

2

Java 8 in Action: Lambdas, streams, and

functional-style programming

Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft

3

Copyright

For online information and ordering of this and other Manning books, please visit

www.manning.com. The publisher offers discounts on this book when ordered in quantity. For

more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form or by means electronic, mechanical, photocopying, or otherwise, without prior written

permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in the book, and Manning Publications

was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to

have the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Recognizing also our responsibility to conserve the resources of our planet, Manning books are

printed on paper that is at least 15 percent recycled and processed without the use of elemental

chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Susan Conant

Technical development editor Al Scherer

Copyeditor: Linda Recktenwald

Proofreader: Katie Tennant

Typesetter: Dennis Dalinnik

Cover designer: Maria Tudor

http://www.manning.com

4

ISBN: 9781617291999

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

5

Dedication

To our parents

6

Table of Contents

Copyright.. 3

Dedication...5

Part 1. Fundamentals...11

Chapter 1. Java 8: why should you care?.. 12

1.1. Why is Java still changing?... 14

1.2. Functions in Java...21

1.3. Streams... 28

1.4. Default methods.. 32

1.5. Other good ideas from functional programming..34

1.6. Summary...36

Chapter 2. Passing code with behavior parameterization.. 37

2.1. Coping with changing requirements...38

2.2. Behavior parameterization...41

2.3. Tackling verbosity... 47

2.4. Real-world examples.. 52

2.5. Summary.. 54

Chapter 3. Lambda expressions...56

3.1. Lambdas in a nutshell... 57

3.2. Where and how to use lambdas..60

3.3. Putting lambdas into practice: the execute around pattern... 66

3.4. Using functional interfaces..70

3.5. Type checking, type inference, and restrictions..76

3.6. Method references..82

3.7. Putting lambdas and method references into practice!...89

3.8. Useful methods to compose lambda expressions...91

3.9. Similar ideas frommathematics...95

3.10. Summary..98

Part 2. Functional-style data processing..99

7

Chapter 4. Introducing streams.. 100

4.1. What are streams?...100

4.2. Getting started with streams... 105

4.3. Streams vs. collections... 108

4.4. Stream operations..113

4.5. Summary... 117

Chapter 5. Working with streams..118

5.1. Filtering and slicing... 119

5.2. Mapping..123

5.3. Finding and matching...129

5.4. Reducing... 132

5.5. Putting it all into practice...140

5.6. Numeric streams... 145

5.7. Building streams.. 152

5.8. Summary.. 158

Chapter 6. Collecting data with streams...159

6.1. Collectors in a nutshell... 160

6.2. Reducing and summarizing...163

6.3. Grouping... 172

6.4. Partitioning..180

6.5. The Collector interface... 186

6.6. Developing your own collector for better performance...194

6.7. Summary..202

Chapter 7. Parallel data processing and performance...203

7.1. Parallel streams... 204

7.2. The fork/join framework..214

7.3. Spliterator.. 222

7.4. Summary..232

Part 3. Effective Java 8 programming.. 233

Chapter 8. Refactoring, testing, and debugging...234

8.1. Refactoring for improved readability and flexibility..234

8

8.2. Refactoring object-oriented design patterns with lambdas....................................... 242

8.3. Testing lambdas..253

8.4. Debugging..256

8.5. Summary.. 261

Chapter 9. Default methods..262

9.1. Evolving APIs...265

9.2. Default methods in a nutshell...269

9.3. Usage patterns for default methods... 272

9.4. Resolution rules...277

9.5. Summary..284

Chapter 10. Using Optional as a better alternative to null.......................................285

10.1. How do you model the absence of a value?...286

10.2. Introducing the Optional class... 290

10.3. Patterns for adopting Optional...292

10.4. Practical examples of using Optional...303

10.5. Summary..307

Chapter 11. CompletableFuture: composable asynchronous programming....309

11.1. Futures..311

11.2. Implementing an asynchronous API...314

11.3. Make your code non-blocking... 320

11.4. Pipelining asynchronous tasks.. 328

11.5. Reacting to a CompletableFuture completion...338

11.6. Summary...342

Chapter 12. New Date and Time API..343

12.1. LocalDate, LocalTime, Instant, Duration, and Period...344

12.2. Manipulating, parsing, and formatting dates...350

12.3. Working with different time zones and calendars... 358

12.4. Summary...361

Part 4. Beyond Java 8.. 363

Chapter 13. Thinking functionally..364

13.1. Implementing and maintaining systems..364

9

13.2. What’s functional programming?...368

13.3. Recursion vs. iteration..375

13.4. Summary.. 379

Chapter 14. Functional programming techniques... 381

14.1. Functions everywhere... 381

14.2. Persistent data structures.. 385

14.3. Lazy evaluation with streams..392

14.4. Pattern matching...401

14.5. Miscellany.. 407

14.6. Summary.. 410

Chapter 15. Blending OOP and FP: comparing Java 8 and Scala...........................412

15.1. Introduction to Scala... 413

15.2. Functions..422

15.3. Classes and traits...427

15.4. Summary.. 429

Chapter 16. Conclusions and where next for Java... 431

16.1. Review of Java 8 features..431

16.2. What’s ahead for Java?...435

16.3. The final word..446

Appendix A. Miscellaneous language updates...447

A.1. Annotations..447

A.2. Generalized target-type inference..450

Appendix B. Miscellaneous library updates...452

B.1. Collections..452

B.2. Concurrency.. 455

B.3. Arrays...458

B.4. Number and Math..459

B.5. Files.. 460

B.6. Reflection.. 460

B.7. String..460

Appendix C. Performing multiple operations in parallel on a stream................462

10

C.1. Forking a stream... 462

C.2. Performance considerations... 472

Appendix D. Lambdas and JVM bytecode...473

D.1. Anonymous classes...473

D.2. Bytecode generation...473

D.3. InvokeDynamic to the rescue... 475

D.4. Code-generation strategies... 477

Index...479

11

Part 1. Fundamentals

This first part of the book provides the fundamentals to help you get started with Java 8. By the

end of this first part, you’ll have a full understanding of what lambda expressions are, and you’ll

be able to write code that’s both concise and flexible enough to easily adapt to changing

requirements.

In chapter 1, we summarize the main changes to Java (lambda expressions, method references,

streams, and default methods) and set the scene for the book.

In chapter 2, you’ll learn about behavior parameterization, a software development pattern that

Java 8 relies heavily on and is the motivation for lambda expressions.

Chapter 3 gives a full explanation, with code examples and quizzes at every step, of the concepts

of lambda expressions and method references.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

12

Chapter 1. Java 8: why should you care?

This chapter covers

 Why Java is changing again

 Changing computing background: multicore and processing large datasets (big data)

 Pressure to evolve: new architectures favor functional style over imperative

 Introducing core new features of Java 8: lambdas, streams, default methods

Since the release of JDK 1.0 (Java 1.0) in 1996, Java has won a large following of students,

project managers, and programmers who are active users. It’s an expressive language and

continues to be used for projects both large and small. Its evolution (via the addition of new

features) from Java 1.1 (1997) to Java 7 (2011) has been well managed. Java 8 was released in

March 2014. So the question is this: why should you care about Java 8?

We argue that the changes to Java 8 are in many ways more profound than any other changes to

Java in its history. The good news is that the changes enable you to write programs more

easily—instead of writing verbose code like the following (to sort a list of apples in inventory

based on their weight),

Collections.sort(inventory, new Comparator<Apple>() {

public int compare(Apple a1, Apple a2){

return a1.getWeight().compareTo(a2.getWeight());

}

});

in Java 8 you can write more concise code that reads a lot closer to the problem statement:

It reads “sort inventory comparing apple weight.” Don’t worry about this code for now. This

book will explain what it does and how you can write similar code!

There’s also a hardware influence: commodity CPUs have become multicore—the processor in

your laptop or desktop machine probably has four or more CPU cores within it. But the vast

majority of existing Java programs use only one of these cores and leave the other three idle (or

spend a small fraction of their processing power running part of the operating system or a virus

checker).

13

Prior to Java 8, experts might tell you that you have to use threads to use these cores. The

problem is that working with threads is difficult and error prone. Java has followed an

evolutionary path of continually trying to make concurrency easier and less error prone. Java 1.0

had threads and locks and even a memory model—the best practice at the time—but these

primitives proved too difficult to use reliably in nonspecialist project teams. Java 5 added

industrial-strength building blocks like thread pools and concurrent collections. Java 7 added

the fork/join framework, making parallelism more practical but still difficult. Java 8 has a new,

simpler way of thinking about parallelism. But you still have to follow some rules, which you’ll

learn in this book!

From these two examples (more concise code and simpler use of multicore processors) springs

the whole consistent edifice that is Java 8. We start by giving you a quick taste of these ideas

(hopefully enough to intrigue you, but short enough to summarize them):

 The Streams API

 Techniques for passing code to methods

 Default methods in interfaces

Java 8 provides a new API (called Streams) that supports many parallel operations to process

data and resembles the way you might think in database query languages—you express what you

want in a higher-level manner, and the implementation (here the Streams library) chooses the

best low-level execution mechanism. As a result, it avoids the need for you to write code that

uses synchronized, which is not only highly error prone but is also more expensive than you may

realize on multicore CPUs.[1]

1 Multicore CPUs have separate caches (fast memory) attached to each processor core. Locking

requires these to be synchronized, requiring relatively slow cache-coherency-protocol intercore

communication.

From a slightly revisionist viewpoint, the addition of Streams in Java 8 can be seen as a direct

cause of the two other additions to Java 8: concise techniques to pass code to methods (method

references, lambdas) and default methods in interfaces.

But thinking of passing code to methods as a mere consequence of Streams downplays its range

of uses within Java 8. It gives you a new concise way to express behavior parameterization.

Suppose you want to write two methods that differ in only a few lines of code; you can now just

pass the code of the parts that differ as an argument (this programming technique is shorter,

clearer, and less error prone than the common tendency to use copy and paste). Experts will

here note that behavior parameterization could, prior to Java 8, be encoded using anonymous

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

14

classes—but we’ll let the example on the first page of this chapter, which shows increased code

conciseness with Java 8, speak for itself in terms of clarity!

The Java 8 feature of passing code to methods (and also being able to return it and incorporate

it into data structures) also provides access to a whole range of additional techniques that are

commonly referred to as functional-style programming. In a nutshell, such code, called

functions in the functional programming community, can be passed around and combined in a

way to produce powerful programming idioms that you’ll see in Java 8 guise throughout this

book.

The meat of this chapter begins with a high-level discussion on why languages evolve, continues

with sections on the core features of Java 8, and then introduces the ideas of functional-style

programming that the new features simplify using and that new computer architectures favor.

In essence, section 1.1 discusses the evolution process and the concepts, which Java was

previously lacking, to exploit multicore parallelism in an easy way. Section 1.2 explains why

passing code to methods in Java 8 is such a powerful new programming idiom, and section 1.3

does the same for Streams—the new Java 8 way of representing sequenced data and flexibly

indicating whether these can be processed in parallel. Section 1.4 explains how the new Java 8

feature of default methods enables interfaces and their libraries to evolve with less fuss and less

recompilation. Finally, section 1.5 looks ahead at the ideas of functional-style programming in

Java and other languages sharing the JVM. In summary, this chapter introduces ideas that are

successively elaborated in the rest of the book. Enjoy the ride!

1.1. Why is Java still changing?

With the 1960s came the quest for the perfect programming language. Peter Landin, famous

computer scientist of his day, noted in 1966 in a landmark article[2] that there had already been

700 programming languages and speculated on what the next 700 would be like—including

arguments for functional-style programming similar to that in Java 8.

2 P. J. Landin, “The Next 700 Programming Languages,” CACM 9(3):157–65, March 1966.

Many thousands of programming languages later, academics have concluded that programming

languages behave like an ecosystem: new languages appear and old languages are supplanted

unless they evolve. We all hope for a perfect universal language, but in reality certain languages

are better fitted for certain niches. For example, C and C++ remain popular for building

operating systems and various other embedded systems because of their small run-time

footprint and in spite of their lack of programming safety. This lack of safety can lead to

programs crashing unpredictably and exposing security holes for viruses and the like; indeed,

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

15

type-safe languages such as Java and C# have supplanted C and C++ in various applications

when the additional run-time footprint is acceptable.

Prior occupancy of a niche tends to discourage competitors. Changing to a new language and

tool chain is often too painful for just a single feature, but newcomers will eventually displace

existing languages, unless they evolve fast enough to keep up (older readers are often able to

quote a range of such languages in which they’ve previously coded but whose popularity has

since waned—Ada, Algol, COBOL, Pascal, Delphi, and SNOBOL, to name but a few).

You’re a Java programmer, and Java has been successful at colonizing (and displacing

competitor languages in) a large ecosystem niche of programming tasks for the last 15 years.

Let’s examine some reasons for that.

1.1.1. Java’s place in the programming language ecosystem

Java started well. Right from the start, it was a well-designed object-oriented language with

many useful libraries. It also supported small-scale concurrency from day one, with its

integrated support for threads and locks (and with its early prescient acknowledgement, in the

form of a hardware-neutral memory model, that concurrent threads on multicore processors can

have unexpected behaviors in addition to those that happen on single-core processors). Also, the

decision to compile Java to JVM bytecode (a virtual machine code that soon every browser

supported) meant that it became the language of choice for internet applet programs (do you

remember applets?). Indeed, there’s a danger that the Java virtual machine (JVM) and its

bytecode will be seen as more important than the Java language itself and that, for certain

applications, Java might be replaced by one of its competing languages such as Scala or Groovy,

which also run on the JVM. Various recent updates to the JVM (for example, the new

invokedynamic bytecode in JDK7) aim to help such competitor languages run smoothly on the

JVM—and to interoperate with Java. Java has also been successful at colonizing various aspects

of embedded computing (everything from smartcards, toasters, and settop boxes to car braking

systems).

How did Java get into a general programming niche?

Object orientation became fashionable in the 1990s for two reasons: its encapsulation discipline

resulted in fewer software engineering issues than those of C; and as a mental model it easily

captured the WIMP programming model of Windows 95 and up. This can be summarized as

follows: everything is an object; and a mouse click sends an event message to a handler (invokes

the Clicked method in a Mouse object). The write-once run-anywhere model of Java and the

16

ability of early browsers to (safely) execute Java code applets gave it a niche in universities,

whose graduates then populated industry. There was initial resistance to the additional run cost

of Java over C/C++, but machines got faster and programmer time became more and more

important. Microsoft’s C# further validated the Java-style object-oriented model.

But the climate is changing for the programming language ecosystem; programmers are

increasingly dealing with so-called big data (datasets of terabytes and up) and wishing to exploit

multicore computers or computing clusters effectively to process it. And this means using

parallel processing—something Java wasn’t previously friendly to.

You may have come across programming ideas from other programming niches (for example,

Google’s map-reduce or the relative ease of data manipulation using database query languages

such as SQL) that help you work with large volumes of data and multicore CPUs. Figure 1.1

summarizes the language ecosystem pictorially: think of the landscape as the space of

programming problems and the dominant vegetation for a particular bit of ground as the

favorite language for that program. Climate change is the idea that new hardware or new

programming influences (for example, “Why can’t I program in SQL-like style?”) mean that

different languages become the language of choice for new projects, just like increasing regional

temperatures mean grapes now thrive in higher latitudes. But of course there’s

hysteresis—many an old farmer will keep raising traditional crops. In summary, new languages

are appearing and becoming increasingly popular because they’ve adapted quickly to the climate

change.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

17

Figure 1.1. Programming languages ecosystem and climate change

The main benefit of Java 8 to a programmer is that it provides more programming tools and

concepts to solve new or existing programming problems more quickly or, more importantly, in

a more concise, more easily maintainable way. Although the concepts are new to Java, they’ve

proved powerful in niche research-like languages. We highlight and develop the ideas behind

three such programming concepts that have driven the development of the Java 8 features to

exploit parallelism and write more concise code in general. We introduce them in a slightly

different order from the rest of the book to enable a Unix-based analogy and to expose the “need

this because of that” dependencies in Java 8’s new parallelism for multicore.

1.1.2. Stream processing

The first programming concept is stream processing. For introductory purposes, a stream is a

sequence of data items that are conceptually produced one at a time—a program might read

items from an input stream one by one and similarly write items to an output stream. The

output stream of one program could well be the input stream of another.

One practical example is in Unix or Linux, where many programs operate by reading data from

standard input (stdin in Unix and C, System.in in Java), operating on it, and then writing their

results to standard output (stdout in Unix and C, System.out in Java). First, a little background:

Unix cat creates a stream by concatenating two files, tr translates the characters in a stream, sort

sorts lines in a stream, and tail -3 gives the last three lines in a stream. The Unix command line

allows such programs to be linked together with pipes (|), giving examples such as

18

cat file1 file2 | tr "[A-Z]" "[a-z]" | sort | tail -3

which (supposing file1 and file2 contain a single word per line) prints the three words from the

files that appear latest in dictionary order, after first translating them to lowercase. We say that

sort takes a stream of lines[3] as input and produces another stream of lines as output (the latter

being sorted), as illustrated in figure 1.2. Note that in Unix the commands (cat, tr, sort, and tail)

are executed concurrently, so that sort can be processing the first few lines before cat or tr has

finished. A more mechanical analogy is a car-manufacturing assembly line where a stream of

cars is queued between processing stations that each take a car, modify it, and pass it on to the

next station for further processing; processing at separate stations is typically concurrent even

though the assembly line is physically a sequence.

3 Purists will say a “stream of characters,” but it’s conceptually simpler to think that sort

reorders lines.

Figure 1.2. Unix commands operating on streams

Java 8 adds a Streams API (note the uppercase S) in java.util.stream based on this idea;

Stream<T> is a sequence of items of type T. You can think of it as a fancy iterator for now. The

Streams API has many methods that can be chained to form a complex pipeline just like Unix

commands were chained in the previous example.

The key motivation for this is that you can now program in Java 8 at a higher level of abstraction,

structuring your thoughts of turning a stream of this into a stream of that (similarly to how you

think when writing database queries) rather than one item at a time. Another advantage is that

Java 8 can transparently run your pipeline of Stream operations on several CPU cores on

disjoint parts of the input—this is parallelism almost for free instead of hard work using

Threads. We cover the Java 8 Streams API in detail in chapters 4–7.

1.1.3. Passing code to methods with behavior parameterization

The second programming concept added to Java 8 is the ability to pass a piece of code to an API.

This sounds awfully abstract. In the Unix example, you might want to tell the sort command to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

19

use a custom ordering. Although the sort command supports command-line parameters to

perform various predefined kinds of sorting such as reverse order, these are limited.

For example, let’s say you have a collection of invoice IDs with format similar to 2013UK0001,

2014US0002, The first four digits represent the year, the next two letters a country code, and

last four digits the ID of a client. You may want to sort these invoice IDs by year or perhaps

using the customer ID or even the country code. What you really want is the ability to tell the

sort command to take as an argument an ordering defined by the user: a separate piece of code

passed to the sort command.

Now, as a direct parallel in Java, you want to tell a sort method to compare using a customized

order. You could write a method compareUsingCustomerId to compare two invoice IDs but,

prior to Java 8, you couldn’t pass this method to another method! You could create a

Comparator object to pass to the sort method as we showed at the start of this chapter, but this

is verbose and obfuscates the idea of simply reusing an existing piece of behavior. Java 8 adds

the ability to pass methods (your code) as arguments to other methods. Figure 1.3, based on

figure 1.2, illustrates this idea. We also refer to this conceptually as behavior parameterization.

Why is this important? The Streams API is built on the idea of passing code to parameterize the

behavior of its operations, just as you passed compareUsingCustomerId to parameterize the

behavior of sort.

Figure 1.3. Passing method compareUsingCustomerId as an argument to

sort

We summarize how this works in section 1.2 of this chapter but leave full details to chapters 2

and 3. Chapters 13 and 14 look at more advanced things you can do using this feature, with

techniques from the functional programming community.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

20

1.1.4. Parallelism and shared mutable data

The third programming concept is rather more implicit and arises from the phrase “parallelism

almost for free” in our previous discussion on stream processing. What do you have to give up?

You may have to make some small changes in the way you code the behavior passed to stream

methods. At first, these changes might feel a little uncomfortable, but once you get used to them,

you’ll love them. You must provide behavior that is safe to execute concurrently on different

pieces of the input. Typically this means writing code that doesn’t access shared mutable data to

do its job. Sometimes these are referred to as pure functions or side-effect-free functions or

stateless functions, and we’ll discuss these in detail in chapters 7 and 13. The previous

parallelism arises only by assuming that multiple copies of your piece of code can work

independently. If there’s a shared variable or object, which is written to, then things no longer

work: what if two processes want to modify the shared variable at the same time? (Section 1.3

gives a more detailed explanation with a diagram.) You’ll find more about this style throughout

the book.

Java 8 streams exploit parallelism more easily than Java’s existing Threads API, so although it’s

possible to use synchronized to break the no-shared-mutable-data rule, it’s fighting the system

in that it’s abusing an abstraction optimized around that rule. Using synchronized across

multiple processing cores is often far more expensive than you expect, because synchronization

forces code to execute sequentially, which works against the goal of parallelism.

Two of these points (no shared mutable data and the ability to pass methods and

functions—code—to other methods) are the cornerstones of what’s generally described as the

paradigm of functional programming, which you’ll see in detail in chapters 13 and 14. In

contrast, in the imperative programming paradigm you typically describe a program in terms

of a sequence of statements that mutate state. The no-shared-mutable-data requirement means

that a method is perfectly described solely by the way it transforms arguments to results; in

other words, it behaves as a mathematical function and has no (visible) side effects.

1.1.5. Java needs to evolve

You’ve seen evolution in Java before. For example, the introduction of generics and using

List<String> instead of just List may initially have been irritating. But you’re now familiar with

this style and the benefits it brings (catching more errors at compile time and making code

easier to read, because you now know what something is a list of).

Other changes have made common things easier to express, for example, using a for-each loop

instead of exposing the boilerplate use of an Iterator. The main changes in Java 8 reflect a move

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

21

away from classical object orientation, which often focuses on mutating existing values, and

toward the functional-style programming spectrum in which what you want to do in

broad-brush terms (for example, create a value representing all transport routes from A to B for

less than a given price) is considered prime and separated from how you can achieve this (for

example, scan a data structure modifying certain components). Note that classical

object-oriented programming and functional programming, as extremes, might appear to be in

conflict. But the idea is to get the best from both programming paradigms, so you have a better

chance of having the right tool for the job! We discuss this in detail in the next two sections:

functions in Java and the new Streams API.

A takeaway line might be this: languages need to evolve to track changing hardware or

programmer expectations (if you need convincing, then consider that COBOL was once one of

the most important languages commercially). To endure, Java has to evolve by adding new

features. This evolution will be pointless unless the new features are used, so in using Java 8

you’re protecting your way of life as a Java programmer. On top of that, we have a feeling you’ll

love using Java 8’s new features. Ask anyone who’s used Java 8 whether they’re willing to go

back! Additionally, the new Java 8 features might, in the ecosystem analogy, enable Java to

conquer programming-task territory currently occupied by other languages, so Java 8

programmers will be even more in demand.

We now introduce the new concepts in Java 8, one by one—pointing out on the way the chapters

that cover these concepts in more detail.

1.2. Functions in Java

The word function in programming languages is commonly used as a synonym for method,

particularly a static method; this is in addition to it being used for mathematical function, one

without side effects. Fortunately, as you’ll see, when Java 8 refers to functions these usages very

nearly coincide.

Java 8 adds functions as new forms of value. These facilitate the use of Streams, covered in

section 1.3, which Java 8 provides to exploit parallel programming on multicore processors. We

start by showing that functions as values are useful in themselves.

Think about the possible values manipulated by Java programs. First, there are primitive values

such as 42 (of type int) and 3.14 (of type double). Second, values can be objects (more strictly,

references to objects). The only way to get one of these is by using new, perhaps via a factory

method or a library function; object references point to instances of a class. Examples include

"abc" (of type String), new Integer(1111) (of type Integer), and the result new HashMap<Integer,

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

22

String>(100) of explicitly calling a constructor for HashMap. Even arrays are objects. So what’s

the problem?

To help answer this, we’ll note that the whole point of a programming language is to manipulate

values, which, following historical programming-language tradition, are therefore called

first-class values (or citizens, in the terminology borrowed from the 1960s civil rights movement

in the United States). Other structures in our programming languages, which perhaps help us

express the structure of values but which can’t be passed around during program execution, are

second-class citizens. Values as listed previously are first-class Java citizens, but various other

Java concepts, such as methods and classes, exemplify second-class citizens. Methods are fine

when used to define classes, which in turn may be instantiated to produce values, but neither

are values themselves. So does this matter? Yes, it turns out that being able to pass methods

around at run-time, and hence making them first-class citizens, is very useful in programming,

and so the Java 8 designers added this ability to Java. Incidentally, you might wonder whether

making other second-class citizens such as classes into first-class-citizen values might also be a

good idea. Various languages such as Smalltalk and JavaScript have explored this route.

1.2.1. Methods and lambdas as first-class citizens

Experiments in other languages such as Scala and Groovy have determined that allowing

concepts like methods to be used as first-class values made programming easier by adding to the

toolset available to programmers. And once programmers become familiar with a powerful

feature, they become reluctant to use languages without it! So the designers of Java 8 decided to

allow methods to be values—to make it easier for you to program. Moreover, the Java 8 feature

of methods as values forms the basis of various other Java 8 features (such as Streams).

The first new Java 8 feature we introduce is that of method references. Suppose you want to

filter all the hidden files in a directory. You need to start writing a method that given a File will

tell you whether it’s hidden or not. Thankfully there’s such a method inside the File class called

isHidden. It can be viewed as a function that takes a File and returns a boolean. But to use it for

filtering you need to wrap it into a FileFilter object that you then pass to the File.listFiles

method, as follows:

23

Yuck! That’s horrible! Although it’s only three lines, it’s three opaque lines—we all remember

saying “Do I really have to do it this way?” on first encounter. You already have a method

isHidden that you could use. Why do you have to wrap it up in a verbose FileFilter class and

then instantiate it? Because that’s what you had to do prior to Java 8!

Now, in Java 8 you can rewrite that code as follows:

File[] hiddenFiles = new File(".").listFiles(File::isHidden);

Wow! Isn’t that cool? You already have the function isHidden available, so you just pass it to the

listFiles method using the Java 8 method reference :: syntax (meaning “use this method as a

value”); note that we’ve also slipped into using the word function for methods. We’ll explain

later how the mechanics work. One advantage is that your code now reads closer to the problem

statement. Here’s a taste of what’s coming: methods are no longer second-class values.

Analogously to using an object reference when you pass an object around (and object references

are created by new), in Java 8 when you write File::isHidden you create a method reference,

which can similarly be passed around. This concept is discussed in detail in chapter 3. Given

that methods contain code (the executable body of a method), then using method references

enables passing code around as in figure 1.3. Figure 1.4 illustrates the concept. You’ll also see a

concrete example (selecting apples from an inventory) in the next section.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

24

Figure 1.4. Passing the method reference File::isHidden to the method

listFiles

Lambdas—anonymous functions

As well as allowing (named) methods to be first-class values, Java 8 allows a richer idea of

functions as values, including lambdas[4] (or anonymous functions). For example, you can now

write (int x) -> x + 1 to mean “the function that, when called with argument x, returns the value

x + 1.” You might wonder why this is necessary because you could define a method add1 inside a

class MyMathsUtils and then write MyMaths-Utils::add1! Yes, you could, but the new lambda

syntax is more concise for cases where you don’t have a convenient method and class available.

Chapter 3 explores lambdas in detail. Programs using these concepts are said to be written in

functional-programming style—this phrase means “writing programs that pass functions around

as first-class values.”

4 Originally named after the Greek letter λ (lambda). Although the symbol isn’t used in Java, its

name lives on.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

25

1.2.2. Passing code: an example

Let’s look at an example (discussed in more detail in chapter 2, “Passing code with behavior

parameterization”) of how this helps you write programs. All the code for the examples is

available on the book’s GitHub page (https://github.com/java8/). Suppose you have a class

Apple with a method getColor and a variable inventory holding a list of Apples; then you might

wish to select all the green apples and return them in a list. The word filter is commonly used to

express this concept. Before Java 8, you thus might write a method filterGreenApples:

But next, somebody would like the list of heavy apples (say over 150 g), and so, with a heavy

heart, you’d write the following method to achieve this (perhaps even using copy and paste):

We all know the dangers of copy and paste for software engineering (updates and bug fixes to

one variant but not the other), and hey, these two methods vary only in one line: the highlighted

condition inside the if construct. If the difference between the two method calls in the

highlighted code had been simply as to what weight range was acceptable, then you could have

just passed lower and upper acceptable weights as arguments to filter—perhaps (150, 1000) to

select heavy apples (over 150 g) or (0, 80) to select light apples (under 80 g).

But as we mentioned previously, Java 8 makes it possible to pass the code of the condition as an

argument, thus avoiding code duplication of the filter method. You can now write this:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

26

And to use this, you call either

filterApples(inventory, Apple::isGreenApple);

or

filterApples(inventory, Apple::isHeavyApple);

We explain how this works in detail in the next two chapters. The key idea to take away for now

is that you can pass around a method in Java 8!

What’s a Predicate?

The previous code passed a method Apple::isGreenApple (which takes an Apple for argument

and returns a boolean) to filterApples, which expected a Predicate-<Apple> parameter. The

word predicate is often used in mathematics to mean something function-like that takes a value

for an argument and returns true or false. As you’ll see later, Java 8 would also allow you to

write Function<Apple,Boolean>—more familiar to readers who learned about functions but not

predicates at school—but using Predicate<Apple> is more standard (and slightly more efficient

because it avoids boxing a boolean into a Boolean).

27

1.2.3. From passing methods to lambdas

Passing methods as values is clearly useful, but it’s a bit annoying having to write a definition for

short methods such as isHeavyApple and isGreenApple when they’re used perhaps only once or

twice. But Java 8 has solved this too. It introduces a new notation (anonymous functions, or

lambdas) that enables you to write just

filterApples(inventory, (Apple a) -> "green".equals(a.getColor()));

or

filterApples(inventory, (Apple a) -> a.getWeight() > 150);

or even

filterApples(inventory, (Apple a) -> a.getWeight() < 80 ||

"brown".equals(a.getColor()));

So you don’t even need to write a method definition that’s used only once; the code is crisper

and clearer because you don’t need to search to find the code you’re passing. But if such a

lambda exceeds a few lines in length (so that its behavior isn’t instantly clear), then you should

instead use a method reference to a method with a descriptive name instead of using an

anonymous lambda. Code clarity should be your guide.

The Java 8 designers could almost have stopped here, and perhaps they would have done so

before multicore CPUs! Functional-style programming as presented so far turns out to be

powerful, as you’ll see. Java might then have been rounded off by adding filter and a few friends

as generic library methods, such as

static <T> Collection<T> filter(Collection<T> c, Predicate<T> p);

So you wouldn’t even have to write methods like filterApples because, for example, the previous

call

filterApples(inventory, (Apple a) -> a.getWeight() > 150);

could simply be written as a call to the library method filter:

filter(inventory, (Apple a) -> a.getWeight() > 150);

28

But, for reasons centered on better exploiting parallelism, the designers didn’t do this. Java 8

instead contains a whole new Collections-like API called Streams, containing a comprehensive

set of operations similar to filter that functional programmers may be familiar with (for example,

map, reduce), along with methods to convert between Collections and Streams, which we now

investigate.

1.3. Streams

Nearly every Java application makes and processes collections. But working with collections

isn’t always ideal. For example, let’s say you need to filter expensive transactions from a list and

then group them by currency. You’d need to write a lot of boilerplate code to implement this

data processing query, as shown here:

In addition, it’s difficult to understand at a glance what the code does because of the multiple

nested control-flow statements.

Using the Streams API, you can solve this problem as follows:

Don’t worry about this code for now because it may look like a bit of magic. Chapters 4–7 are

dedicated to explaining how to make sense of the Streams API. For now it’s worth noticing that

the Streams API provides a very different way to process data in comparison to the Collections

API. Using a collection, you’re managing the iteration process yourself. You need to iterate

through each element one by one using a for-each loop and then process the elements. We call

this way of iterating over data external iteration. In contrast, using the Streams API, you don’t

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

29

need to think in terms of loops at all. The data processing happens internally inside the library.

We call this idea internal iteration. We come back to these ideas in chapter 4.

As a second pain point of working with collections, think for a second about how you would

process the list of transactions if you had a vast number of them; how can you process this huge

list? A single CPU wouldn’t be able to process this large amount of data, but you probably have a

multicore computer on your desk. Ideally, you’d like to share the work among the different CPU

cores available on your machine to reduce the processing time. In theory, if you have eight cores,

they should be able to process your data eight times as fast as using one core because they work

in parallel.[5]

5 This naming is unfortunate in some ways. Each of the cores in a multicore chip is a full-fledged

CPU. But the phrase “multicore CPU” has become common, so core is used to refer to the

individual CPUs.

Multicore

All new desktop and laptop computers are multicore computers. Instead of a single CPU, they

have four or eight or more CPUs (usually called cores[5]). The problem is that a classic Java

program uses just a single one of these cores, and the power of the others is wasted. Similarly,

many companies use computing clusters (computers connected together with fast networks) to

be able to process vast amounts of data efficiently. Java 8 facilitates new programming styles to

better exploit such computers.

Google’s search engine is an example of a piece of code that’s too big to run on a single computer.

It reads every page on the internet and creates an index, mapping every word appearing on any

internet page back to every URL containing that word. Then, when you do a Google search

involving several words, software can quickly use this index to give you a set of web pages

containing those words. Try to imagine how you might code this algorithm in Java (even for a

smaller index than Google’s you’d need to exploit all the cores in your computer).

1.3.1. Multithreading is difficult

The problem is that exploiting parallelism by writing multithreaded code (using the Threads

API from previous versions of Java) is difficult. You have to think differently: threads can access

and update shared variables at the same time. As a result, data could change unexpectedly if not

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

30

coordinated[6] properly. This model is harder to think about[7] than a step-by-step sequential

model. For example, figure 1.5 shows a possible problem with two Threads trying to add a

number to a shared variable sum if they’re not synchronized properly.

6 Traditionally via the keyword synchronized, but many subtle bugs arise from its misplacement.

Java 8’s Stream-based parallelism encourages a functional programming style where

synchronized is rarely used; it focuses on partitioning the data rather than coordinating access

to it.

7 Aha—a source of pressure for the language to evolve!

Figure 1.5. A possible problem with two threads trying to add to a

shared sum variable. The result is 105 instead of an expected result of

108.

Java 8 also addresses both problems (boilerplate and obscurity involving processing collections

and difficulty leveraging multicore) with the Streams API (java.util .stream). The first design

motivator is that there are many data processing patterns (similar to filterApples in the previous

section, or operations familiar from database query languages such as SQL) that occur over and

over again and that would benefit from forming part of a library: filtering data based on a

criterion (for example, heavy apples), extracting data (for example, extracting the weight field

from each apple in a list), or grouping data (for example, grouping a list of numbers into

separate lists of even and odd numbers), and so on. The second motivator is that such

operations can often be parallelized. For instance, as illustrated in figure 1.6, filtering a list on

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

31

two CPUs could be done by asking one CPU to process the first half of a list and the second CPU

to process the other half of the list (this is called the forking step (1)). The CPUs then filter their

respective half-lists (2). Finally (3), one CPU would join the two results (this is closely related to

how Google searches work so quickly, of course using many more than two processors).

Figure 1.6. Forking filter onto two CPUs and joining the result

For now, we’ll just say that the new Streams API behaves very similarly to Java’s existing

Collections API: both provide access to sequences of data items. But it’s useful for now to keep

in mind that Collections is mostly about storing and accessing data, whereas Streams is mostly

about describing computations on data. The key point here is that Streams allows and

encourages the elements within a Stream to be processed in parallel. Although it may seem odd

at first, often the fastest way to filter a Collection (using filterApples on a List in the previous

section) is to convert it to a Stream, process it in parallel, and then convert it back to a List, as

exemplified here for both the serial and parallel cases. Again we’ll just say “parallelism almost

for free” and provide a taste of how you can filter heavy apples from a list sequentially or in

parallel using Streams and a lambda expression:

Sequential processing:

import static java.util.stream.Collectors.toList;

32

List<Apple> heavyApples =

inventory.stream().filter((Apple a) -> a.getWeight() > 150)

.collect(toList());

Parallel processing:

import static java.util.stream.Collectors.toList;

List<Apple> heavyApples =

inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)

.collect(toList());

Chapter 7 explores parallel data processing in Java 8 and its performance in more detail. One of

the practical issues the Java 8 developers found in evolving Java with all these new goodies was

that of evolving existing interfaces. For example, the method Collections.sort really belongs to

the List interface but was never included. Ideally, you’d like to do list.sort(comparator) instead

of Collections.sort(list, comparator). This may seem trivial but, prior to Java 8, you can update

an interface only if you update all the classes that implement it—a logistic nightmare! This issue

is resolved in Java 8 by default methods.

Parallelism in Java and no shared mutable state

People have always said parallelism in Java is difficult, and all this stuff about synchronized is

error prone. Where’s the magic bullet in Java 8? There are actually two magic bullets. First, the

library handles partitioning—breaking down a big stream into several smaller streams to be

processed in parallel for you. Second, this parallelism almost for free from streams works only if

the methods passed to library methods like filter don’t interact, for example, by having mutable

shared objects. But it turns out that this restriction feels quite natural as a coder (see, by way of

example, our Apple::isGreenApple example). Indeed, although the primary meaning of

functional in functional programming means “using functions as first class values,” it often has

a secondary nuance of “no interaction during execution between components.”

1.4. Default methods

Default methods are added to Java 8 largely to support library designers by enabling them to

write more evolvable interfaces. We cover them in detail in chapter 9. They’re important

because you’ll increasingly encounter them in interfaces, but because relatively few

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

33

programmers will need to write default methods themselves and because they facilitate program

evolution rather than helping write any particular program, we keep the explanation here short

and example-based:

In section 1.3, we gave the following example Java 8 code:

List<Apple> heavyApples1 =

inventory.stream().filter((Apple a) -> a.getWeight() > 150)

.collect(toList());

List<Apple> heavyApples2 =

inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)

.collect(toList());

But there’s a problem here: a List<T> prior to Java 8 doesn’t have stream or parallel-Stream

methods—and neither does the Collection<T> interface that it implements—because these

methods hadn’t been conceived of! And without these methods this code won’t compile. The

simplest solution, which you might employ for your own interfaces, would have been for the

Java 8 designers simply to add the stream method to the Collection interface and add the

implementation in the ArrayList class.

But doing this would have been a nightmare for users. There are many alternative collection

frameworks that implement interfaces from the Collections API. Adding a new method to an

interface means all concrete classes must provide an implementation for it. Language designers

have no control on all existing implementations of Collections, so you have a bit of a dilemma:

how can you evolve published interfaces without disrupting existing implementations?

The Java 8 solution is to break the last link—an interface can now contain method signatures for

which an implementing class doesn’t provide an implementation! So who implements them?

The missing method bodies are given as part of the interface (hence default implementations)

rather than in the implementing class.

This provides a way for an interface designer to enlarge an interface beyond those methods that

were originally planned—without breaking existing code. Java 8 uses the new default keyword in

the interface specification to achieve this.

For example, in Java 8 you can now call the sort method directly on a List. This is made possible

with the following default method in the Java 8 List interface, which calls the static method

Collections.sort:

default void sort(Comparator<? super E> c) {

Collections.sort(this, c);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

34

}

This means any concrete classes of List don’t have to explicitly implement sort, whereas in

previous Java versions such concrete classes would fail to recompile unless they provided an

implementation for sort.

But wait a second—a single class can implement multiple interfaces, right? So if you have

multiple default implementations in several interfaces, does that mean you have a form of

multiple inheritance in Java? Yes, to some extent! We show in chapter 9 that there are some

restrictions that prevent issues such as the infamous diamond inheritance problem in C++.

1.5. Other good ideas from functional programming

The previous sections introduced two core ideas from functional programming that are now part

of Java: using methods and lambdas as first-class values, and the idea that calls to functions or

methods can be efficiently and safely executed in parallel in the absence of mutable shared state.

Both of these ideas are exploited by the new Streams API we described earlier.

Common functional languages (SML, OCaml, Haskell) also provide further constructs to help

programmers. One of these is avoiding null by explicit use of more descriptive data types.

Indeed, Tony Hoare, one of the giants of computer science, said in a presentation at QCon

London 2009:

I call it my billion-dollar mistake. It was the invention of the null reference in 1965.... I couldn’t

resist the temptation to put in a null reference, simply because it was so easy to implement.

In Java 8 there’s an Optional<T> class that, if used consistently, can help you avoid NullPointer

exceptions. It’s a container object that may or not contain a value. Optional<T> includes

methods to explicitly deal with the case where a value is absent, and as a result you can avoid

NullPointer exceptions. In other words, it uses the type system to allow you to indicate when a

variable is anticipated to potentially have a missing value. We discuss Optional<T> in detail in

chapter 10.

A second idea is that of (structural) pattern matching.[8] This is used in mathematics, for

example:

8 There are two uses of this phrase. Here we mean the one familiar from mathematics and

functional programming whereby a function is defined by cases, rather than using if-then-else.

The other meaning concerns phrases like “find all files of the form ‘IMG*.JPG’ in a given

directory” associated with so-called regular expressions.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

35

f(0) = 1

f(n) = n*f(n-1) otherwise

In Java you would here write an if-then-else or a switch statement. Other languages have shown

that, for more complex data types, pattern matching can express programming ideas more

concisely compared to using if-then-else. For such data types, you might also use polymorphism

and method overriding as an alternative to if-then-else, but there’s still language-design

discussion as to which is more appropriate.[9] We’d say that both are useful tools and you should

have both in your armory. Unfortunately, Java 8 doesn’t have full support for pattern matching,

although we show how it can be expressed in chapter 14. In the meantime, we illustrate with an

example expressed in the Scala programming language (another Java-like language using the

JVM that has inspired some aspects of Java evolution; see chapter 15). Suppose you want to

write a program that does basic simplifications on a tree representing an arithmetic expression.

Given a data type Expr representing such expressions, in Scala you can write the following code

to decompose an Expr into its parts and then return another Expr:

9 The Wikipedia article on “expression problem” (a term coined by Phil Wadler) provides an

entry to the discussion.

Here Scala’s syntax expr match corresponds to Java’s switch (expr); don’t worry about this code

for now—you’ll read more on pattern matching in chapter 14. For now, you can think of pattern

matching as an extended form of switch that can decompose a data type into its components at

the same time.

Why should the switch statement in Java be limited to primitive values and Strings? Functional

languages tend to allow switch to be used on many more data types, including allowing pattern

matching (in the Scala code, this is achieved using a match operation). In object-oriented design,

the visitor pattern is a common pattern used to walk through a family of classes (such as the

different components of a car: wheel, engine, chassis, and so on) and apply an operation to each

object visited. One advantage of pattern matching is that a compiler can report common errors

such as “Class Brakes is part of the family of classes used to represent components of class Car.

You forgot to explicitly deal with it.”

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

36

Chapters 13 and 14 give a full tutorial introduction to functional programming and how to write

functional-style programs in Java 8—including the toolkit of functions provided in its library.

Chapter 15 follows by discussing how Java 8 features compare to features in Scala—a language

that, like Java, is implemented on top of the JVM and that has evolved quickly to threaten some

aspects of Java’s niche in the programming language ecosystem. This material is positioned

toward the end of the book to provide additional insight into why the new Java 8 features were

added.

1.6. Summary

Following are the key concepts you should take away from this chapter:

 Keep in mind the idea of language ecosystem and the consequent evolve-or-wither pressure on

languages. Although Java may be supremely healthy at the moment, you can recall other healthy

languages such as COBOL that failed to evolve.

 The core additions to Java 8 provide exciting new concepts and functionality to ease the writing of

programs that are both effective and concise.

 Multicore processors aren’t fully served by existing Java programming practice.

 Functions are first-class values; remember how methods can be passed as functional values and how

anonymous functions (lambdas) are written.

 The Java 8 concept of Streams generalizes many aspects of Collections but both enables more

readable code and allows elements of a stream to be processed in parallel.

 You can use a default method in an interface to provide a method body if an implementing class

chooses not to do so.

 Other interesting ideas from functional programming include dealing with null and using pattern

matching.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

37

Chapter 2. Passing code with behavior

parameterization

This chapter covers

 Coping with changing requirements

 Behavior parameterization

 Anonymous classes

 Preview of lambda expressions

 Real-world examples: Comparator,Runnable, and GUI

A well-known problem in software engineering is that no matter what you do, user requirements

will change. For example, imagine an application to help a farmer understand his inventory. The

farmer might want a functionality to find all green apples in his inventory. But the next day he

might tell you, “Actually I also want to find all apples heavier than 150 g.” Two days later, the

farmer comes back and adds, “It would be really nice if I could find all apples that are green and

heavier than 150 g.” How can you cope with these changing requirements? Ideally you’d like to

minimize your engineering effort. In addition, similar new functionalities ought to be

straightforward to implement and maintainable in the long term.

Behavior parameterization is a software development pattern that lets you handle frequent

requirement changes. In a nutshell, it means taking a block of code and making it available

without executing it. This block of code can be called later by other parts of your programs,

which means that you can defer the execution of that block of code. For instance, you could pass

the block of code as an argument to another method that will execute it later. As a result, the

method’s behavior is parameterized based on that block of code. For example, if you process a

collection, you may want to write a method that

 Can do “something” for every element of a list

 Can do “something else” when you finish processing the list

 Can do “yet something else” if you encounter an error

This is what behavior parameterization refers to. Here’s an analogy: your roommate knows

how to drive to the supermarket and back home. So you can tell him to buy a list of things such

as bread, cheese, and wine. This is equivalent to calling a method goAndBuy with a list of

products as argument. But one day you’re at the office and you need him to do something he’s

never done before: pick up a package from the post office. You now need to pass him a list of

38

instructions: go to the post office, use this reference number, talk to the manager, and pick up

the parcel. You could pass him the list of instructions by email, and when he receives it, he can

go ahead and follow the instructions. You’ve now done something a bit more advanced that’s

equivalent to a method: go, which can take different new behaviors as arguments and execute

them.

We start the chapter by walking you through an example of how you can evolve your code to be

more flexible for changing requirements. Building on this knowledge, we show how to use

behavior parameterization for several real-world examples. For example, you may have already

used the behavior parameterization pattern using existing classes and interfaces in the Java API

to sort a List, to filter names of files, or to tell a Thread to execute a block of code or even

perform GUI event handling. You’ll soon realize that using this pattern is verbose in Java at the

moment. Lambda expressions in Java 8 tackle the problem of verbosity. We show in chapter 3

how to construct lambda expressions, where to use them, and how you can make your code

more concise by adopting them.

2.1. Coping with changing requirements

Writing code that can cope with changing requirements is difficult. Let’s walk through an

example that we’ll gradually improve, showing some best practices for making your code more

flexible. In the context of a farm-inventory application, you have to implement a functionality to

filter green apples from a list. Sounds easy, right?

2.1.1. First attempt: filtering green apples

A first solution might be as follows:

The highlighted line shows the condition required to select green apples. But now the farmer

changes his mind and wants to also filter red apples. What can you do? A naïve solution would

be to duplicate your method, rename it as filterRedApples, and change the if condition to match

red apples. Nonetheless, this approach doesn’t cope well with changes if the farmer wants

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

39

multiple colors: light green, dark red, yellow, and so on. A good principle is this: after writing

similar code, try to abstract.

2.1.2. Second attempt: parameterizing the color

What you could do is add a parameter to your method to parameterize the color and be more

flexible to such changes:

public static List<Apple> filterApplesByColor(List<Apple> inventory,

String color) {

List<Apple> result = new ArrayList<>();

for (Apple apple: inventory){

if (apple.getColor().equals(color)) {

result.add(apple);

}

}

return result;

}

You can now make the farmer happy and call your method as follows:

List<Apple> greenApples = filterApplesByColor(inventory, "green");

List<Apple> redApples = filterApplesByColor(inventory, "red");

...

Too easy, right? Let’s complicate the example a bit. The farmer comes back to you and says, “It

would be really cool to differentiate between light apples and heavy apples. Heavy apples

typically have a weight greater than 150 g.”

Wearing your software engineering hat, you realize in advance that the farmer may want to vary

the weight, so you create the following method to cope with various weights through an

additional parameter:

public static List<Apple> filterApplesByWeight(List<Apple> inventory,

int weight) {

List<Apple> result = new ArrayList<>();

For (Apple apple: inventory){

if (apple.getWeight() > weight){

result.add(apple);

}

40

}

return result;

}

This is a good solution, but notice how you have to duplicate most of the implementation for

traversing the inventory and applying the filtering criteria on each apple. This is somewhat

disappointing because it breaks the DRY (don’t repeat yourself) principle of software

engineering. What if you want to alter the filter traversing to enhance performance? You now

have to modify the implementation of all of your methods instead of a single one. This is

expensive from an engineering effort perspective.

You could combine the color and weight into one method called filter. But then you’d still need a

way to differentiate what attribute you want to filter on. You could add a flag to differentiate

between color and weight queries. (But never do this! We’ll explain why shortly.)

2.1.3. Third attempt: filtering with every attribute you can think of

Our ugly attempt of merging all attributes appears as follows:

You could use it as follows (but it’s really ugly):

List<Apple> greenApples = filterApples(inventory, "green", 0, true);

List<Apple> heavyApples = filterApples(inventory, "", 150, false);

...

This solution is extremely bad. First, the client code looks terrible. What do true and false mean?

In addition, this solution doesn’t cope well with changing requirements. What if the farmer asks

you to filter with different attributes of an apple, for example, its size, its shape, its origin, and so

on? Furthermore, what if the farmer asks you for more complicated queries that combine

attributes, such as green apples that are also heavy? You’d either have multiple duplicated filter

methods or one giant, very complex method. So far you’ve parameterized the filterApples

41

method with values such as a String, an Integer, or a boolean. This can be fine for certain

well-defined problems. But in this case what you need is a better way to tell your filterApples

method the selection criteria for apples. In the next section we describe how to make use of

behavior parameterization to attain that flexibility.

2.2. Behavior parameterization

You saw in the previous section that you need a better way than adding lots of parameters to

cope with changing requirements. Let’s step back and find a better level of abstraction. One

possible solution is to model your selection criteria: you’re working with apples and returning a

boolean based on some attributes of Apple (for example, is it green? is it heavier than 150 g?).

We call this a predicate (that is, a function that returns a boolean). Let’s therefore define an

interface to model the selection criteria:

public interface ApplePredicate{

boolean test (Apple apple);

}

You can now declare multiple implementations of ApplePredicate to represent different

selection criteria, for example (and illustrated in figure 2.1):

Figure 2.1. Different strategies for selecting an Apple

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

42

You can see these criteria as different behaviors for the filter method. What you just did is

related to the strategy design pattern,[1] which lets you define a family of algorithms, encapsulate

each algorithm (called a strategy), and select an algorithm at run-time. In this case the family of

algorithms is ApplePredicate and the different strategies are AppleHeavyWeightPredicate and

AppleGreenColorPredicate.

1 See http://en.wikipedia.org/wiki/Strategy_pattern.

But how can you make use of the different implementations of ApplePredicate? You need your

filterApples method to accept ApplePredicate objects to test a condition on an Apple. This is

what behavior parameterization means: the ability to tell a method to take multiple behaviors

(or strategies) as parameters and use them internally to accomplish different behaviors.

To achieve this in the running example, you add a parameter to the filterApples method to take

an ApplePredicate object. This has a great software engineering benefit: you can now separate

the logic of iterating the collection inside the filterApples method with the behavior you want to

apply to each element of the collection (in this case a predicate).

2.2.1. Fourth attempt: filtering by abstract criteria

Our modified filter method, which uses an ApplePredicate, looks like this:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://en.wikipedia.org/wiki/Strategy_pattern

43

Passing code/behavior

It’s worth pausing for a moment for a small celebration. This code is much more flexible than

our first attempt, while at the same time it’s easy to read and to use! You can now create

different ApplePredicate objects and pass them to the filterApples method. Free flexibility! For

example, if the farmer asks you to find all red apples that are heavier than 150 g, all you need to

do is create a class that implements the ApplePredicate accordingly. Your code is now flexible

enough for any change of requirements involving the attributes of Apple:

public class AppleRedAndHeavyPredicate implements ApplePredicate{

public boolean test(Apple apple){

return "red".equals(apple.getColor())

&& apple.getWeight() > 150;

}

}

List<Apple> redAndHeavyApples =

filter(inventory, new AppleRedAndHeavyPredicate());

You’ve achieved something really cool: the behavior of the filterApples method depends on the

code you pass to it via the ApplePredicate object. In other words, you’ve parameterized the

behavior of the filterApples method!

Note that in the previous example, the only code that really matters is the implementation of the

test method, as illustrated in figure 2.2; this is what defines the new behaviors for the

filterApples method. Unfortunately, because the filterApples method can only take objects, you

have to wrap that code inside an ApplePredicate object. What you’re doing is similar to “passing

code” inline, because you’re passing a boolean expression through an object that implements the

test method. You’ll see in section 2.3 (and in more detail in chapter 3) that by using lambdas,

you’ll be able to directly pass the expression "red".equals(apple.getColor()) && apple.getWeight()

> 150 to the filterApples method without having to define multiple ApplePredicate classes and

thus removing unnecessary verbosity.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

44

Figure 2.2. Parameterizing the behavior of filterApples and passing

different filter strategies

Multiple behaviors, one parameter

As we explained earlier, behavior parameterization is great because it enables you to separate

the logic of iterating the collection to filter and the behavior to apply on each element of that

collection. As a consequence, you can reuse the same method and give it different behaviors to

achieve different things, as illustrated in figure 2.3. This is why behavior parameterization is a

useful concept you should have in your toolset for creating flexible APIs.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

45

Figure 2.3. Parameterizing the behavior of filterApples and passing

different filter strategies

To make sure you feel comfortable with the idea of behavior parameterization, have a go at Quiz

2.1!

Quiz 2.1: Write a flexible prettyPrintApple method

Write a prettyPrintApple method that takes a List of Apples and that can be parameterized with

multiple ways to generate a String output from an apple (a bit like multiple customized toString

methods). For example, you could tell your pretty-PrintApple method to print only the weight of

each apple. In addition, you could tell your prettyPrintApple method to print each apple

individually and mention whether it’s heavy or light. The solution is similar to the filtering

examples we’ve explored so far. To help you get started, we provide a rough skeleton of the

prettyPrintApple method:

public static void prettyPrintApple(List<Apple> inventory, ???){

for(Apple apple: inventory) {

String output = ???.???(apple);

System.out.println(output);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

46

}

}

Answer:

First, you need a way to represent a behavior that takes an Apple and returns a formatted String

result. You did something similar when you created an ApplePredicate interface:

public interface AppleFormatter{

String accept(Apple a);

}

You can now represent multiple formatting behaviors by implementing the Apple-Formatter

interface:

public class AppleFancyFormatter implements AppleFormatter{

public String accept(Apple apple){

String characteristic = apple.getWeight() > 150 ? "heavy" : "light";

return "A " + characteristic +

" " + apple.getColor() +" apple";

}

}

public class AppleSimpleFormatter implements AppleFormatter{

public String accept(Apple apple){

return "An apple of " + apple.getWeight() + "g";

}

}

Finally, you need to tell your prettyPrintApple method to take AppleFormatter objects and use

them internally. You can do this by adding a parameter to prettyPrintApple:

public static void prettyPrintApple(List<Apple> inventory,

AppleFormatter formatter){

for(Apple apple: inventory){

String output = formatter.accept(apple);

System.out.println(output);

}

}

47

Bingo! You’re now able to pass multiple behaviors to your prettyPrintApple method. You do this

by instantiating implementations of AppleFormatter and giving them as arguments to

prettyPrintApple:

prettyPrintApple(inventory, new AppleFancyFormatter());

This will produce an output along the lines of

A light green apple

A heavy red apple

...

Or try this:

prettyPrintApple(inventory, new AppleSimpleFormatter());

This will produce an output along the lines of

An apple of 80g

An apple of 155g

...

You’ve seen that you can abstract over behavior and make your code adapt to requirement

changes, but the process is verbose because you need to declare multiple classes that you

instantiate only once. Let’s see how to improve that.

2.3. Tackling verbosity

We all know that a feature or concept that’s cumbersome to use will be avoided. At the moment,

when you want to pass new behavior to your filterApples method, you’re forced to declare

several classes that implement the ApplePredicate interface and then instantiate several

ApplePredicate objects that you allocate only once, as shown in the following listing that

summarizes what you’ve seen so far. There’s a lot of verbosity involved and it’s a

time-consuming process!

48

Listing 2.1. Behavior parameterization: filtering apples with predicates

This is unnecessary overhead; can you do better? Java has a mechanism called anonymous

classes, which let you declare and instantiate a class at the same time. They enable you to

improve your code one step further by making it a little more concise. But they’re not entirely

satisfactory. Section 2.3.3 shows a short preview of how lambda expressions can make your code

more readable before we discuss them in detail in the next chapter.

2.3.1. Anonymous classes

Anonymous classes are like the local classes (a class defined in a block) that you’re already

familiar with in Java. But anonymous classes don’t have a name. They allow you to declare and

instantiate a class at the same time. In other words, they allow you to create ad hoc

implementations.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

49

2.3.2. Fifth attempt: using an anonymous class

The following code shows how to rewrite the filtering example by creating an object that

implements ApplePredicate using an anonymous class:

Anonymous classes are often used in the context of GUI applications to create event-handler

objects (here using the JavaFX API, a modern UI platform for Java):

button.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent event) {

System.out.println("Woooo a click!!");

}

});

But anonymous classes are still not good enough. First, they tend to be very bulky because they

take a lot of space, as shown in the highlighted code here using the same two examples used

previously:

Second, many programmers find them confusing to use. For example, Quiz 2.2 shows a classic

Java puzzler that catches most programmers off guard! Try your hand at it.

Quiz 2.2: Anonymous class puzzler

What will the output be when this code is executed: 4, 5, 6, or 42?

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

50

Answer:

The answer is 5, because this refers to the enclosing Runnable, not the enclosing class

MeaningOfThis.

Verbosity in general is bad; it discourages the use of a language feature because it takes a long

time to write and maintain verbose code, and it’s not pleasant to read! Good code should be easy

to comprehend at a glance. Even though anonymous classes somewhat tackle the verbosity

associated with declaring multiple concrete classes for an interface, they’re still unsatisfactory.

In the context of passing a simple piece of code (for example, a boolean expression representing

a selection criterion), you still have to create an object and explicitly implement a method to

define a new behavior (for example, the method test for Predicate or the method handle for

EventHandler).

Ideally we’d like to encourage programmers to use the behavior parameterization pattern,

because as you’ve just seen, it makes your code more adaptive to requirement changes. In

chapter 3 you’ll see that the Java 8 language designers solved this problem by introducing

lambda expressions, a more concise way to pass code. Enough suspense; here’s a short preview

of how lambda expressions can help you in your quest for clean code.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

51

2.3.3. Sixth attempt: using a lambda expression

The previous code can be rewritten as follows in Java 8 using a lambda expression:

List<Apple> result =

filterApples(inventory, (Apple apple) -> "red".equals(apple.getColor()));

You have to admit this code looks a lot cleaner than our previous attempts! It’s great because it’s

starting to look a lot closer to the problem statement. We’ve now tackled the verbosity issue.

Figure 2.4 summarizes our journey so far.

Figure 2.4. Behavior parameterization vs. value parameterization

2.3.4. Seventh attempt: abstracting over List type

There’s one more step that you can do in your journey toward abstraction. At the moment, the

filterApples method works only for Apple. But you can also abstract on the List type to go

beyond the problem domain you’re thinking of right now:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

52

You can now use the method filter with a List of bananas, oranges, Integers, or Strings! Here’s

an example, using lambda expressions:

List<Apple> redApples =

filter(inventory, (Apple apple) -> "red".equals(apple.getColor()));

List<String> evenNumbers =

filter(numbers, (Integer i) -> i % 2 == 0);

Isn’t it cool? You’ve managed to find the sweet spot between flexibility and conciseness, which

wasn’t possible prior to Java 8!

2.4. Real-world examples

You’ve now seen that behavior parameterization is a useful pattern to easily adapt to changing

requirements. This pattern lets you encapsulate a behavior (a piece of code) and parameterize

the behavior of methods by passing and using these behaviors you create (for example, different

predicates for an Apple). We mentioned earlier that this approach is similar to the strategy

design pattern. You may have already used this pattern in practice. Many methods in the Java

API can be parameterized with different behaviors. These methods are often used together with

anonymous classes. We show three examples, which should solidify the idea of passing code for

you: sorting with a Comparator, executing a block of code with Runnable, and GUI event

handling.

2.4.1. Sorting with a Comparator

Sorting a collection is a recurring programming task. For example, say your farmer wants you to

sort the inventory of apples based on their weight. Or perhaps he changes his mind and wants

53

you to sort the apples by color. Sound familiar? Yes, you need a way to represent and use

different sorting behaviors to easily adapt to changing requirements.

In Java 8, a List comes with a sort method (you could also use Collections .sort). The behavior of

sort can be parameterized using a java.util.Comparator object, which has the following interface:

// java.util.Comparator

public interface Comparator<T> {

public int compare(T o1, T o2);

}

You can therefore create different behaviors for the sort method by creating an ad hoc

implementation of Comparator. For example, you can use it to sort the inventory by increasing

weight using an anonymous class:

inventory.sort(new Comparator<Apple>() {

public int compare(Apple a1, Apple a2){

return a1.getWeight().compareTo(a2.getWeight());

}

});

If the farmer changes his mind about how to sort apples, you can create an ad hoc Comparator

to match the new requirement and pass it to the sort method! The internal details of how to sort

are abstracted away. With a lambda expression it would look like this:

inventory.sort(

(Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight()));

Again, don’t worry about this new syntax for now; the next chapter covers in detail how to write

and use lambda expressions.

2.4.2. Executing a block of code with Runnable

Threads are like a lightweight process: they execute a block of code on their own. But how can

you tell a thread what block of code to run? Several threads may run different code. What you

need is a way to represent a piece of code to be executed later. In Java, you can use the Runnable

interface to represent a block of code to be executed; note that the code will return no result

(that is, void):

// java.lang.Runnable

54

public interface Runnable{

public void run();

}

You can use this interface to create threads with different behaviors as follows:

Thread t = new Thread(new Runnable() {

public void run(){

System.out.println("Hello world");

}

});

With a lambda expression it would look like this:

Thread t = new Thread(() -> System.out.println("Hello world"));

2.4.3. GUI event handling

A typical pattern in GUI programming is to perform an action in response to a certain event

such as clicking or hovering over text. For example, if the user clicks the Send button, you may

wish to display a popup or perhaps log the action in a file. Again, you need a way to cope with

changes; you should be able to perform any response. In JavaFX you can use an EventHandler

to represent a response to an event by passing it to setOnAction:

Button button = new Button("Send");

button.setOnAction(new EventHandler<ActionEvent>() {

public void handle(ActionEvent event) {

label.setText("Sent!!");

}

});

Here, the behavior of the setOnAction method is parameterized with EventHandler objects.

With a lambda expression it would look like this:

button.setOnAction((ActionEvent event) -> label.setText("Sent!!"));

2.5. Summary

Following are the key concepts you should take away from this chapter:

55

 Behavior parameterization is the ability for a method to take multiple different behaviors as

parameters and use them internally to accomplish different behaviors.

 Behavior parameterization lets you make your code more adaptive to changing requirements and

saves on engineering efforts in the future.

 Passing code is a way to give new behaviors as arguments to a method. But it’s verbose prior to Java 8.

Anonymous classes helped a bit before Java 8 to get rid of the verbosity associated with declaring

multiple concrete classes for an interface that are needed only once.

 The Java API contains many methods that can be parameterized with different behaviors, which

include sorting, threads, and GUI handling.

56

Chapter 3. Lambda expressions

This chapter covers

 Lambdas in a nutshell

 Where and how to use lambdas

 The execute around pattern

 Functional interfaces, type inference

 Method references

 Composing lambdas

In the previous chapter, you saw that passing code with behavior parameterization is useful for

coping with frequent requirement changes in your code. It lets you define a block of code that

represents a behavior and then pass it around. You can decide to run that block of code when a

certain event happens (for example, a click on a button) or at certain points in an algorithm (for

example, a predicate such as “only apples heavier than 150 g” in the filtering algorithm or the

customized comparison operation in sorting). In general, using this concept you can write code

that’s more flexible and reusable.

But you saw that using anonymous classes to represent different behaviors is unsatisfying: it’s

verbose, which doesn’t encourage programmers to use behavior parameterization in practice. In

this chapter, we teach you about a new feature in Java 8 that tackles this problem: lambda

expressions, which let you represent a behavior or pass code in a concise way. For now you can

think of lambda expressions as anonymous functions, basically methods without declared

names, but which can also be passed as arguments to a method as you can with an anonymous

class.

We show how to construct them, where to use them, and how you can make your code more

concise by using them. We also explain some new goodies such as type inference and new

important interfaces available in the Java 8 API. Finally, we introduce method references, a

useful new feature that goes hand in hand with lambda expressions.

This chapter is organized in such a way as to teach you step by step how to write more concise

and flexible code. At the end of this chapter, we bring together all the concepts taught into a

concrete example: we take the sorting example shown in chapter 2 and gradually improve it

using lambda expressions and method references to make it more concise and readable. This

chapter is important in itself and also because you’ll use lambdas extensively throughout the

book.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

57

3.1. Lambdas in a nutshell

A lambda expression can be understood as a concise representation of an anonymous function

that can be passed around: it doesn’t have a name, but it has a list of parameters, a body, a

return type, and also possibly a list of exceptions that can be thrown. That’s one big definition;

let’s break it down:

 Anonymous— We say anonymous because it doesn’t have an explicit name like a method would

normally have: less to write and think about!

 Function—We say function because a lambda isn’t associated with a particular class like a method is.

But like a method, a lambda has a list of parameters, a body, a return type, and a possible list of

exceptions that can be thrown.

 Passed around— A lambda expression can be passed as argument to a method or stored in a

variable.

 Concise— You don’t need to write a lot of boilerplate like you do for anonymous classes.

If you’re wondering where the term lambda comes from, it originates from a system developed

in academia called lambda calculus, which is used to describe computations.

Why should you care about lambda expressions? You saw in the previous chapter that passing

code is currently tedious and verbose in Java. Well, good news! Lambdas fix this problem: they

let you pass code in a concise way. Lambdas technically don’t let you do anything that you

couldn’t do prior to Java 8. But you no longer have to write clumsy code using anonymous

classes to benefit from behavior parameterization! Lambda expressions will encourage you to

adopt the style of behavior parameterization that we described in the previous chapter. The net

result is that your code will be clearer and more flexible. For example, using a lambda

expression you can create a custom Comparator object in a more concise way.

Before:

Comparator<Apple> byWeight = new Comparator<Apple>() {

public int compare(Apple a1, Apple a2){

return a1.getWeight().compareTo(a2.getWeight());

}

};

After (with lambda expressions):

Comparator<Apple> byWeight =

(Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight());

58

You must admit that the code looks clearer! Don’t worry if all the parts of the lambda expression

don’t make sense yet; we explain all the pieces soon. For now, note that you’re literally passing

only the code that’s really needed to compare two apples using their weight. It looks like you’re

just passing the body of the method compare. You’ll learn soon that you can simplify your code

even more. We explain in the next section exactly where and how you can use lambda

expressions.

The lambda we just showed you has three parts, as shown in figure 3.1:

Figure 3.1. A lambda expression is composed of parameters, an arrow,

and a body.

 A list of parameters— In this case it mirrors the parameters of the compare method of a

Comparator—two Apples.

 An arrow— The arrow -> separates the list of parameters from the body of the lambda.

 The body of the lambda— Compare two Apples using their weights. The expression is considered

the lambda’s return value.

To illustrate further, the following listing shows five examples of valid lambda expressions in

Java 8.

Listing 3.1. Valid lambda expressions in Java 8

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

59

This syntax was chosen by the Java language designers because it was well received in other

languages such as C# and Scala, which have a similar feature. The basic syntax of a lambda is

either

(parameters) -> expression

or (note the curly braces for statements)

(parameters) -> { statements; }

As you can see, lambda expressions follow a simple syntax. Working through Quiz 3.1 should let

you know if you understand the pattern.

Quiz 3.1: Lambda syntax

Based on the syntax rules just shown, which of the following are not valid lambda expressions?

1. () -> {}

2. () -> "Raoul"

3. () -> {return "Mario";}

4. (Integer i) -> return "Alan" + i;

5. (String s) -> {"Iron Man";}

Answer:

Only 4 and 5 are invalid lambdas.

1. This lambda has no parameters and returns void. It’s similar to a method with an empty body:

public void run() { }.

2. This lambda has no parameters and returns a String as an expression.

3. This lambda has no parameters and returns a String (using an explicit return statement).

4. return is a control-flow statement. To make this lambda valid, curly braces are required as

follows: (Integer i) -> {return "Alan" + i;}.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

60

5. “Iron Man” is an expression, not a statement. To make this lambda valid, you can remove the

curly braces and semicolon as follows: (String s) -> "Iron Man". Or if you prefer, you can use an

explicit return statement as follows: (String s) -> {return "Iron Man";}.

Table 3.1 provides a list of example lambdas with examples of use cases.

Table 3.1. Examples of lambdas

Use case Examples of lambdas

A boolean expression (List<String> list) -> list.isEmpty()

Creating objects () -> new Apple(10)

Consuming from an object (Apple a) -> {

System.out.println(a.getWeight());

}

Select/extract from an object (String s) -> s.length()

Combine two values (int a, int b) -> a * b

Compare two objects (Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight())

3.2. Where and how to use lambdas

You may now be wondering where you’re allowed to use lambda expressions. In the previous

example, you assigned a lambda to a variable of type Comparator<Apple>. You could also use

another lambda with the filter method you implemented in the previous chapter:

List<Apple> greenApples =

filter(inventory, (Apple a) -> "green".equals(a.getColor()));

So where exactly can you use lambdas? You can use a lambda expression in the context of a

functional interface. In the code shown here, you can pass a lambda as second argument to the

method filter because it expects a Predicate<T>, which is a functional interface. Don’t worry if

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

61

this sounds abstract; we now explain in detail what this means and what a functional interface

is.

3.2.1. Functional interface

Remember the interface Predicate<T> you created in chapter 2 so you could parameterize the

behavior of the filter method? It’s a functional interface! Why? Because Predicate specifies only

one abstract method:

public interface Predicate<T>{

boolean test (T t);

}

In a nutshell, a functional interface is an interface that specifies exactly one abstract method.

You already know several other functional interfaces in the Java API such as Comparator and

Runnable, which we explored in chapter 2:

Note

You’ll see in chapter 9 that interfaces can now also have default methods (that is, a method with

a body that provides some default implementation for a method in case it isn’t implemented by a

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

62

class). An interface is still a functional interface if it has many default methods as long as it

specifies only one abstract method.

To check your understanding, Quiz 3.2 should let you know if you grasp the concept of a

functional interface.

Quiz 3.2: Functional interface

Which of these interfaces are functional interfaces?

public interface Adder{

int add(int a, int b);

}

public interface SmartAdder extends Adder{

int add(double a, double b);

}

public interface Nothing{

}

Answer:

Only Adder is a functional interface.

SmartAdder isn’t a functional interface because it specifies two abstract methods called add (one

is inherited from Adder).

Nothing isn’t a functional interface because it declares no abstract method at all.

What can you do with functional interfaces? Lambda expressions let you provide the

implementation of the abstract method of a functional interface directly inline and treat the

whole expression as an instance of a functional interface (more technically speaking, an

instance of a concrete implementation of the functional interface). You can achieve the same

thing with an anonymous inner class, although it’s clumsier: you provide an implementation

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

63

and instantiate it directly inline. The following code is valid because Runnable is a functional

interface defining only one abstract method, run:

3.2.2. Function descriptor

The signature of the abstract method of the functional interface essentially describes the

signature of the lambda expression. We call this abstract method a function descriptor. For

example, the Runnable interface can be viewed as the signature of a function that accepts

nothing and returns nothing (void) because it has only one abstract method called run, which

accepts nothing and returns nothing (void).[1]

1 Some languages such as Scala provide explicit type annotations in their type system to describe

the type of a function (called function types). Java reuses existing nominal types provided by

functional interfaces and maps them into a form of function types behind the scenes.

We use a special notation throughout the chapter to describe the signatures of lambdas and

functional interfaces. The notation () -> void represents a function with an empty list of

parameters returning void. This is exactly what the Runnable interface represents. As another

example, (Apple, Apple) -> int denotes a function taking two Apples as parameters and

returning an int. We’ll provide more information about function descriptors in section 3.4 and

table 3.2 later in the chapter.

Table 3.2. Common functional interfaces in Java 8

Functional

interface

Function

descriptor

Primitive specializations

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

64

Functional

interface

Function

descriptor

Primitive specializations

Predicate<T> T -> boolean IntPredicate, LongPredicate, DoublePredicate

Consumer<T> T -> void IntConsumer, LongConsumer, DoubleConsumer

Function<T, R> T -> R IntFunction<R>, IntToDoubleFunction, IntToLongFunction,

LongFunction<R>, LongToDoubleFunction,

LongToIntFunction, DoubleFunction<R>, ToIntFunction<T>,

ToDoubleFunction<T>, ToLongFunction<T>

Supplier<T> () -> T BooleanSupplier, IntSupplier, LongSupplier, DoubleSupplier

UnaryOperator<T> T -> T IntUnaryOperator, LongUnaryOperator, DoubleUnaryOperator

BinaryOperator<T> (T, T) -> T IntBinaryOperator, LongBinaryOperator, DoubleBinaryOperator

BiPredicate<L, R> (L, R) ->

boolean

BiConsumer<T, U> (T, U) -> void ObjIntConsumer<T>, ObjLongConsumer<T>,

ObjDoubleConsumer<T>

BiFunction<T, U, R> (T, U) -> R ToIntBiFunction<T, U>, ToLongBiFunction<T, U>,

ToDoubleBiFunction<T, U>

You may already be wondering how lambda expressions are type checked. We detail how the

compiler checks whether a lambda is valid in a given context in section 3.5. For now, it suffices

to understand that a lambda expression can be assigned to a variable or passed to a method

expecting a functional interface as argument, provided the lambda expression has the same

signature as the abstract method of the functional interface. For instance, in our earlier example,

you could pass a lambda directly to the process method as follows:

public void process(Runnable r){

r.run();

}

process(() -> System.out.println("This is awesome!!"));

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

65

This code when executed will print “This is awesome!!” The lambda expression () ->

System.out.println("This is awesome!!") takes no parameters and returns void. This is exactly

the signature of the run method defined in the Runnable interface.

You may be wondering, “Why can we pass a lambda only where a functional interface is

expected?” The language designers considered alternative approaches such as adding function

types (a bit like the special notation we introduced to describe the signature of lambda

expressions—we revisit this topic in chapters 15 and 16) to Java. But they chose this way because

it fits naturally without increasing the complexity of the language. In addition, most Java

programmers are already familiar with the idea of an interface with a single abstract method

(for example, with event handling). Try Quiz 3.3 to test your knowledge of where lambdas can be

used.

Quiz 3.3: Where can you use lambdas?

Which of the following are valid uses of lambda expressions?

1.

execute(() -> {});

public void execute(Runnable r){

r.run();

}

2.

public Callable<String> fetch() {

return () -> "Tricky example ;-)";

}

3. Predicate<Apple> p = (Apple a) -> a.getWeight();

Answer:

Only 1 and 2 are valid.

The first example is valid because the lambda () -> {} has the signature () -> void, which

matches the signature of the abstract method run defined in Runnable. Note that running this

code will do nothing because the body of the lambda is empty!

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

66

The second example is also valid. Indeed, the return type of the method fetch is

Callable<String>. Callable<String> essentially defines a method with the signature () -> String

when T is replaced with String. Because the lambda () -> "Tricky example ;-)" has the signature ()

-> String, the lambda can be used in this context.

The third example is invalid because the lambda expression (Apple a) -> a.getWeight() has the

signature (Apple) -> Integer, which is different than the signature of the method test defined in

Predicate<Apple>: (Apple) -> boolean.

What about @FunctionalInterface?

If you explore the new Java API, you’ll notice that functional interfaces are annotated with

@FunctionalInterface (we show an extensive list in section 3.4, where we explore functional

interfaces in depth). This annotation is used to indicate that the interface is intended to be a

functional interface. The compiler will return a meaningful error if you define an interface using

the @FunctionalInterface annotation and it isn’t a functional interface. For example, an error

message could be “Multiple non-overriding abstract methods found in interface Foo” to indicate

that more than one abstract method is available. Note that the @FunctionalInterface annotation

isn’t mandatory, but it’s good practice to use it when an interface is designed for that purpose.

You can think of it like the @Override notation to indicate that a method is overridden.

3.3. Putting lambdas into practice: the execute around pattern

Let’s look at an example of how lambdas, together with behavior parameterization, can be used

in practice to make your code more flexible and concise. A recurrent pattern in resource

processing (for example, dealing with files or databases) is to open a resource, do some

processing on it, and then close the resource. The setup and cleanup phases are always similar

and surround the important code doing the processing. This is called the execute around pattern,

as illustrated in figure 3.2. For example, in the following code, the highlighted lines show the

boilerplate code required to read one line from a file (note also that you use Java 7’s

try-with-resources statement, which already simplifies the code, because you don’t have to close

the resource explicitly):

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

67

Figure 3.2. Tasks A and B are surrounded by the same redundant code

responsible for preparation/cleanup.

3.3.1. Step 1: Remember behavior parameterization

This current code is limited. You can read only the first line of the file. What if you’d like to

return the first two lines instead or even the word used most frequently? Ideally, you’d like to

reuse the code doing setup and cleanup and tell the processFile method to perform different

actions on the file. Does this sound familiar? Yes, you need to parameterize the behavior of

processFile. You need a way to pass behavior to processFile so it can execute different behaviors

using a BufferedReader.

Passing behavior is exactly what lambdas are for. So what should the new processFile method

look like if you wanted to read two lines at once? You basically need a lambda that takes a

BufferedReader and returns a String. For example, here’s how to print two lines of a

BufferedReader:

String result = processFile((BufferedReader br) ->

br.readLine() + br.readLine());

68

3.3.2. Step 2: Use a functional interface to pass behaviors

We explained earlier that lambdas can be used only in the context of a functional interface. You

need to create one that matches the signature BufferedReader -> String and that may throw an

IOException. Let’s call this interface BufferedReaderProcessor:

@FunctionalInterface

public interface BufferedReaderProcessor {

String process(BufferedReader b) throws IOException;

}

You can now use this interface as the argument to your new processFile method:

public static String processFile(BufferedReaderProcessor p) throws IOException {

...

}

3.3.3. Step 3: Execute a behavior!

Any lambdas of the form BufferedReader -> String can be passed as arguments, because they

match the signature of the process method defined in the Buffered-ReaderProcessor interface.

You now need only a way to execute the code represented by the lambda inside the body of

processFile. Remember, lambda expressions let you provide the implementation of the abstract

method of a functional interface directly inline, and they treat the whole expression as an

instance of a functional interface. You can therefore call the method process on the resulting

BufferedReaderProcessor object inside the processFile body to perform the processing:

3.3.4. Step 4: Pass lambdas

You can now reuse the processFile method and process files in different ways by passing

different lambdas.

69

Processing one line:

String oneLine =

processFile((BufferedReader br) -> br.readLine());

Processing two lines:

String twoLines =

processFile((BufferedReader br) -> br.readLine() + br.readLine());

Figure 3.3 summarizes the four steps taken to make the processFile method more flexible.

Figure 3.3. Four-step process to apply the execute around pattern

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

70

So far, we’ve showed how you can make use of functional interfaces to pass lambdas. But you

had to define your own interfaces. In the next section we explore new interfaces that were added

to Java 8 that you can reuse to pass multiple different lambdas.

3.4. Using functional interfaces

As you learned in section 3.2.1, a functional interface specifies exactly one abstract method.

Functional interfaces are useful because the signature of the abstract method can describe the

signature of a lambda expression. The signature of the abstract method of a functional interface

is called a function descriptor. So in order to use different lambda expressions, you need a set of

functional interfaces that can describe common function descriptors. There are several

functional interfaces already available in the Java API such as Comparable, Runnable, and

Callable, which you saw in section 3.2.

The Java library designers for Java 8 have helped you by introducing several new functional

interfaces inside the java.util.function package. We describe the interfaces Predicate, Consumer,

and Function next, and a more complete list is available in table 3.2 at the end of this section.

3.4.1. Predicate

The java.util.function.Predicate<T> interface defines an abstract method named test that

accepts an object of generic type T and returns a boolean. It’s exactly the same one that you

created earlier, but is available out of the box! You might want to use this interface when you

need to represent a boolean expression that uses an object of type T. For example, you can

define a lambda that accepts String objects, as shown in the following listing.

Listing 3.2. Working with a Predicate

@FunctionalInterface

public interface Predicate<T>{

boolean test(T t);

}

public static <T> List<T> filter(List<T> list, Predicate<T> p) {

List<T> results = new ArrayList<>();

for(T s: list){

if(p.test(s)){

results.add(s);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

71

}

}

return results;

}

Predicate<String> nonEmptyStringPredicate = (String s) -> !s.isEmpty();

List<String> nonEmpty = filter(listOfStrings, nonEmptyStringPredicate);

If you look up the Javadoc specification of the Predicate interface, you may notice additional

methods such as and and or. Don’t worry about them for now. We come back to these in section

3.8.

3.4.2. Consumer

The java.util.function.Consumer<T> interface defines an abstract method named accept that

takes an object of generic type T and returns no result (void). You might use this interface when

you need to access an object of type T and perform some operations on it. For example, you can

use it to create a method forEach, which takes a list of Integers and applies an operation on each

element of that list. In the following listing you use this forEach method combined with a

lambda to print all the elements of the list.

Listing 3.3. Working with a Consumer

3.4.3. Function

The java.util.function.Function<T, R> interface defines an abstract method named apply that

takes an object of generic type T as input and returns an object of generic type R. You might use

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

72

this interface when you need to define a lambda that maps information from an input object to

an output (for example, extracting the weight of an apple or mapping a string to its length). In

the listing that follows we show how you can use it to create a method map to transform a list of

Strings into a list of Integers containing the length of each String.

Listing 3.4. Working with a Function

Primitive specializations

We described three functional interfaces that are generic: Predicate<T>, Consumer<T>, and

Function<T, R>. There are also functional interfaces that are specialized with certain types.

To refresh a little: every Java type is either a reference type (for example, Byte, Integer, Object,

List) or a primitive type (for example, int, double, byte, char). But generic parameters (for

example, the T in Consumer<T>) can be bound only to reference types. This is due to how

generics are internally implemented.[2] As a result, in Java there’s a mechanism to convert a

primitive type into a corresponding reference type. This mechanism is called boxing. The

opposite approach (that is, converting a reference type into a corresponding primitive type) is

called unboxing. Java also has an autoboxing mechanism to facilitate the task for programmers:

boxing and unboxing operations are done automatically. For example, this is why the following

code is valid (an int gets boxed to an Integer):

2 Some other languages such as C# don’t have this restriction. Other languages such as Scala

have only reference types. We revisit this issue in chapter 16.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

73

List<Integer> list = new ArrayList<>();

for (int i = 300; i < 400; i++){

list.add(i);

}

But this comes with a performance cost. Boxed values are essentially a wrapper around

primitive types and are stored on the heap. Therefore, boxed values use more memory and

require additional memory lookups to fetch the wrapped primitive value.

Java 8 brings a specialized version of the functional interfaces we described earlier in order to

avoid autoboxing operations when the inputs or outputs are primitives. For example, in the

following code, using an IntPredicate avoids a boxing operation of the value 1000, whereas

using a Predicate<Integer> would box the argument 1000 to an Integer object:

In general, the names of functional interfaces that have a specialization for the input type

parameter are preceded by the appropriate primitive type, for example, DoublePredicate,

IntConsumer, LongBinaryOperator, IntFunction, and so on. The Function interface has also

variants for the output type parameter: ToIntFunction<T>, IntTo-DoubleFunction, and so on.

Table 3.2 gives a summary of the most commonly used functional interfaces available in the

Java API and their function descriptors. Keep in mind that they’re only a starter kit. You can

always make your own if needed! Remember, the notation (T, U) -> R shows how to think about

a function descriptor. The left side of the table is a list representing the types of the arguments.

In this case it represents a function with two arguments of respectively generic type T and U and

that has a return type of R.

You’ve now seen a lot of functional interfaces that can be used to describe the signature of

various lambda expressions. To check your understanding so far, have a go at Quiz 3.4.

Quiz 3.4: Functional interfaces

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

74

What functional interfaces would you use for the following function descriptors (that is,

signatures of a lambda expression)? You’ll find most of the answers in table 3.2. As a further

exercise, come up with valid lambda expressions that you can use with these functional

interfaces.

1. T -> R

2. (int, int) -> int

3. T -> void

4. () -> T

5. (T, U) -> R

Answers:

1. Function<T, R> is a good candidate. It’s typically used for converting an object of type T into

an object of type R (for example, Function<Apple, Integer> to extract the weight of an apple).

2. IntBinaryOperator has a single abstract method called applyAsInt representing a function

descriptor (int, int) -> int.

3. Consumer<T> has a single abstract method called accept representing a function descriptor

T -> void.

4. Supplier<T> has a single abstract method called get representing a function descriptor () ->

T. Alternatively, Callable<T> also has a single abstract method called call representing a

function descriptor () -> T.

5. BiFunction<T, U, R> has a single abstract method called apply representing a function

descriptor (T, U) -> R.

To summarize the discussion about functional interfaces and lambdas, table 3.3 provides a

summary of use cases, examples of lambdas, and functional interfaces that can be used.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

75

Table 3.3. Examples of lambdas with functional interfaces

Use case Example of lambda Matching functional interface

A boolean

expression

(List<String> list) -> list.isEmpty() Predicate<List<String>>

Creating objects () -> new Apple(10) Supplier<Apple>

Consuming from

an object

(Apple a) ->

System.out.println(a.getWeight())

Consumer<Apple>

Select/extract

from an object

(String s) -> s.length() Function<String, Integer> or

ToIntFunction<String>

Combine two

values

(int a, int b) -> a * b IntBinaryOperator

Compare two

objects

(Apple a1, Apple a2) ->

a1.getWeight().compareTo

(a2.getWeight())

Comparator<Apple> or

BiFunction<Apple, Apple, Integer> or

ToIntBiFunction<Apple, Apple>

What about exceptions, lambdas, and functional interfaces?

Note that none of the functional interfaces allow for a checked exception to be thrown. You have

two options if you need a lambda expression to throw an exception: define your own functional

interface that declares the checked exception, or wrap the lambda with a try/catch block.

For example, in section 3.3 we introduced a new functional interface Buffered-ReaderProcessor

that explicitly declared an IOException:

@FunctionalInterface

public interface BufferedReaderProcessor {

String process(BufferedReader b) throws IOException;

}

BufferedReaderProcessor p = (BufferedReader br) -> br.readLine();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

76

But you may be using an API that expects a functional interface such as Function<T, R> and

there’s no option to create your own (you’ll see in the next chapter that the Streams API makes

heavy use of the functional interfaces from table 3.2). In this case you can explicitly catch the

checked exception:

Function<BufferedReader, String> f =

(BufferedReader b) -> {

try {

return b.readLine();

}

catch(IOException e) {

throw new RuntimeException(e);

}

};

You’ve now seen how to create lambdas and where and how to use them. Next, we explain some

more advanced details: how lambdas are type checked by the compiler and rules you should be

aware of, such as lambdas referencing local variables inside their body and void-compatible

lambdas. There’s no need to fully understand the next section right away, and you may wish to

come back to it later and move on to section 3.6 about method references.

3.5. Type checking, type inference, and restrictions

When we first mentioned lambda expressions, we said that they let you generate an instance of a

functional interface. Nonetheless, a lambda expression itself doesn’t contain the information

about which functional interface it’s implementing. In order to have a more formal

understanding of lambda expressions, you should know what the actual type of a lambda is.

3.5.1. Type checking

The type of a lambda is deduced from the context in which the lambda is used. The type

expected for the lambda expression inside the context (for example, a method parameter that

it’s passed to or a local variable that it’s assigned to) is called the target type. Let’s look at an

example to see what happens behind the scenes when you use a lambda expression. Figure 3.4

summarizes the type-checking process for the following code:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

77

Figure 3.4. Deconstructing the type-checking process of a lambda

expression

List<Apple> heavierThan150g =

filter(inventory, (Apple a) -> a.getWeight() > 150);

The type-checking process is deconstructed as follows:

 First, you look up the declaration of the filtermethod.

 Second, it expects as the second formal parameter an object of type Predicate-<Apple> (the target

type).

 Third, Predicate<Apple> is a functional interface defining a single abstract method called test.

 Fourth, the method test describes a function descriptor that accepts an Apple and returns a

boolean.

78

 Finally, any actual argument to the filtermethod needs to match this requirement.

The code is valid because the lambda expression that we’re passing also takes an Apple as

parameter and returns a boolean. Note that if the lambda expression were throwing an

exception, then the declared throws clause of the abstract method would also have to match.

3.5.2. Same lambda, different functional interfaces

Because of the idea of target typing, the same lambda expression can be associated with

different functional interfaces if they have a compatible abstract method signature. For example,

both interfaces Callable and PrivilegedAction described earlier represent functions that accept

nothing and return a generic type T. The following two assignments are therefore valid:

Callable<Integer> c = () -> 42;

PrivilegedAction<Integer> p = () -> 42;

In this case the first assignment has target type Callable<Integer> and the second assignment

has target type PrivilegedAction<Integer>.

In table 3.3 we showed a similar example; the same lambda can be used with multiple different

functional interfaces:

Comparator<Apple> c1 =

(Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight());

ToIntBiFunction<Apple, Apple> c2 =

(Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight());

BiFunction<Apple, Apple, Integer> c3 =

(Apple a1, Apple a2) -> a1.getWeight().compareTo(a2.getWeight());

Diamond operator

Those of you who are familiar with Java’s evolution will recall that Java 7 had already

introduced the idea of types being inferred from context with generic inference using the

diamond operator (<>) (this idea can be found even earlier with generic methods). A given class

instance expression can appear in two or more different contexts, and the appropriate type

argument will be inferred as exemplified here:

List<String> listOfStrings = new ArrayList<>();

List<Integer> listOfIntegers = new ArrayList<>();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

79

Special void-compatibility rule

If a lambda has a statement expression as its body, it’s compatible with a function descriptor

that returns void (provided the parameter list is compatible too). For example, both of the

following lines are legal even though the method add of a List returns a boolean and not void as

expected in the Consumer context (T -> void):

// Predicate has a boolean return

Predicate<String> p = s -> list.add(s);

// Consumer has a void return

Consumer<String> b = s -> list.add(s);

By now you should have a good understanding of when and where you’re allowed to use lambda

expressions. They can get their target type from an assignment context, method invocation

context (parameters and return), and a cast context. To check your knowledge, try Quiz 3.5.

Quiz 3.5: Type checking–why won’t the following code compile?

How could you fix the problem?

Object o = () -> {System.out.println("Tricky example"); };

Answer:

The context of the lambda expression is Object (the target type). But Object isn’t a functional

interface. To fix this you can change the target type to Runnable, which represents a function

descriptor () -> void:

Runnable r = () -> {System.out.println("Tricky example"); };

You’ve seen how the target type can be used to check whether a lambda can be used in a

particular context. It can also be used to do something slightly different: infer the types of the

parameters of a lambda.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

80

3.5.3. Type inference

You can simplify your code one step further. The Java compiler deduces what functional

interface to associate with a lambda expression from its surrounding context (the target type),

meaning it can also deduce an appropriate signature for the lambda because the function

descriptor is available through the target type. The benefit is that the compiler has access to the

types of the parameters of a lambda expression, and they can be omitted in the lambda syntax.

In other words, the Java compiler infers the types of the parameters of a lambda as shown

here:[3]

3 Note that when a lambda has just one parameter whose type is inferred, the parentheses

surrounding the parameter name can also be omitted.

The benefits of code readability are more noticeable with lambda expressions that have several

parameters. For example, here’s how to create a Comparator object:

Note that sometimes it’s more readable to include the types explicitly and sometimes more

readable to exclude them. There’s no rule for which way is better; developers must make their

own choices about what makes their code more readable.

3.5.4. Using local variables

All the lambda expressions we’ve shown so far used only their arguments inside their body. But

lambda expressions are also allowed to use free variables (variables that aren’t the parameters

and defined in an outer scope) just like anonymous classes can. They’re called capturing

lambdas. For example, the following lambda captures the variable portNumber:

int portNumber = 1337;

Runnable r = () -> System.out.println(portNumber);

Nonetheless, there’s a small twist: there are some restrictions on what you can do with these

variables. Lambdas are allowed to capture (that is, to reference in their bodies) instance

variables and static variables without restrictions. But local variables have to be explicitly

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

81

declared final or are effectively final. In other words, lambda expressions can capture local

variables that are assigned to them only once. (Note: capturing an instance variable can be seen

as capturing the final local variable this.) For example, the following code doesn’t compile

because the variable portNumber is assigned to twice:

Restrictions on local variables

You may be asking yourself why local variables have these restrictions. First, there’s a key

difference in how instance and local variables are implemented behind the scenes. Instance

variables are stored on the heap, whereas local variables live on the stack. If a lambda could

access the local variable directly and the lambda were used in a thread, then the thread using the

lambda could try to access the variable after the thread that allocated the variable had

deallocated it. Hence, Java implements access to a free local variable as access to a copy of it

rather than access to the original variable. This makes no difference if the local variable is

assigned to only once—hence the restriction.

Second, this restriction also discourages typical imperative programming patterns (which, as we

explain in later chapters, prevent easy parallelization) that mutate an outer variable.

Closure

You may have heard of the term closure and may be wondering whether lambdas meet the

definition of a closure (not to be confused with the Clojure programming language). To put it

scientifically, a closure is an instance of a function that can reference nonlocal variables of that

function with no restrictions. For example, a closure could be passed as argument to another

function. It could also access and modify variables defined outside its scope. Now Java 8

lambdas and anonymous classes do something similar to closures: they can be passed as

argument to methods and can access variables outside their scope. But they have a restriction:

they can’t modify the content of local variables of a method in which the lambda is defined.

Those variables have to be implicitly final. It helps to think that lambdas close over values rather

than variables. As explained previously, this restriction exists because local variables live on the

stack and are implicitly confined to the thread they’re in. Allowing capture of mutable local

variables opens new thread-unsafe possibilities, which are undesirable (instance variables are

fine because they live on the heap, which is shared across threads).

82

We now describe another feature that you’ll see in Java 8 code: method references. Think of

them as shorthand versions of certain lambdas.

3.6. Method references

Method references let you reuse existing method definitions and pass them just like lambdas. In

some cases they appear more readable and feel more natural than using lambda expressions.

Here’s our sorting example written with a method reference and a bit of help from the updated

Java 8 API (we explore this example in more detail in section 3.7):

Before:

inventory.sort((Apple a1, Apple a2)

-> a1.getWeight().compareTo(a2.getWeight()));

After (using a method reference and java.util.Comparator.comparing):

3.6.1. In a nutshell

Why should you care about method references? Method references can be seen as shorthand for

lambdas calling only a specific method. The basic idea is that if a lambda represents “call this

method directly,” it’s best to refer to the method by name rather than by a description of how to

call it. Indeed, a method reference lets you create a lambda expression from an existing method

implementation. But by referring to a method name explicitly, your code can gain better

readability. How does it work? When you need a method reference, the target reference is

placed before the delimiter :: and the name of the method is provided after it. For example,

Apple::getWeight is a method reference to the method getWeight defined in the Apple class.

Remember that no brackets are needed because you’re not actually calling the method. The

method reference is shorthand for the lambda expression (Apple a) -> a.getWeight(). Table 3.4

gives a couple more examples of possible method references in Java 8.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

83

Table 3.4. Examples of lambdas and method reference equivalents

Lambda Method reference equivalent

(Apple a) -> a.getWeight() Apple::getWeight

() -> Thread.currentThread().dumpStack() Thread.currentThread()::dumpStack

(str, i) -> str.substring(i) String::substring

(String s) -> System.out.println(s) System.out::println

You can think of method references as syntactic sugar for lambdas that refer only to a single

method because you write less to express the same thing.

Recipe for constructing method references

There are three main kinds of method references:

1. A method reference to a static method (for example, the method parseInt of Integer, written

Integer::parseInt)

2. A method reference to an instance method of an arbitrary type (for example, the method

length of a String, written String::length)

3. A method reference to an instance method of an existing object (for example, suppose you

have a local variable expensiveTransaction that holds an object of type Transaction, which

supports an instance method getValue; you can write expensiveTransaction::getValue)

The second and third kinds of method references may be a bit overwhelming at first. The idea

with the second kind of method references such as String::length is that you’re referring to a

method to an object that will be supplied as one of the parameters of the lambda. For example,

the lambda expression (String s) -> s.toUpperCase() can be rewritten as String::toUpperCase.

But the third kind of method references refers to a situation when you’re calling a method in a

lambda to an external object that already exists. For example, the lambda expression () ->

expensiveTransaction.getValue() can be rewritten as expensiveTransaction::getValue.

The shorthand rules to refactor a lambda expression to an equivalent method reference follow

simple recipes, shown in figure 3.5.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

84

Figure 3.5. Recipes for constructing method references for three

different types of lambda expressions

Note that there are also special forms of method references for constructors, array constructors,

and super-calls. Let’s apply method references in a concrete example. Say you’d like to sort a

List of strings, ignoring case differences. The sort method on a List expects a Comparator as

parameter. You saw earlier that Comparator describes a function descriptor with the signature

(T, T) -> int. You can define a lambda expression that leverages the method

compareToIgnoreCase in the String class as follows (note that compareToIgnoreCase is

predefined in the String class):

List<String> str = Arrays.asList("a","b","A","B");

str.sort((s1, s2) -> s1.compareToIgnoreCase(s2));

The lambda expression has a signature compatible with the function descriptor of Comparator.

Using the recipes described previously, the example can also be written using a method

reference as follows:

85

List<String> str = Arrays.asList("a","b","A","B");

str.sort(String::compareToIgnoreCase);

Note that the compiler goes through a similar type-checking process as for lambda expressions

to figure out whether a method reference is valid with a given functional interface: the signature

of the method reference has to match the type of the context.

To check your understanding of method references, have a go at Quiz 3.6!

Quiz 3.6: Method references

What are equivalent method references for the following lambda expressions?

1.

Function<String, Integer> stringToInteger =

(String s) -> Integer.parseInt(s);

2.

BiPredicate<List<String>, String> contains =

(list, element) -> list.contains(element);

Answers:

1. This lambda expression forwards its argument to the static method parseInt of Integer. This

method takes a String to parse and returns an Integer. As a result, the lambda can be rewritten

using recipe from figure 3.5 (lambda expressions calling a static method) as follows:

Function<String, Integer> stringToInteger = Integer::parseInt;

2. This lambda uses its first argument to call the method contains on it. Because the first

argument is of type List, you can use recipe from figure 3.5 as follows:

BiPredicate<List<String>, String> contains = List::contains;

This is because the target type describes a function descriptor (List<String>, String) -> boolean,

and List::contains can be unpacked to that function descriptor.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

86

So far we showed only how to reuse existing method implementations and create method

references. But you can do something similar with constructors of a class.

3.6.2. Constructor references

You can create a reference to an existing constructor using its name and the keyword new as

follows: ClassName::new. It works similarly to a reference to a static method. For example,

suppose there’s a zero-argument constructor. This fits the signature () -> Apple of Supplier; you

can do the following,

which is equivalent to

If you have a constructor with signature Apple(Integer weight), it fits the signature of the

Function interface, so you can do this,

which is equivalent to

87

In the following code, each element of a List of Integers is passed to the constructor of Apple

using a similar map method we defined earlier, resulting in a List of apples with different

weights:

If you have a two-argument constructor, Apple(String color, Integer weight), it fits the signature

of the BiFunction interface, so you can do this,

which is equivalent to

The capability of referring to a constructor without instantiating it enables interesting

applications. For example, you can use a Map to associate constructors with a string value. You

can then create a method giveMeFruit that, given a String and an Integer, can create different

types of fruits with different weights:

88

To check your understanding of method and constructor references, try out Quiz 3.7.

Quiz 3.7: Constructor references

You saw how to transform zero-, one-, and two-argument constructors into constructor

references. What would you need to do in order to use a constructor reference for a

three-argument constructor such as Color(int, int, int)?

Answer:

You saw that the syntax for a constructor reference is ClassName::new, so in this case it’s

Color::new. But you need a functional interface that will match the signature of that constructor

reference. Because there isn’t one in the functional interface starter set, you can create your

own:

public interface TriFunction<T, U, V, R>{

R apply(T t, U u, V v);

}

And you can now use the constructor reference as follows:

TriFunction<Integer, Integer, Integer, Color> colorFactory = Color::new;

We’ve gone through a lot of new information: lambdas, functional interfaces, and method

references. We put it all into practice in the next section!

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

89

3.7. Putting lambdas and method references into practice!

To wrap up this chapter and all we’ve discussed on lambdas, we continue with our initial

problem of sorting a list of Apples with different ordering strategies and show how you can

progressively evolve a naïve solution into a concise solution, using all the concepts and features

explained so far in the book: behavior parameterization, anonymous classes, lambda

expressions, and method references. The final solution we work toward is this (note that all

source code is available on the book’s web page):

inventory.sort(comparing(Apple::getWeight));

3.7.1. Step 1: Pass code

You’re lucky; the Java 8 API already provides you with a sort method available on List so you

don’t have to implement it. So the hard part is done! But how can you pass an ordering strategy

to the sort method? Well, the sort method has the following signature:

void sort(Comparator<? super E> c)

It expects a Comparator object as argument to compare two Apples! This is how you can pass

different strategies in Java: they have to be wrapped in an object. We say that the behavior of

sort is parameterized: its behavior will be different based on different ordering strategies passed

to it.

Your first solution looks like this:

public class AppleComparator implements Comparator<Apple> {

public int compare(Apple a1, Apple a2){

return a1.getWeight().compareTo(a2.getWeight());

}

}

inventory.sort(new AppleComparator());

3.7.2. Step 2: Use an anonymous class

Rather than implementing Comparator for the purpose of instantiating it once, you saw that you

could use an anonymous class to improve your solution:

90

inventory.sort(new Comparator<Apple>() {

public int compare(Apple a1, Apple a2){

return a1.getWeight().compareTo(a2.getWeight());

}

});

3.7.3. Step 3: Use lambda expressions

But your current solution is still verbose. Java 8 introduces lambda expressions, which provide a

lightweight syntax to achieve the same goal: passing code. You saw that a lambda expression

can be used where a functional interface is expected. As a reminder, a functional interface is an

interface defining only one abstract method. The signature of the abstract method (called

function descriptor) can describe the signature of a lambda expression. In this case, the

Comparator represents a function descriptor (T, T) -> int. Because you’re using apples, it

represents more specifically (Apple, Apple) -> int. Your new improved solution looks therefore

as follows:

inventory.sort((Apple a1, Apple a2)

-> a1.getWeight().compareTo(a2.getWeight())

);

We explained that the Java compiler could infer the types of the parameters of a lambda

expression by using the context in which the lambda appears. So you can rewrite your solution

like this:

inventory.sort((a1, a2) -> a1.getWeight().compareTo(a2.getWeight()));

Can you make your code even more readable? Comparator has a static helper method called

comparing that takes a Function extracting a Comparable key and produces a Comparator

object (we explain why interfaces can have static methods in chapter 9). It can be used as follows

(note that you now pass a lambda with only one argument: the lambda specifies how to extract

the key to compare with from an apple):

Comparator<Apple> c = Comparator.comparing((Apple a) -> a.getWeight());

You can now rewrite your solution in a slightly more compact form:

import static java.util.Comparator.comparing;

inventory.sort(comparing((a) -> a.getWeight()));

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

91

3.7.4. Step 4: Use method references

We explained that method references are syntactic sugar for lambda expressions that forwards

their arguments. You can use a method reference to make your code slightly less verbose

(assuming a static import of java.util.Comparator.comparing):

inventory.sort(comparing(Apple::getWeight));

Congratulations, this is your final solution! Why is this better than code prior to Java 8? It’s not

just because it’s shorter; it’s also obvious what it means, and the code reads like the problem

statement “sort inventory comparing the weight of the apples.”

3.8. Useful methods to compose lambda expressions

Several functional interfaces in the Java 8 API contain convenient methods. Specifically, many

functional interfaces such as Comparator, Function, and Predicate that are used to pass lambda

expressions provide methods that allow composition. What does this mean? In practice it means

you can combine several simple lambda expressions to build more complicated ones. For

example, you can combine two predicates into a larger predicate that performs an or operation

between the two predicates. Moreover, you can also compose functions such that the result of

one becomes the input of another function. You may wonder how it’s possible that there are

additional methods in a functional interface. (After all, this goes against the definition of a

functional interface!) The trick is that the methods that we’ll introduce are called default

methods (that is, they’re not abstract methods). We explain them in detail in chapter 9. For now,

just trust us and read chapter 9 later when you want to find out more about default methods and

what you can do with them.

3.8.1. Composing Comparators

You’ve seen that you can use the static method Comparator.comparing to return a Comparator

based on a Function that extracts a key for comparison as follows:

Comparator<Apple> c = Comparator.comparing(Apple::getWeight);

Reversed order

What if you wanted to sort the apples by decreasing weight? There’s no need to create a different

instance of a Comparator. The interface includes a default method reverse that imposes the

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

92

reverse ordering of a given comparator. So you can simply modify the previous example to sort

the apples by decreasing weight by reusing the initial Comparator:

Chaining Comparators

This is all nice, but what if you find two apples that have the same weight? Which apple should

have priority in the sorted list? You may want to provide a second Comparator to further refine

the comparison. For example, after two apples are compared based on their weight, you may

want to sort them by country of origin. The thenComparing method allows you to do just that. It

takes a function as parameter (just like the method comparing) and provides a second

Comparator if two objects are considered equal using the initial Comparator. You can solve the

problem elegantly again:

3.8.2. Composing Predicates

The Predicate interface includes three methods that let you reuse an existing Predicate to create

more complicated ones: negate, and, and or. For example, you can use the method negate to

return the negation of a Predicate, such as an apple that is not red:

You may want to combine two lambdas to say that an apple is both red and heavy with the and

method:

You can combine the resulting predicate one step further to express apples that are red and

heavy (above 150 g) or just green apples:

93

Why is this great? From simpler lambda expressions you can represent more complicated

lambda expressions that still read like the problem statement! Note that the precedence of

methods and and or is managed from left to right using their positions in the chain. So

a.or(b).and(c) can be seen as (a || b) && c.

3.8.3. Composing Functions

Finally, you can also compose lambda expressions represented by the Function interface. The

Function interface comes with two default methods for this, andThen and compose, which both

return an instance of Function.

The method andThen returns a function that first applies a given function to an input and then

applies another function to the result of that application. For example, given a function f that

increments a number (x -> x + 1) and another function g that multiples a number by 2, you can

combine them to create a function h that first increments a number and then multiplies the

result by 2:

You can also use the method compose similarly to first apply the function given as argument to

compose and then apply the function to the result. For example, in the previous example using

compose, it would mean f(g(x)) instead of g(f(x)) using andThen:

Figure 3.6 illustrates the difference between andThen and compose.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

94

Figure 3.6. Using andThen vs. compose

This all sounds a bit too abstract. How can you use these in practice? Let’s say you have various

utility methods that do text transformation on a letter represented as a String:

public class Letter{

public static String addHeader(String text){

return "From Raoul, Mario and Alan: " + text;

}

public static String addFooter(String text){

return text + " Kind regards";

}

public static String checkSpelling(String text){

return text.replaceAll("labda", "lambda");

}

}

95

You can now create various transformation pipelines by composing the utility methods, for

example, creating a pipeline that first adds a header, then checks spelling, and finally adds a

footer, as illustrated in figure 3.7:

Figure 3.7. A transformation pipeline using andThen

Function<String, String> addHeader = Letter::addHeader;

Function<String, String> transformationPipeline

= addHeader.andThen(Letter::checkSpelling)

.andThen(Letter::addFooter);

A second pipeline might be only adding a header and footer without checking for spelling:

Function<String, String> addHeader = Letter::addHeader;

Function<String, String> transformationPipeline

= addHeader.andThen(Letter::addFooter);

3.9. Similar ideas frommathematics

If you feel comfortable with school mathematics, then this section gives another viewpoint of the

idea of lambda expressions and passing around functions. Feel free to just skip it; nothing else

in the book depends on it, but you may enjoy seeing another perspective.

3.9.1. Integration

Suppose you have a (mathematical, not Java) function f, perhaps defined by

f(x) = x + 10

Then, one question that’s often asked (at school, in engineering degrees) is that of finding the

area beneath the function when drawn on paper (counting the x-axis as the zero line). For

example, you write

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

96

for the area shown in figure 3.8.

Figure 3.8. Area under the function f(x) = x + 10 for x from 3 to 7

In this example, the function f is a straight line, and so you can easily work out this area by the

trapezium method (essentially drawing triangles) to discover the solution:

1/2 × ((3 + 10) + (7 + 10)) × (7 – 3) = 60

Now, how might you express this in Java? Your first problem is reconciling the strange notation

like the integration symbol or dy/dx with familiar programming language notation.

Indeed, thinking from first principles you need a method, perhaps called integrate, that takes

three arguments: one is f, and the others are the limits (3.0 and 7.0 here). Thus, you want to

write in Java something that looks like this, where the function f is just passed around:

integrate(f, 3, 7)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

97

Note that you can’t write something as simple as

integrate(x+10, 3, 7)

for two reasons. First, the scope of x is unclear, and second, this would pass a value of x+10 to

integrate instead of passing the function f.

Indeed, the secret role of dx in mathematics is to say “that function taking argument x whose

result is x+10.”

3.9.2. Connecting to Java 8 lambdas

Now, as we mentioned earlier, Java 8 uses the notation (double x) -> x+10 (a lambda expression)

for exactly this purpose; hence you can write

integrate((double x) -> x + 10, 3, 7)

or

integrate((double x) -> f(x), 3, 7)

or, using a method reference as mentioned earlier, simply

integrate(C::f, 3, 7)

if C is a class containing f as a static method. The idea is that you’re passing the code for f to the

method integrate.

You may now wonder how you’d write the method integrate itself. Continue to suppose that f is

a linear function (straight line). You’d probably like to write in a form similar to mathematics:

But because lambda expressions can be used only in a context expecting a functional interface

(in this case, Function), you have to write it this way:

public double integrate(DoubleFunction<Double> f, double a, double b) {

return (f.apply(a) + f.apply(b)) * (b-a) / 2.0;

}

98

As a side remark, it’s a bit of a shame that you have to write f.apply(a) instead of just f(a) as in

mathematics, but Java just can’t get away from the view that everything is an object—instead of

the idea of a function being truly independent!

3.10. Summary

Following are the key concepts you should take away from this chapter:

 A lambda expression can be understood as a kind of anonymous function: it doesn’t have a name, but

it has a list of parameters, a body, a return type, and also possibly a list of exceptions that can be

thrown.

 Lambda expressions let you pass code concisely.

 A functional interface is an interface that declares exactly one abstract method.

 Lambda expressions can be used only where a functional interface is expected.

 Lambda expressions let you provide the implementation of the abstract method of a functional

interface directly inline and treat the whole expression as an instance of a functional interface.

 Java 8 comes with a list of common functional interfaces in the java.util .function package, which

includes Predicate<T>, Function<T, R>, Supplier<T>, Consumer<T>, and

BinaryOperator<T>, described in table 3.2.

 There are primitive specializations of common generic functional interfaces such as Predicate<T>

and Function<T, R> that can be used to avoid boxing operations: IntPredicate,

IntToLongFunction, and so on.

 The execute around pattern (that is, you need to execute a bit of behavior in the middle of code that’s

always required in a method, for example, resource allocation and cleanup) can be used with lambdas

to gain additional flexibility and reusability.

 The type expected for a lambda expression is called the target type.

 Method references let you reuse an existing method implementation and pass it around directly.

 Functional interfaces such as Comparator, Predicate, and Function have several default methods

that can be used to combine lambda expressions.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

99

Part 2. Functional-style data processing

The second part of this book is a deep exploration of the new Streams API, which lets you write

powerful code that processes a collection of data in a declarative way. By the end of this second

part, you’ll have a full understanding of what streams are and how you can use them in your

codebase to process a collection of data concisely and efficiently.

Chapter 4 introduces the concept of a stream and explains how it compares with a collection.

Chapter 5 investigates in detail the stream operations available to express sophisticated data

processing queries. You’ll look at many patterns such as filtering, slicing, finding, matching,

mapping, and reducing.

Chapter 6 covers collectors—a feature of the Streams API that lets you express even more

complex data processing queries.

In chapter 7, you’ll learn about how streams can automatically run in parallel and leverage your

multicore architectures. In addition, you’ll learn about various pitfalls to avoid when using

parallel streams correctly and effectively.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

100

Chapter 4. Introducing streams

This chapter covers

 What is a stream?

 Collections vs. streams

 Internal vs. external iteration

 Intermediate vs. terminal operations

Collections is the most heavily used API in Java. What would you do without collections? Nearly

every Java application makes and processes collections. Collections are fundamental to many

programming tasks: they let you group and process data. To illustrate collections in action,

imagine you want to create a collection of dishes to represent a menu and then iterate through it

to sum the calories of each dish. You may want to process the collection to select only

low-calorie dishes for a special healthy menu. But despite collections being necessary for almost

any Java application, manipulating collections is far from perfect:

 Much business logic entails database-like operations such as grouping a list of dishes by category (for

example, all vegetarian dishes) or finding the most expensive dish. How many times do you find

yourself reimplementing these operations using iterators? Most databases let you specify such

operations declaratively. For example, the following SQL query lets you select the names of dishes that

are low in calories: SELECT name FROM dishes WHERE calorie < 400. As you can see, you

don’t need to implement how to filter using the attributes of a dish (for example, using an iterator and

an accumulator). Instead, you express only what you expect. This basic idea means that you worry less

about how to explicitly implement such queries—it’s handled for you! Why can’t you do something

similar with collections?

 How would you process a large collection of elements? To gain performance you’d need to process it in

parallel and leverage multicore architectures. But writing parallel code is complicated in comparison

to working with iterators. In addition, it’s no fun to debug!

So what could the Java language designers do to save your precious time and make your life

easier as programmers? You may have guessed: the answer is streams.

4.1. What are streams?

Streams are an update to the Java API that lets you manipulate collections of data in a

declarative way (you express a query rather than code an ad hoc implementation for it). For now

101

you can think of them as fancy iterators over a collection of data. In addition, streams can be

processed in parallel transparently, without you having to write any multithreaded code! We

explain in detail in chapter 7 how streams and parallelization work. Here’s a taste of the benefits

of using streams: compare the following code to return the names of dishes that are low in

calories, sorted by number of calories, first in Java 7 and then in Java 8 using streams. Don’t

worry about the Java 8 code too much; we explain it in detail in the next sections!

Before (Java 7):

In this code you use a “garbage variable,” lowCaloricDishes. Its only purpose is to act as an

intermediate throwaway container. In Java 8, this implementation detail is pushed into the

library where it belongs.

After (Java 8):

To exploit a multicore architecture and execute this code in parallel, you need only change

stream() to parallelStream():

List<String> lowCaloricDishesName =

menu.parallelStream()

.filter(d -> d.getCalories() < 400)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

102

.sorted(comparing(Dishes::getCalories))

.map(Dish::getName)

.collect(toList());

You may be wondering what exactly happens when you call the method parallelStream. How

many threads are being used? What are the performance benefits? Chapter 7 covers these

questions in detail. For now, you can see that the new approach offers several immediate

benefits from a software engineering point of view:

 The code is written in a declarative way: you specify what you want to achieve (that is, filter dishes

that are low in calories) as opposed to specifying how to implement an operation (using control-flow

blocks such as loops and if conditions). As you saw in the previous chapter, this approach, together

with behavior parameterization, enables you to cope with changing requirements: you could easily

create an additional version of your code to filter high-calorie dishes using a lambda expression,

without having to copy and paste code.

 You chain together several building-block operations to express a complicated data processing

pipeline (you chain the filter by linking sorted, map, and collect operations, as illustrated in figure

4.1) while keeping your code readable and its intent clear. The result of the filter is passed to the

sortedmethod, which is then passed to themapmethod and then to the collectmethod.

Figure 4.1. Chaining stream operations forming a stream pipeline

Because operations such as filter (or sorted, map, and collect) are available as high-level

building blocks that don’t depend on a specific threading model, their internal implementation

could be single-threaded or potentially maximize your multicore architecture transparently! In

practice, this means you no longer have to worry about threads and locks to figure out how to

parallelize certain data processing tasks: the Streams API does it for you!

The new Streams API is very expressive. For example, after reading this chapter and chapters 5

and 6, you’ll be able to write code like this:

Map<Dish.Type, List<Dish>> dishesByType =

menu.stream().collect(groupingBy(Dish::getType));

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

103

This particular example is explained in detail in chapter 6, “Collecting data with streams.” It

basically groups dishes by their types inside a Map. For example, the Map may contain the

following result:

{FISH=[prawns, salmon],

OTHER=[french fries, rice, season fruit, pizza],

MEAT=[pork, beef, chicken]}

Now try to think how you’d implement this with the typical imperative programming approach

using loops. Don’t waste too much of your time. Embrace the power of streams in this and the

following chapters!

Other libraries: Guava, Apache, and lambdaj

There have been many attempts at providing Java programmers with better libraries to

manipulate collections. For example, Guava is a popular library created by Google. It provides

additional container classes such as multimaps and multisets. The Apache Commons Collections

library provides similar features. Finally, lambdaj, written by Mario Fusco, coauthor of this book,

provides many utilities to manipulate collections in a declarative manner, inspired by functional

programming.

Now Java 8 comes with its own official library for manipulating collections in a more declarative

style.

To summarize, the Streams API in Java 8 lets you write code that’s

 Declarative—More concise and readable

 Composable— Greater flexibility

 Parallelizable— Better performance

For the remainder of this chapter and the next, we’ll use the following domain for our examples:

a menu that’s nothing more than a list of dishes

List<Dish> menu = Arrays.asList(

new Dish("pork", false, 800, Dish.Type.MEAT),

new Dish("beef", false, 700, Dish.Type.MEAT),

new Dish("chicken", false, 400, Dish.Type.MEAT),

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

104

new Dish("french fries", true, 530, Dish.Type.OTHER),

new Dish("rice", true, 350, Dish.Type.OTHER),

new Dish("season fruit", true, 120, Dish.Type.OTHER),

new Dish("pizza", true, 550, Dish.Type.OTHER),

new Dish("prawns", false, 300, Dish.Type.FISH),

new Dish("salmon", false, 450, Dish.Type.FISH));

where a Dish is an immutable class defined as

public class Dish {

private final String name;

private final boolean vegetarian;

private final int calories;

private final Type type;

public Dish(String name, boolean vegetarian, int calories, Type type) {

this.name = name;

this.vegetarian = vegetarian;

this.calories = calories;

this.type = type;

}

public String getName() {

return name;

}

public boolean isVegetarian() {

return vegetarian;

}

public int getCalories() {

return calories;

}

public Type getType() {

return type;

}

@Override

105

public String toString() {

return name;

}

public enum Type { MEAT, FISH, OTHER }

}

We’ll now explore how you can use the Streams API in more detail. We’ll compare streams to

collections and provide some background. In the next chapter, we’ll investigate in detail the

stream operations available to express sophisticated data processing queries. We’ll look at many

patterns such as filtering, slicing, finding, matching, mapping, and reducing. There will be many

quizzes and exercises to try to solidify your understanding.

Next, we’ll discuss how you can create and manipulate numeric streams, for example, to

generate a stream of even numbers or Pythagorean triples! Finally, we’ll discuss how you can

create streams from different sources such as from a file. We’ll also discuss how to generate

streams with an infinite number of elements—something you definitely can’t do with collections!

4.2. Getting started with streams

We start our discussion of streams with collections, because that’s the simplest way to begin

working with streams. Collections in Java 8 support a new stream method that returns a stream

(the interface definition is available in java.util.stream.Stream). You’ll later see that you can also

get streams in various other ways (for example, generating stream elements from a numeric

range or from I/O resources).

So first, what exactly is a stream? A short definition is “a sequence of elements from a source

that supports data processing operations.” Let’s break down this definition step by step:

 Sequence of elements— Like a collection, a stream provides an interface to a sequenced set of

values of a specific element type. Because collections are data structures, they’re mostly about storing

and accessing elements with specific time/space complexities (for example, an ArrayList vs. a

LinkedList). But streams are about expressing computations such as filter, sorted, and map that

you saw earlier. Collections are about data; streams are about computations. We explain this idea in

greater detail in the coming sections.

 Source— Streams consume from a data-providing source such as collections, arrays, or I/O resources.

Note that generating a stream from an ordered collection preserves the ordering. The elements of a

stream coming from a list will have the same order as the list.

106

 Data processing operations— Streams support database-like operations and common operations

from functional programming languages to manipulate data, such as filter, map, reduce, find,

match, sort, and so on. Stream operations can be executed either sequentially or in parallel.

In addition, stream operations have two important characteristics:

 Pipelining— Many stream operations return a stream themselves, allowing operations to be chained

and form a larger pipeline. This enables certain optimizations that we explain in the next chapter, such

as laziness and short-circuiting. A pipeline of operations can be viewed as a database-like query on

the data source.

 Internal iteration— In contrast to collections, which are iterated explicitly using an iterator,

stream operations do the iteration behind the scenes for you. We briefly mentioned this idea in

chapter 1 and return to it later in the next section.

Let’s look at a code example to explain all of these ideas:

In this example, you first get a stream from the list of dishes by calling the stream method on

menu. The data source is the list of dishes (the menu) and it provides a sequence of elements to

the stream. Next, you apply a series of data processing operations on the stream: filter, map,

limit, and collect. All these operations except collect return another stream so they can be

connected to form a pipeline, which can be viewed as a query on the source. Finally, the collect

operation starts processing the pipeline to return a result (it’s different because it returns

something other than a stream—here, a List). No result is produced, and indeed no element

from menu is even selected, until collect is invoked. You can think of it as if the method

invocations in the chain are queued up until collect is called. Figure 4.2 shows the sequence of

stream operations: filter, map, limit, and collect, each of which is briefly described here:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

107

Figure 4.2. Filtering a menu using a stream to find out three

high-calorie dish names

 filter—Takes a lambda to exclude certain elements from the stream. In this case, you select dishes

that have more than 300 calories by passing the lambda d -> d.getCalories() > 300.

 map—Takes a lambda to transform an element into another one or to extract information. In this case,

you extract the name for each dish by passing the method reference Dish::getName, which is

equivalent to the lambda d -> d.getName().

 limit—Truncates a stream to contain no more than a given number of elements.

 collect—Converts a stream into another form. In this case you convert the stream into a list. It looks

like a bit of magic; we describe how collect works in more detail in chapter 6. At the moment, you can

see collect as an operation that takes as an argument various recipes for accumulating the elements of

a stream into a summary result. Here, toList() describes a recipe for converting a stream into a list.

Notice how the code we just described is very different than what you’d write if you were to

process the list of menu items step by step. First, you use a much more declarative style to

process the data in the menu where you say what needs to be done: “Find names of three

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

108

high-calorie dishes.” You don’t implement the filtering (filter), extracting (map), or truncating

(limit) functionalities; they’re available through the Streams library. As a result, the Streams API

has more flexibility to decide how to optimize this pipeline. For example, the filtering, extracting,

and truncating steps could be merged into a single pass and stop as soon as three dishes are

found. We show an example to demonstrate that in the next chapter.

Let’s now stand back a little and examine the conceptual differences between the Collections API

and the new Streams API, before we explore in more detail what operations you can perform

with a stream.

4.3. Streams vs. collections

Both the existing Java notion of collections and the new notion of streams provide interfaces to

data structures representing a sequenced set of values of the element type. By sequenced, we

mean that we commonly step through the values in turn rather than randomly accessing them in

any order. So what’s the difference?

We’ll start with a visual metaphor. Consider a movie stored on a DVD. This is a collection

(perhaps of bytes or of frames—we don’t care which here) because it contains the whole data

structure. Now consider watching the same video when it’s being streamed over the internet.

This is now a stream (of bytes or frames). The streaming video player needs to have downloaded

only a few frames in advance of where the user is watching, so you can start displaying values

from the beginning of the stream before most of the values in the stream have even been

computed (consider streaming a live football game). Note particularly that the video player may

lack the memory to buffer the whole stream in memory as a collection—and the startup time

would be appalling if you had to wait for the final frame to appear before you could start

showing the video. You might choose for video-player implementation reasons to buffer a part

of a stream into a collection, but this is distinct from the conceptual difference.

In coarsest terms, the difference between collections and streams has to do with when things are

computed. A collection is an in-memory data structure that holds all the values the data

structure currently has—every element in the collection has to be computed before it can be

added to the collection. (You can add things to, and remove them from, the collection, but at

each moment in time, every element in the collection is stored in memory; elements have to be

computed before becoming part of the collection.)

By contrast, a stream is a conceptually fixed data structure (you can’t add or remove elements

from it) whose elements are computed on demand. This gives rise to significant programming

benefits. In chapter 6 we show how simple it is to construct a stream containing all the prime

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

109

numbers (2,3,5,7,11,...) even though there are an infinite number of them. The idea is that a user

will extract only the values they require from a stream, and these elements are

produced—invisibly to the user—only as and when required. This is a form of a

producer-consumer relationship. Another view is that a stream is like a lazily constructed

collection: values are computed when they’re solicited by a consumer (in management speak

this is demand-driven, or even just-in-time, manufacturing).

In contrast, a collection is eagerly constructed (supplier-driven: fill your warehouse before you

start selling, like a Christmas novelty that has a limited life). Applying this to the primes

example, attempting to construct a collection of all prime numbers would result in a program

loop that forever computes a new prime, adding it to the collection, but of course could never

finish making the collection, so the consumer would never get to see it.

Figure 4.3 illustrates the difference between a stream and a collection applied to our DVD vs.

internet streaming example.

Figure 4.3. Streams vs. collections

Another example is a browser internet search. Suppose you search for a phrase with many

matches in Google or in an e-commerce online shop. Instead of waiting for the whole collection

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

110

of results along with their photographs to be downloaded, you get a stream whose elements are

the best 10 or 20 matches, along with a button to click for the next 10 or 20. When you, the

consumer, click for the next 10, the supplier computes these on demand, before returning them

to your browser for display.

4.3.1. Traversable only once

Note that, similarly to iterators, a stream can be traversed only once. After that a stream is said

to be consumed. You can get a new stream from the initial data source to traverse it again just

like for an iterator (assuming it’s a repeatable source like a collection; if it’s an I/O channel,

you’re out of luck). For example, the following code would throw an exception indicating the

stream has been consumed:

So keep in mind that you can consume a stream only once!

Streams and collections philosophically

For readers who like philosophical viewpoints, you can see a stream as a set of values spread out

in time. In contrast, a collection is a set of values spread out in space (here, computer memory),

which all exist at a single point in time—and which you access using an iterator to access

members inside a for-each loop.

Another key difference between collections and streams is how they manage the iteration over

data.

4.3.2. External vs. internal iteration

Using the Collection interface requires iteration to be done by the user (for example, using

for-each); this is called external iteration. The Streams library by contrast uses internal

iteration—it does the iteration for you and takes care of storing the resulting stream value

somewhere; you merely provide a function saying what’s to be done. The following code listings

illustrate this difference.

111

Listing 4.1. Collections: external iteration with a for-each loop

Note that the for-each hides some of the iteration complexity. The for-each construct is syntactic

sugar that translates into something much uglier using an Iterator object.

Listing 4.2. Collections: external iteration using an iterator behind the

scenes

Listing 4.3. Streams: internal iteration

Let’s use an analogy to understand the differences and benefits of internal iteration. Let’s say

you’re talking to your two-year-old daughter, Sofia, and want her to put her toys away:

 You: “Sofia, let’s put the toys away. Is there a toy on the ground?”

 Sofia: “Yes, the ball.”

 You: “Okay, put the ball in the box. Is there something else?”

 Sofia: “Yes, there’s my doll.”

 You: “Okay, put the doll in the box. Is there something else?”

 Sofia: “Yes, there’s my book.”

 You: “Okay, put the book in the box. Is there something else?”

 Sofia: “No, nothing else.”

 You: “Fine, we’re finished.”

112

This is exactly what you do every day with your Java collections. You iterate a collection

externally, explicitly pulling out and processing the items one by one. It would be far better if

you could just tell Sofia, “Put all the toys that are on the floor inside the box.” There are two

other reasons why an internal iteration is preferable: first, Sofia could choose to take at the same

time the doll with one hand and the ball with the other, and second, she could decide to take the

objects closest to the box first and then the others. In the same way, using an internal iteration,

the processing of items could be transparently done in parallel or in a different order that may

be more optimized. These optimizations are difficult if you iterate the collection externally as

you’re used to doing in Java. This may seem like nit-picking, but it’s much of the raison-d’être of

Java 8’s introduction of streams—the internal iteration in the Streams library can automatically

choose a data representation and implementation of parallelism to match your hardware. By

contrast, once you’ve chosen external iteration by writing for-each, then you’ve essentially

committed to self-manage any parallelism. (Self-managing in practice means either “one fine

day we’ll parallelize this” or “starting the long and arduous battle involving tasks and

synchronized”.) Java 8 needed an interface like Collection but without iterators, ergo Stream!

Figure 4.4 illustrates the difference between a stream (internal iteration) and a collection

(external iteration).

Figure 4.4. Internal vs. external iteration

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

113

We’ve described the conceptual differences between collections and streams. Specifically,

streams make use of internal iteration: iteration is taken care of for you. But this is useful only if

you have a list of predefined operations to work with (for example, filter or map) that hide the

iteration. Most of these operations take lambda expressions as arguments so you can

parameterize their behavior as we showed in the previous chapter. The Java language designers

shipped the Streams API with an extensive list of operations you can use to express complicated

data processing queries. We’ll briefly look at this list of operations now and explore them in

more detail with examples in the next chapter.

4.4. Stream operations

The Stream interface in java.util.stream.Stream defines many operations. They can be classified

into two categories. Let’s look at our previous example once again:

You can see two groups of operations:

 filter,map, and limit can be connected together to form a pipeline.

 collect causes the pipeline to be executed and closes it.

Stream operations that can be connected are called intermediate operations, and operations

that close a stream are called terminal operations. Figure 4.5 highlights these two groups. So

why is the distinction important?

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

114

Figure 4.5. Intermediate vs. terminal operations

4.4.1. Intermediate operations

Intermediate operations such as filter or sorted return another stream as the return type. This

allows the operations to be connected to form a query. What’s important is that intermediate

operations don’t perform any processing until a terminal operation is invoked on the stream

pipeline—they’re lazy. This is because intermediate operations can usually be merged and

processed into a single pass by the terminal operation.

To understand what’s happening in the stream pipeline, modify the code so each lambda also

prints the current dish it’s processing (like many demonstration and debugging techniques, this

is appalling programming style for production code but directly explains the order of evaluation

when you’re learning):

This code when executed will print the following:

filtering pork

mapping pork

115

filtering beef

mapping beef

filtering chicken

mapping chicken

[pork, beef, chicken]

You can notice several optimizations due to the lazy nature of streams. First, despite the fact

that many dishes have more than 300 calories, only the first three are selected! This is because

of the limit operation and a technique called short-circuiting, as we’ll explain in the next chapter.

Second, despite the fact that filter and map are two separate operations, they were merged into

the same pass (we call this technique loop fusion).

4.4.2. Terminal operations

Terminal operations produce a result from a stream pipeline. A result is any nonstream value

such as a List, an Integer, or even void. For example, in the following pipeline, forEach is a

terminal operation that returns void and applies a lambda to each dish in the source. Passing

System.out.println to forEach asks it to print every Dish in the stream created from menu:

menu.stream().forEach(System.out::println);

To check your understanding of intermediate versus terminal operations, try out Quiz 4.1.

Quiz 4.1: Intermediate vs. terminal operations

In the stream pipeline that follows, can you identify the intermediate and terminal operations?

long count = menu.stream()

.filter(d -> d.getCalories() > 300)

.distinct()

.limit(3)

.count();

Answer:

The last operation in the stream pipeline count returns a long, which is a non-Stream value. It’s

therefore a terminal operation. All previous operations, filter, distinct, limit, are connected and

return a Stream. They are therefore intermediate operations.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

116

4.4.3. Working with streams

To summarize, working with streams in general involves three items:

 A data source (such as a collection) to perform a query on

 A chain of intermediate operations that form a stream pipeline

 A terminal operation that executes the stream pipeline and produces a result

The idea behind a stream pipeline is similar to the builder pattern.[1] In the builder pattern,

there’s a chain of calls to set up a configuration (for streams this is a chain of intermediate

operations), followed by a call to a build method (for streams this is a terminal operation).

1 See http://en.wikipedia.org/wiki/Builder_pattern.

For convenience, tables 4.1 and 4.2 summarize the intermediate and terminal stream operations

you’ve seen in the code examples so far. Note that this is an incomplete list of operations

provided by the Streams API; you’ll see several more in the next chapter!

Table 4.1. Intermediate operations

Operation Type Return

type

Argument of the

operation

Function

descriptor

filter Intermediate Stream<T> Predicate<T> T -> boolean

map Intermediate Stream<R> Function<T, R> T -> R

limit Intermediate Stream<T>

sorted Intermediate Stream<T> Comparator<T> (T, T) -> int

distinct Intermediate Stream<T>

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://en.wikipedia.org/wiki/Builder_pattern
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

117

Table 4.2. Terminal operations

Operation Type Purpose

forEach Terminal Consumes each element from a stream and applies a lambda to each of them.

The operation returns void.

count Terminal Returns the number of elements in a stream. The operation returns a long.

collect Terminal Reduces the stream to create a collection such as a List, a Map, or even an

Integer. See chapter 6 for more detail.

In the next chapter, we detail the available stream operations with use cases so you can see what

kinds of queries you can express with them. We look at many patterns such as filtering, slicing,

finding, matching, mapping, and reducing, which can be used to express sophisticated data

processing queries.

Because chapter 6 deals with collectors in great detail, the only use this chapter and the next one

make of the collect() terminal operation on streams is the special case of collect(toList()), which

creates a List whose elements are the same as those of the stream it’s applied to.

4.5. Summary

Here are some key concepts to take away from this chapter:

 A stream is a sequence of elements from a source that supports data processing operations.

 Streams make use of internal iteration: the iteration is abstracted away through operations such as

filter,map, and sorted.

 There are two types of stream operations: intermediate and terminal operations.

 Intermediate operations such as filter andmap return a stream and can be chained together. They’re

used to set up a pipeline of operations but don’t produce any result.

 Terminal operations such as forEach and count return a nonstream value and process a stream

pipeline to return a result.

 The elements of a stream are computed on demand.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

118

Chapter 5. Working with streams

This chapter covers

 Filtering, slicing, and matching

 Finding, matching, and reducing

 Using numeric streams such as ranges of numbers

 Creating streams from multiple sources

 Infinite streams

In the previous chapter, you saw that streams let you move from external iteration to internal

iteration. Instead of writing code as follows where you explicitly manage the iteration over a

collection of data (external iteration),

List<Dish> vegetarianDishes = new ArrayList<>();

for(Dish d: menu){

if(d.isVegetarian()){

vegetarianDishes.add(d);

}

}

you can use the Streams API (internal iteration), which supports the filter and collect operations,

to manage the iteration over the collection of data for you. All you need to do is pass the filtering

behavior as argument to the filter method:

import static java.util.stream.Collectors.toList;

List<Dish> vegetarianDishes =

menu.stream()

.filter(Dish::isVegetarian)

.collect(toList());

This different way of working with data is useful because you let the Streams API manage how to

process the data. As a consequence, the Streams API can work out several optimizations behind

the scenes. In addition, using internal iteration, the Streams API can decide to run your code in

parallel. Using external iteration, this isn’t possible because you’re committed to a

single-threaded step-by-step sequential iteration.

119

In this chapter, you’ll have an extensive look at the various operations supported by the Streams

API. These operations will let you express complex data processing queries such as filtering,

slicing, mapping, finding, matching, and reducing. Next, we’ll explore special cases of streams:

numeric streams, streams built from multiple sources such as files and arrays, and finally

infinite streams.

5.1. Filtering and slicing

In this section, we look at how to select elements of a stream: filtering with a predicate, filtering

only unique elements, ignoring the first few elements of a stream, or truncating a stream to a

given size.

5.1.1. Filtering with a predicate

The Streams interface supports a filter method (which you should be familiar with by now). This

operation takes as argument a predicate (a function returning a boolean) and returns a stream

including all elements that match the predicate. For example, you can create a vegetarian menu

by filtering all vegetarian dishes as follows and as illustrated in figure 5.1:

Figure 5.1. Filtering a stream with a predicate

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

120

5.1.2. Filtering unique elements

Streams also support a method called distinct that returns a stream with unique elements

(according to the implementation of the hashCode and equals methods of the objects produced

by the stream). For example, the following code filters all even numbers from a list and makes

sure that there are no duplicates. Figure 5.2 shows this visually:

Figure 5.2. Filtering unique elements in a stream

List<Integer> numbers = Arrays.asList(1, 2, 1, 3, 3, 2, 4);

numbers.stream()

.filter(i -> i % 2 == 0)

.distinct()

.forEach(System.out::println);

5.1.3. Truncating a stream

Streams support the limit(n) method, which returns another stream that’s no longer than a

given size. The requested size is passed as argument to limit. If the stream is ordered, the first

elements are returned up to a maximum of n. For example, you can create a List by selecting the

first three dishes that have more than 300 calories as follows:

List<Dish> dishes = menu.stream()

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

121

.filter(d -> d.getCalories() > 300)

.limit(3)

.collect(toList());

Figure 5.3 illustrates a combination of filter and limit. You can see that only the first three

elements that match the predicate are selected and the result is immediately returned.

Figure 5.3. Truncating a stream

Note that limit also works on unordered streams (for example, if the source is a Set). In this case

you shouldn’t assume any order on the result produced by limit.

5.1.4. Skipping elements

Streams support the skip(n) method to return a stream that discards the first n elements. If the

stream has fewer elements than n, then an empty stream is returned. Note that limit(n) and

skip(n) are complementary! For example, the following code skips the first two dishes that have

more than 300 calories and returns the rest. Figure 5.4 illustrates this query:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

122

Figure 5.4. Skipping elements in a stream

List<Dish> dishes = menu.stream()

.filter(d -> d.getCalories() > 300)

.skip(2)

.collect(toList());

Put what you’ve learned in this section into practice with Quiz 5.1 before we move to mapping

operations.

Quiz 5.1: Filtering

How would you use streams to filter the first two meat dishes?

Answer:

You can solve this problem by composing the methods filter and limit together and using

collect(toList()) to convert the stream into a list as follows:

List<Dish> dishes =

menu.stream()

.filter(d -> d.getType() == Dish.Type.MEAT)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

123

.limit(2)

.collect(toList());

5.2. Mapping

A very common data processing idiom is to select information from certain objects. For example,

in SQL you can select a particular column from a table. The Streams API provides similar

facilities through the map and flatMap methods.

5.2.1. Applying a function to each element of a stream

Streams support the method map, which takes a function as argument. The function is applied

to each element, mapping it into a new element (the word mapping is used because it has a

meaning similar to transforming but with the nuance of “creating a new version of” rather than

“modifying”). For example, in the following code you pass a method reference Dish::getName to

the map method to extract the names of the dishes in the stream:

List<String> dishNames = menu.stream()

.map(Dish::getName)

.collect(toList());

Because the method getName returns a String, the stream outputted by the map method is of

type Stream<String>.

Let’s take a slightly different example to solidify your understanding of map. Given a list of

words, you’d like to return a list of the number of characters for each word. How would you do it?

You’d need to apply a function to each element of the list. This sounds like a job for the map

method! The function to apply should take a word and return its length. You can solve this

problem as follows by passing a method reference String::length to map:

List<String> words = Arrays.asList("Java8", "Lambdas", "In", "Action");

List<Integer> wordLengths = words.stream()

.map(String::length)

.collect(toList());

Let’s now return to the example where you extracted the name of each dish. What if you wanted

to find out the length of the name of each dish? You could do this by chaining another map as

follows:

124

List<Integer> dishNameLengths = menu.stream()

.map(Dish::getName)

.map(String::length)

.collect(toList());

5.2.2. Flattening streams

You saw how to return the length for each word in a list using the method map. Let’s extend this

idea a bit further: how could you return a list of all the unique characters for a list of words? For

example, given the list of words ["Hello", "World"] you’d like to return the list ["H", "e", "l", "o",

"W", "r", "d"].

You might think that this is easy, that you can just map each word into a list of characters and

then call distinct to filter duplicate characters. A first go could be like this:

words.stream()

.map(word -> word.split(""))

.distinct()

.collect(toList());

The problem with this approach is that the lambda passed to the map method returns a String[]

(an array of String) for each word. So the stream returned by the map method is actually of type

Stream<String[]>. What you really want is Stream<String> to represent a stream of characters.

Figure 5.5 illustrates the problem.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

125

Figure 5.5. Incorrect use of map to find unique characters from a list of

words

Luckily there’s a solution to this problem using the method flatMap! Let’s see step by step how

to solve it.

Attempt using map and Arrays.stream

First, you need a stream of characters instead of a stream of arrays. There’s a method called

Arrays.stream()that takes an array and produces a stream, for example:

String[] arrayOfWords = {"Goodbye", "World"};

Stream<String> streamOfwords = Arrays.stream(arrayOfWords);

Use it in the previous pipeline to see what happens:

126

The current solution still doesn’t work! This is because you now end up with a list of streams

(more precisely, Stream<Stream<String>>)! Indeed, you first convert each word into an array

of its individual letters and then make each array into a separate stream.

Using flatMap

You can fix this problem by using flatMap as follows:

Using the flatMap method has the effect of mapping each array not with a stream but with the

contents of that stream. All the separate streams that were generated when using

map(Arrays::stream) get amalgamated—flattened into a single stream. Figure 5.6 illustrates the

effect of using the flatMap method. Compare it with what map does in figure 5.5.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

127

Figure 5.6. Using flatMap to find the unique characters from a list of

words

In a nutshell, the flatMap method lets you replace each value of a stream with another stream

and then concatenates all the generated streams into a single stream.

We come back to flatMap in chapter 10 when we discuss more advanced Java 8 patterns such as

using the new library class Optional for null checking. To solidify your understanding of map

and flatMap, try out Quiz 5.2.

Quiz 5.2: Mapping

1. Given a list of numbers, how would you return a list of the square of each number? For

example, given [1, 2, 3, 4, 5] you should return [1, 4, 9, 16, 25].

Answer:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

128

You can solve this problem by using map with a lambda that takes a number and returns the

square of the number:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

List<Integer> squares =

numbers.stream()

.map(n -> n * n)

.collect(toList());

2. Given two lists of numbers, how would you return all pairs of numbers? For example, given a

list [1, 2, 3] and a list [3, 4] you should return [(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)]. For

simplicity, you can represent a pair as an array with two elements.

Answer:

You could use two maps to iterate on the two lists and generate the pairs. But this would return

a Stream<Stream<Integer[]>>. What you need to do is flatten the generated streams to result in

a Stream<Integer[]>. This is what flatMap is for:

List<Integer> numbers1 = Arrays.asList(1, 2, 3);

List<Integer> numbers2 = Arrays.asList(3, 4);

List<int[]> pairs =

numbers1.stream()

.flatMap(i -> numbers2.stream()

.map(j -> new int[]{i, j})

)

.collect(toList());

3. How would you extend the previous example to return only pairs whose sum is divisible by 3?

For example, (2, 4) and (3, 3) are valid.

Answer:

You saw earlier that filter can be used with a predicate to filter elements from a stream. Because

after the flatMap operation you have a stream of int[] that represent a pair, you just need a

predicate to check to see if the sum is divisible by 3:

List<Integer> numbers1 = Arrays.asList(1, 2, 3);

List<Integer> numbers2 = Arrays.asList(3, 4);

List<int[]> pairs =

numbers1.stream()

129

.flatMap(i ->

numbers2.stream()

.filter(j -> (i + j) % 3 == 0)

.map(j -> new int[]{i, j})

)

.collect(toList());

The result is [(2, 4), (3, 3)].

5.3. Finding and matching

Another common data processing idiom is finding whether some elements in a set of data match

a given property. The Streams API provides such facilities through the allMatch, anyMatch,

noneMatch, findFirst, and findAny methods of a stream.

5.3.1. Checking to see if a predicate matches at least one element

The anyMatch method can be used to answer the question “Is there an element in the stream

matching the given predicate?” For example, you can use it to find out whether the menu has a

vegetarian option:

if(menu.stream().anyMatch(Dish::isVegetarian)){

System.out.println("The menu is (somewhat) vegetarian friendly!!");

}

The anyMatch method returns a boolean and is therefore a terminal operation.

5.3.2. Checking to see if a predicate matches all elements

The allMatch method works similarly to anyMatch but will check to see if all the elements of the

stream match the given predicate. For example, you can use it to find out whether the menu is

healthy (that is, all dishes are below 1000 calories):

boolean isHealthy = menu.stream()

.allMatch(d -> d.getCalories() < 1000);

130

noneMatch

The opposite of allMatch is noneMatch. It ensures that no elements in the stream match the

given predicate. For example, you could rewrite the previous example as follows using

noneMatch:

boolean isHealthy = menu.stream()

.noneMatch(d -> d.getCalories() >= 1000);

These three operations, anyMatch, allMatch, and noneMatch, make use of what we call

short-circuiting, a stream version of the familiar Java short-circuiting && and || operators.

Short-circuiting evaluation

Some operations don’t need to process the whole stream to produce a result. For example, say

you need to evaluate a large boolean expression chained with and operators. You need only find

out that one expression is false to deduce that the whole expression will return false, no matter

how long the expression is; there’s no need to evaluate the entire expression. This is what

short-circuiting refers to.

In relation to streams, certain operations such as allMatch, noneMatch, findFirst, and findAny

don’t need to process the whole stream to produce a result. As soon as an element is found, a

result can be produced. Similarly, limit is also a short-circuiting operation: the operation only

needs to create a stream of a given size without processing all the elements in the stream. Such

operations are useful, for example, when you need to deal with streams of infinite size, because

they can turn an infinite stream into a stream of finite size. We show examples of infinite

streams in section 5.7.

5.3.3. Finding an element

The findAny method returns an arbitrary element of the current stream. It can be used in

conjunction with other stream operations. For example, you may wish to find a dish that’s

vegetarian. You can combine the filter method and findAny to express this query:

Optional<Dish> dish =

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

131

menu.stream()

.filter(Dish::isVegetarian)

.findAny();

The stream pipeline will be optimized behind the scenes to perform a single pass and finish as

soon as a result is found by using short-circuiting. But wait a minute; what’s this Optional thing

in the code?

Optional in a nutshell

The Optional<T> class (java.util.Optional) is a container class to represent the existence or

absence of a value. In the previous code, it’s possible that findAny doesn’t find any element.

Instead of returning null, which is well known for being error prone, the Java 8 library designers

introduced Optional<T>. We won’t go into the details of Optional here, because we show in

detail in chapter 10 how your code can benefit from using Optional to avoid bugs related to null

checking. But for now, it’s good to know that there are a few methods available in Optional that

force you to explicitly check for the presence of a value or deal with the absence of a value:

 isPresent() returns true ifOptional contains a value, false otherwise.

 ifPresent(Consumer<T> block) executes the given block if a value is present. We introduced the

Consumer functional interface in chapter 3; it lets you pass a lambda that takes an argument of type

T and returns void.

 T get() returns the value if present; otherwise it throws aNoSuchElement-Exception.

 T orElse(T other) returns the value if present; otherwise it returns a default value.

For example, in the previous code you’d need to explicitly check for the presence of a dish in the

Optional object to access its name:

5.3.4. Finding the first element

Some streams have an encounter order that specifies the order in which items logically appear

in the stream (for example, a stream generated from a List or from a sorted sequence of data).

For such streams you may wish to find the first element. There’s the findFirst method for this,

which works similarly to findAny. For example, the code that follows, given a list of numbers,

finds the first square that’s divisible by 3:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

132

List<Integer> someNumbers = Arrays.asList(1, 2, 3, 4, 5);

Optional<Integer> firstSquareDivisibleByThree =

someNumbers.stream()

.map(x -> x * x)

.filter(x -> x % 3 == 0)

.findFirst(); // 9

When to use findFirst and findAny

You may wonder why we have both findFirst and findAny. The answer is parallelism. Finding

the first element is more constraining in parallel. If you don’t care about which element is

returned, use findAny because it’s less constraining when using parallel streams.

5.4. Reducing

So far, the terminal operations you’ve seen return a boolean (allMatch and so on), void

(forEach), or an Optional object (findAny and so on). You’ve also been using collect to combine

all elements in a stream into a List.

In this section, you’ll see how you can combine elements of a stream to express more

complicated queries such as “Calculate the sum of all calories in the menu,” or “What is the

highest calorie dish in the menu?” using the reduce operation. Such queries combine all the

elements in the stream repeatedly to produce a single value such as an Integer. These queries

can be classified as reduction operations (a stream is reduced to a value). In functional

programming-language jargon, this is referred to as a fold because you can view this operation

as repeatedly folding a long piece of paper (your stream) until it forms a small square, which is

the result of the fold operation.

5.4.1. Summing the elements

Before we investigate how to use the reduce method, it helps to first see how you’d sum the

elements of a list of numbers using a for-each loop:

int sum = 0;

for (int x : numbers) {

sum += x;

133

}

Each element of numbers is combined iteratively with the addition operator to form a result.

You reduce the list of numbers into one number by repeatedly using addition. There are two

parameters in this code:

 The initial value of the sum variable, in this case 0

 The operation to combine all the elements of the list, in this case +

Wouldn’t it be great if you could also multiply all the numbers without having to repeatedly copy

and paste this code? This is where the reduce operation, which abstracts over this pattern of

repeated application, can help. You can sum all the elements of a stream as follows:

int sum = numbers.stream().reduce(0, (a, b) -> a + b);

reduce takes two arguments:

 An initial value, here 0.

 A BinaryOperator<T> to combine two elements and produce a new value; here you use the lambda

(a, b) -> a + b.

You could just as easily multiply all the elements by passing a different lambda, (a, b) -> a * b, to

the reduce operation:

int product = numbers.stream().reduce(1, (a, b) -> a * b);

Figure 5.7 illustrates how the reduce operation works on a stream: the lambda combines each

element repeatedly until the stream is reduced to a single value.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

134

Figure 5.7. Using reduce to sum the numbers in a stream

Let’s take an in-depth look into how the reduce operation happens to sum a stream of numbers.

First, 0 is used as the first parameter of the lambda (a), and 4 is consumed from the stream and

used as the second parameter (b). 0 + 4 produces 4, and it becomes the new accumulated value.

Then the lambda is called again with the accumulated value and the next element of the stream,

5, which produces the new accumulated value, 9. Moving forward, the lambda is called again

with the accumulated value and the next element, 3, which produces 12. Finally, the lambda is

called with 12 and the last element of the stream, 9, which produces the final value, 21.

You can make this code more concise by using a method reference. In Java 8 the Integer class

now comes with a static sum method to add two numbers, which is just what you want instead

of repeatedly writing out the same code as lambda:

int sum = numbers.stream().reduce(0, Integer::sum);

135

No initial value

There’s also an overloaded variant of reduce that doesn’t take an initial value, but it returns an

Optional object:

Optional<Integer> sum = numbers.stream().reduce((a, b) -> (a + b));

Why does it return an Optional<Integer>? Consider the case when the stream contains no

elements. The reduce operation can’t return a sum because it doesn’t have an initial value. This

is why the result is wrapped in an Optional object to indicate that the sum may be absent. Now

see what else you can do with reduce.

5.4.2. Maximum andminimum

It turns out that reduction is all you need to compute maxima and minima as well! Let’s see how

you can apply what you just learned about reduce to calculate the maximum or minimum

element in a stream. As you saw, reduce takes two parameters:

 An initial value

 A lambda to combine two stream elements and produce a new value

The lambda is applied step by step to each element of the stream with the addition operator, as

shown in figure 5.7. So you need a lambda that, given two elements, returns the maximum of

them. The reduce operation will use the new value with the next element of the stream to

produce a new maximum until the whole stream is consumed! You can use reduce as follows to

calculate the maximum in a stream; this is illustrated in figure 5.8:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

136

Figure 5.8. A reduce operation—calculating the maximum

Optional<Integer> max = numbers.stream().reduce(Integer::max);

To calculate the minimum, you need to pass Integer.min to the reduce operation instead of

Integer.max:

Optional<Integer> min = numbers.stream().reduce(Integer::min);

You could have equally well used the lambda (x,y)->x<y?x:y instead of Integer::min, but the

latter is easier to read.

To test your understanding of the reduce operation, have a go at Quiz 5.3.

Quiz 5.3: Reducing

How would you count the number of dishes in a stream using the map and reduce methods?

Answer:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

137

You can solve this problem by mapping each element of a stream into the number 1 and then

summing them using reduce! This is equivalent to counting in order the number of elements in

the stream.

int count = menu.stream()

.map(d -> 1)

.reduce(0, (a, b) -> a + b);

A chain of map and reduce is commonly known as the map-reduce pattern, made famous by

Google’s use of it for web searching because it can be easily parallelized. Note that in chapter 4

you saw the built-in method count to count the number of elements in the stream:

long count = menu.stream().count();

Benefit of the reduce method and parallelism

The benefit of using reduce compared to the step-by-step iteration summation that you wrote

earlier is that the iteration is abstracted using internal iteration, which enables the internal

implementation to choose to perform the reduce operation in parallel. The iterative summation

example involves shared updates to a sum variable, which doesn’t parallelize gracefully. If you

add in the needed synchronization, you’ll likely discover that thread contention robs you of all

the performance that parallelism was supposed to give you! Parallelizing this computation

requires a different approach: partition the input, sum the partitions, and combine the sums.

But now the code is starting to look really different. You’ll see what this looks like in chapter 7

using the fork/join framework. But for now it’s important to realize that the mutable

accumulator pattern is a dead end for parallelization. You need a new pattern, and this is what

reduce provides you. You’ll also see in chapter 7 that to sum all the elements in parallel using

streams, there’s almost no modification to your code: stream() becomes parallelStream():

int sum = numbers.parallelStream().reduce(0, Integer::sum);

But there’s a price to pay to execute this code in parallel, as we explain later: the lambda passed

to reduce can’t change state (for example, instance variables), and the operation needs to be

associative so it can be executed in any order.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

138

So far you saw reduction examples that produced an Integer: the sum of a stream, the maximum

of a stream, or the number of elements in a stream. You’ll see in section 5.6 that built-in

methods such as sum and max are available as well to help you write slightly more concise code

for common reduction patterns. We investigate a more complex form of reductions using the

collect method in the next chapter. For example, instead of reducing a stream into an Integer,

you can also reduce it into a Map if you want to group dishes by types.

Stream operations: stateless vs. stateful

You’ve seen a lot of stream operations. An initial presentation can make them seem a panacea;

everything just works, and you get parallelism for free when you use parallelStream instead of

stream to get a stream from a collection.

Certainly for many applications this is the case, as you’ve seen in the previous examples. You can

turn a list of dishes into a stream, filter to select various dishes of a certain type, then map down

the resulting stream to add on the number of calories, and then reduce to produce the total

number of calories of the menu. You can even do such stream calculations in parallel. But these

operations have different characteristics. There are issues about what internal state they need to

operate.

Operations like map and filter take each element from the input stream and produce zero or one

result in the output stream. These operations are thus in general stateless: they don’t have an

internal state (assuming the user-supplied lambda or method reference has no internal mutable

state).

But operations like reduce, sum, and max need to have internal state to accumulate the result.

In this case the internal state is small. In our example it consisted of an int or double. The

internal state is of bounded size no matter how many elements are in the stream being

processed.

By contrast, some operations such as sorted or distinct seem at first to behave like filter or

map—all take a stream and produce another stream (an intermediate operation), but there’s a

crucial difference. Both sorting and removing duplicates from a stream require knowing the

previous history to do their job. For example, sorting requires all the elements to be buffered

before a single item can be added to the output stream; the storage requirement of the operation

is unbounded. This can be problematic if the data stream is large or infinite. (What should

reversing the stream of all prime numbers do? It should return the largest prime number, which

mathematics tells us doesn’t exist.) We call these operations stateful operations.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

139

You’ve now seen a lot of stream operations that you can use to express sophisticated data

processing queries! Table 5.1 summarizes the operations seen so far. You get to practice them in

the next section through an exercise.

Table 5.1. Intermediate and terminal operations

Operation Type Return

type

Type/functional

interface used

Function

descriptor

filter Intermediate Stream<T> Predicate<T> T -> boolean

distinct Intermediate

(stateful-unbounded)

Stream<T>

skip Intermediate

(stateful-bounded)

Stream<T> long

limit Intermediate

(stateful-bounded)

Stream<T> long

map Intermediate Stream<R> Function<T, R> T -> R

flatMap Intermediate Stream<R> Function<T, Stream<R>> T -> Stream<R>

sorted Intermediate

(stateful-unbounded)

Stream<T> Comparator<T> (T, T) -> int

anyMatch Terminal boolean Predicate<T> T -> boolean

noneMatch Terminal boolean Predicate<T> T -> boolean

allMatch Terminal boolean Predicate<T> T -> boolean

findAny Terminal Optional<T>

findFirst Terminal Optional<T>

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

140

Operation Type Return

type

Type/functional

interface used

Function

descriptor

forEach Terminal void Consumer<T> T -> void

collect terminal R Collector<T, A, R>

reduce Terminal

(stateful-bounded)

Optional<T> BinaryOperator<T> (T, T) -> T

count Terminal long

5.5. Putting it all into practice

In this section, you get to practice what you’ve learned about streams so far. We give a different

domain: traders executing transactions. You’re asked by your manager to find answers to eight

queries. Can you do it? We give the solutions in section 5.5.2, but you should try them yourself

first to get some practice.

1. Find all transactions in the year 2011 and sort them by value (small to high).

2. What are all the unique cities where the traders work?

3. Find all traders from Cambridge and sort them by name.

4. Return a string of all traders’ names sorted alphabetically.

5. Are any traders based in Milan?

6. Print all transactions’ values from the traders living in Cambridge.

7. What’s the highest value of all the transactions?

8. Find the transaction with the smallest value.

5.5.1. The domain: Traders and Transactions

Here’s the domain you’ll be working with, a list of Traders and Transactions:

Trader raoul = new Trader("Raoul", "Cambridge");

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

141

Trader mario = new Trader("Mario","Milan");

Trader alan = new Trader("Alan","Cambridge");

Trader brian = new Trader("Brian","Cambridge");

List<Transaction> transactions = Arrays.asList(

new Transaction(brian, 2011, 300),

new Transaction(raoul, 2012, 1000),

new Transaction(raoul, 2011, 400),

new Transaction(mario, 2012, 710),

new Transaction(mario, 2012, 700),

new Transaction(alan, 2012, 950)

);

Trader and Transaction are classes defined as follows:

public class Trader{

private final String name;

private final String city;

public Trader(String n, String c){

this.name = n;

this.city = c;

}

public String getName(){

return this.name;

}

public String getCity(){

return this.city;

}

public String toString(){

return "Trader:"+this.name + " in " + this.city;

}

}

public class Transaction{

142

private final Trader trader;

private final int year;

private final int value;

public Transaction(Trader trader, int year, int value){

this.trader = trader;

this.year = year;

this.value = value;

}

public Trader getTrader(){

return this.trader;

}

public int getYear(){

return this.year;

}

public int getValue(){

return this.value;

}

public String toString(){

return "{" + this.trader + ", " +

"year: "+this.year+", " +

"value:" + this.value +"}";

}

}

5.5.2. Solutions

We now provide the solutions in the following code listings, so you can verify your

understanding of what you’ve learned so far. Well done!

143

Listing 5.1. Find all transactions in 2011 and sort by value (small to

high)

Listing 5.2. What are all the unique cities where the traders work?

You haven’t seen this yet, but you could also drop distinct() and use toSet() instead, which

would convert the stream into a set. You’ll learn more about it in chapter 6.

Set<String> cities =

transactions.stream()

.map(transaction -> transaction.getTrader().getCity())

.collect(toSet());

Listing 5.3. Find all traders from Cambridge and sort them by name

Listing 5.4. Return a string of all traders’ names sorted alphabetically

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

144

Note that this solution isn’t very efficient (all Strings are repeatedly concatenated, which creates

a new String object at each iteration). In the next chapter, you’ll see a more efficient solution

that uses joining() as follows (which internally makes use of a StringBuilder):

String traderStr =

transactions.stream()

.map(transaction -> transaction.getTrader().getName())

.distinct()

.sorted()

.collect(joining());

Listing 5.5. Are any traders based in Milan?

Listing 5.6. Print all transactions’ values from the traders living in

Cambridge

Listing 5.7. What’s the highest value of all the transactions?

145

Listing 5.8. Find the transaction with the smallest value

You can do better. A stream supports the methods min and max that take a Comparator as

argument to specify which key to compare with when calculating the minimum or maximum:

Optional<Transaction> smallestTransaction =

transactions.stream()

.min(comparing(Transaction::getValue));

5.6. Numeric streams

You saw earlier that you could use the reduce method to calculate the sum of the elements of a

stream. For example, you can calculate the number of calories in the menu as follows:

int calories = menu.stream()

.map(Dish::getCalories)

.reduce(0, Integer::sum);

The problem with this code is that there’s an insidious boxing cost. Behind the scenes each

Integer needs to be unboxed to a primitive before performing the summation. In addition,

wouldn’t it be nicer if you could call a sum method directly as follows?

int calories = menu.stream()

.map(Dish::getCalories)

.sum();

But this isn’t possible. The problem is that the method map generates a Stream<T>. Even

though the elements of the stream are of type Integer, the Streams interface doesn’t define a

sum method. Why not? Say you had only a Stream<Dish> like the menu; it wouldn’t make any

sense to be able to sum dishes. But don’t worry; the Streams API also supplies primitive stream

specializations that support specialized methods to work with streams of numbers.

146

5.6.1. Primitive stream specializations

Java 8 introduces three primitive specialized stream interfaces to tackle this issue, IntStream,

DoubleStream, and LongStream, that respectively specialize the elements of a stream to be int,

long, and double—and thereby avoid hidden boxing costs. Each of these interfaces brings new

methods to perform common numeric reductions such as sum to calculate the sum of a numeric

stream and max to find the maximum element. In addition, they have methods to convert back

to a stream of objects when necessary. The thing to remember is that these specializations aren’t

more complexity about streams but instead more complexity caused by boxing—the

(efficiency-based) difference between int and Integer and so on.

Mapping to a numeric stream

The most common methods you’ll use to convert a stream to a specialized version are mapToInt,

mapToDouble, and mapToLong. These methods work exactly like the method map that you saw

earlier but return a specialized stream instead of a Stream<T>. For example, you can use

mapToInt as follows to calculate the sum of calories in the menu:

Here, the method mapToInt extracts all the calories from each dish (represented as an Integer)

and returns an IntStream as the result (rather than a Stream<Integer>). You can then call the

sum method defined on the IntStream interface to calculate the sum of calories! Note that if the

stream were empty, sum would return 0 by default. IntStream also supports other convenience

methods such as max, min, and average.

Converting back to a stream of objects

Similarly, once you have a numeric stream, you may be interested in converting it back to a

nonspecialized stream. For example, the operations of an IntStream are restricted to produce

primitive integers: the map operation of an IntStream takes a lambda that takes an int and

produces an int (an IntUnaryOperator). But you may want to produce a different value such as a

Dish. For this you need to access the operations defined in the Streams interface that are more

general. To convert from a primitive stream to a general stream (each int will be boxed to an

Integer) you can use the method boxed as follows:

147

You’ll learn in the next section that boxed is particularly useful when you deal with numeric

ranges that need to be boxed into a general stream.

Default values: OptionalInt

The sum example was convenient because it has a default value: 0. But if you want to calculate

the maximum element in an IntStream, you need something different because 0 is a wrong

result. How can you differentiate that the stream has no element and that the real maximum is 0?

Earlier we introduced the Optional class, which is a container that indicates the presence or

absence of a value. Optional can be parameterized with reference types such as Integer, String,

and so on. There’s a primitive specialized version of Optional as well for the three primitive

stream specializations: OptionalInt, OptionalDouble, and OptionalLong.

For example, you can find the maximal element of an IntStream by calling the max method,

which returns an OptionalInt:

OptionalInt maxCalories = menu.stream()

.mapToInt(Dish::getCalories)

.max();

You can now process the OptionalInt explicitly to define a default value if there’s no maximum:

5.6.2. Numeric ranges

A common use case when dealing with numbers is working with ranges of numeric values. For

example, suppose you’d like to generate all numbers between 1 and 100. Java 8 introduces two

static methods available on IntStream and LongStream to help generate such ranges: range and

rangeClosed. Both methods take the starting value of the range as the first parameter and the

end value of the range as the second parameter. But range is exclusive, whereas rangeClosed is

inclusive. Let’s look at an example:

148

Here you use the rangeClosed method to generate a range of all numbers from 1 to 100. It

produces a stream so you can chain the filter method to select only even numbers. At this stage

no computation has been done. Finally, you call count on the resulting stream. Because count is

a terminal operation, it will process the stream and return the result 50, which is the number of

even numbers from 1 to 100, inclusive. Note that by comparison, if you were using

IntStream.range(1, 100) instead, the result would be 49 even numbers because range is

exclusive.

5.6.3. Putting numerical streams into practice: Pythagorean triples

We now look at a more difficult example so you can solidify what you’ve learned about numeric

streams and all the stream operations you’ve learned so far. Your mission, if you choose to

accept it, is to create a stream of Pythagorean triples.

Pythagorean triple

So what’s a Pythagorean triple? We have to go back a few years in the past. In one of your

exciting math classes, you learned that the famous Greek mathematician Pythagoras discovered

that certain triples of numbers (a, b, c) satisfy the formula a * a + b * b = c * c where a, b, and c

are integers. For example, (3, 4, 5) is a valid Pythagorean triple because 3 * 3 + 4 * 4 = 5 * 5 or 9

+ 16 = 25. There are an infinite number of such triples. For example, (5, 12, 13), (6, 8, 10), and (7,

24, 25) are all valid Pythagorean triples. Such triples are useful because they describe the three

side lengths of a right-angled triangle, as illustrated in figure 5.9.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

149

Figure 5.9. The Pythagorean theorem

Representing a triple

So where do you start? The first step is to define a triple. Instead of (more properly) defining a

new class to represent a triple, you can use an array of int with three elements, for example, new

int[]{3, 4, 5} to represent the tuple (3, 4, 5). You can now access each individual component of

the tuple using array indexing.

Filtering good combinations

Let’s assume someone provides you with the first two numbers of the triple: a and b. How do

you know whether that will form a good combination? You need to test whether the square root

of a * a + b * b is an integer number; that is, it has no fractional part, which in Java can be

expressed using expr % 1.0. If it’s not an integer, that means c is not an integer. You can express

this requirement as a filter operation (you’ll see how to connect it later to form valid code):

filter(b -> Math.sqrt(a*a + b*b) % 1 == 0)

Assuming that surrounding code has given a value for a and assuming stream provides possible

values for b, filter will select only those values for b that can form a Pythagorean triple with a.

You may be wondering what the line Math.sqrt(a*a + b*b) % 1 == 0 is about. It’s basically a way

to test whether Math.sqrt(a*a + b*b) returns an integer result. The condition will fail if the

result of the square root produces a number with a decimal such as 9.1 (9.0 is valid).

150

Generating tuples

Following the filter, you know that both a and b can form a correct combination. You now need

to create a triple. You can use the map operation to transform each element into a Pythagorean

triple as follows:

stream.filter(b -> Math.sqrt(a*a + b*b) % 1 == 0)

.map(b -> new int[]{a, b, (int) Math.sqrt(a * a + b * b)});

Generating b values

You’re getting closer! You now need to generate values for b. You saw that Stream .rangeClosed

allows you to generate a stream of numbers in a given interval. You can use it to provide

numeric values for b, here 1 to 100:

IntStream.rangeClosed(1, 100)

.filter(b -> Math.sqrt(a*a + b*b) % 1 == 0)

.boxed()

.map(b -> new int[]{a, b, (int) Math.sqrt(a * a + b * b)});

Note that you call boxed after the filter to generate a Stream<Integer> from the IntStream

returned by rangeClosed. This is because your map returns an array of int for each element of

the stream. The map method from an IntStream expects only another int to be returned for each

element of the stream, which isn’t what you want! You can rewrite this using the method

mapToObj of an IntStream, which returns an object-valued stream:

IntStream.rangeClosed(1, 100)

.filter(b -> Math.sqrt(a*a + b*b) % 1 == 0)

.mapToObj(b -> new int[]{a, b, (int) Math.sqrt(a * a + b * b)});

Generating a values

There’s one crucial piece that we assumed was given: the value for a. You now have a stream that

produces Pythagorean triples provided the value a is known. How can you fix this? Just like with

b, you need to generate numeric values for a! The final solution is as follows:

Stream<int[]> pythagoreanTriples =

IntStream.rangeClosed(1, 100).boxed()

.flatMap(a ->

151

IntStream.rangeClosed(a, 100)

.filter(b -> Math.sqrt(a*a + b*b) % 1 == 0)

.mapToObj(b ->

new int[]{a, b, (int)Math.sqrt(a * a + b * b)})

);

Okay, what’s the flatMap about? First, you create a numeric range from 1 to 100 to generate

values for a. For each given value of a you’re creating a stream of triples. Mapping a value of a to

a stream of triples would result in a stream of streams! The flatMap method does the mapping

and also flattens all the generated streams of triples into a single stream. As a result you produce

a stream of triples. Note also that you change the range of b to be a to 100. There’s no need to

start the range at the value 1 because this would create duplicate triples (for example, (3, 4, 5)

and (4, 3, 5)).

Running the code

You can now run your solution and select explicitly how many triples you’d like to return from

the generated stream using the limit operation that you saw earlier:

pythagoreanTriples.limit(5)

.forEach(t ->

System.out.println(t[0] + ", " + t[1] + ", " + t[2]));

This will print

3, 4, 5

5, 12, 13

6, 8, 10

7, 24, 25

8, 15, 17

Can you do better?

The current solution isn’t optimal because you calculate the square root twice. One possible way

to make your code more compact is to generate all triples of the form (a*a, b*b, a*a+b*b) and

then filter the ones that match your criteria:

152

5.7. Building streams

Hopefully by now you’re convinced that streams are very powerful and useful to express data

processing queries. So far, you were able to get a stream from a collection using the stream

method. In addition, we showed you how to create numerical streams from a range of numbers.

But you can create streams in many more ways! This section shows how you can create a stream

from a sequence of values, from an array, from a file, and even from a generative function to

create infinite streams!

5.7.1. Streams from values

You can create a stream with explicit values by using the static method Stream.of, which can

take any number of parameters. For example, in the following code you create a stream of

strings directly using Stream.of. You then convert the strings to uppercase before printing them

one by one:

Stream<String> stream = Stream.of("Java 8 ", "Lambdas ", "In ", "Action");

stream.map(String::toUpperCase).forEach(System.out::println);

You can get an empty stream using the empty method as follows:

Stream<String> emptyStream = Stream.empty();

5.7.2. Streams from arrays

You can create a stream from an array using the static method Arrays.stream, which takes an

array as parameter. For example, you can convert an array of primitive ints into an IntStream as

follows:

153

5.7.3. Streams from files

Java’s NIO API (non-blocking I/O), which is used for I/O operations such as processing a file,

has been updated to take advantage of the Streams API. Many static methods in

java.nio.file.Files return a stream. For example, a useful method is Files.lines, which returns a

stream of lines as strings from a given file. Using what you’ve learned so far, you could use this

method to find out the number of unique words in a file as follows:

You use Files.lines to return a stream where each element is a line in the given file. You then

split each line into words by calling the split method on line. Notice how you use flatMap to

produce one flattened stream of words instead of multiple streams of words for each line. Finally,

you count each distinct word in the stream by chaining the methods distinct and count.

5.7.4. Streams from functions: creating infinite streams!

The Streams API provides two static methods to generate a stream from a function:

Stream.iterate and Stream.generate. These two operations let you create what we call an infinite

stream: a stream that doesn’t have a fixed size like when you create a stream from a fixed

collection. Streams produced by iterate and generate create values on demand given a function

and can therefore calculate values forever! It’s generally sensible to use limit(n) on such streams

to avoid printing an infinite number of values.

Iterate

Let’s look at a simple example of how to use iterate before we explain it:

Stream.iterate(0, n -> n + 2)

.limit(10)

.forEach(System.out::println);

154

The iterate method takes an initial value, here 0, and a lambda (of type Unary-Operator<T>) to

apply successively on each new value produced. Here you return the previous element added

with 2 using the lambda n -> n + 2. As a result, the iterate method produces a stream of all even

numbers: the first element of the stream is the initial value 0. Then it adds 2 to produce the new

value 2; it adds 2 again to produce the new value 4 and so on. This iterate operation is

fundamentally sequential because the result depends on the previous application. Note that this

operation produces an infinite stream—the stream doesn’t have an end because values are

computed on demand and can be computed forever. We say the stream is unbounded. As we

discussed earlier, this is a key difference between a stream and a collection. You’re using the

limit method to explicitly limit the size of the stream. Here you select only the first 10 even

numbers. You then call the forEach terminal operation to consume the stream and print each

element individually.

In general, you should use iterate when you need to produce a sequence of successive values, for

example, a date followed by its next date: January 31, February 1, and so on. To see a more

difficult example of how you can apply iterate, try out Quiz 5.4.

Quiz 5.4: Fibonacci tuples series

The Fibonacci series is famous as a classic programming exercise. The numbers in the following

sequence are part of the Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.... The first two numbers

of the series are 0 and 1, and each subsequent number is the sum of the previous two.

The series of Fibonacci tuples is similar; you have a sequence of a number and its successor in

the series: (0, 1), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), (13, 21)....

Your task is to generate the first 20 elements of the series of Fibonacci tuples using the iterate

method!

Let us help you get started. The first problem is that the iterate method takes a

UnaryOperator<T> as argument and you need a stream of tuples such as (0, 1). You can, again

rather sloppily, use an array of two elements to represent a tuple. For example, new int[]{0, 1}

represents the first element of the Fibonacci series (0, 1). This will be the initial value of the

iterate method:

Stream.iterate(new int[]{0, 1}, ???)

.limit(20)

.forEach(t -> System.out.println("(" + t[0] + "," + t[1] +")"));

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

155

In this quiz, you need to figure out the highlighted code with the ???. Remember that iterate will

apply the given lambda successively.

Answer:

Stream.iterate(new int[]{0, 1},

t -> new int[]{t[1], t[0]+t[1]})

.limit(20)

.forEach(t -> System.out.println("(" + t[0] + "," + t[1] +")"));

How does it work? iterate needs a lambda to specify the successor element. In the case of the

tuple (3, 5) the successor is (5, 3+5) = (5, 8). The next one is (8, 5+8). Can you see the pattern?

Given a tuple, the successor is (t[1], t[0] + t[1]). This is what the following lambda specifies: t ->

new int[]{t[1],t[0] + t[1]}. By running this code you’ll get the series (0, 1), (1, 1), (1, 2), (2, 3), (3,

5), (5, 8), (8, 13), (13, 21).... Note that if you just wanted to print the normal Fibonacci series,

you could use a map to extract only the first element of each tuple:

Stream.iterate(new int[]{0, 1},

t -> new int[]{t[1],t[0] + t[1]})

.limit(10)

.map(t -> t[0])

.forEach(System.out::println);

This code will produce the Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34....

Generate

Similarly to the method iterate, the method generate lets you produce an infinite stream of

values computed on demand. But generate doesn’t apply successively a function on each new

produced value. It takes a lambda of type Supplier<T> to provide new values. Let’s look at an

example of how to use it:

Stream.generate(Math::random)

.limit(5)

.forEach(System.out::println);

This code will generate a stream of five random double numbers from 0 to 1. For example, one

run gives the following:

156

0.9410810294106129

0.6586270755634592

0.9592859117266873

0.13743396659487006

0.3942776037651241

The static method Math.random is used as a generator for new values. Again you limit the size

of the stream explicitly using the limit method; otherwise the stream would be unbounded!

You may be wondering if there’s anything else useful you can do using the method generate. The

supplier we used (a method reference to Math.random) was stateless: it wasn’t recording any

values somewhere that can be used in later computations. But a supplier doesn’t have to be

stateless. You can create a supplier that stores state that it can modify and use when generating

the next value of the stream. As an example, we show how you can also create the Fibonacci

series from Quiz 5.4 using generate so you can compare it with the approach using the iterate

method! But it’s important to note that a supplier that’s stateful isn’t safe to use in parallel code.

So what follows is shown just for completeness but should be avoided! We discuss the problem

of operations with side effects and parallel streams further in chapter 7.

We’ll use an IntStream in our example to illustrate code that’s designed to avoid boxing

operations. The generate method on IntStream takes an IntSupplier instead of a Supplier<T>.

For example, here’s how to generate an infinite stream of ones:

IntStream ones = IntStream.generate(() -> 1);

You saw in the chapter 3 that lambdas let you create an instance of a functional interface by

providing the implementation of the method directly inline. You can also pass an explicit object

as follows by implementing the getAsInt method defined in the IntSupplier interface (although

this seems gratuitously long-winded, please bear with us):

IntStream twos = IntStream.generate(new IntSupplier(){

public int getAsInt(){

return 2;

}

});

The generate method will use the given supplier and repeatedly call the getAsInt method, which

always returns 2. But the difference between the anonymous class used here and a lambda is

that the anonymous class can define state via fields, which the getAsInt method can modify. This

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

157

is an example of a side effect. All lambdas you’ve seen so far were side-effect free; they didn’t

change any state.

To come back to our Fibonacci tasks, what you need to do now is create an IntSupplier that

maintains in its state the previous value in the series, so getAsInt can use it to calculate the next

element. In addition, it can update the state of the IntSupplier for the next time it’s called. The

following code shows how to create an IntSupplier that will return the next Fibonacci element

when it’s called:

IntSupplier fib = new IntSupplier(){

private int previous = 0;

private int current = 1;

public int getAsInt(){

int oldPrevious = this.previous;

int nextValue = this.previous + this.current;

this.previous = this.current;

this.current = nextValue;

return oldPrevious;

}

};

IntStream.generate(fib).limit(10).forEach(System.out::println);

In the preceding code you create an instance of IntSupplier. This object has mutable state: it

tracks the previous Fibonacci element and the current Fibonacci element in two instance

variables. The getAsInt method changes the state of the object when it’s called so that it

produces new values on each call. In comparison, our approach using iterate was purely

immutable: you didn’t modify existing state but were creating new tuples at each iteration.

You’ll learn in chapter 7 that you should always prefer an immutable approach in order to

process a stream in parallel and expect a correct result.

Note that because you’re dealing with a stream of infinite size, you have to limit its size explicitly

using the operation limit; otherwise, the terminal operation (in this case forEach) will compute

forever. Similarly, you can’t sort or reduce an infinite stream because all elements need to be

processed, but this would take forever because the stream is infinite!

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

158

5.8. Summary

It’s been a long but rewarding chapter! You can now process collections more effectively. Indeed,

streams let you express sophisticated data processing queries concisely. In addition, streams can

be parallelized transparently. Here are some key concepts to take away from this chapter:

 The Streams API lets you express complex data processing queries. Common stream operations are

summarized in table 5.1.

 You can filter and slice a stream using the filter, distinct, skip, and limitmethods.

 You can extract or transform elements of a stream using themap and flatMapmethods.

 You can find elements in a stream using the findFirst and findAny methods. You can match a given

predicate in a stream using the allMatch, noneMatch, and anyMatchmethods.

 These methods make use of short-circuiting: a computation stops as soon as a result is found; there’s

no need to process the whole stream.

 You can combine all elements of a stream iteratively to produce a result using the reduce method, for

example, to calculate the sum or find the maximum of a stream.

 Some operations such as filter and map are stateless; they don’t store any state. Some operations

such as reduce store state to calculate a value. Some operations such as sorted and distinct also

store state because they need to buffer all the elements of a stream before returning a new stream.

Such operations are called stateful operations.

 There are three primitive specializations of streams: IntStream, DoubleStream, and LongStream.

Their operations are also specialized accordingly.

 Streams can be created not only from a collection but also from values, arrays, files, and specific

methods such as iterate and generate.

 An infinite stream is a stream that has no fixed size.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

159

Chapter 6. Collecting data with streams

This chapter covers

 Creating and using a collector with the Collectors class

 Reducing streams of data to a single value

 Summarization as a special case of reduction

 Grouping and partitioning data

 Developing your own custom collectors

You learned in the previous chapter that streams help you process collections with database-like

operations. You can view Java 8 streams as fancy lazy iterators of sets of data. They support two

types of operations: intermediate operations such as filter or map and terminal operations such

as count, findFirst, forEach, and reduce. Intermediate operations can be chained to convert a

stream into another stream. These operations don’t consume from a stream; their purpose is to

set up a pipeline of streams. By contrast, terminal operations do consume from a stream—to

produce a final result (for example, returning the largest element in a stream). They can often

shorten computations by optimizing the pipeline of a stream.

We already used the collect terminal operation on streams in chapters 4 and 5, but we employed

it there mainly to combine all the elements of a Stream into a List. In this chapter, you’ll

discover that collect is a reduction operation, just like reduce, that takes as argument various

recipes for accumulating the elements of a stream into a summary result. These recipes are

defined by a new Collector interface, so it’s important to distinguish Collection, Collector, and

collect!

Here are some example queries of what you’ll be able to do using collect and collectors:

 Group a list of transactions by currency to obtain the sum of the values of all transactions with that

currency (returning aMap<Currency, Integer>)

 Partition a list of transactions into two groups: expensive and not expensive (returning a

Map<Boolean, List<Transaction>>)

 Create multilevel groupings such as grouping transactions by cities and then further categorizing by

whether they’re expensive or not (returning a Map<String, Map<Boolean,

List<Transaction>>>)

Excited? Great, let’s start by exploring an example that benefits from collectors. Imagine a

scenario where you have a List of Transactions, and you want to group them based on their

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

160

nominal currency. In pre-lambda Java, even a simple use case like this is cumbersome to

implement, as shown in the following listing.

Listing 6.1. Grouping transactions by currency in imperative style

If you’re an experienced Java developer, you’ll probably feel comfortable writing something like

this, but you have to admit that it’s a lot of code for such a simple task. Even worse, this is

probably harder to read than to write! The purpose of the code isn’t immediately evident at first

glance, even though it can be expressed in a straightforward manner in plain English: “Group a

list of transactions by their currency.” As you’ll learn in this chapter, you can achieve exactly the

same result with a single statement by using a more general Collector parameter to the collect

method on Stream rather than the toList special case used in the previous chapter:

Map<Currency, List<Transaction>> transactionsByCurrencies =

transactions.stream().collect(groupingBy(Transaction::getCurrency));

The comparison is quite embarrassing, isn’t it?

6.1. Collectors in a nutshell

The previous example clearly shows one of the main advantages of functional-style

programming over an imperative approach: you just have to formulate the result you want to

obtain the “what” and not the steps you need to perform to obtain it—the “how.” In the previous

example, the argument passed to the collect method is an implementation of the Collector

interface, which is a recipe for how to build a summary of the elements in the Stream. In the

previous chapter, the toList recipe just said “Make a list of each element in turn”; in this

example, the groupingBy recipe says “Make a Map whose keys are (currency) buckets and whose

values are a list of elements in those buckets.”

161

The difference between the imperative and functional versions of this example is even more

pronounced if you perform multilevel groupings: in this case the imperative code quickly

becomes harder to read, maintain, and modify due to the number of deeply nested loops and

conditions required. In comparison, the functional-style version, as you’ll discover in section 6.3,

can be easily enhanced with an additional collector.

6.1.1. Collectors as advanced reductions

This last observation brings up another typical benefit of a well-designed functional API: its

higher degree of composability and reusability. Collectors are extremely useful because they

provide a concise yet flexible way to define the criteria that collect uses to produce the resulting

collection. More specifically, invoking the collect method on a stream triggers a reduction

operation (parameterized by a Collector) on the elements of the stream itself. This reduction

operation, illustrated in figure 6.1, internally does for you what you had to code imperatively in

listing 6.1. It traverses each element of the stream and lets the Collector process them.

Figure 6.1. The reduction process grouping the transactions by

currency

Typically, the Collector applies a transforming function to the element (quite often this is the

identity transformation, which has no effect, for example, as in toList), and accumulates the

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

162

result in a data structure that forms the final output of this process. For instance, in our

transaction-grouping example shown previously, the transformation function extracts the

currency from each transaction, and subsequently the transaction itself is accumulated in the

resulting Map, using the currency as key.

The implementation of the methods of the Collector interface defines how to perform a

reduction operation on a stream, such as the one in our currency example. We investigate how

to create customized collectors in sections 6.5 and 6.6. But the Collectors utility class provides

lots of static factory methods to conveniently create an instance of the most common collectors

that are ready to use. The most straightforward and frequently used collector is the toList static

method, which gathers all the elements of a stream into a List:

List<Transaction> transactions =

transactionStream.collect(Collectors.toList());

6.1.2. Predefined collectors

In the rest of this chapter, we mainly explore the features of the predefined collectors, those that

can be created from the factory methods (such as groupingBy) provided by the Collectors class.

These offer three main functionalities:

 Reducing and summarizing stream elements to a single value

 Grouping elements

 Partitioning elements

We start with collectors that allow you to reduce and summarize. These are handy in a variety of

use cases such as finding the total amount of the transacted values in the list of transactions in

the previous example.

You’ll then see how to group the elements of a stream, generalizing the previous example to

multiple levels of grouping or combining different collectors to apply further reduction

operations on each of the resulting subgroups. We’ll also describe partitioning as a special case

of grouping, using a predicate, a one-argument function returning a boolean, as a grouping

function.

At the end of section 6.4 you’ll find a table summarizing all the predefined collectors explored in

this chapter. Finally, in section 6.5 you’ll learn more about the Collector interface before you

explore (section 6.6) how you can create your own custom collectors to be used in the cases not

covered by the factory methods of the Collectors class.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

163

6.2. Reducing and summarizing

To illustrate the range of possible collector instances that can be created from the Collectors

factory class, we’ll reuse the domain we introduced in the previous chapter: a menu consisting of

a list of delicious dishes!

As you just learned, collectors (the parameters to the Stream method collect) are typically used

in cases where it’s necessary to reorganize the stream’s items into a collection. But more

generally, they can be used every time you want to combine all the items in the stream into a

single result. This result can be of any type, as complex as a multilevel map representing a tree

or as simple as a single integer—perhaps representing the sum of all the calories in the menu.

We’ll look at both of these result types: single integers in section 6.2.2 and multilevel grouping

in section 6.3.1.

As a first simple example, let’s count the number of dishes in the menu, using the collector

returned by the counting factory method:

long howManyDishes = menu.stream().collect(Collectors.counting());

You can write this far more directly as

long howManyDishes = menu.stream().count();

but the counting collector can be especially useful when used in combination with other

collectors, as we demonstrate later.

In the rest of this chapter, we assume that you’ve imported all the static factory methods of the

Collectors class with

import static java.util.stream.Collectors.*;

so you can write counting() instead of Collectors.counting() and so on.

Let’s continue exploring simple predefined collectors by looking at how you can find the

maximum and minimum values in a stream.

6.2.1. Finding maximum andminimum in a stream of values

Suppose you want to find the highest-calorie dish in the menu. You can use two collectors,

Collectors.maxBy and Collectors.minBy, to calculate the maximum or minimum value in a

stream. These two collectors take a Comparator as argument to compare the elements in the

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

164

stream. Here you create a Comparator comparing dishes based on their calorie content and pass

it to Collectors.maxBy:

Comparator<Dish> dishCaloriesComparator =

Comparator.comparingInt(Dish::getCalories);

Optional<Dish> mostCalorieDish =

menu.stream()

.collect(maxBy(dishCaloriesComparator));

You may wonder what the Optional<Dish> is about. To answer this we need to ask the

question ”What if menu were empty?” There’s no dish to return! Java 8 introduces Optional,

which is a container that may or may not contain a value. Here it perfectly represents the idea

that there may or may not be a dish returned. We briefly mentioned it in chapter 5 when you

encountered the method findAny. Don’t worry about it for now; we devote chapter 10 to the

study of Optional<T> and its operations.

Another common reduction operation that returns a single value is to sum the values of a

numeric field of the objects in a stream. Alternatively, you may want to average the values. Such

operations are called summarization operations. Let’s see how you can express them using

collectors.

6.2.2. Summarization

The Collectors class provides a specific factory method for summing: Collectors .summingInt. It

accepts a function that maps an object into the int that has to be summed and returns a collector

that, when passed to the usual collect method, performs the requested summarization. So, for

instance, you can find the total number of calories in your menu list with

int totalCalories = menu.stream().collect(summingInt(Dish::getCalories));

Here the collection process proceeds as illustrated in figure 6.2. While traversing the stream

each dish is mapped into its number of calories, and this number is added to an accumulator

starting from an initial value (in this case the value is 0).

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

165

Figure 6.2. The aggregation process of the summingInt collector

The Collectors.summingLong and Collectors.summingDouble methods behave exactly the same

way and can be used where the field to be summed is respectively a long or a double.

But there’s more to summarization than mere summing; also available is a

Collectors .averagingInt, together with its averagingLong and averagingDouble counterparts, to

calculate the average of the same set of numeric values:

double avgCalories =

menu.stream().collect(averagingInt(Dish::getCalories));

So far, you’ve seen how to use collectors to count the elements in a stream, find the maximum

and minimum values of a numeric property of those elements, and calculate their sum and

average. Quite often, though, you may want to retrieve two or more of these results, and possibly

you’d like to do it in a single operation. In this case, you can use the collector returned by the

summarizingInt factory method. For example, you can count the elements in the menu and

166

obtain the sum, average, maximum, and minimum of the calories contained in each dish with a

single summarizing operation:

IntSummaryStatistics menuStatistics =

menu.stream().collect(summarizingInt(Dish::getCalories));

This collector gathers all that information in a class called IntSummaryStatistics that provides

convenient getter methods to access the results. Printing the menu-Statistic object produces the

following output:

IntSummaryStatistics{count=9, sum=4300, min=120,

average=477.777778, max=800}

As usual, there are corresponding summarizingLong and summarizingDouble factory methods

with associated types LongSummaryStatistics and DoubleSummaryStatistics; these are used

when the property to be collected is a primitive-type long or a double.

6.2.3. Joining Strings

The collector returned by the joining factory method concatenates into a single string all strings

resulting from invoking the toString method on each object in the stream. This means you can

concatenate the names of all the dishes in the menu as follows:

String shortMenu = menu.stream().map(Dish::getName).collect(joining());

Note that joining internally makes use of a StringBuilder to append the generated strings into

one. Also note that if the Dish class had a toString method returning the dish’s name, you’d

obtain the same result without needing to map over the original stream with a function

extracting the name from each dish:

String shortMenu = menu.stream().collect(joining());

Both produce the following string,

porkbeefchickenfrench friesriceseason fruitpizzaprawnssalmon

which isn’t very readable. Fortunately, the joining factory method has an overloaded version

that accepts a delimiter string between two consecutive elements, so you can obtain a

comma-separated list of the dishes’ names with

String shortMenu = menu.stream().map(Dish::getName).collect(joining(", "));

167

which, as expected, will generate

pork, beef, chicken, french fries, rice, season fruit, pizza, prawns, salmon

Until now, we’ve explored various collectors that reduce a stream to a single value. In the next

section, we demonstrate how all the reduction processes of this form are special cases of the

more general reduction collector provided by the Collectors.reducing factory method.

6.2.4. Generalized summarization with reduction

All the collectors we’ve discussed so far are, in reality, only convenient specializations of a

reduction process that can be defined using the reducing factory method. The

Collectors.reducing factory method is a generalization of all of them. The special cases discussed

earlier are arguably provided only for programmer convenience. (But remember that

programmer convenience and readability are of prime importance!) For instance, it’s possible to

calculate the total calories in your menu with a collector created from the reducing method as

follows:

int totalCalories = menu.stream().collect(reducing(

0, Dish::getCalories, (i, j) -> i + j));

It takes three arguments:

 The first argument is the starting value of the reduction operation and will also be the value returned

in the case of a stream with no elements, so clearly 0 is the appropriate value in the case of a numeric

sum.

 The second argument is the same function you used in section 6.2.2 to transform a dish into an int

representing its calorie content.

 The third argument is a BinaryOperator that aggregates two items into a single value of the same

type. Here, it just sums two ints.

Similarly, you could find the highest-calorie dish using the one-argument version of reducing as

follows:

Optional<Dish> mostCalorieDish =

menu.stream().collect(reducing(

(d1, d2) -> d1.getCalories() > d2.getCalories() ? d1 : d2));

You can think of the collector created with the one-argument reducing factory method as a

particular case of the three-argument method, which uses the first item in the stream as a

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

168

starting point and an identity function (that is, a function doing nothing more than returning its

input argument as is) as a transformation function. This also implies that the one-argument

reducing collector won’t have any starting point when passed to the collect method of an empty

stream and, as we explained in section 6.2.1, for this reason it returns an Optional<Dish> object.

Collect vs. reduce

We’ve discussed reductions a lot in the previous chapter and this one. You may naturally wonder

what the differences between the collect and reduce methods of the Stream interface are,

because often you can obtain the same results using either method. For instance, you can

achieve what is done by the toList Collector using the reduce method as follows:

Stream<Integer> stream = Arrays.asList(1, 2, 3, 4, 5, 6).stream();

List<Integer> numbers = stream.reduce(

new ArrayList<Integer>(),

(List<Integer> l, Integer e) -> {

l.add(e);

return l; },

(List<Integer> l1, List<Integer> l2) -> {

l1.addAll(l2);

return l1; });

This solution has two problems: a semantic one and a practical one. The semantic problem lies

in the fact that the reduce method is meant to combine two values and produce a new one; it’s

an immutable reduction. In contrast, the collect method is designed to mutate a container to

accumulate the result it’s supposed to produce. This means that the previous snippet of code is

misusing the reduce method because it’s mutating in place the List used as accumulator. As

you’ll see in more detail in the next chapter, using the reduce method with the wrong semantic is

also the cause of a practical problem: this reduction process can’t work in parallel because the

concurrent modification of the same data structure operated by multiple threads can corrupt the

List itself. In this case, if you want thread safety, you’ll need to allocate a new List every time,

which would impair performance by object allocation. This is the main reason why the collect

method is useful for expressing reduction working on a mutable container but crucially in a

parallel-friendly way, as you’ll learn later in the chapter.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

169

Collection framework flexibility: doing the same operation in different

ways

You can further simplify the previous sum example using the reducing collector by using a

reference to the sum method of the Integer class instead of the lambda expression you used to

encode the same operation. This results in the following:

Logically, this reduction operation proceeds as shown in figure 6.3, where an accumulator,

initialized with a starting value, is iteratively combined, using an aggregating function, with the

result of the application of the transforming function on each element of the stream.

Figure 6.3. The reduction process calculating the total number of

calories in the menu

The counting collector we mentioned at the beginning of section 6.2 is, in reality, similarly

implemented using the three-argument reducing factory method. It transforms each element in

the stream to an object of type Long with value 1 and then sums all these ones:

public static <T> Collector<T, ?, Long> counting() {

return reducing(0L, e -> 1L, Long::sum);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

170

}

Use of the generic ?wildcard

In the code snippet just shown, you probably noticed the ? wildcard, used as the second generic

type in the signature of the collector returned by the counting factory method. You should

already be familiar with this notation, especially if you use the Java Collection Framework quite

frequently. But here it means only that the type of the collector’s accumulator is unknown, or in

other words, the accumulator itself can be of any type. We used it here to exactly report the

signature of the method as originally defined in the Collectors class, but in the rest of the

chapter we avoid any wildcard notation to keep the discussion as simple as possible.

We already observed in chapter 5 that there’s another way to perform the same operation

without using a collector—by mapping the stream of dishes into the number of calories of each

dish and then reducing this resulting stream with the same method reference used in the

previous version:

int totalCalories =

menu.stream().map(Dish::getCalories).reduce(Integer::sum).get();

Note that, like any one-argument reduce operation on a stream, the invocation

reduce(Integer::sum) doesn’t return an int but an Optional<Integer> to manage in a null-safe

way the case of a reduction operation over an empty stream. Here you just extract the value

inside the Optional object using its get method. Note that in this case using the get method is

safe only because you’re sure that the stream of dishes isn’t empty. In general, as you’ll learn in

chapter 10, it’s safer to unwrap the value eventually contained in an Optional using a method

that also allows you to provide a default, such as orElse or orElseGet. Finally, and even more

concisely, you can achieve the same result by mapping the stream to an IntStream and then

invoking the sum method on it:

int totalCalories = menu.stream().mapToInt(Dish::getCalories).sum();

Choosing the best solution for your situation

Once again, this demonstrates how functional programming in general (and the new API based

on functional-style principles added to the Collections framework in Java 8 in particular) often

provides multiple ways to perform the same operation. This example also shows that collectors

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

171

are somewhat more complex to use than the methods directly available on the Streams interface,

but in exchange they offer higher levels of abstraction and generalization and are more reusable

and customizable.

Our suggestion is to explore the largest number of solutions possible for the problem at hand,

but always choose the most specialized one that’s general enough to solve it. This is often the

best decision for both readability and performance reasons. For instance, to calculate the total

calories in our menu, we’d prefer the last solution (using IntStream) because it’s the most

concise and likely also the most readable one. At the same time, it’s also the one that performs

best, because IntStream lets us avoid all the auto-unboxing operations, or implicit conversions

from Integer to int, that are useless in this case.

Next, take the time to test your understanding of how reducing can be used as a generalization

of other collectors by working through the exercise in Quiz 6.1.

Quiz 6.1: Joining strings with reducing

Which of the following statements using the reducing collector are valid replacements for this

joining collector (as used in section 6.2.3)?

String shortMenu = menu.stream().map(Dish::getName).collect(joining());

1.

String shortMenu = menu.stream().map(Dish::getName)

.collect(reducing((s1, s2) -> s1 + s2)).get();

2.

String shortMenu = menu.stream()

.collect(reducing((d1, d2) -> d1.getName() + d2.getName())).get();

3.

String shortMenu = menu.stream()

.collect(reducing("", Dish::getName, (s1, s2) -> s1 + s2));

Answer:

Statements 1 and 3 are valid, whereas 2 doesn’t compile.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

172

1. This converts each dish in its name, as done by the original statement using the joining

collector, and then reduces the resulting stream of strings using a String as accumulator and

appending to it the names of the dishes one by one.

2. This doesn’t compile because the one argument that reducing accepts is a

BinaryOperator<T> that’s a BiFunction<T,T,T>. This means that it wants a function taking two

arguments and returns a value of the same type, but the lambda expression used there has two

dishes as arguments but returns a string.

3. This starts the reduction process with an empty string as the accumulator, and when

traversing the stream of dishes it converts each dish to its name and appends this name to the

accumulator. Note that, as we mentioned, reducing doesn’t need the three arguments to return

an Optional because in the case of an empty stream it can return a more meaningful value,

which is the empty string used as the initial accumulator value.

Note that even though statements 1 and 3 are valid replacements for the joining collector,

they’ve been used here to demonstrate how the reducing one can be seen, at least conceptually,

as a generalization of all other collectors discussed in this chapter. Nevertheless, for all practical

purposes we always suggest using the joining collector for both readability and performance

reasons.

6.3. Grouping

A common database operation is to group items in a set, based on one or more properties. As

you saw in the earlier transactions-currency-grouping example, this operation can be

cumbersome, verbose, and error prone when implemented with an imperative style. But it can

be easily translated in a single, very readable statement by rewriting it in a more functional style

as encouraged by Java 8. As a second example of how this feature works, suppose you want to

classify the dishes in the menu according to their type, putting the ones containing meat in a

group, the ones with fish in another group, and all others in a third group. You can easily

perform this task using a collector returned by the Collectors.groupingBy factory method as

follows:

Map<Dish.Type, List<Dish>> dishesByType =

menu.stream().collect(groupingBy(Dish::getType));

This will result in the following Map:

173

{FISH=[prawns, salmon], OTHER=[french fries, rice, season fruit, pizza],

MEAT=[pork, beef, chicken]}

Here, you pass to the groupingBy method a Function (expressed in the form of a method

reference) extracting the corresponding Dish.Type for each Dish in the stream. We call this

Function a classification function because it’s used to classify the elements of the stream into

different groups. The result of this grouping operation, shown in figure 6.4, is a Map having as

map key the value returned by the classification function and as corresponding map value a list

of all the items in the stream having that classified value. In the menu-classification example a

key is the type of dish, and its value is a list containing all the dishes of that type.

Figure 6.4. Classification of an item in the stream during the grouping

process

But it isn’t always possible to use a method reference as a classification function, because you

may wish to classify using something more complex than a simple property accessor. For

instance, you could decide to classify as “diet” all dishes with 400 calories or fewer, set to

“normal” the dishes having between 400 and 700 calories, and set to “fat” the ones with more

than 700 calories. Because the author of the Dish class unhelpfully didn’t provide such an

operation as a method, you can’t use a method reference in this case, but you can express this

logic in a lambda expression:

public enum CaloricLevel { DIET, NORMAL, FAT }

Map<CaloricLevel, List<Dish>> dishesByCaloricLevel = menu.stream().collect(

groupingBy(dish -> {

if (dish.getCalories() <= 400) return CaloricLevel.DIET;

else if (dish.getCalories() <= 700) return

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

174

CaloricLevel.NORMAL;

else return CaloricLevel.FAT;

}));

Now you’ve seen how to group the dishes in the menu, both by their type and by calories, but

what if you want to use both criteria at the same time? Grouping is powerful because it

composes effectively. Let’s see how to do this.

6.3.1. Multilevel grouping

You can achieve multilevel grouping by using a collector created with a two-argument version of

the Collectors.groupingBy factory method, which accepts a second argument of type collector

besides the usual classification function. So to perform a two-level grouping, you can pass an

inner groupingBy to the outer groupingBy, defining a second-level criterion to classify the

stream’s items, as shown in the next listing.

Listing 6.2. Multilevel grouping

The result of this two-level grouping is a two-level Map like the following:

{MEAT={DIET=[chicken], NORMAL=[beef], FAT=[pork]},

FISH={DIET=[prawns], NORMAL=[salmon]},

OTHER={DIET=[rice, seasonal fruit], NORMAL=[french fries, pizza]}}

Here the outer Map has as keys the values generated by the first-level classification function:

“fish, meat, other.” The values of this Map are in turn other Maps, having as keys the values

generated by the second-level classification function: “normal, diet, or fat.” Finally, the

second-level Maps have as values the List of the elements in the stream returning the

corresponding first- and second-level key values when applied respectively to the first and

second classification functions: “salmon, pizza, etc.” This multilevel grouping operation can be

175

extended to any number of levels, and an n-level grouping has as a result an n-level Map

modeling an n-level tree structure.

Figure 6.5 shows how this structure is also equivalent to an n-dimensional table, highlighting

the classification purpose of the grouping operation.

Figure 6.5. Equivalence between n-level nested map and

n-dimensional classification table

In general, it helps to think that groupingBy works in terms of “buckets.” The first groupingBy

creates a bucket for each key. You then collect the elements in each bucket with the downstream

collector and so on to achieve n-level groupings!

6.3.2. Collecting data in subgroups

In the previous section, you saw that it’s possible to pass a second groupingBy collector to the

outer one to achieve a multilevel grouping. But more generally, the second collector passed to

the first groupingBy can be any type of collector, not just another groupingBy. For instance, it’s

possible to count the number of Dishes in the menu for each type, by passing the counting

collector as a second argument to the groupingBy collector:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

176

Map<Dish.Type, Long> typesCount = menu.stream().collect(

groupingBy(Dish::getType, counting()));

The result is the following Map:

{MEAT=3, FISH=2, OTHER=4}

Also note that the regular one-argument groupingBy(f), where f is the classification function, is

in reality just shorthand for groupingBy(f, toList()).

To give another example, you could rework the collector you already used to find the

highest-calorie dish in the menu to achieve a similar result, but now classified by the type of

dish:

Map<Dish.Type, Optional<Dish>> mostCaloricByType =

menu.stream()

.collect(groupingBy(Dish::getType,

maxBy(comparingInt(Dish::getCalories))));

The result of this grouping is then clearly a Map, having as keys the available types of Dishes and

as values the Optional<Dish>, wrapping the corresponding highest-calorie Dish for a given type:

{FISH=Optional[salmon], OTHER=Optional[pizza], MEAT=Optional[pork]}

Note

The values in this Map are Optionals because this is the resulting type of the collector generated

by the maxBy factory method, but in reality if there’s no Dish in the menu for a given type, that

type won’t have an Optional.empty() as value; it won’t be present at all as a key in the Map. The

groupingBy collector lazily adds a new key in the grouping Map only the first time it finds an

element in the stream, producing that key when applying on it the grouping criteria being used.

This means that in this case, the Optional wrapper isn’t very useful, because it’s not modeling a

value that could be eventually absent but is there incidentally, only because this is the type

returned by the reducing collector.

177

Adapting the collector result to a different type

Because the Optionals wrapping all the values in the Map resulting from the last grouping

operation aren’t very useful in this case, you may want to get rid of them. To achieve this, or

more generally, to adapt the result returned by a collector to a different type, you could use the

collector returned by the Collectors.collectingAndThen factory method, as shown in the

following listing.

Listing 6.3. Finding the highest-calorie Dish in each subgroup

This factory method takes two arguments, the collector to be adapted and a transformation

function, and returns another collector. This additional collector acts as a wrapper for the old

one and maps the value it returns using the transformation function as the last step of the collect

operation. In this case, the wrapped collector is the one created with maxBy, and the

transformation function, Optional::get, extracts the value contained in the Optional returned. As

we’ve said, here this is safe because the reducing collector will never return an Optional.empty().

The result is the following Map:

{FISH=salmon, OTHER=pizza, MEAT=pork}

It’s quite common to use multiple nested collectors, and at first the way they interact may not

always be obvious. Figure 6.6 helps you visualize how they work together. From the outermost

layer and moving inward, note the following:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

178

Figure 6.6. Combining the effect of multiple collectors by nesting one

inside the other

 The collectors are represented by the dashed lines, so groupingBy is the outermost one and groups

the menu stream into three substreams according to the different dishes’ types.

 The groupingBy collector wraps the collectingAndThen collector, so each substream resulting

from the grouping operation is further reduced by this second collector.

 The collectingAndThen collector wraps in turn a third collector, themaxBy one.

179

 The reduction operation on the substreams is then performed by the reducing collector, but the

collectingAndThen collector containing it applies the Optional::get transformation function to its

result.

 The three transformed values, being the highest-calorie Dishes for a given type (resulting from the

execution of this process on each of the three substreams), will be the values associated with the

respective classification keys, the types ofDishes, in theMap returned by the groupingBy collector.

Other examples of collectors used in conjunction with groupingBy

More generally, the collector passed as second argument to the groupingBy factory method will

be used to perform a further reduction operation on all the elements in the stream classified into

the same group. For example, you could also reuse the collector created to sum the calories of all

the dishes in the menu to obtain a similar result, but this time for each group of Dishes:

Map<Dish.Type, Integer> totalCaloriesByType =

menu.stream().collect(groupingBy(Dish::getType,

summingInt(Dish::getCalories)));

Yet another collector, commonly used in conjunction with groupingBy, is one generated by the

mapping method. This method takes two arguments: a function transforming the elements in a

stream and a further collector accumulating the objects resulting from this transformation. Its

purpose is to adapt a collector accepting elements of a given type to one working on objects of a

different type, by applying a mapping function to each input element before accumulating them.

To see a practical example of using this collector, suppose you want to know which CaloricLevels

are available in the menu for each type of Dish. You could achieve this result combining a

groupingBy and a mapping collector as follows:

Map<Dish.Type, Set<CaloricLevel>> caloricLevelsByType =

menu.stream().collect(

groupingBy(Dish::getType, mapping(

dish -> { if (dish.getCalories() <= 400) return CaloricLevel.DIET;

else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;

else return CaloricLevel.FAT; },

toSet())));

Here the transformation function passed to the mapping method maps a Dish into its

CaloricLevel, as you’ve seen before. The resulting stream of CaloricLevels is then passed to a

toSet collector, analogous to the toList one, but accumulating the elements of a stream into a Set

instead of into a List, to keep only the distinct values. As in earlier examples, this mapping

180

collector will then be used to collect the elements in each substream generated by the grouping

function, allowing you to obtain as a result the following Map:

{OTHER=[DIET, NORMAL], MEAT=[DIET, NORMAL, FAT], FISH=[DIET, NORMAL]}

From this you can easily figure out your choices. If you’re in the mood for fish and you’re on a

diet, you could easily find a dish; likewise, if you’re very hungry and want something with lots of

calories, you could satisfy your robust appetite by choosing something from the meat section of

the menu. Note that in the previous example, there are no guarantees about what type of Set is

returned. But by using toCollection, you can have more control. For example, you can ask for a

HashSet by passing a constructor reference to it:

Map<Dish.Type, Set<CaloricLevel>> caloricLevelsByType =

menu.stream().collect(

groupingBy(Dish::getType, mapping(

dish -> { if (dish.getCalories() <= 400) return CaloricLevel.DIET;

else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;

else return CaloricLevel.FAT; },

toCollection(HashSet::new))));

6.4. Partitioning

Partitioning is a special case of grouping: having a predicate (a function returning a boolean),

called a partitioning function, as a classification function. The fact that the partitioning function

returns a boolean means the resulting grouping Map will have a Boolean as a key type and

therefore there can be at most two different groups—one for true and one for false. For instance,

if you’re vegetarian or have invited a vegetarian friend to have dinner with you, you may be

interested in partitioning the menu into vegetarian and nonvegetarian dishes:

This will return the following Map:

{false=[pork, beef, chicken, prawns, salmon],

true=[french fries, rice, season fruit, pizza]}

So you could retrieve all the vegetarian dishes by getting from this Map the value indexed with

the key true:

181

List<Dish> vegetarianDishes = partitionedMenu.get(true);

Note that you could achieve the same result by just filtering the stream created from the menu

List with the same predicate used for partitioning and then collecting the result in an additional

List:

List<Dish> vegetarianDishes =

menu.stream().filter(Dish::isVegetarian).collect(toList());

6.4.1. Advantages of partitioning

Partitioning has the advantage of keeping both lists of the stream elements, for which the

application of the partitioning function returns true or false. So in the previous example, you can

obtain the List of the nonvegetarian Dishes by accessing the value of the key false in the

partitionedMenu Map, using two separate filtering operations: one with the predicate and one

with its negation. Also, as you already saw for grouping, the partitioningBy factory method has

an overloaded version to which you can pass a second collector, as shown here:

This will produce a two-level Map:

{false={FISH=[prawns, salmon], MEAT=[pork, beef, chicken]},

true={OTHER=[french fries, rice, season fruit, pizza]}}

Here the grouping of the dishes by their type is applied individually to both of the substreams of

vegetarian and nonvegetarian dishes resulting from the partitioning, producing a two-level Map

that’s similar to the one you obtained when you performed the two-level grouping in section

6.3.1. As another example, you can reuse your earlier code to find the most caloric dish among

both vegetarian and nonvegetarian dishes:

Map<Boolean, Dish> mostCaloricPartitionedByVegetarian =

menu.stream().collect(

partitioningBy(Dish::isVegetarian,

collectingAndThen(

maxBy(comparingInt(Dish::getCalories)),

Optional::get)));

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

182

That will produce the following result:

{false=pork, true=pizza}

We started this section by saying that you can think of partitioning as a special case of grouping.

The analogies between the groupingBy and partitioningBy collectors don’t end here; as you’ll see

in the next quiz, you can also perform multilevel partitioning in a way similar to what you did

for grouping in section 6.3.1.

Quiz 6.2: Using partitioningBy

As you’ve seen, like the groupingBy collector, the partitioningBy collector can be used in

combination with other collectors. In particular it could be used with a second partitioningBy

collector to achieve a multilevel partitioning. What will be the result of the following multilevel

partitionings?

1.

menu.stream().collect(partitioningBy(Dish::isVegetarian,

partitioningBy(d -> d.getCalories() > 500)));

2.

menu.stream().collect(partitioningBy(Dish::isVegetarian,

partitioningBy(Dish::getType)));

3.

menu.stream().collect(partitioningBy(Dish::isVegetarian,

counting()));

Answer:

1. This is a valid multilevel partitioning, producing the following two-level Map:

{ false={false=[chicken, prawns, salmon], true=[pork, beef]},

true={false=[rice, season fruit], true=[french fries, pizza]}}

2. This won’t compile because partitioningBy requires a predicate, a function returning a

boolean. And the method reference Dish::getType can’t be used as a predicate.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

183

3. This counts the number of items in each partition, resulting in the following Map:

{false=5, true=4}

To give one last example of how you can use the partitioningBy collector, we’ll put aside the

menu data model and look at something a bit more complex but also more interesting:

partitioning numbers into prime and nonprime.

6.4.2. Partitioning numbers into prime and nonprime

Suppose you want to write a method accepting as argument an int n and partitioning the first n

natural numbers into prime and nonprime. But first, it will be useful to develop a predicate that

tests to see if a given candidate number is prime or not:

A simple optimization is to test only for factors less than or equal to the square root of the

candidate:

public boolean isPrime(int candidate) {

int candidateRoot = (int) Math.sqrt((double) candidate);

return IntStream.rangeClosed(2, candidateRoot)

.noneMatch(i -> candidate % i == 0);

}

Now the biggest part of the job is done. To partition the first n numbers into prime and

nonprime, it’s enough to create a stream containing those n numbers and reduce it with a

partitioningBy collector using as predicate the isPrime method you just developed:

public Map<Boolean, List<Integer>> partitionPrimes(int n) {

return IntStream.rangeClosed(2, n).boxed()

.collect(

partitioningBy(candidate -> isPrime(candidate)));

}

184

We’ve now covered all the collectors that can be created using the static factory methods of the

Collectors class, showing practical examples of how they work. Table 6.1 brings them all together,

with the type they return when applied to a Stream<T> and a practical example of their use on a

Stream<Dish> named menuStream.

Table 6.1. The static factory methods of the Collectors class

Factory

method

Returned type Used to

toList List<T> Gather all the stream’s items in a List.

Example use: List<Dish> dishes = menuStream.collect(toList());

toSet Set<T> Gather all the stream’s items in a Set, eliminating

duplicates.

Example use: Set<Dish> dishes = menuStream.collect(toSet());

toCollection Collection<T> Gather all the stream’s items in the collection created

by the provided supplier.

Example use: Collection<Dish> dishes = menuStream.collect(toCollection(), ArrayList::new);

counting Long Count the number of items in the stream.

Example use: long howManyDishes = menuStream.collect(counting());

summingInt Integer Sum the values of an Integer property of the items in

the stream.

Example use: int totalCalories = menuStream.collect(summingInt(Dish::getCalories));

averagingInt Double Calculate the average value of an Integer property of

the items in the stream.

Example use: double avgCalories = menuStream.collect(averagingInt(Dish::getCalories));

summarizingInt IntSummary-Statistics Collect statistics regarding an Integer property of the

items in the stream, such as the maximum, minimum,

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

185

Factory

method

Returned type Used to

total, and average.

Example use: IntSummaryStatistics menuStatistics =

menuStream.collect(summarizingInt(Dish::getCalories));

joining String Concatenate the strings resulting from the invocation

of the toString method on each item of the stream.

Example use: String shortMenu = menuStream.map(Dish::getName).collect(joining(", "));

maxBy Optional<T> An Optional wrapping the maximal element in this

stream according to the given comparator or

Optional.empty() if the stream is empty.

Example use: Optional<Dish> fattest = menuStream.collect(maxBy(comparingInt(Dish::getCalories)));

minBy Optional<T> An Optional wrapping the minimal element in this

stream according to the given comparator or

Optional.empty() if the stream is empty.

Example use: Optional<Dish> lightest = menuStream.collect(minBy(comparingInt(Dish::getCalories)));

reducing The type produced by the

reduction operation

Reduce the stream to a single value starting from an

initial value used as accumulator and iteratively

combining it with each item of the stream using a

BinaryOperator.

Example use: int totalCalories = menuStream.collect(reducing(0, Dish::getCalories, Integer::sum));

collectingAndThen The type returned by the

transforming function

Wrap another collector and apply a transformation

function to its result.

Example use: int howManyDishes = menuStream.collect(collectingAndThen(toList(), List::size));

groupingBy Map<K, List<T>> Group the items in the stream based on the value of

one of their properties and use those values as keys in

the resulting Map.

186

Factory

method

Returned type Used to

Example use: Map<Dish.Type, List<Dish>> dishesByType =

menuStream.collect(groupingBy(Dish::getType));

partitioningBy Map<Boolean, List<T>> Partition the items in the stream based on the result of

the application of a predicate to each of them.

Example use: Map<Boolean, List<Dish>> vegetarianDishes =

menuStream.collect(partitioningBy(Dish::isVegetarian));

As we mentioned at the beginning of the chapter, all these collectors implement the Collector

interface, so in the remaining part of the chapter we investigate this interface in more detail. We

investigate the methods in that interface and then explore how you can implement your own

collectors.

6.5. The Collector interface

The Collector interface consists of a set of methods that provide a blueprint for how to

implement specific reduction operations (that is, collectors). You’ve seen many collectors that

implement the Collector interface, such as toList or groupingBy. This also implies that you’re

free to create customized reduction operations by providing your own implementation of the

Collector interface. In section 6.6 we show how you can implement the Collector interface to

create a collector to partition a stream of numbers into prime and nonprime more efficiently

than what you’ve seen so far.

To get started with the Collector interface, we focus on one of the first collectors you

encountered at the beginning of this chapter: the toList factory method, which gathers all the

elements of a stream in a List. We said that you’ll frequently use this collector in your day-to-day

job, but it’s also one that, at least conceptually, is straightforward to develop. Investigating in

more detail how this collector is implemented is a good way to understand how the Collector

interface is defined and how the functions returned by its methods are internally used by the

collect method.

Let’s start by taking a look at the definition of the Collector interface in the next listing, which

shows the interface signature together with the five methods it declares.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

187

Listing 6.4. The Collector interface

public interface Collector<T, A, R> {

Supplier<A> supplier();

BiConsumer<A, T> accumulator();

Function<A, R> finisher();

BinaryOperator<A> combiner();

Set<Characteristics> characteristics();

}

In this listing, the following definitions apply:

 T is the generic type of the items in the stream to be collected.

 A is the type of the accumulator, the object on which the partial result will be accumulated during the

collection process.

 R is the type of the object (typically, but not always, the collection) resulting from the collect

operation.

For instance, you could implement a ToListCollector<T> class that gathers all the elements of a

Stream<T> into a List<T> having the following signature

public class ToListCollector<T> implements Collector<T, List<T>, List<T>>

where, as we’ll clarify shortly, the object used for the accumulation process will also be the final

result of the collection process.

6.5.1. Making sense of the methods declared by Collector interface

We can now analyze one by one the five methods declared by the Collector interface. When we

do so, you’ll notice that each of the first four methods returns a function that will be invoked by

the collect method, whereas the fifth one, characteristics, provides a set of characteristics that’s

a list of hints used by the collect method itself to know which optimizations (for example,

parallelization) it’s allowed to employ while performing the reduction operation.

Making a new result container: the supplier method

The supplier method has to return a Supplier of an empty result—a parameterless function that

when invoked creates an instance of an empty accumulator used during the collection process.

Clearly, for a collector returning the accumulator itself as result, like our ToListCollector, this

188

empty accumulator will also represent the result of the collection process when performed on an

empty stream. In our ToListCollector the supplier will then return an empty List as follows:

public Supplier<List<T>> supplier() {

return () -> new ArrayList<T>();

}

Note that you could also just pass a constructor reference:

public Supplier<List<T>> supplier() {

return ArrayList::new;

}

Adding an element to a result container: the accumulator method

The accumulator method returns the function that performs the reduction operation. When

traversing the nth element in the stream, this function is applied with two arguments, the

accumulator being the result of the reduction (after having collected the first n–1 items of the

stream) and the nth element itself. The function returns void because the accumulator is

modified in place, meaning that its internal state is changed by the function application to

reflect the effect of the traversed element. For ToListCollector, this function merely has to add

the current item to the list containing the already traversed ones:

public BiConsumer<List<T>, T> accumulator() {

return (list, item) -> list.add(item);

You could instead use a method reference, which is more concise:

public BiConsumer<List<T>, T> accumulator() {

return List::add;

}

Applying the final transformation to the result container: the finisher

method

The finisher method has to return a function that’s invoked at the end of the accumulation

process, after having completely traversed the stream, in order to transform the accumulator

object into the final result of the whole collection operation. Often, as in the case of the

ToListCollector, the accumulator object already coincides with the final expected result. As a

189

consequence, there’s no need to perform a transformation, so the finisher method just has to

return the identity function:

public Function<List<T>, List<T>> finisher() {

return Function.identity();

}

These first three methods are enough to execute a sequential reduction of the stream that, at

least from a logical point of view, could proceed as in figure 6.7. The implementation details are

a bit more difficult in practice due to both the lazy nature of the stream, which could require a

pipeline of other intermediate operations to execute before the collect operation, and the

possibility, in theory, of performing the reduction in parallel.

Figure 6.7. Logical steps of the sequential reduction process

Merging two result containers: the combiner method

The combiner method, the last of the four methods that return a function used by the reduction

operation, defines how the accumulators resulting from the reduction of different subparts of

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

190

the stream are combined when the subparts are processed in parallel. In the toList case, the

implementation of this method is simple; just add the list containing the items gathered from

the second subpart of the stream to the end of the list obtained when traversing the first

subpart:

public BinaryOperator<List<T>> combiner() {

return (list1, list2) -> {

list1.addAll(list2);

return list1; }

}

The addition of this fourth method allows a parallel reduction of the stream. This uses the

fork/join framework introduced in Java 7 and the Spliterator abstraction that you’ll learn about

in the next chapter. It follows a process similar to the one shown in figure 6.8 and described in

detail here:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

191

Figure 6.8. Parallelizing the reduction process using the combiner

method

 The original stream is recursively split in substreams until a condition defining whether a stream

needs to be further divided becomes false (parallel computing is often slower than sequential

computing when the units of work being distributed are too small, and it’s pointless to generate many

more parallel tasks than you have processing cores).

 At this point all substreams can be processed in parallel, each of them using the sequential reduction

algorithm shown in figure 6.7.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

192

 Finally, all the partial results are combined pairwise using the function returned by the combiner

method of the collector. This is done by combining results corresponding to substreams associated

with each split of the original stream.

Characteristics method

The last method, characteristics, returns an immutable set of Characteristics, defining the

behavior of the collector—in particular providing hints about whether the stream can be reduced

in parallel and which optimizations are valid when doing so. Characteristics is an enumeration

containing three items:

 UNORDERED—The result of the reduction isn’t affected by the order in which the items in the

stream are traversed and accumulated.

 CONCURRENT—The accumulator function can be called concurrently from multiple threads, and

then this collector can perform a parallel reduction of the stream. If the collector isn’t also flagged as

UNORDERED, it can perform a parallel reduction only when it’s applied to an unordered data

source.

 IDENTITY_FINISH—This indicates the function returned by the finisher method is the identity

one, and its application can be omitted. In this case, the accumulator object is directly used as the final

result of the reduction process. This also implies that it’s safe to do an unchecked cast from the

accumulator A to the result R.

The ToListCollector developed so far is IDENTITY_FINISH, because the List used to

accumulate the elements in the stream is already the expected final result and doesn’t need any

further transformation, but it isn’t UNORDERED because if you apply it to an ordered stream

you want this ordering to be preserved in the resulting List. Finally, it’s CONCURRENT, but

following what we just said, the stream will be processed in parallel only if its underlying data

source is unordered.

6.5.2. Putting them all together

The five methods analyzed in the preceding subsection are everything you need to develop your

own ToListCollector, so you can implement it by putting all of them together, as the next listing

shows.

193

Listing 6.5. The ToListCollector

Note that this implementation isn’t identical to the one returned by the Collectors .toList

method, but it differs only in some minor optimizations. These optimizations are mostly related

to the fact that the collector provided by the Java API uses the Collections.emptyList() singleton

when it has to return an empty list. This means that it could be safely used in place of the

original Java as an example to gather a list of all the Dishes of a menu stream:

List<Dish> dishes = menuStream.collect(new ToListCollector<Dish>());

The remaining difference from this and the standard

194

List<Dish> dishes = menuStream.collect(toList());

formulation is that toList is a factory, whereas you have to use new to instantiate your

ToListCollector.

Performing a custom collect without creating a Collector

implementation

In the case of an IDENTITY_FINISH collection operation, there’s a further possibility of

obtaining the same result without developing a completely new implementation of the Collector

interface. Stream has an overloaded collect method accepting the three other

functions—supplier, accumulator, and combiner—having exactly the same semantics as the ones

returned by the corresponding methods of the Collector interface. So, for instance, it’s possible

to collect in a List all the items in a stream of dishes as follows:

We believe that this second form, even if more compact and concise than the former one, is

rather less readable. Also, developing an implementation of your custom collector in a proper

class promotes its reuse and helps avoid code duplication. It’s also worth noting that you’re not

allowed to pass any Characteristics to this second collect method, so it always behaves as an

IDENTITY_FINISH and CONCURRENT but not UNORDERED collector.

In the next section, you’ll take your new knowledge of implementing collectors to the next level.

You’ll develop your own custom collector for a more complex but hopefully more specific and

compelling use case.

6.6. Developing your own collector for better performance

In section 6.4, where we discussed partitioning, you created a collector, using one of the many

convenient factory methods provided by the Collectors class, which divides the first n natural

numbers into primes and nonprimes, as shown in the following listing.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

195

Listing 6.6. Partitioning the first n natural numbers into primes and

nonprimes

public Map<Boolean, List<Integer>> partitionPrimes(int n) {

return IntStream.rangeClosed(2, n).boxed()

.collect(partitioningBy(candidate -> isPrime(candidate));

}

There you achieved an improvement over the original isPrime method by limiting the number of

divisors to be tested against the candidate prime to those not bigger than the candidate’s square

root:

public boolean isPrime(int candidate) {

int candidateRoot = (int) Math.sqrt((double) candidate);

return IntStream.rangeClosed(2, candidateRoot)

.noneMatch(i -> candidate % i == 0);

}

Is there a way to obtain even better performances? The answer is yes, but for this you’ll have to

develop a custom collector.

6.6.1. Divide only by prime numbers

One possible optimization is to test only if the candidate number is divisible by prime numbers.

It’s pointless to test it against a divisor that’s not itself prime! So you can limit the test to only

the prime numbers found before the current candidate. The problem with the predefined

collectors you’ve used so far, and the reason you have to develop a custom one, is that during the

collecting process you don’t have access to the partial result. This means that when testing

whether a given candidate number is prime or not, you don’t have access to the list of the other

prime numbers found so far.

Suppose you had this list; you could pass it to the isPrime method and rewrite it as follows:

public static boolean isPrime(List<Integer> primes, int candidate) {

return primes.stream().noneMatch(i -> candidate % i == 0);

}

Also, you should implement the same optimization you used before and test only with primes

smaller than the square root of the candidate number. So you need a way to stop testing whether

196

the candidate is divisible by a prime as soon as the next prime is greater than the candidate’s

root. Unfortunately, there isn’t such a method available in the Streams API. You could use

filter(p -> p <= candidateRoot) to filter the prime numbers smaller than the candidate root. But

filter would process the whole stream before returning the adequate stream. If both the list of

primes and the candidate number were very large, this would be problematic. You don’t need to

do this; all you want is to stop once you find a prime that’s greater than the candidate root!

Therefore, you’ll create a method called takeWhile, which, given a sorted list and a predicate,

returns the longest prefix of this list whose elements satisfy the predicate:

Using this method, you can optimize the isPrime method by testing only the candidate prime

against only the primes that are not greater than its square root:

public static boolean isPrime(List<Integer> primes, int candidate){

int candidateRoot = (int) Math.sqrt((double) candidate);

return takeWhile(primes, i -> i <= candidateRoot)

.stream()

.noneMatch(p -> candidate % p == 0);

}

Note that this is an eager implementation of takeWhile. Ideally you’d like a lazy version of

takeWhile so it can be merged with the noneMatch operation. Unfortunately, implementing it

would be beyond the scope of this chapter because you’d need to get a grip on the Streams API

implementation.

With this new isPrime method in hand, you’re now ready to implement your own custom

collector. First, you need to declare a new class that implements the Collector interface. Then,

you need to develop the five methods required by the Collector interface.

197

Step 1: Defining the Collector class signature

Let’s start with the class signature, remembering that the Collector interface is defined as

public interface Collector<T, A, R>

where T, A, and R are respectively the type of the elements in the stream, the type of the object

used to accumulate partial results, and the type of the final result of the collect operation. In this

case, you want to collect streams of Integers while both the accumulator and the result types are

Map<Boolean, List<Integer>> (the same Map you obtained as a result of the former

partitioning operation in listing 6.6), having as keys true and false and as values respectively the

Lists of prime and nonprime numbers:

Step 2: Implementing the reduction process

Next, you need to implement the five methods declared in the Collector interface. The supplier

method has to return a function that when invoked creates the accumulator:

public Supplier<Map<Boolean, List<Integer>>> supplier() {

return () -> new HashMap<Boolean, List<Integer>>() {{

put(true, new ArrayList<Integer>());

put(false, new ArrayList<Integer>());

}};

}

Here you’re not only creating the Map that you’ll use as the accumulator, but you’re also

initializing it with two empty lists under the true and false keys. This is where you’ll add

respectively the prime and nonprime numbers during the collection process. The most

important method of your collector is the accumulator method, because it contains the logic

defining how the elements of the stream have to be collected. In this case, it’s also the key to

implementing the optimization we described previously. At any given iteration you can now

access the partial result of the collection process, which is the accumulator containing the prime

numbers found so far:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

198

In this method, you invoke the isPrime method, passing to it (together with the number for

which you want to test whether it’s prime or not) the list of the prime numbers found so far

(these are the values indexed by the true key in the accumulating Map). The result of this

invocation is then used as key to get the list of either the prime or nonprime numbers so you can

add the new candidate to the right list.

Step 3: Making the collector work in parallel (if possible)

The next method has to combine two partial accumulators in the case of a parallel collection

process, so in this case it just has to merge the two Maps by adding all the numbers in the prime

and nonprime lists of the second Map to the corresponding lists in the first Map:

public BinaryOperator<Map<Boolean, List<Integer>>> combiner() {

return (Map<Boolean, List<Integer>> map1,

Map<Boolean, List<Integer>> map2) -> {

map1.get(true).addAll(map2.get(true));

map1.get(false).addAll(map2.get(false));

return map1;

};

}

Note that in reality this collector can’t be used in parallel, because the algorithm is inherently

sequential. This means the combiner method won’t ever be invoked, and you could leave its

implementation empty (or better, throw an UnsupportedOperation-Exception). We decided to

implement it anyway only for completeness.

Step 4: The finisher method and the collector’s characteristic method

The implementation of the last two methods is quite straightforward: as we said, the

accumulator coincides with the collector’s result so it won’t need any further transformation,

and the finisher method returns the identity function:

public Function<Map<Boolean, List<Integer>>,

199

Map<Boolean, List<Integer>>> finisher() {

return Function.identity();

}

As for the characteristic method, we already said that it’s neither CONCURRENT nor

UNORDERED but is IDENTITY_FINISH:

public Set<Characteristics> characteristics() {

return Collections.unmodifiableSet(EnumSet.of(IDENTITY_FINISH));

}

The following listing shows the final implementation of PrimeNumbersCollector.

Listing 6.7. The PrimeNumbersCollector

200

You can now use this new custom collector in place of the former one created with the

partitioningBy factory method in section 6.4 and obtain exactly the same result:

public Map<Boolean, List<Integer>>

partitionPrimesWithCustomCollector(int n) {

return IntStream.rangeClosed(2, n).boxed()

.collect(new PrimeNumbersCollector());

}

6.6.2. Comparing collectors’ performances

The collector created with the partitioningBy factory method and the custom one you just

developed are functionally identical, but did you achieve your goal of improving the

performance of the partitioningBy collector with your custom one? Let’s write a quick harness to

check this:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

201

Note that a more scientific benchmarking approach would be to use a framework such as JMH,

but we didn’t want to add the complexity of using such a framework here and, for this use case,

the results provided by this small benchmarking class are accurate enough. This class partitions

the first million natural numbers into primes and nonprimes, invoking the method using the

collector created with the partitioningBy factory method 10 times and registering the fastest

execution. Running it on an Intel i5 2.4 GHz, it prints the following result:

Fastest execution done in 4716 msecs

Now replace partitionPrimes with partitionPrimesWithCustomCollector in the harness, in order

to test the performances of the custom collector you developed. Now the program prints

Fastest execution done in 3201 msecs

Not bad! This means you didn’t waste your time developing this custom collector for two

reasons: first, you learned how to implement your own collector when you need it, and second,

you achieved a performance improvement of around 32%.

Finally, it’s important to note that, as you did for the ToListCollector in listing 6.5, it’s possible

to obtain the same result by passing the three functions implementing the core logic of

PrimeNumbersCollector to the overloaded version of the collect method, taking them as

arguments:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

202

As you can see, in this way you can avoid creating a completely new class that implements the

Collector interface; the resulting code is more compact, even if it’s also probably less readable

and certainly less reusable.

6.7. Summary

Following are the key concepts you should take away from this chapter:

 collect is a terminal operation that takes as argument various recipes (called collectors) for

accumulating the elements of a stream into a summary result.

 Predefined collectors include reducing and summarizing stream elements into a single value, such as

calculating the minimum, maximum, or average. Those collectors are summarized in table 6.1.

 Predefined collectors let you group elements of a stream with groupingBy and partition elements of a

stream with partitioningBy.

 Collectors compose effectively to create multilevel groupings, partitions, and reductions.

 You can develop your own collectors by implementing the methods defined in the Collector interface.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

203

Chapter 7. Parallel data processing and performance

This chapter covers

 Processing data in parallel with parallel streams

 Performance analysis of parallel streams

 The fork/join framework

 Splitting a stream of data using a Spliterator

In the last three chapters, you’ve seen how the new Stream interface lets you manipulate

collections of data in a declarative way. We also explained that the shift from external to internal

iteration enables the native Java library to gain control over processing the elements of a stream.

This approach relieves Java developers from explicitly implementing optimizations necessary to

speed up the processing of collections of data. By far the most important benefit is the

possibility of executing a pipeline of operations on these collections that automatically makes

use of the multiple cores on your computer.

For instance, before Java 7, processing a collection of data in parallel was extremely

cumbersome. First, you needed to explicitly split the data structure containing your data into

subparts. Second, you needed to assign each of these subparts to a different thread. Third, you

needed to synchronize them opportunely to avoid unwanted race conditions, wait for the

completion of all threads, and finally combine the partial results. Java 7 introduced a framework

called fork/join to perform these operations more consistently and in a less error-prone way. We

explore this framework in section 7.2.

In this chapter, you’ll discover how the Stream interface gives you the opportunity to execute

operations in parallel on a collection of data without much effort. It lets you declaratively turn a

sequential stream into a parallel one. Moreover, you’ll see how Java can make this magic happen

or, more practically, how parallel streams work under the hood by employing the fork/join

framework introduced in Java 7. You’ll also discover that it’s important to know how parallel

streams work internally, because if you ignore this aspect, you could obtain unexpected (and

very likely wrong) results by misusing them.

In particular we’ll demonstrate that the way a parallel stream gets divided into chunks, before

processing the different chunks in parallel, can in some cases be the origin of these incorrect and

apparently unexplainable results. For this reason, you’ll learn how to take control of this

splitting process by implementing and using your own Spliterator.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

204

7.1. Parallel streams

In chapter 4, we briefly mentioned that the Stream interface allows you to process its elements

in parallel in a very convenient way: it’s possible to turn a collection into a parallel stream by

invoking the method parallelStream on the collection source. A parallel stream is a stream that

splits its elements into multiple chunks, processing each chunk with a different thread. Thus,

you can automatically partition the workload of a given operation on all the cores of your

multicore processor and keep all of them equally busy. Let’s experiment with this idea by using a

simple example.

Let’s suppose you need to write a method accepting a number n as argument and returning the

sum of all the numbers from 1 to the given argument. A straightforward (perhaps naïve)

approach is to generate an infinite stream of numbers, limiting it to the passed number, and

then reduce the resulting stream with a BinaryOperator that just sums two numbers, as follows:

In more traditional Java terms, this code is equivalent to its iterative counterpart:

public static long iterativeSum(long n) {

long result = 0;

for (long i = 1L; i <= n; i++) {

result += i;

}

return result;

}

This operation seems to be a good candidate to leverage parallelization, especially for large

values of n. But where do you start? Do you synchronize on the result variable? How many

threads do you use? Who does the generation of numbers? Who adds them up?

Don’t worry about all of this. It’s a much simpler problem to solve if you adopt parallel streams!

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

205

7.1.1. Turning a sequential stream into a parallel one

You can make the former functional reduction process (that is, summing) run in parallel by

turning the stream into a parallel one; call the method parallel on the sequential stream:

In the previous code, the reduction process used to sum all the numbers in the stream works in a

way that’s similar to what’s described in section 5.4.1. The difference is that the Stream is

internally divided into multiple chunks. As a result, the reduction operation can work on the

various chunks independently and in parallel, as shown in figure 7.1. Finally, the same reduction

operation combines the values resulting from the partial reductions of each substream,

producing the result of the reduction process on the whole initial stream.

Figure 7.1. A parallel reduction operation

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

206

Note that, in reality, calling the method parallel on a sequential stream doesn’t imply any

concrete transformation on the stream itself. Internally, a boolean flag is set to signal that you

want to run in parallel all the operations that follow the invocation to parallel. Similarly, you can

turn a parallel stream into a sequential one by just invoking the method sequential on it. Note

that you might think that you could achieve finer-grained control over which operations you

want to perform in parallel and which one sequentially while traversing the stream by

combining these two methods. For example, you could do something like the following:

stream.parallel()

.filter(...)

.sequential()

.map(...)

.parallel()

.reduce();

But the last call to parallel or sequential wins and affects the pipeline globally. In this example,

the pipeline will be executed in parallel because that’s the last call in the pipeline.

Configuring the thread pool used by parallel streams

Looking at the stream’s parallel method, you may wonder where the threads used by the parallel

stream come from, how many there are, and how you can customize the process.

Parallel streams internally use the default ForkJoinPool (you’ll learn more about the fork/join

framework in section 7.2), which by default has as many threads as you have processors, as

returned by Runtime.getRuntime().availableProcessors().

But you can change the size of this pool using the system property

java.util.concurrent.ForkJoinPool.common.parallelism, as in the following example:

System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "12");

This is a global setting, so it will affect all the parallel streams in your code. Conversely, it

currently isn’t possible to specify this value for a single parallel stream. In general, having the

size of the ForkJoinPool equal to the number of processors on your machine is a meaningful

default, and we strongly suggest that you not modify it unless you have a very good reason for

doing so.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

207

Returning to the numbers-summing exercise, we said that you can expect a significant

performance improvement in its parallel version when running it on a multicore processor. You

now have three methods executing exactly the same operation in three different ways (iterative

style, sequential reduction, and parallel reduction), so let’s see which is the fastest one!

7.1.2. Measuring stream performance

We claimed that the parallelized summing method should perform better than the sequential

and the iterative methods. Nevertheless, in software engineering guessing is never a good idea!

Especially when optimizing performance you should always follow three golden rules: measure,

measure, measure. To this purpose you can develop a method very similar to the basic harness

you used in section 6.6.2 to compare the performances of the two collectors partitioning

numbers into prime and nonprime, as shown in the following listing.

Listing 7.1. Measuring performance of a function summing the first n

numbers

public long measureSumPerf(Function<Long, Long> adder, long n) {

long fastest = Long.MAX_VALUE;

for (int i = 0; i < 10; i++) {

long start = System.nanoTime();

long sum = adder.apply(n);

long duration = (System.nanoTime() - start) / 1_000_000;

System.out.println("Result: " + sum);

if (duration < fastest) fastest = duration;

}

return fastest;

}

Here this method takes as arguments a function and a long. It applies the function 10 times on

the long passed to the method, registers the time taken by each execution in milliseconds, and

returns the duration of the fastest one. Supposing that you group all the methods you developed

previously into a class named ParallelStreams, you can use this harness to check how long the

sequential adder function takes to sum the first 10 million natural numbers:

System.out.println("Sequential sum done in: " +

measureSumPerf(ParallelStreams::sequentialSum, 10_000_000) + " msecs");

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

208

Note that the results should be taken with a grain of salt. Many factors will influence the

execution time, such as how many cores your machine supports! You can try this on your own

machine by running the code available on the book’s repository. Executing it on a MacBook pro

Intel i7 2.3 GHz quad-core, it prints the following:

Sequential sum done in: 97 msecs

You should expect that the iterative version using a traditional for loop runs much faster

because it works at a much lower level and, more important, doesn’t need to perform any boxing

or unboxing of the primitive values. If you try to measure its performance with

System.out.println("Iterative sum done in: " +

measureSumPerf(ParallelStreams::iterativeSum, 10_000_000) + " msecs");

you’ll obtain

Iterative sum done in: 2 msecs

Now let’s do the same with the parallel version of that function

System.out.println("Parallel sum done in: " +

measureSumPerf(ParallelStreams::parallelSum, 10_000_000) + " msecs");

and see what happens:

Parallel sum done in: 164 msecs

This is quite disappointing: the parallel version of the summing method is much slower than the

sequential one. How can you explain this unexpected result? There are actually two issues mixed

together:

 iterate generates boxed objects, which have to be unboxed to numbers before they can be added.

 iterate is difficult to divide into independent chunks to execute in parallel.

The second issue is particularly interesting because you need to keep a mental model that some

stream operations are more parallelizable than others. Specifically, the iterate operation is hard

to split into chunks that can be executed independently because the input of one function

application always depends on the result of the previous application, as illustrated in figure 7.2.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

209

Figure 7.2. iterate is inherently sequential.

This means that in this specific case the reduction process isn’t proceeding as depicted in figure

7.1: the whole list of numbers isn’t available at the beginning of the reduction process, making it

impossible to efficiently partition the stream in chunks to be processed in parallel. By flagging

the stream as parallel, you’re just adding to the sequential processing the overhead of allocating

each sum operation on a different thread.

This demonstrates how parallel programming can be tricky and sometimes counterintuitive.

When misused (for example, using an operation that’s not parallel-friendly, like iterate) it can

actually worsen the overall performance of your programs, so it’s mandatory to understand what

happens behind the scenes when you invoke that apparently magic parallel method.

Using more specialized methods

So how can you leverage your multicore processors and use the stream to perform a parallel sum

in an effective way? We discussed a method called LongStream.rangeClosed in chapter 5. This

method has two benefits compared to iterate:

 LongStream.rangeClosed works on primitive long numbers directly so there’s no boxing and

unboxing overhead.

 LongStream.rangeClosed produces ranges of numbers, which can be easily split into independent

chunks. For example, the range 1–20 can be split into 1–5, 6–10, 11–15, and 16–20.

Let’s first see how it performs on a sequential stream to see if the overhead associated with

unboxing is relevant:

public static long rangedSum(long n) {

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

210

return LongStream.rangeClosed(1, n)

.reduce(0L, Long::sum);

}

This time the output is

Ranged sum done in: 17 msecs

The numeric stream is much faster than the earlier sequential version, generated with the iterate

factory method, because the numeric stream avoids all the overhead caused by all the

unnecessary autoboxing and unboxing operations performed by the nonspecialized stream. This

is evidence that choosing the right data structures is often more important than parallelizing the

algorithm that uses them. But what happens if you try to use a parallel stream in this new

version that follows?

public static long parallelRangedSum(long n) {

return LongStream.rangeClosed(1, n)

.parallel()

.reduce(0L, Long::sum);

}

Now, passing this function to your test method

System.out.println("Parallel range sum done in: " +

measureSumPerf(ParallelStreams::parallelRangedSum, 10_000_000) +

" msecs");

you obtain

Parallel range sum done in: 1 msecs

Finally, you obtain a parallel reduction that’s faster than its sequential counterpart, because this

time the reduction operation can actually be executed as shown in figure 7.1. This also

demonstrates that using the right data structure and then making it work in parallel guarantees

the best performance.

Nevertheless, keep in mind that parallelization doesn’t come for free. The parallelization process

itself requires you to recursively partition the stream, assign the reduction operation of each

substream to a different thread, and then combine the results of these operations in a single

value. But moving data between multiple cores is also more expensive than you might expect, so

it’s important that work to be done in parallel on another core takes longer than the time

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

211

required to transfer the data from one core to another. In general, there are many cases where it

isn’t possible or convenient to use parallelization. But before you use a parallel Stream to make

your code faster, you have to be sure that you’re using it correctly; it’s not helpful to produce a

result in less time if the result will be wrong. Let’s look at a common pitfall.

7.1.3. Using parallel streams correctly

The main cause of errors generated by misuse of parallel streams is the use of algorithms that

mutate some shared state. Here’s another way to implement the sum of the first n natural

numbers but by mutating a shared accumulator:

public static long sideEffectSum(long n) {

Accumulator accumulator = new Accumulator();

LongStream.rangeClosed(1, n).forEach(accumulator::add);

return accumulator.total;

}

public class Accumulator {

public long total = 0;

public void add(long value) { total += value; }

}

It’s quite common to write this sort of code, especially for developers who are familiar with

imperative programming paradigms. This code closely resembles what you’re used to doing

when iterating imperatively a list of numbers: you initialize an accumulator and traverse the

elements in the list one by one, adding them on the accumulator.

What’s wrong with this code? Unfortunately, it’s irretrievably broken because it’s fundamentally

sequential. You have a data race on every access of total. And if you try to fix that with

synchronization, you’ll lose all your parallelism. To understand this, let’s try to turn the Stream

into a parallel one:

public static long sideEffectParallelSum(long n) {

Accumulator accumulator = new Accumulator();

LongStream.rangeClosed(1, n).parallel().forEach(accumulator::add);

return accumulator.total;

}

Try to run this last method with the harness of listing 7.1, also printing the result of each

execution:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

212

System.out.println("SideEffect parallel sum done in: " +

measurePerf(ParallelStreams::sideEffectParallelSum, 10_000_000L) + "

msecs");

You could obtain something like the following:

Result: 5959989000692

Result: 7425264100768

Result: 6827235020033

Result: 7192970417739

Result: 6714157975331

Result: 7497810541907

Result: 6435348440385

Result: 6999349840672

Result: 7435914379978

Result: 7715125932481

SideEffect parallel sum done in: 49 msecs

This time the performance of your method isn’t important: the only relevant thing is that each

execution returns a different result, all very distant from the correct value of 50000005000000.

This is caused by the fact that multiple threads are concurrently accessing the accumulator and

in particular executing total += value, which, despite its appearance, isn’t an atomic operation.

The origin of the problem is that the method invoked inside the forEach block has the side effect

of changing the mutable state of an object shared among multiple threads. It’s mandatory to

avoid these kinds of situations if you want to use parallel Streams without incurring similar bad

surprises.

Now you know that shared mutable state doesn’t play well with parallel streams and with

parallel computations in general. We’ll come back to this idea of avoiding mutation in chapters

13 and 14 when discussing functional programming in more detail. For now, keep in mind that

avoiding shared mutable state ensures that your parallel Stream will produce the right result.

Next, we’ll look at some practical advice you can use to figure out when it’s appropriate to use

parallel streams to gain performance.

7.1.4. Using parallel streams effectively

In general it’s impossible (and pointless) to try to give any quantitative hint on when to use a

parallel stream because any suggestion like “use a parallel stream only if you have at least one

thousand (or one million or whatever number you want) elements” could be correct for a

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

213

specific operation running on a specific machine, but it could be completely wrong in an even

marginally different context. Nonetheless, it’s at least possible to provide some qualitative

advice that could be useful when deciding whether it makes sense to use a parallel stream in a

certain situation:

 If in doubt, measure. Turning a sequential stream into a parallel one is trivial but not always the right

thing to do. As we already demonstrated in this section, a parallel stream isn’t always faster than the

corresponding sequential version. Moreover, parallel streams can sometimes work in a

counterintuitive way, so the first and most important suggestion when choosing between sequential

and parallel streams is to always check their performance with an appropriate benchmark.

 Watch out for boxing. Automatic boxing and unboxing operations can dramatically hurt performance.

Java 8 includes primitive streams (IntStream, LongStream, and DoubleStream) to avoid such

operations, so use them when possible.

 Some operations naturally perform worse on a parallel stream than on a sequential stream. In

particular, operations such as limit and findFirst that rely on the order of the elements are expensive

in a parallel stream. For example, findAny will perform better than findFirst because it isn’t

constrained to operate in the encounter order. You can always turn an ordered stream into an

unordered stream by invoking the method unordered on it. So, for instance, if you need N elements

of your stream and you’re not necessarily interested in the first N ones, calling limit on an unordered

parallel stream may execute more efficiently than on a stream with an encounter order (for example,

when the source is a List).

 Consider the total computational cost of the pipeline of operations performed by the stream. With N

being the number of elements to be processed and Q the approximate cost of processing one of these

elements through the stream pipeline, the product of N*Q gives a rough qualitative estimation of this

cost. A higher value for Q implies a better chance of good performance when using a parallel stream.

 For a small amount of data, choosing a parallel stream is almost never a winning decision. The

advantages of processing in parallel only a few elements aren’t enough to compensate for the

additional cost introduced by the parallelization process.

 Take into account how well the data structure underlying the stream decomposes. For instance, an

ArrayList can be split much more efficiently than a LinkedList, because the first can be evenly

divided without traversing it, as it’s necessary to do with the second. Also, the primitive streams

created with the range factory method can be decomposed quickly. Finally, as you’ll learn in section

7.3, you can get full control of this decomposition process by implementing your own Spliterator.

 The characteristics of a stream, and how the intermediate operations through the pipeline modify

them, can change the performance of the decomposition process. For example, a SIZED stream can

be divided into two equal parts, and then each part can be processed in parallel more effectively, but a

filter operation can throw away an unpredictable number of elements, making the size of the stream

itself unknown.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

214

 Consider whether a terminal operation has a cheap or expensive merge step (for example, the

combiner method in a Collector). If this is expensive, then the cost caused by the combination of the

partial results generated by each substream can outweigh the performance benefits of a parallel

stream.

Table 7.1 gives a summary of the parallel-friendliness of certain stream sources in terms of their

decomposability.

Table 7.1. Stream sources and decomposability

Source Decomposability

ArrayList Excellent

LinkedList Poor

IntStream.range Excellent

Stream.iterate Poor

HashSet Good

TreeSet Good

Finally, we need to emphasize that the infrastructure used behind the scenes by parallel streams

to execute operations in parallel is the fork/join framework introduced in Java 7. The parallel

summing example proved that it’s vital to have a good understanding of the parallel stream

internals in order to use them correctly, so we’ll investigate in detail the fork/join framework in

the next section.

7.2. The fork/join framework

The fork/join framework was designed to recursively split a parallelizable task into smaller tasks

and then combine the results of each subtask to produce the overall result. It’s an

implementation of the ExecutorService interface, which distributes those subtasks to worker

threads in a thread pool, called ForkJoinPool. Let’s start by exploring how to define a task and

subtasks.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

215

7.2.1. Working with RecursiveTask

To submit tasks to this pool, you have to create a subclass of RecursiveTask<R>, where R is the

type of the result produced by the parallelized task (and each of its subtasks) or of

RecursiveAction if the task returns no result (it could be updating other nonlocal structures,

though). To define RecursiveTasks you need only implement its single abstract method,

compute:

protected abstract R compute();

This method defines both the logic of splitting the task at hand into subtasks and the algorithm

to produce the result of a single subtask when it’s no longer possible or convenient to further

divide it. For this reason an implementation of this method often resembles the following

pseudocode:

if (task is small enough or no longer divisible) {

compute task sequentially

} else {

split task in two subtasks

call this method recursively possibly further splitting each subtask

wait for the completion of all subtasks

combine the results of each subtask

}

In general there are no precise criteria for deciding whether a given task should be further

divided or not, but there are various heuristics that you can follow to help you with this decision.

We clarify them in more detail in section 7.2.1. The recursive task-splitting process is visually

synthesized by figure 7.3.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

216

Figure 7.3. The fork/join process

As you might have noticed, this is nothing more than the parallel version of the well-known

divide-and-conquer algorithm. To demonstrate a practical example of how to use the fork/join

framework and to build on our previous examples, let’s try to calculate the sum of a range of

numbers (here represented by an array of numbers long[]) using this framework. As explained,

you need to first provide an implementation for the RecursiveTask class, as shown by the

ForkJoinSumCalculator in the following listing.

217

Listing 7.2. Executing a parallel sum using the fork/join framework

Writing a method performing a parallel sum of the first n natural numbers is now pretty

straightforward. You just need to pass the desired array of numbers to the constructor of

ForkJoinSumCalculator:

public static long forkJoinSum(long n) {

long[] numbers = LongStream.rangeClosed(1, n).toArray();

ForkJoinTask<Long> task = new ForkJoinSumCalculator(numbers);

return new ForkJoinPool().invoke(task);

}

218

Here, you generate an array containing the first n natural numbers using a LongStream. Then

you create a ForkJoinTask (the superclass of RecursiveTask), passing this array to the public

constructor of the ForkJoinSumCalculator shown in listing 7.2. Finally, you create a new

ForkJoinPool and pass that task to its invoke method. The value returned by this last method is

the result of the task defined by the Fork-JoinSumCalculator class when executed inside the

ForkJoinPool.

Note that in a real-world application, it doesn’t make sense to use more than one ForkJoinPool.

For this reason, what you typically should do is instantiate it only once and keep this instance in

a static field, making it a singleton, so it could be conveniently reused by any part of your

software. Here, to create it you’re using its default no-argument constructor, meaning that you

want to allow the pool to use all the processors available to the JVM. More precisely, this

constructor will use the value returned by Runtime.availableProcessors to determine the

number of threads used by the pool. Note that the availableProcessors method, despite its name,

in reality returns the number of available cores, including any virtual ones due to

hyperthreading.

Running the ForkJoinSumCalculator

When you pass the ForkJoinSumCalculator task to the ForkJoinPool, this task is executed by a

thread of the pool that in turn calls the compute method of the task. This method checks to see if

the task is small enough to be performed sequentially; otherwise, it splits the array of numbers

to be summed into two halves and assigns them to two new ForkJoinSumCalculators that are

scheduled to be executed by the ForkJoinPool. As a result, this process can be recursively

repeated, allowing the original task to be divided into smaller tasks, until the condition used to

check if it’s no longer convenient or no longer possible to further split it is met (in this case, if

the number of items to be summed is less than or equal to 10,000). At this point, the result of

each subtask is computed sequentially, and the (implicit) binary tree of tasks created by the

forking process is traversed back toward its root. The result of the task is then computed,

combining the partial results of each subtask. This process is shown in figure 7.4.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

219

Figure 7.4. The fork/join algorithm

Once again you can check the performance of the summing method explicitly using the fork/join

framework with the harness developed at the beginning of this chapter:

System.out.println("ForkJoin sum done in: " + measureSumPerf(

ForkJoinSumCalculator::forkJoinSum, 10_000_000) + " msecs");

In this case it produces the following output:

ForkJoin sum done in: 41 msecs

Here, the performance is worse than the version using the parallel stream, but only because

you’re obliged to put the whole stream of numbers into a long[] before being allowed to use it in

the ForkJoinSumCalculator task.

7.2.2. Best practices for using the fork/join framework

Even though the fork/join framework is relatively easy to use, unfortunately it’s also easy to

misuse. Here are a few best practices to leverage it effectively:

220

 Invoking the join method on a task blocks the caller until the result produced by that task is ready.

For this reason, it’s necessary to call it after the computation of both subtasks has been started.

Otherwise, you’ll end up with a slower and more complex version of your original sequential algorithm

because every subtask will have to wait for the other one to complete before starting.

 The invoke method of a ForkJoinPool shouldn’t be used from within a RecursiveTask. Instead,

you should always call the methods compute or fork directly; only sequential code should use

invoke to begin parallel computation.

 Calling the fork method on a subtask is the way to schedule it on the ForkJoinPool. It might seem

natural to invoke it on both the left and right subtasks, but this is less efficient than just directly

calling compute on one of them. Doing this allows you to reuse the same thread for one of the two

subtasks and avoid the overhead caused by the unnecessary allocation of a further task on the pool.

 Debugging a parallel computation using the fork/join framework can be tricky. In particular, it’s

ordinarily quite common to browse a stack trace in your favorite IDE to discover the cause of a

problem, but this can’t work with a fork-join computation because the call to compute occurs in a

different thread than the conceptual caller, which is the code that called fork.

 As you’ve discovered with parallel streams, you should never take for granted that a computation

using the fork/join framework on a multicore processor is faster than the sequential counterpart. We

already said that a task should be decomposable into several independent subtasks in order to be

parallelizable with a relevant performance gain. All of these subtasks should take longer to execute

than forking a new task; one idiom is to put I/O into one subtask and computation into another,

thereby overlapping computation with I/O. Moreover, you should consider other things when

comparing the performance of the sequential and parallel versions of the same algorithm. Like any

other Java code, the fork/join framework needs to be “warmed up,” or executed, a few times before

being optimized by the JIT compiler. This is why it’s always important to run the program multiple

times before to measure its performance, as we did in our harness. Also be aware that optimizations

built into the compiler could unfairly give an advantage to the sequential version (for example, by

performing dead code analysis—removing a computation that’s never used).

The fork/join splitting strategy deserves one last note: you must choose the criteria used to

decide if a given subtask should be further split or is small enough to be evaluated sequentially.

We give some hints about this in the next section.

7.2.3. Work stealing

In our ForkJoinSumCalculator example we decided to stop creating more subtasks when the

array of numbers to be summed contained at most 10,000 items. This is an arbitrary choice, but

in most cases it’s difficult to find a good heuristic, other than trying to optimize it by making

several attempts with different inputs. In our test case, we started with an array of 10 million

items, meaning that the ForkJoinSumCalculator will fork at least 1,000 subtasks. This might

221

seem like a waste of resources because we ran it on a machine that has only four cores. In this

specific case, that’s probably true because all tasks are CPU bound and are expected to take a

similar amount of time.

But forking a quite large number of fine-grained tasks is in general a winning choice. This is

because ideally you want to partition the workload of a parallelized task in such a way that each

subtask takes exactly the same amount of time, keeping all the cores of your CPU equally busy.

Unfortunately, especially in cases closer to real-world scenarios than the straightforward

example we presented here, the time taken by each subtask can dramatically vary either due to

the use of an inefficient partition strategy or because of unpredictable causes like slow access to

the disk or the need to coordinate the execution with external services.

The fork/join framework works around this problem with a technique called work stealing. In

practice, this means that the tasks are more or less evenly divided on all the threads in the

ForkJoinPool. Each of these threads holds a doubly linked queue of the tasks assigned to it, and

as soon as it completes a task it pulls another one from the head of the queue and starts

executing it. For the reasons we listed previously, one thread might complete all the tasks

assigned to it much faster than the others, which means its queue will become empty while the

other threads are still pretty busy. In this case, instead of becoming idle, the thread randomly

chooses a queue of a different thread and “steals” a task, taking it from the tail of the queue. This

process continues until all the tasks are executed, and then all the queues become empty. That’s

why having many smaller tasks, instead of only a few bigger ones, can help in better balancing

the workload among the worker threads.

More generally, this work-stealing algorithm is used to redistribute and balance the tasks among

the worker threads in the pool. Figure 7.5 shows how this process occurs. When a task in the

queue of a worker is divided into two subtasks, one of the two subtasks is stolen by another idle

worker. As described previously, this process can continue recursively until the condition used

to define that a given subtask should be executed sequentially becomes true.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

222

Figure 7.5. The work-stealing algorithm used by the fork/join

framework

It should now be clear how a stream can use the fork/join framework to process its items in

parallel, but there’s still one missing ingredient. In this section, we analyzed an example where

you explicitly developed the logic to split an array of numbers into multiple tasks. Nevertheless,

you didn’t have to do anything similar when you used the parallel streams at the beginning of

this chapter, and this means that there must be an automatic mechanism splitting the stream for

you. This new automatic mechanism is called the Spliterator, and we explore it in the next

section.

7.3. Spliterator

The Spliterator is another new interface added to Java 8; its name stands for “splitable iterator.”

Like Iterators, Spliterators are used to traverse the elements of a source, but they’re also

designed to do this in parallel. Although you may not have to develop your own Spliterator in

practice, understanding how to do so will give you a wider understanding about how parallel

streams work. Java 8 already provides a default Spliterator implementation for all the data

structures included in its Collections Framework. Collections now implements the interface

Spliterator, which provides a method spliterator. This interface defines several methods, as

shown in the following listing.

223

Listing 7.3. The Spliterator interface

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics();

}

As usual, T is the type of the elements traversed by the Spliterator. The tryAdvance method

behaves in a way similar to a normal Iterator in the sense that it’s used to sequentially consume

the elements of the Spliterator one by one, returning true if there are still other elements to be

traversed. But the trySplit method is more specific to the Spliterator interface because it’s used

to partition off some of its elements to a second Spliterator (the one returned by the method),

allowing the two to be processed in parallel. A Spliterator may also provide an estimation of the

number of the elements remaining to be traversed via its estimateSize method, because even an

inaccurate but quick-to-compute value can be useful to split the structure more or less evenly.

It’s important to understand how this splitting process is performed internally in order to take

control of it when required. Therefore, we analyze it in more detail in the next section.

7.3.1. The splitting process

The algorithm that splits a Stream into multiple parts is a recursive process and proceeds as

shown in figure 7.6. In the first step trySplit is invoked on the first Spliterator and generates a

second one. Then in step 2 it’s called again on these two Spliterators, which results in a total of

four. The framework keeps invoking the method trySplit on a Spliterator until it returns null to

signal that the data structure that it’s processing is no longer divisible, as shown in step 3.

Finally, this recursive splitting process terminates in step 4 when all Spliterators have returned

null to a trySplit invocation.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

224

Figure 7.6. The recursive splitting process

This splitting process can also be influenced by the characteristics of the Spliterator itself, which

are declared via the characteristics method.

The Spliterator characteristics

The last abstract method declared by the Spliterator interface is characteristics, which returns

an int encoding the set of characteristics of the Spliterator itself. The Spliterator clients can use

these characteristics to better control and optimize its usage. Table 7.2 summarizes them.

(Unfortunately, although these conceptually overlap with characteristics of a collector, they’re

coded differently.)

Table 7.2. Spliterator’s characteristics

Characteristic Meaning

ORDERED Elements have a defined order (for example, a List), so the Spliterator enforces this

order when traversing and partitioning them.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

225

Characteristic Meaning

DISTINCT For each pair of traversed elements x and y, x.equals(y) returns false.

SORTED The traversed elements follow a predefined sort order.

SIZED This Spliterator has been created from a source with a known size (for example, a Set),

so the value returned by estimatedSize() is precise.

NONNULL It’s guaranteed that the traversed elements won’t be null.

IMMUTABLE The source of this Spliterator can’t be modified. This implies that no elements can be

added, removed, or modified during their traversal.

CONCURRENT The source of this Spliterator may be safely concurrently modified by other threads

without any synchronization.

SUBSIZED Both this Spliterator and all further Spliterators resulting from its split are SIZED.

Now that you’ve seen what the Spliterator interface is and which methods it defines, you can try

to develop your own implementation of a Spliterator.

7.3.2. Implementing your own Spliterator

Let’s look at a practical example of where you might need to implement your own Spliterator.

We’ll develop a simple method that counts the number of words in a String. An iterative version

of this method could be written as shown in the following listing.

226

Listing 7.4. An iterative word counter method

Let’s put this method to work on the first sentence of Dante’s Inferno:[1]

1 See http://en.wikipedia.org/wiki/Inferno_(Dante).

final String SENTENCE =

" Nel mezzo del cammin di nostra vita " +

"mi ritrovai in una selva oscura" +

" ché la dritta via era smarrita ";

System.out.println("Found " + countWordsIteratively(SENTENCE) + " words");

Note that we added some additional random spaces in the sentence to demonstrate that the

iterative implementation is working correctly even in the presence of multiple spaces between

two words. As expected, this code prints out the following:

Found 19 words

Ideally you’d like to achieve the same result in a more functional style because this way you’ll be

able, as shown previously, to parallelize this process using a parallel Stream without having to

explicitly deal with threads and their synchronization.

Rewriting theWordCounter in functional style

First, you need to convert the String into a stream. Unfortunately, there are primitive streams

only for int, long, and double, so you’ll have to use a Stream<Character>:

Stream<Character> stream = IntStream.range(0, SENTENCE.length())

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://en.wikipedia.org/wiki/Inferno_%28Dante

227

.mapToObj(SENTENCE::charAt);

You can calculate the number of words by performing a reduction on this stream. While

reducing the stream, you’ll have to carry a state consisting of two variables: an int counting the

number of words found so far and a boolean to remember if the last-encountered Character was

a space or not. Because Java doesn’t have tuples (a construct to represent an ordered list of

heterogeneous elements without the need of a wrapper object), you’ll have to create a new class,

WordCounter, which will encapsulate this state as shown in the following listing.

Listing 7.5. A class to count words while traversing a stream of

Characters

In this listing, the accumulate method defines how to change the state of the WordCounter, or

more precisely with which state to create a new WordCounter because it’s an immutable class.

The method accumulate is called whenever a new Character of the Stream is traversed. In

particular, as you did in the countWordsIteratively method in listing 7.4, the counter is

incremented when a new nonspace is met and the last character encountered is a space. Figure

7.7 shows the state transitions of the WordCounter when a new Character is traversed by the

accumulate method.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

228

Figure 7.7. The state transitions of theWordCounterwhen a new

Character c is traversed

The second method, combine, is invoked to aggregate the partial results of two WordCounters

operating on two different subparts of the stream of Characters, so it combines two

WordCounters by summing their internal counters.

Now that you’ve encoded the logic of how to accumulate characters on a WordCounter and how

to combine them in the WordCounter itself, writing a method that will reduce the stream of

Characters is straightforward:

private int countWords(Stream<Character> stream) {

WordCounter wordCounter = stream.reduce(new WordCounter(0, true),

WordCounter::accumulate,

WordCounter::combine);

return wordCounter.getCounter();

}

Now you can try this method with the stream created from the String containing the first

sentence of Dante’s Inferno:

Stream<Character> stream = IntStream.range(0, SENTENCE.length())

.mapToObj(SENTENCE::charAt);

System.out.println("Found " + countWords(stream) + " words");

You can check that its output corresponds with the one generated by the iterative version:

Found 19 words

229

So far, so good, but we said that one of the main reasons for implementing the WordCounter in

functional terms was to be able to easily parallelize this operation, so let’s see how this works.

Making theWordCounter work in parallel

You could try to speed up the word-counting operation using a parallel stream, as follows:

System.out.println("Found " + countWords(stream.parallel()) + " words");

Unfortunately, this time the output is

Found 25 words

Evidently something has gone wrong, but what? The problem isn’t hard to discover. Because the

original String is split at arbitrary positions, sometimes a word is divided in two and then

counted twice. In general, this demonstrates that going from a sequential stream to a parallel

one can lead to a wrong result if this result may be affected by the position where the stream is

split.

How can you fix this issue? The solution consists of ensuring that the String isn’t split at a

random position but only at the end of a word. To do this, you’ll have to implement a Spliterator

of Character that splits a String only between two words, as shown in the following listing, and

then creates the parallel stream from it.

Listing 7.6. TheWordCounterSpliterator

230

This Spliterator is created from the String to be parsed and iterates over its Characters by

holding the index of the one currently being traversed. Let’s quickly revisit the methods of the

WordCounterSpliterator implementing the Spliterator interface:

 The tryAdvance method feeds the Consumer with the Character in the String at the current index

position and increments this position. The Consumer passed as argument is an internal Java class

forwarding the consumed Character to the set of functions that have to be applied to it while

traversing the stream, which in this case is only a reducing function, namely, the accumulatemethod

of the WordCounter class. The tryAdvance method returns true if the new cursor position is less

than the total String length and there are further Characters to be iterated.

 The trySplit method is the most important one in a Spliterator because it’s the one defining the

logic used to split the data structure to be iterated. As you did in the compute method of the

RecursiveTask implemented in listing 7.1 (on how to use the fork/join framework), the first thing

you have to do here is set a limit under which you don’t want to perform further splits. Here, you use a

very low limit of 10 Characters only to make sure that your program will perform some splits with

the relatively short String you’re parsing, but in real-world applications you’ll have to use a higher

limit, as you did in the fork/join example, to avoid creating too many tasks. If the number of

remaining Characters to be traversed is under this limit, you return null to signal that no further

split is necessary. Conversely, if you need to perform a split, you set the candidate split position to the

half of the String chunk remaining to be parsed. But you don’t use this split position directly because

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

231

you want to avoid splitting in the middle of a word, so you move forward until you find a blank

Character. Once you find an opportune split position, you create a new Spliterator that will traverse

the substring chunk going from the current position to the split one; you set the current position of

this to the split one, because the part before it will be managed by the new Spliterator, and then you

return it.

 The estimatedSize of elements still to be traversed is the difference between the total length of the

String parsed by this Spliterator and the position currently iterated.

 Finally, the characteristic method signals to the framework that this Spliterator is ORDERED

(the order is just the sequence of Characters in the String), SIZED (the value returned by the

estimatedSize method is exact), SUBSIZED (the other Spliterators created by the trySplit

method also have an exact size), NONNULL (there can be no null Characters in the String), and

IMMUTABLE (no further Characters can be added while parsing the String because the String

itself is an immutable class).

Putting theWordCounterSpliterator to work

You can now use a parallel stream with this new WordCounterSpliterator as follows:

Spliterator<Character> spliterator = new WordCounterSpliterator(SENTENCE);

Stream<Character> stream = StreamSupport.stream(spliterator, true);

The second boolean argument passed to the StreamSupport.stream factory method means that

you want to create a parallel stream. Passing this parallel stream to the countWords method

System.out.println("Found " + countWords(stream) + " words");

produces the correct output, as expected:

Found 19 words

You’ve seen how a Spliterator can let you to gain control over the policy used to split a data

structure. One last notable feature of Spliterators is the possibility of binding the source of the

elements to be traversed at the point of first traversal, first split, or first query for estimated size,

rather than at the time of its creation. When this happens, it’s called a late-binding Spliterator.

We’ve dedicated appendix C to showing how you can develop a utility class capable of

performing multiple operations on the same stream in parallel using this feature.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html

232

7.4. Summary

In this chapter, you’ve learned the following:

 Internal iteration allows you to process a stream in parallel without the need to explicitly use and

coordinate different threads in your code.

 Even if processing a stream in parallel is so easy, there’s no guarantee that doing so will make your

programs run faster under all circumstances. Behavior and performance of parallel software can

sometimes be counterintuitive, and for this reason it’s always necessary to measure them and be sure

that you’re not actually slowing your programs down.

 Parallel execution of an operation on a set of data, as done by a parallel stream, can provide a

performance boost, especially when the number of elements to be processed is huge or the processing

of each single element is particularly time consuming.

 From a performance point of view, using the right data structure, for instance, employing primitive

streams instead of nonspecialized ones whenever possible, is almost always more important than

trying to parallelize some operations.

 The fork/join framework lets you recursively split a parallelizable task into smaller tasks, execute

them on different threads, and then combine the results of each subtask in order to produce the

overall result.

 Spliterators define how a parallel stream can split the data it traverses.

233

Part 3. Effective Java 8 programming

The third part of this book explores various Java 8 topics that will make you more effective at

using Java 8 and enhance your codebase with modern idioms.

Chapter 8 explores how you can improve your existing code using new Java 8 features and a few

recipes. In addition, it explores vital software development techniques such as design patterns,

refactoring, testing, and debugging.

In chapter 9, you’ll learn what default methods are, how you can use them to evolve APIs in a

compatible way, some practical usage patterns, and rules for using default methods effectively.

Chapter 10 covers the new java.util.Optional class, which allows you to both design better APIs

and reduce null pointer exceptions.

Chapter 11 explores CompletableFuture, which lets you express complex asynchronous

computations in a declarative way—paralleling the design of the Streams API.

Chapter 12 investigates the new Date and Time API, which greatly improves the previous

error-prone APIs for working with dates and time.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

234

Chapter 8. Refactoring, testing, and debugging

This chapter covers

 How to refactor code to use lambda expressions

 The impact of lambda expressions on object-oriented design patterns

 Testing lambda expressions

 Debugging code that uses lambda expressions and the Streams API

In the first seven chapters of this book, you saw the expressive power of lambdas and the

Streams API. You were mainly creating new code that made use of these features. This is great if

you have to start a new Java project—you can use lambdas and streams immediately.

Unfortunately, you don’t always get to start a new project from scratch. Most of the time you’ll

have to deal with an existing codebase written in an older version of Java.

This is the purpose of this chapter. It presents several recipes showing how you can refactor

existing code to make use of lambda expressions and gain more readability and flexibility. In

addition, we discuss how several object-oriented design patterns including strategy, template

method, observer, chain of responsibility, and factory can be made more concise thanks to

lambda expressions. Finally, we explore how you can test and debug code that uses lambda

expressions and the Streams API.

8.1. Refactoring for improved readability and flexibility

Right from the start of this book we’ve argued that lambda expressions can let you write more

concise and flexible code. It’s more concise because lambda expressions let you represent a piece

of behavior in a more compact form in comparison to using anonymous classes. We also showed

in chapter 3 that method references let you write even more concise code when all you want to

do is pass an existing method as argument to another method.

Your code is more flexible because lambda expressions encourage the style of behavior

parameterization that we introduced in chapter 2. Your code can use and execute multiple

behaviors passed as arguments to cope with requirement changes.

In this section, we bring it all together and show you simple steps you can follow to refactor code

to gain readability and flexibility, using the features you learned in the previous chapters:

lambdas, method references, and streams.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

235

8.1.1. Improving code readability

What does it mean to improve the readability of code? It’s hard to define what good readability

means, because it can be very subjective. The general view is that it means “how easily this code

can be understood by another human.” Improving code readability means ensuring your code is

understandable and maintainable by people besides you. There are a few steps you can take to

make sure your code is understandable by other people, such as making sure your code is well

documented and follows coding standards.

Java 8 features can also help improve code readability compared to previous versions:

 You can reduce the verbosity of your code, making it easier to understand.

 You can improve the intent of your code by using method references and the Streams API.

We describe three simple refactorings that use lambdas, method references, and streams, which

you can apply to your code to improve its readability:

 Refactoring anonymous classes to lambda expressions

 Refactoring lambda expressions to method references

 Refactoring imperative-style data processing to streams

8.1.2. From anonymous classes to lambda expressions

The first simple refactoring you should consider is converting uses of anonymous classes

implementing one single abstract method to lambda expressions. Why? We hope we convinced

you in earlier chapters that anonymous classes are extremely verbose and error-prone. By

adopting lambda expressions, you produce code that is more succinct and readable. For example,

as shown in chapter 3, here’s an anonymous class for creating a Runnable object and its lambda

expression counterpart:

But converting anonymous classes to lambda expressions can be a difficult process in certain

situations.[1] First, the meanings of this and super are different for anonymous classes and

lambda expressions. Inside an anonymous class, this refers to the anonymous class itself, but

inside a lambda it refers to the enclosing class. Second, anonymous classes are allowed to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

236

shadow variables from the enclosing class. Lambda expressions can’t (they’ll cause a compile

error), as shown in the following code:

1 This excellent paper describes the process in more detail:

http://dig.cs.illinois.edu/papers/lambda-Refactoring.pdf.

Finally, converting an anonymous class to a lambda expression can make the resulting code

ambiguous in the context of overloading. Indeed, the type of anonymous class is explicit at

instantiation, but the type of the lambda depends on its context. Here’s an example of how this

can be problematic. Let’s say you’ve declared a functional interface with the same signature as

Runnable, here called Task (this might occur when you need interface names that are more

meaningful in your domain model):

interface Task{

public void execute();

}

public static void doSomething(Runnable r){ r.run(); }

public static void doSomething(Task a){ r.execute(); }

You can now pass an anonymous class implementing Task without a problem:

doSomething(new Task() {

public void execute() {

System.out.println("Danger danger!!");

}

});

But converting this anonymous class to a lambda expression results in an ambiguous method

call, because both Runnable and Task are valid target types:

http://dig.cs.illinois.edu/papers/lambda-Refactoring.pdf

237

You can solve the ambiguity by providing an explicit cast (Task):

doSomething((Task)() -> System.out.println("Danger danger!!"));

Don’t be turned off by these issues though; there’s good news! Most integrated development

environments (IDEs) such as NetBeans and IntelliJ support this refactoring and will

automatically ensure these gotchas don’t arise.

8.1.3. From lambda expressions to method references

Lambda expressions are great for short code that needs to be passed around. But consider using

method references when possible to improve code readability. A method name states more

clearly the intent of your code. For example, in chapter 6 we showed you the following code to

group dishes by caloric levels:

Map<CaloricLevel, List<Dish>> dishesByCaloricLevel =

menu.stream()

.collect(

groupingBy(dish -> {

if (dish.getCalories() <= 400) return CaloricLevel.DIET;

else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;

else return CaloricLevel.FAT;

}));

You can extract the lambda expression into a separate method and pass it as argument to

groupingBy. The code becomes more concise and its intent is now more explicit:

You need to add the method getCaloricLevel inside the Dish class itself for this to work:

public class Dish{

...

public CaloricLevel getCaloricLevel(){

if (this.getCalories() <= 400) return CaloricLevel.DIET;

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

238

else if (this.getCalories() <= 700) return CaloricLevel.NORMAL;

else return CaloricLevel.FAT;

}

}

In addition, consider making use of helper static methods such as comparing and maxBy when

possible. These methods were designed for use with method references! Indeed, this code states

much more clearly its intent than its counterpart using a lambda expression, as we showed in

chapter 3:

Moreover, for many common reduction operations such as sum, maximum there are built-in

helper methods that can be combined with method references. For example, we showed that

using the Collectors API you can find the maximum or sum in a clearer way than using a

combination of a lambda expression and a lower-level reduce operation. Instead of writing

int totalCalories =

menu.stream().map(Dish::getCalories)

.reduce(0, (c1, c2) -> c1 + c2);

try using alternative built-in collectors, which state more clearly what the problem statement is.

Here we use the collector summingInt (names go a long way in documenting your code):

int totalCalories = menu.stream().collect(summingInt(Dish::getCalories));

8.1.4. From imperative data processing to Streams

Ideally, you should try to convert all code that processes a collection with typical data processing

patterns with an iterator to use the Streams API instead. Why? The Streams API expresses more

clearly the intent of a data processing pipeline. In addition, streams can be optimized behind the

scenes making use of short-circuiting and laziness, as well as leveraging your multicore

architecture, as we explained in chapter 7.

For example, the following imperative code expresses two patterns (filtering and extracting) that

are mangled together, which forces the programmer to carefully understand the whole

implementation before figuring out what the code does. In addition, an implementation that

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

239

executes in parallel would be a lot more difficult to write (see section 7.2 in the previous chapter

about the fork/join framework to get an idea):

List<String> dishNames = new ArrayList<>();

for(Dish dish: menu){

if(dish.getCalories() > 300){

dishNames.add(dish.getName());

}

}

The alternative using the Streams API reads more like the problem statement, and it can be

easily parallelized:

menu.parallelStream()

.filter(d -> d.getCalories() > 300)

.map(Dish::getName)

.collect(toList());

Unfortunately, converting imperative code to the Streams API can be a difficult task, because

you need to think about control-flow statements such as break, continue, and return and infer

the right stream operations to use. The good news is that some tools can help you with this task

as well.[2]

2 See http://refactoring.info/tools/LambdaFicator/.

8.1.5. Improving code flexibility

We argued in chapters 2 and 3 that lambda expressions encourage the style of behavior

parameterization. You can represent multiple different behaviors with different lambdas that

you can then pass around to execute. This style lets you cope with requirement changes (for

example, creating multiple different ways of filtering with a Predicate or comparing with a

Comparator). We now look at a couple of patterns that you can apply to your codebase to

immediately benefit from lambda expressions.

Adopting functional interfaces

First, you can’t use lambda expressions without functional interfaces. You should therefore start

introducing them in your codebase. That sounds good, but in which situations? We discuss two

common code patterns that can be refactored to leverage lambda expressions: conditional

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://refactoring.info/tools/LambdaFicator/
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

240

deferred execution and execute around. In addition, in the next section we show how many

object-oriented design patterns such as strategy and template method can be rewritten more

concisely using lambda expressions.

Conditional deferred execution

It’s common to see control-flow statements mangled inside business logic code. Typical

scenarios include security checks and logging. For example, consider the following code that

uses the built-in Java Logger class:

if (logger.isLoggable(Log.FINER)){

logger.finer("Problem: " + generateDiagnostic());

}

What’s wrong with it? A couple of things:

 The state of the logger (what level it supports) is exposed in the client code through the method

isLoggable.

 Why should you have to query the state of the logger object every time before you can log a message?

It just clutters your code.

A better alternative is to make use of the log method, which internally checks to see if the logger

object is set to the right level before logging the message:

logger.log(Level.FINER, "Problem: " + generateDiagnostic());

This is a better approach because your code isn’t cluttered with if checks, and the state of the

logger is no longer exposed. Unfortunately, there’s still an issue with this code. The logging

message is always evaluated, even if the logger isn’t enabled for the message level passed as

argument.

This is where lambda expressions can help. What you need is a way to defer the construction of

the message so it can be generated only under a given condition (here, when the logger level is

set to FINER). It turns out that the Java 8 API designers knew about this problem and

introduced an overloaded alternative to log that takes a Supplier as argument. This alternative

log method has the following signature:

public void log(Level level, Supplier<String> msgSupplier)

You can now call it as follows:

241

logger.log(Level.FINER, () -> "Problem: " + generateDiagnostic());

The log method will internally execute the lambda passed as argument only if the logger is of the

right level. The internal implementation of the log method is along the lines of this:

What’s the takeaway from the story? If you see yourself querying the state of an object many

times in client code (for example, the state of the logger), only to call some method on this object

with arguments (for example, log a message), then consider introducing a new method that calls

that method (passed as a lambda or method reference) only after internally checking the state of

the object. Your code will be more readable (less clutter) and better encapsulated (the state of

the object isn’t exposed in client code)!

Execute around

In chapter 3 we discussed another pattern that you can adopt: execute around. If you find

yourself surrounding different code with the same preparation and cleanup phases, you can

often pull that code into a lambda. The benefit is that you reuse the logic dealing with the

preparation and cleanup phases, thus reducing code duplication.

To refresh, here’s the code you saw in chapter 3. It reuses the same logic to open and close a file

but can be parameterized with different lambdas to process the file:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

242

This was made possible by introducing the functional interface BufferedReader-Processor,

which lets you pass different lambdas to work with a BufferedReader object.

In this section, you’ve seen how to apply different recipes to improve the readability and

flexibility of your code. You’ll now see how lambda expressions can often remove boilerplate

code associated with common object-oriented design patterns.

8.2. Refactoring object-oriented design patterns with lambdas

New language features often make existing code patterns or idioms less popular. For example,

the introduction of the for-each loop in Java 5 has replaced many uses of explicit iterators

because it’s less error prone and more concise. The introduction of the diamond operator <> in

Java 7 has reduced the use of explicit generics at instance creation (and slowly pushed Java

programmers toward embracing type inference).

A specific class of patterns is called design patterns.[3] They’re a reusable blueprint, if you will,

for a common problem when designing software. It’s a bit like how construction engineers have

a set of reusable solutions to construct bridges for specific scenarios (such as suspension bridge,

arch bridge, and so on). For example, the visitor design pattern is a common solution for

separating an algorithm from a structure on which it needs to operate. The singleton pattern is a

common solution to restrict the instantiation of a class to only one object.

3 See http://c2.com/cgi/wiki?GangOfFour.

Lambda expressions provide yet another new tool in the programmer’s toolbox. They can

provide alternative solutions to the problems the design patterns are tackling but often with less

work and in a simpler way. Many existing object-oriented design patterns can be made

redundant or written in a more concise way using lambda expressions. In this section, we

explore five design patterns:

 Strategy

 Template method

 Observer

 Chain of responsibility

 Factory

We show how lambda expressions can provide an alternative way to solve the same problem

each design pattern is intended for.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://c2.com/cgi/wiki?GangOfFour

243

8.2.1. Strategy

The strategy pattern is a common solution for representing a family of algorithms and letting

you choose among them at runtime. You briefly saw this pattern in chapter 2, when we showed

you how to filter an inventory with different predicates (for example, heavy apples or green

apples). You can apply this pattern to a multitude of scenarios, such as validating an input with

different criteria, using different ways of parsing, or formatting an input.

The strategy pattern consists of three parts, as illustrated in figure 8.1:

Figure 8.1. The strategy design pattern

 An interface to represent some algorithm (the interface Strategy)

 One or more concrete implementations of that interface to represent multiple algorithms (the

concrete classes ConcreteStrategyA, ConcreteStrategyB)

 One or more clients that use the strategy objects

Let’s say you’d like to validate whether a text input is properly formatted for different criteria

(for example, it consists of only lowercase letters or is numeric). You start by defining an

interface to validate the text (represented as a String):

public interface ValidationStrategy {

boolean execute(String s);

}

Second, you define one or more implementation(s) of that interface:

public class IsAllLowerCase implements ValidationStrategy {

public boolean execute(String s){

return s.matches("[a-z]+");

}

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

244

public class IsNumeric implements ValidationStrategy {

public boolean execute(String s){

return s.matches("\\d+");

}

}

You can then use these different validation strategies in your program:

Using lambda expressions

By now you should recognize that ValidationStrategy is a functional interface (in addition, it has

the same function descriptor as Predicate<String>). This means that instead of declaring new

classes to implement different strategies, you can pass lambda expressions directly, which are

more concise:

As you can see, lambda expressions remove the boilerplate code inherent to the strategy design

pattern. If you think about it, lambda expressions encapsulate a piece of code (or strategy),

which is what the strategy design pattern was created for, so we recommend that you use

lambda expressions instead for similar problems.

245

8.2.2. Template method

The template method design pattern is a common solution when you need to represent the

outline of an algorithm and have the additional flexibility to change certain parts of it. Okay, it

sounds a bit abstract. In other words, the template method pattern is useful when you find

yourself in a situation such as “I’d love to use this algorithm but I need to change a few lines so it

does what I want.”

Let’s look at an example of how this pattern works. Say you need to write a simple online

banking application. Users typically enter a customer ID, and then the application fetches the

customer’s details from the bank database and finally does something to make the customer

happy. Different online banking applications for different banking branches may have different

ways of making a customer happy (for example, adding a bonus on their account or just sending

them less paperwork). You can write the following abstract class to represent the online banking

application:

abstract class OnlineBanking {

public void processCustomer(int id){

Customer c = Database.getCustomerWithId(id);

makeCustomerHappy(c);

}

abstract void makeCustomerHappy(Customer c);

}

The processCustomer method provides a sketch for the online banking algorithm: fetch the

customer given its ID and then make the customer happy. Different branches can now provide

different implementations of the method makeCustomerHappy by subclassing the

OnlineBanking class.

Using lambda expressions

You can tackle the same problem (creating an outline of an algorithm and letting implementers

plug in some parts) using your favorite lambdas! The different components of the algorithms

you want to plug in can be represented by lambda expressions or method references.

246

Here we introduce a second argument to the method processCustomer of type

Consumer<Customer> because it matches the signature of the method makeCustomerHappy

defined earlier:

public void processCustomer(int id, Consumer<Customer> makeCustomerHappy){

Customer c = Database.getCustomerWithId(id);

makeCustomerHappy.accept(c);

}

You can now plug in different behaviors directly without subclassing the OnlineBanking class by

passing lambda expressions:

new OnlineBankingLambda().processCustomer(1337, (Customer c) ->

System.out.println("Hello " + c.getName());

This is another example of how lambda expressions can help you remove the boilerplate

inherent to design patterns!

8.2.3. Observer

The observer design pattern is a common solution when an object (called the subject) needs to

automatically notify a list of other objects (called observers) when some event happens (for

example, a state change). You typically come across this pattern when working with GUI

applications. You register a set of observers on a GUI component such as button. If the button is

clicked, the observers are notified and can execute a specific action. But the observer pattern

isn’t limited to GUIs. For example, the observer design pattern is also suitable in a situation

where several traders (observers) may wish to react to the change of price of a stock (subject).

Figure 8.2 illustrates the UML diagram of the observer pattern.

Figure 8.2. The observer design pattern

Let’s write some code to see how the observer pattern is useful in practice. You’ll design and

implement a customized notification system for an application like Twitter. The concept is

simple: several newspaper agencies (NY Times, The Guardian, and Le Monde) are subscribed to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

247

a feed of news tweets and may want to receive a notification if a tweet contains a particular

keyword.

First, you need an Observer interface that groups the different observers. It has just one method

called notify that will be called by the subject (Feed) when a new tweet is available:

interface Observer {

void notify(String tweet);

}

You can now declare different observers (here, the three newspapers) that produce a different

action for each different keyword contained in a tweet:

class NYTimes implements Observer{

public void notify(String tweet) {

if(tweet != null && tweet.contains("money")){

System.out.println("Breaking news in NY! " + tweet);

}

}

}

class Guardian implements Observer{

public void notify(String tweet) {

if(tweet != null && tweet.contains("queen")){

System.out.println("Yet another news in London... " + tweet);

}

}

}

class LeMonde implements Observer{

public void notify(String tweet) {

if(tweet != null && tweet.contains("wine")){

System.out.println("Today cheese, wine and news! " + tweet);

}

}

}

You’re still missing the crucial part: the subject! Let’s define an interface for him:

interface Subject{

void registerObserver(Observer o);

void notifyObservers(String tweet);

248

}

The subject can register a new observer using the registerObserver method and notify his

observers of a tweet with the notifyObservers method. Let’s go ahead and implement the Feed

class:

class Feed implements Subject{

private final List<Observer> observers = new ArrayList<>();

public void registerObserver(Observer o) {

this.observers.add(o);

}

public void notifyObservers(String tweet) {

observers.forEach(o -> o.notify(tweet));

}

}

It’s a pretty straightforward implementation: the feed keeps an internal list of observers that it

can then notify when a tweet arrives. You can now create a demo application to wire up the

subject and observers:

Feed f = new Feed();

f.registerObserver(new NYTimes());

f.registerObserver(new Guardian());

f.registerObserver(new LeMonde());

f.notifyObservers("The queen said her favourite book is Java 8 in Action!");

Unsurprisingly, The Guardian will pick up this tweet!

Using lambda expressions

You may be wondering how lambda expressions are useful with the observer design pattern.

Notice that the different classes implementing the Observer interface are all providing

implementation for a single method: notify. They’re all just wrapping a piece of behavior to

execute when a tweet arrives! Lambda expressions are designed specifically to remove that

boilerplate. Instead of instantiating three observer objects explicitly, you can pass a lambda

expression directly to represent the behavior to execute:

249

f.registerObserver((String tweet) -> {

if(tweet != null && tweet.contains("money")){

System.out.println("Breaking news in NY! " + tweet);

}

});

f.registerObserver((String tweet) -> {

if(tweet != null && tweet.contains("queen")){

System.out.println("Yet another news in London... " + tweet);

}

});

Should you use lambda expressions all the time? The answer is no! In the example we described,

lambda expressions work great because the behavior to execute is simple, so they’re helpful to

remove boilerplate code. But the observers may be more complex: they could have state, define

several methods, and the like. In those situations, you should stick with classes.

8.2.4. Chain of responsibility

The chain of responsibility pattern is a common solution to create a chain of processing objects

(such as a chain of operations). One processing object may do some work and pass the result to

another object, which then also does some work and passes it on to yet another processing

object, and so on.

Generally, this pattern is implemented by defining an abstract class representing a processing

object that defines a field to keep track of a successor. Once it has finished its work, the

processing object hands over its work to its successor. In code it looks like this:

public abstract class ProcessingObject<T> {

protected ProcessingObject<T> successor;

public void setSuccessor(ProcessingObject<T> successor){

this.successor = successor;

}

public T handle(T input){

T r = handleWork(input);

if(successor != null){

250

return successor.handle(r);

}

return r;

}

abstract protected T handleWork(T input);

}

Figure 8.3 illustrates the chain of responsibility pattern in UML.

Figure 8.3. The chain of responsibility design pattern

Here you may recognize the template method design pattern, which we discussed in section

8.2.2. The method handle provides an outline of how to deal with a piece of work. Different

kinds of processing objects can be created by subclassing the class ProcessingObject and by

providing an implementation for the method handleWork.

Let’s look at example of how to use this pattern. You can create two processing objects doing

some text processing:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

251

You can now connect two processing objects to construct a chain of operations!

Using lambda expressions

Wait a minute! This pattern looks like chaining (that is, composing) functions! We discussed

how to compose lambda expressions in chapter 3. You can represent the processing objects as

an instance of Function<String, String> or more precisely a UnaryOperator<String>. To chain

them you just need to compose these functions by using the andThen method!

8.2.5. Factory

The factory design pattern lets you create objects without exposing the instantiation logic to the

client. For example, let’s say you’re working for a bank and they need a way of creating different

financial products: loans, bonds, stocks, and so on.

Typically you’d create a Factory class with a method that’s responsible for the creation of

different objects, as shown here:

public class ProductFactory {

public static Product createProduct(String name){

switch(name){

case "loan": return new Loan();

case "stock": return new Stock();

case "bond": return new Bond();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

252

default: throw new RuntimeException("No such product " + name);

}

}

}

Here, Loan, Stock, and Bond are all subtypes of Product. The createProduct method could have

additional logic to configure each created product. But the benefit is that you can now create

these objects without exposing the constructor and the configuration to the client, which makes

the creation of products simpler for the client:

Product p = ProductFactory.createProduct("loan");

Using lambda expressions

You saw in chapter 3 that you can refer to constructors just like you refer to methods, by using

method references. For example, here’s how to refer to the Loan constructor:

Supplier<Product> loanSupplier = Loan::new;

Loan loan = loanSupplier.get();

Using this technique, you could rewrite the previous code by creating a Map that maps a product

name to its constructor:

final static Map<String, Supplier<Product>> map = new HashMap<>();

static {

map.put("loan", Loan::new);

map.put("stock", Stock::new);

map.put("bond", Bond::new);

}

You can now use this Map to instantiate different products, just as you did with the factory

design pattern:

public static Product createProduct(String name){

Supplier<Product> p = map.get(name);

if(p != null) return p.get();

throw new IllegalArgumentException("No such product " + name);

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

253

This is quite a neat way to make use of the Java 8 feature to achieve the same intent as the

factory pattern. But this technique doesn’t scale very well if the factory method createProduct

needs to take multiple arguments to pass on to the product constructors! You’d have to provide

a different functional interface than a simple Supplier.

For example, suppose you want to store constructors for products that take three arguments

(two Integers and a String); you’d need to create a special functional interface TriFunction to

support this. As a result, the signature of the Map becomes more complex:

public interface TriFunction<T, U, V, R>{

R apply(T t, U u, V v);

}

Map<String, TriFunction<Integer, Integer, String, Product>> map

= new HashMap<>();

You’ve seen how to write and refactor code using lambda expressions. You’ll now see how you

can ensure your new code is correct.

8.3. Testing lambdas

You’ve now sprinkled your code with lambda expressions, and it looks nice and concise. But in

most developer jobs you’re not paid for writing nice code but for writing code that’s correct.

Generally, good software engineering practice involves using unit testing to ensure that your

program behaves as intended. You write test cases, which assert that small individual parts of

your source code are producing the expected results. For example, consider a simple Point class

for a graphical application:

public class Point{

private final int x;

private final int y;

private Point(int x, int y) {

this.x = x;

this.y = y;

}

public int getX() { return x; }

public int getY() { return y; }

254

public Point moveRightBy(int x){

return new Point(this.x + x, this.y);

}

}

The following unit test checks whether the method moveRightBy behaves as expected:

@Test

public void testMoveRightBy() throws Exception {

Point p1 = new Point(5, 5);

Point p2 = p1.moveRightBy(10);

assertEquals(15, p2.getX());

assertEquals(5, p2.getY());

}

8.3.1. Testing the behavior of a visible lambda

This works nicely because the method moveRightBy is public. Therefore, it can be tested inside

the test case. But lambdas don’t have a name (they’re anonymous functions, after all), so it’s

trickier to test them in your code because you can’t refer to them by a name!

Sometime you may have access to a lambda via a field so you can reuse it, and you’d really like to

test the logic encapsulated in that lambda. What can you do? You could test the lambda just like

when calling methods. For example, let’s say you add a static field compareByXAndThenY in the

Point class that gives you access to a Comparator object that’s generated from method

references:

public class Point{

public final static Comparator<Point> compareByXAndThenY =

comparing(Point::getX).thenComparing(Point::getY);

...

}

Remember that lambda expressions generate an instance of a functional interface. As a result,

you can test the behavior of that instance. Here, you can now call the method compare on the

Comparator object compareByXAndThenY with different arguments to test that its behavior is

as intended:

255

@Test

public void testComparingTwoPoints() throws Exception {

Point p1 = new Point(10, 15);

Point p2 = new Point(10, 20);

int result = Point.compareByXAndThenY.compare(p1 , p2);

assertEquals(-1, result);

}

8.3.2. Focusing on the behavior of the method using a lambda

But the purpose of lambdas is to encapsulate a one-off piece of behavior to be used by another

method. In that case you shouldn’t make lambda expressions available publicly; they’re only an

implementation detail. Instead, we argue that you should test the behavior of the method that

uses a lambda expression. For example, consider the method moveAllPointsRightBy shown

here:

public static List<Point> moveAllPointsRightBy(List<Point> points, int x){

return points.stream()

.map(p -> new Point(p.getX() + x, p.getY()))

.collect(toList());

}

There’s no point (pun intended) in testing the lambda p -> new Point(p.getX() + x, p.getY()); it’s

only an implementation detail for the method moveAllPointsRightBy. Rather, you should focus

on testing the behavior of the method moveAllPointsRightBy:

@Test

public void testMoveAllPointsRightBy() throws Exception{

List<Point> points =

Arrays.asList(new Point(5, 5), new Point(10, 5));

List<Point> expectedPoints =

Arrays.asList(new Point(15, 5), new Point(20, 5));

List<Point> newPoints = Point.moveAllPointsRightBy(points, 10);

assertEquals(expectedPoints, newPoints);

}

Note that in the unit test just shown, it’s important that the Point class implement the equals

method appropriately; otherwise it will rely on the default implementation from Object!

256

8.3.3. Pulling complex lambdas into separate methods

Perhaps you come across a really complicated lambda expression that contains a lot of logic (for

example, a technical pricing algorithm with corner cases). What do you do, because you can’t

refer to the lambda expression inside your test? One strategy is to convert the lambda

expression into a method reference (which involves declaring a new regular method), as we

explained earlier in section 8.1.3. You can then test the behavior of the new method in your test

as you would with any regular method.

8.3.4. Testing high-order functions

Methods that take a function as argument or return another function (so-called higher-order

functions, explained more in chapter 14) are a little harder to deal with. One thing you can do if

a method takes a lambda as argument is test its behavior with different lambdas. For example,

you can test the filter method created in chapter 2 with different predicates:

@Test

public void testFilter() throws Exception{

List<Integer> numbers = Arrays.asList(1, 2, 3, 4);

List<Integer> even = filter(numbers, i -> i % 2 == 0);

List<Integer> smallerThanThree = filter(numbers, i -> i < 3);

assertEquals(Arrays.asList(2, 4), even);

assertEquals(Arrays.asList(1, 2), smallerThanThree);

}

What if the method that needs to be tested returns another function? You can test the behavior

of that function by treating it as an instance of a functional interface, as we showed earlier with a

Comparator.

Unfortunately, not everything works the first time, and your tests may report some errors

related to your use of lambda expressions. So we now turn to debugging!

8.4. Debugging

There are two main old-school weapons in a developer’s arsenal to debug problematic code:

 Examining the stack trace

 Logging

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

257

Lambda expressions and streams can bring new challenges to your typical debugging routine.

We explore these in this section.

8.4.1. Examining the stack trace

When your program has stopped (for example, because an exception was thrown), the first thing

you need to know is where it stopped and how it got there. This is where stack frames are useful.

Each time your program performs a method call, information about the call is generated,

including the location of the call in your program, the arguments of the call, and the local

variables of the method being called. This information is stored on a stack frame.

When your program fails, you get a stack trace, which is a summary of how your program got to

that failure, stack frame by stack frame. In other words, you get a list of valuable method calls up

to when the failure appeared. This helps you understand how the problem occurred.

Lambdas and stack traces

Unfortunately, due to the fact that lambda expressions don’t have names, stack traces can be

slightly puzzling. Consider the following simple code made to fail on purpose:

import java.util.*;

public class Debugging{

public static void main(String[] args) {

List<Point> points = Arrays.asList(new Point(12, 2), null);

points.stream().map(p -> p.getX()).forEach(System.out::println);

}

}

Running it will produce a stack trace along the lines of this:

258

Yuck! What’s going on? Of course the program will fail, because the second element of the list of

points is null. You then try to process a null reference. Because the error occurs in a stream

pipeline, the whole sequence of method calls that make a stream pipeline work is exposed to you.

But notice that the stack trace produces the following cryptic lines:

at Debugging.lambda$main$0(Debugging.java:6)

at Debugging$$Lambda$5/284720968.apply(Unknown Source)

They mean that the error occurred inside a lambda expression. Unfortunately, because lambda

expressions don’t have a name, the compiler has to make up a name to refer to them. In this

case it’s lambda$main$0, which isn’t very intuitive. This can be problematic if you have large

classes containing several lambda expressions.

Even if you use method references, it’s still possible that the stack won’t show you the name of

the method you used. Changing the previous lambda p -> p.getX() to the method reference

Point::getX will also result in a problematic stack trace:

Note that if a method reference refers to a method declared in the same class as where it’s used,

then it will appear in the stack trace. For instance, in the following example

import java.util.*;

public class Debugging{

public static void main(String[] args) {

List<Integer> numbers = Arrays.asList(1, 2, 3);

numbers.stream().map(Debugging::divideByZero).forEach(System

.out::println);

}

public static int divideByZero(int n){

return n / 0;

}

}

259

the method divideByZero is reported correctly in the stack trace:

In general, keep in mind that stack traces involving lambda expressions may be more difficult to

understand. This is an area where the compiler can be improved in a future version of Java.

8.4.2. Logging information

Let’s say you’re trying to debug a pipeline of operations in a stream. What can you do? You could

use forEach to print or log the result of a stream as follows:

List<Integer> numbers = Arrays.asList(2, 3, 4, 5);

numbers.stream()

.map(x -> x + 17)

.filter(x -> x % 2 == 0)

.limit(3)

.forEach(System.out::println);

It will produce the following output:

20

22

Unfortunately, once you call forEach, the whole stream is consumed. What would be really

useful is to understand what each operation (map, filter, limit) produces in the pipeline of a

stream.

This is where the stream operation peek can help. Its purpose is to execute an action on each

element of a stream as it’s consumed. But it doesn’t consume the whole stream like forEach does;

it forwards the element it performed an action on to the next operation in the pipeline. Figure

8.4 illustrates the peek operation.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

260

Figure 8.4. Examining values flowing in a stream pipeline with peek

In the following code, you use peek to print the intermediate value before and after each

operation in the stream pipeline:

This will produce a useful output at each step of the pipeline:

from stream: 2

after map: 19

from stream: 3

after map: 20

after filter: 20

after limit: 20

from stream: 4

after map: 21

from stream: 5

after map: 22

after filter: 22

after limit: 22

261

8.5. Summary

Following are the key concepts you should take away from this chapter:

 Lambda expressions can make your code more readable and flexible.

 Consider converting anonymous classes to lambda expressions, but be wary of subtle semantic

differences such as the meaning of the keyword this and shadowing of variables.

 Method references can make your code more readable compared to lambda expressions.

 Consider converting iterative collection processing to use the Streams API.

 Lambda expressions can help remove boilerplate code associated with several object-oriented design

patterns such as strategy, template method, observer, chain of responsibility, and factory.

 Lambda expressions can be unit tested, but in general you should focus on testing the behavior of the

methods where the lambda expressions appear.

 Consider extracting complex lambda expressions into regular methods.

 Lambda expressions can make stack traces less readable.

 The peek method of a stream is useful to log intermediate values as they flow past at certain points in

a stream pipeline.

262

Chapter 9. Default methods

This chapter covers

 What default methods are

 Evolving APIs in a compatible way

 Usage patterns for default methods

 Resolution rules

Traditionally, a Java interface groups related methods together into a contract. Any class that

implements an interface must provide an implementation for each method defined by the

interface or inherit the implementation from a superclass. But this causes a problem when

library designers need to update an interface to add a new method. Indeed, existing concrete

classes (which may not be under their control) need to be modified to reflect the new interface

contract. This is particularly problematic because the Java 8 API introduces many new methods

on existing interfaces, such as the sort method on the List interface that you used in previous

chapters. Imagine all the angry maintainers of alternative collection frameworks such as Guava

and Apache Commons who now need to modify all the classes implementing the List interface to

provide an implementation for the sort method too!

But don’t worry. Java 8 introduces a new mechanism to tackle this problem. It might sound

surprising, but interfaces in Java 8 can now declare methods with implementation code; this

can happen in two ways. First, Java 8 allows static methods inside interfaces. Second, Java 8

introduces a new feature called default methods that allows you to provide a default

implementation for methods in an interface. In other words, interfaces can provide concrete

implementation for methods. As a result, existing classes implementing an interface will

automatically inherit the default implementations if they don’t provide one explicitly. This

allows you to evolve interfaces nonintrusively. You’ve been using several default methods all

along. Two examples you’ve seen are sort in the List interface and stream in the Collection

interface.

The sort method in the List interface you saw in chapter 1 is new to Java 8 and is defined as

follows:

default void sort(Comparator<? super E> c){

Collections.sort(this, c);

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

263

Note the new default modifier before the return type. This is how you can tell that a method is a

default method. Here the sort method calls the Collections.sort method to perform the sorting.

Thanks to this new method, you can sort a list by calling the method directly:

There’s something else that’s new in this code. Notice that you call the

Comparator .naturalOrder method. It’s a new static method in the Comparator interface that

returns a Comparator object to sort the elements in natural order (the standard alphanumerical

sort).

The stream method in Collection you saw in chapter 4 looks like this:

default Stream<E> stream() {

return StreamSupport.stream(spliterator(), false);

}

Here the stream method, which you used extensively in previous chapters to process collections,

calls the StreamSupport.stream method to return a stream. Notice how the body of the stream

method is calling the method spliterator, which is also a default method of the Collection

interface.

Wow! Are interfaces like abstract classes now? Yes and no; there are fundamental differences,

which we explain in this chapter. But more important, why should you care about default

methods? The main users of default methods are library designers. As we explain later, default

methods were introduced to evolve libraries such as the Java API in a compatible way, as

illustrated in figure 9.1.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

264

Figure 9.1. Adding a method to an interface

In a nutshell, adding a method to an interface is the source of many problems; existing classes

implementing the interface need to be changed to provide an implementation for the method. If

you’re in control of the interface and all the implementations, then it’s not too bad. But this is

often not the case. This is the motivation for default methods: they let classes automatically

inherit a default implementation from an interface.

So if you’re a library designer, this chapter is important because default methods provide a

means to evolve interfaces without causing modifications to existing implementations. Also, as

we explain later in the chapter, default methods can help structure your programs by providing

a flexible mechanism for multiple inheritance of behavior: a class can inherit default methods

from several interfaces. Therefore, you may still be interested in finding out about default

methods even if you’re not a library designer.

265

Static methods and interfaces

A common pattern in Java is to define both an interface and a utility companion class defining

many static methods for working with instances of the interface. For example, Collections is a

companion class to deal with Collection objects. Now that static methods can exist inside

interfaces, such utility classes in your code can go away and their static methods can be moved

inside an interface. These companion classes will remain in the Java API in order to preserve

backward compatibility.

The chapter is structured as follows. We first walk you through a use case of evolving an API and

the problems that can arise. We then explain what default methods are and how they can tackle

the problems faced in the use case. Next, we show how you can create your own default methods

to achieve a form of multiple inheritance in Java. We conclude with some more technical

information about how the Java compiler resolves possible ambiguities when a class inherits

several default methods with the same signature.

9.1. Evolving APIs

To understand why it’s difficult to evolve an API once it’s been published, let’s say for the

purpose of this section that you’re the designer of a popular Java drawing library. Your library

contains a Resizable interface that defines many methods a simple resizable shape must support:

setHeight, setWidth, getHeight, getWidth, and setAbsoluteSize. In addition, you provide several

out-of-the-box implementations for it such as Square and Rectangle. Because your library is so

popular, you have some users who have created their own interesting implementations such as

Ellipse using your Resizable interface.

A few months after releasing your API, you realize that Resizable is missing some features. For

example, it would be nice if the interface had a setRelativeSize method that takes as argument a

growth factor to resize a shape. You might say that it’s easy to fix: just add the setRelativeSize

method to Resizable and update your implementations of Square and Rectangle. Well, not so

fast! What about all your users who created their own implementations of the Resizable

interface? Unfortunately, you don’t have access to and can’t change their classes that implement

Resizable. This is the same problem that the Java library designers face when they need to

266

evolve the Java API. Let’s look at an example in detail to see the consequences of modifying an

interface that’s already been published.

9.1.1. API version 1

The first version of your Resizable interface has the following methods:

public interface Resizable extends Drawable{

int getWidth();

int getHeight();

void setWidth(int width);

void setHeight(int height);

void setAbsoluteSize(int width, int height);

}

User implementation

One of your most loyal users decides to create his own implementation of Resizable called

Ellipse:

public class Ellipse implements Resizable {

...

}

He’s created a game that processes different types of Resizable shapes (including his own

Ellipse):

267

9.1.2. API version 2

After your library has been in use for a few months, you receive many requests to update your

implementations of Resizable: Square, Rectangle, and so on to support the setRelativeSize

method. So you come up with version 2 of your API, as shown here and illustrated in figure 9.2:

Figure 9.2. Evolving an API by adding a method to Resizable.

Recompiling the application produces errors because it depends on

the Resizable interface.

Problems for your users

This update of Resizable creates a few problems. First, the interface now requires an

implementation of setRelativeSize. But the Ellipse implementation your user created doesn’t

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

268

implement the method setRelativeSize. Adding a new method to an interface is binary

compatible; this means existing class file implementations will still run without the

implementation of the new method, if there’s no attempt to recompile them. In this case the

game will still run (unless it’s recompiled) despite adding the method setRelativeSize to the

Resizable interface. Nonetheless, the user could modify the method Utils.paint in his game to

use the method setRelativeSize because the paint method expects a list of Resizable objects as

argument. If an Ellipse object is passed, an error will be thrown at run-time because the

setRelative-Size method isn’t implemented:

Exception in thread "main" java.lang.AbstractMethodError:

lambdasinaction.chap9.Ellipse.setRelativeSize(II)V

Second, if the user tries to rebuild his entire application (including Ellipse), he’ll get the

following compile error:

lambdasinaction/chap9/Ellipse.java:6: error: Ellipse is not abstract and does not override

abstract method setRelativeSize(int,int) in Resizable

Consequently, updating a published API creates backward incompatibilities. This is why

evolving existing APIs, such as the official Java Collections API, causes problems for users of the

APIs. There are alternatives to evolving an API, but they’re poor choices. For example, you could

create a separate version of your API and maintain both the old and the new versions, but this is

inconvenient for several reasons. First, it’s more complex for you to maintain as a library

designer. Second, your users may have to use both versions of your API in the same codebase,

which impacts memory space and loading time because more class files are required for their

projects.

This is where default methods come to the rescue. They let library designers evolve APIs without

breaking existing code because classes implementing an updated interface automatically inherit

a default implementation.[1]

1 See https://blogs.oracle.com/darcy/entry/kinds_of_compatibility.

Different types of compatibilities: binary, source, and behavioral

There are three main kinds of compatibility when introducing a change to a Java program:

binary, source, and behavioral compatibilities.1 You saw that adding a method to an interface is

binary compatible but results in a compiler error if the class implementing the interface is

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

269

recompiled. It’s good to know the different kinds of compatibilities, so let’s examine them in

more detail.

Binary compatibility means existing binaries running without errors continue to link (which

involves verification, preparation, and resolution) without error after introducing a change. For

example, just adding a method to an interface is binary compatible because if it’s not called,

existing methods of the interface can still run without problems.

In its simplest form, source compatibility means an existing program will still compile after

introducing a change. For example, adding a method to an interface isn’t source compatible;

existing implementations won’t recompile because they need to implement the new method.

Finally, behavioral compatibility means running a program after a change with the same inputs

results in the same behavior. For example, adding a method to an interface is behavioral

compatible because the method is never called in the program (or it gets overridden by an

implementation).

9.2. Default methods in a nutshell

You’ve seen how adding methods to a published API disrupts existing implementations. Default

methods are a new feature added in Java 8 to help evolve APIs in a compatible way. An interface

can now contain method signatures for which an implementing class doesn’t provide an

implementation. So who implements them? The missing method bodies are given as part of the

interface (hence default implementations) rather than in the implementing class.

So how do you recognize a default method? It’s very simple. It starts with a default modifier and

contains a body just like a method declared in a class. For example, in the context of a collection

library, you could define an interface Sized with one abstract method size and a default method

isEmpty as follows:

270

Now any class that implements the Sized interface will automatically inherit the implementation

of isEmpty. Consequently, adding a method to an interface with a default implementation isn’t a

source incompatibility.

Let’s go back to our initial example of the Java drawing library and your game. Concretely, to

evolve your library in a compatible way (which means the users of your library don’t have to

modify all their classes that implement Resizable), use a default method and provide a default

implementation for setRelativeSize:

default void setRelativeSize(int wFactor, int hFactor){

setAbsoluteSize(getWidth() / wFactor, getHeight() / hFactor);

}

Because interfaces can now have methods with implementation, does that mean multiple

inheritance has arrived in Java? What happens if an implementing class also defines the same

method signature or if default methods can be overridden? Don’t worry about these issues for

now; there are a few rules to follow and mechanisms available for you to deal with these issues.

We explore them in detail in section 9.5.

You may have guessed that default methods are used extensively in the Java 8 API. You saw in

the introduction of this chapter that the stream method in the Collection interface we used

extensively in previous chapters is a default method. The sort method in the List interface is also

a default method. Many of the functional interfaces we presented in chapter 3 such as Predicate,

Function, and Comparator also introduced new default methods such as Predicate.and or

Function.andThen (remember, a functional interface contains only one abstract method; default

methods are non-abstract methods).

Abstract classes vs. interfaces in Java 8

So what’s the difference between an abstract class and an interface? They both can contain

abstract methods and methods with a body.

First, a class can extend only from one abstract class, but a class can implement multiple

interfaces.

Second, an abstract class can enforce a common state through instance variables (fields). An

interface can’t have instance variables.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

271

To put your knowledge of default methods to use, have a go at Quiz 9.1.

Quiz 9.1: removeIf

For this quiz, pretend you’re one of the masters of the Java language and API. You’ve received

many requests for a removeIf method to use on ArrayList, TreeSet, LinkedList, and all other

collections. The removeIf method should remove all elements from a collection that match a

given predicate. Your task in this quiz is to figure out the best way to enhance the Collections

API with this new method.

Answer:

What’s the most disruptive way to enhance the Collections API? You could copy and paste the

implementation of removeIf in each concrete class of the Collections API, but that would be a

crime to the Java community. What else can you do? Well, all of the Collection classes

implement an interface called java.util.Collection. Great; can you add a method there? Yes; you

just learned that default methods are a way to add implementations inside an interface in a

source-compatible way. And all classes implementing Collection (including classes from your

users that aren’t part of the Collections API) will be able to use the implementation of removeIf.

The code solution for removeIf is as follows (which is roughly the implementation in the official

Java 8 Collections API). It’s a default method inside the Collection interface:

default boolean removeIf(Predicate<? super E> filter) {

boolean removed = false;

Iterator<E> each = iterator();

while(each.hasNext()) {

if(filter.test(each.next())) {

each.remove();

removed = true;

}

}

return removed;

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

272

9.3. Usage patterns for default methods

You’ve seen how default methods can be useful to evolve a library in a compatible way. Is there

anything else you can do with them? You can create your own interfaces that have default

methods too. You may want to do this for two use cases that we explore in this section: optional

methods and multiple inheritance of behavior.

9.3.1. Optional methods

It’s likely you’ve come across classes that implement an interface but leave empty some method

implementations. Take, for example, the Iterator interface. It defines hasNext and next but also

the remove method. Prior to Java 8, remove was often ignored because the user decided not to

use that capability. As a result, many classes implementing Iterator have an empty

implementation for remove, which results in unnecessary boilerplate code.

With default methods, you can provide a default implementation for such methods, so concrete

classes don’t need to explicitly provide an empty implementation. For example, the Iterator

interface in Java 8 provides a default implementation for remove as follows:

interface Iterator<T> {

boolean hasNext();

T next();

default void remove() {

throw new UnsupportedOperationException();

}

}

Consequently, you can reduce boilerplate code. Any class implementing the Iterator interface

doesn’t need to declare an empty remove method anymore to ignore it, because it now has a

default implementation.

9.3.2. Multiple inheritance of behavior

Default methods enable something that wasn’t possible in an elegant way before: multiple

inheritance of behavior. This is the ability of a class to reuse code from multiple places, as

illustrated in figure 9.3.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

273

Figure 9.3. Single inheritance vs. multiple inheritance

Remember that classes in Java can inherit from only one other class, but classes have always

been allowed to implement multiple interfaces. To confirm, here’s how the class ArrayList is

defined in the Java API:

Multiple inheritance of types

Here, ArrayList is extending one class and implementing six interfaces. As a result, an ArrayList

is a direct subtype of seven types: AbstractList, List, RandomAccess, Cloneable, Serializable,

Iterable, and Collection. So in a sense we already have multiple inheritance of types.

Because interface methods can have implementations in Java 8, classes can inherit behavior

(implementation code) from multiple interfaces. Let’s explore an example to see how you can

use this capability to your benefit. Keeping interfaces minimal and orthogonal lets you achieve

great reuse and composition of behavior inside your codebase.

274

Minimal interfaces with orthogonal functionalities

Let’s say you need to define several shapes with different characteristics for the game you’re

creating. Some shapes should be resizable but not rotatable; some should be rotatable and

moveable but not resizable. How can you achieve great code reuse?

You can start by defining a standalone Rotatable interface with two abstract methods,

setRotationAngle and getRotationAngle. The interface also declares a default rotateBy method

that can be implemented using the setRotationAngle and get-RotationAngle methods as follows:

This technique is somewhat related to the template design pattern where a skeleton algorithm is

defined in terms of other methods that need to be implemented.

Now, any class that implements Rotatable will need to provide an implementation for

setRotationAngle and getRotationAngle but will inherit the default implementation of rotateBy

for free.

Similarly, you can define two interfaces, Moveable and Resizable, that you saw earlier. They

both contain default implementations. Here’s the code for Moveable:

public interface Moveable {

int getX();

int getY();

void setX(int x);

void setY(int y);

default void moveHorizontally(int distance){

setX(getX() + distance);

}

default void moveVertically(int distance){

setY(getY() + distance);

}

275

}

And here’s the code for Resizable:

public interface Resizable {

int getWidth();

int getHeight();

void setWidth(int width);

void setHeight(int height);

void setAbsoluteSize(int width, int height);

default void setRelativeSize(int wFactor, int hFactor){

setAbsoluteSize(getWidth() / wFactor, getHeight() / hFactor);

}

}

Composing interfaces

You can now create different concrete classes for your game by composing these interfaces. For

example, monsters can be moveable, rotatable, and resizable:

The Monster class will automatically inherit the default methods from the Rotatable, Moveable,

and Resizable interfaces. In this case, Monster inherits the implementations of rotateBy,

moveHorizontally, moveVertically, and setRelativeSize.

You can now call the different methods directly:

Say you now need to declare another class that’s moveable and rotatable but not resizable, such

as the sun. There’s no need to copy and paste code; you can reuse the default implementations

from the Moveable and Rotatable interfaces as shown here. Figure 9.4 illustrates the UML

diagram of this scenario:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

276

Figure 9.4. Multiple behavior composition

Here’s another advantage of defining simple interfaces with default implementations like the

ones for your game. Let’s say you need to modify the implementation of moveVertically to make

it more efficient. You can now change its implementation directly in the Moveable interface, and

all classes implementing it will automatically inherit the code (provided they didn’t implement

the method themselves)!

Inheritance considered harmful

Inheritance shouldn’t be your answer to everything when it comes down to reusing code. For

example, inheriting from a class that has 100 methods and fields just to reuse one method is a

bad idea, because it adds unnecessary complexity. You’d be better off using delegation: create a

method that calls directly the method of the class you need via a member variable. This is why

you’ll sometime find classes that are declared “final” intentionally: they can’t be inherited from

to prevent this kind of antipattern or have their core behavior messed with. Note that sometimes

final classes have a place; for example, String is final because we don’t want anybody to be able

to interfere with such core functionality.

The same idea is applicable to interfaces with default methods. By keeping your interface

minimal, you can achieve greater composition because you can select only the implementations

you need.

277

You’ve seen that default methods are useful for many usage patterns. But here’s some food for

thought: what if a class implements two interfaces that have the same default method signature?

Which method is the class allowed to use? We explore this problem in the next section.

9.4. Resolution rules

As you know, in Java a class can extend only one parent class but implement multiple interfaces.

With the introduction of default methods in Java 8, there’s the possibility of a class inheriting

more than one method with the same signature. Which version of the method should be used?

Such conflicts will probably be quite rare in practice, but when they do occur there must be rules

that specify how to deal with the conflict. This section explains how the Java compiler resolves

such potential conflicts. We aim to answer questions such as “In the code that follows, which

hello method is C calling?” Note that the examples that follow are intended to explore

problematic scenarios; it doesn’t mean such scenarios will happen frequently in practice:

In addition, you may have heard of the diamond problem in C++ where a class can inherit two

methods with the same signature. Which one gets chosen? Java 8 provides resolution rules to

solve this issue too. Read on!

9.4.1. Three resolution rules to know

There are three rules to follow when a class inherits a method with the same signature from

multiple places (such as another class or interface):

1. Classes always win. A method declaration in the class or a superclass takes priority over any

default method declaration.

278

2. Otherwise, sub-interfaces win: the method with the same signature in the most specific

default-providing interface is selected. (If B extends A, B is more specific than A).

3. Finally, if the choice is still ambiguous, the class inheriting from multiple interfaces has to

explicitly select which default method implementation to use by overriding it and calling the

desired method explicitly.

We promise, these are the only rules you need to know! Let’s now look at some examples.

9.4.2. Most specific default-providing interface wins

Let’s revisit our example from the beginning of this section where C implements both B and A,

which define a default method called hello. In addition, B extends A. Figure 9.5 provides a UML

diagram for the scenario.

Figure 9.5. The most specific default-providing interface wins.

Which declaration of the hello method will the compiler use? Rule 2 says that the method with

the most specific default-providing interface is selected. Because B is more specific than A, the

hello from B is selected. Consequently the program will print “Hello from B.”

Now, consider what would happen if C were inheriting from D as follows (illustrated in figure

9.6):

Figure 9.6. Inheriting from a class and implementing two interfaces

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

279

Rule 1 says that a method declaration in the class takes priority. But D doesn’t override hello; it

implements interface A. Consequently, it has a default method from interface A. Rule 2 says that

if there are no methods in the class or superclass, then the method with the most specific

default-providing interface is selected. The compiler therefore has the choice between the hello

method from interface A and the hello method from interface B. Because B is more specific, the

program will print “Hello from B” again. To check your understanding of the resolution rules,

try Quiz 9.2.

Quiz 9.2: Remember the resolution rules

For this quiz, let’s reuse the previous example except that D explicitly overrides the hello

method from A. What do you think will get printed?

public class D implements A{

void hello(){

System.out.println("Hello from D");

}

}

public class C extends D implements B, A {

public static void main(String... args) {

new C().hello();

}

}

Answer:

The program will print “Hello from D” because a method declaration from a superclass has

priority, as stated by rule 1.

Note that if D was declared as follows,

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

280

public abstract class D implements A {

public abstract void hello();

}

then C would be forced to implement the method hello itself, even though default

implementations exist elsewhere in the hierarchy.

9.4.3. Conflicts and explicit disambiguation

The examples you’ve seen so far could be resolved using the first two resolution rules. Let’s say

now that B doesn’t extend A anymore (illustrated in figure 9.7):

Figure 9.7. Implementing two interfaces

public interface A {

void hello() {

System.out.println("Hello from A");

}

}

public interface B {

void hello() {

System.out.println("Hello from B");

}

}

public class C implements B, A { }

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

281

Rule 2 doesn’t help you now because there’s no more-specific interface to select. Both hello

methods from A and B could be valid options. Thus, the Java compiler will produce a compile

error because it doesn’t know which method is more suitable: “Error: class C inherits unrelated

defaults for hello() from types B and A.”

Resolving the conflict

There aren’t many solutions to resolve the conflict between the two possible valid methods; you

have to explicitly decide which method declaration you want C to use. To do this, you can

override the hello method in class C and then in its body explicitly call the method you wish to

use. Java 8 introduces the new syntax X.super.m(...) where X is the superinterface whose

method m you want to call. For example, if you want C to use the default method from B, it looks

like this:

Have a go at Quiz 9.3 to investigate another related tricky case.

Quiz 9.3: Almost the same signature

For this quiz, assume interfaces A and B are declared as follows:

public interface A{

default Number getNumber(){

return 10;

}

}

public interface B{

default Integer getNumber(){

return 42;

}

}

And class C is declared as follows:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

282

public class C implements B, A {

public static void main(String... args) {

System.out.println(new C().getNumber());

}

}

What will the program print?

Answer:

C can’t distinguish which method of A or B is more specific. This is why class C won’t compile.

9.4.4. Diamond problem

Let’s consider a final scenario that sends shivers through the C++ community:

Figure 9.8 illustrates the UML diagram for this scenario. It’s called a diamond problem because

the shape of the diagram resembles a diamond. So what default method declaration does D

inherit—the one from B or the one from C? There’s actually only one method declaration to

choose from. Only A declares a default method. Because the interface is a superinterface of D,

the code will print “Hello from A.”

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

283

Figure 9.8. The diamond problem

Now what happens if B also has a default hello method with the same signature? Rule 2 says

that you select the most specific default-providing interface. Because B is more specific than A,

the default method declaration from B will be selected. If both B and C declare a hello method

with the same signature, you have a conflict and need to solve it explicitly, as we showed earlier.

Just as a side note, you may be wondering what happens if you add an abstract hello method

(one that’s not default) in interface C as follows (still no methods in A and B):

public interface C extends A {

void hello();

}

The new abstract hello method in C takes priority over the default hello method from interface A

because C is more specific. Therefore, class D now needs to provide an explicit implementation

for hello; otherwise the program won’t compile.

C++ diamond problem

The diamond problem is more complicated in C++. First, C++ allows multiple inheritance of

classes. By default, if a class D inherits from classes B and C, and classes B and C both inherit

from A, then class D will actually have access to a copy of a B object and a copy of a C object. As

a result, uses of methods from A have to be explicitly qualified: are they coming from B or are

they coming from C? In addition, classes have state, so modifying member variables from B isn’t

reflected on the copy of the C object.

284

You’ve seen that the default method’s resolution mechanism is pretty simple if a class inherits

from several methods with the same signature. You just need to follow three rules systematically

to solve all possible conflicts:

 First, an explicit method declaration in the class or a superclass takes priority over any default method

declaration.

 Otherwise, the method with the same signature in the most specific default-providing interface is

selected.

 Finally, if there’s still a conflict, you have to explicitly override the default methods and choose which

one your class should use.

9.5. Summary

Following are the key concepts you should take away from this chapter:

 Interfaces in Java 8 can have implementation code through default methods and static methods.

 Default methods start with a default keyword and contain a body like class methods do.

 Adding an abstract method to a published interface is a source incompatibility.

 Default methods help library designers evolve APIs in a backward-compatible way.

 Default methods can be used for creating optional methods and multiple inheritance of behavior.

 There are resolution rules to resolve conflicts when a class inherits from several default methods with

the same signature.

 A method declaration in the class or a superclass takes priority over any default method declaration.

Otherwise, the method with the same signature in the most specific default-providing interface is

selected.

 When two methods are equally specific, a class can explicitly override a method and select which one

to call.

285

Chapter 10. Using Optional as a better alternative to

null

This chapter covers

 What’s wrong with null references and why you should avoid them

 From null toOptional: rewriting your domain model in a null-safe way

 Putting optionals to work: removing null checks from your code

 Different ways to read the value possibly contained in an optional

 Rethinking programming given potentially missing values

Raise your hand if you ever got a NullPointerException during your life as a Java developer.

Keep it up if this is the Exception you encounter most frequently. Unfortunately, we can’t see

you at this moment, but we believe there’s a very high probability that your hand is raised now.

We also guess you may possibly be thinking something like “Yes, I agree, NullPointerExceptions

are a pain for any Java developer, novice, or expert, but there’s not much we can do about them,

because this is the price we pay to use such a convenient, and maybe unavoidable, construct as

null references.” This is a common feeling in the (imperative) programming world; nevertheless,

it may not be the whole truth but more likely a bias with solid historical roots.

A British computer scientist named Tony Hoare introduced null references back in 1965 while

designing ALGOL W, one of the first typed programming languages with heap-allocated records,

“simply because it was so easy to implement.” Despite his goal “to ensure that all use of

references could be absolutely safe, with checking performed automatically by the compiler,” he

decided to make an exception for null references, because he thought this was the most

convenient way to model the absence of a value. After many years he regretted this decision,

calling it “my billion-dollar mistake.” We’ve all seen the effect—we examine a field of an object,

perhaps to determine whether its value is one of two expected forms, only to instead find we’re

examining not an object but a null pointer that promptly raises that annoying

NullPointerException.

In reality, Hoare’s statement could underestimate the costs incurred by millions of developers

fixing bugs caused by null references in the last 50 years. Indeed, the vast majority of the

languages[1] created in recent decades, including Java, have been built with the same design

decision, maybe for reasons of compatibility with older languages, or more probably, as Hoare

states, “simply because it was so easy to implement.” Let’s start by looking at a simple example

to understand the problems with null.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

286

1 Notable exceptions include most typed functional languages, such as Haskell and ML; these

include algebraic data types that allow data types to be succinctly expressed, including explicit

specification of whether special values such as null are to be included on a type-by-type basis.

10.1. How do you model the absence of a value?

Imagine you have the following nested object structure for a person owning a car and having car

insurance.

Listing 10.1. The Person/Car/Insurance data model

public class Person {

private Car car;

public Car getCar() { return car; }

}

public class Car {

private Insurance insurance;

public Insurance getInsurance() { return insurance; }

}

public class Insurance {

private String name;

public String getName() { return name; }

}

Then, what’s possibly problematic with the following code?

public String getCarInsuranceName(Person person) {

return person.getCar().getInsurance().getName();

}

This code looks pretty reasonable, but many people don’t own a car. So what’s the result of

calling the method getCar? A common unfortunate practice is to return the null reference to

indicate the absence of a value, here to indicate the absence of a car. As a consequence, the call

to getInsurance will return the insurance of a null reference, which will result in a

NullPointerException at run-time and stop your program from running further. But that’s not

all. What if person was null? What if the method getInsurance returned null too?

287

10.1.1. Reducing NullPointerExceptions with defensive checking

What can you do to avoid running into an unexpected NullPointerException? Typically, you can

add null checks where necessary (and sometimes, in an excess of defensive programming, even

where not necessary) and often with different styles. A first attempt to write a method

preventing a NullPointerException is shown in the following listing.

Listing 10.2. Null-safe attempt 1: deep doubts

This method performs a null check every time it dereferences a variable, returning the string

“Unknown” if any of the variables traversed in this dereferencing chain is a null value. The only

exception to this is that you’re not checking to see if the name of the insurance company is null

because, like any other company, you know it must have a name. Note that you can avoid this

last check only because of your knowledge of the business domain, but that isn’t reflected in the

Java classes modeling your data.

We labeled the method in listing 10.2 “deep doubts” because it shows a recurring pattern: every

time you have a doubt that a variable could be null, you’re obliged to add a further nested if

block, increasing the indentation level of the code. This clearly scales poorly and compromises

the readability, so maybe you’d like to attempt another solution. Let’s try to avoid this problem

by doing something different in the next listing.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

288

Listing 10.3. Null-safe attempt 2: too many exits

In this second attempt, you try to avoid the deeply nested if blocks, adopting a different strategy:

every time you meet a null variable, you return the string “Unknown.” Nevertheless, this

solution is also far from ideal; now the method has four distinct exit points, making it hardly

maintainable. Even worse, the default value to be returned in case of a null, the string

“Unknown,” is repeated in three places—and hopefully not misspelled! Of course, you may wish

to extract it into a constant to avoid this problem.

Furthermore, it’s an error-prone process; what if you forget to check that one property could be

null? We argue in this chapter that using null to represent the absence of a value is the wrong

approach. What you need is a better way to model the absence and presence of a value.

10.1.2. Problems with null

To recap our discussion so far, the use of null references in Java causes both theoretical and

practical problems:

 It’s a source of error.NullPointerException is by far the most common exception in Java.

 It bloats your code. It worsens readability by making it necessary to fill your code with often deeply

nested null checks.

 It’s meaningless. It doesn’t have any semantic meaning, and in particular it represents the wrong way

to model the absence of a value in a statically typed language.

 It breaks Java philosophy. Java always hides pointers from developers except in one case: the null

pointer.

289

 It creates a hole in the type system. null carries no type or other information, meaning it can be

assigned to any reference type. This is a problem because, when it’s propagated to another part of the

system, you have no idea what that null was initially supposed to be.

To provide some context for what other solutions are out there for this problem, let’s briefly look

at what other programming languages have to offer.

10.1.3. What are the alternatives to null in other languages?

In recent years other languages like Groovy worked around this problem by introducing a safe

navigation operator, represented by ?., to safely navigate through potentially null values. To

understand how this works, consider the following Groovy code to retrieve the name of the

insurance company used by a given person to insure their car:

def carInsuranceName = person?.car?.insurance?.name

What this statement does should be pretty clear. A person might not have a car and you tend to

model this possibility by assigning a null to the car reference of the Person object. Similarly, a

car might not have insurance. The Groovy safe navigation operator allows you to safely navigate

through these potentially null references without throwing a NullPointerException, by just

propagating the null reference through the invocations chain, returning a null in the event that

any value in the chain is a null.

A similar feature was proposed and then discarded for Java 7. Somehow, though, we don’t seem

to miss a safe navigation operator in Java; the first temptation of all Java developers when

confronted with a NullPointerException is to quickly fix it by adding an if statement, checking

that a value is not null before invoking a method on it. If you solve this problem in this way,

without wondering if it’s correct that your algorithm or your data model could present a null

value in that specific situation, you’re not fixing a bug but hiding it, making its discovery and fix

far more difficult for whoever will be called to work on it next time; it very likely will be you in

the next week or month. You’re just sweeping the dirt under the carpet. Groovy’s null-safe

dereferencing operator is only a bigger and more powerful broom for making this mistake,

without worrying too much about its consequences.

Other functional languages, such as Haskell and Scala, take a different view. Haskell includes a

Maybe type, which essentially encapsulates an optional value. A value of type Maybe can contain

either a value of a given type or nothing. There’s no concept of a null reference. Scala has a

similar construct called Option[T] to encapsulate the presence or absence of a value of type T,

which we discuss in chapter 15. You then have to explicitly check whether a value is present or

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

290

not using operations available on the Option type, which enforces the idea of “null checking.”

You can no longer forget to do it because it’s enforced by the type system.

Okay, we diverged a bit, and all this sounds fairly abstract. You might now wonder “So, what

about Java 8?” Well actually, Java 8 takes inspiration from this idea of an “optional value” by

introducing a new class called java.util.Optional<T>! In this chapter, we show the advantages of

using it to model potentially absent values instead of assigning a null reference to them. We also

clarify how this migration from nulls to Optionals requires you to rethink the way you deal with

optional values in your domain model. Finally, we explore the features of this new Optional class

and provide a few practical examples showing how to use it effectively. Ultimately, you’ll learn

how to design better APIs in which—just by reading the signature of a method—users can tell

whether to expect an optional value.

10.2. Introducing the Optional class

Java 8 introduces a new class called java.util.Optional<T> that’s inspired by the ideas of Haskell

and Scala. It’s a class that encapsulates an optional value. This means, for example, that if you

know a person might or might not have a car, the car variable inside the Person class shouldn’t

be declared type Car and assigned to a null reference when the person doesn’t own a car, but

instead should be type Optional<Car>, as illustrated in figure 10.1.

Figure 10.1. An optional Car

When a value is present, the Optional class just wraps it. Conversely, the absence of a value is

modeled with an “empty” optional returned by the method Optional.empty. It’s a static factory

method that returns a special singleton instance of the Optional class. You might wonder what

the difference is between a null reference and Optional .empty(). Semantically, they could be

seen as the same thing, but in practice the difference is huge: trying to dereference a null will

invariably cause a NullPointer-Exception, whereas Optional.empty() is a valid, workable object

of type Optional that can be invoked in useful ways. You’ll soon see how.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

291

An important, practical semantic difference in using optionals instead of nulls is that in the first

case, declaring a variable of type Optional<Car> instead of Car clearly signals that a missing

value is permitted there. Conversely, always using the type Car and possibly assigning a null

reference to a variable of that type implies you don’t have any help, other than your knowledge

of the business model, to understand whether the null belongs to the valid domain of that given

variable or not.

With this in mind, you can rework the original model from listing 10.1, using the Optional class

as follows.

Listing 10.4. Redefining the Person/Car/Insurance data model using

Optional

Note how the use of the Optional class enriches the semantics of your model. The fact that a

person references an Optional<Car>, and a car an Optional<Insurance>, makes it explicit in the

domain that a person might or might not own a car, and that car might or might not be insured.

At the same time, the fact that the name of the insurance company is declared of type String

instead of Optional<String> makes it evident that it’s mandatory for an insurance company to

have a name. This way you know for certain whether you’ll get a NullPointerException when

dereferencing the name of an insurance company; you don’t have to add a null check because

doing so will just hide the problem instead of fixing it. An insurance company must have a name,

so if you find one without, you’ll have to work out what’s wrong in your data instead of adding a

piece of code covering up this circumstance. Using optionals consistently disambiguates beyond

any doubt the case of a value that can be structurally missing from the case of a value that’s

absent only because of a bug in your algorithm or a problem in your data. It’s important to note

that the intention of the Optional class is not to replace every single null reference. Instead, its

purpose is to help you design more-comprehensible APIs so that by just reading the signature of

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

292

a method, you can tell whether to expect an optional value. This forces you to actively unwrap an

optional to deal with the absence of a value.

10.3. Patterns for adopting Optional

So far, so good; you’ve learned how to employ optionals in types to clarify your domain model

and the advantages this offers over representing missing values with null references. But how

can you use them now? What can you do with them, or more specifically how can you actually

use a value wrapped in an optional?

10.3.1. Creating Optional objects

The first step before working with Optional is to learn how to create optional objects! There are

several ways.

Empty optional

As mentioned earlier, you can get hold of an empty optional object using the static factory

method Optional.empty:

Optional<Car> optCar = Optional.empty();

Optional from a non-null value

You can also create an optional from a non-null value with the static factory method Optional.of:

Optional<Car> optCar = Optional.of(car);

If car were null, a NullPointerException would be immediately thrown (rather than getting a

latent error once you try to access properties of the car).

Optional from null

Finally, by using the static factory method Optional.ofNullable, you can create an Optional

object that may hold a null value:

Optional<Car> optCar = Optional.ofNullable(car);

If car were null, the resulting Optional object would be empty.

293

You might imagine we’ll continue by investigating “how to get a value out of an optional.” In

particular, there’s a get method that does precisely this, and we’ll talk more about it later. But

get raises an exception when the optional is empty, and so using it in an ill-disciplined manner

effectively re-creates all the maintenance problems caused by using null. So instead we start by

looking at ways of using optional values that avoid explicit tests; these are inspired by similar

operations on streams.

10.3.2. Extracting and transforming values from optionals with map

A common pattern is to extract information from an object. For example, you may want to

extract the name from an insurance company. You’d need to check whether insurance is null

before extracting the name as follows:

String name = null;

if(insurance != null){

name = insurance.getName();

}

Optional supports a map method for this pattern. It works as follows (from here on we use the

model presented in listing 10.4):

Optional<Insurance> optInsurance = Optional.ofNullable(insurance);

Optional<String> name = optInsurance.map(Insurance::getName);

It’s conceptually similar to the stream’s map method you saw in chapters 4 and 5. The map

operation applies the provided function to each element of a stream. You could also think of an

Optional object as a particular collection of data, containing at most a single element. If the

Optional contains a value, then the function passed as argument to map transforms that value.

If the Optional is empty, then nothing happens. Figure 10.2 illustrates this similarity, showing

what happens when passing a function that transforms a square into a triangle to the map

methods of both a stream of square and an optional of square.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

294

Figure 10.2. Comparing themapmethods of Streams and Optionals

This looks useful, but how could you use this to write the previous code, which was chaining

several method calls in a safe way?

public String getCarInsuranceName(Person person) {

return person.getCar().getInsurance().getName();

}

We have to look at another method supported by Optional called flatMap!

10.3.3. Chaining Optional objects with flatMap

Because you’ve just learned how to use map, your first reaction may be that you can rewrite the

previous code using map as follows:

Optional<Person> optPerson = Optional.of(person);

Optional<String> name =

optPerson.map(Person::getCar)

.map(Car::getInsurance)

.map(Insurance::getName);

Unfortunately, this code doesn’t compile. Why? The variable optPeople is of type

Optional<People>, so it’s perfectly fine to call the map method. But getCar returns an object of

type Optional<Car> (as presented in listing 10.4). This means the result of the map operation is

an object of type Optional<Optional<Car>>. As a result, the call to getInsurance is invalid

because the outermost optional contains as its value another optional, which of course doesn’t

support the getInsurance method. Figure 10.3 illustrates the nested optional structure you’d get.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

295

Figure 10.3. A two-level optional

So how can we solve this problem? Again, we can look at a pattern you’ve used previously with

streams: the flatMap method. With streams, the flatMap method takes a function as an

argument, which returns another stream. This function is applied to each element of a stream,

which would result in a stream of streams. But flatMap has the effect of replacing each

generated stream by the contents of that stream. In other words, all the separate streams that

are generated by the function get amalgamated or flattened into a single stream. What you want

here is something similar, but you want to flatten a two-level optional into one.

Like figure 10.2 for the map method, figure 10.4 illustrates the similarities between the flatMap

methods of the Stream and Optional classes.

Figure 10.4. Comparing the flatMapmethods of Stream and Optional

Here the function passed to the stream’s flatMap method transforms each square into another

stream containing two triangles. The result of a simple map would then be a stream containing

three other streams, each of them having two triangles, but the flatMap method flattens this

two-level stream into a single stream containing six triangles in total. In the same way, the

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

296

function passed to the optional’s flatMap method transforms the square contained in the

original optional into an optional containing a triangle. If this function was passed to the map

method, the result would be an optional containing another optional that, in turn, contains a

triangle, but the flatMap method flattens this two-level optional into a single optional containing

a triangle.

Finding a car’s insurance company name with optionals

Now that you know the theory of the map and flatMap methods of Optional, let’s put them into

practice. The ugly attempts we made in listings 10.2 and 10.3 can be rewritten using the

optional-based data model of listing 10.4 as follows.

Listing 10.5. Finding a car’s insurance company name with Optionals

Comparing listing 10.5 with the two former attempts shows the advantages of using optionals

when dealing with potentially missing values. This time, you can obtain what you want with an

easily comprehensible statement—instead of increasing the code complexity with conditional

branches.

In implementation terms, first note that you modify the signature of the getCarInsuranceName

method from listings 10.2 and 10.3, because we explicitly said there could also be a case where a

nonexistent Person is passed to this method, such as when that Person is retrieved from a

database using an identifier, and you want to model the possibility that no Person exists in your

data for the given identifier. You model this additional requirement, changing the type of the

method’s argument from Person to Optional<Person>.

Once again this approach allows you to make explicit through the type system something that

otherwise would remain implicit in your knowledge of the domain model, namely, you should

never forget that the first purpose of a language, even a programming language, is

communication. Declaring a method to take an optional as an argument or to return an optional

as a result documents to your colleagues—and all future users of your method—that it can take

an empty value or that it might give an empty value as result.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

297

Person/Car/Insurance dereferencing chain using optionals

Starting with this Optional<Person>, the Car from the Person, the Insurance from the Car, and

the String containing the insurance company name from the Insurance are dereferenced with a

combination of the map and flatMap methods introduced earlier. Figure 10.5 illustrates this

pipeline of operations.

Figure 10.5. The Person/Car/Insurance dereferencing chain using

optionals

Here you begin with the optional wrapping the Person and invoking flatMap(Person::getCar)on

it. As we said, you can logically think of this invocation as something that happens in two steps.

In step 1, a Function is applied to the Person inside the optional to transform it. In this case, the

Function is expressed with a method reference invoking the method getCar on that Person.

Because that method returns an Optional<Car>, the Person inside the optional is transformed

into an instance of that type, resulting in a two-level optional that’s flattened as part of the

flatMap operation. From a theoretical point of view, you can think of this flattening operation as

the operation that combines two optionals, resulting in an empty optional, if at least one of them

is empty. What happens in reality is that if you invoke flatMap on an empty optional, nothing is

changed, and it’s returned as is. Conversely, if the optional wraps a Person, the Function passed

to the flatMap method is applied to that Person. Because the value produced by that Function

application is already an optional, the flatMap method can return it as is.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

298

The second step is similar to the first one, transforming the Optional<Car> into an

Optional<Insurance>. Step 3 turns the Optional<Insurance> into an Optional<String>: because

the Insurance.getName() method returns a String, in this case a flatMap isn’t necessary.

At this point the resulting optional will be empty if any of the methods in this invocation chain

returns an empty optional or will contain the desired insurance company name otherwise. So

how do you read that value? After all, you’ll end up getting an Optional<String> that may or

may not contain the name of the insurance company. In listing 10.5, we used another method

called orElse, which provides a default value in case the optional is empty. There are many

methods to provide default actions or unwrap an optional. Let’s look at them in more detail.

Using optionals in a domain model and why they’re not Serializable

In listing 10.4, we showed how to use Optionals in your domain model in order to mark with a

specific type the values that are allowed to be missing or remain undefined. However, the

designers of the Optional class developed it from different assumptions and with a different use

case in mind. In particular, Java Language Architect Brian Goetz clearly stated the purpose of

Optional is to support the optional-return idiom only.

Because the Optional class wasn’t intended for use as a field type, it also doesn’t implement the

Serializable interface. For this reason, using Optionals in your domain model could break

applications using tools or frameworks that require a serializable model to work. Nevertheless,

we believe that we showed why using Optionals as a proper type in your domain is a good idea,

especially when you have to traverse a graph of objects that could be, all or in part, potentially

not present. Alternatively, if you need to have a serializable domain model, we suggest you at

least provide a method allowing access also to any possibly missing value as an optional, as in

the following example:

public class Person {

private Car car;

public Optional<Car> getCarAsOptional() {

return Optional.ofNullable(car);

}

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

299

10.3.4. Default actions and unwrapping an optional

We decided to read this value using the orElse method that allows you to also provide a default

value that will be returned in the case of an empty optional. The Optional class provides several

instance methods to read the value contained by an Optional instance.

 get() is the simplest but also the least safe of these methods. It returns the wrapped value if present

but throws a NoSuchElementException otherwise. For this reason, using this method is almost

always a bad idea unless you’re really sure the optional contains a value. In addition, it’s not much of

an improvement over nested null checks.

 orElse(T other) is the method used in listing 10.5, and as we noted there, it allows you to provide a

default value for when the optional doesn’t contain a value.

 orElseGet(Supplier<? extends T> other) is the lazy counterpart of the orElse method, because

the supplier is invoked only if the optional contains no value. You should use this method either when

the default value is time-consuming to create (to gain a little efficiency) or you want to be sure this is

done only if the optional is empty (in which case it’s strictly necessary).

 orElseThrow(Supplier<? extends X> exceptionSupplier) is similar to the get method in that it

throws an exception when the optional is empty, but in this case it allows you to choose the type of

exception that you want to throw.

 ifPresent(Consumer<? super T> consumer) lets you execute the action given as argument if a

value is present; otherwise no action is taken.

The analogies between the Optional class and the Stream interface aren’t limited to the map and

flatMap methods. There’s a third method, filter, that behaves in a similar fashion, and we

explore it in section 10.3.6.

10.3.5. Combining two optionals

Let’s now suppose that you have a method that given a Person and a Car queries some external

services and implements some quite complex business logic to find the insurance company

offering the cheapest policy for that combination:

public Insurance findCheapestInsurance(Person person, Car car) {

// queries services provided by the different insurance companies

// compare all those data

return cheapestCompany;

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

300

Let’s also suppose that you want to develop a null-safe version of this method taking two

optionals as arguments and then returning an Optional<Insurance> that will be empty if at least

one of the values passed in to it is also empty. The Optional class also provides an isPresent

method returning true if the optional contains a value, so your first attempt could be to

implement this method as follows:

public Optional<Insurance> nullSafeFindCheapestInsurance(

Optional<Person> person, Optional<Car> car) {

if (person.isPresent() && car.isPresent()) {

return Optional.of(findCheapestInsurance(person.get(), car.get()));

} else {

return Optional.empty();

}

}

This method has the advantage of making clear in its signature that both the person and the car

values passed to it could be missing and that for this reason it couldn’t return any value.

Unfortunately, its implementation resembles too closely the null checks that you’d write if the

method took as arguments a Person and a Car and both those arguments could be potentially

null. Is there a better and more idiomatic way to implement this method using the features of

the Optional class? Take a few minutes to go through Quiz 10.1 and try to find an elegant

solution.

Quiz 10.1: Combining two optionals without unwrapping them

Using a combination of the map and flatMap methods you learned in this section, rewrite the

implementation of the former nullSafeFindCheapestInsurance() method in a single statement.

Answer:

You can implement that method in a single statement and without using any conditional

constructs like the ternary operator as follows:

public Optional<Insurance> nullSafeFindCheapestInsurance(

Optional<Person> person, Optional<Car> car) {

return person.flatMap(p -> car.map(c -> findCheapestInsurance(p, c)));

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

301

Here you invoke a flatMap on the first optional, so if this is empty, the lambda expression

passed to it won’t be executed at all and this invocation will just return an empty optional.

Conversely, if the person is present, it uses it as the input of a Function returning an

Optional<Insurance> as required by the flatMap method. The body of this function invokes a

map on the second optional, so if it doesn’t contain any car, the Function will return an empty

optional and so will the whole nullSafeFindCheapestInsurance method. Finally, if both the

person and the car are present, the lambda expression passed as argument to the map method

can safely invoke the original findCheapestInsurance method with them.

The analogies between the Optional class and the Stream interface aren’t limited to the map and

flatMap methods. There’s a third method, filter, that behaves in a similar fashion on both classes,

and we explore it next.

10.3.6. Rejecting certain values with filter

Often you need to call a method on an object and check some property. For example, you might

need to check whether the insurance’s name is equal to “Cambridge-Insurance.” To do this in a

safe way, you first need to check whether the reference pointing to an Insurance object is null

and then call the getName method, as follows:

Insurance insurance = ...;

if(insurance != null && "CambridgeInsurance".equals(insurance.getName())){

System.out.println("ok");

}

This pattern can be rewritten using the filter method on an Optional object, as follows:

Optional<Insurance> optInsurance = ...;

optInsurance.filter(insurance ->

"CambridgeInsurance".equals(insurance.getName()))

.ifPresent(x -> System.out.println("ok"));

The filter method takes a predicate as an argument. If a value is present in the Optional object

and it matches the predicate, the filter method returns that value; otherwise, it returns an empty

Optional object. If you remember that you can think of an optional as a stream containing at

most a single element, the behavior of this method should be pretty clear. If the optional is

already empty, it doesn’t have any effect; otherwise, it applies the predicate to the value

302

contained in the optional. If this application returns true, the optional returns unchanged;

otherwise, the value is filtered away, leaving the optional empty. You can test your

understanding of how the filter method works by working through Quiz 10.2.

Quiz 10.2: Filtering an optional

Supposing the Person class of our Person/Car/Insurance model also has a method getAge to

access the age of the person, modify the getCarInsuranceName method in listing 10.5 using the

following signature

public String getCarInsuranceName(Optional<Person> person, int minAge)

so that the insurance company name is returned only if the person has an age greater than or

equal to the minAge argument.

Answer:

You can filter from the Optional the person it eventually contains if the age of the person is

greater than the minAge argument by encoding this condition in a predicate and passing this

predicate to the filter method as follows:

public String getCarInsuranceName(Optional<Person> person, int minAge) {

return person.filter(p -> p.getAge() >= minAge)

.flatMap(Person::getCar)

.flatMap(Car::getInsurance)

.map(Insurance::getName)

.orElse("Unknown");

}

In the next section, we investigate the remaining features of the Optional class and give more

practical examples showing various techniques you could use to reimplement the code you write

to manage missing values.

Table 10.1 summarizes the methods of the Optional class.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

303

Table 10.1. Themethods of the Optional class

Method Description

empty Returns an empty Optional instance

filter If the value is present and matches the given predicate, returns this Optional; otherwise

returns the empty one

flatMap If a value is present, returns the Optional resulting from the application of the provided

mapping function to it; otherwise returns the empty Optional

get Returns the value wrapped by this Optional if present; otherwise throws a

NoSuchElementException

ifPresent If a value is present, invokes the specified consumer with the value; otherwise does nothing

isPresent Returns true if there is a value present; otherwise false

map If a value is present, applies the provided mapping function to it

of Returns an Optional wrapping the given value or throws a NullPointerException if this value

is null

ofNullable Returns an Optional wrapping the given value or the empty Optional if this value is null

orElse Returns the value if present or the given default value otherwise

orElseGet Returns the value if present or the one provided by the given Supplier otherwise

orElseThrow Returns the value if present or throws the exception created by the given Supplier otherwise

10.4. Practical examples of using Optional

As you’ve learned, effective use of the new Optional class implies a complete rethink of how you

deal with potentially missing values. This rethink involves not only the code you write but,

possibly even more important, how you interact with native Java APIs.

304

Indeed, we believe that many of those APIs would have been written differently if the Optional

class had been available at the time they were developed. For backward-compatibility reasons,

old Java APIs can’t be changed to make proper use of optionals, but all is not lost. You can fix, or

at least work around, this issue by adding into your code small utility methods that allow you to

benefit from the power of optionals. You’ll see how to do this with a couple of practical

examples.

10.4.1. Wrapping a potentially null value in an optional

An existing Java API almost always returns a null to signal the absence of the required value or

that the computation to obtain it failed for some reason. For instance, the get method of a Map

returns null as its value if it contains no mapping for the requested key. But for the reasons we

listed earlier, in most cases like this, you’d prefer that these methods could return an optional.

You can’t modify the signature of these methods, but you can easily wrap the value they return

with an optional. Continuing with the Map example, and supposing you have a Map<String,

Object>, then accessing the value indexed by key with

Object value = map.get("key");

will return null if there’s no value in the map associated with the String “key.” You can improve

this by wrapping in an optional the value returned by the map. You can do this in two ways:

either with an ugly if-then-else adding to code complexity or by using the method

Optional.ofNullable that we discussed earlier:

Optional<Object> value = Optional.ofNullable(map.get("key"));

You can use this method every time you want to safely transform a value that could be

potentially null into an optional.

10.4.2. Exceptions vs. Optional

Throwing an exception is another common alternative in the Java API to returning a null when,

for any reason, a value can’t be provided. A typical example of this is the conversion of String

into an int, provided by the Integer.parseInt(String) static method. In this case, if the String

doesn’t contain a parseable integer, this method throws a NumberFormatException. The net

effect is once again that the code signals an invalid argument in the case of a String not

representing an integer, the only difference being that this time you have to check it with a

try/catch block instead of using an if condition controlling whether a value is not null.

305

You could also model the invalid value caused by nonconvertible Strings with an empty optional,

so you’d prefer that parseInt could return an optional. You can’t change the original Java

method, but nothing prevents you from implementing a tiny utility method, wrapping it, and

returning an optional as desired, as shown in this next listing.

Listing 10.6. Converting a String into an Integer returning an optional

Our suggestion is to collect several methods similar to this in a utility class; let’s call it

OptionalUtility. In this way, from now on you’ll always be allowed to convert a String into an

Optional<Integer>, using this OptionalUtility.stringToInt method. You can forget that you

encapsulated the ugly try/catch logic in it.

Primitive optionals and why you shouldn’t use them

Note that, like streams, optionals also have primitive counterparts—OptionalInt, OptionalLong,

and OptionalDouble—so the method in listing 10.6 could have returned an OptionalInt instead

of Optional<Integer>. In chapter 5, we encouraged the use of primitive streams, especially when

they could contain a huge number of elements, for performance reasons, but because an

Optional can have at most a single value, that justification doesn’t apply here.

We discourage using primitive optionals because they lack the map, flatMap, and filter methods,

which, as you saw in section 10.2, are the most useful methods of the Optional class. Moreover,

as happens for streams, an optional can’t be composed with its primitive counterpart, so, for

example, if the method of listing 10.6 returned OptionalInt, you couldn’t pass it as a method

reference to the flatMap method of another optional.

10.4.3. Putting it all together

To demonstrate how the methods of the Optional class presented so far can be used together in

a more compelling use case, suppose you have some Properties that are passed as configuration

arguments to your program. For the purpose of this example and to test the code you’ll develop,

create some sample Properties as follows:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

306

Properties props = new Properties();

props.setProperty("a", "5");

props.setProperty("b", "true");

props.setProperty("c", "-3");

Now let’s also suppose your program needs to read a value from these Properties that it will

interpret as a duration in seconds. Because a duration has to be a positive number, you’ll want a

method with the following signature

public int readDuration(Properties props, String name)

that, when the value of a given property is a String representing a positive integer, returns that

integer, but returns zero in all other cases. To clarify this requirement you can formalize it with a

few JUnit assertions:

assertEquals(5, readDuration(param, "a"));

assertEquals(0, readDuration(param, "b"));

assertEquals(0, readDuration(param, "c"));

assertEquals(0, readDuration(param, "d"));

These assertions reflect the original requirement: the readDuration method returns 5 for the

property "a" because the value of this property is a String that’s convertible in a positive number;

it returns 0 for "b" because it isn’t a number, returns 0 for "c" because it’s a number but it’s

negative, and returns 0 for "d" because a property with that name doesn’t exist. Let’s try to

implement the method satisfying this requirement in imperative style, as shown in the following

listing.

Listing 10.7. Reading duration from a property imperatively

307

As you might expect, the resulting implementation is quite convoluted and not very readable,

presenting multiple nested conditions coded both as if statements and as a try/catch block. Take

a few minutes to figure out in Quiz 10.3 how you can achieve the same result using what you’ve

learned in this chapter.

Quiz 10.3: Reading duration from a property using an optional

Using the features of the Optional class and the utility method of listing 10.6, try to reimplement

the imperative method of listing 10.7 with a single fluent statement.

Answer:

Because the value returned by the Properties.getProperty(String) method is a null when the

required property doesn’t exist, it’s convenient to turn this value into an optional with the

ofNullable factory method. You can then convert the Optional<String> into an

Optional<Integer>, passing to its flatMap method a reference to the OptionalUtility.stringToInt

method developed in listing 10.6. Finally, you can easily filter away the negative number. In this

way, if any of these operations will return an empty optional, the method will return the 0 that’s

passed as the default value to the orElse method; otherwise, it will return the positive integer

contained in the optional. This is then simply implemented as follows:

public int readDuration(Properties props, String name) {

return Optional.ofNullable(props.getProperty(name))

.flatMap(OptionalUtility::stringToInt)

.filter(i -> i > 0)

.orElse(0);

}

Note the common style in using optionals and streams; both are reminiscent of a database query

where several operations are chained together.

10.5. Summary

In this chapter, you’ve learned the following:

 null references have been historically introduced in programming languages to generally signal the

absence of a value.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

308

 Java 8 introduces the class java.util.Optional<T> to model the presence or absence of a value.

 You can create Optional objects with the static factory methods Optional.empty, Optional.of, and

Optional.ofNullable.

 The Optional class supports many methods such as map, flatMap, and filter, which are

conceptually similar to the methods of a stream.

 Using Optional forces you to actively unwrap an optional to deal with the absence of a value; as a

result, you protect your code against unintended null pointer exceptions.

 Using Optional can help you design better APIs in which, just by reading the signature of a method,

users can tell whether to expect an optional value.

309

Chapter 11. CompletableFuture: composable

asynchronous programming

This chapter covers

 Creating an asynchronous computation and retrieving its result

 Increasing throughput using non-blocking operations

 Designing and implementing an asynchronous API

 Consuming asynchronously a synchronous API

 Pipelining and merging two or more asynchronous operations

 Reacting to the completion of an asynchronous operation

In recent years, two trends are obliging us to rethink the way we write software. The first trend

is related to the hardware on which we run our applications, and the second trend concerns how

applications are structured and particularly how they interact with each other. We discussed the

impact of the hardware trend in chapter 7. We noted that since the advent of multicore

processors, the most effective way to speed up your applications is to write software that’s able

to fully exploit the multicore processors. You saw that this is possible by splitting large tasks and

making each subtask run in parallel with the others; you also learned how the fork/join

framework (available since Java 7) and parallel streams (new in Java 8) allow you to accomplish

this in a simpler and more effective way than by directly working with threads.

The second trend reflects the increasing availability and use by applications of internet services

accessible through public APIs, made available by known providers such as Google (for example,

localization information), Facebook (for example, social information), and Twitter (for example,

news). Nowadays it’s relatively rare to develop a website or a network application that works in

total isolation. It’s far more likely that your next web application will be a mash-up: it will use

content from multiple sources and aggregate it to ease the life of your end users.

For instance, you might like to provide the collective sentiment about a given topic to your

French users; to do this you could ask the Facebook or Twitter API for the most trending

comments about that topic in any language and maybe rank the most relevant ones with your

internal algorithms. Then you might use Google Translate to translate them into French, or even

Google Maps to geolocate where their authors live, and finally aggregate all this information and

display it on your website.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

310

Oh, and of course, if any of these external network services are slow to respond, then you’ll wish

to provide partial results to your users, for example, showing your text results alongside a

generic map with a question mark in it, instead of showing a totally blank screen until the map

server responds or times out. Figure 11.1 illustrates how this typical mash-up application

interacts with the remote services it needs to work with.

Figure 11.1. A typical mash-up application

To implement a similar application, you’ll have to contact multiple web services across the

internet. But what you don’t want to do is block your computations and waste billions of

precious clock cycles of your CPU waiting for an answer from these services. For example, you

shouldn’t have to wait for data from Facebook to start processing the data coming from Twitter.

This situation represents the other side of the multitask-programming coin. The fork/join

framework and parallel streams discussed in chapter 7 are valuable tools for parallelism; they

split an operation into multiple suboperations and perform those suboperations in parallel on

different cores, CPUs, or even machines.

Conversely, when dealing with concurrency instead of parallelism, or when your main goal is to

perform several loosely related tasks on the same CPUs, keeping their cores as busy as possible

to maximize the throughput of your application, what you really want to achieve is to avoid

blocking a thread and wasting its computational resources while waiting, potentially for quite a

while, for a result from a remote service or from interrogating a database. As you’ll see in this

chapter, the Future interface and particularly its new CompletableFuture implementation are

your best tools in such circumstances. Figure 11.2 illustrates the difference between parallelism

and concurrency.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

311

Figure 11.2. Concurrency vs. parallelism

11.1. Futures

The Future interface was introduced in Java 5 to model a result made available at some point in

the future. It models an asynchronous computation and provides a reference to its result that

will be available when the computation itself is completed. Triggering a potentially

time-consuming action inside a Future allows the caller Thread to continue doing useful work

instead of just waiting for the operation’s result. You can think of it as taking a bag of clothes to

your favorite dry cleaner. They will give you a receipt to tell you when your clothes are cleaned (a

Future). In the meantime, you can do some other activities. Another advantage of Future is that

it’s friendlier to work with than lower-level Threads. To work with a Future, you typically have to

wrap the time-consuming operation inside a Callable object and submit it to an

Executor-Service. The following listing shows an example written before Java 8.

Listing 11.1. Executing a long-lasting operation asynchronously in a

Future

312

As depicted in figure 11.3, this style of programming allows your thread to perform some other

tasks while the long-lasting operation is executed concurrently in a separate thread provided by

the ExecutorService. Then, when you can’t do any other meaningful work without having the

result of that asynchronous operation, you can retrieve it from the Future by invoking its get

method. This method immediately returns the result of the operation if it’s already completed or

blocks your thread, waiting for its result to be available.

Figure 11.3. Using a Future to execute a long operation asynchronously

Can you think of a problem with this scenario? What if the long operation never returns? To

handle this possibility, even though there also exists a get method that doesn’t take a parameter,

it’s almost always a good idea to use its overloaded version, accepting a timeout defining the

maximum time your thread has to wait for the Future’s result, as you did in listing 11.1, instead

of waiting indefinitely.

11.1.1. Futures limitations

This first small example shows that the Future interface provides methods to check if the

asynchronous computation is complete (using the isDone method), to wait for its completion,

and to retrieve its result. But these features aren’t enough to let you write concise concurrent

code. For example, it’s difficult to express dependencies between results of a Future;

declaratively it’s easy to say, “When the result of the long computation is available, please send

its result to another long computation, and when that’s done, combine its result with the result

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

313

from another query.” But implementing this with the operations available in a Future is a

different story. This is why more declarative features would be useful, such as these:

 Combining two asynchronous computations in one—both when they’re independent and when the

second depends on the result of the first

 Waiting for the completion of all tasks performed by a set of Futures

 Waiting for the completion of only the quickest task in a set of Futures (possibly because they’re

trying to calculate the same value in different ways) and retrieving its result

 Programmatically completing a Future (that is, by manually providing the result of the asynchronous

operation)

 Reacting to a Future completion (that is, being notified when the completion happens and then

having the ability to perform a further action using the result of the Future, instead of being blocked

waiting for its result)

In this chapter, you’ll learn how the new CompletableFuture class (which implements the Future

interface) makes all of this possible in a declarative way using Java 8’s new features. The designs

of Stream and CompletableFuture follow similar patterns: both use lambda expressions and the

idea of pipelining. For this reason you could say that CompletableFuture is to a plain Future

what Stream is to a Collection.

11.1.2. Using CompletableFutures to build an asynchronous application

To demonstrate the CompletableFuture features, we incrementally develop a best-price-finder

application that contacts multiple online shops to find the lowest price for a given product or

service. Along the way, you’ll learn several important skills:

 First, you’ll learn how to provide an asynchronous API for your customers (useful if you’re the owner

of one of the online shops).

 Second, you’ll learn how to make your code non-blocking when you’re a consumer of a synchronous

API. You’ll discover how to pipeline two subsequent asynchronous operations, merging them into a

single asynchronous computation. This situation would arise, for example, when the online shop

returns a discount code along with the original price of the item you wanted to buy—so you have to

contact a second remote discount service to find out the percentage discount associated with this

discount code before finally calculating the actual price of that item.

 You’ll also learn how to reactively process events representing the completion of an asynchronous

operation and how that allows the best-price-finder application to constantly update the best-buy

quote for the item you want to buy as each shop returns its price, instead of having to wait for all the

shops to return their respective quotes (which also risks giving the user a blank screen forever if one of

the shops’ servers is down).

314

Synchronous vs. asynchronous API

The phrase synchronous API is just another way of talking about a traditional call to a method:

you call it, the caller then waits while the method computes, the method then returns, and the

caller continues with the returned value. Even if the caller and callee were executed on different

threads, the caller would still wait for the callee to complete; this gives rise to the phrase

blocking call.

In contrast, in an asynchronous API the method returns immediately, or at least before its

computation is complete, delegating its remaining computation to a thread, which runs

asynchronously to the caller—hence the phrase non-blocking call. The remaining computation

gives its value to the caller, either by calling a callback method or by the caller invoking a further

“wait until the computation is complete” method. This style of computation is common for I/O

systems programming: you initiate a disc access, which happens asynchronously while you do

more computation, and when you have nothing more useful to do, you simply wait until the disc

blocks are loaded into memory.

11.2. Implementing an asynchronous API

To start implementing the best-price-finder application, let’s begin by defining the API that each

single shop should provide. First, a shop declares a method that returns the price of a product

given its name:

public class Shop {

public double getPrice(String product) {

// to be implemented

}

}

The internal implementation of this method would query the shop’s database but probably also

perform other time-consuming tasks, such as contacting various other external services (for

example, the shop’s suppliers or manufacturer-related promotional discounts). To fake such a

long-running method execution, in the rest of this chapter we simply use a delay method, which

introduces an artificial delay of 1 second, defined in the following listing.

315

Listing 11.2. A method to simulate a 1-second delay

public static void delay() {

try {

Thread.sleep(1000L);

} catch (InterruptedException e) {

throw new RuntimeException(e);

}

}

For the purpose of this chapter, the getPrice method can be modeled by calling delay and then

returning a randomly calculated value for the price, as shown in the next listing. The code for

returning a randomly calculated price may look like a bit of a hack. It randomizes the price

based on the product name by using the result of charAt as a number.

Listing 11.3. Introducing a simulated delay in the getPricemethod

public double getPrice(String product) {

return calculatePrice(product);

}

private double calculatePrice(String product) {

delay();

return random.nextDouble() * product.charAt(0) + product.charAt(1);

}

This implies that when the consumer of this API (in this case, the best-price-finder application)

invokes this method, it will remain blocked and then idle for 1 second while waiting for its

synchronous completion. This is unacceptable, especially considering that the best-price-finder

application will have to repeat this operation for all the shops in its network. In the subsequent

sections of this chapter, you’ll discover how you can resolve this problem by consuming this

synchronous API in an asynchronous way. But for the purpose of learning how to design an

asynchronous API, we continue this section by pretending to be on the other side of the

barricade: you’re a wise shop owner who realizes how painful this synchronous API is for its

users and you want to rewrite it as an asynchronous API to make your customers’ lives easier.

316

11.2.1. Converting a synchronous method into an asynchronous one

To achieve this you first have to turn the getPrice method into a getPriceAsync method and

change its return value:

public Future<Double> getPriceAsync(String product) { ... }

As we mentioned in the introduction of this chapter, the java.util.concurrent .Future interface

was introduced in Java 5 to represent the result of an asynchronous computation (that is, the

caller thread is allowed to proceed without blocking). This means a Future is just a handle for a

value that isn’t yet available but can be retrieved by invoking its get method after its

computation has finally terminated. As a result, the getPriceAsync method can return

immediately, giving the caller thread a chance to perform other useful computations in the

meantime. The new CompletableFuture class gives you various possibilities to implement this

method in an easy way, for example, as shown in the next listing.

Listing 11.4. Implementing the getPriceAsyncmethod

Here you create an instance of CompletableFuture, representing an asynchronous computation

and containing a result when it becomes available. Then you fork a different Thread that will

perform the actual price calculation and return the Future instance without waiting for that

long-lasting calculation to terminate. When the price of the requested product is finally available,

you can complete the Completable-Future using its complete method to set the value. Obviously

this feature also explains the name of this new Future implementation. A client of this API can

invoke it, as shown in the next listing.

317

Listing 11.5. Using an asynchronous API

As you can see, the client asks the shop to get the price of a certain product. Because the shop

provides an asynchronous API, this invocation almost immediately returns the Future, through

which the client can retrieve the product’s price at a later time. This allows the client to do other

tasks, like querying other shops, instead of remaining blocked waiting for the first shop to

produce the requested result. Later, when there are no other meaningful jobs that the client

could do without having the product price, it can invoke get on the Future. By doing so the client

either unwraps the value contained in the Future (if the asynchronous task is already finished)

or remains blocked until that value is available. The output produced by the code in listing 11.5

could be something like this:

Invocation returned after 43 msecs

Price is 123.26

Price returned after 1045 msecs

You can see that the invocation of the getPriceAsync method returns far sooner than when the

price calculation eventually finishes. In section 11.4 you’ll learn that it’s also possible for the

client to avoid any risk of being blocked. Instead it can just be notified when the Future is

completed, and execute a callback code, defined through a lambda expression or a method

reference, only when the result of the computation is available. For now we’ll address another

problem: how to correctly manage the possibility of an error occurring during the execution of

the asynchronous task.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

318

11.2.2. Dealing with errors

The code we developed so far works correctly if everything goes smoothly. But what happens if

the price calculation generates an error? Unfortunately, in this case you’ll get a particularly

negative outcome: the exception raised to signal the error will remain confined in the thread,

which is trying to calculate the product price, and will ultimately kill it. As a consequence, the

client will remain blocked forever, waiting for the result of the get method to arrive.

The client can prevent this problem by using an overloaded version of the get method that also

accepts a timeout. It’s a good practice to always use a timeout to avoid similar situations

elsewhere in your code. This way the client will at least avoid waiting indefinitely, but when the

timeout expires, it will just be notified with a TimeoutException. As a consequence, it won’t have

a chance to discover what really caused that failure inside the thread that was trying to calculate

the product price. To make the client aware of the reason the shop wasn’t able to provide the

price of the requested product, you have to propagate the Exception that caused the problem

inside the CompletableFuture through its completeExceptionally method. This refines listing

11.4 to give the code shown in the listing that follows.

Listing 11.6. Propagating an error inside the CompletableFuture

The client will now be notified with an ExecutionException (which takes an Exception

parameter containing the cause—the original Exception thrown by the price calculation method).

So, for example, if that method throws a RuntimeException saying “product not available,” the

client will get an ExecutionException like the following:

java.util.concurrent.ExecutionException: java.lang.RuntimeException: product not available

at java.util.concurrent.CompletableFuture.get(CompletableFuture.java:2237)

at lambdasinaction.chap11.AsyncShopClient.main(AsyncShopClient.java:14)

... 5 more

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

319

Caused by: java.lang.RuntimeException: product not available

at lambdasinaction.chap11.AsyncShop.calculatePrice(AsyncShop.java:36)

at lambdasinaction.chap11.AsyncShop.lambda$getPrice$0(AsyncShop.java:23)

at lambdasinaction.chap11.AsyncShop$$Lambda$1/24071475.run(Unknown Source)

at java.lang.Thread.run(Thread.java:744)

Creating a CompletableFuture with the supplyAsync factory method

Until now you’ve created CompletableFutures and completed them programmatically, when it

seemed convenient to do so, but the CompletableFuture class itself comes with lots of handy

factory methods that can make this process far easier and less verbose. For example, the

supplyAsync method can let you rewrite the getPriceAsync method in listing 11.4 with a single

statement, as shown in the following listing.

Listing 11.7. Creating a CompletableFuture with the supplyAsync factory

method

public Future<Double> getPriceAsync(String product) {

return CompletableFuture.supplyAsync(() -> calculatePrice(product));

}

The supplyAsync method accepts a Supplier as argument and returns a Completable-Future that

will be asynchronously completed with the value obtained by invoking that Supplier. This

Supplier will be run by one of the Executors in the ForkJoinPool, but you can specify a different

Executor by passing it as a second argument to the overloaded version of this method. More

generally, it’s possible to optionally pass an Executor to all other CompletableFuture factory

methods, and you’ll use this capability in section 11.3.4, where we demonstrate that using an

Executor that fits the characteristics of your application can have a positive effect on its

performance.

Also note that the CompletableFuture returned by the getPriceAsync method in listing 11.7 is

totally equivalent to the one you created and completed manually in listing 11.6, meaning it

provides the same error management you carefully added.

For the rest of this chapter, we’ll suppose you sadly have no control over the API implemented

by the Shop class and that it provides only synchronous blocking methods. This is also what

typically happens when you want to consume an HTTP API provided by some service. You’ll

learn how it’s still possible to query multiple shops asynchronously, thus avoiding becoming

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

320

blocked on a single request and thereby increasing the performance and the throughput of your

best-price-finder application.

11.3. Make your code non-blocking

So you’ve been asked to develop a best-price-finder application, and all the shops you have to

query provide only the same synchronous API implemented as shown at the beginning of

section 11.2. In other words, you have a list of shops, like this one:

List<Shop> shops = Arrays.asList(new Shop("BestPrice"),

new Shop("LetsSaveBig"),

new Shop("MyFavoriteShop"),

new Shop("BuyItAll"));

You have to implement a method with the following signature, that given the name of a product

returns a List of strings, where each string contains the name of a shop and the price of the

requested product in that shop:

public List<String> findPrices(String product);

Your first idea will probably be to use the Stream features you learned in chapters 4, 5, and 6.

You may be tempted to write something like what’s shown in the next listing (yes, it’s good if

you’re already thinking this first solution is bad!).

Listing 11.8. A findPrices implementation sequentially querying all the

shops

public List<String> findPrices(String product) {

return shops.stream()

.map(shop -> String.format("%s price is %.2f",

shop.getName(), shop.getPrice(product)))

.collect(toList());

}

Okay, this was straightforward. Now try to put the method findPrices to work with the only

product you want madly these days (yes, you guessed it; it’s the myPhone27S). In addition,

record how long the method takes to run, as shown in the following listing; this will let you

compare its performance with the improved method we develop later.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

321

Listing 11.9. Checking findPrices correctness and performance

long start = System.nanoTime();

System.out.println(findPrices("myPhone27S"));

long duration = (System.nanoTime() - start) / 1_000_000;

System.out.println("Done in " + duration + " msecs");

The code in listing 11.9 produces output like this:

[BestPrice price is 123.26, LetsSaveBig price is 169.47, MyFavoriteShop price is 214.13, BuyItAll

price is 184.74]

Done in 4032 msecs

As you may have expected, the time taken by the findPrices method to run is just a few

milliseconds longer than 4 seconds, because the four shops are queried sequentially and

blocking one after the other, and each of them takes 1 second to calculate the price of the

requested product. How can you improve on this result?

11.3.1. Parallelizing requests using a parallel Stream

After reading chapter 7, the first and quickest improvement that should occur to you would be to

avoid this sequential computation using a parallel Stream instead of a sequential, as shown in

the next listing.

Listing 11.10. Parallelizing the findPricesmethod

Find out if this new version of findPrices is any better by again running the code in listing 11.9:

[BestPrice price is 123.26, LetsSaveBig price is 169.47, MyFavoriteShop price is 214.13, BuyItAll

price is 184.74]

Done in 1180 msecs

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

322

Well done! It looks like this was a simple but very effective idea: now the four different shops are

queried in parallel, so it takes in total just a bit more than a second to complete. Can you do even

better? Let’s try to turn all the synchronous invocations to the different shops in the findPrices

method into asynchronous invocations, using what you learned so far about

CompletableFutures.

11.3.2. Making asynchronous requests with CompletableFutures

You saw that you can use the factory method supplyAsync to create Completable-Future objects.

Let’s use it:

List<CompletableFuture<String>> priceFutures =

shops.stream()

.map(shop -> CompletableFuture.supplyAsync(

() -> String.format("%s price is %.2f",

shop.getName(), shop.getPrice(product))))

.collect(toList());

Using this approach, you obtain a List<CompletableFuture<String>>, where each

CompletableFuture in the List will contain the String name of a shop when its computation is

completed. But because the findPrices method you’re trying to reimplement using

CompletableFutures has to return just a List<String>, you’ll have to wait for the completion of

all these futures and extract the value they contain before returning the List.

To achieve this result, you can apply a second map operation to the original

List<CompletableFuture<String>>, invoking a join on all the futures in the List and then

waiting for their completion one by one. Note that the join method of the CompletableFuture

class has the same meaning as the get method also declared in the Future interface, with the

only difference being that join doesn’t throw any checked exception. By using it you don’t have

to bloat the lambda expression passed to this second map with a try/catch block. Putting

everything together, you can rewrite the findPrices method as follows.

323

Listing 11.11. Implementing the findPricesmethod with

CompletableFutures

Note that you use two separate stream pipelines, instead of putting the two map operations one

after the other in the same stream-processing pipeline—and for a very good reason. Given the

lazy nature of intermediate stream operations, if you had processed the stream in a single

pipeline, you would have succeeded only in executing all the requests to different shops

synchronously and sequentially. This is because the creation of each CompletableFuture to

interrogate a given shop would start only when the computation of the previous one had

completed, letting the join method return the result of that computation. Figure 11.4 clarifies

this important detail.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

324

Figure 11.4. Why Stream's laziness causes a sequential computation and

how to avoid it

The top half of figure 11.4 shows that processing the stream with a single pipeline implies the

evaluation order (identified by the dotted line) is sequential. In fact, a new CompletableFuture is

created only after the former one has been completely evaluated. Conversely, the bottom half of

the figure demonstrates how gathering the CompletableFutures in a list first, represented by the

oval, allows all of them to start before waiting for their completion.

Running the code in listing 11.11 to check the performance of this third version of the findPrices

method, you could obtain output along the lines of this:

[BestPrice price is 123.26, LetsSaveBig price is 169.47, MyFavoriteShop price is 214.13, BuyItAll

price is 184.74]

Done in 2005 msecs

This is quite disappointing, isn’t it? More than 2 seconds means this implementation using

CompletableFutures is faster than the original naïve sequential and blocking implementation

from listing 11.8. But it’s also almost twice as slow as the previous implementation using a

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

325

parallel stream. Moreover, it’s even more disappointing considering you obtained the parallel

stream version with a trivial change to the sequential version.

In comparison, our newer version using CompletableFutures required quite a bit of work! But is

this the whole truth? Is using CompletableFutures in this scenario really a waste of time? Or are

we perhaps overlooking something important? Take a few minutes before going forward,

particularly recalling that you’re testing the code samples on a machine capable of running four

threads in parallel.[1]

1 If you’re using a machine capable of running more threads in parallel (for example, eight), then

it will require more shops and processes in parallel to reproduce the behavior shown in these

pages.

11.3.3. Looking for the solution that scales better

The parallel stream version performs so well only because it can run four tasks in parallel, so it’s

able to allocate exactly one thread for each shop. But what happens if you decide to add a fifth

shop to the list of shops crawled by your best-price-finder application? Not surprisingly, now the

sequential version requires just a bit more than 5 seconds to run, as shown in the following

output:

Unfortunately, the parallel stream version will also now require a whole second more than

before, because all four threads it can run in parallel (available in the common thread pool) are

now busy with the first four shops. The fifth query will have to wait for the completion of one of

the former operations to free up a thread, as shown here:

What about the CompletableFuture version? Let’s also give it a try with the additional fifth shop:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

326

The CompletableFuture version seems just a bit faster than the one using parallel stream. But

this last version isn’t satisfying either. For instance, if you try to run your code with nine shops,

the parallel stream version takes 3143 milliseconds, whereas the CompletableFuture one

requires 3009 milliseconds. They look equivalent and for a very good reason: they both

internally use the same common pool that by default has a fixed number of threads equal to the

one returned by Runtime.getRuntime() .availableProcessors(). Nevertheless,

CompletableFutures have an advantage because, in contrast to what’s offered by the parallel

Streams API, they allow you to specify a different Executor to submit their tasks to. This allows

you to configure this Executor, and in particular to size its thread pool, in a way that better fits

the requirements of your application. Let’s see if you can translate this better level of

configurability into practical performance gain for your application.

11.3.4. Using a custom Executor

In this case, a sensible choice seems to be to create an Executor with a number of threads in its

pool that takes into account the actual workload you could expect in your application, but how

do you correctly size it?

Sizing thread pools

In the great book Java Concurrency in Practice (http://mng.bz/979c), Brian Goetz and

coauthors give some advice to find the optimal size for a thread pool. This is important because

if the number of threads in the pool is too big, they’ll end up competing for scarce CPU and

memory resources, wasting their time performing context switching. Conversely, if this number

is too small (as it very likely is in your application), some of the cores of the CPU will remain

underutilized. In particular, Goetz suggests that the right pool size to approximate a desired

CPU utilization rate can be calculated with the following formula:

Nthreads = NCPU * UCPU * (1 + W/C)

where

 NCPU is the number of cores, available through Runtime.getRuntime().availableProcessors()

 UCPU is the target CPU utilization (between 0 and 1), and

 W/C is the ratio of wait time to compute time

http://mng.bz/979c

327

The application is spending about the 99% of the time waiting for the shops’ responses, so you

could estimate a W/C ratio of 100. This means that if your target is 100% CPU utilization, you

should have a pool with 400 threads. In practice it will be wasteful to have more threads than

shops, because in doing so you’ll have threads in your pool that are never used. For this reason,

you need to set up an Executor with a fixed number of threads equal to the number of shops you

have to query, so there will be exactly one thread for each shop. But you must also set an upper

limit of 100 threads in order to avoid a server crash for a larger number of shops, as shown in

the following listing.

Listing 11.12. A custom Executor fitting our best-price-finder application

Note that you’re creating a pool made of daemon threads. A Java program can’t terminate or

exit while a normal thread is executing, so a leftover thread waiting for a never-satisfiable event

causes problems. By contrast, marking a thread as a daemon means it can be killed on program

termination. There’s no performance difference. You can now pass the new Executor as the

second argument of the supplyAsync factory method. For example, you should now create the

CompletableFuture retrieving the price of the requested product from a given shop as follows:

CompletableFuture.supplyAsync(() -> shop.getName() + " price is " +

shop.getPrice(product), executor);

After this improvement, the solution using the CompletableFutures takes only 1021 ms to

process five shops and 1022 ms to process nine. In general this trend carries on until the

number of shops reaches that threshold of 400 we calculated earlier. This demonstrates that it

was a good idea to create an Executor that better fits the characteristics of your application and

to make use of CompletableFutures to submit their tasks to it. This is almost always an effective

strategy and something to consider when making intensive use of asynchronous operations.

Parallelism—via Streams or CompletableFutures?

328

You’ve now seen two different ways to do parallel computing on a collection: either convert it to

a parallel stream and use operations like map on it, or iterate over the collection and spawn

operations within a CompletableFuture. The latter provides more control using resizing of

thread pools, which helps ensure that your overall computation doesn’t block just because all of

your fixed number of threads are waiting for I/O.

Our advice for using these APIs is as follows:

 If you’re doing computation-heavy operations with no I/O, then the Stream interface gives the

simplest implementation and one likely to be the most efficient (if all threads are compute-bound,

then there’s no point in having more threads than processor cores).

 On the other hand, if your parallel units of work involve waiting for I/O (including network

connections), then CompletableFutures give more flexibility and the ability to match the number of

threads to the wait/computer, or W/C, ratio as discussed previously. Another reason to avoid using

parallel streams when I/O waits are involved in the stream-processing pipeline is that the laziness of

streams can make it harder to reason about when the waits actually happen.

You’ve learned how to take advantage of CompletableFutures both to provide an asynchronous

API to your clients and as the client of a synchronous but slow server. But we performed only a

single time-consuming operation in each Future. In the next section, you’ll see how you can use

CompletableFutures to pipeline multiple asynchronous operations, in a declarative style similar

to what you’ve already learned using the Streams API.

11.4. Pipelining asynchronous tasks

Let’s now suppose that all the shops have agreed to use a centralized discount service. This

service uses five different discount codes, and each code has a different discount percentage.

You represent this idea by defining a Discount.Code enumeration, as shown in the following

listing.

Listing 11.13. An enumeration defining the discount codes

public class Discount {

public enum Code {

NONE(0), SILVER(5), GOLD(10), PLATINUM(15), DIAMOND(20);

private final int percentage;

329

Code(int percentage) {

this.percentage = percentage;

}

}

// Discount class implementation omitted, see Listing 11.14

}

Also suppose the shops have agreed to change the format of the result of the getPrice method. It

now returns a String in the format ShopName:price:DiscountCode. Our sample implementation

will return a random Discount.Code together with the random price already calculated:

public String getPrice(String product) {

double price = calculatePrice(product);

Discount.Code code = Discount.Code.values()[

random.nextInt(Discount.Code.values().length)];

return String.format("%s:%.2f:%s", name, price, code);

}

private double calculatePrice(String product) {

delay();

return random.nextDouble() * product.charAt(0) + product.charAt(1);

}

Invoking getPrice might then return a String such as

BestPrice:123.26:GOLD

11.4.1. Implementing a discount service

Your best-price-finder application should now obtain the prices from the different shops, parse

the resulting Strings, and for each String, query the discount server’s needs. This process

determines the final discounted price of the requested product (the actual discount percentage

associated with each discount code could change, so this is why you query the server each time).

We’ve encapsulated the parsing of the Strings produced by the shop in the following Quote class:

public class Quote {

private final String shopName;

private final double price;

private final Discount.Code discountCode;

330

public Quote(String shopName, double price, Discount.Code code) {

this.shopName = shopName;

this.price = price;

this.discountCode = code;

}

public static Quote parse(String s) {

String[] split = s.split(":");

String shopName = split[0];

double price = Double.parseDouble(split[1]);

Discount.Code discountCode = Discount.Code.valueOf(split[2]);

return new Quote(shopName, price, discountCode);

}

public String getShopName() { return shopName; }

public double getPrice() { return price; }

public Discount.Code getDiscountCode() { return discountCode; }

}

You can obtain an instance of the Quote class, which contains the name of the shop, the

nondiscounted price, and the discount code, by simply passing the String produced by a shop to

the static parse factory method.

The Discount service will also have an applyDiscount method accepting a Quote object and

returning a String stating the discounted price for the shop that produced that quote, as shown

in the next listing.

331

Listing 11.14. The Discount service

11.4.2. Using the Discount service

Because the Discount service is a remote service, you again add a simulated delay of 1 second to

it, as shown in the following listing. As you did in section 11.3, first try to reimplement the

findPrices method to fit these new requirements in the most obvious (but sadly sequential and

synchronous) way.

Listing 11.15. Simplest findPrices implementation that uses the Discount

service

The desired result is obtained by pipelining three map operations on the stream of shops:

 The first operation transforms each shop into a String that encodes the price and discount code of the

requested product for that shop.

 The second operation parses those Strings, converting each of them in aQuote object.

 Finally, the third one contacts the remote Discount service that will calculate the final discounted

price and return another String containing the name of the shop with that price.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

332

As you may imagine, the performance of this implementation will be far from optimal, but try to

measure it, as usual, by running your benchmark:

[BestPrice price is 110.93, LetsSaveBig price is 135.58, MyFavoriteShop price is 192.72, BuyItAll

price is 184.74, ShopEasy price is 167.28]

Done in 10028 msecs

As expected, it takes 10 seconds, because the 5 seconds used in sequentially querying the five

shops is now added to the 5 seconds consumed by the discount service to apply the discount

code to the prices returned by the five shops. You already know you can easily improve this

result by converting the stream into a parallel one. However, you also learned in section 11.3

that this solution doesn’t scale very well when you increase the number of shops to be queried,

due to the fixed common thread pool that streams rely on. Conversely, you learned that you

could better utilize your CPU by defining a custom Executor that will schedule the tasks

performed by the CompletableFutures.

11.4.3. Composing synchronous and asynchronous operations

Let’s try to reimplement the findPrices method asynchronously, again using the features

provided by CompletableFuture. Here’s the code for it. Don’t worry if there’s something that

looks unfamiliar; we explain it shortly.

Listing 11.16. Implementing the findPricesmethod with

CompletableFutures

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

333

Things look a bit more complex this time, so try to understand what’s going on here, step by step.

The sequence of these three transformations is depicted in figure 11.5.

Figure 11.5. Composing synchronous operations and asynchronous

tasks

You’re performing the same three map operations as you did in the synchronous solution of

listing 11.15, but you make those operations asynchronous when necessary, using the feature

provided by the CompletableFuture class.

Getting the prices

You’ve already seen the first of these three operations in various examples in this chapter; you

just query the shop asynchronously by passing a lambda expression to the supplyAsync factory

method. The result of this first transformation is a Stream<Completable-Future<String>>,

where each CompletableFuture will contain, once completed, the String returned by the

corresponding shop. Note that you configure the CompletableFutures with the custom Executor

developed in listing 11.12.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

334

Parsing the quotes

Now you have to convert those Strings into Quotes with a second transformation. But because

this parsing operation isn’t invoking any remote service or doing any I/O in general, it can be

performed almost instantaneously and can be done synchronously without introducing any

delay. For this reason, you implement this second transformation by invoking the thenApply

method on the CompletableFutures produced by the first step and passing to it a Function

converting a String into an instance of Quote.

Note that using the thenApply method doesn’t block your code until the Completable-Future on

which you’re invoking it is completed. This means that when the Completable-Future finally

completes, you want to transform the value it contains using the lambda expression passed to

the then-Apply method, thus transforming each Completable-Future<String> in the stream into

a corresponding CompletableFuture<Quote>. You can see this as building a recipe of what to do

with the result of the CompletableFuture, just like when you were working with a stream

pipeline.

Composing the futures for calculating the discounted price

The third map operation involves contacting the remote Discount service to apply the

appropriate discount percentage to the nondiscounted prices received from the shops. This

transformation is different from the previous one because it will have to be executed remotely

(or, in this case, it will have to simulate the remote invocation with a delay), and for this reason

you also want to perform it asynchronously.

To achieve this, as you did with the first invocation of supplyAsync with getPrice, you pass this

operation as a lambda expression to the supplyAsync factory method, which will return another

CompletableFuture. At this point you have two asynchronous operations, modeled with two

distinct CompletableFutures, that you want to perform in a cascade:

 Retrieve the price from a shop and then transform it into aQuote

 Take this Quote and pass it to theDiscount service to obtain the final discounted price

The Java 8 CompletableFutures API provides the thenCompose method specifically for this

purpose, allowing you to pipeline two asynchronous operations, passing the result of the first

operation to the second operation when it becomes available. In other words, you can compose

two CompletableFutures by invoking the thenCompose method on the first CompletableFuture

and passing to it a Function. This Function has as argument the value returned by that first

CompletableFuture when it completes, and it returns a second CompletableFuture that uses the

335

result of the first as input for its computation. Note that with this approach, while the Futures

are retrieving the quotes from the different shops, the main thread can perform other useful

operations such as responding to UI events.

Collecting the elements of the Stream resulting from these three map operations into a List, you

obtain a List<CompletableFuture<String>>, and finally you can wait for the completion of those

CompletableFutures and extract their values using join, exactly as you did in listing 11.11. This

new version of the findPrices method implemented in listing 11.8 might produce output like

this:

[BestPrice price is 110.93, LetsSaveBig price is 135.58, MyFavoriteShop price is 192.72, BuyItAll

price is 184.74, ShopEasy price is 167.28]

Done in 2035 msecs

The thenCompose method you used in listing 11.16, like other methods of the

Completable-Future class, also has a variant with an Async suffix, thenComposeAsync. In

general, a method without the Async suffix in its name executes its task in the same thread as

the previous task, whereas a method terminating with Async always submits the succeeding task

to the thread pool, so each of the tasks can be handled by a different thread. In this case, the

result of the second CompletableFuture depends on the first, so it makes no difference to the

final result or to its broad-brush timing whether you compose the two CompletableFutures with

one or the other variant of this method. We chose to use the one with thenCompose only

because it’s slightly more efficient due to less thread-switching overhead.

11.4.4. Combining two CompletableFutures—dependent and

independent

In listing 11.16, you invoked the thenCompose method on one CompletableFuture and passed to

it a second CompletableFuture, which needed as input the value resulting from the execution of

the first. But another frequently occurring case is where you need to combine the results of the

operations performed by two completely independent CompletableFutures, and you don’t want

to wait for the first to complete before starting on the second.

In situations like this, use the thenCombine method; this takes as second argument a

BiFunction, which defines how the results of the two CompletableFutures are to be combined

when they both become available. Just like thenCompose, the thenCombine method also comes

with an Async variant. In this case, using the thenCombineAsync method will cause the

combination operation defined by the BiFunction to be submitted to the thread pool and then

executed asynchronously in a separate task.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

336

Turning to our running example, you may know that one of the shops provides prices in €(EUR),

but you always want to communicate them in $ (USD) to your customers. You can

asynchronously ask the shop the price of a given product and retrieve, from a remote

exchange-rate service, the current exchange rate between € and $. After both have completed,

you can combine the results by multiplying the price by the exchange rate. With this approach,

you’ll obtain a third CompletableFuture that will complete when the results of the two

CompletableFutures are both available and have been combined using the BiFunction, as done

in the following listing.

Listing 11.17. Combining two independent CompletableFutures

Here, because the combination operation is a simple multiplication, performing it in a separate

task would have been a waste of resources, so you need to use the then-Combine method instead

of its asynchronous thenCombineAsync counterpart. Figure 11.6 shows how the different tasks

created in listing 11.17 are executed on the different threads of the pool and how their results are

combined.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

337

Figure 11.6. Combining two independent asynchronous tasks

11.4.5. Reflecting on Future vs. CompletableFuture

The last two examples in listings 11.16 and 11.17 clearly show one of the biggest advantages of

CompletableFutures over the other pre-Java 8 Future implementations. CompletableFutures

use lambda expressions to provide a declarative API that offers the possibility of easily defining

a recipe that combines and composes different synchronous and asynchronous tasks to perform

a complex operation in the most effective way. To get a more tangible idea of the code

readability benefits of Completable-Future, try to obtain the same result of listing 11.17 purely in

Java 7. Listing 11.18 shows you how to do it.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

338

Listing 11.18. Combining two Futures in Java 7

In listing 11.18, you create a first Future, submitting a Callable to an Executor querying an

external service to find the exchange rate between EUR and USD. Then you create a second

Future, retrieving the price in EUR of the requested product for a given shop. Finally, as you did

in listing 11.17, you multiply the exchange rate by the price in the same future that also queried

the shop to retrieve the price in EUR. Note that using thenCombineAsync instead of

thenCombine in listing 11.17 would have been equivalent to performing the price by rate

multiplication in a third Future in listing 11.18. The difference between these two

implementations might seem small, but this is because you’re just combining two Futures.

Listings 11.19 and 11.20 show how easy it is to create a pipeline that mixes synchronous and

asynchronous operations, and the advantages of this declarative style are more evident when the

number of tasks to be performed and results to be combined increases.

You’re almost finished with your best-price-finder application, but there’s still one ingredient

missing. You’d like to show your users the prices provided by the different shops as soon as they

become available (car insurance or flight-comparison websites typically do this), instead of

waiting for all the price requests to complete, as you did until now. In the next section, you’ll

discover how to achieve this by reacting to the completion of a CompletableFuture instead of

invoking get or join on it and thereby remaining blocked until the CompletableFuture itself

completes.

11.5. Reacting to a CompletableFuture completion

In all the code examples you’ve seen in this chapter, you simulated methods doing remote

invocations with a 1-second delay in their response. Nevertheless, in a real-world scenario, the

various remote services you need to contact from your application are likely to have

unpredictable delays, caused by everything from server load to network delays, and perhaps

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

339

even how valuable the server regards your application’s business compared to other applications

that perhaps pay more per query.

For these reasons it’s likely the prices of the products you want to buy will be available for some

shops far earlier than for others. For the purpose of this section, we simulate this scenario in the

following listing by introducing a random delay between 0.5 and 2.5 seconds, using the

randomDelay method instead of the previous delay method that always waited 1 second.

Listing 11.19. A method to simulate a random delay between 0.5 and

2.5 seconds

private static final Random random = new Random();

public static void randomDelay() {

int delay = 500 + random.nextInt(2000);

try {

Thread.sleep(delay);

} catch (InterruptedException e) {

throw new RuntimeException(e);

}

}

Until now, you’ve implemented the findPrices method so it shows the prices provided by the

different shops only when all of them are available. What you want to do now is have the

best-price-finder application display the price for a given shop as soon as it becomes available,

without waiting for the slowest one (which perhaps even times out). How can you achieve this

further improvement?

11.5.1. Refactoring the best-price-finder application

The first thing to avoid is waiting for the creation of a List already containing all the prices.

You’ll need to work directly with the stream of CompletableFutures, where each

CompletableFuture is executing the sequence of operations necessary for a given shop. To do

this, in the next listing you’ll refactor the first part of the implementation from listing 11.12 into

a findPricesStream method to produce this stream of CompletableFutures.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

340

Listing 11.20. Refactoring the findPrices method to return a stream of

Futures

public Stream<CompletableFuture<String>> findPricesStream(String product) {

return shops.stream()

.map(shop -> CompletableFuture.supplyAsync(

() -> shop.getPrice(product), executor))

.map(future -> future.thenApply(Quote::parse))

.map(future -> future.thenCompose(quote ->

CompletableFuture.supplyAsync(

() -> Discount.applyDiscount(quote), executor)));

}

At this point, you add a fourth map operation on the Stream returned by the findPricesStream

method to the three already performed inside that method. This new operation simply registers

an action on each CompletableFuture; this action consumes the value of the CompletableFuture

as soon as it completes. The Java 8 CompletableFuture API provides this feature via the

thenAccept method, which take as argument a Consumer of the value with which it completes.

In this case, this value is the String returned by the discount services and containing the name of

a shop together with the discounted price of the requested product for that shop, and the only

action you want to perform to consume this value is to print it:

findPricesStream("myPhone").map(f -> f.thenAccept(System.out::println));

Note that, as you’ve already seen for the thenCompose and thenCombine methods, the

thenAccept method also has an Async variant named thenAcceptAsync. The Async variant

schedules the execution of the Consumer passed to it on a new thread from the thread pool

instead of directly performing it using the same thread that completed the CompletableFuture.

Because you want to avoid an unnecessary context switch, and more importantly you want to

react to the completion of the CompletableFuture as soon as possible (instead of risking having

to wait for a new thread to be available), you don’t use this variant here.

Because the thenAccept method already specifies how to consume the result produced by the

CompletableFuture when it becomes available, it returns a Completable-Future<Void>. As a

result, the map operation will return a Stream-<Completable-Future<Void>>. There’s not much

you can do on a Completable-Future<Void> except wait for its completion, but this is exactly

what you need. You also want to give the slowest shop a chance to provide its response and print

341

its returned price. To do this, you can put all the CompletableFuture<Void>s of the stream into

an array and then wait for the completion of all of them, as in the following listing.

Listing 11.21. Reacting to CompletableFuture completion

CompletableFuture[] futures = findPricesStream("myPhone")

.map(f -> f.thenAccept(System.out::println))

.toArray(size -> new CompletableFuture[size]);

CompletableFuture.allOf(futures).join();

The allOf factory method takes as input an array of CompletableFutures and returns a

CompletableFuture<Void> that’s completed only when all the CompletableFutures passed have

completed. This means that invoking join on the CompletableFuture returned by the allOf

method provides an easy way to wait for the completion of all the CompletableFutures in the

original stream. This is useful for the best-price-finder application because it can then display a

message saying “All shops returned results or timed out,” so a user doesn’t keep wondering

whether more prices might become available.

Conversely, in other applications you may wish to wait for the completion of only one of the

CompletableFutures in an array, perhaps if you’re consulting two currency-exchange servers

and are happy to take the result of the first to respond. In this case, you can similarly use the

anyOf factory method. As a matter of detail, this method takes as input an array of

CompletableFutures and returns a Completable-Future<Object> that completes with the same

value as the first-to-complete CompletableFuture.

11.5.2. Putting it to work

As we discussed at beginning of this section, you’ll now suppose that all the methods simulating

a remote invocation will use the randomDelay method of listing 11.19, introducing a random

delay distributed between 0.5 and 2.5 seconds instead of a delay of 1 second. Running the code

in listing 11.21 with this change, you’ll see that the prices provided by the different shops don’t

appear all at the same time as happened before but are printed incrementally as soon as the

discounted price for a given shop is available. To make the result of this change more obvious,

we slightly modified the code to report a timestamp showing the time taken for each price to be

calculated:

long start = System.nanoTime();

CompletableFuture[] futures = findPricesStream("myPhone27S")

.map(f -> f.thenAccept(

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

342

s -> System.out.println(s + " (done in " +

((System.nanoTime() - start) / 1_000_000) + " msecs)")))

.toArray(size -> new CompletableFuture[size]);

CompletableFuture.allOf(futures).join();

System.out.println("All shops have now responded in "

+ ((System.nanoTime() - start) / 1_000_000) + " msecs");

Running this code produces output similar to the following:

BuyItAll price is 184.74 (done in 2005 msecs)

MyFavoriteShop price is 192.72 (done in 2157 msecs)

LetsSaveBig price is 135.58 (done in 3301 msecs)

ShopEasy price is 167.28 (done in 3869 msecs)

BestPrice price is 110.93 (done in 4188 msecs)

All shops have now responded in 4188 msecs

You can see that, due to the effect of the random delays, the first price is now printed more than

twice as fast as the last!

11.6. Summary

In this chapter, you learned the following:

 Executing relatively long-lasting operations using asynchronous tasks can increase the performance

and responsiveness of your application, especially if it relies on one or more remote external services.

 You should consider providing an asynchronous API to your clients. You can easily implement it using

CompletableFutures features.

 A CompletableFuture also allows you to propagate and manage errors generated within an

asynchronous task.

 You can asynchronously consume from a synchronous API by simply wrapping its invocation in a

CompletableFuture.

 You can compose or combine multiple asynchronous tasks both when they’re independent and when

the result of one of them is used as the input to another.

 You can register a callback on a CompletableFuture to reactively execute some code when the

Future completes and its result becomes available.

 You can determine when all values in a list of CompletableFutures have completed, or alternatively

you can wait for just the first to complete.

343

Chapter 12. New Date and Time API

This chapter covers

 Why we needed a new date and time library in Java 8

 Representing date and time for both humans and machines

 Defining an amount of time

 Manipulating, formatting, and parsing dates

 Dealing with different time zones and calendars

The Java API includes many useful components to help you build complex applications.

Unfortunately, the Java API isn’t always perfect. We believe the majority of experienced Java

developers will agree that date and time support before Java 8 was far from ideal. Don’t worry,

though; Java 8 introduces a brand new Date and Time API to tackle this issue.

In Java 1.0 the only support for date and time was the java.util.Date class. Despite its name, this

class doesn’t represent a date but a point in time with milliseconds precision. Even worse, the

usability of this class is harmed by some nebulous design decisions like the choice of its offsets:

the years start from 1900, whereas the months start at index 0. This means that if you want to

represent the release date of Java 8, which is March 18, 2014, you have to create an instance of

Date as follows:

Date date = new Date(114, 2, 18);

Printing this date produces

Tue Mar 18 00:00:00 CET 2014

Not very intuitive, is it? Moreover even the String returned by the toString method of the Date

class could be quite misleading. It also includes the JVM’s default time zone, CET, which is

Central Europe Time in our case. But this doesn’t mean the Date class itself is in any way aware

of the time zone!

The problems and limitations of the Date class were immediately clear when Java 1.0 came out,

but it was also clear that it wasn’t fixable without breaking its backward compatibility. As a

consequence, in Java 1.1 many of the Date class’s methods were deprecated, and it was replaced

with the alternative java.util.Calendar class. Unfortunately, Calendar has similar problems and

design flaws that lead to error-prone code. For instance, months also start at index 0 (at least

344

Calendar got rid of the 1900 offset for the year). Even worse, the presence of both the Date and

Calendar classes increases confusion among developers. Which one should you use? In addition,

some other features such as the DateFormat, used to format and parse dates or time in a

language-independent manner, work only with the Date class.

The DateFormat also comes with its own set of problems. For example, it isn’t thread-safe. This

means that if two threads try to parse a date using the same formatter at the same time, you may

receive unpredictable results.

Finally, both Date and Calendar are mutable classes. What does it mean to mutate the 18th of

March 2014 to the 18th of April? This design choice can lead you into a maintenance nightmare,

as you’ll learn in more detail in the next chapter, which is about functional programming.

The consequence is that all these flaws and inconsistencies have encouraged the use of

third-party date and time libraries, such as Joda-Time. For these reasons Oracle decided to

provide high-quality date and time support in the native Java API. As a result, Java 8 integrates

many of the Joda-Time features in the java.time package.

In this chapter, we explore the features introduced by the new Date and Time API. We start with

basic use cases such as creating dates and times that are suitable to be used by both humans and

machines, and gradually explore more advanced applications of the new Date and Time API, like

manipulating, parsing, and printing date-time objects and working with different time zones

and alternative calendars.

12.1. LocalDate, LocalTime, Instant, Duration, and Period

Let’s start by exploring how to create simple dates and intervals. The java.time package includes

many new classes to help you: LocalDate, LocalTime, LocalDateTime, Instant, Duration, and

Period.

12.1.1. Working with LocalDate and LocalTime

The class LocalDate is probably the first one you’ll come across when you start using the new

Date and Time API. An instance of this class is an immutable object representing just a plain

date without the time of day. In particular, it doesn’t carry any information about the time zone.

You can create a LocalDate instance using the of static factory method. A LocalDate instance

provides many methods to read its most commonly used values such as year, month, day of the

week, and so on, as shown in the listing that follows.

345

Listing 12.1. Creating a LocalDate and reading its values

It’s also possible to obtains the current date from the system clock using the now factory

method:

LocalDate today = LocalDate.now();

All the other date-time classes we’ll investigate in the remaining part of this chapter provide a

similar factory method. You can also access the same information by passing a TemporalField to

the get method. The TemporalField is an interface defining how to access the value of a specific

field of a temporal object. The ChronoField enumeration implements this interface, so you can

conveniently use an element of that enumeration with the get method, as shown in the next

listing.

Listing 12.2. Reading LocalDate values using a TemporalField

int year = date.get(ChronoField.YEAR);

int month = date.get(ChronoField.MONTH_OF_YEAR);

int day = date.get(ChronoField.DAY_OF_MONTH);

Similarly, the time of day, such as 13:45:20, is represented by the LocalTime class. You can

create instances of LocalTime using two overloaded static factory methods named of. The first

one accepts an hour and a minute and the second one also accepts a second. Just like the

LocalDate class, the LocalTime class provides some getter methods to access its values, as

shown in the following listing.

Listing 12.3. Creating a LocalTime and reading its values

346

Both LocalDate and LocalTime can be created by parsing a String representing them. You can

achieve this using their parse static methods:

LocalDate date = LocalDate.parse("2014-03-18");

LocalTime time = LocalTime.parse("13:45:20");

It’s possible to pass a DateTimeFormatter to the parse method. An instance of this class

specifies how to format a date and/or a time object. It’s intended as a replacement for the old

java.util.DateFormat that we mentioned earlier. We show in more detail how you can use a

DateTimeFormatter in section 12.2. Also note that these parse methods both throw a

DateTimeParseException, which extends RuntimeException in case the String argument can’t

be parsed as a valid LocalDate or LocalTime.

12.1.2. Combining a date and a time

The composite class called LocalDateTime pairs a LocalDate and a LocalTime. It represents both

a date and a time, without a time zone, and can be created either directly or by combining a date

and time, as shown in the next listing.

Listing 12.4. Creating a LocalDateTime directly or by combining a date

and a time

// 2014-03-18T13:45:20

LocalDateTime dt1 = LocalDateTime.of(2014, Month.MARCH, 18, 13, 45, 20);

LocalDateTime dt2 = LocalDateTime.of(date, time);

LocalDateTime dt3 = date.atTime(13, 45, 20);

LocalDateTime dt4 = date.atTime(time);

LocalDateTime dt5 = time.atDate(date);

Note that it’s possible to create a LocalDateTime by passing a time to a LocalDate, or conversely

a date to a LocalTime, using respectively their atTime or atDate methods. You can also extract

the LocalDate or LocalTime component from a LocalDateTime using the toLocalDate and

toLocalTime methods:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

347

12.1.3. Instant: a date and time for machines

As humans we’re used to thinking of dates and time in terms of weeks, days, hours, and minutes.

Nonetheless, this representation isn’t easy for a computer to deal with. From a machine point of

view, the most natural format to model time is with a single large number representing a point

on a continuous timeline. This is the approach used by the new java.time.Instant class, which

basically represents the number of seconds passed since the Unix epoch time, set by convention

to midnight of January 1, 1970 UTC.

You can create an instance of this class by passing the number of seconds to its ofEpochSecond

static factory method. In addition, the Instant class supports nanosecond precision. There’s a

supplementary overloaded version of the ofEpochSecond static factory method that accepts a

second argument that’s a nanosecond adjustment to the passed number of seconds. This

overloaded version adjusts the nanosecond argument, ensuring that the stored nanosecond

fraction is between 0 and 999,999,999. This means all the following invocations of the

ofEpochSecond factory method will return exactly the same Instant:

As you’ve already seen for the LocalDate and the other human-readable date-time classes, the

Instant class also supports another static factory method named now, which allows you to

capture a timestamp of the current moment. It’s important to reinforce that an Instant is

intended for use only by a machine. It consists of a number of seconds and nanoseconds. As a

consequence, it doesn’t provide any ability to handle units of time that are meaningful to

humans. For example, this statement

int day = Instant.now().get(ChronoField.DAY_OF_MONTH);

will just throw an exception like

java.time.temporal.UnsupportedTemporalTypeException: Unsupported field: DayOfMonth

But you can work with Instants by using the Duration and Period classes, which we look at next.

348

12.1.4. Defining a Duration or a Period

All the classes you’ve seen so far implement the Temporal interface, which defines how to read

and manipulate the values of an object modeling a generic point in time. We’ve shown you a few

ways to create different Temporal instances. The next natural step is to create a duration

between two temporal objects. The between static factory method of the Duration class serves

exactly this purpose. You can create a duration between two LocalTimes, two LocalDateTimes,

or two Instants as follows:

Duration d1 = Duration.between(time1, time2);

Duration d1 = Duration.between(dateTime1, dateTime2);

Duration d2 = Duration.between(instant1, instant2);

Because LocalDateTime and Instant are made for different purposes, one to be used by humans

and the other by machines, you’re not allowed to mix them. If you try to create a duration

between them, you’ll only obtain a DateTimeException. Moreover, because the Duration class is

used to represent an amount of time measured in seconds and eventually nanoseconds, you

can’t pass a LocalDate to the between method.

When you need to model an amount of time in terms of years, months, and days, you can use

the Period class. You can find out the difference between two LocalDates with the between

factory method of that class:

Period tenDays = Period.between(LocalDate.of(2014, 3, 8),

LocalDate.of(2014, 3, 18));

Finally, both the Duration and Period classes have other convenient factory methods to create

instances of them directly, in other words, without defining them as the difference between two

temporal objects, as shown in the next listing.

Listing 12.5. Creating Durations and Periods

Duration threeMinutes = Duration.ofMinutes(3);

Duration threeMinutes = Duration.of(3, ChronoUnit.MINUTES);

Period tenDays = Period.ofDays(10);

Period threeWeeks = Period.ofWeeks(3);

Period twoYearsSixMonthsOneDay = Period.of(2, 6, 1);

349

Both the Duration and Period classes share many similar methods, and table 12.1 lists these.

Table 12.1. The common methods of date-time classes representing an

interval

Method Static Description

between Yes Creates an interval between two points in time

from Yes Creates an interval from a temporal unit

of Yes Creates an instance of this interval from its constituent parts

parse Yes Creates an instance of this interval from a String

addTo No Creates a copy of this interval adding to it the specified temporal object

get No Reads part of the state of this interval

isNegative No Checks if this interval is negative, excluding zero

isZero No Checks if this interval is zero length

minus No Creates a copy of this interval with an amount of time subtracted

multipliedBy No Creates a copy of this interval multiplied by the given scalar

negated No Creates a copy of this interval with the length negated

plus No Creates a copy of this interval with an amount of time added

subtractFrom No Subtracts this interval from the specified temporal object

All the classes we’ve investigated so far are immutable, and this is a great design choice to allow

a more functional programming style, ensure thread-safety, and preserve the consistency of the

domain model. Nevertheless, the new Date and Time API offers some handy methods to create a

modified version of those objects. For example, you may wish to add three days to an existing

LocalDate instance. We explore how to do this in the next section. In addition, we explore how

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

350

to create a date-time formatter from a given pattern, such as dd/MM/yyyy, or even

programmatically, and how to use this formatter for both parsing and printing a date.

12.2. Manipulating, parsing, and formatting dates

The most immediate and easiest way to create a modified version of an existing LocalDate is

changing one of its attributes, using one of its withAttribute methods. Note that all the methods

return a new object with the modified attribute, as shown in the following listing. They don’t

mutate the existing object!

Listing 12.6. Manipulating the attributes of a LocalDate in an absolute

way

You can also do this with the more generic with method, taking a TemporalField as first

argument, as in the last statement of listing 12.6. This last with method is the dual of the get

method used in listing 12.2. Both of these methods are declared in the Temporal interface

implemented by all the classes of the Date and Time API, which define a single point in time

such as LocalDate, LocalTime, LocalDateTime, and Instant. More precisely, the get and with

methods let you respectively read and modify the value of a field of a Temporal object. They

throw an Unsupported-TemporalTypeException if the requested field isn’t supported by the

specific Temporal, for example, a ChronoField.MONTH_OF_YEAR on an Instant or a

ChronoField.NANO _OF_SECOND on a LocalDate.

It’s even possible to manipulate a LocalDate in a declarative manner. For example, you can add

or subtract a given amount of time, as shown in the next listing.

Listing 12.7. Manipulating the attributes of a LocalDate in a relative way

Similarly to what we’ve explained about the with and get methods, the generic plus method used

in the last statement of listing 12.7, together with the analogous minus method, is declared in

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

351

the Temporal interface. These methods allow you to move a Temporal back or forward a given

amount of time, defined by a number plus a Temporal-Unit, where the ChronoUnit enumeration

offers a convenient implementation of the TemporalUnit interface.

As you may have anticipated, all the date-time classes representing a point in time like

LocalDate, LocalTime, LocalDateTime, and Instant have many methods in common; table 12.2

summarizes these.

Table 12.2. The common methods of date-time classes representing a

point in time

Method Static Description

from Yes Creates an instance of this class from the passed temporal object

now Yes Creates a temporal object from the system clock

of Yes Creates an instance of this temporal object from its constituent parts

parse Yes Creates an instance of this temporal object from a String

atOffset No Combines this temporal object with a zone offset

atZone No Combines this temporal object with a time zone

format No Converts this temporal object into a String using the specified formatter (not

available for Instant)

get No Reads part of the state of this temporal object

minus No Creates a copy of this temporal object with an amount of time subtracted

plus No Creates a copy of this temporal object with an amount of time added

with No Creates a copy of this temporal object with part of the state changed

Check what you’ve learned up to now about manipulating dates with Quiz 12.1.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

352

Quiz 12.1: Manipulating a LocalDate

What will the value of the date variable be after the following manipulations?

LocalDate date = LocalDate.of(2014, 3, 18);

date = date.with(ChronoField.MONTH_OF_YEAR, 9);

date = date.plusYears(2).minusDays(10);

date.withYear(2011);

Answer:

2016-09-08

As you’ve seen, you can manipulate the date both in an absolute way and in a relative way. You

can also concatenate more manipulations in a single statement, because every change will create

a new LocalDate object, and the subsequent invocation will manipulate the object created by the

former one. Finally, the last statement in this code snippet has no observable effect because, as

usual, it creates a new LocalDate instance, but we’re not assigning this new value to any

variable.

12.2.1. Working with TemporalAdjusters

All the date manipulations you’ve seen so far are relatively straightforward. Sometimes, you may

need to perform more advanced operations, such as adjusting a date to the next Sunday, the

next working day, or the last day of the month. In such cases you can pass to an overloaded

version of the with method a TemporalAdjuster that provides a more customizable way to define

the manipulation needed to operate on a specific date. The Date and Time API already provides

many predefined Temporal-Adjusters for the most common use cases. You can access them

using the static factory methods contained in the TemporalAdjusters class, as shown next.

Listing 12.8. Using the predefined TemporalAdjusters

353

Table 12.3 provides a list of the TemporalAdjusters that can be created with these factory

methods.

Table 12.3. The factory methods of the TemporalAdjusters class

Method Description

dayOfWeekInMonth Creates a new date in the same month with the ordinal day of week

firstDayOfMonth Creates a new date set to the first day of the current month

firstDayOfNextMonth Creates a new date set to the first day of the next month

firstDayOfNextYear Creates a new date set to the first day of the next year

firstDayOfYear Creates a new date set to the first day of the current year

firstInMonth Creates a new date in the same month with the first matching day of week

lastDayOfMonth Creates a new date set to the last day of the current month

lastDayOfNextMonth Creates a new date set to the last day of the next month

lastDayOfNextYear Creates a new date set to the last day of the next year

lastDayOfYear Creates a new date set to the last day of the current year

lastInMonth Creates a new date in the same month with the last matching day of week

next previous Creates a new date set to the first occurrence of the specified day of week

after/before the date being adjusted

nextOrSame

previousOrSame

Creates a new date set to the first occurrence of the specified day of week

after/before the date being adjusted unless it’s already on that day, in which case

the same object is returned

As you can see, TemporalAdjusters allow you to perform more complex date manipulations that

still read like the problem statement. Moreover, it’s relatively simple to create your own custom

TemporalAdjuster implementation if you can’t find a predefined TemporalAdjuster that fits your

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

354

need. In fact, the TemporalAdjuster interface declares only a single method (this makes it a

functional interface), defined as follows.

Listing 12.9. The TemporalAdjuster interface

@FunctionalInterface

public interface TemporalAdjuster {

Temporal adjustInto(Temporal temporal);

}

This means an implementation of the TemporalAdjuster interface defines how to convert a

Temporal object into another Temporal. You can think of it as being like a

UnaryOperator<Temporal>. Take a few minutes to practice what you’ve learned so far and

implement your own TemporalAdjuster in Quiz 12.2.

Quiz 12.2: Implementing a custom TemporalAdjuster

Develop a class named NextWorkingDay, implementing the TemporalAdjuster interface that

moves a date forward by one day but skips Saturdays and Sundays. Doing the following

date = date.with(new NextWorkingDay());

should move the date to the next day, if this day is between Monday and Friday, but to the next

Monday if it’s a Saturday or a Sunday.

Answer:

You can implement the NextWorkingDay adjuster as follows:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

355

This TemporalAdjuster normally moves a date forward one day, except if today is a Friday or

Saturday, in which case it advances the dates three or two days, respectively. Note that since a

TemporalAdjuster is a functional interface, you could just pass the behavior of this adjuster in a

lambda expression:

date = date.with(temporal -> {

DayOfWeek dow =

DayOfWeek.of(temporal.get(ChronoField.DAY_OF_WEEK));

int dayToAdd = 1;

if (dow == DayOfWeek.FRIDAY) dayToAdd = 3;

else if (dow == DayOfWeek.SATURDAY) dayToAdd = 2;

return temporal.plus(dayToAdd, ChronoUnit.DAYS);

});

It’s likely that you may want to apply this manipulation to a date in several points of your code,

and for this reason we suggest encapsulating its logic in a proper class as we did here. Do the

same for all the manipulations you use frequently. You’ll end up with a small library of adjusters

you and your team could easily reuse in your codebase.

If you want to define the TemporalAdjuster with a lambda expression, it’s preferable to do it

using the ofDateAdjuster static factory of the TemporalAdjusters class that accepts a

UnaryOperator<LocalDate> as follows:

TemporalAdjuster nextWorkingDay = TemporalAdjusters.ofDateAdjuster(

temporal -> {

DayOfWeek dow =

DayOfWeek.of(temporal.get(ChronoField.DAY_OF_WEEK));

356

int dayToAdd = 1;

if (dow == DayOfWeek.FRIDAY) dayToAdd = 3;

if (dow == DayOfWeek.SATURDAY) dayToAdd = 2;

return temporal.plus(dayToAdd, ChronoUnit.DAYS);

});

date = date.with(nextWorkingDay);

Another common operation you may want to perform on your date and time objects is printing

them in different formats specific to your business domain. Similarly, you may want to convert

Strings representing dates in those formats into actual date objects. In the next section, we

demonstrate the mechanisms provided by the new Date and Time API to accomplish these

tasks.

12.2.2. Printing and parsing date-time objects

Formatting and parsing is another relevant feature when working with dates and times. The new

java.time.format package is entirely devoted to this purpose. The most important class of this

package is DateTimeFormatter. The easiest way to create a formatter is through its static factory

methods and constants. The constants such as BASIC_ISO_DATE and ISO_LOCAL_DATE are

just predefined instances of the DateTimeFormatter class. All DateTimeFormatters can be used

to create a String representing a given date or time in a specific format. For example, here we

produce a String using two different formatters:

You can also parse a String representing a date or a time in that format to re-create the date

object itself. You can achieve this by using the parse factory method provided by all the classes

of the Date and Time API representing a point in time or an interval:

LocalDate date1 = LocalDate.parse("20140318",

DateTimeFormatter.BASIC_ISO_DATE);

LocalDate date2 = LocalDate.parse("2014-03-18",

DateTimeFormatter.ISO_LOCAL_DATE);

In comparison to the old java.util.DateFormat class, all the DateTimeFormatter instances are

thread-safe. Therefore, you can create singleton formatters, like the ones defined by the

DateTimeFormatter constants, and share them among multiple threads. The

357

DateTimeFormatter class also supports a static factory method that lets you create a formatter

from a specific pattern, as shown in the next listing.

Listing 12.10. Creating a DateTimeFormatter from a pattern

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd/MM/yyyy");

LocalDate date1 = LocalDate.of(2014, 3, 18);

String formattedDate = date1.format(formatter);

LocalDate date2 = LocalDate.parse(formattedDate, formatter);

Here the LocalDate’s format method produces a String representing the date with the requested

pattern. Next, the static parse method re-creates the same date by parsing the generated String

using the same formatter. The ofPattern method also has an overloaded version allowing you to

create a formatter for a given Locale, as shown in the following listing.

Listing 12.11. Creating a localized DateTimeFormatter

DateTimeFormatter italianFormatter =

DateTimeFormatter.ofPattern("d. MMMM yyyy", Locale.ITALIAN);

LocalDate date1 = LocalDate.of(2014, 3, 18);

String formattedDate = date.format(italianFormatter); // 18. marzo 2014

LocalDate date2 = LocalDate.parse(formattedDate, italianFormatter);

Finally, in case you need even more control, the DateTimeFormatterBuilder class lets you define

complex formatters step by step using meaningful methods. In addition, it provides you with the

ability to have case-insensitive parsing, lenient parsing (allowing the parser to use heuristics to

interpret inputs that don’t precisely match the specified format), padding, and optional sections

of the formatter. For example, you can programmatically build the same italianFormatter we

used in listing 12.11 through the DateTimeFormatterBuilder as follows.

Listing 12.12. Building a DateTimeFormatter

DateTimeFormatter italianFormatter = new DateTimeFormatterBuilder()

.appendText(ChronoField.DAY_OF_MONTH)

.appendLiteral(". ")

.appendText(ChronoField.MONTH_OF_YEAR)

.appendLiteral(" ")

.appendText(ChronoField.YEAR)

.parseCaseInsensitive()

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

358

.toFormatter(Locale.ITALIAN);

So far you’ve learned how to create, manipulate, format, and parse both points in time and

intervals. But you haven’t seen how to deal with subtleties involving dates and time. For

example, you may need to deal with different time zones or work with alternative calendar

systems. In the next sections, we explore these topics using the new Date and Time API.

12.3. Working with different time zones and calendars

None of the classes you’ve seen so far contained any information about time zones. Dealing with

time zones is another important issue that’s been vastly simplified by the new Date and Time

API. The new java.time.ZoneId class is the replacement for the old java.util.TimeZone class. It

aims to better shield you from the complexities related to time zones, such as dealing with

Daylight Saving Time (DST). Like the other classes of the Date and Time API, it’s immutable.

A time zone is a set of rules corresponding to a region in which the standard time is the same.

There are about 40 of them held in instances of the ZoneRules class. You can simply call

getRules() on a ZoneId to obtain the rules for that given time zone. A specific ZoneId is

identified by a region ID, for example:

ZoneId romeZone = ZoneId.of("Europe/Rome");

The region IDs are all in the format “{area}/{city}” and the set of available locations is the one

supplied by the IANA Time Zone Database. You can also convert an old TimeZone object to a

ZoneId by using the new method toZoneId:

ZoneId zoneId = TimeZone.getDefault().toZoneId();

Once you have a ZoneId object, you can combine it with a LocalDate, a LocalDateTime, or an

Instant, to transform it into ZonedDateTime instances, which represent points in time relative

to the specified time zone, as shown in the next listing.

Listing 12.13. Applying a time zone to a point in time

LocalDate date = LocalDate.of(2014, Month.MARCH, 18);

ZonedDateTime zdt1 = date.atStartOfDay(romeZone);

LocalDateTime dateTime = LocalDateTime.of(2014, Month.MARCH, 18, 13, 45);

ZonedDateTime zdt2 = dateTime.atZone(romeZone);

359

Instant instant = Instant.now();

ZonedDateTime zdt3 = instant.atZone(romeZone);

Figure 12.1 illustrates the components of a ZonedDateTime to help you understand the

differences between LocaleDate, LocalTime, LocalDateTime, and ZoneId.

Figure 12.1. Making sense of a ZonedDateTime

You can also convert a LocalDateTime to an Instant by using a ZoneId:

LocalDateTime dateTime = LocalDateTime.of(2014, Month.MARCH, 18, 13, 45);

Instant instantFromDateTime = dateTime.toInstant(romeZone);

Or you can do it the other way around:

Instant instant = Instant.now();

LocalDateTime timeFromInstant = LocalDateTime.ofInstant(instant, romeZone);

12.3.1. Fixed offset from UTC/Greenwich

Another common way to express a time zone is with a fixed offset from UTC/Greenwich. For

instance, you can use this notation to say that “New York is five hours behind London.” In cases

like this you can use the ZoneOffset class, a subclass of ZoneId that represents the difference

between a time and the zero meridian of Greenwich, London:

ZoneOffset newYorkOffset = ZoneOffset.of("-05:00");

The -05:00 offset indeed corresponds to the US Eastern Standard Time. Be aware that a

ZoneOffset defined in this way doesn’t have any Daylight Saving Time management, and for this

reason it isn’t suggested in the majority of cases. Because a ZoneOffset is also a ZoneId, you can

use it as shown in listing 12.13. You can also create an OffsetDateTime, which represents a

date-time with an offset from UTC/Greenwich in the ISO-8601 calendar system:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

360

LocalDateTime dateTime = LocalDateTime.of(2014, Month.MARCH, 18, 13, 45);

OffsetDateTime dateTimeInNewYork = OffsetDateTime.of(date, newYorkOffset);

Another advanced feature supported by the new Date and Time API is support for non-ISO

calendaring systems.

12.3.2. Using alternative calendar systems

The ISO-8601 calendar system is the de facto world civil calendar system. But four additional

calendar systems are provided in Java 8. Each of these calendar systems has a dedicated date

class: ThaiBuddhistDate, MinguoDate, JapaneseDate, and HijrahDate. All these classes together

with LocalDate implement the ChronoLocalDate interface intended to model a date in an

arbitrary chronology. You can create an instance of one of these classes out of a LocalDate. More

generally, you can create any other Temporal instance using their from static factory methods as

follows:

LocalDate date = LocalDate.of(2014, Month.MARCH, 18);

JapaneseDate japaneseDate = JapaneseDate.from(date);

Alternatively, you can explicitly create a calendar system for a specific Locale and create an

instance of a date for that Locale. In the new Date and Time API, the Chronology interface

models a calendar system, and you can obtain an instance of it using its ofLocale static factory

method:

Chronology japaneseChronology = Chronology.ofLocale(Locale.JAPAN);

ChronoLocalDate now = japaneseChronology.dateNow();

The designers of the Date and Time API advise using LocalDate instead of Chrono-LocalDate for

most cases; this is because a developer could make assumptions in their code that unfortunately

aren’t true in a multicalendar system. Such assumptions might include that the value of a day or

month will never be higher than 31, that a year contains 12 months, or even that a year has a

fixed number of months. For these reasons, it’s recommended to use LocalDate throughout your

application, including all storage, manipulation, and interpretation of business rules, whereas

you should employ Chrono-LocalDate only when you need to localize the input or output of your

program.

361

Islamic calendar

Out of the new calendars added to Java 8, the HijrahDate (Islamic calendar) seems to be the

most complex because it can have variants. The Hijrah calendar system is based on lunar

months. There are a variety of methods to determine a new month, such as a new moon that

could be visible anywhere in the world or that must be visible first in Saudi Arabia. The

withVariant method is used to choose the desired variant. Java 8 has included the Umm

Al-Qura variant for HijrahDate as standard.

The following code illustrates an example of displaying the start and end dates of Ramadan for

the current Islamic year in ISO date:

12.4. Summary

In this chapter, you’ve learned the following:

 The old java.util.Date class and all other classes used to model date and time in Java before Java 8

have many inconsistencies and design flaws, including their mutability and some poorly chosen offsets,

defaults, and naming.

 The date-time objects of the new Date and Time API are all immutable.

 This new API provides two different time representations to manage the different needs of humans

and machines when operating on it.

 You can manipulate date and time objects in both an absolute and relative manner, and the result of

these manipulations is always a new instance, leaving the original one unchanged.

 TemporalAdjusters allow you to manipulate a date in a more complex way than just changing one of

its values, and you can define and use your own custom date transformations.

 You can define a formatter to both print and parse date-time objects in a specific format. These

formatters can be created from a pattern or programmatically and they’re all thread-safe.

 You can represent a time zone, both relative to a specific region/location and as a fixed offset from

UTC/Greenwich, and apply it to a date-time object in order to localize it.

362

 You can use calendar systems different from the ISO-8601 standard system.

363

Part 4. Beyond Java 8

In the final part of this book, we draw back a little with a tutorial introduction to writing

effective functional-style programs in Java, along with a comparison of Java 8 features with

those of Scala.

Chapter 13 gives a full tutorial on functional programming, introduces some of its terminology,

and explains how to write functional-style programs in Java 8.

Chapter 14 covers more advanced functional programming techniques including higher-order

functions, currying, persistent data structures, lazy lists, and pattern matching. You can view

this chapter as a mix of practical techniques to apply in your codebase as well as academic

information that will make you a more knowledgeable programmer.

Chapter 15 follows by discussing how Java 8 features compare to features in the Scala

language—a language that, like Java, is implemented on top of the JVM and that has evolved

quickly to threaten some aspects of Java’s niche in the programming language ecosystem.

Finally, chapter 16 reviews the journey of learning about Java 8 and the gentle push toward

functional-style programming. In addition, we speculate on what future enhancements and

great new features may be in Java’s pipeline beyond Java 8.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

364

Chapter 13. Thinking functionally

This chapter covers

 Why functional programming?

 What defines functional programming?

 Declarative programming and referential transparency

 Guidelines for writing functional-style Java

 Iteration vs. recursion

You’ve seen the term functional quite frequently throughout this book. By now, you may have

some ideas of what being functional entails. Is it about lambdas and first-class functions? Or is it

about restricting your right to mutate objects? In which case, what do you achieve from adopting

a functional style? In this chapter, we shed light on these questions. We explain what functional

programming is and introduce some of its terminology. We first examine the concepts behind

functional programming such as side effects, immutability, declarative programming, and

referential transparency and relate these to Java 8. In the next chapter, we look more closely at

functional programming techniques such as higher-order functions, currying, persistent data

structures, lazy lists, pattern matching, and combinators.

13.1. Implementing and maintaining systems

Let’s start by imagining you’ve been asked to manage an upgrade to a large preexisting software

system, which you haven’t yet seen. Should you accept this job maintaining such a software

system? A seasoned Java contractor’s only slightly tongue-in-cheek maxim for deciding is “Start

by searching for the keyword synchronized; if you find it, then just say no (reflecting the

difficulty of fixing concurrency bugs); otherwise consider the structure of the system in more

detail.” We provide more detail in the next paragraphs, but first observe that, as you’ve seen in

previous chapters, Java 8’s addition of streams allows you to exploit parallelism without

worrying about locking, provided you embrace stateless behaviors (that is, functions in your

stream-processing pipeline don’t interact by one reading from or writing to a variable that’s

written by another).

What else might you wish the program to look like so it’s easy to work with? You’d want it to be

well structured, with an understandable class hierarchy reflecting the structure of the system;

there are even ways to estimate such structure by using software engineering metrics of coupling

365

(how interdependent parts of the system are) and cohesion (how related the various parts of the

system are).

But for many programmers, the key day-to-day concern is debugging during maintenance: this

code crashed because it observed some unexpected value. Why is it this way and how did it get

this way? Just think of how many of your maintenance concerns fall into this category![1] It turns

out that the ideas of no side effects and immutability, which functional programming promotes,

can help. Let’s examine this in more detail.

1 We recommend reading Working Effectively with Legacy Code (Prentice Hall, 2004) by

Michael Feathers for further discussion on this topic.

13.1.1. Shared mutable data

Ultimately, the reason for the unexpected variable value problems just discussed is that shared

mutable data structures are read and updated by more than one of the methods your

maintenance centers on. Suppose several classes keep a reference to a list. Who owns this list?

What if one class modifies it? Do other classes expect this change? How do other classes learn of

this change? Do they need to be notified of this change to satisfy all assumptions on this list, or

should they make a defensive copy for themselves? In other words, shared mutable data

structures make it harder to track changes in different parts of your program. Figure 13.1

illustrates this idea.

Figure 13.1. A mutable shared across multiple classes. It’s difficult to

understand who the owner is.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

366

Consider a system that doesn’t mutate any data structures. It would be a dream to maintain

because you wouldn’t have any bad surprises about some object somewhere that unexpectedly

modifies a data structure! A method, which modifies neither the state of its enclosing class nor

the state of any other objects and returns its entire results using return, is called pure or

side-effect free.

What constitutes a side effect more concretely? In a nutshell, a side effect is an action that’s not

totally enclosed within the function itself. Here are some examples:

 Modifying a data structure in place, including assigning to any field, apart from initialization inside a

constructor (for example, setter methods)

 Throwing an exception

 Doing I/O operations such as writing to a file

Another way to look at this idea of no side effects is to consider immutable objects. An

immutable object is an object that can’t change its state after it’s instantiated so it can’t be

affected by the actions of a function. This means that once immutable objects are instantiated,

they can never go into an unexpected state. You can share them without having to copy them,

and they’re thread-safe because they can’t be modified.

The idea of no side effects might appear as a pretty severe restriction, and you may doubt

whether real systems can be built in this way. We hope to convince you of this by the end of the

chapter. The good news is that components of systems that embrace this idea can use multicore

parallelism without using locking, because the methods can no longer interfere with each other.

In addition, this is great for immediately understanding which parts of the program are

independent.

These ideas come from functional programming, which we turn to in the next section. But first,

let’s explore the idea of declarative programming, upon which functional programming is

based.

13.1.2. Declarative programming

There are two ways of thinking about implementing a system by writing a program. One way

centers on how things are done: “first do this, then update that, then” For example, if you

want to calculate the most expensive transaction in a list, you’ll typically execute a sequence of

commands: take a transaction from the list and compare it with the provisional most expensive

transaction; if it’s more expensive, then it becomes the provisional most expensive; repeat with

the next transaction in the list and so on.

367

This “how” style of programming is an excellent match for classic object-oriented programming,

sometimes called imperative programming, because it has instructions that mimic the low-level

vocabulary of a computer (for example, assignment, conditional branching, and loops), as

shown in this code:

Transaction mostExpensive = transactions.get(0);

if(mostExpensive == null)

throw new IllegalArgumentException("Empty list of transactions")

for(Transaction t: transactions.subList(1, transactions.size())){

if(t.getValue() > mostExpensive.getValue()){

mostExpensive = t;

}

}

The other way centers instead on what’s to be done. You saw in chapters 4 and 5 that using the

Streams API you could specify this query as follows:

Optional<Transaction> mostExpensive =

transactions.stream()

.max(comparing(Transaction::getValue));

The fine detail of how this query is implemented is left to the library. We refer to this idea as

internal iteration. The great advantage is that your query reads like the problem statement, and

because of that it’s clear to understand immediately in comparison to trying to understand what

a sequence of commands does.

This “what” style is often called declarative programming. You give rules saying what you want,

and you expect the system to decide how to achieve it. It’s great because it reads closer to the

problem statement.

13.1.3. Why functional programming?

Functional programming exemplifies this idea of declarative programming (“just say what you

want, using expressions that don’t interact, and for which the system can choose the

implementation”) and side-effect-free computation explained previously. As we discussed, these

two ideas can help you implement and maintain systems more easily.

Note that certain language features such as composing operations and passing behaviors, which

we presented in chapter 3 using lambda expressions, are required to help read and write code in

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

368

a natural way using a declarative style. Using streams, you were able to chain several operations

together to express a complicated query. These features are what characterize functional

programming languages; we look at them more carefully under the guise of combinators in the

next chapter, in section 14.5.

To make things tangible and connect them with the new features in Java 8, we now concretely

define the idea of functional programming and its representation in Java. What we’d like to

impart is that by using functional-programming style, you can write serious programs without

relying on side effects.

13.2. What’s functional programming?

The oversimplistic answer to “What is functional programming?” is “programming using

functions.” So what’s a function?

It’s easy to imagine a method taking an int and a double as arguments and producing a

double—and also having the side effect of counting the number of times it has been called by

updating a mutable variable, as illustrated in figure 13.2.

Figure 13.2. A function with side effects

But in the context of functional programming a function corresponds to a mathematical

function: it takes zero or more arguments, gives one or more results, and has no side effects.

You can see it as a black box, which takes some inputs and produces some outputs, as illustrated

in figure 13.3.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

369

Figure 13.3. A function with no side effects

The distinction between this sort of function and the methods you see in programming

languages like Java is central. (The idea of the mathematical functions like log or sin having

such side effects in unthinkable.) In particular, mathematical functions when repeatedly called

with the same arguments always return the same results. This rules out methods such as

Random.nextInt, and we further discuss this idea later under the concept of referential

transparency.

When we say functional we mean “like mathematics—no side effects.” Now a programming

subtlety appears. Do we mean that every function is built only using functions and of course

mathematical ideas such as if-then-else? Or might we allow a function to do nonfunctional

things internally, as long as it doesn’t expose any of these side effects to the rest of the system?

In other words, if we as programmers perform a side effect that can’t be observed by callers,

does that side effect actually exist? The caller doesn’t need to know or care, because it can’t

affect them.

When we wish to emphasize the difference, we refer to the first as pure functional programming

(we return to this later in the chapter) and the latter as functional-style programming.

13.2.1. Functional-style Java

In practice, you can’t completely program in pure functional style in Java. For example, Java’s

I/O model consists of side-effecting methods (calling Scanner.nextLine has the side effect of

consuming a line from a file, so calling it twice typically gives different results). Nonetheless, it’s

possible to write core components of your system as if they were purely functional. In Java

you’re going to write functional-style programs. First, there’s a further subtlety about no one

seeing your side effects and hence the meaning of functional. Suppose a function or method has

no side effects, except for it incrementing a field just after entry and decrementing it just before

exit. From the point of view of a program consisting of a single thread, this method has no

visible side effects and can be regarded as functional style. On the other hand, if another thread

could inspect the field—or worse could call the method concurrently—it wouldn’t be functional.

You could hide this issue by wrapping the body of this method with a lock, and this would again

enable you to argue that the method is functional. But in doing so you would have lost the ability

to execute two calls to the method in parallel using two cores on your multicore processor. Your

370

side effect may not be visible to a program, but it’s visible to the programmer in terms of slower

execution!

Our guideline is that to be regarded as functional style, a function or method can mutate only

local variables. In addition, objects it references should be immutable. By this we mean all fields

are final, and all fields of reference type refer transitively to other immutable objects. Later you

may also permit updates to fields of objects that are freshly created in the method, and so aren’t

visible from elsewhere, and that aren’t saved to affect the result of a subsequent call.

Our previous guideline is incomplete, and there’s an additional requirement on being functional,

which feels less important at first. To be regarded as functional style, a function or method

shouldn’t throw any exceptions. There’s a simple overlegalistic explanation: you can’t throw an

exception because this means a result is being signaled other than being passed as a proper

result via return as in the black-box model discussed previously. But then this seems countered

by practical mathematical use: although legally a mathematical function gives exactly one result

for each possible argument value, many common mathematical operations are what we should

properly call partial functions. That is, for some or most input values they give exactly one

result, but for other input values they’re undefined and don’t give a result at all. An example is

division when the second operand is zero or sqrt when its argument is negative. It might seem

natural to model these situations by throwing an exception as Java does. There’s some scope for

debate here, with some authors arguing that uncaught exceptions representing fatal errors are

okay, but it’s the act of catching an exception that represents nonfunctional control flow, in that

it breaks the simple “pass arguments, return result” metaphor pictured in the black-box model,

leading to a third arrow representing an exception, as illustrated in figure 13.4.

Figure 13.4. A function throwing an exception

So how might you express functions like division without using exceptions? The answer is to use

types like Optional<T>: instead of sqrt having signature “double sqrt(double) but may raise an

exception,” it would have signature "Optional<Double> sqrt(double)"—either it returns a value

that represents success or it indicates in its return value that it couldn’t perform the requested

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

371

operation. And yes, this does mean that the caller needs to check whether each method call may

result in an empty Optional. This may sound like a huge deal, but pragmatically, given our

guidance on functional-style programming versus pure functional programming, you may

choose to use exceptions locally but not expose them via large-scale interfaces, thereby gaining

the advantages of functional style without the risk of code bloat.

Finally, to be regarded as functional, your function or method should call only those

side-effecting library functions for which you can hide their nonfunctional behavior (that is,

ensuring that any mutation they make on data structures is hidden from your caller, perhaps by

copying first and by catching any exceptions they might raise). In section 13.2.4, “Functional

style in practice,” you’ll see an example where we hide the use of side-effecting library function

List.add inside our method insertAll by copying the list.

These prescriptions can often be marked using comments or by declaring a method with a

marker annotation—and match the restrictions we placed on functions we passed to parallel

stream-processing operations such as Stream.map in chapters 4–7.

Finally, for pragmatic reasons, you may find it convenient for functional-style code still to be

able to output debugging information to some form of log file. Yes, this means the code can’t be

strictly described as functional, but in practice you retain most of the benefits of functional-style

programming.

13.2.2. Referential transparency

The restrictions on “no visible side-effects” (no mutating structure visible to callers, no I/O, no

exceptions) encode the concept of referential transparency. A function is referentially

transparent if it always returns the same result value when called with the same argument value.

The method String.replace is referentially transparent because "raoul".replace('r', 'R') will

always produce the same result (the method replace returns a new String with all lowercase 'r'

replaced with uppercase 'R') rather than updating its this object so it can be considered a

function.

Put another way, a function consistently produces the same result given the same input, no

matter where and when it’s invoked. It also explains why we don’t regard Random.nextInt as

functional. In Java using a Scanner object to get the input from a user’s keyboard violates

referential transparency because calling the method nextLine may produce a different result at

each call. But adding together two final int variables always produces the same result, because

the content of the variables can never change.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

372

Referential transparency is a great property for program understanding. It also encompasses a

save-instead-of-recompute optimization for expensive or long-lived operations, which goes

under the name memoization or caching. Although important, this is slightly at a tangent to the

development here, so we defer this explanation to the next chapter, in section 14.5.

In Java there’s one slight complication about referential transparency. Suppose you make two

calls to a method that returns a List. Then the two calls may return references to distinct lists in

memory but containing the same elements. If these lists were to be seen as mutable

object-oriented values (and hence non-identical) then the method wouldn’t be referentially

transparent. If you plan to use these lists as pure (immutable) values, then it makes sense to see

the values as equal and hence the function as referentially transparent. In general, in

functional-style code you choose to regard such functions as referentially transparent. We

discuss this issue again in the next chapter, in section 14.5. We now explore the issue of whether

to mutate from a wider perspective.

13.2.3. Object-oriented vs. functional-style programming

We start by contrasting functional-style programming with (extreme) classical object-oriented

programming before observing that Java 8 sees these styles as mere extremes of the

object-oriented spectrum. As a Java programmer, without consciously thinking about it, you

almost certainly use some aspects of functional-style programming and some aspects of what

we’ll call extreme object-oriented programming. As we remarked in chapter 1, changes in both

hardware (for example, multicore) and programmer expectation (for example, database-like

queries to manipulate data) are pushing Java software-engineering styles somewhat more to the

functional end of this spectrum, and one of the aims of this book is to help you adapt to the

changing climate.

At one end of the spectrum is the extreme object-oriented view: everything is an object and

programs operate by updating fields and calling methods that update their associated object. At

the other end of the spectrum lies the referentially transparent functional-programming style of

no (visible) mutation. In practice, Java programmers have always mixed these styles. You might

traverse a data structure using an Iterator containing mutable internal state but use this to

calculate, say, the sum of values in the data structure in a functional-style manner (in Java, as

discussed, this can include mutating local variables). One of the aims of the next sections in this

chapter and more generally in the next chapter is to discuss programming techniques and

introduce features from functional programming to enable you to write programs that are more

modular and more suitable for multicore processors. Think of these ideas as additional weapons

in your programming armory.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

373

13.2.4. Functional style in practice

Let’s start by solving a programming exercise given to beginning students exemplifying

functional style: Given a List<Integer> value, for example, {1, 4, 9}, construct a

List<List<Integer>> value whose members are all the subsets of {1, 4, 9}—in any order. The

subsets of {1, 4, 9} are {1, 4 ,9}, {1, 4}, {1, 9}, {4, 9}, {1}, {4}, {9}, and {}.

There are eight subsets including the empty subset, written {}. Each subset is represented as

type List<Integer>, which means the answer is of type List<List<Integer>>.

Students often have problems thinking how to start and need prompting[2] with the remark that

“the subsets of {1, 4, 9} either contain 1 or do not.” The ones that don’t are simply subsets of {4,

9}, and the ones that do can be obtained by taking the subsets of {4, 9} and inserting 1 into each

of them. This gives an easy, natural, top-down, functional-programming-style encoding in Java.

(A common programmer error is to say that an empty list has no subsets.)

2 Troublesome (bright!) students occasionally point out a neat coding trick involving binary

representation of numbers (the Java solution code corresponds to

000,001,010,011,100,101,110,111). We tell such students to calculate instead the list of all

permutations of a list; for the example {1,4,9} there are six of these.

The solution program produces {{}, {9}, {4}, {4, 9}, {1}, {1, 9}, {1, 4}, {1, 4, 9}} when given {1, 4,

9} as input. Do try it when you’ve defined the two missing methods.

Let’s review what you’ve just done. You’ve assumed that the missing methods insertAll and

concat are themselves functional and deduced that your function subsets is also, because no

operation in it mutates any existing structure. (If you’re familiar with mathematics, then you’ll

recognize this argument as being by induction.)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

374

Now let’s look at defining insertAll. Here’s the first danger point. Suppose you defined insertAll

so that it mutated its arguments, perhaps by updating all the elements of subans to contain first.

Then the program would incorrectly cause subans to be modified in the same way as subans2,

resulting in an answer mysteriously containing eight copies of {1,4,9}. You instead define

insertAll functionally as follows:

Note that you’re creating a new List that contains all the elements of subans. You take advantage

of the fact that an Integer object is immutable (otherwise you’d have to clone each element too).

The focus caused by thinking of methods like insertAll as functional gives you a natural place to

put all this careful copying code—inside insertAll rather in its callers.

Finally, you need to define the method concat. In this case, there’s a simple solution, which we

beg you not to use (we show it only so you can compare the different styles):

static List<List<Integer>> concat(List<List<Integer>> a,

List<List<Integer>> b) {

a.addAll(b);

return a;

}

Instead, we suggest you write this:

static List<List<Integer>> concat(List<List<Integer>> a,

List<List<Integer>> b) {

List<List<Integer>> r = new ArrayList<>(a);

r.addAll(b);

return r;

}

Why? The second version of concat is a pure function. It may be using mutation (adding

elements to the list r) internally, but it returns a result based on its arguments and modifies

375

neither of them. By contrast, the first version relies on the fact that after the call concat(subans,

subans2), no one refers to the value of subans ever again. It turns out that, for our definition of

subsets, this is indeed the case, so surely using the cheaper version of concat is better. Well, it

depends on how you value your time spent later searching for obscure bugs compared with the

additional cost of making a copy.

No matter how well you comment that the impure concat is “only to be used when the first

argument can be arbitrarily overwritten, and only intended to be used in the subsets method,

and any change to subsets must be reviewed in the light of this comment,’’ somebody sometime

will find it useful in some piece of code where it apparently seems to work, and your future

nightmare debugging problem has just been born. We revisit this issue in the next chapter in

section 14.2, “Persistent data structures.”

Takeaway point: thinking of programming problems in terms of function-style methods that are

characterized only by their input arguments, and their output result (that is, what to do) is often

more productive than thinking how to do it and what to mutate too early in the design cycle. We

now turn to recursion in more detail, a technique promoted in functional programming to let

you think more in terms of this what to do style.

13.3. Recursion vs. iteration

Pure functional programming languages typically don’t include iterative constructs like while

and for loops. Why? Because such constructs are often a hidden invitation to use mutation. For

example, the condition in a while loop needs to be updated; otherwise the loop would execute

zero or an infinite number of times. But for a lot of use cases loops are perfectly fine. We’ve

argued that to be functional style you’re allowed mutation if no one can see you doing it,

meaning it’s acceptable to mutate local variables. Using the for-each loop in Java, for(Apple a :

apples { } decodes into the Iterator shown here:

Iterator<Apple> it = apples.iterator();

while (it.hasNext()) {

Apple apple = it.next();

// ...

}

This isn’t a problem because the mutations (both changing the state of the Iterator with the

method next and assigning to the variable apple inside the while body) aren’t visible to the caller

of the method where the mutations happen. But using a for-each loop, such as a search

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

376

algorithm, as follows is problematic because the loop body is updating a data structure that’s

shared with the caller:

public void searchForGold(List<String> l, Stats stats){

for(String s: l){

if("gold".equals(s)){

stats.incrementFor("gold");

}

}

}

Indeed, the body of the loop has a side effect that can’t be dismissed as functional style: it

mutates the state of the stats object, which is shared with other parts of the program.

For this reason, pure functional programming languages such as Haskell omit such

side-effecting operations entirely! How then are you to write programs? The theoretical answer

is that every program can be rewritten to avoid iteration by using recursion instead, which

doesn’t require mutability. Using recursion lets you get rid of iteration variables that are

updated step by step. A classic school problem is calculating the factorial function (for positive

arguments) in an iterative way and in a recursive way (we assume the input is > 1), as shown in

the following two listings.

Listing 13.1. Iterative factorial

static int factorialIterative(int n) {

int r = 1;

for (int i = 1; i <= n; i++) {

r *= i;

}

return r;

}

Listing 13.2. Recursive factorial

static long factorialRecursive(long n) {

return n == 1 ? 1 : n * factorialRecursive(n-1);

}

377

The first listing demonstrates a standard loop-based form: the variables r and i are updated at

each iteration. The second listing shows a recursive definition (the function calls itself) in a more

mathematically familiar form. In Java, recursive forms are typically less efficient, and we discuss

this shortly.

But if you’ve read the earlier chapters of this book, then you know that Java 8 streams provide

an even simpler declarative way of defining factorial, as the next listing shows.

Listing 13.3. Stream factorial

static long factorialStreams(long n){

return LongStream.rangeClosed(1, n)

.reduce(1, (long a, long b) -> a * b);

}

Now let’s turn to efficiency. As Java users, you should beware of functional-programming

zealots who tell you that you should always use recursion instead of iteration. In general, making

a recursive function call is much more expensive than the single machine-level branch

instruction needed to iterate. Why? Every time the factorialRecursive function is called, a new

stack frame is created on the call stack to hold the state of each function call (the multiplication

it needs to do) until the recursion is done. This means your recursive definition of factorial will

take memory proportional to its input. This is why if you run factorialRecursive with a large

input, you’re likely to receive a StackOverflowError:

Exception in thread "main" java.lang.StackOverflowError

Does this mean recursion is useless? Of course not! Functional languages provide an answer to

this problem: tail-call optimization. The basic idea is that you can write a recursive definition of

factorial where the recursive call is the last thing that happens in the function (we say the call is

in a tail position). This different form of recursion style can be optimized to run fast. To

exemplify, here’s a tail-recursive definition of factorial

Listing 13.4. Tail-recursive factorial

static long factorialTailRecursive(long n) {

return factorialHelper(1, n);

}

static long factorialHelper(long acc, long n) {

return n == 1 ? acc : factorialHelper(acc * n, n-1);

378

}

The function factorialHelper is tail recursive because the recursive call is the last thing that

happens in the function. By contrast in our previous definition of factorial-Recursive, the last

thing was a multiplication of n and the result of a recursive call.

This form of recursion is useful because instead of storing each intermediate result of the

recursion onto different stack frames, the compiler can decide to reuse a single stack frame.

Indeed, in the definition of factorialHelper, the intermediate results (the partial results of the

factorial) are passed directly as arguments to the function. There’s no need to keep track of the

intermediate result of each recursive call on a separate stack frame—it’s accessible directly

through the argument of the function.

Figures 13.5 and 13.6 illustrate the difference between the recursive and tail-recursive

definitions of factorial.

Figure 13.5. Recursive definition of factorial, which requires several

stack frames

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

379

Figure 13.6. Tail-recursive definition of factorial, which can reuse a

single stack frame

The bad news is that Java doesn’t support this kind of optimization. But adopting tail recursion

may be a better practice than classic recursion because it opens the way to eventual compiler

optimization. Many modern JVM languages such as Scala and Groovy can optimize those uses of

recursion, which are equivalent to iteration (they’ll execute at the same speed). This means that

pure-functional adherents can have their purity cake and eat it efficiently too.

The guidance when writing Java 8 is that you can often replace iteration with streams to avoid

mutation. In addition, iteration can be replaced with recursion when it lets you write an

algorithm in a more concise and side-effect-free way. Indeed, recursion can make examples

easier to read, write, and understand (for example, in the subsets example shown previously),

and programmer efficiency is often more important than small differences in execution time.

In this section, we discussed functional-style programming but only used the idea of a method

being functional—everything we said would have applied to the very first version of Java. In the

next chapter we look at the amazing and powerful possibilities offered by the introduction of

first-class functions in Java 8.

13.4. Summary

Following are the key concepts you should take away from this chapter:

 Reducing shared mutable data structures can help you maintain and debug your programs in the long

term.

 Functional-style programming promotes side-effect-free methods and declarative programming.

 Function-style methods are characterized only by their input arguments and their output result.

380

 A function is referentially transparent if it always returns the same result value when called with the

same argument value. Iterative constructs such aswhile loops can be replaced by recursion.

 Tail recursion may be a better practice than classic recursion in Java because it opens the way to

eventual compiler optimization.

381

Chapter 14. Functional programming techniques

This chapter covers

 First-class citizens, higher-order functions, currying, and partial application

 Persistent data structures

 Lazy evaluation and lazy lists as generalizing Java streams

 Pattern matching and how to simulate it in Java

 Referential transparency and caching

In chapter 13 you saw how to think functionally; thinking in terms of side-effect-free methods

can help you write more maintainable code. In this chapter, we introduce more advanced

functional programming techniques. You can view this chapter as a mix of practical techniques

to apply in your codebase as well as academic information that will make you a more

knowledgeable programmer. We discuss higher-order functions, currying, persistent data

structures, lazy lists, pattern matching, caching with referential transparency, and combinators.

14.1. Functions everywhere

In chapter 13 we used the phrase functional-style programming to mean that the behavior of

functions and methods should be like that of mathematical-style functions—no side effects.

Functional-language programmers often use the phrase with more generality to mean that

functions may be used like other values: passed as arguments, returned as results, and stored in

data structures. Such functions that may be used like other values are referred to as first-class

functions. This is exactly what Java 8 adds over previous versions of Java: you may use any

method as a function value, using the :: operator to create a method reference, and lambda

expressions (for example, (int x) -> x + 1) to directly express function values. In Java 8 it’s

perfectly valid to store the method Integer.parseInt in a variable by using a method reference as

follows:

Function<String, Integer> strToInt = Integer::parseInt;

14.1.1. Higher-order functions

So far we’ve mainly used the fact that function values are first class only in order to pass them to

Java 8 stream-processing operations (as in chapters 4–7) and to achieve the very similar effect

of behavior parameterization when we passed Apple::isGreen-Apple as a function value to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

382

filterApples in chapters 1 and 2. But this was just a start. Another interesting example was the

use of the static method Comparator.comparing, which takes a function as parameter and

returns another function (a Comparator), as illustrated in the following code and figure 14.1:

Figure 14.1. comparing takes a function as parameter and returns

another function.

Comparator<Apple> c = comparing(Apple::getWeight);

We did something similar when we were composing functions in chapter 3 to create a pipeline of

operations:

Function<String, String> transformationPipeline

= addHeader.andThen(Letter::checkSpelling)

.andThen(Letter::addFooter);

Functions (like Comparator.comparing) that can do at least one of the following are called

higher-order functions within the functional programming community:

 Take one or more functions as parameter

 Return a function as result

This directly relates to Java 8 functions because they can not only be passed as arguments but

also returned as results, assigned to local variables, or even inserted into structures. For

example, a pocket calculator program might have a Map<String, Function<Double, Double>>,

which maps the String “sin” to Function<Double, Double> to hold the method reference

Math::sin. We did something similar when we introduced the factory design pattern in chapter

8.

For readers who liked the calculus example at the end of chapter 3, you can regard the type of

differentiation as

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

383

Function<Function<Double,Double>, Function<Double,Double>>

because it takes a function as argument (for example, (Double x) -> x * x) and returns a function

as result (in this example (Double x) -> 2 * x). We’ve written this as a function type (the leftmost

Function) to explicitly affirm the fact that you could pass this differentiating function to yet

another function. But it’s good to recall that the type for differentiating and the signature

Function<Double,Double> differentiate(Function<Double,Double> func)

say the same thing.

Side effects and higher-order functions

We noted in chapter 7 that functions passed to stream operations should generally be side-effect

free, and we noted the problems that arise otherwise (such as incorrect results, perhaps even

unpredictable results due to race conditions we hadn’t thought of). This principle also applies in

general when you use higher-order functions. When writing a higher-order function or method,

you don’t know in advance what arguments it will be passed—and if the arguments have side

effects, then what these might do! It becomes far too complicated to reason about what your

code does if it uses functions passed as arguments that make unpredictable changes to the state

of your program; they might even interfere with your code in some hard-to-debug way. So it’s a

good design principle to document what side effects you’re willing to accept from functions

passed as parameters, and “none” is the best of all!

We now turn to currying: a technique that can help you modularize functions and reuse code.

14.1.2. Currying

Before we give the theoretical definition of currying, let’s look at an example. Applications

almost always need to be internationalized, and so converting from one set of units to another

set is a problem that comes up repeatedly.

Unit conversion always involves a conversion factor and from time to time a baseline

adjustment factor. For example, the formula to convert Celsius to Fahrenheit is CtoF(x) = x*9/5

+ 32.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

384

The basic pattern of all unit conversion is as follows:

1. Multiply by the conversion factor.

2. Adjust the baseline if relevant.

You can express this pattern with the following general method:

static double converter(double x, double f, double b) {

return x * f + b;

}

Here x is the quantity you want to convert, f is the conversion factor, and b is the baseline. But

this method is a bit too general. You’ll typically find you require a lot of conversions between the

same pair of units, kilometers to miles, for example. You could obviously call the converter

method with three arguments on each occasion, but supplying the factor and baseline each time

would be tedious and you might accidentally mistype them.

You could write a completely new method for each application, but that would miss the reuse of

the underlying logic.

Here’s an easy way to benefit from the existing logic while tailoring the converter for particular

applications. You can define a “factory” that manufactures one-argument conversion functions

to exemplify the idea of currying. Here it is:

static DoubleUnaryOperator curriedConverter(double f, double b){

return (double x) -> x * f + b;

}

Now all you have to do is pass it the conversion factor and baseline (f and b), and it will

obligingly return a function (of x) to do exactly what you asked for. For example, you can now

use the factory to produce any converter you require:

DoubleUnaryOperator convertCtoF = curriedConverter(9.0/5, 32);

DoubleUnaryOperator convertUSDtoGBP = curriedConverter(0.6, 0);

DoubleUnaryOperator convertKmtoMi = curriedConverter(0.6214, 0);

Because DoubleUnaryOperator defines a method applyAsDouble, you can use your converters as

follows:

385

double gbp = convertUSDtoGBP.applyAsDouble(1000);

As a result, your code is more flexible and it reuses the existing conversion logic! Let’s reflect on

what you’re doing here. Instead of passing all the arguments x, f, and b all at once to the

converter method, you only ask for the arguments f and b and return another function, which

when given an argument x returns x * f + b. This enables you to reuse the conversion logic and

create different functions with different conversion factors.

Theoretical definition of currying

Currying is a technique where a function f of two arguments (x and y, say) is seen instead as a

function g of one argument that returns a function also of one argument. The value returned by

the latter function is the same as the value of the original function, that is, f(x,y) = (g(x))(y).

Of course, this generalizes: you can curry a six-argument function to first take arguments

numbered 2, 4, and 6 returning a function taking argument 5, which returns a function taking

the remaining arguments, 1 and 3.

When some but fewer than the full complement of arguments have been passed, we often say

the function is partially applied.

Now we turn to another aspect of functional-style programming. Can you really program using

data structures if you’re forbidden from modifying them?

14.2. Persistent data structures

In this section, we explore the use of data structures used in functional-style programs. These

come under various names, such as functional data structures and immutable data structures,

but perhaps most common is persistent data structures (unfortunately this terminology clashes

with the notion of persistent in databases, meaning “outliving one run of the program”).

The first thing to note is that a functional-style method isn’t allowed to update any global data

structure or any structure passed as a parameter. Why? Because calling it twice is likely to

produce different answers—violating referential transparency and the ability to understand the

method as a simple mapping from arguments to results.

386

14.2.1. Destructive updates vs. functional

Let’s consider the problems that can otherwise arise. Suppose you represent train journeys from

A to B as a mutable TrainJourney class (a simple implementation of a singly linked list), with an

int field modeling some detail of the journey such as the price of the current leg of the journey.

Journeys requiring you to change trains will have several linked TrainJourney objects using the

onward field; a direct train or final leg of a journey will have onward being null:

class TrainJourney {

public int price;

public TrainJourney onward;

public TrainJourney(int p, TrainJourney t) {

price = p;

onward = t;

}

}

Now suppose you have separate TrainJourney objects representing a journey from X to Y and

from Y to Z. You may wish to create one journey that links the two TrainJourney objects (that is,

X to Y to Z).

A simple traditional imperative method to link these train journeys is as follows:

static TrainJourney link(TrainJourney a, TrainJourney b){

if (a==null) return b;

TrainJourney t = a;

while(t.onward != null){

t = t.onward;

}

t.onward = b;

return a;

}

This works by finding the last leg in the TrainJourney for a and replacing the null marking the

end of a’s list with list b (you need a special case if a has no elements).

Here’s the problem: suppose a variable firstJourney contains the route from X to Y and a

variable secondJourney contains the route from Y to Z. If you call link(firstJourney,

secondJourney), this code destructively updates firstJourney to also contain secondJourney, so

in addition to the single user who requests a trip from X to Z seeing the combined journey as

387

intended, the journey from X to Y has been destructively updated. Indeed, the firstJourney

variable is no longer a route from X to Y but one from X to Z! This will break code that depends

on firstJourney not being modified! Suppose firstJourney represented the early morning

London–Brussels train, which all subsequent users trying to get to Brussels will be surprised to

see as requiring an onward leg, perhaps to Cologne. We’ve all fought battles with such bugs

concerning how visible a change to a data structure should be.

The functional-style approach to this problem is to ban such side-effecting methods. If you need

a data structure to represent the result of a computation, you should make a new one and not

mutate an existing data structure as done previously. This is often best practice in standard

object-oriented programming too. A common objection to the functional approach is that it

causes excess copying and that the programmer says, “I’ll just remember” or “I’ll just document”

that it has side effects. But this leaves traps for maintenance programmers who later will have to

deal with your code. Thus the functional-style solution is as follows:

static TrainJourney append(TrainJourney a, TrainJourney b){

return a==null ? b : new TrainJourney(a.price, append(a.onward, b));

}

This code is clearly functional style (it uses no mutation at all, even locally) and doesn’t modify

any existing data structures. Note, however, that the code does not create an entirely new

TrainJourney—if a is a sequence of n elements and b a sequence of m elements, then it returns a

sequence of n+m elements of which the first n elements are new nodes and the final m elements

share with the TrainJourney b. Note that users are also required not to mutate the result of

append because in doing so they may corrupt the trains passed as sequence b. Figures 14.2 and

14.3 illustrate the difference between the destructive append and the functional-style append.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

388

Figure 14.2. The data structure is destructively updated.

Figure 14.3. Functional style, no modifications to the data structure

389

14.2.2. Another example with Trees

Before leaving this topic, let’s consider another data structure—that of a binary search tree that

might be used to implement a similar interface to a HashMap. The idea is that a Tree contains a

String representing a key and an int representing its value, perhaps names and ages:

class Tree {

private String key;

private int val;

private Tree left, right;

public Tree(String k, int v, Tree l, Tree r) {

key = k; val = v; left = l; right = r;

}

}

class TreeProcessor {

public static int lookup(String k, int defaultval, Tree t) {

if (t == null) return defaultval;

if (k.equals(t.key)) return t.val;

return lookup(k, defaultval,

k.compareTo(t.key) < 0 ? t.left : t.right);

}

// other methods processing a Tree

}

You want to make use of the binary search tree for looking up String values to produce an int.

Now consider how you might update the value associated with a given key (for simplicity you’ll

start by assuming the key is already present in the tree):

public static void update(String k, int newval, Tree t) {

if (t == null) { /* should add a new node */ }

else if (k.equals(t.key)) t.val = newval;

else update(k, newval, k.compareTo(t.key) < 0 ? t.left : t.right);

}

Adding a new node is trickier; the easiest way is to make the method update return the Tree that

has just been traversed (this will be unchanged unless you had to add a new node). This code is

now slightly clumsier (because the user needs to remember that update tries to update the tree

390

in place, returning the same tree as passed, but if the original tree was empty, then a new node is

returned as result instead):

public static Tree update(String k, int newval, Tree t) {

if (t == null)

t = new Tree(k, newval, null, null);

else if (k.equals(t.key))

t.val = newval;

else if (k.compareTo(t.key) < 0)

t.left = update(k, newval, t.left);

else

t.right = update(k, newval, t.right);

return t;

}

Note that both versions of update once again mutate the existing Tree, meaning that all users of

the map stored in the tree will see the mutation.

14.2.3. Using a functional approach

So how might you do this functionally? You need to create a new node for the new key-value pair,

but you also need to create new nodes on the path from the root of the tree to the new node (in

general this isn’t very expensive, if the tree is of depth d and reasonably well balanced, then it

can have 2d entries, so you re-create only a small fraction of it):

public static Tree fupdate(String k, int newval, Tree t) {

return (t == null) ?

new Tree(k, newval, null, null) :

k.equals(t.key) ?

new Tree(k, newval, t.left, t.right) :

k.compareTo(t.key) < 0 ?

new Tree(t.key, t.val, fupdate(k,newval, t.left), t.right) :

new Tree(t.key, t.val, t.left, fupdate(k,newval, t.right));

}

We’ve written this as a single conditional expression instead of using if-then-else to emphasize

the idea that the body is only a single expression with no side effects, but you may prefer to write

an equivalent if-then-else chain, each containing a return.

391

So what’s the difference between update and fupdate? We noted previously that the method

update assumes every user wants to share the identical data structure and see updates caused by

any part of the program. Hence it’s vital (but often overlooked) in nonfunctional code that

whenever you add some form of structured value to a tree, you copy it, because, who knows,

someone may later assume they can update it. By contrast, fupdate is purely functional. It

creates a new Tree as a result but sharing as much as it can with its argument. Figure 14.4

illustrates this idea. You have a tree consisting of nodes storing a name and an age of a person.

Calling fupdate doesn’t modify the existing tree but creates new nodes “living at the side of” the

tree without harming the existing data structure.

Figure 14.4. No existing data structure was harmed during the making

of this update to the Tree.

Such functional data structures are often called persistent—their values persist and are isolated

from changes happening elsewhere—so as a programmer you’re sure fupdate won’t mutate the

data structures passed as its arguments. There’s just one proviso: the other side of the treaty is

you require all users of persistent data structures to follow the do-not-mutate requirement. If

not, a programmer who disregards this might mutate the result of fupdate (for example,

changing Emily’s 20). This would then be visible as an (almost certainly unwanted) unexpected

and delayed change to the data structure passed as argument to fupdate!

Seen in these terms, fupdate can often be more efficient: the “no mutation of existing structure”

rule allows structures that differ only slightly from each other (for example, the Tree seen by

user A and the modified version seen by user B) to share storage for common parts of their

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

392

structure. You can get the compiler to help enforce this “no mutation of existing structure” rule

by declaring fields key, val, left, and right of class Tree to be final; but remember that final

protects only a field and not the object pointed to, which may need its own fields to be final to

protect it, and so on.

Ah, but you might say, “I want updates to the tree to be seen by some users (but admittedly not

by some others).” Well, there are two choices: one is the classical Java solution (be very careful

when updating something to check whether you need to copy it first). The other is the

functional-style solution: you logically make a new data structure whenever you do an update

(so nothing is ever mutated) and just arrange to pass the correct version of the data structure to

users as appropriate. This idea could be enforced through an API. If certain clients of the data

structure need to have updates visible, they should go through an API that returns the latest

version. Clients who don’t want updates visible (such as for long-running statistical analysis)

simply use whatever copy they retrieved, knowing that it can’t be mutated from under them.

One might remark that this technique is like “updating” a file on a CD-R, which allows a file to

be written only once by burning with a laser; multiple versions of the file are all stored on the

CD (smart CD authoring software might even share common parts of multiple versions), and

you pass the appropriate block address of the start of file (or a filename encoding the version

within its name) to select which version you want to use. In Java things are rather better than on

a CD, in that old versions of the data structure that can no longer be used will be garbage

collected.

14.3. Lazy evaluation with streams

You saw in previous chapters that streams are a great way to process a collection of data. But for

various reasons, including efficient implementation, the Java 8 designers added streams to Java

in a rather specific way. In particular, one limitation is that you can’t define a stream recursively

because a stream can be consumed only once. We show in the coming section how this can

sometimes be problematic.

14.3.1. Self-defining stream

Let’s revisit our example from chapter 6 of generating prime numbers to understand this idea of

a recursive stream. You saw that, perhaps as part of the class MyMathUtils, you can compute a

stream of prime numbers as follows:

public static Stream<Integer> primes(int n) {

return Stream.iterate(2, i -> i + 1)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

393

.filter(MyMathUtils::isPrime)

.limit(n);

}

public static boolean isPrime(int candidate) {

int candidateRoot = (int) Math.sqrt((double) candidate);

return IntStream.rangeClosed(2, candidateRoot)

.noneMatch(i -> candidate % i == 0);

}

But this solution is somewhat awkward: you have to iterate through every number every time to

see if it can be exactly divided by a candidate number. (Actually you need only test with numbers

that have been already classified as prime.)

Ideally the stream should filter out numbers divisible by the prime it’s producing on the go! This

sounds crazy, so we’ll try to sketch out how this might work:

1. You need a stream of numbers from which you’ll select prime numbers.

2. From that stream you take the first number (the head of the stream), which will be a prime

number (at the initial step this will be 2).

3. You then filter all the numbers divisible by that number from the tail of the stream.

4. The resulting tail is the new stream of numbers that you can use to find prime numbers.

Essentially you go back to step 1, so this algorithm is recursive.

Note that this algorithm is “poor” for a few reasons.[1] But it’s simple to reason about algorithms

for the purpose of working with streams. Let’s try to write this algorithm using the Streams API.

1More information about why the algorithm is poor can be found at

www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf.

Step 1: Get a stream of numbers

You can get an infinite stream of numbers starting from 2 using the method IntStream.iterate,

which we described in chapter 5 as follows:

static Intstream numbers(){

return IntStream.iterate(2, n -> n + 1);

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.cs.hmc.edu/%7Eoneill/papers/Sieve-JFP.pdf
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

394

Step 2: Take the head

An IntStream comes with the method findFirst, which can be used to return the first element:

static int head(IntStream numbers){

return numbers.findFirst().getAsInt();

}

Step 3: Filter the tail

Define a method to get the tail of a stream:

static IntStream tail(IntStream numbers){

return numbers.skip(1);

}

Given the head of the stream, you can filter the numbers as follows:

IntStream numbers = numbers();

int head = head(numbers);

IntStream filtered = tail(numbers).filter(n -> n % head != 0);

Step 4: Recursively create a stream of primes

Here comes the tricky part. You might be tempted to try passing back the resulting filtered

stream so you can take its head and filter more numbers, like this:

static IntStream primes(IntStream numbers) {

int head = head(numbers);

return IntStream.concat(

IntStream.of(head),

primes(tail(numbers).filter(n -> n % head != 0))

);

}

Bad news

Unfortunately, if you run the code in step 4, you’ll get the following error:

“java.lang.IllegalStateException: stream has already been operated upon or closed.” Indeed,

395

you’re using two terminal operations to split the stream into its head and tail: findFirst and skip.

Remember from chapter 4 that once you call a terminal operation on a stream, it’s consumed

forever!

Lazy evaluation

There’s an additional, more important problem: the static method IntStream.concat expects two

instances of a stream. But its second argument is a direct recursive call to primes, resulting in an

infinite recursion! For many Java purposes, restrictions on Java 8 streams such as “no recursive

definitions” are unproblematic and give your database-like queries expressivity and the ability to

parallelize. Thus, the Java 8 designers chose a sweet spot. Nonetheless, the more-general

features and models of streams from functional languages such as Scala and Haskell can be a

useful addition to your programming tool box. What you need is a way to lazily evaluate the call

to the method primes in the second argument of concat. (In a more technical programming

language vocabulary we refer to this as lazy evaluation, nonstrict evaluation, or even call by

name.) Only when you need to process the prime numbers (for example, with the method limit)

should the stream be evaluated. Scala (which we explore in the next chapter) provides support

for this idea. In Scala you can write the previous algorithm as follows, where the operator #::

does lazy concatenation (the arguments are evaluated only when you need to actually consume

the stream):

def numbers(n: Int): Stream[Int] = n #:: numbers(n+1)

def primes(numbers: Stream[Int]): Stream[Int] = {

numbers.head #:: primes(numbers.tail filter (n -> n % numbers.head != 0))

}

Don’t worry about this code. Its only purpose is to show you an area of difference between Java

and other functional programming languages. It’s good to reflect just a moment about how the

arguments are evaluated. In Java when you call a method, all its arguments are fully evaluated

immediately. But in Scala using #::, the concatenation returns immediately and the elements are

evaluated only when needed. Now we turn to implementing this idea of lazy lists directly in

Java.

14.3.2. Your own lazy list

Java 8 streams are often described as lazy. They’re lazy in one particular aspect: a stream

behaves like a black box that can generate values on request. When you apply a sequence of

operations to a stream, these are merely saved up. Only when you apply a terminal operation to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

396

a stream is anything actually computed. This has the great advantage when you apply several

operations (perhaps a filter and a map followed by a terminal operation reduce) to a stream;

then the stream has to be traversed only once instead of for each operation.

In this section we consider the notion of lazy lists, which are a form of a more general stream

(lazy lists form a similar concept to stream). Lazy lists also provide an excellent way of thinking

about higher-order functions; you place a function value into a data structure so most of the

time it can sit there unused, but when it’s called (that is, on demand) it can create more of the

data structure. Figure 14.5 illustrates this idea.

Figure 14.5. Elements of a LinkedList exist (are spread out) in memory.

But elements of a LazyList are created on demand by a Function—you can

see them as spread out in time.

Enough talking—let’s see how this works. What you want to achieve is to generate an infinite list

of prime numbers using the algorithm we described earlier.

A basic linked list

Recall that you can define a simple linked-list-style class called MyLinkedList in Java by writing

it as follows (here we only consider a minimal MyList interface):

interface MyList<T> {

T head();

MyList<T> tail();

default boolean isEmpty() {

return true;

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

397

}

class MyLinkedList<T> implements MyList<T> {

private final T head;

private final MyList<T> tail;

public MyLinkedList(T head, MyList<T> tail) {

this.head = head;

this.tail = tail;

}

public T head() {

return head;

}

public MyList<T> tail() {

return tail;

}

public boolean isEmpty() {

return false;

}

}

class Empty<T> implements MyList<T> {

public T head() {

throw new UnsupportedOperationException();

}

public MyList<T> tail() {

throw new UnsupportedOperationException();

}

}

You can now construct a sample MyLinkedList value as follows:

MyList<Integer> l =

new MyLinkedList<>(5, new MyLinkedList<>(10, new Empty<>()));

398

A basic lazy list

An easy way to adapt this class to the concept of a lazy list is to cause the tail not to be present in

memory all at once but to have a Supplier<T> that you saw in chapter 3 (you can also see it as a

factory with a function descriptor void -> T), which produces the next node of the list. This leads

to the following:

Calling the method get from the Supplier causes the creation of a node of the Lazy-List (as a

factory would create a new object).

You can now create the infinite lazy list of numbers starting at n as follows by passing a Supplier

as the tail argument of the LazyList constructor, which creates the next element in the series of

numbers:

public static LazyList<Integer> from(int n) {

return new LazyList<Integer>(n, () -> from(n+1));

}

If you try the following code for yourself, you’ll see that the following calls will print “2 3 4.”

Indeed, the numbers are generated on demand. You can check this by inserting

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

399

System.out.println appropriately or just by noting that from(2)would run forever if it tried to

eagerly calculate all the numbers starting from 2!

LazyList<Integer> numbers = from(2);

int two = numbers.head();

int three = numbers.tail().head();

int four = numbers.tail().tail().head();

System.out.println(two + " " + three + " " + four);

Back to generating primes

See if you can use what you’ve done so far to generate a self-defining lazy list of prime numbers

(something you were unable to do with the Streams API). If you were to translate the code that

was using the Streams API earlier using our new LazyList, it would look like something like this:

public static MyList<Integer> primes(MyList<Integer> numbers) {

return new LazyList<>(

numbers.head(),

() -> primes(

numbers.tail()

.filter(n -> n % numbers.head() != 0)

)

);

}

Implementing a lazy filter

Unfortunately, a LazyList (more accurately the List interface) doesn’t define a filter method, so

the previous code won’t compile! Let’s fix this and declare one:

Your code now compiles and is ready for use! You can calculate the first three prime numbers by

chaining calls to tail and head:

400

LazyList<Integer> numbers = from(2);

int two = primes(numbers).head();

int three = primes(numbers).tail().head();

int five = primes(numbers).tail().tail().head();

System.out.println(two + " " + three + " " + five);

This will print “2 3 5,” which are the first three prime numbers. You can now have some fun; for

example, you could print all the prime numbers (the program will run infinitely by writing a

printAll method, which iteratively prints the head and tail of a list:

static <T> void printAll(MyList<T> list){

while (!list.isEmpty()){

System.out.println(list.head());

list = list.tail();

}

}

printAll(primes(from(2)));

This being a functional programming chapter, we should explain that you could do this neatly

recursively:

static <T> void printAll(MyList<T> list){

if (list.isEmpty())

return;

System.out.println(list.head());

printAll(list.tail());

}

But this program wouldn’t run infinitely; sadly it would eventually fail due to stack overflow

because Java doesn’t support tail call elimination, as discussed in chapter 13.

Whew!

So you’ve built a whole lot of technology: lazy lists and functions using them just to define a data

structure containing all the primes. Why? What’s the practical use? Well, you’ve seen how to

place functions inside data structures (because Java 8 allows you to), and these functions can be

used to create parts of the data structure on demand instead of when the structure is created.

This might be useful if you’re writing a game-playing program, perhaps for chess; you can have a

data structure that notionally represents the whole tree of possible moves (far too big to

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

401

calculate eagerly) but that can be created on demand. This would be a lazy tree as opposed to a

lazy list. We concentrated on lazy lists because they provide a link back to another Java 8 feature,

streams, and we could then discuss the pros and cons of streams compared to lazy lists.

There remains the question of performance. It’s easy to assume that doing things lazily will be

better than doing things eagerly—surely it’s better to calculate only the values and data

structures needed by a program on demand than to create all those values (and perhaps some

more) as done under traditional execution. Unfortunately, the real world isn’t so simple. The

overhead of doing things lazily (for example, the additional Suppliers between each item in your

LazyList) outweighs the notional benefit unless you explore, say, less than 10% of the data

structure. Finally, there’s a subtle way in which your LazyList values aren’t truly lazy. If you

traverse a LazyList value such as from(2), perhaps up to the 10th item, then it also creates all the

nodes twice, thus creating 20 nodes rather than 10. This is hardly lazy. The issue is that the

Supplier in tail is repeatedly called on each on-demand exploration of the Lazy-List; you can fix

this by arranging that the Supplier in tail is called only on the first on-demand exploration—and

its resulting value is cached—in effect solidifying the list at that point. This can be achieved by

adding a private Optional<LazyList<T>> alreadyComputed field to your definition of LazyList

and arranging for the method tail to consult and update it appropriately. The pure functional

language Haskell arranges that all its data structures are properly lazy in this latter sense. Read

one of the many articles on Haskell if you’re interested.

Our guideline is to remember that lazy data structures can be a useful weapon in your

programming armory. Use them when they make an application easier to program. Rewrite

them in more traditional style only if they cause unacceptable inefficiency.

Now let’s turn to another feature of almost all functional programming languages but one that’s

lacking from Java: pattern matching.

14.4. Pattern matching

There’s one other important aspect to what’s generally regarded as functional programming,

and that’s (structural) pattern matching (not to be confused with pattern matching and regex).

Recall that chapter 1 ended by observing that mathematics can write definitions such as

f(0) = 1

f(n) = n*f(n-1) otherwise

whereas in Java, you have to write an if-then-else or a switch statement. As data types become

more complex, the amount of code (and clutter) needed to process them increases. Using

pattern matching can reduce this clutter.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

402

To illustrate, let’s take a tree structure that you’d like to traverse. Consider a simple arithmetic

language consisting of numbers and binary operations:

class Expr { ... }

class Number extends Expr { int val; ... }

class BinOp extends Expr { String opname; Expr left, right; ... }

Say you’re asked to write a method to simplify some expressions. For example, 5 + 0 can be

simplified to 5. Using our domain, new BinOp("+", new Number(5), new Number(0)) could be

simplified to Number(5). You might traverse an Expr structure as follows:

Expr simplifyExpression(Expr expr) {

if (expr instanceof BinOp

&& ((BinOp)expr).opname.equals("+"))

&& ((BinOp)expr).right instanceof Number

&& ... // it's all getting very clumsy

&& ...) {

return (Binop)expr.left;

}

...

}

You can see that this rapidly gets very ugly!

14.4.1. Visitor design pattern

Another way to unwrap the data type in Java is to make use of the visitor design pattern. In

essence, you can create a separate class that encapsulates an algorithm to “visit” a specific data

type.

How does it work? The visitor class needs to take as input a specific instance of the data type. It

can then access all its members. Here’s an example of how this works. First, you add the method

accept to BinOp, which takes SimplifyExprVisitor as argument and passes itself to it (you also

add a similar method for Number):

class BinOp extends Expr{

...

public Expr accept(SimplifyExprVisitor v){

return v.visit(this);

}

403

}

The SimplifyExprVisitor can now access a BinOp object and unwrap it:

public class SimplifyExprVisitor {

...

public Expr visit(BinOp e){

if("+".equals(e.opname) && e.right instanceof Number && ...){

return e.left;

}

return e;

}

}

14.4.2. Pattern matching to the rescue

There’s a simpler solution using a feature called pattern matching. It’s not available in Java, so

we’re going to use small examples from the Scala programming language to exemplify pattern

matching. It will give you an idea of what could be possible in Java if pattern matching were

supported.

Given data type Expr representing arithmetic expressions, in the Scala programming language

(we use it because its syntax is the closest to Java), you can write the following code to

decompose an expression:

def simplifyExpression(expr: Expr): Expr = expr match {

case BinOp("+", e, Number(0)) => e // Adding zero

case BinOp("*", e, Number(1)) => e // Multiplying by one

case BinOp("/", e, Number(1)) => e // Dividing by one

case _ => expr // Can't simplify expr

}

This use of pattern matching gives an extremely concise and expressive way to manipulate many

tree-like data structures. It’s typically useful when building compilers or engines for processing

business rules. Note that the Scala syntax

Expression match { case Pattern => Expression ... }

is very similar to the Java syntax

404

switch (Expression) { case Constant : Statement ... }

with Scala’s wildcard case playing the role of default: in Java. The main visible syntactic

difference is that Scala is expression-oriented whereas Java is more statement-oriented, but the

main expressiveness difference for the programmer is that Java patterns in case labels are

restricted to a couple of primitive types, enumerations, a few special classes that wrap certain

primitive types, and Strings. One of the biggest practical advantages of using languages with

pattern matching is that you can avoid using big chains of switch or if-then-else statements

interleaved with field-selection operations.

Here it’s clear that Scala’s pattern matching wins on ease of expressiveness over Java, and you

can only look forward to a future Java allowing more expressive switch statements. We make a

concrete proposal for this in chapter 16.

In the meantime, let’s see how Java 8 lambdas can provide an alternative way of achieving

pattern-matching-like code in Java. We describe this technique purely so you can see another

interesting application of lambdas.

Faking pattern matching in Java

First, let’s consider just how rich Scala’s pattern-matching match expression form is. For

example, the case

def simplifyExpression(expr: Expr): Expr = expr match {

case BinOp("+", e, Number(0)) => e

...

means “check that expr is a BinOp, extract its three components (opname, left, right), and then

pattern-match these components—the first against the String +, the second against the variable

e (which always matches), and then the third against the pattern Number(0).” In other words,

the pattern matching in Scala (and many other functional languages) is multilevel. Our

simulation of pattern matching using Java 8’s lambdas will give only single-level pattern

matching; in the preceding example this would mean cases such as BinOp(op, l, r) or Number(n)

but not BinOp("+", e, Number(0)).

First, we make a slightly surprising observation. Now that you have lambdas, you could in

principle never use if-then-else in your code. You could replace code such as condition ? e1 : e2

with a method call:

myIf(condition, () -> e1, () -> e2);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

405

Somewhere, perhaps in a library, you’d have a definition (generic in type T):

static <T> T myIf(boolean b, Supplier<T> truecase, Supplier<T> falsecase) {

return b ? truecase.get() : falsecase.get();

}

The type T plays the role of result type of the conditional expression. In principle, similar tricks

can be done with if-then-else.

Of course, in normal code this would just make your code more obscure because if-then-else

perfectly captures this idiom. But we’ve noted that Java’s switch and if-then-else don’t capture

the idiom of pattern matching, and it turns out that lambdas can simply encode (single-level)

pattern matching—and rather more neatly than the chains of if-then-else.

Returning to pattern-matching values of class Expr, which has two subclasses, BinOp and

Number, you can define a method patternMatchExpr (again generic in T, the result type of the

pattern match):

interface TriFunction<S, T, U, R>{

R apply(S s, T t, U u);

}

static <T> T patternMatchExpr(

Expr e,

TriFunction<String, Expr, Expr, T> binopcase,

Function<Integer, T> numcase,

Supplier<T> defaultcase) {

return

(e instanceof BinOp) ?

binopcase.apply(((BinOp)e).opname, ((BinOp)e).left,

((BinOp)e).right) :

(e instanceof Number) ?

numcase.apply(((Number)e).val) :

defaultcase.get();

}

The result is that the method call

patternMatchExpr(e, (op, l, r) -> {return binopcode;},

(n) -> {return numcode;},

406

() -> {return defaultcode;});

will determine whether e is a BinOp (and if so run binopcode, which has access to the fields of

the BinOp via identifiers op, l, r), or whether it is a Number (and if so run numcode, which has

access to the value n). The method even makes provision for defaultcode, which would be

executed if someone later created a tree node that was neither a BinOp nor a Number.

The following listing shows how to start using patternMatchExpr by simplifying addition and

multiplication expressions.

Listing 14.1. Implementing pattern matching to simplify an expression

You can now call the simplify method as follows:

You’ve seen a lot of information so far: higher-order functions, currying, persistent data

structures, lazy lists, and pattern matching! We now look at certain subtleties, which we’ve

deferred until the end to avoid overcomplicating the text.

407

14.5. Miscellany

In this section we explore two subtleties of being functional and of having referential

transparency; one concerns efficiency and the other concerns returning the same result. These

are interesting issues, but we place them here because they’re subtleties concerning side effects

rather than conceptually central. We also explore the idea of combinators—methods or

functions that take two or more functions and return another function; this idea has inspired

many of the additions to the Java 8 API.

14.5.1. Caching or memoization

Suppose you have a side-effect-free method computeNumberOfNodes(Range) that calculates

the number of nodes inside a given range in a network with a tree-like topology. Let’s assume

the network never changes (that is, the structure is immutable), but calling the method

computeNumberOfNodes is expensive to calculate because the structure needs to be traversed

recursively. You may want to calculate the results over and over again. If you have referential

transparency, there’s a clever way of avoiding this additional overhead. One standard solution to

this issue is memoization—adding a cache (for example, a HashMap) to the method as a

wrapper—when the wrapper is called. It first consults the cache to see if the (argument, result)

pair is already in the cache; if so, it can return the stored result immediately; otherwise, you call

computeNumberOfNodes, but before returning from the wrapper you store the new (argument,

result) pair in the cache. Strictly speaking, this is a nonpurely functional solution because it

mutates a data structure shared by multiple callers, but the wrapped version of the code is

referentially transparent.

In practice this would work as follows:

final Map<Range,Integer> numberOfNodes = new HashMap<>();

Integer computeNumberOfNodesUsingCache(Range range) {

Integer result = numberOfNodes.get(range);

if (result != null){

return result;

}

result = computeNumberOfNodes(range);

numberOfNodes.put(range, result);

return result;

}

408

Note

Java 8 enhances the Map interface with a method computeIfAbsent for such use cases. We

mention it in appendix B. But for your information you could use the method computeIfAbsent

as follows to write clearer code:

Integer computeNumberOfNodesUsingCache(Range range) {

return numberOfNodes.computeIfAbsent(range,

this::computeNumberOfNodes);

}

It’s clear that the method computeNumberOfNodesUsingCache is referentially transparent

(assuming the method computeNumberOfNodes is also referentially transparent). But the fact

that numberOfNodes is mutable shared state, and that HashMap isn’t synchronized,[2] means

that this code isn’t thread-safe. Even using (lock-protected) Hashtable or

(concurrent-without-locking) ConcurrentHashMap instead of HashMap may not give the

expected performance if there are parallel calls to numberOfNodes from multiple cores, because

there’s a race condition between your finding that range isn’t in the map and inserting the

(argument, result) pair back into the map. This means multiple processes might compute the

same value to add to the map.

2 This is one of those places where bugs breed. It’s so easy to use HashMap here and to forget the

fact that the Java manual notes that it’s not thread-safe (or to simply not care because our

program is currently single-threaded).

Perhaps the best thing to take away from this struggle is that mixing mutable state with

concurrency is trickier than you’d imagine, and functional-style programming avoids it entirely,

except for low-level performance hacks such as caching. A second thing is that apart from

implementing tricks like caching, if you code in functional style, then you never need to care

whether or not another functional-style method you call is synchronized, because you know it

has no shared mutable state.

14.5.2. What does “return the same object” mean?

Let’s consider again the binary tree example from section 14.2.3. In figure 14.4, variable t points

to an existing Tree, and the figure shows the effect of calling fupdate("Will", 26, t) to produce a

new Tree, which we’ll assume is assigned to variable t2. The figure makes it clear that t, and all

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

409

the data structures reachable from it, is not mutated. Now suppose you perform a textually

identical call in the additional assignment:

t3 = fupdate("Will", 26, t);

Now t3 will point to three more newly created nodes, containing the same data as those in t2.

The question is this: “Is fupdate referentially transparent?” Referentially transparent means

“equal arguments (the case here) imply equal results.” The problem is that t2 and t3 are

different references and therefore (t2 == t3) is false, so it looks as if you’ll have to conclude that

fupdate isn’t referentially transparent. But when using persistent data structures that aren’t to

be modified, there’s logically no difference between t2 and t3.

We can debate this point at length, but the simplest adage is that functional-style programming

generally uses equals to compare structured values rather than == (reference equality) because

data isn’t modified, and under this model fupdate is referentially transparent.

14.5.3. Combinators

In functional programming it’s common and natural to write a higher-order function (perhaps

written as a method) that accepts, say, two functions and produces another function somehow

combining these functions. The term combinator is generally used for this idea. Much of the

new Java 8 API is inspired by this idea; for example, thenCombine in the CompletableFuture

class. This method takes two CompletableFutures and a BiFunction to produce another

CompletableFuture.

Although a detailed discussion of combinators in functional programming is beyond the scope of

this book, it’s worth looking at a couple of special cases to give the flavor of how operations that

take and return functions are a very common and natural functional programming construct.

The following method encodes the idea of function composition:

static <A,B,C> Function<A,C> compose(Function<B,C> g, Function<A,B> f) {

return x -> g.apply(f.apply(x));

}

It takes functions f and g as arguments and returns a function whose effect is to do f first and

then g. You can then use this to define an operation, which captures internal iteration as a

combinator. Let’s look at the case where you wish to take data and apply function f to it

repeatedly, say n times, as in a loop. Your operation, let’s call it repeat, takes a function, f, saying

what happens in one iteration and returning a function that says what happens in n iterations. A

call such as

410

repeat(3, (Integer x) -> 2*x);

will give x ->(2*(2*(2*x))) or x -> 8*x.

You can test it by writing

System.out.println(repeat(3, (Integer x) -> 2*x).apply(10));

which prints 80.

The method repeat can be coded as follows (note the special case of a zero-trip loop):

Variants of this idea can model richer notions of iteration, including having a functional model

of mutable state passed between iterations. But it’s now time to move on; this chapter’s role is to

give a summary of functional programming as the basis behind Java 8. There are many excellent

books exploring functional programming in greater depth.

14.6. Summary

Following are the key concepts you should take away from this chapter:

 First-class functions are functions that can be passed as arguments, returned as results, and stored in

data structures.

 A higher-order function is a function that takes at least one or more functions as input or returns

another function. Typical higher-order functions in Java include comparing, andThen, and

compose.

 Currying is a technique that lets you modularize functions and reuse code.

 A persistent data structure preserves the previous version of itself when it’s modified. As a result, it

can prevent unnecessary defensive copying.

 Streams in Java can’t be self-defined.

 A lazy list is a more expressive version of a Java stream. A lazy list lets you produce elements of the list

on demand by using a supplier that can create more of the data structure.

 Pattern matching is a functional feature that lets you unwrap data types. It can be seen as generalizing

Java’s switch statement.

411

 Referential transparency allows computations to be cached.

 Combinators are a functional idea that combines two or more functions or other data structures.

412

Chapter 15. Blending OOP and FP: comparing Java 8

and Scala

This chapter covers

 An introduction to Scala

 How Java 8 relates to Scala and vice versa

 How functions in Scala compare to Java 8

 Classes and traits

Scala is a programming language that mixes object-oriented and functional programming. It’s

often seen as an alternative language to Java for programmers who want functional features in a

statically typed programming language that runs on the JVM while keeping a Java feel. Scala

introduces many more features compared to Java: a more sophisticated type system, type

inference, pattern matching (as presented in section 14.4), constructs to simply define domain

specific languages, and so on. In addition, you can access all Java libraries within Scala code.

You may be wondering why we have a chapter about Scala in a Java 8 book. This book has been

largely centered on adopting functional-style programming in Java. Scala, just like Java 8,

supports the concepts of functional-style processing of collections (that is, stream-like

operations), first-class functions, and default methods. But Scala pushes these ideas further: it

provides a larger set of features around these ideas compared to Java 8. We believe you may find

it interesting to compare Scala with the approach taken by Java 8 and see Java 8’s limitations.

This chapter aims to shed light on this matter to appease your curiosity.

Keep in mind that the purpose of this chapter is not to teach you how to write idiomatic Scala

code or everything about Scala. There are many features such as pattern matching, for

comprehensions and implicits supported in Scala but not in Java, that we won’t discuss. Rather,

this chapter focuses on comparing the new Java 8 features to what Scala provides, so you have

an idea of the bigger picture. For example, you’ll find that you can write more concise and

readable code in Scala compared to Java.

This chapter starts with an introduction to Scala: how to write simple programs and working

with collections. Next, we discuss functions in Scala: first-class functions, closures, and currying.

Finally, we look at classes in Scala and a feature called traits: Scala’s take on interfaces and

default methods.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

413

15.1. Introduction to Scala

This section briefly introduces basic Scala features so you can get a feel for simple Scala

programs. We start with a slightly modified “Hello world” example written in an imperative

style and a functional style. We then look at some data structures that Scala supports—List, Set,

Map, Stream, Tuple, and Option—and compare them to Java 8. Finally, we present traits,

Scala’s replacement for Java’s interfaces, which also support inheritance of methods at

object-instantiation time.

15.1.1. Hello beer

Let’s look at a simple example so you get a feel for Scala’s syntax and features and how they

compare to Java. To change a bit from the classic “Hello world” example, let’s bring in some

beer. You want to print the following output on the screen:

Hello 2 bottles of beer

Hello 3 bottles of beer

Hello 4 bottles of beer

Hello 5 bottles of beer

Hello 6 bottles of beer

Imperative-style Scala

Here’s how the code to print this output looks in Scala using an imperative style:

Information on how to run this code can be found on the official Scala website.[1] This program

looks quite similar to what you’d write in Java. It has a structure similar to Java programs: it

consists of one method called main, which takes an array of strings as argument (type

annotations follow the syntax s : String instead of String s like in Java). The main method

doesn’t return a value, and so it’s not necessary to declare a return type in Scala as you’d have to

do in Java using void.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

414

1 See http://www.scala-lang.org/documentation/getting-started.html.

Note

In general, nonrecursive method declarations in Scala don’t need an explicit return type because

Scala can infer it for you.

Before we look at the body of the main method, we need to discuss the object declaration. After

all, in Java you have to declare the method main within a class. The declaration object

introduces a singleton object: it declares a class Beer and instantiates it at the same time. Only

one instance is ever created. This is the first example of a classical design pattern (the singleton

design pattern) implemented as a language feature—free to use out of the box! In addition, you

can view methods within an object declaration as being declared as static; this is why the

signature of the main method isn’t explicitly declared as static.

Let’s now look at the body of main. It also looks similar to Java, but statements don’t need to

end with a semicolon (it’s optional). The body consists of a while loop, which increments a

mutable variable, n. For each new value of n you print a string on the screen using the

predefined method println. The println line showcases another feature available in Scala: string

interpolation. String interpolation allows you to embed variables and expressions directly in

string literals. In the previous code you can use the variable n directly in the string literal s"Hello

${n} bottles of beer". Prepending the string with the interpolator s provides that magic.

Normally in Java you’d have to do an explicit concatenation such as "Hello " + n + " bottles of

beer".

Functional-style Scala

But what can Scala really offer after all our talk about functional-style programming throughout

this book? The previous code can be written in a more functional-style form as follows in Java 8:

public class Foo {

public static void main(String[] args) {

IntStream.rangeClosed(2, 6)

.forEach(n -> System.out.println("Hello " + n +

http://www.scala-lang.org/documentation/getting-started.html

415

" bottles of beer"));

}

}

Here’s how it looks in Scala:

object Beer {

def main(args: Array[String]){

2 to 6 foreach { n => println(s"Hello ${n} bottles of beer") }

}

}

It looks similar to the Java code but is less verbose. First, you can create a range using the

expression 2 to 6. Here’s something cool: 2 is an object of type Int. In Scala everything is an

object; there’s no concept of primitive types like in Java. This makes Scala a complete

object-oriented language. An Int object in Scala supports a method named to, which takes as

argument another Int and returns a range. So you could have written 2.to(6) instead. But

methods that take one argument can be written in an infix form. Next, foreach (with a lowercase

e) is similar to forEach in Java 8 (with an uppercase E). It’s a method available on a range (here

you use the infix notation again), and it takes a lambda expression as argument to apply on each

element. The lambda expression syntax is similar to Java 8 but the arrow is => instead of ->.[2]

The previous code is functional: you’re not mutating a variable as you did in our earlier example

using a while loop.

2 Note that in Scala the terminology “anonymous functions” or “closures” (interchangeable) is

used to refer to what Java 8 calls lambda expressions.

15.1.2. Basic data structures: List, Set, Map, Tuple, Stream, Option

Feeling good after a couple of beers to quench your thirst? Most real programs need to

manipulate and store data, so let’s now look at how you can manipulate collections in Scala and

how that compares to Java 8.

Creating collections

Creating collections in Scala is simple, thanks to its emphasis on conciseness. To exemplify,

here’s how to create a Map:

val authorsToAge = Map("Raoul" -> 23, "Mario" -> 40, "Alan" -> 53)

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

416

Several things are new with this line of code. First, it’s pretty awesome that you can create a Map

and associate a key to a value directly, using the syntax ->. There’s no need to add elements

manually like in Java:

Map<String, Integer> authorsToAge = new HashMap<>();

authorsToAge.put("Raoul", 23);

authorsToAge.put("Mario", 40);

authorsToAge.put("Alan", 53);

There are discussions to add similar syntactic sugar in future versions of Java, but it’s not

available in Java 8.[3] The second new thing is that you can choose not to annotate the type of

the variable authorsToAge. You could have explicitly written val authors-ToAge : Map[String,

Int], but Scala can infer the type of the variable for you. (Note that the code is still statically

checked! All variables have a given type at compile time.) We’ll come back to this feature later in

the chapter. Third, you use the val keyword instead of var. What’s the difference? The keyword

val means that the variable is read-only and can’t be reassigned to (just like final in Java). The

var keyword means the variable is read-write.

3 See http://openjdk.java.net/jeps/186.

What about other collections? You can create a List (a singly linked list) or a Set (no duplicates)

as easily:

val authors = List("Raoul", "Mario", "Alan")

val numbers = Set(1, 1, 2, 3, 5, 8)

The authors variable will have three elements and the numbers variable will have five elements.

Immutable vs. mutable

One important property to keep in mind is that the collections created previously are immutable

by default. This means they can’t be changed after they’re created. This is useful because you

know that accessing the collection at any point in your program will always yield a collection

with the same elements.

So how can you update an immutable collection in Scala? To come back to the terminology used

in the previous chapter, such collections in Scala are said to be persistent: updating a collection

produces a new collection that shares as much as possible with its previous version, which

persists without being affected by changes like we showed in figures 14.3 and 14.4. As a

consequence of this property, your code will have fewer implicit data dependences: there’s less

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://openjdk.java.net/jeps/186
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

417

confusion about which location in your code updates a collection (or any other shared data

structure) and at what point in time.

Let’s look at an example to demonstrate this idea. Let’s add an element to a Set:

In this example, the set of numbers isn’t modified. Instead, a new Set is created with an

additional element.

Note that Scala doesn’t force you to use immutable collections—it just makes it easy to adopt

immutability in your code. There are also mutable versions available in the package

scala.collection.mutable.

Unmodifiable vs. immutable

Java provides several ways to create unmodifiable collections. In the following code the variable

newNumbers is a read-only view of the set numbers:

Set<Integer> numbers = new HashSet<>();

Set<Integer> newNumbers = Collections.unmodifiableSet(numbers);

This means you won’t be able to add new elements through the newNumbers variable. But an

unmodifiable collection is just a wrapper over a modifiable collection. This means that you could

still add elements by accessing the numbers variable!

By contrast, immutable collections guarantee that nothing can change the collection, regardless

of how many variables are pointing to it.

We explained in chapter 14 how you could create a persistent data structure: an immutable data

structure that preserves the previous version of itself when modified. Any modifications always

produce a new updated structure.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

418

Working with collections

Now that you’ve seen how to create collections, you need to know what you can do with them. It

turns out that collections in Scala support operations similar to what the Streams API provides.

For instance, you’ll recognize filter and map in the following example and as illustrated in figure

15.1:

Figure 15.1. Stream-like operations with Scala’s List

val fileLines = Source.fromFile("data.txt").getLines.toList()

val linesLongUpper

= fileLines.filter(l => l.length() > 10)

.map(l => l.toUpperCase())

Don’t worry about the first line; it basically transforms a file into a list of strings consisting of

the lines in the file (similar to what Files.readAllLines provides in Java 8). The second line

creates a pipeline of two operations:

 A filter operation that selects only the lines that have a length greater than 10

 Amap operation that transforms these long lines to uppercase

This code can be also written as follows:

val linesLongUpper

= fileLines filter (_.length() > 10) map(_.toUpperCase())

You use the infix notation as well as the underscore (_), which is a placeholder that’s

positionally matched to any arguments. In this case you can read _.length() as l => l.length(). In

the functions passed to filter and map, the underscore is bound to the line parameter that is to

be processed.

There are many more useful operations available in Scala’s collection API. We recommend

taking a look at the Scala documentation to get an idea.[4] Note that it’s slightly richer than what

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

419

the Streams API provides (for example, there’s support for zipping operations, which let you

combine elements of two lists), so you’ll definitely gain a few programming idioms by checking it

out. These idioms may also make it into the Streams API in future versions of Java.

4 A list of notable and other packages can be found at

www.scala-lang.org/api/current/#package.

Finally, remember that in Java 8 you could ask for a pipeline to be executed in parallel by calling

parallel on a Stream. Scala has a similar trick; you only need to use the method par:

val linesLongUpper

= fileLines.par filter (_.length() > 10) map(_.toUpperCase())

Tuples

Let’s now look at another feature that’s often painfully verbose in Java: tuples. You may want to

use tuples to group people by their name and their phone number (here simple pairs) without

declaring an ad hoc new class and instantiate an object for it: (“Raoul”, “+ 44 007007007”),

(“Alan”, “+44 003133700”), and so on.

Unfortunately, Java doesn’t provide support for tuples. So you have to create your own data

structure. Here’s a simple Pair class:

public class Pair<X, Y> {

public final X x;

public final Y y;

public Pair(X x, Y y){

this.x = x;

this.y = y;

}

}

And of course you need to instantiate pairs explicitly:

Pair<String, String> raoul = new Pair<>("Raoul", "+ 44 007007007");

Pair<String, String> alan = new Pair<>("Alan", "+44 003133700");

Okay, but how about triplets? How about arbitrary-sized tuples? It becomes really tedious and

ultimately will affect the readability and maintenance of your programs.

http://www.scala-lang.org/api/current/

420

Scala provides tuple literals, which means you can create tuples through simple syntactic

sugar—just the normal mathematical notation:

val raoul = ("Raoul", "+ 44 887007007")

val alan = ("Alan", "+44 883133700")

Scala supports arbitrary-sized[5] tuples, so the following are all possible:

5 Tuples have a limitation of 23 elements maximum.

You can access the elements of the tuples by their positions using the accessors _1, _2 (starting

at 1), for example:

Isn’t that much nicer than what you’d have to write in Java? The good news is that there are

discussions about introducing tuple literals in future versions of Java (see chapter 16 for more

discussion of this).

Stream

The collections we described so far, List, Set, Map, and Tuple, are all evaluated eagerly (that is,

immediately). Of course by now you know that streams in Java 8 are evaluated on demand (that

is, lazily). You saw in chapter 5 that because of this property streams can represent an infinite

sequence without overflowing the memory.

Scala provides a corresponding lazily evaluated data structure called Stream too! But Streams in

Scala provide more features than those in Java. Streams in Scala remember values that were

computed so previous elements can be accessed. In addition, Streams are indexed so elements

can be accessed by an index just like a list. Note that the trade-off for these additional properties

is that Streams are less memory-efficient compared to Java 8’s streams, because being able to

refer back to previous elements means the elements need to be “remembered” (cached).

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

421

Option

Another data structure that you’ll be familiar with is Option. It’s Scala’s version of Java 8’s

Optional, which we discussed in chapter 10. We argued that you should use Optional when

possible to design better APIs, in which just by reading the signature of a method users can tell

whether or not they can expect an optional value. It should be used instead of null when possible

to prevent null pointer exceptions.

You saw in chapter 10 that you could use Optional to return the insurance’s name of a person if

their age is greater than a minimum age, as follows:

public String getCarInsuranceName(Optional<Person> person, int minAge) {

return person.filter(p -> p.getAge() >= minAge)

.flatMap(Person::getCar)

.flatMap(Car::getInsurance)

.map(Insurance::getName)

.orElse("Unknown");

}

In Scala you can use Option in a way similar to Optional:

def getCarInsuranceName(person: Option[Person], minAge: Int) =

person.filter(_.getAge() >= minAge)

.flatMap(_.getCar)

.flatMap(_.getInsurance)

.map(_.getName).getOrElse("Unknown")

You can recognize the same structure and method names apart from getOrElse, which is the

equivalent of orElse in Java 8. You see, throughout this book you’ve learned new concepts that

can be directly applied to other programming languages! Unfortunately, null also exists in Scala

for Java compatibility reasons and its use is highly discouraged.

Note

In the previous code you wrote _.getCar (without parentheses) instead of _.getCar() (with

parentheses). In Scala parentheses aren’t required when calling a method that takes no

parameters.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html

422

15.2. Functions

Scala functions can be seen as a sequence of instructions that are grouped together to perform a

task. They’re useful to abstract behavior and are the cornerstone of functional programming.

In Java, you’re familiar with methods: functions associated with a class. You’ve also seen lambda

expressions, which can be considered anonymous functions. Scala offers a richer set of features

around functions than Java does, which we look at in this section. Scala provides the following:

 Function types, syntactic sugar to represent the idea of Java function descriptors (that is, a notation to

represent the signature of the abstract method declared in a functional interface), which we described

in chapter 3

 Anonymous functions that don’t have the write restrictions on nonlocal variables that Java’s lambda

expressions have

 Support for currying, which means breaking down a function that takes multiple arguments into a

series of functions that take part of the arguments

15.2.1. First-class functions in Scala

Functions in Scala are first-class values. This means they can be passed around as parameters,

returned as a result, and stored in variables, just like other values such as an Integer or a String.

As we’ve shown you in earlier chapters, method references and lambda expressions in Java 8

can also be seen as first-class functions.

Let’s look at an example of how first-class functions work in Scala. Let’s say you have a list of

strings representing tweets people are sending to you. You’d like to filter this list with different

criteria, for example, tweets that mention the word Java or tweets that have a short length. You

can represent these two criteria as predicates (functions that return a Boolean):

def isJavaMentioned(tweet: String) : Boolean = tweet.contains("Java")

def isShortTweet(tweet: String) : Boolean = tweet.length() < 20

In Scala you can pass these methods directly to the built-in filter as follows (just as you could

pass them using method references in Java):

val tweets = List(

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

423

"I love the new features in Java 8",

"How's it going?",

"An SQL query walks into a bar, sees two tables and says 'Can I join you?'"

)

tweets.filter(isJavaMentioned).foreach(println)

tweets.filter(isShortTweet).foreach(println)

Now let’s inspect the signature of the built-in method filter:

def filter[T](p: (T) => Boolean): List[T]

You may wonder what the type of the parameter p means (here (T) => Boolean), because in Java

you’d expect a functional interface! This is a new syntax that’s not available in Java. It describes

a function type. Here it represents a function that takes an object of type T and returns a

Boolean. In Java this is encoded as a Predicate<T> or Function<T, Boolean>. This is exactly the

same signature as the methods isJava-Mentioned and isShortTweet so you can pass them as

argument to filter. The Java 8 language designers decided not to introduce a similar syntax for

function types in order to keep the language consistent with previous versions. (Introducing too

much new syntax in a new version of the language is seen as too much additional cognitive

overhead.)

15.2.2. Anonymous functions and closures

Scala also supports the concept of anonymous functions. They have a syntax similar to lambda

expressions. In the following example you can assign to a variable named isLongTweet an

anonymous function that checks whether a given tweet is long:

Now in Java, a lambda expression lets you create an instance of a functional interface. Scala has

a similar mechanism. The previous code is syntactic sugar for declaring an anonymous class of

type scala.Function1 (a function of one parameter), which provides the implementation of the

method apply:

val isLongTweet : String => Boolean

= new Function1[String, Boolean] {

424

def apply(tweet: String): Boolean = tweet.length() > 60

}

Because the variable isLongTweet holds an object of type Function1, you can call the method

apply, which can be seen as calling the function:

As in Java, you could do the following:

Function<String, Boolean> isLongTweet = (String s) -> s.length() > 60;

boolean long = isLongTweet.apply("A very short tweet");

To use lambda expressions, Java provides several built-in functional interfaces such as Predicate,

Function, and Consumer. Scala provides traits (you can think of traits as interfaces for now until

we describe them in the next section) to achieve the same thing: Function0 (a function with 0

parameters and a return result) up to Function22 (a function with 22 parameters), which all

define the method apply.

Another cool trick in Scala is that you can call the method apply using syntactic sugar that looks

more like a function call:

The compiler automatically converts a call f(a) into f.apply(a) and, more generally, a call f(a1, ...,

an) into f.apply(a1, ..., an), if f is an object that supports the method apply (note that apply can

have any number of arguments).

Closures

In chapter 3 we commented on whether lambda expressions in Java constitute closures. To

refresh, a closure is an instance of a function that can reference nonlocal variables of that

function with no restrictions. But lambda expressions in Java 8 have a restriction: they can’t

modify the content of local variables of a method in which the lambda is defined. Those

variables have to be implicitly final. It helps to think that lambdas close over values, rather

than variables.

In contrast, anonymous functions in Scala can capture variables themselves, not the values to

which the variables currently refer. For example, the following is possible in Scala:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

425

But in Java the following will result in a compiler error because count is implicitly forced to be

final:

We argued in chapters 7, 13, and 14 that you should avoid mutation when possible to make your

programs easier to maintain and parallelizable, so use this feature only when strictly necessary.

15.2.3. Currying

In chapter 14 we described a technique called currying: where a function f of two arguments (x

and y, say) is seen instead as a function g of one argument, which returns a function also of one

argument. This definition can be generalized to functions with multiple arguments, producing

multiple functions of one argument. In other words, you can break down a function that takes

multiple arguments into a series of functions that take a subpart of the arguments. Scala

provides a construct to let you easily curry an existing function.

To understand what Scala brings to the table, let’s first revisit an example in Java. You can

define a simple method to multiply two integers:

static int multiply(int x, int y) {

return x * y;

}

int r = multiply(2, 10);

But this definition requires all the arguments to be passed to it. You can manually break down

the multiply method by making it return another function:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

426

static Function<Integer, Integer> multiplyCurry(int x) {

return (Integer y) -> x * y;

}

The function returned by multiplyCurry captures the value of x and multiplies it by its argument

y, returning an Integer. This means you can use multiplyCurry as follows in a map to multiply

each element by 2:

Stream.of(1, 3, 5, 7)

.map(multiplyCurry(2))

.forEach(System.out::println);

This will produce the result 2, 6, 10, 14. This works because map expects a Function as argument

and multiplyCurry returns a Function!

Now it’s a bit tedious in Java to manually split up a function to create a curried form (especially

if the function has multiple arguments). Scala has a special syntax to do this automatically. You

can define the normal multiply method as follows:

def multiply(x : Int, y: Int) = x * y

val r = multiply(2, 10);

And here is its curried form:

Using the (x: Int)(y: Int) syntax, the multiplyCurry method takes two argument lists of one Int

parameter. In contrast, multiply takes one list of two Int parameters. What happens when you

call multiplyCurry? The first invocation of multiplyCurry with a single Int (the parameter x),

multiplyCurry(2), returns another function that takes a parameter y and multiplies it with the

captured value of x (here the value 2). We say this function is partially applied as explained in

section 14.1.2, because not all arguments are provided. The second invocation multiplies x and y.

This means you can store the first invocation to multiplyCurry inside a variable and reuse it:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

427

In comparison with Java, in Scala you don’t need to manually provide the curried form of a

function as done here. Scala provides a convenient function-definition syntax to indicate that a

function has multiple curried argument lists.

15.3. Classes and traits

We now look at how classes and interfaces in Java compare to Scala. These two constructs are

paramount to design applications. You’ll see that Scala’s classes and interfaces can provide more

flexibility than what Java offers.

15.3.1. Less verbosity with Scala classes

Because Scala is also a full object-oriented language, you can create classes and instantiate them

to produce objects. At its most basic form, the syntax to declare and instantiate classes is similar

to Java. For example, here’s how to declare a Hello class:

class Hello {

def sayThankYou(){

println("Thanks for reading our book")

}

}

val h = new Hello()

h.sayThankYou()

Getters and setters

It becomes more interesting once you have a class with fields. Have you ever come across a Java

class that purely defines a list of fields, and you’ve had to declare a long list of getters, setters,

and an appropriate constructor? What a pain! In addition, you’ll often see tests for the

implementation of each method. A large amount of code is typically devoted to such classes in

Enterprise Java applications. Consider this simple Student class:

public class Student {

private String name;

private int id;

public Student(String name) {

this.name = name;

428

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public int getId() {

return id;

}

public void setId(int id) {

this.id = id;

}

}

You have to manually define the constructor that initializes all fields, two getters, and two

setters. A simple class now has more than 20 lines of code! Several IDEs and tools can help you

generate this code, but your codebase still has to deal with a large amount of additional code

that’s not very useful compared to real business logic.

In Scala, constructors, getters, and setters can be implicitly generated, which results in code

with less verbosity:

15.3.2. Scala traits vs. Java 8 interfaces

Scala has another useful feature for abstraction called traits. They’re Scala’s replacement for

Java’s interfaces. A trait can define both abstract methods and methods with a default

implementation. Traits can also be multiple inherited just like interfaces in Java, so you can see

them as similar to Java 8’s interfaces that support default methods. Traits can also contain fields

like an abstract class, which Java 8 interfaces don’t support. Are traits just like abstract classes?

429

No, because traits can be multiple inherited, unlike abstract classes. Java has always had

multiple inheritance of types because a class can implement multiple interfaces. Now Java 8,

through default methods, introduces multiple inheritance of behaviors but still doesn’t allow

multiple inheritance of state, something permitted by Scala traits.

To show an example of what a trait looks like in Scala, let’s define a trait called Sized that

contains one mutable field called size and one method called isEmpty with a default

implementation:

You can now compose it at declaration time with a class, here an Empty class that always has

size 0:

Interestingly, compared to Java interfaces, traits can also be composed at object instantiation

time (but it’s still a compile-time operation). For example, you can create a Box class and decide

that one specific instance should support the operations defined by the trait Sized:

What happens if multiple traits are inherited declaring methods with the same signatures or

fields with the same names? Scala provides restriction rules similar to those you saw with

default methods in chapter 9.

15.4. Summary

Following are the key concepts you should take away from this chapter:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

430

 Both Java 8 and Scala combine object-oriented and functional programming features into one

programming language; both run on the JVM and to a large extent can interoperate.

 Scala supports collection abstractions similar to Java 8—List, Set, Map, Stream, Option—but also

supports tuples.

 Scala provides richer features around functions than Java 8: function types, closures that have no

restrictions on accessing local variables, and built-in currying forms.

 Classes in Scala can provide implicit constructors, getters, and setters.

 Scala supports traits: interfaces that can include both fields and default methods.

431

Chapter 16. Conclusions and where next for Java

This chapter covers

 New Java 8 features and their evolutionary effect on programming style

 A few unfinished-business ideas started by Java 8

 What Java 9 and Java 10 might bring

We covered a lot of material in this book, and we hope you now feel that you’re ready to start

using the new Java 8 features in your own code, perhaps building on our examples and quizzes.

In this chapter we review the journey of learning about Java 8 and the gentle push toward

functional-style programming. In addition, we speculate on what future enhancements and

great new features may be in Java’s pipeline beyond Java 8.

16.1. Review of Java 8 features

A good way to help you understand Java 8 as a practical, useful language is to revisit the

features in turn. Instead of simply listing them, we’d like to present them as being interlinked to

help you understand them not merely as a set of features but as a high-level overview of the

coherent language design that is Java 8. Our other aim in this review chapter is to emphasize

how most of the new features in Java 8 are facilitating functional-style programming in Java.

Remember, this isn’t a capricious design choice but a conscious design strategy, centered on two

trends, which we regard as climate change in the model from chapter 1:

 The increasing need to exploit the power of multicore processors now that, for silicon technology

reasons, the additional transistors annually provided by Moore’s law no longer translate into higher

clock speeds of individual CPU cores. Put simply, making your code run faster requires parallel code.

 The increasing tendency to concisely manipulate collections of data with a declarative style for

processing data, such as taking some data source, extracting all data that matches a given criterion,

and applying some operation to the result—either summarizing it or making a collection of the result

for further processing later. This style is associated with the use of immutable objects and collections,

which are then processed to produce further immutable values.

Neither motivation is effectively supported by the traditional, object-oriented, imperative

approach, centered on mutating fields and applying iterators. Mutating data on one core and

reading it from another is surprisingly expensive, not to mention the need for error-prone

locking; similarly when your mind-set is focused on iterating over and mutating existing objects,

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html

432

then the stream-like programming idiom can feel very alien. But these two trends are easily

supported using ideas from functional programming, and this explains why the Java 8 center of

gravity has moved a bit from what we’ve come to expect from Java.

Let’s now review, in a big-picture unifying view, what you’ve learned from this book, and see

how it all fits together in the new climate.

16.1.1. Behavior parameterization (lambdas and method references)

To be able to write a reusable method such as filter, you need to be able to specify as its

argument a description of the filtering criterion. Although Java experts could achieve this in

previous versions of Java (by wrapping the filtering criterion as a method inside a class and

passing an instance of that class), this solution was unsuitable for general use because it was too

cumbersome to write and maintain.

As you discovered in chapters 2 and 3, Java 8 provides a way, borrowed from functional

programming, of passing a piece of code to a method. It conveniently provides two variants of

this:

 Passing a lambda, a one-off piece of code such as

apple -> apple.getWeight() > 150

 Passing a method reference, to an existing method, as code such as Apple::isHeavy

These values have types such as Function<T, R>, Predicate<T>, and BiFunction<T, U, R> and

have ways for the recipient to execute them using the methods apply, test, and so on. Of

themselves, lambdas can seem rather a niche concept, but it’s the way Java 8 uses them in much

of the new Streams API that propels them to the center of Java.

16.1.2. Streams

The collection classes in Java, along with iterators and the for-each construct, have served us

honorably for a long time. It would have been easy for the Java 8 designers to add methods like

filter and map to collections, exploiting the lambdas mentioned previously to express

database-like queries. But they didn’t—instead they added a whole new Streams API, the subject

of chapters 4–7—and it’s worth pausing to consider why.

What’s wrong with collections that requires them to be replaced or augmented with a similar but

different notion of streams? We’ll summarize it like this: if you have a large collection and apply

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

433

three operations to it, perhaps mapping the objects in the collection to sum two of their fields,

then filtering the sums satisfying some criterion, and then sorting the result, you’ll make three

separate traversals of the collection. The Streams API instead lazily forms these operations into

a pipeline, and then does a single stream traversal performing all the operations together. This is

much more efficient for large datasets, and for reasons such as memory caches, the larger the

dataset the more important it is to minimize the number of traversals.

The other, no less important, reasons concern the ability to process elements in parallel, which

is vital to efficiently exploit multicore CPUs. Streams, in particular the method parallel, allow a

stream to be marked as suitable for parallel processing. Recall here that parallelism and mutable

state fit badly together, so core functional concepts (side-effect-free operations and methods

parameterized with lambdas and method references that permit internal iteration instead of

external iteration, as discussed in chapter 4) are central to exploiting streams in parallel using

map, filter, and the like.

Let’s now look at how these ideas, which we introduced in terms of streams, have a direct analog

in the design of CompletableFuture.

16.1.3. CompletableFuture

Java has provided the Future interface since Java 5. Futures are useful for exploiting multicore

because they allow a task to be spawned onto another thread or core and allow the spawning

task to continue executing along with the spawned task. When the spawning task needs the

result, it can use the get method to wait for the Future to complete (produce its value).

Chapter 11 explains the Java 8 CompletableFuture implementation of Future. Again this exploits

lambdas. A useful, if slightly imprecise, motto is that “Completable-Future is to Future as

Stream is to Collection.” Let’s compare:

 Stream lets you pipeline operations and provides behavior parameterization with map, filter, and

the like, thus avoiding the boilerplate code you typically have to write using iterators.

 Similarly, CompletableFuture provides operations such as thenCompose, thenCombine, and

allOf, which give functional-programming-style concise encodings of common design patterns

involving Futures, and let you avoid similar imperative-style boilerplate code.

This style of operations, albeit in a simpler scenario, also applies to the Java 8 operations on

Optional, which we now revisit.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

434

16.1.4. Optional

The Java 8 library provides the class Optional<T>, which allows your code to specify that a

value is either a proper value of type T or is a missing value returned by the static method

Optional.empty. This is great for program comprehension and documentation; it provides a data

type with an explicit missing value—instead of the previous error-prone use of the null pointer

to indicate missing values, which we could never be sure was a planned missing value or an

accidental null resulting from an earlier erroneous computation.

As chapter 10 discusses, if Optional<T> is used consistently, then programs should never

produce NullPointerExceptions. Again you could see this as a one-off, unrelated to the rest of

Java 8, and ask, “How does changing from one form of missing value to another help me write

programs?” Closer inspection shows that the class Optional<T> provides map, filter, and

ifPresent. These have similar behavior to corresponding methods in the Streams class and can

be used to chain computations, again in functional style, with the tests for missing value done

by the library instead of user code. This internal testing versus external testing choice is directly

analogous to how the Streams library does internal iteration versus external iteration in user

code.

Our final topic of this section concerns not functional-style programming but instead Java 8

support for upward-compatible library extensions driven by software-engineering desires.

16.1.5. Default methods

There are other additions to Java 8, none of which particularly affect the expressiveness of any

individual program. But one thing that is helpful for library designers is the addition to allow

default methods to be added to an interface. Prior to Java 8, interfaces defined method

signatures; now they can also provide default implementations for methods that the interface

designer suspects not all clients will want to provide explicitly.

This is a great new tool for library designers, because it provides them with the ability to

augment an interface with a new operation, without having to require all clients (classes

implementing this interface) to add code to define this method. Therefore, default methods are

also relevant to users of libraries because they shield them from future interface changes.

Chapter 9 explains this in more detail.

So far we’ve summarized the concepts of Java 8. We now turn to the thornier subject of what

future enhancements and great new features may be in Java’s pipeline beyond Java 8.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

435

16.2. What’s ahead for Java?

Let’s look at some of these points, most of which are discussed in more detail on the JDK

Enhancement Proposal website at http://openjdk.java.net/jeps/0. Here we take care to explain

why seemingly sensible ideas have subtle difficulties or interaction with existing features that

inhibit their direct incorporation into Java.

16.2.1. Collections

Java’s development has been evolutionary rather than “big bang.” There have been many great

ideas added to Java, for example, arrays being replaced by collections and later augmented with

the power of streams. Occasionally a new feature is so obviously better (for example, collections

over arrays) that we fail to notice that some aspect of the supplanted feature hasn’t been carried

across. One example is initializers for containers. For example, Java arrays can be declared and

initialized with syntax such as

Double [] a = {1.2, 3.4, 5.9};

which is a convenient abbreviation for

Double [] a = new Double[]{1.2, 3.4, 5.9};

Java collections (via the Collection interface) were introduced as a better and more uniform way

of dealing with sequences of data such as that represented by arrays. But their initialization has

been rather neglected. Think about how you’d initialize a HashMap. You’d have to write the

following:

Map<String, Integer> map = new HashMap<>();

map.put("raoul", 23);

map.put("mario", 40);

map.put("alan", 53);

What you’d like to be able to say is something like

Map<String, Integer> map = #{"Raoul" -> 23, "Mario" -> 40, "Alan" -> 53};

where #{...} is a collection literal—a list of the values that are to appear in the collection. This

seems uncontroversial as a feature,[1] but it’s not yet part of Java.

1 The current Java proposal is described in http://openjdk.java.net/jeps/186.

http://openjdk.java.net/jeps/0
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://openjdk.java.net/jeps/186

436

16.2.2. Type system enhancements

We discuss two possible enhancements to Java type’s system: declaration-site variance and

local variable type inference.

Declaration-site variance

Java supports wildcards as a flexible mechanism to allow subtyping for generics (more generally

referred to as use-site variance). This is why the following assignment is valid:

List<? extends Number> numbers = new ArrayList<Integer>();

But the following assignment, omitting the ? extends, gives a compile-time error:

Many programming languages such as C# and Scala support a different variance mechanism

called declaration-site variance. They allow programmers to specify variance when defining a

generic class. This feature is useful for classes that are inherently variant. Iterator, for example,

is inherently covariant and Comparator is inherently contravariant. You shouldn’t need to think

in terms of ? extends or ? super when you use them. This is why adding declaration-site variance

to Java would be useful because these specifications instead appear at the declaration of classes.

As a result, it would reduce some cognitive overhead for programmers. Note that at the time of

this writing (June 2014) there’s a proposal investigating declaration-site variance for Java 9.[2]

2 See https://bugs.openjdk.java.net/browse/JDK-8043488.

More type inference

Originally in Java, whenever we introduced a variable or method, we gave its type at the same

time. For example,

double convertUSDToGBP(double money) { ExchangeRate e = ...; }

contains three types; these give the result type of convertUSDToGBP, the type of its argument

money, and the type of its local variable e. Over time this has been relaxed in two ways. First,

you may omit type parameters of generics in an expression when the context determines them.

For example,

Map<String, List<String>> myMap = new HashMap<String, List<String>>();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

437

can be abbreviated to the following since Java 7:

Map<String, List<String>> myMap = new HashMap<>();

Second, using the same idea—propagating the type determined by context into an expression—a

lambda expression such as

Function<Integer, Boolean> p = (Integer x) -> booleanExpression;

can be shortened to

Function<Integer, Boolean> p = x -> booleanExpression;

by omitting types. In both cases the compiler infers the omitted types.

Type inference gives a few advantages when a type consists of a single identifier, the main one

being reduced editing work when replacing one type with another. But as types grow in size,

generics parameterized by further generic types, then type inference can aid readability.[3] The

Scala and C# languages permit a type in a local-variable-initialized declaration to be replaced

with the keyword var, and the compiler fills in the appropriate type from the right side. For

example, the declaration of myMap shown previously using Java syntax could be rendered like

this:

3 Of course, it’s important that type inference be done sensibly. Type inference works best when

there’s only one way, or one easily documentable way, to re-create the type the user has omitted.

It’s a source of problems if the system infers a different type from the one the user was thinking

of; so a good design of type inference will give a fault when there are two different incomparable

types that could be inferred instead of appearing just to pick the wrong one seemingly at

random.

var myMap = new HashMap<String, List<String>>();

This idea is called local variable type inference; you can expect similar developments in Java

because they decrease clutter caused by redundant type repetition.

There’s some small cause for concern, however; given a class Car that subclasses a class Vehicle

and then does the declaration

var x = new Vehicle();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

438

do you declare x to have type Car or Vehicle? In this case a simple explanation that the missing

type is the type of the initializer (here Vehicle) is perfectly clear, and it can be backed up with a

statement that var may not be used when there’s no initializer.

16.2.3. Pattern matching

As we discussed in chapter 14, functional-style languages typically provide some form of pattern

matching—an enhanced form of switch—in which you can ask, “Is this value an instance of a

given class?” and, optionally, recursively ask whether its fields have certain values.

It’s worth reminding you here that traditional object-oriented design discourages the use of

switch and instead encourages patterns such as the visitor pattern where data-type-dependent

control flow is done by method dispatch instead of by switch. This isn’t the case at the other end

of the programming language spectrum—in functional-style programming where pattern

matching over values of data types is often the most convenient way to design a program.

Adding Scala-style pattern matching in full generality to Java seems quite a big job, but

following the recent generalization to switch to allow Strings, you can imagine a more-modest

syntax extension, which allows switch to operate on objects, using the instanceof syntax. Here

we revisit our example from section 14.4 and assume a class Expr, which is subclassed into

BinOp and Number:

switch (someExpr) {

case (op instanceof BinOp):

doSomething(op.opname, op.left, op.right);

case (n instanceof Number):

dealWithLeafNode(n.val);

default:

defaultAction(someExpr);

}

There are a couple of things to note. We steal from pattern matching the idea that in case (op

instanceof BinOp):, op is a new local variable (of type BinOp), which becomes bound to the

same value as someExpr; similarly, in the Number case, n becomes a variable of type Number.

In the default case, no variable is bound. This proposal avoids much boilerplate code compared

with using chains of if-then-else and casting to subtype. A traditional object-oriented designer

would probably argue that such data-type dispatch code would better be expressed using

visitor-style methods overridden in subtypes, but to functional-programming eyes this results in

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

439

related code being scattered over several class definitions. This is a classical design dichotomy

discussed in the literature under the name of the “expression problem.”[4]

4 For a more complete explanation, see http://en.wikipedia.org/wiki/Expression_problem.

16.2.4. Richer forms of generics

This section discusses two limitations of Java generics and looks at a possible evolution to

mitigate them.

Reified generics

When generics were introduced in Java 5, they had to be backward-compatible with the existing

JVM. To this end, the runtime representations of ArrayList<String> and ArrayList<Integer> are

identical. This is called the erasure model of generic polymorphism. There are certain small

runtime costs associated with this choice, but the most significant effect for programmers is that

parameters to generic types can only be Objects. Suppose Java allowed, say, ArrayList<int>.

Then you could allocate an ArrayList object on the heap containing a primitive value such as int

42, but the Array-List container wouldn’t contain any indicator of whether it contained an

Object value such as a String or a primitive int value such as 42.

As some level this seems harmless—if you get a primitive 42 from an ArrayList<int> and a

String object “abc” from an ArrayList<String>, then why should you worry that the ArrayList

containers are indistinguishable? Unfortunately, the answer is garbage collection, because the

absence of run-time type information about the contents of the ArrayList would leave the JVM

unable to determine whether element 13 of your ArrayList was an Integer reference (to be

followed and marked as “in use” by GC) or an int primitive value (most definitely not to be

followed).

In the C# language, the runtime representations of ArrayList<String>, ArrayList<Integer>, and

ArrayList<int> are all in principle different. But even if they are the same, sufficient type

information is kept at run-time to allow, for example, garbage collection to determine whether a

field is a reference or a primitive. This is called the reified model of generic polymorphism or,

more simply, reified generics. The word reification means “making explicit something that

otherwise would just be implicit.”

Reified generics are clearly desirable; they enable a more full unification of primitive types and

their corresponding object types—something that you’ll see as problematic in the next sections.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://en.wikipedia.org/wiki/Expression_problem

440

The main difficulty for Java is backward compatibility, both in the JVM and in existing

programs that use reflection and expect generics to be erased.

Additional syntactic flexibility in generics for function types

Generics proved a wonderful feature when added to Java 5. They’re also fine for expressing the

type of many Java 8 lambdas and method references. You can express a one-argument function:

Function<Integer, Integer> square = x -> x * x;

If you have a two-argument function, you use the type BiFunction<T, U, R>, where T is the type

of the first parameter, U the second, and R the result. But there’s no TriFunction unless you

declare it yourself!

Similarly, you can’t use Function<T, R> for references to methods taking zero arguments and

returning result type R; you have to use Supplier<R> instead.

In essence, Java 8 lambdas have enriched what you can write, but the type system hasn’t kept up

with the flexibility of the code. In many functional languages, you can write, for example, the

type (Integer, Double) => String, to represent what Java 8 calls BiFunction<Integer, Double,

String>, along with Integer => String to represent Function<Integer, String>, and even () =>

String to represent Supplier<String>. You can understand => as an infix version of Function,

BiFunction, Supplier, and the like. A simple extension to Java syntax for types would allow this,

resulting in more readable types analogously to what Scala provides, as discussed in chapter 15.

Primitive specializations and generics

In Java all primitive types (int, for example) have a corresponding object type (here

java.lang.Integer); often we refer to these as unboxed and boxed types. Although this distinction

has the laudable aim of increasing runtime efficiency, the types can become confusing. For

example, why in Java 8 do we write Predicate<Apple> instead of Function<Apple, Boolean>? It

turns out that an object of type Predicate<Apple>, when called using the method test, returns a

primitive boolean.

By contrast, like all generics, a Function can only be parameterized by object types, which in the

case of Function<Apple, Boolean> is the object type Boolean, not the primitive type boolean.

Predicate<Apple> is therefore more efficient because it avoids boxing the boolean to make a

Boolean. This issue has led to the creation of multiple, similar interfaces such as

LongToIntFunction and BooleanSupplier, which add further conceptual overload. Another

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

441

example concerns the question of the differences between void, which can only qualify method

return types and has no values, and the object type Void, which has null as its only value—a

question that regularly appears on forums. The special cases of Function such as Supplier<T>,

which could be written () => T in the new notation proposed previously, further attest to the

ramifications caused by the distinction between primitive and object types. We discussed earlier

how reified generics could address many of these issues.

16.2.5. Deeper support for immutability

Some expert readers may have been a little upset when we said that Java 8 has three forms of

values:

 Primitive values

 (References to) objects

 (References to) functions

At one level we’re going to stick to our guns and say, “But these are the values that a method

may now take as arguments and return as results.” But we also wish to concede that this is a

little problematic: to what extent do you return a (mathematical) value when you return a

reference to a mutable array? A String or an immutable array clearly is a value, but the case is

far less clear-cut for a mutable object or array—your method may return an array with its

elements in ascending order, but some other code may change one of its elements later.

If we’re really interested in functional-style programming in Java, then there needs to be

linguistic support for saying “immutable value.” As noted in chapter 13, the keyword final

doesn’t really achieve this—it only stops the field it qualifies from being updated; consider this:

final int[] arr = {1, 2, 3};

final List<T> list = new ArrayList<>();

The former forbids another assignment arr = ... but doesn’t forbid arr[1]=2; the latter forbids

assignments to list but doesn’t forbid other methods from changing the number of elements in

list! The keyword final works well for primitive values, but for references to objects, it often

merely gives a false sense of security.

What we’re leading up to is this: given that functional-style programming puts a strong

emphasis on not mutating existing structure, there’s a strong argument for a keyword such as

transitively_final, which can qualify fields of reference type and which ensures that no

modification can take place to the field nor to any object directly or indirectly accessible via

that field.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

442

Such types represent one intuition about values: values are immutable, and only variables

(which contain values) may be mutated to contain a different immutable value. As we remarked

at the head of this section, Java authors including ourselves sometimes have inconsistently

talked about the possibility of a Java value being a mutable array. In the next section, we return

to proper intuition and discuss the idea of a value type; these can only contain immutable values,

even if variables of value type can still be updated, unless qualified with final.

16.2.6. Value types

In this section, we discuss the difference between primitive types and object types, linking into

the discussion earlier about the desire for value types, which help you to write programs

functionally, just as object types are necessary for object-oriented programming. Many of the

issues we discuss are interrelated, so there’s no easy way to explain one problem in isolation.

Instead we identify the problem by its various facets.

Can’t the compiler treat Integer and int identically?

Given all the implicit boxing and unboxing that Java has slowly acquired since Java 1.1, you

might ask whether it’s time for Java to treat, for example, Integer and int identically and to rely

on the Java compiler to optimize into the best form for the JVM.

This would be a wonderful idea in principle, but let’s consider the problems surrounding adding

the type Complex to Java to see why boxing is problematic. The type Complex, which models

so-called complex numbers having real and imaginary parts, is naturally introduced as follows:

class Complex {

public final double re;

public final double im;

public Complex(double re, double im) {

this.re = re;

this.im = im;

}

public static Complex add(Complex a, Complex b) {

return new Complex(a.re+b.re, a.im+b.im);

}

}

443

But values of type Complex are reference types, and every operation on Complex needs to do an

object allocation—dwarfing the cost of the two additions in add. What we need is a

primitive-type analog of Complex, perhaps called complex.

The issue here is that we want an “unboxed object,” and neither Java nor the JVM has any real

support for this. Now we can return to the lament, “Oh, but surely the compiler can optimize

this.” Sadly, this is much harder than it appears; although there is a compiler optimization based

on so-called escape analysis, which can sometimes determine that unboxing is okay, its

applicability is limited by Java’s assumptions on Objects, which have been present since Java 1.1.

Consider the following puzzler:

double d1 = 3.14;

double d2 = d1;

Double o1 = d1;

Double o2 = d2;

Double ox = o1;

System.out.println(d1 == d2 ? "yes" : "no");

System.out.println(o1 == o2 ? "yes" : "no");

System.out.println(o1 == ox ? "yes" : "no");

The result is “yes”, “no”, “yes.” An expert Java programmer would probably say, “What silly code,

everyone knows you should use equals on the last two lines instead of ==.” But let us persist.

Even though all these primitives and objects contain the immutable value 3.14 and should really

be indistinguishable, the definitions of o1 and o2 create new objects, and the == operator

(identity comparison) can tell them apart. Note that on primitives, the identity comparison does

bitwise comparison but on objects it does reference equality. So often, we accidentally create a

new distinct Double object, which the compiler needs to respect because the semantics of Object,

from which Double inherits, require this. You’ve seen this discussion before, both in the earlier

discussion of value types and in chapter 14, where we discussed referential transparency of

methods that functionally update persistent data structures.

Value types—not everything is a primitive or an object

We suggest that the resolution of this problem is to rework the Java assumptions (1) that

everything that isn’t a primitive is an object and hence inherits Object, and (2) that all references

are references to objects.

The development starts like this. There are two forms of values: those of Object type that have

mutable fields unless forbidden with final, and those of identity, which may be tested with ==.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

444

There are also value types, which are immutable and which don’t have reference identity;

primitive types are a subset of this wider notion. We could then allow user-defined value types

(perhaps starting with a lowercase letter to emphasize their similarity to primitive types such as

int and boolean). On value types, == would, by default, perform an element-by-element

comparison in the same way that hardware comparison on int performs a bit-by-bit comparison.

You can see this being overridden for floating-point comparison, which performs a somewhat

more sophisticated operation. The type Complex would be a perfect example of a non-primitive

value type; such types resemble C# structs.

In addition, value types can reduce storage requirements because they don’t have reference

identity. Figure 16.1 illustrates an array of size three, whose elements 0, 1, and 2 are light gray,

white, and dark gray, respectively. The left diagram shows a typical storage requirement when

Pair and Complex are Objects and the right shows the better layout when Pair and Complex are

value types (note that we called them pair and complex in lowercase in the diagram to

emphasize their similarity to primitive types). Note also that value types are also likely to give

better performance, not only for data access (multiple levels of pointer indirection replaced with

a single indexed-addressing instruction) but also for hardware cache utilization (due to data

contiguity).

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html

445

Figure 16.1. Objects vs. value types

Note that because value types don’t have reference identity, the compiler can then box and

unbox them at its choice. If you pass a complex as argument from one function to another, then

the compiler can naturally pass it as two separate doubles. (Returning it without boxing is

trickier in the JVM, of course, because the JVM only provides method-return instructions

passing values representable in a 64-bit machine register.) But if you pass a larger value type as

an argument (perhaps a large immutable array), then the compiler can instead, transparently to

446

the user, pass it as a reference once it has been boxed. Similar technology already exists in C#;

quoting Microsoft:[5]

5 To learn about the syntax and usage of structs and the differences between classes and structs,

see http://msdn.microsoft.com/en-us/library/aa288471(v=vs.71).aspx.

Structs may seem similar to classes, but there are important differences that you should be

aware of. First of all, classes are [C#] reference types and structs are value types. By using

structs, you can create objects [sic] that behave like the built-in [primitive] types and enjoy their

benefits as well.

At the time of writing (June 2014) there’s a concrete proposal for value types in Java.[6]

6 John Rose, et al., “State of the Values,” April 2014 Infant Edition,

http://cr.openjdk.java.net/~jrose/values/values-0.html.

Boxing, generics, value types—the interdependency problem

We’d like to have value types in Java, because functional-style programs deal with immutable

values that don’t have identity. We’d like to see primitive types as a special case of value types,

but the erasure model of generics, which Java currently has, means that value types can’t be

used with generics without boxing. Object (boxed) versions (for example, Integer) of primitive

types (for example, int) continue to be vital for collections and Java generics because of their

erasure model, but now their inheriting Object (and hence reference equality) is seen as a

drawback. Addressing any one of these problems means addressing them all.

16.3. The final word

This book has explored the new features added by Java 8; these represent perhaps the biggest

evolution step ever taken by Java—the only comparably large evolution step was the

introduction, 10 years previously, of generics in Java 5. In this chapter we also looked at

pressures for further Java evolution. In conclusion, we propose the following statement:

Java 8 is an excellent place to pause but not to stop!

We hope you’ve enjoyed the adventure that is Java 8, and that we’ve sparked your interests in

exploring functional programming and in the further evolution of Java.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://msdn.microsoft.com/en-us/library/aa288471%28v=vs.71%29.aspx
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://cr.openjdk.java.net/%7Ejrose/values/values-0.html

447

Appendix A. Miscellaneous language updates

In this appendix, we discuss three other language updates in Java 8: repeated annotations, type

annotations, and generalized target-type inference. Appendix B discusses library updates in

Java 8. We don’t discuss JDK 8 updates such as Nashorn and Compact Profiles because they’re

new JVM features. This book focuses on library and language updates. We invite you to read

the following links if you’re interested in Nashorn and Compact Profiles:

http://openjdk.java.net/projects/nashorn/ and http://openjdk.java.net/jeps/161.

A.1. Annotations

The annotation mechanism in Java 8 has been enhanced in two ways:

 You can repeat annotations.

 You can annotate any type uses.

Before we explain these updates, it’s worth quickly refreshing what you could do with

annotations before Java 8.

Annotations in Java are a mechanism that lets you decorate program elements with additional

information (note that prior to Java 8 only declarations could be annotated). In other words, it’s

a form of syntactic metadata. For example, annotations are popular with the JUnit framework.

In the following code, the method setUp is annotated with the annotation @Before, and the

method testAlgorithm is annotated with @Test:

@Before

public void setUp(){

this.list = new ArrayList<>();

}

@Test

public void testAlgorithm(){

...

assertEquals(5, list.size());

}

Annotations are suitable for several use cases:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://openjdk.java.net/projects/nashorn/
http://openjdk.java.net/jeps/161

448

 In the context of JUnit, annotations can differentiate methods that should be run as a unit test and

methods that are used for setup work.

 Annotations can be used for documentation. For instance, the @Deprecated annotation is used to

indicate that a method should no longer be used.

 The Java compiler can also process annotations in order to detect errors, suppress warnings, or

generate code.

 Annotations are popular in Java EE, where they’re used to configure enterprise applications.

A.1.1. Repeated annotations

Previous versions of Java forbid more than one annotation of a given annotation type to be

specified on a declaration. For this reason, the following code is invalid:

Java EE programmers often make use of an idiom to circumvent this restriction. You declare a

new annotation, which contains an array of the annotation you want to repeat. It looks like this:

@interface Author { String name(); }

@interface Authors {

Author[] value();

}

@Authors(

{ @Author(name="Raoul"), @Author(name="Mario") , @Author(name="Alan")}

)

class Book{}

The nested annotation on the Book class is pretty ugly. This is why Java 8 essentially removes

this restriction, which tidies things a bit. You’re now allowed to specify multiple annotations of

the same annotation type on a declaration, provided they stipulate that the annotation is

repeatable. It’s not the default behavior; you have to explicitly ask for an annotation to be

repeatable.

449

Making an annotation repeatable

If an annotation has been designed to be repeatable, you can just use it. But if you’re providing

annotations for your users, then setup is required to specify that an annotation can be repeated.

There are two steps:

1. Mark the annotation as @Repeatable.

2. Provide a container annotation.

Here’s how you can make the @Author annotation repeatable:

@Repeatable(Authors.class)

@interface Author { String name(); }

@interface Authors {

Author[] value();

}

As a result, the Book class can be annotated with multiple @Author annotations:

@Author(name="Raoul") @Author(name="Mario") @Author(name="Alan")

class Book{ }

At compile time Book is considered to be annotated by @Authors({ @Author(name= "Raoul"),

@Author(name="Mario"), @Author(name="Alan")}), so you can view this new mechanism as

syntactic sugar around the previous idiom used by Java programmers. Annotations are still

wrapped in a container to ensure behavioral compatibility with legacy reflection methods. The

method getAnnotation(Class<T> annotationClass) in the Java API returns the annotation of

type T for an annotated element. Which annotation should this method return if there are

several annotations of type T?

Without diving into too much detail, the class Class supports a new get-AnnotationsByType

method that facilitates working with repeatable annotations. For example, you can use it as

follows to print all the Author annotations on the Book class:

450

For this to work, both the repeatable annotation and its container must have a RUNTIME

retention policy. More information about compatibility with legacy reflection methods can be

found here: http://cr.openjdk.java.net/~abuckley/8misc.pdf.

A.1.2. Type annotations

As of Java 8, annotations can be also applied to any type uses. This includes the new operator,

type casts, instanceof checks, generic type arguments, and implements and throws clauses. Here

we indicate that the variable name of type String can’t be null using a @NonNull annotation:

@NonNull String name = person.getName();

Similarly, you can annotate the type of the elements in a list:

List<@NonNull Car> cars = new ArrayList<>();

Why is this interesting? Annotations on types can be useful to perform program analysis. In

these two examples, a tool could ensure that getName doesn’t return null and that the elements

of the list of cars are always non-null. This can help reduce unexpected errors in your code.

Java 8 doesn’t provide official annotations or a tool to use them out of the box. It provides only

the ability to use annotations on types. Luckily, a tool called the Checker framework exists,

which defines several type annotations and lets you enhance type checking using them. If you’re

curious, we invite you to take a look at its tutorial: http://www.checker-framework.org. More

information about where you can use annotations in your code can be found here:

http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7.4.

A.2. Generalized target-type inference

Java 8 enhances the inference of generic arguments. You’re already familiar with type inference

using context information before Java 8. For example, the method empty-List in Java is defined

as follows:

static <T> List<T> emptyList();

The method emptyList is parameterized with the type parameter T. You can call it as follows to

provide an explicit type to the type parameter:

List<Car> cars = Collections.<Car>emptyList();

But Java is capable of inferring the generic argument. The following is equivalent:

http://cr.openjdk.java.net/%7Eabuckley/8misc.pdf
http://www.checker-framework.org
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html

451

List<Car> cars = Collections.emptyList();

Before Java 8, this inference mechanism based on the context (that is, target typing) was limited.

For example, the following wasn’t possible:

static void cleanCars(List<Car> cars) {

}

cleanCars(Collections.emptyList());

You’d get the following error:

cleanCars (java.util.List<Car>)cannot be applied to (java.util.List<java.lang.Object>)

To fix it you’d have to provide an explicit type argument like the one we showed previously.

In Java 8 the target type includes arguments to a method, so you don’t need to provide an

explicit generic argument:

List<Car> cleanCars = dirtyCars.stream()

.filter(Car::isClean)

.collect(Collectors.toList());

In this code, it’s exactly this enhancement that lets you write Collectors.toList() instead of

Collectors.<Car>toList().

452

Appendix B. Miscellaneous library updates

This appendix reviews the main additions to the Java library.

B.1. Collections

The biggest update to the Collections API is the introduction of streams, which we discussed in

chapters 4–6. There are also other updates, which we briefly review in this appendix.

B.1.1. Additional methods

The Java API designers made the most out of default methods and added several new methods

to collection interfaces and classes. The new methods are listed in table B.1.

Table B.1. Newmethods added to collection classes and interfaces

Class/interface Newmethods

Map getOrDefault, forEach, compute, computeIfAbsent, computeIfPresent, merge,

putIfAbsent, remove(key, value), replace, replaceAll

Iterable forEach, spliterator

Iterator forEachRemaining

Collection removeIf, stream, parallelStream

List replaceAll, sort

BitSet stream

Map

The Map interface is the most updated interface, with support for several new convenient

methods. For example, the method getOrDefault can be used to replace an existing idiom that

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html

453

checks whether a Map contains a mapping for a given key. If not, you can provide a default value

to return instead. Previously you would do this:

Map<String, Integer> carInventory = new HashMap<>();

Integer count = 0;

if(map.containsKey("Aston Martin")){

count = map.get("Aston Martin");

}

You can now more simply do the following:

Integer count = map.getOrDefault("Aston Martin", 0);

Note that this works only if there’s no mapping. For example, if the key is explicitly mapped to

the value null, then no default value will be returned.

Another particularly useful method is computeIfAbsent, which we briefly mentioned in chapter

14 when explaining memoization. It lets you conveniently use the caching pattern. Let’s say that

you need to fetch and process data from different websites. In such a scenario, it’s useful to

cache the data, so you don’t have to execute the (expensive) fetching operation multiple times:

You can now write this code more concisely by using computeIfAbsent as follows:

public String getData(String url){

return cache.computeIfAbsent(url, this::getData);

}

A description of all other methods can be found in the official Java API documentation.[1] Note

that ConcurrentHashMap was also updated with additional methods. We discuss them in

section B.2.

1 See http://docs.oracle.com/javase/8/docs/api/java/util/Map.html.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html

454

Collection

The removeIf method can be used to remove all elements in a collection that match a predicate.

Note that this is different than the filter method included in the Streams API. The filter method

in the Streams API produces a new stream; it doesn’t mutate the current stream or source.

List

The replaceAll method replaces each element in a List with the result of applying a given

operator to it. It’s similar to the map method in a stream, but it mutates the elements of the List.

In contrast, the map method produces new elements.

For example, the following code will print [2, 4, 6, 8, 10] because the List is modified in place:

B.1.2. The Collections class

The Collections class has been around for a long time to operate on or return collections. It now

includes additional methods to return unmodifiable, synchronized, checked, and empty

NavigableMap and NavigableSet. In addition, it includes the method checkedQueue, which

returns a view of Queue that’s extended with dynamic type checking.

B.1.3. Comparator

The Comparator interface now includes default and static methods. You used the

Comparator.comparing static method in chapter 3 to return a Comparator object given a

function that extracts the sorting key.

New instance methods include the following:

 reversed—Returns a Comparator with the reverse ordering of the current Comparator.

 thenComparing—Returns a Comparator that uses another Comparator when two objects are

equal.

 thenComparingInt, thenComparingDouble, thenComparingLong—Work like the

thenComparing method but take a function specialized for primitive types (respectively,

ToIntFunction, ToDoubleFunction, and ToLongFunction).

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

455

New static methods include these:

 comparingInt, comparingDouble, comparingLong—Work like the comparing method but take

a function specialized for primitive types (respectively ToIntFunction, ToDoubleFunction, and

ToLongFunction).

 naturalOrder—Returns a Comparator object that imposes a natural order on Comparable

objects.

 nullsFirst, nullsLast—Return a Comparator object that considers null to be less than non-null or

greater than non-null.

 reverseOrder—Equivalent to naturalOrder().reversed().

B.2. Concurrency

Java 8 brings several updates related to concurrency. The first is, of course, the introduction of

parallel streams, which we explore in chapter 7. There’s also the introduction of the

CompletableFuture class, which you can learn about in chapter 11.

There are other noticeable updates. For example, the Arrays class now supports parallel

operations. We discuss these operations in section B.3.

In this section, we look at updates in the java.util.concurrent.atomic package, which deals with

atomic variables. In addition, we discuss updates to the Concurrent-HashMap class, which

supports several new methods.

B.2.1. Atomic

The java.util.concurrent.atomic package offers several numeric classes, such as AtomicInteger

and AtomicLong that support atomic operation on single variables. They were updated to

support new methods:

 getAndUpdate—Atomically updates the current value with the results of applying the given function,

returning the previous value.

 updateAndGet—Atomically updates the current value with the results of applying the given function,

returning the updated value.

 getAndAccumulate—Atomically updates the current value with the results of applying the given

function to the current and given values, returning the previous value.

 accumulateAndGet—Atomically updates the current value with the results of applying the given

function to the current and given values, returning the updated value.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html

456

Here’s how to atomically set the minimum between an observed value of 10 and an existing

atomic integer:

int min = atomicInteger.accumulateAndGet(10, Integer::min);

Adders and accumulators

The Java API recommends using the new classes LongAdder, LongAccumulator, Double-Adder,

and DoubleAccumulator instead of the Atomic classes equivalent when multiple threads update

frequently but read less frequently (for example, in the context of statistics). These classes are

designed to grow dynamically to reduce thread contention.

The classes LongAdder and DoubleAdder support operations for additions, whereas

LongAccumulator and DoubleAccumulator are given a function to combine values. For example,

to calculate the sum of several values, you can use a LongAdder as follows.

Listing B.1. LongAdder to calculate the sum of values

Or you can use a LongAccumulator as follows.

Listing B.2. LongAccumulator to calculate the sum of values

B.2.2. ConcurrentHashMap

The ConcurrentHashMap class was introduced to provide a more modern HashMap, which is

concurrent friendly. ConcurrentHashMap allows concurrent add and updates that lock only

certain parts of the internal data structure. Thus, read and write operations have improved

performance compared to the synchronized Hashtable alternative.

457

Performance

ConcurrentHashMap’s internal structure was updated to improve performance. Entries of a

map are typically stored in buckets accessed by the generated hashcode of the key. But if many

keys return the same hashcode, performance will deteriorate because buckets are implemented

as Lists with O(n) retrieval. In Java 8, when the buckets become too big, they’re dynamically

replaced with sorted trees, which have O(log(n)) retrieval. Note that this is possible only when

the keys are Comparable (for example, String or Number classes).

Stream-like operations

ConcurrentHashMap supports three new kinds of operations reminiscent of what you saw with

streams:

 forEach—Performs a given action for each (key, value)

 reduce—Combines all (key, value) given a reduction function into a result

 search—Applies a function on each (key, value) until the function produces a non-null result

Each kind of operation supports four forms, accepting functions with keys, values, Map.Entry,

and (key, value) arguments:

 Operates with keys and values (forEach, reduce, search)

 Operates with keys (forEachKey, reduceKeys, searchKeys)

 Operates with values (forEachValue, reduceValues, searchValues)

 Operates withMap.Entry objects (forEachEntry, reduceEntries, searchEntries)

Note that these operations don’t lock the state of the ConcurrentHashMap. They operate on the

elements as they go along. The functions supplied to these operations shouldn’t depend on any

ordering or on any other objects or values that may change while computation is in progress.

In addition, you need to specify a parallelism threshold for all these operations. The operations

will execute sequentially if the current map size is estimated to be less than the given threshold.

Using a value of 1 enables maximal parallelism using the common thread pool. Using a value of

Long.MAX_VALUE runs the operation on a single thread.

In this example we use the method reduceValues to find the maximum value in the map:

ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();

Optional<Integer> maxValue =

Optional.of(map.reduceValues(1, Integer::max));

458

Note that there are primitive specializations for int, long, and double for each reduce operation

(for example, reduceValuesToInt, reduceKeysToLong, and so on).

Counting

The ConcurrentHashMap class provides a new method called mappingCount, which returns the

number of mappings in the map as a long. It should be used instead of the method size, which

returns an int. This is because the number of mappings may not fit in an int.

Set views

The ConcurrentHashMap class provides a new method called keySet that returns a view of the

ConcurrentHashMap as a Set (changes to the map are reflected in the Set and vice versa). You

can also create a Set backed by a ConcurrentHashMap using the new static method newKeySet.

B.3. Arrays

The Arrays class provides various static methods to manipulate arrays. It now includes four new

methods (which have primitive specialized overloaded variants).

B.3.1. Using parallelSort

The parallelSort method sorts the specified array in parallel, using a natural order, or using an

extra Comparator for an array of objects.

B.3.2. Using setAll and parallelSetAll

The setAll and parallelSetAll methods set all elements of the specified array, respectively

sequentially or in parallel, using the provided function to compute each element. The function

receives the element index and returns a value for that index. Because parallelSetAll is executed

in parallel, the function must be side-effect free, as explained in chapters 7 and 13.

As an example, you can use the method setAll to produce an array with the values 0, 2, 4, 6, ...:

int[] evenNumbers = new int[10];

Arrays.setAll(evenNumbers, i -> i * 2);

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html

459

B.3.3. Using parallelPrefix

The parallelPrefix method cumulates, in parallel, each element of the given array, using the

supplied binary operator. In the next listing you produce the values 1, 2, 3, 4, 5, 6, 7,

Listing B.3. parallelPrefix cumulates in parallel elements of an array

B.4. Number and Math

The Java 8 API enhances the Number and Math classes with new methods.

B.4.1. Number

The new methods of the Number class are as follows:

 The Short, Integer, Long, Float, and Double classes include the sum, min, and max static

methods. You saw these methods in conjunction with the reduce operation in chapter 5.

 The Integer and Long classes include the methods compareUnsigned, divideUnsigned,

remainderUnsigned, and toUnsignedString to work with unsigned values.

 The Integer and Long classes also respectively include the static methods parse-UnsignedInt and

parseUnsignedLong, to parse strings as an unsigned int or long.

 The Byte and Short classes include the methods toUnsignedInt and toUnsigned-Long, to convert

the argument to an int or long by an unsigned conversion. Similarly, the Integer class now includes

the static method toUnsignedLong.

 The Double and Float classes include the static method isFinite, to check whether the argument is a

finite floating-point value.

 The Boolean class now includes the static methods logicalAnd, logicalOr, and logicalXor, to apply

the and, or, and xor operations between two booleans.

 The BigInteger class includes the methods byteValueExact, shortValueExact, intValueExact,

and longValueExact, to convert this BigInteger to the respective primitive type. But it throws an

arithmetic exception if there’s a loss of information during the conversion.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

460

B.4.2. Math

The Math class includes new methods that throw an arithmetic exception if the result of the

operation overflows. These methods consist of addExact, subtractExact, multiply-Exact,

incrementExact, decrementExact, and negateExact with int and long arguments. In addition,

there’s a static toIntExact method to convert a long value to an int. Other additions include the

static methods floorMod, floorDiv, and nextDown.

B.5. Files

Noticeable additions to the Files class let you produce a stream from files. We mentioned the

new static method Files.lines in chapter 5; it lets you read a file lazily as a stream. Other useful

static methods that return a stream include the following:

 Files.list—Produces a Stream<Path> consisting of entries in a given directory. The listing isn’t

recursive. Because the stream is consumed lazily, it’s a useful method for processing potentially very

large directories.

 Files.walk—Just like Files.list, it produces a Stream<Path> consisting of entries in a given

directory. But the listing is recursive and the depth level can be configured. Note that the traversal is

performed depth-first.

 Files.find—Produces a Stream<Path> from recursively traversing a directory to find entries that

match a given predicate.

B.6. Reflection

We discussed several changes to the annotation mechanism in Java 8 in appendix A. The

Reflection API was updated to support these changes.

Another addition to the Reflection API is that information about parameters of methods such as

names and modifiers can now be accessed with the help of the new java.lang.reflect.Parameter

class, which is referenced in the new java.lang .reflect.Executable class that serves as a shared

superclass for the common functionality of Method and Constructor.

B.7. String

The String class now includes a convenient static method called join to—as you may guess—join

strings with a delimiter! You can use it as follows:

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html

461

462

Appendix C. Performing multiple operations in

parallel on a stream

One of the biggest limitations of a Java 8 stream is that you can operate on it only once and get

only one result while processing it. Indeed, if you try to traverse a stream for a second time, the

only thing you can achieve is an exception like this:

java.lang.IllegalStateException: stream has already been operated upon or closed

Despite this, there are situations where you’d like to get several results when processing a single

stream. For instance, you may want to parse a log file in a stream, as we did in section 5.7.3, but

gather multiple statistics in a single step. Or, keeping with the menu data model used to explain

Stream’s features in chapters 4–6, you may want to retrieve different information while

traversing the stream of dishes.

In other words, you’d like to push a stream through more than one lambda on a single pass, and

to do this you need a type of fork method and to apply different functions to each forked stream.

Even better, it would be great if you could perform those operations in parallel, using different

threads to calculate the different required results.

Unfortunately, these features aren’t currently available on the stream implementation provided

in Java 8, but in this appendix we’ll show you a way to use a Spliterator and in particular its

late-binding capacity, together with BlockingQueues and Futures, to implement this useful

feature and make it available with a convenient API.[1]

1 The implementation presented in the rest of this appendix is based on the solution posted by

Paul Sandoz in the email he sent to the lambda-dev mailing list:

http://mail.openjdk.java.net/pipermail/lambda-dev/2013-November/011516.html.

C.1. Forking a stream

The first thing necessary to execute multiple operations in parallel on a stream is to create a

StreamForker that wraps the original stream, on which you can define the different operations

you want to perform. Take a look at the following listing.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://mail.openjdk.java.net/pipermail/lambda-dev/2013-November/011516.html

463

Listing C.1. Defining a StreamForker to execute multiple operations on a

stream

Here the fork method accepts two arguments:

 A Function, which transforms the stream into a result of any type representing one of these

operations

 A key, which will allow you to retrieve the result of that operation and accumulates these key/function

pairs in an internalMap

The fork method returns the StreamForker itself; therefore, you can build a pipeline by forking

several operations. Figure C.1 shows the main ideas behind the StreamForker.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html

464

Figure C.1. The StreamForker in action

Here the user defines three operations to be performed on a stream indexed by three keys. The

StreamForker then traverses the original stream and forks it into three other streams. At this

point the three operations can be applied in parallel on the forked streams, and the results of

these function applications, indexed with their corresponding keys, are used to populate the

resulting Map.

The execution of all the operations added through the fork method is triggered by the invocation

of the method getResults, which returns an implementation of the Results interface defined as

follows:

public static interface Results {

public <R> R get(Object key);

}

This interface has only one method to which you can pass one of the key Objects used in one of

the fork methods, and that method returns the result of the operation corresponding to that key.

465

C.1.1. Implementing the Results interface with the

ForkingStreamConsumer

The getResults method can be implemented as follows:

public Results getResults() {

ForkingStreamConsumer<T> consumer = build();

try {

stream.sequential().forEach(consumer);

} finally {

consumer.finish();

}

return consumer;

}

The ForkingStreamConsumer implements both the Results interface defined previously and the

Consumer interface. As you’ll see when we analyze its implementation in more detail, its main

task is to consume all the elements in the stream and multiplex them to a number of

BlockingQueues equal to the number of operations submitted via the fork method. Note that it is

ensured that the stream is sequential, because if the method forEach were performed on a

parallel stream, its elements could be pushed to the queues out of order. The finish method adds

special elements to those queues to signal that there are no more items to be processed. The

build method used to create the ForkingStreamConsumer is shown in the next listing.

Listing C.2. The buildmethod used to create ForkingStreamConsumer

466

In listing C.2, you first create the List of BlockingQueues mentioned previously. Then you create

a Map, having as keys the same keys used to identify the different operations to be executed on

the stream, and having as values the Futures that will contain the corresponding results of these

operations. The List of BlockingQueues and the Map of Futures are then passed to the

constructor of the ForkingStreamConsumer. Each Future is created with this

getOperationResult method, as shown in the next listing.

Listing C.3. Futures created with the getOperationResultmethod

The method getOperationResult creates a new BlockingQueue and adds it to the List of queues.

This queue is passed to a new BlockingQueueSpliterator, which is a late-binding Spliterator,

reading the item to be traversed from the queue; we’ll examine how it’s made shortly.

You then create a sequential stream traversing this Spliterator, and finally you create a Future to

calculate the result of applying the function representing one of the operations you want to

perform on this stream. This Future is created using a static factory method of the

CompletableFuture class that implements the Future interface. This is another new class

introduced in Java 8, and we investigated it in detail in chapter 11.

C.1.2. Developing the ForkingStreamConsumer and the

BlockingQueueSpliterator

The last two outstanding parts you need to develop are the ForkingStreamConsumer and

BlockingQueueSpliterator classes we introduced previously. The first one can be implemented

as follows.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

467

Listing C.4. A ForkingStreamConsumer to add stream elements to

multiple queues

This class implements both the Consumer and Results interfaces and holds a reference to the

List of BlockingQueues and to the Map of Futures executing the different operations on the

stream.

The Consumer interface requires an implementation for the method accept. Here, every time

ForkingStreamConsumer accepts an element of the stream, it adds that element to all the

BlockingQueues. Also, after all the elements of the original stream have been added to all queues,

the finish method causes one last item to be added to all of them. This item, when met by

BlockingQueueSpliterators, will make the queues understand that there are no more elements to

be processed.

The Results interface requires an implementation for the get method. Here, it retrieves the

Future that’s indexed in the Map with the argument key and unwraps its result or waits until a

result is available.

468

Finally, there will be a BlockingQueueSpliterator for each operation to be performed on the

stream. Each BlockingQueueSpliterator will have a reference to one of the BlockingQueues

populated by the ForkingStreamConsumer, and it can be implemented as shown in the

following listing.

Listing C.5. A Spliterator reading the elements it traverses from a

BlockingQueue

class BlockingQueueSpliterator<T> implements Spliterator<T> {

private final BlockingQueue<T> q;

BlockingQueueSpliterator(BlockingQueue<T> q) {

this.q = q;

}

@Override

public boolean tryAdvance(Consumer<? super T> action) {

T t;

while (true) {

try {

t = q.take();

break;

} catch (InterruptedException e) { }

}

if (t != ForkingStreamConsumer.END_OF_STREAM) {

action.accept(t);

return true;

}

return false;

}

@Override

public Spliterator<T> trySplit() {

return null;

}

469

@Override

public long estimateSize() {

return 0;

}

@Override

public int characteristics() {

return 0;

}

}

In this listing a Spliterator is implemented, not to define the policy of how to split a stream but

only to use its late-binding capability. For this reason the trySplit method is unimplemented.

Also, it’s impossible to return any meaningful value from the estimatedSize method because you

can’t foresee how many elements can be still taken from the queue. Further, because you’re not

attempting any split, this estimation will be useless. This implementation doesn’t have any of

the Spliterator characteristics we listed in table 7.2, so the characteristic method returns 0.

The only method implemented here is tryAdvance, which waits to take from its BlockingQueue

the elements of the original stream added to it by the ForkingStreamConsumer. It sends those

elements to a Consumer that (based on how this Spliterator was created in the

getOperationResult method) is the source of a further stream (on which the corresponding

function, passed to one of the fork method invocations, has to be applied). The tryAdvance

method returns true, to notify its invoker that there are other elements to be consumed, until it

finds on the queue the special Object added by ForkingStreamConsumer to signal that there are

no more elements to be taken from the queue. Figure C.2 shows an overview of the

StreamForker and its building blocks.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html

470

Figure C.2. The StreamForker building blocks

In the figure, the StreamForker in the upper left has a Map, where each operation to be

performed on the stream, defined by a function, is indexed by a key. The

ForkingStreamConsumer on the right holds a queue for each of these operations and consumes

all the elements in the original stream, multiplexing them to all the queues.

At the bottom of the figure, each queue has a BlockingQueueSpliterator pulling its items and

acting as a source for a different stream. Finally, each of these streams, forked by the original

one, is passed as argument to one of the functions, thus executing one of the operations to be

performed. You now have all the components of your StreamForker, so it’s ready to use.

C.1.3. Putting the StreamForker to work

Let’s put the StreamForker to work on the menu data model that we defined in chapter 4, by

forking the original stream of dishes to perform four different operations in parallel on it, as

shown in the next listing. In particular, you want to generate a comma-separated list of the

names of all available dishes, calculate the total calories of the menu, find the dish with the most

calories, and group all dishes by their type.

Listing C.6. Putting the StreamForker to work

Stream<Dish> menuStream = menu.stream();

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html

471

StreamForker.Results results = new StreamForker<Dish>(menuStream)

.fork("shortMenu", s -> s.map(Dish::getName)

.collect(joining(", ")))

.fork("totalCalories", s -> s.mapToInt(Dish::getCalories).sum())

.fork("mostCaloricDish", s -> s.collect(reducing(

(d1, d2) -> d1.getCalories() > d2.getCalories() ? d1 : d2))

.get())

.fork("dishesByType", s -> s.collect(groupingBy(Dish::getType)))

.getResults();

String shortMenu = results.get("shortMenu");

int totalCalories = results.get("totalCalories");

Dish mostCaloricDish = results.get("mostCaloricDish");

Map<Dish.Type, List<Dish>> dishesByType = results.get("dishesByType");

System.out.println("Short menu: " + shortMenu);

System.out.println("Total calories: " + totalCalories);

System.out.println("Most caloric dish: " + mostCaloricDish);

System.out.println("Dishes by type: " + dishesByType);

The StreamForker provides a convenient, fluent API to fork a stream and assign a different

operation to each forked stream. These operations are expressed in terms of functions applied

on the stream and can be identified by any arbitrary object; in this case we’ve chosen to use

Strings. When you have no more forks to add, you can invoke getResults on the StreamForker to

trigger the execution of all the defined operations and obtain StreamForker.Results. Because

these operations are internally performed asynchronously, the getResults method returns

immediately, without waiting for all the results to be available.

You can obtain the result of a specific operation by passing the key used to identify it to the

StreamForker.Results interface. If in the meantime the computation of that operation completes,

the get method will return the corresponding result; otherwise, it will block until such a result

isn’t available.

As expected, this piece of code generates the following output:

Short menu: pork, beef, chicken, french fries, rice, season fruit, pizza, prawns, salmon

Total calories: 4300

Most caloric dish: pork

472

Dishes by type: {OTHER=[french fries, rice, season fruit, pizza], MEAT=[pork, beef, chicken],

FISH=[prawns, salmon]}

C.2. Performance considerations

For performance reasons you shouldn’t take for granted that this approach is more efficient than

traversing the stream several times. The overhead caused by the use of the blocking queues can

easily outweigh the advantages of executing the different operations in parallel when the stream

is made of data that’s all in memory.

Conversely, accessing the stream only once could be a winning choice when this involves some

expensive I/O operations, such as when the source of the stream is a huge file; so (as usual) the

only meaningful rule when optimizing the performance of your application is to “Just measure

it!”

This example demonstrates how it can be possible to execute multiple operations on the same

stream in one shot. More importantly, we believe this proves that even when a specific feature

isn’t provided by the native Java API, the flexibility of lambda expressions and a bit of creativity

in reusing and combining what’s already available can let you implement the missing feature on

your own.

473

Appendix D. Lambdas and JVM bytecode

You may wonder how the Java compiler implements lambda expressions and how the Java

virtual machine (JVM) deals with them. If you think lambda expressions can simply be

translated to anonymous classes, you should read on. This appendix briefly discusses how

lambda expressions are compiled, by examining the generated class files.

D.1. Anonymous classes

We showed in chapter 2 that anonymous classes can be used to declare and instantiate a class at

the same time. As a result, just like lambda expressions, they can be used to provide the

implementation for a functional interface.

Because a lambda expression provides the implementation for the abstract method of a

functional interface, it would seem straightforward to ask the Java compiler to translate a

lambda expression into an anonymous class during the compilation process. But anonymous

classes have some undesirable characteristics that impact the performance of applications:

 The compiler generates a new class file for each anonymous class. The filename usually looks like

ClassName$1, where ClassName is the name of the class in which the anonymous class appears,

followed by a dollar sign and a number. The generation of many class files is undesirable, because

each class file needs to be loaded and verified before being used, which impacts the startup

performance of the application. If lambdas were translated to anonymous classes, you’d have one new

class file for each lambda.

 Each new anonymous class introduces a new subtype for a class or interface. If you had a hundred

different lambdas for expressing a Comparator, that would mean a hundred different subtypes of

Comparator. In certain situations, this can make it harder to improve runtime performance by the

JVM.

D.2. Bytecode generation

A Java source file is compiled to Java bytecode by the Java compiler. The JVM can then execute

the generated bytecode and run the application. Anonymous classes and lambda expressions use

different bytecode instructions when they’re compiled. You can inspect the bytecode and

constant pool of any class file using the command

javap -c -v ClassName

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html

474

Let’s try to implement an instance of the Function interface using the old Java 7 syntax, as an

anonymous inner class, as shown in the following listing.

Listing D.1. A Function implemented as an anonymous inner class

import java.util.function.Function;

public class InnerClass {

Function<Object, String> f = new Function<Object, String>() {

@Override

public String apply(Object obj) {

return obj.toString();

}

};

}

Doing this, the corresponding generated bytecode for the Function created as an anonymous

inner class will be something along the lines of this:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: aload_0

5: new #2 // class InnerClass$1

8: dup

9: aload_0

10: invokespecial #3 // Method InnerClass$1."<init>":(LInnerClass;)V

13: putfield #4 // Field f:Ljava/util/function/Function;

16: return

This code shows the following:

 An object of type InnerClass$1 is instantiated using the bytecode operation new. A reference to the

newly created object is pushed on the stack at the same time.

 The operation dup duplicates that reference on the stack.

 This value then gets consumed by the instruction invokespecial, which initializes the object.

 The top of the stack now still contains a reference to the object, which is stored in the f1 field of the

LambdaBytecode class using the putfield instruction.

InnerClass$1 is the name generated by the compiler for the anonymous class. If you want to

reassure yourself, you can inspect the InnerClass$1 class file as well, and you’ll find the code for

the implementation of the Function interface:

475

class InnerClass$1 implements

java.util.function.Function<java.lang.Object, java.lang.String> {

final InnerClass this$0;

public java.lang.String apply(java.lang.Object);

Code:

0: aload_1

1: invokevirtual #3 //Method

java/lang/Object.toString:()Ljava/lang/String;

4: areturn

}

D.3. InvokeDynamic to the rescue

Now let’s try to do the same using the new Java 8 syntax as a lambda expression. Inspect the

generated class file of the code in the following listing.

Listing D.2. A Function implemented with a lambda expression

import java.util.function.Function;

public class Lambda {

Function<Object, String> f = obj -> obj.toString();

}

You’ll find the following bytecode instructions:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: aload_0

5: invokedynamic #2, 0 // InvokeDynamic

#0:apply:()Ljava/util/function/Function;

10: putfield #3 // Field f:Ljava/util/function/Function;

13: return

We explained the drawbacks in translating a lambda expression in an anonymous inner class,

and indeed you can see that the result is very different. The creation of an extra class has been

replaced with an invokedynamic instruction.

476

The invokedynamic instruction

The bytecode instruction invokedynamic was introduced in JDK7 to support dynamically typed

languages on the JVM. invokedynamic adds a further level of indirection when invoking a

method, to let some logic dependent on the specific dynamic language determine the call target.

The typical use for this instruction is something like the following:

def add(a, b) { a + b }

Here the types of a and b aren’t known at compile time and can change from time to time. For

this reason, when the JVM executes an invokedynamic for the first time, it consults a bootstrap

method, implementing the language-dependent logic that determines the actual method to be

called. The bootstrap method returns a linked call site. There’s a good chance that if the add

method is called with two ints, the subsequent call will also be with two ints. As a result, it’s not

necessary to rediscover the method to be called at each invocation. The call site itself can

contain the logic defining under which conditions it needs to be relinked.

In listing D.2, the features of the invokedynamic instruction have been used for a slightly

different purpose than the one for which they were originally introduced. In fact, here it’s used

to delay the strategy used to translate lambda expressions in bytecode until runtime. In other

words, using invokedynamic in this way allows deferring code generation for implementing the

lambda expression until runtime. This design choice has positive consequences:

 The strategy used to translate the lambda expression body to bytecode becomes a pure

implementation detail. It could also be changed dynamically, or optimized and modified in future

JVM implementations, preserving the bytecode’s backward compatibility.

 There’s no overhead, such as additional fields or static initializer, if the lambda is never used.

 For stateless (noncapturing) lambdas it’s possible to create one instance of the lambda object, cache it,

and always return the same. This is a common use case, and people were used to doing this explicitly

before Java 8; for example, declaring a specific Comparator instance in a static final variable.

 There’s no additional performance cost because this translation has to be performed, and its result

linked, only when the lambda is invoked for the first time. All subsequent invocations can skip this

slow path and call the formerly linked implementation.

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html

477

D.4. Code-generation strategies

A lambda expression is translated into bytecode by putting its body into one of a static method

created at runtime. A stateless lambda, one that captures no state from its enclosing scope, like

the one we defined in listing D.2, is the simplest type of lambda to be translated. In this case the

compiler can generate a method having the same signature of the lambda expression, so the

result of this translation process can be logically seen as follows:

public class Lambda {

Function<Object, String> f = [dynamic invocation of lambda$1]

static String lambda$1(Object obj) {

return obj.toString();

}

}

The case of a lambda expression capturing final (or effectively final) local variables or fields, as

in the following example, is a bit more complex:

public class Lambda {

String header = "This is a ";

Function<Object, String> f = obj -> header + obj.toString();

}

In this case the signature of the generated method can’t be the same as the lambda expression,

because it’s necessary to add extra arguments to carry the additional state of the enclosed

context. The simplest solution to achieve this is to prepend the arguments of the lambda

expression with an additional argument for each of the captured variables, so the method

generated to implement the former lambda expression will be something like this:

public class Lambda {

String header = "This is a ";

Function<Object, String> f = [dynamic invocation of lambda$1]

static String lambda$1(String header, Object obj) {

return obj -> header + obj.toString();

}

}

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html

478

More information about the translation process for lambda expressions can be found here:

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html.

http://cr.openjdk.java.net/%7Ebriangoetz/lambda/lambda-translation.html

479

Index

[SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][R][S][T][U][V][W]

SYMBOL

:: operator, 2nd

? wildcard

{ } (curly braces)

=> operator

-> (arrow)

<> (diamond operator)

A

abstract classes

abstracting on type

accept method

accumulateAndGet method

accumulator method

addExact method

addTo method

allMatch method, 2nd

allOf method

and method

andThen method

annotations

overview

repeated

type

anonymous functions, 2nd.

See also lambda expressions.

anyMatch method, 2nd

Apache Commons Collections library

ArrayList class

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_034.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

480

arrays

building streams from

parallelPrefix method

parallelSetAll method

parallelSort method

setAll method

atOffset method

atomic package

atZone method

autoboxing

availableProcessors method, 2nd, 3rd

averagingDouble method

averagingInt method, 2nd

averagingLong method

B

BASIC_ISO_DATE constant

@Before annotation

behavioral compatibility

between method

BiConsumer interface

BiFunction interface

big data

binary compatibility

BinaryOperator interface

BiPredicate interface

BlockingQueueSpliterator class

BooleanSupplier interface

boxing

bytecode, 2nd

byteValueExact method

C

C/C++, 2nd

C#, 2nd, 3rd

caching, 2nd

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html

481

Calendar class

calendar systems

call by name

capturing lambdas

chain of responsibility design pattern

characteristics method

characteristics of Spliterator interface

Checker framework

Chronology interface

ChronoUnit enumeration

classes

anonymous

Scala

classification function

closures, 2nd

collect method, 2nd, 3rd, 4th, 5th

collectingAndThen method, 2nd

Collection interface

collection literal

Collections class

Collector interface

accumulator method

characteristics method

combiner method

finisher method

overview

supplier method

collectors

as advanced reductions

creating custom

example of

performance of

finding maximum and minimum values

generalized summarization with reduction

joining strings

overview

predefined

summarization

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html

482

Collectors class, 2nd

combinators

combiner method, 2nd

combining optionals

Compact Profiles

Comparator interface, 2nd

compareUnsigned method

comparingDouble method

comparingInt method

comparingLong method

compatibility, types of

completeExceptionally method

compute method

computed on demand

computeIfAbsent method

computeIfPresent method

computing clusters

concise code, 2nd

concurrency

adders and accumulators

atomic package

CONCURRENT characteristic

conditional deferred execution

constructor references

Consumer interface

count method, 2nd

counting method

CPUs, multicore, 2nd

curly braces { }

currying, 2nd

D

daemon threads

data structures, persistent

destructive updates vs. functional

Tree example

data structures, Scala

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

483

creating collections

immutable vs. mutable collections

manipulating collections

option

stream

tuples

Date class

DateFormat class

DateTimeException

DateTimeFormatter class, 2nd

DateTimeFormatterBuilder class

DateTimeParseException

Daylight Saving Time.

See DST.

dayOfWeekInMonth method

declaration-site variance

declarative

declarative programming

decrementExact method

default modifier

defensive checking

@Deprecated annotation

destructive updates vs. functional

diamond operator (<>)

diamond problem

DISTINCT characteristic

distinct method, 2nd, 3rd

divideUnsigned method

don’t repeat yourself.

See DRY principle.

DoubleAccumulator class

DoubleAdder class

DoubleBinaryOperator interface

DoubleConsumer interface

DoublePredicate interface

DoubleStream interface

DoubleSupplier interface

DoubleUnaryOperator interface

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

484

DRY (don’t repeat yourself) principle

DST (Daylight Saving Time)

Duration class

E

empty method

empty optional objects

emptyList method

encounter order

erasure model

error handling

estimateSize method, 2nd

event handling

EventHandler class

Exception parameter

Executable class

execute around pattern

behavior parameterization and

executing behavior

improving code flexibility

overview

passing lambda expressions

using functional interface

ExecutionException

Executor interface

ExecutorService interface, 2nd

external iteration, 2nd

extracting data

F

factory design pattern

Fibonacci series

Files class, 2nd

files, building streams from

filter method, 2nd, 3rd, 4th, 5th, 6th

filtering streams

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

485

with predicate

skipping elements

truncating stream

unique elements

find method

findAny method, 2nd

findFirst method, 2nd

finish method

finisher method

first-class functions, 2nd

firstDayOfMonth method

firstDayOfNextMonth method

firstDayOfNextYear method

firstDayOfYear method

firstInMonth method

flatMap method, 2nd, 6th

dereferencing chain using optionals

finding car insurance company name example

overview

flattening streams

floorDiv method

floorMod method

for loop

forEach method, 2nd, 3rd, 4th

forEachRemaining method

fork method, 2nd

forking step

ForkingStreamConsumer class

ForkJoinPool class, 2nd

format method

format package

free variables

from method, 2nd

function composition

function descriptors, 2nd, 3rd, 4th

Function interface, 2nd

@FunctionalInterface annotation

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html

486

G

generate method

generic polymorphism

generics, 2nd

get method, 2nd, 3rd, 4th, 5th

getAndAccumulate method

getAndUpdate method

getAnnotationsByType method

getOperationResult method

getOrDefault method

getResults method

getRuntime method

getters and setters in Scala

Groovy, 2nd, 3rd

grouping data, 2nd

groupingBy method, 2nd, 3rd

Guava library

H

hashcodes

HashSet class

Haskell, 2nd

higher-order functions, 2nd

HijrahDate class

I

identity function

IDENTITY_FINISH collection, 2nd

IDEs (integrated development environments)

ifPresent method, 2nd, 3rd

immutability, 2nd

IMMUTABLE characteristic, 2nd

immutable collections

imperative programming

imperative-style Scala

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html

487

implicit data dependences

incrementExact method

inference of generic arguments

infinite stream

Instant class

IntBinaryOperator interface

IntConsumer interface

integrated development environments.

See IDEs.

IntelliJ

intermediate operations, 2nd

internal iteration

characteristics of streams

external iteration vs.

IntFunction interface

IntPredicate interface

IntStream interface

IntSupplier interface

IntToDoubleFunction interface

IntToLongFunction interface

IntUnaryOperator interface

intValueExact method

invoke method

invokedynamic instruction, 2nd

isDone method

Islamic calendar

isNegative method

ISO_LOCAL_DATE constant

isPresent method, 2nd

isPrime method

isZero method

iterate method, 2nd

iteration vs. recursion

J

JapaneseDate class

Java Concurrency in Practice

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

488

Java virtual machine.

See JVM.

java.util.concurrent.ForkJoinPool.common.parallelism property

JavaFX

JDK Enhancement Proposal

join method, 2nd, 3rd

joining method, 2nd, 3rd

joining strings using collectors

K

keySet method

L

lambdaj library

lastDayOfMonth method

lastDayOfNextMonth method

lastDayOfNextYear method

lastDayOfYear method

lastInMonth method

late-binding Spliterator

lazy evaluation

self-defining stream

using lazy list

limit method, 2nd, 3rd, 4th, 5th

lines method

LinkedList class

list method

local variables in lambda expressions

LocalDate class

LocalDateTime class

LocalTime class

logicalAnd method

logicalOr method

logicalXor method

LongAccumulator class

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html

489

LongAdder class

LongBinaryOperator interface

LongConsumer interface

LongFunction interface

LongPredicate interface

LongStream interface

LongSupplier interface

LongToDoubleFunction interface

LongToIntFunction interface

LongUnaryOperator interface

longValueExact method

M

Map interface

map method, 2nd, 3rd, 4th, 5th, 6th, 7th

mapping streams

applying function to each element

arrays

flatMap method

numeric

mappingCount method

map-reduce

mapToDouble method

mapToInt method

mapToLong method

Math class

mathematical function

mathematics and lambda expressions

max method, 2nd

maxBy method, 2nd

Maybe type

memoization, 2nd

merge method

min method

minBy method, 2nd

MinguoDate class

minus method, 2nd

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html

490

multicore processors, 2nd

multilevel matching

multipliedBy method

multiplyExact method

multithreading

streams and

Streams API and

N

Nashorn

naturalOrder method

NavigableMap class

NavigableSet class

negate method

negated method

negateExact method

NetBeans

next method

nextDown method

nextOrSame method

NIO API

non-blocking code

defined

making asynchronous requests

overview

scaling and

using custom Executor

using parallel stream

noneMatch method, 2nd

@NonNull annotation

NONNULL characteristic

non-strict evaluation

now method

NullPointerException

nullsFirst method

nullsLast method

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html

491

Number class

NumberFormatException

O

ObjDoubleConsumer interface

object-oriented programming.

See OOP.

ObjIntConsumer interface

ObjLongConsumer interface

observer design pattern

of method, 2nd, 3rd, 4th

ofEpochSecond method

OffsetDateTime class

ofLocale method

ofNullable method, 2nd

ofPattern method

OOP (object-oriented programming), 2nd.

See also Scala.

option type, Scala

optional methods

OptionalDouble class, 2nd

OptionalInt class, 2nd

OptionalLong class, 2nd

or method

ORDERED characteristic, 2nd

orElse method, 2nd, 3rd

orElseGet method, 2nd

orElseThrow method, 2nd

P

parallel method

parallelization, 2nd, 3rd, 4th

parallelPrefix method

parallelSetAll method

parallelSort method

parallelStream method, 2nd

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html

492

Parameter class

parse method, 2nd

parseUnsignedInt method

partial functions

partially applied function, 2nd

partitioning function

partitioningBy method, 2nd, 3rd

passing code to methods.

See behavior parameterization.

performance

custom collectors

parallel streams

Period class

plus method, 2nd

polymorphism

Predicate interface

previous method

previousOrSame method

primitive optionals

programming language ecosystem

purity

putIfAbsent method

Pythagorean triples example

filtering good combinations

generating a values

generating b values

generating tuples

Pythagorean triples explained

representing triple

running code

solution

R

randomDelay method

rangeClosed method, 2nd

ranges, streams of

readability, improving for code

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html

493

recursion vs. iteration

RecursiveTask class

reduce method, 2nd, 3rd, 4th

reducing method, 2nd

refactoring

from anonymous classes to lambda expressions

from imperative data processing to streams

improving code flexibility

conditional deferred execution

execute around pattern

using functional interfaces

improving readability

from lambda expressions to method references

object-oriented design patterns with lambdas

chain of responsibility design pattern

factory design pattern

observer design pattern

overview

strategy design pattern

template method design pattern

referential transparency, 2nd

reflection

registering actions

reified generics

remainderUnsigned method

remove method

removeIf method

repeated annotations

replace method

replaceAll method, 2nd

Results interface

reverse method

reversed method

reverseOrder method

Runnable interface

RuntimeException

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html

494

S

safe navigation operator

Scala, 2nd, 3rd

classes in

creating

getters and setters

data structures

creating collections

immutable vs. mutable collections

manipulating collections

option

stream

tuples

functional-style

functions in

anonymous functions

closures

currying

first-class functions

imperative-style

pattern matching in

traits

scaling

Serializable interface

setAll method

shared mutable data

short-circuiting, 2nd

shortValueExact method

side effects, 2nd, 3rd, 4th

singleton pattern

SIZED characteristic, 2nd

skip method, 2nd

sort method, 2nd

SORTED characteristic

sorted method, 2nd

sorting with Comparator

source compatibility

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html

495

split method

spliterator method

stack trace

defined

lambdas and

stateful operations

stateless lambda expressions

stateless operations

static methods inside interfaces

stdin/stdout

strategy design pattern

Stream interface

groups of operations

intermediate operations

terminal operations

stream method, 2nd

StreamForker

structural pattern matching

SUBSIZED characteristic, 2nd

substreams

subtractExact method

subtractFrom method

sum method

summarization using collectors

summarizingInt method

summingDouble method

summingInt method, 2nd

summingLong method

Supplier interface

supplier method

supplyAsync method

synchronized keyword

synchronous methods, converting to asynchronous

syntactic metadata

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_033.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_021.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_011.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html

496

T

tail-call optimization

target type, 2nd

target-type inference

template method design pattern

Temporal interface

TemporalAdjusters

TemporalField, 2nd

terminal operations, 2nd, 3rd

@Test annotation

ThaiBuddhistDate class

thenCombine method

thenComparing method, 2nd

thenComparingDouble method

thenComparingInt method

thenComparingLong method

thenCompose method

thread pools

threads

TimeoutException

toCollection method

ToDoubleBiFunction interface

ToDoubleFunction interface

ToIntBiFunction interface

toIntExact method

ToIntFunction interface

toList method, 2nd

ToLongBiFunction interface

ToLongFunction interface

toSet method, 2nd

toUnsignedInt method

toUnsignedLong method

toUnsignedString method

traits in Scala

TreeSet class

troubleshooting parallel streams

truncating streams

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_012.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_023.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_015.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_017.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html

497

tryAdvance method

trySplit method, 2nd

tuples, Scala

type annotations

type checking

type inference, 2nd, 3rd

U

UnaryOperator interface

unbounded

unboxing

unit testing lambda expressions

unmodifiable collections

UnsupportedTemporalType-Exception

unwrapping optionals

updateAndGet method

V

value types

values, streams from

variables in lambda expressions

visitor design pattern, 2nd

void return

W

walk method

while loop

with method

withAttribute method

work stealing technique

http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_032.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_030.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_028.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_022.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_029.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_016.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_020.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_027.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_013.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_031.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_026.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_024.html
http://www.safaribooksonline.com/library/view/java-8-in/9781617291999/kindle_split_018.html

	Part1.Fundamentals
	Chapter1.Java8:whyshouldyoucare?
	1.1.WhyisJavastillchanging?
	1.1.1.Java’splaceintheprogramminglanguageec
	Figure1.1.Programminglanguagesecosystemandcl

	1.1.2.Streamprocessing
	Figure1.2.Unixcommandsoperatingonstreams

	1.1.3.Passingcodetomethodswithbehaviorparam
	Figure1.3.PassingmethodcompareUsingCustomerId

	1.1.4.Parallelismandsharedmutabledata
	1.1.5.Javaneedstoevolve

	1.2.FunctionsinJava
	1.2.1.Methodsandlambdasasfirst-classcitizens
	Figure1.4.PassingthemethodreferenceFile::isH
	Lambdas—anonymousfunctions

	1.2.2.Passingcode:anexample
	1.2.3.Frompassingmethodstolambdas

	1.3.Streams
	1.3.1.Multithreadingisdifficult
	Figure1.5.Apossibleproblemwithtwothreadstr
	Figure1.6.ForkingfilterontotwoCPUsandjoini

	1.4.Defaultmethods
	1.5.Othergoodideasfromfunctionalprogramming
	1.6.Summary

	Chapter2.Passingcodewithbehaviorparameteriza
	2.1.Copingwithchangingrequirements
	2.1.1.Firstattempt:filteringgreenapples
	2.1.2.Secondattempt:parameterizingthecolor
	2.1.3.Thirdattempt:filteringwitheveryattribu

	2.2.Behaviorparameterization
	Figure2.1.Differentstrategiesforselectingan
	2.2.1.Fourthattempt:filteringbyabstractcrite
	Passingcode/behavior
	Figure2.2.ParameterizingthebehavioroffilterA
	Multiplebehaviors,oneparameter
	Figure2.3.ParameterizingthebehavioroffilterA

	2.3.Tacklingverbosity
	Listing2.1.Behaviorparameterization:filtering
	2.3.1.Anonymousclasses
	2.3.2.Fifthattempt:usingananonymousclass
	2.3.3.Sixthattempt:usingalambdaexpression
	Figure2.4.Behaviorparameterizationvs.valuepa

	2.3.4.Seventhattempt:abstractingoverListtype

	2.4.Real-worldexamples
	2.4.1.SortingwithaComparator
	2.4.2.ExecutingablockofcodewithRunnable
	2.4.3.GUIeventhandling

	2.5.Summary

	Chapter3.Lambdaexpressions
	3.1.Lambdasinanutshell
	Figure3.1.Alambdaexpressioniscomposedofpar
	Listing3.1.ValidlambdaexpressionsinJava8
	Table3.1.Examplesoflambdas

	3.2.Whereandhowtouselambdas
	3.2.1.Functionalinterface
	Note

	3.2.2.Functiondescriptor
	Table3.2.CommonfunctionalinterfacesinJava8

	3.3.Puttinglambdasintopractice:theexecutear
	Figure3.2.TasksAandBaresurroundedbythesa
	3.3.1.Step1:Rememberbehaviorparameterization
	3.3.2.Step2:Useafunctionalinterfacetopass
	3.3.3.Step3:Executeabehavior!
	3.3.4.Step4:Passlambdas
	Figure3.3.Four-stepprocesstoapplytheexecute

	3.4.Usingfunctionalinterfaces
	3.4.1.Predicate
	Listing3.2.WorkingwithaPredicate

	3.4.2.Consumer
	Listing3.3.WorkingwithaConsumer

	3.4.3.Function
	Listing3.4.WorkingwithaFunction
	Primitivespecializations
	Table3.3.Examplesoflambdaswithfunctionalint

	3.5.Typechecking,typeinference,andrestrictio
	3.5.1.Typechecking
	Figure3.4.Deconstructingthetype-checkingproce

	3.5.2.Samelambda,differentfunctionalinterface
	3.5.3.Typeinference
	3.5.4.Usinglocalvariables
	Restrictionsonlocalvariables

	3.6.Methodreferences
	3.6.1.Inanutshell
	Table3.4.Examplesoflambdasandmethodreferenc
	Recipeforconstructingmethodreferences
	Figure3.5.Recipesforconstructingmethodrefere

	3.6.2.Constructorreferences

	3.7.Puttinglambdasandmethodreferencesintopr
	3.7.1.Step1:Passcode
	3.7.2.Step2:Useananonymousclass
	3.7.3.Step3:Uselambdaexpressions
	3.7.4.Step4:Usemethodreferences

	3.8.Usefulmethodstocomposelambdaexpressions
	3.8.1.ComposingComparators
	Reversedorder
	ChainingComparators

	3.8.2.ComposingPredicates
	3.8.3.ComposingFunctions
	Figure3.6.UsingandThenvs.compose
	Figure3.7.AtransformationpipelineusingandThe

	3.9.Similarideasfrommathematics
	3.9.1.Integration
	Figure3.8.Areaunderthefunctionf(x)=x+10

	3.9.2.ConnectingtoJava8lambdas

	3.10.Summary

	Part2.Functional-styledataprocessing
	Chapter4.Introducingstreams
	4.1.Whatarestreams?
	Figure4.1.Chainingstreamoperationsformingas

	4.2.Gettingstartedwithstreams
	Figure4.2.Filteringamenuusingastreamtofin

	4.3.Streamsvs.collections
	Figure4.3.Streamsvs.collections
	4.3.1.Traversableonlyonce
	4.3.2.Externalvs.internaliteration
	Listing4.1.Collections:externaliterationwith
	Listing4.2.Collections:externaliterationusing
	Listing4.3.Streams:internaliteration
	Figure4.4.Internalvs.externaliteration

	4.4.Streamoperations
	Figure4.5.Intermediatevs.terminaloperations
	4.4.1.Intermediateoperations
	4.4.2.Terminaloperations
	4.4.3.Workingwithstreams
	Table4.1.Intermediateoperations
	Table4.2.Terminaloperations

	4.5.Summary

	Chapter5.Workingwithstreams
	5.1.Filteringandslicing
	5.1.1.Filteringwithapredicate
	Figure5.1.Filteringastreamwithapredicate

	5.1.2.Filteringuniqueelements
	Figure5.2.Filteringuniqueelementsinastream

	5.1.3.Truncatingastream
	Figure5.3.Truncatingastream

	5.1.4.Skippingelements
	Figure5.4.Skippingelementsinastream

	5.2.Mapping
	5.2.1.Applyingafunctiontoeachelementofast
	5.2.2.Flatteningstreams
	Figure5.5.Incorrectuseofmaptofinduniquech
	AttemptusingmapandArrays.stream
	UsingflatMap
	Figure5.6.UsingflatMaptofindtheuniquechara

	5.3.Findingandmatching
	5.3.1.Checkingtoseeifapredicatematchesatl
	5.3.2.Checkingtoseeifapredicatematchesall
	noneMatch

	5.3.3.Findinganelement
	Optionalinanutshell

	5.3.4.Findingthefirstelement

	5.4.Reducing
	5.4.1.Summingtheelements
	Figure5.7.Usingreducetosumthenumbersinas
	Noinitialvalue

	5.4.2.Maximumandminimum
	Figure5.8.Areduceoperation—calculatingthemax
	Table5.1.Intermediateandterminaloperations

	5.5.Puttingitallintopractice
	5.5.1.Thedomain:TradersandTransactions
	5.5.2.Solutions
	Listing5.1.Findalltransactionsin2011andsor
	Listing5.2.Whatarealltheuniquecitieswhere
	Listing5.3.FindalltradersfromCambridgeands
	Listing5.4.Returnastringofalltraders’names
	Listing5.5.AreanytradersbasedinMilan?
	Listing5.6.Printalltransactions’valuesfromt
	Listing5.7.What’sthehighestvalueofallthet
	Listing5.8.Findthetransactionwiththesmalles

	5.6.Numericstreams
	5.6.1.Primitivestreamspecializations
	Mappingtoanumericstream
	Convertingbacktoastreamofobjects
	Defaultvalues:OptionalInt

	5.6.2.Numericranges
	5.6.3.Puttingnumericalstreamsintopractice:Py
	Pythagoreantriple
	Figure5.9.ThePythagoreantheorem
	Representingatriple
	Filteringgoodcombinations
	Generatingtuples
	Generatingbvalues
	Generatingavalues
	Runningthecode
	Canyoudobetter?

	5.7.Buildingstreams
	5.7.1.Streamsfromvalues
	5.7.2.Streamsfromarrays
	5.7.3.Streamsfromfiles
	5.7.4.Streamsfromfunctions:creatinginfinites
	Iterate
	Generate

	5.8.Summary

	Chapter6.Collectingdatawithstreams
	Listing6.1.Groupingtransactionsbycurrencyin
	6.1.Collectorsinanutshell
	6.1.1.Collectorsasadvancedreductions
	Figure6.1.Thereductionprocessgroupingthetra

	6.1.2.Predefinedcollectors

	6.2.Reducingandsummarizing
	6.2.1.Findingmaximumandminimuminastreamof
	6.2.2.Summarization
	Figure6.2.Theaggregationprocessofthesumming

	6.2.3.JoiningStrings
	6.2.4.Generalizedsummarizationwithreduction
	Collectionframeworkflexibility:doingthesameo
	Figure6.3.Thereductionprocesscalculatingthe
	Choosingthebestsolutionforyoursituation

	6.3.Grouping
	Figure6.4.Classificationofaniteminthestrea
	6.3.1.Multilevelgrouping
	Listing6.2.Multilevelgrouping
	Figure6.5.Equivalencebetweenn-levelnestedmap

	6.3.2.Collectingdatainsubgroups
	Note
	Adaptingthecollectorresulttoadifferenttype
	Listing6.3.Findingthehighest-calorieDishine
	Figure6.6.Combiningtheeffectofmultiplecolle
	Otherexamplesofcollectorsusedinconjunctionw

	6.4.Partitioning
	6.4.1.Advantagesofpartitioning
	6.4.2.Partitioningnumbersintoprimeandnonprim
	Table6.1.ThestaticfactorymethodsoftheColle

	6.5.TheCollectorinterface
	Listing6.4.TheCollectorinterface
	6.5.1.MakingsenseofthemethodsdeclaredbyCol
	Makinganewresultcontainer:thesuppliermethod
	Addinganelementtoaresultcontainer:theaccum
	Applyingthefinaltransformationtotheresultco
	Figure6.7.Logicalstepsofthesequentialreduct
	Mergingtworesultcontainers:thecombinermethod
	Figure6.8.Parallelizingthereductionprocessus
	Characteristicsmethod

	6.5.2.Puttingthemalltogether
	Listing6.5.TheToListCollector
	PerformingacustomcollectwithoutcreatingaCol

	6.6.Developingyourowncollectorforbetterperf
	Listing6.6.Partitioningthefirstnnaturalnumb
	6.6.1.Divideonlybyprimenumbers
	Step1:DefiningtheCollectorclasssignature
	Step2:Implementingthereductionprocess
	Step3:Makingthecollectorworkinparallel(if
	Step4:Thefinishermethodandthecollector’sch
	Listing6.7.ThePrimeNumbersCollector

	6.6.2.Comparingcollectors’performances

	6.7.Summary

	Chapter7.Paralleldataprocessingandperformanc
	7.1.Parallelstreams
	7.1.1.Turningasequentialstreamintoaparallel
	Figure7.1.Aparallelreductionoperation

	7.1.2.Measuringstreamperformance
	Listing7.1.Measuringperformanceofafunctions
	Figure7.2.iterateisinherentlysequential.
	Usingmorespecializedmethods

	7.1.3.Usingparallelstreamscorrectly
	7.1.4.Usingparallelstreamseffectively
	Table7.1.Streamsourcesanddecomposability

	7.2.Thefork/joinframework
	7.2.1.WorkingwithRecursiveTask
	Figure7.3.Thefork/joinprocess
	Listing7.2.Executingaparallelsumusingthefo
	RunningtheForkJoinSumCalculator
	Figure7.4.Thefork/joinalgorithm

	7.2.2.Bestpracticesforusingthefork/joinfram
	7.2.3.Workstealing
	Figure7.5.Thework-stealingalgorithmusedbyth

	7.3.Spliterator
	Listing7.3.TheSpliteratorinterface
	7.3.1.Thesplittingprocess
	Figure7.6.Therecursivesplittingprocess
	TheSpliteratorcharacteristics
	Table7.2.Spliterator’scharacteristics

	7.3.2.ImplementingyourownSpliterator
	Listing7.4.Aniterativewordcountermethod
	RewritingtheWordCounterinfunctionalstyle
	Listing7.5.Aclasstocountwordswhiletraversi
	Figure7.7.ThestatetransitionsoftheWordCount
	MakingtheWordCounterworkinparallel
	Listing7.6.TheWordCounterSpliterator
	PuttingtheWordCounterSpliteratortowork

	7.4.Summary

	Part3.EffectiveJava8programming
	Chapter8.Refactoring,testing,anddebugging
	8.1.Refactoringforimprovedreadabilityandflex
	8.1.1.Improvingcodereadability
	8.1.2.Fromanonymousclassestolambdaexpression
	8.1.3.Fromlambdaexpressionstomethodreference
	8.1.4.FromimperativedataprocessingtoStreams
	8.1.5.Improvingcodeflexibility
	Adoptingfunctionalinterfaces
	Conditionaldeferredexecution
	Executearound

	8.2.Refactoringobject-orienteddesignpatternsw
	8.2.1.Strategy
	Figure8.1.Thestrategydesignpattern
	Usinglambdaexpressions

	8.2.2.Templatemethod
	Usinglambdaexpressions

	8.2.3.Observer
	Figure8.2.Theobserverdesignpattern
	Usinglambdaexpressions

	8.2.4.Chainofresponsibility
	Figure8.3.Thechainofresponsibilitydesignpat
	Usinglambdaexpressions

	8.2.5.Factory
	Usinglambdaexpressions

	8.3.Testinglambdas
	8.3.1.Testingthebehaviorofavisiblelambda
	8.3.2.Focusingonthebehaviorofthemethodusin
	8.3.3.Pullingcomplexlambdasintoseparatemetho
	8.3.4.Testinghigh-orderfunctions

	8.4.Debugging
	8.4.1.Examiningthestacktrace
	Lambdasandstacktraces

	8.4.2.Logginginformation
	Figure8.4.Examiningvaluesflowinginastreamp

	8.5.Summary

	Chapter9.Defaultmethods
	Figure9.1.Addingamethodtoaninterface
	9.1.EvolvingAPIs
	9.1.1.APIversion1
	Userimplementation

	9.1.2.APIversion2
	Figure9.2.EvolvinganAPIbyaddingamethodto
	Problemsforyourusers

	9.2.Defaultmethodsinanutshell
	9.3.Usagepatternsfordefaultmethods
	9.3.1.Optionalmethods
	9.3.2.Multipleinheritanceofbehavior
	Figure9.3.Singleinheritancevs.multipleinheri
	Multipleinheritanceoftypes
	Minimalinterfaceswithorthogonalfunctionalities
	Composinginterfaces
	Figure9.4.Multiplebehaviorcomposition

	9.4.Resolutionrules
	9.4.1.Threeresolutionrulestoknow
	9.4.2.Mostspecificdefault-providinginterfacew
	Figure9.5.Themostspecificdefault-providingin
	Figure9.6.Inheritingfromaclassandimplementi

	9.4.3.Conflictsandexplicitdisambiguation
	Figure9.7.Implementingtwointerfaces
	Resolvingtheconflict

	9.4.4.Diamondproblem
	Figure9.8.Thediamondproblem

	9.5.Summary

	Chapter10.UsingOptionalasabetteralternative
	10.1.Howdoyoumodeltheabsenceofavalue?
	Listing10.1.ThePerson/Car/Insurancedatamodel
	10.1.1.ReducingNullPointerExceptionswithdefens
	Listing10.2.Null-safeattempt1:deepdoubts
	Listing10.3.Null-safeattempt2:toomanyexits

	10.1.2.Problemswithnull
	10.1.3.Whatarethealternativestonullinother

	10.2.IntroducingtheOptionalclass
	Figure10.1.AnoptionalCar
	Listing10.4.RedefiningthePerson/Car/Insurance

	10.3.PatternsforadoptingOptional
	10.3.1.CreatingOptionalobjects
	Emptyoptional
	Optionalfromanon-nullvalue
	Optionalfromnull

	10.3.2.Extractingandtransformingvaluesfromop
	Figure10.2.ComparingthemapmethodsofStreams

	10.3.3.ChainingOptionalobjectswithflatMap
	Figure10.3.Atwo-leveloptional
	Figure10.4.ComparingtheflatMapmethodsofStre
	Findingacar’sinsurancecompanynamewithoption
	Listing10.5.Findingacar’sinsurancecompanyna
	Person/Car/Insurancedereferencingchainusingopt
	Figure10.5.ThePerson/Car/Insurancedereferencin

	10.3.4.Defaultactionsandunwrappinganoptional
	10.3.5.Combiningtwooptionals
	10.3.6.Rejectingcertainvalueswithfilter
	Table10.1.ThemethodsoftheOptionalclass

	10.4.PracticalexamplesofusingOptional
	10.4.1.Wrappingapotentiallynullvalueinanop
	10.4.2.Exceptionsvs.Optional
	Listing10.6.ConvertingaStringintoanInteger
	Primitiveoptionalsandwhyyoushouldn’tusethem

	10.4.3.Puttingitalltogether
	Listing10.7.Readingdurationfromapropertyimp

	10.5.Summary

	Chapter11.CompletableFuture:composableasynchro
	Figure11.1.Atypicalmash-upapplication
	Figure11.2.Concurrencyvs.parallelism
	11.1.Futures
	Listing11.1.Executingalong-lastingoperationa
	Figure11.3.UsingaFuturetoexecutealongoper
	11.1.1.Futureslimitations
	11.1.2.UsingCompletableFuturestobuildanasync

	11.2.ImplementinganasynchronousAPI
	Listing11.2.Amethodtosimulatea1-seconddela
	Listing11.3.Introducingasimulateddelayinthe
	11.2.1.Convertingasynchronousmethodintoanas
	Listing11.4.ImplementingthegetPriceAsyncmetho
	Listing11.5.UsinganasynchronousAPI

	11.2.2.Dealingwitherrors
	Listing11.6.PropagatinganerrorinsidetheComp
	CreatingaCompletableFuturewiththesupplyAsync
	Listing11.7.CreatingaCompletableFuturewithth

	11.3.Makeyourcodenon-blocking
	Listing11.8.AfindPricesimplementationsequenti
	Listing11.9.CheckingfindPricescorrectnessand
	11.3.1.ParallelizingrequestsusingaparallelSt
	Listing11.10.ParallelizingthefindPricesmethod

	11.3.2.MakingasynchronousrequestswithCompleta
	Listing11.11.ImplementingthefindPricesmethod
	Figure11.4.WhyStream'slazinesscausesasequen

	11.3.3.Lookingforthesolutionthatscalesbette
	11.3.4.UsingacustomExecutor
	Listing11.12.AcustomExecutorfittingourbest-

	11.4.Pipeliningasynchronoustasks
	Listing11.13.Anenumerationdefiningthediscoun
	11.4.1.Implementingadiscountservice
	Listing11.14.TheDiscountservice

	11.4.2.UsingtheDiscountservice
	Listing11.15.SimplestfindPricesimplementation

	11.4.3.Composingsynchronousandasynchronousope
	Listing11.16.ImplementingthefindPricesmethod
	Figure11.5.Composingsynchronousoperationsand
	Gettingtheprices
	Parsingthequotes
	Composingthefuturesforcalculatingthediscount

	11.4.4.CombiningtwoCompletableFutures—dependent
	Listing11.17.CombiningtwoindependentCompletab
	Figure11.6.Combiningtwoindependentasynchronou

	11.4.5.ReflectingonFuturevs.CompletableFuture
	Listing11.18.CombiningtwoFuturesinJava7

	11.5.ReactingtoaCompletableFuturecompletion
	Listing11.19.Amethodtosimulatearandomdelay
	11.5.1.Refactoringthebest-price-finderapplicat
	Listing11.20.RefactoringthefindPricesmethodt
	Listing11.21.ReactingtoCompletableFuturecompl

	11.5.2.Puttingittowork

	11.6.Summary

	Chapter12.NewDateandTimeAPI
	12.1.LocalDate,LocalTime,Instant,Duration,and
	12.1.1.WorkingwithLocalDateandLocalTime
	Listing12.1.CreatingaLocalDateandreadingits
	Listing12.2.ReadingLocalDatevaluesusingaTem
	Listing12.3.CreatingaLocalTimeandreadingits

	12.1.2.Combiningadateandatime
	Listing12.4.CreatingaLocalDateTimedirectlyor

	12.1.3.Instant:adateandtimeformachines
	12.1.4.DefiningaDurationoraPeriod
	Listing12.5.CreatingDurationsandPeriods
	Table12.1.Thecommonmethodsofdate-timeclasse

	12.2.Manipulating,parsing,andformattingdates
	Listing12.6.ManipulatingtheattributesofaLoc
	Listing12.7.ManipulatingtheattributesofaLoc
	Table12.2.Thecommonmethodsofdate-timeclasse
	12.2.1.WorkingwithTemporalAdjusters
	Listing12.8.UsingthepredefinedTemporalAdjuste
	Table12.3.ThefactorymethodsoftheTemporalAdj
	Listing12.9.TheTemporalAdjusterinterface

	12.2.2.Printingandparsingdate-timeobjects
	Listing12.10.CreatingaDateTimeFormatterfroma
	Listing12.11.CreatingalocalizedDateTimeFormat
	Listing12.12.BuildingaDateTimeFormatter

	12.3.Workingwithdifferenttimezonesandcalend
	Listing12.13.Applyingatimezonetoapointin
	Figure12.1.MakingsenseofaZonedDateTime
	12.3.1.FixedoffsetfromUTC/Greenwich
	12.3.2.Usingalternativecalendarsystems
	Islamiccalendar

	12.4.Summary

	Part4.BeyondJava8
	Chapter13.Thinkingfunctionally
	13.1.Implementingandmaintainingsystems
	13.1.1.Sharedmutabledata
	Figure13.1.Amutablesharedacrossmultipleclas

	13.1.2.Declarativeprogramming
	13.1.3.Whyfunctionalprogramming?

	13.2.What’sfunctionalprogramming?
	Figure13.2.Afunctionwithsideeffects
	Figure13.3.Afunctionwithnosideeffects
	13.2.1.Functional-styleJava
	Figure13.4.Afunctionthrowinganexception

	13.2.2.Referentialtransparency
	13.2.3.Object-orientedvs.functional-styleprogr
	13.2.4.Functionalstyleinpractice

	13.3.Recursionvs.iteration
	Listing13.1.Iterativefactorial
	Listing13.2.Recursivefactorial
	Listing13.3.Streamfactorial
	Listing13.4.Tail-recursivefactorial
	Figure13.5.Recursivedefinitionoffactorial,wh
	Figure13.6.Tail-recursivedefinitionoffactoria

	13.4.Summary

	Chapter14.Functionalprogrammingtechniques
	14.1.Functionseverywhere
	14.1.1.Higher-orderfunctions
	Figure14.1.comparingtakesafunctionasparamet

	14.1.2.Currying

	14.2.Persistentdatastructures
	14.2.1.Destructiveupdatesvs.functional
	Figure14.2.Thedatastructureisdestructivelyu
	Figure14.3.Functionalstyle,nomodificationsto

	14.2.2.AnotherexamplewithTrees
	14.2.3.Usingafunctionalapproach
	Figure14.4.Noexistingdatastructurewasharmed

	14.3.Lazyevaluationwithstreams
	14.3.1.Self-definingstream
	Step1:Getastreamofnumbers
	Step2:Takethehead
	Step3:Filterthetail
	Step4:Recursivelycreateastreamofprimes
	Badnews
	Lazyevaluation

	14.3.2.Yourownlazylist
	Figure14.5.ElementsofaLinkedListexist(ares
	Abasiclinkedlist
	Abasiclazylist
	Backtogeneratingprimes
	Implementingalazyfilter
	Whew!

	14.4.Patternmatching
	14.4.1.Visitordesignpattern
	14.4.2.Patternmatchingtotherescue
	FakingpatternmatchinginJava
	Listing14.1.Implementingpatternmatchingtosim

	14.5.Miscellany
	14.5.1.Cachingormemoization
	Note

	14.5.2.Whatdoes“returnthesameobject”mean?
	14.5.3.Combinators

	14.6.Summary

	Chapter15.BlendingOOPandFP:comparingJava8
	15.1.IntroductiontoScala
	15.1.1.Hellobeer
	Imperative-styleScala
	Note
	Functional-styleScala

	15.1.2.Basicdatastructures:List,Set,Map,Tup
	Creatingcollections
	Immutablevs.mutable
	Workingwithcollections
	Figure15.1.Stream-likeoperationswithScala’sL
	Tuples
	Stream
	Option
	Note

	15.2.Functions
	15.2.1.First-classfunctionsinScala
	15.2.2.Anonymousfunctionsandclosures
	Closures

	15.2.3.Currying

	15.3.Classesandtraits
	15.3.1.LessverbositywithScalaclasses
	Gettersandsetters

	15.3.2.Scalatraitsvs.Java8interfaces

	15.4.Summary

	Chapter16.ConclusionsandwherenextforJava
	16.1.ReviewofJava8features
	16.1.1.Behaviorparameterization(lambdasandmet
	16.1.2.Streams
	16.1.3.CompletableFuture
	16.1.4.Optional
	16.1.5.Defaultmethods

	16.2.What’saheadforJava?
	16.2.1.Collections
	16.2.2.Typesystemenhancements
	Declaration-sitevariance
	Moretypeinference

	16.2.3.Patternmatching
	16.2.4.Richerformsofgenerics
	Reifiedgenerics
	Additionalsyntacticflexibilityingenericsforf
	Primitivespecializationsandgenerics

	16.2.5.Deepersupportforimmutability
	16.2.6.Valuetypes
	Can’tthecompilertreatIntegerandintidentical
	Valuetypes—noteverythingisaprimitiveoranob
	Figure16.1.Objectsvs.valuetypes
	Boxing,generics,valuetypes—theinterdependency

	16.3.Thefinalword

	AppendixA.Miscellaneouslanguageupdates
	A.1.Annotations
	A.1.1.Repeatedannotations
	Makinganannotationrepeatable

	A.1.2.Typeannotations

	A.2.Generalizedtarget-typeinference

	AppendixB.Miscellaneouslibraryupdates
	B.1.Collections
	B.1.1.Additionalmethods
	TableB.1.Newmethodsaddedtocollectionclasses
	Map
	Collection
	List

	B.1.2.TheCollectionsclass
	B.1.3.Comparator

	B.2.Concurrency
	B.2.1.Atomic
	Addersandaccumulators
	ListingB.1.LongAddertocalculatethesumofval
	ListingB.2.LongAccumulatortocalculatethesum

	B.2.2.ConcurrentHashMap
	Performance
	Stream-likeoperations
	Counting
	Setviews

	B.3.Arrays
	B.3.1.UsingparallelSort
	B.3.2.UsingsetAllandparallelSetAll
	B.3.3.UsingparallelPrefix
	ListingB.3.parallelPrefixcumulatesinparallel

	B.4.NumberandMath
	B.4.1.Number
	B.4.2.Math

	B.5.Files
	B.6.Reflection
	B.7.String

	AppendixC.Performingmultipleoperationsinpara
	C.1.Forkingastream
	ListingC.1.DefiningaStreamForkertoexecutemu
	FigureC.1.TheStreamForkerinaction
	C.1.1.ImplementingtheResultsinterfacewiththe
	ListingC.2.ThebuildmethodusedtocreateForki
	ListingC.3.FuturescreatedwiththegetOperation

	C.1.2.DevelopingtheForkingStreamConsumerandth
	ListingC.4.AForkingStreamConsumertoaddstream
	ListingC.5.ASpliteratorreadingtheelementsit
	FigureC.2.TheStreamForkerbuildingblocks

	C.1.3.PuttingtheStreamForkertowork
	ListingC.6.PuttingtheStreamForkertowork

	C.2.Performanceconsiderations

	AppendixD.LambdasandJVMbytecode
	D.1.Anonymousclasses
	D.2.Bytecodegeneration
	ListingD.1.AFunctionimplementedasananonymou

	D.3.InvokeDynamictotherescue
	ListingD.2.AFunctionimplementedwithalambda

	D.4.Code-generationstrategies

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

