does not require persistence providers to do any type of caching.
On the other hand, one of the primary benefits of using most O/R mapping
frameworks is that they provide a certain level of caching to reduce trips to the
database. Some people think caching is the solution for every performance prob-
lem. The reality is that improper use of caching may lead to stale data and a
whole different set of performance issues. Before jumping into using a cache, you
need to understand how your vendor supports caching.

 In most cases, you can improve performance of your applications with the
appropriate use of caching. Most persistence providers support caching either
entity objects, queries, or both.

 Caching probably makes sense for data that is read-only or is not frequently
updated (read-mostly). For example, in ActionBazaar some entities such as
Category rarely change. Knowing this helps us decide that it makes sense to
cache Catalog entity objects.

 Some queries may always result in the same data within a specific time inter-
val. For example, a named query findFiveMostPopularItems may always return
the same set of entities for a four- to five-hour interval. You may wish to cache the
results of that query because almost all users of ActionBazaar would probably wish
to see the most popular items.

 The caching types you can use with an EJB 3 JPA provider can be broken into
three levels, as shown in figure 13.3.

Figure 13.3 You may use caching of objects at three levels: 1) the
transactional cache, which is made available by the persistence provider within
a transaction to reduce database round-trips; 2) the extended persistence
context, which you can use as a caching mechanism with stateful session beans;
and 3) the persistence unit level cache (if provided by the persistence provider),
which is a shared cache that all clients of the persistence unit can use.

Improving entity performance 479
Keep these three levels in mind when evaluating possible options to put in your
cache. Try moving items from one cache to another if possible, to determine which
configuration works best for your specific application and runtime usage patterns.

Transactional cache
Transactional caching ensures that the object from the cache is returned when the
same object is requested again. A typical example is that you run a query that
returns an Item entity, and that entity will be cached in the transactional cache.
When you use the EntityManager.find method to retrieve the Item again, the per-
sistence provider will return the same Item instance from the transactional cache.

 The other benefit of a transactional cache is that all updates to an entity are
deferred to the end of the transaction. Imagine what would happen if you did the
following in the same transaction:

Item item = new Item();
item.setTitle(title);
item.setInitialPrice(initialPrice);
Seller seller = entityManager.find(Seller.class, sellerId);
item.setSeller(seller);
entityManager.persist(item);
item.setInitialPrice(newInitialPrice);

If your persistence provider doesn’t use a cache and doesn’t defer the commit
until the end of the transaction, then it probably will perform what translates to at
least two SQL statements. First, it will execute a SQL INSERT to persist the Item.
This will be followed by a SQL UPDATE to modify the initialPrice. Most persis-
tence providers will make use of a cache and then execute a single INSERT that will
take the new price into account.

 Hibernate calls this cache its first level or session cache, and TopLink calls it
the UnitOfWork cache. Both of these products enable these caches by default.
Check whether your persistence provider supports this type of cache. We aren’t
aware of any reason you’d want to disable the transactional cache.

Using an extended persistence context
The transaction cache will demarcate a single transaction. This could be a prob-
lem if your application needs to maintain conversational state between differ-
ent method calls, since it will require multiple round-trips to the database to
retrieve the same entity. You can avoid this situation by using an extended per-
sistence context.

 You may remember from our discussions in chapter 9 that only stateful session
beans support extended persistence contexts. They allow you to keep entity

480 CHAPTER 13
Taming wild EJBs: performance and scalability
instances managed beyond single method calls and transaction boundaries. You
can use extended persistence context as a cache for your stateful bean instance
during the state of conversation, which can reduce the number of round-trips to
your database. Additionally, all database updates resulting from persist, merge,
remove, and so forth are queued until the end of the persistence context, reduc-
ing the number of database operations.

 Listing 13.1 shows how you can use an extended persistence context for cach-
ing entities between method calls of your application.

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class PlaceOrderBean implements PlaceOrder {
@PersistenceContext(unitName = "ActionBazaar",
 type = PersistenceContextType.EXTENDED)
EntityManager em;

 private Bidder bidder;
 private List<Item> items;
 private ShippingInfo shippingInfo;
 private BillingInfo billingInfo;

 public PlaceOrderBean() {
 items = new ArrayList<Item>();
 }

 public void setBidder(String bidderId) {
 this.bidder = em.find(Bidder.class,bidderId);
 }

 public Bidder getBidder(){
 return this.bidder;
 }

 public void addItem(Long itemId) {
 Item item = em.find(Item.class,itemId);
 items.add(item);
 }

 public void setShippingInfo(ShippingInfo shippingInfo) {
 this.shippingInfo = shippingInfo;
 }

 public void setBillingInfo(BillingInfo billingInfo) {
 this.billingInfo = billingInfo;
 em.merge(billingInfo);
 }

Listing 13.1 Using an extended persistence context to cache objects across
method calls

Instance variable to
hold entities

 b

Methods to set
value of instance
variables

 C

 D Method to merge detached entity

Improving entity performance 481
 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public Long confirmOrder() {
 Order order = new Order();
 order.setBidder(bidder);
 order.setBillingInfo(billingInfo);
 ...
 em.persist(order);
 return order.getOrderId();
 }
}

The PlaceOrderBean uses an extended EntityManager by setting the Persistence-
ContextType to EXTENDED. The persistence context will live during the entire state
of conversation and will be destroyed when the bean instance is destroyed or
removed e. You can store entities as the instance variables of the stateful session
bean b and values for the instances are set by different methods c, and the enti-
ties are managed during the lifespan of the extended EntityManager and can be
used without having to be detached at the end of the method call. Entity opera-
tions such as merge d can be performed outside the scope of a transaction since
we have set the default transaction attribute for the bean to NOT_SUPPORTED. The
database updates resulting from these operations are queued up and performed
when the persistence context is associated with a transaction f. This reduces the
number of round-trips to the database.

 However, you have to be careful when your stateful session bean invokes
another EJB such as a stateless session bean—there are several limitations related
to the propagation of extended persistence contexts.

Persistence unit level cache
The transactional and persistence context caching mechanisms can only be used
with a single client and cannot be shared. You’ll probably see a real performance
boost when entity instances in the cache are shared by multiple clients, thus reduc-
ing trips to the database for all of them. You can call this an application cache, but
we call it a PersistenceUnit cache because entities are scoped in a persistence
unit. Hibernate calls this a second-level cache, and you need to configure an
external cache provider to take advantage of this second level or session factory
level cache. TopLink refers to it as a session cache, and it’s integrated with the per-
sistence provider. In addition, the TopLink implementation provides several
options for configuring this cache. Review your vendor documentation to see
whether it provides the ability to cache objects out of the box.

 E Remove method

Transactional
method f

482 CHAPTER 13
Taming wild EJBs: performance and scalability
 You can either cache entities or queries in the PersistenceUnit cache. When
you retrieve some entities using a query, those entities will be cached. If you try to
retrieve a cached entity by using the EntityManager’s find method, then the entity
instance will be returned from the cache. Typically, persistence providers store
the entities in the cache using their identities, so you must use the find method to
retrieve an entity by its primary key.

 If your EJB 3 persistence provider supports caching of entities in a Persistence-
Unit cache, it is probably done with a vendor-specific name-value pair of properties
in a configuration file. In the following example we are trying to cache 5000
instances of the Category entity in TopLink Essentials:

<persistence>
 <persistence-unit name = "actionBazaar">
 ...
 <properties>
 <property name = "toplink.cache.type.Category"
 value = "CacheType.Softweak"/>
 <property name = "toplink.cache.size.Category"
 value = "5000"/>
 </properties>
 </persistence-unit>
</persistence>

If you want to cache a query result, then you probably want to do it on a per-query
basis, either stored in an external configuration or as a QueryHint for the query.
Check your persistence provider documentation to determine how it supports
the caching of queries.

 Here is an example of how TopLink Essentials can be used for caching in a
named query using @QueryHint:

@NamedQuery(
 name = "findActiveCategory",
 query = "SELECT c FROM Category c WHERE c.status = ‘Active",
 hints = {@QueryHint(name = "toplink.cache-usage",
 value = "CheckCacheOnly")}
)

You can also provide a hint to refresh the cache from the database with a query
like this:

Set<Category> category = (Category)
 em.createNamedQuery("findActiveCategory")
 .setHint("toplink.refresh", "true")
 .getResultList();

Now that you have seen some examples of caching, let’s discuss some caching
best practices.

Improving performance of EJB 3 components 483
Read-only entities
You can significantly improve application performance by using read-only enti-
ties. Examine your applications to determine whether any entities may be made
read-only. For example, in our ActionBazaar system, office locations change very
rarely and we can make the ShippingType entity read-only. Unfortunately, like
caching features, the read-only feature is a vendor extension and you have to
depend on either a vendor-specific API or configuration to mark an entity as read-
only. Normally, read-only entity instances will be loaded into the PersistenceUnit
cache and never discarded.

 Read-only entities will significantly improve performance because persistence
providers won’t calculate the change set for the read-only entity, and no clone or
merge operations will be performed against a read-only entity.

Caching best practices
Understanding your applications and checking your caching strategy usually
makes sense for your applications. The cache is best used for entities that are not
frequently updated or that are read only. Make sure that table data is updated
only by the application that is using the cache, because if any external applica-
tions update the same cache, someone working with the cache will end up with
stale data.

 Check your persistence provider for details on how they support caching enti-
ties and queries; the caching mechanism varies from provider to provider. For
example, one provider may follow this rule: if an entity is updated in a transac-
tion, then the entity will be updated in the cache when the transaction is commit-
ted to the database. However, some persistence providers may choose to expire
the cache instead.

 Stress-test your applications with and without a cache. It’s the only way to
determine if using the cache, and more specifically the particular cache configu-
ration, will improve or degrade your applications’ performance.

 That concludes our discussion on improving EJB 3 entity performance. Are
you feeling faster yet? Even if you’re not, your entities should be. Next, let’s look
at how you can improve the performance of session and message-driven beans.

13.3 Improving performance of EJB 3 components

Most application servers provide the ability to generate usage and utilization sta-
tistics of EJB components such as session beans and MDBs grouped by application.
You have to read your vendor documentation about the parameters they provide,

484 CHAPTER 13
Taming wild EJBs: performance and scalability
and you have to work through some amount of trial and error to utilize these
parameters optimally to improve the performance of your EJB components.

 This section provides general guidelines, some of which are design practices
that you can follow while building your applications. As stated earlier, it’s a good
idea to factor in performance considerations throughout the development lifecy-
cle of your applications. Don’t try to do it all up front, because you’ll end up with
a more complicated design than you need, and it’s going to change anyway at
multiple points during the life of the system. Don’t try to do it all at the end,
because you’ll have to make sweeping changes in order to effectively implement
the required optimizations. Follow the same strategy you would to fill your car’s
fuel tank; a little at a time over the life of the vehicle. Sometimes you top the tank
off, and sometimes you just get $10 worth. (All right, with today’s prices maybe
$25.) But you don’t calculate how many miles you will ever drive the car and try to
carry around that much gas when you buy it. And you certainly don’t wait until
you want to sell the vehicle before buying any gas; it wouldn’t be much use as a
form of transportation if you took that approach. Simply think about where
you’re going in the near future, and buy that much gas. Tackle performance tun-
ing in the same way, and you’ll be on your way to a bunch of happy users.

 We’ve already covered performance concerns surrounding entities. Let’s see
what we can do to make our session and message-driven beans a little snappier.

13.3.1 Session bean performance

Session beans are probably the most frequently used EJB component. Like the
teenyboppers vying for a spot on American Idol, they’re everywhere. It’s hard to
visit a Java EE application and not hit one. Even with the tremendous pull that
alternative inversion-of-control containers like Spring have had, session EJBs live
on. Since you’re likely to trip over one getting to your Dilbert cube in the morn-
ing, this section will focus on how you can improve session bean performance.

Local vs. remote interface
EJB 3 not only provides the ability to invoke components remotely, but also
empowers you to build lightweight components that can be deployed and run
locally with your presentation modules. If your clients and EJB components are
collocated together, then you must make sure you do not mark your interface with
the @Remote annotation. @Remote uses an expensive RMI call requiring copy-by-
value semantics, even if the clients are in the same JVM. Most containers provide
optimizations to change RMI calls to local EJB invocation when possible by setting

Improving performance of EJB 3 components 485
some attributes in your vendor-specific deployment descriptor. Refer to your
application server documentation for details about your specific server.

Use stateful session beans only when necessary
We have observed gross misuse of stateful session beans, which causes developers
to become disappointed with their performance. Most enterprise applications are
stateless in nature, so you should determine whether you need stateful session
beans. Stateless session beans perform much better than stateful session beans
since they are not required to manage state. The extended persistence context is
supported only with EJB 3 stateful session beans, and there is no way out if you
want to use it. Later in this chapter we provide some guidelines to specifically
improve performance of stateful session beans.

Refactor multiple method calls to use the Session Façade design pattern
EJB invocation is expensive, particularly when you use it remotely. You should
avoid building fine-grained EJBs by following the Session Façade design pattern.
Check to see whether you can consolidate several EJB methods into a single
coarse-grained EJB method. Reducing multiple method calls to a single call will
improve the performance of your EJB applications.

Look at transaction attribute settings
Recall from chapter 6 that transaction management is an expensive affair. Verify
that each EJB method really needs a transaction. If you are using CMT (by default),
the container will start a transaction for you because the default transaction
attribute is Required. For methods that don’t require a transaction, you should
explicitly disable transactions by setting the transaction type to NOT_SUPPORTED
as follows:

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public List<Item> findMostPopularItems() {
 ...
}

If you are confused about which transaction options are available, refer to chapter 6,
or consult your application server’s documentation.

Optimize the stateless bean pool
Stateless session bean instances are pooled and shared by clients. You should
have sufficient bean instances to serve all your concurrent clients. If you don’t
have enough bean instances in the pool, the client will block until an instance is
available. Most application servers provide the ability to configure the bean pool

486 CHAPTER 13
Taming wild EJBs: performance and scalability
in a vendor-specific deployment descriptor by specifying a value for the mini-
mum and maximum number of instances to be kept in the bean pool. Keeping it
too low will create contention issues, whereas keeping it too high may consume
excessive memory. Use the “Goldilocks” principle here, and try to get the mini-
mum/maximum range “just right.”

The stateful bean cache and passivation
A stateful bean is associated with a specific client. When a client needs a bean
instance, the container creates a bean instance for it. However, the container can-
not maintain an infinite number of active bean instances in memory while con-
stantly passivating bean instances that are not actively being used. The container
serializes all instance variables stored in a stateful bean and writes the bean’s state
into secondary storage (an external file) when it decides to passivate the bean
instance. The passivated bean instance is activated or brought back into memory
when the associated client invokes a method on a bean instance that has been
temporarily pushed out of the cache. Unnecessary passivation and activation will
slow down the performance of your applications. Investigate your server’s config-
uration options in order to properly set the bean cache or passivation policy so
that frequent passivation and activation is avoided.

Use a remove method for stateful beans
You must destroy a stateful bean instance by using the @Remove annotation when
the conversation ends. As explained in chapter 3, any business method can be
annotated with @Remove so that upon successful completion of that business
method, the bean instance will be destroyed. Take a look at confirmOrder:

@Remove
public Long confirmOrder() {
}

If you do not remove stateful bean instances when they are no longer needed,
then the number of inactive (essentially dead) instances will grow, forcing passi-
vation/activation in the container.

 In addition to @Remove, most containers provide the ability to time out and
destroy a bean instance by setting an expiration time in the vendor-specific
deployment descriptor. This timeout can be used to help keep the number of bean
instances to a manageable number. Its purpose is to set a timer for beans that are
not used by clients for longer than the specified expiration time. We recommend
you take advantage of this timeout to reduce the time that unused bean instances
hang around, soaking up space.

Improving performance of EJB 3 components 487
Control serialization by making variables transient
As stated earlier, the container performs serialization and deserialization of
instance variables during passivation and activation. Serialization and deserial-
ization are expensive processes. When you store large objects in your instance
variables, the server spends a lot of CPU cycles and memory in the serialization
and deserialization process. If you don’t want to serialize a particular object, mark
that object to be a transient object and the container will skip that object during
passivation/activation.

@Stateful
public class PlaceOrderBean implements PlaceOrder {
 transient private Bidder bidder;
 private List<Item> items;
 private ShippingInfo shippingInfo;
 private BillingInfo billingInfo;
..
}

Here we have defined bidder as a transient object and the EJB container will not
serialize the bidder object when a bean instance gets passivated or when its state
is replicated to another server. If after marking several fields as transient you
observe data missing from your objects, it simply means that you went a little
overboard and will need to undo some of the fields you marked as transient.

13.3.2 Improving MDB performance

The following are some guidelines that you can use to optimize the performance
of your MDB applications. We provided some MDB best practices in chapter 5 that
you can use as a starting point. After implementing those techniques, you may
want to revisit this section for some additional tips.

Tuning the JMS provider

Most of the performance issues surrounding MDBs are generally related to the
underlying JMS providers. Some general tips that we provided in chapter 4 include
choosing the right messaging models and persistence strategy, using the correctly
sized messages, setting the lifetime of messages, and using appropriate filters and
handling of poison messages. Check your vendor documentation for the JMS pro-
vider you are using for your applications.

488 CHAPTER 13
Taming wild EJBs: performance and scalability
Initializing resources
Like stateless session beans, MDB instances are pooled, and initialization tasks are
performed only once, for any given MDB instance. You can perform expensive
tasks such as initialization of resources (opening database connections, sockets,
files, etc.) in any method annotated with @PostConstruct. Methods marked with
@PostConstruct will be invoked only once, immediately after creation. Similarly,
close any resources in methods annotated with @PreDestroy. This will significantly
improve the performance of your classes in general, and your MDBs in particular.

Sizing the pool
MDBs are pooled, and the pool size is usually configured using vendor-specific
deployment descriptors. Improper sizing of MDB pools may degrade perfor-
mance of your applications when large numbers of messages arrive and there is
not a sufficient number of bean instances available to process those messages.

 Make sure you do some predictive analysis in determining the capacity your
system will need to support (including spikes, and growth over the short term).
Then run some tests that will show how your hardware, operating system, and
application server will perform to meet these expectations. There are almost as
many ways to configure hardware and operating systems as there are combina-
tions of the two. Once you are happy with that configuration, make sure your
application server pool for MDBs is sized as well.

 This concludes the discussion on EJB performance. It’s time to focus on scal-
ability and high availability, which are two other important aspects of enter-
prise applications.

13.4 Clustering EJB applications

High availability and scalability go hand in hand. Every application has some
requirement for availability and scalability, and meeting those requirements
begins when you start architecting the application. Availability requirements can
vary widely. Some applications, say a human resources (HR) application, may have
a requirement to be available only during normal business hours. On the other
hand, an online bidding system may have a requirement to be available 24/7,
year-round. Similarly, the scalability requirements for an HR application may not
be as demanding as an online bidding system.

 The EJB 3 specification doesn’t address clustering aspects for EJB applications.
However, most application server vendors allow customers to cluster EJB contain-
ers to achieve the desired scalability and availability aspects required by today’s

Clustering EJB applications 489
demanding enterprise applications. Before we dive into such architectural con-
cerns, let’s discuss a couple of concepts that will help you understand the basic
aspects of EJB clustering:

■ Load balancing—This is when multiple application server instances work as
a group to balance the incoming request load across all the servers. This
allows for scalability of applications. When your user base increases, you
can simply add new server instances to the group. This is typically most
useful when your application is stateless in nature.

■ Failover—Adding failover capability to your applications improves the
availability of your applications. Clients typically get bound to a specific
server instance by stateful applications. In the event of a catastrophic fail-
ure of a server, the client requests are routed to a separate server in a seam-
less manner, transparent to the user.

Clustering of EJB applications adds load balancing and failover capabilities to
your applications. Covering all aspects of clustering is beyond the scope of this
book. In this section we’ll provide architectural primers, and focus on the knowl-
edge you need to effectively build scalable, available EJB applications.

 There are several ways to deploy EJB applications. We’ll discuss three com-
monly used approaches. We won’t describe any configuration details related to
clustering because clustering tends to be vendor specific.

13.4.1 Collocated architecture

This popular architecture is where EJB applications and their clients (web appli-
cations) are hosted in the same container, and typically the HTTP requests are
load-balanced between multiple instances of application servers. If your applica-
tion is stateless in nature, then you probably don’t have to do anything except
deploy the identical application on multiple servers, as illustrated in figure 13.4.

 If your application requires statefulness and you want to achieve session
failover, then you must enable HTTP and EJB session state replication, which
allows you to replicate HTTP session objects between two server instances. This is
done so that if one instance fails, the client doesn’t lose the session state. If your
business logic is stateless in nature, this is something you don’t have to worry
about. Your application will work as expected when your sessions fail over to
another container, assuming the identical application is deployed.

 If you are using stateful session beans to store session objects, then things will
be a little trickier here. As mentioned in chapter 12, you should store the EJB

490 CHAPTER 13
Taming wild EJBs: performance and scalability
object in the HttpSession object. Check your vendor documentation before you
start developing your applications, because it will avoid frantic refactoring of
code the day before you release everything to production.

 You have to enable session replication for your application server; that way,
when a session failover occurs, the client will be routed to another server instance
where the HTTP session was replicated. The HttpSession object will be restored
and the client can retrieve the EJB object to perform the necessary operations.
Some vendors may not allow replication of local EJB stateful session beans, so
check your vendor documentation. You may have to use the remote interface,
even if the client and bean are collocated in the same Java EE container in order
to enable session replication.

 What happens when multiple instances of your application are required in
order to divide the web and EJB tiers into different containers? Next we’ll see how
EJB containers support load balancing of stateless EJBs.

13.4.2 Load-balancing stateless session beans

Your clients may be located remotely from the EJB container. The clients may be
JSF or JSP applications running in a separate container, or Swing/SWT clients run-
ning in an application client container. You must realize that when dividing EJBs
and their clients into separate JVMs, you are imposing a condition that Remote
Method Invocation (RMI) be used to communicate between them. If you plan to
use this architecture, you’ll have to use remote interfaces for your EJBs.

Figure 13.4 EJB(s) and web applications are collocated, and web applications use the local EJB
interface to access the nearby EJBs.

Clustering EJB applications 491
Most application servers support load balancing of requests between multiple
application server instances. When using this architecture, the same application
is deployed in all instances. Since the EJBs are stateless, the client can go to any of
the servers being load-balanced, as seen in figure 13.5.

 If you want to use load balancing of stateless session beans deployed in a clus-
ter, you need a basic understanding of RMI and remote invocation of an EJB. We
briefly discussed RMI in chapter 1. Figure 13.6 shows how remote invocation of an
EJB works.

Figure 13.5 EJB and web applications are in separate JVMs. Clients access EJBs using the
remote interface via RMI. The same EJB application can be deployed to multiple servers.

Figure 13.6 The skeleton in the EJB server gives out a stub to the client. This stub is used by the
client to communicate with the EJB remotely.

492 CHAPTER 13
Taming wild EJBs: performance and scalability
As evident from figure 13.6, the client stub has the information on how to com-
municate to the remote EJB server. Most application servers automatically gener-
ate the client stub while looking up an EJB remotely.

 This information is commonly based on the JNDI environments, which are
populated while creating the InitialContext. You typically provide this in a
jndi.properties file. If you remember our discussion from chapter 1, you pro-
vide the URL for the server that hosts the EJB we are accessing.

 Again, because EJB clustering is considered a proprietary enhancement, each
application server implements it in its own way. That way, the application server
knows the load-balancing algorithm and the servers being load-balanced. An
example of this appears in figure 13.7.

 A remote EJB lookup requires that you specify a JNDI provider URL for a JNDI
server. The client looks up the EJB and downloads the client stub. The stub con-
tains information about all the servers being load-balanced, as well as the load-
balancing algorithm being used. Once more, check your vendor documentation
for the various JNDI properties that you need for creating the InitialContext.
You may have to do some configuration in your EJB applications to enable load
balancing between different application server instances.

 If you want to use load balancing for stateless session beans, as a developer
you’ll have to do the following:

Figure 13.7 The stub that is downloaded by the client is instrumented with the load-balancing
algorithm and has knowledge of the load-balancing servers.

Clustering EJB applications 493
■ Build a remote interface for your stateless session bean and expose the
appropriate methods in the remote interface.

■ Reduce the number of method invocations by using a coarse-grained ses-
sion bean.

■ Make appropriate configurations using the vendor-specific deployment
descriptors if required.

■ Because the client code for the EJB needs to know that you are using clus-
tered application server instances, provide the URL for the clustered JNDI
server or application server.

The disadvantage of this approach is that it will only work for stateless applica-
tions, not when using stateful session beans. We tackle that situation next!

13.4.3 Clustering stateful session beans

As you know, stateful session beans are used to maintain conversation state
between the client and server by storing the state in instance variables. If you
want end-to-end availability for your applications, then you have to maintain
state. You probably also want session state to be replicated to other servers, so
that if one server crashes the client state is restored from another server, as
shown in figure 13.8. Assume that when a client accesses a stateful session bean
in a cluster it gets bound to a stateful EJB in Server 2. It establishes a conversa-
tion, and state is stored in the bean instance in Server 2. Because we have ses-
sion state replication enabled for the EJB, the state is replicated to Server 1 and
Server 3. If Server 2 should happen to crash, then the client will be routed to
one of the other servers and the conversation state will be restored.

 Application servers support several mechanisms to propagate changes in the
session state, such as IP multicasting peers and peer-to-peer. The session state
change is copied to other servers in the group when one of the following occurs:

■ At regular intervals (such as the end of every method call)
■ When a JVM is terminated
■ At the end of a transaction

Refer to your vendor documentation to learn what propagation mechanisms are
supported for session replication. Additionally, you have to make changes in your
session bean configuration using either a proprietary annotation or a deploy-
ment descriptor to enable session replication. This will set the appropriate prop-
agation mechanism for your session bean. To expedite the configuration process,

494 CHAPTER 13
Taming wild EJBs: performance and scalability
we recommend that you check your vendor’s documentation before you imple-
ment stateful session bean clustering.

 Here are some best practices we recommend to developers for using stateful
session bean clustering:

■ Check whether you really need stateful session beans and have to replicate
the session for them. Stateful session bean replication requires expensive
serialization, propagation of the serialization, and deserialization of the
session state.

■ Make sure any required session state is minimal. Most vendors recommend
that you not store stateful objects larger than 4KB. When storing a state, it
is better to store a key rather than a large entity object in the session state.
Perform some testing on your applications if you think you need more
state than this. The common technique to get around the 4KB limit is to
store only one or more session keys in the state, and use these to retrieve
the larger data on the server where it is used.

Figure 13.8 Session state is replicated to other servers based on the
server: 1) clients establish a session with a stateful bean in Server 2; 2)
conversation state is replicated to Server 1 and Server 3 because state
replication is enabled; and 3) if Server 2 crashes, the client gets routed
to either Server 1 or Server 3 and there will be no loss in its state.

Clustering EJB applications 495
■ Don’t hard-code any vendor-specific annotations to enable session replica-
tion. Instead, use vendor-specific deployment descriptors.

■ The client code for an EJB needs to know that you are using clustered
application server instances and enabling session replication. Therefore,
you have to provide the URL for the clustered JNDI server or application
server that knows about this information.

13.4.4 Entities and clustered cache

Section 13.3 covered how you can enable caching for your persistence unit if you
want to enhance the performance of your applications. However, if you are using
the same entities in multiple server instances, then each instance has its own
cache. It is highly likely that your cache may become stale or out of synch with the
actual data when a client writes to the database. If you are using entities in an
enterprise application and you want to make the application readily available,
then you must have some mechanism to synchronize the cache between different
server instances. The approach we’ll discuss is depicted in figure 13.9.

 Because EJB 3 JPA implementations are new, very few application servers will
provide this feature. At the time of this writing, only JBoss’s and Oracle’s imple-
mentations provided support for distributed cache synchronization.

 It’s a very challenging task to synchronize the cache for a large distributed
application, and this becomes nearly impossible when you have a large number of
server nodes. You must keep this in perspective when designing the application.
The persistence providers typically depend on the clustering configuration of the
application servers, which may use IP multicasting, RMI, or JMS to synchronize
the caches. Check your vendor documentation for their level of support.

Figure 13.9 Distributed cache synchronization is used to synchronize the entity cache between two
different Java EE containers.

496 CHAPTER 13
Taming wild EJBs: performance and scalability
Remember to

■ Determine whether you really need distributed cache synchronization.
Check your vendor documentation to see whether it is supported.

■ Analyze your refresh policy. Caching and refreshing queries may not yield
the best results in a distributed cache situation.

■ Confirm whether the caching solution provides a distributed transactional
guarantee. Compare your persistence provider’s support against commer-
cial caching solutions such as Tangosol’s Coherence. Using a distributed
cache is not recommended in a highly transactional system. It is difficult to
achieve good performance from a distributed cache.

13.5 Summary

In this chapter we provided several guidelines to tame those wild EJBs. First, we
discussed various types of locking strategies. The EJB 3 JPA specification requires
support for optimistic locking of entities.

 We then turned our attention to entity tuning. You can improve performance
of your persistence tier by making some modeling and/or schema changes, writ-
ing appropriate queries, and working with your DBAs to create appropriate
indexes for your database. Persistence providers use caching to reduce round-
trips to the database, and you may benefit from using an appropriate caching
strategy to increase your entity performance.

 We explored several ways to optimize the performance of session beans and
MDBs. We also surveyed the scalability and availability landscape. EJB clustering
is not covered in the specification, and we encourage you to evaluate the cluster-
ing support in the application server of your choice.

 The next chapter considers EJB 3 migration and interoperability issues.

Part 5

Migration and
interoperability issues

In the final part of this book, we explore some of the issues you are bound
to come across while using EJB 3 in the real world. These advanced topics are
primarily geared toward migration, system integration, and interoperability.

 If you are already using EJB 2 and are looking at EJB 3, chapter 14 is criti-
cally important to you. The chapter discusses migrating from EJB 2 to EJB 3 in
great detail. We first see how EJB 2 and EJB 3 can coexist in the short run if
necessary. We then look at migrating EJB 2 session beans and MDBs to EJB 3,
followed by migrating applications using EJB 2 CMP entity beans, JDBC DAOs,
and proprietary O/R frameworks such as Hibernate/TopLink to JPA.

 In chapter 15, we move on to the red-hot topic of enabling interoperability
through web services. In this chapter we show you how EJB 3 and web services
can help integrate Java EE with other disparate technologies such as Microsoft
.NET. You’ll learn how EJB 3 and web services relate to each other and how
stateless session beans can be exposed as web services utilizing Java XML Web
Service (JAX-WS) 2.0 support.

 Finally, we tackle what very well might be the most intriguing topic of the
book: Spring and EJB 3. EJB 3 and the Spring framework are often viewed
as competing frameworks. In chapter 16, we present a slightly different take
on things. We show you how EJB 3 opens the door to the possibility of inte-
grating with Spring in several ways and combining the power of both of
these technologies.

Migrating to EJB 3
This chapter covers
■ Migrating session beans and MDBs
■ Migrating CMP entity beans
■ Migrating JDBC DAO and O/R frameworks
499

500 CHAPTER 14
Migrating to EJB 3
In today’s IT world, migration has become an integral part of the application
development lifecycle. Software products and technology change every few years,
requiring the migration of applications from one platform (or one version) to
another. From a budget standpoint, migration is certainly less expensive than
rebuilding applications, and thus easier to justify to management. IT shops nor-
mally migrate their applications to increase their longevity and improve main-
tainability. Countless applications have been written using EJB 2 and many of
these applications will be migrated to use EJB 3. Many customers who have built
their persistence tier using JDBC, JDO, or O/R frameworks like Hibernate or
TopLink will be migrating to the EJB 3 JPA, since it is the new industry-standard
persistence API for the Java platform. Some companies may only be able to justify
migrating a portion of their applications to EJB 3, leaving others living in an EJB
2 world. This will introduce a new wave of interoperability issues.

 In this chapter we look at the compatibility, interoperability, and migration
issues that will surface as you migrate to EJB 3. You may be under the gun to
migrate your applications to EJB 3; this may even be the first chapter you’re read-
ing in this book. Be advised that you should not consider this chapter the sole ref-
erence for all migration issues, although we’ll try to address the more common
scenarios that you’re likely to encounter.

 This chapter assumes some familiarity with EJB 2. Once more, we’ll use the
ActionBazaar application to illustrate migration to EJB 3. Forget for a while that
you built ActionBazaar using EJB 3, and pretend that it was originally developed
using varieties of EJB 2 technologies such as session beans and CMP entity beans.

14.1 Backward compatibility and
interoperability with EJB 2

Up to this point in the book we have focused almost exclusively on EJB 3. If you’ve
used EJB 2 you realize that there have been drastic changes between the two ver-
sions. You may be wondering what will happen to your application when you
deploy to a container that supports EJB 3. You might also be wondering what will
happen if you have two EJB 2 applications that interact with each other when you
migrate one of them to EJB 3. Let us put your mind at ease.

 The EJB 3 specification requires that all complying containers support EJB 2.
This should help relieve any concern as far as upgrading from your existing
application server to one that is EJB 3 compliant. However, it seems likely that
you will need to do something to make your old apps work in the shiny new EJB 3
app server, and you’ll want to make some changes that allow them to talk to newly

Backward compatibility and 501
interoperability with EJB 2
minted EJB 3 apps. In this section we’ll explore what it will take to package appli-
cations and invoke components that contain EJBs from both versions.

14.1.1 Packaging EJB 2 and EJB 3 together

Unless you’re in the enviable situation of conducting green-field development
with EJB 3, there is a chance your EJB 3 application will need to peacefully coex-
ist with your EJB 2 applications and components, and vice versa. More than that,
you’ll probably want them to work together, interoperating with each other.

 Now there are several possibilities for using EJB 2 and EJB 3 together. Maybe
you have decided to migrate a selected group of application components to
EJB 3, while leaving some components in earlier versions as a part of an incre-
mental migration. Another common case is where a newly developed EJB 3 appli-
cation wants to leverage an existing EJB 2 component. Yet another instance could
be that the developers decide to migrate the persistence tier of ActionBazaar
built using CMP 2 to use the EJB 3 JPA, leaving all the session beans and MDBs
implemented in EJB 2. A less likely but possible case is that you decide to move
the business logic tier of your applications to EJB 3, and leave the persistence tier
built with CMP 2 untouched. EJB 3 supports all these scenarios and makes the EJB
3 JPA available for use with session beans and MDBs built using EJB 2.

 The first EJB 3 migration item to be aware of is that if you want to pack-
age both EJB 2–style beans and EJB 3 beans and JPA entities in the same EJB
module, then you must set the version attribute of the ejb-jar module to 3.0
as follows:

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar version="3.0"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd">
...
</ejb-jar>

If you specify a version other than 3.0 (e.g., 2.1), then the EJB container will
assume the EJB module is an older version and won’t scan for annotations. This
means it won’t detect EJB 3 beans, or detect the persistence unit containing enti-
ties packaged in the EJB module. Make sure that version is either set to 3.0 or not
specified at all.

ejb-jar version 3.0
required

502 CHAPTER 14
Migrating to EJB 3
14.1.2 Invoking EJB 2 from EJB 3

You can invoke EJB 2 session or entity beans from EJB 3 session beans or
MDBs. You can even use dependency injection to invoke an EJB 2 bean. To
illustrate the latter, assume that you have an EJB 2 bean (ChargeCredit) that
charges a credit card. Use the @EJB annotation to inject an instance of a home
object for ChargeCredit in an EJB 3 POJO like this:

@Stateful
public PlaceOrderBean implements PlaceOrder {
..
@EJB
public ChargeCreditHome creditHome;
..
void chargeCreditCard(){
...
ChargeCredit chargeCredit
 = creditHome.create();
String confirmationNo
 = chargeCredit.add(billingInfo, amount);
..
}

ChargeCredit and ChargeCreditHome are the remote and home interfaces, respec-
tively, of ChargeCreditEJB. Use the create method to get a reference to the
remote interface, and then invoke the desired business method (in this case add)
on the bean. As you can see from this example, EJB 3 supports the EJB 2 concepts,
and the programming model is straightforward.

 If, instead of calling an EJB 2 session bean you’d like to invoke an EJB 2 CMP
entity bean from EJB 3, you’d follow a similar approach to the previous exam-
ple. Assume that ActionBazaar used EJB 2 CMP entity beans for its persistence
tier. The specific case we’ll discuss is one in which the PlaceBid EJB persists the
Bid bean as follows:

@Stateless
public PlaceBidBean implements PlaceBid {
 ...
 @EJB
 public BidLocalHome bidLocalHome;
 ...
 BidLocal bidLocal = bidLocalHome.create(BidDTO);
 ...
}

In this example, we create a bean instance (BidDTO) by using a data transfer object
(DTO). We’ll discuss the DTO design pattern in section 14.3, but essentially the

Backward compatibility and 503
interoperability with EJB 2
DTO is used to transfer business object state, not necessarily behavior, across
application tiers. Recall that creating an entity bean instance will ask the con-
tainer to persist the bean instance in the database.

 That covers calling EJB 2 from EJB 3, but what about the other way around?
Read the next section to solve this mind-numbing mystery… actually, there’s
nothing mind-numbing about it—it’s almost as simple as what we just covered.
Go ahead—see for yourself.

14.1.3 Using EJB 3 from EJB 2

You can use both EJB 3 session beans and the EJB 3 JPA from EJB 2 applications.
Although there were some discussions in the EJB 3 Expert Group on adding sup-
port for dependency injection for EJB 2–style beans, the EJB 3 spec does not
require support for injection with EJB 2 (although some vendors may decide to
provide it). If your server does not support EJB 2 dependency injection, you must
use good old-fashioned JNDI lookup to access EJB 3 session beans and the EJB 3
EntityManager from EJB 2 beans. This is shown in figure 14.1.

The method is similar to using EJB 3 beans or JPA using JNDI lookup (which we
discussed in chapter 12).

Using EJB 3 session beans from EJB 2
Pretend for a moment that the PlaceBid EJB is an EJB 2 session bean that invokes
CheckCredit in a partner application, KabadiBazaar, but that CheckCredit is an
EJB 3 session bean. You must have an ejb-ref or ejb-local-ref element in the
ejb-jar.xml to establish the reference to the CheckCredit EJB as follows:

Figure 14.1
It is possible to use EJB 3 beans as well as
the JPA EntityManager in EJB 2 by looking
them up from the JNDI context.

504 CHAPTER 14
Migrating to EJB 3
<session>
 <ejb-name>PlaceBidBean</ejb-name>
 <home>actionbazaar.buslogic.PlaceBidHome</home>
 <remote>actionbazaar.buslogic.PlaceBid</remote>
 <ejb-class>actionbazaar.buslogic.PlaceBidBean</ejb-class>
 <session-type>stateless</session-type>
 ...
 <ejb-local-ref>
 <ejb-ref-name>ejb/CheckCredit</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>kabadibazaar.buslogic.CheckCredit</local>
 <ejb-link>kabadibazaar-ejb.jar#CheckCreditBean</ejb-link>
 </ejb-local-ref>
</session>

The only difference between the standard deployment descriptor and this one is
that the ejb-local-ref element does not have a local-home element. This is
because the EJB 3 session bean does not require a home interface. In your appli-
cation you can use JNDI to look up remote beans with ref-name as follows:

public class PlaceBidBean implements SessionBean { //EJB 2 bean
 ...
 public void addBid(Bidder user, double amount) {
 CheckCredit checkCredit = (CheckCredit)
 context.lookup("java:comp/env/ejb/CheckCredit");
 checkCredit.addBid(user, amount); }

@Stateless
public class CheckCreditBean implements CheckCredit{//EJB 3 bean}

The JNDI lookup is identical whether you’re using EJB 2 or EJB 3.

Using the EJB 3 JPA from EJB 2
You can use either a container- or an application-managed EntityManager in your
EJB 2 beans. Assume that ActionBazaar migrated only the persistence tier to JPA.
To use the container-managed EntityManager from an EJB 2 bean, you’d define
the persistence-context-ref for the EJB 2 bean as follows:

<session>
 <ejb-name>PlaceBidBean</ejb-name>
 ...
 <persistence-context-ref>
 <persistence-context-ref-name>
 ActionBazaarEntityManager
 </persistence-context-ref-name>
 <persistence-unit-name>actionBazaar</persistence-unit-name>
 </persistence-context-ref>
</session>

JNDI lookup

Migrating session beans 505
Next, you would look up an instance of a container-managed EntityManager via
JNDI as follows:

Context context = new InitialContext();
EntityManager entityManager = (EntityManager)
 context.lookup("java:comp/env/ActionBazaarEntityManager");
...
entityManager.persist(bid);

Notice that this JNDI lookup appears to be like all the others in the book. The
only special thing you would have to do is to package a persistence.xml that
describes the persistence unit and set version="3.0" in the ejb-jar.xml. It’s start-
ing to look familiar, isn’t it? Using EJB 3 from EJB 2 boils down to

■ Making some modifications to your deployment descriptors
■ Working a little JNDI magic to get object references (if your server doesn’t

support dependency injection for EJB 2)

That’s all there is to it! It’s so simple that this concludes our discussion on back-
ward compatibility and interoperability of EJB applications.

NOTE The EJB specification requires that an EJB container be interoperable
with CORBA applications using RMI-IIOP. While this is possible, we
don’t think this is commonly used so we won’t discuss it in this chap-
ter. If your application requires interoperability with CORBA, we sug-
gest you explore this on your own by referring to the EJB 3 Core
Contracts specification.

The new way to achieve interoperability with heterogeneous systems is web ser-
vices. In chapter 15 we discuss exposing EJB 3 stateless session beans as web
services and invoking web services from EJB 3 applications. But that’s a whole
chapter away, and we’re not through talking about migration yet. Let’s see;
we’ve talked a bit about swapping bean invocations between EJB 2 and EJB 3—
what do you say we explore how to migrate session beans next?

14.2 Migrating session beans

If you’re using EJB 2 session beans (which will be supported for a while by many
major vendors), why you would migrate to EJB 3? Here area few reasons that
come to mind:

506 CHAPTER 14
Migrating to EJB 3
■ You may be releasing a new version of your application and you want to
take advantage of new EJB 3 features such as interceptors and depen-
dency injection.

■ Migrating beans to use EJB 3 will simplify your code and improve main-
tainability of your application. Because EJB 3 is POJO based, you can also
simplify your unit tests.

■ Migrating your applications will renew your applications for a few more
years.

Migrating session beans to EJB 3 is quite easy because it is as simple as

■ Pruning the existing EJB code to make it a POJO

■ Defining at least one business interface
■ Using annotations instead of a deployment descriptor
■ Replacing redundant JNDI code with dependency injection

The remainder of this section further breaks down the details involved in migrat-
ing session beans from EJB 2 to EJB 3.

14.2.1 Converting interface and bean classes

An EJB 2 session bean has at least one component interface (local or remote),
one home interface, and one bean class. The component and home interfaces
extend the EJB-specific interfaces, while the bean class implements the javax.
ejb.SessionBean interface. After you migrate your bean to EJB 3, it is a POJO
and the bean class implements its business interfaces. Table 14.1 summarizes
the changes between EJB 2.1 and EJB 3.

Table 14.1 EJB 2 required many interfaces that needed to extend EJB-specific interfaces. EJB 3
makes the home interface optional.

Components of a Session Bean EJB 2 EJB 3

Remote or local component
interface

Extends either EJBObject
or EJBLocalObject

Business interface (POJI).

Home interface Extends EJBHome or
EJBLocalHome

Optional for maintaining
EJB 2 client view. Candidate
for removal.

Bean class Implements javax.ejb.
SessionBean

Implements business interface.

Migrating session beans 507
Given that the home interface is optional, you can consider it deprecated. We
recommend you begin the process of making the shift away from the home
interface in both your thinking as well as your code. More on removing the
home interface in the sections ahead...

Interfaces
If you need to migrate your component interfaces, we’ve got just the recipe; you’ll
have to make the following changes:

■ Your component interface (remote or local) becomes a regular business
interface. In other words, it does not extend one of the EJB interfaces.

■ Your business methods don’t have to throw unnecessary exceptions such as
RemoteException.

Figure 14.2 summarizes these differences.

Let’s walk through this modification with an example. Consider the following
remote interface of the PlaceBid EJB using EJB 2:

public interface PlaceBid extends EJBObject {
 public Long addBid(String userId, Long itemId, Double bidPrice)
 throws RemoteException,
 CreateException,
 FinderException,

Figure 14.2 The changes necessary to migrate EJB 2 business interfaces
to EJB 3. You do not have to extend EJB-specific interfaces or throw RMI or
EJB exceptions in the methods.

508 CHAPTER 14
Migrating to EJB 3
 NamingException;
}

The addBid method throws CreateException and FinderException because the
bean class uses CMP 2 entity beans and throws NamingException because it
uses JNDI.

 After migration to EJB 3, the remote interface will look like this:

@Remote
public interface PlaceBid {
 public Long addBid(String userId, Long itemId, Double bidPrice);
}

Ah, that’s better, isn’t it? This code assumes that we have migrated the EJB 2 CMP
entity beans to use the EJB 3 JPA and are no longer required to throw Finder-
Exception and CreateException. In addition, we’ve defined the interface as a
remote business interface with the annotation @Remote.

 Unless you need the home interface (also known as adapted home) for back-
ward compatibility with EJB 2 clients, you probably won’t need it, so seriously con-
sider removing it. We’ll explain how to use the home interface with the EJB 3
session bean, if for some reason you’re unable to migrate a client application that
is dependent on your EJB.

 If you decide to use a deployment descriptor, then you must remove the home
or local-home element and not have a home interface; otherwise, your EJB mod-
ule will fail to deploy. The container should generate deployment errors if you
forget to do this, and will identify the line number in the deployment descriptor.

The bean class
Migration of a session bean class is just as straightforward as component inter-
faces. Here are some changes you’ll need to make:

■ Your bean class doesn’t have to implement the javax.ejb.SessionBean
interface. Just make the bean a POJO and have it implement the busi-
ness interface.

■ You don’t have to implement unnecessary lifecycle methods. Furthermore,
can use any method name you want for your lifecycle methods, and you can
use annotations to mark which methods are lifecycle methods. Table 14.2
provides a list of EJB 2 methods with bean types and corresponding anno-
tations that you can use in EJB 3.

Migrating session beans 509
Figure 14.3 summarizes these migration steps.
 The business methods remain unchanged unless you’re using other resources

or EJBs. The code becomes simplified because you can use injection. This gives
you the ability to remove the JNDI code. If you are migrating EJB 2 CMP entity
beans and you have a session bean that uses the CMP entity beans, you have to

Table 14.2 EJB 2 required implementation of several lifecycle methods. If you implemented any of
your application’s business logic in any of these methods, then you can use the corresponding meth-
ods in EJB 3 to migrate that business logic.

Bean Type EJB 2 Methods EJB 3 Methods

Stateless, Stateful ejbCreate Constructor

Stateless, Stateful ejbPostCreate Method annotated with @PostConstruct

Stateful ejbPassivate Method annotated with @PrePassivate

Stateful ejbActivate Method annotated with @PostActivate

Stateless, Stateful ejbRemove Method annotated with @PreDestroy

Stateful remove method in home
interface

Method annotated with @Remove

Stateful create method in home
interface

Method annotated with @Init if the EJB 3
bean has a home interface

Stateless ejbTimeout Method annotated with @Timeout

Figure 14.3 The changes necessary to migrate EJB 2.x bean classes to
EJB 3. You don’t have to implement EJB specific interfaces in EJB 3, and
you don’t have to implement all required lifecycle methods, as in EJB 2.

510 CHAPTER 14
Migrating to EJB 3
migrate your session bean methods to use the EntityManager API. We’ll discuss
migration of entity beans to the EJB 3 JPA in section 14.3.

 You can also opt to change the security and transactions settings to use meta-
data annotations. We’ll cover those in a later section.

14.2.2 Resource usage
Your EJB applications may be using JNDI lookup to find resources such as Data-
Sources or JMS objects, and services such as EJBs or web services. Now that
dependency injection is so readily available, you can use it instead of JNDI to find
these resources. However, you have to remember the limitations of EJB 3 depen-
dency injection.

 If you’re using a DataSource, the differences between EJB 2 and EJB 3 are
shown in table 14.3.

If you’re using a JMS resource, the differences between EJB 2 and EJB 3 are shown
in table 14.4.

Table 14.3 The use of DataSource in EJB 2 was very complex and has been simplified in EJB 3 by
using dependency injection.

EJB 2 EJB 3

Define resource-ref in ejb-jar.xml
Lookup resource

Context ctx = new InitialContext();
DataSource ds = (DataSource)
 ctx.lookup("java:comp/env/
 ActionBazaarDS");
Connection conn = ds.getConnection();

Can use dependency injection

@Resource(name = "ActionBazaarDS")

private DataSource ds;

Connection conn =
 ds.getConnection();

Table 14.4 The use of JMS objects in EJB 2 was also very complex and has been simplified in EJB 3
by using dependency injection.

EJB 2.x EJB3

Define resource-ref in ejb-jar.xml
Lookup resource

Context ctx = new InitialContext();
QueueConnectionFactory qcf =
 (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/Queue
 ConnectionFactory");
QueueConnection conn =
 qcf.createQueueConnection();

@Resource(name =
 "jms/QueueConnectionFactory")
private QueueConnectionFactory qcf;

QueueConnection conn = qcf.
createQueueConnection();

Migrating session beans 511
Our comparison on how resources are declared and found between EJB 2 and EJB
3 is intended to underscore how much more straightforward dependency injec-
tion is compared to JNDI (no casting required), and how much easier it is for
developers to maintain.

14.2.3 Transactions and security settings

EJB 2 doesn’t define any default transaction and security settings for EJBs. You
have to specify the definitions yourself for each and every bean method in a ses-
sion bean. If you don’t, you’ll see different behaviors in different EJB containers.

 As discussed in chapter 6, EJB 3 defines CMT as the default transaction man-
agement type for a bean, and REQUIRED as the default transaction attribute for
bean methods. Therefore, you can simplify your transaction settings in your
deployment descriptors by only specifying those that need a transaction attribute
other than REQUIRED. Optionally, you can use annotations to define transaction
settings. The same holds true for security settings. You can leave the security set-
tings as is in the deployment descriptor, or use the security annotations discussed
in chapter 6.

14.2.4 Client applications

Session beans are server-side components that encapsulate business logic and may
be accessed either by remote or local clients. The client for an EJB could be
another EJB in the same container, a separate container, a web module, or an
application client. When you migrate any session bean to EJB 3, the clients will be
impacted. This is mostly due to the fact that home interfaces are no longer
needed. All client applications will have to be modified to use the EJB 3 client view.
The ejb-ref or ejb-local-ref element in the client application’s descriptor will
also need to be modified to remove the home element, and the client code will have
to be updated to look up the business interface instead of the home interface.

 The old EJB 2 client code for the PlaceBid session bean would look like this:

Context context = new InitialContext();
PlaceBidHome placeBidHome =
 (PlaceBidHome) PortableRemoteObject.narrow(
 context.lookup("java:comp/env/PlaceBid"), PlaceBidHome.class);

PlaceBid placeBid = placeBidHome.create();
newBidId = placeBid.addBid(userId, itemId, bidPrice);

The migrated client code for the PlaceBid EJB will look like this if you continue to
use JNDI:

512 CHAPTER 14
Migrating to EJB 3
Context context = new InitialContext();
PlaceBid placeBid = (PlaceBid)context.lookup("java:comp/env/PlaceBid");
Long newBidId = placeBid.addBid(userId, itemId, bidPrice);

If your client is a managed class and uses the Java EE 5 API, you can migrate the
client to use dependency injection and further simplify the client code:

@EJB private PlaceBid placeBid;

Long newBidId = placeBid.addBid(userId, itemId, bidPrice);

So the original EJB 2 lookup took around eight lines of code. The EJB 3 refactor-
ing reduced this to two lines of code, regardless of whether you use JNDI or
dependency injection—in this case. Of course, your mileage may vary but we
think you’ll immediately see some benefits to migrating this code to the new pro-
gramming model available in EJB 3.

Maintaining backward compatibility with EJB 2 clients
There may be various cases when you cannot afford to migrate your client appli-
cations, but you want to move your session beans to EJB 3. This will primarily be
an issue when you have a remote interface for a session bean that is used by sep-
arate applications, some of which you don’t have control over. Or perhaps you’re
an independent software vendor (ISV) that sells packaged applications and cus-
tomers may be using your EJB in their EJB 2 applications.

 To demonstrate this, imagine that many ActionBazaar Gold customers use
rich client applications that remotely access EJBs such as PlaceBid. Now that
PlaceBid has been migrated to EJB 3 (POJOs, regular interface, etc.), the rich cli-
ent applications will break unless you update them. In this release of Action-
Bazaar you aren’t making any client-side changes because you don’t want to
distribute a newer version of client applications to your customers. At the same
time you don’t want your client applications to break. Client applications of EJB 2
session beans use the create method on the home interface to create an EJB
object instance. You can add a home interface and expose a create method in
the home interface as follows:

import javax.rmi.RemoteException;
import javax.ejb.*;

public interface PlaceBidHome extends EJBHome {
 public PlaceBid create() throws CreateException, RemoteException;
}

Then use the @RemoteHome annotation on the bean class to mark this as a remote
home interface as follows:

Migrating CMP 2 entity beans to the EJB 3 JPA 513
@Stateless(name = "PlaceBid")
@RemoteHome(PlaceBidHome.class)
public class PlaceBidBean implements PlaceBid {
}

If you want to maintain backward compatibility with local EJB 2 clients, then you
can use the @LocalHome annotation. You must remember that you can’t use the
@javax.ejb.LocalHome and @javax.ejb.RemoteHome annotations in the home
interfaces but only in the bean classes.

 This concludes our discussion on migrating session beans. There’s not much
to it, is there? Let’s now move to a discussion on migrating MDBs before we jump
into more complex migration tasks involving CMP entity beans.

14.3 Migrating message-driven beans

MDBs have been simple Java classes since their introduction in EJB 2, and do
not require remote or home interfaces, or unnecessary lifecycle methods. Not
many changes to MDBs transpired in EJB 3, so migration of MDBs to EJB 3 is an
easy task.

 Unlike EJB 2, EJB 3 doesn’t require that your MDB class implement the
javax.ejb.MessgeDrivenBean interface, and the deployment descriptor is now
optional. You may prefer to use the @MessageDriven and @ActivationConfig-
Property annotations instead of the complementary deployment descriptors to
activate configuration properties. You can migrate your lifecycle methods to cus-
tom methods and annotate them with the @PostConstruct and @PreDestroy
annotations. Optionally you can change this such that resources and services use
dependency injection instead of JNDI lookup. These migration steps are similar
to what we discussed for session beans in section 14.2.2.

 This is all that’s involved to update your MDBs for EJB 3! Piece of cake! Simple
as pie! OK, now we’re getting hungry…

 The story for entity beans is not so bright; this is one of the areas that was com-
pletely overhauled for EJB 3. Are you ready to dive into the EJB 3 migration
waters for EJB 2 entity beans? You go right ahead to the next section; we’ll meet
you there.

14.4 Migrating CMP 2 entity beans to the EJB 3 JPA

Migrating CMP entity beans to the EJB 3 JPA is the most complex and involved
migration task we’ll discuss. It requires careful planning and a thorough under-
standing of your application.

514 CHAPTER 14
Migrating to EJB 3
 You now know that there are significant differences between CMP entity
beans and EJB 3 entities. CMP entity beans are coarse-grained data objects,
whereas EJB 3 entities are lightweight domain objects that represent fine-
grained data. EJB 3 entities are regular Java classes and lack some features that
CMP 2 entity beans provide, such as remoteness, declarative security, and trans-
actions. We agree with the point of view that imposing those features was a bad
idea in the first place. However, you’ll have to implement workarounds if you
used those features. If you avoided them by using best practices and design pat-
terns, then you are probably in good shape and your overall migration process
will be smoother than it would be otherwise.

 EJB 2 provided the ability to access an entity bean remotely by using remote
interfaces, but design experts recommended against this. As you’ll recall from
chapter 12, we recommend you use a session façade as a shield to front entity
beans, and use DTOs to transfer data between clients and the server. If you’ve fol-
lowed these guidelines, it will simplify your migration efforts. Another benefit of
using the DAO design pattern is that it may enable you to migrate the persistence
tier easily without much impact on the business logic tier.

14.4.1 Redesign your domain model

You should seriously consider redesigning your domain model when migrating
your CMP applications to EJB 3. CMP entity beans lacked support for OO features
such as inheritance and polymorphism. Entity beans were mere representations

Signpost up ahead: dead end for BMP entity beans

EJB 2 supported entity beans with bean-managed persistence (BMP), where the
code was developed using an API such as JDBC for persisting bean instances.
BMP was quite popular initially because CMP implementations from most applica-
tion servers were not stable. It was also useful when applications required nonre-
lational data.

However, there are some inherent issues with BMP, such as N+1 problems. Unfor-
tunately, there is no clear migration path for BMP entity beans to EJB 3. This trans-
lates into what seems like a dead end for BMP entity beans. As EJB 3 requires
support for EJB 2, BMP entity beans will be supported in EJB 3 containers.

If you’re using BMP entity beans with a relational database, we recommend you
consider migrating these to use the EJB 3 JPA. Otherwise, you may have a huge
support issue lurking in your code base!

Migrating CMP 2 entity beans to the EJB 3 JPA 515
of fragments of your database schema. Thus, in the OO purist’s lingua franca,
your domain model was probably anemic; let’s see what we can do about that!

 During your migration to EJB 3 JPA, you probably want to consider refactoring
your entities to take advantage of the object-oriented features supported by the
EJB 3 JPA. For example, assume that when ActionBazaar was built using CMP 2 it
had an entity bean named UserBean that was a representation of the USERS table.
Listing 14.1 shows the source code for this UserBean entity bean class.

public abstract class UserBean implements EntityBean {
 private EntityContext context;

 public abstract String getUserId();
 public abstract String getFirstName();
 public abstract void setUserId(String userId);
 public abstract void setFirstName(String firstName);
 public abstract String getLastName();
 public abstract void setLastName(String lastName);
 public abstract String getUserType();
 public abstract void setUserType(String userType);
 public abstract Timestamp getBirthDate();
 public abstract void setBirthDate(Timestamp birthDate);
 public abstract Long getUserBillingId();
 public abstract void setUserBillingId(Long userBillingId);
 public abstract Double getCommRate();
 public abstract void setCommRate(Double commRate);
 public abstract Long getMaxItems();
 public abstract void setMaxItems(Long maxItems);
 public abstract String getUserStatus();
 public abstract void setUserStatus(String userStatus);
 public abstract Long getCreditRating();
 public abstract void setCreditRating(Long creditRating);

 public String ejbCreate() {
 return null;
 }

 public void ejbPostCreate() {
 }

 public void setEntityContext(EntityContext context)
 throws EJBException {
 context = context;
 }

 public void unsetEntityContext() throws EJBException {
 context = null;
 }

Listing 14.1 User CMP entity bean using EJB 2

Abstract
persistent
properties

Lifecycle
methods

516 CHAPTER 14
Migrating to EJB 3
 public void ejbRemove() throws EJBException,
 RemoveException {
 }

 public void ejbActivate() throws EJBException {
 }

 public void ejbPassivate() throws EJBException {
 }

 public void ejbLoad() throws EJBException {
 }

 public void ejbStore() throws EJBException {
 }
}

While migrating the application, we looked at the ActionBazaar system and
found that there could be different kind of users, such as Bidder, Seller, or Admin.
Therefore, rather than migrating the entity bean to EJB 3, we used inheritance
and a single-table-per-entity hierarchy, as shown in listing 14.2.

 Figure 14.4 shows the results of the entity refactoring.

@Entity
@Table(name = "USERS")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "USER_TYPE",
 discriminatorType = DiscriminatorType.STRING,
 length = 1)
public class User {
}

@Entity
@DiscriminatorValue(value = "S")
public class Seller extends User {
}

@Entity
@DiscriminatorValue(value = "B")
public class Bidder extends User {
}

Listing 14.2 Remodeled User entity with inheritance

Lifecycle
methods

User superclass

Seller, which inherits
from User

Bidder, which
inherits from User

Migrating CMP 2 entity beans to the EJB 3 JPA 517
Note that remodeling the entities did not require any changes in the database
because we used a single-table-per-entity strategy, and we used the existing
USER_TYPE column as the discriminator.

 You should carefully plan and execute such a refactoring; it requires more
work and testing of your applications than just migrating your CMP entity beans
to entity classes as is. But the payoff in maintenance costs can be more than worth
that extra work if done correctly.

 In the next few sections, we’ll focus on strategies that allow you to migrate
entity beans to a JPA entity without doing any redesign.

14.4.2 Using DTOs as entities

The DTO is a commonly used design pattern. The specific benefit with respect to
entity beans is that it allows the transfer of data back and forth between remote
clients and entity beans in EJB 2. There are two types of DTOs: fine grained and
coarse grained. The fine-grained DTO often has a one-to-one mapping between
an entity bean and a DTO. The coarse-grained DTO represents data from multiple
entity beans and is also known as the View object. In reality, a fine-grained DTO
looks like a real domain object, just without any behavior; only the state of the
object is represented.

 Chapter 9 explained that this use of a DTO is no longer required because enti-
ties themselves are POJOs that can be transferred between clients and servers. If
you used the DTO design pattern and are looking to migrate your entity beans to
EJB 3 without spending any effort on remodeling, then you should consider mak-
ing each DTO a candidate for an EJB 3 entity class.

Figure 14.4 While migrating EJB 2 entity beans to EJB 3, it is likely you’ll want to refactor to take
advantage of features like OO inheritance support. In our example, the UserBean entity bean can be
refactored into a User POJO entity superclass and Bidder, Seller, and so forth entity POJO subclasses.

518 CHAPTER 14
Migrating to EJB 3
 Assume that ActionBazaar used the DTO design pattern. Listing 14.3 shows a
sample of a fine-grained DTO named UserDTO that maps to a UserBean entity bean.

public class UserDTO implements Serializable {
 private String userId;
 private Date birthDate;
 private String userStatus;
 private Double commRate;
 private Long creditRating;
 private String firstName;
 private String lastName;
 private Long maxItems;
 private Long userBillingId;
 private String userType;

 private Collection bids;

 public UserDTO() {
 }

 public String getUserId() {
 return userId;
 }

 public void setUserId(String userId) {
 this.userId = userId;
 }

 public String getUserType() {
 return userType;
 }

 public void setUserType(String userType) {
 this.userType = userType;
 }
}

Reviewing UserDTO in listing 14.3, it looks more like an entity. It’s a POJO; it has a
constructor d, fields b, and properties E required for the persistent attributes
defined. It even has a relationship defined to another DTO c that you can use as
a basis for relationships between entities. It’s worth considering making this class
an entity rather than migrating the abstract entity bean class in listing 14.1 to an
entity. You can make the DTO an entity by simply annotating it as an entity with
the @Entity annotation, and defining the O/R mapping from your vendor-specific

Listing 14.3 A DTO for the UserBean CMP

Field definition b

 c Reference to another DTO

 D Constructor

Get/Set methods e

Migrating CMP 2 entity beans to the EJB 3 JPA 519
deployment descriptor to either metadata annotations or orm.xml. Following is
the UserDTO (renamed to User) converted to an entity with a few JPA annotations:

@Entity
@Table(name = "USERS")
public class User implements Serializable {
 @Id
 @Column(name = "USER_ID")
 private String userId;
 private Date birthDate;

 ...
}

You have to make sure that you have defined all persistence fields in the entity
class by cross-checking the persistence fields defined in the deployment descrip-
tor with your entity bean. You’ll also need to migrate the ORM metadata from
the vendor-specific deployment descriptor, to either mapping annotations in the
entity class or to a mapping file. After you migrate the finder methods and
select methods to named queries, you’re almost done!

 The last step is to recall that your entity beans may have some business logic in
the business methods. You have to migrate any business methods from the entity
bean to the entity class, or to a session bean façade, as we describe next.

14.4.3 Entity bean classes and interfaces

If your applications have not used DTOs, then we’re afraid you’re in for a lot of
monotonous work as you migrate your entity beans to entities. We hope it’s evi-
dent from listing 14.1 that since the entity bean class and all methods are
abstract, you’ll have to convert the bean class to a concrete class with a constructor
and define persistence fields as well as the obligatory getter/setter methods. The
first step in migration will be similar to creating a DTO for your entity bean and
annotating it with @Entity.

 Persistence fields are actually defined in the EJB deployment descriptor.
Migrating all the fields to your bean class and creating the appropriate fields and
getter/setter methods in the entity class is required since we’re relying on depen-
dency injection to help us out at runtime. You should be able to find some devel-
opment tools and utilities to help automate these mechanical steps.

Converting interfaces
EJB 2 entity beans required two interfaces: a component (remote or local) inter-
face and a home interface. EJB 3 entities don’t require any framework interfaces,

520 CHAPTER 14
Migrating to EJB 3
so you can entirely eliminate the interfaces from your entities if you like, or con-
vert your component interface to a business interface for the entity.

 Optionally, you can use your component interface as the basis for migrating to
an entity. Listing 14.4 shows the local interface for the UserBean entity bean. A
quick glance informs us that it will be easy to migrate this interface to an EJB 3
entity. The interface has all get/set methods for the persistence fields b and the
relationships c.

public interface User extends EJBLocalObject {

 String getUserId();
 String getFirstName();
 void setFirstName(String firstName);

 String getLastName();
 void setLastName(String lastName);

 String getUserType();
 void setUserType(String userType);

 Date getBirthDate();
 void setBirthDate(Date birthDate);

 Long getUserBillingId();
 void setUserBillingId(Long userBillingId);

...

 Collection getBids();
 void setBids(Collection bids);
}

If you haven’t used a DTO, we recommend you start with the local interface as the
basis for creating your entity class.

 The home interface in the entity bean serves as the factory method to create,
remove, and query bean instances. You can remove the home interface and
migrate your finder methods to named queries, as we discuss later in the section.
The create and remove methods are replaced with EntityManager operations.
Optionally, you can migrate the home interface to be used as a session façade that
exposes all factory methods such as create and remove to minimize the impact on
client applications. We’ll discuss this in section 14.4.4.

Listing 14.4 Local interface for the UserBean CMP

Get/set methods for
persistence fields

 b

Get/set methods for
relationship fields

 C

Migrating CMP 2 entity beans to the EJB 3 JPA 521
Identifying the primary key
Like the persistence fields, the primary key for CMP 2 is defined in the deploy-
ment descriptor. For example, the primary key for the UserBean entity bean is
defined in the deployment descriptor as follows:

...
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>false</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>User</abstract-schema-name>
<cmp-field>
 <field-name>userId</field-name>
</cmp-field>
...
<primkey-field>userId</primkey-field>
...

You identify the primary key of the entity class in EJB 3 using the @Id annotation:

@Id
private String userId;

CMP 2 did not support the automatic generation of primary key values; this
required the use of workarounds such as the Sequence Generator pattern, or ven-
dor-specific extensions to either database sequence or table sequence generators.
If you happened to use such features, then you must migrate them to one of the
primary key–generation strategies that we discussed in chapter 8.

Creating O/R mapping
The ORM metadata such as table and column mapping for EJB 2 entity beans is
defined in the vendor-specific deployment descriptor. Move those mappings to
entity classes by using the @Table and @Column annotations, as discussed in chap-
ter 8. Optionally, you can move them to an OR mapping file, as discussed in
chapter 11.

Lifecycle methods
EJB 2 required you to implement a lot of lifecycle methods—a lot. These methods
are template methods and are rarely used. It’s possible that you may have imple-
mented some business logic in these methods. You can migrate the business logic
for the lifecycle methods to the entity listener callback methods discussed in
chapter 9. Table 14.5 summarizes the methods that you can migrate from EJB 2
lifecycle methods to entity callback methods in EJB 3.

522 CHAPTER 14
Migrating to EJB 3
If you’re like us, you welcome the move away from all these required lifecycle
methods. It’s long overdue!

Finding an alternative to EntityContext
The EJB 2 entity bean provided environment information with the javax.ejb.
EntityContext object. EJB 3 entities are no longer components and therefore do
not have contexts of their own. This means there is no EntityContext equivalent in
EJB 3. You have to migrate the use of EntityContext to one of the appropriate
alternatives. One of the most commonly used methods in the EntityContext is the
getPrimaryKey method. You can create a business method to expose the primary
key of the entity to the caller. As outlined in table 14.3, the setEntityContext and
unSetEntityContext methods are now candidates for removal because they are no
longer supported.

Business methods
It’s quite possible that you may have business methods in your entity classes that
are using JNDI to find other entity beans. Perhaps you are using the ejbSelect
method of another entity bean (e.g., ItemBean) in a business method of UserBean.
You could migrate this code to the entity class by using a named query of the
entity class. This would require grabbing an instance of the EntityManager using
JNDI. However, we recommend against the approach of using JNDI code within

Table 14.5 EJB 2 required implementations of many lifecycle methods. EJB 3 allows you to define
lifecycle callback methods. This table lists the corresponding methods for EJB 3 JPA that you can
use to migrate an entity bean’s lifecycle methods.

EJB 2 Lifecycle Method Migrated EJB 3 JPA Entity

ejbCreate Constructors in the entity class.

ejbPostCreate A method annotated with @PostPersist.

ejbRemove A method annotated with @PreRemove.

setEntityContext,
unSetEntityContext

EntityContext is not supported in EJB3 JPA.
Candidate for removal.

ejbActivate, ejbLoad
A method annotated with @PostLoad as per the
application requirement.

ejbPassivate Candidate for removal.

ejbStore
A method annotated with either @PrePersist or
@PreUpdate depending on the application requirement.

Migrating CMP 2 entity beans to the EJB 3 JPA 523
your entity classes because it will limit its usability to relying on the container.
This boils down to a scenario where you cannot test or use it outside the con-
tainer. We suggest that you take this opportunity to migrate such code to the ser-
vice layer (i.e., the session façade).

Finder and select methods
If you’ve used CMP entity beans in EJB 2, you know that finder and select meth-
ods are defined in the home interface for the entity bean as shown here:

public interface UserLocalHome extends EJBLocalHome {
 User create() throws CreateException;
 User create(String userId, String firstName, String lastName,
 String userType) throws CreateException;

 User findByPrimaryKey(String primaryKey) throws FinderException;

 Collection findAll() throws FinderException;

 Collection findByFirstName(String name) throws FinderException;
}

Notice the two custom finders. The query for the finder methods (findAll and
findByFirstName) are defined in the ejb-jar.xml using EJBQL as defined here:

<query>
 <query-method>
 <method-name>findById</method-name>
 <method-params/>
 </query-method>
 <ejb-ql>select object(o) from User o WHERE o.id = ?1</ejb-ql>
</query>

<query>
 <query-method>
 <method-name>findByFirstName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 SELECT OBJECT(u) FROM User u WHERE u.firstName LIKE ?1
 </ejb-ql>
</query>

The finder methods and select methods in the bean class can be converted to
named queries in the User entity class like so:

@Entity
@NamedQueries({
 @NamedQuery(

524 CHAPTER 14
Migrating to EJB 3
 name = "findUserById",
 query = "SELECT u FROM User u where u.id=?1"
),
 @NamedQuery(
 name = "findUserByFirstName",
 query = "SELECT u FROM User u WHERE u.firstName LIKE ?1"
)})

public class User implements Serializable {
...
}

While migrating the finder methods to named queries, we have changed the name
of the named queries to unique names (findUserById from findById), because
named queries are scoped for the persistence units. This is unlike finder methods
that can be invoked only on an entity bean instance. You will notice that we have
used the simplified syntax of a JPQL query. Optionally, you can migrate your
query to an ad hoc or dynamic query in your session façade, but we recommend
against that due to the performance reasons we discussed in chapter 13.

Container-managed relationships
In EJB 2.1, relationships are defined in deployment descriptors. Listing 14.5
shows the descriptor elements that define a unidirectional, one-to-one relation-
ship between the User and ContactDetail entity beans, and a one-to-many rela-
tionship between the User and Bid entity beans.

<ejb-relation>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Users may have one ContactDetail
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>User</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>contact_contactUserId</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

<ejb-relation>
 <ejb-relation-name>Bids - Users</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Bids may have one User

Listing 14.5 Container-managed relationship defined in the deployment descriptor

Unidirectional one-to-
one relationship

Migrating CMP 2 entity beans to the EJB 3 JPA 525
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>Bids</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>bidder</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 User may have many Bids
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>User</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>bids</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

The relationships need to be migrated to the entity class using the appropriate
association annotations such as @OneToOne or @OneToMany. Note that we have used
Java Generics and changed the association field to a Set from Collection type
and such change will require appropriate changes in the client code. The simpli-
fied code looks like this:

@Entity
public class User {
 @Id
 protected String userId;
 protected String email;
 @OneToOne
 protected ContactDetail contactDetail;
 @OneToMany(mappedBy = "bidder")
 protected Set<Bid> bids;
 ...
}

@Entity
public class ContactDetail {
 @Id
 protected Long contactId;
 ...
}

Bidirectional one-to-
many relationship

526 CHAPTER 14
Migrating to EJB 3
@Entity
public class Bid implements Serializable {
 @ManyToOne
 protected User bidder;
 ...
}

In EJB 2, entity beans supported the concept of container-managed relation-
ships. The container was automatically updating the reverse side of relationships
when one side was updated. When migrating your relationships to EJB 3, you
have to be aware that you are now responsible for managing both sides of your
relationships. For example, if you had the following method in the User entity to
update a relationship:

public addBid(Bid bid) {
 getBids.add(bid);
}

you’d have to change this code to add the back pointer (i.e., set the relationship
from Bid to User) as follows:

public void addBid(Bid bid) {
 getBids().add(bid);
 bid.setUser(this);
}

As you can see, there’s not a lot of code involved, but the burden of keeping
things bidirectional falls squarely on your shoulders now.

Transactions and security settings
CMP entity beans provided the ability to specify transactions and security settings
for bean methods. In practice, these were rarely used in favor of the more popular
session façade approach. EJB 3 entities don’t provide such facilities, which means
that you need to move security and transaction settings to your session façades.

14.4.4 Client applications

In EJB 3, we use the EntityManager API to perform entity operations such as
persisting, finding, and removing entities. In EJB 2 the home interface acted
as a factory interface to provide methods to create, remove, and find entity
bean instances. Clients used these methods to persist, remove, and query bean
instances. In the new EJB 3 world, client applications should be modified to
use the EntityManager API.

 Let’s say we have an EJB 2 newUser method in the BazaarAdminBean that is a
session façade used to create an instance of a User entity bean as follows:

Migrating CMP 2 entity beans to the EJB 3 JPA 527
public void newUser(UserDTO user) throws
 CreateException,
 FinderException,
 NamingException {

 User userLocal = getUserLocalHome().create(
 user.getUserId(),
 user.getFirstName(),
 user.getLastName(),
 user.getUserType());
 ...
}

Our example code uses a DTO named UserDTO. After migration, the client code
(where User is an entity) will look much simpler:

public void newUser(User user) {
 getEntityManager().persist(user);
}

Similarly, you can migrate other operations, such as removal, or queries to use
the EntityManager API. You have to remove the client code to handle exceptions
such as CreateException and FinderException that were previously required to be
handled in CMP entity beans but are no longer imposed.

Translating entity home to a session façade
It’s fairly effortless to migrate the home interface to a session façade by moving
all factory methods such as create, remove, and find to this façade. We first create
a UserLocalHome interface:

public interface UserLocalHome {
 User create(String userId, String firstName, String lastName,
 String userType) throws CreateException;

 User findByPrimaryKey(String primaryKey) throws FinderException;

 Collection findAll() throws FinderException;

 Collection findByFirstName(String name) throws FinderException;
}

This interface is exactly the same as before except it does not extend EJBLocal-
Home. The session bean implements the UserLocalHome interface and implements
all factory methods using the EntityManager API as follows:

@Stateless
public class UserLocalHomeBean implements UserLocalHome {
@PersistenceContext EntityManager em;

528 CHAPTER 14
Migrating to EJB 3
 User create(String userId, String firstName, String lastName,
 String userType) throws CreateException
 {
 User user = new User(userId, firstName, lastName, userType);

 try
 {
 em.persist(user);
 }
 catch (Exception e)
 {
 throw new CreateException(e.getMessage());
 }

 returnuser;
 }

 User findByPrimaryKey(String primaryKey) throws FinderException
 {
 try
 {
 return (User)em.find(User.class, primaryKey);
 }
 catch (Exception e)
 {
 throw new FinderException(e.getMessage());
 }
 }
}

This code throws the EJB 2–specific exceptions that may be expected by clients.
You can use this session bean façade to mimic the home interface, thereby reduc-
ing the number of changes required on the client side.

 This concludes our discussion on migrating applications using CMP entity
beans to the EJB 3 JPA. As we told you at the start of this section, migrating your
CMP beans to JPA is the most involved of the tasks you’re likely to undertake when
upgrading to EJB 3. Revising your domain model, using DTOs and session
facades, and the required API changes will all help you achieve your migration
goal. Your EJB 2 applications may already use DTOs and session facades, in which
case much of this is familiar to you. Either way, we’ve provided a roadmap that
will lead you down the migration trail.

 At this point, we know exactly what you’re thinking—OK, what you’re probably
thinking. What about all that JDBC code? You guys got any tips for converting it
to JPA? It just so happens we do, and if you mosey on over to the next section you
can see what these tips are.

Migrating JDBC DAOs to use the EJB 3 JPA 529
14.5 Migrating JDBC DAOs to use the EJB 3 JPA

Almost every Java developer in the universe has used JDBC to persist data to a
database. If your code also uses the DAO pattern, then migrating to the EJB 3 JPA
may be a relatively painless process.

 Migration from JDBC requires three major tasks:

1 Identify your entities.

2 Change the DAO implementation classes to use the EntityManager API to
perform entity operations instead of using JDBC.

3 Migrate your SQL queries to use JPQL and the EntityManager API.

These steps are summarized in figure 14.5.

The next three sections break down each of these steps, and we provide examples
to illustrate exactly what you need to do.

14.5.1 Identifying entities

This is the most challenging task in the migration process and requires a good
understanding of your application. The good news is that applications using DAOs
don’t have any impact on the business logic tier of the application, and the migra-
tion effort is limited only in the persistence tier. If you followed the DAO design
pattern religiously, you most likely created value or transfer objects (similar to
DTOs) that are used by the business tier to retrieve or update data from the data-
base. A careful look reveals that these transfer objects resemble entities. A little

Figure 14.5
The changes necessary to migrate
JDBC DAOs to the EJB 3 JPA

530 CHAPTER 14
Migrating to EJB 3
analysis is all that is required to understand the relationship between these trans-
fer objects, allowing them to safely be converted to entities.

 Suppose that ActionBazaar initially used JDBC DAOs for persistence and the
transfer object BidTO looked similar to listing 14.6.

public class BidTO implements Serializable {
 private Timestamp bidDate;
 private Long bidId;
 private Double bidPrice;
 private String bidStatus;

 private ItemTO item;
 private UserTO bidder;

 public BidTO() {
 }

 public Timestamp getBidDate() {
 return bidDate;
 }

 public void setBidDate(Timestamp bidDate) {
 this.bidDate = bidDate;
 }
}

If you look at the code for BidTO carefully, it looks surprisingly similar to the Bid
entity that we discussed in chapter 2. It even has references to the associated
transfer objects. The only difference is that it does not have JPA annotations. You
can use JPA annotations to convert your transfer objects to entities. The steps are
similar to those we listed in section 14.4.2 when we discussed considering DTOs to
be entities. Next you’ll see how to make the switch to the EntityManager.

14.5.2 Reworking a DAO implementation class
to use the EntityManager API

The database-specific implementation class has JDBC code to persist the value or
transfer object to the database. Assume that the BidDAOImpl class uses JDBC to
persist and retrieve data. The next step in the process is for you to migrate the
JDBC code to use the EntityManager API.

Listing 14.6 Bid transfer object used with a DAO

Instance
fields

Pointer to other
transfer objects

Constructor

Get/set
methods

Migrating JDBC DAOs to use the EJB 3 JPA 531
1 Replace the code that opens and closes JDBC connections to obtain an
instance of an EntityManager. For example, your BidDAOImpl class has a
method that returns a database connection. You can change that method
to return an EntityManager instance.

2 Replace your SQL INSERT/UPDATE/DELETE statements to use the Entity-
Manager API. For instance, one of BidDAOImpl’s methods has an INSERT
statement that creates an instance of Bid in the database, as seen here:

private final static String INSERT_BID_QUERY_STR =
 "INSERT INTO BIDS " +
 "(BID_ID,BIDDER_ID,ITEM_ID,BID_STATUS,BID_PRICE) " +
 "VALUES (?, ?, ?, ?, ?)";

private void insertBid(BidTO bid) {
 ...
 stmt = dbConnection.prepareStatement(INSERT_BID_QUERY_STR);

 stmt.setLong(1, bid.getBidId());
 stmt.setString(2, bid.getBidder().getUserId().trim());
 stmt.setLong(3, bid.getItem().getId());
 stmt.setString(4, bid.getStatus().trim());
 stmt.setDouble(5, bid.getBidPrice());
}

After migrating the JDBC code to use the EntityManager API, the migrated code
will look like this:

private void insertBid(Bid bid) {
 ...
 em.persist(bid);
}

Wow! Can you believe that? Similarly, you can use the em.remove and em.merge
methods to migrate the JDBC code for remove or update operations. Next we’ll
explain how you can migrate your SQL SELECT statements to use JPQL.

14.5.3 Swapping SQL queries for JPQL

Although it may be a little difficult to let go, you have to remember that there are
no equivalents for ResultSet and Rowset in the EJB 3 JPA. Most typical applica-
tions use SQL statements to retrieve data and construct transfer objects, which are
returned to the client instead of returning a ResultSet. Not following the DAO
and Transfer Object design patterns will mean additional work for you.

 Listing 14.7 shows a method in the BidDAOImpl class that returns a list of
BidTOs by retrieving a ResultSet from the database.

532 CHAPTER 14
Migrating to EJB 3
public ArrayList getBids(Long itemId) throws BidDAOException {

 PreparedStatement stmt = null;
 ResultSet result = null;
 Connection dbConnection = null;

 ArrayList bids = new ArrayList();
 try {
 dbConnection = DAOUtils.getDBConnection("jdbc/ActionBazaarDS");
 stmt = dbConnection.prepareStatement("SELECT " +
 "BID_ID,BID_STATUS, BID_PRICE FROM BIDS WHERE ITEM_ID = ?");
 stmt.setLong(1, itemId);
 result = stmt.executeQuery();
 if (!result.next()) {
 throw new BidDAOException("No Bid found for item:" + itemId);
 } //

 do {
 int i = 1;
 Long bidId = result.getLong(i++);
 String bidStatus = result.getString(i++);
 Double bidPrice = result.getDouble(i++);
 bids.add(new BidTO(BidId, bidStatus, bidPrice));
 } while(result.next());

 return(bids);
 } catch (SQLException se) {
 ...
 } finally {
 DAOUtils.closeResultSet(result);
 DAOUtils.closeStatement(stmt);
 DAOUtils.closeConnection(dbConnection);
 }
}

The method in listing 14.7 constructs a list of transfer objects of type BidTO c by
executing a JDBC SQL statement b and returns d them to the client. Assuming
you have created an entity named Bid that corresponds to the BidTO transfer
object, you can easily migrate this method to use JPQL and the EntityManager
API. You can use a dynamic query in the getBids method as follows:

public List getBids(Long itemId) {
 Item item = (Item)em.find(Item.class, itemId);
 Query query =
 em.createQuery("SELECT b FROM Bid b WHERE b.item = ?1");
 Query.setParameter(1, item);

Listing 14.7 Method that returns a list of transfer objects to the client

 B
Contains JDBC

statements

Constructs
collection of
BidTOs

 c

Returns collection of TOs d

Helping O/R frameworks to use the EJB 3 JPA 533
 return query.getResultList();
}

However, we recommend using a named query instead of a dynamic query, and
moving the JPQL statement to the Bid entity as a named query like this:

@Entity
@NamedQuery(
 name = "findBidsByItem",
 query = "SELECT b FROM Bid b WHERE b.item = ?1")

public class Bid implements Serializable {
...
}

Use the named query in the getBids method of the BidDAOImpl class:

public List getBids(Long itemId) {
 Item item = (Item)em.find(Item.class, itemId);
 Query query = em.createNamedQuery("findBidsByItem");
 Query.setParameter(1, item);

 return query.getResultList();
}

If you look at the migrated methods (insertBid in section 14.5.2 and getBids)
and compare them with the original methods in BidDAOImpl, they should look
much simpler. You can follow our guidelines to migrate all your JDBC DAO code
to use the EJB 3 Persistence API with very little impact on the business tier of your
applications. Don’t you just love it?

 Next we tackle migrating applications that currently use O/R frameworks over
to our new friend, the EJB 3 JPA.

14.6 Helping O/R frameworks to use the EJB 3 JPA

EJB 3 persistence is the result of a lot of hard work between individuals; vendors of
major O/R mapping solutions such as Hibernate, TopLink, and JDO, and count-
less others. If you’ve ever used any of these frameworks, you know that the EJB 3
JPA looks an awful lot like your favorite O/R framework, which will make it easier
for you to migrate to EJB 3 from an existing O/R solution. Covering detailed
migration steps from each of these persistence solutions is out of the scope of this
book. However, we will provide some generic steps for migrating applications that
utilize O/R frameworks to convert to the EJB 3 JPA.

 The EJB 3 JPA is now the standard API to build the persistence tier for
applications. Each of the persistence providers will provide some mechanisms

534 CHAPTER 14
Migrating to EJB 3
to facilitate migration to EJB 3. Check your vendor documentation for tools or
utilities to ease the migration process.

 If you are using an O/R framework, it is assumed that you’ll migrate an existing
domain model to the EJB 3 JPA. Migration of applications using proprietary O/R
solutions will involve three or four major steps:

1 Migrate proprietary mapping metadata to use the EJB 3 JPA O/R map-
ping annotations or orm.xml. Check your vendor’s documentation to see
if they provide any tools to assist in this effort.

2 Migrate vendor-specific APIs (e.g., Hibernate’s Session API to perform
CRUD operations) to use the EntityManager API. Table 14.6 shows what
the migrated code will look like when you migrate from two popular
frameworks.

3 You have to migrate both dynamic and named queries from any vendor-
specific query language to use JPQL. For instance, if you are using JDO
for O/R mapping and you have the following code using JDO QL:

Query query = pm.newQuery("SELECT FROM " +
 "actionbazaar.buslogic.User WHERE firstName == :firstName");

List<User> people = (List<User>)
query.execute(firstName);

you will need to revise it to this:

Query query = em.createQuery(
 "SELECT u FROM User u WHERE u.firstName = :firstName");
query.setParameter("firstName", firstName);

List<User> = (List<User>)query.getResultList();

Table 14.6 Comparison of application code to persist an instance of an entity with two popular O/R
frameworks

Hibernate (from this) Session sess = sessions.openSession();
Transaction tx = sess.beginTransaction();
sess.save(category);
tx.commit();
sess.close();

TopLink (or from this) UnitOfWork uow = session.acquireUnitOfWork();
uow.registerObject(category);
uow.commit();

EJB 3 (to this) ut.begin();
em.persist(category);
ut.commit();

Approaches to migration 535
4 This is an optional step depending on how many advanced features you are
already using. If you’ve used any vendor-specific features such as caching,
you’ll need to configure those features as properties in persistence.xml,
or potentially as queryHints in your JPQL.

Your conversion efforts should take into account the fact that many persistence
providers have been around for years and provide numerous features not sup-
ported in the EJB 3 JPA. Your application may be working with some features from
a persistence provider that may not have an equivalent in the EJB 3 JPA. It is antic-
ipated that most EJB 3 persistence providers will allow mixing such features with
the EJB 3 JPA. You’ll have to decide whether continuing to use these vendor-specific
features is worth more than remaining in compliance with the specification.

 This brings to a close our discussion on migrating O/R frameworks to EJB 3
JPA. Next we’ll take a quick look at some overall project-level approaches targeted
at easing the course of migration.

14.7 Approaches to migration

Like any software development project, migrating your applications to use EJB 3
may be quite challenging. A thorough understanding of your applications and
knowledge of EJB 3 is required. If you’re migrating EJB 2 applications to EJB 3,
you have to understand that other applications may have a dependency on your
application. Making the jump to EJB 3 may break the dependent applications,
because the client view of EJBs has changed.

14.7.1 Strategies
Depending on the size of your applications, and the number of applications you
plan on upgrading, the strategy you choose could have a big impact on your suc-
cess. You may go for either a phased approach or an all-at-once approach, depend-
ing on your comfort level with your code base and the availability of resources. An
incremental approach may be better suited for most applications if you aren’t
comfortable with the technology. It allows you to validate the technology, gives
you firsthand experience through trial and error, and has minimal impact on the
complete application.

 Our advice is that you consider an agile approach to migration, and properly
test your application after migrating only a small portion. Testing as you go
along will give you confidence that you are on the right track, and let you know
fairly quickly if you’ve gone off the rails. Of course, there are situations where it
may not be practical to follow an incremental migration strategy. Only you know

536 CHAPTER 14
Migrating to EJB 3
the capabilities of your team, your corporate culture, and the unique pressure
associated with keeping your applications in a production-ready state.

14.7.2 Manual vs. automated

It is evident from our earlier discussions in this chapter that migration is mostly a
mechanical and boring chore, and finding the right resources for such a task may
be challenging. We certainly expect that many development tools will emerge
promising to automate 100 percent of the migration workload. However, we rec-
ommend that you not rely completely on such tools. Tools can certainly simplify
the migration process, but will require some degree of guidance so that your
knowledge of your applications is taken into consideration during the process.

 Tools can ease your task in converting classes to use EJB 3, but the resulting
application may not be foolproof due to the scores of changes in the programming
model between EJB 2 CMP entity beans and the EJB 3 JPA. We suggest you try
migrating a part of your application with the tool and then examine the entire
application to determine whether it behaves as expected. In many cases, you’ll
want to change your domain model. In such situations your intervention will most
likely be required because you are the only one who can make these decisions.

14.8 Summary

This chapter examined the major issues related to interoperability, compatibility,
and migration to EJB 3. The EJB 3 specification requires backward compatibility
with EJB 2. You learned how you can mix-and-match EJB 2 and EJB 3 components
in the same applications, as well as convert applications completely over to EJB 3.
We provided guidelines for migrating each EJB 2 component to EJB 3.

 Migration of session beans and MDBs to EJB 3 is easy but still requires you to
carefully plan the process because client applications may break due to changes
in the client view of EJBs between EJB 2 and EJB 3. Migration of CMP entity beans
is the most difficult task, but you can simplify the migration if you use design pat-
terns such as DTO, Session Façade, and DAO.

 This chapter also explained how to convert JDBC DAOs to use the EJB 3 JPA.
Finally, you saw that the migration from using existing O/R mapping frameworks
to using the EJB 3 JPA is a very straightforward task. With these guidelines and a
good knowledge of your applications, you will have no problem migrating your
applications to use EJB 3.

 In the next chapter, you’ll learn how to expose EJBs as web services, and how
to invoke web services from EJB applications.

Exposing EJBs as
web services
This chapter covers
■ Web service primer
■ Java-XML web services
■ Developing EJB web services
537

538 CHAPTER 15
Exposing EJBs as web services
Service-oriented architecture (SOA) and web services are no longer buzzwords.
These technologies have become a reality in the past few years. Web services are
definitely the new industry standard for application-to-application (A2A) and
business-to-business (B2B) integration.

 What do web services have to do with EJB 3? Exposing your business logic
component as web service is a snap with EJB 3. Stick with us through this chapter
and we’ll demonstrate how EJB 3 can be combined with web service metadata to
provide compelling solutions for exposing business logic as web services.

 Let’s illustrate this with another scenario from the ActionBazaar application.
The promoters of ActionBazaar are being forced to expose some components as
web services because their competitors now offer competing services. Action-
Bazaar wants to stay competitive, and needs to quickly enable their business func-
tionality in a way that users of the system can easily consume.

 At first, they thought they might have to move to the Microsoft .NET platform
to create the web services. When you consider that J2EE 1.4 was criticized by many
for its complexities in building service-oriented applications, it’s easy to see why
the caretakers of ActionBazaar were considering that move. They heard rumors
that the developers of KabadiBazaar,1 a sister web auction site similar to Action-
Bazaar that specializes in miscellaneous household items, had demonstrated how
it was easy to build web services with .NET. The promoters of ActionBazaar are
hesitant, though, because they are enthusiastic about the simplification of web
service development brought to Java by using metadata annotations and the Java
API for XML-Based Web Services (JAX-WS) 2.0 specification. In the end, they have
decided to create their web services using EJB.

 This chapter assumes that you are familiar with web services, and in-depth
coverage of web service development with the Java EE platform is not within the
scope of this book. Other books are available on that topic; it would be difficult to
cover all aspects of web service development in a single chapter.

 In this chapter we first offer a quick review of a web service and its compo-
nents, and discuss high-level approaches to web service development. We follow
this with the details of building EJB web services, and conclude with some best
practices to get your web services up and working quickly with EJB 3.

1 In Hindi, KabadiBazaar is a marketplace where household junk/scraps are sold.

What is a web service? 539
15.1 What is a web service?

It’s very difficult to arrive at a single definition of web service that all camps will
agree on. Simply put, a web service is a standard platform that provides interop-
erability between networked applications out of the box. For example, if you build
a web service using Java EE and deploy it to an application server, you can invoke
that service from any of a number of possible client applications interested in the
service. This even includes client applications built using the Windows Commu-
nication Foundation2 (WCF, formerly code-named Indigo), Microsoft’s latest web
service platform.

 SOA is a new way of building loosely coupled applications. With SOA, you focus
on building services. Thus, services are somewhat analogous to Java objects and
components such as EJBs. Unlike objects, however, services are self-contained,
maintain their own state, and provide a loosely coupled interface. Simply put, a
service is a self-contained software module that performs a predetermined task:
validating a credit card, for example. Many developers think SOA and web services
are the same, but in reality SOA is an architecture principle whereas a web service
is a platform to build loosely coupled applications. You can implement a service-
oriented application with many other technologies such RMI but web services has
been the most popular technology to implement service-oriented applications.

 The most important aspect of a service is the service description. When using
web services as the implementation technology for SOA, Web Services Description
Language (WSDL) describes the messages, types, and operations of the web ser-
vice, and is the contract to which the web service guarantees it will conform.

 Let’s start with an example. Assume that ActionBazaar built a web service and
provides a WSDL that describes the service. The service is registered in the UDDI
(Universal Description, Discovery, and Integration) registry. A client application
(KabadiBazaar) finds the WSDL describing how to call the service from the regis-
try, generates the endpoint interface and proxy classes, and then invokes the web
service as shown in figure 15.1.

 Beside interoperability and application integration, the primary benefit that a
web service provides is reusability of discrete business functionality. How this func-
tionality might be used is rarely known in its entirety when the service is created
(sometimes known as publishing the web service). Client applications can even
search for multiple similar services and determine which one to use on the fly at

2 http://msdn.microsoft.com/winfx/technologies/communication/default.aspx

540 CHAPTER 15
Exposing EJBs as web services
runtime, depending on known data, user preferences, user locale, or any number
of other circumstances unique to the client application at that moment in time.
The ActionBazaar developers build a few loosely coupled services such as Credit-
VerificationService and CreditCardChargeService. These are exposed as web
services and are seamlessly found and consumed by the KabadiBazaar applica-
tion, even though it was built using a completely different technology. Of course,
100 percent compatibility between different platforms is still eluding the masses.
Most developers are more than willing to accept 95 to 98 percent compatibility
out of the box and make the final adjustments themselves. The alternative is to
do a lot more work, for a lot less reward.

Web Services-Interoperability (WS-I)

WS-I (www.ws-i.org) is an open industry consortium, with members from diverse
industries. It consists of large vendors such as Microsoft, Oracle, IBM, BEA, and Sun
Microsystems. WS-I’s primary goal is to promote interoperability of web services
across middleware platforms, operating systems, and programming languages.

WS-I provides a specification known as Basic Profile that lists a set of recommen-
dations to achieve maximum interoperability of web services between heteroge-
neous platforms. Java EE 5 requires support for the Basic Profile 1.1 specification
in order for any implementation to claim compatibility.

Figure 15.1 ActionBazaar built a web service and registered it in the UDDI registry. A client
application searches the registry to find the service. The registry returns the WSDL registered
by the service, and uses the WSDL to invoke the web service.

What is a web service? 541
We recommend you check out Eric Pulier and Hugh Taylor’s Understanding Enter-
prise SOA (Manning, 2005) for more in-depth coverage of this topic. Also, here are
some web sites to visit:

■ http://www.w3c.org/2002/ws (W3C Consortium on web services)
■ http://www.ws-i.org (The WS-I [Web Services-Interoperability] Organization)
■ http://msdn.microsoft.com/webservices/ (Microsoft Developer Network)
■ http://www-128.ibm.com/developerworks/webservices (IBM’s “SOA and Web

Services” page)
■ http://ws.apache.org/ (Apache)

In this section we’ll first look at core components of a web service. Then we’ll dis-
cuss the various styles of web services and their differences. Finally, we’ll examine
some approaches to web service development.

15.1.1 Identifying web service components

The web service landscape is comprised of an alphabet soup of standards, proto-
cols, and technologies. At its core, a web service is published by a service producer
and accessed by a service consumer. This almost always ends up with an XML doc-
ument being sent over an HTTP transport. As a general rule the data protocol
shared between service consumer and producer is based on some flavor of XML,

REST web services

Representational State Transfer (popularly known as REST) is a popular architec-
tural style of building web services. It doesn’t depend on a SOAP envelope, but it
does leverage XML and the HTTP protocol. Statistics revealed by large web-based
companies like Amazon and Yahoo! shows that a majority of their consumers use a
REST interface.

Unfortunately, Java EE 5 doesn’t require support for REST web services and each
vendor supports its own approach. GlassFish supports RESTful web services by cre-
ating an implementation of the javax.ws.Provider interface. Vendors such as
Oracle allow you to convert a Java object into a web service by using proprietary con-
figuration or a proprietary annotation. Check your vendor’s documentation to see if
they provide REST support, and see how that support is implemented. For more
information on REST, hop over to http://en.wikipedia.org/wiki/Representational_
State_Transfer.

542 CHAPTER 15
Exposing EJBs as web services
but the transport can be any network protocol. Implementations exist for several
standard transport protocols besides HTTP, including JMS, SMTP, and FTP.

 Several approaches are available for implementing a web service. The three
most widely used are REST (Representational State Transfer), XML-RPC (Exten-
sible Markup Language–Remote Procedure Call), and SOAP. Although there are
valid reasons to use REST and XML-RPC, the majority of enterprise applica-
tions use some form of a SOAP stack for their web services. This is primarily due
to the fact that most standards for sharing industry-specific data (such as travel,
health care, financial) via web services are based on the SOAP architectures. This
chapter will focus on the SOAP stack because it is the most prominent of the
three architectures.

 That’s enough talk about the general SOA landscape. We’ll start with some
basics of the SOAP architecture. Let’s begin by defining what a typical SOAP
stack includes:

■ Service messaging—Messages are sent between the client and service in
XML, the universal format for metadata. For a SOAP stack, this means that
the messages follow the SOAP standard for message structure and defini-
tion (www.w3.org/TR/soap/).

■ Service description—Each web service has a corresponding XML document
that describes the web service, the parameters that it expects to be passed,
which ones are optional and which are required, what their data types are,
what will be returned, and so forth. A web service client “consumes” the
WSDL file in order to communicate with a web service (www.w3.org/TR/wsdl).

■ Service discovery—Think of this as the Yellow Pages for web services. When a
web service wants to make itself known, it registers itself to a UDDI registry
by providing the WSDL required to access the service. Clients can browse
registries looking for services that meet their requirements (www.uddi.org/
specification.html).

■ Service transport—This is the network mechanism responsible for transport-
ing messages between the client and the service. The Hypertext Transfer
Protocol (HTTP) is most commonly used, but any transport should work.

Stick with us as we take a closer look at these web service building blocks.

Defining a message: SOAP
The Simple Object Access Protocol (SOAP) is a distributed protocol similar to
CORBA and Java RMI. It lets applications talk to each other by exchanging

What is a web service? 543
messages over a network protocol, most commonly HTTP. SOAP is heavily
dependent on XML, and every SOAP message is an XML document that con-
tains several elements (such as Envelope, Header, and Body). The SOAP header
contains application-specific infrastructure data, such as security information.
The SOAP body contains the message being exchanged between applications.
While the SOAP header is optional for a SOAP message, the SOAP envelope and
body are mandatory.

 Here is an example of a SOAP message with an empty header. The body includes
an XML representation of ActionBazaar’s addBid method with its parameters:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <addBid xmlns="http://actionbazaar.com/Bidding">
 <user-id>viper</user-id>
 <item-id>100</user-id>
 <bid-price>2000.24</bid-price>
 </addBid>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This snippet shows the skeleton of each and every SOAP message. The message
starts off with an Envelope, which typically declares a namespace and may include
encoding. Immediately inside the Envelope is the Header, which is optional. This
contains meta-information about the message, such as security, network routing,
and other data required to get the message to its destination. The last piece of the
SOAP message is the Body, which in the case of our example, defines the addBid
method and its associated parameters.

Describing a web service: WSDL
The Web Services Description Language (WSDL) is central to a web service
because it describes the service to possible consumers. It specifies the message
type, port, supported operations, data types, and all other details about how the
web service works, where it can be found, and what the client should expect in
return. Listing 15.1 shows a sample WSDL for ActionBazaar’s PlaceBidService.

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:soap
 ="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd

Listing 15.1 WSDL for the PlaceBid service

544 CHAPTER 15
Exposing EJBs as web services
 ="http://www.w3.org/2001/XMLSchema" xmlns:mime
 ="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns
 ="http://ejb3inaction.example.buslogic/" name="PlaceBidBeanService"
 targetNamespace="http://ejb3inaction.example.buslogic/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xmlns:soap11-enc=
"http://schemas.xmlsoap.org/soap/encoding/" targetNamespace=
"http://ejb3inaction.example.buslogic/" elementFormDefault="qualified">
 <element name="addBid" type="tns:addBid"/>
 <complexType name="addBid">
 <sequence>
 <element name="userId" type="string" nillable="true"/>
 <element name="itemId" type="long" nillable="true"/>
 <element name="bidPrice" type="double" nillable
 ="true"/>
 </sequence>
 </complexType>
 <element name="addBidResponse" type="tns:addBidResponse"/>
 <complexType name="addBidResponse">
 <sequence>
 <element name="return" type="long" nillable="true"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="PlaceBidBeanPortType_addBid">
 <part name="parameters" element="tns:addBid"/>
 </message>
 <message name="PlaceBidBeanPortType_addBidResponse">
 <part name="parameters" element="tns:addBidResponse"/>
 </message>
 <portType name="PlaceBidBean">
 <operation name="addBid">
 <input message="tns:PlaceBidBeanPortType_addBid"/>
 <output message="tns:PlaceBidBeanPortType_
 addBidResponse"/>
 </operation>
 </portType>
 <binding name="PlaceBidBeanSoapHttp"
 type="tns:PlaceBidBean">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="addBid">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>

 b Data types

 c Messages

 d Port types

 e SOAP binding

Operations f

What is a web service? 545
 </output>
 </operation>
 </binding>
 <service name="PlaceBidBeanService">
 <port name="PlaceBid"
 binding="tns:PlaceBidBeanSoapHttp">
 <soap:address location="${oracle.scheme.host.port.

 and.context}/PlaceBid"/>
 </port>
 </service>
</definitions>

Let’s briefly look at some important parts of a WSDL. In listing 15.1, the types
element b defines the data types exchanged when the web service is invoked.
The parameters passed to and returned from a method are considered data
types. The code c defines the messages the service supports. A message may
contain more than a message part. Each message part is actually part of the SOAP
message being sent, and is either a parameter or result being passed. The code
d then defines the portType. A portType is the most important part of a WSDL;
it defines operations that can be performed and the messages involved. The
message, operations f, and protocol details of a service are defined using a
binding e. This example defines the service to be a document style service.
Finally, the code g defines a top-level service that uses the binding we defined,
using the port definition h.

Java to WSDL mapping
There is no one-to-one mapping between XML data types and Java; there never
has been. This presents a problem because the data types expected by a service are
defined in the WSDL. If a service is implemented in a non-Java language, that lan-
guage must provide support for binding XML to it. But when a service is imple-
mented in Java, the binding is accomplished through the Java Architecture for
XML Binding (JAXB) 2.0 specification. JAXB allows web services to use the com-
plete XML schema, which results in improved interoperability and ease of use.

 While the details of binding Java to WSDL are beyond the scope of this book, you
can find out more from the Java API for XML-Based Web Services (JAX-WS) spec-
ification at http://jcp.org/en/jsr/detail?id=224, and check out the JAXB specifica-
tion at http://www.jcp.org/en/jsr/detail?id=222. You’ll find an easy-to-use reference
for mapping Java data types to XML and WSDL types at http://download-west.oracle.
com/docs/cd/B25221_04/web.1013/b25603/apptypemapping.htm#BABCCAHA.

 g Service
Port h

http://download-west.oracle.com/docs/cd/B25221_04/web.1013/b25603/apptypemapping.htm#BABCCAHA
http://download-west.oracle.com/docs/cd/B25221_04/web.1013/b25603/apptypemapping.htm#BABCCAHA

546 CHAPTER 15
Exposing EJBs as web services
Discovering a service: UDDI
If you plan on having a lot of services to share, you’re going to need a way to
find them. That’s the whole reason that UDDI was invented. UDDI is a platform-
independent, XML-based registry that enables clients to find available services.

 The basic process is that a service can publish information about itself to a
known UDDI registry, including the WSDL required for a client to communicate
with the service. A client can search the registry looking for a particular type of
service, vendor name, and similar information. Once a service catches the eye
of the client, the client requests the WSDL for the service. The client will then

XML-RPC

When the forerunner of web services was in the lab of UserLand, Microsoft thought
it might be something of value. Distributed remote procedure calls could be one
way to solve certain technical problems they were looking at, and XML was just
coming on the scene and gaining a lot of industry acceptance as a general-purpose
metadata language. The team dubbed this new beast XML-RPC and the specifica-
tion was less than seven pages long!

All of this was going along swimmingly until Microsoft decided they would rather
go a different direction. Microsoft leaving the party wasn’t a problem until about a
year or so later, when they wanted back in. Their return to the idea of web ser-
vices was different this time and they wanted more control of the XML-RPC direc-
tion. Users of XML-RPC were now concerned about the future of their successful
little protocol, and what would happen if Microsoft took the reigns. UserLand and
others in the community opted to make XML-RPC open source to avoid a
Microsoft power play, and of course the Redmond Giant opposed this move. After
wrestling for months, Microsoft eventually decided to go in a different direction,
and began promoting what we now know as SOAP. As Paul Harvey is fond of say-
ing, here’s the rest of the story…

According to rumors, the original web service protocol was named SOAP. As you
know, SOAP stands for Simple Object Access Protocol. A specification that can be
defined in only seven pages definitely meets the “Simple” criterion. But when
Microsoft wanted to part ways the second time, they wanted to take their name
with them. The community of SOAP users at that time renamed their protocol XML-
RPC, and Microsoft dubbed their new web service protocol SOAP. This explains how
the SOAP protocol, which is neither simple, nor an object access protocol, got its
name. At least that’s how the rumor goes!

You can find out more about XML-RPC at http://en.wikipedia.org/wiki/XML-RPC.

What is a web service? 547
consume the WSDL, bind to the service, and invoke the service using the pub-
lished service description.

 It is possible for mere humans to browse UDDI registries and manually sift
through available services. This might be something interesting for you to do if
you have never experienced a UDDI registry, or you aren’t familiar with how they
work. You can check out one such UDDI browser at http://soapclient.com/uddis-
earch.html and take a peek at the services hosted at this site while you’re there.

 For more details about the UDDI specification, hop over to www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm. Just be careful when you get
there and make sure you can find your way out; we wouldn’t want to lose you in
the registry…

Transporting messages
For a service consumer and producer to communicate, they need a way to send
messages to each other. These messages are sent over a network using a protocol
that both parties can support. Given that the Web is ubiquitous, HTTP is every-
where. It makes sense that it would be the most widely used transport for web ser-
vice messages. HTTP also has the advantage that it is one of the few protocols
allowed through firewalls, as long as well-known ports like 80 and 8080 are used.

 But as we stated, web services just need to operate over a network. That means
almost any network protocol could be used to transport messages. Where HTTP is
not an option, some protocols that are in use include SMTP, FTP, and JMS. What?
Your favorite gopher protocol not in the list? Why not grab the SOAP spec and
implement it yourself? That ought to be a fun weekend project.

15.1.2 Web services styles

There are two primary types of web services styles: RPC-oriented and document-
oriented. The RPC style of web services was popular initially, but more recently
the pendulum has swung in the direction of document-oriented web services.
One reason for this shift is that you can make better use of an XML schema with
document-oriented web service. To learn some of the differences between RPC
and document-oriented web services, visit http://expertanswercenter.techtar-
get.com/eac/knowledgebaseAnswer/0,295199,sid63_gci984152,00.html.

 The messaging style for a web service may be either literal or encoded. When
you use literal, the messages are exchanged with plain XML. However, an
encoded message includes an external rule about how to decode the message.
The receiver of the message has to decode the message by using the decoding
attribute. The WS-I Basic Profile 1.1 doesn’t support encoded messages.

548 CHAPTER 15
Exposing EJBs as web services
 The most popular combination of web service style and messaging style is doc-
ument/literal. This is because the WSI Basic Profile only supports the document/lit-
eral combination for maximum interoperability between platforms. Document/
literal-style messages are constrained by an XML schema. The schema can reside
in the WSDL or can be referred to with an URI. The end result is that you can man-
age the structure of your message in the same way that DBAs manage table defi-
nitions with versioning. The RPC/encoded combination puts the schema in the
actual message itself, which makes it much more tightly coupled to the message.
Stick with what the WSI Basic Profile supports (document/literal), and your web
services will enjoy maximum interoperability and acceptance by the widest possi-
ble audience.

15.1.3 Approaches to developing web services

Only a few standard approaches exist for building a web service. These approaches
are independent of whatever tools you may be using but are somewhat specific to
the SOAP style of building web services.

Bottom up
The bottom-up strategy is the most popular approach to developing a web service.
It allows you to reuse your investments by exposing your existing applications.
For example, ActionBazaar is an existing application with proven business value.
Competitive pressure is moving ActionBazaar to expose some of this business
functionality as web services. The implementation class already exists. All that is
needed is to create a WSDL and expose the implementation class as a web service.
Java EE 5 allows either POJOs or stateless EJBs to be exposed as web services. Most
application servers provide tools and utilities to generate WSDL from existing
Java classes.

Top down
Top down is the correct way to build any new web service, and is often termed the
“pure approach” to building a web service. Also known as contract first web services,
this approach starts with the WSDL (the contract) by defining operations, mes-
sages, and so forth. Then you build the endpoint interface, and finally the imple-
mentation class. If you are building a web service from scratch, we recommend
that you follow this approach. Most application servers provide development
tools to create WSDL and then provide the ability to generate a Java class from the
WSDL. Just add your business logic to the generated class, stir in a little water,

JAX-WS: Java EE 5 web services platform 549
bake at 350 degrees for 5 minutes, and your new web service should be ready to
pop out of the oven!

Meet in the middle
In the meet-in-the-middle approach, you start with both the WSDL and imple-
mentation class and wire the WSDL with the implementation class. This is harder
to implement and can be difficult to maintain since you have to pay a lot more
attention to keeping things in synch. We recommend you avoid this approach if at
all possible.

 The movement from the bottom-up to the top-down approach of building
SOAP-based web services is still in progress. Many IT shops are still using bottom
up as the tool support is by far the best for this approach, and because web ser-
vices have been limited to use within the enterprise for many industries. As
interoperability between companies and technologies increases in value, we
expect top down, specifically contract first web services, to become the widest
adopted approach to defining and building web services.

 Now that you are aware of the approaches to building SOAP-based web ser-
vices, what protocols and standards exist to assist you in such an endeavor? The
next section points you down the path that so many have helped to build: the
path to the Java web services platform.

15.2 JAX-WS: Java EE 5 web services platform

Java EE 5 provides a robust platform on which you can build and deploy web ser-
vices. Java EE 5 allows you to build web services with either regular Java class
(POJO) or EJB 3 stateless session beans. In this section we’ll briefly introduce the
web services platform and then explain why you would choose EJB 3 session beans
over POJOs.

15.2.1 Introducing the web services platform

The Java API for XML-Based Web Services (JAX-WS3) 2.0 is the core specification
that defines the web services standard for Java EE 5. JAX-WS 2.0 is an extension
of the Java API for XML-RPC (JAX-RPC) 1.0. The goal for JAX-WS 2.0 is to sim-
plify development of web services applications. It depends on several other spec-
ifications, listed in table 15.1. You can expect that several books will be written

3 http://www.jcp.org/en/jsr/detail?id=224

550 CHAPTER 15
Exposing EJBs as web services
about these specifications, and we encourage you to become familiar with them
as they are made available.

 As you can see on table 15.1, a lot of time and sweat has been spent by various
industry groups in thinking about and defining web services. Folks who tell you
web services are still in their infancy are just not up to speed with what’s going on
in this arena. This chapter is littered with references pointing you to just a frac-
tion of the overwhelming amount of information available on web services. If you
want more in-depth coverage of a specific topic, you’re only a browser page or two
away from opening the mother lode!

 Of course, this begs the question: why consider using EJB 3 as your web service
implementation instead of POJOs? There are some distinct advantages to the EJB
3 option, which we discuss in the next section.

15.2.2 Why choose EJB over a POJO for a web service?

JAX-WS 2.0 allows both regular Java classes and stateless EJBs to be exposed as web
services. If you were using J2EE 1.4, you’re probably wondering why you’d use a
stateless EJB as a web service. A look at the code for a POJO and for EJB 3 web ser-
vices reveals that there are hardly any differences, with the exception that the EJB
3 web service will have a few extra annotations. A Java class web service is packaged
in a web module, whereas an EJB web service is packaged in an EJB-JAR.

 Both a Java web service and an EJB web service support dependency injection
and lifecycle methods such as @PostConstruct and @PreDestroy, but you gain a
few extra benefits from using EJB 3 web services.

 First, you automatically get the benefits of declarative transaction and security
available only to EJB 3 components. You can use interceptors and the timer ser-
vice if your applications need them, without depending on extra layering.

Table 15.1 Specifications Java EE 5.0 builds on to support web services

Specification Purpose

Java API for XML Web Services 2.0 Platform specification

Java API for XML Binding 2.0 Binding for WSDL to Java

WS Basic Profile 1.1 Interoperability with .NET

Web Services Metadata 2.0 Metadata approach to define web service

Java API for XML RPC 1.1 Backward compatibility with J2EE 1.4 web services

Developing EJB web services with JAX-WS 2.0 551
 Second, a web service that uses EJB 3 can easily expose your business applica-
tions using additional protocols, such as RMI, by adding a remote interface. As
you saw in the previous section, exposing an EJB 3 stateless session bean is easy
and can be done by simply adding the @WebService annotation.

 Table 15.2 compares the features supported by EJB 3 web services with a reg-
ular Java web service.

When this chapter was written, most Java EE containers required regular Java
classes using web services metadata to run through an annotation processor
before deployment. This is in contrast to EJB 3 annotations, which are dynami-
cally processed during deployment, thus greatly simplifying the development
process. This optimization is yet another reason to consider using EJB 3 for your
web service implementations.

 Next we’ll see how to expose a stateless EJB as a web service, as defined in the
Web Services Metadata 2.0 specification. This isn’t the only way to expose an EJB
as a web service (you could use deployment descriptors), but you’ll go this route if
you’re using the JAX-WS 2.0 approach. If you like annotations, this one’s for you!

15.3 Developing EJB web services with JAX-WS 2.0

Using JAX-RPC web services with EJB 2.1 makes exposing a simple EJB as a web
service a lot more difficult than it should be. You have to perform the following
steps, typically by hand:

Table 15.2 Feature comparison of Java web services to EJB 3 web services

Feature
Java Web
Service

EJB 3 Web Service

POJO Yes Yes

Dependency injection of resources,
persistence units, etc.

Yes Yes

Lifecycle methods Yes Yes

Declarative transaction No Yes

Declarative security No Yes

Requires annotation processing in an
external Annotation Processing Tool (APT)

Yes Most EJB containers do not
require this.

Can be run in a web container like Tomcat Yes No

552 CHAPTER 15
Exposing EJBs as web services
■ Generate the WSDL describing the service.
■ Build a service endpoint interface (SEI)—the actual service portion of the

web service.
■ Identify the endpoint interface in ejb-jar.xml.
■ Package all of these with webservices.xml.

If you prefer that approach, you can certainly use it—every time you want to pub-
lish a new service! The good news is that EJB 3 and JAX-WS 2.0 tremendously sim-
plify the whole process. You don’t piddle around with WSDL, mapping files, or
descriptors, as these are automatically generated for you during deployment.
Web service metadata makes bottom-up development much simpler.

 Let’s first see a straightforward EJB 3 example exposed as a web service, and
then dive into the details of some commonly used annotations that can make
defining web services even easier. Listing 15.2 shows the PlaceBid bean exposed
as a web service.

@WebService(targetNamespace
 = "urn:ActionBazaarPlaceBidService")
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT)
@Stateless(name = "PlaceBid")
public class PlaceBidBean implements PlaceBid {
@PersistenceContext private EntityManager em;
 public PlaceBidBean() {
 }

 @WebMethod
 @WebResult(name = "bidNumber")
 public Long addBid(
 @WebParam(name = "User") String userId,
 @WebParam(name = "Item") Long itemId,
 @WebParam(name = "Price") Double bidPrice) {
 return persistBid(userId, itemId, bidPrice);
 }

 private Long persistBid(String userId, Long itemId, Double bidPrice)
 {
 }
}

In listing 15.2, we used the @javax.jws.WebService annotation b to expose Place-
BidBean as a web service. You can use the annotation with an endpoint interface or

Listing 15.2 PlaceBid EJB as a web service

Exposes web service b

Defines binding style c

Exposes method in web service d

Customizes name for
return parameter

 e

Customizes name for
passed parameter f

Developing EJB web services with JAX-WS 2.0 553
the bean class itself. As in our example, if you use the @WebService annotation in the
bean class the endpoint interface will be generated automatically. We’ll elaborate
on the details of this annotation in the next section. We specified that the web ser-
vice is a document-style web service by using the @javax.jws.SOAPBinding anno-
tation c. We used the @javax.jws.WebMethod annotation to expose the addBid
method in the web service d. You can use the @javax.jws.WebResult e and
@javax.jws.WebParam f annotations to control the parameter names generated in
the WSDL.

NOTE Using the @WebService annotation creates a stateless EJB to a web ser-
vice. The rest of the annotations are optional.

In this section you’ll learn how to use web services metadata annotations. We’ll
start with using the @WebService annotation to convert an EJB to a web service.
You’ll then see how to use the @SOAPBinding annotation to specify the web service
style. You’ll also learn about other annotations, such as @WebMethod, @WebParam,
and @WebResult.

15.3.1 Using the @WebService annotation

The @WebService annotation is used on a bean or an interface class. If you use
this annotation on the bean class, the annotation processor or the EJB container
will generate the interface for you. If you already have a bean interface, then you
can mark the @WebService annotation on the interface and the bean class will
look like this:

@WebService
public interface PlaceBidWS {
 public Long addBid(String bidderId, Long itemId, Double bidPrice);
}

@Stateless(name = "PlaceBid")
public class PlaceBidBean implements PlaceBidWS, PlaceBid {
...
}

If you use the @WebService annotation on the interface, then all public methods
on the web service endpoint will be exposed in the web service. In our example we
have only one method (addBid), and it will be exposed in the web service.

 A careful look at the code reveals that the @WebService endpoint interface
looks similar to the remote interface. You might be tempted to mark the same
interface as both a web service and a remote interface, like this:

554 CHAPTER 15
Exposing EJBs as web services
@WebService
@Remote
public interface PlaceBid {
 public Long addBid(String bidderId, Long itemId, Double bidPrice);
}

Unfortunately, although some vendors allow this as an extension, this is not part
of the specification, and code that uses this particular attribute combination won’t
be portable.

 Next, let’s take a peek at how you can use different elements of the @Web-
Service annotation to customize different elements in your WSDL. Listing 15.3
shows the details of the @WebService endpoint interface.

@Target({TYPE})
public @interface WebService {
 String name() default "";
 String targetNamespace() default "";
 String serviceName() default "";
 String wsdlLocation() default "";
 String endpointInterface() default "";
 String portName() default "";
};

All elements on the @WebService annotation besides wsdlLocation and endpoint-
Interface are used to customize the WSDL generation. wsdlLocation is useful
when you are following a meet-in-the-middle approach and you want to use a
pre-existing WSDL. It defines the URL for the WSDL; for example:

@WebService(wsdlLocation = "META-INF/myPlaceBidService.wsdl")
public interface PlaceBidWS {
 public Long addBid(String bidderId, Long itemId, Double bidPrice);
}

When you specify wsdlLocation, the server will use the WSDL specified. If there
are any inconsistencies between the existing WSDL and the implementation class,
the container will generate the corresponding deployment errors.

 As stated earlier, the server automatically generates the service endpoint inter-
face (SEI) if the @WebService annotation is used in the bean class. This generated
name is vendor specific, and most of the time that works just fine. If you find
yourself needing to specify the endpointInterface element to use a specific
name, try this:

Listing 15.3 Elements of the @WebService annotation

Location of WSDL

Fully qualified interface
name for SEI

Developing EJB web services with JAX-WS 2.0 555
@WebService(endPointInterface = "actionbazaar.buslogic.PlaceBidSEI")
@Stateless(name = "PlaceBid")
public class PlaceBidBean implements placeBid{}

Use the name element in the @WebService annotation to specify the name of the
web service. If you don’t specify the name element, the name of the bean class or
interface will be used by default. This is the same as the name attribute in the port-
Type tag in the WSDL. In our example, the server will use the name PlaceBidBean
because of the following setting:

<portType name = "PlaceBidBean">
 ...
</portType>

You can use the targetNamespace element to specify the target namespace for
the WSDL elements generated by the web service. If you don’t specify this ele-
ment, the EJB container will use the Java package name to generate a default
XML namespace.

 You can use the serviceName element to specify the service name. Specifying
the serviceName is only allowed when you annotate the bean class. The name
specified using serviceName is used for generating the name attribute in the ser-
vice element in the WSDL. If you don’t specify the serviceName element, the
server will generate it using the default, which is the bean class name appended
with Service.

<service name = "PlaceBidBeanService">
 ...
</service>

This code snippet shows what happens if the serviceName isn’t specified for the
PlaceBidBean EJB. The bean name PlaceBidBean is concatenated with Service by
the WSDL generator, and PlaceBidBeanService is specified as the name of the web
service in the WSDL.

 Similarly, you use the portName element to set the name of the port specified
in the WSDL.

15.3.2 Specifying the web service style with @SOAPBinding

As discussed earlier, the two types of services supported are document-oriented
or RPC-oriented web services. You can use the @javax.jws.SOAPBinding annota-
tion to control the style of the web service. This example shows the @SOAPBinding
annotation in action:

@WebService(targetNamespace = "urn:ActionBazaarPlaceBidService")
@SOAPBinding(style = SOAPBinding.Style.RPC,

556 CHAPTER 15
Exposing EJBs as web services
 use = SOAPBinding.Use.ENCODED,
 parameterStyle = SOAPBinding.ParameterStyle.BARE)
@Stateless(name = "PlaceBid")
public class PlaceBidBean implements PlaceBid {
}

Now let’s consider the various elements of the @SOAPBinding annotation and how
they work. These elements are defined in listing 15.4.

@Retention(value = RetentionPolicy.RUNTIME)
@Target({TYPE})
public @interface SOAPBinding {
 public enum Style {
 DOCUMENT,
 RPC
 };
 Style style() default Style.DOCUMENT;

 public enum Use {
 LITERAL,
 ENCODED
 };
 Use use() default Use.LITERAL;

 public enum ParameterStyle {
 BARE,
 WRAPPED
 };

 ParameterStyle parameterStyle() default ParameterStyle.WRAPPED;
}

You can use the style element to define the web service style. Valid values are
DOCUMENT and RPC b in listing 15.4. The default style is DOCUMENT. You can specify
the use element to configure the messaging style with one of the valid values,
LITERAL or ENCODED c. You must use the LITERAL style of messaging if you expect
your services to work with clients not developed by you, because SOAP encoding
can cause problems with interoperability of web services and therefore is not
allowed by the WS-I Basic Profile 1.1. You can specify parameterStyle to configure
how message parameters are specified. The valid values for parameterStyle are
BARE and the default, WRAPPED d.

Listing 15.4 Elements of the @SOAPBinding annotation

Web service style b

Messaging style c

Parameter style d

Developing EJB web services with JAX-WS 2.0 557
15.3.3 Using @WebMethod

You can apply the @javax.jws.WebMethod annotation on a method to expose it as
part of the web service. If you have multiple methods in the bean implementation
class and you use a generated endpoint interface, you must annotate @WebMethod
on the methods you want to expose in the web service. The following listing shows
the details of the @WebMethod annotation:

@Target({METHOD})
public @interface WebMethod {
 String operationName() default "";
 String action() default "" ;
 boolean exclude() default false;
};

If you don’t use the @WebMethod annotation, all public methods in the bean class
that use a generated interface will be exposed in the web service. There are several
reasons why this may not be a good idea. First, it is inefficient to have fine-grained
web service methods. Like EJBs, web services should be coarse-grained. Second, it
might create a tight coupling between your server and potential clients.

NOTE If you use the @WebMethod annotation on an endpoint interface, your
server will ignore it and expose all methods of the endpoint interface in
the web service.

If you have multiple methods in the bean class and there are methods that you
don’t want to expose in the web service, you can set the exclude element to true
as follows:

@WebService(endPointInterface = "PlaceBidSEI")
@Stateless
public class PlaceBidBean {
 public Long addBid(..) {
 }

 @WebMethod(exclude = "true")
 public Long persistBid(..) {
 }
}

Using this technique, the persistBid method will not be exposed in the web ser-
vice when the PlaceBid EJB web service is deployed.

 You can use the operationName and action elements in the @WebMethod anno-
tation to specify the operation and SOAP action, respectively, as in the follow-
ing example.

558 CHAPTER 15
Exposing EJBs as web services
@WebMethod(operationName = "addNewBid",
 action = "http://actionbazaar.com/NewBid")
public Long addBid(...) {
}

The operationName, as defined above the addBid method, will generate the fol-
lowing WSDL:

<portType name = "PlaceBidBean">
 <operation name = "addNewBid">
 ...
 </operation>
</portType>

Notice how the actual method name is addBid but the method named exposed
in the web service is addNewBid. You can use this to help map the service con-
tract to the actual implementation. Even if that implementation changes over
time, the contract can remain intact. If the operationName isn’t specified, it will
default to the implementation name of the method.

 Similarly, the action element we defined earlier will be used for generating
the SOAPAction in the WSDL as follows:

<operation name = "addNewBid">
 <soap:operation soapAction = "http://actionbazaar.com/NewBid"/>
...
</operation>

The SOAPAction element determines the header element in the HTTP request
message. It is used by the web service client when communicating with the web
service using SOAP over HTTP. The content of the SOAPAction header field is used
by the endpoint to determine the true intended destination rather than having to
parse the SOAP message body to find this information.

 This section gave you a tour of the @WebMethod annotation so you know how to
define the method name for a web service. Next we’ll look at how to define
parameters for our new web methods with the @WebParam annotation.

15.3.4 Using the @WebParam annotation

You can utilize the @javax.jws.WebParam annotation in conjunction with @Web-
Method to customize a parameter for the web service message part generated in
the WSDL. You saw a simple use of @WebParam in the PlaceBid EJB web service
in section 15.3; here is a more comprehensive example:

@WebMethod
public Long addBid(

Developing EJB web services with JAX-WS 2.0 559
 @WebParam(name = "user",
 mode = WebParam.Mode.IN) String userId, ...) {
 ...
}

Let’s break this example down by looking at this annotation’s details. The speci-
fication for the @WebParam annotation looks like this:

@Target({PARAMETER})
public @interface WebParam {
 public enum Mode { IN, OUT, INOUT };
 String name() default "";
 String targetNamespace() default "";
 Mode mode() default Mode.IN;
 boolean header() default false;
 String partName() default "";
};

The name element can specify the name parameter for the message in the WSDL. If
you do not specify name, the default value generated will be the same as the name
of the argument.

 You can use the targetNamespace element for customizing the XML namespace
for the message part. If you do not specify targetNamespace, the server will use
the namespace used for the web service.

 The mode element will work to specify the type of the parameter. Valid options
are IN, OUT, or INOUT (both). This mode determines how the parameter is flowing.
If you specify a parameter as OUT or INOUT, the argument must be of type javax.
xml.ws.Holder as follows:

@WebParam(name = "user", mode = WebParam.Mode.INOUT)
 Holder<String> userId, ...) {
 ...
}

The holder class provides a reference to immutable object references. You can use
a Java generic holder type, javax.xml.ws.Holder<String>, which is defined by the
Java XML web services specification. The details of Holder types are not within
the scope of this book; for more details, refer to the Java XML WS 2.0 specification.

 You can set the header element to true if the message is pulled from the
header of the message and not from the message body.

 As we discussed earlier, you can pass any optional information (such as secu-
rity) that isn’t part of the actual message in the SOAP header. When a SOAP mes-
sage is exchanged between parties, it may go through several intermediaries,
such as an authentication system. These intermediaries are not supposed to read

560 CHAPTER 15
Exposing EJBs as web services
the actual payload or message body, but are allowed to read the SOAP header. Set-
ting header to true will generate the WSDL with the SOAP header as follows:

<operation name = "addNewBid">
 <soap:operation soapAction = "urn:NewBid"/>
 <input>
 <soap:header message = "tns:PlaceBid_addNewBid"
 part = "user"
 use = "literal"/>
 <soap:body use = "literal" parts = "parameters"/>
 </input>
...
</operation>

You can use the partName element to control the generated name element of the
wsdl:part or XML schema element of the parameter, if the web service binding
style is RPC, or if the binding style is document and the parameter style is BARE. If
you don’t specify the name for an RPC-style web service and partName is specified,
the server will use partName to generate the name of the element.

15.3.5 Using the @WebResult annotation
The @WebResult annotation is very similar to @WebParam. It operates in conjunc-
tion with @WebMethod to control the generated name for the message return value
in the WSDL, as illustrated here:

@WebMethod
@WebResult(name = "bidNumber")
public Long addBid(...){}

The @WebResult annotation specification resembles the specification for @Web-
Param. You’ll notice it’s a bit smaller, though, because you have less control over
return values than you do over parameters.

public @interface WebResult {
 String name() default "return";
 String targetNamespace() default "";
 boolean header() default false;
 String partName() default "";
};

The name element specifies the name of the value returned in the WSDL.
 Use the targetNamespace element for customizing the XML namespace for the

returned value. This works for document-style web services where the return
value binds to an XML namespace. If you don’t specify targetNamespace, the
server will use the namespace allocated for the web service.

Developing EJB web services with JAX-WS 2.0 561
 You can set the header element to true if the return value is returned as a part
of the message header.

 As with the @WebParam annotation, you have to use the partName argument to
customize the name of value returned from an operation.

15.3.6 Using @OneWay and @HandlerChain
The web services metadata annotation specification defines two more annota-
tions: @OneWay and @HandlerChain. We’ll briefly introduce them, and we encour-
age you to explore them if you think you need to. The @OneWay annotation is used
with a web service operation that does not have a corresponding output (return
value). It can be used on a method as follows:

@WebMethod
@OneWay
public void pingServer() {
}

In this case, pingServer doesn’t return anything and @OneWay optimizes the mes-
sage to reflect this.

 The @HandlerChain annotation is used to define a set of handlers that are
invoked in response to a SOAP message. Logically, handlers are similar to EJB
interceptors that were discussed earlier in part 2 of this book. Handlers are
defined in an XML file. It probably makes sense to align interceptor annotations
and web services handlers in a future release of Java EE, and use the interceptor
programming model for JAX-WS handlers. Also, it’s worth mentioning that in an
EJB web service, both EJB 3 interceptors and message handlers will fit the bill.

TIP If you are using both JAX-WS handlers and interceptors in the same web
service, invoking InvocationContext.getContextData() in the inter-
ceptor or WebServiceContext.getMessageContext()in the JAX-WS
handler will return the same Map instance.

This concludes our discussion of web service metadata. The metadata makes
development of EJB 3 web services very easy. You can essentially just annotate the
bean class with @WebService and it automagically converts it to an EJB web service.
Is this a huge improvement over the previous approach, or what?

 Exposing a web service is one thing. What about consuming a web service? Is
being on the client end of the web service connection easier with EJB 3? The next
section walks you through using an EJB 3 session bean as a client to a web service.
We think after you’ve read it you just may answer the previous question with a
resounding yes!

562 CHAPTER 15
Exposing EJBs as web services
15.4 Accessing a web service from an EJB

The first step to building a web service is to publish some standalone services that
can be used by interested parties. But there’s a whole lot more to building an SOA
than that. You’ll need to move to level 2 (to borrow terminology used in the gam-
ing world). The next level of web services involves building aggregate services.
This is where two or more services are combined to provide an even more coarse-
grained functionality.

 Of course, there is the simpler case where the service you expose simply needs
to leverage a service not built by you. Either way, you’re the client in this scenario,
so let’s see what’s involved in invoking web services from EJB 3. First we’ll exam-
ine a standalone Java client for testing the PlaceBid web service that we built in an
earlier section; then we’ll explore how you can access a web service from an EJB
such as a session bean or MDB.

15.4.1 Accessing the PlaceBid web service

An EJB web service doesn’t differ from any other web service and can be invoked
by a client written in Java, .NET, or any other programming language. The client
for the EJB web service can be any of the following types:

■ Java application client
■ Dynamic proxy
■ Dynamic Invocation Interface (DII)

Details about each of these clients are beyond the scope of this book. In this sec-
tion, we’ll see an example of Java EE application client that uses the @WebService-
Ref annotation to invoke the web service. Listing 15.5 shows an example of an
application client invoking the PlaceBid web service that we built earlier.

import javax.xml.ws.WebServiceRef ;
import actionbazaarplacebidservice.PlaceBidService;

@WebServiceRef(wsdlLocation=
 "http://localhost:8080/PlaceBidService/PlaceBidBean?WSDL")
 private static PlaceBidService placeBidService;

 public static void main(String [] args) {
 try {
 actionbazaarplacebidservice.PlaceBidBean placeBid =
 placeBidService.getPlaceBidBeanPort();

Listing 15.5 Java application client accessing the PlaceBid web service

Generated service
interface

 b

Injects web service reference c

Gets a proxy to
web servicee

 d

Accessing a web service from an EJB 563
 System.out.println("Bid Successful, BidId Received is:"
 +placeBid.addBid("dpanda",
 Long.valueOf(9001), 2000005.50));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 }

In listing 15.5, the client uses actionbazaarplacebidservice.PlaceBidService,
which is the generated service interface b. We use the @WebServiceRef annota-
tion to inject a reference to the PlaceBid service by specifying the WSDL location
c. We retrieve the web service port from the injected web service by invoking
the getPlaceBidBeanPort method d. After we retrieve the port, we can invoke the
operations allowed on the port e. We’ll discuss @WebServiceRef in more depth
in the next section. For now, all you need to know is that it is used to inject web
service references.

 If you use an application, as we did in our example, you must use the web ser-
vices utility provided by your vendor to generate the client-side artifacts for
accessing the web service. The tool reads the WSDL document and generates the
endpoint interface and the proxy classes that can be used to invoke methods on
the web service as a local object.

 For example, the GlassFish/Java EE SDK provides utilities named wscompile or
wsimport to generate the client-side proxy classes. Check out the build script
(build.xml) of the online code samples for chapter 15 (www.manning.com/panda);
in the sample provided for the Java EE 5 SDK (GlassFish) and you’ll see a task
named gen-proxy:

<target name="gen-proxy" depends="setup">

 <exec executable="${J2EE_HOME}/bin/${wsimport}" failonerror="true">
 <arg line="-keep -d ${cli.proxy.dir} http://${admin.host}:
 ${http.port}/PlaceBidService/PlaceBidBean?WSDL"/>
 </exec>
 </target>

As you can see, wsimport takes the WSDL as input and generates the client-side
artifacts, which includes the service interface and proxy classes. After compil-
ing the client and other artifacts, you should be able to run the client to test the
web service.

Invokes method e

564 CHAPTER 15
Exposing EJBs as web services
 Now that you’ve seen an example web service client, let’s expand on the topic
and see how you can access a web service.

15.4.2 EJB as a web service client

You can use either a session bean or an MDB to invoke a web service. For example,
customers can track the status of items ordered from ActionBazaar. Internally,
ActionBazaar uses the TrackOrder EJB to track this status. An external company,
the Turtle and Snail Trucking Company, is used to ship the orders. The trucking
company happens to be a heavy user of Microsoft technologies, and they pro-
vided a web service to track the status of orders. The TrackOrder EJB invokes this
web service to check the delivery status of orders. The following code snippet of
the TrackOrder EJB invokes a web service:

@Stateless
public class TrackOrderBean implements TrackOrder {

 @WebServiceRef(TrackDeliveryService.class)
 private TrackDeliverySEI deliveryService;

 public String checkOrderDeliverStatus(String shipId) {
 ...

 String deliveryStatus =
 deliveryService.checkDeliveryStatus(shipId);
 ...
 }
}

You learned from an earlier example that you can use @javax.xml.ws.WebSer-
viceRef to reference and inject an instance of either the service class or endpoint
interface. As you’ll recall, in listing 15.5 we used a generated service interface.

 Injection of @WebServiceRef is supported only in managed classes. In our
example we are injecting an endpoint b, and then invoking a method on the
endpoint interface c. Optionally you can use @WebServiceRef to inject a service
interface as follows:

@WebServiceRef
private TrackingService service;

If you’re using a service interface (TrackingService), then it must extend
javax.xml.ws.Service. The service interface or endpoint interfaces and the client-
side proxy classes can typically be generated either on the fly by tools or utilities
provided with the SOAP stack. These vary by vendor.

 b Injects web service

 c Invokes web service

Best practices for web service development 565
 Although the Turtle and Snail Trucking Company uses the .NET platform for
developing the tracking web service, you can’t use that interface with the Java EE
platform. Therefore, you have to generate the endpoint interface by using tools
supplied by your vendor. You do this by pointing the tool at the WSDL of Track-
DeliveryService.

 The @WebServiceRef annotation is similar to @javax.annotation.Resource
(which we discussed in chapter 5). You can use the @WebServiceRef annotation to
establish a reference at the class level or use field/setter injection. Table 15.3
describes the various elements of the @WebServiceRef annotation.

This concludes our discussion of invoking a web service from an EJB. You’ve now
seen how to expose your web service for potential clients to consume, as well as
how to access other web services on the network regardless of what technology was
used to develop them. The new JAX-WS 2.0 annotations make defining and work-
ing with web services significantly easier than previous web service standards.

 Next we’ll discuss some best practices you can use to build web services that
maximize their interoperability opportunities.

15.5 Best practices for web service development

In this section we outline some of the best practices for building web services.
 Determine whether you really need your application to be exposed as a web service and that

your application requires interoperability. If not, then consider using alternative tech-
nologies and protocols because you will most likely find better performance in
using alternative protocols such as RMI. Regardless of the technology used, at this

Table 15.3 Elements of @WebServiceRef

Element Description

name The JNDI name for the web service. It gets bound to
java:comp/env/<name> in the ENC.

wsdlLocation The WSDL location for the service. If not specified, then it is derived
from the referenced service class.

type The Java type of the resource.

value The service class; always a type extending
javax.xml.ws.Service.

mappedName Vendor-specific global JNDI name for the service.

566 CHAPTER 15
Exposing EJBs as web services
point in the SOAP web service paradigm, messing around with all that XML can put
a real strain on your network. Options for sending binary web service messages are
just now emerging, but they are still a few years away from being widely available.

 So the first recommendation is for you not to expose all your EJBs as web
services. In addition, whenever considering methods to expose, only expose
coarse-grained EJBs as web services. Either build a service endpoint interface
for your EJB, or use the @WebMethod annotation to limit the methods exposed in
the web service.

 Analyze whether you need RPC-oriented or document-oriented web services. You can
use the @SOAPBinding annotation to control the style for your EJB web service.
RPC-style web services may perform better than document style web services.
However, document style web services provide more flexibility because you can
use XML schemas to define the messages. Similarly, avoid using message encod-
ing because it makes your services less interoperable, as well as less portable
between SOAP implementations. Document/literal is the recommended combina-
tion for an interoperable web service.

 Design your EJB web service so that it creates very minimal network traffic. Avoid
sending large objects over the wire. It’s better to send an Id or reference to an
object instead of sending the entire object. All objects sent via SOAP are serialized
into XML. The XML representation of data can be quite large, making SOAP mes-
sages much more expensive than retrieving the object in the target location. In
addition, if your EJB involves a long-running transaction, avoid exposing it as a
web service, or mark it as not returning a value so that it can be invoked in a more
asynchronous manner.

 Use JAX-WS data types as the method parameters for your web service to give it interop-
erability with heterogeneous web services. Suppose you have an object graph involving
Collections, HashMaps, and Lists as web service parameters. Using these data
types in the WSDL makes your application less interoperable. Test your applica-
tions to make sure they comply with the WS-I Basic Profile if interoperability is
important for your application.

 There are several mechanisms to secure your web services. You must weigh
your security requirements against performance, because security comes with a
high cost. The performance costs of end-to-end security are commonly higher
than the initial perceived costs. This is true in general of system/application secu-
rity, but even more so with regard to web services that are designed to be shared
with unknown client applications.

Summary 567
15.6 Summary

In this chapter you learned how to expose a stateless session bean as a web service.
First, we walked through a brief review of web service components and approaches
to web service development. You saw that web service metadata greatly simplifies
the development of EJB 3 web services by turning an EJB into a web service using
one annotation: @WebService. JAX-WS 2.0–compliant containers dynamically gen-
erate endpoint interfaces, WSDL, and mapping files, and don’t require that you
perform the mundane task of packaging several deployment descriptors and
mapping files. You saw that different annotations supported by web services meta-
data can be used for controlling specific elements of the WSDL. It’s also possible to
use an existing WSDL with an EJB 3 web service.

 EJB 3 web services provide several benefits compared with regular Java class
web services, although there is hardly any difference in coding style.

 Your EJB application may require invoking a web service, and you can use
either a SEI or service interface via the @WebServiceRef annotation.

 Finally, we reviewed some best practices in using EJB 3 with web services. Fol-
lowing these guidelines can make your web services more interoperable and bet-
ter performing.

EJB 3 and Spring
This chapter covers
■ Spring-enabled session beans
■ Injecting session beans into Spring POJOs
■ Using JPA with Spring
568

EJB 3 and Spring 569
When the EJB portion of J2EE first came along, the industry flocked toward it.
Imagine, an industry-wide specification for building distributed applications with
layers and tiers and business logic! Prior to EJB 1’s attempt to do this, developers
were constantly wrestling with two options, neither of which was ideal: use a pro-
prietary vendor product or write your own. Both amounted to the same option; it’s
just that in the second case the development team was the vendor with the one-of-
a-kind solution. No matter how you looked at the domain, it meant vendor lock-in.

 The road to EJB acceptance was not without challenges. The specification was
vast and rigid, and placed a lot of constraints on developers and impacted how
they built their applications. The industry wasn’t quite thrilled. EJB 2 went into
development in an attempt to plug all the holes in EJB 1. Although EJB 2 did
address many of the issues that plagued developers (such as defining more con-
sistency in how vendors implemented the specification in order to make EJB
applications more portable between vendor platforms), the programming model
was still too verbose. It had become an all-or-nothing proposition for EJB 2. You
either bought into the whole EJB 2/J2EE programming paradigm, or you didn’t
buy into any of it. Architects found it difficult to design applications that only
used parts of the specification. Enter the dawn of the lightweight Java application
framework. (Cue eerie music…)

 Sure, various pockets of the open source software (OSS) community had been
working on these issues for a while—almost as soon as EJB 1 was released. Devel-
opers have a way of wanting to explore new avenues and solve hard problems; the
application container crowd is no different. Apache did have some success with
their Avalon1 framework, which may be the most well known, but others wading
into these waters discovered some useful principles for building lightweight con-
tainers. A couple of these are the Keel framework (www.keelframework.org) and
the DNA framework (http://dna.codehaus.org). While there was interest in such
lofty-minded goals, most of the industry viewed this commotion as fringe activity
and ignored it until sometime around the middle of 2004, when Rod Johnson
and a talented set of developers from Interface 21 began energetically promoting
the Spring Framework (www.springframework.org).

 By now you may be looking up from this book and staring off into space, con-
templating the question “What does Spring have to do with EJB 3?” Well, we’re
glad you’re perceptive enough to ponder such matters, and we’ll see if we can
answer that question by continuing with our little story.

1 This project is now closed; it’s no longer an active Apache project.

570 CHAPTER 16
EJB 3 and Spring
 Spring and EJB proponents haven’t always seen eye to eye. Spring adopters
have more likely than not been burned by the weight of previous EJB specifica-
tions. In contrast, the EJB faithful have felt that the Spring folks have gone too far
by moving away from an industry standard. This has created some fracturing in
the Java community. Yet we still have to deal with the developer’s insatiable desire
to explore, understand, and solve hard problems. Hmmm… where might this
lead us?

 We propose that this leads us to the reality that some in the Spring camp are
interested in EJB 3. They would like to experiment with it, but they don’t want to
leave their newfound comfort zone of the Spring container. The staunch EJB camp
may also be intrigued by the whole Spring movement. After all, this movement is
still growing; there has to be something to it, doesn’t there? Then there’s the third
group: those who haven’t used Spring or EJB. Which way should they go?

 In the spirit of OSS, we hope the reader views this chapter as the extension of
an olive branch. Given the popularity of the Spring framework, we want to dem-
onstrate that it is possible to peacefully coexist—to find the power in both options
and use them effectively. We want to emphasize that EJB 3 is a specification and
Spring is a framework. Although they are often characterized as two sides of the
same coin, these two are not the same thing.

 In this chapter you’ll learn how to use JPA entities and EJBs with Spring. We’ll
also throw in some tips for using both EJB 3 and Spring in your applications, with
examples that show both Spring 1.2 and 2.0 features. This chapter does not cover
how to use Spring itself. For a thorough beginner-to-advanced treatment of
Spring, be sure to check out Spring in Action (2nd edition) by Craig Walls and
Ryan Breidenbach (Manning, 2007).

 So what do you think? Are you ready to get EJB 3 and Spring working together?

16.1 Introducing the Spring framework

Simply put, Spring is an inversion of control (IoC) and AOP framework. While it
is also a container, it is widely popular for its framework benefits. The Spring
framework built on many of the lessons learned from the other projects, either
directly or indirectly, by understanding the importance of certain principles now
known as IoC and separation of concerns (SoC). The primary goal for the Spring
framework is to simplify development of enterprise Java applications. In this sec-
tion we’ll briefly introduce the Spring framework and then explore the IoC prin-
ciple behind it.

Introducing the Spring framework 571
16.1.1 Benefits of the Spring framework

Spring is one of the driving forces behind popularizing the POJO programming
model and dependency injection. Enterprise application development with J2EE 1.4
and EJB 2 was very complex, and Spring gained popularity because it addressed
many complexities and limitations of J2EE 1.4 and EJB 2. It provided a simple pro-
gramming model for using resources such as JDBC or JMS or using popular per-
sistence frameworks like Hibernate or TopLink by abstracting low-level API and
configuration from developers without limiting developers’ choices.

 Many developers want to choose a persistence, web, or messaging framework
without having to do the integration work. The developers of the Spring frame-
work realized that no matter which persistence, web, messaging, or “whatever”
framework they selected to support, someone would want to use something else,
and a better alternative would eventually come along. Also, this type of integra-
tion is typically expensive. By following the IoC and SoC principles, Spring was
able to be both lightweight enough to let developers decide how much of the
framework they needed, and flexible enough to support many permutations of
competing component frameworks.

 Spring provides several modules, such as the following:

■ AOP module
■ JDBC abstraction and DAO module
■ ORM integration module
■ Web module
■ MVC framework

Although the Spring framework supports almost as many features as a Java EE
container, it is not positioned as an alternative to Java EE but as a framework that
facilitates the development of applications with Java EE. That’s one of the pri-
mary reasons for Spring being successful as a framework. You can use the Spring
framework on its own or inside a Java EE container. Most application servers,
such as Oracle and WebLogic, provide additional support to use Spring.

 Now let’s turn our focus to the IoC principle driving the Spring framework.

16.1.2 The inversion of control principle

Sometimes explained as the “Don’t Call Us, We’ll Call You” principle. It’s the
idea that a component or service should do one thing, and do it well, and not
have to know too much—if anything—about the other matters in the context of
doing its job.

572 CHAPTER 16
EJB 3 and Spring
 Let’s say you have a ThingAmaJig component that needs a WhatchaMaCallIt
and a DooHickey in order to do its job. Now the ThingAmaJig can try to find the
other two components when it’s invoked—or it could expect its caller to provide
them. This second approach is the IoC principle.

 Humans instinctively use IoC all the time and are not even aware of it. If you
are at a client location and someone walks up to you and tells you that you have a
call waiting from your coworker, they also hand you the phone that is already con-
nected to your office, or tell you where the phone is. They don’t expect you to just
“know” where your coworker was calling from, nor do they expect you to figure it
out. They provide the needed information for you to complete the conversation.

 The same is true for someone invited to speak at a conference. The speaker
isn’t expected to provide the conference room, audience, refreshments, and so
forth. Those are provided by someone else. However, these other components are
critical to the speaker being able to perform the requested tasks—especially con-
suming the refreshments!

 An article by Martin Fowler (www.martinfowler.com/articles/injection.html)
proposed that while the IoC principle was good, its name could use a slight
adjustment. He proposed dependency injection as a name that more accurately
described what IoC did. It appears that most of the industry has agreed, and this
is why you will see DI referenced more than IoC in newer literature, especially
EJB 3 documentation.

16.1.3 The separation of concerns principle

For a component architecture to succeed in being both easy to use and flexible to
extend, the ideas of interface and implementation need to be considered. The
interface is the functional aspect describing what is to be done. The implementa-
tion is the specific how and what is to be accomplished.

 This means that if you write a logging component and you would like to have
the flexibility to log to a number of locations (database, file, socket, unknown,
etc.) and support various protocols (HTTP, RMI, JINI, unknown, etc.), you have a
design decision to make. You can try to guess which locations and protocols are
the most popular, or you can write the log functionality in an interface, write a few
implementations that use that interface, and encourage others to write any
implementations that they may need.

 The SoC idea is also sometimes referred to as the plug-in principle, which is
more often how it is described. Spring allows separation of concerns with its rich
support for aspect-oriented programming (AOP). It helps developers to focus on

Using JPA with Spring 573
writing business logic without having to worry about system-level concerns such
as performing transactions or logging in their code.

 After looking more deeply into the principles Spring was built on, and with their
new list of priorities for EJB 3 in hand, the EJB 3 Expert Group did several things
to bring EJB 3 more in line with the goals being realized by Spring. These goals
include POJO programming model, dependency injection, and use of interceptors.

NOTE At the time of this writing, the Spring framework developers released
Spring 2.0 with support for the EJB 3 JPA. It shipped TopLink Essen-
tials as the default persistence provider. It is worth mentioning that
Spring is adding partial support directly for EJB 3 as a part of Pitchfork
project (www.interface21.com/pitchfork). This will enable you to use
EJB 3 annotations such as @Stateless, @Interceptors, and @Resource
in Spring beans.

Now that you have an idea what the Spring framework is, let’s explore how you
can use Spring with JPA.

16.2 Using JPA with Spring

Spring has wide support for ORM technologies, including Hibernate, TopLink,
and JDO. The approach Spring takes in how you use their framework makes
coding to these ORM options and swapping between them very easy. Spring 2.0
extended this rich support for ORM technologies to include JPA. Table 16.1
shows the Java classes that developers are interested in for using EJB 3 JPA
in Spring.

Table 16.1 Spring classes available for using JPA

Spring Class Description

JpaTemplate Simplifies JPA access code

JpaDaoSupport Superclass for Spring DAOs for JPA data access

JpaTransactionManager Used for transactional access of JPA

LocalEntityManagerFactoryBean Factory that creates local entity manager when JPA is used
outside Java EE

JpaDialect Intended to use with a persistence provider outside Java EE

574 CHAPTER 16
EJB 3 and Spring
We’ll outline the steps for using the EJB 3 JPA from your web applications. We’ll
assume you have some basic familiarity with Spring and that you are comfortable
with entity packaging and EAOs.

 We’ll primarily focus on using JpaDaoSupport and
JpaTemplate, because they are intended to simplify the
use of the EJB 3 JPA by shielding you from the details of
the EntityManager API. We’ll assume you have experi-
ence with the general usage of the EntityManager API
(which means you’ll appreciate even more how Spring is
trying to simplify the EJB 3 JPA programming model).

 Suppose that the ActionBazaar developers thought
it would be cool to use Spring in their systems. They
started creating a prototype to use Spring with JPA, and
decided to implement a part of ActionBazaar in Spring
as shown in figure 16.1.

 We’ll work with the ActionBazaar bidding module
shown in figure 16.1, in which a simple Spring EAO
(BidSpringEAO) is used for accessing the ActionBazaar
persistence unit using Spring’s JpaTemplate. We’ll create
a Spring bean (BidService) and configure it to use the
EAO. We’ll build an EAO that uses Spring’s JpaTemplate
to manipulate entities and use the EAO in a Spring ser-
vice bean. Finally, we’ll explore the Spring configuration
that magically glues the EntityManager, EAO, and the
Spring bean together.

16.2.1 Building JPA EAOs for Spring

In chapter 12 you learned that the Entity Access Object design pattern improves
code maintainability by decoupling the persistence logic from the business logic.
Spring provides EAO (Spring still calls it DAO) for JPA and many O/R mapping
frameworks such as Hibernate and TopLink.

 Spring provides two ways to access and manipulate entities in building Spring
EAOs: using the JPA API directly or using JpaTemplate. In chapter 12 we used EAOs
to call the EntityManager API directly. We’ll now demonstrate how to change the
implementation classes to use JPA from Spring applications with the Spring
JpaTemplate. Listing 16.1 shows the ActionBazaar EAO implementation classes you
need when using JPA from Spring applications. Note that the Spring classnames

Figure 16.1 This
ActionBazaar bidding
module uses Spring with
JPA. The Spring bean
employs an entity
access object to access
the entities using
JpaTemplate.

Using JPA with Spring 575
continue to use the DAO naming convention instead of the revised EAO naming
that we’re featuring in this book.

package actionbazaar.persistence.eao;

import org.springframework.orm.jpa.support.JpaDaoSupport;

public abstract class BasicSpringEAO extends JpaDaoSupport {
}

public class BidSpringEAO extends BasicSpringEAO implements BidEAO {
 public Bid addBid(Item item, String bidderId, double bidPrice) {
 Bid bid = new Bid();
 ...
 getJpaTemplate().persist(bid);
 return bid;
 }

 public Bid cancelBid(Long bidId) {
 Bid bid = (Bid)getJpaTemplate().find(Bid.class, bidId);
 bid.setBidStatus(BidStatus.CANCELLED);
 getJpaTemplate().merge(bid);
 return bid;
 }
}

The class that implements the EAO interface must extend JpaDaoSupport b.
Instead of using the EntityManager API, you use JpaTemplate. In listing 16.1,
we’ve used the persist and merge methods c and d to persist or merge
entity instances.

Using JpaTemplate
How are exceptions handled with regard to JpaTemplate? We’re glad you asked.
You need to be aware that JpaTemplate does not throw any persistence API
exceptions. Instead, it throws Spring’s DataAccessException. The primary bene-
fit of this to developers is that by translating exceptions into those provided by
the Spring framework, the persistence mechanism is neutral. This means you
can swap out persistence mechanisms and your application code won’t have to
change to support the new framework’s error handling. This makes it easier
to migrate from one persistence toolkit to another, or to support multiple tool-
kits if you are a tool vendor. Table 16.2 describes some of the important meth-
ods in JpaTemplate.

Listing 16.1 EAO implementation when using JPA from Spring applications

Extends JpaDaoSupport b

 c Uses JpaTemplate to persist

Uses JpaTemplate to merge d

576 CHAPTER 16
EJB 3 and Spring
You can use the JpaTemplate methods to access entities. Spring limits some
of the repetitive use of the EJB 3 JPA. For example, if you want to you use a
dynamic query to retrieve all Bidders with Gold status, then JpaTemplate will
yield the following:

List bidders = getJpaTemplate().find(
 "SELECT b FROM Bidder b WHERE status = ?1", "Gold");

The equivalent code with the EntityManager API will look like this:

List bidders = em.createQuery(
 "SELECT b FROM Bidder b WHERE status = ?1")
 .setParameter(1, "Gold")
 .getResultList();

This code makes it evident that Spring makes using the EJB 3 JPA simpler. We
encourage you to explore other JpaTemplate methods.

 The only problem we see with JpaTemplate is that it does not provide fine-
grained access to the EntityManager API’s methods.

JPA EAO in your service beans
Spring’s service beans are similar to the EJB 3 session beans that you work with to
implement business logic. In our example the BidServiceBean is used to place a

Table 16.2 Important JpaTemplate methods provided by Spring

JpaTemplate Methods Description

persist(Object entity) Persists an entity instance

remove(Object entity) Removes an entity instance

merge(T entity) Merges a detached entity instance

refresh(Object entity) Refreshes an entity instance from the database

<T> T find(Class<T> entityClass,
Object Id)

Retrieves an entity instance by primary key

List find(String queryString) Retrieves a list of entities using a dynamic query

List find(String queryString,
 Object values)

Restricts a list of entities using a dynamic query
with positional parameters

findByNamedQuery(String queryName) Retrieves a list of entities using a named query

findByNamedQuery(String queryName,
 Map<String,Object> params)

Retrieves a list of entities using a named query
with named parameters

D:\opensource\spring-fra
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html" \o "class or interface in java.lang

Using JPA with Spring 577
bid on an item, and it uses the EAOs to manipulate the entities. You can use the
EAOs in your service classes, and the EAOs can be injected into the POJOs with
Spring’s setter injection as follows:

public class BidServiceBean implements BidService {

 protected ItemEAO itemEAO;
 protected BidEAO bidEAO ;

 public BidServiceBean() {
 }

 //Inject Instances of Item and BidEAO
 public void setItemEAO(ItemEAO itemEAO) {
 this.itemEAO = itemEAO;
 }

 public void setBidEAO(BidEAO) {
 this.bidEAO = bidEAO;
 }

 public Long addBid(String userId, Long itemId, Double bidPrice) {
 ...
 }
}

The BidServiceBean class looks similar to the PlaceBidBean class—the only
remarkable difference is that it is a POJO with no annotations, JNDI lookup, or
use of EAO factory code of any kind.

 If you are new to Spring, you must be wondering, “If all classes are POJOs,
then how does the framework know about the EntityManager, and how does it
inject instances of EntityManager?” It’s all based on a little Spring configuration
magic, which we dive into next.

16.2.2 Configuring Spring to use the JPA

The real power of Spring comes from how it configures services via dependency
injection. For our example this means you need to configure the EntityManager-
Factory. To coax ActionBazaar to work with Spring, you’ll need the configuration
shown in listing 16.2.

<bean id = "entityManager"
 class = "org.springframework.jndi.JndiObjectFactoryBean">
 <property name = "jndiName"
 value = "java:comp/env/actionBazaar"/>

Listing 16.2 Spring configuration to use JPA

Configures EntityManager

578 CHAPTER 16
EJB 3 and Spring
</bean>

<bean id = "bidEAO"
 class = "actionbazaar.persistence.eao.BidSpringEAO"
 autowire = "byType">
 <property name = "entityManager"
 ref = "entityManager"/>
</bean>

<bean id = "bidService"
 class = "actionbazaar.buslogic.BidServiceBean">
 <property name = "bidEAO">
 <ref bean = "bidEAO"/>
 </property>
</bean>

Even if you’re not familiar with Spring, you can probably figure out what’s going
on in this configuration file (actionBazaar-service.xml). The first bean instance,
entityManager, injects an instance of the EntityManager by retrieving it from the
JNDI namespace when it is referenced from another bean instance. The next
bean, bidEAO, asks Spring to automatically wire it to use the previous entity-
Manager. The final bean, bidService, requests that Spring inject the bidEAO bean
as the implementation for it to use at runtime.

Configuring Spring to use the EntityManager
Because Spring is a lightweight container, it can work either inside a Java EE
container or independently. Spring can use a container- or an application-man-
aged EntityManager either inside or outside the container. While you’re using
Spring within a Java EE container, it acts as a proxy between the container and
the application and injects an EntityManager or EntityManagerFactory when
your application needs it. That way, you don’t have to worry about including
extra JPA code.

 In this chapter we primarily focus on Spring as a framework within the Java
EE container. This means you have to configure Spring so it can retrieve an
EntityManager from the Java EE container and inject an instance of an Entity-
Manager whenever you use a JpaTemplate. If you’re using Spring within a Java
EE 5 container, you must use either the JndiObjectFactoryBean or Spring 2.0’s
new jee:jndi-lookup mechanism to wire an instance of EntityManager (as we did
in listing 16.2). If you want the new Spring 2.0 configuration instead of Jndi-
ObjectFactoryBean, then use this configuration:

Defines Spring EAO

Specifies
bidService bean

Using JPA with Spring 579
<jee:jndi-lookup id = "entityManager"
 jndi-name = "actionBazaar"
 resource-ref = "true"/>

Remember, this notation works only if you’ve upgraded to version 2 of Spring.

Using Spring outside Java EE container with JPA
As we discussed earlier, Spring 2.0 acts as a container and supports the con-
tainer-managed EntityManager with JPA. The Spring container manages the per-
sistence unit. You have to use LocalContainerEntityManagerFactoryBean to wire
an entityManagerFactory. The LocalContainerEntityManagerFactoryBean reads
the persistence.xml packaged in the application to configure the persistence
unit by using the data source supplied. It can also perform load-time weaving to
search for annotated entity classes. Here is an example configuration of the con-
tainer-managed EntityManager:

<beans>
 <bean id = "entityManagerFactory"
 class = "org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">
 ...
 <property name = "loadTimeWeaver">
 <bean class = "org.springframework.instrument.classloading.
SimpleLoadTimeWeaver"/>
 </property>
 </bean>
 <bean id = "bidEAO"
 class = "actionbazaar.persistence.eao.BidSpringEAO"
 autowire = "byType">
 <property name = "entityManagerFactory"
 ref = "entityManagerFactory"/>
 </bean>
</beans>

For more information, refer to the Spring documentation.
 If you’re using Spring outside a Java EE container, you can use a LocalEntity-

ManagerFactory and your configuration will look like this:

<bean id = "entityManagerFactory"
 class = "org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 ...
</bean>

This, of course, demonstrates that JPA can work independently of both a Java EE
container and EJB 3.

580 CHAPTER 16
EJB 3 and Spring
Wiring entity access objects
The EAOs use JpaTemplate, so we need to wire the EAOs to use JpaTemplate’s
methods. The EAOs are wired in the Spring configuration as in listing 16.2. If
you recall, the EAOs extend the org.springframework.orm.jpa.support.JpaDao-
Support and it has a dependency on EntityManager; therefore, we need to
inject an instance of EntityManager. Spring’s autowire-by-type mechanism indi-
cates to the Spring container that it should find a single instance of a Spring
bean that matches the property being wired. In this case, the EAO class uses
the entityManager property to obtain an instance of EntityManager that we
defined earlier in listing 16.2. You must pass EntityManager as a property to
the EAO as follows:

<property name = "entityManager" ref = "entityManager"/>

At runtime Spring will take care of creating the entityManager and injecting it
into the EAO.

 If you’re using an application-managed entity manager or using Spring with
JPA outside the container, you have to wire the entityManageFactory property
instead of an entityManager as follows:

<bean id = "bidEAO"
 class = "actionbazaar.persistence.eao.BidSpringEAO"
 autowire = "byType">
 <property name = "entityManagerFactory"
 ref = "entityManagerFactory"/>
</bean>

Wiring service beans
Your web applications use service beans to access entities from the presentation
tier. You simply wire your service beans (as in listing 16.2) in the Spring configu-
ration file to have them injected. Some steps can be quite mechanical, and are
required for every EAO and service bean.

 Appropriately configuring Spring for your server allows you to deploy the
application using Spring, proving again that you can use JPA outside of a
Java EE container.

 Let’s now examine how you unite the power of Spring and EJB 3 components
(session beans and MDBs).

Combining the power of EJB 3 and Spring 581
16.3 Combining the power of EJB 3 and Spring

In addition to using JPA with Spring, you may combine the flexibility of Spring
beans with the power of EJB 3 in your applications. You have two options. You
can use the power of Spring—POJO injection, AOP features, etc.—by developing
Spring-enabled EJB applications, or you can invoke an EJB from a Spring bean.
At the time of this writing, Spring 2.0 has no documented support for EJB 3 ses-
sion beans, but we found some ways to make EJB 3 beans work with Spring beans
and in this section we’ll reveal our discoveries.

 In this section you’ll see two ways you can combine power of EJB 3 compo-
nents and Spring beans. First you’ll learn about using Spring from EJB 3 com-
ponents; then we’ll show you how to access an EJB 3 session bean from a
Spring bean.

16.3.1 Developing Spring-enabled EJBs

Let’s say you want to use declarative transactions, timers, security, and the web
services features of EJB in your applications, but you also want to leverage the
POJO injection, AOP, and JpaTemplate features of Spring 2.0. Spring provides sev-
eral support classes, listed in table 16.3, that you can use to integrate EJBs. Note
that these are the classes provided for use with EJB 2, and we expect there will be
several changes in these classes to be used with EJB 3. However, you can still use
these abstract classes with EJB 3 beans.

 The abstract classes provide access to the Spring bean factory, and you
have to implement the onEjbCreate method in your EJB class to retrieve a
Spring bean.

Table 16.3 Spring support classes for building Spring-enabled EJBs

Support Class Purpose

AbstractStatelessSessionBean Used for Spring-enabled stateless session beans

AbstractStatefulSessionBean Used for Spring-enabled stateful session beans

AbstractJMSMessageDrivenBean Used for Spring-enabled JMS message-driven beans

AbstractMessageDrivenBean Used for Spring-enabled connector-based MDBs

582 CHAPTER 16
EJB 3 and Spring
In ActionBazaar we want to use Spring with session
beans. This means that the BidServiceBean we developed
in section 16.1 is used by the PlaceBid EJB, as shown in
figure 16.2.

 The BidServiceBean is defined as a Spring bean
using a Spring configuration file named actionBazaar-
service.xml as follows:

<beans>
...
 <bean id = "bidService" class =

 "actionbazaar.buslogic.BidServiceBean">
 </bean>
...
</beans>

When an EJB instance is created, a Spring bean factory is
automatically created and is made available to the EJB.
While using this approach, you typically use the EJB as a
façade and delegate the task to Spring beans.

 Listing 16.3 shows the PlaceBid EJB developed as a
Spring-enabled stateless session bean. In this example,
the PlaceBid EJB acts as a façade and delegates the actual
business logic to the BidServiceBean.

@Stateless(name = "PlaceBid")
public class PlaceBidBean
 extends AbstractStatelessSessionBean
 implements PlaceBid {

 private BidServiceBean bidService;

 public PlaceBidBean() {
 }

 protected void onEjbCreate() {
 bidService =
 (BidServiceBean) getBeanFactory().getBean("bidService");
 }

 public Long addBid(String userId, Long itemId, Double bidPrice) {
 return bidService.addBid(userId, itemId, bidPrice);
 }
}

Listing 16.3 Spring-enabled stateless PlaceBid EJB

Figure 16.2 You can
combine the power of
Spring and EJB 3 by
developing a Spring-
enabled session bean.
You can use the
declarative transaction,
security, and web
services features of EJB 3
with the POJO injection
and JpaTemplate
features of Spring.

 b Extends Spring class

 c Defines POJO

Retrieves bean d

Uses bean E

Combining the power of EJB 3 and Spring 583
In listing 16.3 the bean class extends the Spring support class in the (org.spring-
framework.ejb.support.AbstractStatelessSessionBean) package b. Note that
the EJB bean cannot inherit from another bean or class because Java does not
support multiple inheritances.

 The BidServiceBean POJO is defined as an instance variable c. When a Place-
Bid EJB instance is created, the onEjbCreate method is invoked and an instance of
BidServiceBean is retrieved d and stored in the POJO that we defined c. The
business method delegates the task to the BidServiceBean when it is invoked e.

 Now you must be wondering how the Spring bean factory is created and how
the Spring configuration is provided. Under the covers, when an EJB instance is
created it performs a JNDI lookup to locate the path (java:comp/env/ejb/Bean-
FactoryPath) for the bean factory. Therefore, you have to define the following
environment variable in the EJB deployment descriptor for the EJB:

<session>
 <display-name>PlaceBid</display-name>
 <ejb-name>PlaceBid</ejb-name>
 <env-entry>
 <env-entry-name>ejb/BeanFactoryPath</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>/actionBazaar-service.xml</env-entry-value>
 </env-entry>
</session>

The env-entry-value for the ejb/BeanFactoryPath environment variable is set to
/actionBazaar-service.xml.

 After you package the EJB and Spring configuration file,
you should be able to invoke the EJB, and internally it will
use Spring beans to perform the intended task.

Perhaps by now you’ve grown fond of EJB 3 and worked
with it in your application. Some of your other application
modules happen to use Spring. What you’d like to do is
reuse the business logic you’ve developed in your EJBs by
incorporating it into your Spring component, as shown
in figure 16.3. In this section we’ll show you how to inject
instances of session beans into your Spring beans.

 Suupose you have a session bean named ItemManager:

@Stateless(name = "ItemManager")
public class ItemManagerBean implements ItemManager {

Figure 16.3 You can
access a session bean
from a Spring bean and
reuse the business logic.

16.3.2 Using session beans from Spring beans

584 CHAPTER 16
EJB 3 and Spring
 public Item addItem(String title, String description,
 Double initialPrice, String sellerId) {
 ...
 return item;
 }
}

You want to use the ItemManager session bean in the ItemServiceBean, which is a
Spring POJO (see listing 16.4).

public class ItemServiceBean implements ItemService {

 private ItemManager itemManager;

 public ItemServiceBean() {
 }

 // Setter injection of ItemManagerEJB
 public void setItemManager(ItemManager itemManager) {
 this.itemManager = itemManager;
 }

 public Long addItem(String title, String description,
 Double initialPrice, String sellerId) {
 Item item = itemManager.addItem(title, description,
 initialPrice, sellerId);
 return item.getItemId();
 }
}

In listing 16.4 you will see no difference in using a POJO because EJB 3 session
beans are also POJOs. In the Spring bean, we’ve defined an instance variable for
the EJB interface ItemManager b and we use setter injection to inject an instance
of the EJB object c and invoke a method on the EJB d.

 You must be wondering where the actual magic happens. We aren’t doing a
JNDI lookup, and we’re not using the @EJB annotation to inject an EJB object.
The real magic occurs in wiring the EJB in the Spring configuration, as shown
in listing 16.5. Spring has factory classes for wiring invocation of EJB 2.1 ses-
sion beans. Fortunately, you don’t need those and you can use the JndiObject-
FactoryBean.

Listing 16.4 A Spring POJO that uses an injected stateless session bean

Specifies instance
variable for EJB b

 c Injects setter

Invokes EJB
method d

Summary 585
<bean id = "itemManager"
 class = "org.springframework.jndi.JndiObjectFactoryBean">
 <property name = "jndiName"
 value = "java:comp/env/ejb/ItemManager"/>
</bean>

<bean id = "itemService"
 class = "actionbazaar.buslogic.ItemServiceBean">
 <property name = "itemManager" ref = "itemManager"/>
</bean>

In listing 16.5 we define a bean instance that injects an EJB instance by looking it
up in the JNDI b when referenced by another bean instance c.

 If you are a big fan of the new Spring 2.0 configuration, then you’ll be temp-
ted to use the following instead of JndiObjectFactoryBean. Go ahead; indulge
your temptation.

<jee:jndi-lookup id = "itemManager"
 jndi-name = "ejb/ItemManager"
 resource-ref = "true"/>

Unlike in EJB 2, there is no difference between invoking remote or local EJBs
in EJB 3, and the configuration will be identical for both local and remote ses-
sion beans.

 We encourage you to explore the latest Spring 2.0 documentation at
www.springframework.org/documentation to learn about the latest support of
EJB 3 features in the Spring framework.

16.4 Summary

This chapter explained that even though EJB 3 is a specification and Spring is a
framework, you can use them together successfully to build flexible, powerful
applications. You can use parts of the EJB 3 implementation, or all of it, within
your Spring applications. Spring can simplify the use of both EJB 3 and JPA, but
at the price of foraging through Spring’s XML configuration files. You learned
how to develop a Spring-enabled EJB (session bean or MDB) and leverage the
power of Spring within your EJB components. Similarly, you can access an EJB 3
session bean from your Spring bean and reuse your business logic.

 EJB 3 is a great framework for building enterprise Java applications, and it sig-
nificantly improves developer productivity. It has some minor limitations, such as

Listing 16.5 A Spring POJO that uses an injected stateless session bean

Defines bean
to access EJB

 B

 c References EJB

586 CHAPTER 16
EJB 3 and Spring
support for POJO injection, and we hope that these limitations will be addressed
in the next version of the specification. Throughout this book we provided many
best practices and tuning tips, and we trust you can use this information to effec-
tively build your next application.

RMI and JNDI
587

588 APPENDIX A
RMI and JNDI
Java Remote Method Invocation (RMI) and the Java Naming and Directory Inter-
face (JNDI) are two central Java technologies that EJB 3 uses extensively under the
hood. RMI is the technology that enables transparent Java native remote commu-
nication between EJB clients and beans. JNDI, on the other hand, enables a whole
host of EJB functionality by acting as the central service registry for a Java EE con-
tainer. One of the major enhancements in EJB 3, dependency injection (DI), is
simply a wrapper over JNDI lookups.

 In this appendix we offer a brief primer on both of these technologies, espe-
cially as they relate to EJB 3.

A.1 Distributed communication with RMI

Java RMI made its debut very early in Java’s history. (also known Java Remote
Method Protocol (JRMP)). It became clear that, as a platform that touts the dis-
tributed computing mantra “The network is the computer,” Java must provide a
simple and robust mechanism for communication across JVM instances. Ideally,
method calls on an object running in one JVM should be executed transparently
in another remote JVM. With the help of a small amount of boilerplate setup code
combined with a few code-generation tools, RMI delivers on this promise. To
invoke an object method remotely using RMI, you must

■ Register the remote object implementing the method with an RMI registry.
■ Look up the remote object reference from the registry (the remote refer-

ence is accessed through an interface).
■ Invoke the remote method through the reference obtained from the registry.

The idea of a registry to store remote object references is central to RMI. All objects
that need to be invoked remotely must be registered with an RMI registry. In
order to be registered with an RMI server and be invoked remotely, an object must
extend a few RMI classes as well as implement a remote interface. A remote interface
defines the object methods that can be invoked remotely. Like the target remote
object itself, a remote interface must extend a few RMI interfaces.

 Once a remote object is registered with a registry, any client that can access the
registry can obtain a reference to it. To get a reference to a remote object, the cli-
ent must retrieve it from the registry by name and then invoke it through the
remote interface. Each time a client invokes a method through the remote inter-
face, the method invocation request is carried transparently across the wire to the
remote object. The remote object method is then executed inside its own JVM.

Distributed communication with RMI 589
The result of the method invocation (such as a return value) is transported back
across the network to be delivered to the client by RMI.

 To better understand what is happening in the remote interface scenario, let’s
draw an analogy with something familiar to all of us: a television. Think of a tele-
vision as the remote object to be called. The remote control for our television is
the remote interface. The infrared protocol sent by the remote control and picked
up by the television is like the RMI protocol. While using the remote control, we
don’t have to know all of the details of how the infrared signal works; all we need
to know is what each of the buttons on the remote does (the interface methods).
Figure A.1 shows how a typical RMI invocation scenario works.

 The parallels between EJB and RMI are obvious. Like the EJB object discussed
in chapter 5, RMI works through proxies on both the client and remote object
endpoints to transparently provide distributed computing as a service. In the EJB
world, the business interface plays the same role as the “remote” interface, while
the EJB bean itself is the “remote object.” Just as RMI handles the communication
details between the remote client and the object, the container handles the com-
munication details between the EJB client and the managed bean. Before EJB 3,
the linkages between RMI and EJB were even more obvious—for example, remote
business interfaces had to put java.rmi.RemoteException in their throws clause.
In EJB 3, the fact that EJB uses RMI for remoting is rightfully hidden far behind
the API as an implementation detail you can safely ignore.

Figure A.1 Communication between the RMI client and server (remote object).
The RMI server binds an object in the RMI registry. The client performs a lookup
in the RMI registry to get a reference to the remote object and then invokes the
method on the remote object through the remote interface.

590 APPENDIX A
RMI and JNDI
When you annotate a session bean business interface using the @Remote annota-
tion as we did in chapters 2 and 3, the container automatically makes the bean
callable via RMI as a remote object. Similarly, when you inject a remote bean using
the @EJB annotation, the container talks to the bean through RMI under the hood.

 The greatest benefit for RMI is that it provides location transparency. The cli-
ent invokes methods on a remote object as if the object were located in the same
virtual machine, without having to worry about the underlying plumbing. This
also means that RMI is generally a lot easier to use and flexible compared to writ-
ing TCP/IP sockets by hand for remote communication.

 As compelling as RMI might seem from our very high-level discussion, like all
technologies it has its own set of problems.

 Remote object invocation uses pass-by-value semantics. When the client passes
a parameter to the remote method, RMI sends the data held by the object across
the network as a byte stream. The byte stream is received by RMI on the other
end of the communication tunnel, copied into an object of the same type as
passed in by the client, and weaved in as a parameter to the remote object.
Objects returned by the remote method go through the same translation-
transport-translation steps. The process of turning an object into a byte stream
is called marshaling, and the process of turning a byte stream into an object is
called unmarshaling. This is exactly why all objects transported across the net-
work by RMI must implement the java.io.Serializable interface. For large
objects, the cost of marshaling and unmarshaling can be pretty high, making
RMI a performance bottleneck compared to local invocation. This is why you
want to make sure that objects passed over RMI are not large, because they can
slow down your application.

 Like EJB 2, RMI isn’t too easy to use. You often find yourself performing func-
tions such as extending obscure interfaces or classes, and following a strange pro-
gramming model. Luckily, EJB 3 does all the hard work of generating RMI code
behind the scenes.

 Last but not least, RMI is great for Java-to-Java transparent communication but
is not good for interoperability with Microsoft .NET and the like. If interoperabil-
ity is a concern, you should be using web services instead of RMI. Note, however,
web services is overkill if not absolutely needed, primarily because text-based,
parsing-intensive XML performs much worse than binary-based protocols like
RMI. Moreover, it is possible to use RMI-IIOP to interoperate between Java and
CORBA components written in languages like C++. Every EJB container must
support RMI-IIOP and enabling RMI-IIOP is simply a matter of configuration.

JNDI as a component registry 591
 If you want to learn more about RMI, check out http://java.sun.com/products/
jdk/rmi/.

A.2 JNDI as a component registry

JNDI is the JDBC of naming and directory services. Just as JDBC provides a stan-
dard Java EE API to access all kinds of databases, JNDI standardizes naming and
directory service access. If you’ve ever used a Lightweight Directory Access Proto-
col (LDAP) such as a Microsoft Active Directory server, you already know what a
naming and directory service is.

 In simple terms, a naming service provides the ability to locate a component
or service by name. You give a naming service the complete name for a resource
and it figures out how to get you a handle to the resource that you can use.
Domain Name Service (DNS) is a relatively well-known example of a naming ser-
vice. When we point our web browser to http://yahoo.com, the DNS server con-
ducts a lookup and directs us to the right IP address for Yahoo. The RMI registry is
another example of a naming service. In a sense, even an operating system file
manager is a naming service. You give the file manager the complete path to a
file and it gives you a handle to the file you are looking for.

 As figure A.2 shows, JNDI provides a uniform abstraction over a number of
different naming services such as LDAP, DNS, Network Information Service
(NIS), Novell Directory Services (NDS), RMI, Common Object Request Broker
Architecture (CORBA), and so on. Once you have an instance of a JNDI context,
you can use it to locate resources in any underlying naming service available to
the context. Under the hood, JNDI negotiates with each available naming ser-
vice given the name of a resource to figure out where to look up the service’s
actual location.

Figure A.2 JNDI provides a single unified API to access various naming services such as LDAP,
NDS, NDS, NIS, RMI, and CORBA. Any naming service with a JNDI Service Provider Interface (SPI)
provider can be plugged into the API seamlessly.

592 APPENDIX A
RMI and JNDI
Like RMI, JNDI plays a vital role in EJB 3, although it is by and large hidden
behind the scenes (also like RMI, JNDI used to be a lot more visible and made EJB
much more cumbersome as of EJB 2). In a very real sense, JNDI is to EJB what the
RMI registry is to RMI. JNDI is used as the central repository for resources man-
aged by the container.

 As a result, every bean managed by the container is automatically registered
with JNDI. In addition, a typical container JNDI registry will store JDBC data
sources, JMS queues, JMS connection factories, JPA entity managers, JPA entity
manager factories, and so on. Whenever a client (such as an EJB) needs to use a
managed resource, they use JNDI to look up the resource by its unique name. Fig-
ure A.3 shows how a typical JNDI tree for a Java EE application server might look.

 As you can see in figure A.3, resources are stored in a JNDI tree in a hierarchi-
cal manner. This means that JNDI resource names look much like Unix file path-
names (they also sometimes start with a protocol specification such as java:,
much like a URL address you would enter in a browser navigation bar). As with
RMI, once you procure a handle to a resource from a JNDI context, you can use it
as though it were a local resource.

 To use a resource stored in the JNDI context, a client has to initialize the con-
text and look up the resource. Despite the robustness of the JNDI mechanism
itself, the code to do so isn’t that intimidating. The code in listing A.1 looks up a
JDBC data source from JNDI and creates a new connection from it. As you might
imagine, the JDBC connection then might be used to issue SQL to the underlying
database pointed to by the retrieved data source.

Figure A.3 An example JNDI tree for an application server. All global resources such as jdbc and jms
are bound to the root context of JNDI tree. Each application has its own application context, and EJBs
and other resources in the application are bound under the application context.

JNDI as a component registry 593
Context context = new InitialContext();
DataSource dataSource =
 (DataSource)context.lookup("java:comp/env/jdbc/ActionBazaarDS");
Connection connection = dataSource.getConnection();
Statement statement = connection.createStatement();

In listing A.1, the JNDI lookup takes place in the first two lines. First, an Initial-
Context object is instantiated. The InitialContext object connects to any given
JNDI tree. In the case of the parameter-less version of the constructor used in list-
ing A.1, the InitialContext object connects to the “default” JNDI tree. The JNDI
defaults are determined by the contents of a file named jndi.properties that can
be stored anywhere in the JVM’s CLASSPATH. The Java EE application server usu-
ally provides this properties file, and the settings in the file typically point to the
JNDI tree of the local application server. As a result, the default InitialContext
constructor is most useful while looking up resources within the same JVM. If you
are looking up a resource (such as an EJB) on a remote application server, then
you must feed environment properties to the InitialContext constructor. This
can be done as follows:

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
 "oracle.j2ee.rmi.RMIInitialContextFactory");
properties.put(Context.PROVIDER_URL,
 "ormi://192.168.0.6:23791/appendixa");
properties.put(Context.SECURITY_PRINCIPAL, "oc4jadmin");
properties.put(Context.SECURITY_CREDENTIALS, "welcome1");
Context context = new InitialContext(properties);

In the example, the custom Properties entries specify that we are trying to con-
nect to a remote Oracle application server JNDI tree. Note JNDI connection prop-
erties are vendor (application server) specific and our example cannot be used
universally, so you should consult with your application server’s documentation
to see how you can connect to it remotely. In general, you might find that most
application servers require a common set of JNDI properties defined as constants
in the Context interface. Table A.1 summarizes the most common environment
properties that are used for Java EE application servers.

 Note that instead of providing environment properties programmatically, you
can also simply modify the jndi.properties file in your runtime CLASSPATH. If
you are using EJB 3 DI, this is the only way of connecting to a remote server.

Listing A.1 Looking up a JDBC data source using JNDI

594 APPENDIX A
RMI and JNDI
In the second line of listing A.1, the lookup is performed using the context
instantiated in the first line. The single parameter of the lookup method is the
full name of the resource you are seeking. In our case, the JNDI name of the JDBC
data source we are looking for happens to be jdbc/ActionBazaarDS. Note that
because the lookup method returns the Object type, we must cast the retrieved
resource to the correct type. In the case of EJBs, references returned by JNDI must
be cast to a valid business interface implemented by the EJB.

 While the code in listing A.1 looks harmless, don’t be taken in by appearances.
JNDI lookups were one of the primary causes for EJB 2’s complexity. First of all,
you had to do lookups to access any resource managed by the container, even if you
were only accessing data sources and EJBs from other EJBs located in the same
JVM. Given that most EJBs in an application depend on other EJBs and resources,
imagine the lines of repetitive JNDI lookup code littered across an average busi-
ness application! To make matters worse, JNDI names of resources aren’t always
that obvious to figure out, especially for resources that are bound to the environ-
ment naming context (which must use the arcane java:comp/env/ prefix for port-
ability of applications instead of using a global JNDI name).

 The good news is that except for certain corner cases, you won’t have to deal
with the evils of JNDI in EJB 3. EJB 3 puts the mechanical details of JNDI lookups
well hidden behind metadata-based DI. DI does such a great job in abstraction

Table A.1 Common JNDI environment properties required for creating an initial context to connect
to a remote JNDI service provider in a Java EE environment. These are specified either as system
properties in the jndi.properties file in the JVM at the client side or as Property object entries passed
to the constructor in your Java code. Of these options, a properties file is recommended as it
improves maintainability of your application code.

Property Name Description Example Value

java.naming.factory.
 initial

The name of the factory
class that will be used to
create the context

oracle.j2ee.rmi.
 RMIInitialContextFactory

java.naming.
 provider.url

The URL for the JNDI
service provider

ormi://localhost:23791/
 chapter1

java.naming.security.
 principal

The username or identity for
authenticating the caller in
the JNDI service provider

oc4jadmin

java.naming.security.
 credentials

The password for the
username/principal being
used for authentication

welcome1

JNDI as a component registry 595
that you won’t even know that JNDI lookups are happening behind the scenes,
even for remote lookups. DI is discussed in chapters 2, 3, 4, and 5.

 You can find more about JNDI from Sun’s website at http://java.sun.com/
products/jndi/.

Reviewing relational
databases
596

Database tables, columns, rows, and schema 597
Relational databases have been an integral part of enterprise development for a
few decades now. The fact that these business data storage mainstays are backed
by their own body of mathematical theory (relational algebra) speaks to the ele-
gance and robustness of this mature technology. E. F. Codd first introduced the
theory of relational databases in 1970 while working at IBM. This groundbreak-
ing research eventually led to the creation of today’s database products, including
IBM’s own highly successful DB2 database. Oracle is the most popular database in
existence today, in vibrant competition with products like Microsoft SQL Server,
Sybase, MySQL, and many others, in addition to IBM’s DB2. Fundamentally, rela-
tional databases store and organize related data into a hierarchy of schemas, tables,
columns, and rows.

 Other types of databases exist, including flat-file, hierarchical, network, and
object-oriented databases. Each of these is worthy of study on its own merits.
However, the EJB 3 specification only supports relational databases, and that will
be where we draw the line with regard to the database discussions in this book.
The focus of this appendix is to briefly discuss each of the relational concepts.

B.1 Database tables, columns, rows, and schema

Tables are the most basic logical unit in a relational database. A table stores con-
ceptually related data into rows and columns. Essentially, tables are the object-
oriented (OO) counterparts of objects. Hence, we might imagine that the
ActionBazaar database contains tables like CATEGORIES, ITEMS, ORDERS, and so
forth. A column is a particular domain of data, and a table is a set of related col-
umns. If tables are the equivalent of objects, columns are the equivalent of object
attributes. Consequently, the CATEGORIES table probably has columns such as
CATEGORY_ID, CATEGORY_NAME, MODIFICATION_DATE, and CREATION_DATE, as seen in
figure B.1.

 As with object attributes in Java, each relational table column has a data type.
Table B.1 lists some column data types commonly used across various databases
and their Java equivalents.

Table B.1 Common column data types and their Java equivalents

Relational Database Type Java Type

CHAR, VARCHAR2, VARCHAR, LONG java.lang.String

Char char, Char

continued on next page

598 APPENDIX B
Reviewing relational databases
A row is a record saved in the database composed of related data in each col-
umn of a table. A row, in effect, is equivalent to an instance of a particular
object, in contrast to the class definition. For most OO developers it’s not a big
leap to imagine an instance of the Category object being saved into a row of the
CATEGORIES table.

 A schema can be compared to a Java package. In other words, a schema is a col-
lection of related tables, similar to how a Java package contains a set of related
classes. Usually, all of the tables used in a particular application are organized
under a single schema. All the tables used in our example application might be
stored under a schema called ACTIONBAZAAR.

 Typically, a schema stores much more than just tables. It might also have views,
triggers, and stored procedures. A detailed discussion of these database features
is beyond the scope of this appendix. For coverage of these and other database
topics, feel free to investigate a good reference book such as An Introduction to
Database Systems, 7th edition, by C. J. Date (Addison Wesley Longman, 1999).

INTEGER, NUMBER int, Integer, BigInteger

NUMBER double, float, BigDecimal, Double, Float

Raw, BLOB java.sql.Blob, byte[]

CLOB java.sql.Clob, char[],java.lang.String

Table B.1 Common column data types and their Java equivalents (continued)

Relational Database Type Java Type

Figure B.1 Rows and columns in the CATEGORIES table. While columns store a domain of data,
rows contain a record composed of a set of related columns in a table.

Database constraints 599
We will, however, cover a few more database concepts essential in understand-
ing EJB 3 Persistence next, namely database constraints such as primary and
foreign keys.

B.2 Database constraints

Constraints are the concept that is closest to business rules in a basic relational
database schema. In effect, constraints maintain data integrity by enforcing rules
on how data may be modified. Since most database vendors try to differentiate
their products by offering unique constraint features, coming up with a list of
constraints to discuss is not easy. We have chosen to cover the bare minimum set
necessary to understand EJB 3 persistence features, namely primary/foreign keys,
uniqueness constraints, NULL constraints, and sequence columns.

B.2.1 Primary keys and unique columns

Just as a set of fields or properties uniquely identifies an entity, a set of columns
uniquely identifies a given database record. The column or set of columns iden-
tifying a distinct record is called a primary key. For example, the CATEGORY_ID column
is the primary key for the CATEGORIES table. When you identify a column or set of
columns as the primary key, you essentially ask the database to enforce uniqueness.
If the primary key consists of more than one column, it is called a compound or com-
posite key. For example, instead of CATEGORY_ID, the combination of CATEGORY_NAME
and CREATION_DATE could be the primary key for the CATEGORIES table.

 Primary keys that consist of business data are called natural keys. A classic
example is using some business data such as a Social Security number (repre-
sented by an SSN column) as the primary key for an EMPLOYEES table. CATEGORY_ID
or EMPLOYEE_ID, on the other hand, are examples of surrogate keys. Essentially, sur-
rogate keys are columns created explicitly to function as primary keys. Surrogate
keys are popular and we highly recommend using them, especially as opposed to
compound keys. Other than naming, primary key and uniqueness constraints do
exactly the same thing, and the constraint is usually applied to columns that can
function as alternate natural keys.

B.2.2 Foreign key

The interaction of primary and foreign keys is what makes relational databases
shine. Foreign keys are essentially primary key values of one table stored in
another table. Foreign keys are the database equivalents of object references, and

600 APPENDIX B
Reviewing relational databases
signify relationships between tables. As shown in figure B.2 (from our Action-
Bazaar example), a column named CATEGORY_ID in the ITEMS table pointing to the
CATEGORY_ID column in the CATEGORIES table signifies the fact that an item
belongs in a category.

 A database foreign key constraint means that the database will ensure every
value that is put into the foreign key column exists in the primary key column it
points to.

B.2.3 NOT NULL

The NOT NULL constraint is essentially a data integrity mechanism that ensures
some table columns always have valid, nonempty values. For example, if the busi-
ness rules dictate that a Category record must always have a name, we can specify
a NOT NULL constraint on the CATEGORY_NAME column, and the database will only
allow rows to be inserted where a CATEGORY_NAME is specified. If no CATEGORY_NAME
is provided, the database will not allow the row to be inserted.

Figure B.2 The CATEGORY_ID foreign key in the ITEMS table points to the primary key of the
CATEGORIES table.

Structured Query Language (SQL) 601
B.2.4 Sequences

An easy way to ensure uniqueness for surrogate primary keys is to set the key for a
new record to a number greater than the last created record. Although you could
manage this kind of column yourself, databases provide various mechanisms for
managing key sequences. The easiest and most transparent of these mechanisms
is an identity column constraint (such as the identity column constraints supported
by DB2, Sybase, and SQL Server). When you designate a column as an identity, the
database automatically generates a value for you when you create a new record.
For example, if the ITEM_ID primary key for the ITEMS table is an identity, when we
create a new record we do not specify a primary key value ourselves. Instead, dur-
ing record creation the database looks at the last row inserted, generates a new
value by incrementing the last key, and sets the ITEM_ID value on our behalf.

 Some other databases like Oracle don’t support incrementing keys as an internal
function of the column, but help you generate keys using an external mechanism
called sequences (DB2 supports sequences in addition to identities). Each time you
insert a new record, you can ask the sequence to generate a key that you can use in
the INSERT statement. A few databases don’t support sequence generation at all, in
which case you must implement similar functionality yourself. Fortunately, EJB 3
transparently handles all these situations on your behalf, using the table generator.

B.3 Structured Query Language (SQL)

If relational theory is the bedrock of the relational database, SQL is the crown jew-
els. Java developers with strong OO roots may find SQL’s verbose syntax and
unmistakably relational feel less than ideal. The truth is that even O/R solutions
such as the EJB 3 Persistence API generate SQL under the hood. The fact that you
use O/R is no excuse not to have a solid understanding of SQL, particularly during
debugging and fine-tuning.

 SQL (which stands for Structured Query Language) arose as a result of the ini-
tial relational research conducted at IBM. The American National Standards Insti-
tute (ANSI) has since standardized SQL. Almost all major databases comply with
the SQL-92 standard for the most part. Even then, writing portable SQL is a tricky
business at best. Luckily, O/R relieves us from this meticulous work to some degree
by automatically generating SQL suited to a particular database.

 SQL statements include the familiar CREATE, INSERT, DELETE, UPDATE, and, of
course, everyone’s favorite, SELECT. As a testament to the power of the SELECT
statement, some elements of it have been ported over into the O/R world through
EJB-QL (which we cover in chapter 10).

602 APPENDIX B
Reviewing relational databases
Coverage of SQL syntax is well beyond the scope of this appendix. However, at
least a basic grasp of SQL is essential to understand chapters 8, 9, and 10. If
you don’t already have a working knowledge of SQL, we highly recommend
that you investigate it on your own.

Database normalization

In the relational world, it is extremely important that the same conceptual data not
be replicated throughout the database. The importance of avoiding redundancy
stems from two facts. First, most databases hold a huge amount of data. For
example, it is easy to think that storing department name and location in a table
with employee information is no big deal. The problem is that if a thousand employ-
ees work in the same department, the department information would be duplicated
across a thousand employee table rows! If a department location changes, you
would have to accurately update each of the records for the thousand employees
who work for the department. Second, this redundancy can easily lead to inconsis-
tency. Both of these problems can be solved by storing a foreign key to the depart-
ment table (say department ID) in the employee table instead.

Relational theory has formalized the process of checking the database design for
redundancy. This process is called database normalization. IBM researchers ini-
tially proposed three different levels of normalization: first, second, and third nor-
mal form, each consisting of a well-defined, incrementally strict set of rules to
check for database fitness. Later, more levels were introduced: BCNF (Boyce-Codd
Normal Form), fourth, and fifth normal form. Relational theory recognizes the fact
that normalization can lead to trading off speed for space efficiency. Most DBAs go
through the process of selective denormalization when faced with tricky perfor-
mance issues.

Annotations reference
603

604 APPENDIX C
Annotations reference
In this appendix, we list all the EJB 3 annotations we talked about throughout the
book. This appendix is designed to be a quick reference you can use while devel-
oping your enterprise application. See the individual chapters for the full details
of each annotation.

 The annotations are organized by topic, roughly following the same sequence
as the chapters.

C.1 Session and message-driven beans

The following are all the annotations that are used in session and message-
driven beans.

C.1.1 Session beans

These annotations are used for stateless and stateful session beans.

javax.ejb.Stateless
Marks a POJO as a stateless session bean.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateless {
 String name() default "";
 String mappedName() default "";
 String description() default "";
}

javax.ejb.Stateful
Marks a POJO as a stateful session bean.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateful {
 String name() default "";
 String mappedName() default "";
 String description() default "";
}

javax.ejb.Remove
Denotes a business method as the remove method of a stateful session bean.

@Target(METHOD) @Retention(RUNTIME)
public @interface Remove {
 boolean retainIfException() default false;
}

Vendor-specific bean name

Vendor-specific bean name

Session and message-driven beans 605
The @Remove annotation has one element: retainIfException. If it is set to
true and an exception is thrown from designated method, the bean will not
be removed.

javax.ejb.Remote
Marks a POJI as a session bean remote business interface.

@Target(TYPE) @Retention(RUNTIME)
public @interface Remote {
 Class[] value() default {};
}

The @Remote annotation can be applied on both on a bean class or on a business
interface. The class element is used to specify the name of the interface when
@Remote is applied on the bean class.

javax.ejb.Local
Marks a POJI as a session bean local business interface.

@Target(TYPE) @Retention(RUNTIME)
public @interface Local {
 Class[] value() default {};
}

The @Local annotation can be applied on a bean class or on a business interface.
The class element is used to specify the name of the interface when @Local is
applied on the bean class.

javax.ejb.RemoteHome and javax.ejb.LocalHome
The RemoteHome and LocalHome annotations are used for backward compatibility
with EJB 2 session bean clients. You can use these annotations with EJB 3 session
beans that provide an EJB 2 client view.

@Target(TYPE) @Retention(RUNTIME)
public @interface RemoteHome {
Class value();

@Target(TYPE) @Retention(RUNTIME)
public @interface LocalHome {
Class value();

javax.ejb.Init
The @Init annotation is used primarily for backward compatibility with EJB 2 ses-
sion beans. It can be used on a method and will have behavior similar to that of
the create<METHOD> method of an EJB 2 session bean.

Home interface

Local home interface

606 APPENDIX C
Annotations reference
@Target(METHOD) @Retention(RUNTIME)
public @interface Init{
String value() default "";
}

C.1.2 Message-driven beans

These annotations apply to message-driven beans.

javax.ejb.MessageDriven
Marks a POJO as an MDB.

@Target(TYPE) @Retention(RUNTIME)
public @interface MessageDriven {
 String name() default "";
 Class messageListenerInterface() default
 java.lang.Object.class;
 ActivationConfigProperty[] activationConfig() default {};
 String mappedName() default "";
 String description() default "";
}

javax.ejb.ActivationConfigProperty
Specifies a name-value pair of configuration properties that may be used for an
MDB to receive messages from a message source.

@Target({}) @Retention(RUNTIME)
public @interface ActivationConfigProperty {
 String propertyName();
 String propertyValue();
}

C.1.3 Dependency injection

These annotations are used to inject both EJBs and resources.

javax.ejb.EJB
Injects an EJB reference into a field or method.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {
 String name() default "";
 Class beanInterface() default Object.class;
 String beanName() default "";
 String mappedName() default "";
 String description() default "";
}

Specifies listener
interface

Configures
propertiesContains vendor-specific

bean name

Vendor-specific JNDI bean name

Session and message-driven beans 607
javax.ejb.EJBs
Denotes references to multiple EJBs. Used at the class level. This annotation is
not discussed in this book. We encourage you to explore it on your own.

@Target(TYPE) @Retention(RUNTIME)
public @interface EJBs {
 EJB[] value();
}

javax.annotation.Resource
Injects a container resource into a field or method.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface Resource {
 public enum AuthenticationType {
 CONTAINER,
 APPLICATION
 }
 String name() default "";
 Class type() default Object.class;
 AuthenticationType authenticationType()
 default AuthenticationType.CONTAINER;
 boolean shareable() default true;
 String mappedName() default "";
 String description() default "";
}

javax.annotation.Resources
Denotes references to multiple resources. Used at the class level. This annotation
is not discussed in this book. We encourage you to explore it on your own.

@Target(TYPE) @Retention(RUNTIME)
public @interface Resources {
 Resource[] value();
}

C.1.4 Transaction management

These annotations are used for declarative transaction management.

javax.ejb.TransactionManagement
Specifies transaction type, such as BMT or CMT, for an EJB.

@Target(TYPE) @Retention(RUNTIME)
public @interface TransactionManagement {
 TransactionManagementType value()
 default TransactionManagementType.CONTAINER;
}

Vendor-specific resource Vendor-specific resource name

608 APPENDIX C
Annotations reference
public enum TransactionManagementType {
 CONTAINER,
 BEAN
}

javax.ejb.TransactionAttribute
Specifies the transaction attribute for an EJB method.

@Target({METHOD, TYPE}) @Retention(RUNTIME)
public @interface TransactionAttribute {
 TransactionAttributeType value()
 default TransactionAttributeType.REQUIRED;
}

public enum TransactionAttributeType {
 MANDATORY,
 REQUIRED,
 REQUIRES_NEW,
 SUPPORTS,
 NOT_SUPPORTED,
 NEVER
}

javax.ejb.ApplicationException
Denotes a checked or unchecked exception as an application exception.

@Target(TYPE) @Retention(RUNTIME)
public @interface ApplicationException {
 boolean rollback() default false;
}

C.1.5 Security management
These annotations are used for declarative security management.

javax.annotation.security.DeclareRoles
Defines the roles used in an application.

@Target({TYPE}) @Retention(RUNTIME)
public @interface DeclareRoles {
 String[] value();
}

javax.annotation.security.RolesAllowed
Specifies the roles allowed to invoke a bean method.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface RolesAllowed {
 String[] value();
}

Session and message-driven beans 609
javax.annotation.security.PermitAll
Specifies business methods that are accessible to any role.

@Target ({TYPE, METHOD}) @Retention(RUNTIME)
public @interface PermitAll {}

javax.annotation.security.DenyAll
Specifies that no roles be allowed to invoke a business method.

@Target (METHOD) @Retention(RUNTIME)
public @interface DenyAll {}

javax.annotation.security.RunAs
Specifies that a business method should run under a given role when it is invoked.

@Target(TYPE) @Retention(RUNTIME)
public @interface RunAs {
 String value();
}

C.1.6 EJB lifecycle management

These annotations are used for EJB lifecycle callbacks.

javax.annotation.PostConstruct
Marks a method in the bean class or an interceptor class as a postconstruct lifecy-
cle callback method.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostConstruct {}

javax.annotation.PreDestroy
Marks a method in the bean class or an interceptor class as a predestroy lifecycle
callback method.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreDestroy {}

javax.ejb.PostActivate
Marks a stateful EJB method as a postactivate lifecycle callback method.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostActivate {}

610 APPENDIX C
Annotations reference
javax.ejb.PrePassivate
Marks a stateful EJB method as a prepassivate lifecycle callback method.

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePassivate {}

C.1.7 Interceptors

These annotations are used for interceptors.

javax.interceptor.Interceptors
Designates interceptors for an entire EJB or a bean method.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface Interceptors {
 Class[] value();
}

javax.interceptor.AroundInvoke
Designates a method in an interceptor class as the around-invoke method.

@Target({METHOD}) @Retention(RUNTIME)
public @interface AroundInvoke {}

javax.interceptor.ExcludeClassInterceptors
Marks a bean method to exclude interceptors defined at the class level.

@Target({METHOD}) @Retention(RUNTIME)
public @interface ExcludeClassInterceptors {}

javax.interceptor.ExcludeDefaultInterceptors
Marks a bean class or bean method to exclude interceptors defined at the module
(default) level.

@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface ExcludeDefaultInterceptors {}

C.1.8 Timers

The following annotation is used for EJB timers.

javax.ejb.Timeout
Marks a bean method as the timeout method that is triggered when an EJB
timer expires.

@Target({METHOD}) @Retention(RUNTIME)
public @interface Timeout {}

Java Persistence API annotations 611
C.2 Java Persistence API annotations

These are the annotations used for the Java Persistence API.

C.2.1 Defining domain objects

The following annotations are used to define domain objects such as entities,
embedded objects, and entity identity.

javax.persistence.Entity
Marks a POJO as a JPA entity.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {
 String name() default "";
}

javax.persistence.Embeddable
Marks a POJO as an embeddable object (stored as a part of another entity).

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {}

javax.persistence.Embedded
Specifies that a persistence field or property is an embeddable class.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}

javax.persistence.Id
Denotes a persistence field or property that is the unique identifier for an entity.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

javax.persistence.IdClass
Used to define a composite primary key.

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {
 Class value();
}

javax.persistence.EmbeddedId
Denotes an embeddable object as the unique identifier for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EmbeddedId {}

612 APPENDIX C
Annotations reference
C.2.2 Defining domain object data

These annotations are used to define entity data.

javax.persistence.Transient
Marks a field or property as transient (not persisted).

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

javax.persistence.Lob
Specifies that a persistence field or property be mapped to a large object type
(BLOB or CLOB) in the database.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {}

javax.persistence.Temporal
Specifies the mapping data type of a persistence field or property as java.util.
Date or java.util.Calendar.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {
 TemporalType value();
}

public enum TemporalType {
 DATE,
 TIME,
 TIMESTAMP
}

javax.persistence.Enumerated
Denotes options for a persistence field or property of type enumerated.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {
 EnumType value() default ORDINAL;
}

public enum EnumType {
 ORDINAL,
 STRING
}

java.sql.Date
java.sql.Time

java.sql.Timestamp

Java Persistence API annotations 613
C.2.3 Mapping entity data
The annotations in this section are used to map entity data to the database.

javax.persistence.Table
Defines the primary table an entity is mapped to.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
 String name() default "";
 String catalog() default "";
 String schema() default "";
 UniqueConstraint[] uniqueConstraints() default {};
}

javax.persistence.SecondaryTable
Defines secondary table an entity is mapped to.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
 String name();
 String catalog() default "";
 String schema() default "";
 PrimaryKeyJoinColumn[] pkJoinColumns() default {};
 UniqueConstraint[] uniqueConstraints() default {};
}

javax.persistence.UniqueConstraint
Defines a unique constraint for a table used for entity mapping.

@Target({}) @Retention(RUNTIME)
public @interface UniqueConstraint {
 String[] columnNames();
}

javax.persistence.Column
Maps an entity field or property to a table column.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {
 String name() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
 int length() default 255;
 int precision() default 0;
 int scale() default 0;
}

Table catalog
Table schema

Table catalog
Table schema

Column DDL

Decimal precision

Decimal scale

614 APPENDIX C
Annotations reference
javax.persistence.Basic
Specifies some simple mapping attributes. Can be used with any association map-
ping or specify the fetch type for a field or property.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

javax.persistence.AttributeOverride
Overrides the mapping of an entity property or field. This annotation is not dis-
cussed in this book. We encourage you to explore it on your own.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {
 String name();
 Column column();
}

javax.persistence.AttributeOverrides
Specifies multiple mapping overrides. This annotation is not discussed in this
book. We encourage you to explore it on your own.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverrides {
 AttributeOverride[] value();
}

javax.persistence.GeneratedValue
Used for automatic generation of values; typically used for primary keys.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {
 GenerationType strategy() default AUTO;
 String generator() default "";
}

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, AUTO }

javax.persistence.TableGenerator
Denotes a generator that may be used for automatic key generation using a
sequence table.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface TableGenerator {
 String name();
 String table() default "";

Unique generator name

Java Persistence API annotations 615
 String catalog() default "";
 String schema() default "";
 String pkColumnName() default "";
 String valueColumnName() default "";
 String pkColumnValue() default "";
 int initialValue() default 0;
 int allocationSize() default 50;
 UniqueConstraint[] uniqueConstraints() default {};
}

javax.persistence.SequenceGenerator
Denotes a generator that may be used for automatic key generation using a data-
base sequence.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {
 String name();
 String sequenceName() default "";
 int initialValue() default 1;
 int allocationSize() default 50;
}

C.2.4 Defining domain relationships

These annotations are used to define one-to-one, one-to-many and many-to-
many relationships between entities.

javax.persistence.OneToOne
Specifies a one-to-one entity association.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
 String mappedBy() default "";
}

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH };
public enum FetchType { LAZY, EAGER };

javax.persistence.ManyToOne
Specifies a many-to-one entity association.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};

Table catalog

Table schema

Amount to increment by

Unique generator name

Name of database sequence

Amount to increment by

Entity class if not
Java generics

Relationship
owner

Entity class if not Java generic

616 APPENDIX C
Annotations reference
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

javax.persistence.OneToMany
Specifies a one-to-many entity association.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

javax.persistence.ManyToMany
Denotes a many-to-many association with another entity.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

C.2.5 Mapping domain relationships

These annotations are used to map entity relations to the database.

javax.persistence.JoinColumn
Denotes a mapping column for an entity association.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {
 String name() default "";
 String referencedColumnName() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
}

javax.persistence.JoinColumns
Denotes a mapping column for an entity association when a composite key is used.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumns {

Entity class if not
Java generic

Relationship owner

Entity class if not
Java generic

Relationship owner

Column DDL

Java Persistence API annotations 617
 JoinColumn[] value();
}

javax.persistence.PrimaryKeyJoinColumn
Denotes the primary key column that is used as a foreign key to join to another table.
It is used in one-to-one relationships and the joined subclass inheritance strategy.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {
 String name() default "";
 String referencedColumnName() default "";
 String columnDefinition() default "";
}

javax.persistence.PrimaryKeyJoinColumns
Specifies composite primary keys used as foreign key to join to another table.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumns {
 PrimaryKeyJoinColumn[] value();
}

javax.persistence.JoinTable
Specifies a join table used in a one-to-many or many-to-many association.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinTable {
 String name() default "";
 String catalog default "";
 String schema default "";
 JoinColumn[] joinColumns default {};
 JoinColumn[] inverseJoinColumns default {};
 UniqueConstraint[] uniqueConstraints default {};
}

javax.persistence.AssociationOverride
Overrides a many-to-one or one-to-one mapping of property or field for an
entity relationship.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AssociationOverride {
 String name default "";
 JoinColumn[] joinColumns default {};
}

Key in current table Key in
joined table

Column DDL

Table catalog

Table schema Join column(s) in
owning side

Join column(s) in
inverse side

618 APPENDIX C
Annotations reference
javax.persistence.AssociationOverrides
Overrides mappings of multiple many-to-one or one-to-one relationship proper-
ties or fields.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AssociationOverrides {
 AssociationOverride[] value();
}

javax.persistence.OrderBy
Specifies ordering of a collection-valued association such as one-to-many and
many-to-many when it is retrieved.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {
 String value() default "";
}

javax.persistence.MapKey
Specifies the mapping keys for an entity association of type java.util.Map.
This annotation is not discussed in this book. We encourage you to explore it
on your own.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {
 String name() default "";
}

C.2.6 Mapping object-oriented inheritance

The following annotations are used to map OO inheritance to relational data-
base tables.

javax.persistence.Inheritance
Defines the inheritance mapping strategy for entities in the entity hierarchy.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {
 InheritanceType strategy() default SINGLE_TABLE;
}

public enum InheritanceType { SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

javax.persistence.DiscriminatorColumn
Defines the discriminator column used when the single-table or joined inherit-
ance strategy is used.

Java Persistence API annotations 619
@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
 String name() default "DTYPE";
 DiscriminatorType discriminatorType() default STRING;
 String columnDefinition() default "";
 int length() default 31;
}

public enum DiscriminatorType { STRING, CHAR, INTEGER };

javax.persistence.DiscriminatorValue
Specifies the value for a discriminator column for storing the entity type when the
single-table or joined inheritance strategy is used.

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorValue {
 String value();
}

C.2.7 Java Persistence Query Language annotations

These annotations are used in conjunction with JPQL.

javax.persistence.NamedQuery
Defines a named query. A named query uses JPQL.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {
 String name();
 String query();
 QueryHint[] hints() default {};
}

@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
 String name();
 String value();
}

javax.persistence.NamedQueries
Defines a number of named queries.

@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQueries {
 NamedQuery[] value ();
}

javax.persistence.NamedNativeQuery
Defines a named query. A named native query uses SQL.

Column DDL

Vendor-specific hints

620 APPENDIX C
Annotations reference
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {
 String name();
 String query();
 QueryHint[] hints() default {};
 Class resultClass() default void.class;
 String resultSetMapping() default "";
}

javax.persistence.SqlResultSetMapping
Specifies the mapping for the result of a SQL query.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SqlResultSetMapping {
 String name();
 EntityResult[] entities() default {};
 ColumnResult[] columns() default {};
}

javax.persistence.SqlResultSetMappings
Denotes more than one mapping.

@Target({TYPE}) @Retention(RUNTIME)
public @interface SqlResultSetMappings {
 SqlResultSetMapping[] value();
}

javax.persistence.Version
Specifies the version column used for optimistic record locking.

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

C.2.8 Entity lifecycle annotations
The annotations in this section are used for entity lifecycle management.

javax.persistence.EntityListeners
Specifies entity listener classes for an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntityListeners {
 Class[] value();
}

javax.persistence.ExcludeSuperClassListeners
Disables any entity listeners defined in the superclass of an entity.

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeSuperclassListeners {}

Vendor-specific hints

Mapping to entities

Mapping to scalar value

Java Persistence API annotations 621
javax.persistence.ExcludeDefaultListeners
Disables default entity listeners defined in the persistence module.

@Target({TYPE}) @Retention(RUNTIME)
public @interface ExcludeDefaultListeners {}

javax.persistence.PrePersist
Marks a method in the entity or listener class as a pre-persist callback (executed
before an entity is persisted).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

javax.persistence.PostPersist
Marks a method in the entity or listener class as a postpersist callback (executed
after an entity is persisted).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

javax.persistence.PreUpdate
Marks a method in the entity or listener class as a preupdate callback (executed
before entity data is updated in the database).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

javax.persistence.PostUpdate
Marks a method in the entity or listener class as a postupdate callback (executed
after entity data is updated in the database).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

javax.persistence.PreRemove
Marks a method in the entity or listener class as a preremove callback (executed
before an entity is removed from the database).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

javax.persistence.PostRemove
Marks a method in the entity or listener class as a postremove callback (executed
after an entity is removed from the database).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

622 APPENDIX C
Annotations reference
javax.persistence.PostLoad
Marks a method in the entity or listener class as a postload callback (executed
before an entity is loaded from the database).

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostLoad {}

C.2.9 JPA dependency injection

The annotations in this section are used for injecting JPA resources.

javax.persistence.PersistenceContext
Injects an instance of a container-managed entity manager.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext {
 String name() default "";
 String unitName() default "";
 PersistenceContextType type default TRANSACTION;
 PersistenceProperty[] properties() default {};
}

public enum PersistenceContextType {
 TRANSACTION,
 EXTENDED
}

javax.persistence.PersistenceUnit
Injects an instance of an entity manager factory that you can use to create an
application-managed entity manager.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit {
 String name() default "";
 String unitName() default "";
}

javax.persistence.PersistenceUnits
Denotes multiple persistence units. Used at the class level.

@Target(TYPE) @Retention(RUNTIME)
public @interface PersistenceUnits {
 PersistenceUnit[] value();
}

Name if used at class level

Vendor-specific
properties

Name if used at class level

Deployment
descriptors reference
623

624 APPENDIX D
Deployment descriptors reference
In this appendix we list all the elements of EJB 3 descriptors. The appendix is
designed to be a quick reference you can consult when you plan to use a descrip-
tor in your enterprise application. Each descriptor is defined by an XML schema,
and we describe the elements of the schema.

 As we have explained throughout the book, you have a choice of using anno-
tations, XML descriptors, or both, to define these elements. We have mainly used
annotations throughout this book, so here we also list what annotation is overrid-
den by the descriptor, when applicable.

 This appendix has three sections. The first section (D.1) provides a reference
to ejb-jar.xml, which is the descriptor for session beans and MDBs. The second
section (D.2) provides a reference to persistence.xml, the descriptor that makes a
module a persistence module. The third section (D.3) describes the O/R mapping
metadata used by JPA.

 The schemas are referenced at http://java.sun.com/xml/ns/javaee/#2.

D.1 Reference for ejb-jar.xml

ejb-jar.xml is the optional deployment descriptor that is packaged in an EJB
module. ejb-jar.xml has two primary elements: enterprise-beans is used to
define beans, resources, and services used by the beans, and assembly-descriptor
is used to declare security roles, method permissions, declarative transaction set-
tings, and interceptors. In this section we provide references only to the elements
relevant to EJB 3, and we don’t discuss any elements in the schema that are for the
sole purpose of backward compatibility with EJB 2. You can refer to the schema of
ejb-jar.xml at http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd.

D.1.1 enterprise-beans
The enterprise-beans element is used to define EJBs in an EJB-JAR module. You
can use session or message-driven tags to define session beans or MDBs.

session
Corresponding annotation: @javax.ejb.Session

 The session tag is used to define a session bean.

Element/Attribute Name Description

ejb-name A logical name for the session bean. This is the same as the name
element of the @Stateless or @Stateful annotation.

continued on next page

Reference for ejb-jar.xml 625
message-driven-bean
Corresponding annotation: @javax.ejb.MessageDriven

 The message-driven-bean tag is used to define an MDB.

mapped-name A vendor-specific name for the bean.

remote Remote interface for the EJB.

local Local interface of the EJB.

service-endpoint Web service endpoint interface for the EJB. Only applies to stateless beans.

ejb-class Name of the bean class.

session-type Type of session bean, i.e., stateless or stateful.

transaction-type Transaction type used with the EJB, i.e., BEAN or CONTAINER.

timeout-method Timeout method for the EJB. Applies only to stateless beans.

remove-method Remove method for stateful EJBs.

init-method EJB 2-style create method for EJB 3 stateful EJBs.

Element/Attribute Name Description

ejb-name A logical name for the MDB. This is the same as the name ele-
ment of @MessageDriven annotation.

mapped-name A vendor-specific name for the bean.

message-driven-destination Name of the destination that MDB listens to. Primarily used for
EJB 2 MDBs.

messaging-type Messaging type supported, i.e., message listener interface sup-
ported by the MDB.

service-endpoint Web service endpoint interface for the EJB. Only applies to
stateless beans.

ejb-class Name of the bean class.

transaction-type Transaction type used with the EJB, i.e., Bean or Container.

activation-config-property Configuration property for an MDB. Specified using a name-
value pair using
activation-config-property-name
activation-config-property-value
Similar to the @ActivationConfigProperty annotation.

Element/Attribute Name Description

626 APPENDIX D
Deployment descriptors reference
Common elements for session and message-driven beans
The following elements are commonly used with session and message-driven
beans.

ejb-local-ref
Corresponding annotation: @javax.ejb.EJB

 Used to specify dependencies on local EJBs.

ejb-ref
Corresponding annotation: @javax.ejb.EJB

 Used to specify remote EJB references.

resource-ref
Corresponding annotation: @javax.annotation.Resource

 Used to specify resource references, e.g., data source, JMS connection facto-
ries, etc.

Element/Attribute Name Description

ejb-ref-name The name used to bind the referenced EJB to the ENC. Same as the name
element in the @EJB annotation. ejb-ref-name must be specified.

ejb-link The name of the target enterprise bean. This optional setting is used to link
an EJB reference to a target enterprise bean.

local The EJB 3 local business interface.

ref-type The EJB reference type, i.e., session.

injection-target Target where the EJB reference is injected when dependency injection is used.

Element/Attribute Name Description

ejb-ref-name The name used to bind the referenced EJB to the ENC. Same as the name
element in the @EJB annotation. ejb-ref-name must be specified.

ejb-link The name of the target enterprise bean. This optional setting is used to link
an EJB reference to a target enterprise bean.

remote The EJB 3 remote business interface type.

ref-type The EJB reference type, i.e., “session”.

injection-target Target where the EJB reference is injected when dependency injection is used.

Reference for ejb-jar.xml 627
resource-env-ref
Corresponding annotation: @javax.annotation.Resource

 Used to specify resource JMS destination references, such as a Queue or Topic.

env-entry
Corresponding annotation: @javax.annotation.Resource

 Defines environment entries for an EJB.

Element/Attribute Name Description

res-ref-name The name used to bind the referenced resource into the ENC. Same as
the name element in the @Resource annotation.

mapped-name A vendor-specific global JNDI name for the referenced resource.

res-type Fully qualified class of the type of resource referenced, e.g.,
javax.sql.DataSource.

res-auth Authentication type for the resource. Valid values are Container or
Application.

res-sharing-scope Specifies whether multiple beans can share the resource. Valid values
are Shareable and Unshareable.

injection-target Target where the referenced resource is injected when dependency injec-
tion is used.

Element/Attribute Name Description

resource-env-ref-name The name used to bind the referenced JMS destination to the ENC.
Same as the name element in the @Resource annotation.

mapped-name A vendor-specific global JNDI name for the referenced JMS
destination.

resource-env-type Type of JMS destination referenced, such as javax.jms.Queue or
javax.jms.Topic.

injection-target Target where the referenced destination is injected when dependency
injection is used.

Element/Attribute Name Description

env-entry-name The name used in the environment entry in the ENC. Same as the name
element in the @Resource annotation.

continued on next page

628 APPENDIX D
Deployment descriptors reference
service-ref
Corresponding annotation: @javax.xml.ws.WebServiceRef

 Used to specify dependency on a web service.
 The referenced schema is javaee_web_services_client_1_2.xsd, and we have

discussed only elements that are useful for EJBs.

persistence-context-ref
Corresponding annotation: @javax.persistence.PersistenceContext

 Defines references to a container-managed entity manager.

env-entry-type Type of the env entry used. Legal types are java.lang.Boolean,
java.lang.Byte, java.lang.Character,
java.lang.String, java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float, and java.lang.Double.

env-entry-value Value specified for the environment entry.

injection-target Target where the referenced destination is injected when dependency
injection is used.

Element/Attribute Name Description

service-ref-name The name used to bind the referenced web service into the ENC. Same
as the name element in the @WebServiceRef annotation.

service-interface Fully qualified class for the JAX-WS service interface the client depends
on, i.e., javax.xml.rpc.Service.

service-ref-type Type of service that will be returned.

wsdl-file The URL location of the WSDL.

handler-chains Defines handler chain.

injection-target Target where the web service reference is injected when dependency
injection is used.

Element/Attribute Name Description

persistence-context-ref-name The name used to bind the referenced persistence context
to the ENC. Same as the name element in the
@PersistenceContext annotation.

continued on next page

Element/Attribute Name Description

Reference for ejb-jar.xml 629
persistence-unit-ref
Corresponding annotation: @javax.persistence.PersistenceUnit

 Defines references to a persistence unit (i.e., entity manager factory).

injection-target
This defines the name of a class and a name (field or property) within that class
into which a resource, EJB, entity manager, etc. should be injected.

persistence-unit-name Name of the persistence unit referenced.

persistence-context-type Type of persistence context, i.e., Transaction or Extended.
Extended is supported only in stateful session beans.

persistence-property A name value-pair of vendor-specific persistence properties.

injection-target Target where the EntityManager is injected when depen-
dency injection is used.

Element/Attribute Name Description

persistence-unit-ref-name The name used to bind the referenced persistence unit
(EntityManagerFactory) to the ENC. Same as the
name element in the @PersistenceUnit annotation.

persistence-unit-name Name of the persistence unit referenced.

persistence-context-type Type of persistence context, i.e., Transaction or Extended.
Extended is supported only in stateful session beans.

persistence-property A name value-pair of vendor-specific persistence properties.

injection-target Target where the EntityManagerFactory is injected when
dependency injection is used.

Element/Attribute Name Description

injection-target-class The fully qualified name of the class into which a resource,
EJB, entity manager, etc. should be injected.

injection-target-name Name of the injection target, i.e., the name of the property or
field in the injection target class.

Element/Attribute Name Description

630 APPENDIX D
Deployment descriptors reference
post-construct, pre-destroy, pre-passivate, post-activate
Corresponding annotations: @javax.annotation.PostConstruct, @javax.annota-
tion.PreDestroy, @javax.ejb.PrePassivate, @javax.ejb.PostActivate

 Used to define lifecycle methods.

security-role-ref
Corresponding annotation: @javax.annotation.security.DeclareRoles

 Used to specify security role references.

D.1.2 assembly-descriptor

You can use the assembly-descriptor element to specify declarative transactions,
security role and method permissions, and interceptor binding.

security-role
Corresponding annotation: @javax.annotation.security.DeclareRoles

 Used to define the security roles used in the application. This is similar to the
@DeclareRoles annotation.

Element/Attribute Name Description

lifecycle-callback-class The fully qualified name of the class in which the lifecycle callback
is defined. Leave empty if the callback is in the same bean class.

lifecycle-callback-method Name of the method defined as the lifecycle callback method.

Element/Attribute Name Description

role-name Name of the role referenced. The referenced role is used as a
parameter in EJBContext.isCallerInRole(String
roleName). See chapter 6.

role-link A pointer to the role name defined in the module using the
security-role element.

Element/Attribute Name Description

role-name Name of the security role.

Reference for ejb-jar.xml 631
method-permission
Corresponding annotation: @javax.annotation.security.RolesAllowed

 Defines the security for EJB methods and signifies which roles are allowed to
execute which methods.

container-transaction
Defines the transaction settings for different EJB methods. Equivalent of the
@TransactionAttribute annotation.

interceptor-binding
Defines interceptors either at the module (default interceptor), class, or method
level. Similar to the @javax.interceptor.Interceptors annotation.

Element/Attribute Name Description

ejb-name Name of the EJB. Must match the ejb-name defined for an EJB or the
name element of the @Stateless and @Stateful annotations.

method Name of the EJB method for which security is defined.

role-name Name of the role allowed executing the method.

unchecked Specifies that all roles be allowed to execute the method.

Element/Attribute Name Description

ejb-name Name of the EJB. Must match the ejb-name defined for an EJB or the
name element of the @Stateless and @Stateful annotations.

method Name of the EJB method.

trans-attribute Specifies the Transaction attribute of the method. Valid values are
Required, RequiresNew, NotSupported, Supports, Never,
and Mandatory.

Element/Attribute Name Description

ejb-name Name of the EJB. Must match the ejb-name defined for an EJB
or the name element of the @Stateless and @Stateful
annotations. It can have the wildcard value *, which is used to
define interceptors that are bound to all beans in the EJB-JAR.

method Name of the EJB method.

continued on next page

632 APPENDIX D
Deployment descriptors reference
exclude-list
Corresponding annotation: @javax.annotation.security.DenyAll

 Lists the names of the methods customers are not allowed to execute.

application-exception
Corresponding annotation: @javax.ejb.ApplicationException

 Defines an application exception.

D.2 persistence.xml reference

The persistence.xml file defines a persistence unit. It can be packaged in an
EJB-JAR module, web module, or a standard JAR file. This is the only descrip-
tor that is required by Java EE 5. There are no corresponding annotations for
persistence.xml.

 You can refer to the schema of persistence.xml at http://java.sun.com/xml/ns/
persistence/persistence_1_0.xsd.

interceptor-class Name of the interceptor class.

exclude-default-interceptors Specifies that default interceptors are not to be applied to a
bean-class and/or business method.

exclude-class-interceptors Specifies that default interceptors are not to be applied to a
bean-class and/or business method.

Element/Attribute Name Description

ejb-name Name of the EJB. Must match the ejb-name defined for an EJB or the
name element of the @Stateless and @Stateful annotations.

Method Name of the EJB method being marked as uncallable.

Element/Attribute Name Description

exception-class Fully qualified name of the exception class.

Rollback Specifies whether the container should roll back the transaction
before forwarding the exception to the client.

Element/Attribute Name Description

persistence.xml reference 633
persistence-unit elements
The following table describes two different elements in persistence.xml for the
persistence-unit element.

persistence-unit subelements
The following table describes all subelements of the persistence-unit element.

Element/Attribute Name Description

name Name of the persistence unit. This name is used in applications to
either inject or establish a reference to a persistence unit by using the
@PersistenceContext and @PersistenceUnit annotations or
the persistence-context-ref or persistence-unit-ref
descriptor element in a client application.

transaction-type Transaction type used for the persistence unit. Possible values are JTA
or RESOURCE_LOCAL.

Element/Attribute Name Description

provider Name of the factory class of the JPA provider.

jta-data-source JTA DataSource that points to the database that contains under-
lying tables for the entities configured in the persistence unit.

non-jta-data-source Non-JTA DataSource that points to the database that contains
underlying tables for the entities configured in the persistence unit.
A non-jta-resource will be used when transaction-type
is RESOURCE_LOCAL.

mapping-file Name of the mapping file that contains O/R mapping info.

jar-file Lists the additional JAR file that contains entities.

class Identifies entity classes. Entity classes must be annotated with the
@Entity annotation.

exclude-unlisted-classes When set to true it will include entities included in the class
element.

properties A name-value pair of vendor-specific properties. Vendor-specific
properties may include caching, automatic table creation
directives, etc.

634 APPENDIX D
Deployment descriptors reference
D.3 orm.xml (O/R mapping metadata)reference

This file defines the O/R mapping metadata for entities. It overrides any map-
ping metadata defined using annotations.

 You can reference the XML schema for O/R mapping at http://java.sun.com/
xml/ns/persistence/orm_1_0.xsd.

persistence-unit-metadata
You can use persistence-unit-metadata to specify metadata for the persistence
unit. Note that it is not just for mapping a file where it is specified. It has two ele-
ments: persistence-unit-defaults and metadata-complete. When the metadata-
complete element is set to true, any mappings using annotations will be ignored.

 This table lists all elements in the persistence-unit-defaults element.

named-query
Corresponding annotation: @javax.persistence.NamedQuery

 A named query element is used to define a named query using JPQL. The
named query is global to the persistence unit.

Element/Attribute Name Description

schema Database schema that contains the tables to which entities in the per-
sistence unit are mapped.

catalog Database catalog that contains the tables to which entities in the per-
sistence unit are mapped.

access Access type for all entities in the persistence unit, i.e., field or property.

cascade-persist Specifies cascade persist for relationships for all entities.

entity-listeners Default entity listeners for the persistence unit.

Element/Attribute Name Description

name Name of the named query. Must be unique in the persistence unit.

query Query in JPQL.

hint One or more vendor-specific query hints.

orm.xml (O/R mapping metadata)reference 635
named-native-query
Corresponding annotation: the @javax.persistence.NamedNativeQuery

 A named native query element is used to define a named query using
native SQL.

sql-result-set-mapping
Corresponding annotation: @javax.persistence.SqlResultSetMapping

 A native query may return a result set mapping that is defined using multiple
entity classes.

sequence-generator
Corresponding annotation: @javax.persistence.SequenceGenerator

 A sequence generator is used for automatic generation of numbers using a
database sequence. It is defined globally and may be used with one or more enti-
ties in the persistence unit.

Element/Attribute Name Description

name Name of the named query. Must be unique in the persistence unit.

query Query in native SQL.

hint One or more vendor-specific query hints.

result-class Name of the entity class returned as a result of the native query.

result-set-mapping Name of ResultSetMapping returned by the query.

Element/Attribute Name Description

name Name of the sql-result-set-mapping.

entity-result Name of the entity class.

column-result Columns returned in the query.

Element/Attribute Name Description

name Name of the sequence generator.

sequence-name Name of the database sequence.

initial-value Initial value generated when the sequence generator is used.

continued on next page

636 APPENDIX D
Deployment descriptors reference
table-generator
Corresponding annotation: @javax.persistence.TableGenerator

 A table generator is used for automatic generation of numbers using a
sequence table. It is defined globally and may be used with one or more entities in
the persistence unit.

mapped-superclass
Corresponding annotation: @javax.persistence.MappedSuperClass. Most subele-
ments correspond to an annotation.

 The mapped-superclass element has three attributes and several subelements.
The attributes class, access-type, and meta-data-complete are used to specify
the name of the mapped superclass, access type (i.e., field or property), and
whether the XML metadata specified is complete.

allocation-size The amount the JPA provider will increase while allocating sequence
numbers.

Element/Attribute Name Description

name Name of the table generator.

table Name of the sequence table.

catalog Catalog containing the table.

schema Schema containing the table.

pk-column-name Name of the primary key column in the table.

value-column-name Name of the column that stores the primary key value.

pk-column-value Column that stores a value to distinguish table generators from one
another.

initial-value Initial value.

allocation-size The amount the JPA provider will increase while allocating primary
key values.

Element/Attribute Name Description

orm.xml (O/R mapping metadata)reference 637
attributes
The attributes element is used to define mapping of persistence and associa-
tion fields.

 There is no equivalent annotation for the attributes element; each element
of attributes corresponds to an annotation.

Element/Attribute Name Description

id-class Name of the primary key class if used.

exclude-default-listeners Set to TRUE if you want to exclude firing of the default listener
for the entity.

exclude-superclass-listeners Set to TRUE if you want to exclude firing of the superclass
listener for the entity.

entity-listeners Defines the entity listeners for the superclass.

pre-persist Name of the prepersist method in the entity class.

post-persist Name of the postpersist method in the entity class.

pre-remove Name of the preremove method in the entity class.

post-remove Name of the postremove method in the entity class.

pre-update Name of the preupdate method in the entity class.

post-update Name of the postupdate method in the entity class.

post-load Name of the postload method in the entity class.

attributes Defines the attributes/persistence fields of the mapped class.

Element/Attribute Name Description

id-class Designates the primary key class.

id Designates the id field of the entity.

basic Designates a field to be a direct-to-field mapping.

version Defines the attribute to the version field used for optimistic locking.

many-to-one Defines the field to be many-to-one association.

one-to-many Defines the field to be one-to-many association.

one-to-one Defines the field to be one-to-one association.

continued on next page

638 APPENDIX D
Deployment descriptors reference
basic
The basic element is used to define direct-to-field mapping, and the following
table lists subelements of the basic element. It is equivalent to the @Basic anno-
tation, and most elements have corresponding annotations.

many-to-one
Used to map a many-to-one relationship between two entities. The following
table lists elements and attributes of the basic element. It is equivalent to the
@ManyToOne annotation. The join-column and join-table elements correspond to
the @JoinColumn and @JoinTable annotations, respectively.

many-to-many Defines the field to be many-to-many association.

embedded Defines the attribute to be an embedded field.

transient Designates the field to be transient.

Element/Attribute Name Description

name Name of the persistence field.

fetch Specifies the fetch type, i.e., LAZY or EAGER.

optional Set to true if the field is optional.

column Name of the column.

lob Field is LOB type.

temporal Time or Date type.

enumerated Enumerated type.

Element/Attribute Name Description

name Name of the association field.

target-entity Entity class being joined.

cascade Specifies the cascade type for the associated entities.

fetch Specifies the fetch type, i.e., LAZY or EAGER.

continued on next page

Element/Attribute Name Description

orm.xml (O/R mapping metadata)reference 639
one-to-one
Used to map a one-to-one relationship between two entities. It is equivalent to
the @OneToOne annotation. The join-column and the primary-key-join-column
elements correspond to the @JoinColumn and @PrimaryKeyJoinColumn annota-
tions, respectively.

one-to-many
Used to map a one-to-many relationship between two entities. It is equivalent to
@OneToMany annotation. The join-column, join-table, order-by, and map-key ele-
ments correspond to the @JoinColumn, @JoinTable, @OrderBy, and @MapKey annota-
tions, respectively.

optional Specifies whether relationship is optional.

join-column Defines join column.

join-table Specifies the association table if any.

Element/Attribute Name Description

name Name of the association field.

target-entity Entity class being joined.

cascade Specifies the cascade type for the associated entities.

fetch Specifies the fetch type, i.e., LAZY or EAGER.

optional Specifies whether the relationship is optional.

mapped-by Designates the owner of the relationship.

join-column Defines join column.

join-table Specifies the association table if any.

primary-key-join-column Defines join column if joined by the primary key.

Element/Attribute Name Description

name Name of the association field.

target-entity Entity class being joined.

continued on next page

Element/Attribute Name Description

640 APPENDIX D
Deployment descriptors reference
many-to-many
Used to map a one-to-many relationship between two entities. It is equivalent to
@ManyToMany annotation. The join-column, join-table, order-by, and map-key
elements correspond to the @JoinColumn, @JoinTable, @OrderBy, and @MapKey
annotations, respectively.

column
Used to define column mapping for a persistence field. It is equivalent to the
@Column annotation.

cascade Specifies the cascade type for the associated entities.

fetch Specifies the fetch type, i.e., LAZY or EAGER.

mapped-by Designates the nonowning side of the relationship.

join-column Defines join column.

join-table Specifies the association table if any.

order-by Specifies the order in which the collection of entities is retrieved.

map-key Specifies the map key.

Element/Attribute Name Description

name Name of the association field.

target-entity Entity class being joined.

cascade Specifies the cascade type for the associated entities.

fetch Specifies the fetch type, i.e., LAZY or EAGER.

mapped-by Designates the nonowning side of the relationship.

join-column Defines join column.

join-table Specifies the association table if any.

order-by Specifies the order in which the collection of entities is retrieved.

map-key Specifies the mapping keys for an entity association of type
java.util.Map.

Element/Attribute Name Description

orm.xml (O/R mapping metadata)reference 641
join-column
Used to show the relationship between two persisted entities. It is equivalent to
the @JoinColumn annotation.

Element/Attribute Name Description

name Name of the column.

unique True if the column value is unique.

nullable Designates whether the column is a nullable or mandatory column.
Useful for automatic table generation.

insertable Set to true if the column is included in the INSERT statement
generated by the provider. Useful when the column is populated by
triggers, default values, etc.

updatable Set to true if the column is included in the UPDATE statement
generated by the provider. Typically useful for primary keys.

column-definition Definition of column. Useful for automatic table generation.

table Name of the table to which the column belongs. Typically useful for
an entity that is mapped to multiple tables.

length Length of column for char/varchar2 types.

precision Precision of numeric type columns.

scale Scale of numeric type columns.

Element/Attribute Name Description

name Name of the column.

referenced-column-name Name of the column in the referenced table.

unique Specifies whether the join column stores unique values.

nullable Specifies whether the relationship column is nullable or mandatory.

insertable Set to true if the column is included in the INSERT statement
generated by the provider.

updatable Set to true if the column is included in the UPDATE statement
generated by the provider.

column-definition Definition of column. Useful for automatic table generation.

table Name of the target table name being joined.

642 APPENDIX D
Deployment descriptors reference
primary-key-join-column
Used either for a one-to-one relationship or for joining secondary tables for an
entity. It is equivalent to @PrimaryKeyJoinColumn annotation.

join-table
Defines the association table for a many-to-many or one-to-many relationship.

generator-value
Used to define the generator used with a persistence field. It is equivalent to the
@GeneratedValue annotation.

discriminator-column
Used to define the discriminator column used for defining entity inheritance
strategies. It is equivalent to the @DiscriminatorColumn annotation.

Element/Attribute Name Description

name Name of the primary key column.

referenced-column-name Name of the referenced primary key column in the join table.

column-definition Defines primary key column. Used for table creation.

Element/Attribute Name Description

join-column Defines join column for the owning side of the relationship.

inverse-join-column Defines join column for the inverse side of the relationship.

unique-constraint Unique constraint of the join table. Used for automatic
table creation.

name Name of the join table.

catalog Name of catalog where the table is stored.

schema Name of the schema where the table is stored.

Element/Attribute Name Description

strategy The strategy used to generate values. Valid values are AUTO,
SEQUENCE, TABLE, and IDENTITY.

generator Name of the generator used.

orm.xml (O/R mapping metadata)reference 643
embedded
Defines an embedded object defined in an entity. It is equivalent to the @Embed-
ded annotation.

entity
Equivalent to the @Entity annotation. This is the most important element and
defines a persistence object, i.e., an entity. Most subelements such as name, class,
access, and metadata-complete all correspond to a specific annotation.

Element/Attribute Name Description

name Name of the discriminator column.

discriminator-type Type of discriminator (STRING, CHAR, INTEGER).

column-definition Defines column. Used for automatic table creation.

length Length of discriminator column.

Element/Attribute Name Description

name Name of embedded object.

attribute-override Specified if the entity overrides any attribute defined in the original
embeddable object.

Element/Attribute Name Description

name Name of the entity. This name is used in the queries.

class Name of the entity class.

access Access type for the entity.

table Name of the primary table the entity is mapped to.

secondary-table Secondary table for the entity.

id-class Name of the primary key class.

primary-key-join-column Primary key join mapping for the joined entities.

inheritance Inheritance type.

discriminator-value Discriminator value if a subclass of entity inheritance.

continued on next page

644 APPENDIX D
Deployment descriptors reference
discriminator-column Discriminator column.

sequence-generator Name of the sequence generator if values are automatically
generated.

table-generator Name of the table generator if values are automatically
generated.

named-query Named query definition for the entities.

named-native-query Named native query definition for the entities.

sql-result-set-mapping SQL result set mapping defined for the entity.

exclude-default-listeners Set to TRUE if you want to exclude firing of the default lis-
tener for the entity.

exclude-superclass-listeners Set to TRUE if you want to exclude firing of the superclass
listener for the entity.

entity-listeners Defines the callback listeners for the entity.

pre-persist Name of the prepersist method in the entity class.

post-persist Name of the postpersist method in the entity class.

pre-remove Name of the preremove method in the entity class.

post-remove Name of the postremove method in the entity class.

pre-update Name of the preupdate method in the entity class.

post-update Name of the postupdate method in the entity class.

post-load Name of the postload method in the entity class.

attribute-override Defines any column mapping being overridden from the
mapped superclass or embeddable class.

association-override Defines any association mapping being overridden from the
mapped superclass or embeddable class.

attributes Defines the mapping of persistence fields of the entity.

metadata-complete Designates whether XML has complete metadata mapping.

Element/Attribute Name Description

orm.xml (O/R mapping metadata)reference 645
embeddable
Defines an embeddable object. It is equivalent to the @Embeddable annotation.

Element/Attribute Name Description

attributes Defines the mapping of persistence fields of the
embeddable object.

class Name of the embeddable class.

access Access type of embeddable class.

metadata-complete Designates whether XML has complete metadata mapping.

Installing and
configuring the

Java EE 5 SDK
646

Installing the Java EE 5 SDK 647
Throughout the book, we evaded the topic of installing application servers and
configuring our sample application inside an installed server. We avoided this
subject for two reasons. First, this book is about the EJB 3 standard and we didn’t
want to slant this book toward a specific application-server implementation. Sec-
ond, providing application-server-specific instructions is a tricky business at best.
This is because application-server implementations change quite often, making
instructions out of date. This is especially true for a potentially long-lived tech-
nology like EJB 3.

 However, we don’t want to leave you completely high and dry, even if it means
providing instructions that may not be up-to-date when you read this. You should
treat the material in this appendix as a general guideline more than anything
else. We’ll provide the basic instructions for installing and configuring the Action-
Bazaar application using the Java EE SDK based on the GlassFish application
server, which seems like an obvious choice since it’s the “official” reference imple-
mentation for Java EE 5. Note that in no sense do we endorse GlassFish as some-
thing you should be using for anything other than the purposes of learning EJB 3
with this book.

 Also note that the website for this book, www.manning.com/panda, contains up-
to-date instructions for installing and configuring all popular application servers
that support EJB 3. The instructions in this appendix are for a Windows machine,
but they can be easily adapted for any other operating system, such as Linux.

 The installation and configuration instructions can be broken down into three
distinct steps:

1 Installing the Java EE 5 SDK

2 Configuring and running the application server and database

3 Installing and running the ActionBazaar application

E.1 Installing the Java EE 5 SDK

Sun bundles a GlassFish distribution with the Java EE 5 SDK. The first logical step
is to download and install the SDK from the Sun site.

1 You can download the Java EE 5 SDK from http://java.sun.com/javaee/
technologies/index.jsp. You want the Java EE 5 SDK Update 2 (or the lat-
est available for download). You can download the SDK with or without a
JDK. Java EE 5 requires Java SE 5 or higher. The safest bet is to use the
version that comes bundled with a JDK. This version of the downloaded
file is named something like java_ee_sdk-5*-windows.exe.

648 APPENDIX E
Installing and configuring the Java EE 5 SDK
2 Double-click on the downloaded executable and you will see the screen
in figure E.1.

3 Click Next on this screen to start the installation process.

4 The next screen shows the licensing agreement (figure E.2). Click Yes to
accept the agreement and click Next.

5 As shown in figure E.3, the next screen prompts you to enter an installa-
tion directory for the application server. Unless there is a specific reason
not to do so, accept the default.

Figure E.1 The Java EE 5 SDK welcome screen

Installing the Java EE 5 SDK 649
Figure E.2 The Java EE 5 SDK license screen

Figure E.3 The Select Installation Directory screen. Unless there is a reason
not to do so, accept the defaults here.

650 APPENDIX E
Installing and configuring the Java EE 5 SDK
6 The next screen (figure E.4) prompts you for some administrative details
for the application server such as Admin User Name, Password, and the
ports the server should use. Accept the default username, enter a pass-
word (twice), and accept the default port settings.

7 The next screen (figure E.5) prompts you with some installation options.
You’ll need to change a few defaults here. You should deselect the Regis-
ter Application Server option unless you really want to go through a few
more tedious screens. Also, select the Create Windows Service option to
make server startup happen behind the scenes.

8 The next screen displays an installation summary, as shown in figure E.6.
Click Next to start the install process. The installation is not short, so
you’ll have to wait a bit for it to finish. Feel free to go water the plants!

Figure E.4 The admin configuration screen prompts you for server
administration details.

Installing the Java EE 5 SDK 651
Figure E.5 Some of the defaults on the Installations Options screen need to be
changed.

Figure E.6 The Ready to Install screen summarizes all of the options you’ve
selected so far.

652 APPENDIX E
Installing and configuring the Java EE 5 SDK
9 After the installation finishes, you’ll see the Installation Complete screen
in figure E.7. Don’t be too quick to dismiss this screen. You must actually
start the server by clicking the Start Server button on this screen. It will
take a moment for the server to start. Once it does, you can close this
screen by clicking the Finish button.

This completes the installation of the Java EE 5 SDK. The next major step is to
configure GlassFish in preparation for deploying the ActionBazaar application.

Figure E.7 You will need to start the server from this screen before closing it.

Running the application server and database 653
E.2 Running the application server and database

At this point, you should verify that the application server is running. You can do
this by accessing the built-in web-based administrative interface.

1 The administrative interface runs on port 4848 of your local machine.
To access it, go to Start > Programs > Sun Microsystems > Application
Server PE 9 > Admin Console. The first screen you see is the login inter-
face (figure E.8). Enter the admin username and password you specified
during installation here.

Figure E.8 The application server administrative interface login screen

654 APPENDIX E
Installing and configuring the Java EE 5 SDK
2 The Server Admin Console home page shown in figure E.9 appears.
Take a moment to explore the administration console before moving on.

3 The Java EE 5 SDK comes with the default Apache Derby database. To
simplify matters, you can use this database for the ActionBazaar applica-
tion. You must start the database to install and configure the sample code.
To start the database, navigate to Start > Programs > Sun Microsystems
> Application Server PE 9 > Start Java DB, as shown in figure E.10.

4 The Derby database will start in a command-line window. After the data-
base starts, you’ll see a screen similar to the one in figure E.11. By
default, the Derby database is started in the background. You can safely
close the command window by pressing the Enter key at the prompt.

Now that both GlassFish and the Derby database are up and running, you are
ready to install and run the ActionBazaar application.

Figure E.9 Spend some time exploring the admin console.

Running the application server and database 655
Figure E.10 Select Start > Programs > Sun Microsystems > Application Server
PE 9 > Start Java DB.

Figure E.11 The Derby DB startup command-line interface

656 APPENDIX E
Installing and configuring the Java EE 5 SDK
E.3 Installing and running ActionBazaar

As you’ve seen, you can install and configure an application from the console. To
make things a little easier on you, we are going to take a slightly simpler route.
The ActionBazaar source code comes with Ant build scripts to deploy the appli-
cation. If you are unfamiliar with Apache Ant, you may read up on it at http://
ant.apache.org. Ant is a way of automating common project configuration and
deployment tasks that you would typically perform manually. Feel free to explore
the XML Ant scripts we have supplied.

1 The first step to installing the application is to download the source code
bundle from http://manning.com/panda/. The source file bundle is named
codeexamples-javaeesdk.zip. Unzip the source into any directory, such as
c:\ejb_3_in_action\code_examples.

We assume that you will be using the Derby database shipped with
GlassFish, so the data sources in the Ant setup script are for Derby. How-
ever, you could use any other database, such as MySQL, PostgreSQL, or the
free Oracle XE (www.oracle.com/technology/products/database/xe/index.
html) database. You’ll simply need to make the appropriate changes to the
Ant tasks.

If you plan to use a database other than Derby, don’t forget to copy
the JDBC driver to the %RI_HOME%\lib directory and restart RI server.
For example, if you want to use the Oracle XE database, then copy the
ojdbc14.jar JDBC driver to the server library directory.

2 Edit the common.xml file in the code examples directory root and change
the admin password for GlassFish. If you are using a database other than
Derby, you’ll need to change the jdbc.url and other database information
in the build.xml file in the code examples root.

3 Open a command window. Type in the following:

set J2EE_HOME=C:\Sun\SDK
set JAVA_HOME=C:\Program Files\java\jdk1.5
cd C:\ejb_3_in_action\code_examples
ant

This will prepare data sources and JMS resources necessary for the data-
base. The output of the Ant task is shown in figure E.12.

If you’re using another database, such as Oracle XE, then you can con-
figure the Java EE SDK (or reference implementation) server by typing

ant configure-xe

Where GlassFish is installed

Where JDK is installed

Installing and running ActionBazaar 657
4 You are now ready to start deploying the examples for each chapter. Each
chapter example is packaged into a separate application. To deploy an
example application, move into the directory for the chapter and run the
Ant task. For example, to deploy the application for chapter 1, run

cd chapter1
ant

This Ant task will compile the classes, package them as an EJB-JAR/EAR,
and then deploy the application into the GlassFish server.

5 You can run the deployed application by typing

ant run

The output printed by the EJB will be printed to the log file of the
application server. In our case, the contents of the C:\Sun\SDK\domains\
domain1\logs\server.log will have the entry shown in figure E.13.

A very interesting thing to consider is how the deployed application—
including the data sources and the JMS resources—looks in the admin
console. If you go back to the admin console, you’ll see something simi-
lar to figure E.14.

Figure E.12 The output from the command-line Ant task that sets up the data
sources and JMS resources necessary for the ActionBazaar application

658 APPENDIX E
Installing and configuring the Java EE 5 SDK
Figure E.13 The output of running the deployed application for chapter 1

Figure E.14 The deployed application for chapter 1 in the admin console

Installing and running ActionBazaar 659
You can explore the code further by opening it up in an IDE. At the time
of this writing, NetBeans and Oracle JDeveloper had good support for
EJB 3 and Java EE 5 in general. However, it is very likely that other pop-
ular IDEs such as Eclipse will catch up very soon.

resources
Print resources
Bauer, Christian and Gavin King. (2004) Hibernate in Action. New York: Manning Publi-

cations.

Crane, Dave and Eric Pascarello with Darren James. (2005) Ajax in Action. New York:
Manning.
Evans, Eric. (2003) Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston: Addison-Wesley.

Fowler, Martin. (2002) Patterns of Enterprise Applications Architecture. Boston: Addison-Wesley.

Laddad, Ramnivas. (2003) AspectJ in Action. New York: Manning Publications

Richardson, Chris. (2006) POJOs in Action. New York: Manning Publications.

Walls, Craig and Ryan Breidenbach. (2005) Spring in Action. New York: Manning Publi-
cations.

Online resources
“Ajax: A New Approach to Web Applications,” by Jesse James Garrett: www.adaptivepath.

com/publications/essays/archives/000385.php

Apache Ant Project: http://ant.apache.org

Apache Maven Project: http://maven.apache.org/

Apache Web Services Project: http://ws.apache.org/
660

RESOURCES 661
Catalog of Java patterns: http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.
html

“Classloading in Oracle9iAS Containers for J2EE,” by Bryan Atsatt and Debu Panda:
www.oracle.com/technology/tech/java/oc4j/pdf/ClassLoadingInOC4J_WP.pdf

Core J2EE Patterns – Data Access Objects: http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html

Eclipse Dali Project: www.eclipse.org/dali/

Essays on O/R mapping by Scott W. Ambler: www.ambysoft.com/essays/mappingObjects.
html

IBM’s “SOA and Web Services” page: www-128.ibm.com/developerworks/webservices

“Inversion of Control Containers and the Dependency Injection Pattern,” by Martin
Fowler: www.martinfowler.com/articles/injection.html

Java BluePrints: http://java.sun.com/reference/blueprints/index.html

Java 5 Metadata Annotations: http://java.sun.com/j2se/1.5.0/docs/guide/language/annota-
tions.html

“Making the Most of Java’s Metadata,” by Jason Hunter: www.oracle.com/technology/
pub/articles/hunter_meta.html

“Migrate J2EE Applications for EJB 3.0,” by Debu Panda: www.ftponline.com/javapro/
2005_07/magazine/features/dpanda/

“Migrating JDBC Data Access Objects to Use EJB3,” by Debu Panda: www.theserver-
side.com/tt/articles/article.tss?l=MigratingJDBC

Representational State Transfer: http://en.wikipedia.org/wiki/Representational_State_
Transfer

“Standardizing Java Persistence with the EJB3 Java Persistence API,” by Debu Panda:
www.onjava.com/pub/a/onjava/2006/05/17/standardizing-with-ejb3-java-persistence-
api.html

W3C Consortium on web services: www.w3c.org/2002/ws

Web Services and Other Distributed Technologies, Microsoft Developer Network: http://
msdn.microsoft.com/webservices/

Windows Communication Foundation: http://msdn.microsoft.com/winfx/technologies/
communication/default.aspx

WS-I (Web Services Interoperability) Organization: www.ws-i.org

XDoclet: Attribute-Oriented Programming: http://xdoclet.sourceforge.net/xdoclet/index.
html

Specifications and Sun websites for Java technologies
Guidelines, Patterns, and Code for End-to-End Java Applications: http://java.sun.com/

blueprints/code/namingconventions.html

662 RESOURCES
Hierarchy for Package javax.persistence: http://java.sun.com/products/persistence/java-
doc-1_0-fr/javax/persistence/package-tree.html

Java API for XML Messaging (JAXM): http://java.sun.com/webservices/jaxm/

Java Archive (JAR) Files: http://java.sun.com/j2se/1.5.0/docs/guide/jar/

Java Authentication and Authorization Service (JAAS): http://java.sun.com/products/jaas/

Java Message Service Specification API: http://java.sun.com/products/jms/docs.html

Java Naming and Directory Interface (JNDI): http://java.sun.com/products/jndi/

Java Servlet Technology: http://java.sun.com/products/servlet/

Java Transaction API (JTA): http://java.sun.com/products/jta/

JSR 220: Enterprise JavaBeans 3.0: www.jcp.org/en/jsr/detail?id=220

JSR 222: Java Architecture for XML Binding (JAXB) 2.0: www.jcp.org/en/jsr/detail?id=222

JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0: http://jcp.org/en/jsr/detail?
id=224

JSR 250: Common Annotations for the Java Platform: http://www.jcp.org/en/jsr/detail?
id=250

Remote Method Invocation (RMI): http://java.sun.com/products/jdk/rmi/

Schema for ejb-jar.xml: http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

Schema for persistence.xml: http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

index
A

abstract 78
abstract entity 292
ACC. See application client con-

tainer
access

EJB 3 session bean from EJB
2.x bean 503

type 420
access type 229, 636
accessType 230
ACID property 177–178
acknowledgement mode 130
acknowledgeMode 130
ActionBazaar 41–221

domain model 218
fake bid 204
messaging 112–113
problem domain 220
security problem 203
specials 112, 117
transactional problem 178
web service 539

ActionBazaarLogger 160
activation 80, 100
activationConfig property 128
@ActivationConfigProperty

 125, 127, 513
Active Directory 205, 591
ActiveMQ, 112
actor 222
adapted home 508
addBid method 45
administered object 118
allocationSize 268

American National Standards
Institute 601

annotation
inheritance 155

in session beans 78
oracle.j2ee.ejb.Stateless-

Deployment 408
Overriding 406
vendor specific 408
vs. XML in O-R

mapping 260
annotation metadata. See meta-

data annotation
anonymous beach dweller 115
Ant 401
AOP 30, 74

Also see Aspect-Oriented Pro-
gramming

Apache 75
Apache Derby 654
application assembler 388
application client 108
application client container 104

Also see container
application layer. See service

layer
application server 14, 19, 184
application-client.xml 56
@ApplicationException

 193–194
rollback element 195

ApplicationException 193
application-exception 632
around invoke 158, 162
@AroundInvoke 159

restrictions 162

ArrayIndexOutOfBounds
 196

AspectJ 12, 157
AspectJ in Action 157
Aspect-Oriented

Programming 157
assembler 203

Also see application assembler
assembly 388
assembly-descriptor 404, 630
association field 304
association. See relationship
association table 281, 473

Also see intersection table 256
asynchronous 57, 113

communication 111
Asynchronous JavaScript And

XML 429
atomicity 179
atomicity, consistency, isolation

and durability. See ACID
property

attached
managed 298
Also see entity state

attribute 225
attribute-oriented

programming 36
@AttributeOverride 273
auditing 157
authentication 202, 205

in EJB 207
mechanism 207

authenticationType 151
@Author 36
authorization 202, 205
663

664 INDEX
AUTO_ACKNOWLEDGE
 136

acknowledgement mode 130
automated persistence 224
automatic schema

generation 261
for Hibernate 417
TopLink 417

automatic table generation 262

B

B2B. See business-to-business
backing bean 48, 104
@Basic 260, 265, 321
basic element 638
basic profile 547
batch job 167
BEA WebLogic 19, 468
bean instance 83, 91, 141
bean interface. See interface
Bean Managed

Transaction 184, 196–201
begin method 199
behavior 222
best practice

packaging and
deployment 422

bid entity 44, 47, 63–65
BidderAccountCreatorBean 95,

103
BidManager 83
BIDS table 64
BidStatisticsTracker 160
binary large object 260, 265
BLOB 321, 361

Also see binary large object
blueprint 426
BMT. See Bean Managed Trans-

action
boilerplate code 27
boolean property 120
bootclasspath 395
bootstrap 124
bottleneck 463
business interface. See interface
business method 78
business rule 219
business-to-business 113
byte stream 590
BytesMessage 121

C

caching 18, 320
Also see entity caching

callback lifecycle
time delayed 168
Also see lifecycle callback

canned solution 21
cardinality. See multiplicity
cascade 242

in databases 318
merge 328
persist 317–318
types 318

CascadeType 317
CategoryPK 236
CaveatEmptor 41
certificate 207
character large object 265
checked exception 165
class diagram 219
class loader 394

application 396
boot 395
EAR 398
EJB 398
extension 395
system 396

class loading
delegation model 396

ClassNotFoundException
 423

CLASSPATH 394
client 83

expectation 79
Also see session bean client

CLOB 361
Also see character large object

cloned 298
cluster 106
clustered server farm 8
clustering 14

EJB 106
EJB applications 488–496
stateful session bean 493

CMP entity bean 380, 514
CMR. See container-managed

relationship
CMT 451

Also see Container-Managed
Transaction

coarse grained 435–436, 485,
514

Codd, E. F. 597
@Column 64, 224, 262
column 597
columnDefinition 263
commit 177, 179

two-phase 183
compatibility 500

backward 508
between platforms 540
with EJB 2.x clients 512

compiler 124
component 5, 15
composite key. See primary key
composite primary key 238,

278
concurrency 73, 458
concurrency issue 457
concurrent 105

system 180
confirmOrder method 52
connection 117, 136

database 80
JMS. See javax.jms.Connec-

tion
object 91

connection factory 117–118
Also see javax.jms.Connection-

Factory
connection pool 415, 468
connectionFactoryJndiName

 129
connector 122
consistency 179
constraints 599

database 180
constructor 78
consumer 114

single 115
container 15, 48, 61

application client 55, 156
EJB 20, 450
Java EE 19, 450
lightweight 451, 578
services 297
web 19

container services. See EJB, ser-
vices

container-managed
relationship 249

INDEX 665
Container-Managed
Transaction 184–195

container-transaction 631
conversation 79
conversational state 79, 93, 106
CORBA 5, 158, 505, 542, 590
coupling

loose 433, 435
tight 434, 436

create, read, update, delete 17
createEntityManager

method 453
createEntityManagerFactory

 312
CreateException 508, 527
createNamedQuery 470

method 349
createNativeQuery method 381
createQuery method 343
createTimer method 171
credentials 207
CreditCardChargeService 540
CreditValidationException 193
CreditVerificationService 540
cron 167
crosscutting 74

concerns 157, 212, 334
CRUD 65, 294, 313, 431, 452

Also see create, read, update,
delete

cryptography library 395

D

DAO. See data access object;
design pattern

data access object 260, 338, 429
data integrity 599
data modeling 223
data source 86
data transfer object 430, 502

anti-pattern 328
data type

custom 233
identity 234
persistent field/property 232

database 365
administrator 388
connection 86
normalization 602
object-oriented 597

relational 597
table 225, 233, 597

DataSource
configuration 415

DATE 265
DB2 9
DBA 223, 252

Also see database, administra-
tor

DDD. See domain-driven design
dead message queue 138
@DeclareRoles 208
default-entity-listeners 336
denormalization 602
@DenyAll 209
dependency 80
dependency injection 27, 40–

41, 75, 118, 146–155, 439,
444, 450, 573

avoiding 442
EJB 3.0 48
EJBContext 152
environment entry 153
from EJB 2.x 503
JMS resource 152
of POJO 581
setter vs. field 150
TimerService 169
web service 550

deploy
algorithm 392
application 392

deployer 203, 388
deployment 388
deployment descriptor 26, 37–

38, 185, 402, 408, 505
application.xml 391
persistence.xml 410–411
proprietary 409
reference 623–645
vendor specific 519

Derby 380
Also see Apache Derby

descriptor. See deployment
descriptor

deserialization 487
design pattern 426–439

data transfer object 517
sequence generator

pattern 521
session façade design 485

transfer object 529
value object 529

destination 56, 112
destinationName 129
destinationType 129
detach 300
DI. See dependency injection
dirty read 457
DiscountVerifierInterceptor

 164
discriminator

column 285, 642
discriminator value 286
@DiscriminatorColumn 286,

288, 468
DiscriminatorType 468
@DiscriminatorValue 286, 288,

468
disk thrashing 106
DNS. See Domain Name Service
domain

model 219
object 220

as Java class 225
implementing with

JPA 228
domain model 219–224, 534

anemic 11, 223, 515
modeling 12
rich 12, 223

Domain Name Service 591
domain object 11, 227
domain-driven design 9, 11
DriverManager 309
DTO. See data transfer object
DUPS_OK_ACKNOWLEDGE

acknowledgement mode 130
durability 180
durable subscriber 131
durable subscription 130

E

eager fetching. See eager loading
eager loading 320, 378, 470
EAO 577

Also see entity access object
EAR 37, 391

Also see enterprise application
archive

Eclipse 659

666 INDEX
Eclipse Dali project 422
@EJB 48, 103, 146, 154, 441,

590
class-level usage 156
inject home object 502

EJB 5, 21
and Spring. See Spring: with

EJB 3
context. See EJBContext
darkest hours 122
design practices 484
magic of 142
object 141
roles 388
services 141

EJB 3 persistence provider. See
persistence provider

EJB framework 8
EJB QL 355
ejbActivate 26
ejb-class 37
EJBContext 143–146, 186, 191,

211
ejbCreate 26
EJBException 190, 194
ejb-jar 37, 390

version 501
ejb-jar.xml 37, 624

reference 624
EJBLocalHome 527
ejb-local-ref 441, 443, 504, 626
ejb-name 37
ejbPassivate 26
EJBQL 28, 380
ejb-ref 441, 443, 626
ejbRemove 26
@Embeddable 233, 238, 260
embeddable 239

mapping 270
object 233

@Embedded 224, 260
embedded object

nested 239
@EmbeddedId 237–238
EMPTY comparison

operator 366
ENC 148, 446

Also see environment naming
context

enterprise application archive
390

enterprise archive. See EAR
enterprise bean provider 388
enterprise beans 624
Enterprise Information

System 182
Enterprise Java Beans. See EJB
entities

packaging within an EJB
module 410

@Entity 64, 224, 228, 230, 518
entity 15, 18, 28, 228

a set of trade-offs 297
bean 23
create new record 314
detachment and merge

operations 326
fetch mode 321
identity. See identity
life cycle 297–301

callback 333
listener 334
locking 457

how optimistic locking
works 459

locking types 458
managed 295
managing state 298
mapping 258
optimistic locking with times-

tamp or version
column 459

packaging 391, 410
persisting 314
read-only 483
reattach 327
retrieval 319–325
state 297
version attribute 461
version column 461
versioning 461

entity access object 338, 427,
430, 574

factory 433
using session bean 433

entity bean 27, 218
entity caching 478

best practices 483
clustered cache 495
distributed cache

synchronization 495
in TopLink Essentials 482

named query 482
persistence unit level

cache 481
query 478
read-mostly 478
read-only 478
with extended persistence

context 479
entity listener 420
entity manager 448

container managed 448
entity performance tuning 464

avoid transaction 470
avoiding association

table 473
avoiding full table scans 474
caching SQL statement 468
choosing the right fetch

type 470
defer database updates 471
dividing tables 466
inheritance mapping

strategy 467
merge tables 465
ordering a collection 476
query performance 474
redesign schema 464
reducing database

operations 470
reducing database round

trips 477
tuning the connection

pool 468
tuning the JDBC Layer 468
using bulk update 473
using cascade on

relationship 472
using database indexes 475
using DELETE

CASCADE 472
using indexes for association

field 475
using lowest-cost locking 471
using named query 469

entity state
attached 326
detached 298, 300, 320
removed 329
transient 298

EntityContext 522
@EntityListeners 334

INDEX 667
EntityManager 18, 45, 65, 294–
333, 449

application managed 308
within Java EE container

308
as air traffic controller 300
best practices 338
container managed 305, 307
creating 304
flush mode 331
flushed 315, 330
in a ThreadLocal variable

313
in ActionBazaar 303
injection 305
interface 294
lifecycle 451
methods 295
scope 306
thread safety 307
using from EJB 2.x 504

EntityManagerFactory 309, 450
injection 309

@EntityResult 381
EntityTransaction 311, 414
enum 264
@Enumerated 260, 264
enumeration 264
envelope. See SOAP
env-entry 153, 627
env-entry-type 153
environment entry 153

type. See env-entry-type
environment naming

context 147, 446, 594
equals method 233, 236
exception

application 194
checked 91, 165, 194
system 194
unchecked 194

exception handling 193
exchange of information 79
@ExcludeClassInterceptors

 161
@ExcludeDefaultInterceptors

 161
@ExcludeDefaultListeners 337,

420
@ExcludeSuperClassListeners

 337

executeUpdate method 379
extend 78
extended persistence scope 306

F

façade 582
failover 14, 489
fault-tolerant 8
fetch 242, 323
FetchType 321, 325
field access 230, 258
field-based persistence. See field

access
finalize method 124
find method 299, 304, 319

with composite primary
keys 319

FinderException 508, 527
fine-grained 435–436

control 308
FlushMode 353, 471

setting on a per query
basis 471

FlushModeType 331, 353, 471
Flux 167
foreign key 276, 279, 475
Fowler, Martin 219
Fragile 120
framework 7
FULL TABLE SCAN 475

G

@GeneratedValue 64, 268
GenerationType 64
generator-value 642
Geronimo 13
getBusinessObject 145
getCallerPrincipal 211
getContextData method 164
getEJBHome 144–145
getEJBLocalHome 145
getEJBLocalObject 145
getEJBObject 145
getInvokedBusinessInterface

 145
getMessageContext 145
getParameters method 163
getPrimaryKey method 522
getResultList method 351

getRollbackOnly 144, 192
getSingleResult method 350
getStatus method 200
getTarget method 163
getter 227

method 149, 229
getTimeRemaining method

173
getTimerService 144
getTransaction method 312
getUserTransaction 144

method 198
getXX method. See getter,

method
GlassFish 19, 56, 87, 647
global JNDI name 443
GoldBidManagerBean 104
group 203

system 203

H

@HandlerChain 561
HAR 391
HelloUser EJB 27
HelloUser Example 24
HelloUserBean 37
helper class 401, 442, 444
Hibernate 14, 17, 24, 28, 218,

313, 345, 500, 533, 573
hbm2java 433

Hibernate in Action 41
high availability 106, 488
high-performance 8

computing 14
holder class 559
home interface 508
HSQL 355
HTTP 50, 107, 489
HttpSession 107, 442, 446

object 490

I

iBATIS 225
IBM MQSeries. See IBM Web-

sphereMQ
IBM WebsphereMQ 56, 112,

182
@Id 64, 224, 230, 234, 236

using 234

668 INDEX
@IdClass 235–236, 320
IDE 401
IDENTITY 315
identity 202, 233, 314, 319

column 601
idle time

for a bean instance 106
IllegalStateException 192, 198,

330, 351
immutable object

references 559
impedance mismatch 251–258
Indigo. See Windows Communi-

cation Platform
infrastructure 12

concerns 157
@Inheritance 284, 467
inheritance 12, 28, 223, 228,

256, 514
mapping 284–291
session bean 155

inheritance mapping 284–291
comparisons 290
joined table 287
single table 285
table-per-class 288

inheritance strategy
single table per entity

hierarchy 516
 Also see inheritance mapping

InheritanceType 286
inherited column 289
@Init 509
InitialContext 49, 156, 492,

593
initialValue 269
inject 133

Also see dependency injection
injection 86

stateful session bean 104
Also see dependency injection

injection-target 626, 629
INSERT statement 263
instance

field 227
stateful bean 93
Also see bean instance

instance variables 107, 303,
487

instanceof operator 371
instantiate 49

integration
application-to-application 538
business-to-business 538

interception 158
interceptor 13, 31, 82–167, 408

business method 158
class level 160
difference between business

method and lifecycle
166

disable 161
for programmatic

security 212
implementing 162
lifecycle callback 165
method level 160

interceptor-binding 407, 631
interceptor-class 407
@Interceptors 159
interface 76

based programming 76
business 76
component 23, 506
endpoint 539
home 23
local 87
remote 88
service endpoint(SEI) 98

Interface21 569
interlocking 219
interoperability 8, 539

issues 500
web services 505
with CORBA 505

intersection table 256, 366
Also see association table

inverseJoinColumns 283
Inversion of Control 30
invocation

local 590
remote 590

InvocationContext 159, 162,
561

methods 163
proceed method 159

invoke
EJB 2.x from EJB 3.0 502

IoC. See Inversion of Control
irrecoverable 179
isCallerInRole 145, 211

method 211

isolation 180
ItemManagerBean 303

J

JAAS 13
Also see Java Authentication

and Authorization Ser-
vice

Java Authentication and Autho-
rization Service 13, 205

Java Community Process 8, 13,
75

Java Connector Architecture.
See JCA

Java Database Connectivity. See
JDBC

Java EE 13
platform 388
specification 388

Java EE 5 SDK
installing and

configuring 646
Java Generics 247
Java Messaging Service. See JMS
Java Naming and Directory

Interface 588, 591–595
Also see JNDI

Java Persistence API 67
JPA 15
using from EJB 2.x 504
using from outside

container 451–452
using from web tier 447–451

Java Persistence Query
Language 17, 19, 341–379

Also see JPQL
Java Remote Method

Invocation 588–591
Java Remote Method Protocol.

See Remote Method Invoca-
tion

Java RMI. See RMI
Java SE 5 647
Java Transaction API. See JTA
Java XML Binding 545
JavaBeans

naming conventions 227
rules 227

Javadoc 36
java.io.Serializable 78, 101, 590

INDEX 669
java.lang.Object 233
java.lang.RuntimeException

 91
java.rmi.Remote 88
java.rmi.RemoteException 25,

589
java.sql.Blob 265
java.sql.Clob 265
java.sql.Connection 101
java.sql.Time 265
java.sql.Timestamp 265
java.util.List 244
java.util.Set 244
javax.annotation.PostConstruct

 39, 609
javax.annotation.PreDestroy

 39, 609
javax.annotation.Resource 39,

607
javax.annotation.security.

DeclareRoles 39, 608
javax.annotation.security.Deny-

All 39, 609
javax.annotation.security.

PermitAll 39, 609
javax.annotation.security.Roles-

Allowed 608
javax.annotation.security.RunAs

 39, 609
javax.ejb. LocalHome 605
javax.ejb. RemoteHome 605
javax.ejb.ActivationConfig-

Property 606
javax.ejb.ApplicationException

 608
javax.ejb.EJB 39, 606–607
javax.ejb.Init 605
javax.ejb.Local 605
javax.ejb.MessageDriven 606
javax.ejb.NoSuchEJBException

 442, 447
javax.ejb.PostActivate 609
javax.ejb.PrePassivate 610
javax.ejb.Remote 605
javax.ejb.Remove 604
javax.ejb.SessionBean 25
javax.ejb.Stateful 604
javax.ejb.Stateless 604
javax.ejb.Timeout 610
javax.ejb.TransactionAttribute

 608

javax.ejb.Transaction-
Management 607

javax.interceptor.AroundInvoke
 610

javax.interceptor.ExcludeClassI
nterceptors 610

javax.interceptor.Exclude-
DefaultInterceptors 610

javax.interceptor.Interceptors
 610

javax.jaxm.OneWayMessage-
Listener 128

javax.jms.Connection 117, 136
javax.jms.ConnectionFactory

 118
javax.jms.MapMessage 121
javax.jms.Message 61, 119
javax.jms.MessageListener 61
javax.jms.Queue 152
javax.jms.QueueConnection-

Factory 152
javax.jms.Session 117
javax.jms.TextMessage 121
javax.jms.Topic 131, 152
javax.jws.WebServiceRef 39
javax.mail.Session 154
javax.persistence.Association-

Override 617–618
javax.persistence.Attribute-

Override 614
javax.persistence.Basic 614
javax.persistence.Column 613
javax.persistence.Discriminator

Column 618
javax.persistence.Discriminator-

Value 619
javax.persistence.Embeddable

 611
javax.persistence.Embedded

 611
javax.persistence.EmbeddedId

 611
javax.persistence.Entity 611
javax.persistence.Entity-

Listeners 620
javax.persistence.Entity-

Manager 341
javax.persistence.Enumerated

 612
javax.persistence.Exclude-

DefaultListeners 621

javax.persistence.ExcludeSuper
ClassListeners 620

javax.persistence.Generated-
Value 614

javax.persistence.Id 611
javax.persistence.IdClass 611
javax.persistence.Inheritance

 618
javax.persistence.JoinColumn

 616
javax.persistence.JoinTable 617
javax.persistence.Lob 612
javax.persistence.ManyToMany

 616
javax.persistence.ManyToOne

 615
javax.persistence.MapKey 618
javax.persistence.NamedNative

Query 619
javax.persistence.Named-

Queries 619
javax.persistence.NamedQuery

 619
javax.persistence.OneToMany

 616
javax.persistence.OneToOne

 615
javax.persistence.OrderBy 618
javax.persistence.Persistence

 453
javax.persistence.Persistence-

Context 39, 622
javax.persistence.Persistence-

Unit 39, 622
javax.persistence.PostLoad 622
javax.persistence.PostPersist

 621
javax.persistence.PostRemove

 621
javax.persistence.PostUpdate

 621
javax.persistence.PrePersist 621
javax.persistence.PreRemove

 621
javax.persistence.PreUpdate

 621
javax.persistence.PrimaryKey-

JoinColumn 617
javax.persistence.Query 341
javax.persistence.Secondary-

Table 613

670 INDEX
javax.persistence.Sequence-
Generator 615

javax.persistence.SqlResultSet-
Mapping 620

javax.persistence.Table 613
javax.persistence.Table-

Generator 614
javax.persistence.Temporal

 612
javax.persistence.Transient

 612
javax.persistence.Unique-

Constraint 613
javax.persistence.Version 620
javax.sql.DataSource 118, 147
JAXM 128
JBoss 19, 106
JCA 122
JDBC 13, 80, 117, 134, 225,

258, 452, 500
data source 146
driver 656
fetch size 477

JDBCTemplate 225
JDeveloper 26, 659
JDO 14, 28, 31, 533

migrating to JPA 534
JDO QL 355, 534
Jetty 313
JMS 13, 56, 111, 117
jms/OrderBillingQueue 57
jms/QueueConnectionFactory

117
JMSCorrelationID 120
JMSMessageID 120
JMSTimestamp 120
JND 439
JNDI 27, 40, 87, 103, 118,

156
context 591
lookup 49, 155, 503
mapping 147
name 147

global 147
namespace 578
registry 141, 452
tree 87, 592
Also see Java Naming and

Directory Interface
jndi.properties 56, 593
join table. See association table

join the existing transaction
join existing 188

@JoinColumn 274–276, 279–
281, 283

many-to-one 279
one-to-one mapping 274

join-column 640–641
@JoinColumns 275
JOINED 288
@JoinTable 280

many-to-many mapping 281
join-table 640, 642
joinTransaction 312

method 311
JPA 11

Also see Java Persistence API
JPA provider 279, 355

Also see persistence provider
JpaDaoSupport 575
JpaTemplate 572–576
JPQL 28, 65

ANY / ALL / SOME operator
375

arithmetic functions 368
ascending order 374
BETWEEN operator 363
boolean operation involving

null 365
bulk delete 379
bulk operation 379
bulk update 378
cartesian product 376
collection value path

expression 360
complex conditional

expression 362
CONCAT 368
conditional expression 362
constructor in a SELECT

clause 370
DATETIME expression 363
DELETE statement 357
DISTINCT keyword 370
domain 358
empty collection 365
empty string 365
EXISTS 375
FROM clause 358
GROUP BY 373
HAVING clause 367, 373
identifier variable 359

IN operator 363
in subquery 375

INNER JOIN 377
IS NOT NULL operator 365
IS NULL operator 365
joining entities 376
LEFT JOIN 378
LIKE operator 364
logical operators 362
MEMBER OF operator 367
null value 365
operators 362
ORDER BY clause 360, 374
outer join 377
parameter type 362
parent query 363
path expression 360
pattern_value 364
relational operators 362
relationship join 377
reserved identifier 359
SELECT clause 370
single-value path

expression 360
string functions 367
subquery 363, 374
SUBSTRING 368
temporal functions 369
theta join 377
UPDATE statement 357
using SELECT 356
WHERE clause 360–361
wildchard 364
Also see Java Persistence Query

Lanaguage
JPQL query 524
JSF 19

backing bean 48, 435
managed bean. See backing

bean
JSON 429
JSP 47
JTA 13, 184
JUnit 29, 54
JVM 55, 106, 394

Sun 395

K

KabadiBazaar 503, 540
Kodo 17

INDEX 671
L

layer
business logic 9
persistence 9
presentation 9

layered architecture 9
lazy fetching. See lazy loading
lazy loading 265–266, 320, 324,

378, 470
LDAP. See Lightweight Directory

Access Protocol
lifecycle callback 82

creation 80
destruction 80
in interceptor class 165
listener 165
PostActivate 94
postconstruct 91
predestroy 91, 100
prepassivate 94
stateless session bean 90

Lightweight Directory Access
Protocol 205, 591

Linux 647
listener 123
load balancing 14, 489

stateless session bean
request 490

loader. See class loader
loading behavior 324
@Lob 260, 265
@Local 87
local 37
local interface. See interface
@LocalHome 513
local-home 504
lock method 462
locking strategy 458

optimistic 459
pessimistic 458

LockModeType 462
Log4J 159
login-config 206
lonely castaway 115
lookup method

EJBcontext 144, 155
loosely coupled

application 539
interface 539

M

mail session. See javax.mail.Ses-
sion

managed class 439
managed objects 141
Manifest 55
Manifest Class-Path 396
@ManyToMany 224, 247, 323,

640
definition 247

many-to-many 224, 247, 256,
281, 640

relationship mapping 282
@ManyToOne 244, 278

definition 246
many-to-one 223, 244, 638

self-referencing
relationship 281

@MapKey 640
map-key 640
mappedBy 276, 279

in @OneToMany 246
mappedName

Stateless annotation 87
mapped-superclass 636
mapping metadata 418

orm.xml 410
reference 634–645
using annotation 418

mapping-file element 418
marshaling 590
Maven 401
MDB. See Message Driven

Bean
merge method 327
merging relation 328
message 56

acknowledgement 130
dead 138
envelope 119
header 120
in a bottle 115
JMS. See javax.jms.Message
model

choosing 137
payload 121
poisoning. See poison mes-

sage
property 120

data type 120

redelivery 138
selector 131
sending 113
store 113
type 121

choosing 137
usage pattern 121
version 120

message consumers 112
multi-threaded 123

message destination 115
Also see destination

Message Driven Bean 56–61,
111–139

life-cycle callback 132
performance tuning 487
pooling 488
programming rules 124
tips and tricks 137
why use 122

message endpoint 142
message oriented

middleware 112
Also see MOM

message producer 111
JMS 117

message provider
tuning 487

MessageConsumer 131
@MessageDriven 61, 125–126,

513
MessageDrivenBean

interface 513
MessageDrivenContext 125,

144–145, 152, 198
MessageListener 111, 125
messageListenerInterface

 128
MessageProducer 59, 117,

119
messaging

concepts 111, 114
destination 57
model 114, 116

Metadata 25
metadata annotation 35–36

common 208
EJB 3.0 46

metadata-complete 634, 645
method invocation 50, 80
method local variable 303

672 INDEX
method-permission 631
Microsoft Message Queue

117
migration

agile approach 535
all-at-once 535
approaches 535–536
bean managed

persistence 514
client application of session

beans 511
CMP entity beans to

JPA 513–528
component interfaces 507
container managed

relationships 524
converting interfaces 519
DAO implementation Class to

Use the EntityManager
530

entity bean classes and
interfaces 519

entity bean client 526
entity bean life cycle

Methods 521
finder and select

methods 523
finding an alternative to

EntityContext 522
home as a factory interface

526
home interface to a session

façade 527
JDBC DAO to Use JPA 529
local interface for creating

entity class 520
manual vs automated 536
O-R frameworks to Use

JPA 533–535
O-R mapping metadata 519
phased approach 535
primary key 521
proprietary mapping meta-

data to JPA 534
redesigning your domain

model 514
resource usage 510
session bean 505–513
session bean class 508
SQL Queries for JPQL 531
to EJB 3 500–536

transaction and security
setting 511

why to migrate to EJB 3 505
model-view-controller 427
modifier 35
MOM 56–112

Also see message oriented,
middleware

multiple tier 463
multiplicity 222
multi-threaded 442, 446
multithreading 123, 137, 442,

446
MVC. See model-view-controller
MySQL 380, 656

N

name
Stateless annotation 87

named native query 382, 635
named query 469, 634
@NamedQueries 345
@NamedQuery 344, 533
naming service 591
NamingException 508
native SQL. See SQL
natural key 267, 599
.NET 47
.Net platform 538
NetBeans 659
Network Information

Service 591
NoClassDefFoundException

 424
NonDurable 131
non-durable subscription

131
non-jta-data-source 416
non-managed class 439, 442
non-repeatable read 457
NonUniqueResultException

 350
NoResultException 350
normal form 602

Boyce-Codd 602
JPQL

IS 366
NotSupportedException 199
nouns 18, 223
NullPointerException 196

O

O/R. See Object Relational Map-
ping

object 219
Object Relational Mapping 17,

224
introduction 257
with JPA 251–291

ObjectMessage 117, 119, 121
ocean 115
OHare Logistics 114
ojdbc14.jar 656
@OneToMany 224, 244–246,

278, 323, 525
definition 245

one-to-many 223, 244, 639
mapping 278

@OneToOne 240–246, 472, 525
bidirectional 243
definition 241

one-to-one 223, 639
bidirectional 243
mapping 273
unidirectional 240

@OneWay 561
onMessage method 61, 126
open source 12
OptimisticLockingException

 460, 462–463
optionality 222–223, 243
Oracle 106, 182, 380
Oracle Advanced Queuing 112
Oracle Application Server 469
Oracle Application Server

10g 19
Oracle Internet Directory 205
Oracle TopLink 320
Oracle XE 656
order billing 57
order entity 44
OrderBillingMDB 44, 59–61
@OrderBy 476, 640
order-by 640
OrderManagerBean 185
ordinality 264

Also see optionality
ORM 45, 573

Also see Object Relational
Mapping

orm.xml 447

INDEX 673
P

packaging
application 389
EJB 2.x and EJB 3 501
sessionbeans and MDB 400

packaging standard 389
PAR. See persistence archive
parameter 349

binding 469
named 350
positional 349

pass-by-value 590
passivation 74, 80, 93, 100
password 202
pattern

design 9
PeopleSoft 182
performance

concerns 456
consideration 484
tuning 463–464
tuning of EJB 3 Component

483–488
@PermitAll 209–210
persist

cascade 317
entity relation 316
method 66, 304, 314–319

Persistence 312
persistence archive 391
persistence context 301–303

extended 438, 479
Also see PersistenceContext

extended scope 301
transaction scoped 301
using it in caching entity

480
persistence engine. See persis-

tence provider
persistence module 391

without persistence.xml 411
persistence operation

propagate 318
persistence provider 15, 20,

231, 299, 353, 388, 414,
452, 462

persistence unit 305, 452
ActionBazaar 306
defined at the EAR level 413
local 413

name 412
scoping 413

@PersistenceContext 66, 304–
305, 343, 379, 449

definition 305
PersistenceContext 306

extended 102
persistence-context-ref 449,

504, 628
PersistenceContextType 306
PersistenceException 315, 462
@PersistenceUnit 309, 312,

450
PersistenceUnit 482–483
persistence-unit 413, 633

sub elements 633
persistence-unit-defaults 420,

634
persistence-unit-metadata 634
persistence-unit-ref 629
persistence.xml 312, 447, 452,

579, 624
reference 632–633

persistent field 232
phantom read 457
PlaceBidBean 77
PlaceBidServlet 47, 62
PlaceOrderBean 44, 51–54
placeSnagItOrder method 187
playBoyTopic 131
plugin principle 572
point cuts 158
point-to-point 114
poison message 138
POJI 25–26, 46
POJO 4, 25–26, 46, 228
polymorphic

association 291
operation 371
query 229, 371

polymorphism 12, 28, 229, 291,
514

pooling
bean 92
managed 133
MDB 123
stateless bean 83

PortableRemoteObject 49,
511

portType 545
@PostActivate 82

post-activate 630
postage and postmark 120
@PostConstruct 81, 488

message driven bean 125
PostConstruct

message driven bean 134
post-construct 630
PostgreSQL 656
@PostRemove 336
@PreDestroy 81, 92, 488

message driven bean 125
PreDestroy

message driven bean 134
pre-destroy 630
PreDestroy method

message driven bean 124
premium sellers 115
pre-passivate 630
@PrePersist 334
presentation tier 427
@PreUpdate 334
primary key 64, 234, 277, 314,

599
AUTO generation 270
composite 235
generation 65, 267

using database
sequence 269

using identity
constraint 268

@PrimaryKeyJoinColumn 277
inheritance mapping 288
one-to-one relation 276
secondary table 267

primary-key-join-column 642
@PrimaryKeyJoinColumns 278
primitives 94
Principal 205

getName method 212
proceed method 165
producer. See message producer
profiling 157
property

access 230
property based persistence. See

property access
propertyName 132
propertyValue 132
proxy 141
PTP. See point-to-point
public key 207

674 INDEX
publish-subscribe 114
Pub-Sub. See publish-subscribe

Q

Quartz 167
query

anatomy 343
comparing API with

JDBC 342
dynamic 343, 347
flush mode 352
hint 353
introducing API 342
JPQL 341, 383
named 343–347
pagination property 352
SQL 341, 383
timeout 353

Query API 341
Query object 343
Query Parser 355
Query Processor. See Query

Parser
@QueryHint 354, 477
queryHint 382
queue 115

R

RAR. See resource adapter
archive

RDBMS. See relational database
management system

read-only 263
realm 207
reference implementation 647
referencedColumnName 275,

277
refresh method 304, 331
relational database manage-

ment system 9
relational paradigm 251
relations

polymorphic 291
relationship 219, 221, 239

bi-directional 223
container managed 526
inverse side of 280
mapping 273–283
owner 244, 280

owning side 283
self-referential 227
subordinate 283
uni-directional 223

reliability 113
@Remote 46, 54, 88, 590
remote

communication 588
interface 588

Remote Method Invocation 490
Also see RMI

remoteability 297
RemoteException 194
@RemoteHome 513
remoting 13
@Remove 54, 94, 98, 101, 107,

442, 486
remove method 300, 304, 329
REpresentational State

Transfer 542
request-reply 116
@Resource 58, 86, 98, 117–

118, 125, 134, 146
resource

binding 148
reference 148

resource adapter archive 390
resource injection 92

Also see dependency injection
resource manager 182
resource-env-ref 627
resource-ref 147, 626
resources

managed 80
res-ref-name 147
result list 351

offset of 352
pagination 351

retrieve 304
RMI 13, 55, 74, 88, 103, 111

client 589
registry 588, 591
server 589
Also see Java Remote Method

Invocation
RMI-IIOP 505, 590
@RolesAllowed 209
rollback 177, 179
RollbackException 189
@RunAs 210
RuntimeException 124, 194

S

sandbox 179
scalability 8, 488
scalar value 381
scheduled tasks 167
scheduler 167
scheduling 13
schema 597
@SecondaryTable 266–267
security 74, 202–213

bean managed 144
concepts 202
declarative 208, 297
in Java EE 205
programmatic 210
web tier 206

security-constraint 206
SecurityException 211, 213
SecurityInterceptor 213
security-role 630
security-role-ref 630
sender 114

 Also see message producer
separation of concerns 402,

570, 572
sequence 270, 601
sequence generator 268, 635
@SequenceGenerator 268
Serializable 119, 238

Also see java.io.Serializable
serialization 487
serialized 99, 298, 326
server farm 14
service 21, 539
service description 539, 542
service discovery 542
service layer 12
service locator 444
service messaging 542
service oriented

architecture 538
service provider interface 591
service registry 588
service transport 542
service-oriented

application 539
Service-Oriented Architecture 8
service-ref 628
servlet 19, 47, 104

controller 441

INDEX 675
session 50, 79
closing 119
commit 119
HTTP 50
JMS 119
management 74
replication 106
transactional 119

session bean 15–16
alternative 75
anatomy 76
best practices 108
copy-by-value semantic 484
home interface 504
interface 76
life cycle 79
performance tuning 484
programming rules 78
unit testing 77
why use 73

session bean client 102
remote client 102
using dependency

injection 104
session façade 427, 434–439,

446
stateful 438

session replication
multicasting 493
peer-to-peer 493

SessionBean interface 506
SessionContext 144, 152, 198
SessionSynchronization 102
session-type 37
setEntityContext method 522
setFirstResult method 352
setFlushMode method 331, 353
setHint method 353–354
setMaxResults method 352
setParameter 350
setParameters method 163
setRollbackOnly 144

method 186, 192
setter 227

injection 149
method 149

setTransactionTimeout
method 200

setXX method. See setter,
method

shareable 151

shared-library 396
shipping request 113, 117

table 124
ShippingRequestProcessorMDB

 125
ShippingRequestQueue 117–

118
Simple Object Access

Protocol 542
SingleThreadModel 449
Snag-It Ordering 178

in BMT 196
using CMT 185

SOA. See Service-Oriented
Architecture

SOAP 74
body 543
envelope 541
header 543, 560
message 543

Also see Simple Object
Access Protocol

@SOAPBinding 553, 555, 566
SoC. See separation of concerns
SonicMQ 56, 112
Spring 41, 75

AbstractJMSMessageDriven-
Bean 581

AbstractStatefulSessionBean
581

AbstractStatelessSessionBean
 581

bean factory 581–583
BeanFactoryPath 583
combining power with

EJB 3 581–585
configuration 582
configuring

to use the EntityManager
578–579

to use the JPA 577
DataAccessException 575
developing Spring-enabled

EJB 581–583
EAO 574
enabled stateless session

bean 582
JDBCTemplate 30
JMSTemplate 30
JndiObjectFactoryBean 578,

584

JpaDaoSupport 574, 580
JpaTemplate 434, 574
LocalContainerEntity-

ManagerFactoryBean
579

MVC 428
onEjbCreate method 581
Pitchfork project 30, 573
support class to integrate

EJB 581
using JPA 573

outside container 579
wiring 584
wiring Entity Access

Objects 580
with EJB 3 30–31, 568–586

SQL 19, 67, 225, 365
dynamic query 381
generation 258
named query. See named

native query
query plan 476
recursive join 380
START WITH …

CONNECT BY 380
Also see structured query lan-

guage
SQL Server 9
SQL-92 601
@SqlResultSetMapping 381
sql-result-set-mapping 635
SSL 207
stale data 478
state 222
State replication. See session

replication
state transition 79
@Stateful 53, 98
stateful session bean 16, 50–54,

93–108
alternative 107
caching 486
instance variable 106
passivation policy 106, 486
performance

consideration 105
@Stateless 46, 78, 86
stateless object 105
stateless session bean 16, 45–

47, 83–93
pool 485

676 INDEX
static 78
Status interface 200
StreamMessage 121
structured query language

601
Struts 428, 449
stub 491

client 492
subscriber 115
subscriptionDurability 130
Sun Glassfish. See Glassfish
superclass 78
surrogate key 238, 268, 599
Swing 451
SWT 451
synchronize 297, 316
synchronous 111

communication 114
system administrator 388
System Task Scheduler 167
system universe 219

T

@Table 64, 224, 261
table generator 269, 636
@TableGenerator 269
Tapestry 428
targetEntity 242

use in @OneToMany 246
@Temporal 260, 265
TestNG 29
thread safe 448
ThreadLocal pattern 313
ThreadLocal session pattern.

See ThreadLocal pattern
thread-safety 73
Tibco Rendezvous 112
tier

business logic 45
@Timeout 170
timeout method 168

implementing 171
timer 167–175

cancel 173
creation 169
how it works 168
interval. See timer, recurring
limitations 174
merits of 174
recurring 171

single-event 171
when it make sense 174

timer interface 170
using 172

timer service 74, 144, 154,
167

accessing 170
using it 169

TimerHandle 173
TimerService 154
TIMESTAMP 265
Tomcat 19, 313
topic 115
TopicConnectionFactory 152
TopLink 14, 17, 28, 218, 500,

533, 573
TopLink Essentials 270, 414
torn-down 124
transaction 74

all or nothing 177
value proposition 178

asking container rollback 191
atomic 179
attribute 188
boundary 184
consistent 180
container managed 137, 144
create a new 189
declarative 185
defined 177
distributed 183
exception handling 193
isolation level 458
joining 187
JTA 311, 448
local 182
phase 183
programmatic 450
requires existing 190
resource local 311
suspended 189
timeout 201
uncommitted 457
with MDB 191

transaction management
in EJB 184
internals 181

transaction manager 180,
182

distributed 184
transactional system 459

@TransactionAttribute 186–
187, 485

using 187
TransactionAttributeType 186,

188
MANDATORY 190
NEVER 190
NOT_SUPPORTED 189
REQUIRED 188
REQUIRES_NEW 189
SUPPORTS 190

@TransactionManagement
 186, 197

using 186
TransactionManagementType

 186
BEAN 187, 197
CONTAINER 186

TransactionRequiredException
 316, 330

transaction-type 186, 312,
414

JTA 414
RESOURCE_LOCAL 312,

414
transfer object 430
@Transient 231
transient 299

field 229
modifier 232, 487
object 487

tuning. See performance, tuning
Turtle server 113
Turtle Shipping Company

113

U

UML 219
uncommitted change 457
@UniqueConstraint 262
uniqueConstraints 262
unmarshaling 590
unSetEntityContext

method 522
UPDATE statement 263
user 203
USER_PICTURES table 260
UserAccountRegistrationBean

 105
username 202

INDEX 677
UserTransaction 184, 196
getting 198
getting from EJBContext 198
JNDI lookup 198
methods 199

V

verbs 18, 223
@Version 461

W

WAR 37, 447
weaving 579
web

container 308
framework 429
module 447

web application archive 390
Also see WAR

web service 8, 16, 47, 74, 103,
429, 538

access from EJB 562
basic profile 540
benefits 539
best practices 565
bottom up approach to

development 548
components 541

consumer 547
definition 539
developing EJB web

service 551–565
document oriented 547
document style 545
EJB 3 vs. regular java

class 551
encoded 547
handler 561
literal 547
meet in the middle approach

to development 549
messaging style 547
metadata 552
popular style/messaging

548
protocol 546
REST. See REpresentational

State Transfer
RPC style 547
style 547
top down approach to

development 548
why choose EJB over

POJO 550
Web Services Description

Language 539
Web Services-Interoperability

(WS-I) Organization 540

web tier 205, 427
WebLogic. See BEA WebLogic
@WebMethod 553, 560

definition 557
@WebParam 553, 558

definition 559
@WebResult 553, 560
@WebService 47, 551–552

definition 554
@WebServiceRef 564
webservices.xml 552
WebSphere 106
WebSphereMQ. See IBM Web-

sphereMQ
WebSphere Studio 26
Webwork 428
Webworks in Action 41
web.xml 206, 441
Windows 647
Windows Communication

Foundation 539
workflow 93
WSDL 539

X

XDoclet 36
XML 12
XML schema 548
XML-RPC 542

	EJB 3 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Part 1 – Overview of the EJB landscape
	What’s what in EJB 3
	1.1 EJB overview
	1.1.1 EJB as a component
	1.1.2 EJB as a framework
	1.1.3 Layered architectures and EJB
	1.1.4 Why choose EJB 3?

	1.2 Understanding EJB types
	1.2.1 Session beans
	1.2.2 Message-driven beans
	1.2.3 Entities and the Java Persistence API

	1.3 Getting inside EJB
	1.3.1 Accessing EJB services: the EJB container
	1.3.2 Accessing JPA services: the persistence provider
	1.3.3 Gaining functionality with EJB services

	1.4 Renaissance of EJB
	1.4.1 HelloUser Example
	1.4.2 Simplified programming model
	1.4.3 Annotations instead of deployment descriptors
	1.4.4 Dependency injection vs. JNDI lookup
	1.4.5 Simplified persistence API
	1.4.6 Unit-testable POJO components
	1.4.7 EJB 3 and Spring

	1.5 Summary

	A first taste of EJB
	2.1 New features: simplifying EJB
	2.1.1 Replacing deployment descriptors with annotations
	2.1.2 Introducing dependency injection

	2.2 Introducing the ActionBazaar application
	2.2.1 Starting with the architecture
	2.2.2 An EJB 3-based solution

	2.3 Building business logic with session beans
	2.3.1 Using stateless beans
	2.3.2 The stateless bean client
	2.3.3 Using stateful beans
	2.3.4 A stateful bean client

	2.4 Messaging with message-driven beans
	2.4.1 Producing a billing message
	2.4.2 Using the order billing message processor MDB

	2.5 Persisting data with EJB 3 JPA
	2.5.1 Working with the Java Persistence API
	2.5.2 Using the EntityManager

	2.6 Summary

	Part 2 – Building business logic with EJB 3
	Building business logic with session beans
	3.1 Getting to know session beans
	3.1.1 Why use session beans?
	3.1.2 Session beans: the basics
	3.1.3 Understanding the programming rules
	3.1.4 Conversational state and session bean types
	3.1.5 Bean lifecycle callbacks

	3.2 Stateless session beans
	3.2.1 The BidManagerBean example
	3.2.2 Using the @Stateless annotation
	3.2.3 Specifying bean business interfaces
	3.2.4 Using bean lifecycle callbacks

	3.3 Stateful session beans
	3.3.1 Additional programming rules
	3.3.2 The BidderAccountCreatorBean example
	3.3.3 Business interfaces for stateful beans
	3.3.4 Stateful bean lifecycle callbacks

	3.4 Session bean clients
	3.4.1 Using the @EJB annotation
	3.4.2 Injection and stateful session beans

	3.5 Performance considerations for stateful beans
	3.5.1 Using stateful session beans effectively
	3.5.2 Stateful session bean alternatives

	3.6 Session bean best practices
	3.7 Summary

	Messaging and developing MDBs
	4.1 Messaging concepts
	4.1.1 Message-oriented middleware
	4.1.2 Messaging in ActionBazaar
	4.1.3 Messaging models

	4.2 Introducing Java Messaging Service
	4.2.1 Developing the JMS message producer
	4.2.2 The JMS message interface

	4.3 Working with message-driven beans
	4.3.1 Why use MDBs?
	4.3.2 Programming rules
	4.3.3 Developing a message consumer with MDB
	4.3.4 Using the @MessageDriven annotation
	4.3.5 Implementing the MessageListener
	4.3.6 Using ActivationConfigProperty
	4.3.7 Using bean lifecycle callbacks
	4.3.8 Sending JMS messages from MDBs
	4.3.9 Managing MDB transactions

	4.4 MDB best practices
	4.5 Summary

	Learning advanced EJB concepts
	5.1 EJB internals
	5.1.1 EJB behind the scenes
	5.1.2 EJB context: accessing the runtime environment

	5.2 Accessing resources using DI and JNDI
	5.2.1 Resource injection using @Resource
	5.2.2 The @Resource annotation in action
	5.2.3 Looking up resources and EJBs

	5.3 AOP in the EJB world: interceptors
	5.3.1 What is AOP?
	5.3.2 What are interceptors?
	5.3.3 Specifying interceptors
	5.3.4 Implementing business interceptors
	5.3.5 Lifecycle callback methods in the interceptor class

	5.4 Scheduling: the EJB 3 timer service
	5.4.1 What are timers?
	5.4.2 Using the timer service
	5.4.3 When to use EJB timers

	5.5 Summary

	Transactions and security
	6.1 Understanding transactions
	6.1.1 A transactional solution in ActionBazaar
	6.1.2 ACID properties
	6.1.3 Transaction management internals
	6.1.4 Two-phase commit
	6.1.5 Transaction management in EJB

	6.2 Container-managed transactions
	6.2.1 Snag-It ordering using CMT
	6.2.2 The @TransactionManagement annotation
	6.2.3 The @TransactionAttribute annotation
	6.2.4 Marking a CMT for rollback
	6.2.5 Transaction and exception handling

	6.3 Bean-managed transactions
	6.3.1 Snag-It ordering using BMT
	6.3.2 Getting a UserTransaction
	6.3.3 Using UserTransaction
	6.3.4 The pros and cons of BMT

	6.4 Exploring EJB security
	6.4.1 Authentication vs. authorization
	6.4.2 Users, groups, and roles
	6.4.3 A security problem in ActionBazaar
	6.4.4 EJB 3 and Java EE security
	6.4.5 Declarative security
	6.4.6 Using EJB programmatic security

	6.5 Summary

	Part 3 – Diving into the Java Persistence API (JPA)
	Implementing domain models
	7.1 Domain modeling and the JPA
	7.1.1 Introducing domain models
	7.1.2 The ActionBazaar problem domain
	7.1.3 Domain model actors
	7.1.4 The EJB 3 Java Persistence API
	7.1.5 Domain objects as Java classes

	7.2 Implementing domain objects with JPA
	7.2.1 The @Entity annotation
	7.2.2 Persisting entity data
	7.2.3 Specifying entity identity
	7.2.4 The @Embeddable annotation

	7.3 Entity relationships
	7.3.1 @OneToOne
	7.3.2 @OneToMany and @ManyToOne
	7.3.3 @ManyToMany

	7.4 Summary

	Object-relational mapping
	8.1 The impedance mismatch
	8.1.1 Mapping objects to databases
	8.1.2 Introducing O/R mapping

	8.2 Mapping entities
	8.2.1 Specifying the table
	8.2.2 Mapping the columns
	8.2.3 Using @Enumerated
	8.2.4 Mapping CLOBs and BLOBs
	8.2.5 Mapping temporal types
	8.2.6 Mapping an entity to multiple tables
	8.2.7 Generating primary keys
	8.2.8 Mapping embeddable classes

	8.3 Mapping entity relationships
	8.3.1 Mapping one-to-one relationships
	8.3.2 One-to-many and many-to-one
	8.3.3 Many-to-many

	8.4 Mapping inheritance
	8.4.1 Single-table strategy
	8.4.2 Joined-tables strategy
	8.4.3 Table-per-class strategy
	8.4.4 Mapping polymorphic relationships

	8.5 Summary

	Manipulating entities with EntityManager
	9.1 Introducing the EntityManager
	9.1.1 The EntityManager interface
	9.1.2 The lifecycle of an entity
	9.1.3 Persistence contexts, scope, and the EntityManager
	9.1.4 Using the EntityManager in ActionBazaar

	9.2 Creating EntityManager instances
	9.2.1 Container-managed EntityManagers
	9.2.2 Application-managed EntityManager

	9.3 Managing persistence operations
	9.3.1 Persisting entities
	9.3.2 Retrieving entities by primary key
	9.3.3 Updating entities
	9.3.4 Deleting entities
	9.3.5 Controlling updates with flush
	9.3.6 Refreshing entities

	9.4 Entity lifecycle listeners
	9.4.1 Using an entity listener
	9.4.2 Default listener classes
	9.4.3 Listener class execution order and exclusion

	9.5 Entity operations best practices
	9.6 Summary

	Using the query API and JPQL to retrieve entities
	10.1 Introducing the query API
	10.1.1 The big picture
	10.1.2 Anatomy of a query
	10.1.3 Defining named queries

	10.2 Executing the queries
	10.2.1 Creating a query instance
	10.2.2 Working with the Query interface
	10.2.3 Specifying query hints

	10.3 Introducing JPQL
	10.3.1 Defining statement types
	10.3.2 Using the FROM clause
	10.3.3 Conditional expressions and operators
	10.3.4 Working with JPQL functions
	10.3.5 Using a SELECT clause
	10.3.6 Using aggregations
	10.3.7 Ordering the query result
	10.3.8 Using subqueries
	10.3.9 Joining entities
	10.3.10 Bulk updates and deletes

	10.4 Native SQL queries
	10.4.1 Using dynamic queries with native SQL
	10.4.2 Using a named native SQL query

	10.5 Summary

	Part 4 – Putting EJB 3 into action
	Packaging EJB 3 applications
	11.1 Packaging your applications
	11.1.1 Dissecting the EAR file
	11.1.2 Loading the EAR module

	11.2 Exploring class loading
	11.2.1 Class-loading basics
	11.2.2 Exposing the classic parent delegation model
	11.2.3 Class loading in Java EE applications
	11.2.4 Dependencies between Java EE modules

	11.3 Packaging session and message-driven beans
	11.3.1 Packaging EJB-JAR
	11.3.2 Deployment descriptors vs. annotations
	11.3.3 Overriding annotations with deployment descriptors
	11.3.4 Specifying default interceptor settings
	11.3.5 Using vendor-specific annotations and descriptors

	11.4 Packaging entities
	11.4.1 Exposing the persistence module
	11.4.2 Describing the persistence module with persistence.xml
	11.4.3 Performing O/R mapping with orm.xml

	11.5 Best practices and common deployment issues
	11.5.1 Packaging and deployment best practices
	11.5.2 Troubleshooting common deployment problems

	11.6 Summary

	Effectively integrating EJB 3 across your application tiers
	12.1 Design patterns and web technologies
	12.1.1 Presentation tier
	12.1.2 Using the Entity Access Object pattern
	12.1.3 Visiting the Session Façade pattern

	12.2 Accessing session beans from the web tier
	12.2.1 Accessing session beans using dependency injection
	12.2.2 Referencing session beans from helper classes
	12.2.3 Dealing with transactions
	12.2.4 Working with stateful session beans

	12.3 Using JPA from the web tier
	12.3.1 Using a container-managed entity manager
	12.3.2 Using an application-managed EntityManager with JTA transactions
	12.3.3 Accessing an application-managed EntityManager outside the container

	12.4 Summary

	Taming wild EJBs: performance and scalability
	13.1 Handling entity locking issues
	13.1.1 Understanding locking types
	13.1.2 Optimistic locking and entity versioning
	13.1.3 EntityManager and lock modes

	13.2 Improving entity performance
	13.2.1 Remodeling and schema redesign
	13.2.2 Tuning the JDBC layer
	13.2.3 Reducing database operations
	13.2.4 Improving query performance
	13.2.5 Caching

	13.3 Improving performance of EJB 3 components
	13.3.1 Session bean performance
	13.3.2 Improving MDB performance

	13.4 Clustering EJB applications
	13.4.1 Collocated architecture
	13.4.2 Load-balancing stateless session beans
	13.4.3 Clustering stateful session beans
	13.4.4 Entities and clustered cache

	13.5 Summary

	Part 5 – Migration and interoperability issues
	Migrating to EJB 3
	14.1 Backward compatibility and interoperability with EJB 2
	14.1.1 Packaging EJB 2 and EJB 3 together
	14.1.2 Invoking EJB 2 from EJB 3
	14.1.3 Using EJB 3 from EJB 2

	14.2 Migrating session beans
	14.2.1 Converting interface and bean classes
	14.2.2 Resource usage
	14.2.3 Transactions and security settings
	14.2.4 Client applications

	14.3 Migrating message-driven beans
	14.4 Migrating CMP 2 entity beans to the EJB 3 JPA
	14.4.1 Redesign your domain model
	14.4.2 Using DTOs as entities
	14.4.3 Entity bean classes and interfaces
	14.4.4 Client applications

	14.5 Migrating JDBC DAOs to use the EJB 3 JPA
	14.5.1 Identifying entities
	14.5.2 Reworking a DAO implementation class to use the EntityManager API
	14.5.3 Swapping SQL queries for JPQL

	14.6 Helping O/R frameworks to use the EJB 3 JPA
	14.7 Approaches to migration
	14.7.1 Strategies
	14.7.2 Manual vs. automated

	14.8 Summary

	Exposing EJBs as web services
	15.1 What is a web service?
	15.1.1 Identifying web service components
	15.1.2 Web services styles
	15.1.3 Approaches to developing web services

	15.2 JAX-WS: Java EE 5 web services platform
	15.2.1 Introducing the web services platform
	15.2.2 Why choose EJB over a POJO for a web service?

	15.3 Developing EJB web services with JAX-WS 2.0
	15.3.1 Using the @WebService annotation
	15.3.2 Specifying the web service style with @SOAPBinding
	15.3.3 Using @WebMethod
	15.3.4 Using the @WebParam annotation
	15.3.5 Using the @WebResult annotation
	15.3.6 Using @OneWay and @HandlerChain

	15.4 Accessing a web service from an EJB
	15.4.1 Accessing the PlaceBid web service
	15.4.2 EJB as a web service client

	15.5 Best practices for web service development
	15.6 Summary

	EJB 3 and Spring
	16.1 Introducing the Spring framework
	16.1.1 Benefits of the Spring framework
	16.1.2 The inversion of control principle
	16.1.3 The separation of concerns principle

	16.2 Using JPA with Spring
	16.2.1 Building JPA EAOs for Spring
	16.2.2 Configuring Spring to use the JPA

	16.3 Combining the power of EJB 3 and Spring
	16.3.1 Developing Spring-enabled EJBs
	16.3.2 Using session beans from Spring beans

	16.4 Summary

	RMI and JNDI
	A.1 Distributed communication with RMI
	A.2 JNDI as a component registry

	Reviewing relational databases
	B.1 Database tables, columns, rows, and schema
	B.2 Database constraints
	B.2.1 Primary keys and unique columns
	B.2.2 Foreign key
	B.2.3 NOT NULL
	B.2.4 Sequences

	B.3 Structured Query Language (SQL)

	Annotations reference
	C.1 Session and message-driven beans
	C.1.1 Session beans
	C.1.2 Message-driven beans
	C.1.3 Dependency injection
	C.1.4 Transaction management
	C.1.5 Security management
	C.1.6 EJB lifecycle management
	C.1.7 Interceptors
	C.1.8 Timers

	C.2 Java Persistence API annotations
	C.2.1 Defining domain objects
	C.2.2 Defining domain object data
	C.2.3 Mapping entity data
	C.2.4 Defining domain relationships
	C.2.5 Mapping domain relationships
	C.2.6 Mapping object-oriented inheritance
	C.2.7 Java Persistence Query Language annotations
	C.2.8 Entity lifecycle annotations
	C.2.9 JPA dependency injection

	Deployment descriptors reference
	D.1 Reference for ejb-jar.xml
	D.1.1 enterprise-beans
	D.1.2 assembly-descriptor

	D.2 persistence.xml reference
	D.3 orm.xml (O/R mapping metadata)reference

	Installing and configuring the Java EE 5 SDK
	E.1 Installing the Java EE 5 SDK
	E.2 Running the application server and database
	E.3 Installing and running ActionBazaar

	resources
	Print resources
	Online resources
	Specifications and Sun websites for Java technologies

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

