
Jeff Davis

M A N N I N G

Open Source SOA

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Open Source SOA
JEFF DAVIS

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwick, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development Editor: Cynthia Kane
Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Krzysztof Anton
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-54-2
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 11 10 09
Licensed to Deborah Christiansen <pedbro@gmail.com>

brief contents
PART 1 HISTORY AND PRINCIPLES .. 1

1 ■ SOA essentials 3

2 ■ Defining the Open SOA Platform 28

PART 2 ASSEMBLING COMPONENTS AND SERVICES 59

3 ■ Creating services using Apache Tuscany 61

4 ■ Advanced SCA 94

PART 3 BUSINESS PROCESS MANAGEMENT 123

5 ■ Introducing jBPM 125

6 ■ jBPM tasks 157

7 ■ Advanced jBPM capabilities 180

PART 4 EVENT STREAM PROCESSING, INTEGRATION,
AND MEDIATION ... 215

8 ■ Complex events using Esper 217

9 ■ Enterprise integration and ESBs 252

10 ■ ESB implementation with Apache Synapse 283
v

Licensed to Deborah Christiansen <pedbro@gmail.com>

BRIEF CONTENTSvi
PART 5 ENTERPRISE DECISION MANAGEMENT 323

11 ■ Business rules using JBoss Drools 325

12 ■ Implementing Drools 364
Licensed to Deborah Christiansen <pedbro@gmail.com>

contents
preface xv
acknowledgments xvii
about this book xix

PART I HISTORY AND PRINCIPLES 1

1 SOA essentials 3
1.1 Brief history of distributed computing 4

Problems related to RPC-based solutions 6 ■ Understanding
SOAP’s messaging styles 6 ■ Advent of SOA 7

1.2 The promise of web services for delivering SOA 9
1.3 Understanding the core characteristics of SOA 10

Service interface/contract 10 ■ Service transparency 11
Service loose coupling and statelessness 13 ■ Service
composition 14 ■ Service registry and publication 15

1.4 Technologies of a SOA platform 16
Business process management 16 ■ Enterprise decision
management 17 ■ Enterprise service bus 19
Event stream processor 21 ■ Java Message Service 22
Registry 22 ■ Service components and compositions 23
Web service mediation 25
vii

Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSviii
1.5 Introducing a SOA maturity model 25
1.6 Summary 27

2 Defining the Open SOA Platform 28
2.1 Evaluating open source products 30
2.2 Choosing a BPM solution 30

BPM product evaluation criteria 31 ■ Open source BPM
products 32 ■ Selecting a BPM solution 34 ■ Introducing JBoss
jBPM 34

2.3 Choosing an enterprise decision management
solution 35
EDM product evaluation criteria 37 ■ Open source EDM
products 37 ■ Selecting an EDM 38 ■ Introducing JBoss Rules
(Drools) 39

2.4 Choosing an ESB 39
ESB product evaluation criteria 40 ■ Open source ESB
products 42 ■ Selecting an ESB 43 ■ Introducing Synapse as a
lightweight ESB 44

2.5 Choosing an ESP solution 45
What is event stream processing? 46 ■ Introducing Esper 47

2.6 Choosing a registry 47
Registry evaluation criteria 49 ■ Open source registry
products 49 ■ Selecting a registry 50 ■ Introducing WSO2
Registry 51

2.7 Choosing a service components and composites
framework 52
Examining the Service Component Architecture 53 ■ Introducing
Apache Tuscany 54

2.8 Choosing a web services mediation solution 55
2.9 Summary 56

PART II ASSEMBLING COMPONENTS AND SERVICES 59

3 Creating services using Apache Tuscany 61
3.1 What are service components and compositions? 62
3.2 The SCA assembly model 64

Introducing the composite file 66 ■ Configuring components 70
Defining services 74 ■ Working with properties 76
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS ix
Implementation options 79 ■ Using references for dependency
injection 84 ■ Defining available bindings 87

3.3 Summary 93

4 Advanced SCA 94
4.1 Configuration using component types 95
4.2 SCA interaction models 96

Using conversations 96 ■ Understanding callbacks 99

4.3 Scripting language support 104
Creating a Ruby component 105 ■ Creating a Java interface using
the Ruby method signature 105 ■ Modifying the service
implementation class 106 ■ Modifying the composition
assembly 106

4.4 Advanced Tuscany/SCA 108
Production deployment 108 ■ Introducing Service Data Objects
(SDOs) 113 ■ Advanced SDO features 119

4.5 Summary 121

PART III BUSINESS PROCESS MANAGEMENT 123

5 Introducing jBPM 125
5.1 BPM: the “secret sauce” of SOA 127
5.2 History and overview of JBoss jBPM 129

Development lifecycle of a jBPM process 130 ■ Graph-oriented
programming and jBPM 136

5.3 Understanding nodes 137
Node nodetype 137 ■ Task-node nodetype 139 ■ State
nodetype 139 ■ Mail-node nodetype 140 ■ Decision
nodetype 142 ■ Fork and join nodetypes 142

5.4 Using transitions 144
5.5 Extending using actions 145

Action class property instantiation 148 ■ Using action
expressions 149

5.6 Using events for capturing lifecycle changes in a
process 151

5.7 Managing context using variables 153
5.8 Summary 155
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSx
6 jBPM tasks 157
6.1 What are tasks? 158

Task management using the jBPM Console 159 ■ task element
configuration 160

6.2 Task user management 161
Actors and assignments 162 ■ Understanding swimlanes 164

6.3 Using timers 165
6.4 Task controllers 168
6.5 Developing with the task API 169

Identifying processes within a jBPM instance 170 ■ Identifying
running process instances for a given process 172 ■ Finding open
tasks within a process instance 174 ■ Finding all tasks assigned to
a user 176 ■ Finding all pooled tasks for an actor 176
Completing a task 177

6.6 Summary 179

7 Advanced jBPM capabilities 180
7.1 Important enterprise features of jBPM 181

Superstates for grouping 181 ■ Using subprocesses to manage
complexity 183 ■ Managing exceptions 185 ■ Scripting with
BeanShell 187 ■ Audit logging 190 ■ Understanding
asynchronous continuations 192

7.2 Integration with SCA/SDO 195
Using SCA client components for service integration 196 ■ Service
enabling jBPM 201 ■ Developing the ListProcesses service
operation 203 ■ Developing the CreateProcessInstance service
operation 210

7.3 Summary 212

PART IV EVENT STREAM PROCESSING, INTEGRATION,
AND MEDIATION ... 215

8 Complex events using Esper 217
8.1 Business events in the enterprise 218
8.2 Understanding events 219

BAM and ESP—what’s the difference? 220 ■ Event-Driven
Architecture and SOA 221
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS xi
8.3 What is Esper? 221
8.4 Getting started with Esper 224

What are event objects? 224 ■ Defining and registering query
statements 225 ■ Specifying listeners or subscribers 226
Configuration options 226

8.5 EPL basics 227
Querying events 227 ■ Using variables 231 ■ Understanding
views 233 ■ Creating new event streams with named
windows 235

8.6 Advanced Esper 237
Extending with functions 237 ■ Applying event
patterns 241 ■ Using JDBC for remote connectivity 244

8.7 Service enabling Esper 245
Creating a framework and components 246 ■ Esper service and
session manager 247 ■ SCA composite file 248
Testing with soapUI 250

8.8 Summary 250

9 Enterprise integration and ESBs 252
9.1 The relationship between ESB and SOA 253
9.2 Historical foundations of ESB 254

Core ESB capabilities 256 ■ Appropriate uses of an ESB 263
Inappropriate uses of an ESB 265

9.3 Introducing Apache Synapse 268
Protocol adapters 270 ■ Message-oriented middleware 271
XML-based messaging 272 ■ Intelligent routing and
distribution 272 ■ Message transformation 272
Tasks/timers 273 ■ Quality of service/web mediation 273
Monitoring and administration 273 ■ Extendable API 273

9.4 Basic Apache Synapse message and service
mediation 274
Simple message mediation example 275 ■ Simple service mediation
example 279

9.5 Summary 282

10 ESB implementation with Apache Synapse 283
10.1 Learning Synapse through a case study 284

Phase 1: typical web service mediation using error handling, routing,
and transport switching 284
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSxii
Phase 2: protocol/transport bridging and event
propagation 285 ■ Phase 3: using tasks, scripting, and database
integration 285 ■ Phase 4: quality of service mediation 286

10.2 Phase 1: simple web service mediation 286
Sales order initiation 288 ■ Configuring the service mediation
proxy and using validation mediation 289 ■ Configuring XSLT
mediation 291 ■ Transport switching from HTTP to JMS 292
Transport switching from JMS to HTTP 295

10.3 Phase 2: VFS, CSV, email, and message wiretap 299
Using the VFS transport 299 ■ Working with CSV files 301
Exception handling and SMTP transport 303 ■ Using the wiretap
message pattern 304

10.4 Phase 3: tasks, DB mediator, and iterator 308
Configuring Synapse tasks 309 ■ Using the iterator mediator to
split messages 311 ■ Using the DB mediator 312

10.5 Phase 4: QoS using Synapse 314
Implementing WS-Security 315 ■ Using Synapse throttling
mediator 317

10.6 Summary 321

PART V ENTERPRISE DECISION MANAGEMENT 323

11 Business rules using JBoss Drools 325
11.1 Understanding business rules 326

Benefits and drivers of the business rule approach 328
Relationship to SOA 329 ■ Characteristics of a rules engine 330
Business rules management systems 332

11.2 Introducing Drools 333
Hello World, Drools! 334 ■ Running Hello World, Drools! 338

11.3 Drools Rule Language (DRL) overview 339
11.4 Drools header elements 340

package 340 ■ import 340 ■ expander 341 ■ global 341
function 341

11.5 Defining rules in Drools 342
Modifying rule behavior with attributes 342 ■ Conditional part of
rule statement (when part) 346 ■ Consequence part of rule
statement (then part) 354
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS xiii
11.6 Querying facts in Drools 356
11.7 Drools RuleFlow for rule orchestration 356
11.8 Alternatives to using Drools Rule Language 358

Using DSLs for business user authoring 359 ■ Defining rules
using decision tables 362

11.9 Summary 363

12 Implementing Drools 364
12.1 Case study overview 365

Defining the DRL rules 367 ■ Running as an embedded
engine 371 ■ User-friendly rules using a DSL 377

12.2 Rules management using Drools Guvnor 379
Guvnor functionality overview 379 ■ Rule authoring using
Guvnor 386

12.3 Developing decision services 390
What are decision services? 390 ■ Designing the decision
service 392 ■ Implementing the decision service using Tuscany
and Drools 397 ■ Testing 403

12.4 Summary 404

resources 406
index 409
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

preface
Only if you have been in the deepest valley can you ever know how magnificent it is to be on
the highest mountain.

—Richard Nixon

I’m not sure exactly at what point I decided to write this book. I think the moment of
inspiration came one night while sitting in the hot tub a couple years back. That day, I
had spent considerable time working with the newest release (at the time) of JBoss
jBPM. I was extremely fired up as I had explored its capabilities, and the more I dug
under the covers, the more excited I became. Technically, as I considered its features,
it provided all the capabilities we were looking for at HireRight for a business process
management (BPM) product. However, the real challenge was, how would we inte-
grate the solution with our existing products and applications?

 Like a lot of companies, HireRight uses a mix of open source and commercial
products. One of the main benefits of commercial products is that they tend to be
all-inclusive in their feature set, and provide a consistent, and often comprehensive,
set of capabilities. Open source products, however, tend to be more narrowly focused
for solving specific needs. Thus, while jBPM may be an excellent BPM product, it’s not
obvious how you might integrate that with a services and component framework such
as provided by Apache Tuscany. Further, building a complete SOA stack or environ-
ment using open source products can be challenging, because SOA itself can be a neb-
ulous objective. Mixing and matching the best-of-breed open source products into a
single, consistent SOA platform is a tall order, as I’ve discovered. Devoting time to
xv

Licensed to Deborah Christiansen <pedbro@gmail.com>

PREFACExvi
studying the benefits of SOA and putting those concepts into practice using open
source products are what formed the basis for the knowledge I share in this book. My
motivation was to contribute in some small way to the success of open source.

 Like a lot of folks, I often felt guilty for using these outstanding open source prod-
ucts, yet I seldom found the time to contribute back to the community. Each time I
presented a question in a forum or mail list and got back a plethora of responses, the
guilt level went up. Not only was I using the product for free, but I was also receiving
free, high-quality advice to boot (granted, HireRight does believe in assisting open
source companies by purchasing support for products used in production, but that
usually occurs long after our initial evaluation, when most questions and issues arise).
Being a believer in the quality of open source products and the outstanding efforts of
individuals who support them, I figured it was time to give something back—this was
my motivation for writing this book.

 When a debate emerges whether to go with an open source offering, I often point
out that open source, contrary to popular belief, represents substantially less risk to the
adopting company than going with a commercial alternative. Why? As we’ve seen lately,
commercial companies often go out of business or get acquired. When either happens,
it’s not uncommon for the products to be discontinued, or awkwardly merged into
some other offering. Further, many commercial products have a very limited user base,
if only because they charge so much to use the products that only large enterprises
adopt them. Because the user base is smaller, the quality of the product is often sub-
standard compared with comparable open source products, which enjoy a much
broader user base (more users = more feedback). When working with commercial
products, how often is it that you can communicate directly with the developers respon-
sible for the code? Such interaction in the open source community is common. Of
course, with open source, you also have access to the source code, and the hidden gems
in the form of JUnit test cases—one of the best ways to learn an open source product.

 My hope is that, by writing this book, I can help advance the adoption of these
open source products, and the companies, organizations, or individuals that support
them. I believe the benefits of SOA are real, and can be realized entirely through inte-
grating best-of-breed open source products.
Licensed to Deborah Christiansen <pedbro@gmail.com>

acknowledgments
People who work together will win.

—Vince Lombardi

I’m tremendously grateful to the Manning Publications team for the hard work they
contributed to bring this book to fruition—it was truly a team effort! Cynthia Kane was
instrumental in holding my hand (okay, prodding me) along the way with marvelous
suggestions for improvement; the copyediting and proofreading work of Liz Welch
and Katie Tennant transformed the readability of the work; and the review coordina-
tion efforts by Karen Tegtmeyer resulted in further improvements. Lastly, Marjan
Bace’s insights provided me with encouragement throughout the process. To others I
didn’t mention, your contributions were also greatly appreciated!

 Special thanks are extended to the reviewers. They took time in their very busy
schedules, usually under tight timelines, to review what was often rough copy. Their sug-
gestions and ideas, while not always welcome by me at the time, helped make the book
tighter in messaging and improved its content. The reviewers are Peter Johnson, Irena
Kennedy, Francesco Goggi, Doug Warren, Davide Piazza, Ara Abrahamian, Alberto
Lagna, Rick Wagner, Jonathan Esterhazy, Chuck Lee, Madhav Vodnala, Edmon Begoli,
Valentin Crettaz, Andy Dingley, Glenn Stokol, Deiveehan Nallazhagappan, Christian
Siegers, Michele Galli, Patrick Steger, Ramnath Devulapalli, and Marco Ughetti.

 I would also like to highlight the efforts by Paul King, who was the technical
reviewer. His thorough work at validating the source code and suggestions for
improvement were outstanding and testimony to his breadth of experience.
xvii

Licensed to Deborah Christiansen <pedbro@gmail.com>

ACKNOWLEDGMENTSxviii
 Lastly, none of this would have been possible without the patience, understanding
and support of my family. When I first mentioned to them that I was contemplating
writing a book, they were a bit dubious of my plans. However, as weeks turned into
months, and months into a year, they endured lost weekends, evenings, and vacations.
None of this would have been possible without their encouragement; my guilt would
have gotten the better of me.

 To my friends and colleagues, my apologies if I was sometimes curt when you
inquired about when the book would be done—this was a bit of a sore spot with me.
All kidding aside, I appreciated your enthusiasm for the book. Stefano Malnati, my
boss, was a constant source of inspiration, and his leadership and integrity provided a
solid foundation for my efforts.
Licensed to Deborah Christiansen <pedbro@gmail.com>

about this book
The audience for the first two chapters (part 1) of this book is broad, and can range
from technically savvy business users who want to learn more about service-oriented
architecture (SOA) to programmer analysts and architects. For the remaining chap-
ters, some prior knowledge of Java is assumed, and numerous code samples are
sprinkled throughout those remaining chapters. That said, there is material in the
introductory chapters in each technology area covered that can be easily digested by
non-developers. While the products covered are all written in Java, it’s likely that if you
are a C++ or C# developer, you’ll be able to follow the examples sufficiently enough to
understand the key concepts being imparted.

 All of the products we cover in depth in the book undergo frequent updates. This
may range from minor dot releases to major new versions. I will make every effort to
make sure the examples provided in the sample code are kept up to date with the lat-
est releases. Please visit http://jdavis.open-soa.info/wordpress/ regularly, as it houses
the latest versions of the source code and will be used to highlight any significant new
releases as they pertain to the products covered.

Roadmap
Part 1 of the book focuses on what constitutes SOA, the advantages gleaned by adopt-
ing this architectural pattern, and what technologies contribute or compliment the
move to SOA. This part really establishes the foundation for the technologies we
describe moving forward in the book, so I encourage you not to skip it!
xix

Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOKxx
 Chapter 1 provides some historical perspective to SOA—why it came about, and why
it's important. It also describes the essential characteristics of SOA, and separates the
wheat from the chaff in identifying what is really most important for adopting SOA.

 Chapter 2 explores which technologies products contribute or compliment the
adoption of SOA. This discussion then provides the basis for evaluating and selecting
the open source products that are covered in depth in the chapters that follow. If
you're curious as to why I selected Apache Synapse instead of Apache ServiceMix or
Mule for the ESB, this chapter will provide the justification.

 Part 2 of the book describes the Service Component Architecture (SCA) frame-
work, and how it can be used to develop components that can be exposed as low-level
or composite services. We then move into SCA implementation using the open source
Apache Tuscany product. Given the central role that services play in SOA, this is obvi-
ously an important section.

 Chapter 3 introduces the SCA framework, its history, concepts, and benefits. The
SCA assembly model, which is core to the framework, is described in detail. Specific
examples are provided using Apache Tuscany, the SCA implementation chosen for use
within the book.

 Chapter 4 delves into advanced Apace Tuscany features. This includes how to use
scripting languages such as JRuby and Groovy for building components, and how
more complex interaction models such as conversations and callbacks are supported.
We also introduce Service Data Objects (SDOs) along with their features and benefits.
Part 3 explores how the services created through Apache Tuscany can be combined
together to form a complete business process. This is accomplished by way of business
process management (BPM), which is defined and examined. JBoss jBPM is intro-
duced as the BPM tool used within the book, and its features and capabilities are
explored in depth.

 Chapter 5 introduces the role of BPM within SOA, and why we consider it to be the
“secret sauce” of SOA. We follow that with an introduction to JBoss jBPM where we
describe its key concepts, nomenclature, and how to construct a simple process using
the product.

 Chapter 6 examines the role of tasks within jBPM. A task represents a human activ-
ity that needs to be performed within a business process, such as an approval. The
functionality provided by the jBPM Console is explored, as it provides a graphical
interface to managing tasks and processes. Lastly, we illustrate how to use the jBPM API
to programmatically interact with business processes and tasks.

 Chapter 7 dives into some of the advanced capabilities of jBPM, including how to
manage larger processes through using superstates and subprocesses. We also look at
how to manage exceptions within a process, and the role of asynchronous continua-
tions for distributed processing. Lastly, we look at how jBPM can be integrated with
Apache Tuscany and SCA, and how this combination can be used to service-enable
jBPM for integration with other platforms and languages.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOK xxi
 Part 4 switches gears, and covers the emerging field of complex event processing
(CEP). This is illustrated through the use of Esper, an open source event stream pro-
cessing application. Detailed examples are provided for using Esper, and we describe
how Esper can be used in tandem with jBPM and how to service-enable Esper using
Apache Tuscany. The remaining chapters then address enterprise service buses
(ESBs), and Apache Synapse is introduced and examined in depth using a real-life
case study.

 Chapter 8 provides an overview of CEP, and then introduces Esper, which is an
open source application for event stream processing (ESP). The functionality and fea-
tures of Esper are described using detailed examples, and we also illustrate how to
integrate with Esper by service-enabling it through Apache Tuscany.

 Chapter 9 describes the appropriate role ESBs play in SOA, along with the core fea-
tures commonly found in all ESBs. Then, Apache Synapse is introduced as the ESB of
choice for the book, and some quick-and-dirty examples are provided to demonstrate
its capabilities.

 Chapter 10 takes a deep dive into Synapse using a real-life case study. Advanced
features such as transport switching, enterprise integration patterns, and quality of
service mediation are described in detail.

 Part 5 concludes the remaining chapters of the book by addressing the role played
by a business rules engine, and how SOA acts as an enabler for realizing the great ben-
efits that can be achieved by adopting an enterprise decision management approach.
JBoss Drools is introduced as the open source business rule engines for the examples
in the book, and its features are described in great detail through samples and a
detailed case study.

 Chapter 11 provides an overview of what constitutes business rules and the busi-
ness rules approach, and why it is so beneficial, especially when married with SOA. We
then explore the history and overview of JBoss Drools, which was selected as the rule
engine of choice for the book. Simple examples are used to illustrate the key concepts
behind Drools, such as how to construct rules and activate the engine.

 Chapter 12 takes a more in-depth look into Drools, and in particular, how to use
Guvnor, the Business Rule Management System (BRMS) that comes with the product.
A real-life case study is provided to explore advanced Drools capabilities such as Rule-
Flow. Lastly, we illustrate how to service-enable Drools using Apache Tuscany.

 A bonus chapter, available online at www.manning.com/OpenSourceSOA, will
cover the role of registries, and how they can be used for cataloging services and assist-
ing in SOA governance and best practices. An implementation of a registry product is
provided through examples of using WSO2’s Registry product.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOKxxii
 Source code for all working examples in this book is available for download at
http://jdavis.open-soa.info/wordpress/ as well as from the publisher’s website at
http://www.manning.com/OpenSourceSOA.

 The source code is packaged as an Eclipse project. There are two different down-
load options. One, which is referred to as “Source with no libraries,” is a very small
download and does not include any JAR libraries. Instead, an Ant target can be run that
will automatically pull down all required libraries from various Maven public directo-
ries. The other download, which tops out at around 125MB, does include all of the JAR
libraries pre-packaged. There is also a link to the installation instructions, which pro-
vides detailed instructions for setting of the source. The prerequisites (which are min-
imal) are described within the instructions PDF. Every effort will be made to keep the
source code examples working with updated versions of the applications.

Author Online
The purchase of Open Source SOA includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to http://www.manning.com/Open
SourceSOA. This page provides information about how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Open Source SOA is captioned “L’épicier,” which means store-
keeper, grocer, or purveyor of fine foods. The illustration is taken from a 19th-century
edition of Sylvain Maréchal’s four-volume compendium of regional dress customs pub-
lished in France. Each illustration is finely drawn and colored by hand. The rich variety
of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns
and regions were just 200 years ago. Isolated from each other, people spoke different
dialects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now hard to tell apart the inhabitants of different continents, let
alone different towns or regions. Perhaps we have traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 1

History and principles

Service-oriented architecture (SOA) has emerged over the past several years
as one of the preferred approaches for systems design, development, and inte-
gration. Leveraging open standards and the ubiquity of the internet, SOA is pre-
mised on the notion of reusable services that correspond to self-contained,
logical units of work. The promise is that these services can be quickly pieced
together using common patterns to form new applications that are tightly
aligned with the needs of the business. The upshot? Improved business agility
and cost-effective utilization of IT resources and assets.

 In part 1, we’ll examine the history behind SOA and explore some of the
commonalities that it shares with earlier architectural and technology
approaches. We’ll then identify some of the core characteristics of SOA, and
explain how they’re manifested in actual technologies that can be used in your
own enterprise. Collectively, these technologies will combine to form what we
are calling the Open SOA Platform. Once these technologies, such as business pro-
cess management (BPM), are identified, our attention will turn to surveying the
landscape of possible open source products that can be used to satisfy these
technology requirements.

 The maturity and adoption of open source products within the enterprise has
become widespread. Many of these products are now suitable for use in crafting
a technology stack that can support SOA. Some of the major challenges that have
precluded more widespread adoption of these solutions in the past pertain to
how they can be rationally assessed, and then integrated, within an organization.
We’ll present requirements for analyzing the product categories of the SOA tech-
nology stack, and using them, select what we consider to be the “best of breed”
Licensed to Deborah Christiansen <pedbro@gmail.com>

open source solutions for each category. The selection criteria, as we’ll see, are also
based on how well they can be integrated to form a complete SOA solution. What’s
more, this can be accomplished at a fraction of the cost of commercial alternatives—an
important consideration in today’s challenging economic environment.
Licensed to Deborah Christiansen <pedbro@gmail.com>

SOA essentials
Ponce de León’s early quest to find the “Fountain of Youth” in Florida is one of the
most frequently told stories of American folklore. Although he failed in his journey
to find the “healing waters,” it turns out that he was in good company, for through-
out history we can find tales of similar adventures that never materialized. The his-
tory of computing bears some resemblance. Every decade or so, a new “silver
bullet” emerges that promises to heal the problems that have plagued software
development in the past. Those problems include protracted development cycles;
solutions that fail to achieve expectations; high maintenance costs; and, of course,
the dreaded cost overruns.

 The quest is to find a solution that simplifies development and implementation,
supports effective reuse of software assets, and leverages the enormous and low-cost
computing power now at our fingertips. While some might claim that service-ori-
ented architecture (SOA) is just the latest fad in this illusive quest, tangible results
have been achieved by those able to successfully implement its principles.

This chapter covers
■ Origins of SOA in distributed computing
■ Requirements of a SOA environment
■ Key technologies supporting SOA
3

Licensed to Deborah Christiansen <pedbro@gmail.com>

4 CHAPTER 1 SOA essentials
According to a recent article in the Harvard Business Journal, companies that have
embraced SOA “have eliminated huge amounts of redundant software, reaped major
cost savings from simplifying and automating manual processes, and realized big
increases in productivity” [HBJ]. Further, SOA has achieved greater staying power than
many earlier alternatives, which does say something of its merits. Perhaps this is
because SOA is a more nebulous concept and embraces technologies as much as it
does principles and guidelines—thus refuting its benefits becomes more difficult.

 Until recently, achieving a technology infrastructure capable of sustaining a SOA
generally required purchasing expensive commercial products. This was especially
true if an enterprise desired a well-integrated and comprehensive solution. While sev-
eral early SOA-related open source products were introduced, they tended to focus on
specific, niche areas. For example, Apache Axis was first introduced in 2004 and
became a widely adopted web services toolkit for Java. As we’ll discover, however, web
services represent only a piece of the SOA puzzle. Fast-forward to 2008 and we now see
commercially competitive open source products across the entire SOA product spec-
trum. The challenge now for a SOA architect wanting to use open source is how to
select among the bewildering number of competing products. Even more challenging
is how to integrate them.

 The goal of this book is to help you identify the core technologies that constitute a
SOA and the open source technologies that you can use to build a complete SOA plat-
form. Our focus will be on how to integrate these core technologies into a compelling
solution that’s comparable in breadth and depth to the expensive offerings provided
by the commercial vendors. SOA is now attainable for even the smallest of enterprises
using high-quality open source software. This book will present a technology blue-
print for open source SOA. Of course, thanks to the plethora of high-quality open
source solutions, you can naturally swap out the solutions I’m advocating with those
you deem appropriate.

 Before jumping headfirst into the technology stack, let’s establish some context for
where SOA originated and develop a common understanding of what it is.

1.1 Brief history of distributed computing
The mainframe systems of the 1960s and ’70s, such as the IBM System/360 series,
rarely communicated with each other. Indeed, one of the main selling points of a
mainframe was that it would provide you with everything necessary to perform the
computing functions of a business. When communications were required, the process
usually amounted to transferring data by way of tape from one system to another. Over
time, though, real-time access between systems became necessary, especially as the
number of systems within an organization multiplied. This need was especially appar-
ent in financial markets, where trading required real-time transactional settlements
that often spanned across companies.

 Initially, real-time access was accomplished via low-level socket communications.
Usually written in assembly language or C, socket programming was complex and
Licensed to Deborah Christiansen <pedbro@gmail.com>

5Brief history of distributed computing
required a deep understanding of the underlying network protocols. Over time, pro-
tocols such as Network File System (NFS) and File Transfer Protocol (FTP) came on
the scene that abstracted out the complexity of sockets. Companies such as TIBCO
emerged that developed “middleware” software explicitly designed to facilitate mes-
saging and communications between servers. Eventually, the ability to create distrib-
uted applications became feasible through the development of remote procedure
calls (RPCs). RPCs enabled discrete functions to be performed by remote computers
as though they were running locally. As Sun Microsystems’ slogan puts it, “The Net-
work is the Computer.”

 By the 1980s, personal computers had exploded onto the scene, and developers
were seeking more effective ways to leverage the computing power of the desktop. As
the price of hardware came down, the number of servers within the enterprise
increased exponentially. These trends, coupled with the growing maturity of RPC, led
to two important advances in distributed computing:

■ Common Object Request Broker Architecture (CORBA)—Originated in 1991 as a
means for standardizing distributed execution of programming functions, the
first several releases only supported the C programming language. Adoption
was slow, as commercial implementations were expensive and the ambiguities
within the specification made for significant incompatibilities between vendor
products. The 2.0 release in 1998 was significant in that it supported several
additional language mappings and addressed many of the shortfalls present in
the earlier standards. However, the advent of Java, which dramatically simplified
distributed computing through Remote Method Invocation (RMI), and finally,
through XML, has largely led to the demise of CORBA (at least in new imple-
mentations).

■ Distributed Computing Object Model (DCOM)—DCOM is a proprietary Microsoft
technology that was largely motivated as a response to CORBA. The first imple-
mentations appeared in 1993. While successful within the Microsoft world, the
proprietary nature obviously limited its appeal. The wider enterprise class of
applications that were emerging at the time—Enterprise Resource Planning
(ERP) systems—generally used non-Microsoft technologies. Later, Java’s Enter-
prise JavaBeans (EJB) platform could be construed as Java’s alternative to
DCOM, as it shared many of the same characteristics.

By the late 1990s, with the widespread adoption of the internet, companies began rec-
ognizing the benefits of extending their computing platform to partners and custom-
ers. Before this, communications among organizations were expensive and had to rely
on leased lines (private circuits). Leased lines were impractical except for the largest
of enterprises. Unfortunately, using CORBA or DCOM over the internet proved to be
challenging, in part due to networking restrictions imposed by firewalls that only per-
mitted HTTP traffic (necessary for browser and web server communications). Another
reason was that neither CORBA nor DCOM commanded dominant market share, so
companies attempting communication links often had competing technologies.
Licensed to Deborah Christiansen <pedbro@gmail.com>

6 CHAPTER 1 SOA essentials
 When the Simple Object Access Protocol (SOAP) first arrived (in January 2000), it
was touted as a panacea due to its interoperable reliance on XML. SOAP was largely
envisioned as an RPC alternative to CORBA and DCOM. Since RPCs were the predomi-
nant model for distributed computing, it naturally followed that SOAP was originally
used in a similar capacity. However, RPC-based solutions, regardless of their technology
platform, proved nettlesome. (It is worth noting that SOAP’s RPC was an improvement
over earlier RPC implementations, as it relied on XML as the payload, which facilitates
a much higher degree of interoperability between programming languages.)

1.1.1 Problems related to RPC-based solutions

While RPC-based distributed computing was no doubt a substantial improvement over
earlier lower-level socket-based communications, it suffered from several limitations:

■ Tight coupling between local and remote systems requires significant band-
width demands. Repeated RPC calls from a client to server can generate sub-
stantial network load.

■ The fine-grained nature of RPC requires a highly predictable network. Unpre-
dictable latency, a hallmark of internet-based communications, is unacceptable
for RPC-based solutions.

■ RPC’s data type support, which aims to provide complete support for all native
data types (arrays, strings, integers, etc.), becomes challenging when attempt-
ing to bridge between incompatible languages, such as C++ and Java. Often,
incompatibilities result, greatly complicating its use.

SOAP RPC-style messages also suffered from the same inherent limitations as those
mentioned here. Fortunately, SOAP offers alternative message styles that overcome
these shortcomings.

1.1.2 Understanding SOAP’s messaging styles

In addition to the RPC-style SOAP messaging, the founders of the standard had the
foresight to create what is known as the document-style SOAP message. As pointed out
earlier, the RPC style is for creating tightly coupled, distributed applications where a
running program on one machine can rather transparently invoke a function on a
remote machine. The intention with RPC is to treat the remote function in the same
way as you would a local one, without having to dwell on the mechanics of the network
connectivity. For example, a conventional client-server application could utilize SOAP
RPC-style messaging for its communication protocol.

 Document style, on the other hand, was envisioned more as a means for applica-
tion-to-application messaging, perhaps among business partners. In other words, it
was intended for more “loosely coupled” integrations, such as document or data trans-
fers. The differences between the two styles are defined within the SOAP standard and
are reflected in the Web Service Definition Language (WSDL) interface specification
that describes a given service.
Licensed to Deborah Christiansen <pedbro@gmail.com>

7Brief history of distributed computing
 After the initial flirtation with RPC-based web services, a coalescing of support has
emerged for the document-style SOAP messaging. Microsoft was an early proponent of
the document style, and Sun likewise embraced it completely when introducing the
Java API for XML Web Services (JAX-WS). Web services became viewed as a panacea to
achieving SOA. After all, a linchpin of SOA is the service, and a service requires three
fundamental aspects: implementation; elementary access details; and a contract
[MargolisSharpe]. A SOAP-based web service, with its reliance on the WSDL standard,
appeared to address all three. The implementation is the coding of the service func-
tionality; the access details and contract are addressed within the WSDL as the port
type and XML schema used for document-style messaging. So if you simply expose all
your internal components as SOAP-based services, you then have the foundation by
which you can (a) readily reuse the services, and (b) combine the services into higher-
level business processes—characteristics that eventually would become cornerstones
of SOA. So what exactly is SOA?

1.1.3 Advent of SOA

The concepts that today are associated with SOA began to emerge with the widespread
adoption of the internet, and more specifically, HTTP. By 2003, Roy Schulte of Gartner
Group had coined the term SOA, and it quickly became ubiquitous. What it was,
exactly, remained somewhat difficult to quantify. Through time, some commonalities
appeared in the various definitions:

Contemporary SOA represents an open, agile extensible, federated, composable architecture
comprised of autonomous, QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services. [Erl2005]

Service-Oriented Architecture is an IT strategy that organizes the discrete functions
contained in enterprise applications into interoperable, standards-based services that can
be combined and reused quickly to meet business needs. [BEA]

As you can see, the common theme is the notion of discrete, reusable business services
that can be used to construct new and novel business processes or applications. As you
learned earlier, however, many past component-based frameworks attempted similar
objectives. What distinguishes these approaches from the newer SOA?

■ As discussed earlier, CORBA, EJB, and DCOM are all based on RPC technologies.
In many ways, this is the exact opposite of SOA, since it introduces highly cou-
pled solutions by way of using distributed objects and remote functions. A cen-
tral theme of SOA, on the other hand, specifically encourages loosely coupled
services (I’ll address this concept in greater detail later in this chapter).

■ In the case of EJB and DCOM, they are both tied to specific platforms and are
thus not interoperable. Unless a homogenous environment exists (which is rare
in today’s enterprises, as they are often grown through acquisition), the bene-
fits from them couldn’t be achieved easily. SOA-based web services were
designed with interoperability in mind.
Licensed to Deborah Christiansen <pedbro@gmail.com>

8 CHAPTER 1 SOA essentials
■ CORBA, EJB, and, to a lesser degree, DCOM were complicated technologies that
often required commercial products to implement (at least in their earliest
incarnations). In particular, CORBA required use of Interface Description Lan-
guage (IDL) mappings, which were tedious to manage, and until recently with
the 3.0 release of EJB, complex XML descriptor files were required for its imple-
mentation. SOA can be introduced using a multitude of off-the-shelf, open
source technologies.

■ SOA relies on XML as the underlying data representation, unlike the others,
which used proprietary, binary-based objects. XML’s popularity is undeniable, in
part because it is easy to understand and generate.

Another distinction between a SOA and earlier RPC-based component technologies is
that a SOA is more than technology per se, but has grown to embrace the best prac-
tices and standards that are rooted in the lessons found through decades of tradi-
tional software development. This includes notions such as governance, service-level
agreements, metadata definitions, and registries. These topics will be addressed in
greater detail in the sections that follow.

 So what does a SOA resemble conceptually? Figure 1.1 depicts the interplay
between the backend systems, exposed services, and orchestrated business processes.

 As you can see, low-level services (sometimes referred to as fine-grained) represent
the layer atop the enterprise business systems/applications. These components allow
the layers above to interact with these systems. The composite services layer represents
more coarse-grained services that consist of two or more individual components. For
example, a createPO composite service may include integrating finer-grained services

Figure 1.1 Illustration of a SOA environment. Notice the relationships between services
and business processes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

9The promise of web services for delivering SOA
such as createCustomer, createPOHeader, and createPOLineItems. The composite services, in
turn, can then be called by higher-level orchestrations, such as one for processing
orders placed through a website.

 What is interesting is that, in many respects, SOA is a significant departure from
older distributed computing models, which centered around the exchange of distrib-
uted objects and remote functions. SOA instead emphasizes a loosely coupled affilia-
tion of services that are largely autonomous in nature.

 The benefits achieved from embracing SOA are now being realized by the early
adopters. When monolithic applications are replaced by discrete services, software
can be updated and replaced on a piece-by-piece basis, without requiring wholesale
changes to entire systems. This strategy improves flexibility and efficiency. An often-
overlooked benefit is that this then enables a company to selectively outsource nonpri-
mary activities to specialists who can perform the function more efficiently and at the
lowest cost. Thanks to the advances in connectivity, where a service is housed can be
largely transparent to the enterprise.

 However, SOA is clearly no silver bullet. According to a recent InformationWeek
survey [IW], 58 percent of respondents reported that their SOA projects introduced
more complexity into their IT environments. In 30 percent of those projects, the costs
were more than anticipated. Nearly the same percentage responded that their SOA
initiatives didn’t meet expectations. SOAP-based web services do introduce some
added complexity to the SOA equation, despite their hype.

1.2 The promise of web services for delivering SOA
The SOAP standard, with its reliance on WSDLs, appeared to address many of the fun-
damental requirements of a SOA. That being the case, SOA, in many individuals’ eyes,
became rather synonymous with web services. The major platform vendors, such as
Sun, IBM, Microsoft, BEA (now Oracle), and JBoss, developed tools that greatly facili-
tated the creation of SOAP-based web services. Companies began to eagerly undertake
proof-of-concept initiatives to scope out the level of effort required to participate in
this new paradigm. Web commerce vendors were some of the earliest proponents of
exposing their API through SOAP, with eBay and Amazon.com leading the way (more
than 240,000 people have participated in Amazon Web Services). Software as a Service
(SaaS) vendors such as Salesforce emerged that greatly leveraged on the promise of
web services. Indeed, Salesforce became the epitome of what the next generation of
software was touted to become.

 Within organizations, the challenge of exposing core business functionality as web
services turned out to be daunting. Simply exposing existing objects and methods as
web services often proved ill advised—to do so simply embraces the RPC model of dis-
tributed computing, not the SOA principles of loosely coupled, autonomous services.
Instead, façade patterns or wrappers were often devised to create the desired web ser-
vices. This approach often entailed writing significant amounts of new code, which
contrasted with the heady promises made by vendors. The challenges were
Licensed to Deborah Christiansen <pedbro@gmail.com>

10 CHAPTER 1 SOA essentials
compounded by the vast number of choices that were available, even within a particu-
lar language environment. In the Java world alone, there were a bewildering number
of choices for creating web services: Apache Axis (and Axis 2); Java-WS; Spring-WS,
JBossWS, and CXF (previously known as XFire)—and these are just the open source
products! Knowing which technology to use alone required significant investment.

 Other factors also served to dampen the interest in SOAP web services. The per-
ceived complexity of the various WS-* standards led to a movement to simply use XML-
over-HTTP, as is the basis for Representational State Transfer (REST)-based web ser-
vices (for more on this raging controversy between REST and SOAP, see [RESTvs-
SOAP]). The nomenclature found in the WSDL specification, such as port types and
bindings, is alien to many developers and strikes them as overly convoluted, especially
for simple services (in the WSDL 2.0 standard, some of this arcane nomenclature has
been removed, for instance, replacing port type with interface and port with endpoint,
which is a big improvement, especially for Java and C# developers who are already
familiar with such terms and their meaning). Interestingly enough, some convergence
between REST and SOAP is taking place, such as the acknowledgment among some
REST advocates that the metadata description capabilities of a WSDL are important.
Towards this end, REST advocates have devised a new metadata specification for REST-
based web services called the Web Application Description Language (WADL)
[WADL]. While I may sometimes appear to be a bigot of SOAP, that’s primarily
because of the metadata features of WSDL, and REST coupled with WADL creates a
compelling alternative.

 The early enthusiasm for SOAP-based web services as the springboard for SOA began
to wane as alternatives such as Web-Oriented Architecture (WOA) began to emerge,
which promises a simpler, non-SOAP-based SOA architecture (see [Hinchcliffe]). Truth
be told, there’s likely room for both, with large enterprises opting for the WS-* stack
due to its well-defined interface support, security, and reliable messaging provisions.

1.3 Understanding the core characteristics of SOA
As it turns out, achieving SOA requires more than SOAP-based web services. The char-
acteristics of SOA transcend a particular technology. SOA is an amalgamation of tech-
nologies, patterns, and practices, the most important of which I’ll address in this section.

1.3.1 Service interface/contract

Services must have a well-defined interface or contract. A contract is the complete spec-
ification of a service between a service provider and a specific consumer. It should also
exist in a form that’s readily digestible by possible clients. This contract should identify
what operations are available through the service, define the data requirements for any
exchanged information, and detail how the service can be invoked. A good example of
how such a contract can be crafted can be found in a WSDL. Apart from describing
which operations are available through a given network “endpoint,” it also incorporates
XML Schema support to describe the XML message format for each of the service oper-
ations. Figure 1.2 illustrates the relationship between WSDL and XML Schema.
Licensed to Deborah Christiansen <pedbro@gmail.com>

11Understanding the core characteristics of SOA
Multiple operations can be defined, each of which can have its own schema definition
associated with it. While the WSDL nomenclature can be confusing (particularly the
1.1 specification, with its rather arcane concepts of ports and bindings), it has, argu-
ably, been the most successful means for defining what constitutes an interface and
contract for a service. Commercial vendors, in particular, have created advanced tool-
ing within their platforms that can parse and introspect WSDLs for code generation
and service mapping. The WSDL 2.0 specification is intended to simplify the learning
curve and further advance its adoption.

 One of the early criticisms of the WSDL specification was that the specific service
endpoint was “hardwired” into the specification. This limitation was largely addressed
in the WS-Addressing standard, which has achieved widespread adoption. It supports
dynamic endpoint addressing by including the addressing information within the
body of the SOAP XML message, and not “outside” of it within the SOAPAction HTTP
header. The endpoint reference contained with the WS-Addressing block could also
be a logical network location, not a physical one. This enables more complex load-bal-
ancing and clustering topologies to be supported. We’ll explore the issue of why such
“service transparency” is beneficial next.

1.3.2 Service transparency

Service transparency pertains to the ability to call a service without specific awareness of
its physical endpoint within the network. The perils of using direct physical endpoints
can be found in recent history. Nearly all enterprise systems began offering significant
API support for their products by the mid-1990s. This trend allowed clients to begin
tapping into the functionality and business rules of the systems relatively easily. One of
the most immediate, and undesirable, consequences of doing this was the introduc-
tion of point-to-point interfaces. Before long, you began seeing connectivity maps that
resemble figure 1.3.

 An environment punctuated by such point-to-point connections quickly becomes
untenable to maintain and extremely brittle. By making a change in something as sim-
ple as the endpoint connection string or URI, you can break a number of applications,

Figure 1.2 WSDL usage
of XML Schema for
defining the specification
of an operation
Licensed to Deborah Christiansen <pedbro@gmail.com>

12 CHAPTER 1 SOA essentials
perhaps even unknowingly. For example, in figure 1.3 imagine if the CRM system’s
network address changed—a multitude of other apps would immediately break.

 An enterprise service bus (ESB) is often touted as the savior for avoiding the prolif-
eration of such point-to-point connections, since its messaging bus can act as a con-
duit for channeling messages to the appropriate endpoint location. It no doubt
performs such functionality admirably, but the same thing can be accomplished
through a simple service mediator or proxy. The scenario depicted in figure 1.3 could
then be transformed to the one shown in figure 1.4.

 Obviously, figure 1.4 is an improvement over figure 1.3. No longer does the client
application or API user have to explicitly identify the specific endpoint location for a
given service call. Instead, all service calls are directed to the proxy or gateway, which,
in turn, forwards the message to the appropriate endpoint destination. If an endpoint
address then changes, only the proxy configuration will be required to be changed.

 The WS-Addressing specification, one of the earliest and most well-supported of
the WS-* standards, defines an in-message means for defining the desired endpoint or
action for SOAP-based web services. It is significant in that, without it, only the trans-
port protocol (typically HTTP) contains the routing rules (it’s worth noting that SOAP
supports more transports than just HTTP, such as JMS). WS-Addressing supports the
use of logical message destinations, which would leave the actual physical destination
to be determined by a service mediator (to learn more about WS-Addressing, see the
[WSAddressing] reference in the Resources section at the end of this book).

 Until fairly recently, no true open source web service proxy solution was available.
However, Apache Synapse, although sometimes positioned as an ESB, is designed
largely with this capability in mind. It supports outstanding proxy capabilities and can
also serve as a protocol switcher. For instance, Synapse can be easily configured to
receive a SOAP HTTP message and deposit it for internal consumption by a Java JMS
queue. Synapse will be covered in depth in upcoming chapters.

Figure 1.3 Example of how point-to-point connections greatly complicate service integration
Licensed to Deborah Christiansen <pedbro@gmail.com>

13Understanding the core characteristics of SOA
1.3.3 Service loose coupling and statelessness

Simply exposing a service as a SOAP-based web service, defined by a WSDL, does not,
by itself, constitute service enablement. A key consideration is also whether the service
is sufficiently self-contained so that it could be considered stand-alone. This factor is
sometimes referred to as the level of “service coupling.” For example, let’s assume that
we want to create a new service to add a new customer to your company’s CRM system.
If in order to use the service you must include CRM-specific identifiers such as Orga-
nizationId, you have now predicated the use of that service on having a prior under-
standing of the internals of the CRM. This can greatly complicate the use of the service
by potential consumers and may limit its audience potential. In this case, it would be
preferable to create a composite service that performs the OrganizationId lookup
first, and then performs the call to insert the new customer.

 Related to this issue is granularity, which refers to the scope of functionality
addressed by the service. For instance, a fine-grained service may resemble something
like addCustomerAddress, whereas a coarse-grained service is more akin to addCustomer.
The preponderance of literature advocates the use of coarse-grained services, in part
for performance reasons as well as convenience. If the objective is to add a new cus-
tomer to your CRM system, calling a single service with a large XML payload is obvi-
ously preferable to having to chain together a multitude of lower-level service calls.
That said, maximizing reusability may sometimes warrant the construction of finer-
grained services. In our example, having the ability to addCustomerAddress can be used
in a variety of cases, not limited to just creating a new customer. Indeed, composite
services that are coarser grained in function can then be crafted based on the lower-
level services.

 Finally, if possible, a service should be stateless. What would be an example of a
stateful service? Imagine a service that includes a validation operation that first must

Figure 1.4 Example of mediator or proxy-based service endpoint environment
Licensed to Deborah Christiansen <pedbro@gmail.com>

14 CHAPTER 1 SOA essentials
be called prior to the actual action operation. If successful, the validation call would
return a unique identifier. The action operation would then require that validation
ID as its input. In this scenario, the data input from the validation call would be
stored in a session state awaiting a subsequent call to perform the desired activity.
While this solution avoids forcing the client user to resubmit the complete data set
twice (one for the operation, the other for the action), it introduces additional com-
plexity for the service designer (though various service implementations, both open
source and proprietary, do attempt to simplify building stateful services). In particu-
lar, scalability can be adversely impacted, as the application server must preserve ses-
sion state and manage the expiration of unused sessions. Performance management
is complicated if appliance-based load balancing is being used, as it must pin the ses-
sion calls to specific application servers (software clustering can overcome this, but it
introduces its own challenges).

 In the previous scenario, statefulness can be avoided by requiring the client to again
send all relevant data when making the action call, along with the validation ID
retrieved from the validation call. The validation ID would be persisted in a database
and provided a timestamp. The action call would have to take place within a given
number of minutes before the validation ID became invalidated.

1.3.4 Service composition

One of the main objectives of a SOA is the ability to generate composite services and/
or orchestrations using service components as the building blocks. A composable service
is largely a function of how well it is designed to participate in such a role. As was illus-
trated in figure 1.1, there are two general types of composite services. The first type,
which could be classified as simple or primitive, simply wraps one or more lower-level
services together into a more coarse-grained operation. This process can usually be
accomplished by defining a simple data flow that stitches together services and then
exposes the new functionality as a new service. Another goal may be to simply impose
a new service contract for an existing service while leaving the underlying target end-
point unchanged. In any case, the underlying service or services participating in the
simple composition must adhere to these attributes we’ve already addressed (and
some of which will follow). They include a well-defined service contract; stateless in
design, loosely coupled, and offer high availability. A composite service should be no
different, and should be treated like any other service, as shown in figure 1.5.

 The second type of composite services is the complex or workflow-type business pro-
cesses, often referred to as business process management (BPM). These processes are
generally multistep creations that may optionally include long-running transactions.
The WS-BPEL (Business Process Execution Language) set of standards defines an
XML-based language for describing a sequence flow of activities, or process. Within a
process definition, a rich set of nodes can be used for routing, event handling, excep-
tion management (compensation), and flow control. The core WS-BPEL standard is
tailored for working with SOAP-based web services. Because of this orientation, the
Licensed to Deborah Christiansen <pedbro@gmail.com>

15Understanding the core characteristics of SOA
entry point for invoking a WS-BPEL process is most typically a SOAP web service (other
possibilities may include a timer service, for example). This can be either a blessing or
a curse, depending on whether SOAP services are a standard within your environment.

 How does a composite service author have visibility into which services are avail-
able for use when constructing such processes? This is the role of the service registry,
which we'll cover next.

1.3.5 Service registry and publication

Unlike in the movie Field of Dreams, “if you build it, they will come” doesn’t apply to
services. Clients must be aware of the existence of a service if they’re expected to use
it. Not only that, services must include a specification or contract that clearly identifies
input, outputs, faults, and available operations. The web services WSDL specification is
the closest and most well-adopted solution for service reflection. The Universal
Description, Discovery, and Integration (UDDI) standard was intended as a platform-
independent registry for web services. UDDI can be used as both a private or public
registry. Further, using the UDDI API, a client could theoretically, at least, “discover”
services and bind to them. Unfortunately, UDDI suffered from an arcane and complex
nomenclature, and its dynamic discovery features were myopic and predicated on
naive assumptions. Today, relatively few enterprise customers are using UDDI and
fewer still public registries. In practice, UDDI is rarely used today, except behind the
scenes in a handful of commercial products where its complexity can be shielded
from the user. Unfortunately, no standards-based alternative to UDDI is in sight.

 The failure of UDDI doesn’t obviate the need for a registry, and most companies
have instead devised a variety of alternatives. For SOAP-based web services, a compre-
hensive WSDL can often be adequate. It can list all the available services and opera-
tions. Others have used simple database or Lightweight Directory Access Protocol
(LDAP) applications to capture service registry information. Simply storing a catalog
of services and their descriptions and endpoints in a wiki may suffice for many
companies. Recently, there has also been an emergence of new open source registry

Figure 1.5 A composite service is added to an existing catalog of services.
Licensed to Deborah Christiansen <pedbro@gmail.com>

16 CHAPTER 1 SOA essentials
solutions, such as MuleSource’s Galaxy and WSO2’s Registry, which attempt to fill this
void; we’ll discuss these solutions in the next chapter.

 Now that we’ve identified some of the core characteristics of SOA, let’s turn our
attention to how those higher-level objectives can be decomposed into specific tech-
nologies that, when combined, can comprise a complete SOA technology platform.

1.4 Technologies of a SOA platform
As pointed out earlier, it’s a mistake to assume that SOA is all about technology
choices. Issues like governance, quality of service, and so forth are all major contribu-
tors to crafting a complete SOA. That said, our intention is to focus on the technical
aspects, as the other areas largely fall outside the scope of this book. Figure 1.6 depicts
the various technologies that constitute a SOA technology platform, which, moving
forward, I will refer to as the Open SOA Platform. We'll explore each in greater detail
along with an explanation of how the technologies tie together.

1.4.1 Business process management

Business process management (BPM) is a set of technologies that enables a company to
build, usually through visual flow steps, executable processes that span across multiple
organizations or systems. In the past, such systems were less elegantly referred to as
workflow processing engines. The promise of BPM, as optimistically stated by Howard

Figure 1.6 SOA technology platform. In chapter 2, we begin identifying applicable technologies for many
of these areas.
Licensed to Deborah Christiansen <pedbro@gmail.com>

17Technologies of a SOA platform
Smith and Peter Finger is that, “BPM doesn’t speed up applications development; it
eliminates the need for it” [SmithFinger]. This is because business applications, in this
historical context, create stovepipes that are separated by function, time, and the data
they use. The process in BPM refers to a holistic view of the enterprise, which incorpo-
rates employees, partners, customers, systems, applications, and databases. This also
serves to extract the full value of these existing assets in ways never before possible.

 Many consider BPM to be the “secret sauce” of SOA, insofar as the benefit it pro-
vides to companies that adopt it. In the book The New Age of Innovation, the authors
identify business processes as the “key enablers of an innovation culture” [Prahalad].
To be competitive in a dynamic marketplace, business processes must change at a
rapid pace, and this can only be achieved through BPM systems that enable defining,
visualizing, and deploying such processes.

 For a system to participate in a BPM process, services or functionality must be made
externally accessible. For this reason, SOA is often considered a prerequisite for BPM,
since SOA is fundamentally about exposing services in a way that enables them to par-
ticipate in higher-level collaborations. Theoretically at least, BPM allows business users
to design applications using a Lego-like approach, piecing together software services
one-upon-another to build a new higher-level solution. In reality, it’s obviously not
quite so simple, but skilled business analysts can use the visual design and simulation
tools for rapid prototyping. These design primitives can also be highly effective at con-
veying system requirements.

 The fundamental impetus behind BPM is cost savings and improved business agility. As
TIBCO founder Vivek Ranadivé notes, “The goal of BPM is to improve an organization’s
business processes by making them more efficient, more effective and more capable of
adapting to an ever-changing environment” [Ranadivé]. Integrating many disparate sys-
tems and linking individuals across organizational boundaries into coherent processes
can naturally result in significant return on investment (ROI). A useful byproduct of
such efforts is improved reporting and management visibility. Agility, or the ability of a
company to quickly react to changes in the marketplace, is improved by enabling new
business processes to be created quickly, using existing investments in technology.

1.4.2 Enterprise decision management

An enterprise decision management (EDM) system incorporates a business rule
engine (BRE) for executing defined business rules and a Business Rule Management

Where are the applications?
In looking at figure 1.6, you may be wondering, “Where are the applications?” The
presentation layer can be considered your typical application, but with such a variety
of different delivery models (mobile, web, gadgets, hybrids like Adobe AIR, RSS
feeds, and so forth), the very notion of what constitutes an application is changing.
Hence, we use “Presentation Services,” which represent anything that can be con-
sidered an interface to computing services.
Licensed to Deborah Christiansen <pedbro@gmail.com>

18 CHAPTER 1 SOA essentials
System (BRMS) for managing the rules. What exactly is a business rule? It is a state-
ment, written in a manner easily digestible by those within the business, which makes
an assertion about some aspect of how the business should function. For example, a
company’s policy for when to extend credit is based on certain business rules, such as
whether the client has a Dun & Bradstreet number and has been in business for x
number of years. Such rules permeate most historical applications, where literally
thousands of them may be defined within the application code. Unfortunately, when
they are within application code, modifying the rules to reflect changing business
requirements is costly and time consuming.

 A rules-based system, or BRMS, attempts to cleanly separate such rules from pro-
gram code. The rules can then be expressed in a language the business user can
understand and easily modify without having to resort to application development
changes. This also serves to make business rules an “enterprise asset” that represents
the very lifeblood of an organization. Figure 1.7 illustrates how a centralized decision
service can be used by services and applications.

 One of the biggest challenges when building applications is bridging the knowl-
edge gap that exists between the subject matter experts (SMEs) who have an intimate
understanding of the business, and the developers who often possess only a cursory
awareness (and sometimes desire no more than that). Developers are faced with trans-
lating business requirements into abstract representations in code. This gap is often
responsible for the disappointing results that too often surround the rollout of new
applications. As Taylor and Raden note, ”Embedding business expertise in the system
is hard because those who understand the business can’t code, and those who under-
stand the code don’t run the business” [TaylorRaden].

 What differentiates a BRMS from an EDM? To be honest, it’s probably mostly
semantics, but EDM does emphasize centralized management of all business rules,
including those considered operational, which may range in the thousands for a given
company. According to Taylor and Raden, this includes heretofore “hidden” decisions
that permeate a company, such as product pricing for a particular customer, or
whether a customer can return a given product.

Figure 1.7 A centralized decision
service can be used by other services and
applications.
Licensed to Deborah Christiansen <pedbro@gmail.com>

19Technologies of a SOA platform
 In chapters 11 and 12 we cover EDM in more detail, and describe how the use of
domain-specific languages (DSLs) can be used to create business-specific, natural lan-
guage representations of rules most suitable for maintenance by SMEs.

1.4.3 Enterprise service bus

An enterprise service bus (ESB) is at its core a “middleware” application whose role is
to provide interoperability between different communication protocols. For example,
it’s not uncommon for a company to receive incoming ASCII-delimited orders
through older protocols such as FTP. An ESB can “lift” that order from the FTP site,
transform it into XML, and then submit internally to a web service for consumption
and processing. Although this can all be done manually, an ESB offers out-of-the-box
adapters for such processing, and most commonly, event-flow visual modeling tools to
generate chained microflows. The cost savings over conventional code techniques is
often substantial.

 How does such a microflow (or what could be alternatively called a real-time data
flow) differ from a BPM-type application? After all, at first glance they may appear sim-
ilar. One key distinction is that BPM applications are typically designed for support of
long-running transactions and use a central orchestration engine to manage how the
process flow occurs. A real-time data flow, however, typically uses a model more akin to
what’s known as choreography. In a choreographed flow, each node (or hop) encap-
sulates the logic of what step to perform next. In addition, a real-time data flow typi-
cally passes data by way of message queues, and thus there’s a single running instance
of the process, with queues corresponding to each node that consume those mes-
sages. A BPM, on the other hand, typically instantiates a separate process instance for
each new inbound message. This is because, as a potentially long-running transaction,
the sequential queuing method would not be appropriate. To keep the number of
running processes to a reasonable number, a BPM engine will “hydrate” or “dehy-
drate” the process to and from running memory to a serialized form, which can then
be stored in a database.

 Table 1.1 describes a typical set of services provided in an ESB. Because of the num-
ber of services provided by an ESB, it sometimes is described as a “backplane” or cen-
tral nervous system that ties together the various SOA technologies.

Table 1.1 Core ESB features and capabilities

Feature Description

Data Connectivity/Adapters HTTP (SOAP, XML), FTP, SFTP, File, and JMS connectivity.

Data Transformation XSLT for XML-based transformations.

Intelligent Routing Content-based routing based on message properties or inline XML via
XPath. Some include additional, more advanced rule-based routing using
a rules engine.
Licensed to Deborah Christiansen <pedbro@gmail.com>

20 CHAPTER 1 SOA essentials
Figure 1.8 depicts the role that an ESB plays in integrating various protocols and how
they can be exposed through a standard messaging bus.

 The flexibility of an ESB to tap into a variety of communication protocols lends
some merit to an ESB-centric architecture. However, if an organization can success-
fully expose its business services as web services, the central role that an ESB plays is
diminished (in any case, it certainly has a role in a SOA technology stack).

 Let’s now turn our attention to how analytical information can be drawn by the
messages that flow through an ESB.

Service Management Administrative tools for managing deployments, versioning, and system
configuration.

Monitoring & Logging The ability to monitor, in real time, document and message flows. Benefi-
cial is the capability to put inline interceptors between nodes and specifi-
cally target individual nodes for more verbose logging.

Data-flow Choreography The ability to visually (or through editing declarative XML files) create
graphs or chains to describe a sequence of steps necessary to complete
a data flow.

Custom API The ability to add custom adapters or components to the ESB.

Timing Services The ability to create time-based actions or triggers.

Table 1.1 Core ESB features and capabilities (continued)

Feature Description

Figure 1.8 Example of an ESB-centric approach for enterprise architecture
Licensed to Deborah Christiansen <pedbro@gmail.com>

21Technologies of a SOA platform
1.4.4 Event stream processor

An event is simply something of interest that happens within your business. It may be
expected and normal, or abnormal. An event that doesn’t occur may have as much
importance as those that do. Too many events may also indicate a problem. Why is it
relevant to SOA? Event stream processing (ESP) support can be integrated into the
implementation of your services so that real-time visibility into systems becomes a real-
ity. This operational intelligence arms your enterprise with the ability to quickly spot
anomalies and respond accordingly. Adding such capabilities into legacy solutions is
often not feasible, and instead you must rely on data warehouse and business intelli-
gence tools, neither of which provides real-time visibility.

 Event stream processing is considered part of a relatively new technology some-
times referred to as complex event processing (CEP). TIBCO’s Ranadivé defines it as

…an innovative technology that pulls together real-time information from multiple
databases, applications and message-based systems and then analyzes this information to
discern patterns and trends that might otherwise go unnoticed. CEP gives companies the
ability to identify and anticipate exceptions and opportunities buried in seemingly
unrelated events. [Ranadivé]

The role of an ESP is to receive multiple streams of real-time data and to, in turn,
detect patterns among the events. A variety of filters, time-based aggregations, trig-
gers, and joins are typically used by the ESP to assist in pattern detection. The inter-
preted results from the ESP can then be fed into business activity monitoring (BAM)
dashboards.

 In Performance Dashboards, Wayne Eckerson identifies three types of business intelli-
gence dashboards: operational, tactical, and strategic [Eckerson]. Operational dash-
boards generate alerts that notify users about exception conditions. They may also
utilize statistical models for predictive forecasting. Tactical dashboards provide high-
level summary information along with modeling tools. Strategic dashboards, as the name
implies, are primarily used by executives to ensure company objectives are being met.
Operational dashboards rely on the data that event stream processors generate. As the
saying goes, you can’t drive forward while looking in your rearview mirror. For a busi-
ness to thrive in today’s competitive landscape, real-time analysis is essential. This pro-
vides a company with the ability to immediately spot cost savings opportunities, such
as sudden drops in critical raw materials; proactively identify problem areas, such as a
slowdown in web orders due to capacity issues; and unleash new product offerings.

 An event architecture strategy must be part of any SOA solution and must be
designed from the get-go to be effective. Bolting on such capabilities later can result
in expensive reengineering of code and services. Service components and backbone
technologies (such as the ESB) should be propagating notable events. While a process
may not be immediately in place to digest them, adding such capabilities later can be
easily introduced by adding new Event Query Language (EQL) expressions into the
ESP engine. We’ll examine EQL in more detail in chapter 8.
Licensed to Deborah Christiansen <pedbro@gmail.com>

22 CHAPTER 1 SOA essentials
 The messages that carry event data that flow into an ESP are, within a Java environ-
ment, most likely to arrive by way of the Java Message Service (JMS), which is
addressed next.

1.4.5 Java Message Service

The Java Message Service is one of the fundamental technologies associated with the
Java Platform Enterprise Edition. It is considered message-oriented middleware (MOM)
and supports two types of message models: (1) the point-to-point queuing model, and
(2) the publish and subscribe model. The queuing model, which is probably used most
frequently, enables a broadcaster to publish a message to a specific queue, whereby it
can then be consumed by a given client. It is considered point-to-point because once
the message is consumed by a client, it is no longer available to other clients. In the pub-
lish/subscribe model, events are published to one or more interested listeners, or
observers. This model is analogous to broadcast television or radio, where a publisher
(station) is sending out its signal to one or more subscribers (listeners).

 JMS typically is ideally suited for asynchronous communications, where a “fire-and-
forget” paradigm can be used. This contrasts with SOAP-based web services, which fol-
low a request/response type model (this isn’t a concrete distinction—there are varia-
tions of JMS and SOAP that support more than one model—but a generalization). JMS
is typically used as one of the enabling technologies within an ESB and is usually
included within such products.

 Since JMS is rather ubiquitous in the Java world and well documented through
books and articles, I won’t cover it directly in this book. It is, however, a critical tech-
nology for Java-based SOA environments. Let’s now address an often-overlooked but
critical technology for building a SOA platform: a registry.

1.4.6 Registry

The implementation artifacts that derive from a SOA should be registered within a
repository to maximize reuse and provide for management of enterprise assets. Meta-
data refers to data about data, so in this context, it refers to the properties and attri-
butes of these assets. Assets, as shown in figure 1.9, include service components and
composites, business process/orchestrations, and applications. It may also include typ-
ical LDAP objects such as users, customers, and products.

Figure 1.9 Example of
an LDAP repository used
as a registry. Notice that
it’s not just used for
users, but also for
products and even
applications.
Licensed to Deborah Christiansen <pedbro@gmail.com>

23Technologies of a SOA platform
 For smaller organizations, more informal repositories may be utilized and could
be as simple as wiki articles or a simple database that describes the various assets. As
organizations grow in size, however, having an appropriate technology like LDAP sim-
plifies management and assists in reporting, governance, and security profiling. It’s
important to treat the SOA artifacts as true corporate assets—this represents highly
valuable intellectual property, after all.

 The metadata attributes for a given asset type will vary, so a flexible repository schema
is essential. For example, a service component’s attributes include the following:

■ Service endpoint (WS-Addressing)
■ Service description
■ WSDL location
■ Revision/version number
■ Source code location
■ Example request/response messages
■ Reference to functional and design documents
■ Change requests
■ Readme files
■ Production release records

Orchestrations and application may share a similar, if expanded, set of attributes,
whereas those relating to a user will obviously vary significantly. A bonus chapter avail-
able at http://www.manning.com/davis includes coverage of registries.

 We’re nearly completed with our whirlwind overview of critical SOA technologies.
One essential technology, indeed a cornerstone of SOA, is addressed next: services.

1.4.7 Service components and compositions

Service components and composites represent the core building blocks for what con-
stitutes a SOA platform. A service can be construed as an intelligent business function
that combines data and logic to form an abstract interaction with an underlying busi-
ness service. This service is often a discrete piece of functionality that represents a
capability found within an existing application. An example of such a service might be
a customer address lookup using information found within a CRM system. The service
component, in this instance, “wraps” CRM API calls so that it can be called from a vari-
ety of clients using just a customer name as the service input. If the CRM API had to be
called directly, a multistep process of (a) first identifying the customerId based on the
customer name, (b) performing code-list lookups for finding coded values, and (c)
using the customerId to then call a getAddress operation may be necessary. The ser-
vice component abstracts the methods and objects of the CRM into generic methods
or objects and makes the underlying details transparent to the calling client. An illus-
tration of such a service façade or wrapper is shown in figure 1.10.
Licensed to Deborah Christiansen <pedbro@gmail.com>

24 CHAPTER 1 SOA essentials
A service must support two fundamental requirements: a well-defined interface and
binding. The interface is the contract that defines the service specification and is rep-
resented as a WSDL for SOAP-based web services. The binding is the communications
protocol for how the client will interact with the service. Examples of such protocols
are SOAP over HTTP; JMS; Java RMI (RMI); and EJB. Using a combination of those two
requirements, a developer who wants to create a client that uses a service should be
able to do so. Of course, how well the interface is designed will dictate how truly use-
ful the service is.

 A composite service, as the name suggests, is created by combining the functional-
ity of one or more individual components. Composites may serve to further abstract
functionality and are often considered coarse-grained services (such as a service to
create a new customer). A composite service, in turn, may then be combined with
other services to create even higher level composites. In any event, composites share
the same requirements as components—an interface and binding.

 Thomas Erl classifies compositions into two distinct types: primitive and complex
[Erl2007]. A primitive type might be used for simple purposes such as content filtering
or routing and usually involves two or three individual components. A complex compo-
sition could be a BPEL-based service that contains multiple nodes or sequence steps.
Chapters 3 and 4 provides in-depth coverage of service components and composites.

 Regardless of what protocol and standards your services use, there will likely be
scenarios, particularly when integrating with outside organizations, that deviate from
your best laid plans. One way to bridge such differences, and to improve service avail-
ability and performance, is through web service mediation technology—the topic of
the next section.

Figure 1.10 Using a façade/wrapper pattern for exposing service functionality
Licensed to Deborah Christiansen <pedbro@gmail.com>

25Introducing a SOA maturity model
1.4.8 Web service mediation

Mediation refers to bridging the differences between two parties. Consistent with that
definition, web service mediation (WSM) refers to bridging between different commu-
nications protocols, with the result being a SOAP-based web service that can be redi-
rected to an appropriate endpoint. For example, a web mediation engine might be
used to process authenticating the credentials of inbound calls from an external part-
ner’s SOAP message using WS-Security (WSS). If approved, the message can then be
forwarded, minus the WS-Security heading, to an internal web service to process the
request. Or, perhaps a partner is unwilling or unable to use SOAP, and instead prefers
a REST (XML over HTTP) solution. Using a mediator, the inbound REST call can be
easily transformed into SOAP by adding the appropriate envelope. Even transforma-
tions between entirely different protocols, such as FTP to SOAP, are typically possible.
Figure 1.11 depicts the role of the mediator.

 A mediator serves other purposes
as well, such as logging of all requests
and responses, internal load balanc-
ing, advanced caching, and support of
advanced WS-* features such as WS-
ReliableMessaging. Another important
feature is the ability to act as a proxy
server. This allows the WSM to trans-
parently intercept outbound messages,
log them, and apply a WS-Security
envelope, for example. The publisher
of the originating message can let such
policies be applied externally in a con-
sistent fashion and not have to worry
about implementing such complex
details. Compliance and security can
be managed independently of the
application—a major benefit.

 Many of the web mediation capabilities we’ve talked about can now be found in
modern-day ESBs. In fact, as you’ll see moving forward, the ESB we’ve selected from
the Open SOA Platform can perform both conventional ESB duties as well as the medi-
ation features we’ve identified.

 Does implementing SOA require all of the technologies we’ve alluded to in this
section? Of course, the answer is no. In large part, it depends on your particular needs
and requirements, so let’s explore this further.

1.5 Introducing a SOA maturity model
A maturity model can be useful when you’re analyzing the readiness of an IT organi-
zation in embracing the various levels of SOA that can be achieved. Figure 1.12

Figure 1.11 The role of web services mediator in
bridging between protocols
Licensed to Deborah Christiansen <pedbro@gmail.com>

26 CHAPTER 1 SOA essentials
depicts such a model, and as the pyramid suggests, each stage, at least in part,
depends on the former.

 Level 1 begins with the foundation of services and related components. Moving
forward to level 2 requires a governance program to ensure that these services are
consistently developed using a common framework, along with associated security pol-
icies and a means for publication (i.e., think registry). After all, a service isn’t really a
service unless it’s discoverable and reusable. The next tier, level 3, is where significant
benefits begin to be realized. With a governance program in place, it now becomes
possible to build more coarse-grained, composite services, whose audience may span
beyond just the technical team. Business “power users” may begin consuming the ser-
vices by using simple, end-user integration products like Jitterbit (http://
www.jitterbit.com), OpenSpan (http://www.openspan.com), or Talend (http://
www.talend.com). While using a business rule engine may make sense at any level, it
often becomes a requirement when composite services become introduced, which is
why it’s also shown in level 3. This is because composite services often require business
rule logic to determine how to logically combine lower-level services.

 Similar to business rules, a message- and event-driven architectural orientation can
be introduced earlier in the pyramid—it’s a requirement for those aspiring to level 5.
The ability to monitor, in real time, events that occur within your enterprise is essen-
tial for optimizing business processes and operational decisions. This capability repre-
sents level 4, and without it, decisions and processes are optimized in a vacuum and
may not accurately reflect either the business bottom line or relevant trends.

 This brings us to level 5, which is where BPM and EDM can really flourish.
Although you can attempt to introduce these technologies lower in the maturity
model, both benefit immensely by having the prior layers in place. BPM almost always
requires the ability to tightly integrate with applications, data, and business rules, and
when these assets are exposed as services using SOA principles, implementing BPM is

Figure 1.12 SOA maturity model.
Not all levels are required for every
environment
Licensed to Deborah Christiansen <pedbro@gmail.com>

27Summary
greatly simplified. Centrally managing business rules through EDM exposes business
rule assets to a wider audience of business users, who are best positioned to align them
to the dynamic changes of the marketplace, which can detect more accurately when
events can be assessed in real time through complex event processing (CEP) filters.

 For those just undertaking their first SOA projects, attempting to embrace all of the
technologies we talk about in this book may seem overly ambitious. By treating SOA as
a journey, you begin benefiting quickly as you build reusable services and marry them
with the introduction of a business rule engine. Since SOA isn’t just about technology
but also process, wrapping a governance layer is essential but not difficult (it just
requires some discipline). Once these pieces are in place, you can decide whether you
want to move further up the pyramid. If you achieve layer 5 on an enterprise basis, the
benefits through tighter alignment between IT and business will make your organiza-
tion much more agile, productive, and frankly, a more fun place to work!

1.6 Summary
In this chapter, we covered the historical origins of SOA, dating back from its roots in
earlier distributed computing architectures. The emergence of SOAP-based web ser-
vices is a critical enabler for a SOA, but it turns out that it’s only one, albeit critical,
part. Simply “exposing” an application’s operations as a web service provides little
more than earlier RPC-based models. Instead, a deeper dive into what constitutes SOA
revealed five main technologies and principles that are the bedrock of a SOA environ-
ment: service interfaces; service transparency; service loose-coupling and statelessness;
service composition; and service registry and publication. With that broad under-
standing of what constitutes a SOA, we then focused on the technical requirements to
form the Open SOA Platform. Nine specific technologies were identified that were
essential platform building blocks: application server; business process management;
enterprise decision management; enterprise service bus; event stream processing; Java
Message Service; metadata repository; service composition and composites; and web
service mediation.

 Until recently, there hasn’t been a robust and complete set of open source technol-
ogies that addressed each of these nine areas. Instead, only the commercial vendors,
with their deeper pockets and pricy products, appeared able to provide a comprehen-
sive SOA environment. That has changed. Compelling open source solutions now
exist for each of those eight technologies, and the next chapter provides an overview
of them. Following that, we revisit these eight core technologies individually, with sub-
stantive examples provided so that you can implement your comprehensive open
source SOA platform. The benefits of SOA are no longer limited to big companies with
big budgets. Instead, even the smallest of enterprises can participate in this exciting
new paradigm by enjoying the fruits of dedicated, and very bright, open source devel-
opers. In chapter 2 we assess the open source landscape for the SOA technology plat-
form and identify those that will be the focus for the remainder of the book.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Defining the
Open SOA Platform
In chapter 1 we explored some of the history behind SOA, and then we examined
the key technology underpinnings of a SOA environment. Now we’ll focus on iden-
tifying a suitable open source product for each of these technology areas. Collec-
tively they’ll comprise what we’re calling the Open SOA Platform.

 The open source community includes many early advocates of the recent wave of
emerging SOA-related technology projects. Historically, open source has sometimes
been considered a “late-follower,” with commercial products first to hit the market,
and then followed by “me-too” open source alternatives. One reason often cited by
critics of open source is that open source projects are often not innovators but imi-
tators (of course, some might argue Microsoft has done very well by following the
imitation model). There may be some truth to that criticism, but many of the prod-
ucts we’ll be examining are innovative and cutting edge. In some instances, the rea-
son development has lagged vis-à-vis commercial offerings is simply because of
resource challenges—open source projects are often supported and staffed by a
small team of developers, many of whom have full-time responsibilities elsewhere.

This chapter covers
■ Evaluating open source products
■ Selecting the products
28

Licensed to Deborah Christiansen <pedbro@gmail.com>

29
 Overall, it did take some time before a comprehensive collection of open source
projects achieved sufficient breadth and maturity to offer a compelling alternative to
the highly priced commercial alternatives. Now, you can choose among many options
for crafting an entirely open source SOA environment. This chapter forms the basis for
the remainder of the book—it identifies the open source products that we’ll be explor-
ing in greater detail in the chapters that follow. The selected products will form the
basis for our Open SOA Platform, and we’ll illustrate how these products can be inte-
grated together in a coherent fashion so that, combined, they’ll equal or surpass in
value the offerings by the commercial SOA vendors. Figure 2.1 recaps the technologies
involved in the Open SOA Platform and highlights (in double-width lines) those that
we’ll investigate moving forward (as you recall, JMS, application servers, and GUIs are
covered thoroughly by other publications or are fairly commoditized in functionality).

 Over the past five years I’ve had the opportunity to participate in “real-life” projects
that have used many of the open source products discussed in this chapter. In choosing
which ones will constitute our Open SOA Platform, I had to select a single product
within each product category. This isn’t intended to suggest those that aren’t selected
are any less worthy. As with any evaluation process, the final choice is based on some
combination of objective and subjective facts (obviously, we all want to believe we only
use objective facts, but human nature often dictates against such logic).

 Before we dive into each of the technology categories and the open source possi-
bilities within each of them, let’s first establish some general, universal criteria that we
can use when evaluating any of the products.

Figure 2.1 Open SOA Platform technologies. Those surrounded in double-width lines represent what’s
covered in this book.
Licensed to Deborah Christiansen <pedbro@gmail.com>

30 CHAPTER 2 Defining the Open SOA Platform
2.1 Evaluating open source products
Some general criteria exist for examining all of the technology products that consti-
tute the Open SOA Platform. They’re described in table 2.1.

Now that we’ve identified the general evaluation criteria that we can apply to evaluat-
ing the technologies that constitute the Open SOA Platform, let’s look at each tech-
nology category and identify for each an open source product that we’ll use. In this
process, we’ll identify competing open source solutions and address (a) the criteria
used for evaluating the products within a category, and (b) the justification for why a
given product was chosen. Let’s start with BPM.

2.2 Choosing a BPM solution
As we discussed in chapter 1, BPM refers to software that can be used to model and
execute workflow processes. BPM can be considered another form of application
development, albeit more visual in nature. Also, design and early development of BPM
processes can often be performed by subject matter experts instead of hardcore devel-
opers (that said, the latter is often still required, at least in later stages of the develop-
ment cycle). Why is BPM considered part of SOA? It is because it directly benefits, and
is enabled by, the exposing of reusable services that is central to SOA. With BPM, you
can create business processes that span across multiple, previously stovepiped, applica-
tions. In this sense, BPM applications are often fundamentally different from tradi-
tional applications, and are less focused on performing a specific task and more

Table 2.1 Open source selection criteria, general guidelines

Criteria Comments

Viability Is the product widely used, and does it enjoy a strong user commu-
nity? Is the solution well documented? Are sufficient development
resources committed to the project?

Architecture Is the architecture of the product complementary to the other prod-
ucts we are evaluating? Is it well documented and logical, and does it
adhere to common best practices and patterns?

Monitoring and management Does the product provide off-the-shelf monitoring and management
tools? Since we are mostly evaluating Java products, does it utilize
JMX, which is the standard for instrumentation and monitoring of Java
applications?

Extensibility Can the off-the-shelf solution be extended to add new functionality?
Does a pluggable framework exist for adding new functionality?

“True” open source This is a sensitive topic, but we want to consider only products that
are licensed using one of the common open source licenses: GPL,
LGPL, BSD, Apache, or Mozilla Public License. We want to avoid, if
possible, “free” or “community” versions that retain restrictions in
usage or modification.
Licensed to Deborah Christiansen <pedbro@gmail.com>

31Choosing a BPM solution
oriented toward an entire business process. For example, a new hire process within a
company may involve setting up the individual in a multitude of different systems,
from benefits and payroll to a 401(k) system. A BPM process models that entire work-
flow and isn’t isolated to populating just one of the applications with data.

It’s worthwhile to distinguish between some of the terms used in BPM, as the
terminology can sometimes be rather confusing:

■ A workflow is generally understood as series of human and/or automated tasks
that are performed to produce a desired outcome. A fancier name for workflow
that is commonly used is orchestration.

■ Closely related to workflow is a process. It’s defined as “a set of activities and
transactions that an organization conducts on a regular basis in order to
achieve its objectives… It can exist within a single department, run throughout
the entire enterprise, or extend across the whole value chain” [BPMBasics]. A
process may involve one or more workflows.

■ A task represents a specific work item that must be performed, most typically by
a user. Tasks constitute the work within the workflow.

■ A node is a generic command or step within a process. It can be a task, a wait
state, or a decision. A business process consists of nodes.

■ A transition (or, in XML Process Definition Language [XPDL] nomenclature,
edge) defines how nodes are connected.

BPM systems, by their nature, involve modeling what can be complex processes. Math-
ematical algorithms are often used as the basis for implementation and can be fairly
arcane to understand for those not steeped in its principles. The requirement to visu-
ally model workflows also represents a significant development challenge. These are
perhaps the reasons why open source BPM solutions were, at first, slow to emerge.
Recently that has changed, and you can now choose among several excellent open
source BPM systems. We’ll discuss how to make a wise choice in the next section.

2.2.1 BPM product evaluation criteria

As you recall, in section 2.1 we discussed general criteria for evaluating open source
SOA software. There are obviously some additional BPM-specific criteria that we’ll
want to consider; they are listed in table 2.2.

What is a “stovepiped” application?
A stovepiped application, by its design, is completely isolated and self-contained.
Legacy applications, which were often developed with little notion of integrating with
external data or systems, are often considered stovepiped. SOA tools provide the
ability to unlock the business rules and operations of these stovepiped applications
into services that can be invoked externally. Existing investments can be leveraged
without having to resort to replacing critical business systems.
Licensed to Deborah Christiansen <pedbro@gmail.com>

32 CHAPTER 2 Defining the Open SOA Platform
Obviously, this only scratches the surface of the underlying functionality typical in any
BPM solution. However, it does touch on some of the most important features and
provides us with guidance on identifying what constitutes a BPM. That way, we can
identify possible open source products, which is our next topic.

2.2.2 Open source BPM products

As we pointed out earlier, BPM solutions tend to be fairly complex in nature. This is
both because of the visual modeling requirements and the complex workflow algo-
rithms that drive the BPM engine. Fortunately, within the past few years, we’ve seen
exciting developments in the open source community surrounding BPM, and there

Table 2.2 BPM evaluation criteria

Criteria Comments

Simplicity BPM solutions, particularly those by commercial vendors, have a history
of being very complicated to learn and even more difficult to deploy. Cir-
cumstantial evidence suggests many solutions become expensive “shelf-
ware” and never live up to the promises anticipated. We want our
solution to be simple to learn, deploy, and manage.

Lightweight/embeddable In part related to simplicity, this criterion refers to the ability, if need be,
to incorporate the BPM “engine” directly into an application. For example,
you might be building a new loan processing application and want the
ability to embed a workflow engine directly within it without having to
manage it externally.

Process nodes Are all standard process nodes available out of the box? This would
include decision/conditional routing, human-interface task support,
forks/splits, and joins/merges. Can callout nodes or capabilities exist to
invoke Java and web services?

Transactional requirements Do auditing, logging, and rollback/compensation features exist? Are
long-running transactions supported? Are roles and users supported?

What’s the difference between BPM and BPEL?
BPEL (Business Process Execution Language) can be considered a subset of BPM.
BPEL provides a semantically rich language for creating business processes that are
composed of SOAP-based web services. It’s a specification for how to materialize a
business process that’s composed of SOAP-based web services. BPEL, by itself,
has no specific provisions for human activity–based tasks or queues (though the
emerging BPEL4People—WS-BPEL Extension for People—will address some of
these deficiencies), which are typically associated with workflow-based BPM pro-
cesses. The BPEL standard also doesn’t specifically address reporting, analysis, or
monitoring, though some BPEL vendors have augmented their offerings to include
such features. In other words, the term BPM is typically used when referring to com-
plete product offerings whereas BPEL is typically used to refer to the web service or-
chestration standard.
Licensed to Deborah Christiansen <pedbro@gmail.com>

33Choosing a BPM solution
are now several excellent products to choose from. Table 2.3 lists the most active BPM
open source products available today.

While the overview in table 2.3 doesn’t delve deeply into the feature sets of each avail-
able solution, the criteria we established does point to Apache ODE, JBoss jBPM, or
Bonita as the most appealing of the solutions. We’ll address the reasons for this next.

Table 2.3 BPM open source product overview

Product Comments

Intalio BPMS
(Community Edition)

Feature-rich BPM that uses business process modeling notion (BPMN) to
generate BPEL-based orchestrations. Unfortunately, only parts of Intalio’s
solution are open source, with some confusing licensing restrictions.
Also, since BPMN is converted to BPEL (with that code being proprie-
tary), extending the product seems problematic, and reliance on BPEL
means support for only SOAP-based web services.

ActiveBPEL Engine An efficient and highly regarded BPEL engine. Models can be designed
using the free, but not open source, Designer. Important functionality
such as persisting process instances to a database, or versioning of pro-
cesses, is only supported out of the box in the commercial Enterprise
version. My experience using the product suggests that the open source
release isn’t suitable for production usage.

Apache ODE Apache ODE (Orchestration Director Engine) is a runtime BPEL engine. Its
API is such that you can extend it in new and interesting ways, and thus
aren’t tied to the SOAP-only invocation of BPEL. The licensing model is
very attractive, and the engine is lightweight and can be exposed, via
Java Business Integration (JBI), to ServiceMix, an excellent open source
ESB, which we cover later. Apache ODE doesn’t come with a designer per
se, but you can use the beta of the Eclipse BPEL editor.

Enhydra Shark and Java
Workflow Editor (JaWe)

Shark is a workflow engine that adheres to the XPDL workflow standard
that’s supported by the Workforce Management Coalition (WfMC). JaWe
is an XPDL editor, but has some limitations compared with its commer-
cial cousin, Together Workflow Editor. Documentation specific to Shark
was difficult to locate, and the emphasis, like with Intalio and Active-
BPEL, is to push you toward commercial products.

JBoss jBPM A mature, efficient, and lightweight process/workflow engine with a
usable Eclipse-based modeler. Uses its own terse XML graph notation
language known as jPDL (jBPM Process Definition Language), and
includes support for all core modeling nodes, such as decision and fork.
Can be easily extended and isn’t tied to a particular deployment frame-
work. Unlike several others, there is no commercial “upgrade,” and no
functionality is specifically excluded.

ObjectWeb Bonita Powerful, XPDL-compliant workflow engine. Well documented and mature.
Includes excellent human-task UI integration (i.e., form generator).
Doesn’t come with an open source editor, and requires the JOnAS (Java
Open Application Server) application server.

WSO2 Business Process
Server

The WSO2 Business Process Server is based upon Apache ODE, and adds
a web-based administrative interface along with simulation capabilities.
Licensed to Deborah Christiansen <pedbro@gmail.com>

34 CHAPTER 2 Defining the Open SOA Platform
2.2.3 Selecting a BPM solution

For several of the products listed in table 2.3, licensing issues were a major consider-
ation in their exclusion from further consideration. In the case of Intalio, only some
portions of their product are truly open source. With several others, the open source
releases are more of a teaser to encourage upgrading to a commercial product
(Shark/JaWe, ActiveBPEL). While Apache ODE can be fairly easily extended, it
doesn’t come with any built-in support for human-interface tasks, which (though not
a part of the core BPEL standard) are an essential part of a BPM. Also, given that it’s a
BPEL execution engine, it’s limited to working with SOAP-based web services, and
can’t, for example, directly invoke a Java class or populate a JMS message (granted,
you could extend it to support this, but then it’s no longer truly supporting the BPEL
standard). For these reasons, we didn't select ODE, or WSO2's Business Process Server,
which is based on ODE, as the BPM product.

 ObjectWeb’s Bonita offers an attractive open source solution. It has a proven heri-
tage dating back to its 1.0 release, and with the release of Version 2, added support for
XPDL. Unfortunately, Bonita doesn’t come with an XPDL editor. Instead, Bonita sug-
gests using one of the available open source or commercial editors. This raises a con-
cern, as the open source XPDL editors don’t appear to be sufficiently robust (at least
compared with their commercial alternatives). An additional concern is the newer
version’s reliance on the JOnAS application server. This will limit the ability to embed
the engine within other applications. Because of these reasons, we didn’t consider
Bonita moving forward.

 This leaves JBoss jBPM. It’s a simple-to-use, but very powerful, workflow engine. As
mentioned, jPDL is the XML vocabulary used to express business processes, and they
can be created visually using the jPDL Designer, an Eclipse-based plug-in. Further,
centralized administration of jBPM processes can be managed through the jBPM
Console, which is a web-based management tool. jBPM has the financial backing of
JBoss and enjoys a fairly vibrant user community, based on forum and mail list activ-
ity. It also is being extended to support those who want to use BPEL scripts for work-
flow execution (at its core, it’s a graph-based process engine). For these reasons, we
selected it as the BPM solution for our SOA technology stack. Let’s take a more in-
depth look at jBPM.

2.2.4 Introducing JBoss jBPM

The jBPM project’s first official release was in early 2004, followed by the 2.0 release
later in the year. At approximately the same time, the jBPM team merged with JBoss,
officially making jBPM a part of the JBoss family of products. Since the merger, the
product has been managed and led by largely the same team, which has resulted in a
solid, robust, and time-tested product. At the time of this writing, the 3.3 release of
jBPM was the latest production version, with 4.0 in early alpha (we didn't use the 4.0
release for this book as it remains very fluid).
Licensed to Deborah Christiansen <pedbro@gmail.com>

35Choosing an enterprise decision management solution
 JBoss describes jBPM as “a flexible, extensible framework for process languages,” or
alternatively as a “platform for graph-based languages.” The jBPM Process Definition
Language (jPDL) was the first, or “native,” process language developed on this frame-
work. jBPM comes with the jPDL Eclipse plug-in Designer for easily creating business
processes, along with a web application page-flow framework for creating human-
based tasks. It supports persistence of process instances by storing them within nearly
any open source or commercial database (using the well-respected Hibernate object-
relational database mapping framework). Chapters 5, 6, and 7 will delve into great
detail on jBPM.

2.3 Choosing an enterprise decision management solution
Enterprise decision management (EDM) is an approach to automating and improving the
decisions a business makes on a day-to-day basis. It plays an important role in our
Open SOA Platform, as it provides the centralized management for all of the business
rules and logic associated with each of the applications.

 Fundamentally, an EDM is about extracting the decisions and rules that are today
embedded into applications or people and systematically exposing them as rule assets
that can be centrally managed and authored. Some have gone so far as to proclaim a
“Business Rule Revolution” is under way, insofar as it “represents an emerging undeni-
able need for the right people to know what a business’s rules are, to be able to change
those rules on demand according to changing objectives, to be accountable for those
rules, and to predict, as closely as possible, the impact of rule changes on the business,
its customers, its partners, its competition, and its regulators” [VonHalleGoldberg].

The value of managing business rules in a centralized fashion, and making them
maintainable by business users instead of developers, has long been recognized as a
laudable goal. Unfortunately, tapping into those rules from external applications and
processes was often a considerable challenge. Early business rule vendors had their
own proprietary API, often in one or two supported languages. This made integrating
the business rules difficult and ensured vendor lock-in. The advent of web services
and SOA opened up a vast new opportunity for incorporating a BRMS. Since web ser-
vices are designed to be language and platform neutral, centralized business rules can

What’s the difference between BRMS and EDM ?
EDM, besides sounding a bit sexier and less boring than Business Rule Management
System (BRMS), is also considered to be a superset of BRMS. By that, it also in-
cludes leveraging analytical models that can be derived from data warehouse or busi-
ness intelligence capabilities to conceivably create self-tuning rulesets. The reason
we chose EDM for this book was that EDM is becoming the more recognized acronym
for rule-based systems. Consider it similar to how workflow slowly became subsumed
by the more glitzy sounding business process management (after all, workflow does
sound pretty dry).
Licensed to Deborah Christiansen <pedbro@gmail.com>

36 CHAPTER 2 Defining the Open SOA Platform
now be accessed by virtually any application. Further, composite applications, such as
business processes designed using a BPM, can easily tap into a BRMS for decision-based
content routing rules. Perhaps the hyperbole of a “Business Rules Revolution” isn’t
such an exaggeration after all. In this case, the foundations of SOA become an
enabling force to this exciting, even enterprise-changing, technology.

 Figure 2.2 depicts the main components of an EDM.
 In figure 2.2, we see a repository of rules broadly categorized according to the types

of rules they are, such as “Constraint Rules,” which serves, for instance, to impose limits
such as the maximum amount of credit to extend to a customer. These various types of
rules constitute the rule repository, which obviously has a central role in a rules system.
The Rule Engine component, sometimes referred to as the inference or execution engine,
represents the algorithms and logic that define how the engine works. The API/Web
Service layer defines how you interface with the system. Many EDMs include multiple
language-specific libraries and APIs, and often a SOAP- or REST-based web service inter-
face. The Authoring IDE is the tool for writing, editing, testing, and categorizing rules.
An important aspect of the authoring environment is whether support for domain-spe-
cific languages (DSLs) is available. This refers to the ability to express rules in a lan-
guage that’s natural to the business user yet has rigorous semantics. Consider it
analogous to building your own programming language using a business vocabulary
(hence, it’s sometimes referred to as “language-oriented programming”). The External
Apps are those applications that are utilizing the rules engine.

 What’s the role of EDM in SOA? One of the principal tenets of SOA is designing sys-
tems that are flexible and agile. Rules engines are instrumental in advancing this con-
cept, as they allow business rules to be changed independently of making application
modifications. This effectively eliminates having to go through drawn-out develop-
ment and testing cycles, thus improving agility. This obviously also contributes to
loose coupling (another tenet of SOA), as the binding between an application and its
business rules is no longer as tight. The next section delves more deeply into the crite-
ria used for evaluating an EDM offering.

Figure 2.2 The components of an EDM, and its relationship to API services and rule engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

37Choosing an enterprise decision management solution
2.3.1 EDM product evaluation criteria

Section 2.1 identified some general criteria for evaluating the various SOA technolo-
gies, and an EDM obviously has some additional product-specific requirements.
Table 2.4 identifies some key requirements we’ll use when analyzing the suitability of
the various open source rule systems.

Now that we have a foundation for assessing an EDM, we can turn to identifying the
possible open source EDM candidates.

2.3.2 Open source EDM products

While commercial business rule solutions have been around for a decade or more, it’s
only been within the past five years or so that open source alternatives have become
available. This is no doubt because of the increased visibility that has become associ-
ated with the “business rule approach,” along with the success stories presented by the
commercial vendors. Table 2.5 identifies the open source EDM products.

Table 2.4 Open source selection criteria, general guidelines

Criteria Comments

Centralized rule repository
and classification

Central to the concept of EDM is a repository that enables rules to be
classified, managed, and versioned. This should include the ability to
add custom metadata and properties to each rule and ruleset. Security
and access control are also important requirements.

Auditing and logging In a time of increasing regulatory and compliance demands, the ability to
audit the frequency and outcome of rule actions is essential. This can
also provide analytical feedback to rule authors, allowing them to refine
and improve their rules over time.

Integrated development
environment (IDE)

A complete authoring environment for design, creating, testing, and pub-
lishing rules. Usually should include “wizards” or other forms of assis-
tance for those new to the system.

Domain-specific language
(DSL) support

We alluded to this briefly earlier: the ability to create a language based
on business or domain nomenclature. An example of a rule expressed
using a DSL is, “If Order is greater than $10,000, then sales manager
approval is required.” That, in turn, would be translated into a form that
the rules engine could understand.

Robust API Refers to the ability to integrate with the rules engine. This means not
only providing programmatic access to the rule engine, but also whether
it includes support for reading/writing data from popular SQL databases,
where most fact-related data resides. In addition, the API should support
multiple languages and/or have strong web services support.

Performance Although performance was listed in section 2.1, it is worth reiterating
because of the importance performance plays within an EDM. It’s not
uncommon to develop thousands of rules, and a highly efficient engine
must be used since many rules must be fired in a real-time capacity.
Licensed to Deborah Christiansen <pedbro@gmail.com>

38 CHAPTER 2 Defining the Open SOA Platform
Based on the results in table 2.5, it appears as though the only two real choices are
OpenLexicon and JBoss Rules (hereafter referred to as Drools, its historical name).
Let’s examine the reasons next.

2.3.3 Selecting an EDM

Mandarax, while maintained by a fairly small team of developers, does offer some
innovative features. They include an elegant way of tapping into working memory
from a variety of data sources, as well as a novel API approach to creating functions
and predicate-style clauses using standard Java classes. Documentation is adequate.
The biggest concern with Mandarax is that it’s maintained by a small team and
appears to have a limited user base. The concern is that, over time, without a strong
user base the project could fall into quiescence and would no longer be actively main-
tained (a fate that afflicts the majority of open source projects). For this reason, we
didn’t consider Mandarax.

 Both OpenRules and Jess were excluded from consideration due to their licensing
restrictions. OpenRules, while proclaiming itself as open source, doesn’t fit my criteria
of open source: using it in certain commercial capacities requires purchasing a
license. Although we are advocates of purchasing support for those open source appli-
cations that have a sponsoring company whose revenue model is based on that (such
as JBoss), we think it’s disingenuous to pitch a product as open source when a license
must be purchased for commercial use. On the other hand, Jess clearly doesn’t aim to

Table 2.5 EDM open source product overview

Product Comments

Mandarax Primarily just a rules engine with limited IDE support (Oryx, a UI editor for
Mandarax, is maintained by a third party, and is a bit buggy and unrefined).
Doesn’t include a repository.

OpenLexicon Fairly new product (2006) with limited documentation. Favorable license
(modified Mozilla). Includes a polished management interface and reposi-
tory. Can create rules through a web-based interface. DSL support is some-
what limited. Doesn’t appear to be easily embeddable.

JBoss Rules (Drools) Highly mature rules engine that has undergone several significant enhance-
ments recently, which include the addition of BRMS repository functionality.
DSL support is limited but useful. Highly efficient rules engine and decent
Eclipse-based authoring environment. Lightweight and embeddable.

OpenRules Restrictive license for commercial use (for example, you must purchase a
non-GPL license if you’re using OpenRules in a SaaS or ASP model). For this
reason, it wasn’t considered a viable selection for our Open SOA Platform.
That said, it’s a highly capable BRMS with a strong support community.

Jess Jess, an early and highly respected rules engine, isn’t open source or free,
though it’s commonly assumed to be (it’s very affordable).

TermWare Primarily targeted as an embedded solution. Doesn’t include repository,
management features, or IDE.
Licensed to Deborah Christiansen <pedbro@gmail.com>

39Choosing an ESB
mislead and doesn’t position itself as open source (free versions for certain types of
usage are available).

 OpenLexicon shows great long-term promise, but the fact remains that it’s still rel-
atively new and lacks comprehensive documentation. Its nicely integrated BRMS fea-
tures and well-designed user interface should definitely place it on anyone’s open
source short list. This leaves Drools, which has a long and proven track record and has
been enhanced with more enterprise BRMS features, such as repository management.

2.3.4 Introducing JBoss Rules (Drools)

The Drools project began in 2001, and the first production-ready release was the 2.x
version that appeared in 2003. By 2005, Drools had become a popular open source
rules engine, so much so that in October of that year, it joined the JBoss family of prod-
ucts. With the deeper pockets afforded by JBoss (and then Red Hat, which, in turn,
acquired JBoss in 2006), the 3.0 release of Drools offered significant performance
enhancements and introduced an authoring/IDE Eclipse environment. In addition, a
new rule language, DRL, simplified rule creation. Even more substantial improvements
accompanied the 4.0 release. The rule language was enhanced; a Hibernate frame-
work was introduced for populating working memory; performance was further
improved; and, perhaps most significantly, BRMS functionality was added. The 5.0
release, which will be available by the time of this publication, adds further enhance-
ments, related to process flow and includes complex event processing features (we are
using the 5.0 release for the examples presented in this book). Drools can now claim to
be a true feature-rich alternative to commercial BRMS offerings.

 The Drools team at JBoss now includes over 12 full-time staffers, along with a fairly
large contingent of non-JBoss contributors. The project has excellent documentation,
which can be somewhat of a rarity in the open source world. The mailing list is also
quite active.

 If there’s a knock against Drools, it’s that a prebuilt web services interface isn’t
available. We address this deficiency in chapter 11, where you’ll learn how to easily
expose Drools rules as SOAP-based web services.

2.4 Choosing an ESB
As discussed in chapter 1, an enterprise service bus (ESB) is considered middleware
that lies between business applications and routes and transforms messages along the
way. Since the ESB acts as a messaging bus, it eliminates the need for point-to-point
connectivity between systems. Instead, when one system needs to communicate with
another, it simply deposits a message to the bus, and the ESB is then responsible for
determining how to route the message to its destination endpoint. Any necessary
transformations are performed along the way. Figure 2.3 illustrates the central role an
ESB can play.

 An important role an ESB plays is bridging between different protocols. For
instance, an interface to an ERP system may require SOAP, but an internal CRM may
Licensed to Deborah Christiansen <pedbro@gmail.com>

40 CHAPTER 2 Defining the Open SOA Platform
only support XML over JMS. An ESB can translate between these protocols and lift JMS
messages originating from the CRM and into a SOAP web service call understood by the
ERP (and vice versa). Typically, ESB “adapters” perform the function of communicating
with a disparate group of protocols, such as SOAP, CORBA, JMS, MQ Series, MSMQ, FTP,
POP3, and HTTP, among others. We’ll examine the ESB evaluation criteria next.

2.4.1 ESB product evaluation criteria

In selecting which open source ESB to use for the SOA technology platform, let’s con-
sider several ESB-specific requirements, as shown in table 2.6.

Table 2.6 Open source selection criteria, general guidelines

Criteria Comments

Protocol adapters An ESB should support, at a minimum, adapters for the following protocols:
POP3/SMTP, HTTP, FTP, SOAP, JMS and File.

Data-flow processing/
choreography

An ESB must often perform a series of tasks as part of a data gathering,
routing, and transformation process. This requires the ability to chain
together multiple steps into a processing pipeline that may require content-
based routing, splitting, aggregating, and exception logic. For real-time pro-
cessing, an ESB event-flow choreography may eliminate the need for BPM-
type orchestrations (which are more suitable for long-running transactions).

Clustering and failover Given the central role an ESB plays within a SOA environment, it must fea-
ture clustering and failover capabilities. In addition, the ability must exist to
distribute, among a number of different servers, the various ESB services.
For example, XSLT transformations can be very CPU intensive, so it may be
desirable to isolate such processing on a separate server or servers.

Figure 2.3 Central role of an ESB
within the enterprise
Licensed to Deborah Christiansen <pedbro@gmail.com>

41Choosing an ESB
Although disagreement exists as to who invented the ESB (both Sonic Software, now a
division of Progress, and TIBCO claim that honor), the first real mature commercial
products began to appear around 2002. Emerging in 2004 was the first real open source
ESB, Mule. It was closely followed by ServiceMix, which in turn was succeeded by several
others. Now, there are at least half a dozen compelling open source ESBs. Indeed, it’s
difficult to make a clear-cut decision based on competing features, as several possess
nearly identical capabilities (and this is no small feat, given how comprehensive these
products are). Instead, the decision simply may come down to personal preference. In
other words, you can’t go wrong by picking nearly any of the top-tier ESBs.

There’s one distinction that can be made between some of the competing products—
those that support the Java Business Integration (JBI) specification and those that don’t.
What is JBI? It’s a Java Community Process (JSR 208) specification for building a run-
time integration architecture and was formally approved in summer 2005. It expands
on WSDL 2.0’s message patterns to create a container that can house services and the
consumers of those services. Without getting too immersed now into the technical
nomenclature of JBI, suffice to say that it represents a standard for creating ESB com-
ponents and its runtime messaging environment. Although it originally began with

Transformations Most ESBs, if not all, are XML-centric. That is, the messages that flow
through the bus must typically be in XML format (binary data can be
addressed through Base-64 encoding). As such, the ability to transform from
one XML format to another is essential. While every ESB supports XSLT
transformations, not all support XQuery, which adds significant query and
transformational capabilities.

Service extensibility A well-defined API should exist that easily permits creation of new services
or adapters.

Table 2.6 Open source selection criteria, general guidelines (continued)

Criteria Comments

What is the different between choreography and orchestration?
In a choreographed process flow, each node within the process determines which
path to proceed moving forward. For example, each node could reside within its own
Java virtual machine. It receives a message through some in-port queue, performs its
processing, and then determines which out-port queue to deposit the message. The
node is, in a sense, oblivious to its role within the larger process. With an orchestra-
tion, however, the process flow is managed centrally and typically within a single Java
virtual machine. In the case of BPEL, each time a process is initiated, an “instance”
of the process is created, and managed by the BPEL engine. If it is long-running, the
instance may be persisted to a database (a process known as dehydration). Within
a choreographed service, there’s no concept of a “process instance,” and the mes-
sages instead reside, somewhere, within the process nodes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

42 CHAPTER 2 Defining the Open SOA Platform
much fanfare, several early proponents such as IBM and BEA (now Oracle) soured on
the JBI, and the follow-up version of the standard, intended to address many of its per-
ceived inadequacies, has languished.

 How important is JBI? That’s a matter of great debate. Obviously the proponents
of ServiceMix and OpenESB would argue that it’s an important differentiator, as you
are then not tied into a potentially proprietary solution. However, non-JBI imple-
mentations, such as Mule, could rightly point out that their product is based on
open standards, just not JBI (though they do now offer JBI integration capabilities).
It arguably also makes their products easier to use and configure, as JBI has some
fairly abstruse configuration and deployment requirements. JBI does appear to be
gaining some momentum, especially as the 2.0 specification (JSR 312) works its way
through the approval process (it’s purported to address some of the biggest deficien-
cies in the 1.0 spec).

 With the JBI considerations in mind, let’s take a look at the open source ESB products.

2.4.2 Open source ESB products

While the product category known as ESB is a fairly recent development, several open
source products were quick to emerge. In part this was because a community of expe-
rienced developers already existed with great familiarity with messaging solutions such
as JMS. There’s a now a solid selection of products from which to choose, with several
very mature. The open source ESBs are identified in table 2.7.

 As table 2.7 indicates, there are several excellent choices. Let’s take a closer look.

Table 2.7 Open source ESB product overview

Product Comments

ServiceMix Early (2005) JBI-compliant ESB. Has dozens of components/adapters and sup-
ports nearly every protocol. Allows creation of fairly complex data flows using
enterprise integration pattern components. Active project with frequent
releases.

MuleSource Mule Broad connectivity options and is strong in transformation, routing, and security.
Like ServiceMix, supports common enterprise integration patterns for real-time
choreography. Vast array of components/adapters. Well documented, mature,
and proven. Broad range of app servers supported.

Apache Synapse
(WSO2 ESB)

Positioned as a lightweight ESB that, while supporting essential ESB functional-
ity, is simple to use by way of XML configuration. In addition, it’s designed with
high performance and availability features that make it especially suitable for
web mediation.

JBoss ESB A fairly new entrant that still appears to be maturing. Not a greatly active user
community, and using web services is tedious. Does provide nice integration
with other JBoss middleware products.

OpenESB Like JBoss ESB, a fairly new project that’s still maturing. Version 2 promises to
offer significant enhancements. Good IDE support through NetBeans plug-in.
GlassFish App Server v2 has built-in support for OpenESB, but support for other
app servers is lacking. Documentation is fairly sparse.
Licensed to Deborah Christiansen <pedbro@gmail.com>

43Choosing an ESB
2.4.3 Selecting an ESB

Both OpenESB and JBoss ESB are fairly new entrants into the space. While it’s true
that JBoss ESB has been around prior to JBoss purchase of the solution, it only
recently introduced SOAP-based web services support. Sun’s OpenESB appears to be
gaining some momentum, but overall it lacks in documentation and mindshare
(there’s also confusion about its role in Sun vis-à-vis the SeeBeyond ESB that was
acquired with Sun’s purchase of SeeBeyond). At this point, we consider both OpenESB
and JBoss ESB too immature, at least compared with some of the others, to consider as
viable options.

 Jitterbit, while very interesting, isn’t positioned as a full-fledged ESB in the vein of
the others. That said, it has a clever, user-friendly interface that’s intended for techni-
cal business users and not necessarily developers. It supports the most common trans-
port protocols and has excellent database connectivity with easy-to-use extraction
wizards. On the negative side, documentation remains relatively weak, and there are
some licensing restrictions introduced through its own Jitterbit Public License (which
is unfortunate). Given the end-user orientation of the product, it isn’t well suited for
the complex ESB routing and transformational abilities that our Open SOA Platform
demands. As such, it was excluded from consideration.

 OpenAdapter is one of the easier ESB products to learn and use. It’s very mature,
and is lightweight and fast. It also has a devoted development team that provides fre-
quent releases. Notwithstanding these positive attributes, it doesn’t appear to have sig-
nificant momentum or user adoption. Disappointingly, its documentation is poor,
with only a few of their adapters adequately documented. Because of these reasons, we
determined that OpenAdapter wasn’t a good fit for the platform.

 Both ServiceMix and Mule represent excellent choices. They both offer a broad
range of functionality and support a wide range of transport protocols. A strong case
can be made for either product. However, we believe that for most environments,

Jitterbit Positioned more as an “end-user ESB” that’s simple to use without being a
developer. However, lacks broad protocol support. The concept of JitterPaks is
novel and makes exchange of prebuilt integrations feasible. Backend written in
C++, which limits appeal to Java shops. Strong LDAP integration capabilities.

Bostech ChainBuilder
ESB

Adds polished user interface and management features to JBI containers such as
ServiceMix or OpenESB. Eliminates a good portion of the tedium in configuring
and packaging JBI assemblies. Documentation is adequate, though the project
doesn’t appear to have a lot of downloads, which raises concern about viability.

OpenAdapter Mature, elegant, and lightweight ESB. Although it’s been around for a long time,
documentation is poor. Project activity is low, although a dedicated group of
developers keeps the release cycle frequent. Maybe best suited for embedded-
type applications.

Table 2.7 Open source ESB product overview (continued)

Product Comments
Licensed to Deborah Christiansen <pedbro@gmail.com>

44 CHAPTER 2 Defining the Open SOA Platform
Apache Synapse is the better choice. Why? The main reason is one of simplicity. Most
of the ESBs we’ve talked previously about include relatively complicated configura-
tions. This is particularly true of ServiceMix, which, by its JBI heritage, has a complex
deployment structure. The same, albeit to a lesser degree, applies to Mule.

 One of the earliest, and still most popular uses of an ESB, is to service-enable exist-
ing legacy applications. Common usage scenarios include exposing legacy services
with a SOAP or HTTP wrapper. As you’ll learn, however, this can be better accom-
plished using the Service Component Architecture (SCA). That being the case, the
role of an ESB becomes less pronounced and instead is used primarily as a protocol
bridge. Indeed, JMS solutions such as ActiveMQ, which is the default messaging prod-
uct for many open source ESBs, now incorporate enterprise integration patterns, via
Apache Camel, that can perform many tasks traditionally left to the ESB. This includes
functionality such as routing, transformations, message splitting/aggregation, and
content filtering. It may well be that the central role that ESBs have typically played
within a SOA environment will reduce in next-generation architectures.

 In light of these developments, we believe that Apache Synapse, because of its dual
capacity as both a lightweight ESB and service mediation (discussed in section 2.8) is a
prudent choice for most enterprises. For those requiring more sophisticated ESB
capabilities, such as advanced routing features or more esoteric protocols adapters,
consider using Mule or ServiceMix.

2.4.4 Introducing Synapse as a lightweight ESB

Synapse originated in 2005 from the X-Broker source code denoted by Infravio, which
subsequently was purchased by WebMethods, which was then sold to Software AG.
While the motivations for the donation are unclear, it likely was because Infravio was a
vendor within the SOA registry space, and the X-Broker code wasn’t considered a key
offering. What is interesting is that, more recently, Synapse has become closely affili-
ated with WSO2, which has re-branded Synapse as WSO2’s ESB. Most of the project
members for Apache Synapse belong to WSO2. WSO2’s ESB, which is also open source,
tracks closely with the official Apache Synapse releases, and offers some nifty graphi-
cal front-end management and monitoring enhancements to Synapse. However, we
won’t demonstrate the use of WSO2’s version, since learning the essentials of Synapse
is the most important consideration (and matches our desire to keep things as light-
weight as possible).

 The initial Apache incubator proposal submitted by Synapse definitely positions
it as an ESB-type product, with highlights citing multiprotocol connectivity, transfor-
mation features, and high performance, and management. Special emphasis is
placed on proving support for the WS-* standards stack, which includes WS-Address-
ing, WS-ReliableMessaging, WS-Security, and WS-Policy. This is noteworthy, as Syn-
apse will be used for such purposes within our Open SOA Platform. The latest
release as of this writing is 1.2, which added numerous enhanced capabilities as well
as improvements for scalability and robustness. That release builds upon the 1.1
Licensed to Deborah Christiansen <pedbro@gmail.com>

45Choosing an ESP solution
release, which added task scheduling, XQuery support, file system support through
Apache VFS, and database mediation.

 A simplified view of the Synapse architecture is shown in figure 2.4.

As shown in figure 2.4, a request arrives from a client, and the proxy configuration
determines which processing sequence to apply to the inbound message. Sequences
are then applied to perform transformations, credential mapping, caching, security
processing, and the like. Sequences can be applied to both the inbound and out-
bound messages, thus providing great flexibility. A remote or local registry can be
used to facilitate reuse of commonly used sequences. Chapter 9 will go into much
greater detail with code samples on the use of Apache Synapse.

2.5 Choosing an ESP solution
Event stream processing (ESP) is an emerging field that has begun to gather a lot of
interest. It’s considered a part of a broader trend known as Event-Driven Architecture
(EDA). EDA is a style of application architecture that’s centered on asynchronous,
“push-based” communications. It’s entirely complementary to SOA and uses
asynchronous messages, in lieu of RPC-style function calls, to perform distributed

WSO2's ESB 2.0 and Carbon
As we pointed out, WSO2 has largely provided the financial and development
resources behind Apache Synapse. As this book neared production, WSO2 released
a significantly upgraded version of their ESB product, upon which the future version
of Synapse will likely be based. In this new 2.0 release, the WSO2 ESB was rewritten
using their new Carbon framework, which is a modular, OSGi-based solution.
Unfortunately, we didn't have an opportunity to evaluate this product yet, but please
visit our SOA blog at http://jdavis.open-soa.info/wordpress for ongoing and updated
information.

Figure 2.4 Simplified Apache Synapse architecture
Licensed to Deborah Christiansen <pedbro@gmail.com>

46 CHAPTER 2 Defining the Open SOA Platform
computing. An event is simply an act of something happening, be it a new order, ship-
ping notice, or employee termination. The system that records the event (or sensor)
generates an event object, which is sent by way of a notification. The consumer of the
notification (or responder) may be another system that, in turn, uses the event to initi-
ate some action as a response. This is where the concept of ESP comes into play
(which alternatively is sometimes called complex event processing, or CEP). Since ESP is a
fairly nascent technology, let’s take a closer look at it.

2.5.1 What is event stream processing?

ESP involves building or using tools to
design, manage, and monitor the
events that flow through an EDA-ori-
ented environment. Event patterns are
used to filter event data in order to
detect opportunities or anomalies. An
ESP solution must be able to support a
high volume of events, perhaps mil-
lions daily, in order for it to be a viable
offering. A business rule engine can be
used in tandem with the event patterns
to determine who receives what alerts.
The relationship between these entities
is shown in figure 2.5.

 In figure 2.5, messages that arrive
into the JMS bus are interrogated by the
ESP (sometimes referred to as wire-tap-
ping). The business rules in the illustra-
tion may be contained directly within
the ESP or externally managed, and drive the logic that occurs when certain patterns
are detected. The results can then be fed into a BI dashboard.

Figure 2.5 Event stream processing used for
receiving business event notifications

BI, BAM, and ESP: are they all the same thing?
Business intelligence (BI) refers broadly to the technologies and applications used
to analyze and present business information to targeted business consumers. Busi-
ness activity monitoring (BAM), though similar to BI, tends to focus on real-time anal-
ysis of information. BI, on the other hand, often works in conjunction with data
warehousing technologies to present analytics on historically gathered data. ESP
shares the same real-time monitoring emphasis as BAM, but the source of data is
derived directly from event streams. Historically, BAM solutions might cull real-time
data from transaction records or BPM systems, but now are being enhanced to sup-
port ESP. So, BAM can be considered a super-set of ESP.
Licensed to Deborah Christiansen <pedbro@gmail.com>

47Choosing a registry
Perhaps because ESP is a fairly new concept, there’s a dearth of open source solutions
currently available that specifically address ESP. Esper is the only widespread open
source ESP currently available. Some others are currently in development, including
Pion. Several open source BI tools, which can be used in conjunction with an ESP to
create executive dashboards, have become popular. Pentaho is perhaps the most rec-
ognized open source BI vendor, but others have successfully used tools such as Jasper-
Reports and Eclipse Foundation’s Business Intelligence and Reporting Tools (BIRT)
to create effective BI solutions. Though not open source, SeeWhy Software offers a
“Community Edition” BI product that contains significant ESP capabilities. It can be
used in production but is limited to a single release on any single-processor server.

 Given that Esper is the only open source Java ESP currently available, let’s examine
it in greater detail.

2.5.2 Introducing Esper

The Esper project (whose name was derived from ESP-er, someone born with telepa-
thy or paranormal mental abilities) was first released in August 2006. However, the
project founder, Thomas Bernhardt, had developed earlier prototypes of ESP type
solutions while working at a large financial institution. Since its initial release, a steady
stream of updates has been provided (the most recent release, as of this writing, was
3.0). Beyond typical bug fixes, the main focus of enhancements relate to the Event
Query Language (EQL), which is an SQL-like language for developing query expres-
sions against inbound events. With EQL, you register prebuilt queries into the ESP
engine, and as data is received, it’s evaluated against those queries. Because events
often must be viewed within the context of time (that is, no order in 15 minutes at
night may be normal, but during the day, may indicate a website outage, for example),
EQL provides “temporal window” syntax that allows time-period queries to be defined.

 The documentation for Esper is quite good, especially since it’s a fairly new proj-
ect. This is likely because the founders of Esper have created a sponsoring company
called EsperTech, which aims to build on the open source code base to introduce
high availabilities and management features to Esper. This model is, admittedly, less
than ideal for open source advocates, as it may mean some advanced features likely
won’t find their way into the open source release (this model contrasts with JBoss, who
make their revenue entirely from support and do not limit the features found in their
open source products).

 Let’s now turn our attention to the registry, which is used to store reference infor-
mation about the artifacts that comprise a SOA.

2.6 Choosing a registry
The registry’s role in our Open SOA Platform is to store the various software artifacts
that are used in achieving a SOA environment. Historically, the Lightweight Directory
Access Protocol (LDAP), which is a specification for directory services, was commonly
used for registry purposes. It has become nearly ubiquitous in the enterprise because
Licensed to Deborah Christiansen <pedbro@gmail.com>

48 CHAPTER 2 Defining the Open SOA Platform
of Microsoft’s Active Directory (AD) product, which is LDAP based. Most people mis-
takenly assume, in fact, that AD/LDAP is just intended for user and group manage-
ment. Clearly, this is an excellent use of LDAP, but it’s capable of considerably more.
LDAP is ideally suited for any type of hierarchical directory where high-performance
queries are required (with less emphasis on transactional updates and inserts).

 Figure 2.6 depicts how LDAP could be used for managing a variety of artifacts, from
individuals to BPM processes.

 Although LDAP can be configured to support the management of software arti-
facts, it isn’t necessarily ideally suited for this function. In particular, storing of the
actual artifacts themselves, with the ability to query its contents, isn’t easily accom-
plished without extensive customizations.

 A more suitable fit than LDAP might be Universal Description, Discovery, and Integra-
tion (UDDI), which is a web services standard for publication and discovery of web ser-
vices and their providers. While some vendors have released UDDI-based products
(such as HP’s Systinet), it has never achieved significant adoption. This is perhaps due
to several reasons: complexity of the standard and its jargoned and arcane nomencla-
ture (tModels, for example); its initial emphasis on public-based registries; and the
initial lack of any strong UDDI open source offering. At best, UDDI is limping along,
and the now available open source UDDI projects show little activity or enthusiasm.

 One trend that has begun to emerge is that proprietary registry offerings have
started to appear in SOA governance products. They are usually integrated with policy
management features that dictate what services can be called by which clients. This is
a sensible marriage, as governance obviously is closely tied to asset and artifact lifecy-
cle management. Until recently, there have been no real open source SOA governance
projects. Thankfully, that’s now changing. WSO2 has released their WSO2 Registry
product, and MuleSource released Galaxy, a SOA Governance product that is predi-
cated on a registry. Since both are an initial 1.0 release, they’re obviously a bit green
around the edges, but these are exciting developments. Let’s now take a look at some
of the criteria we’ll use for evaluating registry products.

Figure 2.6 An example of an
LDAP repository storing users,
services, and BPM process
metadata
Licensed to Deborah Christiansen <pedbro@gmail.com>

49Choosing a registry
2.6.1 Registry evaluation criteria

As you recall, in table 2.1 we identified some broad open source criteria that can be
applied across all products we are evaluating. In addition, table 2.8 introduces some
requirements specific to registries.

The next section identifies the possible open source products that can be used for the
Open SOA Platform.

2.6.2 Open source registry products

The open source products that potentially can serve as the registry (see table 2.9) are
broken into two main types: LDAP based and proprietary. For reasons we’ve already
cited, the LDAP products have some disadvantages insofar as they’re designed more as
directory servers than artifact repositories. Nonetheless, it’s worthwhile to consider
them, since LDAP does provide extensibility features. The two open source UDDI
implementations, Apache jUDDI and Novell’s Nsure UDDI Server, weren’t considered,
for the reasons cited earlier regarding UDDI.

Table 2.8 Registry evaluation criteria

Criteria Comments

Artifact and metadata
repository

The ability to classify and store artifacts by type; for example, a WSDL or SCA
configuration file. Should also allow for custom, searchable properties to be
defined by artifact type.

Indexed searching The ability to search metadata specific to the artifact type; for example,
search operations within a WSDL, or components within a SCA composition.

Administration Must include a graphical (preferably web) interface for managing and adminis-
tering the repository. This would include the ability to add new artifacts, arti-
fact types, search, and reporting.

Logging and activity
monitoring

Should provide the ability to monitor activity within the system. This would
include such things as new or modified artifacts and metadata modifications.

Role-based permissions The ability to define users and user groups by roles.

API The ability to interact with the repository through a programmatic API. Ideally,
would be SOAP- or REST-based.

Table 2.9 Open source ESB product overview

Product Type
Comments

OpenLDAP LDAP Proven, reliable, and has been around the longest. Now works with
most popular backend databases. High performance and supports
very large databases. Documentation is poor, which is surprising
given its long heritage (though some LDAP books do cover Open-
LDAP). Fairly complex to administer, and Windows platform support is
sporadic (most run it on Linux or Unix).
Licensed to Deborah Christiansen <pedbro@gmail.com>

50 CHAPTER 2 Defining the Open SOA Platform
As you can see, selecting the right product for the metadata repository service is diffi-
cult, as many high-quality open source products now exist (a good problem to have!).

2.6.3 Selecting a registry

We eliminated Sun’s OpenDS from consideration, as it was still in beta during the
early stages of writing this book. It is worth noting, however, that it has received excel-
lent marks by those who have used it extensively. Some early benchmarks indicate
that it’s much faster than other Java-only based solutions (such as ApacheDS). It’s
being positioned as a complete, enterprise-ready solution, with advanced features
such as “multi-master” replication and load balancing. The three principles touted in
its development are ease-of-use, performance, and extensibility. The documentation
is surprisingly strong for a fairly young open source project. Even though OpenDS’s
earlier beta status eliminated it from consideration, it’s worth keeping a close eye on
moving forward.

 The Fedora Directory Server appears positioned primarily for Red Hat flavors of
Linux—no Windows version exists. This fact limits its appeal and excludes it from our
consideration. Even though it doesn’t run natively on Windows, it’s worth pointing out
that it does have one of the best Active Directory synchronization features available.

 This venerable OpenLDAP makes for an excellent choice. However, it too lacks
strong Windows platform support (there are some Windows releases, but they’re sig-
nificantly behind the Linux versions). It can also be a challenge to administer and is
fairly complex for those not well versed in Linux systems administration. ApacheDS,

Fedora Directory
Server (Red Hat)

LDAP LDAPHeritage dates back to Netscape DS, and so it is mature. Excel-
lent graphical administration console. Synchronizes with Active Direc-
tory. Good documentation. Intended to run on Red Hat or related
Linux flavors (such as CentOS). No Windows capability.

ApacheDS LDAP 100% Java-based solution. Excellent performance and support for
many advanced features, such as triggers and stored procedures.
Nice Eclipse-based plug-in (Studio) for browsing and editing reposi-
tory. Lightweight and easy to administer.

OpenDS (Sun) LDAP 100% Java-based solution that looks quite promising. Sun is position-
ing it as a possible replacement for their existing Sun ONE DS. At the
time of this writing, version 1.2.0 has been released.

MuleSource
Galaxy

Proprietary Position as a SOA Governance product, it’s based on a repository
designed for managing SOA-based artifacts. This includes Mule con-
figurations, WSDL, XML files, and Spring configurations.

WSO2 Registry Proprietary Designed to store, catalog, index, and manage enterprise metadata
related to SOA artifacts. Includes versioning features and is light-
weight enough to be embeddable.

Table 2.9 Open source ESB product overview (continued)

Product Type
Comments
Licensed to Deborah Christiansen <pedbro@gmail.com>

51Choosing a registry
unlike OpenLDAP, is lightweight and simple to set up. It’s also the only LDAP-certified
open source product (Open Group certification). New releases appear to be bridging
the performance gap between DS with OpenLDAP, and its Java codebase is appealing
(assuming you’re a Java developer).

 While ApacheDS shows great promise as a directory server, it’s still LDAP, which
makes it rather challenging for supporting the storage and search of artifacts. The
hierarchical nature of LDAP is also not ideally suited for our needs. Let’s look at the
two remaining proprietary products, Galaxy and WSO2 Registry, both of which were
released in early 2008.

 WSO2’s Registry product appears to be a great fit for our registry needs. Positioned
solely as a registry product, it’s designed as a catalog for services and service descrip-
tions. Artifacts can be structured data, such as XML-based files, or binary documents,
such as Word or Excel. Metadata classification is supported, as are user-assigned tags,
which can be useful for searching (think Flickr for the services). Versioning capabilities
are supported, and the user experience is intuitive due to its Web 2.0 design (which is
beautifully designed). User roles are also supported and configurable. Dependency
and lifecycle management support is built in as well. One of the most attractive aspects
of the product is the simple-to-use API. You can programmatically fetch objects from a
remote repository in a few lines of code, and extending the registry to support custom
object types by adding specific behaviors specific to them can be easily done.

 The Galaxy product supports the same general feature set as WSO2’s Registry, such
as resource categorization, monitoring, and lifecycle and dependency management.
In addition, the 1.5 release included some advanced features such as replication
(available only in their pay version called Enterprise), scripting support, and an event
API. That said, WSO2’s Registry is easy to use, and trumps Galaxy with better Atom/RSS
support and automatic versioning/rollback features. A good case could be made for
selecting either product, but I remain a little leery of MuleSource’s dual-licensing
model, whereby some of Galaxy’s most attractive features are only available for those
who purchase the Enterprise license. WSO2, however, is 100 percent open source end
to end, so no features are purposely excluded from their base product. For these rea-
sons, we selected WS02’s Registry product.

2.6.4 Introducing WSO2 Registry

WSO2’s Registry product is officially positioned as a marriage of SOA registry with Web
2.0 collaboration features. The Web 2.0 features pertain to its ability for users to tag,
comment on, and even rate registry entries/metadata. Figure 2.7 shows the essentials
parts of Registry.

 Beyond the core requirements of searching and managing artifacts and their meta-
data, the product supports the definition of artifact types. Using this feature, Registry
can automatically introspect and index certain types of artifacts. Those supported out
of the box include things such as WSO2’s ESB (Synapse with added management capa-
bilities) XML configuration files, WSDLs, and XML Schemas. You can easily define,
Licensed to Deborah Christiansen <pedbro@gmail.com>

52 CHAPTER 2 Defining the Open SOA Platform
through its extensible handler mechanism, your own custom behaviors related to fil-
tered object types.

 The lifecycle features of Registry enable larger enterprises to manage artifacts by
their state within the development lifecycle. For example, you could search on arti-
facts that are in the QA state. Promotion of the objects throughout the defined lifecy-
cle is also supported. The dependency management features pertain primarily to
document types that support inclusions. For example, an XSD schema import within a
WSDL can be automatically detected and then associated with the WSDL. Since schema
documents play such a central role in a SOA environment for defining services, this is
an important feature. The monitoring features provide excellent logging of all activity
performed within the system, and nearly everything is exposed through a RESTful
AtomPub API.

Let’s now turn our attention to arguably the most critical artifacts of all: the services
that constitute a SOA environment.

2.7 Choosing a service components
and composites framework
Services are the catalyst behind a successful SOA environment. Exciting developments
have occurred in this area over the past few years. The first salvo occurred with the
release of Eclipse 3.0. The product was rewritten to include the OSGi framework for its
runtime engine. OSGi uses a Java-based component model to dynamically manage the
lifecycle of applications. With it, you can install, uninstall, start, and stop models
within a runtime application. This technology represents the basis for Eclipse’s plug-
in architecture.

Figure 2.7 WSO2's Registry
“marketecture” of features

Bonus chapter
Coverage of WSO2’s Registry product can be found in a bonus chapter found at Man-
ning's website: http://www.manning.com/davis/. In part, we chose this approach
since the Registry product is currently undergoing a major rewrite as part of WSO2’s
new Carbon platform, and we want to use that release as the focus for the chapter.
Licensed to Deborah Christiansen <pedbro@gmail.com>

53Choosing a service components and composites framework
 The OSGi framework, whose specification is managed by the OSGi Alliance, was ini-
tially formed with an emphasis on embedded devices and appliances. However, it rap-
idly has become adopted within regular and even enterprise, applications. There are
currently three excellent implementations: Apache Felix, Knopflerfish, and Equinox
(the basis for the Eclipse OSGi implementation). Many of the Apache-based projects
are beginning to incorporate the OSGi framework.

 Arriving a bit later was the Service Component Architecture (SCA) and its companion
technology, Service Data Objects (SDO). The 1.0 specification was delivered in fall 2005
and included such notable sponsors as IBM, Oracle/BEA, and IONA. SCA positions
itself as an architecture for building applications and systems using a SOA. It defines a
declarative XML-based mechanism for creating components and for exposing those
components as services that can be invoked through any number of different proto-
cols. Components can be wired together in a fashion similar to Springs “inversion-of-
control” feature, and are written in a way that is communication protocol neutral
(that is, the components have no awareness as to which protocol will be used to invoke
them, such as SOAP, JMS, or EJB). Given that a lot of folks are probably not yet familiar
with SCA, let's examine some of its core concepts in more detail.

2.7.1 Examining the Service Component Architecture

In SCA parlance, a composite is a collection, or assembly, of components or services. A
service can be thought of simply as a component that’s exposed through an external
protocol (for example, SOAP). A component, like a composite itself, can contain
properties and references to other components or services. You can see the relation-
ship between these items in figure 2.8 (which is a simplified view of SCA).

 As figure 2.8 shows, a binding is how
you define through what communica-
tions protocol to expose a given compo-
nent as a service.

 SDO is a companion specification that
defines a standard for exchanging data
graphs or sets. What’s unique about the
standard is that it supports the notion of
change logs. This allows for offline modifi-
cations to be captured and recorded.
The graphs themselves can be serialized into XML, and class-generation tools exist to
create SDO objects from an XML Schema (alternatively, they can be created dynami-
cally, and the metadata describing the structure can be gleaned dynamically as well).

 What’s the relationship between OSGi and SCA? In a sense, they’re competing tech-
nologies, as they both define a component framework for creating services. However,
OSGi primarily was designed for running within a single JVM and doesn’t inherently
support exposing of services through a wide range of protocols. SCA, on the other
hand, was developed with the goal of supporting a multilanguage distributed environ-
ment. There’s an initiative to bridge the two so that you can, for instance, easily deploy

Figure 2.8 A simplified SCA class diagram
Licensed to Deborah Christiansen <pedbro@gmail.com>

54 CHAPTER 2 Defining the Open SOA Platform
OSGi services within SCA. In that respect, the technologies can nicely complement
each other, and indeed, the next major release (2.0) of Tuscany is being internally
rewritten to run within an OSGi container. For purposes of our SOA Platform, we
won’t specifically address OSGi, but we strongly encourage further research on the
subject if you aren’t already familiar with it. Apache Tuscany, an SCO and SDO open
source implementation, will be addressed in great detail starting in chapter 3.

 Upon first examination of SCA, many Java developers are led to believe that it’s a
substitute for Spring (as many of you are aware, Spring is a popular Java application
framework). In part this confusion arises because SCA, like Spring, enables references
(or other components) to be injected at runtime. Spring, like SCA, also supports the
notion of properties, which can be declaratively defaulted in the XML configuration.
Spring-WS even supports exposing Spring-based beans as web services, so that’s
another similarity. That said, important distinctions exist, such as SCA’s aforemen-
tioned multiprotocol and multilanguage support. In addition, SCA more intuitively
supports asynchronous and conversational programming models. Like OSGi, Spring
integration is also available for SCA.

 Because of the reasons cited, and SCA’s integrated support for SDOs, it’s the service
and component framework technology of choice for the Open SOA Platform. Let’s now
further explore Apache Tuscany, the open source implementation for SCA and SDO.

2.7.2 Introducing Apache Tuscany

Apache Tuscany is a fairly new project, with its first beta releases in 2006 followed by the
1.0 release in fall 2007. The development team appears well staffed and is likely funded
by the likes of IBM. The project recently was anointed as a top-level Apache Project
from its prior incubator status, which corresponded with the 1.3 release in August
2008. Version 1.4 was released in January 2009, and is the basis for the code samples
used in this book. The SCO and SDO standards have been transferred to the aegis of
the OASIS organization. This is a significant development, as it lends great credibility to
the project and removes the cloud that the combined specification was just a product
of a few select vendors. OASIS has also set up a special website called Open Service Ori-
ented Architecture (www.osoa.org) dedicated to advancing the standards.

 The Tuscany and OASIS websites collectively contain extensive documentation. The
specification documents for SCA and its related technologies are well written and com-
prehensive. There are also a burgeoning number of SCA-related articles and some
upcoming books dedicated to the standard. The demo and code samples that come
with the Tuscany distribution are also very solid and a wonderful source of information.

 Commercial support for SCA and SDO has become realized by product releases by
IBM (WebSphere), Oracle/BEA (WebLogic, AquaLogic, Workshop) and Oracle (SOA
Suite 11g). Clearly, the momentum for SCA and SDO continues unabated.

 The last remaining technology that helps form the basis for the Open SOA Plat-
form is web service mediation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

55Choosing a web services mediation solution
2.8 Choosing a web services mediation solution
Web service mediation rounds up our Open SOA Platform. Web service mediation
plays several key roles within a SOA environment. They include the following:

■ Runtime governance—A service mediator can use security profiles to determine
which clients can access what data. For example, you can modify an outbound
data packet to restrict what data is presented. You can also monitor compliance
with service-level agreements. Monitoring and logging can be used for compli-
ance and auditing.

■ Version rationalization—Often multiple versions of a company’s API exist. A
mediator can transform earlier versions into a format/specification consistent
with the most recent version. This eliminates having to manage multiple ver-
sions of backend code.

■ Traffic management—In certain circumstances, it may be desirable to discrimi-
nate traffic based on a client profile. For example, a SaaS provider may choose
to charge extra for more than x number of requests per minute. For those cli-
ents not paying extra, inbound requests will be governed.

■ Protocol mediation—This refers to the ability to easily translate messages from
one protocol to another: for example, converting a REST-based XML-over-HTTP
request into a SOAP format required for internal consumption. Or another sce-
nario is to add or remove WS-Security headers from an inbound SOAP request.

Figure 2.9 illustrates the role a web service mediator plays in receiving inbound
requests from a client.

 Historically, some of these features were available through hardware devices, such
as F5 Networks’ BIG-IP family of products, Cisco’s various content switches, or Intel’s
XML Content Router. As you might imagine, these generally require a fairly deep
pocketbook. Until recently, pure-play open source mediation products didn’t exist.

Figure 2.9 Web service mediation used as a proxy for inbound requests
Licensed to Deborah Christiansen <pedbro@gmail.com>

56 CHAPTER 2 Defining the Open SOA Platform
Granted, some of the features can be accomplished through an ESB, such as version
rationalization. Some proxy and caching servers, such as Squid, also provided some of
the requisite functionality.

 The Apache Synapse project, which launched in 2005, became the first open
source web service mediation designed solution. Because it does share some overlap
in terms of functionality with an ESB, it can also do double duty as a lightweight ESB
(you may recall from section 2.4 that it was, in fact, selected as the ESB for our Open
SOA Platform). The Synapse feature set, which includes proxy, caching, load-balanc-
ing/fail-over capabilities and superb WS-Security support, clearly positions it as best
suited for web service mediation. Let’s examine the Synapse project in more detail.

 According to the press release announcing Apache Synapse, it’s “an open source
implementation of a Web service mediation framework and components for use in
developing and deploying SOA infrastructures” [Synapse]. Joining WSO2 in announc-
ing Synapse was Blue Titan, IONA, and Sonic Software—all well-respected players in
the SOA community. The first production release was in June 2007, and was followed
by a 1.1 release in November of that year. Synapse is part of the Web Services Project at
Apache (and is also a top-level Apache project), and the 1.2 release is the basis for our
coverage of the product in this book.

 The documentation, at first blush, seems rather inadequate. However, much of the
best documentation resides within the write-up for the 50 or so samples that come
with the distribution. Collectively, they provide a great deal of worthwhile information
(you can find additional information on WSO2’s website listed as their ESB product).
The project mailing list is also fairly active.

 WSO2’s release of Synapse also includes a nice administrative interface to Synapse,
and you’ll learn more about it in chapter 9’s in-depth dive into Synapse.

2.9 Summary
This chapter conducted a whirlwind examination of the key product categories of the
Open SOA Platform. For each, we identified a product, usually among several excellent
choices, as our selection. The categories and products selected are shown in table 2.10.

Open source’s hidden documentation
One of the most undervalued forms of documentation available in open source proj-
ects is the JUnit test cases that are usually available with the source. There are often
a multitude of tests available for nearly every facet of behavior. What’s most instruc-
tive is how the tests, or assertions, are defined, as they shed great light on the an-
ticipated behavior of the application. Sometimes the test cases also provide insights
into methods not documented within the regular documentation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

57Summary
These products are well regarded and supported, and form the basis for the remain-
der of the book. The biggest challenge is how to integrate these products in a mean-
ingful way so as to create a compelling open source SOA.

Table 2.10 Product categories and selections

Product category Product selection Home

Business process management JBoss jBPM http://labs.jboss.com/jbossjbpm/

Enterprise decision management JBoss Rules (Drools) http://labs.jboss.com/drools/

Enterprise service bus Apache Synapse http://synapse.apache.org/

Event stream processing Esper http://esper.codehaus.org/

Metadata repository WSO2 Registry http://wso2.org/projects/registry

Service components and composites Apache Tuscany http://tuscany.apache.org/

Web service mediation Apache Synapse http://ws.apache.org/synapse/

A note on the examples and source code
Throughout many of the chapters, example code is presented to assist the reader in
understanding the concepts. To move the discussion along, we skirt past how to set
up and run the examples. However, the downloadable source code contains a READ-
ME.txt file for each chapter that walks through setting up your environment and run-
ning through each of the examples. If you encounter any issues, please use the
Manning Author forum associated with this book at http://www.manning-sand-
box.com/forum.jspa?forumID=416 to report any problems, and we’ll attempt to re-
solve them as quickly as possible.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 2

Assembling components
and services

Services are core to SOA. They represent functional, reusable units of code
that can be combined to form applications or business processes. In chapter 1,
we discussed what constitutes an ideal service, including its adherence to a well-
defined service contract, as well as the fact that it’s loosely coupled, abstractly
designed, and stateless (among other traits). Building such services in a way that
they can be exposed through multiple protocols and languages and then distrib-
uted and administered through a service cloud can be challenging. Fortunately,
the emergence of two important frameworks has greatly simplified the creation
of such services: OSGi and the Service Component Architecture (SCA). OSGi,
squarely aimed at Java, provides a modular framework for constructing compo-
nents along with a runtime container in which they run. By itself, it doesn’t pro-
vide the features necessary for constructing SOA-ready services (that’s not its
intended purpose). But this is SCA’s sweet spot.

 Using SCA, you can build units of functionality, or components, supporting a
variety of languages, and then expose them as services over protocols such as
SOAP, JMS, RMI, REST, and others. Moreover, these components can be wired
together internally to form higher-level services, or composites. The services can
run in a distributed fashion and be managed as a virtual cloud. Since this book’s
focus is on SOA, we’ll cover SCA through the open source Apache Tuscany imple-
mentation (for those interested in OSGi, OSGi in Action [Manning, 2008] is an
excellent resource).

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Creating services
using Apache Tuscany
In the previous two chapters, we dissected the technical underpinnings of what
constitutes a service-oriented architecture, and selected a set of open source prod-
ucts that can be used to develop what we are calling the Open SOA Platform. Now,
let’s shift gears and focus, in considerable detail, on each of the selected products.
As you make your way through this chapter, you’ll notice that we place special
emphasis on how to integrate the sometimes disparate technologies and how to
best leverage the strengths of each. We’ll begin this journey by looking at one of
the foundational technologies behind SOA: services.

 Services, as the S in SOA suggests, are instrumental in building a SOA environ-
ment. To recap, a service is a self-contained, reusable, and well-defined piece of busi-
ness functionality encapsulated in code. To most people, a service is understood as
simply something that’s performed as part of their day-to-day job. A person at the
checkout counter where you buy your milk is performing a service, after all. A soft-
ware service is no different when you think about it. It’s simply a routine that

This chapter covers
■ Introducing SCA
■ Defining services using SCA
■ Setting configuration options using SCA
61

Licensed to Deborah Christiansen <pedbro@gmail.com>

62 CHAPTER 3 Creating services using Apache Tuscany
performs some unit of work. For example, when you encounter a problem when plac-
ing an order on some e-commerce website, the first thing that probably comes to mind
is to locate the site’s “Contact Us” link. This is an example of a service used to create a
customer incident or problem ticket. Typically, there are multiple channels by which
customers can report service problems that may include a web form, a customer ser-
vice hotline, or direct contact with a sale representative. Regardless of the channel
used, there ideally would be a single service that could be used to record such tickets.
This would be an example of a discrete, reusable service that could be used by multiple
applications (this scenario forms the basis for our examples later in the chapter).

 Services are indeed the holy grail of SOA. If properly designed, publicized, and
self-describing, services become assets that can be widely reused in a variety of applica-
tions. This maximizes the investment in these assets and enables creation of a more
agile enterprise since every business process doesn’t have to be re-created from
scratch. Other tangible benefits include a reduction in maintenance costs and more
bug-free applications. This chapter explores how such services can be created using
the exciting new framework known as Service Component Architecture (SCA). You’re
probably thinking, “Not another framework!” There are already a multitude of frame-
works that can be used for making web services, and a fair number oriented toward
creating reusable components. The difference, as you’ll soon discover, is that SCA
takes a fresh approach and uses a protocol- and language-neutral design coupled with
a clever way of assembling components for maximum reusability. More exciting still is
the fact that this can be done entirely with an open source SCA implementation
known as Apache Tuscany (http://tuscany.apache.org/)! Let’s begin by taking a close
look at what it means to be a service and how such services are created.

3.1 What are service components and compositions?
A service can run the gamut from a narrowly defined piece of functionality (fine-
grained) to one that encapsulates a multitude of lower-level services and is thus con-
sidered more coarse-grained in scope (see the sidebar “Coarse- vs. fine-grained ser-
vices”). Regardless of a service’s scope, what underlies it are concrete
implementations in code. Classes and methods are used to create the services that are
made available to the consuming client. You can think of these classes as components,
and the SCA framework provides a uniform and consistent way to develop and wire
together such components, using a variety of languages.

 Although the terms are sometimes used interchangeably in the literature, a distinc-
tion can be made between a component and a service, and this distinction is important
for understanding SCA. A service, like a component, is a self-contained unit of function-
ality. However, unlike a service, a component isn’t necessarily intended to be exposed
for external consumption—its purpose may be limited to providing functionality within
the context of the application for which it runs. A cash register at the store performs a
service both for you and the attendant, but you could think of the routine used to cal-
culate sales tax as more analogous to a component—in and of itself, its utility is limited,
Licensed to Deborah Christiansen <pedbro@gmail.com>

63What are service components and compositions?
but when used by the register, it’s a valuable part of the service offering. A “helper” class
in Java, which provides static methods that are used by multiple other Java classes, could
be considered a component. Enterprise JavaBeans (EJBs) in the Java EE world are often
considered components if they’re intended for use exclusively within the application in
which they were written (that is, not exposed as an external API).

 In the SCA world, they add a concept that they call a composition. A composition,
which itself is a form of component, is made up of one or more components. You could
think of it like a Pointillism painting [Pointillism], where many small distinct points
(components) combine to make a larger image (composite). You could consider a
composite analogous to a coarse-grained service, as it’s the product of one or more
fine-grained services. Compositions themselves may even be combined to form
higher-level forms of compositions. Like a component, a composite becomes consid-
ered a “service” when it’s wrapped for external consumption. The benefits of building
software based on the reusable building blocks of components and composites have
been espoused for several decades, as we discuss next.

 The Service Component Architecture (SCA) initiative, and its companion, Service Data
Objects (SDO), were advanced in 2005 by a consortium of companies, including IBM,
BEA, and Oracle. SCA grew out of the need to create a framework exclusively designed
for developing components supported by multiple protocols and languages—a key
facet of SOA. No other existing framework appeared suitable to meet this require-
ment. Apache Tuscany was the first open source reference implementation of this
technology. For the reasons cited in chapter 2, we selected Tuscany as the component
framework for our Open SOA Platform. Recently, management of the SCA and SDO
standards was moved to the OASIS group, a highly respected standards organization
responsible for such notable standards as Electronic Business Using XML (ebXML),
Security Assertions Markup Language (SAML), and OpenDocument, among others.
Of course, you’re probably a bit skeptical of yet another standard, along with the sup-
porting vendors who have less than altruistic motives in offering their support. To dis-
pel some of these concerns, a broad interest group was established to further the
development of the SCA-related standards; it’s known as the Open Service-Oriented

Coarse- vs. fine-grained services
What is the distinction between a fine- and a coarse-grained service? As the name
suggests, a fine-grained service has a narrow, specific set of functionality. For exam-
ple, a service to activate a user in a CRM application may be considered fine-grained
in nature. A coarse-grained service may encapsulate the functionality of many fine-
grained ones. For example, creating users in a CRM would be considered a coarse-
grained service if it could be invoked as a single, stand-alone call. In turn, that coarse-
grained service may have to call numerous fine-grained ones, such as identifying the
permission and organization IDs to associate with the new user; create the user; and
then activate and send an email notification to the user. Obviously, from a client’s
perspective, the fewer calls and less knowledge of the target system, the better.
Licensed to Deborah Christiansen <pedbro@gmail.com>

64 CHAPTER 3 Creating services using Apache Tuscany
Architecture (OSOA) collaboration (this was the group initially established to pro-
mote SCA, and predates the move to OASIS—it remains unclear what impact this may
have on OSOA).

 Let’s now explore SCA in greater detail and discover how its innovative assembly
model advances the creation of services that are fundamental to a SOA architecture.

3.2 The SCA assembly model
To gain an understanding of SCA, it’s useful to first take a high-level overview of what’s
called the SCA Assembly model. This model represents the core of the specification as
it describes how services are constructed. The main ingredients of the model are
shown in figure 3.1.

 Figure 3.1 shows us that multiple composites can reside within a single SCA domain.
What this means is that you can decompose an assembly into multiple composites,
which can help you organize related functionality into logic groupings. A composite
itself can contain one or more services, which are, in turn, constructed from compo-
nents. A component has a concrete implementation and can reference other components
or services. So, to keep the ball rolling, let’s examine these concepts by looking at
each part of the assembly as well as sample illustrations of how they’re used. In our
examples, we’ll use Apache Tuscany, the open source SCA implementation that we
selected for our Open SOA Platform (the README.txt file in this chapter’s source
code describes how to run the examples).

 To demonstrate the concepts, let’s partially construct a hypothetical problem
ticket system using SCA. We’ll start with simple constructs to illustrate the main con-
cepts of building services and then progressively embellish the system to demon-
strate advanced SCA features. Once the system is completed, you’ll have a solid
understanding of how to use SCA to create services—an essential ingredient for
building a SOA environment.

Figure 3.1 A high-level overview
of the SCA Assembly model.
Configuration options are highly
flexible.
Licensed to Deborah Christiansen <pedbro@gmail.com>

mailto:jdoe@mycompany.com
mailto:jdoe@mycompany.com
mailto:jdoe@mycompany.com

65The SCA assembly model
Let’s assume the following high-level requirements for our hypothetical ticket system:

■ Must be exposed as one or more services so that it can be called by a variety of
different communication protocols. This includes web, JMS, and SOAP. This abil-
ity will allow the system to be “embedded” within many different applications.

■ Must accept a variety of ticket types or templates—for example, a web form for
collecting issues directly from a user, or directly from application or systems
monitoring solutions.

■ Must provide support for a distributed architecture to support future scaling.
■ Must provide the ability to generate real-time events on all activity. This is bene-

ficial for integration with complex event processing (CEP) systems, the topic of
chapter 8.

These obviously only skim the surface of possible requirements, but they do provide
context for our examples as we move forward. If you were developing this application
without SCA, you’d likely use a Spring-based framework for building it. In particular,
Spring now provides excellent support for JMS and SOAP, as well as a distributed com-
puting solution. Many other viable solutions exist as well. We suggest you think
through how you’d tackle this challenge, using whatever frameworks you’re accus-
tomed to, and then contrast that approach with the SCA one we’re building as this
chapter progresses. We think you’ll find that SCA dramatically simplifies many areas of
development and, in particular, offers a refreshingly new approach for thinking about
components and services.

 With this use case in mind, let’s start our examination of Tuscany with composites—
the top-level building blocks of SCA.

SCA tooling?
As is often the case with a new framework, the tooling and design tools often lag con-
siderably behind the first implementations. SCA has been no exception to this rule
(as of this writing, Apache Tuscany had released its 1.4 version). The good news is
that there’s an active Eclipse subproject working on an SCA editor (and related tools).
The first feature-rich release appeared in August 2008, followed by several mainte-
nance releases. Known as the SCA Tools subproject, the plug-in works with the Gany-
mede release of Eclipse. You can download it from the Eclipse update site: http://
download.eclipse.org/stp/updates/ganymede. Using the tools, you can graphically
build and manage your composite definitions.

We elected not to use the tools for this book since we believe they could have de-
tracted from learning the underlying semantics of SCA. The README.txt instructions
for setting up the source include instructions on setting up the SCA Tools plug-in.
Licensed to Deborah Christiansen <pedbro@gmail.com>

66 CHAPTER 3 Creating services using Apache Tuscany
3.2.1 Introducing the composite file

A composite is a container that’s used for defining services, components, and their ref-
erences. It’s used to assemble SCA artifacts into logical groupings of components. For
example, all operations that deal with a CRM system’s customer management might be
grouped together in a single composite.

NOTE For those familiar with Spring, the SCA composite would be considered
roughly analogous to what Spring typically calls the application context
XML file, where beans are defined. The component element, described
in the next section, is similar in function to the bean element within
Spring configurations.

Interestingly, a composite itself may be treated as a component, which is an example
of what SCA calls a recursive composition (as you may recall from earlier, multiple com-
posites may exist within a given domain). A composite defines the public services that
are made available through one of the available SCA bindings (JMS, SOAP, etc.).
Figure 3.2 is an abbreviated look at the XML Schema definition for composites. Many
elements, such as reference and service, can also be defined within an individual
component configuration.

Most composite files will likely contain one or more components, references, and
often at least one service (the composite element is the root of the XML file, which is
why it’s sometimes referred to as a composite file). You’ll learn later in this chapter
and the next how to combine multiple composites within a domain to simplify mainte-
nance or aid in classification. Figure 3.3 illustrates a distributed SCA environment
setup using three virtual machines (VMs).

 The top-level domain is defined using a composite that incorporates the node-
specific compositions. The next chapter describes distributed SCA options and
configurations.

Figure 3.2 XML Schema definition
overview for composites
Licensed to Deborah Christiansen <pedbro@gmail.com>

67The SCA assembly model
The SCA specification uses a graphical notation to visually illustrate how a given com-
position is defined. An example that we’ll build on is shown in figure 3.4.

 Figure 3.4’s composite shows two defined components: ProblemTicketComponent
and CreateTicketComponent. The CreateTicketComponent is responsible for creat-
ing the problem ticket, whereas the ProblemTicketComponent can be considered
more of a “controller” component that merely delegates its work to a dependent com-
ponent. This makes sense when you consider that additional components would then
be added for deleting and updating tickets. For now, the service we’ll be creating is
very simple—a web service used for creating new problem tickets.

 How is the composite illustrated in figure 3.4 defined within the XML? Listing 3.1
shows the assembly definition (all composites have a .composite extension, which
makes them easily identifiable in the source code for this chapter).

Figure 3.3 Relationships between domains, nodes, and composites

Figure 3.4 A simple composite example with two components
Licensed to Deborah Christiansen <pedbro@gmail.com>

68 CHAPTER 3 Creating services using Apache Tuscany
<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 xmlns:hw="http://opensoa.book.chapter3"
 name="ProblemManagementComposite">

 <component name="ProblemTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3.impl.ProblemTicketComponentImpl" />
 <service name="ProblemTicketComponent">
 <binding.ws uri=
 "http://localhost:8085/ProblemTicketService"/>
 </service>
 <reference name="createTicket"
 target="CreateTicketComponent"/>
 </component>

<component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3.impl.CreateTicketComponentImpl"/>
 </component>
</composite>

Notice the two components elements that are defined b, f. The ProblemTicket-
Component b is exposed as a SOAP-based web service by way of the embedded service
element c that’s included. A dynamic WSDL is generated for this service, since an
actual WSDL wasn’t specified (one of the features of SCA). The binding.ws@uri attri-
bute d defines WSDL endpoint as http://localhost:8085/ProblemTicketService?wsdl.

NOTE To differentiate attributes from elements, we preface attributes with the
XPath convention of using the at-sign (@). So, when you see something
like binding.ws@uri, we’re referring to the binding.ws element’s uri
attribute.

Lastly, the ProblemTicketComponent defines a dependency or reference to the
CreateTicketComponent f by virtue of the child reference e that was specified. So
at this point we’ve defined two components, wired them together, and exposed one,
the ProblemTicketComponent, as a SOAP-based web service with an autogenerated
WSDL. We’ll examine, in much greater detail, the definition of the components, ser-
vices, and references in the sections that follow.

 One thing that will become apparent as we move forward is that the SCA specifica-
tion offers great flexibility in how to configure the SCA assemblies. For example, in
listing 3.1, the service element was embedded with the component definition c.
However, you can also define the service as a direct child element to the composite.
This is illustrated in listing 3.2.

Listing 3.1 SCA composite assembly XML for figure 3.4

Specifies required namespace

b Defines new component

Exposes as servicec

d
Injects
reference

References componente

f Adds SOAP binding
Licensed to Deborah Christiansen <pedbro@gmail.com>

69The SCA assembly model
<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 xmlns:hw="http://opensoa.book.chapter3"
 name="ProblemManagementComposite">

 <service
 name="ProblemTicketComponent"
 promote="ProblemTicketComponent">
 <binding.ws uri="http://localhost:8085/ProblemTicketService" />
 </service>

 <component name="ProblemTicketComponent">
<implementation.java
class="opensoa.book.chapter3.impl.ProblemTicketComponentImpl" />

 <reference
 name="createTicket"
 target="CreateTicketComponent" />
 </component>

 <component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3.impl.CreateTicketComponentImpl" />
 </component>
</composite>

The functionality of the composites defined in listings 3.1 and 3.2 is identical, but in
3.2, the service is defined separately in a stand-alone fashion b, as a child of the doc-
ument's root node. To associate the service to the component implementation, the
@promote attribute of the service element is used—its value identifies which compo-
nent to expose as the service c. Having multiple ways to configure an assembly adds
flexibility when more complex scenarios are encountered.

NOTE Since services represent the key functionality offered by SCA, we gener-
ally prefer the greater visibility afforded them when they’re defined as
direct children of the root composite, as illustrated in listing 3.2.

How would you instantiate the assembly defined in listing 3.1 or 3.2? You can use dif-
ferent approaches, and we’ll discuss them in greater detail as we move forward. The

Listing 3.2 Example of an SCA composite alternative configuration

Using the code examples
The examples described in each of the sections are provided in the accompanying
Eclipse project. Along with the project source is a document called “Steps for Setting
Up Eclipse for Code Samples.pdf.” It contains instructions on what prerequisites are
required for each of the technologies, and details how to install the Eclipse project.
Once installed, each chapter's code will contain one or more README.txt files that
provide further instructions on running the samples.

b Service defined
at root level

c Service promotes
component

No service defined
in component
Licensed to Deborah Christiansen <pedbro@gmail.com>

70 CHAPTER 3 Creating services using Apache Tuscany
easiest way to start the assembly is to use what’s referred to as an embedded SCA domain.
This code fragment provides a brief illustration of how this can be done:

SCADomain scaDomain = SCADomain.newInstance("problemMgmt.composite");

In this case, assume the code in listing 3.1 was saved to a file called problem-
Mgmt.composite. The SCADomain.newInstance method then receives that file as a sin-
gle parameter and launches the domain using that assembly definition. Of course, we
wouldn’t get very far if we tried running this assembly—after all, we haven’t actually
developed the components yet! This is the topic of the next subject—components.

3.2.2 Configuring components

A component is a business function expressed within code. Components are, in a sense,
the building blocks that constitute an application, somewhat akin to the ingredients
in a recipe. Components can both provide and consume services. To be a functional
unit, a component must provide an implementation that consists of the actual code used
to perform the functionality. As we demonstrated in the previous section, a compo-
nent can also directly specify a service by which it can be exposed for external con-
sumption, as well as identify any references or dependencies of the component. The
high-level definition of the component element is shown in figure 3.5.

 As you recall from the previous section, we provided an example definition of a
component. That fragment is shown here for convenience:

<component name="ProblemTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3.impl.ProblemTicketComponentImpl"/>
 <service name="ProblemTicketComponent">
 <binding.ws uri="http://localhost:8085/ProblemTicketService"/>
 </service>
 <reference name="createTicket" target="CreateTicketComponent"/>
</component>

The concrete implementation for this component is performed by the class Problem-
TicketComponentImpl. Let’s create this class (listing 3.3) so we can illustrate what has
to be done to provide the SCA component functionality (we’ve purposely kept our
example simple to begin with).

Figure 3.5 XML Schema definition overview for components
Licensed to Deborah Christiansen <pedbro@gmail.com>

71The SCA assembly model
@Service(ProblemTicketComponent.class)
public class ProblemTicketComponentImpl implements
 ProblemTicketComponent {
 private CreateTicketComponent createTicket;

 public int createTicket(TicketDO ticket) {
 System.out.println(ticket.toString());
 return createTicket.create(ticket);
 }

 @Reference
 public void setCreateTicket(
 CreateTicketComponent createTicket) {
 this.createTicket = createTicket;
 }
}

As you can see, there are two SCA annotations specified in the class b, c. The
@Service annotation b is used to identify the service interface implemented by this
component’s implementation. In this case, the ProblemTicketComponent interface
class provides this specification (see listing 3.4). The methods of this interface are
what SCA will use when exposing the service’s public operations (the next section cov-
ers services in detail). The @Reference c annotation specifies the setter method used
for injecting the CreateTicketComponent reference. This, as you recall, was specified
in the component definition as

<reference name="createTicket" target="CreateTicketComponent"/>

Listing 3.4 contains the interface definition for the service operations implemented
by ProblemTicketComponentImpl.

@Remotable
public interface ProblemTicketComponent {
 public int createTicket(TicketDO ticket);
}

The only unique aspect to the interface class is the SCA @Remotable annotation b.
This informs the container that the services provided by the interface should be made
available for remote communications (such as a SOAP-based web service).

TIP SCA’s Java implementation doesn’t require the use of annotations, such
as the ones we’ve used in the examples so far. Instead, you can use SCA’s
component type file. This is covered in more detail in the next chapter.

The service operation we’re exposing is defined within the createTicket method.
This method takes, as its single parameter, a TicketDO object. This data object class
just contains the details of the problem ticket, along with corresponding accessor
methods. The member variables for the TicketDO object are

Listing 3.3 Java implementation for ProblemTicketComponentImpl

Listing 3.4 Interface used by ProblemTicketComponentImpl

b
Defines service
implementation

c
Defines method for
injected reference

b
Defines interface as
remotable service
Licensed to Deborah Christiansen <pedbro@gmail.com>

72 CHAPTER 3 Creating services using Apache Tuscany
private String customerEmail;
private String customerName;
private String subject;
private String problemDesc;
private int caseNumber;

The only thing that remains to be described is the referenced component class,
CreateTicketComponentImpl, which is responsible for creating the problem ticket
and returning an identifier (as we pointed out previously, other components such as
those used for updating and deleting would eventually be added as service opera-
tions). For now, the CreateTicketComponentImpl class’s create method is a place-
holder and simply returns a random identifier regardless of what is submitted to it.
The class is shown in listing 3.5.

public class CreateTicketComponentImpl implements
 CreateTicketComponent {

 public int create(TicketDO ticket) {
 System.out.println("createTicket: " + ticket.getCaseNumber());
 Random r = new Random();

 return r.nextInt(300000);
 }
}

Given that our sample involves several classes, let’s recap the process of starting an SCA
domain/server, receiving an inbound web service request for our exposed service, and
creating a ticket. Figure 3.6 illustrates the steps, which are described in table 3.1.

Listing 3.5 CreateTicketComponentImpl reference class

Class used to generate
random number

Returns random number

Figure 3.6 Overview of the sample assembly we’ve constructed
Licensed to Deborah Christiansen <pedbro@gmail.com>

73The SCA assembly model
What we have demonstrated thus far is a fairly simple example of an SCA assembly.
We’ve exposed a component as a web service and demonstrated how references to
other components can be declaratively defined within the SCA assembly. Even though
it’s a simple example, it’s worth noting that the components we’ve created have no
awareness of what communications protocol will be used to interface with them.

Table 3.1 Description of the steps shown in figure 3.6

Step Description

1 The ProblemTicketServer class starts the SCA domain/container by using the “embed-
ded” server. It instantiates the server by specifying the composite XML file used, which in this
case is called problemMgmt.composite.

2 The SCADomain class, which is part of the Apache Tuscany implementation, is used to start
the embedded Jetty server. In turn, this is used to host the web service that’s being exposed
by the assembly’s service element.

3 A web services client initiates a CreateTicket request against the hosted web service
using the dynamically generated WSDL created by the web service binding associated with the
service element defined in the composite. The web service SOAP request might resemble
the following:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:chap="http://chapter32.book.opensoa/">
 <soapenv:Header/>
 <soapenv:Body>
 <chap:createTicket>
 <arg0>
 <caseNumber>10001</caseNumber>
 <customerEmail>jdoe@someplace.com</customerEmail>
 <customerName>John Doe</customerName>
 <problemDesc>This is a problem desc</problemDesc>
 <source>This is the source</source>
 <subject>This is the subject</subject>
 </arg0>
 </chap:createTicket>
 </soapenv:Body>
</soapenv:Envelope>

4 The inbound request is received by the SCA embedded server, which then delegates the pro-
cessing of the request to the component implementing the service, ProblemTicket-
ComponentImpl.

5 The ProblemTicketComponentImpl has an associated dependency created through
the reference element in the component’s definition XML: CreateTicketComponent.

6 The reference is injected into the ProblemTicketComponentImpl by way of setter injec-
tion. Now the CreateTicketComponent is instantiated. This class is responsible for pro-
cessing the inbound problem ticket.

7 The request is processed and the results are returned to the client.
Licensed to Deborah Christiansen <pedbro@gmail.com>

74 CHAPTER 3 Creating services using Apache Tuscany
There’s no SOAP- or web service–specific code anywhere within the component
implementation class, so the component itself isn’t bound directly to a specific proto-
col. Instead, the binding of the protocol to the component is done declaratively
through the service element definition. This form of loose coupling is very appealing,
because as we’ll see next, we can now expose services through any number of different
protocols, or bindings, without having to change any implementation code. This is
truly exciting stuff!

3.2.3 Defining services

We’ve already demonstrated some of the capabilities of the service element using the
problem ticket example we’ve been building. To recap, the service element is used to
expose a component’s functionality for external consumption through any number of
communication protocols, such as SOAP or JMS. The consumer of the service can be
another component or an external client running outside the SCA framework. An
example of such a client is one using a SOAP-based web service or perhaps instead inter-
facing through JMS queues. The service’s binding method specifies the protocol by
which it will be exposed. Figure 3.7 depicts the schema definition overview for services.

 In our simple example from listing 3.1 (listing 3.2 is functionally equivalent, as you
may recall, but defines the services at the root composite level), we specified the
service as a nested element inside the component we’re exposing. The service was
defined as

<service name="ProblemTicketComponent" promote="ProblemTicketComponent">
 <binding.ws uri="http://localhost:8085/ProblemTicketService" />
</service>

In the preceding code, we did not specify an @interface attribute, as the service is sup-
porting all the available business functions. However, by using the @interface attri-
bute, you can selectively decide which methods to expose as public operations. For

Figure 3.7 XML Schema definition overview for services
Licensed to Deborah Christiansen <pedbro@gmail.com>

75The SCA assembly model
example, let’s assume we’ve created another component called ProblemTicket-
Component2 (and its corresponding implementation, ProblemTicketComponent-

Impl2) that’s the same as ProblemTicketComponent with the exception that we’ve
added another method to the ProblemTicketComponent2 called deleteTicket. If we
then add this method to the interface and run the assembly, we’ll notice in the gener-
ated WSDL that two operations are exposed through this web service, createTicket
and deleteTicket, as illustrated in this WSDL fragment:

<wsdl:binding name="ProblemTicketComponent2SOAP11Binding"
 type="ns0:ProblemTicketComponent2PortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="createTicket">
 <soap:operation soapAction="urn:createTicket" style="document"/>
 … wsdl input and output
 </wsdl:operation>
 <wsdl:operation name="deleteTicket">
 <soap:operation soapAction="urn:deleteTicket" style="document"/>
 … wsdl input and output
 </wsdl:operation>
 </wsdl:binding>

If we then decide that only the createTicket operation should be exposed as a web
service, we can specify an interface that only includes the createTicket method, even
though the implementation class ProblemTicketComponentImpl2 contains two meth-
ods. For example, we can specify the original ProblemTicketComponent as the inter-
face, since it only contained the single createTicket method. This would result in the
following component definition:

<service
 name="ProblemTicketComponent2"
 promote="ProblemTicketComponent2">
 <interface.java
 interface="opensoa.book.chapter3.ProblemTicketComponent" />
 <binding.ws uri="http://localhost:8085/ProblemTicketService" />
</service>

When the WSDL is automatically generated, it will only contain the single operation,
createTicket. What’s interesting to note is that the interface class used doesn’t neces-
sarily have to be the actual Java interface class that was implemented by the component.
Instead, think of it as simply a definition for what services will be provided by the com-
ponent. You can also use the interface.wsdl and specify a WSDL to define the full or
subset of the method to expose. Enforcing which operations are permitted, as defined
by the method signatures of the interface class, is performed at the container level, so
it’s secure. The alternative approach of simply creating a custom WSDL with only the
operations specified that you want exposed isn’t secure, since those operations could
still be invoked by someone knowledgeable of the source (as pointed out previously,
this custom WSDL could be referenced as the interface, in which case it’s secure).

 The binding child element associated with service described earlier is discussed in
section 3.2.7. The callback functionality, which can be used for creating bi-directional
Licensed to Deborah Christiansen <pedbro@gmail.com>

76 CHAPTER 3 Creating services using Apache Tuscany
services, is an advanced feature and will be discussed in chapter 4. Let’s now focus on
how property values can be set declaratively through the XML composition into com-
ponent variables. Known as SCA properties, this capability allows runtime configura-
tions to be easily made without having to recompile or modify code.

3.2.4 Working with properties

Up to this point we’ve covered the basics of
creating components and services—the build-
ing blocks of SOA. The SCA standard also pro-
vides convenient runtime configuration
capabilities through properties and refer-
ences. Properties, the subject of this section,
are much like their namesake in the Spring
framework and are used for populating com-
ponent variables in an injection-style fashion
(references are the topic for section 3.2.6).
This is obviously useful when you have to set
environment-specific values without having to
resort to using an external property file. More
impressively, properties can be complex XML
structures, which can be referenced via XPath locations by the components using it.
This adds convenience and manageability to the assembly process. Figure 3.8 displays
the schema fragment associated with the Property element.

 We haven’t previously illustrated any components that have utilized a property
value, so we’ll modify our ProblemTicketComponent to use some properties. In this
case, let’s assume that we want to pass a username and password to the component. In
a real-life scenario, this may be necessary for establishing database connectivity or for
accessing other types of resources (SMTP/POP3, File, etc.). In this instance, we’ll cre-
ate the username and password as “global” properties at the composite level (that is,
created as a direct descendent of the document root element). They’ll then be refer-
enced from within the ProblemTicketComponent definition. This is illustrated in the
updated composition definition shown in listing 3.6.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 name="ProblemManagementComposite">

 <property name="username">jdoe@my.com</property>
 <property name="password">mypassword1</property>
 <component name="ProblemTicketComponent">

 <implementation.java
 class="opensoa.book.chapter3_24.impl.ProblemTicketComponentImpl" />
 <service name="ProblemTicketComponent">

Listing 3.6 Example of using global properties

Figure 3.8 Figure 3.8 XML Schema
definition overview for properties

Defines properties
Licensed to Deborah Christiansen <pedbro@gmail.com>

77The SCA assembly model
 <binding.ws uri="http://localhost:8085/ProblemTicketService"/>
 </service>
 <property name="username" source="$username"/>
 <property name="password" source="$password"/>
 <reference name="createTicket" target="CreateTicketComponent"/>
 </component>

 <component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3_24.impl.CreateTicketComponentImpl"/>
 </component>

</composite>

Notice that, within the component, the global properties were referenced using the
@source attribute of the embedded property element. The naming convention
requires that you preface the referenced named variable using a $ sign within the
@source attribute, as is shown in the listing.

 As an alternative to using global properties, you could have included the property
settings directly within the component element, such as

<component name="ProblemTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3_24.impl.ProblemTicketComponentImpl" />

 <service name="ProblemTicketComponent">
 <binding.ws uri="http://localhost:8085/ProblemTicketService"/>
 </service>

 <property name="username">jdoe@mycompany.com</property>
 <property name="password">mypassword1</property>
 <reference name="createTicket" target="CreateTicketComponent"/>
</component>

Regardless of the approach used, the ProblemTicketComponentImpl class must be
modified to capture the injected properties. This can be done most easily by just add-
ing two new member variables along with the SCA @Property annotation:

@Property
protected String username;
@Property
protected String password;

The @Property annotations spell out that these two class variables are set as proper-
ties. Note that there’s no need to create setter methods to inject these values,
although they must be specified with public or protected visibility in order for this
approach to work. If specifying a nonprivate access level modifier is a concern, you
can use the more traditional JavaBean-style approach and use setters to instruct the
container to populate the properties in this fashion. Here’s an example:

private String username;
private String password;

@Property(name="username")
 public void setMyUsername(String username) {

References to properties
Licensed to Deborah Christiansen <pedbro@gmail.com>

78 CHAPTER 3 Creating services using Apache Tuscany
 this.username = username;
}

@Property
public void setPassword(String password) {
 this.password = password;
}

Notice that, for the username property, we created a method that didn’t adhere to the
standard “accessor” method style of setVariable—instead of setUsername, we used
setMyUsername. Since the standard JavaBean accessor convention wasn’t used, the
optional @name attribute associated with the @Property reference had to be specified.
Using the setter style injection can also be helpful if you want to perform additional
processing after the value has been assigned (such as validation checks).

 Using a Java Collection is also straightforward. For example, instead of using two
properties to set the username and password, we can use a single property defined as

<property name="credentials" many="true">
 "jdoe@mycompany.com"
 "mypassword1"
</property>

Then, within the component class, it will be injected by using

@Property
protected Collection<String> credentials;

You can then access it like you would any other Collection class, such as

credentials.iterator().next()

which will return the first item in the collection, or jdoe@mycompany.com.
 More interestingly, properties can also be complex XML structures. You can then

use XPath expressions to selectively identify which value you wish to populate into a
given variable. For example, the following property called credentials is set to an
embedded XML fragment as a global directly within the composite element:

<property name="credentials" type="hw:CredentialsType" >
 <Credentials>
 <username>jdoe@mycompany.com</username>
 <password>mypassword1</password>
 </Credentials>
</property>

To then pass the specific values associated with username and password, the following
property reference can be used within the component definition:

<property name="username"
 source="$credentials/*[local-name()='Credentials']/
 *[local-name()='username']" />
<property name="password"
 source="$credentials/*[local-name()='Credentials']/
 *[local-name()='password']" />
Licensed to Deborah Christiansen <pedbro@gmail.com>

79The SCA assembly model
The source attribute must be a valid XPath, as shown here; otherwise the injected ref-
erence will be set to null. The complete modified composition is shown in listing 3.7.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 xmlns:hw="http://opensoa.book.chapter3"
 name="ProblemManagementComposite">

 <property name="credentials" type="hw:CredentialsType" >
 <Credentials>
 <username>jdoe@mycompany.com</username>
 <password>mypassword1</password>
 </Credentials>
 </property>

 <component name="ProblemTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3_24.impl.ProblemTicketComponentImpl" />
 <service name="ProblemTicketComponent">
 <binding.ws uri="http://localhost:8085/ProblemTicketService"/>
 </service>
 <property name="username"
 source="$credentials/*[local-name()='Credentials']/
 *[local-name()='username']" />
 <property name="password"
 source="$credentials/*[local-name()='Credentials']/
 *[local-name()='password']" />
 <reference name="createTicket" target="CreateTicketComponent"/>
 </component>

 <component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3_24.impl.CreateTicketComponentImpl"/>
 </component>
</composite>

As you can see, there’s considerable flexibility in how static property values can be
injected into component classes at runtime. The next “essential” SCA technology we’ll
address is implementation. Implementation is how SCA provides for multilanguage sup-
port and is the mechanism by which recursive compositions are created, which is the
nesting of composites to create higher-level assemblies. As you may recall from our
SOA discussion in chapter 1, the ability to easily create components that are them-
selves composed of one or more subcomponents greatly facilitates code reuse—a key
objective behind SOA.

3.2.5 Implementation options

The implementation node, as we’ve seen in previous examples, is a child element of
component. It’s used to define the concrete implementation for the component. In the
examples thus far, we’ve used the Java implementation, as specified by using imple-
mentation.java. However, SCA is designed to support multiple languages. Which

Listing 3.7 Modified composition illustrating use of embedded XML properties
Licensed to Deborah Christiansen <pedbro@gmail.com>

80 CHAPTER 3 Creating services using Apache Tuscany
languages are supported is driven by the SCA implementation. Apache Tuscany, the
open source SCA offering we’re using, supports the following types, shown in table 3.2.

One implementation that’s anticipated to be supported by all SCA-compliant products
is the composite implementation. Using implementation.composite, you can con-
struct a hierarchy of services that are layered upon each other. At the lowest level, you
would presumably have finer-grained components that perform specific, narrow func-
tions. As you move up the hierarchy, you could construct coarser-grained services that
incorporate or build upon the lower-level ones. You could also wrap components that
are designed primarily for one purpose and repurpose them for other users. This
strategy can best be illustrated through an example, which follows.

 So far, we’ve created a service that can be used to submit a hypothetical problem
ticket. The ticket data structure used resembles that of an inbound customer service
email, and contains such fields as subject, body/description, and to. Let’s assume now that
someone in IT decided that it would be an outstanding idea to also generate cases/
tickets for system events that occur, since they too need to be followed up on in a simi-
lar manner. Rather than build an entirely new service to perform this function, the
development team decides to create a façade or wrapper service that, while using the
nomenclature familiar with IT guys, really just leverages the existing problem ticket
service. This new service will use a new component called SystemErrorComponent,
which just calls ProblemTicketComponent under the covers. In fact, foresight would
tell us that other organizations within the company will also likely be interested in sim-
ilarly leveraging the problem ticket system. Figure 3.9 illustrates what is now more
broadly called the Issue Management System (IMS) that supports receiving tickets
from any number of sources.

 To support this new capability, we’ll create a new composite assembly called Issue-
ManagementComposite that references the problem ticket assembly we created in list-
ing 3.1. This new assembly will be constructed so that it will be the main service
interface for the various interfaces, such as system IT tickets or customer service
tickets. The ProblemManagementComposite will be used for the low-level create,

Table 3.2 Apache Tuscany SCA implementation types

Type Description

Java components We’ve been using Java components in the examples so far.

Spring assemblies You can invoke Java code exposed through Spring.

Scripting: JavaScript, Groovy, Ruby,
Python, XSLT

Uses JSR 223 to support a wide variety of scripting languages.

BPEL Integration with Apache ODE for BPEL support.

XQuery Supports Saxon XQuery.

OSGi Supports Apache Felix OSGi implementation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

81The SCA assembly model
delete, and update ticket operations, which are in turn called by those components
defined in the IssueManagementComposite. Why follow such an approach? It enables
us to create customized service interfaces for each of the audiences interested in using
the service. This approach will lower the barrier for widespread acceptance of the sys-
tem, and marketing is an important part in improving the adoption rate of SOA. List-
ing 3.8 shows the ProblemManagementComposite assembly we created earlier.

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter325"
 xmlns:hw="http://opensoa.book.chapter325"
 name="ProblemManagementComposite3">

 <property name="username">jdoe@mycompany.com</property>
 <property name="password">mypassword1</property>

 <service
 name="ProblemTicketService"
 promote="ProblemTicketComponent">
 <interface.java

interface="opensoa.book.chapter3_25.ProblemTicketComponent"/>
 </service>

 <component name="ProblemTicketComponent">
 <implementation.java
 class=
 "opensoa.book.chapter3_25.impl.ProblemTicketComponentImpl" />
 <property name="username" source="$username" />
 <property name="password" source="$password" />

 <reference
 name="createTicket" target="CreateTicketComponent" />
 </component>

Listing 3.8 ProblemManagementComposite

Figure 3.9 Overall plans for the Issue Management System
Licensed to Deborah Christiansen <pedbro@gmail.com>

82 CHAPTER 3 Creating services using Apache Tuscany
 <component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter3_25.impl.CreateTicketComponentImpl" />
 </component>
</composite>

The new IssueManagementComposite, which is the assembly for exposing issue-spe-
cific services for generating problem tickets, appears in listing 3.9. In this example,
only a single new interface was developed: for creating IT system trouble tickets.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter325"
 xmlns:hw="http://opensoa.book.chapter325"
 name="IssueManagementComposite">

 <service
 name="SystemErrorService"
 promote="SystemErrorComponent">
 <binding.ws uri="http://localhost:8085/SystemErrorService"/>
 </service>

 <component name="SystemErrorComponent">
 <implementation.java class=
 "opensoa.book.chapter3_25.impl.SystemErrorComponentImpl" />
 <reference
 name="problemTicket"
 target="ProblemTicket"/>
 </component>

 <component name="ProblemTicket">
 <implementation.composite
 name="hw:ProblemManagementComposite"/>
 </component>
</composite>

Before we examine the Java code associated with SystemErrorComponentImpl c, let’s
examine more carefully how the ProblemManagementComposite is used. The System-
ErrorComponentImpl contains an injected dependency in the form of a Problem-
TicketComponent that’s assigned to the instance variable called problemTicket. This
is accomplished through the ProblemTicket component e that’s defined as a refer-
ence d. This component defines an implementation that uses the composite named
ProblemManagementComposite, which, as you may recall, is the name we assigned to
our assembly used to create the problem tickets (listing 3.8 defines this composite).
The single service provided by the composite is called SystemErrorService b, which
is exposed using a SOAP binding.

 Two questions might come to mind: how do you specify the file location containing
the ProblemManagementComposite, and how does the container know which compo-
nent within ProblemManagementComposite to use for injecting ProblemTicket-
Component? The answer to both can be summed up, somewhat tongue-in-cheek, as
“automagically.” To answer the first question: the container automatically loads and

Listing 3.9 IssueManagementComposite for creating issue-specific problem tickets

b
Defines new
service using SOAP

c Defines component

d Injects referenced component

e
Defines composite
implementation
Licensed to Deborah Christiansen <pedbro@gmail.com>

83The SCA assembly model
parses all composite files that it finds on the classpath. Hence, it could identify where
to find ProblemManagementComposite (in my example, it’s in a file called problem-
Mgmt.composite). As for the second question, a form of autowiring is performed—the
SystemErrorComponentImpl is expecting a class of type ProblemTicketComponent, and
through the container’s parsing of the ProblemManagementComposite, it could identify
a match since only a single component matched that class signature.

 We can now take a closer look at the implementation of the SystemErrorComponent-
Impl class (listing 3.10), which is responsible for receiving an inbound system IT prob-
lem ticket request and then wraps and resubmits it to the ProblemTicketComponent
service.

@Service(SystemErrorComponent.class)
public class SystemErrorComponentImpl implements
 SystemErrorComponent {

 @Reference
 public ProblemTicketComponent problemTicket;

 public int systemProblem(String system, String title,
 String problem) {
 System.out.println("*** SystemErrorComponentImpl ***");
 int rval = 0;

 TicketDO ticket = new TicketDO();
 ticket.setSubject(title);
 ticket.setSubject(problem);
 ticket.setSource(system);

 rval = problemTicket.createTicket(ticket);

 System.out.println("problemTicket:" + rval);

 return rval;
 }
}

The code represents a simple component implementation and identifies the SCA ser-
vice interface b and injected references c. As we pointed out earlier, the injected
ProblemTicketComponent represents the service used for processing the request, as
SystemErrorComponentImpl is a wrapper that simply takes the inbound request that is
tailored for IT system event errors and resubmits the ticket using the more generic
ProblemTicketComponent d. The service interface class, SystemErrorComponent,
defines the method signature systemProblem as accepting three string parameters.
This will be the service operation that’s exposed.

 Starting the SCA container can be done as you saw earlier by using the SCA embed-
ded domain class, in which case you just specify the composite file used to initiate the
desired assembly. In this case, the IssueManagementComposite was defined in a file
called issueMgmt.composite, so the SCA embedded domain was started using the code
shown in listing 3.11.

Listing 3.10 SystemErrorComponentImpl.java

b
Identifies service
implementation

c

Identifies
injected
reference

d

Returns from
referenced
component
Licensed to Deborah Christiansen <pedbro@gmail.com>

84 CHAPTER 3 Creating services using Apache Tuscany
public class ProblemTicketServer {

 public static void main(String[] args) {

 SCADomain scaDomain = SCADomain.newInstance("issueMgmt.composite");
 try {
 System.out.println("ProblemTicket server started" +
 " (press enter to shutdown)");
 System.in.read();
 } catch (IOException e) {
 e.printStackTrace();
 }

 scaDomain.close();
 System.out.println("ProblemTicket server stopped");
 }
}

What have we accomplished in this section? We’ve created a new higher-level compos-
ite assembly (IssueManagementComposite) that uses the services defined within
another, different composite (ProblemManagementComposite). This demonstrates
how you can truly create compositions of services, which is one of the foundational
objectives behind SOA. We accomplished this using the implementation.composite
implementation type, which is currently supported in Apache Tuscany (in chapter 4
I’ll show how other languages can be used to create concrete implementations). You
also saw how we can inject, by reference, a component service that was defined in a
different composite assembly. In the next section, we further examine references that,
similar to properties, allow runtime configurations to be made without requiring
implementation code changes. Such flexibility contributes to the agility so often
touted as a major benefit of moving to SOA.

3.2.6 Using references for dependency injection

The SCA reference, as we’ve demonstrated in a variety of ways, is used to insert depen-
dent class instances in much the same way that properties can be used to insert static
data into a class. This approach was first popularized by Spring’s innovative inversion
of control features, which defined a form of dependency injection. SCA builds on
many of the best practices of Spring while introducing some additional capabilities.
The definition of the reference node is illustrated in figure 3.10.

 In the assembly examples we’ve created so far, we’ve specified references directly
within the component definition, such as

<component name="SystemErrorComponent">
 <implementation.java
 class="opensoa.book.chapter3_26.impl.SystemErrorComponentImpl" />
 <reference name="problemTicket" target="ProblemTicket"/>
</component>

Listing 3.11 Starting the SCA embedded domain
Licensed to Deborah Christiansen <pedbro@gmail.com>

85The SCA assembly model
However, similar to the service and property elements, the reference element can
also be specified at the composite level, with the @promote attribute used to indicate
what component will use the reference. This approach is generally used when you’re
specifying an external service that will act as the referenced object. For example, in
the previous section we referenced a component that consisted of an implementa-
tion.composite to invoke a service located in another assembly. You could also
accomplish this by using a reference that had a web service binding. This approach is
best illustrated through an example (see listing 3.12).

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 xmlns:hw="http://opensoa.book.chapter3"
 name="IssueManagementComposite">

 <service
 name="SystemErrorService"
 promote="SystemErrorComponent">
 <binding.ws uri="http://localhost:8085/SystemErrorService"/>
 </service>

 <component name="SystemErrorComponent">
 <implementation.java
 class="opensoa.book.chapter3_26.impl.SystemErrorComponentImpl" />
 </component>

 <reference name="ProblemTicket"
 promote="SystemErrorComponent/problemTicket">
 <binding.ws uri="http://localhost:8086/ProblemTicketService"/>
 </reference>

</composite>

Listing 3.12 Using web service binding to specify a remote reference

Figure 3.10 XML Schema definition overview for references

b Defines component

c Defines using promotion

Uses remote
service d
Licensed to Deborah Christiansen <pedbro@gmail.com>

86 CHAPTER 3 Creating services using Apache Tuscany
As you can see in listing 3.12, the reference element has been removed from the com-
ponent element definition b and is instead defined at the composite level c. The
@promote attribute uses the convention of <component-name>/<reference-name>, so
in this case, the source for the reference is SystemErrorComponent’s problemTicket
object. Unlike in the previous section’s example, this dependency isn’t satisfied by
specifying a target component within the same assembly. Rather, it uses a web service
binding d to specify a service located remotely (in both examples we’re using the
ProblemTicketService defined in the ProblemManagementComposite). As you can
see, we aren’t limited to local references running within the same VM but can use
remote references using any of the supported bindings. Regardless of whether you are
using a local or a remote reference, the source class recipient of the injected reference
is completely oblivious to how the container performs the injection.

Listing 3.3 illustrated how a reference was associated with a setter method that fol-
lowed standard JavaBean conventions. Similar to how properties are injected, refer-
ences can also be injected either by specifying a public or protected instance variable
designated with the @Reference annotation. Here’s how we specified the Create-
TicketComponent as a reference:

@Reference
protected CreateTicketComponent createTicket;

Using the setter approach is similar (note that we changed the instance variable to
private using this approach, to be consistent with the JavaBean convention).

private CreateTicketComponent createTicket;

@Reference
public void setProblemTicket(ProblemTicketComponent problemTicket) {
 this.problemTicket = problemTicket;
}

Depending on your coding conventions, this approach may be preferred, and it does
add some flexibility, as you can use the setter to perform other actions, if need be,
during the time of injection.

 References are one of the most powerful features of SCA, and they likely will play a
central role in how you design assemblies. Let’s now turn to the last of the core SCA
technologies: bindings.

Reference protocol transparency
We’ve frequently pointed out that one of the major benefits of using SCA is that you
can create services in a protocol-neutral fashion, with the selected binding defined
declaratively at runtime. The same benefits also apply to references, whereby the
class receiving the referenced object is oblivious to what communications protocol is
being used (the referenced object’s interface must be defined, but not the implemen-
tation details). Thus, the recipient component couldn’t care less whether the injected
class arrives via SOAP, JMS, or EJB.
Licensed to Deborah Christiansen <pedbro@gmail.com>

87The SCA assembly model
3.2.7 Defining available bindings

Bindings represent one of the most
innovative and value-added aspects of
SCA, for they allow you to create and
reference services over a variety of
communication protocols, and the
underlying implementation classes are
oblivious to them. Figure 3.11 shows a
simplified definition for the binding
element.

 The supported SCA bindings, much
as with implementation types, will
likely vary from one SCA product to
another. However, we anticipate that most SCA implementations will support a web
service binding (binding.ws). The supported bindings within the Apache Tuscany
project are shown in table 3.3.

We’ve already seen some of the capabilities of the web services binding (binding.ws),
such as the ability to dynamically generate a WSDL if one isn’t present. Often it’s bene-
ficial to create your own WSDL—for example, if you want to consolidate your web ser-
vices into a single WSDL file instead of having a separate WSDL constructed for each
exposed service. Let’s consider how this can be done.

 The sample application we’ve created has thus far involved creation of two web ser-
vices. The first service was the ProblemTicketService. It’s a “generic” service that
eventually will be used to create cases. The second web service, SystemErrorService,
is a wrapper service tailored specifically for inbound IT system tickets (as you recall, it
repackages the request and resubmits it to the ProblemTicketService). Until now,
we’ve used the WSDL autogeneration feature of Tuscany to create a WSDL for each of
the two services. However, it would be preferable to create a single WSDL that incorpo-
rates both of these services. Figure 3.12 shows the custom-created WSDL.

Table 3.3 Apache Tuscany binding types

Type Description

Webservice Uses Apache Axis 2 as the underlying engine.

JMS Default implementation uses ActiveMQ.

JSON-RPC JavaScript JSON support for browser/server type connectivity.

EJB Only stateless session beans are currently supported.

Feed RSS feed.

Figure 3.11 XML Schema definition overview for
bindings
Licensed to Deborah Christiansen <pedbro@gmail.com>

88 CHAPTER 3 Creating services using Apache Tuscany
As illustrated, two separate services are defined within the WSDL, one for each SCA ser-
vice we’ve exposed. Combining definitions into a single WSDL is often convenient as
there are less definition files to manage and everything is in one place. The service
definitions within the WSDL are shown here:

<wsdl:service name="SystemErrorService">
 <wsdl:port name="SOAP" binding="ns0:SystemErrorServiceSOAPBinding">
 <soap:address
 location="http://localhost:8085/SystemErrorService"/>
 </wsdl:port>
</wsdl:service>

<wsdl:service name="ProblemTicketService">
 <wsdl:port name="SOAP" binding="ns0:ProblemTicketServiceSOAPBinding">
 <soap:address
 location="http://localhost:8085/ProblemTicketService"/>
 </wsdl:port>
 </wsdl:service>

To create the single WSDL, use the two generated WSDLs and merge them together. To
make the WSDL more manageable in size, separate the XSD schemas into individual
files and assign them their own namespaces. Then include them using the schema
include element, which results in a much abbreviated wsdl:types section:

<wsdl:types>
 <xs:schema >
 <xs:import
 namespace="http://chapter3.book.opensoa/system"
 schemaLocation="systemTicket.xsd"/>
 <xs:import
 namespace=http://chapter3.book.opensoa/issue
 schemaLocation="issueTicket.xsd"/>
 </xs:schema>
</wsdl:types>

Now, for us to use this new WSDL, it must be referenced in the service definition of
our assembly. Let’s modify the ProblemManagementComposite, which defines the
ProblemTicketService, so that the service entry reads

Figure 3.12 Graphical depiction of WSDL for combined services
Licensed to Deborah Christiansen <pedbro@gmail.com>

89The SCA assembly model
<service name="ProblemTicketService" promote="ProblemTicketComponent">
 <binding.ws wsdlElement=
 "http://chapter3.book.opensoa#wsdl.port(ProblemTicketService/SOAP)"/>
</service>

Two things will likely jump out at you when reviewing this code: the wsdlElement defi-
nition and the #wsdl.port syntax. The Web Service Binding Specification [SCAWS]
defines several implementation patterns for how you can dynamically reference spe-
cific portions of the WSDL. The #wsdl.port pattern accepts as its parameter
<service-name>/<port-name>. So in our example we’re stating that the service we
want to expose for this component can be found, as shown in figure 3.13.

 The definition for SystemErrorService similarly references the WSDL location for
the service being exposed:

<service name="SystemErrorService" promote="SystemErrorComponent">
 <binding.ws wsdlElement=
 "http://chapter3.book.opensoa#wsdl.port(SystemErrorService/SOAP)"/>
</service>

To recap what this has accomplished: (a) we now have a single WSDL that defines both
services, and this simplifies management; and (b) a single port is used, whereas previ-
ously we used a port for each service exposed (multiple ports can cause network head-
aches, as firewall changes may be required to support each additional port used).

 One of the main benefits of SCA is that it supports introducing different proto-
cols without having to modify the underlying components to reflect any protocol-
specific configurations. The ProblemTicketComponentImpl class we developed ear-
lier (listing 3.3) had no SOAP-specific code present, such as Axis2 classes, and yet we
exposed the service through SOAP. That said, many Java shops choose not to use
SOAP over HTTP internally and instead prefer JMS. In part, this is due to the flexibil-
ity inherent in JMS to support asynchronous communications (something only
recently becoming more widespread in SOAP over HTTP). JMS is arguably also stron-
ger in the areas of guaranteed message delivery, and ActiveMQ’s built-in support for
Apache Camel [Camel] provides powerful support for many common enterprise
integration patterns.

Figure 3.13 How the WS binding service and port definition maps to the WSDL file
Licensed to Deborah Christiansen <pedbro@gmail.com>

90 CHAPTER 3 Creating services using Apache Tuscany
 Let’s demonstrate how easy it is to change protocols using SCA. You may be skepti-
cal that this works as advertised (we must confess to being dubious at first as well), so
we’ll add a JMS binding to the SystemErrorService service. We chose this service
because it represents tickets that can be created internally through monitoring appli-
cations, and JMS is commonly used as the communications protocol for these types of
event notifications.

 Adding a JMS binding as an additional service entry point for SystemError-
Component requires three steps: (1) adding a new binding element definition to the
existing SystemErrorService service, (2) adding a JMS WSDL binding, and (3) creat-
ing a test JMS client. Let’s take a look at the first task.

NOTE Apache Tuscany, which I’m using for examples, supports two methods
of JMS binding. The first, which I’m demonstrating in this section, uses
SOAP over JMS. The other uses the binding.jms type. The latter
appears to be a more flexible solution insofar as configuration is con-
cerned, but the former (which still uses binding.ws, since it uses
SOAP) is easier to configure.

We can add an additional binding protocol by including another binding element
within the service definition. In our example, we’ll add another binding.ws element,
but this one will specify a JMS queue and configuration as well as specify a WSDL
wsdl.binding that has been added to support SOAP over JMS (more on this shortly).
The code example in listing 3.13 demonstrates the changes.

<service
 name="SystemErrorService"
 promote="SystemErrorComponent">
 <binding.ws
 ➥wsdlElement="http://chapter3.book.opensoa/system#
 ➥wsdl.binding(SystemErrorServiceJMSBinding)"
 ➥uri="jms:/SystemErrorInQueue?transport.jms.ConnectionFactoryJNDIName=
 ➥QueueConnectionFactory&java.naming.factory.initial=
 ➥org.apache.activemq.jndi.ActiveMQInitialContextFactory&
 ➥java.naming.provider.url=tcp://localhost:61616?
 ➥wireFormat.maxInactivityDuration=0" />

 <binding.ws
 wsdlElement="http://chapter3.book.opensoa#➥
 wsdl.port(SystemErrorService/SOAP)" />
</service>

The first binding.ws was the one added to support the JMS protocol b. The lengthy
uri string defines the ActiveMQ configuration. The SystemErrorInQueue is the
inbound JMS queue where inbound messages will be lifted, and the java.naming.
provider.url value identifies the ActiveMQ instance. A description of other settings,
and instructions for setting up ActiveMQ, can be found in the ActiveMQ documenta-
tion [ActiveMQ].

Listing 3.13 Adding a JMS as an additional binding to a service

b Defines SOAP over
JMSbinding
Licensed to Deborah Christiansen <pedbro@gmail.com>

91The SCA assembly model
To test the JMS binding, let’s develop a client assembly that posts messages to the des-
ignated JMS queue. This will be used to simulate a regular JMS client that interfaces
with the service. Although we could do this without using SCA, the exercise is
beneficial because it demonstrates how SCA can be used within a client capacity. To
develop this assembly, we’ll create a new component that remotely references the
SystemErrorService via JMS. This reference will then be used to invoke the JMS call
and return the results (the default SOAP over JMS binding supports synchronous JMS
calls). The assembly for the JMS client is shown in listing 3.14.

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 name="jmsclient">

 <component name="JMSComponent">
 <implementation.java
 class="opensoa.book.chapter3_27.impl.JMSClientImpl" />
 </component>

 <reference
 name="JMSClientReference"
 promote="JMSComponent/jmsClient">
 <interface.wsdl
 interface="http://chapter3.book.opensoa#
 ➥wsdl.interface(SystemErrorComponentPortType)" />

 <binding.ws
 wsdlElement="http://chapter3.book.opensoa/system#
 ➥wsdl.binding(SystemErrorServiceJMSBinding)"

 uri="jms:/SystemErrorInQueue?
 ➥transport.jms.ConnectionFactoryJNDIName=
 ➥QueueConnectionFactory&java.naming.factory.initial=
 ➥org.apache.activemq.jndi.ActiveMQInitialContextFactory&
 ➥java.naming.provider.url=tcp://localhost:61616?
 ➥wireFormat.maxInactivityDuration=0" />
 </reference>
</composite>

Listing 3.14 Assembly for the JMS client used to submit remote requests

Using SCA to rationalize your existing services
One of the big challenges encountered by most enterprises is that they may already
have a scattershot of services exposed via JMS or SOAP. Rationalizing them to pro-
vide for a consistent interface or to enforce governance requirements can be chal-
lenging, especially when making wholesale modifications is out of the question.
Historically, ESBs were useful in such scenarios, because you could create new ser-
vices that simply call or wrap the existing ones. Because SCA is equally adept acting
as a server or client, it could also perform a similar role. That is, you could use SCA
to repackage or provide new binding protocol support for an existing set of services.

b Assigns
reference to
JMSComponent

Uses interface
defined by WSDL
portType

Uses SOAP over
JMS binding
Licensed to Deborah Christiansen <pedbro@gmail.com>

92 CHAPTER 3 Creating services using Apache Tuscany
The reference element injects an object into JMSComponent’s jmsClient instance
variable that adheres to the specification provided by interface.wsdl element b.
Since we can’t directly inject a WSDL interface into the Java component, we used the
class JMSClientImpl for the concrete implementation, as it was created with the same
method and parameters defined in the WSDL (indeed, interface.java could have
been used in lieu of interface.wsdl). The JMSClient interface implemented by
JMSClientImpl is shown here:

@Remotable
public interface JMSClient {
 public int systemProblem(SystemErrorDO ticket);
}

To simplify what’s happening, consider the reference being injected as a remote “han-
dle” that’s provided to the local component, JMSClientImpl. The handle’s interface
can be defined either via a Java class or through a WSDL (in this case, we used the
WSDL). If a WSDL is used, then an implementation class that adheres to the WSDL
specification must be used for receiving the handle with the component class. In
other words, the interface defines the contract or structure of the reference and it can
be defined using either a Java class or WSDL. The implementation of that interface
can be satisfied using any of the supported implementation types, such as implemen-
tation.java or implementation.spring. Listing 3.15 displays a Java component class
implementation for our JMS client.

public class JMSClientImpl implements JMSClient {

 @Reference
 public JMSClient jmsClient;

 public int systemProblem(SystemErrorDO ticket) {
 int rval = jmsClient.systemProblem(ticket);
 System.out.println("rval: " + rval);
 return rval;
 }
}

When the systemProblem method is invoked, it uses the remote JMS handle repre-
sented by the jmsClient variable b to invoke the remove service c. To invoke this
component, a Main class is then used to instantiate the SCA domain and invoke the
component:

SCADomain scaDomain = SCADomain.newInstance("jmsclient.composite");
JMSClient jmsClient = scaDomain.getService(JMSClient.class,
 "JMSComponent");

SystemErrorDO ticket = new SystemErrorDO();
ticket.setProblem("test problem");
ticket.setSystem("test system");
ticket.setTitle("test title");

Listing 3.15 JMSClientImpl component class

b Injects reference
to JMS client

c Invokes method
on JMS client
Licensed to Deborah Christiansen <pedbro@gmail.com>

93Summary
jmsClient.systemProblem(ticket);
scaDomain.close();

As previously pointed out, you’re obviously not limited to using SCA to populate the
remote JMS message. You can also use the ActiveMQ administrative console to submit
a test messages.

 To recap: We added a new binding to the SystemErrorService that enabled it to
receive SOAP over JMS in addition to the SOAP over HTTP we previously set up. Then
we created a JMS client using an SCA assembly for purposes of creating test requests.
Adding the new JMS binding didn’t result in any changes to the underlying target
components. This exemplifies some of the great power and flexibility afforded by SCA.
We’ve now covered all of the core SCA technologies and illustrated their usage.

3.3 Summary
One of the biggest challenges software developers face today is selecting the right
framework. As you know, we’re awash in frameworks, ranging from those used to cre-
ate web applications and web services to application assembly. So there’s probably a
healthy dose of skepticism about the Service Component Architecture (SCA), regard-
ing both its ability to fulfill its promise of an easy-to-use component assembly model
with protocol and language neutrality as well as its vendor commitment. After all,
we’ve seen in the past standards like Java Business Integration (JBI), which was
launched with great fanfare, only to die and whither on the vine as vendor support,
once so promising, quickly evaporated. Will SCA suffer from the same grim future?
While my crystal ball may not always be accurate, We do think the future is bright for
SCA. Why? Because SCA is the product of SOA best practices that have been learned
over the past several years, and it also recognizes the heterogeneous environment in
which most enterprises operate.

 The SCA assembly framework, centered on the notion of components and services,
nurtures a SOA mind-set of creating discrete, reusable units of code that can easily be
shared and distributed. To demonstrate SCA’s capability, we created in this chapter a
hypothetical problem ticket service constructed of SCA components. We used Apache
Tuscany, an excellent open source SCA implementation. The services we created were
then exposed as SOAP-based web service over both HTTP and JMS. The code used to
build the components was completely oblivious to the underlying protocol used when
exposing it as a service. This is very exciting stuff, and means that as an architect, you
don’t have to worry about locking yourself into having to select up-front a single pro-
tocol or language. The power and flexibility of SCA also became apparent as we cre-
ated higher-level compositions that consisted of lower-level components. We used
Spring-like “inversion of control” dependency injection to configure the classes at
runtime with dependent classes or properties.

 While this chapter has covered the core SCA functionality, there’s much more to
learn about SCA, and we’ll dive into some of the more advanced features in the next
chapter.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Advanced SCA
In the previous chapter, we covered many of the basics for getting up and running
with SCA using Apache Tuscany. This included how to create compositions, compo-
nents, and services. These are important ingredients for building a foundation for
your SOA environment, as they directly address the S in SOA, which is about creat-
ing reusable and discrete services. However, a lot of additional considerations exist
that go beyond what we’ve demonstrated, particularly within an enterprise setting.
They include such SCA capabilities as conversational services, complex deployment
scenarios, multilanguage support, and Service Data Objects (SDOs). Without such
features, the appeal of SCA would be limited, and its attendant contribution to SOA
marginal. In this chapter, we’ll address these more advanced capabilities, and by
the end of this chapter, you’ll have the know-how to begin using SCA in your real-
life scenarios. Let’s begin our coverage by looking at component types, which are used
in lieu of the SCA annotations we have relied on until now.

This chapter covers
■ Advanced SCA features
■ Scripting languages in SCA
■ Service Data Objects
94

Licensed to Deborah Christiansen <pedbro@gmail.com>

95Configuration using component types
4.1 Configuration using component types
Component types, like the SCA Java annotations shown in this book’s examples so far,
are used to define the configurable aspects of an implementation. By this, we’re refer-
ring to the ability to configure, at runtime, dependencies such as properties and refer-
ences. The SCA Java annotations we’ve used so far were essentially metadata used to
notify the SCA engine of the relationships that existed between the classes. When
using non-Java languages (section 4.5), the option of using annotations isn’t always
available, and so component types must be used. In certain scenarios, you may not
find it desirable to use annotations, even if they’re available. For example, since anno-
tations are defined within the code, they aren’t suitable when runtime configuration
flexibility is required. Or perhaps you’re exposing existing Java classes as components,
and can’t or don’t want to make any source modifications. Let’s take a look at how the
component type facility works.

NOTE You can mix and match using component types and annotations, if you
so desire. For example, you can use a component type file to identify
properties but annotations for references and services.

To use component types, you first create a component type file, which is an XML doc-
ument that follows a naming convention of

 <component-implementation-class>.componentType

where component-implementation-class is the name of the implementation
class associated with the component. The file location is also important, and must be
within the same relative classpath as the implementation object. What’s inside the file?
Let’s create an example.

NOTE In the source code that accompanies this section, the component type
files are located under the src/main/resources folder.

The ProblemTicketComponentImpl class, which we created in listing 3.2 in the previ-
ous chapter, used the @Service, @Property, and @Reference annotations to identify
what services are being offered by the implementation class. Let’s assume we’ve cre-
ated a new class called ProblemTicketComponentImplNA, which is function-wise identi-
cal to the original but without the use of the Java annotations (the class is in the
sample code for this section). The component type definition used in lieu of the
annotations is shown in listing 4.1.

<componentType
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <service name="ProblemTicketComponent">
 <interface.java
 interface="opensoa.book.chapter4_1.ProblemTicketComponent"/>
 </service>

Listing 4.1 Component type file used in lieu of SCA implementation class annotations

 b Defines new service

 c Defines service
interface class
Licensed to Deborah Christiansen <pedbro@gmail.com>

96 CHAPTER 4 Advanced SCA
 <reference name="createTicket">
 <interface.java
 interface="opensoa.book.chapter4_1.CreateTicketComponent"/>
 </reference>

 <property name="username" type="xsd:string"/>
 <property name="password" type="xsd:string"/>
</componentType>

The service element is used in lieu of the @Service annotation to describe the ser-
vices being offered by the component b. In this case, the interface for the service is
defined by the method signatures found in the ProblemTicketComponent interface
class c. The reference element similarly identifies, by its @name attribute, which class
member variable it’s associated with, as well as the interface d for the referenced
object. The property entries e are used instead of @Property annotations to indicate
which member variables in the class will be receiving the injected property values at
runtime.

NOTE It may seem a bit superfluous for the reference and property elements to
require an interface or type to be specified. We believe this may be because
the target component class associated with the type file isn’t reflected (per-
haps because of the multilanguage nature of SCA). Without reflection, the
reference interface and property types must be manually identified.

As you can see, using a component type file allows you to declaratively define your
configuration in a way that’s more flexible, though less convenient, than using anno-
tations. We’ll touch on component types again in our coverage of scripting language
support in section 4.3. Next up, we’ll look at SCA interaction models, which provide
the ability to make more complex, long-running interactions between a client applica-
tion and the service.

4.2 SCA interaction models
The services we’ve defined so far have all followed the commonly used stateless
request/response pattern. In chapter 1, we discussed how using stateless services rep-
resents SOA best practice. This is because stateless services are more stand-alone, self-
contained, and amenable to clustering for high performance. However, in certain sce-
narios statelessness isn’t always an option and, in fact, can sometimes cause its own
performance-related problems. For example, if a request typically takes a while to
respond, the calling service must “block-and-hold” while the service completes its
work. This can cause unacceptable delays, particularly when real-time user interac-
tions are required, such as within a web application. So in certain scenarios using
stateful conversations and callbacks can be worthwhile.

4.2.1 Using conversations

What is an example where we might want a conversational stateful service? Many
third-party APIs, such as the one offered by Salesforce, require that you first call a

 d Identifies reference to be injected

 e
Identifies properties
to be injected
Licensed to Deborah Christiansen <pedbro@gmail.com>

97SCA interaction models
login operation with your provided credentials. If successful, you’re returned a
sessionId that must be used in subsequent calls. In the case of Salesforce, the
sessionId will become invalid after some period of inactivity (two hours) and has to
be refreshed. Retrieving a sessionId is an expensive operation and can be relatively
slow, so fetching a new one for each and every operation called isn’t advisable. Before
we delve into how to address this in SCA, let’s first take a look at the various conversa-
tion scope levels that are supported. There are currently four types:

■ COMPOSITE—All requests are dispatched to the same class instance for the life-
time of the composite. A classic scenario for this is a counter, where you incre-
ment it for each call made to a given service.

■ CONVERSATION—Uses correlation to create an ongoing conversation between
a client and target service. The conversation starts when the first service is
requested and terminates when an end operation is invoked. An intelligent cli-
ent is needed to support this capability.

■ REQUEST—Similar to a web servlet request scope, whereby a request on a
remotable interface enters the SCA runtime and processes the request until the
thread completes processing. Only supported by SCA clients.

■ STATELESS—The default is that no session is maintained.

Let’s build on the example of the sessionId by using COMPOSITE scope. We’ll simu-
late the behavior of the Salesforce.com API. Listing 4.2 shows the interface class for
what we’re calling the SessionManager. To keep things simple, the implementation
will simply return a random integer.

@Remotable
@Conversational
public interface SessionManager {
 public void initialize();
 public int getSessionId();
}

The only difference here from what we saw with previous interfaces is the addition of
the @Conversational annotation b, which notifies the container that this service
must support a conversational scope. The implementation class, shown in listing 4.3,
is where the real action takes place.

@Service (SessionManager.class)
@Scope ("COMPOSITE")
@EagerInit
public class SessionManagerImpl implements SessionManager {

 private int sessionId = 0;

 public int getSessionId() {

Listing 4.2 SessionManager interface class annotated for conversational scope

Listing 4.3 SessionManagerImpl implementation annotated for conversation

b Identifies service as conversational

Service
operations

b Identifies scope of service

c
Initializes when
SCA domain starts
Licensed to Deborah Christiansen <pedbro@gmail.com>

98 CHAPTER 4 Advanced SCA
 return sessionId;
 }

 @Init
 public void initialize() {
 Random r = new Random();
 sessionId = r.nextInt(300000);
 }
}

Listing 4.3 contains a number of new annotations that we haven’t seen yet. The
@Scope annotation b is used to specify the scope type (COMPOSITE, CONVERSA-
TIONAL, REQUEST, STATELESS), and @EagerInit c instructs the container to instan-
tiate this class immediately when the domain is started (it otherwise would only be
instantiated the first time it was called, or “lazily”). The @Init annotation d is used to
specify that the method that follows is to be called immediately after class instantia-
tion—this is required when using the @EagerInit annotation. Since this method is
called on class instantiation, no method parameters are permitted. In the example
from listing 4.3, the method returns a fake sessionId, and it will be retrieved auto-
matically by the SCA engine when the class is first created (this is assuming that we
want to preserve the same sessionId during each subsequent call, which is the case
when using Salesforce.com’s API).

 With the new conversational-ready class now in hand, we can inject it into the
CreateTicketComponent we originally created in listing 3.5. We made the following
additions to that class so that it receives the injected reference to the new Session-
Manager class we created earlier:

@Reference
protected SessionManager sessionManager;

Lastly, we’ll update the ProblemManagementComposite assembly to configure the new
component to represent the SessionManager, and add the reference to that compo-
nent from within the CreateTicketComponent definition:

<component name="CreateTicketComponent">
 <implementation.java
 class="opensoa.book.chapter4_21.impl.CreateTicketComponentImpl"/>
 <reference name="sessionManager"
 target="SessionManagerComponent"/>
</component>

<component name="SessionManagerComponent">
 <implementation.java
 class="opensoa.book.chapter4_21.impl.SessionManagerImpl"/>
</component>

We’ve now added the conversation component called CreateTicketComponent to the
assembly. When the SCA domain is launched using this assembly, the Session-
ManagerComponent is instantiated and the initialize method invoked, populating
the sessionId value. This component is subsequently injected into the Create-
TicketComponent service, and because SessionManagerComponent is conversational

d
Calls method when
class initialized
Licensed to Deborah Christiansen <pedbro@gmail.com>

99SCA interaction models
using a COMPOSITE type, the sessionId acquired at startup will persist across multi-
ple calls to the CreateTicketComponent service (the getSessionId returns the same
value every time), regardless of the client.

 In a real-world implementation, we’d obviously have to accommodate for the
occurrence where the sessionId is no longer valid due to the inactivity timer, but
including that logic would be straightforward. Another related but slightly different
form of conversational support is callbacks. The distinction between them is that the
conversational services described so far pertain to the server service retaining some
ongoing session-related data that extends beyond a single client request. A callback,
on the other hand, is intended more for asynchronous communications, where
there’s no expectation that the client will again call the service within a related ses-
sion. When the server service has completed processing the request, it will “call back”
the client and provide the completed results. Callbacks are typically used when there’s
no guaranteed service level. In other words, the service may not be able to provide an
immediate, synchronous response to the request. Let’s take a look at the callback sup-
port within SCA.

4.2.2 Understanding callbacks

Callbacks are a form of bidirectional com-
munications whereby a client requests a ser-
vice and the provider or server returns back
the results by “calling back” the client
through a given interface or operation. It’s
considered an asynchronous form of com-
munication because the server doesn’t
return the results through its synchronous
reply, as most commonly exemplified by web
services or RFC-style communications. Figure
4.1 contrasts synchronous versus callback-
based asynchronous operations.

 As figure 4.1 shows, a client making a syn-
chronous operation request will block and
wait for a response from the server. On the
other hand, with a callback the client makes
the request and then continues processing.
When the server has completed processing the request, it then calls back the client
method on a separate thread to present the results.

 Callbacks are often used when the processing time required to fulfill a request is
unpredictable or slow. What’s a scenario of how it might be used in the examples
we’ve been building thus far? Let’s say that we want to capture all create ticket events
so that they can be fed into a business activity monitoring (BAM) dashboard that exec-
utives would monitor. For example, they might want to be apprised of any unusual

Figure 4.1 Differences between synchronous
and asynchronous callback operations
Licensed to Deborah Christiansen <pedbro@gmail.com>

100 CHAPTER 4 Advanced SCA
spikes in ticket-creation activity. To illustrate this, let’s create a new component that’s
called in an asynchronous fashion, with the component responsible for sending an
event to the BAM or CEP system (we’ll simulate this part). Since we want to ensure that
the component was able to process the event successfully, a callback will be used to
indicate the message was processed correctly. Because this is for event propagation
and not directly related to the functioning of the service, we don’t want to risk delay-
ing a response to the client. Therefore, an asynchronous callback is sensible.

 Creating a callback service does involve a few steps, and the SCA documentation
can be a bit confusing as to how to accomplish this goal. The steps are as follow:

1 Create an interface class that defines the operation that will be called when the
callback is performed.

2 Create the server interface and implementation class, and add the callback
annotations.

3 Create or modify the client class to implement the callback interface defined in
step 1 and add a reference to the server created in step 2. Modify the business
logic to use the server component’s functionality.

4 Modify the composite file to configure the assembly.

We’ll begin by looking at the creation of the interface class.
CREATING THE CALLBACK INTERFACE

The callback interface is an SCA requirement for callback support, and it’s the first
thing we’ll create. It’s used to define the method to be called when the callback is per-
formed. For our example of an event notifier, we developed the following simple
EventNotificationCallback interface:

package opensoa.book.chapter4_22;

public interface EventNotificationCallback {
 void success(boolean status);
}

The second step is to create the server interface and implementation.
CREATING THE SERVER INTERFACE AND IMPLEMENTATION CLASSES

The service interface represents the business functionality being provided by the
server, and in turn, will call back the results to the client. In our example, this is the
component used for processing the event. To keep things simple, our server class
doesn’t do much—it just receives the inbound event and always returns a success. As
we move forward into future chapters, this will be greatly expanded (specifically in
chapter 8, which covers event stream processing). Listing 4.4 shows the interface class
used for the new service.

package opensoa.book.chapter4_22;

import org.osoa.sca.annotations.*;

Listing 4.4 EventNotificationComponent interface setup for callback support
Licensed to Deborah Christiansen <pedbro@gmail.com>

101SCA interaction models
@Remotable
@Callback(EventNotificationCallback.class)
public interface EventNotificationComponent {

 @OneWay
 public void notify(TicketDO ticket);
}

The @Callback annotation identifies this component as supporting a callback b, and
it identifies EventNotificationCallback.class as the callback’s interface. The
@OneWay annotation c flags the notify operation as nonblocking and instructs the
client to continue processing immediately, without waiting for the service to execute.
Now let’s take a look at the corresponding implementation class (listing 4.5).

package opensoa.book.chapter4_22.impl;

import opensoa.book.chapter4_22.*;
import org.osoa.sca.annotations.*;

@Service(EventNotificationComponent.class)

public class EventNotificationComponentImpl
 implements EventNotificationComponent {

 @Callback
 protected EventNotificationCallback callback;

 public void notify(TicketDO ticket) {

 try {
 Thread.sleep(40000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 callback.success(true);
 }
}

The @Callback annotation b in the implementation class is used to identify the class
that will be injected by the container at runtime. In this case, a class implementing the
EventNotificationCallback will be injected, and this will represent the client that’s
invoking the service (consider it a handle to the calling client; the client must imple-
ment this interface). The Thread.sleep call c is present to just simulate that it may
take a while for the server function (notify) to complete its processing. But since this
is an asynchronous operation, it doesn’t matter how long the processing takes. Lastly,
the callback itself is placed d, using the operation specified in the interface. This is call-
ing the client class’s callback method, as specified by the EventNotificationCallback
interface, which the client must implement. Let’s explore the modifications required to
the client class next.

Listing 4.5 Implementation class for interface EventNotificationComponent

 b Specifies callback

c
Identifies callback
method type

b Injects callback class

c Sleeps 40 seconds

d
Invokes callback
method
Licensed to Deborah Christiansen <pedbro@gmail.com>

102 CHAPTER 4 Advanced SCA
MODIFYING THE CLIENT CLASS TO IMPLEMENT THE CALLBACK INTERFACE

The client class in this example, CreateTicketComponentImpl, is injected with an imple-
mentation of EventNotificationComponent, whose notify method is subsequently
invoked. The modified CreateTicketComponentImpl class is shown in listing 4.6.

public class CreateTicketComponentImpl implements
 CreateTicketComponent, EventNotificationCallback {

 @Reference
 protected SessionManager sessionManager;

 @Reference
 protected EventNotificationComponent eventNotifier;

 public int create(TicketDO ticket) {
 Random r = new Random();
 int ticketId = r.nextInt(300000);
 eventNotifier.notify(ticket);

 return ticketId;
 }

 public void success(boolean status) {
 System.out.println("Notify results: " + status);
 }
}

As you can see, only a few changes are necessary to support the callback functionality.
First, the client must implement the callback interface b, and second, it must imple-
ment the required success method c. This method for now will simply print out to
the console a boolean value returned through the callback parameter. The remaining
step we must perform to enable the callback is to modify the composite assembly file.
MODIFYING THE COMPOSITION FILE TO INCORPORATE THE CALLBACK

The changes required in the composition file include adding the new Event-
NotificationComponent, which is the component that will perform the callback; cre-
ating a reference to that component from within the CreateTicketComponent
component; and within the reference, identifying it as a callback. The updated assem-
bly is shown in listing 4.7.

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter4_22"
 xmlns:hw="http://opensoa.book.chapter4_22"
 name="ProblemManagementComposite">

 <property name="credentials" type="hw:CredentialsType">
 <hw:Credentials>
 <hw:username>jdoe@mycompany.com</hw:username>
 <hw:password>mypassword1</hw:password>

Listing 4.6 Client implementation class

Listing 4.7 Updated composite assembly file for callback example

b

Implements
callback interface

c Invokes method
Licensed to Deborah Christiansen <pedbro@gmail.com>

103SCA interaction models
 </hw:Credentials>
 </property>

 <service
 name="ProblemTicketService"
 promote="ProblemTicketComponent">
 <binding.ws wsdlElement=
 "http://chapter4_22.book.opensoa#wsdl.port(ProblemTicketService/SOAP)"/>
 </service>

 <component name="ProblemTicketComponent">
 <implementation.java class=
 "opensoa.book.chapter4_22.impl.ProblemTicketComponentImpl" />
 <property name="username"
 source="$credentials//*[local-name()='username']" />
 <property name="password"
 source="$credentials//*[local-name()='password']" />

 <reference name="createTicket" target="CreateTicketComponent"/>
 </component>

 <component name="CreateTicketComponent">
 <implementation.java class=
 "opensoa.book.chapter4_22.impl.CreateTicketComponentImpl" />
 <reference name="sessionManager" target="SessionManagerComponent"/>

 <reference name="eventNotifier"
 target="EventNotificationComponent">
 <interface.java interface=
 "opensoa.book.chapter4_22.EventNotificationComponent"
 callbackInterface=
 "opensoa.book.chapter4_22.EventNotificationCallback"/>
 </reference>
 </component>

 <component name="SessionManagerComponent">
 <implementation.java
 class="opensoa.book.chapter4_22.impl.SessionManagerImpl"/>
 </component>

 <component name="EventNotificationComponent">
 <implementation.java class=
 "opensoa.book.chapter4_22.impl.EventNotificationComponentImpl"/>
 </component>
</composite>

The new EventNotificationComponent is defined in standard fashion consistent with
the others d, and a reference to that component is included within the Create-
TicketComponent definition b. The only distinction between this and the other refer-
ences we’ve seen is the addition of the @callbackInterface attribute c—this signals
that the reference includes callback functionality and also specifies the interface used.

NOTE You could also reference a callback that’s running within a remote domain
by specifying a binding element within the callback definition (in which
case, you’d need a binding defined within the server component as well).

 b Defines reference
to inject

c

Identifies
callback
interface

 d Defines callback
component
Licensed to Deborah Christiansen <pedbro@gmail.com>

104 CHAPTER 4 Advanced SCA
If you now launch this assembly using the source code for this section, you can submit
a SOAP message to the ProblemTicketService and witness through the console that
the callback is working successfully.

 This discussion of how to use callbacks has demonstrated the use of asynchronous,
bidirectional communications to create even more loosely bound services. Such ser-
vices contribute to a more robust SOA environment. Although there are a few steps
involved in setting this up, the results can pay big dividends, especially when you’re
calling remote services that can have unpredictable response times.

 One of the most exciting parts of Tuscany we’ve yet to touch on is its support for
scripting languages. Given the popularity of Ruby, along with the growing interest in
Groovy, this support is an important value proposition. Let’s look at scripting lan-
guage support next.

4.3 Scripting language support
One of the main selling points of SCA is that it supports multiple languages (the par-
ticular SCA implementation, such as Apache Tuscany, determines which individual
languages are supported). The days are likely past when an organization is entirely
homogenous in their selection of which programming language to use. In particular,
scripting languages such as Python, Perl, and Ruby have become increasingly popular.
Their agile development cycles and, in some cases, simplified language structures
have contributed to their success. Thus, support of multiple languages is fast becom-
ing a requirement for enterprises adopting SOA.

NOTE Tuscany’s SCA Java distribution, which is what we’ve been using, supports
scripting languages through their Java implementations. For example,
you’re not really using native Ruby, per se, but instead, JRuby. In most
cases, the Java implementations are excellent, but they may not be as fea-
ture rich in some areas nor offer complete support for external libraries
that are available for the native versions. Also, dynamic modifications at
runtime are not currently supported.

Tuscany’s SCA implementation supports the following scripting languages: JavaScript,
Groovy, Ruby, Python, XSLT, and XQuery. Space won’t permit me to demonstrate each
of these languages, so let’s select Ruby for the example that we’ll build (this seems like
a good choice, given Ruby’s widespread popularity). This example will create an email
component in Ruby that will send out a confirmation email when a problem ticket has
been reported. This can be accomplished by following these steps:

1 Create the Ruby component code/implementation.
2 Create a Java interface that mirrors the Ruby class signature.
3 Modify the ProblemTicketComponentImpl class to inject the component.
4 Add the Ruby component to the composite assembly.

The first step is to create the Ruby implementation class.
Licensed to Deborah Christiansen <pedbro@gmail.com>

105Scripting language support
4.3.1 Creating a Ruby component

The Ruby class that we’ll create, called Email.rb, is responsible for receiving a prob-
lem ticket and sending a reply email that contains the case number that was generated
by way of the CreateTicketComponentImpl class. Thanks to Ruby’s powerful string
interpolation features, you can construct strings with placeholder variables that are
injected at runtime. Listing 4.8 shows the very simple and terse code.

require 'net/smtp'

def email(from, to, subject, body, caseNo)
 puts "Inside Ruby Email.rb Component"

 myMessage = <<END_OF_MESSAGE
From: #{from}
To: #{to}
Subject: Case: #{caseNo} - #{subject}

#{body}
END_OF_MESSAGE

 Net::SMTP.start('localhost', 25, 'localhost.localdomain',
 'uname', 'password', :login) do |smtp|
 smtp.send_message myMessage, from, to
 end
 return "true"
end

The first line imports the Ruby library required for email support b, followed by the
definition of the email method c that will be exposed as the component service to be
called by the Java program. The myMessage string variable is then defined as a text tem-
plate, delimited between the two END_OF_MESSAGE markers (this can be any arbitrary
string value pair to delineate the start and end of the message). Within the message
you’ll notice the interpolation variables we alluded to a moment ago, which are identi-
fied by the format #{variable} d. These placeholders will be replaced by the actual
value associated by the variable at runtime. Lastly, we use a Ruby closure e to initiate
the SMTP communication using the login parameters provided. The message is then
sent by invoking the send_message method (see [Cooper] if you’re a Ruby novice).

 The Email.rb file is stored under the resources directory, using the same path con-
vention as used for the Java implementation code (opensoa/book/chapter4_3/impl).
Now, you might be wondering, how do we integrate this Ruby code with our Java
classes? Good question. The first step is to create a Java interface that mirrors the
Ruby method signature.

4.3.2 Creating a Java interface using the Ruby method signature

Obviously, we can’t inject a Ruby dependency directly into a Java class, but SCA,
through its magic, does essentially that. This is accomplished by creating a Java

Listing 4.8 Ruby class Email.rb for defined component EmailServiceComponent

b Imports required library

c Defines method

d
Creates string
using tokens

 e Sends email
using injected
properties
Licensed to Deborah Christiansen <pedbro@gmail.com>

106 CHAPTER 4 Advanced SCA
interface class that has the identical method signature that we defined within the
Ruby class, Email.rb. As shown in the Ruby code in listing 4.8, this was defined as

def email(from, to, subject, body, caseNo)

A Java interface that mirrors this was created as EmailServiceComponent.java:

package opensoa.book.chapter4_3;

public interface EmailServiceComponent {
 public String email(String from, String to,
 String subject, String body, String caseNo);
}

This interface class is then used when injecting the reference to the Ruby class into
Java, which takes us to the next step.

NOTE The two steps that follow are no different whether we’re using a scripting
language or a native Java class.

4.3.3 Modifying the service implementation class

Let’s now modify the ProblemTicketComponentImpl class we worked with in previous
examples to receive the injected reference. The following code illustrates how the
component will be injected, in this case using “setter”-style injection:

private EmailServiceComponent emailService;

@Reference
public void setEmailService(
 EmailServiceComponent emailService) {
 this.emailService = emailService;
}

The emailService variable now contains an indirect handle to the Ruby code (we say
indirect because it’s proxied through the Java interface EmailServiceComponent).
Calling the new service method is done using

System.out.println("email: " + emailService.email("doNotReply@none.com",
 ticket.getCustomerEmail(),
 ticket.getSubject(),
 ticket.getProblemDesc(),
 String.valueOf(ticket.getCaseNumber())));

As you can see, we’re invoking the email method associated with the EmailService-
Component interface but whose concrete implementation is being performed by the
Ruby Email.rb class. This is pretty clever stuff from SCA. Our last step is to wire every-
thing together in the assembly.

4.3.4 Modifying the composition assembly

The changes to the assembly composite file are minimal. The first thing we have to do
is define the Ruby component corresponding to the Email.rb class we created:
Licensed to Deborah Christiansen <pedbro@gmail.com>

107Scripting language support
<component name="EmailServiceComponent">
 <tuscany:implementation.script script=
 "opensoa/book/chapter4_3/impl/Email.rb"/>
</component>

Notice that the implementation is done using a Tuscany namespace; this is because
Ruby support is a Tuscany feature and not defined explicitly in the SCA specifica-
tion. That namespace, coincidentally, must be defined at the root element as
xmlns:tuscany="http://tuscany.apache.org/xmlns/sca/1.0" (other SCA imple-
mentations may handle this differently). Now that the component is defined, the last
thing we need to do is wire the reference to that component into our existing
ProblemServiceComponent. Here’s the new definition for that component, with the
new reference shown in italics for emphasis:

 <component name="ProblemTicketComponent">
 <implementation.java
 class="opensoa.book.chapter4_3.impl.ProblemTicketComponentImpl"/>
 <property
 name="username"
 source="$credentials//*[local-name()='username']"/>
 <property
 name="password"
 source="$credentials//*[local-name()='password']"/>

 <reference name="createTicket" target="CreateTicketComponent"/>
 <reference name="emailService" target="EmailServiceComponent"/>
 </component>

Now this is a fairly simple example of using scripting, so you may be skeptical whether
scripting languages are truly treated like first-class objects in SCA. For example, how
would you inject properties into a Ruby script/class? Surely Java annotations can’t be
used? That’s true, but you can use component types, as we discussed in section 4.1. For
example, let’s modify the Email.rb class so that we pass the SMTP settings as SCA prop-
erties. Here’s the Email.componentType file:

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <property name="smtp_username" type="xsd:string">uname</property>
 <property name="smtp_password" type="xsd:string">pass</property>
 <property name="smtp_host" type="xsd:string">localhost</property>
</componentType>

We have now defined three properties that we can reference within the Email.rb
Ruby script by prefacing each property with a $ sign, as shown here:

Net::SMTP.start($smtp_host, 25, $smtp_domain, $smtp_username,
$smtp_password, :login) do |smtp|
 smtp.send_message myMessage, from, to
 end
Licensed to Deborah Christiansen <pedbro@gmail.com>

108 CHAPTER 4 Advanced SCA
You can similarly inject properties and define services using the component type file
for any of the supported scripting languages.

NOTE In the previous example, the property values were assigned within the
component type file, and not just used to define the name and type, as
demonstrated in listing 4.1. You could follow this approach and define
the actual property values in the composite definition—the approach we
used earlier.

At this point, we’ve covered many of the key capabilities provided by Tuscany. How-
ever, there are two important subjects we have left off: deploying Tuscany in a produc-
tion environment, and using its sister technology, Service Data Objects (SDOs).

4.4 Advanced Tuscany/SCA
The next section offers some tips on leveraging the distributed capabilities of SCA to
make your services more scalable. The ability to create a distributed SCA environment,
or service cloud, is an essential part of SOA, as it enables you to expand and grow your
infrastructure with confidence.

4.4.1 Production deployment

Until this point, we’ve only discussed using the SCA embedded domain container.
That includes a built-in Jetty engine for surfacing the bindings that we’ve been using
(such as web services). In most production scenarios, however, you’ll likely use a serv-
let container such as Apache Tomcat, at least for exposing HTTP-based services like
SOAP. In part, this is because, when you’re using the embedded container, each
domain will require its own dedicated IP port. By contrast, when using a servlet con-
tainer you can run multiple domains within a single instance.

 Continuing with our example, let’s configure the ProblemTicketComposite assem-
bly to run under Tomcat 5.5 as a deployable web archive (WAR). Figure 4.2 depicts the
new configuration.

 This exercise is a good example of how to set up a distributed architecture using
SCA, as one domain will run within the embeddable engine (Domain 1) and the other
under Tomcat (Domain 2). You can add as many domains as needed, each running

Figure 4.2 Domain configuration with ProblemTicketComposite set up to run under Tomcat 5.5
Licensed to Deborah Christiansen <pedbro@gmail.com>

109Advanced Tuscany/SCA
within its own JVM instance. The steps in setting up the second domain (Domain 2 in
the illustration) to run within the servlet container are as follows:

1 Create a directory structure to reflect a WAR files requirement (META-INF, WEB-
INF).

2 Create an sca-contribution.xml file that defines which domain and composite
to use.

3 Create a web.xml file that configures Tuscany as a servlet filter to intercept
requests targeted to the SCA domain.

4 Create an Ant task to assemble the WAR file.

The first step is to create a subdirectory structure that mirrors a WAR file’s requirements.
CREATING A WAR-READY DIRECTORY STRUCTURE

Creating a directory structure that mirrors
the layout of a WAR file simplifies the Ant
script needed to assemble the WAR file. This
entails creating a webapp folder under the
src/main location. Then, under webapp,
add a META-INF and a WEB-INF folder. The
end result will resemble the image shown in
figure 4.3.

 Once this directory structure is in place,
we can move forward to populate it with the
required files, starting with the sca-contribu-
tion.xml file.
CREATING AN SCA-CONTRIBUTION.XML FILE

Create a new file called sca-contribution.xml
and place it under the META-INF directory. We
use this file to define which composite will be
deployed within the WAR application. Popu-
late the sca-contribution.xml file with the
XML shown in listing 4.9 (like all of this book’s
listings, it’s available in the source code that comes with the book).

<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:hw="http://opensoa.book.chapter4_41">
 <deployable composite="hw:ProblemManagementComposite"/>
</contribution>

As you can see, the contribution file in this instance is very terse. The deployable ele-
ment identifies the composite being deployed by referencing the composite name c,
which is defined in the composite assembly file (see listing 4.7 for the full file). Notice
that the composite name is namespace aware, so the namespace alias hw must first be

Listing 4.9 The sca-contribution.xml file, which belongs under the META-INF directory

Figure 4.3 The webapp subdirectories are
used for building the WAR file

b Defines
namespace

c

Identifies
composite being
deployed
Licensed to Deborah Christiansen <pedbro@gmail.com>

110 CHAPTER 4 Advanced SCA
declared b. The namespace provided must match the one used in the composite file
(listing 4.7).

 The third step in setting up the domain for running within a web application is to
create a customized web.xml file.
CREATING A WEB.XML FILE

All WAR files require a web.xml file. Tuscany’s SCA implementation requires a servlet to
be configured in order to field the inbound requests and route them properly to their
endpoint destination. The entries required in the web.xml are displayed in listing 4.10.

<web-app>

 <display-name>OpenSOA Chapter 4</display-name>

 <filter>
 <filter-name>tuscany</filter-name>
 <filter-class>
 org.apache.tuscany.sca.host.webapp.TuscanyServletFilter
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>tuscany</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

The url-pattern associated with the filter-mapping element identifies, by way of
the asterisk wildcard character c, that all inbound requests will be sent through the
TuscanyServletFilter b. This servlet is responsible for processing any requests asso-
ciated with the services identified within the assembly. Note that we’ve made no
changes to the composite assembly file (problemMgmt441.composite).

 Now that we’ve populated the new directories and files, let’s move on to generat-
ing the WAR file. For this, we’ll use Ant, as it’s the most widely used tool for managing
the Java build process. An Ant target will compile the Java code and create the WAR
using these artifacts (for those unfamiliar with Ant, you can read more about it at
http://ant.apache.org/). The relevant fragment from the Ant script is shown in list-
ing 4.11 (you can find the entire Ant script, which is rather verbose, in the code sam-
ples as build.xml). There’s nothing SCA-specific about the target’s tasks—they use
standard Ant commands to generate the WAR file.

<target name="compile">
 <mkdir dir="target/classes"/>

 <javac destdir="target/classes" debug="on" source="1.5" target="1.5">
 <src path="src\main\java"/>
 <classpath>

Listing 4.10 A web.xml file configuration that specifies the servlet filter

Listing 4.11 Ant file fragment used to generate the SCA domain WAR file

 b Specifies
matching URL
pattern

c Invokes servlet

b Includes Tuscany JARs
Licensed to Deborah Christiansen <pedbro@gmail.com>

111Advanced Tuscany/SCA
 <fileset refid="tuscany.jars"/>
 <fileset refid="3rdparty.jars"/>
 </classpath>
 </javac>

 <copy todir="target/classes">
 <fileset dir="src\main\resources"/>
 </copy>

 <WAR destfile="target/opensoa-chapter4.WAR"
 webxml="src/main/webapp/WEB-INF/web.xml">
 <fileset dir="src/main/webapp"/>
 <lib refid="tuscany.jars"/>
 <lib refid="3rdparty.jars"/>
 <classes dir="target/classes"/>
 </WAR>

</target>

Three basic activities are taking place in the Ant target: compiling all of the Java code
b in a staging location; copying the required resource files, such as the composite
files, into the staging/target directory c; and then creating the WAR file d. Once the
WAR file is generated, you can copy it over to the webapps directory of your Tomcat
5.5 installation (we presume it would also work on more recent or slightly older ver-
sions of Tomcat or other containers, but we haven’t tested it on those versions). The
URL for the ProblemTicketService web service can be found at http://
localhost:8080/opensoa-chapter4/ProblemTicketService; the WSDL is located at
http://localhost:8080/opensoa-chapter4/ProblemTicketService?wsdl.

You should now be able to submit SOAP requests to the ProblemTicketService and
see the results appear without error (see the sidebar “Using soapUI to interactively test
SOAP-based web services”). This means that you have the Tomcat domain running

c Compiles classes

d Creates WAR file

Using soapUI to interactively test SOAP-based web services
soapUI (www.soapui.org), an excellent tool for testing SOAP-based web services, is
the primary tool we use for interactively testing SCA-derived web services. Two edi-
tions of the product are available: an open source, “free” version, and a more ad-
vanced, commercial version. While the commercial product does offer some nice-to-
have advanced features, the open source release is very capable and sufficient for
most needs. To use it, simply download, install, and run the product (to simplify
things, in the source code we also include the soapUI jars so that it can be run with-
out any separate download through Ant targets—see the project README.txt files for
more details). Once soapUI is running, you can then select File > New WSDL Project,
and enter the WSDL URL or file location. The new project will contain sample requests
for each of the operations, and you can then tinker with the XML to submit various
requests. soapUI has some advanced QA test automation features that can be handy
for regression testing following new releases. We highly recommend the product and
find it indispensable for my testing.
Licensed to Deborah Christiansen <pedbro@gmail.com>

112 CHAPTER 4 Advanced SCA
successfully (shown in figure 4.2 as Domain 2). Now let’s look at the embedded
domain (shown as Domain 1 in figure 4.2), which is the IssueManagementComposite
assembly. This assembly, as you may recall, interacts with the ProblemManagement-
Composite (used by Domain 2) by way of a reference injected into the SystemError-
Component. We’ve demonstrated two ways for this reference to occur:

■ Using a composite as a reference (listing 3.9)
■ As a remote binding using a web service (listing 3.12)

We’ll again use the remote style binding, since we’re discussing a distributed SCA
architecture.

 To demonstrate this approach, let’s create a new composite file called issueMgmt-
distributed.composite, which will replace our previous IssueManagementComposite
(we could have just modified the existing issueMgmt.composite file we used earlier).
The only difference in this file is that the reference now specifies the remote URL to
the service running within Tomcat for the binding.ws element. The relevant fragment
for this assembly is shown in listing 4.12 (in this case, for simplicity of presentation, I’m
only showing the SystemErrorService using the binding.ws for web services).

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter3"
 xmlns:hw="http://opensoa.book.chapter3"
 name="IssueManagementComposite">

 <service
 name="SystemErrorService"
 promote="SystemErrorComponent">
 <binding.ws
 wsdlElement=
 "http://chapter44.book.opensoa#wsdl.port(SystemErrorService/SOAP)" />
 </service>

 <component name="SystemErrorComponent">
 <implementation.java
 class="opensoa.book.chapter44.impl.SystemErrorComponentImpl" />
 </component>
 <reference name="ProblemTicket"

 promote="SystemErrorComponent/problemTicket">
 <binding.ws uri=
 "http://localhost:8080/opensoa-chapter4/ProblemTicketService"/>
 </reference>
</composite>

As you can see, the assembly is straightforward, with the interface to the remote SCA
service defined in the reference b. This composite’s service, SystemErrorService,
will continue to be accessible as a web service running within the embedded Jetty
domain. When invoked, however, it will in turn call the ProblemTicketService

Listing 4.12 Composite assembly file issueMgmt-distributed.composite

Defines SOAP service
using WSDL details

b
Injects reference
using remote service
Licensed to Deborah Christiansen <pedbro@gmail.com>

113Advanced Tuscany/SCA
running in the Tomcat domain to process the request. To run this domain locally,
you’d simply start it using the following:

public class ProblemTicketServer {

 public static void main(String[] args) {

 SCADomain scaDomain =
 SCADomain.newInstance("issueMgmt-distributed.composite");

 try {
 System.out.println("IssueManagement server started");
 System.in.read();
 } catch (IOException e) {
 e.printStackTrace();
 }
 scaDomain.close();
 }
}

Now you know how to configure an SCA domain to run within a servlet container (for
the examples, Tomcat was used). We also demonstrated a distributed architecture by
interfacing between an embedded SCA domain and a remote domain running within
that web server. As you can see, creating a distributed SCA environment is straightfor-
ward and offers exciting scalability options.

If we concluded our discussion of SCA now, we think you’d walk away impressed by
Tuscany’s implementation of the standard, and perhaps even eager to begin using it
in your environment. But we have omitted one important topic: SCA’s complementary
“sister” technology, Service Data Objects (SDOs). You will find that SDOs greatly simplify
working with more complex, real-life type data structures, such as a purchase order or
invoice. Without the ability to support complex nested data, the use of SCA would be
limited and its contribution to a SOA environment minimal.

4.4.2 Introducing Service Data Objects (SDOs)

When examining SDOs, an inevitable question often arises: how is this binding tech-
nology different from the multitude of others that exist, such as Castor, JiBX,

Alternative approaches for distributed SCA
Another approach to building a distributed SCA architecture is to use the strategy
found in Tuscany’s calculator-distributed sample (in the samples folder associated
with a Tuscany binary installation). It demonstrates how Tuscany’s DomainManager-
Launcher can be used to start a domain in one VM, which acts as the master. Within
other VM instances, assemblies can be added to that domain, using the Node-
Launcher, which register themselves as nodes within the master domain. Prior to the
1.2 release of Tuscany, this approach was somewhat of a work in progress, but after
some refactoring since the 1.1 release, a solid solution now appears to be in place.
Licensed to Deborah Christiansen <pedbro@gmail.com>

114 CHAPTER 4 Advanced SCA
XMLBeans, or Java Architecture for XML Binding (JAXB)? To be honest, the SDO does
share many characteristics with these technologies, but it offers extended functional-
ity that doesn’t exist in those binding solutions. Specifically, the SDO was designed to
support “offline” processing, where changes to the dataset are automatically captured
into change summaries that indicate any new, modified, or deleted data. What’s an
example of where this functionality could be relevant? Consider data validation,
where perhaps an outside organization is contracted to verify certain results, such as
the accuracy of the information provided in someone’s resume (such as education
and employment history). The outside company could update the SDO dataset pro-
vided, and when returned, the API could be used to identify all data modified by the
verifier. In the absence of SDOs, establishing a system to identify modified data can be
surprisingly tricky (if you want to detect any changes made between the source and
update results). This is a fairly advanced feature that’s outside the scope of this chap-
ter, but if you’re interested, the SDO specification describes how this is accomplished.

 SDOs also support a rich set of metadata that allows the client to retrospectively
examine the “data graphs” for their structure and form. Last but not least, SCA was
designed to work seamlessly with SDOs. This becomes apparent when working with
more complex XML structures, such as the ones we’ll be exploring in this section.

 Until now, we have let SCA perform automatic, on-the-fly, dynamic binding
between the inbound XML that’s incoming via a service call into the internal Java data
structures. For example, the TicketDO class (described in the previous chapter)
defines a flat data structure that represents an inbound problem ticket (such as
customerEmail or customerName). For simple structures such as that one, the
dynamic binding approach provided by SCA has worked fine. However, when we’re
dealing with complex XML data structures more reflective of real-life scenarios, the
automatic binding approach doesn’t cut it. Also, there may be times when you already
have a specified XSD schema and would prefer to use that.

 To demonstrate using SDOs with SCA services, let’s create a more complex XML
structure to represent inbound issue/problem tickets (this replaces TicketDO used
earlier). Figure 4.4 shows the XML Schema.

 Here’s an XML example using the schema in figure 4.4:

<problem category="software" severity="medium"
 xmlns="http://opensoa.chapter4/xsd">
 <header>
 <from>jsmith@test.com</from>
 <subject>This is a test</subject>
 <to>jdoe@test.com</to>
 <ccs>
 <cc>jndoe@test.com</cc>
 <cc>joeschmoe@test.com</cc>
 </ccs>
 <creationDate>2008-01-30T01:23:00</creationDate>
 </header>
 <description>This is a test </description>
</problem>
Licensed to Deborah Christiansen <pedbro@gmail.com>

115Advanced Tuscany/SCA
As you can see, this structure is a bit more complex than ones we’ve previously used. It
includes some repeating elements, such as the ones used for the CC lines. To support
this XML, the schema depicted in figure 4.4 was incorporated into a new WSDL for the
web service called ProblemServiceSDO.wsdl (the WSDL used for the previous exam-
ples was ProblemService.wsdl).

NOTE Because XML Schemas are pretty verbose, ours won’t be reproduced
here, but you can find it in the sample code for this chapter.

The schema is necessary for two reasons: (1) the WSDL requires it for defining the
structure of the web service, and (2) it’s used to generate, using SDO utilities, corre-
sponding class files that can programmatically marshal/unmarshal the data to and
from XML. This sort of binding was taking placing behind the scenes by SCA when we
were working with our simpler TicketDO class. The steps to explicitly use SDO are as
follow:

1 Run an Ant target using XSD2JavaGenerator to generate Java classes from the
WSDL XMLSschema definition.

2 Create a new service interface and implementation that uses the new SDO-gen-
erated classes.

3 Create a client composition and components so that we can submit test SOAP
requests.

Figure 4.4 Our new problem ticket XML Schema using a complex XML structure
Licensed to Deborah Christiansen <pedbro@gmail.com>

116 CHAPTER 4 Advanced SCA
The first step is to generate the Java classes from the XSD that’s embedded within the
WSDL.
RUNNING XSD2JAVAGENERATOR TO CREATE JAVA CLASSES FROM XSD

Listing 4.13 is a fragment from a build.xml file that shows an Ant target used to gener-
ate the Java SDO classes. Notice that no specific SDO Java task has been developed to
perform this generation, so we use a standard Java task to run the XSD2JavaGenerator.

<target depends="init" name="generate.class.from.wsdl">

 <java classname="org.apache.tuscany.sdo.generate.XSD2JavaGenerator"
 fork="true">
 <arg value="-targetDirectory"/>
 <arg value="src/main/generated/wsdl2javasource"/>
 <arg value="-noContainment"/>
 <arg value="-noUnsettable"/>
 <arg value="src/main/resources/ProblemServiceSDO.wsdl"/>

 <classpath>
 <fileset dir="${tuscany.lib}">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 </java>

</target>

The arguments provided for running the Java class XSD2JavaGenerator are used to
specify where the Java files are to be generated b, along with the location of the
WSDL file c that contains the embedded XSD Schema (you can also run it directly
against an XSD file if it’s not included in the WSDL). A number of JAR library files must
be included in the classpath, and they’re specified by reference d and can be seen in
the build.xml file in the example code.

 Now, you may be wondering where exactly we’re going with this. Well, we’re going
to use these generated classes as a replacement for the TicketDO class we created ear-
lier. This takes us to our next step: plugging these generated classes into our method
that will be exposed as a service.
CREATING A SERVICE TO USE SDO-GENERATED CLASSES

Rather than modify the existing ProblemTicketComponent and related classes, let’s
create new ones with SDOs appended to them. For example, the ProblemTicket-
ComponentSDO interface class looks like this:

@Remotable
public interface ProblemTicketComponentSDO {
 public int createTicket(createTicket ticket);
}

Notice that the createTicket class, which is a generated SDO class, doesn’t follow the
normal CamelCase class convention of uppercase first letter and each additional word
starting in an uppercase letter. This is because this class was automatically generated

Listing 4.13 Ant target used to generate Java SDO classes

b

c

d

Licensed to Deborah Christiansen <pedbro@gmail.com>

117Advanced Tuscany/SCA
by XSD2JavaGenerator (you could modify all complex types and elements within the
schema to uppercase to avoid this problem). The SDO classes found in the example
code for this section were all modified to support the generated createTicket class
instead of our older TicketDO class. Similarly, a new composite file was created, prob-
lemMgmtSDO.composite, which is identical to the previous problemMgmt.composite
file displayed in listing 3.7, with the exception that it uses our new SDO classes.

 At this point, the changes made to support SDO are completed. We can now start
up an embedded SDO domain and test the new functionality by submitting a SOAP
message via soapUI or a similar tool that uses the new ProblemServiceSDO.wsdl.
Thus, the calling clients using the SOAP message are oblivious to whether SDO or
automatic binding is being used by the Tuscany backend—a requirement for ensuring
WS-I compatibility [WS-I].

 This brings us to our last step: creating an SCA client that we can use to submit
SOAP requests to the service.
CREATING A CLIENT TO TEST THE SERVICE

This step illustrates how you can use the SDO classes to populate the Java objects that
are eventually transmitted over the wire as an XML SOAP request (in other words, you
don’t write the XML document manually). To create the client, let’s first start by creat-
ing a composite file that will define our client components (see listing 4.14).

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter4"
 xmlns:hw="http://opensoa.book.chapter4"
 name="jmsclient">

 <component name="SDOComponent">
 <implementation.java class=
 "opensoa.book.chapter4_42.impl.SDOClientImpl" />
 </component>

 <reference
 name="SDOClientReference"
 promote="SDOComponent/sdoClient">
 <interface.java interface="opensoa.book.chapter4_42.SDOClient"/>
 <binding.ws wsdlElement=
 "http://chapter4.book.opensoaSDO#wsdl.port(ProblemTicketService/SOAP)" />
 </reference>
</composite>

The new client class we’ll create is SDOClientImpl b, which represents the implemen-
tation for the client component named SDOComponent. The class contains an injected
reference to the service that’s used to perform the web service call c. The reference
definition, via its promote attribute, is injected into the SDOClientImpl member vari-
able defined as sdoClient. The service associated with the reference is identified by
the web service binding that’s specified through the binding.ws element d. The
SDOClientImpl class is shown in listing 4.15.

Listing 4.14 Composite file used by the client to submit create ticket requests

 b Identifies
implementation

 c Defines reference
to inject

dReferences service through SOAP
Licensed to Deborah Christiansen <pedbro@gmail.com>

118 CHAPTER 4 Advanced SCA
public class SDOClientImpl implements ProblemTicketComponentSDO {

 @Reference
 public SDOClient sdoClient;

 public int createTicket(createTicket ticket) {
 int rval = sdoClient.createTicket(ticket);

 System.out.println("rval: " + rval);
 return rval;
 }
}

The injected reference b represents a handle to the remote web service, defined by
the interface of SDOClient. The createTicket method requires the populated class
createTicket, which is the autogenerated SDO object representing the problem
ticket. A Java main class, called SDOClientMain, is responsible for initiating the SDO-
Component (which is mapped to SDOClientImpl in the composite file, as you recall)
and invoking its createTicket method used to perform the web service call c. List-
ing 4.16 shows the main method fragment from SDOClientMain.

public final static void main(String[] args) throws Exception {
 SCADomain scaDomain =
SCADomain.newInstance("SDOclient.composite");
 SDOClient sdoClient = scaDomain.getService(SDOClient.class,
 "SDOComponent");

 IssueFactory factory = IssueFactory.INSTANCE;

 HeaderType header = factory.createHeaderType();
 ProblemType problem = factory.createProblemType();
 createTicket ticket = factory.createcreateTicket();

 problem.setHeader(header);
 ticket.setProblem(problem);

 header.setFrom("jeff");
 header.setSubject("test subject");
 header.setTo("jeff");
 problem.setDescription("test description");
 problem.setCategory("customer");
 problem.setSeverity("low");

 System.out.println("Case #: " +
 sdoClient.createTicket(ticket));

 scaDomain.close();
}

The SDOClientMain, in the first lines within the main method b, creates an embed-
ded SCA domain and receives a handle to the SDOComponent implementation class.
From there, it uses the SDO factory c that was created along with the other SDO

Listing 4.15 SDOClientImpl client class responsible for placing SOAP call

Listing 4.16 Main client class used to initiate the web service test request

b Injects SDO reference class

c
Calls method on
referenced SDO

b

c

d

e

f

Licensed to Deborah Christiansen <pedbro@gmail.com>

119Advanced Tuscany/SCA
classes to create the SDO data classes d. The factory should always be used when cre-
ating SDO objects. The SDO data classes are then populated with a sample request e,
and ultimately the service method is called to place the SOAP call f.

 The generated SDO classes should be fairly straightforward to navigate, as they cor-
respond closely to the defined XSD Schema. You’ll find that XSD complex types are
usually generated as separate Java classes, as is the case in the example with the
HeaderType and ProblemType generated classes. The createTicket class, as we men-
tioned earlier, is the top level or root of the XML. When this main class is run, you
should see console output showing the new case number that was generated, which
indicates that it successfully placed the web service call to ProblemTicketService
(obviously, that domain must be running for this test to work).

 The SDO specification contains many additional features that we haven’t touched
on, such as its ability to track offline changes to the SDO data graphs. While time won’t
permit an examination of this feature, we can discuss some of the other capabilities
that SDO provides for working with XML data.

4.4.3 Advanced SDO features

When you have an SDO object, you can easily transform it into its corresponding XML
representation. For example, listing 4.17 shows a method that I’ve added to the
ProblemTicketComponentImpl so that it can be used to output the XML using Apache
log4j. Why would you want such a thing? One use case that comes to mind is for log-
ging the results for archival (or compliance) purposes, or for generating events for a
complex event processor (the topic of chapter 8). Depending on your needs, working
with raw XML can be preferable compared to serialized Java classes (which can be
problematic if the structure changes over time). Listing 4.17 illustrates how marshal-
ling can be accomplished for outputting to log4j.

private static Logger logger = Logger
 .getLogger(ProblemTicketComponentSDO.class
 .getPackage().getName());

private String getXML(ProblemType problem) {

 HelperContext scope = SDOUtil.createHelperContext();
 XMLHelper helper = scope.getXMLHelper();

 String xml = helper.save((DataObject) problem,
 "http://chapter4.book.opensoa/issue", "ProblemType");

 return xml;
}

The first step is to create the log4j logger that’s used to generate the output b, which
is customary log4j logic. Then the SDOUtil class, which is part of Tuscany SDO, is used
to create a HelperContext c. This, in turn, is used to create an SDO XMLHelper,
which likewise is included in the standard SDO library. The save method of the

Listing 4.17 Marshalling SDO objects to XML for logging

b
Creates
new logger

 c Creates
XML helper

d
Outputs SDO
to XML string
Licensed to Deborah Christiansen <pedbro@gmail.com>

120 CHAPTER 4 Advanced SCA
XMLHelper class, represented by the variable helper, is then called d. It outputs a
String XML representation of the SDO data object that was passed to it. To output the
XML to log4j, we could then use the getXML method we created in listing 4.17

logger.info(getXML(problem));

where problem is a createTicket class object. The configuration of your
log4j.properties will determine where or if the output is generated (learn more about
log4j at http://logging.apache.org/log4j/1.2/index.html).

 Finally, let’s address the scenario where we already have an XML message within a
String and want to use the SCA client to submit it through a remote web service. List-
ing 4.18 demonstrates how this can be done using a code fragment from the
SDOClientMain class.

HelperContext scope = SDOUtil.createHelperContext();
XMLHelper helper = scope.getXMLHelper();
IssueFactory.INSTANCE.register(scope);

String xml =
 "<iss:createTicket xmlns:iss=\"http://chapter4.book.opensoa/issue\">" +
 "<iss:Problem severity=\"low\" category=\"systems\">" +
 "<iss:Header>" +
 "<iss:From>jdavis</iss:From>" +
 "<iss:Subject>test subject</iss:Subject>" +
 "<iss:To>jdavis</iss:To>" +
 "</iss:Header>" +
 "<iss:Description>test description</iss:Description>" +
 "</iss:Problem>" +
 "</iss:createTicket>";

XMLDocument doc = helper.load(xml);
createTicket newTicket =
 (createTicket) doc.getRootObject();
System.out.println("newTicket: " + newTicket.getProblem().getDescription());

System.out.println("New Case #: " + sdoClient.createTicket(newTicket));
scaDomain.close();

The process for populating SDO classes from raw XML has some steps similar to what
we saw in converting SDO objects into XML (listing 4.17). First, you create the SDO
helper objects b, and then register your generated factory class c. This registers the
data types associated with that factory, which in this case are the SDO data objects.
Then, an XML String is constructed representing the data we want to populate into
SDOs d. With the String in hand, represented by the variable xml, we pass it as a
parameter to the XMLHelper object’s load method e. This generates an XMLDocument.
This is a “generic” XML object, which is then cast directly into the SDO root object you
wish to populate f. At this point, we have our populated createTicket SDO object,
represented by newTicket. Obviously, a few steps are involved in the process, but you

Listing 4.18 Raw XML used to populate SDO classes

b

c

d

e

f

Licensed to Deborah Christiansen <pedbro@gmail.com>

121Summary
can always create helper classes to perform the heavy lifting if there’s a frequent
requirement to convert raw XML into SDOs.

 Our coverage of SDO was obviously pretty brief, and we didn’t specifically address
all of its advanced functionality. The Tuscany SDO project has more comprehensive
examples on these topics. Hopefully you’ve developed a good understanding of how
SDOs can be used as a binding technology for more complex XML structures, which
are likely prevalent throughout the organization in which you work. Like many of the
advanced features we discussed, the SDO is an enabling technology that allows SCA to
be used for more than just trivial purposes, and thus helps SCA play a central role in
our Open SOA Platform.

 Now you’re probably disappointed to hear that we’ve completed our coverage of
SCA features. Although we haven’t touched on some aspects such as policies, intents,
and contributions, you’ll likely find that you may not need them, at least initially. The
SCA documentation covers these subjects fairly well, so we encourage you to reference
those materials if you’re interested in learning more.

4.5 Summary
This chapter built on what you learned in chapter 3 and demonstrated some of the
advanced capabilities and features of SCA. You learned how to create conversational
services that had different scoping levels, not unlike what’s found in the Java Servlet
API (such as request, application level, and so on). We also discussed more advanced
conversations through callbacks. While some of these features may not be immedi-
ately used by newcomers to SCA, any widespread rollout will likely involve them to
some degree.

 Other exciting capabilities we explored were how to use languages other than Java
to create and consume services. The ability to use increasingly popular languages such
as Ruby is a major selling point of SCA. Lastly, we described how SDO can be used in
tandem with SCA. This enables the creation of more complex web services that go
beyond the trivial “hello-world” or simple RPC-style services. Complex data structures
can be created programmatically using SDOs, and configuring SDOs to work with SCA
is straightforward.

 Let’s now turn our focus to business process management (BPM), which enables us to
create complex business processes that leverage the services exposed by SCA. This is
where we begin to see the synergies that exist among the various technologies we’re
covering.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 3

Business process management

Business process management (BPM) is one of those technologies that
arrived with great fanfare and high expectations. Vendors who peddled their
proprietary solutions evangelized it as a revolutionary advancement in how busi-
ness applications would be developed. Sadly, like many promising technologies,
it followed a hype cycle of inflated expectations that quickly gave way to a trough
of disillusionment. However, as we’ll see in the next two chapters, when BPM is
married with SOA, the benefits can be real and tangible. With this combination
in place, business processes can be continually optimized and new ones quickly
introduced to support new product offerings. BPM enables business and IT to
become more closely aligned, leading to greater efficiencies and less frustration.

 The open source community is fortunate to have a BPM solution as rich in
functionality and as stable as JBoss jBPM. In part 3, we’ll cover the basics of how
to use jBPM, and then tackle some of its advanced functionality and extensibility.
We’ll conclude this part by examining how it can be used in tandem with Apache
Tuscany so that it can be integrated nicely within your SOA environment.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Introducing jBPM
We’ve spent the last two chapters talking about the Service Component Architec-
ture (SCA) and its implementation using Apache Tuscany. You’ve learned how to
use this framework to create reusable services that can be exposed through a vari-
ety of protocols, such as SOAP-based web services, JMS, and RMI. The ability to cre-
ate and propagate such component-based services is one of the central principles
of SOA. Now, in the next three chapters we’ll address business process management
(BPM), which, at its core, is about leveraging these services to create business pro-
cesses. In other words, we’re transitioning from how to create the services to how
they can be consumed and used. As you’ll learn, BPM represents a new paradigm
for software application development where services can be woven together into
visual models that reflect actual business processes.

 There’s reason to believe that BPM won’t suffer the same ignominious fate as
other business and technology initiatives such as total quality management and
process reengineering. This is because it’s grounded in the notion of the process,
which, after all, is what defines a business. What exactly constitutes a business

This chapter covers
■ Introducing JBoss jBPM
■ Understanding jBPM nodes and transitions
■ Extending jBPM with actions
125

Licensed to Deborah Christiansen <pedbro@gmail.com>

126 CHAPTER 5 Introducing jBPM
process? Prahalad and Krishnan define it as “the link between the business strategy,
business models, and day-to-day operations” [Prahalad]. Or, as Smith and Fingar put
it, “Processes are the business” [Fingar]. BPM, unlike reengineering, strives to leverage
the information systems already in place. BPM’s aim is multifold, but its main objec-
tives are to

■ Streamline business processes
■ Improve/maximize automation
■ Improve visibility/control of ongoing processes
■ Rapidly orient processes to support new or changed business initiatives

The last point is particularly noteworthy—improving business agility is a central objec-
tive of nearly any organization today. When process and workflow are codified into
business systems such as ERP or CRM, changing them can be an enormous and disrup-
tive undertaking. Moreover, such systems often only span a portion of the entire value
chain used for supporting a product or service. BPM, on the other hand, is intended
to encompass the entire value chain process, including interactions with external part-
ners or customers.

 An often-overlooked benefit of BPM is how it accelerates the rollout of new busi-
ness processes within the enterprise. Back in the day, modifying or rolling out a new
business process usually relied on manual training to implement. That entailed new
procedure guidelines, training materials, and some wishful thinking that the process
would be followed. With BPM, automation eliminates the human interpretation factor.
In a recent article in Harvard Business Review titled “Investing in the IT That Makes a
Competitive Difference,” the authors cite this ability as a key differentiator, noting
that “a company’s unique business processes can now be propagated with much
higher fidelity across the organization by embedding it in enterprise information
technology. As a result, an innovator with a better way of doing things can scale up
with unprecedented speed to dominate the industry” [McAfeeBrynjolfsson].

 Another unique concept introduced by BPM is that of visualization. A BPM system
is designed to enable business users to craft and design business processes in a visual
fashion, resembling a flowchart. While Visio and other modeling tools have been used
for years by subject matter experts for conveying requirements, they were static in
nature, and the resulting codification by developers often bore little or no resem-
blance to what was modeled. Ultimately, developers, who lacked the deep understand-
ing of the business processes, were left to interpret their meaning, often with
disastrous results. BPM models, however, are intended to be executable manifestations
of actual business processes. Thus, they can be interrogated at runtime to determine
status as well as optimized for efficiency and for service-level monitoring.

NOTE It’s not practical to assume that a business model developed by an analyst
is going to be “execution-ready” without some technical embellishment
by developers. At least both the developer and analyst are working with a
common visual notation.
Licensed to Deborah Christiansen <pedbro@gmail.com>

127BPM: the “secret sauce” of SOA
The benefits of BPM may now seem obvious, but what’s the relationship between BPM
and SOA? Quite simply, a service-oriented architecture is a critical enabler for BPM.
Workflow systems in the past have failed because there was often no easy way to inte-
grate the steps within the workflow to the functions within the business applications
(this is also what doomed early proponents of rule-based systems). For example, a pur-
chasing workflow application of yesteryear might have had convenient ways to collect
the details of a purchase order (PO) and offer routing and approval capabilities, but
there was often no easy way to tie the approved PO into the system used by accounts
payable or inventory management. Thus, “swivel” chair integration resulted, with
someone rekeying the data from the workflow app into the other systems. More com-
plex workflow scenarios had even more challenging integration requirements that
often went unmet due to the historically stovepipe nature of IT systems. Now, since
SOA is all about exposing discrete business services in an easily accessible fashion, BPM
can easily tap into and exploit these capabilities.

 Now that we’ve covered some of the background of BPM and its benefits, we can
examine more closely its role within SOA. After that, we’ll explore the basics of our
Open SOA Platform’s BPM product of choice: JBoss jBPM. In the next chapter we’ll
more closely dive into human interface tasks, which constitute an important part of
any BPM solution. We’ll conclude with a final chapter on advanced jBPM concepts and
also describe how jBPM can be integrated with Apache Tuscany SCA to create a truly
compelling service and orchestration solution. Let’s get started!

5.1 BPM: the “secret sauce” of SOA
Bear in mind that SOA, by itself, is not the endgame. Instead, it’s intended to help
forge a more flexible, easy-to-manage, and ultimately higher-quality software infra-
structure. The promises of BPM can be realized when surrounded by a SOA-based envi-
ronment. Figure 5.1 depicts the relationship among the components, services (which
were the topic of the last two chapters on SCA), and BPM.

Figure 5.1 The
relationship among
BPM, services, and
components
Licensed to Deborah Christiansen <pedbro@gmail.com>

128 CHAPTER 5 Introducing jBPM
 As figure 5.1 illustrates, the services exposed through SCA, which themselves con-
sist of one or more components, can then be consumed by BPM, for which we’re using
jBPM. Of course, business processes may also invoke externally accessible services and
include human interface tasks.

 In addition to being a benefactor of SOA, BPM also nicely complements other SOA-
related technologies such as complex event processing (CEP). This is because, by
decomposing a process into individual steps within a workflow, you can transmit
events at each node throughout the lifecycle of the process. This can be most easily
illustrated through a sample BPM process, as shown in figure 5.2.

 In figure 5.2, the event notifications are illustrated by the little bell icon. Where
shown, each transition would fire an event that could be consumed by a CEP (covered
in chapter 8) or business activity monitoring (BAM) dashboard. Additionally, the high-
lighted nodes (ship item, update books) represent callouts to external services, such
as those that can be created through SCA (chapters 3 and 4).

 While figure 5.2 illustrates the complementary nature of many of the technologies
used in building our Open SOA Platform, there’s enough overlap between some of
the technologies to cause confusion. One area in particular that comes to mind is how

Figure 5.2 The BPM process, with events and services highlighted using JBoss jBPM
Licensed to Deborah Christiansen <pedbro@gmail.com>

129History and overview of JBoss jBPM
to distinguish between an ESB’s flow control capabilities versus the process flows
inherent in a BPM. Understanding this distinction will help you better frame where
the technology boundaries lie between these technologies, and thereby become a
more effective advocate of BPM within your organization.

 As we’ll discuss in chapters 9 and 10 in our coverage of Apache Synapse, our open
source ESB component of our Open SOA Platform, an ESB is most effectively posi-
tioned as a messaging broker between various systems and protocols. In other words,
it’s most effective when used to bridge between different communication protocols
and/or transforming messages from one format or vocabulary to another.

 BPMs, on the other hand, are designed to model and execute complex business
processes. As such, they are frequently long-running in nature and often involve a
“human-in-the-loop” at various points along the way. The notion of wait states is a cen-
tral concept to a BPM solution. On the other hand, an ESB’s routing capabilities are
intended for real-time processing. Best practices thus suggest that BPM be used for
modeling business processes, with ESB’s routing limited to real-time data flows
required for brokering and transforming messages between systems and protocols.

Now that we’ve established the benefits of BPM and you understand its role in relation
to SOA and its place within the enterprise, we can proceed with exploring JBoss jBPM,
which is our Open SOA Platform’s BPM selection. Let’s begin by looking at a bit of its
history as a product, and then we can examine key concepts and features. For those
anxious to dive into some actual examples, rest assured that will be happening shortly.

5.2 History and overview of JBoss jBPM
The first significant release of jBPM occurred with the 2.0 edition that was introduced
in 2004. It represented a major milestone, as many of the core features that represent
today’s product (release 3.2.6 as of this writing) were first introduced in that version.
jBPM includes the features required of any BPM system, and commercial alternatives
often start with a price tag in the six-figure range. The product’s popularity has steadily
grown, according to the download statistics on SourceForge.net. There have been over
150,000 downloads of the most recent release, contrasting with about 15,000 for the
3.0 product that was released in 2005. The jBPM user forms hosted on the JBoss com-
munity site also testify to the increasing popularity of the solution. One of the most

Wait states and BPM
A BPM process is intended to reflect an actual business process. More often than
not, business processes includes steps that involve either a human activity task or
some pending work that needs to be done elsewhere, perhaps by a business partner.
In either case, the process execution is temporarily waiting for an external entity to
signal completion of work. This ability is core to a BPM and not easily managed
through traditional programming languages, which don’t support the concept of per-
sisting wait states [Baeyens].
Licensed to Deborah Christiansen <pedbro@gmail.com>

130 CHAPTER 5 Introducing jBPM
significant features released in the 3.2 edition was the jBPM Console, which provided
an easy-to-use graphical interface for managing processes and instances.

 Besides its rich set of functionality, one of the main selling points for jBPM is the
proven and fast process execution engine that represents the core foundation of the
product. Further, the engine itself is lightweight and represents just a handful of JAR
files. The persistence engine, where the processes, process instances, and state meta-
data reside, supports nearly all popular databases, both commercial and open source.
Since the product is open source and designed for adding new functionality exten-
sions, it’s also highly flexible.

 Before we get into the features and capabilities, let’s first examine the lifecycle of
how a jBPM process is typically developed and deployed, as this will provide context
for our technical discussion later.

5.2.1 Development lifecycle of a jBPM process

There are six major phases in developing a jBPM process (and indeed, likely any BPM
product). They’re illustrated in figure 5.3.

 Some of the steps resemble those in a typical software development project, but
others are unique to developing a BPM process. Let’s take a look at each step in the
process in more detail.

Figure 5.3 BPM process lifecycle steps using JBoss jBPM
Licensed to Deborah Christiansen <pedbro@gmail.com>

131History and overview of JBoss jBPM
IDENTIFYING PROCESS WORKFLOW

As we pointed out earlier, BPM is suited for modeling, automating, and executing busi-
ness processes. A business process, by definition, is a sequence of steps (or collection
of activities) necessary to perform a business function. Examples abound in any orga-
nization, from on-boarding of new employees or customers to order processing, and
invoice and purchase order approval. Other processes are specific to a given industry,
such as a patient registration process for a hospital, or the setup of clinical trials for a
pharmaceutical company. Identifying a candidate process in which to use BPM can be
challenging, since the complexity of some processes make them more difficult than
others to implement. The biggest benefit can likely be achieved where there is a
clearly defined existing, high-volume process that involves integration with one or
more systems and perhaps includes human interface tasks. An example is the web-
based sales order process shown earlier in figure 5.2 (which admittedly is simplified).
MODELING THE PROCESS VISUALLY

Once an appropriate business process is identified, the next step is to model it using
the visual process editor. The jBPM Graphical Process Designer (GPD) editor, which is
an Eclipse IDE plug-in (and like the rest of jBPM, fully open source), is shown in
figure 5.4 and is included in what’s known as the jBPM Suite.

 As you can see, the editor likely resembles other modeling or illustration tools you
have previously used. There is a tools palette you can click on to select any of the avail-
able nodes or controls, and then click again within the design palette to paint the

Figure 5.4 jBPM Graphical Process Designer
Licensed to Deborah Christiansen <pedbro@gmail.com>

132 CHAPTER 5 Introducing jBPM
object. In the next section we’ll describe what each of the objects represented by the
various icons means in figure 5.4.

 The process design tools are kept purposely at a fairly abstract level so that an ana-
lyst can model processes without being overly concerned with the underlying imple-
mentation. It’s not realistic to assume that an analyst can develop completely
production-ready models, because executable business processes usually contain some
amount of programming code, which is addressed next.
DEVELOPING THE RUNTIME COMPONENTS

In figure 5.4, you’ll notice the diagram items identified as <<state>> (categorize,
assign) and <<node>> (notify-partner, product-improvement). These represent
examples where underlying code is required for implementation. For example, let’s
assume that the notify-partner node is used to send the support request to a busi-
ness partner via XML over HTTP. Obviously, this will entail a programmatic exercise
(even assuming you developed custom components for such things, it would still
entail configuration that likely must be done by a developer). While the analyst can
develop the overall workflow, a developer is needed to “fill in the holes” and provide
the implementation logic. This can be done within jBPM without having to complicate
the visual model by implementing action handlers, or classes, that perform the actual
work. So the visual process model created in the previous step is then followed by
development of the runtime implementation. Examples of such implementation code
will follow shortly.
DEPLOYING TO THE RUNTIME ENGINE

Once the process definition and its corresponding runtime implementation code are
completed, it can then be deployed. Within jBPM, there are several different deploy-
ment scenarios. The most common one, which we’ll focus on, is where the jBPM
engine is running within the context of a web application, such as the jBPM Console.
However, the engine instance can also be instantiated within any standard Java class.
This is most applicable in scenarios where you’re embedding jBPM entirely within an
application (an illustration of this method can be seen when creating a new jBPM proj-
ect within the GDP, as it creates a JUnit test class that uses this method).

 In the scenario where the jBPM process is deployed to run within the jBPM Con-
sole, the Deployment tab shown in figure 5.4 is used for creating a deployment pack-
age. When selected, it provides configuration options for packaging, as shown in
figure 5.5.

 As illustrated in figure 5.5, a jBPM process can be packaged for deployment in one
of two ways. (The archive file is sometimes called Process Archive file, or PAR). The
first option is to export the archive file to the file system as a PAR, which can then be
manually uploaded as a new process using the jBPM Console. The second option is to
deploy the process directly to a running instance of the jBPM Console. Each time a
process is loaded into the jBPM, it’s given a separate version number—this is the only
practical approach, since an existing version may have active process instances, or his-
torical instances that must be preserved for auditing purposes.
Licensed to Deborah Christiansen <pedbro@gmail.com>

133History and overview of JBoss jBPM
NOTE In actuality, a PAR file is really just a zip file that contains all the necessary
artifacts required for deployment, such as the process diagram. In the
sample code for chapter 6, Ant targets can be found that will (a) prepare
the PAR files, and (b) deploy them automatically to the jBPM Console.

INSTANTIATING THE RUNTIME INSTANCE

Once a process is deployed, a new instance of it can be instantiated. How this is done,
in part, depends on the nature of the business process. In our example from
figure 5.4, it would begin once a new customer service request has arrived. What
exactly does that mean? If you recall from chapters 3 and 4, we developed a SOAP web
service that could receive inbound problem tickets. The web service implementation,
written in Java using SCA, could act as a jBPM client and initiate a new process instance
directly. You’ll learn how to do this in chapter 7. Another approach is to use the jBPM
Console to start a new process instance manually.

 Keep in mind that, like BPEL-based orchestrations, an instance represents a single exe-
cution of a given process/definition. So in our example of a customer service request, each
request would instantiate a new process instance. That process instance, in turn, is
persisted to the database when it’s not active (that is, it’s in a wait state, such as waiting
for a human interface task to be completed) and then reactivated when some activity

Figure 5.5 Deployment options for the jBPM process
Licensed to Deborah Christiansen <pedbro@gmail.com>

134 CHAPTER 5 Introducing jBPM
is triggered within it. In the BPEL world, they refer to the process of persisting an idle
process’s data and state to a database as dehydration. Hydration then occurs when the
process becomes active, and the data and state are placed in memory. Without such an
approach, a proliferation of running process instances could quickly consume avail-
able memory. (This approach is one reason why BPM is fundamentally different from
ESB-based routing, which takes a queue-based approach when it passes messages from
one state to another.)

 Once processes are running, it’s obviously essential that they be able to be moni-
tored for ongoing progress. Although monitoring isn’t a particularly glamorous topic,
widespread BPM deployment depends on this capability.
MONITORING, OBSERVING, AND AUDITING

This is a fairly broad topic, and we devote considerable coverage to it in chapter 8,
which focuses on event stream processing. One of the big benefits of BPM is that,
because it’s intended to encapsulate and execute business processes in a manner that
reflects the “real-life” process, the metrics that can be captured throughout the pro-
cess should be business relevant. For example, in figure 5.4 each step in the process
can emit events that can be presented and analyzed in real time. In this case, it may
include monitoring whether the number of high-priority problems has exceeded cer-
tain thresholds or exhibits greater variance than normal. These metrics can form what
is sometimes called a sense and respond solution. This involves

■ Event monitoring—Each step, or “hop,” in the process should publish events.
■ Determining what matters to customers and partners, and focus monitoring efforts on

these critical areas (the “sense”)—For example, verifying that service-level agree-
ments are being satisfied by monitoring response or completion time.

■ Alerting people and systems when unanticipated trends or anomalies occur—This is the
“response.”

If BPM is so great, why is nobody using it?
This is a question we hear frequently. Obviously, BPM adoption has been slow to take
hold (though that trend does appear to be changing). We believe two major impedi-
ments exist: perceived complexity and paradigm resistance. Historically, only com-
mercial BPM products existed, and they were expensive and complex. Only the
largest of organizations could justify the return on investment. As a consequence, the
impression arose that BPM was overkill for smaller enterprises. It is true the first-gen-
eration products were complex and required extensive training, often resulting in
shelfware.

The other reason for the slow adoption is that BPM represents a new paradigm for
developing business applications. Paradigm shifts are often slow to materialize be-
cause of the risk of the unknown, and there are always pockets of resistance in learn-
ing new technologies. We contend that to not embrace BPM is far riskier, since the
competitive landscape only rewards the agile.
Licensed to Deborah Christiansen <pedbro@gmail.com>

135History and overview of JBoss jBPM
jBPM, like most BPM solutions, addresses some of these requirements through built-in
functionality. For example, tasks within jBPM can be assigned timers, so that if items
aren’t completed in the appropriate period, an escalation path can be triggered. Also,
jBPM Console provides a convenient way to monitor process instances, as you can see
in figure 5.6.

 As highlighted in figure 5.6, you can filter by process instance status (R=Running,
S=Suspended, E=Ended). Additional filtering can be done by searching on the
instance key (the field to the left of the status flags), which in this example represents
the subject line of the problem report. If you select the Examine link associated with
each process instance, you can see the particulars about the process instance. This
includes process variables, tasks, instance comments, tokens (which represent execu-
tion paths, discussed in the next section), and a visual depiction of the current state of
the instance, as shown in figure 5.7.

Figure 5.6 jBPM Console Process Instances view

Figure 5.7 jBPM
process instance
detail view displaying
the process instance
image
Licensed to Deborah Christiansen <pedbro@gmail.com>

136 CHAPTER 5 Introducing jBPM
 The jBPM Console view thus provides considerable details about running process
instances, and enables the administrator to perform actions such as stopping, starting,
and suspending instances. (Note that within the instance image graph, you can click
on the highlighted node text to drill down into the details of the node, such as the
review node shown in figure 5.7). The jBPM API can be used to retrieve additional
information and allows for querying the database that houses all instance data. We’ll
cover this topic in detail in the next chapter.

 Although the overview of the product and its development lifecycle may have had
you reaching for your coffee, we’ll now switch gears and lift up the hood (where all
the exciting stuff happens). We’ll begin by looking at the jBPM process language and
touch on the integration points where runtime code can be introduced.

5.2.2 Graph-oriented programming and jBPM

The authors of jBPM like to refer to jBPM as a form of graph-oriented programming. By
this, they refer to the use of visual graphs that can be used to describe and execute
application logic. The graphical nature obviously deviates from conventional pro-
gramming, as does its inherent support for wait states and long-running transactions.
How a process is defined is determined by the process language that’s used. In jBPM’s
case, you have two choices: jPDL (jBPM Process Definition Language) and BPEL. So, at
its core, jBPM can be considered a platform or engine that can support multiple pro-
cess languages. For the reasons cited earlier, our focus is on jPDL, which is better
suited for BPM than BPEL (jPDL was initially the only language supported by jBPM).

While jPDL isn’t a standard per se—it hasn’t been formally submitted to any standards
body—it’s well documented and licensed as open source. Compared with competing
process languages such as XML process definition language (XPDL), business process
definition metamodel (BPDM), or BPEL, it’s very elegant in its simplicity and is easily
extendable. For example, the source jPDL used for the process illustrated in figure 5.7
is about one page of XML code, which is easily understandable by those not even well
versed in jPDL (numerous examples can be found in the sample source code, and are
usually named processdefinition.xml).

Understanding jBPM release editions
A common source of confusion is the various jBPM editions that are available. We
categorize them by three types: Embedded, Web Application, and Enterprise edi-
tions. The Embedded edition is comprised of the jbpm-jpdl.jar file, which allows you
to run the process engine within any Java class in an embedded fashion. The Web
Application edition adds the jBPM Console and can be run in any standard Java web
server, such as Tomcat or Resin. The Enterprise edition includes the jBPM Console
but adds support for the scheduler/timer, asynchronous continuations, and mail. For
this book, we’re using the Enterprise edition.
Licensed to Deborah Christiansen <pedbro@gmail.com>

137Understanding nodes
NOTE Those familiar with BPEL can attest to what a contrast jPDL represents
compared with that standard. Further, the semantics of BPEL can be con-
fusing to those first trying to learn it—jPDL’s XML Schema is refreshingly
concise and easy to follow.

Let’s now examine the constructs that constitute the language, which at its core is
composed of nodes and transitions. These form the basis for how processes are con-
structed.

5.3 Understanding nodes
In the process diagrams you have seen so far, the steps (or blocks) in the process flow
represent nodes and the lines between them transitions. As you may recall from
figure 5.4, different types of nodes are available, including task, node, state, mail, and
decision (the types were specified by the text surrounded by << and >>). Regardless of
the type, nodes serve two purposes: (a) they can execute Java code, and (b) they’re
responsible for moving forward or pausing the process execution. When a node is
entered, it begins executing any code associated with it. This may entail entering a
wait state pending some outside action, or it may propagate the execution, which simply
means that it advances the execution forward. Since there can be more than one tran-
sition path leaving the node, the node is responsible for telling the process engine
which transition to follow.

 Let’s examine the built-in nodetypes that come included in the jPDL language:
node, task-node, state, mail, decision, and fork/join.

5.3.1 Node nodetype

The node nodetype is the basis from which the other nodetypes are derived (or cus-
tom ones you might create), but it can be used by itself in situations where you want to
code the runtime behavior. You can think of the node nodetype as a generic style node,
with no specific behaviors associated with it. For example, a node nodetype could be
used by an analyst to graphically depict that a call to an external system must be made.
However, the implementation logic to perform this action will be left for develop-
ment. In figure 5.7, a node was used to identify that the problem ticket should be sent
to a partner for resolution. The developer would then write the implementation
action handler, which is discussed in section 5.5. What’s important to recognize, how-
ever, is that the implementation code for this type of node must identify and trigger
the transition path to be followed when the execution exits the node. Here’s an exam-
ple of how a node is defined within jPDL:

<node name="notify-partner">
 <action
 name="partnerNotification"
 class="info.open-soa.actions.NotifyPartnerAction">
 </action>
 <description>
Notify partner of problem ticket for them resolve.
Licensed to Deborah Christiansen <pedbro@gmail.com>

138 CHAPTER 5 Introducing jBPM
 </description>
 <transition to="notify-customer"/>
</node>

Notice in this example that an action element is defined, and the @class attribute
specifies the name of the Java class used to implement the logic. The description ele-
ment is used to enrich the node definition, and the transition element identifies the
possible transition paths that can be followed; in this example there’s just one transi-
tion called notify-customer. The action handler assigned to the node, as we pointed
out earlier, must propagate the execution—in other words, move it along.

A standard set of possible elements and attributes is available that can be used when
defining any of the nodetypes. Table 5.1 lists them (attributes are prefixed with an @),
and the description of the subsequent nodetypes will identify any deviations from this
standard set (some of the others will add configuration options).

Table 5.1 Standard nodetype attributes and elements

Element/Attribute Name Description

@name Specifies the name of the node. Required.

description Describes the node for documentation purposes. Optional.

event Describes actions to be performed when events are triggered at various
moments in the execution of the node. Common events include
transition, node-enter, and node-leave. The actions defined
as part of an event cannot influence the flow control of the process. This
contrasts with the action element defined as a descendant of the
node nodetype, which must do so. Section 5.8 will discuss events in
more detail. Optional.

exception-handler Allows the developer to define a list of actions to take based on the type
of error being caught. However, like event actions, they can’t modify the
graphs event flows. Exception handling is a relatively advanced topic and
will be discussed in more detail in chapter 7. Optional.

timer A timer can be assigned to a node with the clock starting when the node
is entered. Actions can be triggered based on timer expiration. Since tim-
ers are most often used in conjunction with tasks, they’re covered in
more detail in chapter 6. Optional.

Handler classes and scripts
In jBPM, you can define handlers using a Java class either by identifying its full path
location or by embedding a script in the form of a BeanShell within the body of the
process definition. When we specify “class,” we mean it to be synonymous with
either a Java class or BeanShell script (which, after all, is interpreted into a Java class
at runtime).
Licensed to Deborah Christiansen <pedbro@gmail.com>

139Understanding nodes
The only thing unique to the node nodetype is the action element, which is required.
As we pointed out earlier, for the node nodetype, the action handler specified in the
action element is responsible for signaling the advance of the process and for identi-
fying the transition path.

5.3.2 Task-node nodetype

The task-node nodetype is used to specify one or more tasks that are to be performed
by a human (but they can be processed programmatically through the API as well).
The individual performing the task then signals what transition path to following mov-
ing forward. Unlike the other nodetypes described thus far, tasks involve human inter-
action with the business process.

NOTE Although tasks are usually associated with human interface activities,
using the API you can interact with them in any fashion you want. The
next chapter focuses on using tasks.

As you might imagine, there’s a significant amount of functionality that necessarily
accompanies the task nodetype. This includes how the task information is conveyed to
the user, how an actor or user is assigned a task, and how it can be monitored for
timely completion. Because of the broad scope that tasks involve, the next chapter is
dedicated to covering this subject.

5.3.3 State nodetype

Described in the jBPM documentation as a “bare-bones” node, the state nodetype is
somewhat of a hybrid between a node nodetype and a task-node nodetype. It’s similar
to the latter in that it introduces a wait state not unlike a task pending completion.
However, a state nodetype is waiting for what presumably is another system to com-
plete, not a human. The external system could be notified via an event action, such as
node-enter, and then waits for a stimulus to signal advancement of the token. The
only real distinction between a state nodetype and a node nodetype is that a state
doesn’t allow a direct action handler to be defined. Additionally, the node nodetype
doesn’t introduce a wait state and is expected to be processed immediately.

 What’s an example of where a state nodetype would be useful? One scenario is
where some additional information is required from a third-party system. In such a
case, the original system must wait for a response from the third-party system before

transition Defines the destination node for the execution path. Transition names
should generally be unique to avoid unexpected problems. A transition
path can be explicitly invoked by name, but if no name is specified and
multiple transitions are available, the first one will be selected. Transi-
tions can also define an action class or script that’s invoked when it’s
entered. Optional.

Table 5.1 Standard nodetype attributes and elements (continued)

Element/Attribute Name Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

140 CHAPTER 5 Introducing jBPM
proceeding. For example, a quote request that’s part of a process might forward the
information to a CRM system, and a user of that system would receive and process it.
Once the quote is completed, a notification would be sent from the CRM to a service,
which would receive it and interact with the jBPM API to advance the process.

5.3.4 Mail-node nodetype

As the name suggests, the mail-node nodetype is used to send outgoing email, which is
triggered when the node is entered. Here’s an example of how you can use it:

<mail-node
 name="notify-customer"
 actors="jdoe"
 subject="Urgent customer email received: #{problem_subj}"
 text="#{problem_desc}">
 <transition to="product-improvement"/>
</mail-node>

In the example, you’ll notice the use of tokenized variables, which take the form of
#{varname}. These allow you to dynamically assign variable values at runtime
(section 5.7 will discuss how variables are created). In the preceding code fragment,
the mailing address will be resolved by using the @actors attribute (actors are
described in more detail in the next chapter, in our coverage of tasks). In lieu of the
@actors attribute, the @to attribute can be used to explicitly set the destination email
address. See table 5.2 for a full description of the mail-node nodetype elements and
attributes.

Table 5.2 Mail-node nodetype elements and attributes

Element/Attribute name Description

subject Subject of the outbound email. Optional.

@subject A convenience alternative to using the subject element. Optional.

text Text/body of the outbound email. Optional.

@text A convenience alternative to using the text element. Optional.

@async A boolean used to indicate whether to use an asynchronous continuation
to send the email (asynchronous continuations are covered in chapter 7).
Defaults to false and is optional.

Tokens and signals—what are they?
You’ll see in the jBPM literature, and even in the jBPM Console application, frequent
references to tokens. Basically, a token is just a path of execution; it’s a pointer to
a node in the graph that’s currently accessible within the process instance. A signal
is just an instruction to a token to advance forward in the execution. So, if a token
is currently waiting in a state nodetype, a signal would move it forward using a spec-
ified (or default) transition.
Licensed to Deborah Christiansen <pedbro@gmail.com>

141Understanding nodes
Within the task-node nodetype, you can also specify that an email be created when the
task is assigned, followed by reminder emails that adhere to a timer-style configura-
tion. Thus, in the case of emails associated with a task, there may not be the need to
use the mail nodetype.

 As briefly mentioned in table 5.2, you can use a mail template file called
jbpm.mail.templates.xml to define customized messages (if a different name is used, it
must be defined within the jbpm.cfg.xml file in the format of <string

name="resource.mail.templates" value="jbpm.mail.myfile.xml" />, for exam-
ple). Within this file, you specify one or more mail-templates and then reference a
given template name when configuring your mail node. Here’s an example of a mail
template definition:

<mail-templates>
 <variable name="BaseTaskListURL"
 value="http://yourhost:8080/jbpm-console/sa/task.jsf?id=" />

 <mail-template name='task-assign'>
 <actors>
 #{taskInstance.actorId}
 </actors>
 <subject>
 Task '#{taskInstance.name}' has been assigned to you!
 </subject>
 <text><![CDATA[Hello,

Task '#{taskInstance.name}' has been assigned to you by
your friendly Business Process Manager application.

Please visit #{BaseTaskListURL}#{taskInstance.id} to complete

Thanks.]]></text>
 </mail-template>
</mail-templates>

Notice the use of the variable substitutions, which are delimited by #{}. The variables
that can be exposed in this fashion are the properties associated with these objects:
TaskInstance, ProcessInstance, ProcessDefinition, Token, TaskMgmtInstance,
ContextInstance, and any process variable. You can also create your own variables
within the template itself, as demonstrated earlier when we created the variable

@template Enables you to specify a different template to use. This allows you to tai-
lor the format and content of the outbound message. Optional.

@actors Specifies one or more actors to send the outbound message. Uses the
actorId to resolve the email address associated with that individual.
The @actors attribute, or @to is required.

@to Specifies an actual email address to which the mail will be sent. Either it
or the @actors attribute is required.

Table 5.2 Mail-node nodetype elements and attributes (continued)

Element/Attribute name Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

142 CHAPTER 5 Introducing jBPM
BaseTaskListURL. To reference this template in your mail node definition, you’d
specify the template name task-assign in the @template attribute.

5.3.5 Decision nodetype

Within jBPM you have multiple ways in which decisions can be made as to which tran-
sition or path to follow. One method is to specify a condition within the definition of
the transition itself (discussed in the next section). Another method, which can be used
in node, state and task-node nodetypes, is for an action handler or individual (in the
case of a task) to elect a transition path to take. The last approach is to use a decision
nodetype; this is appropriate when you want the process to make the decision based on
a BeanShell expression result. Here’s an example of a decision nodetype definition:

<decision name="high-priority?"
 expression='#{ (priority == "HIGH" ? "yes" : "no") }'>
 <transition to="email-notification" name="yes"/>
 <transition to="assign" name="no"/>
</decision>

In this example, priority is a process variable that contains values such as HIGH,
MEDIUM, or LOW. This decision rule will direct HIGH priority messages to the transition
named yes. The same effect can be achieved using the following variation:

 <decision name="high-priority?" >
 <transition to="email-notification" name="yes">
 <condition>#{priority == "HIGH"}</condition>
 </transition>
 <transition to="assign" name="no">
 <condition>#{priority != "HIGH"}</condition>
 </transition>
 </decision>

Lastly, you can also use a handler class to determine which transition path to follow.
Simply specify the class in the handler child element, for example:

<decision name="high-priority?" >
 <handler class=”com.sample.MyDecisionHandler”/>
</decision>

In this case MyDecisionHandler must implement DecisionHandler and its required
method decision. This method must return a string value to indicate which transition
path to follow (we’ll demonstrate several handler examples beginning in section 5.5,
and all handlers follow a similar usage convention and are simple to implement).
Unlike in many other cases, there doesn’t appear to be support for using an embed-
ded BeanShell script to function as a handler in the case of a decision node.

5.3.6 Fork and join nodetypes

In many business processes, there can be concurrent paths of execution. For example,
the on-boarding process for a new hire may involve several tasks that can be done in
parallel, such as issuance of security credentials, I-9 form processing (used for
Licensed to Deborah Christiansen <pedbro@gmail.com>

143Understanding nodes
employment eligibility in the United States), parking pass assignment, and HR systems
registration. While they can be done concurrently, they must all be completed and
closed for the process instance to conclude. This is where the fork and join nodetypes
can be used (see figure 5.8 for an example).

 While conceptually the fork and join construct is rather straightforward and intui-
tive, it’s considerably more complicated from a process engine standpoint. In particu-
lar, each forked path necessarily results in a new token being created. These represent
child tokens of the parent root token. This behavior can be best witnessed through the
jBPM Console when viewing the tokens for an active process instance that includes a
fork, as shown in figure 5.9.

 In the example shown in figure 5.9, the parent token is 565 as it has no parent and
resides at the forked node. The remaining tokens are child tokens and will be merged
back when all of them enter the join node. When a token execution arrives at the join,
the join will determine whether any active siblings of the parent remain. If not, the
parent execution token is reactivated. Otherwise, it will wait for the remaining tokens
to complete.

 We’ve done a whirlwind tour of the nodetypes, and you’re probably a bit fatigued
at this point. The next section on transitions will conclude our coverage of how

Figure 5.8 An example of jBPM fork and join

Figure 5.9 BPM Console illustrations of forked tokens in a process instance
Licensed to Deborah Christiansen <pedbro@gmail.com>

144 CHAPTER 5 Introducing jBPM
processes are diagrammed. After that, we’ll move on to how you can incorporate your
own custom implementation code.

5.4 Using transitions
We’ve already demonstrated some of the capabilities associated with transitions, par-
ticularly in the coverage of the decision nodetype in the previous section. Transitions
represent a central role in the definition of a process, as they link the various nodes to
create a directed graph. In other words, transitions can be thought of as the glue that
holds together the nodetypes that we just described into a complete business process.
The configurable elements and attributes available to transitions are displayed in
table 5.3.

Deciding which transition to follow when multiple transitions exist depends in part on
the nodetype being exited. For example, in a task node, the decision on which transi-
tion to follow is usually made by the user. A web-based task form, for instance, might
include buttons for each of the available transitions (such as send-back, approve,
reject, etc.). For node and state nodetypes, a custom Java class or script can dictate the
transition path through explicit signaling.

 We’ve now covered the basics of diagramming within the process model. We’ve
identified the available nodetypes, and you learned how they can be wired together
via transitions. Of course, using the nodes as is doesn’t provide all that much capabil-
ity. The real power behind jBPM lies in actions, which are hooks where developers add
their own programming logic.

Table 5.3 Transition elements and attributes

Element/Attribute name Description

description Description of the transition; beneficial for documentation purposes.
Optional.

condition Optional expression that acts as a guard to determine whether or not the
transition should be followed. The expression can either exist as element
text (i.e., <condition>#{a > 5}</condition) or as empty ele-
ment when the @expression attribute is used (i.e., <condition
expression="#{a > 5}"/>). Optional.

action Allows for a Java action class or BeanShell script to be used for custom
logic. See the next section. Optional.

exception-handler Allows the developer to define a list of actions to take based on the type
of error being caught. However, like event actions, they can’t modify the
graph’s event flows. Exception handling is discussed in chapter 7.
Optional.

@name The name of the transition. Each transition leaving a specific node must
have a unique name. Optional.

@to The name of the destination node. Required.
Licensed to Deborah Christiansen <pedbro@gmail.com>

145Extending using actions
5.5 Extending using actions
Actions and events allow programming logic to be inserted within a process model in
a way transparent to the analyst or subject matter expert who designed the model. In
most circumstances, the business modeler won’t have the requisite skills or inclination
to deal with the underlying plumbing necessary to create a truly runtime execution
process. Indeed, if the model becomes complicated by visual representation of such
technical details, the utility of the model in conveying the flow of the business process
will quickly become lost. Instead, Visio and other static modeling tools will again
become prevalent, with the models developed by them entirely abstract in nature.
jBPM attempts to balance between creating a descriptive model and producing an
executable process. This balance is achieved through the use of actions.

 Actions are the integration points for interfacing with other applications or ser-
vices. It’s through actions that the services designed using SCA (chapters 3 and 4) can
be readily used and consumed (you’ll learn more about this in chapter 7). Depending
on how it’s configured, an action can be used to asynchronously send out a message to
another system; used synchronously, such as when calling an external web services; or
even used in a callback scenario where a request to a remote system is made and initi-
ates a method call when it’s completed.

 The action element within jPDL defines the locations where actions can be used.
They are as follows:

■ Node nodetype—An action handler is used to implement the custom functional-
ity associated with the node and to advance its token to the proper transition.
An action is required when using a node, as no other inherent functionality is
provided by this nodetype.

■ Transitions—As a child of the transition element, an action can be invoked
when the transition is triggered. This is often useful for setting process instance
variables.

■ Events—Discussed in more detail in section 5.6, actions are used within events
to invoke programming logic based on various triggers, such as when a node is
entered or exited. Actions, when used as part of events, can’t directly influence
the flow of the process but instead should be used for notification purposes,
such as setting or updating process instance variables.

■ Exceptions—We dive into exception handling in chapter 7, but suffice it to say
that actions can be triggered when an exception occurs. Similar to event
actions, they can’t (or shouldn’t) affect the flow of the process, but can indi-
rectly do so by setting process variables (which downstream may use the vari-
ables in decision nodes, etc). Also, actions in this context are useful for sending
error notifications.

■ Timers—Actions can be triggered when a timer expires.

Creating a Java action class is straightforward—it’s just a plain old Java object (POJO)
that simply implements ActionHandler. The only method required to be implemented
Licensed to Deborah Christiansen <pedbro@gmail.com>

146 CHAPTER 5 Introducing jBPM
by ActionHandler is execute. The execute method, which returns void, takes a single
parameter of type ExecutionContext, which is passed to it by the jBPM engine at run-
time. The simplest way to get started with creating an action class is to create a new pro-
cess project using the jBPM Eclipse-based Graphical Process Designer. This creates a
skeleton project that includes a sample process with an example of an action class. The
sample process’s jPDL code and image are depicted in figure 5.10.

 As shown in figure 5.10, the jPDL XML code contains a reference to the generated
sample action class called MessageActionHandler. This sample class, shown in
listing 5.1, illustrates how property values can be injected into the action class, and in
turn, stored within a process variable.

Handler classes and jBPM
As we move deeper into exploring the ways in which custom logic can be introduced
into jBPM, a recurring concept is one of handlers. As the name suggests, a handler
assumes responsibility for performing a particular function. In the case of a
DecisionHandler, that means implementing a method called decision. There are
many different types of handler classes within jBPM. Commonly used ones are
ActionHandler, AssignmentHandler, ExceptionHandler, and TaskController-
Handler. Fortunately, the developers of jBPM make implementing such handlers typ-
ically easy (usually just one method must be implemented). Handlers in jBPM
represent powerful extension points for introducing your customer code!

Figure 5.10 A jBPM sample process created automatically when a new process project is created
Licensed to Deborah Christiansen <pedbro@gmail.com>

147Extending using actions
public class MessageActionHandler
 implements ActionHandler {

 private static final long serialVersionUID = 1L;

 String message;

 public void execute(ExecutionContext context)
 throws Exception {
 context.getContextInstance()
 .setVariable("message", message);
 }
}

Since this class is defined as the implementation for an action (shown in figure 5.10),
it must implement the ActionHandler b interface and its required execute method
d. Notice as well that, in figure 5.10, the action element contains a child element
called message. This is a property value that, when the corresponding action class is
instantiated, will automatically look for a member variable with the same name c. If
found, it will populate that Java field with the value specified in the jPDL. So, in this
case, the Java variable message is populated with the value “Going to the First State!”
The execute method then takes the value that was populated into the message vari-
able and assigns it to a process variable that’s created with the same name e. This
process variable, in turn, will then be available to downstream nodes, as it’s saved in
the context of the process instance. This demonstrates how properties and configura-
tion data can be populated at runtime using Spring-style injection.

 In some cases, you may find that you’re repeating the same action class in multiple
locations within your jPDL. For example, you may have an event that triggers an action
class for event stream processing or BAM purposes. Rather than repeating that action
definition, you can define it at the root level of the jPDL, and then reference it where
needed by using the @ref-name attribute of the action element (in fact, you can refer-
ence it anywhere, even if it’s within a child element elsewhere). Here’s an example:

<action ref-name='shared-action'/>

shared-action is the assigned name of an action located elsewhere (or at the top level)
of the jPDL. This points out the importance of using unique names for your actions.

 When creating the new process project, the generated code will also contain a
JUnit test class called SimpleProcessTest. This test class illustrates how to locally
instantiate a jBPM instance, install a process, run the process, and step through it pro-
grammatically. Although limited in what it achieves, the sample process and code pro-
vide a useful template or starting point for developing your process. The generated
action class created in listing 5.1 when the project was created only demonstrates one
way to populate property values. As it turns out, there are four methods for populating
property values from within the jPDL—let’s take a look.

Listing 5.1 Sample action class generated when new a process project is created

b Requires implementation

c Populates from injection

d Executes this method

e Sets jBPM variable
Licensed to Deborah Christiansen <pedbro@gmail.com>

148 CHAPTER 5 Introducing jBPM
5.5.1 Action class property instantiation

An optional attribute of the action element not shown in figure 5.10 is called
@config-type. This attribute is used to specify the method by which property values
can be injected into an action class upon instantiation. If omitted, it defaults to a value
of field, which is the method used in figure 5.10 and the corresponding action class
shown in listing 5.1. Other @config-type values include bean, constructor, and
configuration-property. In general, we don’t see any real advantage to using any-
thing other than the default field type, so we won’t bother explaining the others
(they’re covered in the official documentation, if you’re interested).

 When specifying the field-style method of class instantiation, jBPM will attempt to
automatically populate class member variables that match the XML element name
passed as a child to the action element. We witnessed this earlier when we used a
message element to pass a string that was populated into a similarly named class vari-
able. When more complex data must be passed, choose one of two other approaches:
use arbitrarily complex XML data that will then be converted into a dom4j Element, or
use a <map><entry><key> XML format to pass the data as a Java Map object. All three
approaches are shown here using a jPDL snippet, with message passed as a string, xml
as a dom4j Element, and map as a Java Map object:

<action class="com.sample.action.MessageActionHandlerField"
 config-type="field" name="action">
<message>Going to the field state!</message>
<xml>
 <value1>Value 1</value1>
 <value2>Value 2</value2>
 <value3 value="Value 3"/>
</xml>
<map>
 <entry><key>key1</key> <value>Value 1</value></entry>
 <entry><key>key2</key> <value>Value 2</value></entry>
</map>
</action>

As we pointed out, the field style will attempt to match each top-level XML element
with a corresponding Java member class. Here’s a fragment of the MessageAction-
HandlerField class used to receive the injected data (the complete class is in the
example code):

public class MessageActionHandlerField implements ActionHandler {

 String message;
 Element xml; //org.dom4j.Element;
 Map<String, String> map;
 public void execute(ExecutionContext context) throws Exception {

 context.getContextInstance().setVariable("message", message);

 System.out.println("map is: " + map.size());
 System.out.println("xml is: " + xml.asXML());
 }
}

Licensed to Deborah Christiansen <pedbro@gmail.com>

149Extending using actions
When the process is run and the node encountered, the three member variables are
automatically populated with the corresponding data from the jPDL (map.size() is 2,
xml.asXML() shows the XML nodeset). As you can see, this provides considerable flex-
ibility for populating data on invocation. Let’s now switch gears a bit and examine
action expressions.

5.5.2 Using action expressions

One of the most interesting, but we believe underused, capabilities of the action ele-
ment is the @expression attribute. This option enables you to invoke a method on a
process variable (variables will be discussed in more detail in the next section). Thus,
a process variable can not only be used to store process-related data, but can also be a
complex Java object whose method is invoked with the @expression attribute speci-
fied. In that sense, process variables can encapsulate both data and function. This con-
cept is most easily illustrated with an example. In listing 5.2 is a class that will be stored
as a process variable within jBPM (notice that it’s serializable for this reason).

public class SalaryObject implements Serializable {

 private static final long serialVersionUID = 1L;

 // public used minimize code, not recommended
 public String fname;
 public String lname;
 public String approvedBy;
 public int currentSalary;
 public int proposedSalary;

 public void populateVars() {
 System.out.println("in populateVars()");
 fname = "John";
 lname = "Doe";
 currentSalary = 50000;
 proposedSalary = 55000;
 }

 public void logApprovedSalary() {
 System.out.println("in logApprovedSalary()");
 ContextInstance contextInstance = ExecutionContext
 .currentExecutionContext().getContextInstance();

 approvedBy = (String) contextInstance.getVariable("approver");

 if ((float) proposedSalary / currentSalary > 1.0) {
 System.out.println("That's a nice increase");
 } else
 System.out.println("Maybe next year :-(");
 }
}

Let’s assume that a start task action is responsible for instantiating the SalaryObject
as a process variable identified with a name of salary. Then, during the lifecycle of

Listing 5.2 Java class used as a process variable object

b Initializes variables

 c Is invoked by
process

 d Acquires
jBPM context
Licensed to Deborah Christiansen <pedbro@gmail.com>

150 CHAPTER 5 Introducing jBPM
the process instance, the two methods will be called. The populateVars method b
will simply assign values to four of the member variables. When called, the log-
ApprovedSalary method c will output a message to the console. Notice as well how a
ContextInstance d is used to enable the retrieval of the process variable called
approver, which is then stored in a String variable called approvedBy.

 How will the two methods in listing 5.2 be invoked? Let’s take a look at a sample
process diagram (jPDL) that uses this object (see listing 5.3).

<process-definition xmlns="" name="salary">
 <start-state name="start">
 <event type='node-leave'>
 <action expression='#{salary.populateVars}'/>
 </event>
 <transition to="approve"/>
 </start-state>

 <state name="approve">
 <transition to="end">
 <action expression='#{salary.logApprovedSalary}'/>
 </transition>
 </state>

 <end-state name="end"/>
</process-definition>

The highlighted code in listing 5.3 shows how the two methods are invoked using the
@expression attribute. In the start-state node, the method populateVars is
invoked on the object represented by salary in a process variable during the node-
leave event b. In the approve state node, the logApprovedSalary method is
invoked on the same object during the transition to the end node c. Thus, through
the use of the @expression attribute, methods within a process variable or object can
be invoked.

 What’s the implication of this capability? One clear benefit of this approach is that
the process instance now has the encapsulated functionality within its unique context.
By that, it becomes more immune to changes that may otherwise occur through the
use of normal action classes. For example, if a regular action class is used but its func-
tionality has changed through a new version, this would impact all in-progress
instances that subsequently make calls to it. That may or may not be desirable. By
using methods within a serialized Java class, this becomes less of a concern (though
change management challenges always exist). It’s also more consistent with the princi-
ples behind object-oriented programming, which is based on the notion of behavior
and data being stored logically together.

 What you may be left wondering in this example is how the salary process variable
is initialized. Since it’s a complex Java object (SalaryObject in listing 5.2), it can’t be
set via the standard property approach we discussed in section 5.5.1. We’ll cover that

Listing 5.3 jPDL demonstrating the action element’s expression attribute

 b Invokes when
node entered

 c Invokes when
approved
Licensed to Deborah Christiansen <pedbro@gmail.com>

151Using events for capturing lifecycle changes in a process
shortly in section 5.7, but for now, suffice it to say that it’s through the Context-
Instance, which is used in listing 5.2 to retrieve a process variable.

 The other remaining attributes that can be defined for an action element are
@accept-propagated-events and @async. You’ll learn more about both in the next
chapter, which covers advanced features.

 One of the main ways in which actions are used is in conjunction with events.
Events, as the name implies, are triggered at various points in the process and reflect
state changes that are occurring. The ability to invoke action code based on these
events provides many interesting opportunities, ranging from activity monitoring and
logging to asynchronous messaging. Let’s investigate events further.

5.6 Using events for capturing lifecycle changes in a process
Events, as the name suggests, are triggers that are fired throughout the course of the
lifecycle of a process instance. For example, when a token execution arrives in a given
node, the node-enter event is fired. For each event that can occur, you can inject
code via actions. This enables great flexibility for instituting custom behaviors within
your process. Also, events represent a wonderful way to monitor the ongoing activity
within a process. They can be used to monitor for any abnormalities or unusual trends
that may be occurring, which we identified in chapter 1 as an important part of a SOA
environment.

 Table 5.4 categorizes the types of events that occur for the various objects (events
aren’t limited to nodes, but also affect transitions and the overall process).

Table 5.4 Object events

Event Literal value Object supported

EVENTTYPE_TRANSITION transition Transition,
SuperState, Process

EVENTTYPE_BEFORE_SIGNAL before-signal Node *

EVENTTYPE_AFTER_SIGNAL after-signal Node

EVENTTYPE_PROCESS_START process-start Process

EVENTTYPE_PROCESS_END process-end Process

EVENTTYPE_NODE_ENTER node-enter Node, SuperState,
Process

EVENTTYPE_NODE_LEAVE node-leave Node, SuperState,
Process

EVENTTYPE_SUPERSTATE_ENTER superstate-enter SuperState,
Transition, Process

* The Node nodetype in this table refers to it and all implementing types, such as State, Decision, Join, Fork, Task, and Mail.
Licensed to Deborah Christiansen <pedbro@gmail.com>

152 CHAPTER 5 Introducing jBPM
In listing 5.3, you may recall that we showed how an event is defined. Besides the
action element, the only other configurable option is the required @type attribute,
which specifies one of the literal values shown in table 5.4 (node-leave in this case).
While the use of events is fairly self-explanatory, one noteworthy and perhaps not obvi-
ous feature is that you can assign events at the process definition level. For example,
consider the jPDL shown in figure 5.11.

EVENTTYPE_SUPERSTATE_LEAVE superstate-leave SuperState,
Transition, Process

EVENTTYPE_SUBPROCESS_CREATED subprocess-created SuperState, Process

EVENTTYPE_SUBPROCESS_END subprocess-end SuperState, Process

EVENTTYPE_TASK_CREATE task-create SuperState, Process,
Task

EVENTTYPE_TASK_ASSIGN task-assign SuperState, Process,
Task

EVENTTYPE_TASK_START task-start SuperState, Process,
Task

EVENTTYPE_TASK_END task-end SuperState, Process,
Task

EVENTTYPE_TIMER timer SuperState, Process

Table 5.4 Object events (continued)

Event Literal value Object supported

Figure 5.11 An example of a root-level event definition
Licensed to Deborah Christiansen <pedbro@gmail.com>

153Managing context using variables
 Notice the event element is defined directly as a child element of the top-level
process-definition root node. The event’s action class is triggered for every node-
enter event that occurs within the process. In this example, that means the EventTest
class is instantiated and its execute method called when both state1 and state2 are
entered. Notice as well that an additional node-enter trigger was defined within the
definition of the state1 node. Hence, they aren’t mutually exclusive—both Event-
Test and EventTestNode are fired when state1 is entered. Using root-level events can
be beneficial for scenarios such as BAM, where you want events fired for certain event
types across the board (this obviously simplifies configuration, because otherwise
you’d have to configure each node individually).

 As we pointed out earlier, it’s important to remember that events can’t directly
influence the execution of the process. For instance, an action defined within an
event can’t dictate which transition to follow. Events are best used for triggering notifi-
cations to external services, and they can indirectly influence execution through the
setting of process variables (for example, a decision node may use a process variable
to determine which transition path to follow).

5.7 Managing context using variables
In several of the examples so far, we’ve demonstrated how variables can be used within
a process instance. Variable value types supported include String, Boolean, Float,
Double, or Long. In addition, most serializable Java objects can be stored, and any
classes that are persisted with Hibernate. If a class instance can’t be persisted, an error
will occur when you attempt to retrieve it (not when you attempt to persist it). The
types we’ve used so far have been process variables, but there are two other types: local
and transient. Let’s take a look at each type.
PROCESS VARIABLES

In the logApprovedSalary method in listing 5.2, we used the ContextInstance to
retrieve a process variable called approver:

ContextInstance contextInstance =
ExecutionContext.currentExecutionContext().getContextInstance();
approvedBy = (String) contextInstance.getVariable("approver");

Setting a process variable can be done in a similar fashion using the setVariable
method. Here’s how we might set the approver variable that we retrieved earlier:

ContextInstance contextInstance =
 ExecutionContext.currentExecutionContext().getContextInstance();
contextInstance.setVariable("approver", "john_doe_approver");

In this example, since we’re using one of the supported simple Java types (String,
Boolean, etc.), nothing additional had to be done to store the string
john_doe_approver using the variable key approver. If you want to store a more com-
plex Java object, the class must implement Serializable (the class in listing 5.2 was
stored as a process variable, you may recall).
Licensed to Deborah Christiansen <pedbro@gmail.com>

154 CHAPTER 5 Introducing jBPM
 Note that, although we’re calling this type of variable a process variable, that defini-
tion varies slightly from the official jBPM documentation. My definition of a process
variable is one that’s available throughout any node in the process instance. This is accom-
plished by using the setVariable and getVariable methods. setVariable accepts as
its signature a supported data type or a serializable Object. The variable is automati-
cally available within the root token of the process instance. Because it’s at the root
token level, it’s visible to all child tokens that may be created throughout the life of
the process instance (for example, in a fork scenario, the child tokens created would
have visibility to that variable). You can, alternatively, make a variable local within a
token execution, which is described next.
LOCAL VARIABLES

A local variable is one in which the variable is only accessible within the scope of a
token. This can be accomplished by use of the ContextInstance’s setVariable-

Locally method. As you may recall, a token represents a given path of execution. Using
a local variable, you can define a variable that will be visible only within a specific
token. Multiple tokens are most typically found in processes that include fork/join
nodes, as shown in figure 5.12.

Figure 5.12 A token scope example when using fork and join nodes
Licensed to Deborah Christiansen <pedbro@gmail.com>

155Summary
In figure 5.12, you can assign a local variable to the /t1 path by using code such as

Token t1 = instance.findToken("/t1");
t1.instance.getContextInstance()
 .setVariableLocally("t1TokenVar", "true", t1);

In this example, the t1 child token that’s created from the fork node is assigned to a
variable called t1 (notice the token name is assigned, by default, to the transition
name). Then the ContextInstance is used to set a local variable key called
t1TokenVar to true for the token t1. Once it’s assigned, you can retrieve the local
variable by using the getVariableLocally method, which receives two parameters:
variable key and token. If you attempt to fetch the value using the getVariable
method that only accepts as its signature the variable key, null will be returned,
because this is used for accessing process variables only. However, you can add the
additional token parameter to the getVariable method to achieve the same result
(that is, getVariable("t1TokenVar", t1)).

 On what occasion would you want to use local variables? For highly complex pro-
cesses, it might be beneficial to limit visibility and scope. In other circumstances, local
variables might be used to initially populate task nodes, since it may not be necessary
to expose them to the entire process. A close cousin of local variables are transient
variables, which, as the name suggests, are limited to runtime actions and aren’t per-
sisted to the database with the process instance. For example, you could use them to
populate static values that are required by downstream classes but that aren’t relevant
for keeping as part of the historical record.

 The last topic we’ll briefly touch on is converters. You may recall that many standard
Java types can be stored automatically in jBPM. These include the types String, Date,
Double, and Long. They can be saved as-is because converters have been defined that
manage how these types can be converted into a jBPM VariableInstance class. You
can provide your own converters to augment those that come out of the box. For
example, you could create a converter that takes a Tuscany SDO object, marshals it
into XML, and then stores the XML as a String when it’s persisted. A reverse process
could extract the XML and unmarshal it into an SDO object upon retrieval. The jBPM
User Guide describes the process of creating converters in more detail.

5.8 Summary
One of the fundamental selling points of SOA is the promise that new solutions and
processes can be developed quickly. By exposing reusable services through frame-
works like SCA (covered in chapters 3 and 4), functionality that was locked into stand-
alone applications or systems can be creatively and quickly leveraged and meshed into
new business processes. BPM solutions are designed for creating such processes, and
they represent a revolutionary alternative to conventional software development.
Using BPM, subject matter experts can graphically craft new business processes and,
when augmented by development, create executable models that can be deployed
Licensed to Deborah Christiansen <pedbro@gmail.com>

156 CHAPTER 5 Introducing jBPM
and managed. The upshot? Dramatically reduced development costs; better align-
ment between analysts and developers; and improved business agility.

 JBoss jBPM is a mature BPM solution that offers many of the advanced features that
have historically only been found in expensive commercial solutions. Capabilities
include a graphical process designer, extensive task management features, a capable
administrative console, and a powerful API. Perhaps more importantly, jBPM is highly
extensible. You learned how custom functionality and code can be injected at nearly
every point in the business process. What’s more, this can be done in a transparent
fashion that doesn’t needlessly obfuscate the visual executable model.

 One important feature of any BPM solution that we haven’t covered in any great
detail yet is tasks. I’ve reserved that subject for the next chapter, so turn the page.
Licensed to Deborah Christiansen <pedbro@gmail.com>

jBPM tasks
In the previous chapter, we covered many of the basics of what constitutes a BPM
solution and then looked at a specific BPM implementation using JBoss jBPM,
which we selected for our Open SOA Platform. Omitted from our coverage of core
jBPM features were tasks—a broad and important topic. This chapter’s focus will
address this very subject.

 Many of the greatest improvements in productivity that have resulted from IT
systems involve automation. When systems, instead of humans, make decisions by
way of business rules, immediate benefits are achieved through dramatically
reduced processing time. Other payoffs include improved consistency, error reduc-
tion, more demonstrable compliance, and operational reporting. The fact remains,
though, that humans, not computers, are still necessary for many process-related
decisions or tasks. Despite our best efforts, the nuances of human judgment are
often necessary (after all, how can we forget what happened in the movie 2001:
A Space Odyssey?). Such tasks and decisions that must be performed by humans are
now even given a fancy name—human intelligence tasks (HITs).

This chapter covers
■ Understanding the role of tasks in jBPM
■ Assigning actors to tasks
■ Using the task API
157

Licensed to Deborah Christiansen <pedbro@gmail.com>

158 CHAPTER 6 jBPM tasks
Business process management (BPM) systems, from their earliest days harking back to
when they were commonly known as workflow management, have built-in support for
human-in-the-loop interface tasks. Most often, as is the case with jBPM, this is done by
way of a forms framework that can be used to develop interfaces, along with built-in
capabilities for assigning tasks, monitoring task completion, and issuing notifications.
How do tasks relate to SOA? As we discussed in the previous chapter, BPM systems are
uniquely suited at leveraging the services that result from SOA, enabling the rapid cre-
ation of new business processes. As you learned, many (if not most) business processes
contain orchestrations that involve a combination of automated services and human
tasks. Failure to cover this important topic would limit the full scope of jBPM solutions.
Because of the human interface considerations that typically surround tasks, unlike
the other nodes we’ve covered, tasks can involve more by way of setup and configura-
tion. For these reasons, we decided to devote this entire chapter to tasks. We’ll also
explore how to use the task API to provide additional flexibility beyond what comes
out of the box with jBPM. By the conclusion of this chapter, you’ll have a solid under-
standing of what tasks are used for, their implementation, and how they can be inte-
grated within your environment. Let’s begin by taking a look at how tasks are
managed using jBPM’s Console application.

6.1 What are tasks?
As you may recall, we spent a fair amount of time in chapter 5 on the various nodetypes
that are supported within jBPM. Nodetypes represent the prebuilt components that can
be invoked at the various states (that is, nodes) within a process. Examples included
nodetypes used for forking a process flow, for emailing, and as a placeholder for calling
out to another service. A task nodetype is unique in that it’s used to represent work
that’s to be completed by humans. Within jBPM’s Process Definition Language, jPDL,
it’s represented by the task-node element. Options exist to manage who the task is
assigned to, to specify who receives automatic notifications when a task assignment
occurs, and to set up timers to ensure it’s completed within the appropriate period

Amazon’s Mechanical Turk
Amazon’s Mechanical Turk, named after the phony chess-playing “computer” from
the 18th century later discovered to be a chess master hidden in a special compart-
ment, is a web services–based product for assigning and managing human intelli-
gence tasks (HITs). What is unique about this service is that it’s intended for
distributing work to an unlimited number of “workers” across the world, who can sign
up to participate in the program. It initially was created for internal uses by Amazon
for things such as product language translation, QA of product descriptions, and im-
age processing. There are now reportedly over 100,000 workers signed up to use the
system, though the number of available HITs has only now started to experience ap-
preciable increases. This interesting service is worth monitoring as a potential out-
sourcing opportunity for your HITs.
Licensed to Deborah Christiansen <pedbro@gmail.com>

159What are tasks?
(escalations can be defined). Multiple individual tasks can be assigned to a specific task
node. By their nature, tasks usually involve an individual analyzing some information
and then acting on it. A classic example is the purchase order (PO) approval process,
where a director or VP-level individual must approve POs that are in excess of a certain
amount. The approver must be supplied with the details of the PO, including the line
items, supplier(s), shipping costs, warranty data, and so forth. Such a scenario is well tai-
lored for a web form interface, where the approver can receive an email with a link to
a web page displaying the PO details, with options for approving, rejecting, or sending
back the PO.

6.1.1 Task management using the jBPM Console

Recognizing this as a common scenario, jBPM comes with a built-in capability for cre-
ating web forms that can be used for task processing. Figure 6.1 illustrates a jBPM
task form.

 In the example shown in figure 6.1, the depicted form is used by an approver for a
hypothetical PO process. It demonstrates how the action buttons of Approve, Reject,

Figure 6.1 jBPM task form and its relation to the business process flow
Licensed to Deborah Christiansen <pedbro@gmail.com>

160 CHAPTER 6 jBPM tasks
and Return correspond to the transitions available from the task. The task-node ele-
ment definition in jPDL is similar to the others we looked at in the previous chapter:

<task-node name="approve">
 <task name="approveAmt"/>
 <transition to="end" name="approved"/>
 <transition to="notifyRejection" name="rejected"/>
 <transition to="review" name="return"/>
</task-node>

The form itself was created using the jBPM Graphical Process Designer (for an excel-
lent tutorial on how to create task forms, see the Getting Started Guide in the jBPM Wiki
[jBPMGettingStarted]). As you’ve likely concluded, the layout of this particular exam-
ple is found wanting. Unfortunately, the task form layout options when using the jBPM
Console are rather limited. Repeating data sets, as would be the case in this example
where multiple line items may exist per PO, can’t be easily managed. My experience
with the task form capabilities is that, while they may be sufficient for simple processes
with simple form collection requirements, they are more often than not inadequate.
Fortunately, since everything in jBPM is accessible via the Java API, it’s not difficult to
create your own forms using whatever web framework you’re most accustomed to
(we’ll cover the API in much greater detail in the next chapter).

 Now that you have some general idea of how tasks work within jBPM, let’s peel back
the layers of the onion and examine what the various configuration options are for
creating tasks within jBPM. Let’s begin by looking at the task element, which is where
individual tasks are defined.

6.1.2 task element configuration

A common source of confusion when working with tasks is distinguishing between the
task-node, which is a nodetype, and its child element task. The task-node nodetype
shares most of the characteristics with the node or state nodetypes, but what distin-
guishes it is that it can have one or more tasks. The task element has the configura-
tion options listed in table 6.1.

Table 6.1 task element configuration

Element/Attribute
name

Description

@name Specifies the name of the task. While not specifically required, I’d suggest giving
each task a unique name. Optional.

@blocking If set to true, the node can’t be exited unless the task is completed. If set to
false, the default, signaling the token to proceed past the node is permitted.
Generally, setting this optional attribute isn’t necessary, as the GUI controls this
behavior.
Licensed to Deborah Christiansen <pedbro@gmail.com>

161Task user management
As you can see, a fair number of options are available when you’re configuring a task.
One child element that you’ll likely use frequently is assignment. It represents how
you assign users, known in jBPM as actors, to a particular task. You can also define how
assignments occur downstream in the process through a method known as swimlanes.
We’ll take a closer look at this subject next.

6.2 Task user management
Tasks are fundamental to any BPM solution, and they represent work items that must
be performed by individuals. So BPM systems must provide a means for assigning an

@duedate Used to specify when the task must be completed. Can be expressed using
actual or business hours. Examples are 2 business hours, 3 days and
30 minutes and 20 seconds, 5 minutes and 30 seconds,
1 day, 2 business hours, and 30 business minutes. Business cal-
endar settings are specified in the jbpm.business.calender.properties file (see
the User Guide for more details). Optional.

@description Contains a description of the task. Optional.

@signaling Indicates whether the task can signal the token to proceed forward beyond the
parent task-node. For example, there may be more than one task associ-
ated with the task-node, and you don’t wish to permit one or more of the
individual tasks to forward the process execution. This option is optional; the
default is true, which permits signaling.

@priority Defines the priority of the task. Can be set to highest, high, normal, low,
lowest, or any integer value. Optional.

@notify Indicates whether to notify the actor, via email, that the task has been assigned
to them. Default is false. Optional (and requires Enterprise edition).

description An alternative to the @description attribute. Optional.

assignment Describes who is assigned to complete the task. Discussed in the next section,
on actors. Optional.

controller Manages how process variables are transformed into and from task form
parameters when using the jBPM Console forms framework. Discussed in sec-
tion 6.4. Optional.

event Supported event types are task-create, task-start, task-assign,
and task-end. Events were described previously in chapter 5. Optional.

timer Creates a timer that monitors the time duration of the task. Discussed in sec-
tion 6.3. Optional.

reminder Similar in functionality to timer, but is limited to sending out reminder emails
(you can create actions with timers). Discussed in section 6.3 along with tim-
ers. Optional.

Table 6.1 task element configuration (continued)

Element/Attribute
name

Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

162 CHAPTER 6 jBPM tasks
individual or group the responsibility for completing a given task when it arises. As we
pointed out, in jBPM this is accomplished using the assignment definition, which can
optionally be configured for each task that is created. Let’s take a deeper look.

6.2.1 Actors and assignments

In jBPM, a task is completed by an actor. An actor is identified through an actorId,
which uniquely identifies that user. Within the jBPM Console, the actorId is assigned
when the user logs in and is assigned as the individual’s username. An actorId can be
any unique string value, so it’s a fairly flexible construct. Interestingly, you can assign a
task to an actorId that hasn’t previously been defined in the process. Closely related
to an actor is a pooled actor, which is just a grouping construct.

 A task can be assigned to an individual actor or to a pool of actors. When assigned
to a pool, any individual actor within that pool can choose to take possession, or pro-
cess the task. How do you specify which actors or pool of actors are associated with a
given task? That’s done in the process definition, or jPDL, through the assignment
child node.

NOTE Like everything in jBPM, assignments can also be done using the API.

For example, for the task shown in figure 6.1, an assignment could be made to a spe-
cific individual, jdoe, by using the following:

<task-node name="approve">
 <task name="approveAmt">
 <assignment actor-id="jdoe"/>
 </task>
 <transition to="end" name="approved"/>
 <transition to="notifyRejection" name="rejected"/>
 <transition to="review" name="return"/>
</task-node>

Alternatively, if you wanted to assign a task to a group of actors, you could use the
@pooled-actors attribute by including this assignment definition:

<assignment pooled-actors="dgenkin,jdavis"/>

Now, if dgenkin or jdavis log in via the jBPM Console with that approve task
active, either will have the option of assigning it to themselves or the other, as
shown in figure 6.2.

 You can also use both the @actor-id and @pooled-actors together, in which case
the task would be assigned to a specific individual by @actor-id but could then be
reassigned by anyone included in the @pooled-actors list.

Figure 6.2 The tasks view in the jBPM Console where pooled actors are being used
Licensed to Deborah Christiansen <pedbro@gmail.com>

163Task user management
While assigning the actors within a jPDL is simple, in many cases a dynamic assign-
ment may be required. To further expand on our example of the PO process, the indi-
vidual assigned to the task would likely depend on whom the requestor is reporting,
from an organizational perspective. Perhaps jdoe would require djohnson’s approval,
but msmith would need ltaylor. While you could attempt to create separate process
flows to accommodate this, a far easier solution would be to use a custom assignment
class or script. This is referred to as creating a custom assignment handler. An assign-
ment handler class must implement the AssignmentHandler interface, and with it the
required method assign. Listing 6.1 shows a simple assignment handler that imple-
ments the rules we defined earlier (this class can also found in the sample code).

public class AssignmentExample implements AssignmentHandler {

 public void assign(Assignable assignable,
 ExecutionContext context) throws Exception {

 String submitter = (String) context.getContextInstance()
 .getVariable("submitter");

 if (submitter.equalsIgnoreCase("jdoe"))
 assignable.setActorId("djohnson");
 else if (submitter.equalsIgnoreCase("msmith"))
 assignable.setActorId("ltaylor");
 else
 assignable.setActorId("rharris");
 }
}

Listing 6.1 An example of a jBPM AssignmentHandler class

jBPM Console identity component
One source of confusion that often arises is the interplay between the jBPM identity
component that’s used by the jBPM Console and the actors within a process. The
identity component that comes with jBPM Console is used only for purposes of man-
aging the login process and for controlling the permission-based menu options that
are used within jBPM Console. It’s not referenced, directly or otherwise, by the pro-
cess engine itself (with one apparent caveat: email resolution requires it). For exam-
ple, when you log in to jBPM Console, the identity component is used to validate your
credentials. Then, once completed, your username acts as your actorId for deter-
mining which tasks you’ve been assigned. The identity component also uses groups
to determine which menu options exist through jBPM Console, such as user,
manager, and admin. A user is associated with one or more of these groups through
a membership. Thus, the identity component is used by the jBPM Console to deter-
mine which menu options and privileges the user has, and effectively associates the
user’s login username with an actorId when interacting with the jBPM engine. The
jBPM User Guide and some community forum entries describe, in some detail, how
you can replace the default identity component with a custom alternative.

Implements required method

Specifies assignment logic
Licensed to Deborah Christiansen <pedbro@gmail.com>

164 CHAPTER 6 jBPM tasks
In the highlighted code, you see how we are just hard-coding (for demonstration pur-
poses) some logic for how to perform an assignment. In the first case, we’re simply
checking to see whether the submitter’s name (submitter was retrieved as a process
variable) is jdoe, and if so, we assign the task to djohnson (using the setActorId
method). In a real-life scenario, a lookup to an LDAP directory server might be used to
retrieve the organizational approvals that are required. Also, instead of using
Assignable.setActorId(), you could just as easily assign a pooled group of actors
using Assignable.setPooledActors(), which takes an array of actorId Strings.

NOTE The same configuration options available for the AssignmentHandler
class are available for the ActionHandler class. See chapter 5.

You’ve probably encountered scenarios where, once a given task is assigned to an indi-
vidual or group, it makes sense for any follow-up tasks related to the same work order
or process to also be assigned to that same individual or group. After all, they’re
already familiar with the issue. This can be accomplished with jBPM using a concept
called swimlanes. Let’s explore this further so that you may consider using this func-
tionality in the processes you develop.

6.2.2 Understanding swimlanes

Swimlanes, whose terminology is derived from UML activity diagrams and/or cross-
functional flowcharts, represent roles that can be assigned to an individual actor or
pooled group. Swimlanes are used when multiple tasks within a process should be per-
formed by the same actor. For example, if tasks A and B are sequential and both are
assigned the same swimlane, then when task A is completed, task B will automatically
be assigned to the same actor as was assigned to task A. When do swimlanes make
sense? When several tasks within a process exist within a given organization, say
Human Resources, it often makes sense to have the same individual perform all of the
given tasks as it relates to a given process instance. Also, because of the sensitivity of
many HR-related tasks, it’s sometimes better to limit exposure beyond what is neces-
sary—spreading out the work to multiple people for a given process instance may be
undesired.

 Thus, when using a swimlane within a task, you don’t specify an assignment to an
individual actor or pooled group of actors, since the assignment is done within the
definition of the swimlane itself. This can best be illustrated through a simple exam-
ple, so consider the process shown in figure 6.3.

 In the example shown in figure 6.3, the swimlane called approver was created at
the root level of the jPDL definition. The two tasks that follow, approveAmt and
assign-charge-codes, both use the @swimlane attribute to associate the task with that
previously defined swimlane. Notice that the swimlane was defined using the
@pooled-actors attribute, but a single assignment using @actor-id is permitted as
well (or even a combination of the two).
Licensed to Deborah Christiansen <pedbro@gmail.com>

165Using timers
The swimlane’s assignment child element is the same definition as we saw in the pre-
vious section. Thus, you can use an AssignmentHandler class to dynamically define
how the assignment occurs. Regardless of how the assignment is made, humans, being
humans, may not always complete the work or task within the required time frame.
This is where timers come into play.

6.3 Using timers
Timers are used to monitor the duration of an execution of a node, and they expire
when the execution token has exited the node. Timers are only supported in jBPM
Enterprise since they require the presence of an application server to function prop-
erly. While timers aren’t actually unique to tasks and can be used by any node, they’re
most frequently used in combination with tasks. Timers can also be created and can-
celled within action and event elements using the create-timer and cancel-timer
elements. The easiest way to create a timer is to specify the timer element directly as a
child element of the node that you want to monitor. The timer element’s configu-
rable options are shown in table 6.2.

Figure 6.3 An example of a swimlane definition and use
Licensed to Deborah Christiansen <pedbro@gmail.com>

166 CHAPTER 6 jBPM tasks
As you can see, there’s considerable flexibility in how a timer can be configured.
Here’s a simple illustration of how it can be done within a process definition:

<task node name="approve">
 <task name="approveAmt" swimlane="approver"/>
 <timer duedate="5 minutes" name="past-due-timer" transition="past-due"/>
 <transition to="assign-charge-codes" name="approved"/>
 <transition to="review" name="return"/>
 <transition to="pastdue" name="past-due"/>
</task node>

In this example, a timer called past-due-timer was created that will trigger the transi-
tion to past-due, which is a transition to the pastdue node, if the task node isn’t com-
pleted within 5 minutes. Within the jBPM Console, you can see the running timers by
logging in as an administrative user, selecting Manage > Jobs from the top-level menu,
and choosing Timers. This will display the running timers, as shown in figure 6.4.

Table 6.2 Timer configuration

Element/Attribute name Description

@duedate Used to specify when the node’s execution must be completed. Can be
expressed using actual or business hours. Examples are 2 business
hours, 3 days and 30 minutes and 20 seconds, 5 minutes
and 30 seconds, 1 day, 2 business hours, and 30 business
minutes. Business calendar settings are specified in the jbpm.busi-
ness.calender.properties file (see the User Guide for more details).
Required.

@name Specifies the name of the timer. Required.

@repeat After a timer has expired based on the @duedate, this can be used to
specify repeating timer executions (follows the same usage conventions as
@duedate). The value can also be specified as yes or true, in which
case the timer settings from @duedate will be used. Optional.

@transition Specifies the name of a transition to follow when the timer executes. Note
that if a transition is specified, then any value provided in @repeat will be
ignored, as the transition will be acted upon when the @duedate timer is
fired. Optional.

Action An ActionHandler implementation class that will be triggered when the
timer fires (see chapter 5). Optional.

Script A BeanShell script that will be triggered when the timer fires. Optional.

Figure 6.4 Timer view in jBPM Console
Licensed to Deborah Christiansen <pedbro@gmail.com>

167Using timers
 While the ability to trigger a transition is obviously a nice feature, the limitation is
that you can’t use the repeat timer in this scenario, as the transition will occur once
the initial duedate trigger is fired. Fortunately, the task element (which is a child ele-
ment of the task node) has a unique element called reminder that can be use to
achieve the desired effect.

The reminder element has only two settings: a @duedate and a @repeat attribute that
function the same as when used with the timer element. Here’s an example of using
the reminder element to send out a reminder email every 15 minutes until the task is
completed:

<task name="approveAmt" swimlane="approver">
 <reminder duedate="0 seconds" repeat="15 minutes"/>
</task>

The only downside in just using the reminder capability is that there’s no way to spec-
ify a transition path to another node in the event of repeated failures to respond. For
example, you cannot simply incorporate logic such as “If X actor doesn’t respond
after 4 notices, then escalate to a Y.” All is not lost, however. By using a reminder with
a timer, you can achieve this:

<task node name="approve">
 <task name="approveAmt" swimlane="approver">
 <reminder duedate="0 seconds" repeat="10 minutes"/>
 </task>
 <timer duedate="30 minutes" name="past-due-timer"
 transition="past-due"/>
 <transition to="assign-charge-codes" name="approved"/>
 <transition to="review" name="return"/>
 <transition to="pastdue" name="past-due">
 <cancel-timer name="past-due-timer"/>
 </transition>
</task node>

In pseudo-code, you could interpret the previous code as

Timers are critical to BPM
Once you begin using jBPM, you’ll increasingly find that timers play an essential role,
especially where human interface tasks are required. Most commonly, they’re used
for escalating or reassigning a task to someone else if it hasn’t been completed with-
in a certain period. This is especially important if compliance or regulatory implica-
tions exist for not performing a given process within the allocated time frame (in the
pharmaceutical world, one can think of adverse reaction reporting). Financial implica-
tions may also exist for not performing a process within a given time frame, such as
when penalties are crafted into service-level agreements. Using the API, you could
also do some creative things, such as varying the timer settings based on some iden-
tifier associated with the process instance. For example, if a customer is a “gold”
customer, the timer settings might be shorter for a sales order process.
Licensed to Deborah Christiansen <pedbro@gmail.com>

168 CHAPTER 6 jBPM tasks
When the task node approve is activated, send an immediate notice to
the assignee (reminder duedate="0 seconds").

Follow this with a reminder every 10 minutes (repeat="10 minutes")
until 30 minutes has transpired (timer duedate="30 minutes").

If 30 minutes has passed, then move the execution to the pastdue node
(timer transition="past-due", which initiates the transition to
the node pastdue).

You likely noticed in the jPDL example the cancel-timer element, which is triggered
when the transition named past-due is invoked. This is required because the timer
associated with the reminder element doesn’t expire automatically if the transition is
triggered through the timer element (it does expire, or get cancelled, if the actor pro-
cesses the task). I suspect this is a bug, but this solution is an acceptable work-around.
If you aren’t interested in using a timer but just want to send a reminder email, you
can do so by just using the task element’s @notify attribute, setting it to yes (that is,
<task name="approveAmt" swimlane="approver" notify="yes"/>).

NOTE The action child element available to create-timer and cancel-timer
enables you to instantiate Java code when the timer due date is activated
(you can also use a BeanShell script in lieu of a Java class). In the case of
the cancel-timer, the code would be invoked when the cancel-timer is
triggered.

Let’s take a look next at task controllers, which provide considerable flexibility when
you‘re working with task forms.

6.4 Task controllers
Task controllers provide a means to bridge between data that’s stored within process
variables and data required by the task form presentation or UI. In figure 6.1, we illus-
trated how the jBPM Console can be used to render task forms. In this simple exam-
ple, the task directly interfaced with the process variables. However, instead of
working with process variables directly, a task controller can convert them into and
out of task variables. A task controller can also be used to control read/write access per-
missions. The default task controller can only perform fairly simple mapping, as
shown here:

<task node name="approve">
 <task name="approveAmt">
 <controller>
 <variable name="fname" access="read,write"
 mapped-name="firstName"/>
 <variable name="lname" access="read,write,required"
 mapped-name="lastName"/>
 <variable name="middle" />
 </controller>
 </task>
 <transitions…/>
</task node>
Licensed to Deborah Christiansen <pedbro@gmail.com>

169Developing with the task API
The @name attribute of the variable element is required and refers to a process or
local variable that’s accessible in the context that the task is running within. The
@mapped-name attribute is the task variable name that’s assigned, and if omitted, it
would assume the same name as the process variable. The @access attribute controls
the behavior of how the task variable is written back to the process variable at the com-
pletion of the task. The three possible values are read, write, and required. A read
value indicates the task can only read the process variable. A write value indicates the
task variable will be written back to the corresponding process variable by the task. A
value of required indicates the task variable must be populated when attempting to
convert the value to the process variable.

 As you can see, the built-in task controller has fairly limited capabilities. However,
as with most things in jBPM, you’re free to create your own task controller by imple-
menting the TaskControllerHandler. Depending on your requirements, this could
be a fairly complex undertaking, so we won’t cover it here (the User Guide provides
some guidance on this, and I suggest looking at the source code). However, you can
easily see how this approach could greatly simplify the form and process variables we
created in figure 6.1. In that example, each field in the form represented a process
variable. A far better solution would be to create a complex Java class that houses the
data as a single process variable, and then use a controller to carve it into task vari-
ables more suitable for use within the form framework you’re using. Another intrigu-
ing idea would be to store the complex objects as service data objects (SDOs are
discussed in chapter 4), and then use the metadata features of SDO to dynamically
build your form.

 In the next section, we’re going to change the pace a bit and begin to tap into the
abilities that the jBPM API provides. It is through the API that you really start to appre-
ciate the capabilities of jBPM, because it unlocks so many fascinating integration
opportunities. My interest in jBPM began to flourish as I learned how to fully leverage
this capability. Indeed, this is what distinguishes open source from proprietary solu-
tions. When using a closed source, commercial application, you’re usually beholden
to a limited number of public APIs that they deem worthy of sharing. The good stuff is
kept private. With open source, you have access to everything, and you can look at the
code to understand exactly how it’s being used. I chose to begin talking about the API
in conjunction with tasks because this is likely one of the first places you’ll want to use
it. I pointed out earlier that the task form capabilities of jBPM are fairly restricted, but
with the API, you can easily augment it with your own code. Let’s begin.

6.5 Developing with the task API
As we discussed in section 6.1, while the form framework that comes with building task
forms for the jBPM Console is simple to use, it also is fairly limited. Specifically, it’s
limited in its ability to display and work with complex data, such as repeating rows and
complex table layouts. Most enterprise users of jBPM will quickly determine that they
must create their own forms using their framework of choice, be it Google’s GWT,
Adobe Flex, or TIBCO’s GI, among others. Fortunately, using the jBPM API makes
Licensed to Deborah Christiansen <pedbro@gmail.com>

170 CHAPTER 6 jBPM tasks
doing this far less daunting than you might imagine. Let’s illustrate some of the more
common API calls that you might find beneficial.

6.5.1 Identifying processes within a jBPM instance

Although not directly related to tasks, finding all process definitions with a jBPM
instance is likely one of the first places you’ll begin when using the API and working
with tasks. As a refresher, a process is simply a unique process definition, whereas a pro-
cess instance is an instantiated instance of a given process.

The first step in using the API, regardless of which operation you wish to perform, is to
acquire a JbpmContext instance. In conjunction with the hibernate.cfg.xml (and/or
hibernate.properties; see the sidebar “Using hibernate.properties to specify which
jBPM instance to connect”), the JbpmContext instance is used to establish which jBPM
database or instance to connect. Once a JbpmContext is acquired, you can then per-
form a variety of operations, as listing 6.2 shows. In this listing, we retrieve a list of pro-
cess definitions within a given jBPM instance. In this case, we’re creating a helper class
called JBPMHelper, to which we’ll gradually add additional static methods, starting
with listProcesses (I settled on static in order to simplify calling these helper meth-
ods without having to first instantiate the class).

public class JBPMHelper {

 public static List<ProcessDefinition>

Listing 6.2 Helper class method to retrieve a process from a jBPM instance

Using hibernate.properties to specify which jBPM instance to connect
When you create a jBPM process project within the Eclipse Graphical Process
Designer, it will automatically create a hibernate.cfg.properties file in the src/main/
config directory. By default, this is set up to connect to a hypersonic in-memory
database. To connect to a remote database, you have two options: (1) specify the
connection settings in the hibernate.cfg.xml file (search for “JDBC connection
properties (begin)”), or (2) comment out the connection properties in
hibernate.properties and instead create a hibernate.properties file in the same config
directory. Configure this file to resemble this:

hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:hsql://localhost/
hibernate.connection.username=sa
hibernate.connection.password=
hibernate.dialect=org.hibernate.dialect.HSQLDialect

Obviously, change the property values to reflect your environment. Although there is
no single correct choice for specifying connection settings, my preference is the
hibernate.properties file, since you isolate your changes and don’t risk inadvertently
Licensed to Deborah Christiansen <pedbro@gmail.com>

171Developing with the task API
 listProcesses(JbpmContext jbpmContext) {

 List<ProcessDefinition> processDefinitionList =
 jbpmContext.getGraphSession().findAllProcessDefinitions();

 return processDefinitionList;
 }

 public static JbpmConfiguration getConfiguration() {
 return JbpmConfiguration.getInstance();
 }
}

As you can see, the class currently has one static method, listProcesses b. Within it,
a single call is made to retrieve the list of process definitions using GraphSession’s
findAllProcessDefinitions method c. This returns a java.util.List of Process-
Definition objects, which in turn represents the return value for our helper method.

 The JbpmContext that’s given as a sole parameter to the listProcesses method
must be provided for all of the helper methods we’ll be creating. Creating the context
within the helper method isn’t advisable, as any transactions that result from using the
returned List could result in Hibernate transactional errors. Instead, the Jbpm-
Context should be created by the calling routine and then closed by it when finished.
The getConfiguration helper method shown in listing 6.2 can be used by the caller
or client as a convenience to retrieve the context d.

 Let’s now see how to use the listProcesses method by creating a Java static
main() class that invokes it and simply prints back information about the process defi-
nitions returned. Listing 6.3 calls the static helper method we created in listing 6.2,
and then iterates through the List and prints out the processId, name and version
associated with each process.

public class MainProcessDefinitions {

 public static void main(String[] args) {

 JbpmContext jbpmContext =
 JBPMHelper.getConfiguration().createJbpmContext();

 List<ProcessDefinition> processDefinitionList =
 JBPMHelper.listProcesses(jbpmContext);
 ProcessDefinition process;
 for (Iterator<ProcessDefinition> i =
 processDefinitionList.iterator(); i.hasNext();) {
 process = i.next();
 System.out.println("ProcessId: " + process.getId() + " ProcessName: "
 + process.getName() + " Version: " + process.getVersion());

 }
 jbpmContext.close();
 }
}

Listing 6.3 Main class utilizing listProcesses helper method

b

c

d

Retrieves JbpmContext
from helper

Calls helper method to
retrieve processes

Iterates through list
of processes

Closes context
Licensed to Deborah Christiansen <pedbro@gmail.com>

172 CHAPTER 6 jBPM tasks
What have we accomplished here? With very few lines of code, we’ve demonstrated
how you can use the jBPM API to retrieve a list of processes associated with a given
jBPM instance. As part of our approach, we created a helper class in listing 6.2 to
which we’ll add functionality as we proceed. This helper class will be useful for per-
forming some of the heavy lifting in using the API as well as facilitate reuse. Let’s now
add another method to the helper that will return a list of process instances associated
with a given process.

6.5.2 Identifying running process instances for a given process

The method we’ll create to retrieve a list of process instances will be a tad more
involved. Instead of just bringing back all process instances, a far more valuable use
case involves the ability to filter by status. For example, you may want to retrieve a list
of all running instances that are associated with a given process. Other statuses would
include those that have been suspended, ended, or just simply all. However, there is no
specific API method to retrieve filtered process instances. Fortunately, you can use the
built-in Hibernate functionality to achieve the desired effect. To accomplish this, we’ll
construct and run a Hibernate query that returns a List of ProcessInstances (learn
more about Hibernate at the official website, www.hibernate.org). Listing 6.4’s code
fragment demonstrates how this can be accomplished.

public final static String RUNNING = "RUNNING";
public final static String SUSPENDED = "SUSPENDED";
public final static String ENDED = "ENDED";

public static List<ProcessInstance>
listProcessInstances(JbpmContext jbpmContext, long processId,
String filter) {

Query query;

StringBuffer queryText =
 new StringBuffer("select pi from"
 + " org.jbpm.graph.exe.ProcessInstance as pi ");

if (processId != 0)
 queryText.append(" where pi.processDefinition = "
 + String.valueOf(processId));

if (filter.equalsIgnoreCase(ENDED)) {
 queryText.append(" and pi.end != null");
}
if (filter.equalsIgnoreCase(RUNNING)) {
 queryText.append(" and pi.end = null");
}
if (filter.equalsIgnoreCase(SUSPENDED)) {
 queryText.append(" and pi.isSuspended = true");
}

queryText.append(" order by pi.start desc");

Listing 6.4 Helper method used to retrieve process instances

b

c

d

e

Licensed to Deborah Christiansen <pedbro@gmail.com>

173Developing with the task API
query = jbpmContext.getSession()
 .createQuery(queryText.toString());

List<ProcessInstance> processInstanceList =
 (List<ProcessInstance>) query.list();

return processInstanceList;
}

This new method, listProcessInstances, requires three parameters. The first is
JbpmContext, which as you saw in the previous example, represents a connection to
the jBPM instance being used. The second parameter is processId, which is the
unique process identifier associated with all jBPM processes (the listProcesses
method in listing 6.2 returns such an ID for each process). The third value is the filter
criteria, which can be either ENDED, RUNNING, or SUSPENDED. The second and third
parameters will be used to construct the Hibernate query.

NOTE For those unfamiliar with Hibernate, it uses its own query language,
which is similar but not identical to SQL.

The method logic begins by defining a Hibernate Query object b. This will be used
for creating and executing the Hibernate query. The query statement is defined by
building a StringBuffer called queryText that will contain the generated query state-
ment c. The statement is built dynamically d and e. Once completed, the Query
object (query) is populated with the generated SQL statement f, and then its list
method called to return a List of results g. The resulting List, which is cast to
ProcessInstance’s, is returned by the method h.

 Listing 6.5 shows a fragment of a Java main() class (in the code samples, the class
name is MainProcessInstances) that utilizes this new helper method.

public static void main(String[] args) {

 if (args.length != 2) {
 System.out.println("Syntax is: MainProcessInstances <processId>" +
 "<one of RUNNING | ENDED | SUSPENDED>");
 System.exit(1);
 }

 JbpmContext jbpmContext =
 JBPMHelper.getConfiguration().createJbpmContext();

 List<ProcessInstance> processInstanceList;

 processInstanceList =
 JBPMHelper.listProcessInstances
 (Integer.parseInt(args[0]), args[1]);

 if (processInstanceList != null) {
 for (ProcessInstance instance :
 processInstanceList) {
 System.out.println(" >> Instance: "

Listing 6.5 Example code for running the listProcessInstance method

f

g

h

Acquires jBPM Context

Call to fetch process instances

Iterates through list, prints details
Licensed to Deborah Christiansen <pedbro@gmail.com>

174 CHAPTER 6 jBPM tasks
 + instance.getId()
 + " Started:"
 + new SimpleDateFormat("yyyy-MM-dd:HH:mm:ss z")
 .format(instance.getStart()));
 }
 }
 jbpmContext.close();
 }
}

In the example from listing 6.5 (included in the book’s source code), the Main class
accepts two parameters: a processId and a search filter. Those values, in turn, are
passed to the listProcessInstances method we created in listing 6.4. If any match-
ing results are found, it simply prints some information about the process instance to
the console. What has this exercise accomplished? We’ve demonstrated how, through
the use of the API, we can return a filtered list of process instances associated with a
given jBPM process. This could be useful apart from any task-related functions, such as
for populating a desktop gadget or dashboard for executives.

 Next, let’s build on this and use the API to return a list of all open tasks associated
with a given process instance.

6.5.3 Finding open tasks within a process instance

Now that we’ve established what process instances are running, we are in a position to
interrogate a given instance to determine what open tasks might exist. This API call is
particularly relevant if you’re developing your own forms front-end to jBPM tasks. For
example, you could create your task collection and approval forms in Flex (AIR), GWT,
or another framework.

 The operation for fetching a list of one or more tasks within a process instance is
similar to the one we used in listing 6.4 to retrieve the process instances. We’ll again
use Hibernate’s Query object to dynamically build an SQL statement String based on
filter criteria provided as method parameters. Once a given task is returned, further
API operations can be performed to return the details of a task, such as assignment
details, task variables, and associated timers. First, listing 6.6 will return a List of
TaskInstances based on the parameters passed to the listTaskForProcessInstance.

public static List<TaskInstance>

 listTasksForProcessInstance(JbpmContext jbpmContext , long
 processInstanceId, String filter) {

 Query query;

 StringBuffer queryText =
 new StringBuffer("select ti from"
 + " org.jbpm.taskmgmt.exe.TaskInstance as ti ");

 if (processInstanceId != 0)
 queryText.append(" where ti.processInstance = "

Listing 6.6 Retrieves list of tasks for a given process ID

Defines Hibernate Query

Builds SQL statement
Licensed to Deborah Christiansen <pedbro@gmail.com>

175Developing with the task API
 + String.valueOf(processInstanceId));

 if (filter.equalsIgnoreCase(ENDED)) {
 queryText.append(" and ti.isOpen = false");
 }
 if (filter.equalsIgnoreCase(SUSPENDED)) {
 queryText.append(" and ti.isSuspended = true");
 }
 if (filter.equalsIgnoreCase(CANCELLED)) {
 queryText.append(" and ti.isCancelled = true");
 }
 if (filter.equalsIgnoreCase(OPEN)) {
 queryText.append(" and ti.isOpen = true");
 }

 queryText.append(" order by ti.priority asc");
 query = jbpmContext.getSession().createQuery(queryText.toString());

 List<TaskInstance> taskInstanceList = (List<TaskInstance>) query.list();

 return taskInstanceList;
}

In the case of tasks, the four most common statuses are ENDED, SUSPENDED, CANCELLED,
and OPEN (additional criteria could be added, such as filtering by actor or whether it’s
past due). For a client class using this listTasksForProcessInstance method, the
TaskInstance objects returned within the List provide a wealth of information about
a given task. Listing 6.7 is a code fragment that shows details being printed about a
given task, picking up at the point where you’ve received a TaskInstance (referred to
as the variable taskInstance).

System.out.println(">> Task: " + taskInstance.getId()
 + " Created: "
 + new SimpleDateFormat("yyyy-MM-dd:HH:mm:ss z")
 .format(taskInstance.getCreate())
 + " Task Name: " + taskInstance.getName());

System.out.println(" >> assigned actor is: " +
 taskInstance.getActorId());

Set pooledActors = taskInstance.getPooledActors();
PooledActor actor;

Iterator it;

for (it=pooledActors.iterator();it.hasNext();) {
 actor = (PooledActor) it.next();
 System.out.println(" >> pooled actor is: "
 + actor.getActorId());
}

In listing 6.7, we’re simply printing details about a given task, such as when it was created,
its ID, name, and assigned actor. Then, using the TaskInstance.getPooledActors
method, a list of pooled actors, if any, are iterated, with the details output to the console.

Listing 6.7 Using a TaskInstance to retrieve information about a given task

Adds order by for sorting

Returns result List

Outputs details
about task

Outputs actor assigned task

Retrieves assigned
pooled actors

Iterates actors,
prints details
Licensed to Deborah Christiansen <pedbro@gmail.com>

176 CHAPTER 6 jBPM tasks
 Next, let’s look at how we can find all tasks that are assigned to a particular user,
regardless of the process instance.

6.5.4 Finding all tasks assigned to a user

The ability to locate all open tasks for a user or actor would be a common require-
ment of anyone building a custom front end to jBPM. As it turns out, this is easy to do
because jBPM provides a TaskMgmtSession object, available through the JbpmContext.
TaskMgmtSession provides a method, findTaskInstances, that allows you to find all
tasks assigned to a given actorId (as you recall, actorId is just a string value that can
be any arbitrary value). Thus, our listAssignedActorTasks helper method is terse:

public static List<TaskInstance>
 listAssignedActorTasks (JbpmContext jbpmContext,String actorId) {

 List<TaskInstance> taskList =
 jbpmContext.getTaskMgmtSession().findTaskInstances(actorId);

 return taskList;
}

The listAssignedActorTasks receives, as its sole parameter, an actorId. Then the
TaskMgmtSession’s findTaskInstances method is used to return a List of Task-
Instance objects. Once received, a client can process the TaskInstance in the same
way as in the previous example (listing 6.7). Let’s consider next how to determine
what pooled tasks are assigned a given actor.

6.5.5 Finding all pooled tasks for an actor

As you may recall from section 6.2, a pool of actors can be identified for a given task.
Once the task is initiated, any of the pooled actors can assign themselves (or be
assigned, in certain circumstances) the task. Obviously, this is useful in circumstances
where multiple individuals can perform a certain task. You can also, by default, assign
a task to a given actor, but any pooled actor can then reassign the task to themselves.
The helper method we’ll create for this task is called listPooledActorTasks, and it’s
nearly identical to the one described earlier for identifying assigned tasks. The one
exception is that we’re using a different TaskMgmtSession method, findPooledTask-
Instances, instead of findTaskInstances. Beyond that, this method is identical to
listAssignedActorTasks, so I won’t show the code.

NOTE The TaskMgmtSession.findPooledTaskInstances method won’t return
a task result if the task has already been assigned from the pool of users
to a single actor. The purpose of this call is to identify unassigned tasks
where an actor is a principal.

An unassigned task can be assigned to one of the pooled users by using the method
TaskInstance.setActorId, which takes the String actorId as its parameter. Let’s
conclude our Task API coverage by looking at how you can complete a task.
Licensed to Deborah Christiansen <pedbro@gmail.com>

177Developing with the task API
6.5.6 Completing a task

The first step toward ending a task through the API is to identify the task within the
process instance. If you want to complete a task programmatically, you’re obviously
only interested in those tasks that are unfinished or open. To accomplish this, we’ll
tackle it in two steps: (1) we’ll get a list of all tokens in the process instance (as you
remember, a token can be thought of as an execution path); and (2) within each
token, we’ll identify all unfinished tasks. The method we’ll create, listUnfinished-
TasksByInstance, is used to identify the unfinished tasks (see listing 6.8). Like the
other methods we’ve demonstrated, it will be incorporated into our helper class,
JBPMHelper, created in listing 6.2.

public static List<TaskInstance>
 listUnfinishedTasksByInstance(JbpmContext jbpmContext,long processId) {

 TaskMgmtInstance taskMgmtInstance = (TaskMgmtInstance) jbpmContext
 .getProcessInstance(processId).getInstance(TaskMgmtInstance.class);

 List<Token> tokens = jbpmContext.getProcessInstance(processId)
 .findAllTokens();

 Token token;
 List<TaskInstance> returnInstances =
 new ArrayList<TaskInstance>();

 for (Token token : tokens) {

 List<TaskInstance> instances =
 (List<TaskInstance>) taskMgmtInstance
 .getUnfinishedTasks(token);

 for (TaskInstance ti : instances)
 returnInstances.add(ti);
 }

 return returnInstances;}

Unlike the methods we’ve used so far, this listing uses the TaskMgmtInstance b and
Token c classes. An instance of TaskMgmtInstance is retrieved by casting the results of
the ProcessInstance.getInstance method b. This class is necessary because it’s used
to retrieve all the unfinished tasks in a given token. A List of tokens for a given instance
is retrieved by the ProcessInstance.findAllTokens method c. This List, stored in
the tokens variable, is then iterated one by one d. A List of unfinished Task-
Instances spanning across all tokens is then retrieved e. Then the individual
TaskInstance members are retrieved and stored in the returnInstances variable f,
which is returned to the calling routine. Now that we have a List of unfinished tasks,
let’s pursue the next step: closing a given task.

Listing 6.8 Method to determine unfinished tasks within a process instance

Acquires jBPM task instance b

Retrieves list of tokens c

d Iterates through tokens

e Fetches task
instances

f Iterates task
instances
Licensed to Deborah Christiansen <pedbro@gmail.com>

178 CHAPTER 6 jBPM tasks
 Closing a task is straightforward once you have a handle to the TaskInstance. You
can do this simply by using the TaskInstance.end method. There are a few different
signature variants for the end method. The simplest is to use no parameter, in which
case the first transition path will be followed. More often than not, this is not the
desired behavior. Instead, you probably want to specify a specific transition path,
depending on the outcome of the task. At the beginning of this chapter in figure 6.1,
you saw how jBPM Console’s forms framework uses submit buttons to determine which
transition path to follow. This is the question we’re facing here: if multiple transitions
occur, how do you specify which one to use? If we want to use a specific transition, we
obciously must know which one to use. The following is a new method added to the
JBPMHelper that returns a list of transitions for a given task ID, passed as the second
argument to the listTransitionsForTasks method.

public static List<Transition>
 listTransitionsForTasks(JbpmContext jbpmContext,long taskInstanceId) {

 JbpmContext jbpmContext = getConfiguration().createJbpmContext();

 TaskInstance taskInstance =
 jbpmContext.getTaskMgmtSession().getTaskInstance(taskInstanceId);
 List<Transition> transitions = taskInstance.getAvailableTransitions();

 return transitions;
}

As you can see, after acquiring the JbpmContext, we’re simply retrieving the specific
TaskInstance associated with the task ID that was passed as the second method
parameter. The TaskInstance.getAvailableTransitions method is then used to
populate a List of Transition objects, which is returned as the method response.
The List of Transitions can then be iterated to identify all available transitions,
such as

List<Transition> transitions =
 JBPMHelper.listTransitionsForTasks(taskInstance.getId());
for (Transition transition : transitions) {
 System.out.println(" >> Transition: " + transition.getName());
}

You can now end the task and use the appropriate transition by using the Task-
Instance.end(Transition) method (before working on a task, be sure to start it
using the TaskInstance.start method).

 What have we accomplished here? For a given task ID, we’re able to identify all
unfinished tasks, regardless of the token in which they reside within the process
instance. We then established how you can close the task and optionally specify what
transition path to follow as the process moves forward. To do this, we had to identify
the available transitions for a given task.

 This concludes our coverage of using the task API. Obviously, there’s a lot more we
could demonstrate, but you should have a good idea of what you can accomplish, and
be armed with sufficient knowledge of how to develop your own implementations.
Licensed to Deborah Christiansen <pedbro@gmail.com>

179Summary
6.6 Summary
In this chapter and the last, we covered most of the fundamental capabilities of jBPM.
In chapter 5 we provided an overview of how jBPM works, and we discussed the various
nodes, transitions, and events that you can use. This chapter’s focus was on tasks,
which are central to any BPM solution.

 Despite our best efforts at automation, there will likely always be a need for a
“human-in-the-loop” when it comes to complex business processes. Since tasks involve
humans, jBPM provides a means for assigning actors (users), or groups of actors, to
tasks, and through timers, provides for notifications and escalation paths. While jBPM
comes with a forms framework for developing task GUIs, you may find that it isn’t pow-
erful enough to suit your needs. So we demonstrated how the jBPM API can be used to
access nearly every aspect of how tasks are managed within the jBPM process engine.
Armed with this information, you can build task GUIs, widgets, or dashboards using
whatever framework you prefer—you are by no means locked into using the jBPM
Console (indeed, this applies to any aspect of jBPM).

 You should now have sufficient knowledge to begin building nontrivial jBPM appli-
cations. In the next chapter, we’ll focus on advanced capabilities of jBPM and provide
patterns for integrating with our other Open SOA Platform products.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Advanced jBPM
capabilities
The previous two chapters on jBPM covered most of the fundamental features of
this very capable BPM solution. You saw descriptions, with examples, of most of the
constructs used in jBPM, such as nodes, transitions, and in chapter 6, tasks. In addi-
tion to describing how to build business processes, we also discussed how its API can
be leveraged to build powerful, customized applications. Clearly, this is a very capa-
ble horse—but is it a thoroughbred? Does it possess the advanced features to war-
rant being considered “enterprise ready”? What characteristics must it possess to
fulfill this role? We’ll address some of these questions in this chapter.

 This chapter covers how to handle highly complex processes by breaking them
into more manageable subprocesses. These subprocesses, in turn, can be reused by
other processes. Exception handling and audit logging, both essential for produc-
tion deployment, are addressed through implementation examples and best prac-
tices. In addition, you’ll learn how jBPM can be integrated with Apache Tuscany’s
Service Component Architecture (SCA) and Service Data Objects (SDOs). As you recall,

This chapter covers
■ Managing complex jBPM processes
■ Scripting and logging in jBPM
■ Service enabling jBPM using SCA
180

Licensed to Deborah Christiansen <pedbro@gmail.com>

181Important enterprise features of jBPM
SCA and SDO were the focus of chapters 3 and 4, and they provide a framework for
building reusable, multilanguage components that can be easily exposed as services
through a variety of communication protocols. We demonstrate how the SCA/SDO
can be used to service enable jBPM, thereby making it a first-class citizen in your SOA
environment. When you finish reading this chapter, you’ll have all the tools you need
to design, deploy, and monitor jBPM business processes. The savings that will result
from your evangelism of BPM will pay off handsomely!

7.1 Important enterprise features of jBPM
The jBPM business process examples we’ve developed so far have all, by design, been
fairly simple in nature. My goal was to ease the learning process and focus on the spe-
cific topic at hand. In a real-world scenario, you’ll often find that you’re creating pro-
cesses that can contain dozens, or even hundreds of steps, in an orchestration. In such
a scenario, it’s useful to be able to break down, or group, the process into more man-
ageable pieces. We’ll discuss two means of accomplishing this in jBPM: superstates and
subprocesses. Later, we’ll provide solutions for managing exceptions that may occur as a
result of any custom code you’ve introduced as part of a process definition.

 While not an “advanced” feature per se, our focus will then turn to describing how
you can use inline code in the form of BeanShell scripts. I’ll offer solutions for moni-
toring a process instance through the extensive logging features available in jBPM. I’ll
conclude this section by looking into a concept called asynchronous continuations,
which enable you to distribute processing to the jBPM server in which jBPM enterprise
is running. Let’s begin by looking at jBPM superstates.

7.1.1 Superstates for grouping

Superstates in jBPM are simply a grouping of nodes. They’re useful, for example, when
you want to logically associate a group of nodes. You might want to do this to delineate
phases of a process or to group node activity by organizational responsibilities. For
example, an employee termination process is typically cross-departmental, with vari-
ous responsibilities falling in several departments. This is illustrated in the hypotheti-
cal employee termination process shown in figure 7.1.

 In figure 7.1, superstates are used to group the nodes related to HR, Finance, and
Security. In the jBPM Graphical Process Designer (GPD), when you deposit a super-
state node into the jBPM working area or canvas, a bordered region is created where
you can then place nodes and transitions. As you can see, these border areas can be
resized and will sprout scroll bars where necessary. With the jPDL XML, how is a super-
state defined? It’s pretty simple, as this example illustrates:

<super-state name="security">
 <node name="disable ldap">
 <transition to="security-fork" name="t"></transition>
 </node>
 <!-- other nodes here -->
</super-state>
Licensed to Deborah Christiansen <pedbro@gmail.com>

182 CHAPTER 7 Advanced jBPM capabilities
The available options for the super-state element are fairly minimal. Attribute val-
ues include @name and @async (covered in more detail in section 7.1.6) and, similar to
all jBPM nodes, support the standard node elements (see chapter 5).

 Superstates provide some additional functionality beyond just diagrammatic
grouping. As you learned in chapter 5, superstate-specific events are also available
(superstate-enter and superstate-leave). You can associate action handlers with
these events, so with this ability, you can call custom code when the superstate has
been entered or exited. When would you consider using this? One use case that comes
to mind is business activity monitoring, where you want to highlight when certain
milestones or activities take place in a process.

NOTE The code examples that accompany this section of the book demonstrate
superstate events in use. Notice in particular the SuperStateTest JUnit
test class, which demonstrates how you can reference nodes in the super-
state.

Perhaps more importantly, you can also associate timers with the superstate (this does
require the Enterprise edition of jBPM—in other words, the app server edition). In the
scenario shown in figure 7.1, you could, for instance, notify a manager of the HR depart-
ment that their team’s work hasn’t been completed in a timely fashion. Thus, when
using events and timers in tandem with superstates, there’s a benefit beyond the obvious
achieved by providing visual hierarchy and grouping. Related in concept to superstates
are subprocesses, which are intended to provide greater process composition flexibility.

Figure 7.1 A hypothetical employee termination process illustrating superstates in use
Licensed to Deborah Christiansen <pedbro@gmail.com>

183Important enterprise features of jBPM
7.1.2 Using subprocesses to manage complexity

Whereas a superstate in jBPM is used to logically group nodes, a subprocess could be
used to split those grouped nodes into entirely separate processes. Thus, subprocesses
provide a means to create decomposed processes. You can define a master process,
which in turn calls subprocesses. The subprocess can be thought of as simply another
individual node in the parent process. When the subprocess is completed, execution
will resume in the parent process which had invoked the subprocess. In that respect, it
behaves much like a state nodetype in jBPM. Using subprocesses enables you to create
more complex processes without overly complicating the visual layout. Additional
benefits include the ability to create reusable process modules that can be incorpo-
rated by other process definitions. In chapter 1 you learned that an important aspect
of SOA is the ability to create composite services. Using subprocesses, you can achieve
this same objective. The subprocesses can be run in a stand-alone fashion, or as sub-
processes to a larger orchestration.

 In figure 7.1, I showed a modestly complex business process used for employee ter-
mination. In that case, superstates are used to provide logical structure to the dia-
gram. Since the security-related nodes are the most involved, let’s instead break that
out into a separate subprocess rather than using a superstate (see figure 7.2).

 In figure 7.2, the node named security represents the new subprocess (identified
in the node icon as <<Process State>>). When this node is encountered, a new pro-
cess instance for the security process is instantiated. This can be illustrated most
effectively through the jBPM Console, which will clearly show a new process instance

Figure 7.2 The relationship between a main process and a subprocess
Licensed to Deborah Christiansen <pedbro@gmail.com>

184 CHAPTER 7 Advanced jBPM capabilities
for the subprocess being created. Of course, you can also use the API, as we described
in chapter 6, to identify the new process instance. In the parent process jPDL XML def-
inition, you can see how this subprocess is defined (see listing 7.1).

<process-state name="security">
 <sub-process name="security" binding="late"/>
 <variable access="read" name="name"></variable>
 <variable access="read" name="employeeId"></variable>
 <variable access="read,write" name="securityComplete"></variable>
 <transition to="join1"/>
</process-state>

The process-state element, in addition to accepting the @name attribute, also sup-
ports asynchronous continuations, covered in section 7.1.6, through the @async attri-
bute (by default, this is off, or false). The standard set of node elements are also
supported, such as timers, events, descriptions, and exception handlers.

NOTE One neat feature not currently available in jBPM would be the ability to
use a subprocess that resides on a different jBPM instance. Such a distrib-
uted feature would make jBPM more scalable for large implementations.

In the example from listing 7.1, the sub-process child element of process-state is
where the subprocess is defined. The @name attribute of the sub-process element
must equate to the name assigned to the subprocess. This corresponds to the value
provided to the @name attribute of the process-definition root element of the sub-
process being invoked. Additionally, the @binding attribute (which is set to late in
listing 7.1) instructs the jBPM engine to wait until runtime to identify the subprocess
version to invoke. Otherwise, the binding will occur when the process (not a particular
process instance) is created, at which time it will attempt to identify the subprocess to
use when a process instance is subsequently created. Thus, if you opt to not use late
binding, you must also be sure to create the subprocess first, followed by the main or
calling process. The optional @version attribute can also be used to specify the ver-
sion of the subprocess definition you wish to use—in its absence, the most recent ver-
sion will be used.

NOTE I recommend always using the @binding attribute set to late. This will
help you avoid headaches that result from trying to determine which pro-
cess must be installed first. The resulting errors can be confusing to
debug.

Besides sub-process, the other important element in listing 7.1 is the variable child
element. This variable is used to manage how process variables are propagated to the
subprocess. It accepts three attributes:

■ @name—The name of the process variable to be passed to the subprocess.
■ @access—A comma-delimited set of values used to define the access rights

permitted by the subprocess when working with the variable. Permissible values

Listing 7.1 jPDL subprocess definition example
Licensed to Deborah Christiansen <pedbro@gmail.com>

185Important enterprise features of jBPM
are read, which indicates the subprocess will have read-only access, and write,
which indicates the value can be modified by the subprocess.

■ @mapped-name—When present, this variable allows you to specify a different
name for the variable that’s passed when it’s received by the subprocess. This is
a helpful feature if a subprocess is reused elsewhere and has different process
variable name expectations.

We’ve now covered two approaches for helping you organize or decompose complex
business processes—essential tools for building enterprise orchestrations. You may be
thinking that you’ve learned enough about jBPM, and you’re perhaps tempted to skip
to the next chapter. At this point, you’re like a doctor trained in the art of surgery but
not well versed in the art of recuperation. As we all know, despite our best intentions,
things don’t always work out the way we anticipate. This is where exception handling
comes into play.

7.1.3 Managing exceptions

Exception handling in jBPM is a bit different than you might imagine. When manag-
ing exceptions in jBPM, you’re only dealing with those that result from any handler
classes that you’ve created. They aren’t used for any sort of internal jBPM error that
may have resulted from processing within the engine itself. So, for example, if you’re
extending functionality with an action or assignment handler, you can trap and man-
age those errors using the exception-handling techniques we’ll discuss.

 A source of common misunderstanding about exception handling in jBPM is
whether you can use this mechanism to directly alter the flow of the process. The offi-
cial documentation is rather contradictory on this matter. The upshot is this: while
technically you can redirect the flow using a Token.setNode(Node node) call, this
approach is strongly discouraged. Instead, the proper strategy is to set a process
instance variable, which can then direct subsequent flows by way of a decision node.
In addition, you can use the exception mechanism to issue an alert or notification
through JMS, email, and so forth so that someone can perform remedial actions.

 Let’s create a simple example to illustrate exception handling at work. Figure 7.3
shows a process that uses a transition action handler to purposely throw an excep-
tion (it occurs at the to-state transition). An exception handler action then cre-
ates a process instance variable called errorMsg and sets it to a String value. The
downstream decision node (err-check) checks for the presence of the errorMsg
process variable. If the variable is present, the decision node redirects the flow to the
notify-of-error node.

 In the jPDL used to define figure 7.3 (the full code is available in the source code
for this chapter), the transition is expressed in XML as

Licensed to Deborah Christiansen <pedbro@gmail.com>

186 CHAPTER 7 Advanced jBPM capabilities
<transition name="to_state" to="first">
 <action name="action" class="com.sample.action.MessageActionHandlerExc2">
 <message>Going to the first state!</message>
 </action>
 <exception-handler exception-class="java.lang.RuntimeException">
 <action name="RuntimeExceptionAction"
 class="com.sample.action.RuntimeExceptionAction">
 </action>
 </exception-handler>
</transition>

As you can see, the exception-handler element is defined as a child along with the
action handler used to generate the exception. The exception-handler‘s
@exception-class attribute defines the type of exception it will catch, which in this
case is a java.lang.RuntimeException. When this exception is caught, the handler
class defined by the @class attribute will be invoked, which in this case is Runtime-
ExceptionAction. This is a standard action handler that implements the Action-
Handler’s execute method. In this example, it simply creates a process instance
variable errorMsg using

executionContext.setVariable("errorMsg",
 "A runtime error has occurred in node");

Later on in the process, the decision node called error-check in figure 7.3 checks to
see if errorMsg is defined as a process variable. If it is, error-check transitions the
token to the node responsible for alerting or otherwise taking corrective action
(notify-of-error). The decision node’s jPDL definition is shown here:

<decision name="err-check"
 expression='#{errorMsg != null ? "err" : "okay"}'>
 <transition to="notify-of-error" name="err" />
 <transition to="end" name="okay"></transition>
</decision>

Figure 7.3 An example process that illustrates exception-handling features
Licensed to Deborah Christiansen <pedbro@gmail.com>

187Important enterprise features of jBPM
I used the @expression attribute in this case to identify what transition path to follow.
The value returned by the expression is the transition name to follow. Using Java’s ter-
nary operator, the statement checks to see if the errorMsg variable isn’t null. If the
variable is null, the statement returns the string err, which contains the name of one
of the defined transitions. Otherwise, it returns the string okay, which corresponds to
the transition name used to go to the end node.

 In the source code for this section, you’ll see how exception handlers can be
defined at the root process level. Such handlers can be useful as a catchall, since
exceptions will bubble up from the node and transition level if no corresponding
exception handler catches the exception. In our example, java.lang.Exception was
provided as the @exception-class, since many of the standard Java exceptions are
subclasses of that and will thus be caught. Much like with standard Java, you can be as
explicit as necessary in identifying what types of exceptions you want to trap.

 Let’s recap what we’ve learned. This section described how exception handling is
managed in a jBPM process. This facility is only used for managing exceptions that
occur as part of any custom code you introduce, such as handlers. A common source
of confusion is knowing what to do when an error is encountered. I strongly recom-
mended that you not alter the execution flow directly in your action handler class
defined in your exception-handler element in jPDL. Instead, use exceptions for noti-
fication purposes or indirectly affect the process flow by setting process variables that
can be interpreted downstream.

 Up to this point, we’ve used Java handler classes to provide custom functionality. A
more convenient approach is to use BeanShell scripts.

7.1.4 Scripting with BeanShell

At times it may seem like overkill to resort to writing Java code when only simple or
trivial functionality needs to be introduced into your business process. Maybe you just
need to introduce a few lines of programming logic. In these situations, you can use
BeanShell scripts inline within your jPDL code. This approach is very convenient and
allows for more rapid application development. In addition, BeanShell expressions
are also used in a variety of capacities in jBPM, such as in decision node logic.

 BeanShell was one of the earliest Java scripting implementations and recently has
initiated the Java Community Process to become JSR-standards compliant. Having
enjoyed fairly wide support, BeanShell is included in a variety of applications as a
lightweight scripting alternative to Java (visit the official web site, http://
www.beanshell.org/, for more details). The syntax and usage closely mirror that of
standard Java, so Java developers can generally pick it up quickly. Table 7.1 identifies
the various places in jBPM’s jPDL where BeanShell scripts can be used.
Licensed to Deborah Christiansen <pedbro@gmail.com>

188 CHAPTER 7 Advanced jBPM capabilities
A BeanShell script would be of limited utility if you couldn’t access the jBPM process
instance context. Fortunately, jBPM provides exposure to instance variables such as
executionContext, token, node and a variety of task-related objects. Obviously, the
context by which the script is called determines whether these script variables will be
populated. Here’s an example of using a BeanShell script in a start-state node:

<start-state name="start">
 <transition name="to_state" to="first">
 <script name="beanshell-example">
 System.out.println("Event type is: " +
 executionContext.getEvent().getEventType());
 System.out.println("Token is: " + token);
 System.out.println("Task is: " + task);
 </script>
 </transition>
</start-state>

The first println statement reports the event type as transition. The second
println displays a root token (“/”), and the last println shows the task is null, since
no task is associated with that node. The source code for this section contains the pro-
cess shown in figure 7.4.

Table 7.1 jPDL BeanShell scripting usage

Element name Description

create-timer/
cancel-timer

When used in a create-timer element, the script will be called when
the timer is first created. For cancel-timer, the script is invoked
when the timer is called.

exception-handler In the previous section, we demonstrated how a Java action handler can
be invoked when an exception handler traps an exception. Instead of
invoking a Java action handler, you could instead call a BeanShell script.

action Anywhere you can specify an action element you can use a BeanShell
script. So, for example, scripts can be specified in the actions associ-
ated with transitions, the process definition root, nodes, and events.

Figure 7.4 An example process
that uses script for setting instance
variables and decision criteria
Licensed to Deborah Christiansen <pedbro@gmail.com>

189Important enterprise features of jBPM
 In this simple demonstration, a random value is assigned to a process variable
called evalNum. The event callout BeanShell script shown in figure 7.4 shows how this
variable is set. After that event occurs with its BeanShell script in the node named
first, the decision node, decision1, is encountered. This decision node is config-
ured so that the transition path taken will depend on the random value assigned to
evalNum in the BeanShell script. To accomplish this, the decision1 decision node
uses a BeanShell expression, a one-line statement that must evaluate to true or false
(this is true whenever an expression attribute is used). Here’s the jPDL implementa-
tion for this decision node:

<decision name="decision1">
 <transition to="0 to 33" name="< 33">
 <condition>
 #{evalNum < 33}
 </condition>
 </transition>
 <transition to="33 to 66" name="33 to 66">
 <condition>
 #{evalNum >= 33 && evalNum < 66}
 </condition>
 </transition>
 <transition to="66 or greater" name="> 66">
 <condition>
 #{evalNum >= 66}
 </condition>
 </transition>
</decision>

The condition element contains the BeanShell expression used to determine
whether a given transition should be followed. If the expression evaluates to true,
then the transition is selected (if multiple transitions evaluate to true, the first one
present will be used). As you can see, when used in combination with decision nodes
BeanShell expressions are a convenient choice, and are easier than resorting to a Java
class decision handler. I anticipate that future releases of jBPM will add scripting sup-
port, such as Groovy, JRuby, or Jython (perhaps by embracing the Apache Bean Script-
ing Framework [BSF] or the Scripting API in Java 6 [JSR-223]).

NOTE You can pretty much do anything in BeanShell scripts that you can in
Java. For example, you can use import statements to provide access to
external libraries. This approach is convenient since you can easily reuse
your existing libraries without having to wrap them specifically within
jBPM handlers.

Regardless of whether you extend jBPM functionality with BeanShell or Java, you inev-
itably will want the ability to log and monitor the activity that occurs in your process
instance. This is where jBPM audit logging comes in handy, as you’ll see in the next
section. (You’ll also learn in the next chapter how this capability can be used to gener-
ate events that can be consumed by an event stream processor, thus providing real-
time metrics and monitoring of your jBPM processes.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

190 CHAPTER 7 Advanced jBPM capabilities
7.1.5 Audit logging

By default, a variety of audit logs are produced as a result of process instance execu-
tion. Collectively, these logs will provide you with complete insight into every activity
that has occurred in a process instance. How can this information be beneficial? For
example, you could load it into a data warehouse for reporting and analytics. Or per-
haps you could monitor the data in real time for business activity–monitoring dash-
boards. As with most aspects of jBPM, you can also extend the logging features to add
your own capabilities. For example, perhaps you want to dynamically filter log output
for only content you deem relevant. To do so, you just implement your own Logging-
Service class—you’ll see an example in our next chapter where we cover Esper, the
open source event stream processing (ESP) engine.

NOTE You can disable logging by commenting out the XML line beginning with
<service name="logging…> in the jbpm.cfg.xml file. When you use the
Eclipse Graphic Process Designer plug-in and specify New > Process Proj-
ect, it will, by default, create a blank jpdl.cfg.xml file. If you want to
selectively add entries to this file, locate the default.jbpm.cfg.xml file
in the jbpm-console.war and copy the desired entries from there. Also,
depending on your Eclipse configuration, it may not find your
jbpm.cfg.xml file in your classpath, so be sure to specify the directory
where it resides if running your samples directly through Eclipse (using
the Open Run Dialog options).

Before we look at how to access the logs via the jBPM API, let’s identify the types of log-
ging classes (see table 7.2).

 There are two ways in which you can acquire logs: via a LoggingInstance and via a
LoggingSession. Let’s begin by looking at the LoggingInstance.

Table 7.2 jBPM logfile types

Logfile class Description

org.jbpm.graph.log.* Likely the most useful set of logs, classes such as ActionLog,
TransitionLog and NodeLog can be used to track any activity
related to these objects.

org.jbpm.context.log.* Includes classes such as VariableCreateLog and
VariableDeleteLog, which can be used to track variables that
were created and deleted throughout the lifecycle of a process
instance.

org.jbpm.context.log.
variableinstance.*

These classes, such as StringUpdateLog, are used for tracking
individual changes to supported variable types (Byte, Date,
Double, String). For complex, serializable Java types, logging of
individual changes isn’t directly supported (chapter 5 did address how
you can create converters for other object types, and then you could
create new associated logging classes).
Licensed to Deborah Christiansen <pedbro@gmail.com>

191Important enterprise features of jBPM
 A LoggingInstance can be retrieved by using the ProcessInstance.getLogging-
Instance() method. For example, if you’re running jBPM in an embedded style man-
ner (such as used for the JUnit tests that are generated when you create a new process
definition project in GPD), this could be done using a fragment such as

ProcessDefinition processDefinition =
 ProcessDefinition.parseXmlResource("logging/processdefinition.xml");
ProcessInstance instance = new ProcessInstance(processDefinition);
LoggingInstance loggingInstance = instance.getLoggingInstance();

Once you have an instance of the LoggingInstance class (shown here as logging-
Instance), you can use it to retrieve the set of logs associated with that process
instance. The number and type of logs that appear will vary based on where the execu-
tion cycle is in the process instance(s), as well as the type of nodes being used. The fol-
lowing is an example of how you can retrieve all of the available logs via the
loggingInstance we acquired earlier:

List<Object> logs = loggingInstance.getLogs();

for (Object obj : logs) {
 println("Logtype is: " + obj.getClass().getName());
}

As you can see, we’re simply fetching a List of the logs through the getLogs method,
iterating through them, assigning each to a Java Object (since they can be of differ-
ent types), and then printing out the object’s name to the console. Depending on the
log class, various methods can then be interrogated to retrieve the details of the log.
For example, the VariableCreateLog log class can return a VariableInstance, from
which you can get the name and value of the variable that was created.

NOTE Although LoggingInstances can be used to access logs, they’re only tran-
sitory in nature, and thus may be of limited value. Once a process instance
is flushed to the database or persisted, all logs in the LoggingInstance
will be cleared. Instead, use LoggingSession to retrieve historical logs.
You can flush the logs by issuing a JbpmContext.save(ProcessInstance)
method call.

As pointed out in the callout, the logs obtained through LoggingInstance are only
available while you’re working in an existing process instance context. To retrieve the
logs after a process instance has been persisted to the database, use LoggingSession,
which is the second method we mentioned in the section introduction.

 To obtain an instance of LoggingSession, you can use the method Jbpm-
Context.getLoggingSession(). From there, you can retrieve all logs using the
LoggingSession method findLogsByProcessInstance, which takes as a parameter a
ProcessInstanceId. This will return a Map, with a key representing each token in the
given process instance. The following is an example that prints out the logs available
for a given process instance where we’re assuming only one token execution path is
used (for example, no forks exist in the process). In this example, jbpmContext repre-
sents a JbpmContext and instance is of type ProcessInstance:
Licensed to Deborah Christiansen <pedbro@gmail.com>

192 CHAPTER 7 Advanced jBPM capabilities
LoggingSession loggingSession = jbpmContext.getLoggingSession();
Map logMap = loggingSession.findLogsByProcessInstance(instance.getId());
Map.Entry entry = (Entry) logMap.entrySet().iterator().next();
ArrayList<Object> sessionLogs = ((ArrayList) entry.getValue());

for (Object log : sessionLogs) {
 println("Log is: " + log.getClass().getName());
}

When run, this will result in output that resembles the following:

Log is: org.jbpm.graph.log.NodeLog
Log is: org.jbpm.graph.log.TransitionLog
Log is: org.jbpm.graph.log.ActionLog
Log is: org.jbpm.context.log.variableinstance.StringUpdateLog
Log is: org.jbpm.graph.log.ProcessInstanceEndLog

If multiple tokens can be present in the process, you’d obviously want to also iterate
through the Map.Entry keys. Lastly, if you already have a handle to process instance’s
token, you can also use the method LoggingSession.findLogsByToken(long

tokenId), which also brings back the List of logs associated with that token execution.

NOTE In the previous chapter’s coverage of APIs, you may recall we demon-
strated how to return the number of execution tokens for a given process
instance. See listing 6.8.

In wrapping up our coverage of jBPM audit logs, I want to warn you that you shouldn’t
confuse jBPM audit logs with standard Java logging, like that provided by Apache
log4j. Instead, jBPM audit logs are used for auditing purposes, where you want to keep
a historical record of the execution steps that occurred in a given process instance.
The logging capabilities, which are extensive, are exposed through a set of logging
classes that are specific to the type of activity being logged. For instance, the
TransitionLog captures the details about transitions that have taken place in the pro-
cess instance. Earlier I pointed out that the LoggingSession is probably how you want
to acquire the logs, and not the transitory LoggingInstance. I also demonstrated how
you can retrieve the logs for an instance and put them to use.

 We’re nearing our completion of advanced jBPM features, but we have one last
topic to examine: asynchronous continuations. Perhaps because of its fancy name, you
might be confused about its meaning and purpose. However, it’s not as complex as it
sounds; it simply enables process execution to be asynchronously performed by a
server process. The benefits, as I’ll show next, can be substantial.

7.1.6 Understanding asynchronous continuations

You’ve likely noticed that when you signal the execution of a process instance, it will
continue to execute within the thread you’re running until it encounters a wait state,
such as a state or task node. At that point, you could consider the transaction to be
completed. While generally this doesn’t cause any problems—most transactions com-
plete within milliseconds—there are times when that may not be the case. Do any
Licensed to Deborah Christiansen <pedbro@gmail.com>

193Important enterprise features of jBPM
scenarios come to mind? How about when you have a node nodetype that performs a
web service call to a remote system using a traditional request/reply message
exchange. In that scenario, the node (and your thread) will block and wait until the
reply is received (or it times out). This could have highly undesirable consequences
for your process if, for example, an immediate response is anticipated (maybe it’s a
web order being kicked off through the BPM process, and the user is awaiting a
response with an order identifier).

 You might be thinking whether it would be better to asynchronously manage this
by creating a separate service apart from jBPM and using a state nodetype to call it via
a JMS message. By using a state and not a node nodetype, execution would be
returned immediately to your thread as the process instance was persisted and put on
hold until it was instructed to proceed. That approach is sound, but bear in mind one
complexity: some Java process must be running to receive the results from JMS, and to
then interact with jBPM to access the process instance and signal the state’s token to
advance. While certainly not that complicated, it’s not trivial either, especially when
you factor in exception management.

 Fortunately, there’s already a built-in
approach for managing this scenario directly
within jBPM. It is called asynchronous continu-
ations. How this works is best illustrated
through a simple example. Figure 7.5 shows
a simple process model.

 In the process shown in figure 7.5, let’s
assume <<Node>>s 1, 2, and 3 include Java
action handlers that perform some external
action. In <<Node>>s 1 and 2, those action
handlers perform their work synchronously
in the same transaction in which the process
is initiated (this is the default behavior).
However, the third <<Node>> is specified
using @async=true. What this means is that
the node, and within it any Java action han-
dlers, will be processed by an external com-
mand executor. Since <<Node>> 3 is
processed asynchronously, the transaction is
completed and placed in a wait state (that is, persisted) until the <<Join>> node
depicted receives <<Node>> 3’s signal.

 The jBPM Enterprise edition, which runs within the context of an application
server, is by default configured to support asynchronous continuations using its built-
in Job Executor. The Job Executor receives its command message through a JMS queue
that’s automatically configured when jBPM Enterprise is run. In our example, this
means that the jBPM Job Executor will asynchronously process <<Node>> 3 in figure
7.5. Once completed, <<Node>> 3’s action handler instruction to signal continuance

Figure 7.5 Process definition that uses one
asynchronous node
Licensed to Deborah Christiansen <pedbro@gmail.com>

194 CHAPTER 7 Advanced jBPM capabilities
of the execution will be performed. Figure 7.6 shows the process instance just after
initiation, where <<Node>>s 1 and 2 have been completed and now wait in the join
node for the conclusion of <<Node>> 3.

 As figure 7.6 illustrates, the asynchronous processing of <<Node>> 3 occurs in three
steps: (1) a JMS message that includes the action handler to be executed is sent to a
JMS queue, (2) the jBPM Enterprise server’s command listener is listening for new
messages submitted to the queue, and (3) once a message is received, it’s sent to the
Job Executor for processing. The Job Executor will initiate a new transaction from
which the action handler is run, and will forward the execution. Although not shown,
all three <<Node>>s will then have completed, the <<Join>> consummated, and exe-
cution moved to the end to complete the process instance (<<End-State>>).

 Asynchronous continuations can be specified for all nodetypes as well as within
action handlers. This approach provides a great deal of flexibility, and can be used as
an effective way to distribute load, since the server in which jBPM Enterprise edition is
running may be more suitable for CPU-intensive processing. When you’re contemplat-
ing interacting with external services via a node nodetype, you’ll definitely want to
consider using asynchronous continuations.

 This wraps up our coverage of some of the most important advanced jBPM features
you’ll likely use. Now let’s turn our focus to a very exciting topic: integrating jBPM
with SCA and SDO (the topic of chapters 3 and 4). You’ll find that combining these
technologies will unlock jBPM’s role within the enterprise and become a key corner-
stone in your SOA environment.

Figure 7.6 The process once the instance is initiated—node 3 is executed asynchronously
Licensed to Deborah Christiansen <pedbro@gmail.com>

195Integration with SCA/SDO
NOTE Some topics, such as how to create your own nodetypes and integration
of jBPM Console security, have not been addressed. The jBPM User Guide
provides guidance on these matters, and the forum and source code can
be indispensable as well.

7.2 Integration with SCA/SDO
The Service Component Architecture (SCA), and its sister technology, Service Data Objects
(SDO), are an emerging standard for creating multiprotocol, multilanguage services
based on the concept of reusable components. Apache Tuscany, a reference imple-
mentation of SCA/SDO, has recently achieved its 1.4 release. Chapters 3 and 4 covered
Tuscany in some detail, and we’ll build on the examples presented in those chapters
to demonstrate how we can integrate jBPM with SCA/SDO to make a powerful SOA
combination.

 Nearly any nontrivial business process that’s being modeled and executed using
jBPM will contain requirements to call out or access external systems or services. Web
services, in particular those that are based on SOAP, REST, or even plain old XML
(POX) over HTTP, are becoming increasingly ubiquitous. This trend has become even
more pronounced as companies scramble to adopt a SOA environment, which is pred-
icated on the notion that reusable services can be exposed through a variety of com-
munication protocols. While there is no lack of tools and libraries available for
creating web service clients and servers, they’re often tied to one of the specific com-
munication protocols, such as SOAP. As we discussed in chapter 3, the beauty of SCA is
that you can expose clients through a number of protocols, all the while keeping your
code completely neutral and protocol free (in other words, plain Java classes with no
dependency on a given protocol). Section 7.2.1 will demonstrate how to use an SCA
client in a jBPM node to access third-party web services and SCA services directly.

 One of the most frequent themes in the jBPM forums hosted by JBoss are questions
about how to expose jBPM through web services. We’ve demonstrated many examples
of using the jBPM API, and explored the capabilities and flexibility it offers. However,
it is Java specific, and clients wishing to access jBPM must embed jBPM libraries and
calls in their code. This runs contrary to one of the main premises behind SOA: loose
coupling. By embedding jBPM API calls in your clients, you have effectively limited
flexibility, as you are tightly integrated with jBPM. If at some point you migrate to a dif-
ferent BPM engine, wholesale client code changes will be necessary. Further, it puts
the onus on developers of client applications using jBPM to become jBPM experts.
While I hope my book helps lower that learning barrier, jBPM is still a fairly complex
product, and becoming conversant with the API is not child’s play.

NOTE The most recent release of jBPM, 3.2.6, offers an experimental web ser-
vices interface. However, the interface is extremely limited and is
intended as an example the developer can build on.

A far better approach is to abstract some of the complexities of the API into a web ser-
vice façade. This strategy simplifies client development, promotes loose coupling, and
Licensed to Deborah Christiansen <pedbro@gmail.com>

196 CHAPTER 7 Advanced jBPM capabilities
exposes jBPM as a cross-platform and cross-protocol solution. You’ll learn how this can
be accomplished in section 7.2.2. In the meantime, let’s begin by figuring out how to
use SCA as a client acting on behalf of a jBPM node.

7.2.1 Using SCA client components for service integration

Although SCA is primarily thought of as a technology for developing components and
exposing them as services, it can also effectively be used in a client capacity for integra-
tion with any existing services, whether or not they originate from SCA (assuming the
service supports one of the SCA protocols). In fact, you achieve the same benefit when
using SCA as a client or server: the ability to interact in a protocol- and language-neu-
tral capacity through a flexible component framework. The upshot is that when you
need to integrate with a service from within jBPM, SCA makes an outstanding choice.

 To illustrate, we’ll provide a brief exam-
ple that demonstrates how using SCA as a
client can be achieved using one of the
web services we developed in chapter 3. As
you’ll recall, we created an SCA SOAP-
based web service for a hypothetical prob-
lem ticket service. Intended to demon-
strate how easily a component can be
exposed as a web service, our example
didn’t provide any real functionality
beyond returning a fictitious, random case
number. However, this simple service will
serve our purposes for this example (in
the sample code for this section, every-
thing is included). First, let’s look at the
jBPM process that will use this web service, shown in figure 7.7.

 In our example, a human interface task is used to capture the details of the hypo-
thetical problem ticket/issue using the create-ticket task. When the task is com-
pleted, the soap-sca-submit node’s action handler will submit the details collected
from the prior task to the web service. The WSDL for the web service is included in the
sample code; it’s very simple and includes a single operation called createTicket.
Here are the steps to establish the web service client:

1 Create the Java interface and implementation classes.
2 Construct the SCA composite XML file that identifies how to interact with the

web service.
3 Create the jBPM action handler class that invokes the service through the node.

Let’s look at each step.

Figure 7.7 An example business process that
invokes an SCA web service through a node
Licensed to Deborah Christiansen <pedbro@gmail.com>

197Integration with SCA/SDO
CREATING A JAVA INTERFACE AND IMPLEMENTATION CLASSES

This step involves creating a Java interface and an implementation class that corre-
spond to the interface of the web service we’ll be calling. If you’re working with a
third-party web service, here’s the most straightforward way to accomplish this:

1 Download the WSDL locally for the remote service.
2 Generate Java SDO classes for the XML binding required to interact with the

web service (using XSD2JavaGenerator, which is described in chapter 4).
3 Create Java methods to reflect the web services you’ll be integrating with.

In our example, since the web service itself was designed using SCA and sports a sim-
ple data structure, there’s no need to use SDO. We can instead use the autobinding
facility that comes with SCA along with the same data object class that we used to
dynamically construct the WSDL (chapter 3 describes these concepts in detail, so it
may be worth reviewing). Figure 7.8 illustrates the link between the WSDL artifacts
and the Java classes created to interface with the remove service.

 In figure 7.8, the SOAPClient interface class contains one method, createTicket,
that mirrors the operation of the same name identified in the WSDL. Within the
WSDL, the createTicket accepts, as an input, the TicketDO complexType, which is
shown on the top left of the figure. As you can see, the TicketDO Java class used as a
parameter for the SOAPClient.createTicket method also mirrors the complexType
definition in the WSDL schema. If you did use SDO to generate the Java classes from
the WSDL schema using XSD2JavaGenerator, the classes generated would be used in
lieu of the TicketDO Java class shown here.

Figure 7.8 The relationship between the WSDL schema and Java SCA classes
Licensed to Deborah Christiansen <pedbro@gmail.com>

198 CHAPTER 7 Advanced jBPM capabilities
NOTE Using SDO isn’t a requirement when you’re working with SCA. It’s appro-
priate if you (a) are working with complex XML structures or (b) require
some of the advanced SDO capabilities such as disconnected data sets.
We’ll use SDO in the next section when we talk about exposing jBPM as a
service.

So far, we’ve depicted two Java classes: the SOAPClient interface and the TicketDO
data object class. The last class we need is the actual implementation class for SOAP-
Client, which is shown in listing 7.2.

package opensoa.book.chapter721.impl;

import opensoa.book.chapter721.*;
import org.osoa.sca.annotations.Reference;

public class SOAPClientImpl implements SOAPClient {
 @Reference

 public SOAPClient soapClient;

 public int createTicket(TicketDO ticket) {
 return soapClient.createTicket(ticket);
 }
}

The real heavy lifting in the SOAPClientImpl class is performed by SOAPClient, which
is acting as a proxy to the remote web service, injected through an SCA reference b.
You can think of SOAPClientImpl as somewhat analogous to a local EJB bean class.
This class and the createTicket method will be called by the jBPM’s node action han-
dler. The createTicket method then simply uses the injected SOAPClient to call the
remove service c. This will make considerably more sense when we look at the declar-
ative XML composition file used by our SCA client.
CREATING THE SCA COMPOSITE FILE

The SCA composite file is the glue that holds together the assembly of components for
either exposing or interfacing with services. Listing 7.3 shows the composite file used
for this example.

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter721"
 xmlns:hw="http://opensoa.book.chapter721"
 name="soapclient">

 <component name="SOAPComponent">
 <implementation.java
 class="opensoa.book.chapter721.impl.SOAPClientImpl" />
 </component>

Listing 7.2 SOAPClientImpl implementation class

Listing 7.3 problemTicket.composite file used by the SCA client

b Injects component
reference

c
Invokes method
on injected class

b Identifies component
implementation
Licensed to Deborah Christiansen <pedbro@gmail.com>

199Integration with SCA/SDO
 <reference
 name="SOAPClientReference"
 promote="SOAPComponent/soapClient">
 <interface.wsdl
 ➥interface="http://chapter721.book.opensoa#wsdl.interface
 ➥(ProblemTicketComponentSOAP11port_http)" />

 <binding.ws
 ➥wsdlElement="http://chapter721.book.opensoa#
 ➥wsdl.port(ProblemTicketComponent/
 ProblemTicketComponentSOAP11port_http)"/>
 </reference>
</composite>

The only component defined in this composite is SOAPComponent b (the name is
how we reference the component when we access it), and its implementation is per-
formed by SOAPClientImpl, which we defined in listing 7.2. As you recall, this class
was injected with the reference soapClient, and how this is accomplished is defined
in c. The @promote value of SOAPComponent/soapClient states that this reference
must be injected into the component called SOAPComponent using the variable soap-
Client (there are multiple ways to configure such things, and the reference could’ve
been defined within the component element). The reference is then identified as a
web service binding through the binding.ws element d. The @wsdlElement attribute
identifies the specific WSDL service and port to use when placing the call. The WSDL
itself, as you may recall from chapter 3, is automatically located because it ends with
.wsdl, resides in the classpath, and has the same matching namespace
(chapter721.book.opensoa). In a nutshell, what we’re doing here is defining a refer-
ence to a remote web service, and that reference is being injected into an SCA compo-
nent called SOAPComponent, whose implementation is provided by the class
SOAPClientImpl.

 In the sample code that accompanies this section, you’ll also find a class called
opensoa.book.chapter721.SOAPClientMain, which is a Java class whose static main()
method simply invokes a test request to the web service (the README.txt file in the
root directory for the section details how to run the web service so that you can test
against it). This class, shown in listing 7.4, creates a handle to the SOAPComponent,
instantiates a TicketDO object, populates it with some dummy data, and invokes the
web service by calling the SOAPClient’s createTicket method.

public class SOAPClientMain {

 public final static void main(String[] args) throws Exception {
 SCADomain scaDomain = SCADomain.newInstance("soapclient.composite");
 SOAPClient soapClient =
 scaDomain.getService(SOAPClient.class,"SOAPComponent");

 TicketDO ticket = new TicketDO();
 ticket.setCustomerEmail("jdoe@someplace.com");
 ticket.setCustomerName("John Doe");

Listing 7.4 Example Main class used for simple testing of a remote web service

c Defines reference to
be injected

d
Uses SOAP
binding

Instantiates
component

Creates then
populates ticket
Licensed to Deborah Christiansen <pedbro@gmail.com>

200 CHAPTER 7 Advanced jBPM capabilities
 ticket.setProblemDesc("This is a sample problem desc");
 ticket.setSource("customer");
 ticket.setSubject("test subject");

 System.out.println("Case number created is: "
 + soapClient.createTicket(ticket));

 scaDomain.close();

 }
}

You can run this test using the Ant build file’s soap.client target at the root directory
for this section’s sample code. So what we’ve completed thus far is an SCA client that
can be used to access the remote SOAP-based web service. The SOAPClientMain class
can be used for testing the client from the command line.

 Now that our SCA client component has been configured, we can create the jBPM
node’s action handler.
THE NODE ACTION HANDLE CLASS

Figure 7.7 showed that the node soap-sca-submit is called immediately following the
task node, which is used to capture the problem ticket specifics. Before we move into
the action handler code, let’s briefly look at the definition of the node within the jPDL:

<node name="soap-sca-submit">
 <action name="SOAPNodeAction"
 class="opensoa.book.chapter721.impl.SOAPNodeActionHandler"/>
 <transition to="end"/>
</node>

As it turns out, this step involves little more than what we’ve already covered.
Listing 7.5 displays the complete action handler code.

public class SOAPNodeActionHandler implements ActionHandler{

 private static final long serialVersionUID = 1L;

 public void execute(ExecutionContext executionContext)
 throws Exception {

 SCADomain scaDomain = SCADomain.newInstance("soapclient.composite");
 SOAPClient soapClient =
 scaDomain.getService(SOAPClient.class, "SOAPComponent");

 Map<String, String> varMap =
 executionContext.getContextInstance().getVariables();

 int caseNum =
 soapClient.createTicket(populateTicketDO(varMap));

 executionContext.setVariable("caseNum", caseNum);
 executionContext.getToken().signal();
 }

 private TicketDO populateTicketDO(HashMap<String, String> mapVals) {

Listing 7.5 SOAPNodeActionHandle implementation class

Calls web service via proxy

b

c
d

e

f

g
h

i

Licensed to Deborah Christiansen <pedbro@gmail.com>

201Integration with SCA/SDO
 TicketDO ticket = new TicketDO();
 ticket.setCustomerEmail(mapVals.get("emailAddress"));
 ticket.setCustomerName(mapVals.get("name"));
 ticket.setSubject(mapVals.get("title"));
 ticket.setProblemDesc(mapVals.get("details"));
 ticket.setSource(mapVals.get("source"));

 return ticket;
 }
}

Since this class is performing as an action handler, it implements ActionHandler and
the required execute method b. From there, we create an SCA domain instance c
so that we can initiate the SCA client we’ll use to instantiate our web service request
d. In step e, we retrieve the process instance variables that were gathered by way of
the previous task node. These variables, stored in a Map, contain the details of the
problem ticket captured from the user. The Map values must be converted into the
TicketDO object (the parameter object used in the method call), which is achieved
through the populateTicketDO method i. The populated TicketDO is then passed
to the SCA component’s (soapClient) createTicket method f. The component will
perform the remote web services call and return a random number that represents
the case number (caseNum). The last steps simply take the caseNum value returned and
store it as a process variable g, and then complete the action handler by signaling the
token to continue its execution h. The class is now complete, and when the execute
method is called, it will invoke the destination web service.

 The purpose of this example was to demonstrate how SCA components can be
used in a client capacity to initiate web service calls from within jBPM. Using SCA pro-
vides considerable flexibility, because it supports multiple protocols and allows non-
Java languages such as Ruby to be used. For companies aggressively service enabling
their enterprise, which is a prerequisite for SOA, SCA helps unleash the power of jBPM.
Let’s now reverse the roles—that is, let’s service enable jBPM so that clients can inter-
face with it through protocols such as SOAP or JMS.

7.2.2 Service enabling jBPM

In the introduction to section 7.2, we explored some of the reasons why you might
want to service enable jBPM so that client applications can interact through a variety of
protocols, including SOAP, JMS, and EJB. Obviously, the ability to use multiple proto-
cols is beneficial in heterogeneous environments, such as when mixing Java and non-
Java languages. In particular, the .NET environment has outstanding web services sup-
port, so applications based on that platform can integrate rather easily with jBPM
using SOAP. You might be thinking that service enabling jBPM must be a very tall
order or it would have been done before. Well, it’s not entirely trivial, but you may be
surprised how easy it is to selectively expose key jBPM features as services while provid-
ing a foundation for extending it, as needed, in your organization.
Licensed to Deborah Christiansen <pedbro@gmail.com>

202 CHAPTER 7 Advanced jBPM capabilities
Figure 7.9 shows how we’ll achieve this goal by marrying the capabilities of jBPM with
SCA/SDO using Apache Tuscany. Client applications wishing to connect to jBPM can
do so using any of the supported SCA binding protocols (SOAP, JMS, JSON-RPC, EJB).
Internally, jBPM functions will be wrapped as SCA components, where they can be
exposed as services individually or grouped together to form composite services (that
is, those that combine several lower-level components into a more coarse-grained ser-
vice). These SCA components will interface with jBPM using its rich and powerful API.

 Attempting to expose the entire jBPM API through SCA-based services would be
overly ambitious. However, like most things, I believe the 80-20 rule (Pareto principle)
applies: 80 percent of what is really used can be derived from 20 percent of the func-
tions. Further, what I hope to demonstrate is a framework for how you can build your
own services as you need them (alternatively, if sufficient demand exists, we may cre-
ate a SourceForge project to build the entire catalog). Table 7.3 lists a number of API
calls that have been exposed through SCA that are included in this book’s sample
code. Although the operations represent only a small subset of what’s possible, you
may find it sufficient for integration with jBPM from external systems.

Table 7.3 Exposed jBPM services using SCA

Operation Description

createProcessInstance Creates a new process instance. Requires a process name as an
input, along with optional instance-specific data.

getObject Use in conjunction with db4objects to store Java instance objects.

listActorTasks Given an actorId, this operation will bring back all tasks that are
assigned to a given actor or user.

listInstanceTasks Given a processInstanceId, this operation will list all tasks
associated with that process instance. An optional filter attribute
allows you to refine which tasks are returned.

listInstanceTokens Given a processInstanceId, this operation will return all tokens
for a given process instance.

Figure 7.9 Service enabling jBPM using SCA/SDO
Licensed to Deborah Christiansen <pedbro@gmail.com>

203Integration with SCA/SDO
Rather than go through each operation one by one, we’ll select a couple of these
operations and dissect how they were created. The two we’ll select are listProcesses
and createProcessInstance; the former is very simple, and the latter is a bit more
complex.

NOTE Bear in mind that, to run any of these examples, you’ll need to connect
to a jBPM instance that has some existing business processes deployed
and running.

7.2.3 Developing the ListProcesses service operation

The objective behind this web service operation is to return a list of all processes that
reside in a given jBPM server instance. The request itself doesn’t contain any expected
parameters. The output will return the list of processes in a format that resembles that
shown in figure 7.10.

listProcessInstances Given a processId, this call will return all process instances asso-
ciated with a process. You can filter results through the optional filter
attribute.

listProcesses This operation will list all processes available in the jBPM server
instance.

updateToken Given a tokenId, this service enables various token-related opera-
tions to be performed, such as signaling.

Table 7.3 Exposed jBPM services using SCA (continued)

Operation Description

Figure 7.10 A sample of a request and response for the ListProcesses SOAP operation
Licensed to Deborah Christiansen <pedbro@gmail.com>

204 CHAPTER 7 Advanced jBPM capabilities
NOTE The sample code for this section contains a hibernate.properties file that
you can use to specify the database instance you want to connect to. You’ll
obviously want to change the properties to reflect your own environment.

Notice in figure 7.10 that the response returns a list of processes currently installed
in your jBPM server instance. For each process, it provides the assigned name; a count
of the process instances that are running, ended or suspended; the internal
processId; and finally, the unique process version number. To create this opera-
tion (and the others), four main steps are involved: (1) create (or modify) WSDL
entries, (2) autogenerate the SDO classes used for the request/response XML, (3)
create the Java SCA implementation classes, and (4) create the SCA composite XML.
Let’s examine each step.
CREATING WSDL ENTRIES

Manually creating or modifying a WSDL is a tedious undertaking, even with the WSDL
editors available in Eclipse and in tools such as Stylus Studio. While SCA can automati-
cally generate a WSDL(s), the downside to this approach is that it can result in a prolif-
eration of WSDLs, since each service will result in a separate WSDL. Furthermore, the
generated WSDLs may not adhere to the desired format and structure. A better
approach is to manually create a WSDL, which in the sample code for this section is
called jbpm.wsdl. Obviously, it’s outside the scope of this book to address the specifics
of WSDL design, but I can highlight the entries necessary to construct our List-
Processes operation.

 When modifying a WSDL, I find it easiest to work backward, if you will, from the
service creation. Let’s start by creating the service, binding, and portType defini-
tions (using WSDL 1.1). Figure 7.11 shows the relationships between the entities.

 As you may be aware, a WSDL can define multiple protocols for accessing a service.
In our example, we’re just using a SOAP binding, which is defined through the

Figure 7.11 The service, binding, and portType definitions for the ListProcesses operation
Licensed to Deborah Christiansen <pedbro@gmail.com>

205Integration with SCA/SDO
wsdl:binding element. The wsdl:service definition for ListProcesses ties this
binding to a specific URL and port. The wsdl:portType defines the inputs and out-
puts required for the operations. The wsdl:portType name is referenced by the
@type attribute in the wsdl:binding, as illustrated in figure 7.11. What remains is the
XML Schema definition used for the request and response. This relationship is shown
in figure 7.12.

The wsdl:portType’s child wsdl:input and wsdl:output elements (see figure 7.11),
via their @message attribute, associate to wsdl:message, which is shown in figure 7.12.
The message parts identified in wsdl:message, through the wsdl:part’s @element
attribute, finally tie it to the XML Schema. Obviously, keeping this all straight can be a
challenge, but once you set up a few operations, it’s fairly easy to clone your entries.
Crafting the WSDL is the most difficult, or at least most tedious, part of this whole pro-
cess. Next, we’ll generate our Java data objects that correspond to the XML Schema
elements shown in figure 7.12.
AUTOGENERATING SDO BINDING CLASSES

For a simple XML Schema like the one we’re using with ListProcesses, we could
clearly create our own Java objects that represent the request and response XML (as
you recall, in section 7.2.1 we did just that in our example). However, once you begin
to work with more complex types, doing so manually becomes untenable. Fortunately,
you can easily generate Java binding classes using the SDO utility XSD2JavaGenerator.
The suggested means for running this is within an Ant script, using a target, as shown
in listing 7.6.

<property name="tuscany.lib.10"
value="..\..\..\tuscany\tuscany10\3rdparty"/>

<target depends="init" name="generate.classes.from.wsdl">

Listing 7.6 Example of an Ant target used to generate SDO classes

Figure 7.12 ListProcesses WSDL XML Schema definition

b

Defines Ant
property
Licensed to Deborah Christiansen <pedbro@gmail.com>

206 CHAPTER 7 Advanced jBPM capabilities
 <java classname="org.apache.tuscany.sdo.generate.XSD2JavaGenerator"
 fork="true">
 <arg value="-targetDirectory"/>
 <arg value="src/main/generated/wsdl2javasource"/>
 <arg value="-noContainment"/>
 <arg value="-noUnsettable"/>
 <arg value="src/main/resources/jbpm.wsdl"/>
 <classpath>
 <fileset dir="${tuscany.lib.10}">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 </java>
</target>

The Ant target shown in listing 7.6 (also included in the build.xml file you’ll find in
this section’s sample code) uses the Ant Java task to call the XSD2JavaGenerator, and
it accepts a variety of parameters, such as the targetDirectory where the generated
class files should be created c and the WSDL (or XML Schema) file used as the source
input d. A classpath must also be defined that includes the SDO-related libraries b,
e. When run, a significant number of class files may be generated; generally, a class is
created for each complexType or element defined in the input schema. In our exam-
ple, there was no input XML for the request, but the response XML is defined as

<xs:complexType name="ProcessVO">
 <xs:sequence>
 <xs:element minOccurs="0" name="description" nillable="true"
 type="xs:string"/>
 <xs:element minOccurs="0" name="hasActions" type="xs:boolean"/>
 <xs:element minOccurs="0" name="hasEvents" type="xs:boolean"/>
 <xs:element minOccurs="0" name="id" type="xs:long"/>
 <xs:element minOccurs="0" name="name" nillable="true"
 type="xs:string"/>
 <xs:element minOccurs="0" name="version" type="xs:int"/>
 </xs:sequence>
 <xs:attribute name="running" type="xs:int"/>
 <xs:attribute name="suspended" type="xs:int"/>
 <xs:attribute name="ended" type="xs:int"/>
</xs:complexType>

When XSD2JavaGenerator is run on the WSDL, it generates a class called opensoa.
sca.vo.xsd.ProcessVOType that corresponds to the ProcessVO complexType shown
earlier. As a result, we know that this class represents the return value associated with
the Java method used to process the service operation. In this case, the operation is
ListProcesses (see figure 7.11). Let’s examine how we implement this method and
its corresponding implementation class.
CREATING JAVA SCA IMPLEMENTATION CLASSES

By now you’re probably familiar with the standard approach for creating SCA compo-
nents and exposing them as services. The first step is to create an interface class that
defines the service signature. In this example, we call this class, appropriately enough,
ListProcesses:

c Specifies
output location

d Specifies WSDL
to use

e Sets classpath
Licensed to Deborah Christiansen <pedbro@gmail.com>

207Integration with SCA/SDO
@Remotable
public interface ListProcesses {
 public ProcessVOType listProcesses ();
}

The @Remotable annotation indicates that this interface can be exposed externally
outside of the SCA JVM runtime. The method listProcesses, as we expect, will
receive no request parameters and will return an instance of type ProcessVOType. The
next step is to implement this interface, which is where the logic resides for working
with the jBPM service. Listing 7.7 shows the implementation class.

@Service(ListProcesses.class)
public class ListProcessesImpl implements ListProcesses {

 @Reference
 protected JBPMHelper jbpmContextHelper;
 JbpmContext jbpmContext;

 private final static String RUNNING =
 "select count(*) from org.jbpm.graph.exe.ProcessInstance pi where " +
 "pi.processDefinition = ? and pi.end = null";
 /* other static definitions excluded */

 public ProcessVOType listProcesses() {

 jbpmContext = jbpmContextHelper.getConfiguration().createJbpmContext();

 List<ProcessDefinition> processDefinitionList =
 jbpmContext.getGraphSession().findAllProcessDefinitions();

 XsdFactory factory = XsdFactory.INSTANCE;
 HelperContext scope = SDOUtil.createHelperContext();
 XsdFactory.INSTANCE.register(scope);

 ProcessVOTypeImpl processList = (ProcessVOTypeImpl)
 factory.createProcessVOType();

 for (ProcessDefinition processDef :
 processDefinitionList) {

 long pid = processDef.getId();
 ProcessVO process = factory.createProcessVO();
 process.setDescription(processDef.getDescription());
 process.setName(processDef.getName());
 process.setId(pid);
 /* other setters not shown */
 processList.getProcess().add(process);
 }

 jbpmContext.close();
 return processList;
 }

 private int queryCount(String querystring, long pid) {
 Query query = jbpmContext.getSession().createQuery(querystring);
 query.setLong(0, pid);

Listing 7.7 ListProcesses implementation class interfacing with the jBPM service

b

c

d

e

f

g

h

i

Licensed to Deborah Christiansen <pedbro@gmail.com>

208 CHAPTER 7 Advanced jBPM capabilities
 Long i = (Long) query.list().iterator().next();
 return i.intValue();
 }
}

In the previous chapters on SCA and jBPM, we covered each of the steps that are occur-
ring in listing 7.7. We’re acquiring a jBPM session connection b, and then using the
jBPM API to retrieve a list of processes d. Since we’re using SDO for the XML binding,
SDO classes are instantiated using the generated SDO factory classes e. At that point,
we iterate through the List of the processes represented by the jBPM Process-
Definition class, which was returned from the jBPM API method findAll-
ProcessDefinitions f. For each process, we populate the SDO ProcessVO object
g. That object is then added to the List of ProcessVOTypeImpl in h (the implemen-
tation for ProcessVOType), which ultimately gets marshaled into the XML by SDO and
returned as the listProcesses operation’s response. The queryCount method i
uses a constructed Hibernate query c to return the number of running process
instances for a given process ID. The next step is to wire the SCA assembly together
using the composite XML file definition.
CREATING SCA COMPOSITE XML FILES

The last step on our journey is to create SCA composite files, which declaratively
define our services and how they’re published. Because we ultimately want to create
many such services and not just the one we’re creating now, the composite files are
deconstructed into several composite files. The parent composite file we’ll call
jbpm.composite, and it includes the child composites. This relationship is illustrated
in figure 7.13.

Figure 7.13 Decomposed construction of the jbpm.composite SCA file
Licensed to Deborah Christiansen <pedbro@gmail.com>

209Integration with SCA/SDO
The service we’re defining, ListProcessesService, resides in the file listservices.
composite:

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://open-soa/sca/jbpm"
 xmlns:hw="http://open-soa/sca/jbpm"
 name="jbpm-list">

 <service name="ListProcessesService" promote="ListProcessesComponent">
 <binding.ws
 wsdlElement="http://sca.opensoa#wsdl.port(ListProcesses/SOAP)"/>
 </service>

 <component name="ListProcessesComponent">
 <implementation.java class="opensoa.sca.impl.ListProcessesImpl"/>
 <reference name="jbpmContextHelper"
 target="JBPMContextHelperComponent"/>
 </component>
</composite>

The service definition for ListProcessesService promotes the component List-
ProcessesComponent. This component uses as its implementation ListProcesses-
Impl, which we developed in listing 7.7. The ListProcessesService service definition
includes the binding.ws child element, which indicates that the service is to be
exposed as a SOAP-based web service. The @wsdlElement instructs the binding to use
the WSDL we manually developed in the first step of this process.

 You may have also noticed that the component definition for ListProcesses-
Component includes the reference injection for jbpmContextHelper. This component
is defined in utility.composite and provides services to the component for connect-
ing to the jBPM session or instance (see listing 7.7).

NOTE You can find the utility.composite file in the sample code for this chapter.

The only remaining task is to create a class with a static main() method to host and
run the assembly within an SCA domain. We’ll use the embedded server for simplic-
ity’s sake, and the web service will be served by it. This class, appropriately called
Server (Ant target run.server), just launches the SCA server:

public class Server {
 public static void main(String[] args) {
 Server server = new Server();
 server.run();
 }
 public void run() {
 System.out.println("Running");
 SCADomain scaDomain = SCADomain.newInstance("jbpm.composite");
 }
}

What have we accomplished by this exercise? Our objective was to create a web service
that interacted with the jBPM API to return a list of all processes running within that
jBPM instance. Toward this end, we constructed a WSDL that defined the web service.
Licensed to Deborah Christiansen <pedbro@gmail.com>

210 CHAPTER 7 Advanced jBPM capabilities
That WSDL, in turn, was used to automatically generate SDO binding classes for each
of the XML Schema elements and types included within the WSDL. A Java class was
then developed to implement the service. It used the jBPM API to retrieve the list of
processes, and populated the return response using generated SDO classes. An SCA
assembly was then created with the Java class as the implementation for a component
that was exposed as a web service. While there was some setup work involved in this
solution, adding new services will be much more straightforward. Further, you can
also expose the service through JMS or any of the other available Tuscany SCA proto-
cols. Let’s add one more example to reinforce the steps. This service will be used to
instantiate a new jBPM process instance.

7.2.4 Developing the CreateProcessInstance service operation

Creating the CreateProcessInstance service mostly mirrors what we’ve already
described in the previous example. Rather than going through each step, let’s focus
on the unique aspects of this service’s implementation. In particular, when you create
a process instance, such as instantiating a new employee hire process, you’ll often
have a significant amount of information already collected. While the data could pos-
sibly be passed via a web service as an unlimited map-type array (i.e., key/value pairs),
doing so isn’t always sensible or practical. Instead, a more intuitive approach is to cre-
ate an XML Schema that fully expresses the complexity of the data you’re passing.
What’s the downside to this approach? Your web service WSDL must potentially be
modified for each process where you wish to incorporate complex data types.

 Let’s examine the approach of using a separate XML Schema for each process. Let’s
assume that you have an existing jBPM process that’s used for hiring new people. We’ll
call this process NewHireProcess. Let’s assume that some data is already available on
the new employee, perhaps originating from an Applicant Tracking System (ATS), and we
want to pass this information to the process when it’s initiated. To facilitate this, we’ll
create an employee entity and define it within an XML Schema. Thus, when the
CreateProcessInstance service is called, the employee XML data will be populated
and passed when the service is invoked. Listing 7.8 shows an example of the Create-
ProcessInstance operation using the Employee XML Schema complex type.

<ns:createProcessInstance xmlns:ns="http://vo.sca.opensoa/xsd">
 <ns:Process ns:processName="NewHireProcess">
 <ns:key>John Doe</ns:key>
 <ns:ProcessVars>
 <ns:var ns:name="emplName">John Doe</ns:var>
 </ns:ProcessVars>
 <ns:Employee objectId="232363">
 <ns:indicative>
 <ns:familyName>Doe</ns:familyName>
 <ns:givenName>John</ns:givenName>
 <ns:dob>01/01/1901</ns:dob>
 </ns:indicative>

Listing 7.8 XML example of a CreateProcessInstance operation

b
c

d

e

Licensed to Deborah Christiansen <pedbro@gmail.com>

211Integration with SCA/SDO
 <ns:contactInfo>
 <ns:emailAddress>jdoe@yahoo.com</ns:emailAddress>
 <ns:phones>
 <ns:phone ns:type="home">111-111-1111</ns:phone>
 </ns:phones>
 <ns:address>
 <ns:addressline1>Some Address</ns:addressline1>
 <ns:municipality>Some city</ns:municipality>
 <ns:region>Some state</ns:region>
 <ns:country>Some country</ns:country>
 <ns:postalCode>939221</ns:postalCode>
 </ns:address>
 </ns:contactInfo>
 <ns:employeeData>
 <ns:employeeId>A32-232221</ns:employeeId>
 <ns:title>VP of Planning</ns:title>
 <ns:department>Finance</ns:department>
 <ns:location>Central</ns:location>
 </ns:employeeData>
 </ns:Employee>
 </ns:Process>
</ns:createProcessInstance>

The Process element’s @processName attribute identifies the process to use when cre-
ating the instance b. The key child element is for purposes of convenience, and is
displayed when viewing the process instance through the jBPM Console c. The
ProcessVars child var elements (one or more) are used to populate process instance
variables, and are defined as always being string values d. The Employee element is
obviously process specific e. If you look in the jbpm.wsdl in the sample code for this
chapter, you’ll see that the ProcessType schema declaration, which is the root for this
operation, is defined like this:

<xs:complexType name="ProcessType">
 <xs:sequence>
 <xs:element name="key" type="xs:string" minOccurs="0"/>
 <xs:element name="ProcessVars" minOccurs="0"
 type="jbpm:ProcessVarsType"/>
 <xs:choice>
 <xs:element name="Applicant" type="jbpm:ApplicantType"/>
 <xs:element name="Employee" type="jbpm:EmployeeType"/>
 <xs:element name="Other"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="actorId" type="xs:string"/>
 <xs:attribute name="processName" type="xs:string" use="required"/>
</xs:complexType>

Notice the choice declaration, which accepts one of the three element types:
ApplicantType, EmployeeType, or Other. You’d obviously modify this to reflect any
complex types you require, and add them to the appropriate location within the XML
Schema located within the WSDL (in the example for listing 7.8, the EmployeeType is
being used).
Licensed to Deborah Christiansen <pedbro@gmail.com>

212 CHAPTER 7 Advanced jBPM capabilities
 The CreateProcessInstanceImpl class, which is the SCA implementation class, is
analogous to the ListProcessesImpl class we created in listing 7.7. Therefore, it’s the
implementation for the CreateProcessInstance web service. One challenge that
exists is that, depending on the process instance created, different inbound XML will
be provided to the service request. This was illustrated in listing 7.8, where the
Employee node information was sent since the process instance to be created was spec-
ified as NewHireProcess. This can be addressed by triaging the inbound requests
based upon the process name provided (found in the @processName attribute of the
Process element). For example:

if (process.getProcessName().equalsIgnoreCase("NewHireProcess")) {
 // process specific logic
}

Within the body of the if statement, you could then perform process-specific func-
tions, such as adding process variables to the instance. This is illustrated in the sample
code for this section.

NOTE In the code examples for this section, db4objects is used to store the
inbound complex SDO data objects that represent an employee or appli-
cant. There are a couple of reasons for this: (a) SDO objects can’t be
stored natively within the jBPM instance (or, at a minimum, it will cause
errors when displaying process instance details within the jBPM Console);
(b) storing them externally in a database makes them more readily acces-
sible for reporting and other purposes; and (c) an object database such
as db4objects is likely far more efficient at indexing and retrieval of
native Java objects than jBPM. The index used to store them in these
examples is the @objectId attribute associated with the object’s root ele-
ment (such as Employee).

There are undoubtedly other approaches, probably many superior, to handling the
variability that surrounds an operation such as CreateProcessInstance. For example,
Spring would likely be a great choice for declaratively managing which classes are
used for different process instances. I tried to avoid introducing too many additional
technologies beyond the core we’re focusing on in an effort to keep things simple.
jBPM is a wonderful and powerful BPM solution, and when coupled with SCA/SDO,
can open a world of possibilities for integration within a SOA environment.

7.3 Summary
This chapter has been quite a journey. We’ve covered a lot of material! Hopefully your
perseverance has paid handsome dividends. This chapter was split into two main sec-
tions: advanced features of jBPM and integration of jBPM with SCA/SDO through its
Apache Tuscany implementation. The advanced features focused on some of the
enterprise capabilities of jBPM, such as the ability to create superstates and subpro-
cesses, both of which help bring greater order and management to defining complex
business processes. We also touched on the use of asynchronous continuations, which
Licensed to Deborah Christiansen <pedbro@gmail.com>

213Summary
can be used in circumstances where you’re integrating with services that may not have
predicable or timely responses. Asynchronous continuations can also help you create
more distributed solutions.

 The second main section focused on how you can integrate jBPM with SCA and its
related technology, SDO. This marriage addresses some of the recurring concerns with
jBPM, such as how you call external services within the context of a reusable and con-
sistent framework. We demonstrated how you can easily integrate with web services
using SCA components in a client-style capacity. We then reversed the requirement
and provided a means by which the jBPM API can be exposed through SCA. The impli-
cation is that jBPM can now be integrated through any number of protocols, including
SOAP and JMS. The ability to call out as a service consumer and perform as a service
provider is equally important from a SOA standpoint. You may recall from our initial
discussion in chapter 2 that services can be construed as high-level business processes
or as more granular, component-level type services. Through the combination of
SCA/SDO and jBPM, we have the full spectrum of services addressed, from fine to
coarse-grained, layered upon a compelling technology stack.

 The next chapter will describe how we can leverage the events derived from our
services to provide complete operational insight and monitoring—an important
value-added feature of a SOA environment.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 4

Event stream processing,
integration, and mediation

In the previous five chapters we focused on the services aspect of SOA. We
described how services can be easily developed using the Service Component
Architecture and its implementation using Apache Tuscany. Then, using JBoss
jBPM, we illustrated how such services can be combined to create entire business
processes that can be modeled and executed, representing a new form of appli-
cation development. In part 4, we’ll switch gears a bit and discuss the role of the
enterprise service bus (ESB), an important enabling technology for SOA. An ESB
can act as middleware “glue” for integrating with systems, applications, and pro-
tocols that weren’t necessarily designed with the precepts of SOA in mind. An
ESB can act as a mediator for bridging differences in protocols, provide service
transparency, and perform data transformations. In addition, it can be used to
advance the cause of governance by enforcing service and security usage pro-
files. Related to this is event stream processing (ESP), which can be used to
detect any unusual patterns of activity and provide real-time notification to the
appropriate business users. We’ll begin part 4 by examining the role of ESP in
chapter 8, and you’ll learn how to analyze complex business events using Esper,
an outstanding open source ESP product.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Complex events
using Esper
The technologies we’ve covered so far have dealt with the topics of creating reus-
able services (SCA), and in turn, how they can be woven together to create complex
business processes (BPM). In this chapter, we’ll shift gears a bit and look at how we
can tap into these services and orchestrations to provide deep insights into the
operational aspects of your enterprise. This is accomplished through event stream
processing (ESP), sometimes also known as complex event processing (CEP). According
to the CEP Interest web site (a site devoted to covering this technology), CEP is
defined as

…software technology that enables applications to monitor multiple streams of event
data, analyze them in terms of key performance indicators that are expressed in event
rules, and act upon opportunities and threats in real time, potentially by creating
derived events, or forwarding raw events. [CEPInterest]

Simply put, CEP technology enables you to monitor the vital signs of your organization.

This chapter covers
■ Defining event stream processing
■ Introducing Esper
■ Implementing Esper
217

Licensed to Deborah Christiansen <pedbro@gmail.com>

218 CHAPTER 8 Complex events using Esper
 Monitoring business events is critical for most enterprises, especially given the
focus on metrics and accountability. In our hyper-competitive and compliance-crazy
environment, monitoring must be done in real time (or perhaps near-time). In yester-
year, companies would monitor their performance once every few weeks, or even once
a quarter; a company adhering to such a philosophy today would have a short shelf
life. As Prahalad and Krishnan point out, “Competitiveness favors those who spot new
trends and act on them expeditiously,” and the “new competitive landscape requires
continuous analysis of data for insight” [Prahalad].

 SOA’s emphasis on the propagation of discrete, largely stand-alone services brings
with it some attendant difficulties not present in more monolithic application envi-
ronments. The main question is how you manage or monitor a highly distributed envi-
ronment. In the monolithic world, the entire app usually runs on a single or clustered
set of machines and monitoring is fairly straightforward. In the SOA world, an applica-
tion may be using service components from a multitude of machines (perhaps many
of them virtual). If any single component goes down, it could wreak havoc. In other
words, in a SOA environment the possible points of failure are much greater (an
often-overlooked downside to SOA).

 ESP can play a significant role in risk mitigation through its ability to monitor, in
real time, any deviations from the norm. Further, the operational insights provided by
ESP can help organizations rapidly detect new opportunities or trends, thereby
improving their competitive position.

 In this chapter, we’ll first review why events are important to the enterprise, and
how they’re constructed and consumed by an event stream processor. We’ll then
explore how to use Esper, the open source ESP solution selected for our Open SOA
Platform. Finally, you’ll see a framework for exposing the Esper engine through web
services—an important requirement for integration within our SOA environment.
Let’s begin by examining the importance of ESP for monitoring the ongoing pulse of
your enterprise.

8.1 Business events in the enterprise
The ability to derive instant insights into the operations of your enterprise is essential.
Businesses must engage in continuous evolution to remain competitive. Events are an
important ingredient in this process. How? Let’s examine a few possible scenarios:

■ Purchasing patterns—Many companies, especially those in retail, must quickly
identify changes in customer behavior. Buying trends, particularly those in the
finicky youth and young adult markets, can change dramatically within a matter
of weeks or even days. It’s essential to identify any changes in purchasing habits
quickly, as they drive product placement decisions, stocking requirements, and
pricing. A sudden drop-off in a particular product line could also point to ful-
fillment issues or negative publicity arising from the dynamic communication
channels now afforded by the web (blogs, emails, social networking sites, etc.).
Licensed to Deborah Christiansen <pedbro@gmail.com>

219Understanding events
■ Compliance—Many companies, particularly those in the public realm, must
abide by onerous compliance regulations. Some, like the Sarbanes-Oxley Act of
2002, touch nearly all public companies, but other domain-specific regula-
tions—such as liquidity requirements for financial firms or adverse action
reporting for pharmaceutical companies—are also common. Failure to abide
and demonstrate ongoing controls can result in significant fines, or possibly
even criminal prosecution.

■ Fraud detection—The press is replete with stories of fraud and loss of data con-
taining sensitive personal information (SPI). Although some of these incidents
couldn’t be detected by ESP (such as theft of backup tapes), in other scenarios
comprehensive use of ESP could have more quickly identified possible breaches
[Choicepoint]. Unusual activity that falls outside normal business patterns can
help identify possible fraudulent behavior (you’ve probably encountered such
controls firsthand if you’ve ever started buying unusual items on your credit
card from a remote location only to find your account frozen until a call to your
provider is placed).

These brief examples only scratch the surface of what’s possible using ESP, and undoubt-
edly your organization has many other event-related activities that require close super-
vision. Before we progress further, let’s dissect what constitutes events and ESP.

8.2 Understanding events
Up until now, we’ve discussed events at an abstract level within the context of the busi-
ness or enterprise. Let’s step back for a moment and consider, at its most basic level,
what constitutes an event. Most agree, an event is really just a fact of something occurring.
An event object, then, is a record of the activity expressed in a manner that allows it to
be digested by an event processor. An event processor is an application that performs
operations on event objects, including creating, reading, transforming, aggregating,
or removing them. Finally, an event stream is a sequence of event objects, which typi-
cally arrive in the order in which they were generated.

 One of the main responsibilities of an event processor is to analyze incoming event
streams, discard events that are of no importance, and flag the relevant ones.
Figure 8.1 depicts how applications or systems generate outbound events using objects
or containers to represent the event data. Each event object is then streamed to the
processor, which performs a variety of functions on the inbound stream.

 Historically, two major impediments exist to embracing the “Power of Events” (to
quote the namesake book written by David Luckham [Luckham2002]):

■ The publishing of events
■ The consumption of a vast array of event data

Unless you’ve coded for it up front, creating events throughout the workflow of your
application can present a major refactoring effort. Often, event publishing is an
Licensed to Deborah Christiansen <pedbro@gmail.com>

220 CHAPTER 8 Complex events using Esper
afterthought, and thus difficult to bolt on after the initial development (since it
touches so much of the code).

 Assuming that you do begin publishing events, another challenge quickly comes to
mind: how do you manage the processing and consumption of such events? Even a
modestly sized enterprise may find that it’s producing thousands of event messages
per minute. Storing them all as they’re received in a database isn’t prudent, both
because of the storage demands and the attendant CPU cycles necessary to process the
information after it’s arrived. An ESP engine can address the latter, but the former
challenge of producing the events remains.

 Fortunately, embracing SOA, and its notion of discrete services, does make the task
of event production much more tenable. Further, adoption of BPM can dramatically
advance this goal. How, you might ask? Let’s consider a jBPM business process (the
topic of chapters 5, 6, and 7). As you may recall, a jBPM process consists of nodes and
transitions, with nodes representing states where actions usually occur (a task, a call-
out to another system, etc.). Events can be generated as transitions occur from one
node to another (indeed, there’s the concept of events built into the fabric of jBPM).
More importantly, events can indicate when a new process instance has been initiated,
suspended, or completed. Extending jBPM to automatically generate such events is
trivial, and I’ll explain how that can be done.

 Before we dive headfirst into ESP, let’s briefly discuss its role with two related tech-
nologies: business activity monitoring (BAM) and Event-Driven Architecture (EDA).

8.2.1 BAM and ESP—what’s the difference?

There is no doubt some confusion as to what are essentially two complementary tech-
nologies. BAM is often considered, in broad terms, to encompass all aspects of moni-
toring, from data collection, to transformation/analysis, to presentation. I prefer a
more narrow interpretation, where BAM is thought of as the presentation layer but
data collection is the purview of systems such as ESP. In other words, ESP is a delivery
channel for BAM. Why this distinction? In part, as with web development, it’s prudent
to isolate or partition the various tiers involved in the monitoring process. Event

Figure 8.1 The relationship between event objects, streams, and the processor
Licensed to Deborah Christiansen <pedbro@gmail.com>

221What is Esper?
publishing, collection, rule processing and interpretation, and presentation should
each be considered separate tiers that are only loosely bound. This allows changes, for
instance, to be made to the presentation layer without impacting the collection and
interpretation layers. Indeed, a multitude of presentations may be necessary, from
iPhone or Blackberry, to conventional web clients, to RSS feeds. Thus we refer to BAM,
moving forward, as limited in scope to the display and presentation of information
collected and analyzed via ESP.

 Now let’s conclude our theoretical discussion by briefly examining ESP’s role
within the context of an EDA. Some believe that CEP requires EDA, but as we’ll see,
this need not be the case.

8.2.2 Event-Driven Architecture and SOA

According to Wikipedia, EDA is defined as “a software architecture pattern promoting
the production, detection, consumption of, and reaction to events” [WIKI]. EDA cer-
tainly shares a lot with CEP but is much broader in scope. In an EDA environment,
communications between services are conducted asynchronously. Services are defined
as being event producers, consumers, or both. The result is a loosely coupled system
or environment. Some have suggested EDA is a competing architecture to SOA, but
really it’s just a particular manifestation of SOA. Within SOA, asynchronous forms of
communications consistent with EDA are encouraged but, practically speaking, not
always possible.

 How does CEP fit with EDA? Events can be used exclusively in CEP for monitoring
and analytics, quite apart from whether your services communicate exclusively using
an asynchronous, event-driven fashion.

 Now that we’ve developed a clear understanding of ESP—what it is, what it’s used
for, and its place in SOA—let’s move into implementation using Esper, the open
source ESP solution that’s our ESP selection of choice for the Open SOA Platform.

8.3 What is Esper?
Esper is the first, and to my knowledge, the
only open source event stream processing
application available. Fortunately, hubris
hasn’t taken hold, and it continues to evolve at
a rapid clip and offers exceptional functional-
ity for such a fairly young product. The Esper
project was founded by Thomas Bernhardt
while he was consulting for a large financial
institution. Asked to evaluate rule engines to
be used in conjunction with monitoring a trad-
ing system, he discovered that what was needed
was a high-performance event correlation
engine—and Esper was born. The basic com-
ponents of Esper are shown in figure 8.2.

Figure 8.2 Core Esper components
Licensed to Deborah Christiansen <pedbro@gmail.com>

222 CHAPTER 8 Complex events using Esper
 Think of the EPServiceProvider as the engine instance, by which statements,
events, and outputs (listeners or subscribers) are registered. You configure the engine
programmatically or through an external XML file. Using the JDBC adapter, you can
connect with an external database and cull information from it (with some restric-
tions, as we’ll discuss later).

 Recently, Esper graduated to a 3.0 release. This release produced several new fea-
tures, and improved the performance and reliability of the system. While EsperTech
was founded by Bernhardt to commercialize a business based around Esper, the core
product remains open source under a favorable GNU license. Esper also now has a
.NET version (NEsper for .NET) that parallels the feature set in the Java release. Esper-
Tech monetizes Esper by offering support and an enterprise high-availability version
of Esper called EsperHA (we don’t cover that product in this book).

 Unlike many open source products, Esper has superb documentation. Therefore,
we’ll just focus on using Esper in the context of our Open SOA Platform. This means
that we’ll only lightly cover all of the extensive features of Esper and show you how
Esper can be used in tandem with our other Open SOA Platform products. Since
we’ve only covered jBPM and SCA, we’ll focus on integrating with those products, and
in future chapters extend the discussion to include how Esper can be used in tandem
with enterprise decision management using Drools.

 Let’s first look at integrating Esper with jBPM, which will provide real-time moni-
toring of business processes built using jBPM. You’ll find that this greatly enhances the
value proposition of jBPM.

 As you recall, in chapter 7, we discussed the jBPM logging capabilities, focusing on
the built-in capabilities jBPM provides for logging virtually all activities that pertain to
the execution of a given process instance. This includes obvious things such as when
the process started and stopped, but also includes abilities such as

■ Logging the transitions that occur between the nodes
■ Assigning process instance variables and their values
■ Obtaining action and actor-related information

…in other words, basically everything. I’ll show you how to create your own custom
logger to automatically transmit these events to an exposed Esper web service. No spe-
cific coding within the business process itself will be required, as the event generation
will take place in a completely transparent fashion (see figure 8.3).

Figure 8.3 Emitting events from
jBPM custom logger to Esper SCA
service
Licensed to Deborah Christiansen <pedbro@gmail.com>

223What is Esper?
 In figure 8.3, you can see that jBPM emits the events from the jBPM custom logger.
They are then sent to an Esper service running in an SCA container, which exposes
Esper as an externally accessible service (through any of the available SCA bindings
such as JMS or SOAP). In the SCA container, various Esper-related components are
wired together to provide the underlying functionality. This includes the subscription
objects used to receive the event notifications published by the Esper engine, which
are based on the registered query statements. These notification and subscription
objects, in turn, can publish their findings to a BAM solution, for example.

 We’ll use this case study throughout the chapter. In the sample code for this chap-
ter, you’ll see how the custom jBPM logger was implemented, but for now, it’s suffi-
cient to show you the event object on which we’ll base many of our examples (I have
kept it simple to keep the focus on Esper). Listing 8.1 shows the ProcessEvent event
object.

public class ProcessEvent {

 private String processName;
 long processVersion;
 long processInstanceId;
 int state;

 public ProcessEvent() {
 super();
 }

 public ProcessEvent(String processName, long processVersion,
 long processInstanceId, int state) {
 super();
 this.processName = processName;
 this.processVersion = processVersion;
 this.processInstanceId = processInstanceId;
 this.state = state;
 }

 public String getProcessName() {
 return processName;
 }
/* Other getters and setters not shown */
}

The ProcessEvent class in listing 8.1 can be used to capture when a jBPM process
instance is initiated, suspended, or ended, as determined by the state property
(1=Started, 2=Ended, 3=Suspended). As you can see, it’s just a standard Java class,
with no Esper-specific libraries. The case study we’ll build on will use Esper to monitor
a hypothetical process to capture metrics such as unusual delays in the time it takes to
complete the process, the number of recently completed process instances, and the
average number of running processes in a given time window. Let’s begin by looking
at the basics for setting up Esper.

Listing 8.1 ProcessEvent event data transfer object

Specifies event
properties

Contains JavaBean style
accessor methods
Licensed to Deborah Christiansen <pedbro@gmail.com>

224 CHAPTER 8 Complex events using Esper
8.4 Getting started with Esper
Esper is a lightweight application. The project is housed at Codehaus (http://
esper.codehaus.org/), and the 3.0 version, released in February 2009, provides the
basis for the examples we’ll cover. The total size of the download is a testimony to its
lightweight nature—it’s just around 15 MB. When installed, the core Esper JAR files
reside in the main project directory, with a handful of additional third-party JARs
located in the esper/lib subdirectory.

NOTE An Ant target within the book's source code will automatically download
the proper Esper libraries, so there is no need to separately install Esper
to run the examples. See the README.txt file associated with this chap-
ter's source.

Esper itself doesn’t come with any application server, and instead can be considered
more of an engine that can be embedded in other solutions. There’s also no adminis-
trative interface and no built-in provisions for accessing Esper via web services (some-
thing we’ll address in section 8.7).

 There are four main aspects to setting up Esper to receive inbound events:

■ Creating event objects
■ Defining and registering query statements
■ Specifying listeners or subscriber objects to receive Esper results
■ Defining configuration options

Let’s take a fairly high-level peek into each of these steps before proceeding to specific
implementation details in section 8.5.

8.4.1 What are event objects?

In listing 8.1, we provided a simple illustration of a Java event object that can be
used as a container for sending events to Esper. One caveat is that event classes have
to adhere to standard JavaBean-style getter methods for accessing class member vari-
ables (we’ll discuss some alternatives in a moment). In fact, it’s through reflection of
the public methods that Esper determines how to interface with the object (the
member variables in the Java class may be private for this reason). The Esper event
properties represent the member variables or fields within the ProcessEvent class,
such as processName and processInstanceId, which are exposed using JavaBean
standard getters. As an alternative to the JavaBean style classes, you can also option-
ally use java.util.Map or org.w3c.dom.Node objects, although we won’t provide
illustrations of these methods in this chapter (see the Esper reference documenta-
tion for more details).

 Support also exists for creating far more complicated properties than illustrated in
listing 8.1. This includes using nested properties that contain references to other
objects, or mapped event properties, using a key value lookup This map, which refers
to a getter method with a key value lookup such as property('key'), isn’t to be
Licensed to Deborah Christiansen <pedbro@gmail.com>

225Getting started with Esper
confused with Java Map objects, although they can be implemented using Java Map
objects, as we’ll illustrate in a moment.

 Let’s assume that we want to enrich the ProcessEvent object with a list of jBPM
process variables and their associated values. You may recall that standard jBPM vari-
ables support many standard Java types such as String, Boolean, Double, and Integer.
Since Esper interrogates the class methods to determine how to work with a given
property, returning a generic Object type wouldn’t be as convenient for Esper to work
with as type-specific properties would. For example, since jBPM variables can be of any
of those types, using getProperty('propertyName') would have to return an Object,
and then we’d have to cast it within our Esper statements to the proper type. Instead,
we can create separate methods for each of the property types. These methods would
manage the casting. The following snippet shows how this can be implemented:

// member variable properties defined
HashMap<String, Object> properties;
…
public String getStringProperty(String key) {
 return (String) this.properties.get(key);
}
public Long getLongProperty(String key) {
 return (Long) this.properties.get(key);
}

This will make more sense as we move into further examining the Esper Processing
Language (EPL), which begins in earnest in section 8.5. Let’s first develop an under-
standing of how you create and register EPL statements.

8.4.2 Defining and registering query statements

EPL is an SQL-like language used for querying the inbound event streams. The
founder of Esper likes to state that using EPL is almost like working with a database
turned upside-down—instead of using the query language to search against existing
records in a database, with Esper you register the queries within the Esper engine, and
inbound streams of data are then applied against the defined queries [Bernhardt].

NOTE While we’ll explore the language in some detail in section 8.5, a compre-
hensive look is beyond the scope of this book. In addition, I’ll assume you
have some familiarity with SQL, which, like XML, seems to be a fairly ubiq-
uitous skill for most Java developers and architects.

At a general level, you use EPL to define patterns on which to analyze the incoming
streams. Unlike SQL, however, some unique time- and aggregation-specific extensions
are available to help you perform queries such as, “Return the average total price of all
orders received within the last 30 minutes continuously updated as orders appear” or
“Return a list of orders where a shipment confirmation by the shipping vendor has not
been provided within 12 hours.” You can get specific in the types of notifications you’d
like to receive. When matching results are found, they can be published to a registered
listener, to a subscriber class, or “pulled” from the Esper engine, as we discuss next.
Licensed to Deborah Christiansen <pedbro@gmail.com>

226 CHAPTER 8 Complex events using Esper
8.4.3 Specifying listeners or subscribers

In conventional database programming, the initiation of a query is performed on
demand, or in a pull-style fashion, triggered by some application rules or logic. In
Esper, the model is quite different: data is streamed in a continuous fashion. In this
respect, it has more characteristics of conventional GUI-style development, where lis-
teners are defined for the various window widgets, such as a button. When an action is
detected, the associated listener will perform some function. In Esper, a listener can
be defined in a similar fashion and will receive notification when an event of interest
arrives. In Esper, the addListener or removeListener method of the EPStatement
object is used to associate a listener with a specific EPL statement. The results are then
delivered to an Esper EventBean, which contains methods for accessing the details of
the notification.

 As an alternative approach, a subscriber object can be used. It works in a somewhat
similar fashion: using the EPStatement.setSubscriber method, you specify a class
with an update method whose signature matches the results expected. For example, if
your query returned a count, an update method with a long type parameter signature
would be used. In this chapter’s examples, this will be the style we use primarily. Why?
One advantage to the subscriber approach is that, because you’re specifically creating
an update method with a signature that matches the query output, it’s more efficient
than using the listener-style approach, which must marshal the results into the more
generic EventBean object. Because of this performance benefit, the recommended
approach by the Esper team is to use subscribers. The only drawback to using sub-
scribers is that only a single one can be registered per statement, whereas multiple lis-
teners can be set up.

 Esper also provides what it refers to as a “pull-API.” This method enables you to
retrieve query results in an on-demand fashion rather than having the results pushed
to a listener or subscriber. Using this approach, an iterator is returned that allows
you to scroll through any queued results. This solution may be appealing in circum-
stances where you only infrequently need to receive the information returned by
Esper (both thread- and non-thread-safe methods are available).

8.4.4 Configuration options

In general, Esper requires few (technically none) configuration options. As a matter
of practice, you’ll find that, at a minimum, you'll want to use the event alias feature to
simplify your EPL statements. For example, if you have an event object class of
com.mycompany.esper.MyEventClass, by setting up an alias you can avoid having to
specify the full package name when referring to the object in EPL statements. For
example, instead of

select * from com.mycompany.esper.MyEventClass

you can use the shortcut

select * from MyEvent
Licensed to Deborah Christiansen <pedbro@gmail.com>

227EPL basics
The alias can be defined either programmatically, in the form of

Configuration configuration = new Configuration();
configuration.addEventTypeAlias("MyEvent",
 "com.mycompany.esper.MyEventClass");

or, you can define the alias in an XML file as

<esper-configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.espertech.com/schema/esper">
 <event-type alias="MyEvent" class="com.mycompany.esper.MyEventClass" >
</esper-configuration>

You can load the XML file using the Configuration.configure method, which
accepts a URL, File, or String parameter. A variety of other configuration options per-
tain to implementing caching behavior, declaring variables automatically, and config-
uring JDBC settings for pulling data from a remote database. We’ll delve deeper into
several of these as we work through our examples.

 Now let’s drill down into the details of the Esper Processing Language (EPL).
Using EPL, you define the rules for how to process the inbound streams, thus consti-
tuting the most important aspect in using the product.

8.5 EPL basics
I’ve briefly alluded to the fact that the EPL language shares many of the same con-
structs as the SQL used in popular relational databases like Oracle or MySQL. The
decision to pattern EPL on SQL has obviously helped lessen the learning curve for
users of Esper. The beauty of this approach is even more obvious when you consider
that you can then mix native EPL statements with normal SQL via JDBC. This means
you can pull information from event stream objects, which can be just standard Java-
Bean-compliant classes (with a few exceptions). You can also retrieve information
directly from a relational database. Rather than attempt to cover all of the language
constructs, we’ll instead focus on the most commonly used statements and highlight
areas where EPL differs significantly from standard SQL. We’ll begin by looking at the
EPL constructs related to querying.

8.5.1 Querying events

The select clause in Esper closely mirrors that of standard SQL. However, instead of
specifying tables in which to pull data, Esper event objects are used. Esper will deter-
mine, via reflection (or a similar means for Map or XML-based events), the properties or
“columns” that can be derived. In listing 8.1 we presented a simple JavaBean, Process-
Event, that will be used to capture process instance events from jBPM. As you recall, it
had four properties: processName, processVersion, processInstanceId, and state
(we subsequently added some properties, which we’ll leave off for now to keep things
simple). As with standard SQL, you can specify a wildcard character (*) in lieu of pro-
viding a list of all of the event properties. So the following two phrases are equivalent:
Licensed to Deborah Christiansen <pedbro@gmail.com>

228 CHAPTER 8 Complex events using Esper
a) select s.processName, s.processVersion,
 s.processInstanceId, s.state
 from ProcessEvent as s
 // comment example
b) select * from ProcessEvent

Notice in the first example we created an alias for the ProcessEvent object in the
from clause as s, and subsequently prefixed the properties with that alias (the as
could have been dropped as well, as is customary with many SQL dialects). The alias
becomes necessary when joining two or more tables that share the same property
name in order to avoid column ambiguity. Comments follow normal Java coding con-
ventions when used inline with EPL statements.

 One interesting deviation from standard SQL is EPL’s ability to filter event streams
in the from clause of the SQL statement. For example, the state property for
ProcessEvent has a value of 1 to indicate a new process instance was created, or 2 to
indicate it has ended. If we’re just interested in start process instance events, we could
use this:

select * from ProcessEvent(start=1)

Indexed or mapped properties can be referenced as well, using a dot notation or key
lookup. For instance, in section 8.4.1 we discussed introducing a properties variable
to capture the process variables associated with a given jBPM process instance. I rec-
ommended using specific JavaBean methods such as getStringProperty since differ-
ent property types are possible. So let’s assume a String property of customerType is
used within a jBPM process to indicate whether a customer is premium or regular. The
following EPL select would filter only those events where customerType is premium:

select * from ProcessEvent(stringProperty('customerType') = 'premium')

You can also combine multiple and/or type statements by including those operators
(i.e., stringProperty('customerType') = 'premium' and state=2). In addition,
you can also use filter ranges, such as

select *
 from ProcessEvent(doubleProperty('totalPrice') in [1000:5000])

This code would capture events where the jBPM process variable totalPrice is
between 1000 and 5000 (complete examples are provided in the JUnit Esper tests that
accompany this chapter). Using filters is just a shortcut for adding a conventional
where clause to your EPL statement. For example, the following two are equivalent:

a) select * from ProcessEvent(start=1)
// is equivalent to
b) select * from ProcessEvent where start = 1

Since we’ve been moving through these examples at a fairly brisk pace, let’s create a
complete example so that you get an idea of what’s involved in using Esper. In this
example, we’ll use a subscriber object to receive the result output from Esper, and
demonstrate the functionality using a simple JUnit test case. The steps involved in this
example are
Licensed to Deborah Christiansen <pedbro@gmail.com>

229EPL basics
1 Create the event object.
2 Create a statement registration and subscription receiver class.
3 Create a JUnit test class.

We’ve already demonstrated an event object class called ProcessEvent (shown in list-
ing 8.1), which represents jBPM create, suspend, and end process instance events. We’ll
use that for this example, so we can move on to discussing the remaining two steps.
CREATING A STATEMENT REGISTRATION AND SUBSCRIPTION RECEIVER CLASS

To keep things simple, we’ll create a single class for registering our EPL statements
used by the Esper engine. We’ll use an inner class to capture the subscription events
that result from any matching hits. Listing 8.2 contains the code for this class, called
ProcessStartEnd (the code is included in the source code accompanying the book).

// imports and package not shown
public class ProcessStartEnd {

 EPServiceProvider epService = null;
 private EPStatement eps;

 private final static String EXAMPLE_SELECTED=
 "select * from ProcessEvent(state=2)";

 public void register(EPServiceProvider service) {
 this.epService = service;
 init();
 }

 private void init() {
 eps = epService.getEPAdministrator().createEPL(EXAMPLE_SELECTED);
 ExampleSelect exampleSelect = new ExampleSelect();
 eps.setSubscriber(exampleSelect);
 }

 protected class ExampleSelect {
 public void update(ProcessEvent event) {
 System.out.println("\n*** New Event Arrived ***");
 System.out.println(" processName: " + event.getProcessName());
 System.out.println(" procInstId: " + event.getProcessInstanceId());
 }
 }
}

The EPServiceProvider class b, an instance of which is passed as a parameter to the
register method d, registers, via the createEPL method e, the EPL statement that
has been defined in c. The inner class, ExampleSelect f, is then specified as a sub-
scriber g to receive any query results returned by the Esper engine. Thus, what we’ve
created is a single class that’s used to both register the EPL statements into the Esper
engine and receive, via the inner class, any corresponding results. This is a convenient
solution, since only a single subscriber can be configured for a given EPL statement. If
we wanted, we could add statements and inner-class subscribers.

Listing 8.2 ProcessStartEnd statement registration and subscriber class

 b

 c

 d

 e

 f

 g
Licensed to Deborah Christiansen <pedbro@gmail.com>

230 CHAPTER 8 Complex events using Esper
 The next step is to create the JUnit test that will invoke the register method of
ProcessStartEnd and populate and simulate some inbound events.
CREATING A JUNIT TEST CLASS

Our JUnit test class (listing 8.3) will instantiate an instance of ProcessStartEnd,
invoke its register method to set up the query statement, and then publish some
events to the Esper engine to simulate those arriving from a jBPM instance.

// imports and package not shown
public class EsperTest841 extends TestCase {
 private EPServiceProvider epService;
 ProcessStartEnd statements = new ProcessStartEnd();

 public void setUp() {
 Configuration configuration = new Configuration();
 configuration.addEventTypeAlias("ProcessEvent",
 ProcessEvent.class.getName());
 epService = EPServiceProviderManager.getProvider("EsperTest",
 configuration);
 statements.register(epService);
 }

 public void testBasic() throws InterruptedException {

 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PurchaseOrder", (long) 1.0, 1, 1, null));
 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PurchaseOrder", (long) 1.0, 2, 1, null));
 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PurchaseOrder", (long) 1.0, 3, 1, null));
 Thread.sleep(3000);

 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PurchaseOrder", (long) 1.0, 1, 2, null));
 epService.getEPRuntime().sendEvent(
 new ProcessEvent("SalesOrder", (long) 1.0, 2, 2, null));
 Thread.sleep(10000);
 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PurchaseOrder", (long) 1.0, 3, 2, null));

 assertEquals("Total events should be 6",
 epService.getEPRuntime().getNumEventsReceived(), 6);
 }
}

When run, the JUnit class will publish a total of six events to the Esper engine b.
What this test doesn’t confirm is whether the defined query and select statement was
actually fired. The output to the console, however, will display output such as

*** New Event Arrived ***
 processName: SalesOrder
 processInstanceId: 2

*** New Event Arrived ***

Listing 8.3 JUnit test case which simulates inbound events

Instantiates Esper
engine

Registers EPL statements

Generates
process
events

 b
Licensed to Deborah Christiansen <pedbro@gmail.com>

231EPL basics
 processName: PurchaseOrder
 processInstanceId: 3

Confirming that these notification results were fired requires a bit more effort, as the
Esper runtime itself (EPRuntime) doesn’t provide such metrics. Retrieving a direct
handle to the subscriber class is also not easily possible from within the JUnit test class
(it would require some significant refactoring). One straightforward way of achieving
this is to create an Esper variable and use it to capture the count of the results pro-
duced by Esper. This is the topic of our next section.

 This exercise demonstrated how to register EPL statements in Esper, how to set up
a subscriber class (in our example, an inner class) to receive output for events that
match the EPL criteria, and how to initiate the Esper engine and test using JUnit.

NOTE Esper supports many of the standard query-related SQL keywords and fea-
tures such as group by, having, order by, and subqueries. You can see
the official reference documentation for more thorough coverage of
these topics.

8.5.2 Using variables

An Esper variable is a single runtime value that can be referenced using the
EPRuntime. Why would you consider using one? Well, one reason is for what we have
cited already—we want to capture some information returned from a subscriber or lis-
tener objects to the EPRuntime to make it accessible to other classes. Perhaps a more
common use is that a variable itself can be referenced directly in an EPL statement.
Using this approach gives you greater runtime flexibility without requiring any code
changes. We’ll illustrate both uses.
VARIABLE EXAMPLE FOR A RUNNING COUNT OF SUBSCRIBER CALLS

You can create variables in one of four ways:

■ Using EPL statements such as
create variable string varname = <somevalue or null>

■ Using an on…set clause such as
on ProcessEvent set varname = <somevalue>

■ Through the API using EPStatementObjectModel’s setCreateVariable
■ Through configuration using the Configuration.addVariable method

Picking up from the example in the previous section, we’ll use the Configuration
method for creating our counter variable, which we’ll then use to enhance our JUnit
test created in listing 8.3.

 To create the counter variable and increment it for each call made, a handle to
the EPServiceProvider is necessary from within the subscriber inner class, Example-
Select (listing 8.2). This is because we’re using EPServiceProvider to retrieve the
EPAdministrator by which the Configuration.addVariable method can be called.
Thus, we modified the inner class to include a constructor that receives an EPService
instance (you may recall the JUnit test class instantiated this upon startup, and passed
Licensed to Deborah Christiansen <pedbro@gmail.com>

232 CHAPTER 8 Complex events using Esper
it to the ExampleSelect’s parent object, ProcessStartEnd). Listing 8.4 shows the
updated inner class from the original ProcessStartEnd shown in listing 8.2.

protected class ExampleSelect {
 private int counter = 0;
 private EPServiceProvider epService;

 public ExampleSelect (EPServiceProvider epService) {
 this.epService = epService;
 epService.getEPAdministrator().getConfiguration().
 addVariable("counter", Integer.class, 0);
 }

 public void update(ProcessEvent event) {
 System.out.println("\n*** New Event Arrived ***");
 System.out.println(" processName: " + event.getProcessName());
 System.out.println(" processInstanceId: "
 + event.getProcessInstanceId());
 epService.getEPRuntime().
 setVariableValue("counter", Integer.valueOf(++counter));
 }
 }

The ExampleSelect constructor receives the EPServiceProvider b, and the
getEPAdministrator method is then used to retrieve the Configuration instance
associated with this Esper instance. The Configuration.addVariable method then
adds the new variable counter into the existing Esper runtime configuration c.
When the update method is invoked and Esper returns a query result, the variable is
incremented by 1. The only change required by the parent class ProcessStartEnd
(listing 8.2) is to include the EPServiceProvider when creating the inner class:

ExampleSelect exampleSelect = this.new ExampleSelect(epService);

We can now enhance the JUnit test class (listing 8.3) by using the counter variable d
in a new assertion test to verify that the subscriber inner class ExampleSelect was
called the anticipated number of times:

assertEquals("Counter should be 3",
 epService.getEPRuntime().getVariableValue("counter"), 3);

In this brief example, we demonstrated how to create a variable, set it, and then use
the value within a JUnit test to verify the anticipated result was achieved. This greatly
improved the preciseness of the JUnit test we first created in listing 8.3. Let’s now look
at how a variable can be used within EPL statements.
USING A VARIABLE IN EPL STATEMENT(S)

In this example, instead of hard-coding the ProcessEvent(state=2) as we did in the
example shown in listing 8.2, we’ll reference a variable as the expression value. The
variable created will be called EVENT_STARTED; we’re using uppercase to follow the
naming convention typically used in Java for static final (i.e., constant) fields. The

Listing 8.4 Updated inner class with update that increments variable counter

 b Contains
constructor

c

Adds counter
variable to
instance

d
Sets counter
variable
Licensed to Deborah Christiansen <pedbro@gmail.com>

233EPL basics
following is a modified setUp method from the JUnit test where the Esper configura-
tion values are defined. It now includes the Configuration.addVariable method to
create this new variable:

public void setUp() {
 Configuration configuration = new Configuration();
 configuration.addEventTypeAlias("ProcessEvent",
 ProcessEvent.class.getName());
 configuration.addVariable("EVENT_STARTED", Integer.class, 1);
 epService = EPServiceProviderManager.getProvider("EsperTest",
 configuration);
 statements.register(epService);
}

The addVariable statement highlighted creates the EVENT_STARTED variable, identi-
fies it as of type Integer, and assigns it a value of 1. Using the variable with an EPL
statement is just a matter of referencing it:

select * from ProcessEvent where state=EVENT_ENDED

As you can see, using variables is a straightforward process and provides flexibility you
may find beneficial in your Esper usage. We’ve demonstrated how variables can be used
to store and retrieve values within the Esper engine context, and also how they can be
used directly in EPL statements to provide for more dynamic statement definitions.

 Up until now, we’ve created and registered some simple EPL statements that apply
filtering to inbound events. You might be thinking, “This is great, but can I do the
same thing using my own Java logic?” It’s true—we haven’t yet touched on the correla-
tion and analytical capabilities that are essential for an ESP engine (such as the ability
to detect unusual event patterns that have occurred within a certain period of time).
This is where the true power of Esper is apparent, and the ability is provided through
what Esper calls views.

8.5.3 Understanding views

Views represent one of the most powerful, and most used, features of Esper. Typically,
they take the form of a time window, which essentially is a time interval that extends
into the past. A view can also be non-time related, and instead be tied to the last num-
ber of events generated. The concept can best be illustrated by some examples. Let’s
first consider the scenario in which you’re capturing jBPM events from a sales order
process and you want to calculate the average price for the last x number of orders
placed. In this case, a length window would be used, resulting in a query such as this:

select avg(doubleProperty('totalPrice'))
 from ProcessEvent(state=2 and processName='SalesOrder').win:length(3)
 output snapshot every 3 seconds

In this example, the average price is computed based on the last three orders placed.
Views are defined using a specific namespace, which prefaces the view function
requested (that is, win:length(3)). Notice also the use of the output snapshot every
Licensed to Deborah Christiansen <pedbro@gmail.com>

234 CHAPTER 8 Complex events using Esper
3 seconds clause. This allows you to stabilize the rate at which results are returned,
thus streaming them back in a continuous fashion. In this case, an output result is
generated every 3 seconds. In the absence of the output clause, the results would only
be returned when a new qualifying event arrives (if no qualifying event arrives, no out-
put would be generated).

 Let’s consider another example. We want to retrieve the total number of orders
placed within the last 10 seconds. This query can be defined as

private static final String EXAMPLE_VIEW2 = "select size " +
 "from ProcessEvent(state=2 and processName='SalesOrder') " +
.win:time(10 sec).std:size() output snapshot every 3 seconds";

Notice how we combine different view types through chaining. In this case,
win:time(10 sec).std:size() is chained together to indicate that we want a count
of all events within the last 10 seconds. Quite a number of view functions are available,
so I encourage you to consult the reference documentation for more details. This
ability to provide analytics based on snapshots in time or on the volume of events is a
powerful feature.

 One final thought before we move on to named windows: you can use an anony-
mous inner class as well for specifying the subscriber class. This makes your code a bit
more concise at the cost of reusability. Here’s an example of this approach, which uses
an anonymous inner class for the subscriber of the EXAMPLE_VIEW2 statement we dis-
cussed a moment ago:

eps = epService.getEPAdministrator().createEPL(EXAMPLE_VIEW2);
Object exampleView2 = new Object() {
 public void update(Long avgPrice) {
 System.out.println("Average orders for last 2 seconds: " + avgPrice);
 }
};
eps.setSubscriber(exampleView2);

A generic Java object is used as the basis for the inner class, and specifies the single
update method whose parameters must match the select criteria of the EPL statement
it’s associated with. You can also specify an updateRStream method to capture events
being removed from a stream, as well as start and end methods to capture the begin-
ning and ending of an event delivery.

 When working with select statements as we did in these view examples, the gener-
ated output is consumed by a listener or subscriber object. However, there will be
times when you want to use the output to act as another input stream, or aggregate
results for consumption by other queries. This can be accomplished by using the
insert clause to create an altogether new stream, or populate the results into a hold-
ing area (what Esper refers to as a named window).

 Imagine, for example, that you have many different jBPM processes that are firing
off events to Esper. Maybe a group of the jBPM processes pertain to HR-related activities,
such as a new hire or termination process. Ideally, you’d like to keep a running total of
all HR-related process instance activity within a certain period of time, in addition to the
Licensed to Deborah Christiansen <pedbro@gmail.com>

235EPL basics
normal event processing you’re performing. As events arrive for each process instance
event, a summary entry could be temporarily stored for use by other select statements.
This is an example of where inserts—our next topic—come in handy.

8.5.4 Creating new event streams with named windows

EPL has an insert into clause that’s analogous to SQL, with the exception that in
Esper, you’re actually creating a new derived event stream and not inserting data into
a relational database table. Building on our sales order jBPM process example, let’s
assume we want to create a new derived stream that contains orders from only
premium customers (obviously, this is a bit contrived, as we could easily modify any
select statement to include any where filter). The designation of a premium or
regular customer will arrive in the ProcessEvent event as a jBPM property called
custType. Given that, we can create our new event stream by using an EPL such as

insert into PremiumOrders
 select * from ProcessEvent(state=2 and
 processName='SalesOrder' and stringProperty('custType') = 'premium')

This creates the new stream PremiumOrders, which is derived using the same event
object structure as ProcessEvent, because the wildcard (*) was used for the column
definition. This new stream can now be treated like any other event stream, and que-
ried upon using statements such as select * from PremiumOrders.

 Why would you want to dynamically create new streams using this approach? One
possible reason is that it can help simplify creating downstream SQL statements, as you
saw when we created PremiumOrders (that is, it doesn’t have all the baggage associated
with the filter clauses). For instance, if our jBPM engine has a multitude of different
business processes running in it and they’re all generating ProcessEvents
(listing 8.1), creating the right filters can result in rather long EPL statements. Instead,
carving those event streams into more specific ones tailored to the process in which
you’re interested can help avoid mistakes arising from highly complex EPL state-
ments. Decomposing complex things into more manageable pieces is always benefi-
cial (at least when there’s no penalty for doing so).

 One of the more intriguing capabilities introduced in the 2.0 release of Esper is
the concept of named windows. Essentially, a named window represents a shared view
on a stream that you can insert, delete, or query against. The process for creating it is
straightforward: you use a create window clause and specify the column and property
structure to be associated with it. When creating a named window, you use view func-
tions to manage the retention policy of the events inserted into the window (with
some notable exceptions, which we’ll discuss in a moment). Then you can issue
inserts against the named window or delete events contained within it. You can also
query against it (the primary reason for creating it, after all). So, to recap, you first
define your named window using the create window clause, and then use insert
clauses to populate it with data.
Licensed to Deborah Christiansen <pedbro@gmail.com>

236 CHAPTER 8 Complex events using Esper
 To demonstrate the capabilities of named windows, let’s create one that captures
orders over $100. You may recall that retrieving the price of an order was somewhat
tedious, as the value was stored in a jBPM process instance property. When creating
this window, we’ll simplify the query so that the named window contains only the col-
umns we’re interested in sharing. Later, we’ll create a statement for querying against
this window. The first step is to create the named window:

create window HighPricedOrders.win:time(1 hour) as
 select processName, processInstanceId, doubleProperty('totalPrice') as
 price from ProcessEvent

This statement creates the named window called HighPricedOrders, as well as three
property columns: processName, processInstanceId, and price (an alias was used to
create this property). The view specification win:time(1 hour) instructs the window
to actively remove any events that are older than one hour. The ability for multiple
statements to then access the events stored in this window is what distinguishes a
named window from a normal event stream.

NOTE These examples can all be run using the JUnit test cases provided with
the source code for this chapter.

Now that the named window has been created, you can add events to it with an insert
statement. In our scenario, we use this:

insert into HighPricedOrders(processName, processInstanceId, price)
 select processName, processInstanceId, doubleProperty('totalPrice')
 from ProcessEvent(state=2 and processName='SalesOrder' and
 doubleProperty('totalPrice') > 100)

As you can see, this statement will insert events when a process instance is completed
(state=2). The statement has a conditional that matches only events where the pro-
cess name is SalesOrder and where the totalPrice process variable is greater than
100. Notice that we specified the specific columns in which to insert the data—this is
consistent with SQL standards. Any matching events will be preserved in the named
window for a one-hour period. Lastly, we can query against the named window just as
we would against any standard event stream:

select processName, processInstanceId, price from HighPricedOrders

Since this is a named window, we can also create multiple queries against it. For
instance, to get an overall average order amount, we could add this query:

select avg(price) from HighPricedOrders

This query will generate a notification event with the average price returned every
time a new event is entered into the HighPricedOrders named window. Using named
windows, you can create buckets of events that can be used by multiple other event
streams. These buckets will retain their event entries until they fall outside the view’s
retention criteria. In your own organization, can you envision scenarios where this
capability would be useful?
Licensed to Deborah Christiansen <pedbro@gmail.com>

237Advanced Esper
 As a final note on this topic, you can optionally create your named window to never
expire any events using the view win:keepall(). You should then periodically purge
the events through an on event or on pattern statement that includes a delete from
clause. We’ll discuss the use of on pattern statements in the next section.

8.6 Advanced Esper
The capabilities of Esper we’ve discussed so far give you a good taste of using the prod-
uct and how it can be used in conjunction with products like jBPM to analyze events
that are emitted from services such as BPM. Up to this point, however, we’ve kept
things simple, and we’ve used only basic SQL-style constructs for creating EPL state-
ments. Although we’ve covered concepts such as views and named windows, we
haven’t used advanced correlation capabilities, such as how to analyze whether event
B was first followed by event A, or how to detect any unexpected latency between
receiving those events. By the time you’ve finished reading this section, you’ll know
the answers to such questions and be fully prepared to roll out Esper in your enter-
prise. You’ll also learn how to retrieve data from a relational database via JDBC and
create custom functions to add new EPL extensions. Let’s begin by looking at EPL
functions.

8.6.1 Extending with functions

We’ve already used one of the built-in EPL functions, avg, which returns the average of
the values provided in the expression enclosed within parentheses. There are several
such built-in functions, with many similar to those available in SQL, such as sum, count,
min, and max. There are also several evaluation-based functions, such as case, cast,
and coalesce. Rather than cover all of these, many of which you may be already
familiar with (or can learn more about in the reference documentation), I’ll cover
some that are unique to Esper as it relates to ESP—namely, prev, instanceof, and Java
static methods (standard Java libraries or user-defined functions).
THE PREV FUNCTION

The previous function (prev) returns the value of a previous event. It accepts two
parameters:

■ The nth previous event in the order defined in the time window
■ The property name or column whose value you’re evaluating

At first, it may have been unclear why or how to use this function. One of the most
interesting ways of using prev is in conjunction with a sorted window. The sorted win-
dow is one of the available view functions (see an overview in section 8.5.3). The sort
function will preserve a specified number of events (parameter 3), sorted by a specific
property (parameter 1), in ascending or descending order (parameter 2). The event
window will therefore not exceed the size specified as the third parameter. By using
the prev function with a sorted window, you can selectively return, for example, the
last two highest-priced orders out of the previous ten for the ProcessEvents
Licensed to Deborah Christiansen <pedbro@gmail.com>

238 CHAPTER 8 Complex events using Esper
associated with a SalesOrder process (continuing our jBPM sales order example). We
could achieve this using the EPL

select max(doubleProperty('totalPrice')) as price1,
prev(1,doubleProperty('totalPrice')) as price2
 from ProcessEvent(state=2 and processName='SalesOrder')
 .ext:sort(doubleProperty('totalPrice'), true, 10)

The first column property value, assigned an alias of price1, uses the max function to
return the maximum totalPrice for the up to ten events that may exist in this view
(the ext:sort window view specification, as its third parameter, specifies the maxi-
mum of events preserved at any given time). The second column property, given an
alias of price2, uses the prev function to return the next highest price value (which is
the first previous event to the max function). Table 8.1 shows a series of orders as they
arrive, and the corresponding max and prev function values given the preceding EPL.

As you can see, the price1 property, which represents the max value, always produces
the highest sale price. In addition, the prev function works as anticipated for the
price2 property and returns the next highest sale price. Next, let’s look at the EPL’s
instanceOf function.
THE INSTANCEOF FUNCTION

Much like the Java method of a similar name, the instanceof function evaluates a
given property (parameter #1) and returns a boolean value to indicate whether the
property type belongs to the Java class provided (parameter #2). This function is often
used with a case or cast function. In section 8.3, we discussed managing jBPM process
variables passed as part of ProcessEvent by creating special type-specific methods
such as getStringProperty(String key). Instead of creating these getter methods
for each of the possible jBPM variable types, we could create a single method called
getProperty(Object obj) that’s used in the EPL, and then use the instanceof func-
tion with a cast to publish the data to the appropriate subscriber object method. Let
me illustrate. First, the ProcessEvent class (listing 8.1), which is the event object, was
modified to include a generic getProperty method:

Table 8.1 Example of the prev function

ProcessEvent OrderPrice Property price1 value Property price2 value

$125.12 $125.12 Null

$50.45 $125.12 $50.45

$1200.87 $1200.87 $125.12

$73.34 $1200.87 $125.12

$250.23 $1200.87 $250.23

$12.05 $1200.87 $250.23
Licensed to Deborah Christiansen <pedbro@gmail.com>

239Advanced Esper
public Object getProperty(String key) {
 return (Object) this.properties.get(key);

}

Then, in the ProcessStartEnd class (listing 8.2), which is used to define and invoke
the EPL statements and their associated subscribe objects, we add the following EPL
definition:

private static final String EXAMPLE_FUNC4 =
 "select case " +
 "when instanceof(property('totalPrice'), java.lang.Double) " +
 "then cast(property('totalPrice'), double) " +
 "end " +
 "from ProcessEvent(state=2 and processName='SalesOrder')";

In this example, we’re using the instanceof function to evaluate the object returned
from the ProcessEvent.getProperty method call (property('totalPrice')) to
determine whether it’s of type Double. This, in turn, is wrapped within a case state-
ment, so that if it evaluates to true, the cast function expression is performed. In this
case, the cast simply converts the Double to a primitive double type. The sole prop-
erty returned from this EPL is the total price returned as a double. So a new inner
class used to subscribe to this EPL is defined as

EPStatement eps = epService.getEPAdministrator().createEPL(EXAMPLE_FUNC4);
Object exampleView4 = new Object() {
 public void update(double price) {
 System.out.println("Example 4 - Price is: " + price);
 }
 };
 eps.setSubscriber(exampleView4);

When a matching event occurs, the inner class should then print out the message
found in the update method of that class. Notice that the update method accepts a
double; we’d cast the output to that type in the EPL statement. The ability to use the
instanceof function to cast column property types can be useful in cases where
Esper is receiving generic event objects. Such might be the case where you have set up
a web service to receive the inbound events, and for simplicity or compatibility rea-
sons, you make all of the inbound event properties simple String values.

 In addition to using the 20 or so single-row or aggregate functions, you can use any
Java class that has a public static method. Let’s explore further this capability.
USER-DEFINED FUNCTIONS

The ability to use any Java class that has a public static method as a user-defined func-
tion (UDF) opens up all sort of possibilities. Immediately coming to mind are functions
that perform transformations or lookups, but you’re obviously not limited to these
areas. Continuing the example from the previous section, say we want to round the total
price amount associated with ProcessEvent. Since the price arrives as a Java Double,
the java.lang.Math round function can be used as a UDF, since it’s a static method that
accepts as a parameter a Double. Here’s a simple EPL illustration of this in practice:
Licensed to Deborah Christiansen <pedbro@gmail.com>

240 CHAPTER 8 Complex events using Esper
select Math.round(doubleProperty('totalPrice'))
 from ProcessEvent(state=2 and processName='SalesOrder')

As you can see, the full package specification wasn’t necessary, as Esper automatically
imports the following: java.lang.*, java.math.*, java.text.*, java.util.*.

 Let’s see how easy it is to create our own UDF. Assume for this example that we’re
receiving in our ProcessEvent event object a jBPM parameter value that identifies the
customer who placed an order. The jBPM process variable is called custId. We can
then create a UDF that simulates a lookup that will take the custId integer as its single
parameter and return the actual customer name (in this case, Acme Corporation).
Here’s our simple lookup class:

package opensoa851.esper.jbpm.functions;
public class HelperFunctions {
 public static String lookupCustomer(Integer custId) {
 switch(custId) {
 case 100: return "Acme";
 case 101: return "Umbrella Corporation";
 case 102: return "Cybergen Inc";
 case 103: return "BioObjects, Inc";
 case 104: return "Idalica, Corp";
 case 105: return "Trilogy Corp";
 }
 return "Mysale.com";
 }
}

As you can see, the class has one declared public static method, lookupCustomer.
Using this UDF in an EPL is equally straightforward:

select integerProperty('custId'),
 opensoa851.esper.jbpm.functions.HelperFunctions.lookupCustomer
 (integerProperty('custId')) from ProcessEvent(state=2 and
 processName='SalesOrder')

As you can see, having to specify the full package is a bit tedious. You can avoid having
to do this by automatically importing the package using the Esper configuration. For
example, if using an XML configuration, you could use this:

<auto-import import-name="opensoa851.esper.jbpm.functions.*"/>

Or you could use the Configuration class (you may recall this class from section 8.4.4)
via the API:

Configuration configuration = new Configuration();
configuration.addImport("opensoa851.esper.jbpm.functions.*");

Once imported, you can then remove the package from your EPL statement:

select integerProperty('custId'),
 HelperFunctions.lookupCustomer(integerProperty('custId')) from
 ProcessEvent(state=2 and processName='SalesOrder')

UDF method that
returns String
Licensed to Deborah Christiansen <pedbro@gmail.com>

241Advanced Esper
NOTE I stated earlier that, when using standard Java static methods that belong
to java.lang.Math and similar classes, these are automatically imported.
While this is true, when you do specifically import your own classes, it
apparently overrides this standard behavior, and you must then import
them when needed as well. I presume this is a bug in the 2.0 release.

As you can see, incorporating your own custom functions in your EPL is straightfor-
ward and unlocks a world of possibilities.

 In the beginning of this section, we alluded to Esper’s advanced correlation capa-
bilities, which can be used to analyze the sequence and time of incoming event
streams and determine whether they arrive in the anticipated order and duration. I’m
referring to a type of advanced view known as patterns, which we explore next.

8.6.2 Applying event patterns

Event patterns, as the name suggests, allow you to define, via expressions, various
matching rules that can be applied to incoming events. For example, you can use what
are referred to as temporal operators that compare inbound events to see whether they
arrive in the anticipated order. Patterns enable you to have very fine-grained control
over how events are evaluated. Interestingly, patterns can be used in an EPL select or in
a stand-alone fashion, whereby a listener can be registered to receive the event output.

 In its most basic form, a pattern can be defined as just a single event. Consider this
EPL, which creates a simple pattern definition specifying only jBPM process events that
have ended (state=2) and whose process name is equal to SalesOrder:

String EXAMPLE_PATTERN1 = "process=ProcessEvent(state=2 and
 processName='SalesOrder')";

What distinguishes this from a normal EPL select is that this pattern will fire only once,
regardless of how many inbound events match the specified filter criteria. Also, when
registering a pattern, we use the createPattern method of EPAdministrator instead
of createEPL. This is illustrated in the following fragment, which also uses an anony-
mous inner class that implements the UpdateListener interface (that is, we’re using
the listener instead of a subscriber class, unlike previous examples):

EPStatement eps =
 epService.getEPAdministrator().createPattern(EXAMPLE_PATTERN1);
eps.addListener(new UpdateListener () {
 public void update(EventBean[] newEvents, EventBean[] oldEvents) {
 System.out.println("Listener for Single Pattern: " +
 ((ProcessEvent)newEvents[0].get("process")).getProcessInstanceId());
 }
 });
}

When run, if one or more qualifying events are matched, a single println message
will be displayed to the console. Since a listener was used in this example, a tag called
process was used to assign the pattern output (this was defined when the EPL
assigned EXAMPLE_PATTERN1 was created). In turn, this tag was used to extract the
Licensed to Deborah Christiansen <pedbro@gmail.com>

242 CHAPTER 8 Complex events using Esper
event from the EventBean using its get method, which accepts as its parameter a
String value representing the tag name. The every operation loosely mimics the
standard EPL select statement, and is used to manage repetition. The previous EPL
statement, now modified to include every, will produce an output for each qualifying
event:

every(process=ProcessEvent(state=2, processName='SalesOrder'))

Notice here that the and was removed from the filter expression and replaced by a
comma— this is a convenience shortcut. The every clause causes the start of a new
pattern expression and listens for new events that match the filter. One of the most
useful aspects of this is that you can create an expression that checks for the occur-
rence and order of multiple events, which may be of different event object types. For
example, if event B is always supposed to follow event A, you can define a pattern such
as every (A -> B) that will fire once B arrives in order after A. In addition, you can
devise fairly elaborate combinations when you use the every statement in conjunction
with pattern timers. In our example, we could use it to flag any occurrences where the
instance end event wasn’t completed within a certain period of time in relation to
when the process was started. Such a check would undoubtedly be useful for manag-
ing compliance with service-level agreements or in proactive detection of problems.

 Before we delve into an example of this capability, let’s first take a closer look at
what Esper calls pattern guards. A pattern guard is a where condition applied through a
custom function. Esper comes with three timer-based guards: timer:within,
timer:interval, and timer:at (as with regular functions, you can also create your
own). Let’s look at the three timer-based guards provided by Esper in more detail.
TIMER:WITHIN GUARD

The timer:within guard is similar to a stopwatch in function. If the event associated
with the timer fires within the timer period provided, true is returned, and false oth-
erwise. What’s an example of where this might be useful? Building on the scenario
we’ve used so far, consider a situation where, as part of a fraud-detection initiative, you
want to flag any orders placed by the same customer that arrive within a few minutes
of each other. Perhaps such an occurrence would be unusual, and indicate that some-
one has possibly compromised the customer account. Using our ProcessEvent event
object, the following EPL pattern will determine whether consecutive orders were
placed by the same customer within 5 seconds of each other (I chose 5 seconds since
it’s more convenient for testing):

(
 every
(oldOrder=ProcessEvent(state=1, processName='SalesOrder'))
->
 every
 (newOrder=ProcessEvent(state=1, processName='SalesOrder',
 newOrder.integerProperty('custId')=
 oldOrder.integerProperty('custId')))
 where timer:within(5 sec)
)

Licensed to Deborah Christiansen <pedbro@gmail.com>

243Advanced Esper
Using the parentheses is critical for determining how the clause is evaluated. In
pseudo-code, the pattern states, “For every new order placed, check every subsequent
order with the same custId that occurs within 5 seconds of the previous order.”
Figure 8.4 demonstrates a scenario of how you’d apply this.

You can craft many possible combinations of this type of time-based temporal match-
ing, but exercise care to ensure the proper precedence of your phrases.
TIMER:INTERVAL GUARD

The timer:interval function will wait the specified period of time and then return
true. While at first glance this function may appear to have limited utility, it can be
useful for helping identify time gaps outside a given boundary. How would this be
beneficial? One example related to our jBPM scenario would be to use this ability to
identify any process instance that wasn’t completed within a certain period of time.
For example, continuing with the SalesOrder business process, here’s how you could
identify any instances that hadn’t completed within 25 seconds:

every ord=ProcessEvent(state=1, processName='SalesOrder')
->
timer:interval(25 sec) and not
 ProcessEvent(state=2, processInstanceId = ord.processInstanceId))

In this case, the timer:interval clause will trigger an observer at 25 seconds, and if
there’s no corresponding ProcessEvent that has ended (state=2) with the matching
processInstanceId, then an event notification will be triggered. The ability to iden-
tify when an event hasn’t occurred is in many cases more important than whether an
event has occurred. This capability has wide-ranging implications in helping organiza-
tions ensure that activities have occurred within a prescribed period.
TIMER:AT GUARD

The timer:at function resembles the functionality of the Unix/Linux crontab com-
mand. Using it, you can set up specific times for when the statement execution should
be invoked. This could be used, for instance, to periodically purge events that have
accumulated in a named window (section 8.5.4), or to periodically pull data from a
relational database using the JDBC remote connectivity feature, described next.

Figure 8.4 Example of timer:within guard rule being applied
Licensed to Deborah Christiansen <pedbro@gmail.com>

244 CHAPTER 8 Complex events using Esper
8.6.3 Using JDBC for remote connectivity

Esper has the ability to query a remote database via JDBC and enables regular SQL
statements to be embedded into EPL statements. This can be useful for gleaning refer-
ence or historical data that may be present based on some key value in the inbound
event. While configuration for simple remote connectivity is straightforward, there
are numerous, optional configuration settings that go beyond the scope of this chap-
ter; find out more by checking out the official documentation. Many of these settings
pertain to establishing the remote connection or cache settings.

 We’ll demonstrate a simple example that builds on section 8.6.1’s discussion of
UDFs. You may recall that we used a UDF to return a customer name based on a
custId value that was passed to the function—it was a lookup-style routine. Let’s see
how this can be done using a relational database join, which is probably a more intui-
tive method for achieving this result. There are two main steps in accomplishing this:

1 Adding a data source reference in Esper’s configuration
2 Adding the embedded SQL into your EPL statements

ADDING A DATASOURCE REFERENCE TO THE ESPER CONFIGURATION

Since you are connecting with a remote JDBC database, you must tell Esper how to
connect to it. Esper provides a few options for doing this, which are documented in
the official documentation. I’ll demonstrate one approach using java.sql.Driver-
Manager. Given the number of possible property settings, I suggest using the Esper
XML-based configuration instead of the Java API approach. In the sample code for this
section, I’ve shown how to configure a connection to an in-memory Hyperthreaded
Structured Query Language Database (HSQLDB) instance. The Esper XML configura-
tion looks like this:

<esper-configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.espertech.com/schema/esper">

 <database-reference name="mydb">
 <drivermanager-connection
 class-name="org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:mem:aname"
 user="sa" password=""/>
 <connection-lifecycle value="retain" />
 <expiry-time-cache
 max-age-seconds="60"
 purge-interval-seconds="120" ref-type="weak" />
 </database-reference>
</esper-configuration>

The @name attribute of the database-reference element defines the alias assigned
when referencing this connection from within EPL. The child elements define con-
nectivity parameters and various lifecycle and cache settings. In this case, our in-mem-
ory database uses a single table called CUSTOMER, which is created with the following
line during the JUnit test code initialization:

create table CUSTOMER (CUST_ID int, CUST_NAME varchar(30));

Esper
database alias

HSQLDB
connection

Configuration
options
Licensed to Deborah Christiansen <pedbro@gmail.com>

245Service enabling Esper
It’s then populated with some initial sample records used for purposes of the test.
Once the connection configuration is complete, the next step is to use it in an EPL
statement.
USING SQL CALLS IN EPL

To combine an event stream with data from a relational source, you must specify the
sql keyword followed by the database alias you defined, and then include the SQL
phase within double brackets. In our example, let’s assume we want to look up the cus-
tomer name based on a custId that was provided. We could do this using

select integerProperty('custId') as custId, CUST_NAME
 from ProcessEvent(state=1 and processName='SalesOrder'),
 sql:mydb[\" select CUST_NAME from CUSTOMER where
 CUST_ID=${integerProperty('custId') \"]

In most respects, this code works like a normal join statement, with the exception
that, rather than specifying an event object in which to join, you use the Esper sql key-
word clause. Notice that in the sql clause you can reference properties from the
joined event stream using the ${<variable>} notation—in this case, we’re resolving
the value returned by integerProperty('custId'). The select statement then out-
puts the custId derived from the ProcessEvent event stream along with the joined
CUST_NAME value that came from the HSQLDB CUSTOMER table. Obviously, this capa-
bility is useful for performing reference lookups.

 Other interesting possibilities exist when using the SQL integration. Support for
stored procedures is also available, so you can use it in conjunction with an EPL pattern
to automatically pull data periodically from a relational database. The stored proce-
dure would identify all new records that have accumulated since the previous call and
return them as output, while flagging them so as to not be included in subsequent
calls. The output of the EPL with the SQL join can be inserted into a new event stream
or into a named window. In this fashion, you’re using an existing relational database as
an event publisher (albeit not real time, but probably sufficient for many situations).

 The next topic we’ll focus on is how to service enable Esper using SOAP-based web
services.

8.7 Service enabling Esper
Earlier in this chapter I pointed out that Esper is more akin to an ESP “engine” as
opposed to a full-fledged end-to-end solution. In a way this is a blessing, because the
lightweight nature of it allows you to easily embed the solution into a variety of scenar-
ios. Further, Esper’s main attraction is its correlation engine and rule-processing lan-
guage—peripheral enhancements may detract from this focus. Given that, the user
community clamored for a more straightforward way for publishing to the Esper
engine, so the folks behind Esper created a companion product called EsperIO that
was released along with the 1.4 version. EsperIO provides a prebuilt configuration for
receiving events via an input adapter to JMS along with the ability to optionally publish
results to JMS using an output adapter.
Licensed to Deborah Christiansen <pedbro@gmail.com>

246 CHAPTER 8 Complex events using Esper
 If you’re a pure Java show and don’t anticipate receiving events from non-Java sys-
tems or applications, this could be an attractive and easy-to-configure option. For
enterprise users, the Java-only nature of JMS is likely going to be an impediment
(granted, there are some bridges available from .NET to JMS, for example). A more
platform- and protocol-neutral approach based on SOAP-based web services would
probably be more appealing. Fortunately, as you saw in chapters 3 and 4, SCA-based
Apache Tuscany enables you to readily expose multilanguage components through a
variety of protocols, including SOAP and JMS. As it turns out, exposing Esper through
SCA is easy to do, and once you accomplish that, you’ll have a reusable framework for
supporting any multitude of inbound events. The steps involved are

1 Creating a framework and components
2 Creating the Esper service and session manager
3 Developing the SCA composition
4 Testing the web service using the soapUI testing tool

8.7.1 Creating a framework and components

Given the diversity of events that Esper will
likely need to consume in most environ-
ments, it’s obvious that attempting to
define a single event schema or canonical
representation would be challenging. More
importantly, trying to generalize the events
strips them of their ability to be easily self-
describing. Thus, the approach I recom-
mend is to recognize that each domain may
have its own set of event objects (and
related schemas). We’ve already been using
this approach in our examples, where our
ProcessEvent event object is tailored to
jBPM process instances. Continuing with
this approach, let’s devise a framework that
allows a single instance of Esper to be used
and exposed through SOAP-based web services that are semantically tailored as
needed. An overview of the framework can be seen in figure 8.5.

 The framework is simple in design. When you determine that a new event type
needs to be sent to Esper, you create a specific StatementSubscriber. This imple-
mentation class must implement the register method, which takes as its only
parameter EPServiceProvider. The register method is then responsible for regis-
tering the EPL statements specific to that domain and for creating the appropriate
subscriber objects. We’ve already seen an example of this class with the Process-
StartEnd object we displayed in listing 8.2 (the only change to this class is to
implement StatementSubscriber).

Figure 8.5 The Esper web service framework
Licensed to Deborah Christiansen <pedbro@gmail.com>

247Service enabling Esper
NOTE The framework I’m describing is found in its entirety in the source code
available for this section.

The StatementManagerImpl class is where we register individual StatementSubscriber
implementations. Listing 8.5 contains an example captured from the sample code for
this section (the imports and package definition has been omitted for brevity).

@Service(StatementManager.class)
@Scope("REQUEST")
public class StatementManagerImpl implements StatementManager {

 ArrayList<StatementSubscriber> statements = new
 ArrayList<StatementSubscriber>();
 StatementSubscriber statement;

 public void initializeStatements() {
 statements.add(new ProcessStartEnd());
 }

 public void register(EPServiceProvider service) {
 for (Iterator<StatementSubscriber> i = statements.iterator();
 i.hasNext();) {
 statement = i.next();
 System.out.println("*** Registering: " + statement + " ***");
 statement.register(service);
 }
 }
}

The purpose of this class is to register all of the EPL statements and associated sub-
scriber objects into the Esper engine. In this case, there’s a single registration object
called ProcessStartEnd b. This is where you would add event objects (Statement-
Subscriber) for new domains. Once the initializeStatements method is called, it
must be followed by a call to the register method c, which in turn invokes the
register method associated with each StatementSubscriber class that was initialized.

 A nice enhancement would be to add JMX tooling to the class so that the registra-
tion process could be done on-demand, whereas currently, as you’ll see, a restart of
the Esper SCA container is necessary. The class currently is invoked only once upon
Esper SCA startup.

8.7.2 Esper service and session manager

The SessionManagerImpl class, which can be viewed in the sample code, is responsible
for calling the initializeStatements and register methods of Statement-

ManagerImpl from listing 8.5. The SessionManagerImpl retains a handle to the cur-
rently running instance of Esper by way of EPServiceProvider. This is accomplished
by using SCA’s conversational features (see chapter 4 for a refresher). In other words,
the SessionManagerImpl is responsible for keeping the Esper engine session active.

Listing 8.5 StatementManagerImpl.java, which registers statement subscribers

SCA annotations

 b Registers
statements

 c Invokes register
methods
Licensed to Deborah Christiansen <pedbro@gmail.com>

248 CHAPTER 8 Complex events using Esper
 The main service class, which exposes Esper through SOAP, is called Esper-
ManagerImpl. The public methods defined by its interface, EsperManager, identify the
service operation being exposed by SCA. In this case, we’re using SOAP, and the inter-
face will be used to autogenerate the WSDL (of course, you can manually create your
WSDL as well, as discussed in chapters 3 and 4). Here’s an interface class signature:

@Remotable
public interface EsperManager {
 public void sendProcessStartEndEvent(ProcessEvent event);
}

As you can see, the sendProcessStartEndEvent method, by way of its ProcessEvent
parameter, is tailored specifically for the event object it’s consuming. Each new
domain event sent to Esper would require a new service method to be created.

 The last main development effort is to create the SCA composite file. This is really
a onetime exercise given the nature of this framework.

8.7.3 SCA composite file

The SCA composite file, as discussed in chapter 3, is used to define the components
and identify the services that are being made available. Listing 8.6 shows the compos-
ite file used for our Esper services.

<composite
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://opensoa.book.chapter8"
 xmlns:hw="http://opensoa.book.chapter8"
 name="esper">

 <service name="EsperManagerService" promote="EsperManager">
 <binding.ws uri="http://localhost:8085/EsperManagerService"/>
 </service>

 <component name="EsperManager">
 <implementation.java class="opensoa.esper.impl.EsperManagerImpl"/>
 <reference name="sessionManager" target="SessionManager"/>
 </component>

 <component name="SessionManager">
 <implementation.java class="opensoa.esper.impl.SessionManagerImpl"/>
 <property name="configurationFile">esperconf.xml</property>
 <property name="providerName">EsperManager</property>
 <reference name="statementMgr" target="StatementManager"/>
 </component>

 <component name="StatementManager">
 <implementation.java
 class="opensoa.esper.impl.StatementManagerImpl"/>
 </component>
</composite>

Listing 8.6 esper.composite SCA composite file

 b

 c

 d

 e
Licensed to Deborah Christiansen <pedbro@gmail.com>

249Service enabling Esper
The composite file is fairly minimal in scope. A single service is defined b and made
accessible via a web service binding with a WSDL URL of http://localhost:8085/Esper-
ManagerService?wsdl (this was simply derived by adding ?wsdl to the binding.ws
@uri attribute). The EsperManagerService is defined by promoting the Esper-
Manager component. This component in turn contains a reference to Session-
Manager c. The SessionManager component is responsible for instantiating the
Esper engine, and is thus passed, as a property, the location of the Esper XML configu-
ration file to use d. It also is responsible for registering the EPL statements and their
associated subscription objects e by way of the StatementManager component.

 The SCA container is started by way of a Java main class called EsperManagerMain:

public class EsperManagerMain {

 public static void main(String[] args) {
 EsperManagerMain server = new EsperManagerMain();
 server.run();
 }
 public void run() {
 System.out.println("Running");
 SCADomain scaDomain = SCADomain.newInstance("esper.composite");
 }
}

The class simply instantiates a new SCADomain using the SCA composite file shown in
listing 8.6 and, when running, will be listening for incoming service events.

 We covered quite a lot here, so let me recap what the steps are to add a new
domain event to this framework:

1 Create a new domain event object. This will be used as the container for the
inbound event. We demonstrated this earlier when we created the Process-
Event class (listing 8.1).

2 Create a new implementation of StatementSubscriber. This class serves two
purposes: (a) using it to register EPL statements associated with the new event
you’re setting up, and (b) creating an anonymous inner class to receive the out-
put generated by the EPL statements as they process the inbound events. The
EPL statements you create will reference the event object(s) created in step 1.

3 Add the class created in step 2 to the StatementManagerImpl object's
initializeStatements method. This will enable the class to be properly regis-
tered so that it can process the inbound events.

4 Add a new service method in the EsperManager and its implementation class
EsperManagerImpl. This will expose the method as a SOAP operation.

5 Restart SCA.

Obviously, there are improvement opportunities available for this framework. We cited
some previously, such as instrumenting the classes for JMX management, but other
ideas might include better declarative support using Spring so that Java code changes
aren’t as necessary (that is, building a plug-in model). Esper can now be integrated
using web services. Next, we’ll explore how you can test this web service using soapUI.
Licensed to Deborah Christiansen <pedbro@gmail.com>

250 CHAPTER 8 Complex events using Esper
8.7.4 Testing with soapUI

Once Tuscany is running, the service can be testing using soapUI (a soapUI project is
included in this section’s sample code). With soapUI, you start a new project by read-
ing in an existing WSDL. It will then interrogate that WSDL and create a sample
request you can edit. For example, you could enter the following:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:esp="http://esper.opensoa"
 xmlns:xsd="http://event.jbpm.esper.opensoa/xsd">
 <soapenv:Header/>
 <soapenv:Body>
 <esp:sendProcessStartEndEvent>
 <esp:param0>
 <xsd:processInstanceId>1</xsd:processInstanceId>
 <xsd:processName>SalesOrder</xsd:processName>
 <xsd:processVersion>1</xsd:processVersion>
 <xsd:props>
 <xsd:key>totalPrice</xsd:key>
 <xsd:value>55.43</xsd:value>
 </xsd:props>
 <xsd:state>2</xsd:state>
 </esp:param0>
 </esp:sendProcessStartEndEvent>
 </soapenv:Body>
</soapenv:Envelope>

When you click the submit button, the request will then be sent to the Esper service
we instantiated previously. You can use soapUI to test a variety of requests, and even
develop test suites and cases with the tool (some features are only available in the
Enterprise edition, however). It’s a useful tool for testing. As a convenience, the sam-
ple code also includes an SCA client called JBPMClientMain that you can use for sub-
mitting test requests.

8.8 Summary
This chapter introduced the principles behind complex event processing and its
important role within SOA. A SOA environment, because of its distributed nature,
presents some unique challenges insofar as management and monitoring. ESP
addresses those concerns by evaluating and analysis events, in real time, that can be
generated automatically by SOA services and BPM processes. The ability to detect sub-
tle (or not-so-subtle) changes in the operational, day-to-day workings of your organiza-
tion is becoming both a regulatory and a competitive requirement. ESP, working in
conjunction with BAM for presentation and dissemination, provides powerful opera-
tional insights.

 Until recently, there were no open source ESP solutions available. Fortunately, that
changed with Esper. Esper is an ESP engine that provides comprehensive event corre-
lation, aggregation, and analysis capabilities. Using an SQL-like syntax called EPL, a
user can create queries, views, and patterns by which inbound events are evaluated.
Licensed to Deborah Christiansen <pedbro@gmail.com>

251Summary
Although Esper doesn’t offer a web services front-end to its engine, using Apache Tus-
cany and SCA, we introduced a framework for how this can be accomplished. The
combination of SCA, BPM through jBPM, and Esper creates a compelling SOA solution.
In the next chapter, we’ll turn to Apache Synapse, which is a lightweight ESB that can
augment the capabilities we’ve described so far.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Enterprise
integration and ESBs
An enterprise service bus (ESB) is a strange bird. The term first burst upon the scene
in 2002, followed by a flurry of products that proclaimed themselves as ESBs. How-
ever, what constitutes an ESB has always been a matter of debate. At a minimum,
most would agree that an ESB is an enterprise messaging system that primarily
relies on the exchange of XML messages. These messages, in turn, can be intelli-
gently routed and transformed through a decentralized architecture.

 The emergence of ESBs has roughly coincided with the increasing standardiza-
tion of web service and messaging protocols such as Java Messaging System (JMS)
and SOAP. Indeed, the initial group of vendors who released ESBs tended to be
those who had existing JMS-based middleware offerings, and included the likes of
Sonic Software (now Progress) and Fiorano. Soon thereafter, open source ESBs
began to appear, with Mule and ServiceMix leading the charge. Later, other open
source ESBs emerged, such as Apache Synapse, JBoss ESB, Sun’s OpenESB, and
Apache Camel (though Camel eschews positioning itself as an ESB).

This chapter covers
■ Common features of an ESB
■ Introducing Apache Synapse
■ Service mediation with Synapse
252

Licensed to Deborah Christiansen <pedbro@gmail.com>

253The relationship between ESB and SOA
 Clearly, the wide choice of available ESBs, both commercial and open source, is a
testimony to their popularity within the enterprise. A need exists that the ESB is fulfill-
ing. However, a debate rages on as to whether an ESB is an essential part of SOA. Let’s
take a closer look at the relationship between an ESB and SOA.

9.1 The relationship between ESB and SOA
Some view an ESB as merely a temporary stepping-stone that can be used to SOA-
enable legacy services or applications. The criticism most often leveled at ESBs is that
they’re too often positioned as a shortcut for achieving SOA, when in reality they’re
simply one of several technology tools in your SOA arsenal. As Bobby Woolf points out,
“An ESB by itself produces no business value. An ESB is a means to an end, not the end
itself.” He further equates it to electrical wiring, which by itself does nothing, but in
tandem with a light produces value [Woolf]. After the initial hype of ESBs simmered
down, a general consensus has emerged that Woolf’s categorization is likely spot-on.

 Treating ESB technology as a SOA enabler doesn’t, by any stretch, relegate it to a
bit player in the SOA equation. In particular, even if all of your services are exposed in
ways consistent with SOA, there likely remains a compelling case for using an ESB. Up
until now, we’ve discussed how to build composite-style services using Apache Tuscany
and you’ve seen how to use those services when building business processes with JBoss
jBPM. Throughout the lifecycle of a business process, critical events or milestones
occur. Our coverage of Esper, a complex event processor (CEP), described how those
events can be consumed and analyzed in real time to spot important business activities
or trends. Thus, the previous chapters were primarily internally focused within the
enterprise. However, nearly every mid- to large-size organization must support elec-
tronic interchange of documents with external partners or customers. In all likeli-
hood, the interfaces with these entities will be across the board, insofar as the
protocols (SOAP, POX, CSV files, etc.) and transports (HTTP(s) FTP, sFTP, etc.) being
used. This is the real sweet spot for an ESB, as it comes with prebuilt adapters or con-
nectors for these various protocols and transports.

 If Apache Tuscany supports protocols such as JMS and SOAP, why not just expose
your services directly to your partners using it? Well, it’s generally considered unwise
to expose such services directly within your intranet because of security reasons.
Instead, an ESB container can serve as the front-line service manager within an extra-
net, thereby shielding your services and other internal electronic assets from direct
access. As you’ll see in the next chapter, the ESB can also nimbly manage transport
switching, so you can use it to receive a service request, say through SOAP-over-HTTPs,
and reroute to JMS for internal processing. (JMS is considered a more robust protocol
than HTTP because of its facilities for guaranteed delivery, among other factors.) ESBs
also support a broad range of transports, something that Tuscany or other frameworks
like Spring don’t do.

 In this first of two chapters on ESB technology, we’ll define what it means to be an
ESB. Further, we’ll identify appropriate and inappropriate uses of the technology.
Licensed to Deborah Christiansen <pedbro@gmail.com>

254 CHAPTER 9 Enterprise integration and ESBs
Lastly, we’ll introduce Apache Synapse, which as you’ll recall is our ESB of choice for
our Open SOA Platform. In the next chapter, we’ll explore implementation using Syn-
apse, and you’ll see a real-life case study with numerous examples that demonstrate
how to integrate it with our other Open SOA Platform products.

 Let’s get started by examining the history of how ESBs emerged and became such a
force in the marketplace. This is relevant as it will help frame our understanding of
where the ESB is best utilized.

9.2 Historical foundations of ESB
The heritage of ESBs is derived from enterprise application integration (EAI), which
emerged nearly 30 years ago. EAI, sometimes known as integration brokers, arose with
the advent and adoption of enterprise resource planning (ERP) applications. These
big-ticket software packages were intended to run all aspects of an enterprise’s busi-
ness: manufacturing, supply chain management, human resources, and customer
relationship management (CRM). Obviously, that’s a pretty tall order, and inevitably,
some companies chose to mix-and-match ERP software components to achieve a “best-
of-breed” solution. Other companies had multiple divisions or organizations, many of
which had different solutions in place. Thus arose the need to integrate these dispa-
rate systems, and EAI emerged to meet that need.

 Vendors such as TIBCO, Vitria, SeeBeyond, webMethods, and IBM all provided EAI-
type offerings. Unfortunately, they were highly proprietary and expensive in nature,
since few standards existed at the time, and building adapters to the ERP products was
a complex undertaking. The solutions themselves, in addition to being costly, were also
difficult to implement. According to one report in 2001, average EAI integrations proj-
ects took 20 or more months to complete, with a success rate of less than 35 percent
[Forrester]. Since the solutions were highly proprietary, skills didn’t easily translate
from one project to another, which, in part, attributed to the high cost and long delays.

 Most of the early EAI implementations relied on what is known as a hub-and-spoke
topology. This consists of a centralized hub that accepts requests from multiple
sources or applications, all of which are connected as spokes using various prebuilt
adapters. Over time, many of the EAI solutions began morphing into more of a bus-
style topology leveraging message-oriented middleware (MOM). MOM is a messaging
infrastructure, or bus, that, instead of using a hub/spoke approach, uses message chan-
nels as a way to distinguish between messages of different types. Reliability features
ensure that delivery of messages is guaranteed and arrives at its destination with integ-
rity (that is, it was received in the same form it was sent).

 When using MOM as the backplane for EAI, one or more integration brokers are
connected to the bus to provide EAI services such as routing and transformation. Indi-
vidual applications or services can be attached to the bus via adapters or connectors.
Figure 9.1 depicts this style of EAI.

 The advantage to this approach is that it offers a decentralized approach. In
figure 9.1, the partners are connected via lightweight adapters that enable the
Licensed to Deborah Christiansen <pedbro@gmail.com>

255Historical foundations of ESB
messages to be transmitted directly to a distributed messaging bus. However, this too is
not ideal, as it requires EAI software components to be installed in the partner’s sys-
tem. If you’re a big Fortune 500 firm, such a request is likely to be granted—if not,
you’re likely dead in the water. This bus-style topology laid the foundation for the
emergence of ESBs.

NOTE You can think of a messaging bus as sort of like a stream, where you can
toss a message in a bottle, but with confidence that it will end up in the cor-
rect hands. A hub and spoke architecture is more like your home router,
where everything plugs directly into it and it carries the responsibility for
managing the connectivity between your various computing devices.

The bus topology assumes a central role within an ESB (as the last word of the term
suggests). In the Java world, the bus is most often predicated on a JMS messaging back-
bone. Messages are deposited on the bus, with routing rules and transformations then
applied to navigate the message to the proper endpoint service. Although ESBs often
provide adapters for proprietary systems, the preferred approach for working with
partners is through XML over HTTP (be it SOAP, plain-old XML, or REST). This elimi-
nates the requirement for custom software to be installed remotely. Indeed, XML is
the lingua franca of ESBs, and is the preferred method for all message exchanges.
We’ll get into more of the specifics of what constitutes an ESB shortly; in the mean-
time, figure 9.2 shows the ESB alternative to the EAI diagram depicted in figure 9.1.

 In figure 9.2, notice that the service adapters shown are all supporting standards-
based protocols. In part, it’s this protocol standardization that paved the way for ESBs
to emerge. A multitude of open source libraries exists that support these standards,
and they can be easily embedded into the solutions of both open source and commer-
cial vendors (depending on licensing restrictions). This is a somewhat unspoken secret
of commercial ESB vendors and changed the cost dynamics for commercial ESBs,
which were typically priced about one-fourth as much as traditional EAI software.

Figure 9.1 EAI architecture
using a messaging bus
topology. Notice the adapters
required by external partners.
Licensed to Deborah Christiansen <pedbro@gmail.com>

256 CHAPTER 9 Enterprise integration and ESBs
In figure 9.2, ESB Framework and ESB Services represent the core functionality provided
by the ESB. The services represent the supported protocol adapters and ancillary func-
tions such as transformation services and content-based routing. The framework itself
represents the ESB application, and includes cross-cutting features such as logging,
auditing, and management. Let’s take a deeper look at the core capabilities that are
typically associated with ESB products, as this will help us understand the appropriate
role an ESB can play within SOA.

9.2.1 Core ESB capabilities

When looking at the product sheets for most ESBs, you’ll probably be a bit over-
whelmed by the features offered—it may seem like everything but the kitchen sink.
When you separate the wheat from the chaff, what generally remains for most ESBs
are protocol adapters, message-oriented middleware, XML-based messaging, intelli-
gent routing, message transformation, tasks/timers, monitoring, and an extendable
API. Let’s take a brief look at these features so that we have a foundation on which to
build our use case in the next chapter.
PROTOCOL ADAPTERS

ESBs typically provide a multitude of adapters, sometimes referred to as components
or services, that enable the ESB to easily interface with communications protocols or
transports such as HTTP, FTP, POP3/SMTP (email), and file systems. Connectivity is at
the core of any ESB and represents its greatest value proposition. You typically config-
ure an adapter by editing XML configuration files, but sometimes a wizard-style inter-
face is provided to simplify the task. The following example shows an XML
configuration used to define an HTTP client adapter for Apache ServiceMix:

Figure 9.2 Typical ESB architecture example leveraging standards-based protocols (SOAP, FTP, etc.)
instead of propriety adapters
Licensed to Deborah Christiansen <pedbro@gmail.com>

257Historical foundations of ESB
<http:endpoint service="testBasicAuth:MyProviderService"
 endpoint="myProvider"
 role="provider"
 locationURI="https://localhost:8193/Service/">
 <http:basicAuthentication>
 <http:basicAuthCredentials username="testuser" password="testpass" />
 </http:basicAuthentication>
</http:endpoint>

As you can see, such a declarative style configuration is easy to use and is common
among most ESBs. In this example, a new HTTP client adapter is configured so that
when it receives a message, it will post that message to the @locationURI attribute
value that was assigned.

NOTE Most open source and commercial ESBs use the Apache Commons set of
libraries to provide connectivity. This is a real benefit, because these
libraries have been widely used for years, and are very robust and perfor-
mance optimized. See http://commons.apache.org/.

An ESB adapter typically works as either a server or client. So, for instance, you can set
up an HTTP listener/consumer to receive inbound requests or to act as a client mak-
ing an outbound HTTP request. While the same standard set of adapters is present in
nearly all ESBs, there are subtle but important differences in the extent to which a pro-
tocol’s various options are supported. For example, not all ESBs offer full support for
the various SOAP-related WS-Security standards.
MESSAGE-ORIENTED MIDDLEWARE

We’ve defined MOMs earlier in our discussion of EAI typologies that support a messag-
ing bus. Java-based ESBs use JMS, and often it’s embedded within the very fabric of the
ESB application. In some ESB implementations, JMS can also be used internally for
managing message flows or as an interface for integrating with external services that
support the protocol. Indeed, JMS is usually the means by which an ESB can be distrib-
uted in a decentralized fashion.

 JMS supports two types of messaging models or channels: publish and subscribe
(pub/sub), and point-to-point. As figure 9.3 illustrates, the difference between the two
is that in a pub/sub model, multiple consumers, known as subscribers, can subscribe
to and receive published messages, whereas in a point-to-point typology, only a single
consumer/receiver may receive the message (on a first-come, first-serve basis).

 Of the two models, the queue, or point-to-point, approach is more prevalent
because you often don’t want processing to occur multiple times for a given mes-
sage. However, having multiple receivers that are capable of lifting and processing
the message, such as shown in figure 9.3, is useful for load balancing or clustering; if
any one receiver goes down, another will simply pick up the messages if they’re reg-
istered as a listener.

 When is the pub/sub model appropriate? Often it’s used in tandem with an event-
based computing model. For example, say you have an order entry system. When an
Licensed to Deborah Christiansen <pedbro@gmail.com>

258 CHAPTER 9 Enterprise integration and ESBs
order is submitted, it should publish result notifications to an accounts receivable sys-
tem in addition to a CRM for updating a summary of account activity.

 You can consider JMS to be the backplane for Java-based ESBs, with XML the com-
mon message dialect, which is our next topic.
XML-BASED MESSAGING

While most ESBs are capable of dealing with non-XML data such as binary files, the
clear preference is to work with XML. Why? Most recently developed services are usu-
ally exposed using XML-based protocols—this includes SOAP, XML over HTTP, and
REST. The benefits of using XML are probably obvious to you by this point. They
include greater interoperability, the self-describing and human-readable nature of
XML, extensibility, and schema-based validation capabilities. ESBs are designed for
interrogating the content of XML messages for any variety of operations, including
routing, aggregation, enrichment, and validation.

 One often-overlooked benefit of using XML is the implication it has for opera-
tional monitoring. If all (or most) of the messages flowing in and out of the bus are
XML, the streams of data can be analyzed in real time via a complex event processor
(the topic of the previous chapter). Figure 9.4 depicts how an ESB wiretap pattern can
be used to facilitate such real-time monitoring.

Figure 9.3 JMS messaging using
queue and pub/sub models

Figure 9.4 Wiretap pattern used for
operation monitoring via CEP
Licensed to Deborah Christiansen <pedbro@gmail.com>

259Historical foundations of ESB
In figure 9.4, an inbound message enters the ESB, and a wiretap operation is applied
to the inbound message. The wiretap pattern leaves the message intact but forwards a
copy of it to the Esper engine for real-time analysis.

NOTE The definitive guide to integration patterns can be found in Hohpe and
Woolf’s book, Enterprise Integration Patterns [HohpeWoolf]. The book’s
influence is often cited by the developers of many of the open source ESBs.

When messages arrive in XML, they can be easily transformed and routed by the ESB.
Let’s look at routing next.
INTELLIGENT ROUTING AND DISTRIBUTION

An ESB acts as an intermediary for the communications that occur between the vari-
ous services that connect to it. Thus, systems and applications that leverage an ESB
should rely on it to route messages to the appropriate locations or endpoints. The
routing rules used by an ESB depend on the message content (in which case it’s
dynamic), or they can be established in a static fashion using a fixed pipeline pattern.

 Although routing is an easy concept to understand, there are several permuta-
tions for how it can be implemented, and various ESBs may manage it differently.
Table 9.1 depicts the various possible approaches and highlights some of the pros
and cons of each.

Table 9.1 Approaches to ESB routing

Pattern Description Pros Cons

Processing
pipeline

A predefined sequence of
steps or nodes is defined
that a given message must
follow. You define this pipe-
line up front, and any mes-
sage entering the channel
will adhere to the pipeline
rules.

Simple to configure and
debug.

Can impose a performance
penalty, since some nodes
within the pipeline may not
be required for processing
by all inbound messages.
So, filtering must be pro-
vided.

Routing slip An initial component
assigns a route, called a
routing slip, to the inbound
message. The slip identifies
what services must be
invoked and is attached as
a property to the message.

Efficient message flow,
since only the required
steps are performed.
Supports highly decen-
tralized computing, so
it’s highly scalable.

A routing table is typically
immutable once it has been
created and assigned, so
downstream processing
can’t alter it. Also, assign-
ment of routing rules up
front can be complex to
define.

Centralized
router

A super-router is used that
defines how messages
should be processed. After
a message exits each node,
return is handed back to the
router to determine its next
step.

Fairly simple to adminis-
ter and debug. Enables
very complex process
flows to be defined.

As the name suggests, con-
trol is managed by a central
process, which can impose
scalability and performance
penalties.
Licensed to Deborah Christiansen <pedbro@gmail.com>

260 CHAPTER 9 Enterprise integration and ESBs
As you can see, no single routing approach is without some drawbacks. Many of the
open source ESBs support multiple routing methods; which one you use is in part
dependent on your requirements. My experience suggests that if you’re building com-
plex flows, a better alternative is to use BPM and strive to keep ESB-based process flows
fairly simple in design. In that case, content-based routing is likely sufficient.

NOTE An implementation of BPM using jBPM is the topic of chapters 5–7.

One last note regarding routing: an ESB can often be used as a proxy for web media-
tion. This capability can be supported by deriving routing rules based on the endpoint
Uniform Resource Locator (URI) that’s specified (a URI is just an address for a given
resource, just as a URL is used for accessing web pages). For instance, to facilitate ser-
vice abstraction, you may choose to use an ESB as a proxy where it can intercept
inbound requests and redirect them based on the URI that was specified. WS-Address-
ing is a SOAP-based standard designed explicitly for such purposes (all inbound
requests could share the same URI, but be redirected internally based on the WS-
Addressing values provided with the SOAP header). We’ll discuss more about this in
the next section when we explore service virtualization.

 Distribution is a somewhat similar concept to routing, but more generally refers to
when you want to split a message into several messaging channels, or, alternatively,
hold and aggregate messages based on some criteria. The latter can become challeng-
ing as you must base the aggregation rules on some sort of message correlation value.

 We’ve covered over half of the core capabilities of an ESB, but some of the most
beneficial features lie ahead of us, beginning with one of the most common uses of an
ESB: message transformation.
MESSAGE TRANSFORMATION

One of the clear benefits in working with XML is the ease with which it can be trans-
formed from one XML vocabulary to another. For instance, if you’re a manufacturer

Content-based
routing

A router (perhaps several)
examines the message con-
tent and routes the mes-
sage to a different channel
or node based on some con-
tent in the message body.

Dynamically determines
message flow so only
required steps are
called. When using XML,
XPath expressions make
configuring straightfor-
ward.

Confined to evaluating a sin-
gle message at a time.
Building a process flow with
multiple steps becomes dif-
ficult to manage and debug.

Component-
based routing

Each node (usually imple-
mented as a component),
regardless of its function,
determines where the mes-
sage goes next. In a sense,
each component contains
CBR-type responsibilities.

Supports a highly decen-
tralized computing
model. Components par-
ticipating in flow can
reside anywhere access
to the bus is provided.

Can result in proliferation of
running component/node
instances, resulting in large
memory requirements.

Table 9.1 Approaches to ESB routing (continued)

Pattern Description Pros Cons
Licensed to Deborah Christiansen <pedbro@gmail.com>

261Historical foundations of ESB
dealing with large retailers and you’re fortunate enough that they support XML, it’s
unlikely the XML is the same format you support internally. For example, your ERP sys-
tem may have web service capabilities but only in the cXML format (an early e-com-
mence XML vocabulary). Your partner, however, may only support the more recent
OASIS UBL format. Using an ESB, you can easily incorporate an XSLT transformation
that will convert from one to the other.

 Many ESBs may also support transformation tools for use with dialects other than
XML. For example, they may support features to convert EDI or CSV into XML. In such
cases, it can be beneficial to chain or pipeline together a sequence of transformations,
such as converting CSV into some normalized XML format and then into the designed
final form. By using chaining, you can better reuse certain transformations and simplify
development and debugging (we’ll demonstrate such a scenario in the next chapter).
TASKS/TIMERS

Often you need to poll or fetch data from an external source based on some trigger.
For instance, polling is generally a built-in feature of an ESB’s FTP consumer adapter,
since it must periodically check the FTP location to identify any new files that may
have been deposited. Other common uses are for extract, transform, and load (ETL)
techniques in which you need to periodically fetch data for batch operations based on
some event trigger.

 Nearly all ESBs support some sort of timer capability, and it’s sometimes catego-
rized as tasks. Figure 9.5 illustrates a timer used to initiate a web service call; the results
are then transformed and inserted into a database.

 The configurability of timers can obviously vary. Some offer capabilities reminis-
cent of Unix/Linux cron, which is highly flexible. Others are more limited in func-
tionality and only support interval-based configurations.

 Let’s next look at an increasingly ESB role: quality of service (QoS) processing.
QUALITY OF SERVICE/WEB MEDIATION

This category of ESB functionality is an emerging field—early ESB implementations
didn’t often focus on QoS or web mediation. As companies have increased their web
service presence through the use of publicly available APIs, the need has arisen to
improve performance, availability, and service discrimination. What do I mean by the
latter? For instance, many search engines provide web service APIs, but usually with a
restriction that limits the number of connections that can be made within a period of

Figure 9.5 Example of using
a timer service to initiate a
SOAP request
Licensed to Deborah Christiansen <pedbro@gmail.com>

262 CHAPTER 9 Enterprise integration and ESBs
time. This is done to ensure that all users get an acceptable level of performance, but
perhaps more importantly, it’s a way to monetize their investment. Many search
engines provide a pay-based licensing model that removes these metering restrictions.
In other words, they’re discriminating their service levels based on whether you’re a
paying customer. An ESB with web mediation features that can be used for QoS
enforcement can manage such requirements.

 Another common scenario that we’re seeing
with increasing frequency involves content filtering
based on the security profile of the client. For
example, a hosted Applicant Tracking System
(ATS) may provide their customers with an API so
that they can retrieve an applicant’s application
data through a web service. This is useful, for
instance, when integrating the ATS data with a local
HR or ERP system. Since the ATS data may contain
sensitive personal information (SPI) such as birth
date or government ID, the ATS may not be willing
to make such data available unless the client
adheres to certain security requirements. For
example, the ATS might require the use of SSL or
message-level signatures or encryption using WS-
Security. For those clients who can’t provide such
security, only non-SPI data will be transmitted. An
ESB can be used to filter out outbound data to
enforce such policy rules. Figure 9.6 illustrates
both of these scenarios.

 As you can see in figure 9.6, Client 2’s service request passes through two levels of
filtering since they’re using nonencrypted transport and messaging. The content filter
removes data that they aren’t entitled to view, and the metering filter verifies that they
haven’t exceeded their allocation of requests for a given time period. On the other
hand, no filtering restrictions are applied to Client 1. Also in figure 9.6, notice the ref-
erence to caching and load balancing and failover. This is also considered part of
QoS, as caching and load balancing address performance, with availability positively
impacted by the use of failover provisions. Not all ESBs specifically address these issues
in the fashion I’ve described, but many can accommodate these requirements in some
way or another.
MONITORING AND ADMINISTRATION

Given the critical role that an ESB plays within the enterprise, it should come as no
surprise that monitoring and administration are important considerations for an ESB.
Most Java-based ESBs, both open source and commercial, have begun to build moni-
toring tools using Java Management Extensions (JMX). JMX is a technology designed
specifically for monitoring and real-time management of Java applications. Several

Figure 9.6 Using an ESB for policy
management to discriminate service
levels
Licensed to Deborah Christiansen <pedbro@gmail.com>

263Historical foundations of ESB
generic-type consoles exist, including JConsole, which ships standard with Java’s JDK.
Using JMX, you can monitor an application’s resources and attributes, and even
invoke method operations (if they’re configured for JMX support).

 The types of metrics relevant to an ESB include

■ Messages received
■ Number of faults
■ Average processing time
■ Number of messages processed per transport
■ Queue size
■ Messages processed per endpoint or proxy

NOTE Advanced management features have generally been a weak area for
most open source ESBs. Some, like Mule, do provide sophisticated moni-
toring tools, but in Mule’s case, it’s a commercial product (Mule Saturn).

The last common feature shared among most ESBs is the ability to create your custom
components or services using their API framework.
EXTENDABLE API

Most popular open source ESBs are well architected, and include several means by
which you can extend their functionality. One of the most straightforward ways is to
use one of the supported scripting languages. Choices include Groovy, JRuby,
JavaScript (Rhino), or Jython (Python). Using a scripting language allows you to
embed required programming logic within the definition of the ESB XML configura-
tion files (or via a reference to a scripting resource that contains the code).

 You can also create custom components or services by using a Java API. This is sup-
ported in all popular Java-based ESBs. Often, you can accomplish this by simply imple-
menting one of their available classes intended for this purpose. Generally, you must
implement a few required methods, then place the class in the appropriate location,
and you are ready to rock ’n’ roll.

 As you can now probably appreciate, ESBs offer a lot of functionality. As we’ve
shown here, when you carve away all of the marketing and technology spin, they tend
to all share the same underlying core functionality. Obviously, some offer additional
features and are stronger in some areas than others. One of the big challenges when
working with an ESB is identifying where its use is most appropriate. Because of the
flexibility ESBs provide, the technology can be subject to misuse and may violate your
SOA objectives. In the next two sections, we’ll identify the areas in which an ESB is most
appropriate, and where it can be counterproductive when better alternatives exist.

9.2.2 Appropriate uses of an ESB

What are the areas where an ESB is most beneficial in a SOA environment? The answer
partially depends on your specific environment. However, experience suggests that it’s
best suited for the following roles: service enablement, service virtualization, asyn-
chronous communications, and protocol bridging. Let’s consider each in more detail.
Licensed to Deborah Christiansen <pedbro@gmail.com>

264 CHAPTER 9 Enterprise integration and ESBs
SERVICE ENABLEMENT

As we alluded to briefly already, ESBs can effectively be used to service enable existing
application functionalities. For example, you may have an existing business application,
such as an order entry system, that doesn’t provide service interfaces (or perhaps only
rudimentary interfaces). Using an available ESB adapter such as JDBC, you may be able
to quickly create a SOAP-based web service. This effectively creates a reusable service
and eliminates each interested client from having to code such interfaces manually
when connectivity is required. This approach can extend your existing IT investments.
SERVICE VIRTUALIZATION

The term virtualization is a fairly loaded word in the IT vocabulary. Most think of it
within the context of OS virtualization products such as XEN and VMware. However,
when coupled with services, it has a somewhat different meaning. Service virtualization
refers to the ability to logically define abstract service endpoints instead of using
actual physical addresses. In some respects, it’s akin to how your telephone service
works. When you make a call, the number you dial isn’t a physical location of where
the responder resides. Rather, that determination is somehow managed behind the
scenes by the telephone company. For example, in many instances you can now keep
your same cell number from one carrier to another, so that you don’t have to get a
new phone number when you dump your carrier to buy that shiny new iPhone 3G.
Service virtualization is a similar concept for the services you wish to expose.

 Using an ESB, you can assign a logical or abstract address for your service clients, and
the ESB will manage the routing for how it gets to the physical address where the service
resides. Standards such as WS-Addressing can also be used in tandem with this when
working with SOAP (more on this later). This is an important feature when managing
for a SOA environment, as it makes things far less brittle—by using a physical address,
when any network changes occur, all clients accessing that server will be impacted.
ASYNCHRONOUS COMMUNICATIONS

In chapter 2, we discussed how earlier distributed computing models based on remote
procedure calls (RPCs) resulted in a tightly coupled architecture that made any sort of
service reuse very problematic. Also, RPC’s reliance on synchronous communications
meant that, if the remote service was down or nonresponsive, the application would
cease to function. Early implementations of web services using SOAP also relied heav-
ily on RPC-style communications. As the limitations of using RPCs became apparent,
best practices in web services eschewed RPCs and moved toward a document-centric
approach. More recently, the use of asynchronous-style web services has grown in pop-
ularity. Asynchronous messaging allows communications to occur in a more stand-
alone fashion and is less susceptible to communication hiccups that may arise
between the two services. Further, if using message-oriented middleware like JMS, the
store-and-forward capabilities mean that the message can be sent to the middleware
bus, with the client system free to continue processing. When the target is back
online, the middleware will ensure that it receives the queued message. Nearly all Java-
based ESBs rely on JMS middleware, and by virtue, inherently support asynchronous
Licensed to Deborah Christiansen <pedbro@gmail.com>

265Historical foundations of ESB
communications. While JMS alone could be used, an ESB load-balancing or service
detection feature can be used in conjunction with a cluster of services to redirect
when one service isn’t operable. Figure 9.7 depicts the general concept behind asyn-
chronous messaging when combined with an ESB.

 In the scenario shown in figure 9.7, the
caller routine initiates an asynchronous call
to the callee through a message channel or
queue, which is managed by the ESB. The
caller then continues processing. Eventually,
the callee completes the operation and issues
the results back by way of the replyTo queue.
The caller then picks up the processed mes-
sage and continues processing. Notice in this
case the service virtualization features were
also used, as the caller doesn’t directly com-
municate to the callee but does so by way of a
message channel.

 Obviously, there are scenarios where asyn-
chronous processing isn’t feasible, such as
when someone is placing an order through a website and anticipates immediately
receiving a confirmation with an order number. The fundamental point to remember
is to, when at all possible, use asynchronous communications augmented by the capa-
bilities provided by the ESB.
PROTOCOL BRIDGING

A common scenario encountered when dealing with external partners is the need to
bridge from one protocol to another. Let’s look at a common use case. Say your part-
ner only supports batch-style integration, whereby they send nightly FTP files using
CSV (comma-separated values) file formatting. Internally, the preference is XML over
JMS. This sort of scenario is the sweet spot for an ESB. A simple ESB processing pipe-
line can lift the inbound FTP file, transform it from CSV to XML, and then deposit it to
the appropriate JMS queue. Since ESBs typically come with a wide variety of adapters,
this is generally a straightforward exercise. I’m sure you can think of many such bridg-
ing scenarios within your enterprise.

 The areas just covered identify some of the appropriate uses for where an ESB can
best be utilized. However, because of an ESB’s flexibility, it can often be used inappro-
priately. Like the old saying goes, when you’re a hammer, everything looks like a nail.
In part, there’s the temptation to use an ESB for everything, but doing so can be harm-
ful to your long-term SOA goals. Let’s examine some of these areas where an ESB
shouldn’t be used.

9.2.3 Inappropriate uses of an ESB

ESB evangelists may take some issue with some of the areas we believe are inappropri-
ate uses of the technology. The basis for making this determination is my experience

Figure 9.7 Basic concept of asynchronous
messaging using a callback
Licensed to Deborah Christiansen <pedbro@gmail.com>

266 CHAPTER 9 Enterprise integration and ESBs
with implementing several commercial and open source ESBs in a variety of projects.
Initially, I fell victim to the early hype surrounding ESBs and felt they were a Swiss
army knife for implementing SOA. Over time my enthusiasm tempered as best prac-
tices emerged. The areas in which I believe an ESB shouldn’t be used include service
composition, orchestrations, high-throughput processing, and business rules.
SERVICE COMPOSITION

The ability for an ESB to easily bridge between different protocols can lead to the
temptation to code your services to a specific message protocol and let the ESB take
care of any protocol bridging. Since we just spoke about an ESB’s strong capability in
this regard, why is this a problem? For example, perhaps your team has decided that
all of the services you’re developing will use XML over JMS. If a .NET or Ruby client
needs access to one of your services, the ESB can wrapper the service and expose it
through SOAP, for instance. This is certainly doable, but I strongly recommend against
it. Your service code should not contain protocol-specific logic or libraries. That
approach limits the audience of your service and requires you to develop and main-
tain ESB wrapper scripts. Further, since technology changes rapidly, do you really want
to hard-wire protocol-specific logic into your service? What’s the alternative?

 In chapters 3 and 4, we described how service composition and assembly can be
done using the Apache Tuscany framework, which is an SCA implementation. With
Tuscany, you declaratively define, at runtime, how your components will be exposed as
services. When developing your components using SCA, you don’t code for any proto-
col. Instead, the XML-based assembly model defines how the service is exposed. This
declarative approach to protocol binding is superior as it future-proofs your code and
provides greater flexibility. In cases where the supported protocol isn’t available
through Tuscany, an ESB-based wrapper solution is obviously a sound choice (or, as in
our example, when batch-style integration is required).

 If you’re using SCA, you may wonder why you should use an ESB at all. A good justi-
fication is that, when you’re working with external partners and clients, prudent net-
work security demands using some sort of extranet environment for their access.
Directly exposing services running within your main internal network is never a good
idea. An extranet-based ESB can act as a service proxy (granted, network devices can
perform the same role). By using ESB as a proxy in the extranet, you can support pro-
tocols such as FTP and email. The inbound data is transformed by the proxy ESB into
the proper XML Schema and transmitted to the internal network via JMS. Once the
inbound request is received by the internal ESB, it can then be routed to the proper
service endpoints. This sort of configuration is shown in figure 9.8.

 In figure 9.8, we show inbound requests coming in by way of three different proto-
cols. The ESB transforms the requests as necessary, and deposits the message to JMS,
where it’s then received by the internal ESB and routed to the appropriate endpoint
service. If the endpoint service is using Tuscany, any of the supported protocols could
be used that are supported by Tuscany. This sort of typology is consistent with SOA
best practices, such as service abstraction/virtualization and loose coupling (see
Licensed to Deborah Christiansen <pedbro@gmail.com>

267Historical foundations of ESB
chapter 1). The key consideration here is that the services themselves are running in
whatever container or app server is appropriate for the framework being used, and
not directly hosted in the ESB container. This is a decentralized, distributed environ-
ment that can scale as needed since the services can be located anywhere in your com-
puting grid.
ORCHESTRATIONS AND ESBS

As you may recall, in chapter 5 we briefly contrasted an ESB’s pipeline or data flow
capabilities with the features provided by a BPM. Most ESBs provide some means to
sequence together several steps into what’s sometimes referred to as an itinerary, or
micro-flow. This is necessary when several things must be done to process an inbound
message, such as receiving it using one protocol, transforming it, possibly enriching it
with additional data, and finally, routing. These sorts of sequences are what we refer to
as data flows.

NOTE Some people use the term process flow in lieu of data flow, but that term
can be confusing since the term process is also widely used with BPM.

An ESB’s data flow capabilities should be limited to simple sequences of steps, and not
serve as a substitute for BPM orchestrations. Data flows don’t inherently support the
concept of long transactions. So if any human-in-the-loop action is required, or service
callouts with unpredictable response times occur, data flows become untenable
because ESBs don’t include the ability to persist long-running transactions to a data-
base (in BPM terms, this is referred to as hydration/dehydration). Further, BPM orches-
trations are intended to convey a business process that can be visually understood and
even edited by subject matter experts. An ESB’s data flow is developer-tool designed to
simplify creating multistep operations. We’ve witnessed firsthand elaborate ESB data
flow sequences that quickly became unmanageable when you have to factor in excep-
tion handling and alternative flows. A BPM’s language constructs, such as BPEL or jPDL
in the case of jBPM, are designed for creating elaborate workflows. Attempting to rep-
licate these features in an ESB is akin to trying to make a car fly by attaching wings.

Figure 9.8 An example of
a secure network ESB
configuration
Licensed to Deborah Christiansen <pedbro@gmail.com>

268 CHAPTER 9 Enterprise integration and ESBs
SYNCHRONOUS HIGH THROUGHPUT DISTRIBUTED PROCESSING

In certain scenarios, using an ESB when high-throughput messaging is required can
result in performance bottlenecks. While it’s unfair to generalize across all ESB prod-
ucts, many use internal JMS queues to facilitate distributed processing of nodes in a
data flow. Although this has the advantage of enabling distribution of load, it can also
result in unanticipated bottlenecks. Such a bottleneck occurs when one service in a
data flow takes longer than the others. Messages back up while waiting on that service,
and a backlog can quickly build, adversely affecting quality of service. This scenario is
illustrated in figure 9.9.

In figure 9.9, the Enricher service is responsible for querying data from an external
data source to augment the inbound XML (for example, retrieving a customer name
based on a customer ID). However, it’s slow, and as a result, a backlog of messages
quickly builds when a high volume of messages flow through the system. In this case,
21 messages are waiting to be processed so that the next message received will have to
wait for the preceding ones to be completed before its processing is done. If this were
a real-time system with a requirement for a synchronous request/response, you can
imagine that this would result in unacceptable delays.

NOTE Always bear in mind that an ESB is another technology tool for imple-
menting SOA, but SOA encompasses more than technology, and includes
governance, process, and even culture.

Congratulations! We’ve covered a lot of material, starting with the heritage of ESB, to
its core capabilities, to its proper usage. Now we’ll switch gears a bit (you might be
thankful after so much theory!), and begin looking at the ESB we selected in chapter 2
for our Open SOA Platform: Apache Synapse.

9.3 Introducing Apache Synapse
Apache Synapse has suffered from somewhat of an identity crisis. The initial proposal
for Apache positioned Synapse as a “robust, lightweight implementation of a highly
scalable and distributed service mediation framework on Web services specifications”
[Synapse2005]. By the time of the 1.0 release, it was repositioned more as a full-
fledged ESB, and was described as an “easy-to-use and lightweight XML and Web Ser-
vices management and integration broker that can form the basis of a Service Ori-
ented Architecture (SOA) and Enterprise Service Bus (ESB)” [Synapse2007].

Figure 9.9 Queue buildup effect
in ESB data flow
Licensed to Deborah Christiansen <pedbro@gmail.com>

269Introducing Apache Synapse
NOTE Apache Synapse became an Apache Top-Level Project (TLP) with the
1.1.1 release in February 2008. This was an important milestone for Syn-
apse, as it reflects the growing interest in the product and the designa-
tion carries with it important prestige value.

Like a lot of open source projects, Synapse is largely sponsored by a single commercial
entity that seeks to monetize on the investment it makes in supporting development.
Synapse is no different, with the main contingent of developers coming from WSO2,
an open source middleware company.

 WSO2 does rebrand Synapse as WS02 ESB. While the same core product remains
Synapse, WSO2’s ESB sports a slick user interface that simplifies management. In our
coverage of Synapse, we’ll focus on Apache’s version, which relies on manually editing
the configuration files necessary to run the ESB. If you’re anything like me, you prefer
to first understand the essentials of the Synapse configuration XML instead of working
with the “black-box” approach provided by WSO2’s ESB (which uses a web-based con-
figuration approach, though it doesn’t preclude manual editing). This decision isn’t
intended to reflect negatively on WSO2’s product—they’ve done a very nice job. In
particular, some of the management features the product introduces are definitely
worthwhile, and I encourage you to check them out.

 Synapse, which is Java based and supports all major platforms, runs as a service
and listens for incoming messages. It can then process messages using a variety of
actions, and then returns the results to the calling client. The overall concept is
shown in figure 9.10.

 In figure 9.10, we show several inbound message protocols (these are only repre-
sentative; there are more) that are sending messages to the listener/mediator. From
there, one or more of the available actions, such as transformations or transport
switching, can be applied to the message. Once the actions are completed, the end-
point service exposed to the ESB will be invoked. You can configure Synapse to act as a
proxy service, whereby it accepts inbound requests on behalf of the service to be called.
Each proxy defines an in/out sequence that’s called to perform transformations, valida-
tion, logging, routing, and so forth. Once the actions associated with the sequence are
performed, the endpoint where the target service resides is called. The response

Figure 9.10 Overview of Synapse architecture
Licensed to Deborah Christiansen <pedbro@gmail.com>

270 CHAPTER 9 Enterprise integration and ESBs
received by the endpoint, if synchronous in nature, then runs through the associated
out sequence prior to returning the results to the client. Figure 9.11 illustrates an
example of this flow.

 In the example shown in figure 9.11, a client issues a request by specifying a Syn-
apse endpoint URI location. At this point, the in sequence defined for the given proxy
name is invoked, and the request is then redirected to the target endpoint service. The
response then flows back through the out sequence associated with the defined proxy.
You’ll notice in figure 9.11 that message mediation can also be the recipient of an
inbound request. How does this differ from a proxy service? We’ll get into this in more
detail later, but the main distinction is that, when using a proxy, the client specifies a
Synapse URI as the endpoint. When using Synapse as the message mediator, you can
use it as a client HTTP proxy—it will perform ESB services in a fashion transparent to
the client. Also, when using SOAP with WS-Addressing in conjunction with a message
mediator, it will automatically route the message to the appropriate endpoint location
(this is considered a smart client in the Synapse samples). Before we plunge into the
examples in the next chapter, let’s take a look at how Synapse supports the main func-
tionalities required by an ESB, beginning with transport/communication protocols.

9.3.1 Protocol adapters

Synapse is largely built around the Apache Axis 2 web services engine. As you might
expect, its support for SOAP-based web services (SOAP 1.1 and 1.2) is outstanding. In
particular, it offers excellent support for the following WS-* set of standards:

■ WS-Addressing—A standard for communicating addressing information in a
transport-neutral way, it’s defined using the SOAP header extension mecha-
nism. Without WS-Addressing, many SOAP implementations required the use of
a SOAPAction HTTP header as a way of communicating which endpoint to use.

Figure 9.11 An example of the relationship
between Synapse’s proxy service,
sequences, and endpoints
Licensed to Deborah Christiansen <pedbro@gmail.com>

271Introducing Apache Synapse
However, this is obviously bound to the HTTP protocol and doesn’t work when
using SOAP over JMS, for example. The support and use of WS-Addressing is
growing significantly.

■ WS-ReliableMessaging—This is a SOAP standard for reliable delivery of messages.
Depending on the need, different Delivery Assurances can be specified, such as
ExactlyOnce, which can be used to guarantee the message was successfully
delivered to exactly one receiving service. Using this protocol can significantly
increase the amount of network chatter, but when message reliability is para-
mount, it’s an excellent solution.

■ WS-Security—A transport-neutral standard for securing web services. Message
integrity, which ensures that a given message hasn’t been tampered with, can be
done by signing the message using a BinarySecurityToken profile. This is most
often accomplished with an X.509 certificate, which can be used to both sign a
given message and verify user identity. If you just want to verify user credentials,
you can use a UsernameToken profile. Credentials can be passed in plain text
(PasswordText) or encrypted through the use of a digest (PasswordDigest).
Like WS-Addressing, this is a standard that’s really achieving critical mass in the
marketplace (thanks, in large part, to Microsoft’s excellent.NET support—see,
I’m not always critical of the Redmond behemoth).

■ WS-Policy—A specification for defining, in XML, how policies such as WS-
Security and WS-Addressing are applied to a given web service. It’s also extend-
able and is used by Synapse for managing throttling rules, which we’ll cover in
the next chapter.

While many ESBs proclaim support for these standards, they are often not fully imple-
mented. Synapse’s support is unmatched in this area.

NOTE Synapse uses nonblocking HTTP(s) so that web services using that protocol
benefit from exceptional performance and high-concurrency capabilities.
This, in part, is why Synapse is considered the fastest open source ESB.

Common protocols such as JMS, TCP, HTTP, HTTPS, and email (POP3, SMTP, IMAP)
are also fully supported by Synapse, as are a variety of others through Synapse’s inte-
gration with the Apache Commons Virtual File System (VFS). This pseudo-protocol
provides support for accessing files in a local file system or via S/FTP. Additionally, it
provides compression support, such as ZIP, JAR, TAR, and GZIP.

9.3.2 Message-oriented middleware

Synapse can be configured to work with any JMS-compatible messaging system. JMS
implementations that have been tested include TIBCO, IBM’s WebSphere MQ, Fiora-
noMQ, and Apache’s ActiveMQ. Using JMS, you can create a highly distributed ESB
architecture, where multiple instances of Synapse can be running concurrently and
communicating via JMS topics or queues. Synapse includes support for JMS binary,
plain text, XML, or SOAP messages.
Licensed to Deborah Christiansen <pedbro@gmail.com>

272 CHAPTER 9 Enterprise integration and ESBs
9.3.3 XML-based messaging

As I pointed out earlier, Synapse’s engine is built on Apache Axis 2. XML is thus, by
default, assumed to be the messaging protocol. Synapse’s strong XML support includes
services such as a validation mediator, which can be used to validate XML against a
defined schema for both inbound or outbound XML messages. When using XML, Syn-
apse can switch transports in a transparent fashion—taking an HTTP SOAP message
and depositing the message on a JMS queue, for example. As with most ESBs, XML sup-
port is managed using Apache Xerces libraries, which are robust and efficient.

 For those instances where you need support for binary data, Synapse supports Mes-
sage Transmission Optimization Mechanism (MTOM), which is a binary optimization
mechanism for web services. MTOM uses a standard called XML-Binary Optimized Pack-
aging (XOP) for transmitting binary data. Using MTOM is easier and more efficient
than using MIME attachments for SOAP.

9.3.4 Intelligent routing and distribution

Synapse provides several ways to facilitate routing using what are known as selection
mediators. You can use a simple filter based on regular or XPath expressions, or in
conjunction with a switch-style statement. The basis for the evaluation can be the mes-
sage body, message properties, or the URI. As I mentioned earlier, full support for WS-
Addressing also exists, which enables SOAP messages to be directed to the appropriate
endpoint service.

 Routing rules can also be configured for faults, which is essential for proper error
handling. For example, you can configure a fault sequence that will be invoked if a
timeout occurs while Synapse is attempting to call a remote service. You can even redi-
rect the message to an alternative service. Achieve more sophisticated routing by
using one of the available scripting languages such as Groovy or Ruby by modifying
message properties that will redirect the message.

 Message distribution features include the ability to clone a message so that it can
be sent to multiple recipients in parallel. You can also split the message into multiple
fragments, with each portion sent to a different service. Alternatively, messages can be
aggregated together using an XPath expression that defines the correlation rule used
to associate the messages as they arrive.

9.3.5 Message transformation

Like all popular ESBs, Synapse supports XSLT-based transformations that can be
applied to in- or outbound messages. You can selectively identify, via an XPath expres-
sion, which portion of the message you wish to transform. More sophisticated transfor-
mations can be performed using the XQuery mediator, which also enables you to
enrich a message based on an external XML document or supported XQuery data
source. In conjunction with fault processing, you can generate a SOAP fault, thereby
transforming a response when an unexpected value is received. Lastly, scripting can
be used to transform a message.
Licensed to Deborah Christiansen <pedbro@gmail.com>

273Introducing Apache Synapse
9.3.6 Tasks/timers

New in the Synapse 1.1 release is support for tasks, which represent triggers that can
be invoked in a continuous fashion. A task class determines the action that will occur
when a trigger is fired. Synapse comes out of the box with a message injector that will
deposit an arbitrary message into the ESB for processing. For example, you could set
up a recurring timer to call an exchange rate service that you will then use for deriv-
ing currency calculations. Undoubtedly many scenarios come to mind. You can also
create your own timer implementation classes that perform other actions.

 When configuring a Synapse task, you can define how many times it should be
called and how frequently it should be invoked by setting a timing interval. Support for
more sophisticated scheduling features similar to Unix/Linux cron is also available.

9.3.7 Quality of service/web mediation

In the introduction to section 9.2, we alluded to the fact that Synapse has gone
through some subtle repositioning. Initially, the focus was on web mediation, so it
should come as no surprise that Synapse excels in this area. In particular, Synapse
offers unique functionality in how it supports load balancing, failover processing, and
message throttling/metering. While hardware routers have long provided load bal-
ancing and failover rule logic, Synapse supports it at the message instead of just the
transport level (granted, some hardware routers do support message interrogation,
but that’s usually far more complicated).

 Message throttling, or metering, refers to the ability to establish policies that deter-
mine how frequently a client can call a managed ESB service. Frequency can be based
on the concurrent number of connections or maximum allowable calls within a given
time interval. Restrictions can also be based on the inbound IP address or hostname
of the client, so in effect, it acts as a firewall. Throttling directly relates to QoS,
because it enables you to better enforce service-level agreements. While the old saying
goes that everyone should be treated equally, as the animals in Orwell’s Animal Farm
discovered, some are more equal than others [Orwell].

9.3.8 Monitoring and administration

Synapse provides JMX monitoring support, though this is a fairly new addition to the
product and further enhancements are needed to provide a complete solution. As it
stands, a basic level of functionality is provided. This includes operations for stopping
and restarting Synapse, as well as basic statistics about usage activity and faults.

9.3.9 Extendable API

Creating your own custom mediators in Synapse is surprisingly easy. You simply
extend one of the available interface classes designed for such purposes and imple-
ment a handful of required methods. The Synapse documentation provides several
examples, and you can also review the code or existing mediators to provide guid-
ance, since they too implement the same interfaces.
Licensed to Deborah Christiansen <pedbro@gmail.com>

274 CHAPTER 9 Enterprise integration and ESBs
 This brief overview of Synapse’s features demonstrates that, vis-à-vis standard ESB
functionality, it has all of the bases covered. In particular, Synapse web services sup-
port with SOAP is unmatched when factoring in its support for many WS-* standards
and QoS capabilities. Amazingly, it manages to accomplish all of this while retaining a
lightweight footprint coupled with exceptional performance. At this point, you’re
probably eager to get your hands dirty. Let’s take our first hands-on look at Synapse by
introducing what it refers to as message and service mediation. This will lay the ground-
work for the next chapter’s detailed use case that we’ll use to familiarize ourselves with
many of Synapse’s capabilities.

9.4 Basic Apache Synapse message and service mediation
As a gentle introduction to Synapse, let’s create a simple configuration that receives
an inbound request for a hypothetical web service called CreateOrderService and
returns no SOAP response. We’ll demonstrate both the message and service mediation
approaches; learn the distinctions in the accompanying sidebar.

Understanding Synapse’s message and service mediation
One of the more confusing aspects of using Synapse is understanding the differenc-
es between what is called service and message mediation. With service mediation,
Synapse refers to configuring a specific endpoint URL that’s serviced by Synapse.
This is defined through Synapse using the proxy element definition. In other words,
you are explicitly defining a URL endpoint in the Synapse configuration. On the other
hand, message mediation is more transparent to the client. An example would be
where you use Synapse as a conventional HTTP type proxy server. For instance, the
client may be calling a remote endpoint URL, but has configured Synapse as the net-
work HTTP(s) proxy. Synapse will then intercept the request and optionally perform
actions on the service. Even if no direct routing or transformations are required, this
could be beneficial for purposes of logging or BAM. Another possible scenario for
message mediation is where a client specifies a generic Synapse endpoint address
but uses WS-Addressing to inform Synapse of the ultimate endpoint location.

So what guidelines exist for determining which to use? That’s a good question, as
each can be used to perform similar functions. If your clients support WS-Addressing,
I suggest using message mediation and specifying the SOAP URL as the Synapse
ESB container. Synapse can then use addressing to determine the final destination
target. Message mediation is also appropriate if you already have applications utiliz-
ing web services and don’t want to alter their URL destinations. Instead, you can
specify Synapse as an HTTP proxy, and likely won’t have to make any direct code
changes. Sending the requests through Synapse allows for uniform logging, error han-
dling, and activity monitoring (cross-cutting type concerns). Using service mediation
makes sense if you’re exposing web services to external clients that aren’t using WS-
Addressing. You can provide them with a Synapse-based URL endpoint, without re-
vealing any details to the customer as to the actual endpoint being used—this is con-
sistent with the principles of service transparency.
Licensed to Deborah Christiansen <pedbro@gmail.com>

275Basic Apache Synapse message and service mediation
9.4.1 Simple message mediation example

Listing 9.1 shows a simple “hello world” style configuration, provided as
synapse_sample_opensoa_1.xml in the example code (see the README.txt file in the
chapter’s source code examples).

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <sequence name="main">
 <log level="custom">
 <property name="Text" value="Service called was"/>
 <property name="service: " expression="get-property('To')"/>
 </log>
 <in>
 <drop/>
 </in>
 </sequence>
</definitions>

All Synapse configurations begin with the definitions document root element b
which has the default namespace as shown (http://ws.apache.org/ns/synapse).
The permissible child elements can then include registry, localEntry, sequence,
endpoint, proxy, and task, all of which we’ll cover moving forward. In this case, we’re
using message mediation, which is defined through the sequence element c. The
sequence element with the @name attribute value set to main has special meaning: it’s
the entry point for all messages that arrive when using message mediation. In other
words, this sequence will always be encountered, and can be thought of as analogous
to a Java class with a static main() method.

 In listing 9.1, Synapse logging is illustrated using a custom level d, which in this
case prints out a static string value followed by outputting the value of the To property
associated with the inbound message (properties are described in the Apache Synapse
ESB – Configuration [SynapseLanguage]). The @expression attribute is used to print
out a valid XPath expression, which in this case uses a custom extension function
called get-property(). The property element itself can also be used independent of
logging to set and unset properties (you’ll see examples of this in the next chapter).

NOTE In addition to the get-property extension, you can also use those
defined in the extensive Jaxen XPath function library, documented at
http://jaxen.codehaus.org/apidocs/index.html. For example, to change
the service name to uppercase, you could use <property name="service-
upper-case: " expression="fn:upper-case(get-property('To'))"/>.

Finally, in the example in listing 9.1, you’ll notice the in element e. This element
identifies what mediators to perform when executing the request. In this case, we’re
simply stopping any further processing of the message in order to keep this example
simple. Normally, a corresponding out element is also present, which is used to

Listing 9.1 Simple message mediation example, which outputs called service to log

 b
 c

 d

 e
Licensed to Deborah Christiansen <pedbro@gmail.com>

276 CHAPTER 9 Enterprise integration and ESBs
perform mediator actions on the response received from the in element’s processing
(we’ll expand on this functionality shortly). If you submit a SOAP request and specify
the URL as the Synapse ESB port (such as sending to http://localhost:8280, which is
the default port for Synapse), you’ll see console output that prints out the property
values specified. If you change the log @level attribute to full (and remove the child
elements) and submit a request, you’ll see the inbound SOAP message printed to the
Synapse console, along with various property values (this is a good way to discover
what possible properties exist).

NOTE To simulate an inbound SOAP order, you can use soapUI (http://
www.soapui.org/) and import the soapUI project called soapui-
inbound.xml located in the sample code in the Chapter9/src/soapUI
directory. Then select any sample request and run it—the results will
appear in the Synapse console window.

You might now be wondering how you can differentiate between incoming messages
so that you can process them accordingly. When using message mediation, you can
most easily do this by using either the filter or switch mediator. Let’s first look at
how the filter element can be used with the example shown in listing 9.2.

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <sequence name="main">
 <log level="full"/>
 <in>
 <filter source="get-property('To')"
 regex=".*/CreateOrderService">
 <sequence key="CreateOrderService"/>
 </filter>
 </in>
 </sequence>

 <sequence name="CreateOrderService">
 <log level="custom">
 <property name="Text" value="Inside CreateOrderService"/>
 </log>
 <in>
 <drop/>
 </in>
 </sequence>
</definitions>

In this example, the filter element’s @source attribute identifies the property value
to be evaluated, followed by the @regex attribute, which represents the regular
expression used to interpret the value’s results (a boolean comparison, as shown in
b. For example, if the To address of the SOAP URL endpoint was http://
localhost:8280/CreateOrderService, the filter shown (.*/CreateOrderService)
would evaluate to true, thereby processing the filter’s child elements (when received

Listing 9.2 Example of filter mediator and reusable sequence

 b Matches URL using
regular expression

c
Invokes named
sequence

 d Defines
sequence
Licensed to Deborah Christiansen <pedbro@gmail.com>

277Basic Apache Synapse message and service mediation
by Synapse, the transport and host portion of the URL is stripped, leaving /Create-
OrderService). If the filter criteria aren’t met in listing 9.2, such as when a URL
doesn’t end with /CreateOrderService, no further processing occurs.

NOTE Another form of the filter element also exists, which only accepts a single
@xpath attribute that must evaluate to a boolean result. So this <filter
xpath="fn:contains(get-property('To'), '/CreateOrderService')">
is roughly equivalent to the example shown in listing 9.2.

The other notable difference between listing 9.2 and listing 9.1 is that in 9.2, a sepa-
rate sequence node with the @name attribute of CreateOrderService was defined d.
If the filter expression shown evaluates to true, that sequence is called, identified
by looking up the corresponding value of the @key attribute of the child sequence c.
This allows you to create more modular, and reusable, sequence definitions.

 Let’s take a look at how the switch element can be used to accomplish much the
same effect. While we’re at it, we’ll introduce a few new wrinkles. Listing 9.3 shows this
alternative approach using switch.

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <sequence name="main">
 <log level="full"/>
 <in>
 <switch source="get-property('To')">
 <case regex=".*/CreateOrderService">
 <sequence key="CreateOrderService"/>
 </case>
 <default>
 <sequence key="NotFound"/>
 </default>
 </switch>
 </in>
 </sequence>
 <sequence name="CreateOrderService">
 <log level="custom">
 <property name="Text" value="Inside CreateOrderService"/>
 </log>
 <in>
 <drop/>
 </in>
 </sequence>
 <sequence name="NotFound">
 <log level="custom">
 <property name="Text" value="Service not supported/found"/>
 </log>
 <in>
 <property name="RESPONSE" value="true"/>
 <makefault>
 <code value="tns:Receiver"
 xmlns:tns="http://www.w3.org/2003/05/soap-envelope"/>
 <reason value="Service not found"/>

Listing 9.3 Example of switch mediator and introduction to fault processing

 b Evaluates
inbound URL

 c
Defaults if no
match

 d Prints console
output

 e Indicates manual
response

f Creates a SOAP fault
Licensed to Deborah Christiansen <pedbro@gmail.com>

278 CHAPTER 9 Enterprise integration and ESBs
 </makefault>
 <send/>
 </in>
 </sequence>
</definitions>

As you can see, the switch statement is now used in lieu of filter. The switch ele-
ment takes a single attribute, @source, that identifies the value evaluated against in
the child case element’s @regex attribute. The switch construct b offers additional
flexibility since you can evaluate multiple case statements against it. Also, the optional
default element c can be used, as shown, to catch any messages that don’t meet the
existing case criteria. In this example, the sequence with a @name of NotFound is used
for the default option if no match is found.

 In the corresponding NotFound sequence d, notice that we also introduce some
new features. In particular, we use the makefault element f to force a SOAP fault to
be returned to the client. This would thus be returned if the URL of the inbound
SOAP message (stored in the To property) didn’t evaluate to the regex value of .*/
CreateOrderService. The SOAP response would be

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode
 xmlns:tns="http://www.w3.org/2003/05/soap-envelope">tns:Receiver
 </faultcode>
 <faultstring>Service not found</faultstring>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

You may be wondering what we accomplish by setting the RESPONSE property value to
true in listing 9.3 e. This value instructs the processing engine that the response to
the service call has been completed, and tells the engine to use, in this case, the
results of the makefault element as the response. In other words, you’re bypassing the
default behavior of executing the service request and returning the provided response
instead. We could also use this same approach with the CreateOrderService
sequence, so instead of currently returning no response, we could mock up a canned
reply by replacing the in element node with the following:

<in>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <script language="js"><![CDATA[
 mc.setPayloadXML(
 <CreateOrderResponse xmlns="uri:opensoa.chapter09.order">
 <Status>200</Status>
 <Message>Ok</Message>
 </CreateOrderResponse>);
]]></script>
 <send/>
</in>
Licensed to Deborah Christiansen <pedbro@gmail.com>

279Basic Apache Synapse message and service mediation
In this example, a JavaScript script snippet is used to generate a canned SOAP
response. We’ll cover the use of scripts in greater depth in the next chapter, but for
now, note that the script uses a handle to the message context, which is accessed
through the object variable called mc. This object includes the setPayloadXML
method, which can be used to set the response value returned. Notice that, in addi-
tion to setting the RESPONSE property to true, as we did in the previous example, a
header element is also present (header name="To" action="remove"). The header
element is used to manage the SOAP header envelope properties. The to property,
which is used in conjunction with WS-Addressing, is removed so that no attempt is
made to deliver the message to its destination endpoint. This wasn’t required when
generating the SOAP fault in listing 9.3, since the makefault mediator automatically
removed that header value.

While we’ve spent a little time going through this message mediation example, much
of what you learned will be used again as we proceed, so these are important building
blocks. Let’s now compare how service mediation contrasts with what we’ve seen with
message mediation.

9.4.2 Simple service mediation example

In service mediation, unlike with message mediation, you explicitly configure an end-
point URL address in the configuration. This approach has the benefit of eliminating
the need for the types of switch and filter statements we used with message media-
tion. Let’s look at the sample shown in listing 9.4.

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <proxy name="CreateOrderService" transports="http">
 <target>
 <inSequence>
 <log level="full"/>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>

Listing 9.4 Simple example of service mediation

Testing Synapse as an HTTP proxy
As pointed out previously, one of the main reasons for using message mediation is
that you can introduce it by using an HTTP proxy without requiring any modifications
to your existing web service clients. To test this feature, use the soapUI project as-
sociated with this section, soapui-inbound.xml, and then when running soapUI, select
File > Preferences. Then choose the Proxy Settings tab. In the Host field, enter local-
host, and in the Port field, enter 8280. You can then enter a bogus URL endpoint,
such as http://foo.com/bogus, and submit a request. You’ll see in the Synapse ESB
console that the message was received by the ESB and processed according to the
rules specified in your configuration XML.

 b Uses proxy
mediation now

 c Defines inbound mediator
Licensed to Deborah Christiansen <pedbro@gmail.com>

280 CHAPTER 9 Enterprise integration and ESBs
 <script language="js"><![CDATA[
 mc.setPayloadXML(
 <CreateOrderResponse xmlns="uri:opensoa.chapter09.order">
 <Status>200</Status>
 <Message>Ok</Message>
 </CreateOrderResponse>);
]]></script>
 <send/>
 </inSequence>
 </target>
 </proxy>
</definitions>

In listing 9.4, the proxy element b is now used instead of the sequence name="main"
to indicate that service mediation will be used. The term proxy is used by Synapse
because this form of mediation indicates that Synapse is acting as a proxy on behalf of a
service that’s being called. It’s analogous to when you grant the power of attorney to
someone; that individual is authorized to act on your behalf. In this case, you‘re let-
ting the Synapse configuration manage how the ultimate endpoint service is to be
called.

NOTE The URL for submitting a request against the configuration shown in list-
ing 9.4 would resemble http://localhost:8280/soap/CreateOrder-
Service, with a sample provided in the soapUI project.

The target element accepts three child elements: inSequence, outSequence, and
endpoint. inSequence c is used for inserting mediators on the outbound/request
message. In other words, you could use this element to modify the outbound message
prior to it being sent to its destination. In this example, we’re mocking up a response
directly, so we aren’t forwarding the message. outSequence is used when you want to
mediate the response received by the outbound service. In this example, there’s no
response to mediate, because we forced a response in inSequence by setting the prop-
erty RESPONSE to true. Finally, the endpoint is used to specify the destination for the
request. To demonstrate the use of endpoint and outSequence, let’s create a mock
web service that can be called. It will return the same XML as shown in listing 9.4, but
will be a stand-alone service. That way, when CreateOrderService is called, it will for-
ward the request to this mock web service. Listing 9.5 thus illustrates a more typical
use of the proxy configuration.

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <endpoint name="mock">
 <address uri="http://localhost:8280/soap/mockEndpoint"
 format="soap11"/>
 </endpoint>
 <proxy name="CreateOrderService" transports="http" trace="enable">
 <target>
 <endpoint key="mock"/>

Listing 9.5 Example of invoking a web service from within a proxy

b
Defines reusable
endpoint

c Uses defined
endpoint
Licensed to Deborah Christiansen <pedbro@gmail.com>

281Basic Apache Synapse message and service mediation
 <inSequence> <log level="full"/> </inSequence>
 <outSequence>
 <log level="full"/>
 <send/>
 </outSequence>
 </target>
 </proxy>
 <proxy name="mockEndpoint" transports="http">
 <target>
 <inSequence>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <script language="js"><![CDATA[
 mc.setPayloadXML(
 <CreateOrderResponse xmlns="uri:opensoa.chapter09.order">
 <Status>200</Status>
 <Message>Ok</Message>
 </CreateOrderResponse>);
]]></script>
 <send/>
 </inSequence>
 </target>
 </proxy>
</definitions>

In listing 9.5, the new mock web service we’ve created is defined within the proxy ele-
ment named mockEndpoint e. The ability to easily create such mock services is also
useful for testing purposes (see [Godage] for an excellent article on using this
approach). The use of reusable endpoints is also demonstrated in the listing, where
the mock endpoint is defined at the root level of the configuration b. The @format
attribute is used to identify the message protocol we’re using, in this example SOAP
v1.1. If @format is omitted, the format will be assumed to be the same as the incoming
request. This endpoint defined in b is then referenced, by way of the @key attribute
c, from within the CreateOrderService proxy definition (alternatively, we could
have specified the full URL by using the @uri attribute instead of the @key attribute).
Because this endpoint is defined as a child element of target, there’s no need to
explicitly issue a <send/> from within inSequence (indeed, doing so will cause loop-
ing issues). An equivalent target configuration is

<target>
 <inSequence>
 <send><endpoint key="mock"/></send>
 </inSequence>
 <outSequence> <log level="full"/> <send/></outSequence>
</target>

Here, the endpoint has been moved from a child of target to a child of send.
 Let’s turn now to the outSequence element in listing 9.5. Since it’s present, a

<send/> must be explicitly issued d. If the logging mediator weren’t needed as
shown, the entire outSequence could have been left out, since no other mediation on
the response message is being performed.

d Requires send

e
Defines mock
service
Licensed to Deborah Christiansen <pedbro@gmail.com>

282 CHAPTER 9 Enterprise integration and ESBs
NOTE Although we’ve been talking about inbound SOAP requests, we could’ve
just as well been using plain old XML (POX). The only difference is that
the inbound request from the client would need to have an HTTP
Content-Type header value set to application/xml, not text/xml, along
with omitting the SOAP envelop. The POX example in the soapUI project
demonstrates a simple XML request.

Now that we’ve covered some of the basics of configuring Synapse, the next chapter
will introduce you to more detailed examples using a significant portion of Synapse
functionality distilled through a real-life case study.

9.5 Summary
An enterprise service bus (ESB) is probably one of the most confusing technology cat-
egories to get your head around. In part, this is because an ESB is both a framework
and a tool, and its capabilities can vary significantly from product to product. How-
ever, we did isolate what are considered to be the key functionalities found in any full-
featured ESB, and we then identified the most appropriate uses of the technology in a
SOA environment. Because ESBs are so flexible, they can be subject to misuse, so we
touched on some examples of where this can occur.

 In the second portion of this chapter, we introduced Apache Synapse, which we
selected as the ESB for our Open SOA Platform. Synapse was chosen based on its com-
plete feature set, lightweight footprint, performance, and simplicity. It provides the
basic ESB functionality, and offers some unique features related to load balancing,
failover, and message metering.

 Now that we’ve got a solid understanding of the functionality and role of an ESB,
we can turn to the fun stuff: examples of implementing Synapse with an emphasis on
how it can be integrated with our other Open SOA products. This is our focus for the
next chapter.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ESB implementation
with Apache Synapse
In chapter 9 we introduced the enterprise service bus (ESB) and described its role
in service-oriented architecture (SOA). While there is some debate as to exactly
what constitutes an ESB, at its core it’s messaging middleware that provides such
services as message routing, transformation, and connectivity/bridging for a variety
of protocols. In the open source community, there are several outstanding ESB
choices, including Mule, Apache ServiceMix, and OpenESB, among others. For our
Open SOA Platform, we’ve selected Apache Synapse. Although you’ve seen a brief
hands-on introduction to Synapse, we haven’t explored the specifics of using the
product. We’ll cover those specifics in this chapter and place special emphasis on
integrating Synapse with the other products making up our Open SOA Platform.

 The documentation that comes with Synapse is fairly sparse, but a fairly compre-
hensive set of examples exists (70 examples, as of this writing). The examples are
well documented and easy to try out.

This chapter covers
■ Implementing a real-life case study
■ Using multiple protocols with Synapse
■ Advanced service mediation
283

Licensed to Deborah Christiansen <pedbro@gmail.com>

284 CHAPTER 10 ESB implementation with Apache Synapse
NOTE WSO2, the principal sponsor of Synapse, packages a Synapse-based prod-
uct called WSO2 ESB and has set up a portal website called the ESB Site,
located at http://esbsite.org. The site offers articles, code examples,
blogs, custom mediators, and video tutorials on Synapse and WSO2’s ESB;
it’s an excellent resource.

The examples that come with Synapse are purposely kept very simple so that they’re
easy to follow. This serves the purpose of introducing the user to the various Synapse
functionalities but often doesn’t reflect more real-world usage scenarios. We’ll bridge
that gap in this chapter by building a case study that becomes increasingly rich as the
chapter progresses. In addition, we’ll integrate Synapse with the other Open SOA
products we’ve discussed and demonstrate the synergies that can be achieved. Let’s
begin by looking at our hypothetical case study.

10.1 Learning Synapse through a case study
Our case study revolves around a sales order process for receiving electronic orders
from partners or customers. Orders can be received through a variety of communica-
tion protocols such as HTTP (SOAP or XML) or FTP, and then forwarded internally to
a jBPM business process. Once the order has been processed, a reply message is sent to
the order originator/customer. I chose this scenario as it is a fairly common process
used by service and manufacturing organizations alike. In the past, such a process
would typically be accomplished by adopting an electronic data interchange (EDI)
solution. However, the cost and complexity of EDI limited its appeal to all but the larg-
est of organizations. Fortunately, with the advent of standards-based web services lever-
aging the ubiquitous connectivity provided by the internet, small and medium-sized
businesses (SMBs) can now enjoy the benefits of such automation.

 The case study is broken into four phases, with each phase layering in some new
Synapse functionality. First I’ll provide an overview of the phases; when we get into the
details of each, you’ll see flow diagrams that describe the process we’re modeling.

10.1.1 Phase 1: typical web service mediation using error handling,
routing, and transport switching

In phase 1, we’ll configure Synapse to receive an inbound SOAP order using the OASIS
Universal Business Language (UBL) vocabulary [UBL]. UBL is one of the increasingly
popular business document libraries intended to standardize electronic communica-
tions between companies (other popular vocabularies include RosettaNet, the Open
Applications Group Integration Specification [OAGIS], and Electronic Business XML,
or ebXML). Once the UBL order is received, the XML is validated and converted into a
simplified XML format that’s more suitable for internal use. The transformation
includes adding a SOAP envelope that is then used for instantiating a jBPM business
process. You may recall that in chapter 7 we created a SOAP interface to jBPM, and we
used it as the basis for this example. The SOAP message used for instantiating the jBPM
Licensed to Deborah Christiansen <pedbro@gmail.com>

285Learning Synapse through a case study
process is transmitted via JMS, as this is a more robust protocol than HTTP, but is suit-
able only for internal communications.

 The features of Synapse that we’ll use in phase 1 of the case study include

■ SOAP over HTTP, configured as a Synapse proxy
■ XML validation mediator, which will be used to verify that the inbound UBL

order conforms with the UBL schema
■ The XSLT mediator to convert the UBL order into a format suitable for instanti-

ating a new jBPM business process
■ Protocol switching from SOAP over HTTP to SOAP over JMS for internal messaging

10.1.2 Phase 2: protocol/transport bridging and event propagation

In the second phase of the case study, we’ll demonstrate a scenario where a customer
is supplying the order in a comma-separated values (CSV) format over FTP. This
remains a common scenario, but unlike the SOAP solution described in phase 1, it
introduces some unique challenges, such as converting the CSV data file into XML and
for managing error handing, since it’s an asynchronous batch operation. As part of
this phase, we’ll also describe how to interface with Esper, the event stream processor
(ESP) we described in detail in chapter 8.

 In addition, one of the main advantages of using an ESB is that, as the central point
for all internal messaging, it’s ideally positioned as a propagator of business events. We
can employ a wiretap style mediator to simultaneously send events to Esper as they
flow through the bus.

 In all, the Synapse features we’ll demonstrate in phase 2 are

■ Use of a file system transport to pull files from either FTP or a local file system
■ Introduction of a custom mediator to process the CSV data file into XML
■ Use of the mail transport to email the customer if errors are encountered in val-

idating the data
■ Use of the clone mediator, which is a wiretap message pattern implementation

used to send a copy of the order to Esper

A frequent use of an ESB is supporting legacy-style protocols, such as the ones we’re
using with this example. The unfortunate fact remains that many companies only sup-
port these old “file-drop” style integrations, so it’s important that we demonstrate how
this can be supported within Synapse.

10.1.3 Phase 3: using tasks, scripting, and database integration

In phase 3 we’ll introduce some of the more advanced features of Synapse, such as
tasks, database integration using the database mediator, and message splitting. You’ll
learn how a task can be used to periodically poll another web service for information,
such as a sales order. Use of the database mediator will be demonstrated by using it to
look up customer details after an order has been received, and we’ll incorporate this
information to enrich the in-transit XML so that when it’s received internally, it has all
of the required information present.
Licensed to Deborah Christiansen <pedbro@gmail.com>

286 CHAPTER 10 ESB implementation with Apache Synapse
 To summarize, we’ll cover the following Synapse features:

■ Synapse tasks using the MessageInjector class
■ Database lookups using the DB mediator
■ Message splitting pattern implementation using the iterator mediator

By the end of this phase, you’ll have the essentials necessary to begin using Synapse as
a truly enterprise-class ESB.

10.1.4 Phase 4: quality of service mediation

In the last phase, we’ll focus on Synapse’s QoS features, which include WS-Security
support and what Synapse refers to as throttling. Like a lot of standards, WS-Security
was slow to be embraced, but it’s now gathering a fair amount of industry support.
Widespread adoption was predicated on the release of libraries such as Apache’s Ram-
part, which has subsequently been rolled into many open source and commercial web
service products, including Apache Axis 2.

 Synapse’s concept of throttling pertains to the ability to offer different service lev-
els for different clients, based on criteria such as the incoming IP address (or host-
name) associated with the request. You can use it to restrict access altogether, or for
capping the total number of requests allowed in a given period. This is a powerful fea-
ture, particularly for organizations wanting to adopt a Software as a Service (SaaS)
product offering.

NOTE Probably the most well-known SaaS offering is from Salesforce.com,
which provides a platform for building web-based business applications
that are remotely hosted. Salesforce offers a comprehensive SOAP-based
API that allows its clients to access, via service calls, nearly every aspect of
the application. Other well-known SaaS vendors include RightNow Tech-
nologies (CRM), Taleo (applicant tracking), HireRight (background
screening), and SuccessFactors (performance and talent management).

Throughout the course of these examples, we’ll demonstrate most of the Synapse con-
figuration language constructs, and also illustrate how to use the local and remote
registry capabilities. When completed with all phases of the case study, you’ll have a
solid understanding of how to use Synapse in your enterprise, and you’ll be armed
with some real-life examples from which to build on.

10.2 Phase 1: simple web service mediation
In phase 1 of the project, an inbound SOAP order is received by a customer (the role
we’re playing, as a supplier), validated, transformed, and deposited on a JMS queue
for arrival into a new jBPM process instance. The diagram in figure 10.1 shows an over-
view of the process.
Licensed to Deborah Christiansen <pedbro@gmail.com>

//tmp/synapsevfs/in
//tmp/synapsevfs/in
//tmp/synapsevfs/original%3c/parameter
//tmp/synapsevfs/original%3c/parameter
//tmp/synapsevfs/original%3c/parameter
//tmp/synapsevfs/original%3c/parameter
//tmp/synapsevfs/original%3c/parameter
//tmp/synapsevfs/original%3c/parameter

287Phase 1: simple web service mediation
Each step in the process is described in table 10.1, cross-referenced using the
sequence number shown in the diagram.

Table 10.1 Phase 1 project steps

Step # Description Synapse feature

1 A customer places a sales order request using the UBL-Order-
2.0 XML Schema. The message protocol is using SOAP, over an
HTTP transport. We’ll simulate this traffic using the soapUI
testing tool (open source).

2 The inbound SOAP request is received by Synapse, which then
validates the XML against the UBL schema. When using XML-
based web services, this is always a prudent step to ensure
the message content adheres to what was mutually agreed.

SOAP endpoint proxy and
validate mediator

3 Once validated, the next step is to transform the UBL XML for-
mat into a simplified internal XML sales order format. The ulti-
mate recipient of the new order will be a jBPM process
instance, so we’re also wrapping the order document within
the web service wrapper we created in chapter 7.

XSLT mediator

4 Internally, JMS is used as the preferred transport, due to its
reliability and ease by which we can set up multiple queue lis-
teners for simple load balancing. We’ll use Synapse’s trans-
port-switching ability to deposit the internal SOAP message
into a JMS queue.

Transport switching from
SOAP over HTTP to SOAP
over JMS

5 The jBPM web service interface developed in chapter 7 using
SCA/Synapse will be used to lift the incoming SOAP-over-JMS
message and start a new jBPM business process instance.

Figure 10.1 Phase 1 case study process diagram
Licensed to Deborah Christiansen <pedbro@gmail.com>

288 CHAPTER 10 ESB implementation with Apache Synapse
Let’s start by examining the inbound message that initiates the process.

10.2.1 Sales order initiation

To make this case study reflective of a real-life scenario, we’ll transmit the sales order
using the UBL business document schema. UBL doesn’t, by itself, provide a SOAP enve-
lope for transmitting messages, so I crafted a simple WSDL and created a single-service
operation called CreateOrder. A depiction of the schema appears in figure 10.2 (you
can find the complete WSDL, called ubl_order.wsdl, in chapter 10’s sample code).
In figure 10.2 under the CreateOrderPortType’s CreateOrder operation, you can see
that the input XML is represented by the order:CreateOrder element. Investigate the
actual WSDL code, and you’ll see that this points to a UBL schema (which I trimmed to
make our example easier to follow) that corresponds to the UBL Order document.
This WSDL can then be shared with the hypothetical business partner so that they can
place an order.

 Now that we have a WSDL that describes our web service, we can move on to the
fun stuff—creating a Synapse project definition that configures the ESB to receive the
inbound SOAP message.

6 Once the order has been successfully received and fulfillment
completed in the jBPM business process, an outbound mes-
sage will be generated to the customer, verifying that the order
has been accepted.

7 Synapse will receive the inbound JMS message. JMS endpoint

8 Synapse will use protocol switching to convert the message
into an outbound HTTP message.

HTTP sent using SOAP for-
mat

9 The client/customer receives the order confirmation message
(we will stub this out).

Table 10.1 Phase 1 project steps (continued)

Step # Description Synapse feature

Figure 10.2 The WSDL used for capturing inbound sales order from a hypothetical customer
Licensed to Deborah Christiansen <pedbro@gmail.com>

289Phase 1: simple web service mediation
10.2.2 Configuring the service mediation proxy and using validation
mediation

As shown in figure 10.1, we’ll configure Synapse to receive the inbound order so that
it can then perform various actions on the request. Let’s begin by configuring a service
mediator (proxy) that includes a validation of the inbound XML, as shown in listing 10.1.

<definitions xmlns="http://ws.apache.org/ns/synapse">
 <registry
 provider="org.apache.synapse.registry.url.SimpleURLRegistry">
 <parameter name="root">
 file:./repository/conf/opensoa/resources/
 </parameter>
 <parameter name="cachableDuration">150000</parameter>
 </registry>
 <endpoint name="mock">
 <address uri="http://localhost:8280/soap/mockEndpoint"/>
 </endpoint>
 <proxy name="CreateOrderService" transports="http" >
 <target>
 <endpoint key="mock"/>
 <inSequence>
 <log level="full"/>
 <validate source="//*[local-name()='Order']">
 <schema key="schemas/ubl.xsd"/>
 <on-fail>
 <makefault>
 <code value="tns:Receiver"
 xmlns:tns="http://www.w3.org/2003/05/soap-envelope"/>
 <reason value="Invalid Order Request"/>
 </makefault>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <send/><drop/>
 </on-fail>
 </validate>
 </inSequence>
 </target>
 </proxy>
 <proxy name="mockEndpoint" transports="http">
 <target inSequence="sequence/mockProxy.xml"/>
 </proxy>
</definitions>

Some of what’s shown in listing 10.1 we covered in the previous section, but we’ve
introduced some new functionality. The registry node b is used to define a remote
registry that’s used by the configuration (though in this case it’s just referring to a
local file system location). Many of the definitions and artifacts used by a configura-
tion can reside in a registry, which simplifies maintenance and promotes reuse. The
@provider attribute identifies the class used to manage the registry. In this case, we’re

Listing 10.1 Service mediation using XML validation and remote registry

 b
Defines
registry

 c Identifies
XPath location

Identifies XSD
used for
validation

d

e
Defines fault
behavior

f Terminates
processing

g Defines
mock proxy

Invokes named
sequence

h

Licensed to Deborah Christiansen <pedbro@gmail.com>

290 CHAPTER 10 ESB implementation with Apache Synapse
using a URL-based registry that comes with Synapse, but you can add your own, if nec-
essary. The SimpleURLRegistry can cache registry entries, with the refresh period
specified through the @cachableDuration parameter. The root parameter identifies
the root location for the resources that can be loaded; that way, subsequent references
to those resources can be conveniently set as path fragments appended to that loca-
tion (we’ll see this used in a moment).

 What are we storing in the registry? We’re using it to store the location of the UBL
XSD schema that’s used to validate the inbound CreateOrderService request (to
refresh your memory, the OASIS Order document is used to represent the inbound
order schema we’re using in the case study). The schema validation is performed
using the validate mediator, which is defined in c. The scheme child element’s @key
attribute is used to locate the XSD file d using the registry’s root path element
(schemas/ubl.xsd). The @source attribute of the validate element identifies, via an
XPath expression, where the validation should begin within the XML. In this case,
we’re specifying the Order element as the root. An example order can be found in the
soapUI project in this section’s source code, but for those eager for a glimpse,
figure 10.3 shows a little fragment of what the order resembles.

 Continuing with the example from listing 10.1, the validate statement accepts
an optional on-fail element e. This identifies what actions to take in the event
that the validation fails. One or more mediators can be included here, but for now
we’re only calling the makefault mediator to force generation of a SOAP fault.
Finally, the fault response is sent back to the client and further processing of the
message is terminated f.

 The last thing to point out is the definition of the mockEndpoint g proxy. You may
remember from listing 9.5 in the previous chapter that we used mockEndpoint to sim-
ulate, or mock, a SOAP response. In this case, its full definition has been removed
from the configuration and placed in a file accessible to the repository called
sequence/mockProxy.xml. The contents of that file are as follows:

Figure 10.3 Example of an inbound CreateOrderService SOAP request
Licensed to Deborah Christiansen <pedbro@gmail.com>

291Phase 1: simple web service mediation
<sequence name="mockProxy" xmlns="http://ws.apache.org/ns/synapse">
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <script language="js"><![CDATA[
 mc.setPayloadXML(
 <CreateOrderResponse xmlns="uri:opensoa.chapter10.order">
 <Status>200</Status>
 <Message>Ok</Message>
 </CreateOrderResponse>);
]]></script>
 <send/>
</sequence>

This code does differ slightly from the code in listing 9.5 since we’re defining a
sequence and not a proxy. In this case, the proxy definition h in listing 10.1 specifies
the inSequence as a named sequence available through the registry path provided.
You could, for example, choose not to use a registry and instead include the sequence
node directly within the configuration; then you’d reference it by the name assigned
the sequence, mockProxy.

 When using an external file, a final, but important, note is the namespace declara-
tion that is used in the stand-alone file containing the sequence (xmlns=http://
ws.apache.org/ns/synapse). This is required, and if omitted, the sequence will fail
when invoked (with little reason provided as to why it failed, so be warned).

 The next step, once the message has passed validation, is to transform the UBL
order XML into the simplified XML used internally for processing orders. This
requires the XSLT mediator.

10.2.3 Configuring XSLT mediation

One of the most frequent uses of an ESB is to transform an in- or outbound message
from one XML format or vocabulary into another. Synapse makes doing so a straight-
forward endeavor. In our case study, a hypothetical order arrives in the UBL XML for-
mat, and we want to transform it into a simple schema—one without the namespaces
and complex structure of UBL documents. We won’t go through the process of devel-
oping the XSLT file, as that’s beyond the scope of this book. The XSLT file I developed
for this example is called mapUBLOrder.xslt, and you can find it in the source code
for this section.

 In listing 10.1 we demonstrated the use of a remote registry. This time around,
we’ll use a local registry and illustrate how it can be used. The main distinction
between a local and a remote registry is that, when using a local registry, you’re lim-
ited to specifying a file within the file system that Synapse is running under. A local
registry is specified using the localEntry element, which is defined at the main root
level of the configuration (where registry was located in listing 10.1). For example:

<localEntry key="xslt-key"
 src="file:repository/conf/opensoa/resources/xslt/mapUBLOrder.xslt"/>
Licensed to Deborah Christiansen <pedbro@gmail.com>

292 CHAPTER 10 ESB implementation with Apache Synapse
Then you can reference that key within the xslt mediator definition, which in this
case is located immediately following the validate node, since we want to run the
transformation only if the inbound XML is valid. The xslt statement is defined as

<xslt key="xslt-key" source="//*[local-name()='CreateOrder']"/>

As you can see, the @key value (xslt-key) corresponds to the localEntry we just
defined. The xslt element’s optional @source attribute serves the same purpose as it
did in the validate element: to identify the child node where the XSLT processing
should begin. In this example, we use the XPath local-name function so that we don’t
have to fuss with the namespace of the CreateOrder element. Otherwise, you could
use this:

<xslt key="xslt-key" source="//order:CreateOrder"
 xmlns:order="uri:opensoa.chapter10.order"/>

NOTE The sample configuration that demonstrates the xslt mediator is called
synapse_sample_opensoa_7.xml. It can be invoked using the run.exam-
ple.07 ant target and tested by submitting a request using the sample
soapUI project. You should see the modified XML in the Synapse console.

The XML transformation not only converts the order into the proper internal format,
but it also prepares the message for consumption by the service that will be used to
instantiate a new jBPM business process instance. You learned about the web service
interface in chapter 7.

 Let’s now demonstrate how Synapse can easily bridge multiple transports.

10.2.4 Transport switching from HTTP to JMS

To run the examples for this section, you’ll need an instance of JMS running, and
you’ll need to configure Synapse to support JMS. The README.txt file in the source
code describes how to configure Apache ActiveMQ as the JMS server. The setting
changes required in Synapse to interact with it are minimal. To keep things simple,
we’ll mock the jBPM JMS service (though in this section’s code samples, you can run a
complete end-to-end test). This approach has the added advantage of showing you
how to configure a JMS listener in Synapse. Let’s start by first creating the mock JMS
service, which will simulate the jBPM process receiving the inbound message, and then
we’ll tackle configuring the ESB to submit a message on a JMS queue.
CONFIGURING A MOCK JMS SERVICE PROXY

You’ll be surprised at the ease with which you can set up a JMS proxy service that Syn-
apse can use to listen to a queue for inbound messages. Since the JMS configuration
properties are defined in the axis2.xml file, Synapse will automatically associate the
name (the @name attribute) assigned to the proxy to the JMS queue it’s listening on
(see listing 10.2).
Licensed to Deborah Christiansen <pedbro@gmail.com>

293Phase 1: simple web service mediation
<proxy name="CreateProcessInstanceService"
 transports="jms">
 <target>
 <inSequence>
 <property action="set" name="OUT_ONLY"
 value="true"/>
 <property name="RESPONSE" value="true"/>
 <script language="js">
 <![CDATA[mc.setPayloadXML(
 <createProcessInstanceResponse
 xmlns="http://vo.sca.opensoa-ch10/xsd">
 <processInstanceId>1001</processInstanceId>
 </createProcessInstanceResponse>);]]>
 </script>
 <send/>
 </inSequence>
 </target>
</proxy>

As you can see in listing 10.2, the name assigned to the proxy definition is Create-
ProcessInstanceService b; that’s also the queue name it will be listening for. Syn-
apse knows to use JMS since the @transports attribute is assigned to jms. Beyond that,
the only difference between this and the SOAP previous mock service is the creation
and setting of the property called OUT_ONLY c. This property is used to indicate that
the message processing doesn’t expect a response since we’re generating the response
manually. Pretty simple, huh? Let’s look at the modified proxy service that will then
submit requests to the JMS queue that we’re subscribing to in listing 10.2.
CONFIGURING THE PROXY TO SUBMIT THE JMS MESSAGE

In listing 10.1 we defined the proxy CreateOrderService, the service that receives the
inbound UBL order from the customer or partner. Now we need to make a few
changes to the proxy. Previously, we configured CreateOrderService to validate,
transform, and ultimately send the request to a SOAP-over-HTTP endpoint. Let’s
replace the endpoint definition with the assigned name of mock in listing 10.1 with the
following, which is now using JMS to interface with the mock endpoint we created in
listing 10.2:

<endpoint name="MockCreateProcessInstanceService">
 <address uri="jms:/CreateProcessInstanceService?
 ➥transport.jms.ConnectionFactoryJNDIName=QueueConnectionFactory&
 ➥java.naming.factory.initial=
 ➥org.apache.activemq.jndi.ActiveMQInitialContextFactory&
 ➥java.naming.provider.url=tcp://localhost:61616&
 ➥transport.jms.DestinationType=queue" format="soap11"/>
</endpoint>

The @uri attribute value has now been configured to send the message to the same
JMS queue that we assigned in the proxy mock service in listing 10.2. (The other
parameter value settings are typical ActiveMQ configuration settings and aren’t

Listing 10.2 Example of JMS proxy listener configuration

b
Defines new
proxy

c
Requires property
for JMS
Licensed to Deborah Christiansen <pedbro@gmail.com>

294 CHAPTER 10 ESB implementation with Apache Synapse
unique to Synapse.) The only other change is updating the endpoint key to
<endpoint key="MockCreateProcessInstanceService"/> in the proxy definition
for CreateOrderService (see synapse_sample_opensoa_8.xml in the source code).

 These are all the changes necessary to perform the transport switch from receiving
as SOAP over HTTP to sending to an endpoint as SOAP over JMS. There’s one minor
improvement we can make related to manageability. Specifying the endpoint address
in the ESB configuration file isn’t always desirable, since it can be dynamically deter-
mined by interrogating the WSDL associated with the SOAP service. How can this be
accomplished? The first step is to modify the SOAP’s WSDL so that it includes binding
and service definitions for JMS (a lot of people assume that a WSDL is only used in con-
junction with SOAP over HTTP, but a WSDL is actually transport neutral). In chapter 7
we created a WSDL for the jBPM web services we developed, but that only included
HTTP bindings. Listing 10.3 is an example of an added JMS binding.

<wsdl:binding name="CreateProcessInstanceJMSBinding"
 type="ns1:CreateProcessInstancePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/jms"/>
 <wsdl:operation name="createProcessInstance" >
 <soap:operation soapAction="" style="document"/>
 <wsdl:input><soap:body use="literal"/></wsdl:input>
 <wsdl:output><soap:body use="literal"/></wsdl:output>
 </wsdl:operation>
</wsdl:binding>

The main difference between listing 10.3 and the standard HTTP binding we defined
earlier is the soap:binding’s @transport attribute value, which identifies it as JMS b.
The @soapAction attribute has also been set to "" c, since that value is most typically
passed as an HTTP header property, which isn’t directly relevant in JMS. Obviously, this
doesn’t specify the endpoint URL JMS address—we do this using the soap:address
element in the wsdl:service definition, as shown in listing 10.4.

<wsdl:service name="CreateProcessInstance">
 <wsdl:port name="SOAP"
 binding="ns1:CreateProcessInstanceSOAP11Binding">
 <soap:address
 location="http://localhost:8085/CreateProcessInstanceService"/>
 </wsdl:port>
 <wsdl:port name="JMS"
 binding="ns1:CreateProcessInstanceJMSBinding">
 <soap:address location=
 ➥"jms:/CreateProcessInstanceService?
 ➥transport.jms.ConnectionFactoryJNDIName=
 ➥QueueConnectionFactory&
 ➥java.naming.factory.initial=
 ➥org.apache.activemq.jndi.ActiveMQInitialContextFactory&

Listing 10.3 Example of WSDL JMS binding configuration

Listing 10.4 Setting up a WSDL service for use with JMS binding

 b Specifies JMS as
transport type

c
Sets soapAction
to ""

 b
Specifies SOAP
binding

c Specifies JMS binding

Defines JMS
parameters
Licensed to Deborah Christiansen <pedbro@gmail.com>

295Phase 1: simple web service mediation
 ➥java.naming.provider.url=
 ➥tcp://localhost:61616?wireFormat.maxInactivityDuration=0"/>
 </wsdl:port>
</wsdl:service>

In listing 10.4, the wsdl:service definition includes the original wsdl:port defini-
tion for the HTTP binding b, but now it has an additional wsdl:port node c for the
new JMS binding we created in listing 10.3. This node has the same JMS URL specified
in the @location attribute that we specified earlier in the ESB configuration file. The
WSDL now includes provisions for both HTTP and JMS. You might be wondering
whether this is worth the trouble, so let’s see how this WSDL can now be used in the
ESB configuration.

 Until now, the endpoint nodes we’ve defined have all used the address child ele-
ment (see listing 10.1). However, you can also specify a wsdl element in lieu of the
address element. wsdl enables you to define the endpoint URL by referencing (or
looking up) the service in a WSDL file. For example, to reference the service we
defined in listing 10.4, we’d use this:

<endpoint>
 <wsdl uri="file:repository/conf/opensoa/resources/wsdl/jbpm-ch10.wsdl"
 service="CreateProcessInstance" port="JMS"/>
</endpoint>

Now we no longer have to specify the URL address in the Synapse configuration file. If
the URL changes in the WSDL (for example, the JMS queue name is used), no changes
would be have to be made in the ESB configuration. When managing lots of services,
this strategy is clearly advantageous.

 So what have we done up to this point in our case study? We’ve configured steps 1–
4 shown in figure 10.1. We’ve set up an ESB proxy service to receive the inbound
order, validate the XML, transform the XML, and deposit the message to a JMS queue.
So we’ve accomplished a great deal! What remains are steps 5–9, where the jBPM ser-
vice receives the inbound JMS message, creates a jBPM process instance, and sends a
confirmation back to the hypothetical customer. Since we’re focusing on Synapse
now, we’ll skip steps 5–6, which pertain to creating the jBPM process instance. The
README.txt associated with this chapter’s examples demonstrates how to set up this
part, and it builds on what we developed in chapter 7. Let’s skip ahead to steps 7–9,
where the Synapse ESB will receive a JMS message sent through the jBPM process
instance and send a confirmation of the order back to the customer.

10.2.5 Transport switching from JMS to HTTP

Figure 10.4 shows an example of the XML response that’s sent by the jBPM process
instance upon approval of the sales order. It’s obviously a simple XML document.
The UBL order response, which is a bit more involved, appears in the foreground in
the figure.
Licensed to Deborah Christiansen <pedbro@gmail.com>

296 CHAPTER 10 ESB implementation with Apache Synapse
Thus, in addition to receiving the message via JMS from jBPM, we need to convert the
XML to the external UBL OrderResponseSimple document type. This is a simple map-
ping for an XSLT style sheet, as you can see in figure 10.5.

 With the style sheet in hand, we can now configure the ESB to listen for the JMS
message sent from jBPM and forward it as a UBL OrderResponseSimple response to
the customer. This follows closely with what we learned earlier. The first thing we’ll do
is create a mock web service that simulates the one we’d expect to be hosted by the
customer receiving the order response.

Figure 10.4 An example of XML sent by the jBPM process instance and ultimately to the hypothetical
customer

Figure 10.5 Mapping between internal and external order responses (response.xslt in the sample)
Licensed to Deborah Christiansen <pedbro@gmail.com>

297Phase 1: simple web service mediation
CREATING A MOCK WEB SERVICE FOR THE CUSTOMER ORDER RESPONSE SERVICE

The endpoint name we’ll assign for the mock service is OrderResponseService. To
keep our configuration file clean, we’ll use the registry feature and reference the con-
figuration from an external file. Here’s the definition of the service in the main ESB
configuration:

<proxy name="OrderResponseService" transports="http">
 <target inSequence="sequence/mockProxyResponse.xml"/>
</proxy>

The contents of the file sequence/mockProxyResponse.xml look like this:

<sequence name="mockProxyResponse" xmlns="http://ws.apache.org/ns/synapse">
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <script language="js"><![CDATA[
 mc.setPayloadXML(
 <AckOrderResponse xmlns="uri:opensoa.chapter10.order">
 <Status>200</Status>
 <Message>Ok</Message>
 </AckOrderResponse>);]]></script>
 <send/>
</sequence>

By this point, this likely all looks very familiar. We’re simply generating a hard-coded
mock response, so when you submit a request locally to the ESB using a URL such as
http://localhost:8280/soap/OrderResponseService, you’ll receive the XML reply
shown in the setPayloadXML method. We now have our service that simulates a
response we’d anticipate receiving from a customer. Next, we’ll develop the service to
receive the JMS message from jBPM, transform it, and send it to the mock service we
just developed.
CREATING A JMS RECEIVER SERVICE AND TRANSPORT SWITCHER

To complete the exercise for this section (steps 7 and 8), we’ll create the JMS receiver/
listener service, which receives the response message from jBPM and then sends it as a
UBL response, as shown in figure 10.1. We’ll begin with defining the proxy service:

<proxy name="SendOrderResponse" transports="jms">
 <target inSequence="sequence/jmsOrderReceiver.xml">
 <endpoint>
 <address uri="http://localhost:8280/soap/OrderResponseService"
 format="soap11"/>
 </endpoint>
 </target>
</proxy>

Since the proxy service is receiving a JMS message, we set the @transports attribute to
jms. The endpoint address is set to the mock OrderResponseService we defined in
the previous step.

NOTE You can specify multiple transports for a given proxy definition, so you
could, for instance, specify @transports="jms,http,https".
Licensed to Deborah Christiansen <pedbro@gmail.com>

298 CHAPTER 10 ESB implementation with Apache Synapse
Let’s now look at the definition for the sequence associated with the SendOrder-
Response proxy, which is located in sequence/jmsOrderReceiver.xml:

<sequence name="mockProxyResponse" xmlns="http://ws.apache.org/ns/synapse">
 <log level="custom">
 <property name="Text" value="jmsOrderReceiver.xml was invoked"/>
 </log>
 <property action="set" name="OUT_ONLY" value="true"/>
 <xslt key="xslt-key-resp" source="//*[local-name()='OrderResponse']" />
</sequence>

The xslt element’s @key attribute value (xslt-key-resp) references a localEntry
defined in the main ESB configuration (localEntry definitions are global, and thus
visible in the entire configuration). localEntry is defined as

<localEntry key="xslt-key-resp"
 src="file:repository/conf/opensoa/resources/xslt/response.xslt"/>

This code will transform the XML response from the jBPM process instance into the
formal UBL response required by the customer.

 This completes the configuration required for phase 1. What remains is to test the
JMS response we just configured. Since the JMS message initiates the outbound order
response, we can manually create the message using the ActiveMQ web console and
admin facility (if you’re using 5.0 or above). To do so, you simply navigate to the
admin URL (assuming you are running it locally) at http://localhost:8161/admin,
and then select Queues from the menu bar. This will return a list of queues that have
been defined for that instance. For each queue, a list of operations appear; these
include Send To, Purge, and Delete. Choose Send To, and enter the contents of the
file ExampleOrderResponseFromjBPM.xml into the Message Body text area. Then
click Send to submit the message to the JMS queue, where it will be picked up by the
ESB’s SendOrderResponse proxy service.

 If you glance back to figure 10.1, you’ll see that we’ve accomplished a great deal in
this section. You now have a pretty solid understanding of how Synapse works. In the
process of building our case study, we covered many of the basics of using the ESB.
The most typical uses of an ESB include validation, routing, transformation, and trans-
port switching. You’ve seen all of these functions put to good use.

 Consider for a moment what would be required programmatically if you did all
these things the old-fashioned way, by just coding everything in custom Java classes.
I think you’ll find that you’d have spent considerably more development and QA time;
the solution you’d end up with would be mostly one-off in nature, and it wouldn’t likely
be as easily reconfigured and maintained through declarative XML files.

 In the rest of this chapter, we’ll continue to expand the scope of the case study,
and in the process, cover several other important ESB functions. This includes using
FTP, additional mediators, and scripting support.
Licensed to Deborah Christiansen <pedbro@gmail.com>

299Phase 2: VFS, CSV, email, and message wiretap
10.3 Phase 2: VFS, CSV, email, and message wiretap
In phase 2, we’re demonstrating some additional features of Synapse, such as Apache
Commons VFS support (used for FTP and local file system support); SMTP; and the use
of a wiretap-style messaging pattern to forward a message to multiple recipients. Fig-
ure 10.6 shows the changes introduced in this phase.

As figure 10.6 shows, the order will now arrive over a file system in CSV format. If any
errors occur while validating the order, an email will be sent to the support team for
troubleshooting. In addition, a copy of the inbound order (or error exception) will
be forwarded to Esper, the event stream processor (ESP) we discussed in chapter 8.
Let’s start by configuring the Apache VFS transport, which is used for FTP and local
file access.

10.3.1 Using the VFS transport

Apache VFS is part of the Apache Commons project [Commons], which provides highly
regarded Java libraries for a variety of common tasks. VFS (short for Virtual File System)
provides a single API for accessing various file systems [ApacheVFS]. These include FTP,
local files, HTTP/HTTPS file retrieval, and SFTP, as well as a variety of compression-
related file types such as ZIP, TAR, and JAR. Synapse has taken Commons VFS and
wrapped it as a supported ESB transport type, so it supports all VFS-related file systems.
While our diagram in figure 10.6 alluded to FTP, to simplify things we’ll use local files,
but the setup is nearly identical to that of FTP (and sample 254 that comes with Synapse
illustrates FTP). We’ll begin by using a SOAP XML file for retrieval, and then in the next
section, we’ll move to CSV. Listing 10.5 shows the initial proxy service definition.

Figure 10.6 Phase 2 of the new order case study
Licensed to Deborah Christiansen <pedbro@gmail.com>

300 CHAPTER 10 ESB implementation with Apache Synapse
<proxy name="VFSFileReceiverService" transports="vfs">
 <parameter name="transport.vfs.FileURI">
 file://tmp/synapsevfs/in
 </parameter>
 <parameter name="transport.vfs.ContentType">text/xml</parameter>
 <parameter name="transport.vfs.FileNamePattern">.*\.xml</parameter>
 <parameter name="transport.PollInterval">15</parameter>
 <parameter name="transport.vfs.MoveAfterProcess">
 file://tmp/synapsevfs/original</parameter>
 <parameter name="transport.vfs.MoveAfterFailure">
 file://tmp/synapsevfs/original</parameter>
 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">MOVE</parameter>

 <target>
 <endpoint>
 <wsdl
 uri="file:repository/conf/opensoa/resources/wsdl/jbpm-ch10.wsdl"
 service="CreateProcessInstance" port="JMS"/>
 </endpoint>
 <outSequence>
 <property name="transport.vfs.ReplyFileName"
 expression="fn:concat(fn:substring-after(
 get-property('MessageID'), 'urn:uuid:'), '.xml')"
 scope="transport"/>
 <send>
 <endpoint>
 <address uri="vfs:file:////tmp/synapsevfs/out"/>
 </endpoint>
 </send>
 </outSequence>
 </target>
</proxy>

The basic principle used by the VFS transport is that you define a file system location
that will be periodically polled for incoming files. When a file exists that matches the
filter criteria, the contents will be lifted from it, and can thereby be sent to an end-
point location for processing. The first thing to notice when setting up the proxy in
listing 10.5 is that vfs is identified as the transport b. The set of parameters that fol-
low are, as the @name attributes value suggests, VFS transport specific. First, the loca-
tion of where to poll for the incoming files is identified through the parameter
transport.vfs.FileURI c. Since we’re using a local file system, the location is pref-
aced by file://[absolute-path], but if you were using FTP, it would follow the format of
ftp://[username[: password]@]hostname[:port][absolute-path].

NOTE When testing in your own environment, you’ll want to set up your own
local directory structure and modify those places in listing 10.5 where the
file:// protocol is specified.

Listing 10.5 Example VFS proxy service configuration

 b

 c d

e

f g

 h

 i
Licensed to Deborah Christiansen <pedbro@gmail.com>

301Phase 2: VFS, CSV, email, and message wiretap
The transport.vfs.ContentType parameter d is used to identify the type of file
being processed. The Synapse language guide [SynapseLanguage] lists the possible
values for this, and the selection you make is important as it determines how the file’s
contents will be read (we’ll revisit this when we start using an actual CSV file). In this
case, since we’re starting with SOAP/XML, text/xml is used as the MIME type. The
next parameter e, transport.vfs.FileNamePattern, is used as an inclusion filter to
determine which files are eligible for processing. In this case, we’re just processing
files that end in .xml. The interval for how often to read the file system is controlled
through the transport.PollInterval parameter f. In this example, we’re asking
the ESB to check every 15 seconds.

 The remaining parameters g deal with how to manage processed and failed files,
and descriptions can be found in the Synapse language configuration guide. Related
to this is the setting of transport.vfs.ReplyFileName, which occurs in the out-
Sequence h. What does the @expression attribute value shown here accomplish?
Every message that flows through the ESB is assigned a globally unique identifier
(GUID), which is automatically assigned to the MessageID message context property.
The value of MessageID is appended with .xml, and this is used as the processed file’s
name when it’s stored once the file has successfully been processed. The directory
location where it’s stored is specified in the outSequence’s endpoint address i.

 To test this out, you can simply drop a valid SOAP XML file into the location
assigned to the property transport.vfs.FileURI. You’ll then see activity in the ESB
console if configured properly. Of course, this isn’t entirely what we want in this case
study, as we’re anticipating a CSV file, not a SOAP XML file.

10.3.2 Working with CSV files

Out of the box, Synapse doesn’t include a specific mediator for working with CSV files.
While some creative XSLT can be used for such purposes, creating such a style sheet
can be a little tedious. Fortunately, WSO2’s esbsite.org provides a free marketplace
where other Synapse users can submit their own custom mediators (you can also cre-
ate your own mediator fairly easily; learn how at http://wso2.org/library/2936). One
such custom mediator that has been submitted is called OpenCSV Mediator [CSVMedia-
tor], and it will be used in this demonstration.

NOTE To install OpenCSV Mediator, copy the two provided JAR files (csv.jar and
opencsv-1.8.jar) to the Synapse home’s lib directory.

When using a custom mediator, you use the class element to define the full class name
(including the package) of the custom mediator you’re invoking (the author can also
create an XML configuration domain-specific language [DSL], but this is optional). In
this case, the custom mediator is invoked using

<class name="org.apache.synapse.contrib.OpenCSVtoXML"/>

The OpenCSV library on which this mediator is based (http://opencsv.source-
forge.net/) has numerous options for parsing a CSV. By default, it will use the first row
Licensed to Deborah Christiansen <pedbro@gmail.com>

302 CHAPTER 10 ESB implementation with Apache Synapse
to identify the column names, and we’ll adhere to that format for this example (a sam-
ple file called CSVOrder.csv is provided in this chapter’s example code). Let’s modify
the code from listing 10.5 to use this new custom mediator (see listing 10.6).

<proxy name="VFSFileReceiverService" transports="vfs">
 <parameter name="transport.vfs.FileURI">
 file://tmp/synapsevfs/in</parameter>
 <parameter name="transport.vfs.ContentType">
 application/octet-stream</parameter>
 <parameter name="transport.vfs.FileNamePattern">
 .*\.csv
 </parameter>
 <!-- other properties same as listing 10.5 -->
 <target>
 <endpoint>
 <wsdl
 uri="file:repository/conf/opensoa/resources/wsdl/jbpm-ch10.wsdl"
 service="CreateProcessInstance" port="JMS"/>
 </endpoint>
 <inSequence>
 <class
 name="org.apache.synapse.contrib.OpenCSVtoXML"/>
 </inSequence>
 <!-- outSequence as same as listing 10.5 -->
 </target>
</proxy>

In listing 10.6 we’ve changed the transport.vfs.ContentType to application/
octet-stream b. We did this because the CSV mediator was designed to receive
binary data, not text/plain. We also modified the inclusion filter, which now is
expecting files with the extension of .csv instead of the previously configured .xml c.
Finally, we included the mediator definition inside the inSequence phase d. The
resulting XML that appears when the CSV file is processed resembles this:

<csv xmlns="http://ws.apache.org/synapse/ns/csv">
 <col-defn n="17">
 <col name="TransactionID"/>
 <col name="SalesOrderId"/>
 <!-- other columns here -->
 </col-defn>
 <data>
 <row n="1">
 <col name="TransactionID">AEG012345</col>
 <col name="SalesOrderId">CON0095678</col>
 <!-- other columns here -->
 </row>
 </data>
 </csv>

As you can see, the col-defn node shows the column locations and names based on
the first row’s column title data. The data node then includes row entries for each row

Listing 10.6 Example of using CSV custom mediator in tandem with VFS

 b Requires content
type for CSV

c
Defines filename
pattern

d
Uses custom
mediator class
Licensed to Deborah Christiansen <pedbro@gmail.com>

303Phase 2: VFS, CSV, email, and message wiretap
of data found in the file, along with the name identifier to show which column’s value
is being output. While outputting in XML is good, it’s obviously not of the correct for-
mat required by CreateProcessInstanceService (covered previously in section
10.2). Thus, an XSLT style sheet is used to transform the CSV-derived XML format to
the simple order XML used as part of the jBPM CreateProcessInstanceService. The
following was added to the outSequence following the custom mediator to accomplish
this transformation:

<xslt key="xslt-key-csv2order" source="//*[local-name()='csv']"/>

xslt-key-csv2order is defined as a localEntry at the root level as
<localEntry key="xslt-key-csv2order"
 src="file:repository/conf/opensoa/resources/xslt/CSVtoSimpleOrder.xslt"/>

Thus, the flow we’ve seen so far includes

■ Reading the CSV file in via the VFS transport
■ Using the custom CVS to XML mediator to convert the CSV file into XML
■ Transforming the XML output from the custom mediator into the XML format

required by the CreateProcessInstanceService, which is responsible for kick-
ing off a new jBPM process instance

The next step, as shown in figure 10.6, is to add some exception handling that will fire
off an email to a support distribution list so that the team can be alerted that a mes-
sage failed to process successfully.

10.3.3 Exception handling and SMTP transport

In section 10.2.2, we demonstrated the use of the validate mediator to verify the
validity of the incoming XML against a defined XSD schema. We’ll impose a similar
check on the CSV-converted XML file, and in the event validation fails, we’ll configure
an outbound email that can be sent, for instance, to the support team to alert them of
the error (we’ll also demonstrate some additional fault handling in the next section,
10.4). This is our first look at using the mail transport.

NOTE You must configure Synapse for SMTP mail support by editing some prop-
erty values in the axis2.xml configuration file. For more details, see
http://synapse.apache.org/Synapse_Samples_Setup.html#mailsender.

As with our other examples, the best way to illustrate its use is through some code sam-
ples. Listing 10.7 shows the validation block that has been added to the VFSFile-
ReceiverService proxy defined in listing 10.6.

<validate source="//*[local-name()='csv']">
 <schema key="schemas/CSVOrder.xsd"/>
 <on-fail>
 <property
 name="Subject" value="Errors occurs when processing order”/>

Listing 10.7 Example of using an email transport in tandem with a validate mediator

b

Licensed to Deborah Christiansen <pedbro@gmail.com>

304 CHAPTER 10 ESB implementation with Apache Synapse
 <xslt key="xslt-key-email" source="//*[local-name()='csv']">
 <property name="filename" expression="$trp:FILE_NAME"/>
 </xslt>
 <send>
 <endpoint>
 <address uri="mailto:someone@someplace.com" format="pox"/>
 </endpoint>
 </send>
 <drop/>
 </on-fail>
</validate>

The on-fail node begins with the definition of the property named Subject b,
which is used for setting the subject line of the outbound email message. This is fol-
lowed by an xslt element, used to generate the body contents of the message c.
Notice in this example we’re dynamically passing an XSLT property d. In this case,
we’re passing a property called filename that represents the value of the expression
$trp:FILE_NAME. This expression is interpreted by Synapse as the name of the
inbound VFS file being processed.

NOTE The Javadocs list the static field constants that can be used for retrieving
$trp:[property] expression values.

The style sheet assigned to the key xslt-key-email (file:repository/conf/open-
soa/resources/xslt/Email.xslt) uses the filename XSLT parameter to identify
which inbound file failed so that you can identify and resolve the issue. Finally, the
email is sent using the mailto: transport prefix e, followed by the email address to
use. As you can see, using SMTP transport is simple, with the only real effort involving
the creation of the style sheet to format the body of the outbound message (if we left
this out, the raw contents of the XML message would be sent). The last step in phase 2
of the case study is to generate events that can be consumed by Esper. We’ll demon-
strate how the wiretap message pattern can be implemented by Synapse.

10.3.4 Using the wiretap message pattern

In the wiretap pattern, we use a fixed recipient list with two outputs so that when a
message is consumed off the input channel, it’s then broadcast to both output chan-
nels simultaneously [WireTap]. This approach is ideal for publishing events to Esper,
as it is nonintrusive and doesn’t impact the actual processing of the message. Instead,
it just fires off a separate copy to the ESP engine. In chapter 8, we described a frame-
work for service-enabling Esper. We used Apache Synapse/SCA in a way similar to how
we service-enabled jBPM. In the source code for this chapter, a complete end-to-end
example is provided, but for purposes of keeping our focus on Synapse, we’ll mock
the Esper service.

 The mock Esper service we’ll use is defined here:

<proxy name="EsperService" transports="http">
 <target>

c
d

e

Licensed to Deborah Christiansen <pedbro@gmail.com>

305Phase 2: VFS, CSV, email, and message wiretap
 <inSequence>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <property action="set" name="OUT_ONLY" value="true"/>
 <drop/>
 </inSequence>
 </target>
</proxy>

By this point, you probably need little explanation. The only interesting part of this
code is that, since this will be an asynchronous call, no response is returned, which is
why the property OUT_ONLY is set to true. We’ll use the wiretap in two places: one for
generating a message when a validation exception occurs, and the other when normal
processing is followed. Since we just discussed the exception handling used with send-
ing an email notification, let’s target that first.

 When sending a notification to Esper, metadata about the file being processed
should also be included. You’ve already seen how we can access some of the VFS-
related transport metadata by referencing properties such as $trp:FILE_NAME. Let’s
include some of this information in the SOAP header itself. Why consider this
approach? You may want, for logging and/or auditing purposes, to store each
inbound message in a database or archive. This message context information can be
useful when interrogating the archives. Using the header element, you can create or
delete SOAP message header elements (when creating headers, you’re limited to sim-
ple elements). In our example, we’ll capture the filename, modified date, and file
length VFS metadata:

<header name="vfs:filename" expression="$trp:FILE_NAME" action="set"/>
<header name="vfs:datestamp" expression="$trp:LAST_MODIFIED" action="set"/>
<header name="vfs:filesize" expression="$trp:FILE_LENGTH" action="set"/>

These elements are added directly following the inSequence definition for the VFS-
FileReceiverService proxy service. This will result in a SOAP header that resembles
the following as the message proceeds through its processing lifecycle:

<soapenv:Header xmlns:vfs="uri:open-soa/chpt10/vfs">>
 <vfs:filename>faulttest.csv</vfs:filename>
 <vfs:datestamp>1218758847000</vfs:datestamp>
 <vfs:filesize>404</vfs:filesize>
</soapenv:Header>

You may have noticed the namespace definition in the SOAP message
(xmlns:vfs="uri:open-soa/chpt10/vfs"). This appears because we defined the
namespace alias in the root of the ESB configuration file, with the alias then refer-
enced when the header was defined (e.g., header name="vfs:filename"). We can
now create the wiretap (see listing 10.8) by using the clone mediator, which is defined
in the first child node in the on-fail element (see listing 10.7 earlier for reference).
Licensed to Deborah Christiansen <pedbro@gmail.com>

306 CHAPTER 10 ESB implementation with Apache Synapse
<clone continueParent="true">
 <target >
 <sequence>
 <xslt key="xslt-key-esper-csv-err"
 source="//*[local-name()='csv']">
 <property name="filename"
 expression="//vfs:filename"/>
 <property name="errorType" value="XML Validation Error"/>
 </xslt>
 <send>
 <endpoint>
 <address format="soap12"
 uri="http://localhost:8280/soap/EsperService"/>
 </endpoint>
 </send>
 </sequence>
 </target>
</clone>

The first thing to note with the clone statement is the presence of the @continue-
Parent attribute b, which is set to true. If set to false, message processing won’t
continue after the clone mediator is completed (in this respect, it’s analogous to
using a <drop/>). In our example, we do want processing to continue. What follows
in the clone definition is similar to what we’ve seen elsewhere where the target ele-
ment is used. The only distinction is that, since a wiretap is by nature an asynchronous
activity (it’s firing a copy of the message off for processing elsewhere), an out-
Sequence makes no sense. Hence, in lieu of an inSequence and outSequence, we use a
single sequence element c. Within that element, other mediators can be specified—
for example, using the xslt mediator to transform the message en route to its destina-
tion. In listing 10.8, this is demonstrated with the two parameter values sent to the
style sheet d. Of particular note is the filename property, which is assigned using an
XPath expression based on the header values we set previously. Lastly, we use the send
node to direct the message to its endpoint location e.

 The purpose of the code in listing 10.8 is to send Esper a notification upon a vali-
dation error, but we also want to send Esper a copy of the message in the event it was
processed successfully. The only difference between this clone definition and the
one in listing 10.8 is that it uses a different style sheet. Rather than duplicate this
entire code block, a more prudent approach is to combine the definitions and use
the switch mediator to dynamically select the appropriate style sheet that needs to be
called. This new definition can then be managed as a separate registry entry (i.e.,
stand-alone file) so that it can be reused where appropriate. The new clone defini-
tion is shown in listing 10.9.

<sequence name="esper" xmlns="http://ws.apache.org/ns/synapse"
 xmlns:vfs="uri:open-soa/chpt10/vfs">
 <switch source="//vfs:status">

Listing 10.8 An example of the wiretap message pattern using the clone mediator

Listing 10.9 Using the switch mediator to create a reusable clone block

 b c

 d

 e

 b Evaluates VFS
processing status
Licensed to Deborah Christiansen <pedbro@gmail.com>

307Phase 2: VFS, CSV, email, and message wiretap
 <case regex="SUCCESS">
 <xslt key="xslt-key-esper-csv" source="//*[local-name()='Order']">
 <property name="filename" expression="//vfs:filename"/>
 </xslt>
 </case>
 <case regex="FAILED">
 <xslt key="xslt-key-esper-csv-err"
 source="//*[local-name()='csv']">
 <property name="filename" expression="//vfs:filename"/>
 <property name="errorType" value="XML Validation Error"/>
 </xslt>
 </case>
 </switch>
 <send> <!-- endpoint not shown for brevity, but is just EsperService -->
 </send>
</sequence>

The switch statement in listing 10.9 uses the value from the XPath expression
//vfs:status b to determine which xslt mediator to call c. Earlier code listings
didn’t create that header value, so we’ll illustrate in a moment where it’s derived from.
Beyond that, the sequence definition is identical to what you saw in listing 10.8.

 Since we’ve covered a great deal in this section, you may be wondering what the com-
plete definition looks like for the VFS/CSV proxy. Figure 10.7 shows the configuration
that comprises the solution (you’ll also notice the vfs:status property header is set).

 This concludes phase 2 of the case study. In it, we learned how to use the VFS trans-
port, which supports various file system protocols such as FTP, SFTP and local file sys-
tems. The majority of partner and customer integrations in place today use older,
legacy protocols such as FTP rather than HTTP, and the ability to support them is

 c
Specifies case

conditions

Figure 10.7 The
complete solution
described in phase 2
of the case study
Licensed to Deborah Christiansen <pedbro@gmail.com>

308 CHAPTER 10 ESB implementation with Apache Synapse
essential for an ESB. When working with external entities, the opportunity to rip-and-
replace is seldom feasible, so introducing an ESB must be done transparently.

 Also in this section, you learned how to use a custom mediator as part of the CSV
processing we performed. You saw how Synapse can be augmented rather easily with
new capabilities when needed. Finally, we explored how the wiretap message pattern
is used to send out duplicate messages and events when needed for consumption by
an ESP processor like Esper.

 What remains to discuss are some advanced features of Synapse. While you may be
tempted to skim through the next section, I suggest sticking with it, as you’ll come to
appreciate some of the unique capabilities Synapse has to offer. I use these capabilities
frequently, and you’ll likely do the same as you begin to fully leverage all that Synapse
can provide. Let’s dive into phase 3, where we’ll use Synapse tasks, the DB mediator,
and the message splitter pattern.

10.4 Phase 3: tasks, DB mediator, and iterator
Let’s recap: In phase 1, we set up a SOAP-based interface to receive inbound sales
orders. In doing so, we explored many of the core features of Synapse, such as transfor-
mations, routing, and protocol switching. In phase 2, we added a file system interface
and supported receiving orders in CSV data file format. Now, in phase 3, we’ll demon-
strate a pull-based approach for receiving sales orders. In this process, we’ll use a Syn-
apse task to periodically poll a remote web service for any queued orders that might be
present. We’ll also use the DB mediator to enrich the inbound order(s) with some
additional data, and we’ll use a message splitter pattern to process multiple orders. Fig-
ure 10.8 shows the revised and the new functionality we’ll introduce in this section.

Figure 10.8 Phase 3 case study enhancements
Licensed to Deborah Christiansen <pedbro@gmail.com>

309Phase 3: tasks, DB mediator, and iterator
We’ll tackle this phase in three steps:

1 Configure a Synapse task to poll a mock web service for queued orders.
2 Use an iterator mediator to split the order if more than one exists in the message.
3 Enrich the order with information from a database.

10.4.1 Configuring Synapse tasks

The scenario for this phase of the case study assumes that the customer will queue up
orders that can then be received by using a SOAP-based web service call. Why would a
supplier (whose shoes we’re wearing) advocate using this approach? Posting mes-
sages, as we demonstrated in phase 1, can be somewhat challenging to implement. For
one, some companies, especially in the financial sector, have policies that severely
restrict allowing inbound requests within their firewall. However, such restrictions
usually aren’t in place for outbound calls. Another reason might be that a customer, if
they work with many suppliers (we’re playing the role of a supplier in the case study),
may find it easier to support a queue-based pull model. Otherwise, posting orders to
many supplier web services may require more extensive setup and monitoring.

 To simulate a customer order queue web service, we’ll create another simple Syn-
apse mock proxy. This web service will simply receive a request and return a static
SOAP message that contains two UBL orders (you may recall from phase 1 that the
inbound orders were using the UBL order specification). Listing 10.10 shows the
mock service configuration.

<proxy name="CustomerOrderQueueService" transports="http">
 <target>
 <inSequence>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <xslt key="xslt-key-dummyOrders"/>
 <send/>
 </inSequence>
 </target>
</proxy>

The mock service shown in listing 10.10 is very similar to the others we’ve defined,
with the exception that we’re using an xslt mediator to generate the sample response
instead of a script b. We did this because of the size of the response message, which
contains two UBL orders. The key used to reference the style sheet, xslt-key-dummy-
Orders, is defined as follows:

<localEntry key="xslt-key-dummyOrders"
 src="file:repository/conf/opensoa/resources/xslt/dummyUBLOrders.xslt"/>

The next step is to create the Synapse task to periodically call this service to receive
the orders. A task, in simple terms, is basically just an internal timer that runs a Java

Listing 10.10 Mock service definition representing queued customer orders

 b Uses XSLT to
generate output
Licensed to Deborah Christiansen <pedbro@gmail.com>

310 CHAPTER 10 ESB implementation with Apache Synapse
class that implements the org.apache.synapse.startup.Task interface. Listing 10.11
shows the configuration we’ll begin with for setting up the task.

<task
 class="org.apache.synapse.startup.tasks.MessageInjector"
 name="FetchOrders">
 <property name="to"
 value="http://localhost:8280/soap/QueuedOrderRequestor"/>
 <property name="soapAction" value="urn:getOrders"/>
 <property name="message">
 <getOrders xmlns="uri:opensoa.chapter10.order">
 <customerId>1001</customerId>
 </getOrders>
 </property>
 <trigger interval="30"/>
</task>

<in>
 <send/>
</in>

<proxy name="QueuedOrderRequestor"
 transports="http">
 <target>
 <endpoint>
 <address uri="http://localhost:8280/soap/CustomerOrderQueueService"
 format="soap11"/>
 </endpoint>
 </target>
</proxy>

The task statement/element requires the @class and @name attributes. The @class
attribute is used to identify the Java class that implements the Task interface. While
you can easily create your own implementation (see [Tasks]), Synapse comes with one
called MessageInjector that will suit our needs b. This class simply takes the XML
message defined in the property called message d and sends it to the SOAP web ser-
vice associated with the property called to c. The frequency by which the message is
sent is managed using the trigger element’s @interval attribute and is specified in
seconds. In the example in listing 10.11, we configured the interval for every 30 sec-
onds e. It’s worth noting that each task implementation class may require a different
set of property values, depending on its implementation.

 When using tasks we must specify a default message mediator block, as shown in f.
The outbound task message needs this to be present in order to send the out message.

NOTE As a convenience, you can use the <in> block as the default message
mediator rather than wrapping it with <sequence name="main">. In
chapter 9 we discussed the differences between message and service
mediation.

Listing 10.11 Example of Synapse task configuration

b
 c

 d

 e

 f

 g
Licensed to Deborah Christiansen <pedbro@gmail.com>

311Phase 3: tasks, DB mediator, and iterator
The service that’s receiving the task-generated message is an internal service called
QueuedOrderRequestor g. This service merely receives the message and, in turn, for-
wards it to the mock service CustomerOrderQueueService (listing 10.10). Why not just
invoke the mock proxy service directly from within the task? That’s a good question!
The reason is that we’ll want to interject some mediators into the response received
from the mock service. Including that logic in the mock service itself wouldn’t be an
accurate simulation, since in any real-life scenario, we wouldn’t be able to do that (the
service would be hosted on the customer’s site, not ours). If you run this example
(synapse_sample_opensoa_17.xml), the Synapse console will show the UBL orders
being displayed that were generated by the mock service. Since the XSLT style sheet
that we’re using to generate the mock orders is creating multiple orders, we now want
to split the orders apart, since when we forward the message to the jBPM web service,
it’s only designed to process one order at a time.

10.4.2 Using the iterator mediator to split messages

The Synapse iterator mediator implements the enterprise integration pattern known
as Splitter. It’s used to “break out the composite message into a series of individual mes-
sages each containing data to one item” [Splitter]. The iterator mediator is straight-
forward to use, as demonstrated in listing 10.12.

<proxy name="QueuedOrderRequestor" transports="http">
 <target>
 <endpoint><address
 uri="http://localhost:8280/soap/CustomerOrderQueueService"
 format="soap11"/>
 </endpoint>
 <outSequence>
 <iterate expression="//uri:CreateOrder/ublord:Order"
 preservePayload="true"
 attachPath="//uri:CreateOrder"
 xmlns:ublord="urn:oasis:names:specification:ubl:schema:xsd:Order-2"
 xmlns:uri="uri:opensoa.chapter10.order">
 <target>
 <sequence>
 <log level="full"/>
 </sequence>
 </target>
 </iterate>
 </outSequence>
 </target>
</proxy>

The iterator element has two required attributes: @expression and @preserve-
Payload. The @expression attribute is used to identify the XPath location for splitting
the messages. In our example UBL order, repeating Order nodes can be present and
so this is where we want to split the XML message. In listing 10.12, you can see how this

Listing 10.12 Example Synapse iterator mediator to split apart a message

 b
 c

 d
Licensed to Deborah Christiansen <pedbro@gmail.com>

312 CHAPTER 10 ESB implementation with Apache Synapse
XPath expression is defined b. The @preservePayload attribute, which can be either
true or false, is set to true in the listing c. When true, it instructs Synapse to
include the prior parent XML specified through the XPath provided in the @attach-
Path attribute d. If the value is set to false, the @attachPath must not be set, since
it’s only applicable when @preservePayload is set to true. Figure 10.9 illustrates the
differences between the various options using the order example through one itera-
tion of processing.

In figure 10.9, the original message is shown with two orders present. After one itera-
tion where the split occurs on the Order element, when @preservePayload is set to
true with a corresponding @attachPath XPath, you can see that the message is kept
intact, except that a single Order is now being processed. Conversely, when
@preservePayload is false, the CreateOrder element is now omitted, so the split mes-
sage being processed has a modified message structure. Obviously, which you choose
depends on your needs, but for the case study, we want to preserve the payload.

 The last step in this phase is to demonstrate the use of the DB mediator. This medi-
ator allows queries to be made against a relational database.

10.4.3 Using the DB mediator

As you may recall from phase 1, the UBL order that we’re working with will be trans-
formed into an internal format better suited for use by the jBPM web service we cre-
ated in chapter 7. Let’s assume now that we want to add some data elements to the
XML that’s being passed—the sales representative’s name and email address associ-
ated with the customer placing the order. This information could be beneficial to the
jBPM process, as it could then be used for assigning tasks to that representative as it

Figure 10.9 An example of the iterate mediator and use of the @preservePayload attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

313Phase 3: tasks, DB mediator, and iterator
pertains to the order processing (for example, perhaps a large order requires
approval by the sales rep). The Synapse DB mediator (dblookup) provides the ability
to invoke a database query (or insert/update using dbrecord). The result is then
made available for incorporation into the message being processed. For our illustra-
tion, we’ll query against a customer table in an Apache Derby database (see the
README.txt file found in the chapter's sample code for setup instructions). We’ll use
the customerId associated with the incoming order and then look up the associated
sales rep information. The sales rep’s name and email will subsequently be inserted
into the message sent to the jBPM web service.

 Without further ado, let’s take a look at the code in listing 10.13.

<dblookup>
 <connection>
 <pool>
 <driver>org.apache.derby.jdbc.ClientDriver</driver>
 <url>jdbc:derby://localhost:1527/synapsedb;create=false</url>
 <user>synapse</user><password>synapse</password>
 </pool>
 </connection>
 <statement>
 <sql>select * from salesrep sr
 join customer c on sr.salesContactId = c.salesContactId
 where c.customerId = ?</sql>
 <parameter
 expression="//cac:BuyerCustomerParty/cbc:SupplierAssignedAccountID"
 type="VARCHAR"/>
 <result name="salesrep-name" column="name"/>
 <result name="salesrep-email" column="email"/>
 </statement>
</dblookup>

The dblookup node, shown in listing 10.13, begins with the definition of the database
connectivity parameters b. The pool child element can be used to directly specify the
database connection properties c, or optionally use a data source lookup (illustrated
in sample 363 in the Synapse examples). Apache DBCP is used on the backend for
pooling, so it’s efficient and doesn’t require reestablishing a connection for every
request.

 Once the connection-related definition is completed, the statement section fol-
lows. As you can see in listing 10.13, we created a SQL statement that performs a
lookup against the salesrep table using a join with the customer table d. The SQL
query uses the ? character to define a parameter that will be populated at runtime,
which in this case is a comparison value for looking up the customerId e. One or
more parameter elements can then be present, which are used for dynamically assign-
ing a value for each ? specified (based on the ordinal values of the parameters). In
our example, we have just one dynamic value assignment, so a single parameter ele-
ment is used, with an XPath expression used to assign the value f. Finally, we use the

Listing 10.13 Example of using the dblookup mediator

 b
 c

 d

 e
 f

g

Licensed to Deborah Christiansen <pedbro@gmail.com>

314 CHAPTER 10 ESB implementation with Apache Synapse
result element to assign the results of the query to the specified property identified
by the @name attribute g. If the query returns no results, the properties will have a
null value assignment.

 Now that we’ve identified the sales rep’s name and email and have assigned them
to the properties salesrep-name and salesrep-email, respectively, we can reference
them within the XSLT style sheet that’s responsible for converting the UBL orders into
the simplified internal format. For example, the values can be passed as style sheet
parameters:

<xslt key="xslt-key" source="//*[local-name()='CreateOrder']">
 <property name="salesrep-name"
 expression="get-property('salesrep-name')"/>
 <property name="salesrep-email"
 expression="get-property('salesrep-email')"/>
</xslt>

You can find the complete example in synapse_sample_opensoa_19.xml, and you’ll
see the dblookup mediator statement in the iterate element. Thus, the database
query is performed for each split message being processed.

 Congratulations! We’ve now completed phase 3 of the case study. In this phase, we
demonstrated how to use Synapse tasks to initiate an outbound message, and then
illustrated using the iterator to split apart messages based on an XPath expression. We
concluded the section by using the dblookup mediator to perform a database query,
and then incorporated the query results into the message being processed by using
style sheet parameter values.

10.5 Phase 4: QoS using Synapse
In this final phase, we’ll turn our attention to Synapse’s quality of service–related func-
tionality. While you may be able to cobble together some pieces of this functionality
with other ESBs, with Synapse it represents a particular area of emphasis that’s unique
to the product. Your investment in learning this capability will pay rich rewards as you
develop your own enterprise-ready web services. We’ll illustrate how you can use Syn-
apse to easily incorporate WS-Security on inbound SOAP requests, and explore the
capabilities provided via the throttle mediator, which can be used for a variety of pur-
poses, such as restricting or metering access based on inbound IP addresses or
domain. Figure 10.10 shows the new functionality we’ll be adding to our case study.

 As you can see in figure 10.10, we’ve added WS-Security. WS-Security is not a single
standard, but rather a set of specifications for adding encryption, digital signatures,
and other security-related enhancements to web services (the book SOA Security [Kan-
neganti] provides comprehensive coverage of the standard). The WS-Security we’ll
implement for the case study is known as Web Services Security UsernameToken Profile 1.0
[WSS]. This standard can be used for passing the username and password as part of
the SOAP header. We’ll use the PasswordDigest approach to create a hash value so that
the password isn’t sent in clear text. Fortunately, we don’t have to worry about the
underlying mechanics of implementing the standard, since Synapse will do this for us,
as we’ll see next.
Licensed to Deborah Christiansen <pedbro@gmail.com>

315Phase 4: QoS using Synapse
10.5.1 Implementing WS-Security

Synapse, like most recent applications or tools that support WS-Security, uses WS-Policy
assertions to express the security requirements for a web service. Describing the con-
figuration of a WS-Policy file is beyond the scope of this book, but the official specifica-
tion does provide an excellent overview [WSPolicy]. Since we’re just using WS-Security
for implementing username/password credentialing, the policy file is straightforward.
Things become a bit more complex when using encryption or X.509-based signatures.
Listing 10.14 shows the policy configuration for this example.

<wsp:Policy wsu:Id="UTOverTransport"><!--namespaces omitted for brevity -->
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="omitted for brevity">
 <wsp:Policy>
 <sp:HashPassword/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/policy">
 <ramp:passwordCallbackClass>
 samples.userguide.PWCallback
 </ramp:passwordCallbackClass>
 </ramp:RampartConfig>

Listing 10.14 WS-Policy configuration file used for username/password credentialing

Figure 10.10 Phase 4 case study enhancements

 b Specifies
profile to use

c
Uses password
hash style

d
Defines callback
class
Licensed to Deborah Christiansen <pedbro@gmail.com>

316 CHAPTER 10 ESB implementation with Apache Synapse
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

The policy file specifies that the UsernameToken profile is to be used for authenticat-
ing the service b. In that profile, a further assertion is made that a password hash, or
digest, is to be used c. The callback class, shown in d, is used to perform the lookup
to authenticate the user credentials. Currently, we’re using the PWCallback class, as it
comes with the Synapse examples. In your implementation, you’d obviously want to
replace this with your own callback code (the code for PWCallback.java is available
in the Synapse examples, so it’s a good place to start). In this case, the callback accepts
two username/password combinations, Ron/noR or joe/eoj.

 The next step is to incorporate the policy within the ESB proxy configuration. This
part of the process couldn’t be easier, as demonstrated in the sample test proxy service
defined in listing 10.15.

<proxy name="TestWSSecurityService" transports="http" trace="enable">
 <target>
 <inSequence>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <script language="js"><!-- omitted for brevity --></script>
 <send/>
 </inSequence>
 </target>
 <publishWSDL
 uri="file:repository/conf/opensoa/resources/wsdl/ublOrder.wsdl"/>
 <policy key="sec_policy"/>
 <enableSec/>
</proxy>

In listing 10.15, we have a mock service that simply returns a canned XML response.
This is similar to what we’ve already used several times, and is defined in the
inSequence block b. The publishWSDL is a new construct we haven’t used before c.
It serves multiple purposes: (a) it exposes a WSDL via a URL for the service in question
(which can be accessed locally on your instance at http://localhost:8280/soap/
TestWSSecurityService?wsdl), and (b) it’s used in conjunction with WS-Addressing
to determine which service to invoke. In most cases, WS-Addressing is used in tandem
with WS-Security, but this isn’t a specification requirement, although it’s implemented
that way in Synapse (this will be addressed in the next release of Synapse, which will
remove this requirement). Currently, you must use publishWSDL when using WS-
Security in Synapse.

 The next step is to associate the policy file with the proxy. In listing 10.15, we spec-
ify the key sec_policy d, which is previously defined in the configuration (not
shown in the listing) as

Listing 10.15 Illustration of how to configure WS-Security in the proxy definition

 b

 c

 d
 e
Licensed to Deborah Christiansen <pedbro@gmail.com>

317Phase 4: QoS using Synapse
<localEntry key="sec_policy" src="file:repository/conf/opensoa/resources/
policy/usernametoken.xml"/>

Finally, the enableSec statement is used to instruct Synapse to use WS-Security for this
proxy web service e. This completes the security configuration, and you can now sub-
mit a request against the service using the included soapUI project
(Chapter10WSSecurity-soapui-project.xml). The SOAP header used will resemble
that shown in listing 10.16.

<!-- namespace omitted for brevity, see source -->
<soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1">
 <wsse:UsernameToken wsu:Id="UsernameToken-11716351">
 <wsse:Username>Ron</wsse:Username>
 <wsse:Password Type="omitted">8wvdegivxnBfo7</wsse:Password>
 <wsse:Nonce>OoUUiImpi/d/Q0O1eNIqqA==</wsse:Nonce>
 <wsu:Created>2008-08-19T15:59:06.895Z</wsu:Created
 </wsse:UsernameToken>
 </wsse:Security>
 <wsa:MessageID>urn:uuid:96E62098B11B3B51371213289387794
 </wsa:MessageID>
 <wsa:Action>urn:CreateOrder</wsa:Action>
</soapenv:Header>

Unfortunately, the code in listing 10.16 can be a bit tedious to read because of the
lengthy namespaces used by WS-Security. However, you can see in b that Username is
passed in plain text. Password c is a digest value derived from concatenating the
provided password (noR) + nonce value d + created timestamp e and applying an
MD5 hash. That hash is then reproduced by the recipient to ensure the signature is
valid. The WS-Addressing headers are also present f, as required by Synapse when
using security.

 You now know how to add WS-Security to an inbound SOAP request. You can also
use Synapse to add WS-Security to an outbound request. The process is similar, as you
activate security with the enableSec element present in the endpoint definition of the
remote service (see example 100 in the Synapse samples). We’ll also be using policies
in conjunction with our next topic, which is using Synapse’s throttling/message
metering capability.

10.5.2 Using Synapse throttling mediator

The throttling mediator is one of the unique features of Synapse, and it can perform
multiple functions that are important in a SOA environment. It can be used for the
following based on the inbound IP address or domain:

■ Restricting access to services
■ Limiting the number of requests or concurrent requests within a given period

of time
■ Redirecting inbound requests to different endpoint services

Listing 10.16 Example of WS-Security SOAP header using password digest

 b
 c

 d
 e

f

Licensed to Deborah Christiansen <pedbro@gmail.com>

318 CHAPTER 10 ESB implementation with Apache Synapse
The ability to restrict access by inbound IP address or domain filtering is a function
normally performed by network administrators via firewall or routing rules. However,
those can be cumbersome to change and often involve a lot of bureaucracy. The abil-
ity to limit or restrict the number of requests allowed within a period of time can be
important for several reasons. For one, it allows you to give preferential treatment to
certain customers. Second, it is important from a security perspective, as you can
block usage patterns that might indicate suspicious activity (such as a customer that
normally makes no more than ten service requests per hour suddenly submitting
thousands). The redirection feature is handy from a versioning perspective. Some cus-
tomers may be using older versions of a service, and you can effectively reroute those
requests to the appropriate internal endpoint without having to burden them with
changing their public endpoint URL (service virtualization).

 While these are powerful features, they can be a bit more challenging when test-
ing, since doing so usually requires having a distributed environment. With that in
mind, I’ll try to keep the examples fairly simple, so that you can easily test them if you
have at your disposal at least one other machine from which you can submit a SOAP
request using soapUI.

 As we briefly discussed, Synapse’s throttling implementation uses WS-Policy asser-
tions to define the rules. This should not come entirely as a surprise, since WS-Policy,
though typically only used for security definitions, is designed as a “general purpose
model and corresponding syntax to describe the policies of a Web Service” [WSPol-
icy]. Let’s begin by examining the simple policy we’ll use for this example, shown in
listing 10.17.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:throttle="http://www.wso2.org/products/wso2commons/throttle">
 <throttle:ThrottleAssertion>
 <throttle:MaximumConcurrentAccess>10
 </throttle:MaximumConcurrentAccess>
 <wsp:All>
 <throttle:ID throttle:type="IP">other</throttle:ID>
 <wsp:ExactlyOne>
 <throttle:IsAllow>false</throttle:IsAllow>
 </wsp:ExactlyOne>
 </wsp:All>
 <wsp:All>
 <throttle:ID throttle:type="IP">192.168.0.104</throttle:ID>
 <wsp:ExactlyOne>
 <wsp:All>
 <throttle:MaximumCount>2</throttle:MaximumCount>
 <throttle:UnitTime>500000</throttle:UnitTime>
 <throttle:ProhibitTimePeriod
 wsp:Optional="true">500000
 </throttle:ProhibitTimePeriod>
 </wsp:All>
 <throttle:IsAllow>true</throttle:IsAllow>

Listing 10.17 Example of WS-Policy used for Synapse throttling

 b
 c

 d

 e

 f

 g

 h
 i

 j
Licensed to Deborah Christiansen <pedbro@gmail.com>

319Phase 4: QoS using Synapse
 </wsp:ExactlyOne>
 </wsp:All>
 </throttle:ThrottleAssertion>
</wsp:Policy>

One of the first things you may have noticed in listing 10.17 is the namespace alias
throttle, which is short for http://www.wso2.org/products/wso2commons/throt-
tle b. There’s currently no standard for throttling assertions, so we’re using one
developed by the team at WSO2. The top-level element for the throttle-related policies
is the ThrottleAssertion node c, and within that node, there are just a few allow-
able choices. The MaximumConcurrentAccess element is used d to define the overall
number of concurrent incoming messages allowed for the service in question, regard-
less of the inbound IP address or host in question. What follows are the IP address or
host-specific settings. In the first example shown (ID element), the use of the special
other value is used to indicate a catchall category, which all IPs or domains not explic-
itly defined elsewhere will use e. In this instance, the isAllow element is set to false
f, which means that any IP or domains that fall into this category won’t be permitted
access to the service. When isAllow is set to false, no other throttling properties
should be present.

 The next ID node specifies an IP address g, and in this case, a maximum number
of requests permitted within 50 seconds (500,000 milliseconds) h is 2 i. If the maxi-
mum count is exceeded within that time period, then the client must wait for the
duration specified in ProhibitedTimePeriod if that element’s @Optional attribute is
set to true. In this case, the client would have to wait 50 more seconds before attempt-
ing any further requests j. As you can see, this provides a great deal of control over
metering incoming traffic. Let’s now look at how we associate this policy with the
proxy service.

 There are a few steps involved in the configuration. The first thing we’ll do is
define the proxy (see listing 10.18).

<proxy name="ThrottledProxy" transports="http">
 <target>
 <inSequence>
 <throttle
 onReject="throttle-fault"
 onAccept="mockEndpoint" id="A">
 <policy key="policy/throttle_policy.xml"/>
 </throttle>
 </inSequence>
 <outSequence>
 <throttle id="A"/>
 <send/>
 </outSequence>
 </target>
 <!-- publishWSDL, policy and enableSec not shown for brevity -->
</proxy>

Listing 10.18 Proxy definition using throttling policy

 b
 c

 d
 e

 f
Licensed to Deborah Christiansen <pedbro@gmail.com>

320 CHAPTER 10 ESB implementation with Apache Synapse
The proxy node in listing 10.18 includes the additional throttle element, which is
positioned as a child of inSequence b, to indicate that throttling will be used with
this service. The @onReject c and @onAccept d attributes are used for calling a
named sequence in the event that the request fails or is permitted. The @id attribute
has relevance when using the MaximumConcurrentAccess assertion (as we did in list-
ing 10.18), since it acts as a trigger for keeping track of currently in-progress requests
and must be referenced in the outSequence in order for it to work properly f. The
policy file itself is referenced through the registry in e.

NOTE You can include the throttle policy definition inline rather than using an
external policy file, if you so desire.

The two sequences referenced from the @onReject and @onAccept attributes are just
normal sequence definitions and don’t contain anything specific to the throttle policy
configuration (they can be seen in the sample synapse_sample_opensoa_21.xml). For
example, here’s the rejection sequence:

<sequence name="throttle-fault" trace="enable">
 <makefault>
 <code value="tns:Receiver"
 xmlns:tns="http://www.w3.org/2003/05/soap-envelope"/>
 <reason value="**Access Denied**"/>
 </makefault>
 <property name="RESPONSE" value="true"/>
 <header name="To" action="remove"/>
 <send/><drop/>
</sequence>

According to the rules we’ve defined, if you attempted to access this service from your
local machine using http://localhost/soap/ThrottledProxy, you’d receive this unwel-
come response:

<soapenv:Fault>
 <faultcode xmlns:tns="http://www.w3.org/2003/05/soap-envelope">
 tns:Receiver
 </faultcode>
 <faultstring>**Access Denied**</faultstring>
</soapenv:Fault>

You’d also receive that message if you attempted to submit more than two requests
within 50 seconds from IP address 192.168.0.104. Although not done for this example,
using the clone mediator to fire off a copy of the message to Esper would also be pru-
dent, so you can monitor any unusual activity in real time.

 This ability to restrict access and/or meter usage by IP address or domain is one of
the most novel features of Synapse. If your organization is considering or adopting the
SaaS model, this sort of capability is a must-have.

 We’ve covered a lot of mileage in this chapter, and if you’ve been able to stick with
it, I think you’ll be as excited about Synapse as I am. Let’s recap what we’ve learned
and learn what’s next.
Licensed to Deborah Christiansen <pedbro@gmail.com>

321Summary
10.6 Summary
In chapter 9, we introduced the ESB and described the core functionality typically
associated with this product category. This chapter focused on implementation using
Apache Synapse. We used a real-life case study that we built in four phases. In this pro-
cess, we revealed most of Synapse’s functionality, including standard ESB-type features
such as message transformations and routing along with connectivity adapters for var-
ious protocols and transports. In addition, we demonstrated many of Synapse’s more
advanced, and unique, features, such as database querying, message throttling, and
custom mediators. Lastly, we touched on how WS-Security can be managed by Synapse,
along with message patterns such as wiretap and splitter. I think you’ll agree with me
that Synapse, while easy to use and configure, is extremely powerful and can save your
organization countless hours of development time.

 We’re approaching the end of our journey, but we do have two important topics
remaining: business rule management and asset registry (the registry chapter can be
downloaded separately as a bonus chapter at http://www.manning.com/davis). Busi-
ness rules are the heart of any enterprise, and leveraging a Business Rule Manage-
ment System (BRMS) will improve your organization’s agility, reduce maintenance
costs, and better engage your subject matter experts. With a SOA approach, these
rules can be exposed as readily reusable services that can be accessed from multiple
applications or business processes.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Part 5

Enterprise decision
management

Regardless of what enterprise you are in, there are undoubtedly a multi-
tude of business rules that influence all aspects of your organization. Tradition-
ally, these rules are often hard-coded within the context of a given business
application, or more loosely understood within the minds of subject matter
experts. Thus, when either the application or individual possessing such knowl-
edge retires or moves on, the organization is left scrambling to fill in the gaps.
Enterprise decision management aims to avoid such perils by treating business
rules as true corporate assets, where they’re managed independently of applica-
tions or individuals. While this has long been a goal for many organizations, SOA
is the catalyst that makes it possible. Why? Because it’s now possible to create
stand-alone decisions services that can be easily integrated into applications or
processes. Rules can be centrally managed through a business rule management
system, and then exposed through standard protocols such as SOAP, JMS, JSON,
and so forth. This final part of the book will explain how to use JBoss Rules, most
commonly referred to as Drools, for managing, integrating, and executing busi-
ness rules. As you’ll discover, implementing a business rules approach can pro-
foundly impact your organization’s agility and competiveness.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Business rules
using JBoss Drools
Decisions, in the form of rules, represent the brains behind your business. Whether
you sell products or services, engage in a nonprofit venture, or even make movies,
every step along the way involves decisions. Some decisions are more strategic in
nature, such as deciding when to develop and introduce a new product. Others are
more tactical or operational in nature, such as deciding whether to extend credit
terms to a new customer. The quality of the strategic decisions impacts the long-
term viability of your organization; the operational ones greatly influence bottom-
line profitability.

 This chapter and the next will focus on how to use a rules engine for centrally
managing operational decisions in the context of a SOA environment. We’ll
describe the benefits and drivers behind adopting a rules engine, explore its com-
mon characteristics, introduce the Drools rules engine, and describe the features
and functionality of Drools using a Hello World example (the next chapter will

This chapter covers
■ Understanding business rules
■ Introducing Drools
■ Using the Drools language
325

Licensed to Deborah Christiansen <pedbro@gmail.com>

326 CHAPTER 11 Business rules using JBoss Drools
cover implementation strategies for using Drools). By the conclusion of this chapter,
you’ll understand why a rules engine represents such a powerful addition to SOA.

 As you’ll recall from chapter 2, we chose JBoss Rules (Drools) as the open source
rules engine for our Open SOA Platform. The product, while mature and robust, con-
tinues to undergo significant enhancements due to the substantial investments made
by JBoss and the Drools community. Because the benefits of using a rules engine are
becoming more visible within the industry, Drools is a very “hot” project, as witnessed
to by the increasing number of downloads and mailing list activity.

NOTE JBoss Rules is more commonly known as Drools, which was the name of
the product before it became part of the JBoss family of products. Since
the development project at JBoss also refers to it by the Drools moniker,
this is the name we’ll use moving forward.

Before we delve too deeply into what constitutes a rules engine, let’s first develop a
common concept of its foundation: business rules.

11.1 Understanding business rules
At its most basic, a business rule is a statement that conforms to a when/then type
construct, or is sometimes framed as conditions/consequence. Examples include the
following:

■ When a premium customer places an order, give them free shipping.
■ When hiring new employees, send them an email invitation to sign up for the

401(k) plan.
■ When a customer complaint is received, always follow up x days after the issue is

resolved to ensure they are satisfied.

While categorizing business rules as any when/then statement is easy to understand, it
does lack richness in conveying some of the essential properties that make up a well-
crafted business rule. Ian Graham nails it in his definition:

A business rule is a compact, atomic, well-formed, declarative statement about an aspect of
a business that can be expressed in terms that can be directly related to the business and its
collaborator, using simple, unambiguous language that is accessible to all interested
parties: business owner, business analyst, technical architect, customer, and so on. This
simple language may include domain-specific jargon. [Graham]

Let’s clear up some of the less obvious terms he uses in his definition:

■ Atomic—This means that the rule is completely stand-alone in nature, and
result is a boolean (true/false) outcome.

■ Well-formed—The rule follows the constructs of the when/then form, and when
used by a rules engine, adheres to the specified language requirements.

■ Declarative—Rules aren’t expressed in a procedural, code-driven fashion and
instead are expressed using a statement-style vocabulary.
Licensed to Deborah Christiansen <pedbro@gmail.com>

327Understanding business rules
■ Domain-specific jargon—Rules can be written using a custom vocabulary that’s
targeted at nontechnical individuals. In other words, rules are written using a
business, not programmatic, nomenclature.

While not specifically addressed in this definition, it’s also important to stress that busi-
ness rules ought to be owned and managed by business users, not programmers and
other technical team members. As a developer, I find this is a somewhat painful asser-
tion to make, but failure to embrace this foundational concept will greatly limit the
benefits that you can otherwise achieve by introducing this solution to your enterprise.

 Where do business rules come
from, and how are they harvested?
They are often scattered through-
out the organization, from those
codified in applications to those
informally held in the minds of
subject matter experts. Figure 11.1
illustrates some of the sources of
business rules.

 Harvesting rules from the vari-
ous sources generally requires a
business analyst. Further, like with
most initiatives, the process
doesn’t need to be completely
thorough in order to begin reap-
ing the benefits of using a rules
engine. The formal process of col-
lecting, categorizing, and then
incorporating business rules into a
centralized repository for manage-
ment and execution is sometimes referred to as the business rules approach. Barbara von
Halle defines this as “a formal way of managing and automating an organization’s
business rules so that the business behaves and evolves as its leaders intend” [Von-
Halle]. The purpose of managing these assets through a central repository is that it
provides greater visibility of the rules throughout the organization, and thereby facili-
tates faster responsiveness as changes are needed.

 Armed with our knowledge of what a business rule is, we can then define the role
of a business rule service, or sometimes more elegantly called a decision service. Like
any SOA service, it encapsulates a stand-alone, autonomous component or operation
but is tailored for making operational business decisions. As such, the inputs repre-
sent the material facts necessary for the decision to be rendered. Since some rules may
require substantial fact sets on which to base the decision, it may not be practical or
feasible to include all facts required for the decision in each call. Instead, the service
may preload fact data upon startup, and periodically refresh it at certain intervals (in

Figure 11.1 Sources of business rules
Licensed to Deborah Christiansen <pedbro@gmail.com>

328 CHAPTER 11 Business rules using JBoss Drools
the next chapter, you’ll learn an approach for achieving this). Hence, only the mini-
mal amount of contextual information is passed with each service call.

Now that we’ve defined what constitutes a business rule, let’s examine why introduc-
ing a rules engine is so beneficial.

11.1.1 Benefits and drivers of the business rule approach

We have already touched on some of the benefits that can be achieved by adopting a
business rules approach, such as greater agility, but there are many more. They
include the following:

■ Reduction in development costs—Using a rules engine can reduce complexity in
developing software components because building rules in a rules engine is far
easier than writing them in conventional code. A decision service can then be
called, when necessary, by the application code.

■ Reduction in maintenance costs—When business rules are embedded into proce-
dural code, even the slightest modification incurs recompilation, testing, and
redeployment costs. In part, this is why software maintenance costs are esti-
mated to be as high as 70 percent of total development costs.

■ Rule longevity and sharing—If rules are embedded in code, when the application
is retired, so too are the valuable rule assets. When rules are managed centrally,
they outlive the individual application, and can be shared and reused. This also
helps preserve retention so that knowledge doesn’t walk out the door when key
individuals do.

■ Performance—Rules engines typically offer very high performance, using highly
optimized algorithms such as Rete that can filter through vast numbers of rule
sets at lightning speed. Replicating such abilities using conventional coding
techniques is challenging (and expensive).

■ Consistent framework—Although not often cited as a benefit of using decision
services, this approach allows us to use a standard framework for invoking busi-
ness rules. Frameworks simplify maintenance and improve quality and consis-
tency. We’ll demonstrate such a framework in the next chapter.

■ Auditability and compliance—In many industries, such as financial, health care,
and transportation, regulations play an important role. All public U.S.

What are facts?
Facts are the data necessary for the decision to be rendered. In Drools, the working
memory is used to store these facts. The fact data may be seeded from a database,
real-time events, or event logs. When a doctor diagnoses an illness, she evaluates it
based on the input provided by the patient, her own experiences, and familiarity and
knowledge of the disease symptoms. These inputs represent the facts required to
intelligently diagnose the condition.
Licensed to Deborah Christiansen <pedbro@gmail.com>

329Understanding business rules
companies also face increasing regulations in the form of Sarbanes-Oxley Act
(SOX) compliance. In many cases, it’s not sufficient to simply introduce con-
trols; instead you must demonstrate that your organization is compliant
throughout the day-to-day operations of the business. Using a rules engine facil-
itates this process since decision services can incorporate cross-cutting concerns
such as logging and event notifications while improving the visibility to centrally
managed organizational rules.

■ Improved software quality—In the absence of a rules engine, the interpretation of
rules is left to the developers. Although their intentions may be sound, mistakes
are inevitable due to the translations required from functional specifications to
code. As Taylor and Raden point out, “Embedding business expertise in the sys-
tem is hard because those who understand the business can’t code, and those
who understand the code don’t run the business” [TaylorRaden].

Other benefits include improvements in customer service, especially when decisions
that were otherwise being made by individuals can now be applied more consistently
within applications or business processes. Along similar lines, personalization features
unique to each customer can be more easily supported and maintained. If you’ve ever
developed or supported SaaS applications, you have no doubt experienced the need
to perform custom modifications demanded by an important customer. Soon you find
that your code is littered with exceptions. Using a rules engine can help avoid those
perils. Finally, as we pointed out in the previous section, any delay in aligning opera-
tional decisions with strategic ones represents an opportunity cost that may not be
recoverable in our fast-moving landscape.

 If you weren’t already convinced of the merits of a rules engine, you should be by
now. However, you might still wonder how the business rule approach fits with a ser-
vice-oriented architecture. We’ll cover this topic next.

11.1.2 Relationship to SOA

In the introduction to section 11.1, we touched on the notion of exposing rules as
decision services. Doing so effectively requires a SOA-based approach as it provides the
foundational elements necessary for services to be designed, consumed, and moni-
tored. By exposing rules engine functionality as a service you are significantly increas-
ing the likelihood that the rules can be reused by numerous applications or business
processes. In that respect, decision services are simply other services among many. In
the past, rules engines failed to gain much traction due to the complexity involved in
embedding the rules engine libraries within standard applications—the learning
curve could be substantial. By using a SOA-based approach, the developers using deci-
sion services follow the same programming practices used with other web services. If
using SOAP, the required inputs and outputs are well defined, and using a product like
Apache Tuscany (the subject of chapters 3 and 4) greatly simplifies client access to the
services. As Ian Graham points out, “Service oriented architectures and business rules
management systems are an essential component of modern agile businesses. They
Licensed to Deborah Christiansen <pedbro@gmail.com>

330 CHAPTER 11 Business rules using JBoss Drools
vastly reduce the problems associated with the evolution of complex and volatile busi-
ness strategies and policies. SOA and BRMS are parallel and complementary technolo-
gies” [Graham].

 Apart from a SOA approach being required for decisional services, rules can also
provide logic for how the various services in a SOA environment can be integrated. As
an example, let’s say you have a decision service that calculates pricing for an inbound
order. In addition to calculating the price, the rules engine may further instruct the
calling client that shipping and currency services need to be called in order to com-
plete the pricing calculation. When using a BPM product (see chapters 5 through 7
for coverage of JBoss jBPM), a rules engine can be used to drive the workflow paths
being followed, particularly when BPM’s rather rudimentary if/then/while condi-
tional capabilities prove inadequate. Indeed, decision services can be thought of as
the brains behind building composite applications.

 Let’s take a closer look at some of the key characteristics of a rules engine.

11.1.3 Characteristics of a rules engine

To achieve the performance demanded of them, rules engines inevitably use some
type of pattern-matching algorithms for processing rules. Depending on the product
selected, a rules engine may use Rete, TREAT, LEAPS, or any number of other algo-
rithms. While covering these are beyond the scope of this chapter, the most popular
algorithm, and the one used by popular open source rules engines such as Drools (the
later subject of this chapter), Jess (http://herzberg.ca.sandia.gov/), and Soar (http://
sitemaker.umich.edu/soar/home) use Rete. To vastly oversimplify things, Rete works
by building a tree (or network of nodes) from the rules, and when a new fact is intro-
duced, it works its way down the tree, matching conditions until leaf nodes are encoun-
tered. In the absence of this sort of approach, every set of conditions for each rule
would have to be evaluated each time, making processing very inefficient. Instead, pat-
tern matching is used to rapidly isolate which rules can be fired, or activated.

NOTE Rete, which is Latin for net, was an algorithm developed in 1974 by Charles
Forgy and later became the subject of his PhD. It has subsequently under-
gone numerous revisions, some of which are in the public domain.

Rules, as you know, can be thought of as simply when/then type constructs. We’ll refer
to them as conditions or consequences. A condition can be any arbitrarily complex expres-
sion, but must evaluate to true or false (boolean). The data, or facts, used for evaluating
a given rule is contained within the working memory, which can be thought of simply as
an in-memory type of database (or working cache). The facts are representations of
real-world objects, such as a purchase order or customer record, for instance.

 Once a rule’s conditions are evaluated and found true, then an action (the conse-
quence) is triggered. An action can be anything you want. It may be an event that’s
fired, a database update, or even the insertion or updating of new facts into the work-
ing memory. The latter, in turn, may then trigger a new set of rules that are activated
Licensed to Deborah Christiansen <pedbro@gmail.com>

331Understanding business rules
as a result of the new or updated information. Figure 11.2 shows the relationship
between the rules engine, facts, and actions.

 The figure in 11.2 shows how new or updated facts can result in rule activation. It
also, perhaps artificially, delineates between what we refer to as volatile versus nonvol-
atile facts. A nonvolatile fact is one that’s generally preloaded when the rules engine is
instantiated, and then periodically refreshed. It represents the historical information
that’s often culled from a database into the working memory. In the next chapter,
we’ll create a sample rule service that’s used for product pricing. The nonvolatile
facts, in this case, are the product and pricing catalog data required for performing
the calculation (various discounts can be applied to the order, depending on cus-
tomer classification). The volatile facts, on the other hand, represent the instance data
that will trigger the rules engine to fire. In the product pricing example cited, the
instance data is a quote request that, upon completion of the rules engine’s firing, will
return a pricing calculation.

We’ve now defined what constitutes a business rule, the role of a rules engine in executing
the rule logic, and how it can be exposed as a SOA-based service. However, you might
be asking yourself, “How can I manage all of these newly created rules that I’m busily
creating?” Well, that leads us to our next topic: a business rules management system.

Figure 11.2 Facts and actions in a rules engine

Backward chaining
Drools and other Rete-based products are generally most suitable for what’s called
forward chaining, which is what we’ll demonstrate throughout our examples. Drools
uses the facts at hand to decide an outcome. Conversely, some rules engines also
support backward chaining, where you instead start with a condition or goal and work
backward through a logic chain to identify a cause. For example, diagnosing a com-
puter or automotive problem often uses backward chaining, since the outcome is
known but the cause is not. We won’t explore backward chaining in our examples,
as Drools support for it remains experimental—read more at http://www.jboss.org/
community/docs/DOC-9132.
Licensed to Deborah Christiansen <pedbro@gmail.com>

332 CHAPTER 11 Business rules using JBoss Drools
11.1.4 Business rules management systems

A Business Rule Management System (BRMS) is a system that is used to manage, deploy,
and monitor business rules from within a centralized repository. In many respects, it’s
analogous to a database management system (DBMS), but it’s tailored for business
rules. A rules engine can exist independently of a BRMS, as exemplified by Jess and
earlier versions of Drools, which didn’t incorporate such features (the developer was
left to devise a solution for the management and maintenance of the rules). The main
benefits of a BRMS include the following:

■ Centralized repository—The ability to store and view rules via a centralized loca-
tion improves visibility to them by the business stakeholders and subject matter
experts. The ability to reference them in a single location, rather than having
the rules scattered about and embedded within various apps or processes, will
greatly improve the adoption of a business rules approach in your enterprise.

■ Versioning controls—Most BRMSs feature automatic versioning and snapshot/
baselining capabilities so that you can easily manage the packaging, release, and
promotion process of rules. While tools such as Subversion (http://subver-
sion.tigris.org/) offer powerful version control features, they are generally tar-
geted toward developers or other technical types, not the sort of business user
who is the main audience of a BRMS.

■ Accessibility—Nearly all BRMSs typically can be accessed via a web browser and
don’t require any specialized software to be installed on the client’s box. This
makes access convenient and reduces the friction required for working with
these important corporate assets.

■ Zero-client authoring—Related to the previous point, most modern BRMSs now
use some type of web 2.0–style interface that enables authoring of the rules to
take place entirely within the browser. There is no need for installing software
and the attendant headaches that process introduces.

■ Archiving and availability—Perhaps an often-overlooked benefit, centralizing the
management of rules makes it much easier to employ robust backup-and-recov-
ery procedures of these assets. Having rules assets centrally located can improve
availability.

Although it may not be necessary to use a BRMS when first dipping your toes into the
business rule approach, when widespread adoption begins to take hold it becomes
essential (we discuss Guvnor, the Drools BRMS, in the next chapter).

 How does a BRMS integrate with the notion of decision services that we’ve been dis-
cussing? The BRMS is used for the management of the rules, with the rules engine then
tapping into the rules maintained through the BRMS repository. Figure 11.3 shows the
interplay among the decision service, BRMS, rule repository, and client applications.

 In figure 11.3, you can also see the business users who are responsible for author-
ing the rules through the BRMS. Obviously, there would also be some formal QA and
release process, such as tagging the rules for production deployment.
Licensed to Deborah Christiansen <pedbro@gmail.com>

333Introducing Drools
Now that you have some context for understanding what constitutes a rules engine
and BRMS, along with its complementary role in SOA, we can start cutting our teeth on
JBoss Rules/Drools—the real fun begins now!

11.2 Introducing Drools
Unlike some of the other applications we’ve profiled in this book, such as Esper or
Apache Synapse, Drools has been around for a comparatively long time. The first pro-
duction-ready release was the 2.1 version, which appeared near the end of 2005. In
the following year, the Drools product and team became affiliated with JBoss, which
followed on the heels of the 3.0 release. While it offered substantial performance
improvements and a revised rules language, the 4.0 product was even more significant
and included BRMS functionality. Several dot releases of the 4.0 product have since
appeared, and as of this writing, the 5.0 version is in late beta. This book will focus on

Figure 11.3 Relationship
between the rules engine and the
BRMS

Enterprise decision management (EDM)
EDM, a fairly new acronym, can be thought of as the formal application of the busi-
ness rule approach to the entire enterprise. That is, it’s about harvesting business
rules, primarily those operational in nature, and centralizing their management
through a BRMS. Like enterprise architecture, it’s an attempt to introduce a uniform
approach throughout an organization for managing business rule assets. Whereas a
BRMS or rules engine can be thought of as tangible applications, EDM is more of a
philosophy than a product.
Licensed to Deborah Christiansen <pedbro@gmail.com>

334 CHAPTER 11 Business rules using JBoss Drools
this forthcoming release, as it offers many BRMS enhancements. Given the continuous
improvements in the product and its popularity, it’s evident that Drools is a center-
piece of the JBoss middleware stack (known officially as the JBoss Enterprise Middleware
[JEMS]).

NOTE The README.txt file found in this chapter’s sample code provides
instructions on how to set up Drools and run the examples.

The main features of Drools, many of which we’ll cover as this chapter proceeds, are
as follows:

■ Rules engine—Based on the Rete algorithm, it offers outstanding performance;
flexible Java-based API; temporal (time-based) and dynamic rule management;
and carries a lightweight footprint.

■ Authoring—The Drools Rule Language (DRL) offers a very rich vocabulary for
expressing rules. It’s extensible through its support for custom Java functions,
and provides the ability to create natural-language rules via its domain-specific
language (DSL) capabilities. It also comes with an Eclipse plug-in that includes a
rule editor and other developer tools designed to simplify rule creation. Lastly,
it includes support for decision tables using Excel or Open Office.

■ BRMS—As you know from an earlier section, BRMS was added new in the 4.0
release (Guvnor), and provides the ability for centrally managing rules through
support of a built-in repository (most major DBMSs can be used for this back-
end). It includes a full authoring environment that’s suitable for use by business
users.

■ Platform—The JBoss rules engine can be run stand-alone with any JDK 1.4 or
greater release. The BRMS can be run within most Java web or application serv-
ers such as Tomcat, JBoss App Server, IBM WebSphere, and Oracle WebLogic.

As you see, Drools offers a full range of features, and when coupled with its outstand-
ing performance and robustness, provides a compelling solution. We’ll begin our
examination of how to use Drools with a customary Hello World example.

11.2.1 Hello World, Drools!

Fact objects are a central concept when you’re working with Drools. These objects are
used by the engine to perform conditional expressions. If an expression evaluates to
true, the engine triggers a consequence, or action. To begin our simple example, let’s
create a POJO-style Java class that will contain a Person object that we’ll use to say
hello. This fact class is shown in listing 11.1.

package opensoa.drools.hellodrools;
public class Person {
 private String name;
 private String gender;

Listing 11.1 Person fact object
Licensed to Deborah Christiansen <pedbro@gmail.com>

335Introducing Drools
 private int age;
 public Person(String name, int age, String gender) {
 super();
 this.age = age;
 this.name = name;
 this.gender = gender;
 }
 /* standard getters/setters not shown */
}

As you can see, the Person class is just a container object, similar to what’s sometimes
referred to in the Java world as a data transfer object (DTO) (see [DTO] for more infor-
mation). For now, let’s assume that we’ll instantiate this fact using

Person person = new Person ("John Doe", 22, "M");

With our fact populated (in a moment you’ll learn how this is done in Drools), let’s
create a Hello World rule using the Drools language (DRL). See listing 11.2.

package opensoa.drools.hellodrools;
import opensoa.drools.hellodrools.Person;

rule "HelloBasic"
 when
 Person();
 then
 System.out.println("HelloBasic: Hello World");
end

The first thing you’ll notice is the package declaration b. The notion of a package is
similar to how it’s used in Java, and it allows you to logically group rule assets, such as
rule files and rule flows, together (more on rule flows in section 11.7). Packages are
often used to group rules hierarchically by domain area. For example, a top-level group
may be finance, followed by more granular classifications such as finance.sales-
order.pricing. All rule files must have a package declaration. Next is the import statement
c, which is used to include the Person fact class we created in listing 11.1.

 The rule definition begins with the keyword rule, followed by a descriptive name
(which must be unique) that’s assigned to the rule d. The when, or condition clause,
states that if one or more Person fact objects exist e, then the criteria of the rule have
been satisfied, and the commands listed in the then portion of the rule will be activated.

NOTE For Java developers, the notation of Person() may seem to imply that it’s
a constructor used for creating a new instance of Person. That’s not the
meaning it holds when used within the conditional/when part of the rule
definition, which is one of filtering.

So in listing 11.2 the statement “HelloBasic: Hello World” would print out on the con-
sole when the engine is fired f.

Listing 11.2 Simplistic Hello World rule

 b
 c

 d

 e

 f
Licensed to Deborah Christiansen <pedbro@gmail.com>

336 CHAPTER 11 Business rules using JBoss Drools
 Let’s now add a new, slightly modified rule that, rather than just printing out
“Hello World”, uses the person’s name. This can easily be accomplished by creating an
alias (think handle) to the Person object, as shown here:

rule "HelloBasic2"
 when
 person : Person();
 then
 System.out.println("HelloBasic2: Hello " + person.getName());
end

We create the alias called person by specifying the alias name, followed by a colon (:)
and the fact object being assigned. In this example, we then use the person alias for
printing out the individual’s name when the rule is activated (i.e., “HelloBasic2: Hello
John Doe”).

 If both this rule and the previous rule created in listing 11.2 are present when run,
each will be fired (activated), as rules aren’t, by default, mutually exclusive. Most
likely, the last rule defined will fire first, but that can’t be guaranteed. Instead, if want
to manage the order in which rules are fired when more than one may be activated,
you can do so by using the salience keyword before the when statement, followed by
numeric value indicating priority (higher salience values will fire before lower ones).
Listing 11.3 illustrates this and also introduces a new condition that will limit the rule
from being fired unless the person’s gender is M (male).

rule "HelloMr"
 salience 30
 when
 person : Person (gender == 'M');
 then
 System.out.println("Hello Mr. " + person.getName());
end

Listing 11.3 illustrates how you can add qualifiers to the fact object (in this case
Person) to limit or restrict the condition based on the fields within a fact object
(sometimes referred to as fact patterns). In this case, gender == 'M' restricts the rule
from firing except where that condition evaluates to true c. Notice as well the
salience keyword definition, which assigns a weight of 30 to this rule b.

Listing 11.3 Example of using the salience keyword and fact qualifier

 b Assigns salience

c Matches pattern

Agenda
When working with Rete-based rules engines such as Drools, you’ll occasionally see
reference to what is called the agenda. An agenda is created by the rules engine
when instructed to execute, and is the internal mechanism used for determining
which rules will be activated, and in which order. Rule properties such as salience
factor into the construction of the agenda through the rules engine’s conflict resolu-
tion strategies.
Licensed to Deborah Christiansen <pedbro@gmail.com>

337Introducing Drools
Before we wrap up this quick introduction to Drools, let’s create one additional rule
in listing 11.4—this one will fire only if the Person is male and under 25. If the rule cri-
teria are met, we’ll then print “Hello Dude!”

rule "HelloDude"
 salience 40
 when
 person : Person (gender == 'M', age < 25);
 then
 System.out.println ("Hello Dude!");
end

In the rule shown in listing 11.4, salience is set to 40 b, which means it will fire before
the last one we’d defined (listing 11.3), which had a salience value of 30. Then we add
the constraint to the Person fact by specifying age < 25 c. You can comma-separate
the constraints, which is an implicit and, or explicitly define using && instead.

 This is great, but while we can control the order in which rules are fired, we still
have multiple rules that are triggered, displaying multiple console messages. While
we’ve demonstrated how to add constraints to facts to limit when a rule is triggered, in
some cases it’s not desirable to do so. Instead, we’d just rather suppress Rule X from
being fired when Rule Y is triggered previously. We’ll get into some ways that this can
be managed, but for now, the easiest thing to do using our Hello World example is to
just remove the Person fact object from working memory. That way, the other rules
that otherwise trigger downstream would no longer do so, since the rule conditions
no longer apply (there’s no more Person object in working memory). We can accom-
plish this very easily by using the retract keyword within the then (consequence)
clause. For example, let’s assume that if the "HelloDude" rule is fired, we don’t want
the others to fire at all. Here’s the modified rule definition that will accomplish this:

rule "HelloDude"
 salience 40
 when
 person : Person (gender == 'M', age < 25);
 then
 System.out.println ("Hello Dude!");
 retract (person);
end

The only distinction between this and the earlier example is the addition of the
retract(person) line. If this consequence is invoked, the Person fact object is
removed from the working memory, and thus any other rules dependent on that
object would subsequently not fire. Now that we’ve defined our rules, let’s see what’s
needed to run them within the rules engine.

Listing 11.4 Illustration of using and–style logical operator

 b Assigns salience

c
Matches two
conditions
Licensed to Deborah Christiansen <pedbro@gmail.com>

338 CHAPTER 11 Business rules using JBoss Drools
11.2.2 Running Hello World, Drools!

The Java code shown in listing 11.5 contains the logic used to run the rules we’ve
defined in the previous section. When you create a new Drools project in Eclipse, a
sample DRL is created along with a corresponding Java class that closely resembles list-
ing 11.5.

package opensoa.drools.hellodrools;
import java.io.*;
import org.drools.*;
import org.drools.compiler.PackageBuilder;
import org.drools.rule.Package;
public class HelloDroolsMain {
 public static final void main(String[] args) {
 try {
 RuleBase ruleBase = readRule();
 WorkingMemory workingMemory =
 ruleBase.newStatefulSession();
 Person person = new Person ("John Doe", 22, "M");
 workingMemory.insert(person);
 workingMemory.fireAllRules();
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }
 private static RuleBase readRule() throws Exception {
 Reader source = new InputStreamReader
 (HelloDroolsMain.class.getResourceAsStream("/HelloDrools.drl"));
 PackageBuilder builder = new PackageBuilder();
 builder.addPackageFromDrl(source);
 Package pkg = builder.getPackage();
 RuleBase ruleBase = RuleBaseFactory.newRuleBase();
 ruleBase.addPackage(pkg);
 return ruleBase;
 }
}

As you can gather from listing 11.5, most of the code deals with initially configuring
the RuleBase. Perhaps at the risk of oversimplifying things, the RuleBase can be
thought of as the runtime container where one or more rule packages are loaded
(packages can be dynamically modified during runtime operations). To create our
RuleBase, an internal method called readRule() is called b. That method first iden-
tifies and reads in the DRL file that contains the rules we created g. The next step is
to instantiate a PackageBuilder h whose addPackageFromDrl() method i is then
used for loading the rules associated with the package specified in the DRL. This step
will also parse the DRL file and compile it into executable code. The Package-
Builder.getPackage() method is then used to create a new Package object j that
can be consumed by the RuleBase 1! (as noted, a RuleBase may contain one or more
packages). The RuleBase itself is instantiated using the RuleBaseFactory.1) A factory

Listing 11.5 Java Main for running Hello World example rules

b

c
d

e
f

g

h
i

j 1)
 1!
Licensed to Deborah Christiansen <pedbro@gmail.com>

339Drools Rule Language (DRL) overview
is used because a RuleBase is thread safe and can be shared across multiple threads in
your application.

NOTE The RuleBase is thread safe and serializable, which means that it can be
cached for use within a web application or web service. Caching elimi-
nates the need for continuously regenerating the RuleBase, which is a
relatively expensive operation.

Once the RuleBase is created, you can then use it to instantiate a new WorkingMemory
instance c. Interestingly, you can create more than one WorkingMemory instance, if
you so desire. For example, you may want a separate working memory area per Rule-
Base package, though this is somewhat artificial, since you can’t specifically identify
which package is associated with each working memory instance. To populate the
working memory with some fact objects, a Person is instantiated, using its constructor
to create the individual assigned with the name John Doe d. The Person is then
added to the WorkingMemory using its insert method e.

 Now that we’ve created the RuleBase and WorkingMemory, we’re ready to fire up
the engine to run. We do this using the WorkingMemory.fireAllRules() method f.
This instructs the rules engine to process the rules using whatever fact data exists
within the working memory.

NOTE You can find this example in the sample code associated with this chapter.

Now that you have for a good grasp of how things work using Drools, let’s take a closer
look at the Drools programming language. This is the vocabulary by which rules are
expressed and that forms the foundation for creating our SOA-based decisional services.

11.3 Drools Rule Language (DRL) overview
Based on the Hello World example we created in the previous section, you may be left
with the impression that the DRL language is simplistic and perhaps not very powerful.
However, you can create quite sophisticated pattern matching statements for the rule
conditions. We also only mentioned one rule attribute, the salience keyword, but
many others are available. It’s outside the scope of this chapter to provide in-depth cov-
erage of the entire language; the official Drools documentation is outstanding in this
regard [Drools]. Instead, I’ll provide an overview, with code samples that demonstrate
how to craft rules using the Drools language. We’ll explore the most important con-
structs, so you are aware of Drools’ capabilities and can investigate further.

 Figure 11.4 shows the language components that you can use in a DRL file.
 In figure 11.4, we group several of the items together into what we’re calling header

elements. The reason for doing this is because they must appear at the start of any DRL
file, before the rules or queries are configured. Thus, they are more supporting type
in nature, and are subsequently used by either rules or query definition. We’ll exam-
ine these language elements first.
Licensed to Deborah Christiansen <pedbro@gmail.com>

340 CHAPTER 11 Business rules using JBoss Drools
11.4 Drools header elements
The components that we’re considering as header elements are package, import,
expander, global, and function. Every rule file must have a package defined, and it
must be the first declaration in the file (in that respect, it is similar to an XML root ele-
ment). Let’s look at package first.

11.4.1 package

The String value assigned as a package represents a namespace analogous in concept
to how the similarly named construct exists within Java. However, unlike in Java, it can
be any arbitrary value; it’s not related in any way to the folder and file structure being
used. Although you do not have to use a dot-notation style name (i.e.,
opensoa.drools.example), this type of naming convention is generally followed,
since it’s familiar in style to that used by Java developers and is also commonly used
within XML for namespace definitions. The dot notation can also be useful from a
categorization standpoint, allowing logical hierarchies to be defined (such as
hr.benefits and hr.benefits.401k).

11.4.2 import

The import statement is used when you want to reference Java objects within the DRL.
To do so, you must reference the complete Java package plus the class name. Java

Figure 11.4 Overview of Drools language components and constructs
Licensed to Deborah Christiansen <pedbro@gmail.com>

341Drools header elements
primitives such as String are automatically imported, so there’s no need to import
them. You’ll likely find you use this most often when working with your custom fact
objects, such as that demonstrated in listing 11.2 with the Person class.

11.4.3 expander

The expander keyword is necessary when using the Drools DSL capabilities. This key-
word will identify the template file used for defining your custom DSL vocabulary.
We’ll explore this in section 11.8.

11.4.4 global

global is a global variable that’s used primarily within the consequence portion of a
rule definition. A global variable isn’t stored within working memory, and can’t be
used for pattern-matching purposes (except when used with an eval, which we discuss
in section 11.5.2). A global that’s defined within a DRL file must first have been instan-
tiated when your Drools session is created. In that respect, you aren’t instantiating the
global variable within the DRL but are instead receiving a handle to one that was cre-
ated when the Drools session was initiated.

 In chapter 8 we discussed Esper, the open source CEP that we selected for our
Open SOA Platform. Using a global variable, we could obtain a handle to the Esper
EPServiceProvider object and use it to send events to Esper when a rule has been
fired. For example, let’s update our earlier example to include an event posting to
Esper:

global com.espertech.esper.client.EPServiceProvider epService;
rule "HelloDude"
 salience 40
 when
 person : Person (gender == 'M', age < 25);
 then
 System.out.println ("Hello Dude!");
 epService.getEPRuntime().sendEvent(
 new ProcessEvent("PersonDrools", "HelloDude",
 person.getName()));
 retract (person);
end

Here, we’re using global to receive a handle to EPServiceProvider and assigning it
to the variable epService. In the consequence portion of the rule, we’re then firing
off a new event to the Esper engine. Obviously, some up-front work is required for set-
ting up Esper, but the concept should be clear.

 The Esper example is the type of use for which a global is intended. You can also
use globals for callbacks, whereby a method could be called on a service that invoked
the engine. We’ll conclude our coverage of the header elements by looking at functions.

11.4.5 function

function is simply a way of including procedural code directly within DRL files.
functions are written in Java, and when the DRL is compiled, helper classes are
Licensed to Deborah Christiansen <pedbro@gmail.com>

342 CHAPTER 11 Business rules using JBoss Drools
automatically generated. In you turn back to listing 11.3, you’ll remember the exam-
ple we created to print out Hello World with the person’s name prefaced with a saluta-
tion. Let’s create a function that performs the determination of whether to use “Mr.”
or “Mrs.”, and we’ll also convert the name to uppercase.

function String salutationGenerator(Person person) {
 if (person.getGender().equals("M"))
 return "Mr. " + person.getName().toUpperCase();
 else if (person.getGender().equals("F"))
 return "Mrs. " + person.getName().toUpperCase();
 else
 return "";
}

Now let’s use this function in a new rule:

rule "HelloFunction"
 salience 35
 when
 person : Person ();
 then
 System.out.println(salutationGenerator(person));
end

The highlighted code shows function being called. Generally, functions aren’t used
within conditional (when) statements, except when a function returns a Boolean, in
which case an eval can be used when calling the function.

 In lieu of using a helper function, you could create a Java helper class with a static
method to achieve the same results. I think this is a better idea, as intermixing code
and rules in the same file runs contrary to one of the main tenets of using a rules
engine: separating the concerns. Further, you may want a different configuration
management lifecycle with code than you do for rules, which coincidently is our next
topic of conversation.

11.5 Defining rules in Drools
We’ve already explored some basic functionality of rules, but we’ve only skimmed the
surface. We’ll begin by looking at rule attributes. We used one earlier, salience, to
manage the priority for how rules are fired, but there are many more.

11.5.1 Modifying rule behavior with attributes

Rule attributes can be thought of primarily as a way of influencing how and when rules
are fired. Without them, the sole determination is left to the conditional patterns
defined for the rule. However, there are times when you want additional control and to
simplify rule maintenance. We’ll describe each of the available rule attributes next.
ACTIVATION-GROUP

You may recall from our Hello World example that, in order to prevent the other rules
from firing after the HelloDude rule (listing 11.4), we retracted the Person object
from working memory. This may not always be a desired option if you still want the
Licensed to Deborah Christiansen <pedbro@gmail.com>

343Defining rules in Drools
fact object in the working memory. This is where you can use activation-group. The
attribute takes a single String value, and when two or more rules have the same value,
the rules will fire exclusively. In other words, if one rule in the activation group fires,
none of the others will. You can also use salience to control the order and activation
of rules.
AGENDA-GROUP

Agenda groups represent a way to manage flow control. For an example, see figure 11.5.

In figure 11.5, the rules titled MrFlow and MrsFlow are used in a fashion akin to a dis-
tributor. If the conditions specified for the rule apply, the drools.setFocus()
method is used to direct processing of the rule to the assigned agenda-group. All rules
associated with that agenda-group will then be processed, and will fire based on
whether the specified condition criteria are satisfied. In the example in figure 11.5,
if the Person is male (gender == 'M'), the rule MrFlow is activated, and then sets the
agenda-group focus to the one titled 'Mr', which in turns triggers the HelloMr rule to
fire (since that rule’s conditions are met).
AUTO-FOCUS

In figure 11.5 we used the drools.setFocus() directive to activate an agenda-group.
The auto-focus attribute (which is a Boolean) can be used to accomplish the same
feat, since it will activate a given agenda-group if the rule condition is met. Here’s an
example:

Figure 11.5 Use of agenda-
group in action
Licensed to Deborah Christiansen <pedbro@gmail.com>

344 CHAPTER 11 Business rules using JBoss Drools
rule "MrFlow"
 auto-focus true
 agenda-group "Mr"
 when
 Person(gender == 'M');
 then
end

This MrFlow rule can replace the one shown in figure 11.5 and has the same effect.
DATE-EFFECTIVE

As the name suggests, using this attribute means that the rule can only be fired after
the date and time specified. For example:

rule "DateEffectiveTest"
 salience 100
 date-effective "01-Nov-2009T01:01:01"
 when
 Person();
 then
 System.out.println("DateEffectiveTest triggered");
end

This rule will only fire on or after November 1, 2009 at 1:01:01 AM (you can optionally
leave the time off).
DATE-EXPIRES

When date-expires is used, a rule won’t be triggered if the current date and time is
past the value specified for this attribute. You can use this with date-effective to cre-
ate a date range:

rule "DateExpiresTest"
 salience 100
 date-effective "01-Aug-2009T01:01:01"
 date-expires "01-Nov-2009T01:01:01"
 when
 Person();
 then
 System.out.println("DateExpiresTest triggered");
end

Here, we’re limiting the rule from firing between 01-Aug-2009 and 01-Nov-2009.
This approach is useful when, for example, you’re applying a pricing discount over a
holiday period timeframe (for example, “Mother’s day sale!”).
DIALECT

The dialect attribute is used to determine which syntax is being used for the rule’s
conditions (when) and consequence (then) statements. Possible values are java or
mvel (the default is java). Learn more about MVEL at http://mvel.codehaus.org/.
DURATION

The duration attribute will delay the firing of the rule for the specified time value (in
milliseconds). After the timer has expired, the rule is re-evaluated to see whether the
condition remains true. Here’s an example:
Licensed to Deborah Christiansen <pedbro@gmail.com>

345Defining rules in Drools
rule "DurationTest"
 duration 60000
 when
 Person();
 then
 System.out.println("DurationTest triggered");
end

Here, if the Person fact was subsequently removed from working memory between the
time that this rule was first qualified and the completion of its duration timer, the rule
would no longer be true and the system out message never printed. What’s an exam-
ple of where using duration could be useful? One scenario that comes to mind is
where you want to discriminate service levels by customer. For example, perhaps you
have various rules for how to process inbound customer service requests. Customers
who have a “gold” status would be escalated immediately, but those with a status of
“silver” would only be escalated after a specified period of time.
LOCK-ON-ACTIVE

The lock-on-active attribute is another way of managing rule activations, but it’s
only used with agenda-group or ruleflow-group. When set to true, lock-on-active
will block any future activations of that rule from occurring (until the ruleflow-
group is no longer active or the agenda-group loses focus). For example, in
figure 11.5 we depicted the following rule:

rule "HelloMr"
 agenda-group "Mr"
 when
 person : Person ();
 then
 System.out.println("Hello Mr. " + person.getName());
 retract (person);
end

If we were to use update instead of retract, the fact object would be refreshed in
working memory, and the rule would continually fire in an endless (recursive) loop.
This looping behavior could be avoided by using the lock-on-active attribute, as
shown here:

rule "HelloMr"
 agenda-group "Mr"
 lock-on-active true
 when
 person : Person ();
 then
 System.out.println("Hello Mr. " + person.getName());
 update (person);
end

This behavior can be beneficial, in particular when rules are performing calculations,
where any reactivations resulting in a new calculation wouldn’t be desirable.
Licensed to Deborah Christiansen <pedbro@gmail.com>

346 CHAPTER 11 Business rules using JBoss Drools
NO-LOOP

The no-loop attribute, when set to true, will help prevent recursive (looping) reacti-
vations that can result from modifying working memory as a result of an activation fir-
ing. We’ll see this attribute in use in many of the examples that follow.
RULEFLOW-GROUP

Drools offers some fairly sophisticated ways in which to manage the order, or agenda,
in which rules are activated. However, managing this using an agenda-group can still
be rather tedious, especially when dealing with potentially hundreds of rules. The
RuleFlow mechanism allows you to manage groups of rules and the order in which
they can be activated. A String name assigned to the ruleflow-group attribute corre-
sponds to a sequence node within a RuleFlow diagram. We’ll demonstrate this capabil-
ity in section 11.7 and in the case study in the next chapter.
SALIENCE

You’ve seen how the salience attribute can be used to manage the priority of rule
activation. The value must be assigned an integer, which can be positive or negative.
Higher numbers indicate higher rule priority. By default, if the attribute isn’t speci-
fied, a salience value of 0 is assigned to the rule.

 Let’s now turn our attention to where the fun actually begins: the construction of
the rules themselves. This begins with the conditional, or “when,” portion of a rule
definition.

11.5.2 Conditional part of rule statement (when part)

We’ve already explored some simple conditions as part of our Hello World, Drools
example in section 11.2.1. Drools supports a rich set of constructs that can be used for
building conditions. As we'll discover, conditions represent an essential part of the
rules engine, as they directly impact your ability to craft sophisticated rules. Conditions
work using pattern matching, so we’ll begin by examining that concept in more detail.
PATTERNS AND CONSTRAINTS

In the Hello World example, we demonstrated a few types of patterns. The first pat-
tern, in listing 11.2, matched whether the object Person existed in working memory.
The when clause simply read: Person(). We later included some additional constraints
to qualify the rule based on the Person attributes of age and gender, such as

Person (gender == 'M', age < 25);

The use of the comma is synonymous with an implicit and, which can be expressed
using &&. Similarly, an or constraint can be added by using ||. So the following would
match if the person is male or less than 25 years old:

Person (gender == 'M' || age < 25);

Using parentheses, you can also control the evaluation priority, the same as with any
mathematical equation. So, for example, this rule would match if the person was a
male under 25, or a female under 30:

Person ((gender == 'M' && age < 25) || (gender == 'F' && age < 30));
Licensed to Deborah Christiansen <pedbro@gmail.com>

347Defining rules in Drools
NOTE If using parenthetical phrases, you can’t use a comma in lieu of &&.

As you probably noticed, as long as you’re working with standard JavaBean type
objects, it isn’t necessary in conditional statements to use accessor methods when ref-
erencing fields. Using introspection, Drools will automatically add the appropriate
getXXX or isXXX when attempting to resolve the field. Supported field types include
numerics, Date, String, and Boolean. The date format, by default, is 'dd-mmm-yyyy',
but this can be modified using the drools.dateformat system property. When using a
primitive Boolean, you don’t have to provide quotes around the true or false value.

 You may be wondering how collections such as an ArrayList can be used. You can
reference individual elements by using the index location (other ways in which collec-
tions can be used will be covered later in this section). For example, let’s modify the
Person class to include a new field called interests that’s an ArrayList of String val-
ues representing an individual’s hobbies. Using Drools’ nested accessor support, we
could create a rule such as the following:

rule "NestedAccessors"
 when
 person : Person (interests[1] == 'Golf')
 then
 System.out.println("NestedAccessors " + person.getName());
end

In this rule, we’re checking whether the first indexed value of the interests Array-
List is equal to Golf. Keep the following in mind when working with nested accessors:
working memory isn’t directly aware of these values, and thus when they’re changed,
rules will be activated accordingly. Instead, you should remove and re-assert the par-
ent reference of the accessor.

 Let’s now look at how we can use a variety of operators when comparing values
used for pattern matching.
PATTERN OPERATORS

The default expression language for defining rules uses MVEL (as defined using the
dialect header property). While Java-based and similar in style, it does offer some
conveniences, particularly in operator comparisons, that aren’t native to Java. In our
Person example, we used the equality operator ('==') with a String value to compare
the interests indexed value. This obviously isn’t standard Java syntax, but it’s a more
intuitive approach for writing rules since the same operators can be used regardless of
type. Other standard operators include '<', '>', '<=', '>=', and '!='. While these are self-
explanatory, there are some additional ones that you likely haven’t encountered
(shown in table 11.1).

 You can also combine standard operators such as '==', '<', '>' into a shorthand form
called multiple restrictions. For example, notice the condition within this rule:

rule "MultiRestrictions"
 when
 person : Person (age (> 20 && < 25))
 then
end
Licensed to Deborah Christiansen <pedbro@gmail.com>

348 CHAPTER 11 Business rules using JBoss Drools
In this example, we’re checking whether an individual’s age is between 20 and 25.
Multiple restrictions require that you group the conditions within parentheses, and
you’re limited to using && or || as logical operators. In certain scenarios, alternatives
to using multiple restrictions exist for comparing a given value against a list of possible
hits, which can simplify your rule definition—our next subject.

Table 11.1 Drools’ extended operators

Operator
Description

Example

contains rule "Contains"
 when
 person: Person
 (interests contains "Golf");
 then
end

Used to check whether a Collection or
array field contains the value specified. In the
example shown, an ArrayList called
interests consists of String values rep-
resenting the interests of a Person, and
we’re checking whether one of their interests
is "Golf".

not contains rule "NotContains"
 when
 person: Person
 (interests not contains "Golf");
 then
end

The opposite of contains, this checks
whether the Collector or array list values
do not contain the specified value.

memberOf rule "MemberOf"
 when
 person: Person
 (favoriteInterest memberOf
 topInterests);
 then
end

Somewhat analogous to contains, but
checks whether a single field's value is
located within the Collection or array
specified. However, the comparison collection
must be a variable. In the example shown, a
global variable called topInterests is pre-
populated with values such as “Golf” and
“Tennis”. The field value being compared is
a String value representing the favorite
interest of a Person.

matches rule "Matches"
 when
 person : Person
 (name matches "(.*?)()[Dd]oe");
 then
end

Compares a single field value against any valid
Java regular expression. In the example
shown, a comparison match exists if the name
of the Person is "<any-first-name>
Doe".

not matches rule "NotMatches"
 when
 person : Person
 (name not matches
 "(.*?)()[Dd]oe");
 then
end

The opposite of matches, this checks
whether the field value does not match the
provided regular expression.
Licensed to Deborah Christiansen <pedbro@gmail.com>

349Defining rules in Drools
GROUP-RELATED EVALUATORS

The official Drools documentation [Drools] refers to comparing a field value against a
list of one or more possible values’ compound value restrictions. If you use SQL, the in
operator is likely familiar to you. Table 11.2 describes how in and not in are supported.

We’ve now completed our discussion of comparison-based operators and evaluators.
Let’s turn our attention for the remainder of this section to how you can logically con-
struct statements that are composed of these operators and evaluators. We’ll begin by
looking at what we term logical conditionals.

soundslike rule "Soundslike"
 when
 person : Person
 (favoriteInterest soundslike
 'Gulf')
 then
end

Checks whether a word has the same phonetic
sound as the provided value. For instance, in
the example shown, if a
favoriteInterest of a Person is
“Golf”, then “Gulf” would match using
soundslike (which is a form of soundex).

Note: These examples can be found in the sample code for this chapter.

Table 11.2 Group evaluators

Conditional
Description

Example

in rule "In"
 when
 person : Person (
favoriteInterest
 in ('Golf', 'Biking'))
 then
end

An evaluator that compares a single value
against a list of possible values. In the exam-
ple, a String field called
favoriteInterest is compared against
two possible choices ('Golf',
'Biking'). If the field value is either value
listed within the in parenthetical, the rule will
fire. Rather than using literals, as shown, you
could also use a return value or variable.

not in rule "NotIn"
 when
 person : Person (
favoriteInterest
 not in ('Golf', 'Biking'))
 then
end

The negative of using just in. So in the exam-
ple to the right the rule would fire only if
favoriteInterest is not 'Golf' or
'Biking'.

Note: These examples can be found in the sample code for this chapter.

Table 11.1 Drools’ extended operators (continued)

Operator
Description

Example
Licensed to Deborah Christiansen <pedbro@gmail.com>

350 CHAPTER 11 Business rules using JBoss Drools
LOGICAL CONDITIONALS

When constructing conditional phrases, you often find it necessary to combine vari-
ous statements together to form the pattern required for the rule. Our Hello World
example was purposely kept as simple as possible, so these logical conditions weren’t
used. But now let’s expand the use case so that we can illustrate some of these fea-
tures. In particular, we’ll add a new property to the Person class called homeZip. It will
be an integer field, and as the name suggests, it’ll store the home zip code for the indi-
vidual. Then we’ll add a new ZipCode class. Its fields are (int) zipcode, (String)
city, (String) state. For example purposes, we’ll populate several ZipCode entries
into the working memory so that we can compare Person.homeZip against
Zipcode.zipcode to retrieve the state and city in which the individual resides.

 The conditionals are listed in table 11.3, with descriptions and examples for each.

Table 11.3 Logical conditionals

Conditional
Description

Example

and rule "ImplicitAndConditional"
 when
 person : Person ($zip : homeZip);
 zipCode : ZipCode (zipcode ==
$zip);
 then
end
Is the same as:
rule "PrefixAndConditional"
 when
 (and
 (person : Person ($zip :
homeZip))
 (zipCode : ZipCode (
 zipcode == $zip)))
 then
end
Is the same as:
rule "InfixAndConditional"
 when
 (person : Person($zip : homeZip))
 and
 (zipCode : ZipCode(zipcode ==
$zip))
 then
end

The and conditional is used to group together
other conditional statements or elements. It’s
one of the most frequently used conditionals,
and several permutations are supported, as
shown in the examples.

In each example, we’re simply matching a
ZipCode against a Person using the
ZipCode.zipcode and
Person.homeZip field values as the join
criteria. In the first example, an implicit and is
used, as it is the default behavior for joining
one or more statements. In the second case,
what’s called a prefixAnd is used, which
has the format of (and <statements>).
In the last example, we used an infixAnd,
where conditional element statements are
specifically tied together using an explicit
and.
Licensed to Deborah Christiansen <pedbro@gmail.com>

351Defining rules in Drools
You’ll likely find that you’ll be using these conditionals on a frequent basis, especially
as your rules go beyond trivial. The last set of conditionals we’ll look at relate to using
iterators and collections.

or Uses the prefixOr format.
rule "PrefixOrConditional"
 when
 (or person : Person (age > 20)
 person : Person (age < 30))
 then
end
Uses the infixOr format.
rule "InfixOrConditional"
 when
 person :
 (Person (homeZip == 80012)
 or Person (homeZip == 80920))
 then
end

A conditional grouping that will result in rule
activation for each true statement. This is
often a source of great confusion. When used,
the Drools engine will actually split the rule
apart internally into one or more subrules.
What’s confusing is that, depending on your
authoring, a rule using an or may then fire
multiple times, because multiple rules are cre-
ated behind the scenes for each statement.

 In the first example shown, if the Person
is older than 20 but younger than 30, the rule
will fire twice, since both statements are true.
In the second example, the rule will only fire
once if the individual’s homeZip is one of the
two values shown.

Note: There is no support for an implicit or, as this would be interpreted instead as an implicit and.

not rule "Not"
 when
 not Person (homeZip == 83822);
 then
end

This will check for the nonexistence of some-
thing within the working memory. So in the
example shown the rule will fire if no Person
has a homeZip of 83822.

exists rule "Exists"
 when
 exists (Person (homeZip ==
 80920));
 then
end

Related in concept to not, exists will check
whether one or more facts within the working
memory qualify using the pattern presented. In
the example shown, the rule will fire only once
if one or more Persons has a homeZip of
80920.

eval rule "Eval"
 when
 person : Person ($age : age);
 eval
 (person.getInterests().size()
 >= 2);
 then
end

This is a flexible construct that allows any
code that returns a Boolean to be used
within a pattern. In the example, the
ArrayList size of the interests field is
used to determine whether the rule will fire.
You could also call Drools functions or other
Java methods, as long as they return a primi-
tive boolean.

Note: These examples can be found in the sample code for this chapter.

Table 11.3 Logical conditionals (continued)

Conditional
Description

Example
Licensed to Deborah Christiansen <pedbro@gmail.com>

352 CHAPTER 11 Business rules using JBoss Drools
ITERATOR- AND COLLECTION-RELATED CONDITIONALS

As you begin to build more complex rule patterns using more complex fact object
structures, you’ll likely encounter the need to use one of the conditionals shown in
table 11.4.

Table 11.4 Collection-related conditionals

Conditional
Description

Example

forall rule "Forall"
 when
 forall(person : Person ()
 Person (this == person,
 age > 18))
 then
end
Using a not form of forall:
rule "ForallNot"
 when
 not
 (forall(person : Person ()
 ZipCode(zipcode ==
 person.homeZip)))
 then
end

Somewhat akin to an iterator pattern matcher,
forall is constructed in two parts. The first is a
pattern that returns a set of facts, with the second
part iterating through those facts to determine
whether the pattern provided is true. If all are true,
the rule will fire. So in the first example we’re pat-
tern-matching all Person fact objects, then for
each matching fact object we evaluate whether they
are over the age of 18.

In the second example, we’re using the negative
form of forall. In this case, we’re checking all to
see that all Person facts have a valid zipcode,
based on the homeZip field value.

from rule "From"
 when
 person : Person ();
 String (val : toString)
 from topInterests;
 foundInterest : String
 (toString == val)
 from person.interests;
 then
end

The from conditional allows you to specify a source
for patterns to reason over. It can be data either in
working memory or returned from a function, bound
variable, etc. In the example, we’re first iterating
through the global variable called topInterests.
Then we’re iterating through the ArrayList of
Person interests, matching against the iter-
ated values returned from topInterest. The rule
will fire for each matching interest.

collect rule "Collect"
 when
 collection : ArrayList ()
from
 collect (ZipCode ());
 then
 System.out.println("Collect "
 + collection.size());
end

The collect conditional will return a collection for
any matched pattern objects. In the example shown,
an ArrayList is returned for all matching
ZipCode facts (no pattern is provided, so all are
returned), with the size of the List printed out in
the consequence portion of the rule.
Licensed to Deborah Christiansen <pedbro@gmail.com>

353Defining rules in Drools
Table 11.4 represents the last of the conditionals, and as you can see, they’re very pow-
erful constructs. Knowledge of these conditionals will prove indispensible as you
begin creating your own rules, especially as they grow more complex in nature. We’ll
conclude this section on the conditional elements of rules with a look at variable bind-
ing. As you’ll see, binding becomes important when working on the consequence por-
tion of the rule definition (which represents the decisions and action to be
undertaken when a rule is matched).
VARIABLE BINDING

In several of our Hello World examples, we demonstrated the use of variable binding.
In listing 11.3, for example, we assigned the Person fact handle to a variable called
person. That was done so we could print out the individual’s name in the conse-
quence part of the rule when it’s activated. Rather than assigning the variable to the
entire object, you could create one that just captures the individual’s name—in other
words, only a String object would be created. Let’s rewrite that example to demon-
strate this (listing 11.6).

rule "HelloMr2"
 salience 30
 when
 Person ($name : name, gender == 'M');
 then
 System.out.println("Hello Mr. " + $name);
end

In listing 11.6, the name of the person is assigned to the variable $name b (the $ pre-
fix is optional but helps avoid confusion when the variable name is the same as the
fact object field’s name). That name is subsequently printed out in the consequence
portion of the rule c. Notice that it’s not necessary to cast the variable to the appro-
priate type, as this is handled transparently by Drools through reflection techniques.

 This completes our coverage of the conditional portion of a rule definition. We’ll
tackle the consequence, or action part, next. Unlike with the conditional part, the lan-
guage constructs are minimal for the consequence—so hang in there!

accumulate See the next chapter’s use case for a
detailed examination of using this condi-
tional.

This conditional is a more powerful form of a
collect, and allows you to iterate over a collec-
tion of objects while performing individual actions on
each element encountered. It’s ideally suited for
things such as performing summary calculations.
We’ll examine this conditional in more detail in our
use case study, which is covered in the next chapter.

Listing 11.6 Listing 11.6 Use of variable binding in field-level assignment

Table 11.4 Collection-related conditionals (continued)

Conditional
Description

Example

b

c

Licensed to Deborah Christiansen <pedbro@gmail.com>

354 CHAPTER 11 Business rules using JBoss Drools
11.5.3 Consequence part of rule statement (then part)

The main purpose for the consequence portion of a rule is to insert, retract, or update
data in the working memory. When using rules as a service, the findings should be
returned to the client. To preserve a loose coupling between services, I don’t recom-
mend that the consequence directly execute application code. Instead, the purpose of
the rules engine is to render a decision, not execute code. There are three main actions that
can be performed on working memory: update, insert, and retract. We’ll discuss each
in turn.

NOTE The consequence part of a rule is sometimes referred to as the right-hand
side (whereas the conditional part is the left-hand side). This terminology is
derived from its Rete heritage. While I generally avoid using this termi-
nology, it’s worth noting since you’ll see it used often throughout the
official Drools documentation [Drools].

UPDATE

The signature for this method is update (<object>), where the <object> is the fact
you’re modifying. When you trigger an update, take care to avoid a recursive loop, as
the rule may be reactivated. To illustrate how update can be used, consider this example:

rule "HelloDudeUpdate"
 salience 50
 no-loop true
 when
 person : Person (gender == 'M', age < 25);
 then
 System.out.println ("Hello Dude2!");
 person.setSalutation ("Hello Dude");
 update (person);
end

Here, the salutation field of Person (added for purposes of this illustration) is set to
"Hello Dude" using the setSalutation method. Then the person fact object variable
is updated to reflect the change in working memory. If the no-loop true header
weren’t set, a recursive condition would occur, since the rule conditions would again
evaluate to true (the update results in rules being re-fired). As an aside, in lieu of
using no-loop, you could add an additional condition to the pattern, as in (saluta-
tion == null, gender == 'M', age < 25).
INSERT AND INSERTLOGICAL

The insert method, which takes an object as its single parameter, will add the object
as a fact into working memory. The insertLogical method also inserts an object into
working memory, but has one important distinction: the inserted object will be
removed (retracted) from working memory when the pattern conditions that
activated the rule are no longer true. A simple example will help clarify this behavior.
Consider the following rule:
Licensed to Deborah Christiansen <pedbro@gmail.com>

355Defining rules in Drools
rule "HelloInsert"
 salience 20
 when
 person : Person ();
 then
 insertLogical (new String ("test"));
end

If a Person object exists in memory, this rule will fire, and a String will be inserted
into working memory using insertLogical. Now, if a subsequent rule fires that
retracts the Person object that was used to activate this rule, the String object added
via insertLogical will be removed. Similarly, consider this rule scenario:

rule "HelloInsert"
 salience 20
 when
 person : Person(name == "John Doe");
 then
 insertLogical (new String ("test"));
 person.setName("Jane Doe");
 update (person);
end

What’s interesting about this rule is that it will only fire if the Person.name equals
"John Doe", and once fired, the insertLogical method is invoked to add the String
object into working memory. However, within the consequence part, the Person.name
is modified and updated, which results in this rule no longer being fire-able. Since the
rule conditions are no longer satisfied as a result of this update, the inserted object is
removed immediately. Thus, you should clearly understand the behavior of insert-
Logical before electing to use it.
RETRACT

The retract method accepts a single object representing a handle to a fact that’s to
be removed from working memory. If your sole desire for using retract is to avoid
other rules from being fired, it sometimes makes more sense to instead create a flag-
type field that can be set and then subsequently checked that it’s not null. Obviously, it
depends on whether it’s useful to preserve the object in working memory.

 As you can see, the consequence portion of the rule definition is about altering the
facts within the working memory. Granted, nothing precludes you from making Java
method calls to perform some action logic. However, I advise against going in this
direction, because the notion of using rules as a decision service means that it should
be limited to rendering a judgment. In other words, it doesn’t perform an action but
instead informs the client consumer that calls the service of its decision. This pre-
serves the loose coupling that’s essential for a SOA environment and makes the ser-
vice far more reusable by other client systems.

 There’s one final piece of functionality we haven’t touched on: queries. Using a
query, which basically resembles a rule but only contains the conditional part, you can
search on facts residing in the working memory.
Licensed to Deborah Christiansen <pedbro@gmail.com>

356 CHAPTER 11 Business rules using JBoss Drools
11.6 Querying facts in Drools
A query provides a means to search working memory and stores the results under a
named value. Then, within the Java code used to fire the rules, the working memory
can be queried using the assigned name. For example, let’s create a query to return all
Person facts within working memory:

query "PersonQuery"
 person : Person ()
end

Any bound variables, such as person, will be stored within the query. To retrieve the
contents of the query from within Java, use a fragment such as

Person person = null;
QueryResults results =
 workingMemory.getQueryResults ("PersonQuery");
System.out.println ("Number of Person objects: " + results.size());
for (QueryResult qresult : qresults) {
 person = (Person) qresult.get("person");
 System.out.println("Person is: " + person.getName());
}

Queries can be a convenient way of passing information back to the calling client,
without having to resort to inserting objects into working memory, which may not
always be desired.

 Congratulations! We’ve covered the language essentials for creating business rules
in Drools. You can now create the condition and consequence portions of the rule,
query working memory, and use the various rule attributes to influence the order in
which rules are activated. As you may recall from section 11.5.1, one of the rule attri-
butes we spoke about was ruleflow-group. This is used to logically group the order in
which rules are evaluated. This feature has been significantly expanded in the 5.0
release of Drools, and we’ll consider its capabilities next.

11.7 Drools RuleFlow for rule orchestration
Drools RuleFlow, originally introduced in version 4 of the product, allows users to cre-
ate a graphical flow chart that defines the order in which rules should be evaluated.
The Drools Eclipse IDE includes a graphical editor for constructing the flows, as
shown in figure 11.6.

 Why would you consider using this feature? There are several possible reasons:

■ Managing large rulesets—If you’re working with a large number of rules, manag-
ing the order in which they fire using salience or agenda-groups can become
challenging. RuleFlow simplifies this process by allowing you to graphically
describe the proper sequence of steps. Further, you can easily add sophisticated
branching logic using RuleFlow.

■ Wait states and work items—With RuleFlow, you can define wait states within your
flow that will pause processing until a given constraint is satisfied. Similarly, you
Licensed to Deborah Christiansen <pedbro@gmail.com>

357Drools RuleFlow for rule orchestration
can create work items, whereby processing is suspended until a certain action is
completed. These capabilities share some common features typically found in a
BPM solution (indeed, RuleFlow is based on the jBPM engine).

■ Integration—With RuleFlow, you can use an action to invoke custom Java code at
points within the flow. This enables you to more easily integrate with external
applications or services.

A significant amount of functionality is available using RuleFlow, and it’s beyond the
scope of this book to entirely do it justice (the Drools 5.0 documentation on RuleFlow
is vastly superior to what was provided in the 4.0 release). However, we’ll create a sim-
ple example that demonstrates its capabilities (and the next chapter will also use Rule-
Flow extensively in a use case).

 In figure 11.6, we show a depiction of a RuleFlow that builds on the Hello World
example we’ve been using throughout this chapter. In this example, a splitter node
labeled Gender is used to evaluate the Person object’s gender property and, depend-
ing on the results, direct the flow to either the Male or Female node. The behavior of
the splitter is defined based on the constraints identified in its property view. For
example, the path flowing from Gender to Male has a constraint of Person (gender
== "M"). The Male node is a RuleFlowGroup component. A RuleFlowGroup node has
a similarly named String property (Id) that identifies which rules to use based on the
ruleflow-group assigned to the rules (which, in this case, is a value of 'male'). This
will become clearer when we look at one of the rules assigned to that RuleFlowGroup
(see listing 11.7)

Figure 11.6 Drools Eclipse RuleFlow editor
Licensed to Deborah Christiansen <pedbro@gmail.com>

358 CHAPTER 11 Business rules using JBoss Drools
rule "HelloWorldMaleFlow"
 ruleflow-group 'male'
 no-loop true
 when
 man : Person ()
 then
 man.setSalutation ("Mr.");
 update (man);
 System.out.println ("HelloWorldMaleFlow fired: "
 + man.getName());
end

As you can see in listing 11.7, the rule header’s ruleflow-group attribute is set to
'male'b, which is the same value assigned in the RuleFlowGroup node for the Male
node in figure 11.6. Since the splitter was used to differentiate based on gender, there
was no need to add that constraint to the rule defined in listing 11.7. Not shown is a
query that was also defined that simply captured all Person objects in working mem-
ory. This query is referenced downstream in the Action node shown in figure 11.6. An
Action is simply any MVEL or Java script snippet that you define. In this example, it
prints out the Person objects captured from the query.

NOTE The full RuleFlow example can be found in the source code for this
chapter.

Up until now, we’ve defined our rules exclusively using the DRL. While I think you’ll
agree it’s fairly intuitive, it does remain more targeted to the developer than the busi-
ness user. In light of that, let’s examine the other means of creating rules: domain-
specific language (DSL) and decision tables.

11.8 Alternatives to using Drools Rule Language
One of the major challenges facing all rules engine vendors is how to make the defini-
tion of rules more like natural language. Since the intention is for business users to
craft rules, this is considered an important requirement. It has been met with varying
degrees of success, since the vocabulary for rules is often very domain specific. The
Drools approach to this conundrum is to use a templating mechanism that allows
developers to create DSLs that can be language specific to the context or domain in
which they’re used. Let’s create a simple DSL for our Hello World example, and you’ll
see how straightforward the process is.

Listing 11.7 Example of using ruleflow-group

 b
Assigns
RuleFlowGroup name

RuleFlow vs. jBPM
You may have seen some similarities between RuleFlow and jBPM, which we covered
in chapters 5–7. Indeed, as Mark Proctor, the JBoss Drools lead, states, RuleFlow is
“an integration of rules and processes” [Proctor]. This obviously begs the question,
why not just use Drools with RuleFlow instead of jBPM? I’m not completely convinced
that tightly coupling rules and processes is always advantageous. For one, it breaks
Licensed to Deborah Christiansen <pedbro@gmail.com>

359Alternatives to using Drools Rule Language

11.8.1 Using DSLs for business user authoring

The easiest approach we’ve found for creating a DSL is to start with an existing rule or
rules, and then consider how the rule’s syntax can be made to resemble natural lan-
guage. In listing 11.4, we defined a rule with a pattern that identified a Person whose
age was less than 25 and who was a male. The when condition was specified as

person : Person (gender == 'M', age < 25)

Obviously, building this condition assumes some fairly detailed knowledge about the
fact object, and would be rather confusing for a business type to understand. It would
be much more readily understandable to business users if it were expressed using
something like this:

There is a person who is > than age 25, and that person is male.

While you could create a template that would allow precisely that language to be
expressed, it would be so specific that it might not be very reusable when crafting
other rules. A better approach would be something like this:

There is at least one person
The person is > than age 25
The person is Male.

We can define such a vocabulary using the DSL template definition shown in
listing 11.8.

[when]There is at least one person=person: Person ();
[when]The person is {oper} than {age}=Person (age {oper} {age});
[when]The person is male=Person (gender == 'M');
[when]The person is female=Person (gender == 'F');

Each template line begins by specifying whether you’re defining a condition or con-
sequence, wrapped within brackets ([]). This is followed by an empty set of brackets,
and then the natural language statement. Data that needs to be captured by the rule
author is specified via tokens that are surrounded by curly brackets ({}). The tem-
plate part that begins following the equal sign (=) is then the rule expression, in DRL
syntax. Any token placeholders captured in the natural language part can then be

Listing 11.8 Example of DSL definition

RuleFlow vs. jBPM (Continued)
one of the central tenets of SOA—namely, loosely couple services. By merging them
as one, we are assuming the lifecycles of rules and processes are the same, when
in fact, they’re often different. Further, while a BPM process undoubtedly uses rules,
that’s not its central foundation. The RuleFlow functionality in Drools is also not cur-
rently as rich as jBPM, so it may not be suitable in all instances. My recommendation
is to use RuleFlow to simplify the management of complex rulesets, but for true busi-
ness process modeling and execution, stick with jBPM.

b

Licensed to Deborah Christiansen <pedbro@gmail.com>

360 CHAPTER 11 Business rules using JBoss Drools
referenced in the DRL definition (the part that follows the =). A good example in list-
ing 11.8 of a template definition is where the age of the person is used as the rule pat-
tern b. In this case, two tokens are defined: one for the comparison operator
({oper}) and the other the age ({age}). What’s interesting about this definition is
that it illustrates that token replacement can be used not just for fact conditions, but
also for Drools language elements, such as for the comparison operator.

 To simplify creation of complex rules that can include one or many possible con-
straints, you can use a shortcut to define a variety of possible constraints to a single
rule definition. In listing 11.8, the author is required to add several independent rules
to achieve the desired definition. For example, a complete rule might resemble this:

rule "DSL2"
 when
 There is at least one person
 The person is >= than 20
 The person is male
 then
 Log : "DSL2"
 Print the name of the person
end

Here, the three conditional statements all correspond to separate DSL templates, and
the actual resulting rule when compiled into DRL would be

rule "DSL2"
 when
 person: Person ();
 Person (age >= 20);
 Person (gender == 'M');
 then
 System.out.println("DSL2");
 System.out.println("Person is: " + person.getName());
end

As you can see, this is a fairly inefficient definition, since the Person fact is referenced
and constrained in three separate statements. Instead, the template can be rewritten
to avoid this by specifying field constraints in a separate template line that begins with
a dash (-). Take a look at listing 11.9.

[when]There is a person=person:Person()
[when]- age is greater or equal to {age}=age >= {age}
[when]- age is less than or equal to {age}=age <= {age}
[when]- gender is male=gender=='M'
[when]- gender is female=gender=='F

Each template definition that starts with the dash will add the constraint identified on
the right-hand side of the equals to the parent fact object. So, if the constraint gender
is male is selected, it would result in the constraint gender=='M' being added to the
People fact pattern. In other words, what would result in the translated DRL is

person: Person (gender=='M');

Listing 11.9 Example of DSL definition
Licensed to Deborah Christiansen <pedbro@gmail.com>

361Alternatives to using Drools Rule Language
NOTE When using the Eclipse rule editor, you can see the translated DRL by
clicking on the DRL Viewer tab that appears on the bottom left in the edi-
tor panel.

The real power behind using DSLs becomes most evident when using the Drools’
Eclipse rule editor (or editing within Guvnor, discussed in the next chapter). When
editing, code expansions can be used to select a predefined template, and the author
can then just replace the tokens with actual values. Figure 11.7 shows the editor in use;
I pressed Ctrl+Spacebar to access the pop-up list of template options.

 If you’re just adding a field constraint, you can filter just those lines by first enter-
ing - prior to hitting Ctrl+Spacebar.

 In listing 11.5, we showed you how to run the Hello World example from within
Java. To use a DSL, only a minor change is required: you must load the DSL
configuration file (the template), and then use the alternative method signature for
PackageBuilder. addPackageFromDrl(<DRLFileSource>, <DSLFileSource>). So if
the DSL configuration is helloworld.dsl, and the corresponding DRL file is called
HelloWorld.dslr (notice the different file extension, .dslr instead of .drl, to indi-
cate it’s a DSL-based rule file), then it would be loaded using

Reader source = new InputStreamReader(
 HelloDroolsMainDSL.class.getResourceAsStream("/HelloWorld.dslr"));
Reader DSLsource = new InputStreamReader(
 HelloDroolsMainDSL.class.getResourceAsStream("/helloworld.dsl"));
PackageBuilder builder = new PackageBuilder();
builder.addPackageFromDrl(source, DSLsource);

The remainder of the code used in listing 11.5 remains valid.
 The DSL capabilities are definitely worth exploring if you want to extend the

authoring environment to regular business users. Another way of expressing rules is a
decision table, which we’ll cover next.

Figure 11.7 An example of the Eclipse rule editor using DSL
Licensed to Deborah Christiansen <pedbro@gmail.com>

362 CHAPTER 11 Business rules using JBoss Drools
11.8.2 Defining rules using decision tables

Decision tables are a way of collecting conditional logic through a spreadsheet. Col-
umns within the spreadsheet represent rule conditions or consequences (actions),
while rows represent individual rules generated by the data entered therein. Decision
tables are ideally suited when you have a limited number of rule parameters but many
rule conditions.

 A surprising amount can be accomplished using decision tables, but it’s beyond
the scope of this book to cover all possible configurations (the official documentation
does offer excellent coverage of this feature). However, figure 11.8 conveys some
sense of how decision trees are constructed, using our Hello World, Drools example.

 As you can see in figure 11.8, the columns that include the keywords of CONDI-
TION or ACTION are used to represent the condition or consequence portion of a
rule. The next row after that is used to identify the working memory objects you’re
working with (notice the two columns are merged, so that object applies to both col-
umns), with the row after that identifying the rule templates that apply to those
objects. Following that row is just a column description, which isn’t used in rule
execution. Once the template information is set up, then the actual rule data itself
can be specified, which is what follows.

 In the example shown in figure 11.8, we created a salutation based on the Person
object’s age and gender fields. The age is specified as a range (age >=$1, age <= $2),
with the $1 and $2 being replaced by the values within the data columns (when you’re

Figure 11.8 An example decision table
Licensed to Deborah Christiansen <pedbro@gmail.com>

363Summary
working with multiple values, the form of $1, $2, $3 can be used, which correspond to
the comma-separated data used in the rule row data). For example, if the Person is
between the ages of 46 and 99 and is a male, then the salutation is set to Sir.

 Decision tables are a convenient way for business users to maintain rulesets.
Spreadsheet applications such as Excel or Open Office are familiar territory, and thus
the training is minimal. However, if highly complex and varied rules are required,
decision tables may not be a workable choice.

 We’ve covered a lot of material in this chapter, and hopefully you have a fairly solid
understanding of how Drools works and are as excited as I am about its potential.

11.9 Summary
The operational decisions that are made by any organization on a day-to-day basis rep-
resent its key intellectual property. Using a rules engine, these decisions can be
extracted from specific applications or domain experts where they often reside and
managed independently as assets. In this fashion, they can be more readily under-
stood, maintained, and modified to reflect changes in the business environment. Fur-
ther, complexity is reduced, since rules engines offer powerful constructs for creating
and expressing rules that can be otherwise very difficult to code within conventional
programming languages such as Java.

 JBoss Rules, known as Drools by most folks, is a mature, fast, highly capable rules
engine that continues to undergo significant enhancements from release to release.
This chapter introduced you to the key functionality of Drools, while providing many
examples of how to craft rules using the product. The next chapter will focus on
implementation, and will cover Guvnor, the Drools Business Rules Management Sys-
tem (BRMS), while presenting a real-life use case to further build on what you’ve
learned in this chapter. I’ll also describe how to create stateless decision services
through integration with Apache Tuscany.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Implementing Drools
In the previous chapter we discussed what constitutes business rules and how they
can be used with a rules engine in a SOA environment to significantly improve the
reusability of these assets and promote greater agility within your organization. We
then explored JBoss Rules (most commonly called Drools), which will serve as the
rule engine for our Open SOA Platform. We spent the latter part of chapter 11
describing many examples that illustrated the key language constructs of Drools.
For your less technical users, we covered some of the alternative ways in which rules
can be expressed, such as through decision tables and domain-specific languages.
What we didn’t discuss, and what’s the initial focus of this chapter, was how to use
the Drools Business Rule Management System (BRMS), known as Guvnor. By the time
you complete this chapter, you’ll share my enthusiasm for this exciting capability—
it truly unlocks the power of rules to your business audience.

 The last thing we’ll cover before concluding this chapter is how we can combine
the capabilities of Drools with the service component framework of Apache Tuscany

This chapter covers
■ Using Drools in a real-life case study
■ Using Drools Guvnor BRMS
■ Implementing a decision service
364

Licensed to Deborah Christiansen <pedbro@gmail.com>

365Case study overview
(an implementation of the Service Component Architecture, or SCA), which we covered in
chapters 3 and 4. You’ll learn how to create decision services that can be a key foundation
for SOA-enabling your enterprise. We’ll demonstrate why decoupling rules from their
historically intertwined role within application logic transitions them into corporate
assets that can be reused across many solutions and processes. As we talked about in
the previous chapter, the decisions a company makes are what determines its success.
Centralizing these decisions, represented as rules, through Guvnor and exposing them
as services, will allow them to become substantial contributors to your journey to SOA.

 To introduce Guvnor and the decision services that follow, we’ll create a real-life
case study.

12.1 Case study overview
One of the most common, and often complex, requirements for a company is develop-
ing a pricing engine that can be used to calculate the price of products or services
being quoted to a customer. This is a challenge because you may want the prices to vary
depending on any number of factors, such as customer classification, size of order,
shipment options selected, promotional sales, or product availability. Many ERP sys-
tems include sophisticated capabilities to assist in product pricing, but you’re still lim-
ited to whatever parameters they support. Of course, if you don’t have a million-dollar
ERP system in place, determining pricing can be a much more manual and tedious pro-
cess. The case study we’ll examine describes how a pricing engine can be developed
using Drools, and then exposed as services that can be readily utilized by a number of
applications. Obviously, given the ubiquity of rules, the notion of services central to the
premise of SOA can act as a catalyst toward achieving your SOA objectives.

 The premise behind the case study is to create a service that, upon receiving a
request that contains order details, will return a computed cost for the products
selected. The variables that will impact the pricing calculation include the following:

■ Customer classification, such as whether they are a Gold, Silver, or Standard
customer

■ Volume discounts based on item count
■ Shipment calculations based on the carrier selected

In order for the pricing and rules engine to perform its calculations, it requires a sub-
stantial amount of data in its working memory. For example, it must know the weight
of the products to calculate shipping costs, it must be able to look up the classification
of a customer, and it must have access to the pricing of the individual products.

 Listing 12.1 shows an example, depicted in XML, of an inbound request.

<Order>
 <header>
 <orderId>2020322</orderId>
 <partyId>WA-23923</partyId>

Listing 12.1 Example of XML inbound request for rule engine calculation

 b Identifies
customer
Licensed to Deborah Christiansen <pedbro@gmail.com>

366 CHAPTER 12 Implementing Drools
 <partyContactId>1006</partyContactId>
 <currency>USD</currency>
 <shipping>
 <carrier>USPS</carrier>
 <method>STANDARD</method>
 </shipping>
 </header>
 <lines>
 <product>
 <lineId>2020322-1</lineId>
 <productId>GZ-1004</productId>
 <cnt>1</cnt>
 </product>
 <product>
 <lineId>2020322-2</lineId>
 <productId>GZ-1001</productId>
 <cnt>12</cnt>
 </product>
 </lines>
</Order>

As you can see, the inbound request includes a customer identifier b that can be
used to look up the customer classification; shipping details such as which carrier to
use c along with delivery type (standard ground, overnight, etc.) d; and a break-
down of the line item products e and their quantity. Once processed by the rules
engine, an XML rendering of the results would look like this:

<DecisionResponse>
 <orderId>2020322</orderId>
 <salePrice>72.97</salePrice>
 <shippingPrice>12.5</shippingPrice>
 <totalPrice>60.47</totalPrice>
 </DecisionResponse>

In order to populate the Drools working memory with the data needed to perform
the calculations, a set of DTOs must be created and populated, which can then be ref-
erenced when creating the Drools business rules.

 An overview of the DTO objects used within the case study is shown in figure 12.1.
 The objects shown in figure 12.1 contain no business logic and are simply contain-

ers for capturing the required data needed by Drools. The methods, which aren’t
shown in the figure, are simply getters and setters (accessor methods) for each of the
class member variables. The Order and OrderProduct classes represent the instance
(volatile) data used to represent an inbound request, and are the class manifestations
of the XML shown in listing 12.1 (in other words, these classes are the input used by
the rule engine to calculate the pricing).

NOTE The complete Java classes for all the classes shown in figure 12.1, plus all
samples that follow in this chapter, can be found in the chapter 12
example code.

Let’s now take a look at some of the rules used in our case study. You’ll become famil-
iar with some nontrivial type examples that truly illustrate the power of Drools.

 c Identifies
shipping carrier

d

Identifies shipment
method

 e Lists order line
items

Orders line
itemsest
Licensed to Deborah Christiansen <pedbro@gmail.com>

367Case study overview
12.1.1 Defining the DRL rules

Because of the number of rules that we’ll use to perform the pricing calculation, it
represents an ideal scenario for applying the Drools RuleFlow feature. As you may
recall from section 11.5 in the previous chapter, you use RuleFlow when you want to
manage the sequence by which rules can be activated. Further, it allows you to more
logically group rules together, thereby simplifying ongoing maintenance. The Rule-
Flow diagram used for our case study is shown in figure 12.2.

As you can see in figure 12.1, three RuleFlow groups are shown:

■ Pricing—This set of rules is used to calculate base prices for each of the product
line items. As we’ll show in a moment, the price varies depending on customer
classification or whether volume discounts apply.

■ Shipping—These rules calculate the shipping costs associated with the order
estimate. A variety of factors influence how this is calculated. At the most basic
level, the choice of delivery method is the main factor.

Figure 12.1 Case study
DTO fact classes intended for
use by the Drools working
memory

Figure 12.2 Case study RuleFlow diagram illustrating the grouping logic of the rules
Licensed to Deborah Christiansen <pedbro@gmail.com>

368 CHAPTER 12 Implementing Drools
■ Special Discounts—This is where special pricing rules can be applied, and this
group, as the last, also calculates the final pricing estimate.

Since the complete DRL rules can be found in the example code for this chapter, out
of respect for your time, we won’t visit each of them individually. However, let’s take a
look at a sample or two from each RuleFlow group, so you have some context as we
move forward. We’ll first look at the Discount-LineItemPrice rule, which is used to
determine whether discounts can be applied based on customer classification.
DISCOUNT-LINEITEMPRICE RULE

The Discount-LineItemPrice rule belongs to the Pricing RuleFlow group (the
actual id assigned for this group is price-calc). This RuleFlow group is used for rules
that determine line item pricing (the line items are captured in the OrderProduct
class, which has a one-to-many relationship to Order). In this rule example, the dis-
count price of the product, as captured from the ProductPrice object, is applied to
all customers who are classified as either GOLD or SILVER. In natural language pseudo-
code, the rule can be described as: “When the customer is either SILVER or GOLD, then use
the product discount price for calculating the cost for each of the line items in the order.” In DRL
form, this is expressed as shown in listing 12.2.

rule "Discount-LineItemPrice"
 ruleflow-group 'price-calc'
 salience 20
 when
 order : Order();
 item : OrderProduct (itemCnt : cnt, stdPrice == 0)
 from order.getLines();
 party : Party (partyId == order.partyId,
 partyTypeId in (Party.SILVER, Party.GOLD));
 ProductPrice (price : price,
 productId == item.productId,
 priceType == ProductPrice.DISCOUNT_PRICE);
 then
 item.setStdPrice (price * itemCnt);
 update (order);
end

Let’s examine listing 12.2 in a bit more detail. The first thing we’re doing is identify-
ing the inbound quote request (Order) we’re working with by assigning that object to
the alias order b. From there, we’re using the from iterator (see chapter 11) to assign
each product line item to the alias called item c (behind the scenes, this will cause
the rule to fire a specified number of times based on the number of line items present
in the order). We then restrict this rule based on the pattern of whether the customer
(represented by partyId) is classified as either GOLD or SILVER d (without this clause,
the discount would be applied to all customers). The last statement in the conditional
portion of the rule then looks up the individual discount price for each object e.

Listing 12.2 Rule for calculating line item discounts

 b
c

 d

 e

 f
 g
Licensed to Deborah Christiansen <pedbro@gmail.com>

369Case study overview
 The OrderProduct (represented by the alias item) includes the class member vari-
able stdPrice. When the instance fact representing the order pricing request is
received by Drools, this value is null. However, this field gets assigned a value in the
consequence portion of the rule f, where it’s calculated as the discount price times
the number of units specified (represented by the alias itemCnt). Finally, the order
object is updated in working memory g, which in turn also updates the associated
line items since OrderProduct is associated as a child to Order. Now let’s look at a rule
that tallies up the total price and applies any quantity-based discounts, if applicable.
TOTALENDPRICE RULE

When 10 or more units are ordered for a particular line item, we also want to apply a
quantity-based discount. If this condition occurs, the OrderProduct member variable
called qntDiscountPrice is assigned as the line item price. So if the standard price of
item X is $9.99, and 10 units were specified, then the qntDiscountPrice would be set
to $99.90 with a 5 percent discount applied to that value, leaving a total of $94.90.
When computing the order’s total (minus shipping), this volume discount is then fac-
tored into an equation, as we see in the business rule shown in listing 12.3. This rule
also happens to be the last one run for the Pricing RuleFlow group (this is controlled
by using its salience value, which is set to a low-value of 5).

rule "TotalEndPrice"
 ruleflow-group 'price-calc'
 salience 5
 no-loop true
 when
 order : Order();
 totalPrice : Float() from accumulate (
 OrderProduct (disprice : qntDiscountPrice,
 stdprice : stdPrice > 0) from order.getLines(),
 init (float total = 0;),
 action (total += (disprice > 0 ? disprice : stdprice);),
 result (new Float(total))
);
 then
 TotalPrice tot = new TotalPrice();
 tot.setTotalPrice (totalPrice);
 tot.setOrderId (order.getOrderId());
 insert (tot);
end

In the TotalEndPrice rule (listing 12.3), the accumulate conditional is used to iterate
through the OrderProduct line items b, which includes a pattern restriction specify-
ing that the stdPrice must be greater than 0. What this means is that a line item total
must have previously been calculated c; otherwise this rule will not qualify for firing.
Then the action statement of accumulate is used d to compute the total order cost.
If qntDiscountPrice has been assigned, that value is used for the calculation; other-
wise the stdPrice is used for computing the total. The result of the accumulate

Listing 12.3 Rule to calculate total price based on aggregated line items

 b

 c

 d

 e

f
g

Licensed to Deborah Christiansen <pedbro@gmail.com>

370 CHAPTER 12 Implementing Drools
statement is therefore the total price estimate of the order, which gets assigned to the
totalPrice alias variable.

 Turning to the consequence part of the rule shown in listing 12.3, a new instance
of TotalPrice is instantiated e, with a member variable assigned (tot) to represent
the computed price for the order f and is thereafter inserted into the working mem-
ory g (this object will be used in the two remaining RuleFlow groups that are called).

 The examples shown in listings 12.2 and 12.3 are good illustrations of nontrivial
type rules. If you’ve been able to successfully follow the logic of these rules, you have a
strong command of how rules can be fashioned using Drools. If you’re struggling a
bit, I suggest reviewing chapter 11 to refresh your understanding.

 The remaining rules associated with the Shipping RuleFlow are fairly straightfor-
ward and follow a pattern similar to those we’ve just discussed (that is, primarily iterat-
ing through the individual line items to establish an item’s weight, then applying a
multiple based on the carrier selected along with assigning a minimum charge, if
appropriate). Let’s move on to examining one last rule, this one from the last Rule-
Flow group, in which we print out the final total price and update the TotalPrice
object within the working memory. This final rule is shown in listing 12.4.

rule "FinalTotals"
 ruleflow-group 'special-calc'
 activation-group 'final-price'
 salience 50
 when
 price : TotalPrice (salePrice == 0.0);
 order : Order (orderId == price.orderId);
 then
 price.setSalePrice (
 FunctionHelper.currencyConverter(order.getCurrency(),
 price.getShippingPrice() + price.getTotalPrice()));
 System.out.println ("** FINAL TOTALS **");
 System.out.println (" Order Id: " + price.getOrderId());
 System.out.println (" Price: " + price.getTotalPrice());
 System.out.println (" Shipping: " + price.getShippingPrice());
 System.out.println (" Sale Price:" + price.getSalePrice() +

 " (" + order.getCurrency() + ")");
 update (price);
end

As you can see in listing 12.4, the conditions for activating this rule are minimal—if
the TotalPrice.salePrice value is 0 b (meaning it hasn’t previously been calcu-
lated) and the TotalPrice.orderId matches the Order.orderId c, we can proceed
to the consequence portion of the rule.

 In the consequence (then) portion of the rule, we first set the TotalPrice.sale-
Price variable as the sum of TotalPrice.totalPrice and TotalPrice.shipping-
Price d. The summed value is then sent to the FunctionHelper.currencyConverter
method, which will compute the currency-adjusted price. Then, what follows are some

Listing 12.4 FinalTotals rule used to calculate final pricing order estimate

b
c

 d

e

f

Licensed to Deborah Christiansen <pedbro@gmail.com>

371Case study overview
console outputs that display details about the results produced by the rules engine e.
Finally, the TotalPrice object, represented by the price alias, is updated in working
memory f.

 What’s the upshot of all of this? The TotalPrice object updated by the rule now
contains the computed values that represent the output to be returned to the calling
client. The question now becomes, how do we retrieve this data from working mem-
ory so that it can be returned to the client application/user? There are a couple of
options to achieve this:

■ We could iterate through the working memory fact handles using the method
WorkingMemory.iterateFactHandles(), and then check the class name to
locate the TotalPrice object that contains the computed estimate.

■ We could store the TotalPrice in a named query so that the method Working-
Memory.getQueryResults(<string>) could be used to locate the results.

The latter option is more straightforward, so let’s use this approach. We defined the fol-
lowing query in the DRL file associated with the Special Discounts RuleFlow group:

query "FinalPrice"
 total : TotalPrice (salePrice > 0.0);
 order : Order (orderId == total.orderId);
end

This query is activated when the two consequence statements are true. Notice that the
first one checks whether a TotalPrice.salePrice has been assigned (that is, sale-
Price > 0). As you recall from a moment ago, this salePrice was set during the rule
shown in listing 12.4. So only after this rule is activated will this pattern be satisfied. In
the next section you’ll see how this query is retrieved.

 Now that we have our rules defined, let’s explore the process for invoking them.

12.1.2 Running as an embedded engine

There are several approaches for how Drools can be used. The most common is using
it in an embedded fashion. Using this approach, you can incorporate the rule engine
directly within your application code. We’ll describe later in section 12.3 what’s likely
a better approach—exposing Drools as a decision service. However, since the decision
service approach shares much in common with how it can be used as an embedded
engine, it’s worthwhile to begin with the embedded approach.

 If you use the Eclipse IDE for creating a new Drools project, it will optionally create
some example, starter-style classes that you can begin building on. I recommend try-
ing this, because it will shed much light on how Drools can be run using an embedded
style setup. We’ll expand on what’s automatically generated via the Eclipse plug-in and
refactor it to make it more suitable for reuse.

 Let’s begin by providing an overview of the steps required for running Drools in an
embedded fashion:
Licensed to Deborah Christiansen <pedbro@gmail.com>

372 CHAPTER 12 Implementing Drools
1 Create the RuleFlow and rules (rule assets). We tackled this in the previous sec-
tion, and have our rule DRL files and flows created.

2 Create and populate the RuleBase. This Drools class is used to load, parse, and
store the rule assets.

3 Create a WorkingMemory session from the RuleBase. This creates a working
memory container for populating the fact data required by the rules engine for
processing.

4 Load the WorkingMemory. Populate the working memory with fact data.
5 Start the RuleFlow process. If a RuleFlow process is used, it must be started

using WorkingMemory.startProcess(<processId>).
6 Activate the rules. This is done using the method WorkingMemory.fireAll-

Rules(). This will run the rule engine using the rule assets and working memory.
7 Query the results from the named query. We covered in the previous section

how query results can be retrieved, and this represents the last step in the pro-
cess (we’ll review it in context with the rest of the code for completeness).

Since we already created step 1, let’s jump right to step 2, and see how to create a
RuleBase.
STEP 2: CREATING AND POPULATING THE RULEBASE

To break things into more discrete functions, we’ve created a helper class called
SessionHelper that we can use to perform the individual steps and also simplify the
code. The first static method we’ll create in this class is for instantiating the RuleBase
(see listing 12.5).

private static RuleBase readEmbeddedRules() throws Exception {

 PackageBuilder builder = new PackageBuilder();
 Package pkg = builder.getPackage();
 RuleBase ruleBase = RuleBaseFactory.newRuleBase();

Listing 12.5 Static method used to create and populate Drools' RuleBase

Using Apache Commons Digester for populating working memory objects
One of the first challenges you’ll likely encounter when using Drools is how to popu-
late the classes destined for working memory with data. While you could obviously
create some methods to populate the data directly from a database, this does tightly
bind your solution to the underlying data model, so that if the database schema
changes, your solution will break. In other words, this is a fairly fragile approach. For
purposes of this case study, we took a different tack. We generated our data using
XML, which is obviously very amenable to hand authoring, and then used Apache Com-
mons Digester (http://commons.apache.org/digester/) to unmarshal the data from
XML into the appropriate classes. Obviously, the use of Digester is outside the scope
of this chapter, so we won’t go into specific details as to how this is done, but the
example code for this chapter and the Digester home page are excellent resources.

b
c

d

Licensed to Deborah Christiansen <pedbro@gmail.com>

373Case study overview
 Reader source = new InputStreamReader(
 SessionHelper.class.getResourceAsStream("/CalculatePriceFlow.drl"));
 Reader shippingSource = new InputStreamReader(
 SessionHelper.class.getResourceAsStream("/CalculateShippingFlow.drl"));
 Reader specialDiscSource = new InputStreamReader(
 SessionHelper.class.getResourceAsStream
 ("/CalculateSpecialDiscountFlow.drl"));
 Reader flowsource = new InputStreamReader(
 SessionHelper.class.getResourceAsStream("/PriceCalculator.rf"));
 builder.addProcessFromXml(flowsource);

 builder.addPackageFromDrl(source);
 builder.addPackageFromDrl(shippingSource);
 builder.addPackageFromDrl(specialDiscSource);

 ruleBase.addPackage(pkg);
 return ruleBase;
}

The first statement shown in listing 12.5 is used to create an instance of Package-
Builder b. That in turn is used to create a new Package c. A Package can be
thought of as a container for DRLs. A RuleBase consists of compiled packages, so an
instance of it is created in d so that downstream we can add populated packages to it.
From there, we’re simply creating a Reader for each of the DRL and RuleFlow pro-
cesses so that they can be read from disk. Each of the Readers is then used by the
PackageBuilder for loading, parsing, and compilation e. The Package, which was
derived by the PackageBuilder, is then added to the RuleBase f. The RuleBase
object is populated with all compiled rule assets, and is returned to the caller g. The
next step (d in our sequence) is to use the RuleBase object to instantiate the
WorkingMemory.

NOTE Instead of hard-coding the rule file assets within the readEmbedded-
Rules() method in listing 12.5, you could make the method far more
reusable by passing them dynamically as a Map to the method, but to keep
things simple, we didn’t go this route.

STEP 3: CREATING THE WORKING MEMORY

Now that a RuleBase has been created from the prior step, we can use it to create a
WorkingMemory session. To do this, we’ll use the RuleBase.newStatefulSession()
method (you can optionally create a stateless session, where the working memory isn’t
preserved after the rules fire). The static method SessionHelper.getEmbedded-
SessionURL() used to create the WorkingMemory is shown in listing 12.6.

public static StatefulSession getEmbeddedSessionDRL() {

 if (rulebase == null) {
 try {
 rulebase = readEmbeddedRules();
 } catch (Exception e) {

Listing 12.6 Method used for instantiating WorkingMemory from a RuleBase

Loads rule assets from files

into Readers

Adds RuleFlow to
PackageBuilder

e

 f
 g

b

Licensed to Deborah Christiansen <pedbro@gmail.com>

374 CHAPTER 12 Implementing Drools
 e.printStackTrace();
 }
 }

 session = rulebase.newStatefulSession();

 session.addEventListener(
 new DefaultAgendaEventListener() {
 public void afterActivationFired(AfterActivationFiredEvent event,
 WorkingMemory workingMemory) {
 super.afterActivationFired(event, workingMemory);
 System.out.println("Event: " +
 event.getActivation().getRule().getName()) ;
 }
 });

 return session;
}

The first order of business is to call the readEmbeddedRules() method we created in
listing 12.5 b. Since, depending on usage, rulebase may have previously been instan-
tiated, we first check to see if it is null prior to making the method call. Once the
RuleBase instance is populated, we can then use its method to create a Stateful-
Session c, which implements the WorkingMemory interface. For logging and diag-
nostic purposes, we then add a listener to the session so that we can easily track,
mostly for troubleshooting purposes, which rule was activated d. Finally, we return
the WorkingMemory session to the calling client e. As you can see, this is all a pretty
straightforward process.

 Now that we have the WorkingMemory instantiated, we can use it to populate the
facts necessary for the rule engine to perform its magic.
STEP 4: LOADING THE WORKING MEMORY WITH NONVOLATILE FACTS

The process of loading the fact data into the working memory is very simple. To do so,
you call WorkingMemory.Insert(<object>). In our case study, we’re using the
LoadData class to unmarshal XML files into Java data objects using Apache Commons
Digester. Once the objects are populated via this class, we create another method
called loadNVWorkingMemory() in the SessionHelper class that loads each of the
objects required for the pricing calculation. Here’s an example of the ProductPrice
objects being loaded into working memory from within the loadNVWorking-

Memory()method:

ArrayList<ProductPrice> prices = ld.loadPrices();
for (ProductPrice price:prices) {
 workingMemory.insert(price);
}

The loadNVWorkingMemory() method only is responsible for loading what we term
the nonvolatile facts—that is, those facts that aren’t altered by the rules and don’t fre-
quently change (such as a product catalog). We’ll see in a moment how we load the
volatile, or instance facts, just prior to invoking the engine. However, before we do
this, we have one last housekeeping chore to attend to: loading the RuleFlow process.

c

d

e

Licensed to Deborah Christiansen <pedbro@gmail.com>

375Case study overview
STEP 5: STARTING THE RULEFLOW PROCESS

As you recall, we used the RuleFlow process feature in this case study to more easily
manage the sequence by which rules can be activated. While you can often do without
it, the visual nature of the RuleFlow process diagrams can aid in maintenance and
assist rule authors in devising the proper rule activation sequences. You identify the
correct RuleFlow process to use by calling the WorkingMemory.startProcess(<rule-
flow-process-id>) method. The <rule-flow-process-id> value represents the
id assigned when developing the Eclipse IDE RuleFlow process (the Properties view is
generally always present when working in the Java perspective, but if not, you can add
it to your current perspective by choosing Window > Show View). You can display the
process properties by clicking in the main diagram window, and the properties should
appear similar to what is shown in figure 12.3.

NOTE You don’t need to use the Eclipse plug-in to create a RuleFlow—you can
do it manually since it’s just an XML file.

So the statement needed to start up the RuleFlow looks like this:

workingMemory.startProcess("opensoa.drools.pricing");

We’ll show this in context next when we discuss activating the rule engine.
STEP 6: ACTIVATING THE RULE ENGINE

You activate the rule engine with a single method call, WorkingMemory.fireAll-
Rules(). However, first we need to populate the instance data, which represents the
input to the rule engine. This instance data is also just working memory objects, but is
transitory in nature and will generally be removed once the rules are processed (unlike
the nonvolatile working memory, which is persisted). So in our case, the instance data
is represented by the Order (and includes an association with one or more Order-
Product classes that represent the individual line items of the order). For testing pur-
poses, you’ll find in the example code for this chapter a Java main class called
EmbeddedDrools. Listing 12.7 shows the method that’s used to invoke the engine.

Figure 12.3 RuleFlow properties
window, highlighting the process ID
Licensed to Deborah Christiansen <pedbro@gmail.com>

376 CHAPTER 12 Implementing Drools
private static void runEngine (String orderFile,
 WorkingMemory workingMemory) throws Exception {

 LoadData ld = new LoadData();
 Order order = ld.loadOrders(orderFile);
 workingMemory.insert(order);

 workingMemory.startProcess("opensoa.drools.pricing");

 workingMemory.fireAllRules();

 SessionHelper.showResults(workingMemory);
 }
}

The runEngine() method shown in listing 12.7 requires two parameters: an XML file
to be loaded using Commons Digester, representing the instance data (listing 12.1,
for example), and the WorkingMemory instance we created in step 3. The instance data
is then processed into working memory b, and the rule engine is ready for activation
using the fireAllRules() method c. This method instructs the rule engine to run,
and once completed, the results that were stored into the named query can be
retrieved, which we cover next.
STEP 7: QUERYING THE RESULTS FROM THE NAMED QUERY

As you may recall from section 12.1.1, we created a named query called FinalPrice in
the last RuleFlow group that contained the pricing results derived from running the
rules engine. The static method SessionHelper.showResults(), shown in
listing 12.7, is used to process the query results. Let’s examine this in more detail in
listing 12.8, as it contains the results of the rule engine processing.

public static TotalPrice showResults (WorkingMemory workingMemory) {

 QueryResult result;
 TotalPrice price = null;
 Order ord = null;

 QueryResults results =
 workingMemory.getQueryResults("FinalPrice");

 for (QueryResult qresult : results) {
 result = (QueryResult) qresult;
 price = (TotalPrice) result.get("total");
 ord = (Order) result.get("order");
 }

 FactHandle priceFH = workingMemory.getFactHandle(price);
 FactHandle ordFH = workingMemory.getFactHandle(ord);

 workingMemory.retract(priceFH);
 workingMemory.retract(ordFH);
 return price;
}

Listing 12.7 Activating the rules engine to process the results

Listing 12.8 Method used to return results from the rules engine

b

Identifies
RuleFlow process

 c

Initializes
variables

 b
 c

d

e

f

 g
Licensed to Deborah Christiansen <pedbro@gmail.com>

377Case study overview
The purpose of the showResults() method is to retrieve the query results from the
engine, locate the referenced objects returned by the query, clean up the working
memory of the results, and return the results to the caller of the method. The
WorkingMemory.getQueryResults(<named-query>) method is used to retrieve a
named query from the engine. Here the query is named FinalPrice b. Once the
query results are retrieved, you can access any facts associated with the aliases that
were defined in the query. As you recall, our query was defined as

query "FinalPrice"
 total : TotalPrice (salePrice > 0.0);
 order : Order (orderId == total.orderId);
end

Returning to our code in listing 12.8, since we have just a single query with this name,
we can safely assume that the first returned QueryResult resulting from the Query-
Results iterator is the object we need c. With the QueryResult in hand, we can then
use the alias name assigned in the query definition to retrieve that object d. The
TotalPrice object is most relevant here as it contains the computed results (the alias
assigned to it is called total).

 What remains is to remove the instance facts from working memory, since they’re no
longer needed and would cause future complications if left in memory (that is, once
the order is estimated, there’s no need to keep them in working memory). To remove
the instance fact, we use the objects retrieved as a signature to create a FactHandle e.
The FactHandle can be passed as a parameter to the WorkingMemory.retract()
method, which flushes that item from working memory f. (Of course, this wouldn’t be
necessary if it were a stateless session, whereby the working memory must be reconsti-
tuted from scratch for each request.) Although it no longer exists in working memory,
price remains unaffected and is returned by the method g.

 Let’s recap what we've accomplished so far. We went through the end-to-end pro-
cess of creating the rules, running them, and then retrieving the results. At this point,
we have a completely operational rules engine solution, albeit one that could only be
embedded within a given application. Before we wrap up this section, let’s consider
how things might work using the DSL capability of Drools instead of the DRLs we’ve
created. In the previous chapter, we explained how this works, so we’ll assume that
you’ve read that material and won’t revisit the basics of how it works. The objective is
to reinforce what you learned previously about DSLs by applying them to a real-world
type scenario. This will also help contrast the differences between standard DRL rules
and the more natural language–like DSL-based rules.

12.1.3 User-friendly rules using a DSL

The main impetus behind using the DSL capability is that you can craft more natural-
language representations of your rules. This is particularly relevant when you want to
give subject matter experts in your organization the responsibility of rule authoring—
something they’re often enthusiastic about assuming. Nontechnical users might find
Licensed to Deborah Christiansen <pedbro@gmail.com>

378 CHAPTER 12 Implementing Drools
it challenging to create DRL rules, as the process assumes a high degree of knowledge
of the Drools language. However, as we’ll see, DSL-based rules are much easier for the
average user to understand, and thus increase the likelihood of their participation in
managing them (anytime developers have to translate user requirements to code,
there’s always an opportunity for subtle errors to be introduced because of the transla-
tion that must occur).

 For example, let's consider the rule used to determine whether a quantity-based
discount can be applied. In DRL format, this rule was defined as follows:

rule "Quantity-Discount"
ruleflow-group 'price-calc'
salience 30
 when
 order : Order();
 item : OrderProduct (qntDiscountPrice == 0, price : stdPrice,
 cnt >= 10, stdPrice > 0) from order.getLines();
 then
 item.setQntDiscountPrice (price * .90f);
 update (order);
end

In pseudo-code, this rule is stating that “If an order exists, and no quantity discount
has currently been applied but a standard price has been computed and the unit
count is >= 10, then apply a 10 percent discount.” While a trained eye could read the
DRL rule and interpret it the same way, a far more readable representation, in DSL, is

rule "Quantity-Discount-dsl"
ruleflow-group 'price-calc-dsl'
salience 30
 when
 There is an order
 Retrieve calculated order items which exceed a quantity of 10
 then
 Log : "Applying volume discount"
 Apply line item discount of .10 to previously calculated price
 Update the order
end

The pricing.dsl template file, located in the example code for this chapter, contains
the definitions that make this DSL feasible. For example, the second condition state-
ment is defined using this template (shown word-wrapped, but normally it’s not):

[when]Retrieve calculated order items which exceed a quantity of
{x}=item : OrderProduct (qntDiscountPrice == 0, price : stdPrice, cnt >=
{x}, stdPrice > 0) from order.getLines();

As you can see, the only parameter replacement required by the author is to specify
the number of items that qualify for a discount (represented by item). However, this
statement does require a prior condition (such as the DSL statement defined as
"There is an order") in order to receive a handle to the order alias referenced in
the right-hand side of this template for retrieving the order items. The complete
example can be found in the source code.
Licensed to Deborah Christiansen <pedbro@gmail.com>

379Rules management using Drools Guvnor
 The only difference when using a DSL from what we described in the previous sec-
tion is that the DSL template must be specified as an additional parameter to the
PackageBuilder.addPackageFromDRL() method. Consider this example:

Reader DSLsource = new InputStreamReader(
 DroolsTestDSL.class.getResourceAsStream("/pricing.dsl"));
Reader source = new InputStreamReader(
 DroolsTestDSL.class.getResourceAsStream("/CalculatePriceFlow.dslr"));
builder.addPackageFromDrl(source, DSLsource);

As you can see, we read the DSL template file (pricing.dsl) and DSL rule file
(CalculatePriceFlow.dslr) into a Java Reader, both of which are then passed as parame-
ters to the method addPackageFromDRL(). In other words, when loading a DSL file,
you also need to specify the DSL template (by convention, it ends with the .dsl exten-
sion). That’s the only distinction in what we covered in the last section.

 We’ve now explored the basics of the case study, and this real-life example builds
on the knowledge you gained in the previous chapter. With this foundation in place,
we can now move toward discussing the Drools Business Rule Management System
(BRMS), otherwise known as Guvnor. This feature is essential for enterprise adoption
of the business rules approach, since it allows for centralized management of rule
assets. It also is the foundation for building SOA-style decision services, which we’ll
cover in section 12.3.

12.2 Rules management using Drools Guvnor
One of the most exciting developments that occurred with the 4.0 release of Drools
was the introduction of the Guvnor BRMS. This multiuser web application can be
used to centrally house all of your business rules, provide tools for management and
editing of the rules, and support versioning and lifecycle management. A fair amount
of criticism was leveled against the first release, claiming that it lacked essential func-
tionality such as user management. However, it’s important to bear in mind that this
was the first release of the BRMS component, and I can happily report that the 5.0
release appears to address many of the cited deficiencies (for our examples, we’re
using the 5.0CR1 release, which is a beta version).

 The official documentation provides an excellent resource for how to install and
maintain the BRMS [DroolsUserGuide], so our focus will be on introducing key func-
tionality so that you can assess whether it’s an appropriate solution for your environ-
ment. Let’s start by taking a look at the main navigational hierarchy of Guvnor, which
will provide a good overview of its functionality.

12.2.1 Guvnor functionality overview

The Drools team has done an outstanding job of developing the user interface for
Guvnor. Built using Google’s GWT toolkit, it offers a rich, “thick client–like” interface
that’s highly intuitive. When first logging into the web application, you’ll be presented
with the screen shown in figure 12.4.
Licensed to Deborah Christiansen <pedbro@gmail.com>

380 CHAPTER 12 Implementing Drools
As the screenshot in figure 12.4 illustrates, several different audiences might use the
solution. For rule authors, it’s anticipated they’ll spend the bulk of their time within
the Assets view module. Developers, on the other hand, will be focused on the Packages
and Package snapshots modules. Those maintaining the system will primarily work
within the Administration module, with quality assurance and testing working within
the QA module. Let’s take a look into each module so we can understand its purpose
and usage.
ASSETS VIEW MODULE

The Assets view module is primarily where rule authors and business users will oper-
ate. It serves two purposes: it’s a means of navigating through categories of existing
rule assets, and it provides the ability to create new rules or potentially archive existing
ones. Guvnor includes a categorization capability that lets you define your own cus-
tom categories and assign rule assets to one or more of them (it’s similar in concept to
tagging, though you can’t dynamically create new ones since that must be done via the
Administration module). A category can be considered more of a logical view of rule
assets, as opposed to how they’re physically grouped within packages. For example,
you may have categories that correspond to your main business functions, such as HR
and Finance. These categories can also be used to manage visibility of the rules, since
you can specify which groups have rights to view the category tree (the user logged in
for the figure 12.4 snapshot has full admin rights, so everything appears). Figure 12.5
shows the Assets view module when a category has been selected that contains rules
(in this example, a business user is logged in with restricted module options using the
pricing estimator case study rules we’ve been working with in this chapter).

 As figure 12.5 shows, if a category contains rules, it will appear in the rule pane list-
ing on the right. If you double-click on a rule, it will take you into the rule editor,
which we’ll cover in a moment. Users with permission may also be able to navigate
through the rules by rule status. As with categories, rule statuses are defined by the

Figure 12.4 You’ll see the Drools Guvnor main menu when logging in as an administrator.
Licensed to Deborah Christiansen <pedbro@gmail.com>

381Rules management using Drools Guvnor
administrator, and typically are values such as Production, QA, Development, and the
like. Statuses are used as part of the workflow release cycle, which is why they aren’t, by
default, made visible to normal business users and authors. If users have the appropri-
ate permission, a pull-down menu will appear below the Asset view that enables them
to create a new rule asset, as shown in figure 12.6.

Let’s now take a look at the Packages module, which is used by administrators for set-
ting up new rule domains.
PACKAGES MODULE

In chapter 11's Hello World, Drools example, we briefly touched on what a rule pack-
age means within Drools. All rule assets are associated with a given package. Similar to
Java, it can be thought of as analogous to a namespace, so that similarly named rules
can exist in multiple locations without conflicting with one another. In Guvnor, it also
plays an important role in rule authoring, as a model of the working memory facts
must be loaded into Guvnor so that it can use the objects within its rule editor. So one
of the first steps required when using Guvnor for a new rule domain such as our pric-
ing estimator is for the administrator to create a new package where the fact model
and rules can then be loaded and associated.

Figure 12.5 Example of Asset view category listing

Figure 12.6 Selecting which type of business rule
asset to create using the Create New pull-down
Licensed to Deborah Christiansen <pedbro@gmail.com>

382 CHAPTER 12 Implementing Drools
NOTE I recommend that you use the same package naming conventions for
both your Java working memory objects and their related business rules
where they’re referenced. For example, if you’re using the rule package
of mycompany.finance.pricing, then use the same name prefix for your
related Java classes. This becomes more important as you move toward a
decision services paradigm, where many rule domains may be running
within a single rules engine instance.

When logged in as an administrator and
selecting the Packages model, you’ll see a
Create New pull-down menu like the one in
figure 12.6. The menu includes an option to
create a new package. Once you create the
package, a classification of asset types
appears in a tree fashion associated with the
new package, as shown in figure 12.7.

 When you click on a given asset type
such as Business rule assets, you’ll then see
a listing of the associated items belonging
to that type. Using the Create New pull-
down, you can add items to any of the type
categories shown.

 The first thing you do when configuring
a new package is add a new model, which is
a standard JAR file containing the working memory fact objects. You use this file when
authoring rules so that you can build condition patterns based on the fact objects
loaded into the model (think of it as a form a reflection). To add an existing DRL rule
file, select the New Package option from the Create New menu. You can then specify
the package name (such as opensoa.drools, as we used in our case study), and then
select a DRL file to upload. If the package already exists in Drools, it will simply
append the rules to the existing package as Technical rule assets without creating a
new package. Once you have a package and at least one category defined, you can
begin authoring rules using Guvnor.

 The various asset types associated with a package are discussed in table 12.1.

Table 12.1 Package asset types

Asset type Description

Business rule assets When you’re creating business rules using Guvnor’s guided DRL or DSL editor,
they’ll appear within this classification. See section 12.2.2 on creating rules
using the guided editors.

Technical rule assets When you’re importing existing DRL rule assets or when creating them in Guvnor
as a “technical rule - text editor,” they’ll appear here.

Figure 12.7 Package assets types
Licensed to Deborah Christiansen <pedbro@gmail.com>

383Rules management using Drools Guvnor
 The Package view module, as you may have deduced, is intended for administrators,
and allows for quick-and-easy access to all assets that constitute a given package. As we
pointed out, it also plays an essential role for DSL language developers, as this is where
the DSL templates are managed.

 One last piece of important functionality available through this module is the abil-
ity, when you click a specific package, to view the configuration details of the package
such as imported class types and global definitions (you can click Advanced View to
modify imports). The Build and validate section, shown in figure 12.8, allows you to
validate that the package is error-free—you’ll want to perform this periodically to
ensure you can successfully build a binary package.

Functions You can upload DRL functions, which will then appear as items in this list. Gen-
erally, I recommend instead creating Java helper-style classes since it promotes
greater reusability.

DSL configurations You can create new DSL mapping templates using this asset type.

Model You can upload one or more JAR files that represent the fact model used by the
particular package you’re working within.

Rule Flows When you upload a new RuleFlow it will appear in this list when selected.

Enumerations Enumerations are used in the guided editor to restrict field values to certain val-
ues. For example, in our case study, we spoke about STANDARD, GOLD, or
SILVER customer classifications—an enumeration could be created restricting
choices to these values. We’ll illustrate how enumerations are used in section
12.2.2.

Test Scenarios Drools 5.0 introduced a new testing framework for testing rules. With it, you can
create testing scenarios that will appear in this list. You’ll see a service-based
approach in section 12.3.4 that I believe is superior to this framework.

XML, Properties As of the 5.0 release, it wasn’t entirely clear what this asset type is for—there
doesn’t appear to be a Create New option to create this asset type (this will pre-
sumably change by the final release).

Other assets,
documentation

You can upload virtually any supporting file, such as Word documentation, and it
will appear in this listing. You can create these asset types by selecting Create
New > New File.

Table 12.1 Package asset types (continued)

Asset type Description

Figure 12.8 Verifying package is error-free using build and validate package
Licensed to Deborah Christiansen <pedbro@gmail.com>

384 CHAPTER 12 Implementing Drools
As you can see, in addition to building a binary package, you can download it. But
what exactly is a binary package? It combines all rule assets together in a single file
that can then be loaded using the Rule Agent capability (which we’ll describe how to
use in section 12.3). This is a very convenient feature, because it eliminates the need
to load the rule assets manually as we had to do in our prior examples, such as in list-
ing 12.5. We’ll discuss binary packages more next in our coverage of the Package snap-
shots module.

NOTE What happened to the QA module? We elected to not cover this function-
ality as it was very much a work-in-progress at the time of this writing and
had little supporting documentation. In our experimentation with this
feature, we found it lacking for creating anything beyond the most sim-
ple type tests.

PACKAGE SNAPSHOTS MODULE

This module serves an important purpose: it creates binary deployment snapshots. A
snapshot can be considered a point-in-time code freeze. Once a snapshot is made, any
other current in-progress or future changes won’t affect it. Indeed, internally the
snapshot version is moved into a different location in the Java content repository
(which coincidentally, uses Apache Jackrabbit). There are only a few possible actions
you can take in this module, as shown in figure 12.9.

 Using the Deploy pull-down menu shown in figure 12.9, you can create new
deployment snapshots. When doing so, you can choose an existing snapshot name, in
which case it will override it with the new one. Alternatively, you can specify a new
unique name, thereby creating an entirely new snapshot. Each new snapshot will
result in a new tree node displayed below the package tree. When you click on a spe-
cific snapshot, a new tab will appear on the right, which when you expand the node,
will display all the rule assets associated with that particular snapshot, reflecting the

Figure 12.9 Package snapshot module displaying available options
Licensed to Deborah Christiansen <pedbro@gmail.com>

385Rules management using Drools Guvnor
point in time in which the snapshot was taken (remember, a snapshot is a point-in-
time freeze of all rule assets associated with the package).

 The objective of taking a snapshot is for use by the Rule Agent for loading rule-
related assets. As shown in figure 12.9, once a snapshot is generated you can either
download a binary package of the snapshot, or right-click on the Deployment URL
link to capture the URL (as you’ll see in section 12.3, the Rule Agent can be config-
ured to work with a binary file or HTTP URL).

 The snapshot capability will likely have significant implications for your enterprise
deployment of Drools. With it, you can more effectively manage the release process
associated with your rules. If you so choose, you can version the binary using a pack-
age such as CVS or Subversion. Creating snapshots also enables rule authors and tes-
ters to modify rule assets without inadvertently affecting your production
environment. I strongly recommend using it.

NOTE Binary packages can also be generated through Ant tasks, which is dem-
onstrated in the example build scripts which accompany this chapter's
source code.

We’re nearing the end of our functionality tour overview. These features lay the foun-
dation for our coverage of decision services for SOA, which follow in section 12.3. The
last module is Administration, and it’s used for a combination of housekeeping, code
list management, and user permissions.
ADMINISTRATION MODULE

The Administration module has options for managing the subnodes identified in
table 12.2.

Table 12.2 Administration subnodes

Node Description

Categories In the Assets view module, we described how categories are used for log-
ically grouping rule assets. These categories are set up using this node,
and it is intuitive and easy, so we won’t describe the process here.

Archive items For most rule assets, there’s an option to archive items that are no lon-
ger desired or used, rather than deleting them outright. When this node
is selected, you can view all archived items, and they’re categorized by
type, such as archived snapshots and rules.

Status You can manage the available statuses that can be assigned to rule
assets using this node option.

Import/Export As of the 5.0 release, this seems something of a work in progress. You
can create a zip-based export of your entire repository or of a single pack-
age, but there are only options to import from an XML file (oddly, you
can’t export to XML). Instead, for backing up Guvnor, I suggest reading
the section on data management in the Guvnor User’s Guide.

Error log Log messages that are defined as using INFO or ERROR are displayed in
this view. They pertain only to actions performed as part of Guvnor’s
usage, and not to specific rule assets.
Licensed to Deborah Christiansen <pedbro@gmail.com>

386 CHAPTER 12 Implementing Drools
You’ll likely use the Administration module only infrequently and only if you’re
responsible for managing the overall BRMS. During the initial setup, however, statuses
and categories will need to be configured.

 We’ve now covered all the main navigation options available through Guvnor, but
haven't really touched on the main purpose of the system: to manage the creation of
rules. Before concluding this section on Guvnor, let’s spend some time on this impor-
tant area.

12.2.2 Rule authoring using Guvnor

In addition to providing a centralized location to house your business rule assets, one
of the main reasons for adopting a BRMS is to allow business users to author and man-
age their domain rules, ideally through a “zero-install” client such as a web interface.
While the Eclipse IDE Drools plug-in offers nice authoring functionality, rolling this
solution out to a significantly sized user base is problematic, not to mention the learn-
ing curve involved in using Eclipse for nondeveloper types, issues of source code con-
trol (which is managed transparently in Guvnor), and… well, you get the picture.

 As we’ll see, Drools Guvnor, while aiding the rule author with many useful features
intended to lower the technical barrier in creating rules, is still far removed from
being a tool that can simply be handed off to the average business user. Instead,
there’s often a subset of business users or analysts in any organization who are fairly
technology competent, and Guvnor is intended for these power users (you know the
type—those users who become experts at Excel macros or Visual Basic scripting and
can cause headaches for IT groups). Our experience is that these individuals, with
some training and/or handholding, can quickly become proficient in rule authoring.

 To provide the greatest flexibility in rule authoring, you can create rules in Guvnor
in one of these five ways:

■ Business rule (using a guided editor)—Probably the most popular of the five, the
guided editor presents the user with a wizard-like approach for creating rules,
based on the model objects that have been loaded as part of the package. This
approach is suitable for technical business users.

■ DRL rule (technical rule using text editor)—The author is presented with a basic
text area where he or she can edit a rule in a freehand fashion. The model fact

User permission mappings New with the release 5.0, this enables you to create users and assign
them predefined roles, such as admin, analyst, and package admin. It’s
designed for managing authorization, not authentication. That is, you can
define a user, but your authorization must be configured using Java
Authentication and Authorization Service (JAAS). This is outside the
scope of this chapter, but is covered in the official Guvnor User’s Guide.

Table 12.2 Administration subnodes (continued)

Node Description
Licensed to Deborah Christiansen <pedbro@gmail.com>

387Rules management using Drools Guvnor
objects are shown as a convenience, but authoring is done by hand. This
approach is aimed at advanced users who understand the Drools language.

■ Business rule using a DSL (text editor)—This approach is suitable when using a
DSL, and the author can then use hints for constructing the various rule
phrases. This approach is suitable for technical business users.

■ Decision table (web using guided editor)—Enables the rule author to dynamically
create decision tables. You define the columns that represent the facts and
actions, and then use rows to specify the various rule conditions. Decision tables
are used when you have a lot of possible rules but a fairly small set of fact objects
with little variability in conditions.

■ Decision table (spreadsheet)—Allows the user to upload a spreadsheet file that con-
tains the decision table spreadsheet. The spreadsheet template must adhere to
the format, as described in chapter 11.

As you can see, quite a few options are available, and selecting which authoring type to
use largely depends on your audience and the type of rules you’re working with.
Although we won’t go into specific details on using each of the editor methods, let’s
take a look at some of the common features you’ll find regardless of the type of
authoring you’re using.
COMMON EDITOR FEATURES

Figure 12.10 depicts authoring using a DRL rule (technical rule using the text editor).
 As you can see, the editor consists of three main panels. The first is the editing win-

dow, where the rule author in figure 12.10 is editing the DRL rule by hand. Notice
below the editing panel is a Validate option. This allows you to check the rules syntax
for errors—which is a very handy feature. The notes area is a documentation mecha-
nism, and to the right is the metadata panel, which is present in all DRL and DSL

Figure 12.10 Authoring using a DRL rule
Licensed to Deborah Christiansen <pedbro@gmail.com>

388 CHAPTER 12 Implementing Drools
editors. In that window, you can assign or modify which category the rule is assigned,
and edit any tag-related keywords such as subject and type, which is beneficial for later
searching. You can even assign external links that can be used for additional docu-
mentation. Also in the metadata pane, you can see automatically assigned metadata
such as the version number, author ID, and the dates the rule was first created and last
modified. Related is the Version history button link, which allows you to go back to
previous versions of a rule, and even restore it, if need be. This function can be useful
when you’re troubleshooting errors that may have been inadvertently introduced in
later releases of the rule.

 The two most common types of editors your users will likely use are the guided
business rule and DSL editors. Let’s take a brief tour of their capability before con-
cluding our section on Guvnor.
CREATING BUSINESS RULES USING THE DRL GUIDED EDITOR

The DRL guided editor represents a novel approach for creating business rules. Using
the fact models associated with each package, and any defined enumerations, it lets
you create fairly sophisticated rules without requiring in-depth understanding of the
Drools language (and you don’t have to set up a DSL). An example of the editor is
shown in figure 12.11.

 When you first launch the editor, only the WHEN, THEN and (options) portions of
the rule are shown. You build each of these respective sections by clicking the large
green plus sign to the right of each section. A wizard-style dialog opens where you
identify the fact objects along with other part-specific options. Figure 12.11 shows a
rule used for assigning minimal shipping amounts where the shipment carrier is DHL
and the shipment method is STANDARD. Notice both of these are pull-down values, as
we created an enumeration for these values (see the Guvnor User’s Guide for
instructions on setting up enumerations). When creating conditions, you can also
assign variables, as shown in the third condition in the example, where orderId is

Figure 12.11 Example of using the DRL guided editor
Licensed to Deborah Christiansen <pedbro@gmail.com>

389Rules management using Drools Guvnor
assigned. These bound variables can then be used downstream in other conditions
(such as for associating the TotalPrice fact object) or in the consequence/then por-
tion of the rule. Not shown in the figure is an option that lets you view the source asso-
ciated with the guided rule. In this case, the source is shown as

rule "DSLExample"
salience 10
dialect "mvel"
when
 Order(shippingCarrier == "DHL" ,
 shippingMethod == "STANDARD" , orderId : orderId)
 totalPrice :
 TotalPrice(orderId == orderId , shippingPrice < "8") then
 totalPrice.setShippingPrice(8);
 update(totalPrice);
end

As you might imagine, it’s far easier for business users to use the guided editor rather
than crafting the rules by hand. Even easier still is using the DSL editor, which we’ll
address next.
CREATING BUSINESS RULES USING THE DSL EDITOR

In chapter 11, we discussed how the DSL functionality works in Drools, and showed
how you can use it to create business rules using a nomenclature specific to the
domain area in which you’re working. The Eclipse IDE plug-in offers excellent sup-
port for this feature, and so too does Guvnor. Before using the DSL editor, you must
create the DSL template file, which defines the language constructs. Doing this in
Guvnor is identical to what we described in the previous chapter. For example:

[when]There is an Instance with field of "{value}"=
 i: Instance(field=="{value}")

 Once you’ve defined the DSL templates, you’re ready to use the DSL editor. Figure
12.12 shows an example of the DSL editor in use within Guvnor.

Figure 12.12 Example of DSL editor in use within Guvnor
Licensed to Deborah Christiansen <pedbro@gmail.com>

390 CHAPTER 12 Implementing Drools
 Figure 12.12 shows the context-sensitive rule-tip mechanism. If you’re editing
either the when or then portion of a rule and press Ctrl+Spacebar, a pop-up will
appear (you can also invoke the pop-up by clicking one of the icons to the right of the
editor, as highlighted in the figure). From there, you can select one of the various
phrases that are defined with the DSL template file. The phrases are contextually sen-
sitive, so when statements will only appear when working on the conditional portion of
the rule. This approach makes things particularly easy for those not versed at all in the
Drools language, but does entail some setup by an expert to create the DSL template
phrases.

 In the last two sections, we’ve introduced you to the specifics of our pricing estima-
tor case study, and then demonstrated how the rules can be managed in tandem with
Guvnor, the Drools BRMS. We’ve laid the groundwork for what comes next: creating
decision services using Drools.

12.3 Developing decision services
The term enterprise decision management (EDM) has recently entered into the lexicon of
famous IT terms, joining other popular new concepts such as cloud and utility comput-
ing. What exactly does EDM mean? While you may get different answers depending on
who you ask (it’s the same with SOA), at its core EDM is the automation of operational
decisions that drive an organization’s business. It includes the management and rule
repository features we’ve described in our discussion of the Guvnor BRMS. More
importantly, it’s a philosophy that dictates that the critical decisions that drive your
enterprise be separated from the application code or BPM processes.

 Why is this separation important? It’s because business rules and decisions often
change much more frequently than business processes, and hard-coding them within
applications is one major reason why ongoing software maintenance costs are such a
substantial portion of total IT software budget on a year-to-year basis. Further, when
rules are centralized using a decision services approach, they can be leveraged and
reused across multiple applications, and form the basis for ongoing business optimiza-
tion and improved agility. As James Taylor points out, “Treating decision logic as a
manageable enterprise resource in this way means that you can reuse it across multi-
ple applications in many different operational environments” [Taylor]. He later
equates this approach to providing the brains for creating composite applications, a
key tenet of SOA—the rules (or decision) services approach.

 What are the central tenets of a decision service? We’ll examine these next.

12.3.1 What are decision services?

 A decision service has the following characteristics:

■ Stateless—The decision service should be stateless—each call to it is self-con-
tained and not dependent on any prior call. This facilities scalability and simpli-
fies service virtualization. While each call is stateless, the working memory itself
Licensed to Deborah Christiansen <pedbro@gmail.com>

391Developing decision services
may contain persistent, nonvolatile data, such as a product catalog, which is
periodically refreshed.

■ Virtualized—Client systems utilizing the service should do so through a logical
URI, so that they need not be aware of the actual specific endpoint used to ful-
fill the service. This is where a web mediation service such as Apache Synapse
can play such an important role, since it can manage directing each service call
to the proper endpoint address (Synapse was the topic of chapters 9 and 10).

■ Autonomous—The decision service itself should not be dependent on any spe-
cific application, with working memory populated through an abstraction layer
independent of its source location. We’ll illustrate how this can be done using a
cache solution such as PojoCache by JBoss.

■ Protocol and transport neutral—Ideally, the decision service should be accessible
via a variety of protocols, such as SOAP over JMS or HTTP, EJB, or REST.

■ Auditable—Each call to the decision service should be auditable so that calls can
be analyzed for business optimization and compliance. For example, each call
should result in events being generated that can then be processed by an event
stream processor (ESP) such as Esper, the topic of chapter 8.

Now that you have a good idea of what constitutes a decision service, let’s consider
how it can be implemented using the Open SOA Platform stack. We can create the ser-
vice components using Apache Tuscany and the SCA implementation (which was the
topic of chapters 3 and 4), and expose them using any of the available protocols and
bindings supported (which include SOAP, JSON, EJB, and RSS/ATOM). The overall
architecture is depicted in figure 12.13.

 As you can see from the diagram, the service is defined using a WSDL, which enables
easy consumption by diverse platforms such as Java and .NET. Guvnor’s role is the man-

Figure 12.13 Top-level architecture
of decision services, illustrating the
role of Apache Tuscany
Licensed to Deborah Christiansen <pedbro@gmail.com>

392 CHAPTER 12 Implementing Drools
agement and repository of the business rules, and when snapshots are published
through Guvnor, the updated rules are reflected in the production decision service.
For the remainder of this chapter, we’ll describe how to create such a decision service
using our case study as the basis. Let’s begin by tackling the overall design and intro-
ducing a new technology intended to address challenges in populating the Drools
working memory.

12.3.2 Designing the decision service

One of the thorniest issues regarding a decision service is how to populate the nonvol-
atile data into the Drools working memory. In many cases, this will entail a substantial
number of data classes. In our pricing engine case study we introduced in
section 12.1, this was exemplified by the product, pricing, and shipping objects that
were required by the rules engine to determine a pricing estimate. It’s not practical, in
many scenarios, to use a web service to populate working memory, because the vol-
ume of data required is too substantial. Instead, the approach we’ll advocate uses
JBoss Cache, PoJo edition [POJOCache] as the vehicle by which to transmit nonvolatile
working memory data to the decision service. Let’s examine this approach more
closely since we haven’t previously discussed this technology.
USING JBOSS CACHE FOR WORKING MEMORY PROPAGATION

JBoss Cache is officially described as a tree-structured, clustered, transactional cache.
It’s used extensively in JBoss products, such as in their application server for clustering
support, and is very mature and proven. You could think of it as a simplistic, distributed
in-memory database, but instead of using SQL-style query statements, you use fully
qualified names (FQNs) derived from a tree-style navigation hierarchy. While this all
may sound complicated, as you’ll see, it’s just the opposite and is very straightforward.

How do we envision using JBoss Cache for populating the Drools working memory?
When the decision service is launched, it will create a new cache. Then that cache will
be populated with Java data objects that ultimately will be loaded into the Drools
working memory associated with the decision service. Who and how those data objects
get deposited will depend on your environment. For example, in our case study the
nonvolatile working memory includes product, pricing, and shipping cost informa-
tion. This information would likely be harvested from an ERP-type system using an ESB

Using XAware to create data services
Another approacha for populating nonvolatile working memory is to use XAware
[XAware] to build data services that can be tapped to fetch the required data. Using
XAware, you build an XML abstraction layer that can expose data from a variety of
relational databases and/or file systems. XAware lets you create XML views that har-
vest data from disparate systems and combine it into a single XML document. For
example, you can grab customer a database from an Oracle database and combine
it with CRM data originating from a SQL Server database.
Licensed to Deborah Christiansen <pedbro@gmail.com>

393Developing decision services
like Synapse to periodically poll and populate or update the cache. In section 12.3.3,
we’ll show an example of populating the cache using standard Java code.

 Once the cache is populated, some trigger would still be necessary for the Drools
decision service to grab the cached objects and populate them into its working mem-
ory session (as you’ll see in a moment, a Load operation can be used for this purpose).
Figure 12.14 shows how the process to harvest and populate working memory objects
might look.

As you can see, a few steps are involved, and they’d vary depending on where the
working memory data originated. However, once such a pattern is identified, it can be
reused. For purposes of our case study, we’ll pick things up where the Java data trans-
fer objects (DTOs) are being populated into JBoss Cache. We’ve already briefly dis-
cussed the Load operation, but let’s take a high-level look at the WSDL to see how it
defines all of the various operations required by the decision service we’re creating.
TOP-DOWN WSDL DESIGN FOR OUR DECISION SERVICE

When working with Apache Tuscany, you can approach things in two basic ways:

■ A top-down approach in which you define your WSDL first and then generate
the components for each operation

■ A bottom-up approach in which you first create your components and then use
Tuscany’s ability to autogenerate the WSDL

Although the second approach can often be easier and faster, a top-down approach
yields a WSDL that’s likely more intelligently defined and extensible. For these rea-
sons, I always advocate a top-down approach, which is how I went about constructing
the WSDL for the decision service. The first thing I did was identify the necessary oper-
ations.

Figure 12.14 A process to harvest and populate working memory objects
Licensed to Deborah Christiansen <pedbro@gmail.com>

394 CHAPTER 12 Implementing Drools
 Since our intention is to create a flexible WSDL that’s not entirely specific to our
case study, I defined operations using a set of verbs that are generic in nature:

■ Decision—The main operation, Decision is called by clients who want a deci-
sion rendered. The instance data that’s passed is obviously specific to the
domain, so in our case study, it represents the details of the order in which the
pricing estimate is performed.

■ Load—As previously mentioned, Load is used to update the Drools working
memory using the objects culled from JBoss Cache. As currently designed, this
is a global operation, and will reload all working memory objects associated
with the decision service (that is, not specific to a particular rule domain).

■ Suspend—A global operation, Suspend sets a flag to indicate that the service
shouldn’t respond to any inbound queries. Suspend would typically be called
prior to the Load operation so that erroneous results don’t occur while the
working memory is in the process of being loaded.

■ Resume—The opposite of Suspend, Resume simply changes a status flag to indi-
cate that the decision service can again receive inbound requests.

You may be wondering how the Decision operation can work if the intention is to
support multiple rule domains (our case study is an example of a specific rule
domain, whereas something like claims processing would be a different domain).
Using XML Schema’s extension mechanism, an inbound request for the pricing esti-
mator case study would resemble that shown in listing 12.9.

<!-- soap envelop not shown for brevity -->
<urn:DecisionRequest
 xsi:type="so:PriceCalculatorRequest"
 xmlns:so="urn:opensoa.drools.salesorder">
 <Order xmlns="urn:opensoa.drools.salesorder">
 <header>
 <orderId>2020322</orderId>
 <partyId>WA-23923</partyId>
 <partyContactId>1006</partyContactId>
 <currency>USD</currency>
 <shipping>
 <carrier>USPS</carrier>
 <method>STANDARD</method>
 </shipping>
 </header>
 <lines>
 <!-- line items would go here -->
 </lines>
 </Order>
</urn:DecisionRequest>

In listing 12.9, I’ve highlighted the DecisionRequest element. Notice how it contains
the @xsi:type attribute, whose value is set to so:PriceCalculatorRequest. If you
look at the schema associated with this object in the sample code for this chapter (the

Listing 12.9 Example SOAP request for pricing engine calculation
Licensed to Deborah Christiansen <pedbro@gmail.com>

395Developing decision services
parent WSDL is called DroolsService.wsdl, and it includes Order.wsdl, which is where
this element is defined), you’ll see this definition:

<xs:complexType name="PriceCalculatorResponse">
 <xs:complexContent>
 <xs:extension base="drools:DecisionResponseType">
 <xs:sequence>
 <xs:element name="orderId" type="xs:string"/>
 <xs:element name="salePrice" type="xs:float"/>
 <xs:element name="shippingPrice" type="xs:float"/>
 <xs:element name="totalPrice" type="xs:float"/>
 <xs:element name="comments" type="xs:string" minOccurs="0"/>
 <xs:element name="currency" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The extension base drools:DecisionResponseType is the element type defined for
DecisionRequest. The upshot of this approach is that all decision operations will use
that same element, but what will differ for each domain area is the corresponding
@xsi:type value and subsequent child elements. What’s the alternative to this
approach? You’d end up creating a multitude of domain-specific operations such as
getPricingEstimate, which seems less than desirable. Granted, for each decision
domain or package supported, custom code will be required on the backend, as you’ll
see in a moment.

 The WSDL consists of a high-level parent WSDL, which uses the wsdl:import mech-
anism to load the domain-specific schema elements. In this fashion, the only change
required in the parent WSDL for each new domain that’s added is to include a
wsdl:import statement like this:

<wsdl:import namespace="urn:opensoa.drools.chapter12"
 location="Order.wsdl"/>

The end result for the decision service is a WSDL that looks like the one shown in fig-
ure 12.15.
As figure 12.15 shows, separate services such as LoadService and ResumeService are
defined, as opposed to grouping all of the operations under a single service. This is
done to simplify the components used by Tuscany’s SCA implementation, which we’ll
explore next.
TUSCANY SCA COMPONENT OVERVIEW

To keep our example as straightforward as possible, we’ll only define a SOAP over
HTTP binding for the decision service.

NOTE We cover adding bindings, such as for JMS, in chapter 3.

The SCA implementation consists of only two components: one (DroolsDecision-
Component) for handling the inbound SOAP requests, and the other (Session-
Manager) for handling the Drools and JBoss Cache sessions (for efficiency reasons,
Licensed to Deborah Christiansen <pedbro@gmail.com>

396 CHAPTER 12 Implementing Drools
new working memory isn’t instantiated for each inbound request but is persisted
across the life of the service or until reloaded using the Load operation). A single SCA
service called DroolsDecisionService is used, and it includes the four web service
bindings that correspond to the services shown in the WSDL in figure 12.15. The SCA
service and two components can be viewed graphically when using the SOA Tools
plug-in available for Eclipse (http://www.eclipse.org/stp/). Figure 12.16 shows one of
the available views, in this case a tree-style depiction of the SCA service, components,
and properties that comprise the decision service.

 Figure 12.16 shows the various property values that are passed in declaratively
through the composite XML file (Drools.composite). You’ll learn what these are in the
next section, but suffice it to say that they identify for the SessionManagement compo-
nent what rule packages to use and the JBoss Cache configuration details.

Figure 12.15 Graphical depiction of the decision service WSDL

Figure 12.16 Tree depiction of the decision service using SOA Tools Eclipse plug-in
Licensed to Deborah Christiansen <pedbro@gmail.com>

397Developing decision services
 Now that we have a WSDL in place and a high-level definition of the SCA configura-
tion, we can turn to the fun stuff: code!

12.3.3 Implementing the decision service using Tuscany and Drools

Since we developed the WSDL first as part of our top-down design philosophy, we can
use it to generate the Java classes that represent the inputs and outputs for the web
service operations. Two schemas are used in the WSDL. The first, defined in the main
WSDL file DroolsService.wsdl, uses a namespace of urn:opensoa.drools and is used
for defining the various operation parameters. The second, defined in the
Orders.wsdl imported file, uses the namespace of urn:opensoa.drools.salesorder.
Since we have two schemas located in different files, we’ll call the Tuscany tool
XSD2JavaGenerator on each respective WSDL file. This will generate Java classes for
each of the elements and attributes present in the schemas. Calling this tool is easiest
from within Ant; listing 12.10 shows an Ant target configured to generate the classes
based on the WSDL files.

<target depends="init" name="generate.classes.from.wsdl">
 <java classname="org.apache.tuscany.sdo.generate.XSD2JavaGenerator"
 fork="true">
 <arg value="-targetDirectory"/>
 <arg value="src/main/generated/wsdl2javasource"/>
 <arg value="-noContainment"/>
 <arg value="-noUnsettable"/>
 <arg value="src/main/resources/DroolsService.wsdl"/>
 <classpath>
 <fileset dir="${tuscany.lib.10}">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 </java>
 <!-- omitted Order.wsdl java block, which is functionally
 identical to the above -->
</target>

The Ant target uses a Java task to run the XSD2JavaGenerator b, which has a variety
of usage arguments (for a description of all of the options, see [Generator]). The
required argument -targetDirectory is used to specify the path location of the gen-
erated files c. This is followed by some optional arguments. Then we specify the loca-
tion of the WSDL file that contains the XML Schema d. These classes will now be used
as we build the individual operations, beginning with Load.
LOAD OPERATION

The reason we tackled this operation first is because it invokes the same methods that
are used at startup for the decision service. When the service starts, the working mem-
ory must be populated in order for the rules engine to function. Additionally, we want
to keep the working memory session active, so that it doesn’t have to be reconstituted

Listing 12.10 Ant target used to generate Java classes from WSDL

b c

Defines code
generator options

 dSpecifies classpath
for SCA libraries
Licensed to Deborah Christiansen <pedbro@gmail.com>

398 CHAPTER 12 Implementing Drools
for every request. For these reasons, we created the SessionManagerBRMSImpl class,
which implements SessionManager and uses the conversational capabilities of SCA to
keep this class stateful for the duration of the decision service (see chapter 4). This
class receives, via SCA properties, three property values:

■ rulePropertyFile—The Drools Rule Agent mechanism relies on a property
file to indicate how to load a rule package. For an example, see the rule.proper-
ties file in the source code for this chapter. You can either load the rule package
directly from the Guvnor repository using the url property, or download the
.pkg file locally and reference it via the file property. In either case, you can
specify multiple packages to load by comma-delimiting the location of each
package.

■ pojoServiceConfig—The JBoss Cache version we’re using is referred to as
POJO Cache (it provides some additional functionality above-and-beyond regu-
lar JBoss Cache), and it uses an XML configuration file to specify network con-
nectivity settings. For more information on the various setting options, see
[POJOCache].

■ pojoAOPConfig—This property specifies another configuration XML file
required by POJO Cache and the specification for its contents are described in
the official documentation. In all likelihood, no changes will be needed to this
file, and the out-of-the-box configuration will suffice.

The final result is this component SCA definition:

<component name="SessionManager">
 <implementation.java
 class="opensoa.drools.service.impl.SessionManagerBRMSImpl"/>
 <property name="rulePropertyFile">/rule.properties</property>
 <property name="pojoServiceConfig">replSync-service.xml</property>
 <property name="pojoAOPConfig">pojocache-aop.xml</property>
</component>

With these properties now available to SessionManagerBRMSImpl, it can proceed to
(a) start a new Drools working session instance using the package(s) specified in the
rulePropertyFile, and (b) populate the working memory with the objects seeded
into the cache.

 Loading the rule package involves only a few lines of code, as this method from
SessionManagerBRMSImpl illustrates:

private static RuleBase loadRuleBaseFromRuleAgent(String rulePropertyFile) {
 RuleAgent agent = RuleAgent.newRuleAgent(rulePropertyFile);
 RuleBase rulebase = agent.getRuleBase();
 return rulebase;
}

The returned RuleBase can then be used to create the working memory session using
its method newStatefulSession(). With the handle to the working memory, the
objects in the cache can be loaded. The method used to do so is displayed in
listing 12.11.
Licensed to Deborah Christiansen <pedbro@gmail.com>

399Developing decision services
private void loadWM () {
 boolean toStart = true;
 PojoCache pcache =
 PojoCacheFactory.createCache(pojoServiceConfig, toStart);

 Map workingObjs = pcache.findAll("/opensoa/drools/salesorder/");

 Iterator it = workingObjs.entrySet().iterator();
 while (it.hasNext()) {
Map.Entry pairs = (Map.Entry) it.next();
workingMemory.insert(pairs.getValue());
 }
}

The first step in loading the objects is to create an instance of the cache. This is done
with the PojoCacheFactory.createCache() method b, which accepts as its two
parameters the location of the service configuration (passed as a parameter populat-
ing the pojoServiceConfig variable) and a Boolean to indicate whether to immedi-
ately start the instance. This configuration assumes that you’ve already started the
cache, which you can do by using the run.pojoServer target in the project’s Ant build
file. This will start an instance of the cache and seed it with the data objects. Once the
cache is started, a map of the loaded objects in the cache is acquired in the loadWM()
method shown in listing 12.11 using the FQN "/opensoa/drools/salesorder/" c.
This could obviously be made more generic and flexible—for example, by passing the
FQN via an SCA property—but we’re trying to keep things simple here, so we’ve just
hard-coded it. Finally, we iterate through all returned objects in the cache and load
them into the working memory d.

 The Load operation’s SOAP request is very terse:

<soapenv:Envelope> <!-- namespaces not shown -->
 <soapenv:Body>
 <urn:ManageService/>
 </soapenv:Body>
</soapenv:Envelope>

You might be wondering how the service knows that this call pertains to the Load oper-
ation. As you may remember, separate WSDL services were configured for each opera-
tion (shown in figure 12.15), so the actual URL that this is posting to is what reveals
the operation: http://localhost:8085/LoadService.

 The component responsible for fielding the incoming SOAP requests is imple-
mented by way of the class PriceCalculatorResponseImpl. It includes a method that
corresponds to the SOAP operation signature, as shown in listing 12.12.

public ManageResponseTypeImpl Load(ManageServiceTypeImpl service)
 throws RemoteException, Exception {

 sessionManager.setStatus(false);

Listing 12.11 Method to populate Drools working memory

Listing 12.12 Load method used for responding to inbound SOAP requests

 b

 c

d

 b
Licensed to Deborah Christiansen <pedbro@gmail.com>

400 CHAPTER 12 Implementing Drools
 scope = SDOUtil.createHelperContext();
 dfactory = DroolsFactory.INSTANCE;
 DroolsFactory.INSTANCE.register(scope);

 ManageResponseTypeImpl response =
 (ManageResponseTypeImpl) dfactory.createManageResponseType();
 response.setResultCode(200);
 response.setResult("SUCCESS");

 sessionManager.initialize();
 sessionManager.setStatus(true);
 return response;

}

First we set the SessionManager.status (implemented by SessionManagerBRMSImpl
to false b. As you recall, the SessionManager was injected as an SCA COMPOSITE
scoped reference when the class was first created. The status flag is used to notify any
clients who attempt a request that the decision service is currently unavailable. After
that, we perform some SDO initialization tasks (SDO is discussed in chapter 4) so that
we can prepare a response to the method (granted, this could be improved to include
error handling, but we’ll keep things simple).

NOTE You may be wondering why the method name, Load, doesn’t follow the
standard Java method convention of starting with a lowercase letter. This
is because it’s patterned to match the operation name in the WSDL. (We
could change the WSDL, but SOAP naming conventions are often differ-
ent than Java.) The parameter object and return value are both gener-
ated by XSD2JavaGenerator.

Derived from the WSDL code generation, ManageResponseTypeImpl represents the
return value that’s expected. We populate it with a response that represents what will
be returned from the SOAP call c. In step d, we call the initialize() method of
the SessionManage implementation. This method, which we haven’t shown before,
just invokes the two methods (loadBaseFromRuleAgent() and loadWM()) we previ-
ously had created in the SessionManagerBRMSImpl class. In effect, this disposes of the
existing Drools working memory session, creates a new session, and populates it with
the objects from the JBoss Cache. Finally, we set the status back to true (on) e, and
return the response we created f.

 Whew, that’s a lot of stuff we covered. Fortunately, since we’ve discussed the
SessionManager implementation, the remaining operations will be simple in compar-
ison. Let’s look at how the main operation, Decision, is implemented.
DECISION OPERATION

The Decision operation, unlike the other three, is specific to the rule domain or
package being called. For example, in our case study we’re just dealing with the rules
concerning the calculation of an order’s price (listing 12.9 depicted an example
inbound SOAP request). Thus, the implementation we’ll show is unique to this
domain, and an implementation must be provided for each rule domain you’re

Initializes SDO
for response

Initializes SDO
for response

c

 d
 e

 f
Licensed to Deborah Christiansen <pedbro@gmail.com>

401Developing decision services
incorporating into the decision service. This becomes clearer as we look at the
method used for processing the Decision operation for the pricing engine calculator:

public PriceCalculatorResponseImpl Decision(PriceCalculatorRequestImpl
 order) throws Exception {

 if (sessionManager.isStatus() == false) {
 throw (new Exception("Service unavailable"));
 }

 PriceCalculatorProcessor processor =
 new PriceCalculatorProcessor(order);

 return processor.process(sessionManager);
}

The method signature for this Decision operation, which receives a Price-
CalculatorRequestImpl object, clearly illustrates that it’s specific to the pricing calcu-
lator. You’d create additional Decision methods with their own unique signatures for
each rule domain you set up. In the Decision method, you see that we’re checking
the status, and if it’s set to false, we return an error to the client. Such a scenario
occurs when the Load operation is called to refresh the working memory, or when the
service has been suspended using the Suspend operation. The heart of the processing
occurs in the PriceCalculatorProcessor class. This class, which we’ll show next, is
responsible for invoking the rule engine by its process() method and for preparing a
response of its findings.

 The PriceCalculatorProcessor.process()method is shown in listing 12.13.

public PriceCalculatorResponseImpl process(SessionManager sessionManager) {

 workingMemory = sessionManager.getWorkingMemory();
 Order dorder = convertToBaseObj();

 PriceCalculatorResponseImpl response = null;
 try {
 response = runRules(dorder);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return response;
}

The first thing we do in the process() method is receive a handle to the Drools work-
ing memory session b. The workingMemory object is a class variable, and the passed
SessionManager is used as a factory to reference it. The stateful SessionManager was
provided by way of the calling class, DroolsManagerImpl. The next step c is to con-
vert the SDO object that was automatically populated by the SOAP request into the
working memory fact object that we’d prepared earlier when creating the case study
(this step could be eliminated if you designed the working memory instance objects
up front for use by the decision service). Since this is just an exercise in object

Listing 12.13 Method responsible for processing the pricing engine domain rules

 b

 c

 d

 e
Licensed to Deborah Christiansen <pedbro@gmail.com>

402 CHAPTER 12 Implementing Drools
mapping, we won’t bother showing it here, but you can find it in the source code. We
then invoke the runRules() method d, which is responsible for calling the engine.
The last step is to return the results to the calling class e.

 The runRules() method is where the real work resides, as shown in listing 12.14.

private PriceCalculatorResponseImpl runRules(Order order) throws Exception {

 workingMemory.insert(order);

 workingMemory.startProcess("opensoa.drools.pricing");

 workingMemory.fireAllRules();

 TotalPrice total = SessionHelper.showResults(workingMemory);

 PriceCalculatorResponseImpl response = (PriceCalculatorResponseImpl)
 salesFactory.createPriceCalculatorResponse();
 response.setOrderId(total.getOrderId());
 // other setters not shown

 return response;
}

Using the workingMemory class variable, which represents the Drools session, we insert
the object representing the SOAP request into the working memory b. Since the case
study uses a RuleFlow, that process is started next c, using the named identifier
assigned to the RuleFlow. Then the rule engine is fired using the fireAllRules()
method d, and the results are gathered by the SessionHelper.showResults()
method e. With the results now present in the TotalPrice object, they need to be
converted into the SDO object that’s used for the service response f. With the
response in hand, it can be returned to the caller g, where it eventually gets passed
back as the actual SOAP response.

 Since we’ve covered a lot here, let’s recap in figure 12.17 the overall process for ful-
filling an inbound Decision operation request.

Listing 12.14 Method that invokes the rule engine and prepares a response

 b
 c
 d
 e

f

 g

Figure 12.17 Process for fulfilling an inbound Decision operation request
Licensed to Deborah Christiansen <pedbro@gmail.com>

403Developing decision services
 When introducing a new rule domain, the only change necessary is to create a new
process type class similar to PriceCalculatorProcessor, create a new method signa-
ture in DroolsManagerImpl, and then call the processor from within the new method.
Using Spring, a solution could be wired together more elegantly still, but we didn’t
want to further complicate our example by introducing another technology (while
many of you are familiar with Spring, some may not be).
SUSPEND AND RESUME OPERATIONS

The Suspend and Resume operations are intended for circumstances where you want
to temporarily suspend (and eventually resume) the decision service, but don’t neces-
sarily just want to turn it off entirely, which would result in network timeout errors.
The only thing these operations do is change the stateful SessionManager.status
Boolean flag, since that’s checked before the service will process any decision request.
For example, here’s the Suspend method’s implementation:

public ManageResponseTypeImpl Suspend(ManageServiceTypeImpl service) throws
 RemoteException, Exception {
 sessionManager.setStatus(false);
 scope = SDOUtil.createHelperContext();;
 dfactory = DroolsFactory.INSTANCE;
 DroolsFactory.INSTANCE.register(scope);
 ManageResponseTypeImpl response =
 (ManageResponseTypeImpl) dfactory.createManageResponseType();
 response.setResultCode(200);
 response.setResult("SUCCESS");

 return response;
}

As you can see, we haven’t introduced anything new, so let’s turn to how we can test
our new decision service.

12.3.4 Testing

Most Java developers are already familiar with unit testing tools such as JUnit or
TestNG. These are essential tools in any Java developer’s toolbox. However, one of the
main drivers behind adopting a BRMS is so that business users can author their own
rules, tapping into the considerable business expertise they posses. Such users are
obviously not skilled enough to perform unit testing using conventional Java testing
tools. In recognition of this, Guvnor is being enhanced to support a testing frame-
work, but it remains a work in progress as of this writing. Instead, I suggest deploying
soapUI for testing by rule authors and subject matter experts. Figure 12.18 shows
soapUI used for testing our case study’s pricing engine rule service.

 As figure 12.18 shows, a variety of authoring views are available. The one shown in
the figure is the Outline view, but a Form view is also available that derives a form
based on the WSDL. Similarly, the response can be viewed in a variety of fashions, from
Raw XML to the Overview layout shown in figure 12.18. The capabilities of soapUI
extend far beyond what is shown, and it can be used to create comprehensive testing
suites that can be run for regression-style automated testing. Used in tandem with
Licensed to Deborah Christiansen <pedbro@gmail.com>

404 CHAPTER 12 Implementing Drools
Guvnor, a true end-to-end solution can be created that includes authoring, rule man-
agement, and testing.

 The decision service we’ve created using the pricing estimator case study has dem-
onstrated the powerful combination of using Apache Tuscany and JBoss Drools.
You’ve seen how Apache Synapse can play a central role in a real-life environment for
harvesting the data necessary for the rule engine to perform its inference logic. You
can imagine a scenario where the Esper ESP could be beneficial, in particular as a way
to optimize decision yield and spot abnormal or unusual trends.

12.4 Summary
The purpose of this chapter was to build on what you learned in chapter 11, where we
introduced the Drools rule engine and many of its essential capabilities. In this chap-
ter, we constructed a real-life type case study that consisted of 15 rules with activation
sequencing managed via the Drools RuleFlow capability. We then migrated these rules
into Guvnor, the Drools BRMS, and explored many of its features. Most significant is
the ability Guvnor provides for business users to author and manage business rules,
which impact their area of domain expertise. In providing this capability, rules truly
become unlocked from their historical binding deep within an application’s code and
instead become business assets that can be managed and shared across multiple appli-
cations or business processes.

 We concluded the chapter by describing how a decision service can be created
using Apache Tuscany that exposes these rules as web services that can be easily con-
sumed by a multitude of client applications. Thorny issues that have plagued the
adoption of decision services, such as how to populate the facts required for the ser-
vice to perform its logic, were addressed using a distributed cache technology built on

Figure 12.18 soapUI is used for testing the decision service.
Licensed to Deborah Christiansen <pedbro@gmail.com>

405Summary
JBoss Cache. A framework resulted that can be extended and built on within your
enterprise.

 Drools is one of the exciting technologies we covered in the Open SOA Platform,
and its adoption promises a new paradigm—a business rules approach that reduces
development costs and dramatically improves organizational agility!

Licensed to Deborah Christiansen <pedbro@gmail.com>

resources
 [ActiveMQ] ActiveMQ open source JMS server. Available at http://activemq.apache.org/.
 [ApacheVFS] Apache Commons VFS. Available at http://commons.apache.org/vfs/filesystems.html.
 [Baeyens] Baeyens, Tom. 2008. “Process Component Models: The Next Generation in Workflow?”

Available at http://www.infoq.com/articles/process-component-models.
 [BEA] BEA white paper. 2005. “Domain Model for SOA: Realizing the Business Benefit of Service-

Oriented Architecture.” Available at http://eudownload.bea.com/uk/events/soa/soa.pdf.
 [Bernhardt]Bernhardt, Thomas and Vasseur, Alexandre. April 2008. “Complex Event Processing

Made Simple Using Esper.” Available at http://www.theserverside.com/news/thread.tss?
thread_id=48954.

 [BPMBasics]BPM Basics: BPM Glossary. Available at http://www.bpmbasics.com/introduction/
glossary.jsp.

 [BSF] Bean Scripting Framework. Available at http://jakarta.apache.org/bsf/.
 [Camel] “Apache Camel.” Available at http://activemq.apache.org/camel/.
 [CEPInterest] Complex Event Processing Interest. Available at http://www.eventstream

processing.com.
 [Choicepoint] Swartz, Nikki. 2007. “ChoicePoint Lessons Learned.” Available at http://find

articles.com/p/articles/mi_qa3937/is_200709/ai_n21100514.
 [Commons] Apache Commons. Available at http://commons.apache.org/.
 [Cooper] Cooper, Peter. 2007. Beginning Ruby: From Novice to Professional. New York: Apress.
 [CSVMediator] Open CSV Mediator. Available at http://esbsite.org/resources.jsp?path=/mediators/

paulfremantle/OpenCSV%20Mediator.
 [Drools] Drools Documentation. Available at http://downloads.jboss.com/drools/docs/

4.0.7.19894.GA/html/index.html.
 [DroolsUserGuide] JBoss Rules User Guide. Available at http://downloads.jboss.com/drools/docs/

4.0.7.19894.GA/html_single/index.html.
 [DTO] ”Core J2EE Patterns: Data Transfer Objects.” Available at http://java.sun.com/blueprints/

corej2eepatterns/Patterns/TransferObject.html.
 [Eckerson] Eckerson, Wayne W. 2006. Performance Dashboards: Measuring, Monitoring and Managing

Your Business. Hobokon, NJ: John Wiley & Sons, Inc.
 [Erl2005] Erl, Thomas. 2005. Service-Oriented Architecture: Concepts, Technology and Design. Upper Saddle

River, NJ: Pearson Education, p. 54.
 [Erl2007] Erl, Thomas. 2007. SOA: Principles of Service Design. Boston: Prentice Hall.
406

Licensed to Deborah Christiansen <pedbro@gmail.com>

407
 [Fingar] Smith, Howard and Fingar, Peter. 2003. Business Process Management—The Third Wave. Tampa,
FL: Meghan-Kiffer Press.

 [Forrester] Chappell, David. 2004. Enterprise Service Bus. References “Reducing Integration Costs.”
Forrester Research. 2001.

 [Generator] Static Code Generator. Available at http://wiki.apache.org/ws/Tuscany/TuscanyJava/
SDO_Java_Overview#generator.

 [Godage] Godage, Upul. “Mock Web Services with Apache Synapse to Develop and Test Web Services.”
Available at http://www.ibm.com/developerworks/webservices/edu/ws-dw-ws-synapse.html.

 [Graham] Graham, Ian. 2007. Business Rules Management and Service Oriented Architecture. Hoboken, NJ:
John Wiley & Sons.

 [HBR] Merrifield, Ric and Stevens, Dennis. 2008. “The Next Revolution in Productivity.” Harvard Busi-
ness Review, June.

 [Hinchcliffe] Hinchcliffe, Dion. 2008. “What Is WOA? It’s the Future of Service-Oriented Architecture
(SOA).” Available at http://hinchcliffe.org/archive/2008/02/27/16617.aspx.

 [HohpeWoolf] Hohpe, Gregor, and Woolf, Bobby. 2004. Enterprise Integration Patterns. New York:
Addison-Wesley.

 [IW] Smith, Roger. 2008. “A Simpler Approach to SOA.” Available at http://www.information-
week.com/news/software/soa/showArticle.jhtml?articleID=209904293.

 [jBPMGettingStarted] JBoss.org jBPM Getting Started. Available at http://www.jboss.org/community/
docs/DOC-11142.

 [JSR-223] JSR 223: Scripting for the JavaTM Platform. Available at http://www.jcp.org/en/jsr/
detail?id=223.

 [Kanneganti] Kanneganti, Ramarao, and Chodavarapu, Chodavarapu. 2007. SOA Security. Greenwich,
CT: Manning Publications.

 [Luckham2002] Luckham, David. 2002. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. New York: Addison-Wesley Professional.

 [MargolisSharpe] Margolis, Ben, and Sharpe, Joseph. 2007. SOA for the Business Developer. Concepts, BPEL
and SCA. Lewisville, TX: MC Press.

 [McAfeeBrynjolfsson] McAfee, Andrew and Brynjolfsson, Erik. “Investing in the IT That Makes a Com-
petitive Difference.” Harvard Business Review, July–August 2008, Vol. 86, No. 7.

 [Orwell] Orwell, George. 1945. Animal Farm. London: Secker and Warburg.
 [OSGi] Web Services Interoperability Organization (WS-I). Available at http://www.ws-i.org/.
 [POJOCache] POJO Cache: User Guide. Available at http://www.jboss.org/file-access/default/

members/jbosscache/freezone/docs/3.0.0.GA/pojo/userguide_en/html_single/index.html.
 [Pointillism] “Pointillism.” Available at http://en.wikipedia.org/wiki/Pointillism.
 [Prahalad] Prahalad, C.K., and Krishnan, M.S. 2008. The New Age of Innovation. New York: McGraw-Hill.
 [Proctor] “A Vision for Unified Rules and Processes.” Available at http://blog.athico.com/2007/11/

vision-for-unified-rules-and-processes.html.
 [Ranadivé] Ranadivé, Vivek. 2006. Power to Predict. New York: McGraw-Hill, pp. 182, 183.
 [RESTvsSOAP] Roch, Eric. 2006. “SOAP versus REST.” Available at http://blogs.ittoolbox.com/eai/

business/archives/soa-versus-rest-debate-9225.
 [SCAWS] “SCA Web Services Binding V1.00.” Available at http://www.osoa.org/download/

attachments/35/SCA_WebServiceBinding_V100.pdf?version=2.
 [SmithFinger] Smith, Howard, and Finger, Peter. 2003. Business Process Management—The Third Wave.

Tampa, FL: Meghan-Kiffer Press, p. 21.
 [Splitter] Hophe, Gregor, and Woolf, Bobby. “Enterprise Integration Patterns – Splitter.” Available at

http://www.enterpriseintegrationpatterns.com/Sequencer.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

408
 [Synapse] “Leading SOA Vendors Announce Synapse Project to Develop Web Service Mediation Frame-
work.” Available at http://findarticles.com/p/articles/mi_m0EIN/is_2005_August_22/ai_
n14929275.

 [Synapse2005] Synapse Proposal (Incubator Wiki). Available at http://wiki.apache.org/incubator/
SynapseProposal.

 [Synapse2007] Apache Synapse. Available at http://web.archive.org/web/20070716152006rn_1/
ws.apache.org/synapse/.

 [SynapseLanguage] Apache Synapse ESB – Configuration. Available at http://synapse.apache.org/
Synapse_Configuration_Language.html.

 [Tasks] Godage, Upul. “Writing a Task in WSO2 ESB.” Available at http:/wso2.org/library/2900.
 [Taylor] Taylor, James. 2007. “What You Need to Know about Decision Services.”

Available at http://www.edmblog.com/weblog/2007/03/what_you_need_t.html.
 [TaylorRaden] Taylor, James, and Raden, Neil. 2007. Smart Enough Systems: How to Deliver

Competitive Advantage by Automating Hidden Decision. Boston: Pearson Education, Inc.
 [UBL] OASIS Universal Business Language (UBL). Available at http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=ubl.
 [VonHalle] Von Halle, Barbara. 2002. Business Rules Applied. Hoboken, NJ: John Wiley & Sons.
 [VonHalleGoldberg] Von Halle, Barbara and Goldberg, Larry. 2006. The Business Rule Revolution. Cuper-

tino, CA: Happy About.
 [WADL] "Web Application Description Language." Available at https://wadl.dev.java.net/.
 [WIKI] Wikipedia. “Event-driven architecture.” Available at http://en.wikipedia.org/wiki/Event_

Driven_Architecture.
 [WireTap] Wire Tap Enterprise Integration Patterns. Available at http://www.eaipatterns.com/

WireTap.html.
 [Woolf] Woolf, Bobby. “ESB-Oriented Architecture: The Wrong Approach to Adopting SOA.” Available

at http://www.ibm.com/developerworks/library/ws-soa-esbarch/index.html.
 [WSAddressing] Linker, Beth. 2005. “Introduction to WS-Addressing.” Available at http://www.fpml.

org/_wgmail/_bpwgmail/pdfdz3oYx1M9e.pdf.
 [WSDL] “WSDL Essentials.” Available at http://www.developer.com/services/article.php/1602051.
 [WSPolicy] Web Services Policy 1.2 – Framework (WS-Policy). Available at http://www.w3.org/

Submission/WS-Policy/.
 [WSS] OASIS. “Web Services Security UsernameToken Profile 1.0.” Available at http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf.
 [XAware] XAware.org, at http://www.xaware.org/.
Licensed to Deborah Christiansen <pedbro@gmail.com>

index
A

action handlers 138
in jBPM events 145
in jBPM exceptions 145
in jBPM node type 145
in jBPM timers 145

ActionHandler 146, 166, 186,
201

jBPM example
implementation 147

ActionLog 190
actions. See JBoss jBPM, actions
Active Directory 48
ActiveMQ 89

admin console 93
actor 139, 162

See also JBoss jBPM, actors
actorId 162, 176
adapters 19, 253
Adobe AIR 174
Adobe Flex 169
advantages of open source vs.

proprietary software 169
aggregation 258, 272
agility 62
Amazon Mechanical Turk 158
Amazon.com 9
anonymous inner class 234
Ant. See Apache Ant
Apache ActiveMQ 292–293, 298
Apache Ant 110

creating target for running
XSD2JavaGenerator 397

example of target for generat-
ing SDO classes 205

using XSD2JavaGenerator
example 116

Apache Axis 4, 10, 270
Apache Axis 2 10, 286
Apache BSF 189
Apache Camel 89, 252
Apache Commons 257, 299
Apache Commons Digester 372,

374, 376
Apache Commons VFS 271, 299
Apache DBCP 313
Apache Derby 313
Apache Felix 53
Apache Jackrabbit 384
Apache jUDDI 49
Apache log4j 119, 192
Apache Rampart 286
Apache ServiceMix 41, 252, 256
Apache Synapse 12, 252

advantages over Mule and
ServiceMix 44

and JMS 271
as a proxy service 269
as an HTTP proxy 270
as message-oriented

middleware 271
case study phase 1 284, 286–

298
diagram 287

case study phase 2 285, 299–
307
diagram 299

case study phase 3 285
diagram 309

case study phase 4 286
diagram 314

clone mediator 305
example configuration 306

configuration file
example 289

configuring a JMS
listener 297

configuring email
transport 303

configuring JMS
transport 293

creating mock web
services 280

CSV and VFS configuration
depiction 307

custom mediators 273
example 301

database mediator 312–314
example configuration 313

defining JMS queues 292
description 268
distinguishing between mes-

sage and service
mediation 274

enableSec mediator used with
WS-Security 317

enriching data using the data-
base mediator 312

example of xslt mediator
configuration 298

example using JavaScript 279
exception handling 303–304
extendable API 273
filter mediator 276
for populating decision ser-

vices working memory 392
409

Licensed to Deborah Christiansen <pedbro@gmail.com>

410
Apache Synapse (continued)
high-level architecture

depiction 269
history 44
in and out sequences 269
in/out configuration 275
incorporating WS-

Security 314–317
integrating with jBPM 311
introducing 268–274
introduction to message and

service mediation 274–281
iterator mediator 311–312

example configuration 311
example depicted 312

JMS mock service 292
local registry, example 291
local vs. remote registry 291
logging 275
makefault mediator 290
makefault sequence 278
managing QoS 314–320
marketplace of mediators 301
message aggregation 272
message mediation

example 275–279
message transformation 272
mock web service 309
monitoring and

administration 273
namespace required for

imported file 291
POX support 282
protocol adapters 270–271
QoS and mediation 273
registry 286
registry element 289
regular expressions 276
relationship between

sequences, services and
endpoints 270

relationship to WSO2's
ESB 44

routing and distribution 272
service mediation

example 279–282
service mediator example 289
SOAP mock response

example 297
specifying transport

parameters 300
strong XML support 272
submitting JMS test message

in ActiveMQ 298

switch mediator 306
example 277

task mediator requires default
message mediator 310
example configuration 310
when to use it 309

tasks and timers 273
testing using soapUI 279
throttle mediator 317–320

and security 318
example 319
fault block 320
uses for 317

transport switching using
JMS 294

using header element 279
for VFS configuration 305

using named sequences 291
using on-fail 304
using publishWSDL

mediator 316
using task and database

mediators 308–314
using the endpoint

element 280
using the inSequence and out-

Sequence mediators 280
using the VFS transport 299–

301
using wire-tap message

pattern 304–308
using WSDL endpoints 294
using XML Schema for

validation 290
using XSLT for CSV file

processing 301
using xslt mediator to create

mock service response 309
VFS configuration usage and

example 299
VFS transport type 300
web service mediation 56
working with CSV files 301–

303
WS-Addressing 316
WS-Policy example 315
WS-Security, configuration

example 316
xslt mediator 291

example configuration 292
Apache Tomcat 108, 136
Apache Tuscany 195

@Callback annotation 101
@Conversational

annotation 97

@EagerInit annotation 98
@Init annotation 98
@OneWay annotation 101
@Property annotation 77
@Reference annotation 71,

86
@Remotable annotation 71
@Scope annotation 98
@Service annotation 71
benefits to running as a web

application 108
binding types supported 87
callback implementation 100
callback interface 100
caveats to using

XSD2JavaGenerator 116
configuring web.xml 110
creating auto-generate

WSDL 68
creating java interfaces for

jBPM action handler 197
depiction as interface to

jBPM 202
deploying to Tomcat 111
embedded server 209
example component

definition 70
example of using component

type file 96
example of using SOAP over

JMS 90
for service composition 266
illustration of distributed

architecture 108
implementation

with BPEL 80
with implementation

composite 80
with OSGi 80
with scripting languages 80
with Spring 80
with XQuery 80

integrating scripting code
with Java 105

integration with Esper 246
introducing 53–54
Java component

implementation 71
Jetty built-in web

container 108
language implementation

types 80
packaging as a WAR 108
properties implementation

options 78
Licensed to Deborah Christiansen <pedbro@gmail.com>

411
Apache Tuscany (continued)
relationship between WSDL

and SCA Java client
interface 197

Ruby example 104–108
running as embedded

container 108
SCA and SDO

implementation 54
SCA graphical depiction using

Eclipse 396
scripting example using

Ruby 105
scripting langauge

caveats 104
scripting language

support 104–108
SDOUtil 119
sequence diagram illustration

for decision service 403
service cloud 113
simple composite example 67
staring SCA embedded

domain 83
steps for setting up to run

within a web
application 109–113

support for multiple web
containers 108

used for decision services 329
using Ant to create WAR

file 110–111
using domain manager 113
using Eclipse STP plug-in 396
using embedded domain 70
using JMS binding 89
using SDO for complex XML

support 114
using SOAP binding 89
using soapUI for testing 111
using XSD2JavaGenerator for

decision services 397
WAR file for web container

deployment 110
WAR file packaging 109
with ActiveMQ 90
XSD2JavaGenerator to gener-

ate SDO classes from XML
Schema 116

Apache VFS 45
Apache Xerces 272
Apache’s ActiveMQ 271
API 11
Applicant Tracking System 210,

262

Aqualogic 54
ArrayList 347
assignment 162, 165
AssignmentHandler 146, 163,

165
asynchronous

communications 99
See also JBoss jBPM asynchro-

nous continuations
asynchronous messaging 45

benefits 264
depiction 265

ATOM 391
Atom/RSS 51
audit logging 180
audit vs. debug type logging 192
auditing 256, 391
automation 157
autonomous services 391
availability 261
avg 237
Axis2 89
axis2.xml 303

B

BAM 21, 99, 147, 153, 182, 190,
220, 274

and ESP, differences 220–221
role vis-a-vis ESP 220

BeanShell 138, 142, 144, 166,
168, 181

example usage in jBPM 189
expression 189
scripting in jBPM 187–189
vs. standard Java 189

Bernhardt, Thomas 47, 221
best practices 266
BI 46
binary optimization 272
BinarySecurityToken 271
binding.ws 199
BIRT 47
Blackberry 221
Blue Titan 56
BPDM 136
BPEL. See WS-BPEL
BPM 14, 26, 237

and CEP 134
and ESP 220
and event driven

architecture 134
and events 128
and wait states 129
as a paradigm shift 134

as executable processes 126
as secret sauce 17
benefits 17
best practices vis-a-vis ESB 129

differences to ESB 129
relationship to ESB 129

compared to ESB 19
contrast to conventional

applications 30
definition 16
development lifecycle 130
evaluation 30
goal and objectives 126
hydration and

dehydration 19, 134
ingredients 31
initiating a process

instance 133
open source products 32
relationship to services and

components 128
relationship to SOA 16–17,

127
selecting a product 34
slow adoption 134
still requires developer

expertise 132
used to accelerate new prod-

ucts and services 126
using business rule

engine 330
why not to include technical

details in process
definition 145

BPM, evaluation 35
BRE 17, 27
BRMS 18

authoring IDE 36
benefits 332
definition 332
introduction 332
rule engine relationship

depicted 332
testing using soapUI 403
See also EDM

Brynjolfsson, Erik 126
bus topology 254
busines rules, ownership 327
business agility. See BPM
business analyst 327
business events. See events
Business Intelligence. See BI
Business Process Management.

See BPM
Licensed to Deborah Christiansen <pedbro@gmail.com>

412
business rule
declarative in nature 326
definition 326

Business Rule Approach 327
Business Rule Engine. See BRE
Business Rule Management Sys-

tem. See BRMS
business rule revolution 35
business rule service. See deci-

sion service
business rules 157

archiving 385
as assets 328
as enterprise asset 18
as when/then constructs 330
benefits 328–329
business alignment with

IT 329
dangers in hard-coding in

applications 390
definition 18
examples 326
for compliance 329
how to harvest 327
pattern matching 330
relationship to composite

applications 390
relationship to SOA 329
revolution 36
rule versioning 388
understanding 326–328
See also BRMS
See also decision services

Business Rules Management Sys-
tem. See BRMS

C

C# 10
caching 262
callbacks 316, 341

with event stream
processing 100

cancel-timer 165, 168, 188
case 237–238
cast 237–238
Castor 113
centralized router 259
CEP. See ESP
Chodavarapu, Chodavarapu 314
Choicepoint 219
choreography vs

orchestration 41
Cisco 55
clone 272

clone mediator 285, 305, 320
closure 105
clustering 11
coalesce 237
code generation 11, 397
command executor. See JBoss

jBPM, command executor
Common Object Request Broker

Architecture. See CORBA
Complex Event Processing. See

ESP
compliance 167, 242, 328, 391
component

definition 62
distinguishing from a

service 62
how it becomes a service 63

component framework. See
OSGi; See also SCA

component-based routing 260
components 52

and composites 23–24
composite

components 64
recursive 66
SCA definition 66

composite applications, role of
business rules 330, 390

composite services 13, 24, 183,
253

composition 63
compound value

restrictions 349
compression 271
conditional expressions 334
conditions 330
Configuration.configure 227
connection pooling 313
connectors 253
consequences 330
content filter 262
content filtering 262
content switch 55
content-based routing 260
conversational services 94
converters, in jBPM 155
Cooper, Peter 105
CORBA 5, 7, 40

IDL 8
correlation 245

rules 272
count 237
CreateOrderService 293
createProcessInstance 202, 210
create-timer 165, 188

CRM 254
cron 261, 273
cross-cutting concerns 274
CSV 253, 261, 265, 285, 299

processing using Apache
Synapse 302

custom mediators 273, 285
CVS 385
CXF 10

D

dashboards 21, 46
data flow 267
data validation 114
database mediator 285
database query 314
databases 130
DB mediator. See database medi-

ator
db4objects 212
dblookup 313–314

See also Apache Synapse data-
base mediator

dbrecord 313
See also Apache Synapse data-

base mediator
DCOM 5, 7
decision node. See JBoss jBPM,

decision node
decision service 327

depiction of populating work-
ing memory 393

designing 392–396
high-level depiction 391

decision services
and BRMS 391
benefits and value 390
characteristics 390
decision operation 394

implementation using
SCA 400–403

sequence diagram 403
designing the WSDL 393–396
facilitates reusability 329
load operation 394

implementation using
Java 399

implementation using
SCA 397–400

loading working memory 397
relationship to SOA 365
requires SOA 329
resume operation 394
Licensed to Deborah Christiansen <pedbro@gmail.com>

413
decision services (continued)
supporting multiple rule

domains 394
suspend and resume opera-

tions implementation using
SCA 403

suspend operation 394
using JBoss Cache to popu-

late working memory 392
using SCA/Apache

Tuscany 396
with SOAP over HTTP 396
WSDL depiction 396

decision tables 362
DecisionHandler 142, 146
decisions and business rules 325
decomposing 235
dehydration 134
delivery assurances 271
dependency injection 76, 147
deployment snapshots 384
digital signatures 314–315
distributed architecture 108
distributed computing 4–6

contrast to SOA 9
IBM System/360 4
socket programming 4

Distributed Computing Object
Model. See DCOM

distributed ESB
environment 267

dot notation 228
Drools 333, 338–339

activating the rule engine 375
activation-group

attribute 342, 370
agenda-group attribute 343
agenda-group attribute

example 343
alternatives to DRL 358–363
applying logical conditionals

to fact objects 350–351
auto-focus attribute 343

example 343
benefits of business

rules 328–329
case study overview 365–366
cautions for using Java

methods 355
caveats to using functions 342
comparing RuleFlow to JBoss

jBPM 359
compound value

restrictions 349

conditions and pattern
matching 346, 369

contains operator 348
creating a RuleBase 372
creating new working memory

example 373
date-effective attribute 344

example 344
date-expires attribute 344

example 344
decision table

example depiction 362
decision table

configuration 362
dialect attribute 344
DRL 335

constructs depicted 339
example 368, 370
header elements 340–342
overview 339–355

DSL
compared with DRL

rule 378
editing using Eclipse plug-

in 361
example 359–361
for business users 377
getting started 359
rule example 360
templates 359, 379

duration attribute 344
Eclipse plug-in 334, 371

caveats for using 386
examples

a function 342
accumulate

conditional 353, 369
and conditional 350
collect conditional 352
eval conditional 351
exists conditional 351
forall conditional 352
from conditional 352
insertLogical method 354
not conditional 351
or conditional 351
running embedded 338,

371–377
expander keyword 341
fact aliases 336
fact object example 334
facts and working

memory 328
feature overview 334
global keyword 341

global variables 341
Guvnor BRMS 334
history 39, 333
import keyword 335, 340
in and not in group

conditionals 349
insert and insertLogical

methods 354
instantiating RuleFlows 375
integrating with Esper 341
integrating with Java using

functions 341
iterator and collection-related

conditionals 352–353
listeners for debugging and

troubleshooting 374
lock-on-active attribute 345

example 345
major releases 39
managing flow control using

agenda groups 343
managing rule activations

using the lock-on-active
attribute 345

managing rule priority using
salience 346

matches operator 348
memberOf operator 348
no-loop attribute 346
operators using multiple

restrictions shorthand 347
package keyword 335, 340
packages used as

namespaces 381
pattern operators 347–353
patterns and constraints 346–

347
preventing recursive

looping 346
querying facts in working

memory 356, 371, 376
retract keyword 337
retract methods 355, 377
role of the consequence part

of rules 354
Rule Agent 384–385
rule attributes 342–346
rule consequence/then 341
rule construction 335
ruleflow-group attribute 346,

357, 368, 370
RuleFlows 368

depiction using Eclipse
plug-in 356, 375

diagram for case study 367
example 358
Licensed to Deborah Christiansen <pedbro@gmail.com>

414
Drools, RuleFlows (continued)
reasons for using 356–357

running embedded instead of
using decision service 371

salience attribute 337, 343,
346, 368–370

soundslike operator 349
steps involved when running

embedded 371
support for Java fact object

introspection 347
system properties 347
understanding activation

order 336
understanding the conse-

quence/then rule
part 354–355

understanding when
conditions 346–353

update example 354
update method 354, 369, 371
use of MVEL 347
using decision tables 362–363
using DSL for natural lan-

guage rules 358, 378
using functions example 342
using Rule Agent for loading

rules 398
using RuleFlow 356–358
using rules for

computations 371
variable binding 353

example 368
web service enabling 39

Drools Guvnor
administration model

view 385–386
archiving rules 385
assets view 380–381
assigning metadata to

rules 388
binary packages and the Rule

Agent 384
business analysts ideal

users 386
business rule assets 382
creating a package 381
creating binary deployment

snapshot 384
creating new rule assets 381
decision table

uploading 387
decision table web editor 387
DRL rule editor

depiction 387

DSL configuration assets 383
DSL text editor 387, 389–390
enumerations 383
fact model required for rule

authoring 381–382
five rule authoring

options 386–387
function assets 383
functionality overview 379–

386
guided editor 386

depiction 388
importing and exporting 385
managing permissions 386
managing release process 385
managing rule categories 385
managing status

categories 385
model assets 383
other assets 383
package naming

conventions 382
packages module view 381–

383
rule authoring 386–390
rule categorization 380
rule status 381
rule versioning 388
RuleFlow assets 383
snapshot as point-in-time

configuration 385
technical rule assets 382
test scenario assets 383
testing support 403
types of rule assets 382
typical users 380
user permissions 380
using enumerations in

authoring 388
validating a package's

configuration 383
validating rules 387
viewing rule source in author-

ing environment 389
Web 2.0 interface 379
XML property assets 383
See also decision services

Drools Rule Language. See
Drools, DRL

drools.setFocus() 343
DroolsDecisionService 396
DSL 327
DTO 366
duedate 166

E

EAI 254
ESB architectural

alternative 255
MOM architecture

example 254–255
eBay 9
ebXML 63, 284
Eckerson, Wayne 21
Eclipse 34, 52, 65, 204

jBPM plug-in, getting
started 146–147

plug-in 334
EDA 45, 220

and BPM 134
definition 221
relationship to SOA 221

EDI 261, 284
See also electronic interchange

EDM 26
components 36
defined 333, 390
illustration 18
open source evaluation 35–39
open source products 37
relationship to BRMS 333
relationship to SOA 17–19
role in Open SOA

Platform 35
role in SOA 36

EJB 5, 7, 391
electronic interchange 253
Email.rb 105
enableSec 317
encryption 262, 315
endpoint 259, 269, 280
endpoints 391
enrichment 258
Enterprise Application Integra-

tion. See EAI
Enterprise Decision Manage-

ment. See EDM
Enterprise Java Beans. See EJB
Enterprise Resource Planning.

See ERP
Enterprise Service Bus. See ESB
EPAdministrator 231, 241
EPL. See Esper, EPL basics
EPRunTime 231
EPServiceProvider 222, 229,

231, 246, 341
EPStatement 226
EQL 21, 47
Equinox 53
Licensed to Deborah Christiansen <pedbro@gmail.com>

415
Erl, Thomas 24
ERP 5, 254, 365, 392
ERRunTime 231
ESB 12

adapters 257
and long transactions 267
API support for

extensibility 263
appropriate uses 263–265
as a SOA enabler 253
as message-oriented

milddleware 257
based on bus topology 255
based on JMS messaging

backbone 255
BPM's role contrasted 267
chain or pipeline for

transformations 261
compared to BPM 19
connectivity is key 256
core capabilities 256–263
cost compared to EAI 255
data or microflow 19
depiction of central role 39
depiction of policy

management 262
distributed environment 267
distribution contrasted with

routing 260
example of configuring an

adapter 257
features and capabilities 19
for asynchronous

messaging 264
for event processing

depiction 258
for metering 262
for quality of service

(QoS) 261
for routing and

distribution 259–260
high-throughput

processing 268
history 253–256
illustration where perfor-

mance problems may
exist 268

in the extranet 253
inappropriate uses 265, 267–

268
message transformation 260
metrics to monitor 263
monitoring and

administration 262
open source evaluation 39–45

open source products 42
patterns to routing 259
performance bottlenecks

introduced by using 268
proper role and use 129
protocol adapters 256
protocol bridging 39, 265
relationship to SOA 19–20
role in Open SOA

Platform 39
routing and

transformation 129
secure network configuration

depiction 266
service enablement 264
service virtualization 264
splitter pattern 311
supporting legacy

protocols 308
tasks and timers 261
typical architecture

depicted 255
typical role of JMS 257
used for service

mediation 260
using web mediation to

improve QoS 262
when to use BPM 260
wire-tap pattern

described 304
XML as lingua franca 255
XML-based messaging 258
See also Apache Synapse

esbsite.org 301
ESP 147, 190, 258, 391, 404

and BPM 128
as delivery channel for

BAM 220
definition 217
diagram depiction of ESP at

work 219
for compliance 219
for deriving instant

insights 218
for detecting patterns 218
for fraud detection 219
function of the processor 219
open source evaluation 45–47
real-time monitoring for per-

formance and
compliance 218

relationship to BAM 21, 46
relationship to messaging 46
relationship to SOA 21–22
role in Open SOA Platform 45

used to detect opportunities
or threats 218

See also Esper
Esper 190, 304, 306, 404

accessing variable using Con-
figuration class 232

advanced features 237
advantages to using subscrib-

ers over listeners 226
and JavaBeans 224
Apache Synapse case

study 285
as an ESP engine 224
case study 223
caveat when working with

imports 241
chaining view types 234
configurating JDBC

datasource 244
using XML

configuration 244
configuration options 226–

227
correlation 237
create window clause 235
creating named windows 235
defining and registering

queries 225
differences between normal

event streams and named
windows 236

embedding SQL in EQL 244
EPL basics 227–237

comments 228
filter ranges 228
from clause filtering 228
functions 237–241
query example 227
querying 227–231
where clause 228

event object aliases 226
every operator 242
examples

combining the max, prev
and sort functions 238

creating new event
stream 235

publishing events to 230
querying against a named

window 236
registration and subscriber

class 229
user-defined function 240
using getter methods to cast

event properties 225
Licensed to Deborah Christiansen <pedbro@gmail.com>

416
Esper, examples (continued)
using sort function 238
using SQL in EQL 245

exposing as SOAP service 246
getting started 224–227
how patterns differ than nor-

mal select statements 241
illustration of service enabling

with SCA 246
insert into clause 235
inserting new streams 235–

236
installation 224
instanceOf function 238–239

to determine object
type 238

used with case and cast 239
introducing 47
Java methods for use as user-

defined functions 239
JDBC 243
listeners and subscribers 226
managing session 247
named window retention

criteria 236
named windows 234
output clause 234
outputting JDBC data into

event stream 245
pattern matching 225
patterns 241–243

correlation 242
defining 241

prev function 237–238
reasons for dynamically creat-

ing new streams 235
receiving events from Apache

Synapse 304
receiving events from rule

engine 341
referencing JDBC columns in

EQL 245
registering EPL

statements 247
SCA components 246
SCA composite file

configuration 249
service enabling 245, 249–250

with SCA 223
snapshot clause 234
sorted window 237
steps involved in

preparing 224
testing services using

soapUI 250

time window 233
example 233

timer
at pattern guard 243
interval pattern guard 243
within pattern guard 242

understanding event
objects 224–225

understanding pattern
guards 242–243

use with decision services 391
user-defined functions 239–

241, 244
using auto-import to import

Java classes 240
using filters with named

windows 236
using JDBC to pull SQL

data 244–245
using jUnit for testing 232
using the pull API 226
using to filter jBPM

events 234
variables 231–233

how they can be
created 231

reasons for using 231
updating 232
usage in EPL

statements 232
used for static value

assignment 233
views 233–234
win,length function 233
working with properties 224

Esper EPL
similar to SQL 225
used to define patterns 225

Esper Processing Language. See
Esper, EPL basics

EsperIO 245
EsperManager 248
EsperManagerImpl 248
EsperManagerService 249
Espertech 47
ETL 261
eval 342
evaluation priority 346
event 219

alerting 134
buckets 236
correlation 233
defining 46
identifying expected but non-

occurring event 243

monitoring and BPM 134
object 219

event architecture 21
Event Driven Architecture. See

EDA
event processor. See ESP
Event Query Language. See EQL
event stream 219
Event Stream Processing. See ESP
EventBean 226
EventNotificationComponent

100
events 218

and BPM 128
and pub/sub messaging

models 258
definition 21
ESB as propogator 285
in JBoss jBPM 151
in the enterprise 218–219
jBPM superstate 182
monitoring 220
pattern matching 241
See also ESP

exception handling 144, 180
in jBPM 185–187

ExceptionHandler 146
exception-handler 138, 188
execute method. See ActionHan-

dler
ExecutionContext 146
expressions. See also jBoss JBPM,

action expressions
extensibility 258
Extract, Transform and Load See

ETL
extranet 253, 266

F

F5 Networks 55
fact constraints 346
fact objects 334

qualifiers 336
FactHandle 377
facts, defined 328
fact-sets 327
failover 262

processing 273
fault management 272
file-drop 285
filter mediator 276
Finger, Peter 17, 126
Fiorano 252
fireAllRules 376
Licensed to Deborah Christiansen <pedbro@gmail.com>

417
firewall 273, 318
Forgy, Charles 330
fork. See JBoss jBPM, fork
FOSS. See open source
FQN 392, 399
fraud-detection 242
FTP 5, 19, 253, 265–266, 284–

285
fully qualified names. See FQN

G

Galaxy. See MuleSource Galaxy
Ganymede 65
gateway 12
getObject 202
global variable 341
Globally Unique Identifier. See

GUID
Goldberg, Larry 35
Google GWT 169, 379
governance 16, 26, 48, 55
Graham, Ian 326, 330
Graph-Oriented

Programming 136
GraphSession 171

findAllProcessDefinitions()
171

Groovy 104, 263, 272
GUID 301
Guvnor. See Drools Guvnor

H

handlers, assignment 163
See also action handlers

hardware routers 273
Harvard Business Review 126
hello world 275
HelperContext 119
Hibernate 35, 153, 171, 174, 208
hibernate.cfg.properties 170
hibernate.cfg.xml 170
hibernate.properties 170, 204
HireRight 286
Hohpe, Gregor 259
HTTP 40, 195, 253, 271, 284

headers 11
proxy 279

hub-and-spoke 254
human intelligence tasks 157
hydration 134

I

IBM 9, 42, 53, 254
IBM WebSphere XE 334
IMAP 271
inference engine. See BRE
InformationWeek 9
Infravio 44
in-memory database 392
inSequence 280, 320
instanceof 237–238
integration brokers. See EAI
Intel XML Content Router 55
interoperability 258
intranet 253
introspection 347
inversion of control 53, 84, 93
IONA 53, 56
IP address 286
IP filtering 317
iPhone 221
isAllow 319
issueMgmt-

distributed.composite 112
iterator mediator 286
itinerary 267

J

JAAS 386
JasperReports 47
Java 10

annotations 95
helper classes 63
scripting. See BeanShell

Java Authentication and Autho-
rization Service See JAAS

Java Business Integration. See JBI
Java Servlet API 121
JavaBean 78, 86, 227
JavaScript 104, 263
Java-WS 10
JAXB 114
Jaxen 275
JBI 41, 93
JBoss 9, 392

jPDL 267
jPDL compared with

BPEL 137
See also RedHat

JBoss Cache 392
configuration 398
configuring with Apache

Tuscany 396
initializing the cache 399

use in decision services 392
JBoss Drools. See Drools
JBoss Enterprise Middleware

(JEMS) 334
JBoss ESB 252
JBoss jBPM

acquiring a logging
instance 191

action handler
touchpoints 145

ActionHandler sample
implementation 147

actions 145–151
as integration points 145

actor assignment options 164
actors 139, 162

in mail node 140
pooled 162

and CEP 134
API 136
as the glue within a business

process 144
assignment, dynamic 163
asynchronous

continuations 136, 192–
194, 213
depicted 193–194
how to add to a node 193
required jBPM

Enterprise 193
where they can be used 194

audit logging 190–192
BeanShell

context environment 188
example 142
expressions in decision

node types 189
expressions vs. scripts 189
scripting 187–189

benefits to using as a
service 196

command executor 193
configuring a database 170
Console 132, 135, 143, 162,

183, 211
and identity 163
screenshot 136
task form limitations 169
timers 166

contrasted to Drools
RuleFlow 359

creating a process object for
Esper 223

cycling through available
logs 191
Licensed to Deborah Christiansen <pedbro@gmail.com>

418
JBoss jBPM (continued)
decision node

options 142
type 142
type expression

example 187
default thread blocking

behavior 193
depiction of logging events to

Esper via SCA 223
deploying business

processes 132
deployment options 132
developing the listProcesses

service operation 203–210
development lifecycle 130–

136
differences between state and

node node type 139
differences between task-node

and task 160
disabling logging 190
Eclipse Deployment View 132
Eclipse editor example 131
Eclipse plug-in 35
email support 136
embedding 132, 136

API in clients creates tighter
coupling 195

Enterprise edition 182, 193–
194

event objects 151
events 138, 151–153
example of retrieving logs for

a given process
instance 191

examples of business
processes 131

exception handlers defined at
root of process
definitions 187

exception handling 138, 185–
187
don’t use for controlling

flow 185
limited to custom

handlers 185
exposing API as protocol neu-

tral services 195
exposing as services lowers

learning curve 195
fork and join nodes 142–144
Graphical Process Designer

(GPD) 131, 160, 170, 181

history 34–35, 129
identifying good candidate

processes 131
illustration of how it can be

used with external
services 196

initiating a process
instance 133

integrating with Apache
Synapse 311

integrating with Esper with
custom logger 222

Java API 160, 167, 169, 184,
195, 208
identifying processes 170–

172
using Hibernate to query

database 172
using to complete a

task 177–178
using to find open

tasks 174–175
using to find pooled tasks

assigned to user 176
using to find tasks assigned

to a user 176
using to retrieve process

instances 172–174
using to retrieve

processes 170–172
jbpm.mail.templates.xml file

for customized
messages 141

Job Executor for asynchro-
nous continuations 193

jPDL example 137, 146, 148
of action handler

definition 200
of exception handling 185
of superstates 181
of timers using

reminders 167
swimlane 164
using events 152
using expression

attribute 150
jPDL not a standand 136
jPDL subprocess example 184
listProcesses sample SOAP

request 204
local variables 154

when to use 155
logfile types 190
mail node 140–142

attributes and elements 140

mail template variable
properties 141

monitoring with Esper 220
node nodetype 137–139, 193
nodes 137–144

action 138
and states 132
purposes 137
transitions 138–139
type attributes and

elements 138
types 137

operations exposed as
services 202

Process Archive file
(PAR) 132

Process Definition Language
(PDL) 136

process instance status 135
process instance variables,

retreiving from action
handler 201

process variable example 146
process variables 153, 168

as executable Java
objects 149

propagated to
subprocesses 184

properties 147
using XML data 148

property configuration
types 148

property instantiation 148
reasons for service-enabling

using SCA 201
RuleFlow implementation in

Drools 357
SCA client implementation

class 198
SCA composite file

example 198
searching by instance key 135
service enabling 181
specifying runtime

components 132
state node 139–140
state node type 183
state vs. node for asynchro-

nous wait states 193
steps in setting up SCA

client 196–201
subprocess diagram

example 183
best practices 184
runtime binding 184
Licensed to Deborah Christiansen <pedbro@gmail.com>

419
JBoss jBPM (continued)
subprocesses 180, 183–185,

212
and reusability 183
for decomposition 183

superstates 181–182, 212
as a grouping of nodes 181

supporting different process
definitions as a service 212

swimlanes 164–165
process diagram

depiction 164
used for roles 164

tasks 135
API 158
assignment 161
basics 158–161
controllers 168
element and

attributes 160–161
element

configuration 160–161
expressed in jPDL 158, 162
management using jBPM

Console 159–160
nodes 139
user management 161–165
using the API 169–178
variables 168

timers 135, 138, 165–168, 182
as critical functionality 167
elements and attributes 166
only available in

Enterprise 165
token signal 140
tokens 139

in joins 143
transitions 144

elements and attributes 144
path options 144

understanding release
editions 136

use LoggingSession instead of
LogginInstance 191

uses of state node 140
using a mail template

example 141
using action expressions 149–

151
using actions for inserting

programming logic 145
using actions to abstract

complexity 145
using actions with events 151
using converters 155

using db4objects to store pro-
cess data 212

using JMS to instantiate busi-
ness process 286

using SCA for client API 196–
201

using variables 153–155
variable types 153
VariableInstance 155
variables 225
variables and tokens 155
wait states 137, 139
where BeanShell script can be

used 188
why use web services for call-

outs 195
why using it with SCA is so

compelling 196
JBoss jBPM Suite. See JBoss,

jBPM
JBoss Rules. See Drools
JBossWS 10
jBPM

as graph oriented
programming 136

Console 130
using assigment handlers 163

jbpm.cfg.xml 141, 190
jbpm.composite 208
jbpm.mail.templates.xml 141
jbpm.wsdl 204, 211
JBPMClientMain 250
JbpmContext 170, 173, 176,

178, 191
JBPMHelper 170, 177
jConsole 263
JDBC 227, 237

using with Esper to pull
events 244–245

Jess 330
Jetty 108
JiBX 113
Jitterbit 26

licensing restrictions 43
JMS 12, 22, 40, 74, 266

for enterprise jBPM 193, 210
mock service 292
relationship to SOA 22
role in an ESB 257
support in Apache

Synapse 252, 264, 271
used in Apache Synapse case

study 286
using with Drools 391
using with Esper 245

when to use pub/sub
model 257

JMX 247, 249, 262, 273
JRuby 104
jRuby 263
JSON 87, 391
JUnit 132, 403

creating test cases for
Esper 228

test case example for
Esper 230

jUnit 228
Jython 263

K

Kanneganti, Ramarao 314
Knopflerfish 53
knowledge retention using busi-

ness rules 328
Krishnan, M.S. 17, 126, 218

L

LDAP 15, 22, 47, 164
Leaps 330
left-hand side 354
listActorTasks 202
listeners 226
listInstanceTasks 202
listInstanceTokens 202
listProcesses 203

creating SCA composite
file 208

creating SCA Java
implementation 207

creating SCA Java
interface 206

generating SDO binding
classes 205

steps for creating 204
WSDL and XML Schema

depiction 205
listProcessInstances 203
listservices.composite 209
load balancing 11, 262, 273
localEntry 291
log4j.properties 120
logging 256, 269
LoggingInstance 190, 192

caveats in using 191
LoggingSession 190, 192
logical operators 348
Licensed to Deborah Christiansen <pedbro@gmail.com>

420
M

mail transport 285
mailto 304
maintenance costs reduced

using a rule engine 328
makefault 278
makefault mediator 290
management 256
mapUBLOrder.xslt 291
marshaling 208
max 237
MaximumConcurrentAccess

319–320
McAfee, Andrew 126
MD5 317
message

channels 254, 265
injector 273
mediation 270
splitting 285
throttling 273
transformation 39

MessageID 301
MessageInjector 286, 310
Message-Oriented Middleware.

See MOM
messaging system. See ESB
metering 262, 273, 314
micro-flow 267
Microsoft 9, 28
Microsoft Excel 334
middleware 264
MIME-type 301–302
min 237
mock services 280
MOM 254
MQ Series 40
MTOM 272
Mule. See MuleSource Mule
MuleSource 51
MuleSource Galaxy 16, 48
MuleSource Mule 41, 252, 263
MVEL expression language 347
MySQL 227

N

named query 371
NEsper 222
nested accessor 347
.NET 222, 246

integrating with jBPM using
SOAP 201

New Age of Innovation, The 126

NFS 5
node 137

See also jBPM node
NodeLog 190
nodetypes. See JBoss jBPM
Novell’s Nsure 49

O

OASIS 54, 63
OASIS UBL 261, 284
object database 212
Open Office 334, 363
Open Service Oriented

Architecture 64
Open SOA Platform 218

components 16–25
open source

community 28
evaluation criteria 30
hidden documentation 56
Open SOA Platform 29

OpenDocument 63
OpenSpan 26
operational decisions 390

See also business rules
operational monitoring 218,

258
Oracle 9, 53, 227
orchestration 158

vs choreography 41
org.jbpm.context.log 190
org.jbpm.context.log.variableins

tance.* 190
org.jbpm.graph.log 190
OSGi 52
OSGI Alliance 53
OSOA. See Open Source Ori-

ented Architecture
outSequence 280, 320

P

Package 338, 373
PackageBuilder 338, 361, 373
packages in Drools 382
Pareto 202
password hash 316
PasswordDigest 271, 314
pattern matching

algorithms 330
pattern restriction 369
patterns 225

See also Esper patterns

Pentaho 47
Perl 104
personalization using business

rules 329
Pion 47
pipeline 259
Pointillism 63
PojoCacheFactory 399
policy management 273
pooled actors 162, 164
POP3 40, 271
POX 195, 253, 258
Prahalad, C.K. 17, 126, 218
prev 237
pricing engine 365
ProblemManagementComposite

67–68
adding conversational

support 98
createTicket SOAP

operation 75
CreateTicketComponent 67

adding conversational
support 98

CreateTicketComponentImpl
Java implementation 72

creating custom WSDL 87, 91
Email.rb Ruby example 105
example incorporating Ruby

script 106
IssueManagementComposite

definition 82
explanation 80
using implementation

composite 82
Java implementation

SDOClientImpl 117
Java interface

ProblemTicketComponent
SDO 116

Java JMSClient interface 92
ProblemTicketComponent 67

exposed as web service 68
Java implementation 71
Java interface 71
using properties 76

ProblemTicketComponent2
alternative
configuration 75

ProblemTicketComponent-
Impl using properties
implementation 77

ProblemTicketComponent-
Impl2 alternative
configuration 75
Licensed to Deborah Christiansen <pedbro@gmail.com>

421
ProblemManagement-
Composite (continued)

reference usage example 86
running as a web

application 108
running as web

application 112
sequence diagram 72
SOAP WSDL 73, 75
SystemErrorComponent 80
SystemErrorComponentImpl

Java implementation 83
using component types 95
using SDO 115
using WSDL for port and ser-

vice definition 89
problemMgmtSDO.composite

117
ProblemService.wsdl 115
ProblemServiceComponent,

using scripting
language 107

ProblemTicketService
packaged as WAR file 111
with callback support 104

Process Archive file. See JBoss
jBPM

process execution engine 130
ProcessDefinition 171, 208
ProcessEvent 223–224, 228
processId 173–174
processing pipeline 259, 265
ProcessInstance 172, 177, 191
Proctor, Mark 358
Progress 41, 252
ProhibitedTimePeriod 319
properties

instantiating jBPM 148
See also SCA properties

protocol adapters, using
Synapse 270–271

protocol mediation 55
protocol switching 12, 285, 288
protocol transparency 86
protocols 253
proxy 12, 25, 56
pub/sub 22, 257
publishWSDL 316
PWCallback 316
Python 104, 263

Q

QoS. See quality of service
quality of service 16, 261–262

using Apache Synapse 314–
320

Query 173–174
QueryResults 377
queues 257, 264

R

Raden, Neil 329
real-time systems 268
RedHat 39, 50
reflection 224, 227, 353
registry

metadata 23
open source evaluation 47–52
open source products 49
public or private 15
relationship to SOA 22
role in Open SOA

Platform 47
See also WS02 Registry

Remote Method Invocation. See
RMI

Remote Procedure Calls. See
RPC

repository. See registry
Resin 136
REST 10, 25, 36, 55, 195, 258,

391
combined with WADL 10
vs SOAP 10

Rete 328, 330
retract 337
reusability 13
right-hand side 354
RightNow Technologies 286
risk mitigation 218
RMI 24
RosettaNet 284
routing 255, 258, 269
routing rules 272
routing slip 259
Roy Shulte 7
RPC 5–6, 9, 45, 121

problems with 6, 264
RSS 221, 391
Ruby 104, 272
rule activation 331
Rule Agent 384–385
rule domains 394
rule engine 328–331

actions 330
agenda 336
characteristics 330
common algorithms 330

improving software
quality 329

purpose is rendering a
decision 354

reduces complexity of
code 328

relationship to BRMS 332
rule activation 330, 371
See also BRMS

rule processing 245
rule properties. See rule engine
rule repository 390
rule.properties 398
RuleBase 338, 372, 398
RuleBaseFactory 338
RuleFlow. See Drools RuleFlow
RuleFlowGroup 357
rules engine 325

S

SaaS 9, 55, 286, 320, 329
Salesforce 9, 96
Salesforce.com 286
salience 336
SAML 63
Sarbanes-Oxley Act 219
SCA 44, 195

accelerates path to SOA 201
and the role of an ESB 266
Apache Tuscany as

implementation 64
as a client 91, 196
assembly model 64
binding using custom

WSDL 87
bindings 87–93
bindings schema 87
callbacks 99–104, 108–113

illustration 99
support 75
support and usage 99

case study requirements 65
client using SDO 117
code annotations 95
component

architecture 53
implementation 70
implementation node 79
schema 70
type as an alternative to

annotations 95
type file example 95
type XML file 95
types 95–96
Licensed to Deborah Christiansen <pedbro@gmail.com>

422
SCA (continued)
components 70–74
composite 53, 66–70
composite diagram

example 67
composite file example for

Esper 248
composite XML Schema 66
composition example using

properties 79
configuration of decision

service 398
conversations 96–99

composite scope 97
conversation scope 97
request scope 97
stateless scope 97

creating Esper
components 246

creating protocol-neutral
components 266

decomposing composite files
for manageability 208

distinguishing between call-
backs and conversations 99

domain 64, 118
example of test client used to

submit remote service
request 199

example of using conversa-
tional features 247

example of using
reference 199

historical foundations 64
implementation 79–84
implementation.composite

example 83
implementation.java

element 79
injection options for

properties 78
integrating with JBoss

jBPM 196–201
integration with Esper 246
Java annotations 71
Java conversation example 97
multi-protocol support 74
nodes and composite

diagram 66
OASIS sponsorship 54
properties 53, 76–79

example 76
example alternative 77
using XML 76
with source XPATH 78

protocol and language
neutral 62

recursive composition 84
reference implementation

example 84
using web service 85

references 53, 64, 84–86
schema 84

relationship between WSDL
and composite binding 89

relationship to OSGi 53
sca-contribution.xml 109
scripting implementation in

composite.xml 106
scripting language

support 104–108
example 105

SDO's relationship 114
sequence diagram illustration

for decision service 403
service binding 74
service interface element 74
service interface for restrict-

ing exposed methods 75
service schema 74
service using

interface.wsdl 75
services 74
simplified overview 53
Spring 54
steps in setting up client for

jBPM 196–201
tooling 65
using component type file for

scripting languages 107
using

DomainManagerLauncher
113

using embedded
container 108

using the promote
attribute 69

using top-level service
definition 68

using web service as reference
interface 199

when to use callbacks 99
why it's so compelling to use

with jBPM 196
SCA Tools 65
sca, composition 63
SCADomain 249
scripting languages 104, 263
SDO 53, 169, 195

advanced features 119–121

API 114
as a data graph 53
as an XML binding

technology 113
converting to XML 120
data graphs 119
disconnected datasets 114
example of marshalling XML

for log4j 119
example used in decision

services 400
example using raw XML 120
factory helper classes 119
for complex XML data

structures 114
metadata 114
steps for unmarshalling XML

into Java classes 120
steps for using with SCA 115–

119
test client 117
usage 113–119
use with XML Schema 114
using to marshall object data

into XML 119
when to use 198
working with generated

classes 119
SDOClientMain 118
SDOUtil 119
security policies 315
SeeBeyond 254
SeeWhy 47
selection mediators 272
sense and respond 134
sequence 275
service 61

benefits 63
components and

compositions 62–64
open source evaluation 52–

54
composite 13
composition 14–15

caveats for ESB 266
consumer 213
contract 10
detection 265
differences from a

component 62
discrimination 261
fine vs. coarse grained 63
interface 10–11
lifecycle management 52
loose coupling 13–14, 74
Licensed to Deborah Christiansen <pedbro@gmail.com>

423
service (continued)
mediator 12
registry 15–16
scalability 108
stateful vs stateless 13
transparency 11
wrappers 23

service adapters 255
Service Data Objects. See SDO
service level agreements. See

SLAs
service mediation 25

depiction 25, 55
open source evaluation 55–56
See also web service mediation

Service Oriented Architecture.
See SOA

service provider 213
service proxy 266
service virtualization 260, 265,

318, 390
service-enabling Esper 245–250
services 8, 23

as holy grail of SOA 62
asynchronous 99
components and

composites 23–24
composite 14
conversational support using

SCA 99
fine and coarse-grained 13
should not contain protocol-

specific code 266
simple vs. primative 14
stateless 96
See also SOA

servlet 110, 113
SessionManagerImpl 247
setPayloadXML 279
sFTP 253
signal 193
signaling a token 201
Simple Object Access Protocol.

See SOAP
SimpleURLRegistry 290
SLAs 167, 242, 273

and BPM 134
Smith, Howard 17, 126
SMTP 105, 271, 304
snapshots 384
SOA 7, 329–330

advent 7
and BPM 127
and the role of an ESB 253
as a fad 3
benefits 9

challenges introduced for
managing and
monitoring 218

core characteristics 10–16
disappointments 9
distributed environment 218
environment 8
facilitates event

publication 220
Harvard Business Journal 4
inappropriate uses of an

ESB 265, 268
introduces many more failure

points 218
maturity model 25
more than SOAP 10
orchestrated business

processes 8
relationship to business

rules 329
SOAP web services 9–10
technology platform 16–25

SOAP 6, 36, 55, 74, 195, 252,
258, 270, 287

addressing 274
API 286
authentication 316
benefits for using with JMS 89
document style 6
example mock service 290
example request 290
fault 290
headers 260, 270, 305
messaging styles 6–7
over JMS 287
relationship to SOA 9–10
RPC/encoded 7
vs REST 10
XML 6

soapUI 111, 117, 250, 279, 287,
290, 292, 318

example depiction 403
for testing of decision

services 403
Soar 330
socket 6
Software AG 44
Software as a Service. See SaaS
Sonic Software 41, 56, 252
sort 237
SourceForge 129
SPI 262
split 272
splitter 357
Spring 54,65,76,84,147,249,403

Spring-WS 10
SQL 227, 313
sql 245
Squid 56
SSL 262
state transitions 139
stateless 390
StatementManagerImpl 247
StatementSubscriber 246
stored procedures 245
stovepiped applications 31
streams. See Esper
StringUpdateLog 190
Stylus Studio 204
subprocesses. See JBoss jBPM,

subprocesses
subscriber 226
Subversion 385
SuccessFactors 286
sum 237
Sun Microsystems 5
Sun OpenESB 252
super-state 182
superstate-enter 182
superstate-leave 182
superstates. See JBoss jBPM,

superstates
swimlanes 161, 164

jBPM process flow
depiction 164

when are they necessary? 164
See also JBoss jBPM, swimlanes

switch mediator 277, 306
Synapse

architecture 45
service proxy

configuration 280
See also Apache Synapse

synchronous
communications 99

T

tagging 380
Talend 26
task

controllers 168
jBPM task variables 168
transitions 160

task assignment 161
task duedate attribute 161
task form 159
task node. See JBoss jBPM, task

nodes
task priority 161
Licensed to Deborah Christiansen <pedbro@gmail.com>

424
TaskControllerHandler 146,
169

TaskInstance 174–176, 178
TaskInstance.getPooledActors()

method 175
TaskMgmtInstance 177
TaskMgmtSession 176
task-node 158, 160
tasks

completing a task using jBPM
API 177–178

determing which task to close
when using the jBPM
API 178

finding open tasks using jBPM
API 174–175

finding pooled tasks assigned
to users using jBPM
API 176

finding tasks assigned to a
user using jBPM API 176

relation to BPM and SOA 158
roles 164
user management 161–165
using the jBPM API 169–178
See also JBoss jBPM

Taylor, James 329, 390
TCP 271
temporal operators 241
TestNG 403
Thread.sleep 101
throttle mediator 314
ThrottleAssertion 319
throttling 286
throttling assertions using WS-

Policy 319
Tibco 254
Tibco General Interface

(GI) 169
timer 138

at 243
interval 243
jBPM configuration

example 166
within 242

timers
add to jBPM superstates 182
in jBPM 165, 167

times, only available in jBPM
Enterprise 165

Token 185
tokens 177

See also JBoss jBPM tokens
Tomcat 334

Traffic Management 55
transformation 255
TransitionLog 190, 192
transitions 138, 144
transport switching 253, 287
transports 253
Treat 330
triggers 273
Tuscany SDO. See SDO

U

ubl.xsd 290
ubl_order.wsdl 288
UDDI 15, 48
UDF. See Esper, user defined

functions
UML 164
uniform resource locator. See

URI
Universal Business Language. See

OASIS UBL
Universal Description, Discov-

ery and Integration. See
UDDI

UpdateListener 241
updateRStream 234
updateToken 203
URI 260
Username 317
UsernameToken 271, 316

V

validate mediator 285, 290
validation 258, 272
VariableCreateLog 190
VariableDeleteLog 190
VariableInstance 155
variables. See also JBoss jBPM,

variables
version control 385
Version Rationalization 55
VFS metadata 305
Virtual File System. See Apache

Commons VFS
virtual machine 113
Visio 126
visualization 126
Vitria 254
VMWare 264
volatile vs. non-volatile facts 331
Von Halle, Barbara 35, 327

W

WADL 10
wait states 356

jBPM behavior 192
WAR file 109
web forms 159
Web Service Definition Lan-

guage. See WSDL
web service mediation 25, 260,

286–298
See also service mediation

web service, versioning 318
Web Services Security User-

nameToken Profile 1.0 314
web services, jBPM facade 195
web.xml 109–110
WebLogic 54
WebMethods 254
Web-Oriented Architecture 10
WebSphere 54
win, keepall() 237
wire-tap 285

pattern 304–308
wiretap 259
Woolf, Bobby 253, 259
work items 357
workflow 14, 127

using Drools RuleFlow 356
workflow management. See BPM
working memory 328, 330

case study fact objects 366
how to populate 392
inserting 354
loading non-volatile facts

using Digester 374
non-volatile, volatile facts 331
populating instance, or vola-

tile, data 375
querying facts 356, 376
removing objects using

retract 355, 377
retracting facts 338
updating 354
updating fact objects 369, 371
use in decision services 390
using Digester to populate

from XML 372
using SDO to populate via web

service 401
WorkingMemory 339, 371–372,

375–376, 402
WS-* 12
Licensed to Deborah Christiansen <pedbro@gmail.com>

425
WS02 ESB 269
differences with Apache

Synapse 269
WS02 Registry 16

ATOM/RSS support 51
compared to Galaxy 51
elements 51

WS-Addressing 11–12, 44, 260,
264, 270, 272, 274, 279

use with WS-Security 316
WS-BPEL 14, 133, 136, 267

differences to BPM 32
WSDL 6, 24

and XML Schema 10
as a registry 15
best practices 210
creating simple 288
decision services 393–396
example of constructing

manually 204
example using JMS

transport 294
for Esper web services 250
interface 10
multiple service

definitions 88
top-down vs. bottom-up

design 393
using with SCA/Apache

Tuscany 88

using wsdl import
statement 395

WS-I 117
WSO2 319

Registry, introducing 51
role in Apache Synapse 269
See also Apache Synapse

WS-Policy 44, 271, 315
example 318
extended for QoS 318

WS-ReliableMessaging 25, 44,
271

WS-Security 25, 44, 55–56, 262,
286, 314–317

example 317
set of standards 314

X

X.509 271, 315
XAware 392
XEN 264
xis2.xml 292
XML 255

binding with SDO 121
composite definition 66
large payloads 13
marshalling into Java class

example 120

namespace 109
preferred for ESB

messaging 258
tracking changes to a

document 114
transformation 287
views 392

XML Schema 51, 116
validation 287

XMLBeans 114
XMLDocument 120
XMLHelper 119–120
XOP 272
XPath 272
XPath expression 290, 306,

312–313
XPDL 136
XQuery 45, 104, 272
XSD2JavaGenerator 116, 197,

205
xsi, type attribute 395
XSLT 104, 272

mediator 285
stylesheet 314
transformation 261

xslt
depiction 296
mediator 291, 303
Licensed to Deborah Christiansen <pedbro@gmail.com>

ISBN 13: 978-1-933988-54-2
ISBN 10: 1-933988-54-1

9 7 8 1 9 3 3 9 8 8 5 4 2

99945

Y
ou can now build an enterprise-class SOA solution us-
ing just open source applications. But there’s a catch.
You’ll have to decide which products to use and how to

integrate them into a working whole. Th e areas to integrate
range from business process management, complex event
processing, messaging and middleware, and ESBs, to busi-
ness rules. Th e task can be daunting.

If you are a developer or architect who’d like some help
with this task, then Open Source SOA is the guide for you.
You’ll learn key SOA concepts and how these technologies
fi t into the SOA equation. You’ll learn valuable ways to in-
tegrate them, based on hard-won experience by the author.
And you’ll discover just why these open source products are
a competitive alternative to expensive commercial solutions,
and are in many cases superior.

What’s Inside
Full lifecycle coverage of building an SOA system
Mix, match, and blend diff erent tools
Hard-to-fi nd case studies and unique solutions
Introductions to JBoss jBPM, Drools, Apache Tuscany,
Synapse, Esper, and more
An integrated Eclipse project, with all libraries packaged
for running the examples

Jeff Davis is Director of Soft ware Architecture at HireRight.

For online access to the author, code samples, and a free ebook for
owners of this book, go to www.manning.com/OpenSourceSOA

$49.99 / Can $62.99 [INCLUDING eBOOK]

OPEN SOURCE SOA

ENTERPRISE JAVA

Jeff Davis

“A survival guide in the
 complex landscape of open
 source SOA.”
 —Alberto Lagna, whitebox.it

“An invaluable guide ...
 excellent examples.”
 —Rick Wagner, Acxiom Corp.

“Th e in-depth comparisons
 of various open source SOA
 products are worth the price
 of the book.”
 —Peter Johnson, Unisys

“... applicable to any SOA
 project, regardless of the
 platform.”
 —Irena Kennedy, Microsoft

“Practical SOA solution that
 integrates key open source
 technologies.”
 —Doug Warren, Java Web Services

M A N N I N G

123

SEE INSERT

	Open Source SOA
	brief contents
	contents
	preface
	acknowledgments
	about this book
	History and principles
	SOA essentials
	1.1 Brief history of distributed computing
	1.1.1 Problems related to RPC-based solutions
	1.1.2 Understanding SOAP’s messaging styles
	1.1.3 Advent of SOA

	1.2 The promise of web services for delivering SOA
	1.3 Understanding the core characteristics of SOA
	1.3.1 Service interface/contract
	1.3.2 Service transparency
	1.3.3 Service loose coupling and statelessness
	1.3.4 Service composition
	1.3.5 Service registry and publication

	1.4 Technologies of a SOA platform
	1.4.1 Business process management
	1.4.2 Enterprise decision management
	1.4.3 Enterprise service bus
	1.4.4 Event stream processor
	1.4.5 Java Message Service
	1.4.6 Registry
	1.4.7 Service components and compositions
	1.4.8 Web service mediation

	1.5 Introducing a SOA maturity model
	1.6 Summary

	Defining the Open SOA Platform
	2.1 Evaluating open source products
	2.2 Choosing a BPM solution
	2.2.1 BPM product evaluation criteria
	2.2.2 Open source BPM products
	2.2.3 Selecting a BPM solution
	2.2.4 Introducing JBoss jBPM

	2.3 Choosing an enterprise decision management solution
	2.3.1 EDM product evaluation criteria
	2.3.2 Open source EDM products
	2.3.3 Selecting an EDM
	2.3.4 Introducing JBoss Rules (Drools)

	2.4 Choosing an ESB
	2.4.1 ESB product evaluation criteria
	2.4.2 Open source ESB products
	2.4.3 Selecting an ESB
	2.4.4 Introducing Synapse as a lightweight ESB

	2.5 Choosing an ESP solution
	2.5.1 What is event stream processing?
	2.5.2 Introducing Esper

	2.6 Choosing a registry
	2.6.1 Registry evaluation criteria
	2.6.2 Open source registry products
	2.6.3 Selecting a registry
	2.6.4 Introducing WSO2 Registry

	2.7 Choosing a service components and composites framework
	2.7.1 Examining the Service Component Architecture
	2.7.2 Introducing Apache Tuscany

	2.8 Choosing a web services mediation solution
	2.9 Summary

	Assembling components and services
	Creating services using Apache Tuscany
	3.1 What are service components and compositions?
	3.2 The SCA assembly model
	3.2.1 Introducing the composite file
	3.2.2 Configuring components
	3.2.3 Defining services
	3.2.4 Working with properties
	3.2.5 Implementation options
	3.2.6 Using references for dependency injection
	3.2.7 Defining available bindings

	3.3 Summary

	Advanced SCA
	4.1 Configuration using component types
	4.2 SCA interaction models
	4.2.1 Using conversations
	4.2.2 Understanding callbacks

	4.3 Scripting language support
	4.3.1 Creating a Ruby component
	4.3.2 Creating a Java interface using the Ruby method signature
	4.3.3 Modifying the service implementation class
	4.3.4 Modifying the composition assembly

	4.4 Advanced Tuscany/SCA
	4.4.1 Production deployment
	4.4.2 Introducing Service Data Objects (SDOs)
	4.4.3 Advanced SDO features

	4.5 Summary

	Business process management
	Introducing jBPM
	5.1 BPM: the “secret sauce” of SOA
	5.2 History and overview of JBoss jBPM
	5.2.1 Development lifecycle of a jBPM process
	5.2.2 Graph-oriented programming and jBPM

	5.3 Understanding nodes
	5.3.1 Node nodetype
	5.3.2 Task-node nodetype
	5.3.3 State nodetype
	5.3.4 Mail-node nodetype
	5.3.5 Decision nodetype
	5.3.6 Fork and join nodetypes

	5.4 Using transitions
	5.5 Extending using actions
	5.5.1 Action class property instantiation
	5.5.2 Using action expressions

	5.6 Using events for capturing lifecycle changes in a process
	5.7 Managing context using variables
	5.8 Summary

	jBPM tasks
	6.1 What are tasks?
	6.1.1 Task management using the jBPM Console
	6.1.2 task element configuration

	6.2 Task user management
	6.2.1 Actors and assignments
	6.2.2 Understanding swimlanes

	6.3 Using timers
	6.4 Task controllers
	6.5 Developing with the task API
	6.5.1 Identifying processes within a jBPM instance
	6.5.2 Identifying running process instances for a given process
	6.5.3 Finding open tasks within a process instance
	6.5.4 Finding all tasks assigned to a user
	6.5.5 Finding all pooled tasks for an actor
	6.5.6 Completing a task

	6.6 Summary

	Advanced jBPM capabilities
	7.1 Important enterprise features of jBPM
	7.1.1 Superstates for grouping
	7.1.2 Using subprocesses to manage complexity
	7.1.3 Managing exceptions
	7.1.4 Scripting with BeanShell
	7.1.5 Audit logging
	7.1.6 Understanding asynchronous continuations

	7.2 Integration with SCA/SDO
	7.2.1 Using SCA client components for service integration
	7.2.2 Service enabling jBPM
	7.2.3 Developing the ListProcesses service operation
	7.2.4 Developing the CreateProcessInstance service operation

	7.3 Summary

	Event stream processing, integration, and mediation
	Complex events using Esper
	8.1 Business events in the enterprise
	8.2 Understanding events
	8.2.1 BAM and ESP—what’s the difference?
	8.2.2 Event-Driven Architecture and SOA

	8.3 What is Esper?
	8.4 Getting started with Esper
	8.4.1 What are event objects?
	8.4.2 Defining and registering query statements
	8.4.3 Specifying listeners or subscribers
	8.4.4 Configuration options

	8.5 EPL basics
	8.5.1 Querying events
	8.5.2 Using variables
	8.5.3 Understanding views
	8.5.4 Creating new event streams with named windows

	8.6 Advanced Esper
	8.6.1 Extending with functions
	8.6.2 Applying event patterns
	8.6.3 Using JDBC for remote connectivity

	8.7 Service enabling Esper
	8.7.1 Creating a framework and components
	8.7.2 Esper service and session manager
	8.7.3 SCA composite file
	8.7.4 Testing with soapUI

	8.8 Summary

	Enterprise integration and ESBs
	9.1 The relationship between ESB and SOA
	9.2 Historical foundations of ESB
	9.2.1 Core ESB capabilities
	9.2.2 Appropriate uses of an ESB
	9.2.3 Inappropriate uses of an ESB

	9.3 Introducing Apache Synapse
	9.3.1 Protocol adapters
	9.3.2 Message-oriented middleware
	9.3.3 XML-based messaging
	9.3.4 Intelligent routing and distribution
	9.3.5 Message transformation
	9.3.6 Tasks/timers
	9.3.7 Quality of service/web mediation
	9.3.8 Monitoring and administration
	9.3.9 Extendable API

	9.4 Basic Apache Synapse message and service mediation
	9.4.1 Simple message mediation example
	9.4.2 Simple service mediation example

	9.5 Summary

	ESB implementation with Apache Synapse
	10.1 Learning Synapse through a case study
	10.1.1 Phase 1: typical web service mediation using error handling, routing, and transport switching
	10.1.2 Phase 2: protocol/transport bridging and event propagation
	10.1.3 Phase 3: using tasks, scripting, and database integration
	10.1.4 Phase 4: quality of service mediation

	10.2 Phase 1: simple web service mediation
	10.2.1 Sales order initiation
	10.2.2 Configuring the service mediation proxy and using validation mediation
	10.2.3 Configuring XSLT mediation
	10.2.4 Transport switching from HTTP to JMS
	10.2.5 Transport switching from JMS to HTTP

	10.3 Phase 2: VFS, CSV, email, and message wiretap
	10.3.1 Using the VFS transport
	10.3.2 Working with CSV files
	10.3.3 Exception handling and SMTP transport
	10.3.4 Using the wiretap message pattern

	10.4 Phase 3: tasks, DB mediator, and iterator
	10.4.1 Configuring Synapse tasks
	10.4.2 Using the iterator mediator to split messages
	10.4.3 Using the DB mediator

	10.5 Phase 4: QoS using Synapse
	10.5.1 Implementing WS-Security
	10.5.2 Using Synapse throttling mediator

	10.6 Summary

	Enterprise decision management
	Business rules using JBoss Drools
	11.1 Understanding business rules
	11.1.1 Benefits and drivers of the business rule approach
	11.1.2 Relationship to SOA
	11.1.3 Characteristics of a rules engine
	11.1.4 Business rules management systems

	11.2 Introducing Drools
	11.2.1 Hello World, Drools!
	11.2.2 Running Hello World, Drools!

	11.3 Drools Rule Language (DRL) overview
	11.4 Drools header elements
	11.4.1 package
	11.4.2 import
	11.4.3 expander
	11.4.4 global
	11.4.5 function

	11.5 Defining rules in Drools
	11.5.1 Modifying rule behavior with attributes
	11.5.2 Conditional part of rule statement (when part)
	11.5.3 Consequence part of rule statement (then part)

	11.6 Querying facts in Drools
	11.7 Drools RuleFlow for rule orchestration
	11.8 Alternatives to using Drools Rule Language
	11.8.1 Using DSLs for business user authoring
	11.8.2 Defining rules using decision tables

	11.9 Summary

	Implementing Drools
	12.1 Case study overview
	12.1.1 Defining the DRL rules
	12.1.2 Running as an embedded engine
	12.1.3 User-friendly rules using a DSL

	12.2 Rules management using Drools Guvnor
	12.2.1 Guvnor functionality overview
	12.2.2 Rule authoring using Guvnor

	12.3 Developing decision services
	12.3.1 What are decision services?
	12.3.2 Designing the decision service
	12.3.3 Implementing the decision service using Tuscany and Drools
	12.3.4 Testing

	12.4 Summary

	resources
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back Cover

