

ptg

Sun Certified Enterprise Architect
for Java™ EE Study Guide

Second Edition

Mark Cade and Humphrey Sheil

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in
this publication. In particular, and without limitation, these intellectual property rights may include one or more U.S.
patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited
to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This publication
could include technical inaccuracies or typographical errors. Changes are periodically added to the information
herein; these changes will be incorporated in new editions of the publication. Sun Microsystems, Inc. may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Cade, Mark.

Sun Certified Enterprise Architect for Java EE study guide / Mark Cade, Humphrey Sheil. — 2nd ed.

p. cm.

Previous ed.: Sun Certified Enterprise Architect for J2EE technology study guide, 2002.

ISBN 978-0-13-148203-6 (pbk. : alk. paper) 1. Electronic data processing personnel—Certification. 2. Java
(Computer program language)—Examinations—Study guides. I. Sheil, Humphrey. II. Cade, Mark. Sun Certified
Enterprise Architect for J2EE technology study guide. III. Title.

QA76.3.C23 2010

005.13’3—dc22

2009052010

Copyright © 2010 Sun Microsystems, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-148203-6
ISBN-10: 0-13-148203-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana
First printing February 2010

ptg

I dedicate this book to my lovely wife Lara for putting up with all the long hours.
Your support, compassion, and love drove me to finish this book. I look forward to

a wonderful vacation to make up for the time spent on this book.
—Mark Cade

I wish the reader of this book the very best toward passing the SCEA exam,
and in the process, becoming a better architect. Better architects create better

designs and code—and that’s what we all strive to do.
—Humphrey Sheil

ptg

This page intentionally left blank

ptg

Contents

Acknowledgments . xv

About the Authors . xvii

Chapter 1 What Is Architecture? . 1

Introduction . 1
Prerequisite Review . 1
Discussion . 2

Understanding Architecture . 2
Role of the Architect . 5

More Detail on the Exam Itself . 6
Part I: Multiple Choice . 7
Part II: Solving the Business Problem 8
Part III: Defending Your Solution . 9

Preparing for the Exam . 10
Preparing for Part I . 10
Preparing for Part II . 11
Preparing for Part III . 11

Essential Points . 11
Review Your Progress . 11

Chapter 2 Architecture Decomposition 13

Introduction . 13
Prerequisite Review . 14
Discussion . 14

Decomposition Strategies . 14
Layering . 15
Distribution . 15
Exposure . 16
Functionality . 16

ptg

Generality . 16
Coupling and Cohesion . 16
Volatility . 16
Configuration . 16
Planning and Tracking . 17
Work Assignment . 17

Tiers . 17
Client . 17
Web . 18
Business . 18
Integration . 18
Resource . 18

Layers . 18
Application . 19
Virtual Platform (Component APIs) 19
Application Infrastructure (Containers) 19
Enterprise Services (OS and Virtualization) 19
Compute and Storage . 19
Networking Infrastructure . 20

Service-Level Requirements . 20
Performance . 20
Scalability . 20
Reliability . 21
Availability . 21
Extensibility . 22
Maintainability . 22
Manageability . 22
Security . 22

Impact of Dimensions on Service-Level Requirements 23
Capacity . 23
Redundancy . 23
Modularity . 23
Tolerance . 24
Workload . 24
Heterogeneity . 24

Common Practices for Improving Service-Level
Requirements . 24

Introducing Redundancy to the System
Architecture . 24

Improving Performance . 27

Contentsviii

ptg

Contents

Improving Availability . 28
Improving Extensibility . 29
Improving Scalability . 30

Tiers in Architecture . 30
Two-Tier Systems . 31

Advantages . 31
Disadvantages . 31

Three- and Multi-Tier Systems . 31
Advantages . 32
Disadvantages . 32

Essential Points . 32
Review Your Progress . 33

Chapter 3 Web Tier Technologies. 35

Introduction . 35
Prerequisite Review. 36

Model View Controller (MVC) . 36
Web Container . 36
Servlets . 37
Filters . 38
Listeners . 39
JavaServer Pages (JSP) . 39
Java Standard Tag Library (JSTL) . 40
Unified Expression Language (EL) . 40
Managing Sessions . 40
JavaServer Faces (JSF) . 41
Templating Frameworks . 41
Web Frameworks . 42

Discussion . 42
JSPs and Servlets—Standard Uses 42
JSF—Standard Uses . 43
Web-Centric Implementations . 43
EJB-Centric Implementations . 44
Rationale for Choosing Between EJB-Centric and

Web-Centric Implementations . 45
The Future of Client-Server Communication 46

Essential Points . 46
Review Your Progress . 47

ix

ptg

Chapter 4 Business Tier Technologies 51

Introduction . 51
Prerequisite Review. 52

Enterprise Java Bean . 53
Session Bean . 54

Stateless Session Bean . 54
Stateful Session Bean . 55

Entity Beans . 56
CMP Entity Bean . 56
BMP Entity Bean . 57
Entity Class . 57
Persistence Strategies . 58
Message-Driven Bean . 58

Discussion . 59
EJB Advantages and Disadvantages 59

Scalability . 59
Security . 60

Contrasting Persistence Strategies . 60
Ease of Development . 60
Performance . 60
Extensibility . 61

EJB and Web Services . 61
EJBs as Web Service End Points 61
EJBs Consuming Web Services 61
Advantages and Disadvantages 62

EJB 3 . 62
Ease of Development . 63
Container in EJB 3 . 63
JPA in EJB 3 . 63

Essential Points . 64
Review Your Progress . 65

Chapter 5 Integration and Messaging. 69

Introduction . 69
Prerequisite Review. 70

Web Services . 71
SOAP . 71
WSDL . 72

Contentsx

ptg

Contents

JAX-RPC . 72
JAX-WS . 72
JAXB . 72
JAXR . 73
JMS . 73
JCA . 74

Discussion . 75
Java to Java Integration . 75

Java Messaging Service (JMS) 76
Java to Non-Java Integration . 76

Web Services . 76
Java Connector Architecture (JCA) 77

Essential Points . 78
Review Your Progress . 78

Chapter 6 Security . 83

Introduction . 83
Prerequisite Review. 84

JRE . 85
JAAS . 85
Credential . 85
Principal . 86
Authentication . 86
Authorization . 86

Discussion . 86
Client-Side Security . 87
Server-Side Security . 88

EJB Container . 88
Web Container . 88
Putting the EJB Container and Web

Container Together . 89
Web Service Security . 90

How Security Behavior Is Defined . 91
Declarative Security . 91
Programmatic Security . 92

Commonly Encountered Security Threats 93
Defining a Security Model . 94

Essential Points . 95
Review Your Progress . 95

xi

ptg

Chapter 7 Applying Patterns . 99

Introduction. 99
Prerequisite Review. 100
Discussion . 101

Creational Patterns . 101
Abstract Factory Pattern . 101
Builder Pattern . 103
Factory Method Pattern . 104
Prototype Pattern . 105
Singleton Pattern . 106

Structural Patterns . 107
Adapter Pattern . 107
Bridge Pattern . 108
Composite Pattern . 109
Decorator Pattern . 111
Façade Pattern . 112
Flyweight Pattern . 113
Proxy Pattern . 114

Behavioral Patterns . 115
Chain of Responsibility Pattern 115
Command Pattern . 116
Interpreter Pattern . 117
Iterator Pattern . 118
Mediator Pattern . 119
Memento Pattern . 120
Observer Pattern . 121
State Pattern . 122
Strategy Pattern . 123
Template Method Pattern . 124
Visitor Pattern . 125

Core Java EE Patterns . 126
Presentation Tier . 126

Intercepting Filter . 126
Context Object . 127
Front Controller . 128
Application Controller . 129
View Helper . 129

Contentsxii

ptg

Contents

Composite View . 130
Dispatcher View . 131
Service to Worker . 132

Business Tier . 132
Business Delegate . 133
Service Locator . 133
Session Façade . 134
Application Service . 135
Business Object . 136
Composite Entity . 136
Transfer Object . 137
Transfer Object Assembler . 138
Value List Handler . 139

Integration Tier . 139
Data Access Object . 140
Service Activator . 140
Domain Store . 141
Web Service Broker . 142

Essential Points . 143
Review Your Progress . 146

Chapter 8 Documenting an Architecture. 149

Introduction . 149
Prerequisite Review. 149
Discussion . 150

Building Blocks of UML . 150
Elements . 151
Structural Elements . 151
Behavioral Elements . 152
Grouping Element . 153
Annotational Elements . 153
Relationships . 154

Common Mechanisms . 155
Specifications . 155
Adornments . 155
Common Divisions . 156
Extensibility Mechanisms . 156

UML Diagrams . 157

xiii

ptg

Structure Diagrams . 157
Class Diagram . 157
Component Diagram . 157
Deployment Diagram . 159
Package Diagram . 159

Behavior Diagrams . 160
Activity Diagram . 160
Statechart Diagram . 161
Use-Case Diagram . 162

Interaction Diagrams . 163
Essential Points. 164
Review Your Progress . 164

Chapter 9 Tackling Parts II and III . 167

Introduction . 167
Prerequisite Review. 167
Discussion . 168

Scenario . 168
Worked Solution . 170

Class Diagram . 170
Component Diagram . 173
Deployment Diagram . 174
Sequence Diagrams . 176
Comments on Diagrams . 178
Identified Risks and Mitigations . 178

Part III—Defending Your Architecture 179
Essential Points . 180

Index . 181

Contentsxiv

ptg

Acknowledgments

Mark wishes to thank all of his past colleagues who have been great
sounding boards in developing material for creating architectures.

Humphrey would like to thank the Java EE community, inside and out-
side Sun Microsystems, for building and growing the JEE platform to
where it is today. A rich, vibrant programming platform needs good
design leadership to take it forward, and that is what the SCEA certifica-
tion, and this book, strives to engender.

The authors would also like to thank all those who provided great feed-
back to help improve this book, including Ken Saks and Chris Herron.

ptg

This page intentionally left blank

ptg

About the Authors

Mark Cade is a lead developer and assessor for the Sun Certified Enterprise
Architect for Java EE exam. He has more than 20 years of experience as a software
engineer and has extensive experience creating architectures for Java EE solutions
for Fortune 500 companies. He worked at the Sun Microsystems Java Center as a
Senior Java Architect until 2006. He is currently employed at BigFix.

Humphrey Sheil is a lead developer and assessor for the Sun Certified Enterprise
Architect for Java EE exam. With a background specializing in enterprise architec-
ture and integration in the United States and Europe, he holds a M.Sc. and B.Sc. in
Computer Science from University College Dublin. He is currently the CTO at
Comtec Group.

ptg

This page intentionally left blank

ptg

C H A P T E R 1

What Is Architecture?

Introduction

The Sun Certified Enterprise Architect exam is comprised of three
parts: knowledge-based multiple choice, assignment, and questions that
each requires a short essay answer. You must pass all three parts in order
to complete your certification.

Each subsequent chapter in this book will follow the same basic
structure. The chapter starts with a listing of the exam objectives that are
described in the chapter, followed by a “Prerequisite Review” section,
which identifies any assumed knowledge for the chapter and provides
other reading material to acquire the assumed knowledge. A “Discus-
sion” section, which describes the topics in the chapter with a focus on
the exam objectives, is next. This is followed by “Essential Points,” which
is a summary of the key ideas in the chapter. Finally, the “Review Your
Progress” section focuses on questions that might appear on the exam.

This first chapter will lay the groundwork for an understanding of
how the exam developers define architecture and some common termi-
nology. Having this understanding will help you in each of the subse-
quent chapters.

Prerequisite Review

This book assumes a certain level of knowledge for the readers. If you do
not have the prerequisite knowledge, you must gain this knowledge else-
where before proceeding with this book. Each chapter will have a list of
prerequisite knowledge for the objectives covered in that chapter. This
set of prerequisites covers the entire book:

1

ptg

Chapter 1 What Is Architecture?

■ You understand object-oriented concepts, such as encapsulation,
inheritance, polymorphism, and interfaces.

■ You have programmed in an objected-oriented language, prefer-
ably the Java programming language.

■ You have designed object-oriented programs and systems.
■ You are using this book to prepare for the Sun Certified Enter-

prise Architect (SCEA) for Java Enterprise Edition Technology
exam.

Becoming a full-fledged system architect requires many years of real-
world experience creating architectures and designing systems. This
book is not a substitute for that experience, but a study guide to assist
you on your path to become a Sun Certified Enterprise Architect for
Java Enterprise Edition (JEE) technology. As a study guide, it will make
assumptions about knowledge you should have and only cover the key
details for the exam.

Discussion

The best starting point for this book is to make sure that you are on the
same page as the exam developers. Having this common vocabulary will
reduce confusion in the later chapters. A clear and concise definition of
architecture is imperative to your success on this exam. Once you under-
stand the definition, you must understand your role in creating architec-
ture. You must realize what your tasks are. Finally, you must understand
the purpose of creating architecture. You create architecture to support
the service-level requirements of a system. Without service-level
requirements, your systems cannot meet customer demand for availabil-
ity, reliability, and scalability. These service-level requirements keep a
company from having a “CNN” moment, which occurs when the failure
of your computer systems makes headline news on CNN.

Understanding Architecture

According to the Rational Unified Process:

Software architecture encompasses the significant decisions
about the organization of a software system. The selection of the

2

ptg

Discussion

structural elements and their interfaces by which the system is
composed together with their behavior as specified in the collab-
oration among those elements. The composition of the struc-
tural and behavioral elements into progressively larger
subsystems, the architectural style that guides this organization,
these elements, and their interfaces, their collaborations, and
their composition. Software architecture is concerned not only
with structure and behavior but also with usage, functionality,
performance, resilience, reuse, comprehensibility, economic
and technology constraints and trade-offs, and aesthetic issues.1

That is a lengthy definition, so let’s look at a simpler definition provided
by the SunTone Architecture Methodology:

Architecture is a set of structuring principles that enables a sys-
tem to be comprised of a set of simpler systems each with its
own local context that is independent of but not inconsistent
with the context of the larger system as a whole.2

Both definitions focus on system structure. You create architecture to
describe the structure of the system to be built and how that structure
supports the business and service-level requirements. You can define the
structure of a system as the mechanisms that the system employs to solve
the common problems of the system. A mechanism is a capability that
supports the business requirements in a consistent and uniform manner.
For example, persistence is a mechanism that should be used consis-
tently throughout the system. This means that, any time the system uses
persistence, it is handled in the same manner. By defining persistence as
an architectural mechanism, you provide a default method of addressing
persistence that all designers should follow and implement consistently.
The architectural mechanisms—such as persistence, distribution, com-
munication, transaction management, and security—are the infrastruc-
ture on which you build the system and must be defined in your
architecture.

3

1 Philippe Kruchten, The Rational Unified Process: An Introduction, Third Edition
(Upper Saddle River, NJ: Addison-Wesley Professional, 2003).

2 Sun Microsystems, Inc.

ptg

Chapter 1 What Is Architecture?

What does it mean to create architecture? It means that you have
created a software infrastructure that addresses the service-level
requirements that have been identified for the system. For example, if
the system has a service-level requirement that states no user response
time will be greater than three seconds, the software infrastructure you
create must ensure that the system can meet this requirement. It also
means that you have given the designers an infrastructure that allows
them to design and code the system without worrying about compromis-
ing this service-level requirement. One of the real issues around archi-
tecture is: When does the creation of an architecture stop and the design
process begin? There is not a definitive answer for every system. This
issue of architecture and design can be summed up in terms of focus and
control. Architecture defines what is going to be built, and design out-
lines how you will build it. One or a few individuals who focus on the big
picture control the architectural process, and design is controlled by
many individuals who focus on the details of how to achieve the big pic-
ture. An architect creates architecture to a point where the design team
can use it to make the system achieve its overall goals. So, if you are cre-
ating an architecture for experienced designers, you would not produce
as much detailed documentation that you would need if you had a group
of less-experienced designers.

As you create an architecture to satisfy the business and service-level
requirements of a system, you usually don’t have unlimited funds to pur-
chase hardware, software and development resources, so you need to
make the system work within your predefined limitations. For example,
how can you make the system scale to meet the demands of the Internet
age, when you have only a single computer to support your internal
employees? How do you create architecture without funds to buy soft-
ware products? These are examples of problems faced by architects
when they are creating system architecture. You will be presented with
many difficult choices and make many trade-offs to solve these types of
problems when creating your architecture. As you make these trade-
offs, it is important that you document each decision made regarding the
architecture of the system, so developers understand why decisions were
made, and you should not receive questions from developers about
those trade-offs. If you make a decision to have an Oracle database
persist the objects in the system, you should document why you chose
Oracle over another database vendor. This allows others working on the
project or entering the project at a later time to understand why deci-
sions were made and prevents you from justifying your decision over and

4

ptg

Discussion

over again. Most of the trade-offs you make when creating architecture
focus on the service-level requirements or mechanisms. Most systems
do not have the funding available to meet all of the service-level require-
ments originally envisioned by the system stakeholders. As the architect,
you must balance the service-level requirements against the cost to
attain these requirements. If it will cost your entire budget to buy high-
availability hardware to achieve the 24x7 availability—thereby leaving no
money to purchase an application server to help maintain that service-
level requirement on the software side—you must make adjustments in
your software architecture. These adjustments depend on the system for
which you are creating the architecture and your relationship with the
stakeholders.

Role of the Architect

The ideal architect should be a person of letters, a mathemati-
cian, familiar with historical studies, a diligent student of philos-
ophy, acquainted with music, not ignorant of medicine, learned
in the responses of jurisconsults, familiar with astronomy and
astronomical calculations.
—Vitruvius, circa 25 BC

Vitruvius was not referring to a software architect, but the basic idea is
that the architect should have the following characteristics. An architect
should be a person who is well rounded, mature, experienced, educated,
learns quickly, a leader, communicates well, and can make the difficult
decision when necessary. For architects to be well rounded, they must
have a working knowledge of the business or problem domain. They can
gain this knowledge through experience or education. In addition, archi-
tects must have a broad knowledge of technology. An architect might
have first-hand experience with a particular technology, but he must
have at least a general understanding of competing technologies to make
informed decisions about which technology can work best. A good archi-
tect evaluates all possible solutions to a problem regardless of the tech-
nology being used.

What does the architect do? How is an architect different from a
senior developer? These are some of the common questions that get
asked over and over again in the industry. We will explain, from the exam
developer’s point of view, these questions so you have that common
understanding when taking the exam. The designer is concerned with

5

ptg

Chapter 1 What Is Architecture?

what happens when a user presses a button, and the architect is con-
cerned with what happens when ten thousand users press a button. An
architect mitigates the technical risks associated with a system. A techni-
cal risk is something that is unknown, unproven, or untested. Risks are
usually associated with the service-level requirements and can occasion-
ally be associated with a business requirement. Regardless of the type of
risk, it is easier to address the risks early in the project while creating
architecture, than to wait until the construction phase of the project,
when you have a large developer base that could potentially be waiting
while you are solving risks.

An architect must lead the development team to ensure that the
designers and developers build the system according to the architecture.
As the leader, difficult decisions must be made about trade-offs in the
system, and the architect is the person who must make those decisions.
To lead the project team, the architect must be a good communicator,
both written and oral. It is up to the architect to communicate the sys-
tem to the designers and developers who will build it. This is typically
done with visual models and group discussions. If the architect cannot
communicate effectively, the designers and developers will probably not
build the system correctly.

More Detail on the Exam Itself

Having considered the role and responsibilities of the architect, we now
move on to consider the exam itself. The exam is composed of three
main parts, as follows:

■ Part I: The multiple choice segment—Designed to test your
knowledge of all aspects of the JEE platform.

■ Part II: The assignment—Designed to test your ability to con-
struct a JEE-based solution to a defined business problem.

■ Part III: The essay questions—Designed to test your ability to
both critique and defend design decisions in your solution.

Now let’s dive into each part in more detail.

6

ptg

More Detail on the Exam Itself

Part I: Multiple Choice

In Part I of the exam, the candidate must sit and pass a multiple choice
format exam. Each candidate is presented with 64 questions, and these
questions are in turn drawn from a much larger bank of questions to
ensure that each candidate experiences a wide variety of questions.

Here is some interesting (we hope!) background on these questions.
They were written during the summer of 2007 in Broomfield, Colorado,
by a team of about ten practicing Java architects. The questions are tied
specifically to the Java Enterprise Edition 5 platform edition. This
means that a new set of questions will be developed for future JEE edi-
tion releases, and you should always be mindful of the specific JEE
release for which you are preparing to take the certification.

The facilitator for the workshop in Broomfield laid out some central
tenets that informed how the questions were constructed, namely the
following:

■ No trick questions—The candidate must be able to read the
question and understand exactly what knowledge is being tested
by that question.

■ Do not test “learning by rote”—Other exams in the Java cur-
riculum require detailed knowledge of API footprints, method
signatures, and return types. This exam does not; rather, the ques-
tions test the candidates ability to display high-level knowledge
about the JEE platform and how the components relate to each
other, and the best way to apply the JEE platform to solve a given
business problem.

So, even in Part I of the exam—before you get your teeth into the main
assignment in Part II—the exam tests your ability to evaluate multiple
technology options to a business problem, and to use the information
given in the question stem, to select the best answer. From an exam tech-
nique perspective, you should apply the normal time management prac-
tices to Part I. Simply put, you have 64 questions to answer in a fixed
time period; therefore, you need to ensure that you devote an appropri-
ate amount of time to each question.

The questions that comprise Part I are drawn from all sections of the
exam remit, namely the following:

7

ptg

Chapter 1 What Is Architecture?

■ Application Design Concepts and Principles
■ Common Architectures (mainly two, three, and n-tier)
■ Integration and Messaging (JMS and web services)
■ Business Tier Technologies (EJBs—session, entity, JPA, and

MDBs)
■ Web Tier Technologies (JSP, JSF, Servlets, and so on)
■ Applicability of Java EE Technology (selecting the best JEE

implementation for a short business scenario)
■ Design Patterns (drawn from the Gang of Four book and the JEE

patterns book)
■ Security (both the core Java platform and the JEE security capa-

bilities)

Omitting any of these sections in your revision schedule is not recom-
mended. One of Part I’s primary goals is to test your broad knowledge of
the JEE platform, and you are guaranteed to face questions on all of
these sections.

For ease of reference, this book is built around the exact same struc-
ture as the exam objectives themselves. Also, at the end of each chapter,
we provide questions of the same complexity and difficulty as you can
expect to find in the exam, along with fully worked answers, so that you
can see the logic employed by the examiners.

Part II: Solving the Business Problem

On successful completion of Part I of the exam, you will receive a down-
load link for Part II of the exam. The assignment pack details the busi-
ness problem that you have been allocated; just like Part I, the
assignment will be drawn from a wider pool so that the entire body of
candidates does not receive the same assignment. The assignment does
not self-destruct after reading, nor will solving it bring you into contact
with attractive potential partners (short- and long-term) or introduce
you to a glamorous, jet-setting lifestyle. On a positive note, however, it
will make you a better architect and is an important step in closing in on
the JEE certification.

Part II requires a decent investment of time—somewhere between
25 and 35 hours on average. The deliverables of Part II are as follows.
(This text is taken from the exam assignment itself and is identical no
matter which scenario you are allocated.)

8

ptg

More Detail on the Exam Itself

It is your task to create an architecture and design for the System
under Discussion (SuD) with the given business domain model, infor-
mation provided above, and requirements in the use cases. The architec-
ture must be built using the JEE platform. All deliverables will be
accepted as HTML only and each diagram must be UML compliant.

1. Create a class diagram for the SuD. Public method names refer-
enced in other UML diagrams (for example, sequence dia-
grams) should be provided.

2. Create a component diagram for the SuD showing the compo-
nents used in the system and their interaction. Examples of
components are EJBs, Servlets, JSPs, major POJOs (Plain Old
Java Objects), and important Managers/Controllers/Design Pat-
tern implementations.

3. Create a deployment diagram that describes the proposed phys-
ical layout of the major tiers of the SuD.

4. Create either a sequence or collaboration diagram for each use
case provided.

In addition to these UML deliverables, the exam requires you to

1. List the top three risks and identify a mitigation strategy for each
risk.

2. List any assumptions made during the process of coming up
with the architecture and design.

Your architecture and design will be graded on how well it supports the
requirements detailed in this document and on the clarity of all informa-
tion provided in both textual and diagrammatic form.

The general feedback from candidates is that these deliverables/
requirements are clear and unequivocal. Nevertheless, candidates do
often stray from this list, resulting in a poor or even a failing score for
Part II. In Chapter 9, “Tackling Parts II and III,” we document and work
through a complete Part II assignment in detail in order to show a fully
worked solution of the expected standard.

Part III: Defending Your Solution

Once Part II has been completed and the solution uploaded for grading,
you will then be asked to answer eight questions on your Part II solution.
These questions are very different to the questions that comprise Part I.

9

ptg

Chapter 1 What Is Architecture?

They are not multiple choice; rather, they require a short paragraph (on
average, between 150 and 250 words per answer) of English text that
answers the question posed.

The questions test your knowledge about your Part II submission, in
three important respects:

■ That all design decisions have advantages and disadvantages and
need to be considered in context.

■ That you understand the fundamental non-functional require-
ments (NFRs) that impact all business systems and can articulate
how your solution meets these NFRs. Indicative examples include
performance, scalability, reliability, security, and availability.

■ That you can articulate why you believe the chosen and can docu-
ment alternatives considered, as well as reasons for rejecting
those alternatives.

The Part III questions are straightforward and to the point. They probe
your level of understanding of JEE and your solution. Many candidates
find it tempting to provide curt, one-line (in some cases, just one word)
answers or to state that the question is answered elsewhere. Avoid this
temptation and provide well-constructed answers to each question
posed, aiming for a response length of between 150 and 200 words. If
your written English skills are poor, practice writing generic answers to
the NFRs listed previously in advance. As long as the examiner can
understand your answer, marks will not be deducted for poor English.

Preparing for the Exam

Most people who buy this book do so because they want a study
roadmap to help prepare them for the exam. Providing that roadmap has
influenced this book a great deal. Let’s now work through how we
believe the book should be used as an aid in preparing for the exam.

Preparing for Part I

Part I of the exam is covered in Chapters 2 through 8 of this book. The
main content of each chapter details the areas of the objective that we
believe are most important and warrant explicit attention in the book.
The start of each chapter details the resources that we believe contain

10

ptg

Review Your Progress

the best information on the specific objective and also that were used by
the Part I question authors to generate the questions (and answers)
themselves.

Preparing for Part II

Read Chapter 9 because we provide a sample assignment of the same
complexity and detail that you can expect to receive in the exam itself.
We then step through each of the required deliverables of Part II, show-
ing how each deliverable is created from the information contained in
the assignment itself.

Preparing for Part III

Chapter 9 also covers Part III of the exam. We review the proposed solu-
tion to the sample assignment, detailing how it addresses basic non-
functional requirements, such as scalability, security, and performance.

Essential Points

■ The role of the architect is to make the designers and developers
productive as quickly as possible.

■ The role of the architect is to make the development team pro-
ductive as soon as possible by communicating the essential struc-
ture of the system.

■ The exam consists of three main sections: multiple choice, a
worked assignment, and essay questions on the solution.

■ This book covers all three parts—each chapter addresses Part I as
the chapters mirror the exam objectives, whereas Chapter 9
specifically covers Parts II and III.

Review Your Progress

There are no specific questions in the exam for this chapter. This chapter
lays the groundwork for the rest of this book and gives you insight into
the thinking of the exam developers.

11

ptg

This page intentionally left blank

ptg

C H A P T E R 2

Architecture
Decomposition

■ Explain the main advantages of an object-oriented approach to
system design, including the effect of encapsulation, inheritance,
and use of interfaces on architectural characteristics.

■ Describe how the principle of “separation of concerns” has been
applied to the main system tiers of a Java EE application. Tiers
include client (both GUI and web), web (web container), busi-
ness (EJB container), integration, and resource tiers.

■ Describe how the principle of “separation of concerns” has been
applied to the layers of a Java EE application. Layers include
application, virtual platform (component APIs), application infra-
structure (containers), enterprise services (operating system and
virtualization), compute and storage, and the networking infra-
structure layers.

■ Explain the advantages and disadvantages of two-tier, three-tier,
and multi-tier architectures when examined under the following
topics: scalability, maintainability, reliability, availability, extensi-
bility, performance, manageability, and security.

Introduction

This chapter will explain the decomposition of the larger system into
smaller components and advantages and disadvantages of decomposing
by tiers and/or layers. The major theme of architecture is the decompo-
sition of the larger system into smaller components that can be built in
relative isolation, as well as provide for the service-level requirements:

13

ptg

Chapter 2 Architecture Decomposition

scalability, maintainability, reliability, availability, extensibility, perform-
ance, manageability, and security.

Prerequisite Review

This chapter assumes that you are already familiar with the following:
■ Object-oriented concepts, such as encapsulation, inheritance, and

use of interfaces

Discussion

Most architects do not follow a methodical approach to decomposition;
they typically approach decomposition in a haphazard fashion. They may
use a little layering and a little coupling and cohesion, but not really
understand why they choose the approaches they did. We present a set
of decomposition strategies that can be applied in a methodical fashion
to assist with your system decomposition.

Decomposition Strategies

Decomposition can be broken down into ten basic strategies: layering,
distribution, exposure, functionality, generality, coupling and cohesion,
volatility, configuration, planning and tracking, and work assignment.
These ten strategies can be grouped together, but not all ten are applied
in any given architecture. For any strategies that are grouped together,
you choose one of the strategies and then move on to the next grouping.
Here are the groups:

■ Group 1—Layering or Distribution
■ Group 2—Exposure, Functionality, or Generality
■ Group 3—Coupling and Cohesion or Volatility
■ Group 4—Configuration
■ Group 5—Planning and Tracking or Work Assignment

14

ptg

Discussion

Grouping the strategies in this manner enables you to combine strate-
gies that are related and will not be typically applied together. For exam-
ple, if you are to decompose by layering, you will not typically
decompose by distribution as well. You will notice that the groups are
also ordered so that the last decomposition strategy is by Planning or
Work Assignment. You would not start decomposing your system by
Work Assignment and then move to Functionality.

Layering

Layering decomposition is some ordering of principles, typically abstrac-
tion. The layers may be totally or partially ordered, such that a given
layer x uses the services of layer y, and x in turn provides higher-level
services to any layer that uses it. Layering can be by layers or tiers, as
explained later in the chapter. Layering is usually a top-level decomposi-
tion and is followed by one of the other rules.

Distribution

Distribution is among computational resources, along the lines of one or
more of the following:

■ Dedicated tasks own their own thread of control, avoiding the
problem of a single process or thread going into a wait state and
not being able to respond to its other duties.

■ Multiple clients may be required.
■ Process boundaries can offer greater fault isolation.
■ Distribution for separation may be applied, perhaps with redun-

dancy, for higher reliability.

Distribution is a primary technique for building scalable systems.
Because the goals and structure of process/threads is often orthogonal to
other aspects of the system, it typically cuts across many subsystems and
is therefore often difficult to manage if it is buried deep in a system’s
structure. More often than not, if you decompose by layering, you will
not decompose by distribution and vice versa.

15

ptg

Chapter 2 Architecture Decomposition

Exposure

Exposure decomposition is about how the component is exposed and
consumes other components. Any given component fundamentally has
three different aspects: services, logic, and integration. Services deals
with how other components access this component. Logic deals with
how the component implements the work necessary to accomplish its
task. Integration deals with how it accesses other components services.

Functionality

Functionality decomposition is about grouping within the problem
space—that is, order module or customer module. This type of decom-
position is typically done with the operational process in mind.

Generality

Generality decomposition is determining whether you have a reusable
component that can be used across many systems. Some parts of a sys-
tem are only usable within the existing system, whereas other parts can
be used by many systems. Be careful not to make assumptions that a
component may be used by another system in the future and build a
reusable component for a requirement that does not exist yet.

Coupling and Cohesion

Coupling and Cohesion decomposition, as in low coupling and high
cohesion, is keeping things together that work together (high cohesion),
but setting apart things that work together less often (low coupling).

Volatility

Volatility decomposition is about isolating things that are more likely to
change. For example, GUI changes are more likely than the underlying
business rules. Again, be careful not to make assumptions that are not
documented in requirements, as this can create a complex system.

Configuration

Configuration decomposition is having a target system that must support
different configurations, maybe for security, performance, or usability.

16

ptg

Discussion

It’s like having multiple architectures with a shared core, and the only
thing that changes is the configuration.

Planning and Tracking

Planning and Tracking decomposition is an attempt to develop a fine-
grained project plan that takes into account ordering dependencies and
size. Ordering is understanding the dependencies between packages
and realizing which must be completed first. A good architecture will
have few, if any, bi-directional or circular dependencies. Sizing is
breaking down the work into small-enough parts so you can develop in a
iterative fashion without an iteration taking several months.

Work Assignment

Work Assignment decomposition is based on various considerations,
including physically distributed teams, skill-set matching, and security
areas. As an architect, you need to anticipate and determine composition
of teams for design and implementation.

To start the decomposition process, you would select a decomposi-
tion strategy from group 1 and determine if you have decomposed the
architecture sufficiently for it to be built. If not, then you move to group
2 and select a strategy for decomposition and evaluate the architecture
again. You continue to decompose using a strategy from each group if it
applies until you have the system broken down into small-enough com-
ponents to start building. Something else to keep in mind during your
decomposition is the notion of tiers and layers.

Tiers

A tier can be logical or physical organization of components into an
ordered chain of service providers and consumers. Components within a
tier typically consume the services of those in an “adjacent” provider tier
and provide services to one or more “adjacent” consumer tiers.

Traditional tiers in an architecture are client, web/presentation,
business, integration, and resource.

Client

A client tier is any device or system that manages display and local interac-
tion processing. Enterprises may not have control over the technologies

17

ptg

Chapter 2 Architecture Decomposition

available on the client platform, an important consideration in tier struc-
turing. For this reason, the client tier should be transient and disposable.

Web

Web tiers consist of services that aggregate and personalize content and
services for channel-specific user interfaces. This entails the assembly of
content, formatting, conversions, and content transformations—any-
thing that has to do with the presentation of information to end users or
external systems. These services manage channel-specific user sessions
and translate inbound application requests into calls to the appropriate
business services. The web tier is also referred to as the presentation tier.

Business

Business tier services execute business logic and manage transactions.
Examples range from low-level services, such as authentication and mail
transport, to true line-of-business services, such as order entry, customer
profile, payment, and inventory management.

Integration

Integration tier services abstract and provide access to external
resources. Due to the varied and external nature of these resources, this
tier often employs loosely coupled paradigms, such as queuing, pub-
lish/subscribe communications, and synchronous and asynchronous
point-to-point messaging. Upper-platform components in this tier are
typically called “middleware.”

Resource

The resource tier includes legacy systems, databases, external data
feeds, specialized hardware devices such as telecommunication switches
or factory automation, and so on. These are information sources, sinks,
or stores that may be internal or external to the system. The resource tier
is accessed and abstracted by the integration tier. The resource tier is
also referred to as the data tier.

Layers

A layer is the hardware and software stack that hosts services within a
given tier. Layers, like tiers, represent a well-ordered relationship across

18

ptg

Discussion

interface-mediated boundaries. Whereas tiers represent processing
chains across components, layers represent container/component rela-
tionships in implementation and deployment of services. Typical layers
are application, virtual platform, application infrastructure, enterprise
services, compute and storage, and networking infrastructure.

Application

The application layer combines the user and business functionality of a
system on a middleware substrate. It is everything left after relegating
shared mechanisms (middleware) to the application infrastructure layer,
lower-level general purpose capabilities to the enterprise services layer,
and the enabling infrastructure to the compute and storage layer. The
application layer is what makes any particular system unique.

Virtual Platform (Component APIs)

The virtual platform layer contains interfaces to the middleware mod-
ules in the application infrastructure layer. Examples of this layer
include the component APIs, such as EJBs, Servlets, and the rest of the
Java EE APIs. The application is built on top of the virtual platform
component APIs.

Application Infrastructure (Containers)

The application infrastructure layer contains middleware products that
provide operational and developmental infrastructure for the applica-
tion. Glassfish is an example of a container in the application infrastruc-
ture. The virtual platform components are housed in an application
infrastructure container.

Enterprise Services (OS and Virtualization)

The enterprise services layer is the operating system and virtualization
software that runs on top of the compute and storage layer. This layer
provides the interfaces to operating system functions needed by the
application infrastructure layer.

Compute and Storage

The compute and storage layer consists of the physical hardware used in
the architecture. Enterprise services run on the compute and storage
layer.

19

ptg

Chapter 2 Architecture Decomposition

Networking Infrastructure

The networking infrastructure layer contains the physical network infra-
structure, including network interfaces, routers, switches, load bal-
ancers, connectivity hardware, and other network elements.

Service-Level Requirements

In addition to the business requirements of a system, you must satisfy
the service-level or quality of service (QoS) requirements, also known as
non-functional requirements. As an architect, it is your job to work with
the stakeholders of the system during the inception and elaboration
phases to define a quality of service measurement for each of the serv-
ice-level requirements. The architecture you create must address the
following service-level requirements: performance, scalability, reliabil-
ity, availability, extensibility, maintainability, manageability, and security.
You will have to make trade-offs between these requirements. For exam-
ple, if the most important service-level requirement is the performance
of the system, you might sacrifice the maintainability and extensibility of
the system to ensure that you meet the performance quality of service.
As the expanding Internet opens more computing opportunities, the
service-level requirements are becoming increasingly more important—
the users of these Internet systems are no longer just the company
employees, but they are now the company’s customers.

Performance

The performance requirement is usually measured in terms of response
time for a given screen transaction per user. In addition to response
time, performance can also be measured in transaction throughput,
which is the number of transactions in a given time period, usually one
second. For example, you could have a performance measurement that
could be no more than three seconds for each screen form or a transac-
tion throughput of one hundred transactions in one second. Regardless
of the measurement, you need to create an architecture that allows the
designers and developers to complete the system without considering
the performance measurement.

Scalability

Scalability is the ability to support the required quality of service as
the system load increases without changing the system. A system can be

20

ptg

Discussion

considered scalable if, as the load increases, the system still responds
within the acceptable limits. It might be that you have a performance
measurement of a response time between two and five seconds. If the
system load increases and the system can maintain the performance
quality of service of less than a five-second response time, your system is
scalable. To understand scalability, you must first understand the capac-
ity of a system, which is defined as the maximum number of processes or
users a system can handle and still maintain the quality of service. If a
system is running at capacity and can no longer respond within an
acceptable time frame, it has reached its maximum scalability. To scale a
system that has met capacity, you must add additional hardware. This
additional hardware can be added vertically or horizontally. Vertical scal-
ing involves adding additional processors, memory, or disks to the cur-
rent machine(s). Horizontal scaling involves adding more machines to
the environment, thus increasing the overall system capacity. The archi-
tecture you create must be able to handle the vertical or horizontal scal-
ing of the hardware. Vertical scaling of a software architecture is easier
than the horizontal scaling. Why? Adding more processors or memory
typically does not have an impact on your architecture, but having your
architecture run on multiple machines and still appear to be one system
is more difficult. The remainder of this book describes ways you can
make your system scale horizontally.

Reliability

Reliability ensures the integrity and consistency of the application and
all its transactions. As the load increases on your system, your system
must continue to process requests and handle transactions as accurately
as it did before the load increased. Reliability can have a negative impact
on scalability. If the system cannot maintain the reliability as the load
increases, the system is really not scalable. So, for a system to truly scale,
it must be reliable.

Availability

Availability ensures that a service/resource is always accessible. Relia-
bility can contribute to availability, but availability can be achieved
even if components fail. By setting up an environment of redundant
components and failover, an individual component can fail and have a
negative impact on reliability, but the service is still available due to the
redundancy.

21

ptg

Chapter 2 Architecture Decomposition

Extensibility

Extensibility is the ability to add additional functionality or modify
existing functionality without impacting existing system functionality.
You cannot measure extensibility when the system is deployed, but it
shows up the first time you must extend the functionality of the system.
You should consider the following when you create the architecture
and design to help ensure extensibility: low coupling, interfaces, and
encapsulation.

Maintainability

Maintainability is the ability to correct flaws in the existing functional-
ity without impacting other components of the system. This is another of
those systemic qualities that you cannot measure at the time of deploy-
ment. When creating an architecture and design, you should consider
the following to enhance the maintainability of a system: low coupling,
modularity, and documentation.

Manageability

Manageability is the ability to manage the system to ensure the contin-
ued health of a system with respect to scalability, reliability, availability,
performance, and security. Manageability deals with system monitoring
of the QoS requirements and the ability to change the system configura-
tion to improve the QoS dynamically without changing the system. Your
architecture must have the ability to monitor the system and allow for
dynamic system configuration.

Security

Security is the ability to ensure that the system cannot be compromised.
Security is by far the most difficult systemic quality to address. Security
includes not only issues of confidentiality and integrity, but also relates to
Denial-of-Service (DoS) attacks that impact availability. Creating an
architecture that is separated into functional components makes it easier
to secure the system because you can build security zones around the
components. If a component is compromised, it is easier to contain the
security violation to that component.

22

ptg

Discussion

Impact of Dimensions on Service-Level Requirements

As you are creating your architecture, and from a system computational
point of view, you can think of the layout of an architecture (tiers and lay-
ers) as having six independent variables that are expressed as dimen-
sions. These variables are as follows:

■ Capacity
■ Redundancy
■ Modularity
■ Tolerance
■ Workload
■ Heterogeneity

Capacity

The capacity dimension is the raw power in an element, perhaps CPU,
fast network connection, or large storage capacity. Capacity is increased
through vertical scaling and is sometimes referred to as height.

Capacity can improve performance, availability, and scalability.

Redundancy

The redundancy dimension is the multiple systems that work on the
same job, such as load balancing among several web servers. Redun-
dancy is increased through horizontal scaling and is also known as width.

Redundancy can increase performance, reliability, availability,
extensibility, and scalability. It can decrease performance, manageability,
and security.

Modularity

The modularity dimension is how you divide a computational problem
into separate elements and spread those elements across multiple com-
puter systems. Modularity indicates how far into a system you have to go
to get the data you need.

Modularity can increase scalability, extensibility, maintainability, and
security. It can decrease performance, reliability, availability, and man-
ageability.

23

ptg

Chapter 2 Architecture Decomposition

Tolerance

The tolerance dimension is the time available to fulfill a request from a
user. Tolerance is closely bound with the overall perceived performance.

Tolerance can increase performance, scalability, reliability, and man-
ageability.

Workload

The workload dimension is the computational work being performed at
a particular point within the system. Workload is closely related to capac-
ity in that workload consumes available capacity, which leaves fewer
resources available for other tasks.

Workload can increase performance, scalability, and availability.

Heterogeneity

The heterogeneity dimension is the diversity in technologies that is used
within a system or one of its subsystems. Heterogeneity comes from the
variation of technologies that are used within a system. This might come
from a gradual accumulation over time, inheritance, or acquisition.

Heterogeneity can increase performance and scalability. It can
decrease performance, scalability, availability, extensibility, manageabil-
ity, and security.

Common Practices for Improving Service-Level
Requirements

Over the years, software and system engineering practices have devel-
oped many best practices for improving systemic qualities. By applying
these practices to the system at the architecture level, you can gain a
higher level of assurance for the success of the system development.

Introducing Redundancy to the System Architecture

Many infrastructure-level practices for improving systemic qualities rely
on using redundant components in the system. You can apply these
strategies to either the vendor products or the server systems them-
selves. The choice depends primarily on the cost of implementation and
the requirements, such as performance and scalability.

24

ptg

Discussion

Load Balancing

You can implement load balancing to address architectural concerns,
such as throughput and scalability. Load balancing is a feature that
allows server systems to redirect a request to one of several servers based
on a predetermined load-balancing algorithm. Load balancing is sup-
ported by a wide variety of products, from switches to server systems, to
application servers. The advantage of load balancing is that it lets you
distribute the workload across several smaller machines instead of using
one large machine to handle all the incoming requests. This typically
results in lower costs and better use of computing resources. To imple-
ment load balancing, you usually select a load-balancer implementation
based on its performance and availability. Consider the following:

■ Load balancers in network switches—Load balancers that are
included with network switches and are commonly implemented
in firmware, which gives them the advantage of speed.

■ Load balancers in cluster management software and appli-
cation servers—Load balancers that are implemented with soft-
ware are managed closer to the application components, which
gives greater flexibility and manageability.

■ Load balancers based on the server instance DNS configu-
ration—Load balancer is configured to distribute the load to
multiple server instances that map to the same DNS host name.
This approach has the advantage of being simple to set up, but
typically it does not address the issue of session affinity.

Load balancers also provide a variety of algorithms for the decision-mak-
ing component. There are several standard solutions from which to
choose, as follows:

■ Round-robin algorithm—Picks each server in turn.
■ Response-time or first-available algorithm—Constantly

monitors the response time of the servers and picks the one that
responds the quickest.

■ Least-loaded algorithm—Constantly monitors server load and
selects the server that has the most available capacity.

■ Weighted algorithm—Specifies a priority on the preceding
algorithms, giving some servers more workload than others.

25

ptg

Chapter 2 Architecture Decomposition

■ Client DNS-based algorithm—Distribute the load based on
the client’s DNS host and domain name information.

In addition to these solutions, most load-balancer implementations
enable you to create your own load-balancing strategy and install it for
use. Your selection of a load-balancing strategy is largely based on the
type of servers you are managing, how you would like to distribute the
workload, and what the application domain calls for in performance. For
example, if you have equally powerful machines and a fairly even distri-
bution of transaction load in your application, it would make little sense
to use a weighted algorithm for load balancing. This approach could
result in an overloaded system that might fail. An equal distribution of
workload would make more sense.

Failover

Failover is another technique that you can use to minimize the likeli-
hood of system failure. Failover is a system configuration that allows
one server to assume the identity of a failing system within a network. If,
at any point in time, a server goes down due to overloading, internal
component failure, or any other reason, the processes and state of that
server are automatically transferred to the failover server. This alterna-
tive server then assumes the identity of the failed system and processes
any further requests on behalf of that system. One important aspect of
failover is available capacity, which can be handled in two ways:

■ Designing with extra capacity—If you design a server group
with extra capacity, all the systems work for you, but at low usage
levels. This means that you are spending money on extra comput-
ing resources that will not be used under normal load and opera-
tion conditions.

■ Maintaining a stand-by server—If you design a server group
to have a stand-by server, you are spending money on a system
that does no work whatsoever, unless (or until) it is needed as a
failover server. In this approach, the money spent on unused com-
puting resources is not the important thing to keep in mind.
Instead, you should view the expenditure as insurance. You pay
for the stand-by server and hope that you will never have to use it,
but you can rest easier knowing that the stand-by server is there in
case you ever need it.

26

ptg

Discussion

Clusters

Clusters also minimize the likelihood of system failure. A cluster is a
group of server systems and support software that is used to manage the
server group. Clusters provide high availability to system resources.
Cluster software allows group administration, detects hardware and soft-
ware failure, handles system failover, and automatically restarts services
in the event of failure.

The following cluster configurations are available:

■ Two-node clusters (symmetric and asymmetric)—A configu-
ration for which you can either run both servers at the same time
(symmetric), or use one server as a stand-by failover server for the
other (asymmetric).

■ Clustered pairs—A configuration that places two machines into
a cluster, and then uses two of these clusters to manage independ-
ent services. This configuration enables you to manage all four
machines as a single cluster. This configuration is often used for
managing highly coupled data services, such as an application
server and its supporting database server.

■ Ring (not supported in Sun Cluster 3.0 Cool Stuff soft-
ware)—A configuration topology that allows any individual node
to accept the failure of one of its two neighboring nodes.

■ N+1 (Star)—A configuration that provides N independent
nodes, plus 1 backup node to which all the other systems fail over.
This system must be large enough to accept the failover of as
many systems as you are willing to allow to fail.

■ Scalable (N-to-N)—A configuration that has several nodes in the
cluster, and all nodes have uniform access to the data storage
medium. The data storage medium must support the scalable
cluster by providing a sufficient number of simultaneous node
connections.

Improving Performance

The two factors that determine the system performance are as follows:

■ Processing time—The processing time includes the time spent
in computing, data marshaling and unmarshaling, buffering, and
transporting over a network.

27

ptg

Chapter 2 Architecture Decomposition

■ Blocked time—The processing of a request can be blocked due
to the contention for resources, or a dependency on other pro-
cessing. It can also be caused by certain resources not available;
for example, an application might need to run an aggressive
garbage collection to get more memory available for the process-
ing.

The following practices are commonly used to increase the system
performance:

■ Increase the system capacity by adding more raw processing
power.

■ Increase the computation efficiency by using efficient algorithms
and appropriate component models technologies.

Introduce cached copies of data to reduce the computation overhead, as
follows:

■ Introduce concurrency to computations that can be executed in
parallel.

■ Limit the number of concurrent requests to control the overall
system utilization.

■ Introduce intermediate responses to improve the performance
perceived by the user.

To improve the system throughput, it is common that a timeout is
applied to most of the long-lasting operations, especially those involving
the access to an external system.

Improving Availability

The factors that affect the system availability include the following:

■ System downtime—The system downtime can be caused by a
failure in hardware, network, server software, and application
component.

■ Long response time—If a component does not produce a
response quick enough, the system can be perceived to be
unavailable.

28

ptg

Discussion

The most common practice to improve the system availability is through
one of the following types of replication, in which redundant hardware
and software components are introduced and deployed:

■ Active replication—The request is sent to all the redundant
components, which operate in parallel, and only one of the gener-
ated responses is used. Because all the redundant components
receive the same request and perform the same computation, they
are automatically synchronized. In active replication, the down-
time can be short because it involves only component switching.

■ Passive replication—Only one of the replicated components
(the primary component) responds to the requests. The states of
other components (secondary) are synchronized with the primary
component. In the event of a failure, the service can be resumed
if a secondary component has a sufficiently fresh state.

Improving Extensibility

The need for extensibility is typically originated from the change of a
requirement. One of the most important goals of the architecture is to
facilitate the development of the system that can quickly adapt to the
changes. When you create the architecture, consider the following prac-
tices for the system extensibility:

■ Clearly define the scope in the service-level agreement—
Scope change is one of the most common reasons for project fail-
ure. Defining a clear scope is the first step to limiting unexpected
changes to a system.

■ Anticipate expected changes—You should identify the com-
monly changed areas of the system (for example, the user inter-
face technology), and then isolate these areas into coherent
components. By doing this, you can prevent ripple effects of
propagating the change across the system.

■ Design a high-quality object model—The object model of the
system typically has an immediate impact on its extensibility and
flexibility. Therefore, you should consider applying essential
object-oriented (OO) principles and appropriate architectural
and design patterns to the architecture. For example, you can
apply the MVC pattern to decouple the user interface compo-
nents from the business logic components.

29

ptg

Chapter 2 Architecture Decomposition

Improving Scalability

You can configure scalability in the following two ways:

■ Vertical scalability—Adding more processing power to an exist-
ing server system, such as processors, memory, and disks
(increase the height of the system). Sometimes, replacing an
existing server with a completely new but more capable system is
also considered vertical scaling.

■ Horizontal scalability—Adding additional runtime server
instances to host the software system, such as additional applica-
tion server instances (increase the width of the system).

Vertically scaling a system is transparent to system architecture. How-
ever, the physical limitation of a server system and the high cost of buy-
ing more powerful hardware can quickly render this option impractical.
On the other hand, horizontally scaling a system does not have the phys-
ical limitation imposed by an individual server’s hardware system.

Another consideration you must take into account is the impact that
horizontal scaling has on the system architecture. Typically, to make a
system horizontally scalable, not only do you need to use a software sys-
tem that supports the cluster-based configuration, but you also need to
design the application such that the components do not depend on the
physical location of others.

Tiers in Architecture

Let’s conclude this chapter talking about how tiers impact the service-
level requirements. When most of the industry is talking about tiers in an
architecture, they are referring to the physical tiers such as client, web
server, and database server. An architecture can have multiple logical
tiers, as we previously mentioned, and still be deployed in a two-tier
architecture. With the advent of virtualization, the physical deployment
is not as critical as it was years ago. Virtualization enables you to have
what are perceived as physical tiers on the same physical machine. You
could be running the web server and application server on the same
physical hardware just in different operating systems, so physical tiers
are not as important as the logical tiers and the separation of concerns.

30

ptg

Tiers in Architecture

When talking about two-tier, three-tier, or n-tier, the client tier is usually
not included unless explicitly stated, as in two-tier client/server.

Two-Tier Systems

Two-tier systems are traditionally called client/server systems. Most two-
tier systems have a thick client that includes both presentation and busi-
ness logic and a database on the server. The presentation and business
logic were typically tightly coupled. You could also have a browser-based
two-tier system with business logic and database on the same server.

Advantages

Security is an advantage as most of these systems are behind the corpo-
rate firewall, so most security breaches are the result of physical security
breaking down and non-employees using an unsecured PC. Perfor-
mance is usually pretty good unless the company uses extremely old lap-
tops that have minimal memory.

Disadvantages

Availability is a disadvantage because if one component fails, then the
entire system is unavailable. Scalability is a problem, as the only compo-
nent you can increase is the database. In order to add new functionality
in a two-tier system, you will definitely impact the other components—
therefore, extensibility fails. Manageability is problematic, as it becomes
almost impossible to monitor all the PCs that are running the client
code. Maintainability has the same problem as extensibility.

Reliability is not really an advantage or disadvantage in a two-tier
system. As the load increases, more requests will be coming to the data-
base, and most databases will be able to handle the increased transaction
throughput unless it is already at capacity.

Three- and Multi-Tier Systems

Three-tier systems are comprised of web, business logic, and resources
tiers. Multi-tier systems have web, business logic, integration, and
resource tiers. They share the same advantages and disadvantages when
it comes to non-functional requirements.

31

ptg

Chapter 2 Architecture Decomposition

Advantages

Scalability is improved over a two-tier system as you move the presenta-
tion logic away from the client PC onto a server that can be clustered.
Availability is also improved with the ability to cluster tiers and provide
failover. Extensibility is improved because functionality is separated into
different tiers. You could modify presentation with minimal to no impact
to the business logic. The same is true for maintainability. Manageability
is greatly improved because the tiers are deployed on servers, making it
easier to monitor the components. Separating the tiers allows for more
points to secure the system, but be careful that you do not impact per-
formance.

Performance could be an advantage or disadvantage. Primarily, it is
an advantage, as you can spread out the processing over many servers,
but it can become a disadvantage if you have to transfer large amounts of
data between the servers.

Disadvantages

Multi-tier systems are inherently more complex, but when it comes to
the “ilities,” there are no real disadvantages to have a multi-tier system.
With that said, just because you have multiple tiers does not mean you
have a great architecture. Just remember to not overdo the number of
tiers.

Essential Points

■ A basic rule of thumb is any time you add a tier, scalability, avail-
ability, extensibility, manageability, maintainability, reliability,
security, and performance improve. There is, of course, a law of
diminishing returns that states that at some point, more tiers will
degrade performance, availability, and reliability as there are far
more points of failure.

■ Architecture is a set of structuring principles that enables a sys-
tem to be comprised of a set of simpler systems, each with its own

32

ptg

Review Your Progress

local context that is independent of but not inconsistent with the
context of the larger system as a whole.1

■ Scalability is the ability to support the required quality of service
as the system load increases without changing the system.

■ Reliability ensures the integrity and consistency of the application
and all of its transactions.

■ Availability ensures that a service/resource is always accessible.
■ Extensibility is the ability to add additional functionality or mod-

ify existing functionality without impacting the existing system
functionality.

■ Maintainability is the ability to correct flows in the existing func-
tionality without impacting other components of the system.

■ Manageability is the ability to manage the system to ensure the
continued health of a system with respect to scalability, reliability,
availability, performance, and security.

■ Security is the ability to ensure that the system cannot be com-
prised.

Review Your Progress

These questions test your understanding of multi-tier architectures and
their most appropriate use to solve a given business problem:

1. Your web design company is designing web sites for all the retail
stores in a local mall. Your company must create a consistent
“look and feel” for the sites. Once this “look and feel” project has
gone through demonstration, enhancement, and approval with
the mall’s clients, your job is complete, and the development of
the actual B2C system will be handled by a different company.

33

1 Sun Microsystems, Inc.

ptg

Chapter 2 Architecture Decomposition

Which architecture is most appropriate for your prototype
project?

A. Three-tier, application-centric
B. Three-tier, enterprise-centric
C. Three-tier, web-centric
D. Two-tier, web-centric

Answer: D. Because it is a prototype, you only need two-tiers.
This enables you to do it quickly and focus on your part of the
system, which is the user interface.

2. A company has an existing system that is a two-tier (presenta-
tion/business logic → database) architecture, which requires
installation of code on a PC. The company wants the system to
support thin clients (browser).
Which three non-functional requirements will be improved as a
result of separating the business logic into a third-tier (presenta-
tion → business logic → database)? (Choose three.)

A. Security
B. Extensibility
C. Performance
D. Manageability
E. Maintainability

Answers: B, D, E. There are no guarantees that security or per-
formance will be improved. The system will be more extensible,
as you could add more business logic without impact to presen-
tation. Manageability will be improved because you could moni-
tor the business tier, and maintainability will be improved
because you could have different programmers working on what
they do best.

34

ptg

C H A P T E R 3

Web Tier Technologies

■ State the benefits and drawbacks of adopting a web framework in
designing a Java EE application.

■ Explain standard uses for JSPs and Servlets in a typical Java EE
application.

■ Explain standard uses for JSF components in a typical Java EE
application.

■ Given a system requirements definition, explain and justify your
rationale for choosing a web-centric or EJB-centric implementa-
tion to solve the requirements. Web-centric means that you are
providing a solution that does not use EJBs. An EJB-centric solu-
tion will require an application server that supports EJBs.

Introduction

This chapter covers the area of presentation in the JEE platform, and
focuses on presentation technologies designed to render in a standards-
compliant HTML browser. In addition to focusing on the presentation
specifications and technologies that are included in the JEE platform,
we go one step further and analyze the benefits and drawbacks of using a
web framework to lend additional structure to a web application
(whether it also uses EJB or not) at the expense of additional complexity
or runtime overhead.

35

ptg

Chapter 3 Web Tier Technologies

Prerequisite Review

The following list details resources and specifications that you should be
familiar with before reading this chapter. The main resources are as
follows:

■ The JavaServer Pages 2.1 specification—JSR 245
■ The Servlet 2.5 specification—JSR 154
■ The JSF 1.2 specification—JSR 252
■ The JSTL 1.2 specification—JSR 52
■ The Java EE 5 specification—JSR 244

We now cover the specific topics that should be addressed at a high level
before more esoteric and advanced discussions on the relative advan-
tages and disadvantages of the various JEE web tier technologies.

Model View Controller (MVC)

Regardless of application domain or industry vertical, technology plat-
form, and client-side technology, everyone agrees that three fundamen-
tal concepts should be decoupled and kept separate—namely, the data,
the business logic that operates on that data, and the presentation of that
data to the end user (see Figure 3-1). In the JEE platform, the seminal
design pattern that enforces this separation of concerns is called the
MVC model. In the earliest releases of the specification, references
were made to Model 1 and Model 2 architectures. However, all main-
stream frameworks now embrace Model 2 exclusively—where views
(implemented as JSP pages with or without JSF components) forward to
a central controller (implemented as a Servlet), which invokes a named
handler for the page or action before forwarding the user to a well-
defined page to render the outcome of the request.

Web Container

The web container is analogous to the EJB container described in Chap-
ter 4, “Business Tier Technologies.” Simply put, one of the biggest
advantages of the JEE platform is how much it gives the developer out
of the box from an infrastructure perspective, leaving the developer free
to focus on how to use the JEE platform to implement the required

36

ptg

Prerequisite Review

business logic for their application. A web container provides services to
presentation and control components provided by the developer, imple-
mented as JSPs, JSF components, Servlets, filters, web event listeners,
and plain old Java classes (POJOs). These services include concurrency
control, access to user-managed transactions (more on this later), config-
uration, and security management.

37

state query user actions

view routing

state changes

change updates

Model (underlying data)
Controller (flow control /

business logic)

View (presentation)

Figure 3-1 A high-level schematic depicting the basic flow between the three major
components of the Model-View-Controller design pattern. All MVC web frameworks
follow this basic separation of concerns to a greater or lesser extent.

Servlets

A Servlet is a server-side component designed to handle inbound service
requests from remote clients. Although the vast majority of all Servlets
implemented are designed to respond to HTTP/HTTPS GET and
POST requests, the Servlet model is designed to accommodate any
protocol that is predicated around a request/response model. Servlet
developers must implement the javax.servlet.Servlet interface,
and specifically for HTTP Servlet developers, the javax.servlet.
HttpServlet interface. The core service method contains the routing
logic that forwards the inbound request to the appropriate handler. A
Servlet is hosted by the container, and multiple threads use it in order to
provide a scalable system unless the developer explicitly chooses not to

ptg

Chapter 3 Web Tier Technologies

do this by implementing the SingleThreadedModel tagging interface.
(This interface has been deprecated, as it results in systems that do not
scale.) Figure 3-2 illustrates the Servlet lifecycle, as managed by the web
container.

38

request

response

Happens exactly
once per deployment

Container removes the servlet,
calling the destroy method

Occurs many times,
for as long as the
servlet instance

is in service

Container passes relevant
calls to the servlet’s service method

Happens exactly
once per deployment

Container readies the servlet for
work by calling the init method

Happens exactly
once per deployment

Container instantiates one
instance of the class

Happens exactly
once per deployment

Container loads the servlet class

Figure 3-2 The Servlet lifecycle is quite simple, as opposed to that of other server-
side components in the JEE stack. Most developers simply override three methods—
init(), doGet()/doPost(), and destroy() to add required behavior.

Filters

Filters are server-side components hosted by the web container that
receive an inbound request before it is received by any other component.
Filters then are used to pre-process requests—for example, log the
event, perform security checks, and so on. Filters are frequently used by
web frameworks to make their operation as transparent to the developer
as possible, removing or at least ameliorating a significant barrier to their
adoption—the complexity (perceived or otherwise) of their develop-
ment overhead. In addition, filters can be used to perform dedicated
processing after a request has been received and processed.

ptg

Prerequisite Review

Listeners

Listeners are server-side components hosted by the web container that
are notified about specific events that occur during a Servlet’s lifecycle.
Listeners are used to take actions based on these events. The event
model is well-defined, consisting solely of notifications on the web con-
text (Servlet initialization and destruction, attribute adds/edits/deletes)
and session activity (creation, invalidation and timeout, and attribute
adds/edits/deletes).

JavaServer Pages (JSP)

JavaServer Pages are HTML pages with embedded mark-up that is eval-
uated at runtime by the web container to create complete HTML pages,
which are sent to the client for rendering to the end user. JSP technology
has matured significantly in the JEE platform—key elements added
since its inception have been the JSTL (Java Standard Tag Library) and
the Unified Expression Language (EL), which are covered in separate
sections later in the chapter. However, from an architect’s perspective,
their purpose is simple—they represent the ongoing effort from Sun to
enforce a workable MVC model in the JEE, separating presentation
logic from business logic. Like all container-managed objects in the JEE,
JSPs have a well-defined lifecycle, depicted in Figure 3-3.

39

request

response

The original state of the
JSP page, containing all
taglibs, directives, etc.
included by the JSP

developer.

Unless disabled, most containers
recompile JSP source that is newer

than the servlet source code to
aid development efficiency.

The compiled servlet
now “acts” as a JSP.

JSPs are fulfilled as
servlets, so must be

compiled to the servlet
model before handling

requests.

JSP source

Servlet source code

Compiled servlet

Figure 3-3 Although JSPs appear more complex than Servlets, and represent a
huge improvement on developer productivity and code maintainability, they are
actually implemented as Servlets under the hood by the web container.

ptg

Chapter 3 Web Tier Technologies

Java Standard Tag Library (JSTL)

The JSTL is a set of tag libraries that forms part of the JSP specification.
Before the advent of the JSTL, open source communities such as
Apache, commercial companies, and indeed individual software teams
built their own tag libraries. The JSTL brought much needed standardi-
zation to the tag library space, allowing developers and architects to
effectively delegate control and enhanced presentation logic tags to the
specification writers and focus instead on their application logic. The
JSTL is an example of open standards adding tangible value to develop-
ers as the JSP specification grows out to bring structure to an area badly
needing it.

Unified Expression Language (EL)

The EL was introduced in the JSP 2.0 specification, whereas the JSF 1.1
specification introduced its own EL. The word Unified indicates that in
JEE 5, these two EL definitions come together in a logical attempt to
simplify the overall platform. Simply put, the addition of an EL provides
developers with the ability to banish Java scriptlets from JSP pages com-
pletely. There are two constructs to represent EL expressions: ${expr}
and #{expr}. $ indicates that the expr is evaluated immediately, whereas
indicates to the container that evaluation should be deferred. The con-
tainer also makes a number of useful implicit objects available to an exe-
cuting EL snippet—for example, requestScope, sessionScope, and so
on. Access to this information further improves the ability of EL to
replace custom Java snippets in JSP. Custom Java snippets on their own
are not necessarily a bad thing (although the code is often more read-
able, elegant, and easier to maintain). The single biggest danger when
developers need to code Java in JSPs is that they implement not only
presentation logic, but business logic as well, violating the core tenet of
the MVC design pattern.

Managing Sessions

The Servlet specification provides an elegant way to allow a client-server
conversation to manage session state over the HTTP protocol, which is
essentially stateless. The web container provides access to a simple map,
called the HttpSession, where developers can read from and write to
any data that needs to be stored in order to process a client’s request.
Judicious use of this object is needed, however—storing large objects,

40

ptg

Prerequisite Review

such as collections of search results, is a known performance and scala-
bility anti-pattern.

JavaServer Faces (JSF)

JavaServer Faces is a UI framework for web applications based on the
JEE platform. Initially controversial (and still so in some quarters), with
many developers and architects resenting the imposition of yet another
web framework in an already over-crowded space, JSF has grown to rep-
resent the foremost method of constructing web UIs as recommended
by Sun Microsystems. Nevertheless, many application architects still
eschew JSF and use a simpler MVC model, typically leveraging a web
framework like vanilla Struts.

Disregarding any good or bad will toward JSF, let’s examine its goals.
JSF is designed to be easy to use by developers; it is also designed to
allow developers to stop thinking in terms of HTTP requests and
responses and instead to think about UI development in terms of user-
and system-generated events. JSF components are re-usable, improving
developer productivity, software quality, and system maintainability; the
clear intent of the JSF specification is that the technology be toolable, or
provided with deep and mature support from IDEs like Eclipse, Net-
beans, and IntelliJ. In this respect, JSF maps closely onto other tech-
nologies like ASP.NET from Microsoft and, in turn, is a clear break with
directions from frameworks like Ruby on Rails, where the developer is
never far away or insulated from the underlying HTTP request/response
model.

Templating Frameworks

Especially in the early days of JSP and even today, a segment of the
developer and architect population railed against what they saw as the
poor ease of development and runtime performance provided by the
JSP-centric model. These malcontents fought back against the tide by
using the Servlet container to build out a simpler, more efficient way of
including dynamic content in HTML fragments, resulting in the cre-
ation of template-centric frameworks such as Velocity and FreeMarker.
The presence of these frameworks has kept the JSP and JSF communi-
ties honest, in showing how simple web development can and should be.
However, no matter how relevant or pressing the claims of these frame-
works may be, the fact remains that the mandated way to build presenta-
tion logic in the JEE platform is either using JSP or JSF.

41

ptg

Chapter 3 Web Tier Technologies

Web Frameworks

Web frameworks fill the gap between the JSP/Servlet/JSF specification
and what an architect needs in order to build a consistent, high-quality
web application in the UI platform. The authors are often struck, after
reading a three- or four-hundred-page specification, how many open
questions there are. In the case of web UIs, a good web framework fills
that void, providing the architect and developer with a clear roadmap on
exactly how to implement core features such as action handlers, client-
and server-side validation, how to handle transactions in a sensible man-
ner, integrate security, manage session state, and build a maintainable
and understandable web UI. In fact, mainstream web frameworks have
been so successful, a significant percentage of architects have decided
not to use EJB in their applications at all—so confident are they that a
good web framework is all that is needed to design and construct a good
JEE system. And in many, if not most, cases, they are correct. EJBs in
the JEE platform provide specific features that are necessary only when
business requirements dictate it (these features are detailed in Chapter
4, along with the decision matrix governing when the use of EJBs is
appropriate). If you choose not to specify or use a web framework in Part
II of the exam, be prepared to clearly justify your decision. We believe
that very few, if any, non-trivial Java projects are not using a web frame-
work to impose standard practices on the development team, to produce
maintainable code, and to avoid re-inventing the wheel on every new
development.

Discussion

In this section, we examine the best uses for each of the various compo-
nents of the JEE web technology stack. Almost all the components can
be used to tackle any presentation/flow control/business logic problem,
but the specifics of JSPs, Servlets, JSF, and so on mean that they each are
better-suited to specific scenarios, as detailed here.

JSPs and Servlets—Standard Uses

JSPs handle the presentation of data to the end user. They should con-
tain no business logic. A good rule of thumb is to minimize or eliminate
entirely all Java code from JSPs and replace it instead with either

42

ptg

Discussion

EL, the JSTL, or a custom/third-party tag. This guideline tends to rein-
force the role of JSPs as the V in MVC—that is, the View.

JSF—Standard Uses

The standard uses for JSF are the same as for JSP. As an architect, you
are faced with a choice: either continue to use JSP with JSTL and a good
MVC framework, or use JSF. They do the same thing. Also, they are not
mutually exclusive. It is perfectly possible to add tags to a JSP page that
represent a specific JSF UI component, resulting in a hybrid solution.
JSF garnered a significant amount of bad press when it first launched (as
have many 1.0 implementations of specifications in the JEE platform),
but it has matured since then. Many architects, however, simply see no
need for it and prefer JSP with JSTL and EL.

Web-Centric Implementations

As intimated earlier, a significant proportion (exact figures are not avail-
able and indeed vary by industry vertical) of all JEE applications in exis-
tence today are deployed using only a web container—that is, they do
not use EJBs. This class of JEE application is termed web-centric.

The current version of the exam tests this concept in detail. As a JEE
architect, you are perfectly entitled to stipulate that EJBs not be used in
your design, but you must clearly understand why that decision is man-
dated and the impact of that decision on your developers as they imple-
ment the business logic. The exam tests this concept by presenting you
with a set of scenarios. Scenarios that have a strong messaging, transac-
tion, or security management component are all candidates where an
EJB-centric implementation is warranted and indeed necessary. (Let’s
be blunt—choosing EJB is the right answer.) Scenarios where ease of
development is key, where an existing application is already web-centric,
or where transactions are not key to the business (read-only or read-
mostly) mean that you should choose a web-centric answer from those
provided in the exam.

There are some stand-out reasons where using EJB is simply not
warranted. The most straight-forward example is a standard Create,
Read, Update, and Delete (CRUD) application built using Struts to
organize and control the presentation and business logic tiers, and
Hibernate plus a DAO access layer to implement the persistence tier.
Assuming that there are no asynchronous messaging requirements or

43

ptg

Chapter 3 Web Tier Technologies

JMS queues or topics to access, and that the functionality contained in
the web container for concurrency control, security, and session man-
agement is sufficient, then the right decision is to adopt a web-centric
approach.

Now, let’s consider an alternative scenario. You work for XYZ Bank, a
large multinational bank with investment and retail operations, which
has invested significant amounts of capital into a transactional system
based on mainframe technology over the last thirty years. Ensuring sys-
tem reliability and security are paramount; there is absolutely no room
for data corruption from edge conditions, such as the lost update or opti-
mistic locking going wrong. If the system enters into an unknown state
because of a technology failure, not only will the system need to be
brought back within 10 minutes in order to avoid a service-level agree-
ment (SLA) breach, the relevant regulatory authorities must also be
notified and a full system audit will be enforced. As the solution archi-
tect, do you believe that using only the web container segment of the
JEE platform is sufficient to meet the non-functional requirements
detailed here?

We would answer this rhetorical question as follows: It is possible to
fulfill the preceding scenario using only a web framework, but we would
not be comfortable in doing so. Many aspects of the EJB framework lend
themselves very well to this type of deployment; choosing to use only a
web framework will essentially force you, as the architect, into replicat-
ing in your code the reliability and availability characteristics that already
exist in the core JEE platform. This is not a good use of your time and
will result in a buggier implementation that needs to be maintained
moving forward.

EJB-Centric Implementations

Let’s reconsider the bank scenario laid out in the previous section. Look-
ing at the business requirements, we can see that they translate into non-
functional requirements (NFRs) focusing on system correctness,
reliability, and security. In this scenario, and answering the question
posed in the last section, assuming that the internal bank systems can be
accessed by a non-EJB solution, it is possible to achieve a solution that
will meet the NFRs using only a web-centric solution. But, and this is
the key point, you will need to commit your team to writing entire mod-
ules of custom code to replace features that you get from an EJB con-
tainer for free. In addition, it is likely that you will also need to take

44

ptg

Discussion

advantage of vendor-specific libraries/mechanisms to implement these
modules. That is the key point. In the scenarios examined here, there is
no right or wrong answer—just more correct and less correct. And that is
the key role of an architect: to examine the possible solutions and select
the most correct solution, taking into account the vagaries of the known
set of business requirements.

Rationale for Choosing Between EJB-Centric and Web-
Centric Implementations

As you may have gathered from the two preceding sections, neither we,
nor indeed the exam, believe that a web-centric or an EJB-centric archi-
tecture is always right or always wrong. The decision to select one over
the other is based purely on an impassionate review of the facts relating
to a specific project. In order of decreasing importance, the pertinent
facets to consider are as follows:

■ Transaction requirements—The more onerous, the bigger the
reason to select EJB.

■ Security requirements—Again, the more onerous, the bigger the
reason to select EJB.

■ Messaging requirements—Need to integrate with an asynchro-
nous messaging system—Again, if present, a clear reason to select
message-driven beans (MDBs); that is, the EJB-centric approach.

■ Performance.
■ Ease of development.
■ Scalability.
■ Existing team skills or existing project implementation.

The last four facets listed are not reasons in themselves that will conclu-
sively force you to choose one approach over the other; indeed, the
waters have been muddied in recent JEE releases for each. The primary
focus for EJB 3.0 (and continued in 3.1) is improving the ease of devel-
opment. As you will see in Chapter 4, the general consensus is that EJBs
are now, at last, easy enough to develop that their use is warranted in sit-
uations where previously system designers did not specify their use.
Assuming an efficient container implementation, stateless session beans
should be as efficient as Servlets/Action handlers in executing business
logic on the server side as a proxy for the client. The obvious exception

45

ptg

Chapter 3 Web Tier Technologies

here is stateful session beans. The need to maintain one session bean per
connected client for the duration of the conversation will always make
stateful session beans a poor scaling design choice, suitable only for a
small subset of applications with very specific requirements.

The Future of Client-Server Communication

It is worth noting that the current release of the exam was written in
2007 and contains material on Asynchronous JavaScript and XML, or
AJAX. Architects must understand the benefits of AJAX as they relate to
providing an enhanced end-user experience and how the JEE 5 platform
allows server-side components to service AJAX requests from browsers.
Looking forward, the exam will be refreshed in sympathy with the
release of future JEE versions. If JEE 6 or 7 is released into a world
where AJAX is declining in favor of cometd (HTTP continuations), or
another way of enhancing the end-user experience for browser-based
applications, then expect that technology to be reflected in the questions
posed. After all, the exam is written by a team of subject matter experts
who construct the questions and answers for Part I based on the current
state of play in the Enterprise Java space.

Essential Points

■ Presentation tier technologies remain a major element of the JEE
5 platform and are a significant source of exam content for Parts I
and III.

■ Part II is less concerned with the actual presentation technology
selected (within reason, of course) and more concerned with the
candidate displaying two things—in-depth understanding of the
business requirements and selecting a presentation technology
that meets those requirements.

■ JSF has grown from the presentation tier that disgruntled archi-
tects tried to ignore to a significant element of the JEE plat-
form—and for the exam. If you are a JSP-centric architect, beef
up on JSF because you need to know it.

46

ptg

Review Your Progress

■ The exam tests your understanding of the best UI technologies to
use in the JEE platform by presenting a series of scenarios. The
description of the scenario provides all the information you need
to select the correct technology/combination of technologies to
use from the multiple choice answers provided.

■ In the real world, there are no official “Sun recommended” blue-
print patterns—only guidelines and recommendations. As a JEE
architect, one of your key skills is the ability to analyze application
requirements and choose the best combination of JEE technolo-
gies—especially at the web tier—to meet those requirements,
while not over-engineering the solution.

Review Your Progress

These questions test your understanding of JEE web components and
their most appropriate use to solve a given business problem:

1. You are the architect at a large investment bank. Your main area
of responsibility is a new web application designed to replace the
aging user interface for the existing clearing house back office
system. One of the systems is read from/written to via a JMS
Queue in asynchronous fashion and transactions and security
management are paramount. Select the most appropriate imple-
mentation from the following list:

A. JSP and JSTL accessing a business logic tier built using EJBs
and MDBs.

B. JSP and JSTL accessing a business logic tier built using
MDBs only.

C. JSF accessing the systems directly.
D. JSP accessing the systems directly.

Answer: A. B is not flexible enough, omitting EJBs and allowing
only MDBs. C and D couple the presentation tier directly to the
backend resource, creating potential security, performance, and
maintenance problems. A provides what is needed.

47

ptg

Chapter 3 Web Tier Technologies

2. You are the architect at ACME Corporation—the hottest Inter-
net start-up of the moment. The start-up provides a front-end
accessible by multiple devices, from smart phones to desktops,
and provides innovative social networking features to its mem-
bers. The key considerations for the system are performance
and scalability, and individual messages between members are
not considered important (that is, they can be resent). Select the
most appropriate implementation for this system from the fol-
lowing list:

A. JSP + JSTL accessing the messaging layer directly.
B. JSF accessing EJBs, with access to the messaging layer

mediated by a JMS client and MDB.
C. JSF accessing stateful session beans—one for each con-

nected client.
D. JSP + JSTL accessing a JPA-based persistence tier.

Answer: A. All of the other options contain a reasonable chance
that there will be an unnecessary overhead associated with the
components used—EJBs, JPA, and so on. A is the simplest
answer for the business problem described, especially when the
priority of performance and scalability is stated in the stem of
the question.

3. You are a subject matter expert on JEE consulting for ACME
Corporation. ACME has an existing application built using an
earlier version of the JEE platform. Performance and scalability
are not an issue, although system is not as maintainable as
ACME would like. The application uses JSP pages as part of a
Model 2 MVC architecture with Java code in the JSPs and some
presentation coded as Servlets. What do you recommend?

A. A complete rewrite of the existing presentation architecture
to leverage JSF and JPA.

B. A deeper analysis of the current system to ensure that JEE
best practices (especially the MVC model) are respected
throughout the code, replacing Java code in JSPs with JSTL
and EL as necessary and making Servlets act purely as con-
trollers.

C. ACME move the system to use Ruby on Rails.

48

ptg

Review Your Progress

D. A complete rewrite of the current architecture to leverage
JSF, session beans, JMS, and JPA.

Answer: B. All of the other answers are nonsensical when you
realize where ACME is. They have a system that works today,
which requires some refactoring to move to MVC, and they sim-
ply need a roadmap after this work is completed to guide them
onto JEE 6, 7, and beyond. No rewrites are necessary.

4. You are a JEE architect at ABC Bank and have been tasked with
designing their next-generation UI framework for online bank-
ing. The online banking application must be accessible by both
standard browser clients and mobile devices. What do you rec-
ommend as the simplest and most optimal solution?

A. A JSF-based architecture, leveraging the capability of device
or channel-specific JSF renderers to support both mobile
and standard browser clients.

B. A JSP-only architecture, with custom logic to probe and
handle individual devices at runtime.

C. A Servlet-based architecture.
D. A template-based architecture.

Answer: A. JSF is designed to support exactly this type of use
case—the other available options, while workable, are not the
most optimal or most simple.

5. XYZ Corp has retained you as the architect for their latest web
application: XYZOnline. This application allows customers to
search, browse, and order catalog content online. XYZOnline
accesses the inventory and payment systems as web services.
What architecture do you recommend?

A. JSP/JSF pages accessing the web services layer using state-
less session beans.

B. Servlets accessing the web services directly using JAX-WS as
necessary.

C. JSP/JSF pages accessing the web services layer using JAX-
WS as necessary.

D. JSP/JSF pages accessing the web services using JMS.

49

ptg

Chapter 3 Web Tier Technologies

Answer: C. A uses stateless session beans when nothing in the
description warrants their usage. B uses Servlets to generate the
presentation, while D uses JMS in the wrong context. C is the
best solution for the stated business requirements.

6. You have been asked to evaluate multiple web presentation
technologies for ABC Corp. Their priorities are future-proofing,
tooling support from IDEs and the ability to render multiple
versions of the same component for different devices. What do
you recommend to ABC?

A. Use JSF components as part of a Servlet.
B. Use JSTL and the EL as part of JSP pages.
C. Use JSF components as part of JSP pages.
D. Use JSTL and the EL as part of Servlets.

Answer: C. The key to choosing C is to realize that the question
guides you there by mentioning tooling support and future
proofness. B is close but does not match the requirements
exactly. D and A are not valid answers.

50

ptg

C H A P T E R 4

Business Tier Technologies

■ Explain and contrast uses for entity beans, entity classes, stateful
and stateless session beans, and message-driven beans and under-
stand the advantages and disadvantages of each type.

■ Explain and contrast the following persistence strategies: Con-
tainer Managed Persistence (CMP), BMP, JDO, JPA, and ORM,
and using Data Access Objects (DAOs) and direct JDBC-based
persistence under the following headings: ease of development,
performance, scalability, extensibility, and security.

■ Explain how Java EE supports the deployment of server-side
components implemented as web services and the advantages
and disadvantages of adopting such an approach.

■ Explain the benefits of the EJB3 development model over previ-
ous EJB generations for ease of development, including how the
EJB container simplifies EJB development.

Introduction

This chapter addresses probably the single biggest component of the
Java Enterprise Edition platform: Enterprise Java Beans, or EJBs. EJBs
have evolved significantly from the earliest versions of the platform and,
in particular, in this release of the platform, integrating as it does the
EJB 3 specifications. As a matter of fact, this chapter deals with the sub-
ject matter that has changed most between JEE 5 and earlier revisions—
no other chapter in this book (or objective in the exam objectives list)
explicitly calls out knowledge of how one specification version number

51

ptg

Chapter 4 Business Tier Technologies

has changed the platform. The expert group behind the revised exam
objectives and content felt strongly enough that EJB 3 represented a
major step forward, and warranted explicit attention both by the exam
and the exam candidate.

Prerequisite Review

The following list details resources and specifications that you should be
familiar with before reading this chapter. Make no mistake—the EJB
specifications are long and boring, and a significant percentage is
intended to be read by the container developers; nevertheless, they must
be read and understood by anyone who wants to pass the exam. Your
knowledge of EJBs is tested in multiple sections of Part I and clearly has
an influence on your implementation decisions and justifications for the
same in Parts II and III:

■ The EJB 3.0 specification (all three parts that the specification is
composed of: ejbcore, persistence, and simplified): Java Specifi-
cation Request (JSR) 220.

■ Chapter 5, “Integration and Messaging” (to understand JMS and
how message-driven beans are used to interact with this technol-
ogy).

■ The Java EE 5 specification: JSR 244.

We note that there are many objective and subjective opinions and arti-
cles available on the web relating to EJB. We also note that knowledge of
this material is not required reading by the successful exam candidate.
Although this comment is certainly intended to be tongue in cheek, it is
also 100% accurate and correct. The exam does not test your knowledge
of how good or bad earlier EJB specifications were or how good or bad
implementations that use EJB are over non-EJB implementations (or
vice versa). You are simply expected to display an advanced/expert level
of knowledge of how to use EJBs to solve a given business problem in
the most correct way. Your subjective opinion, and that of thousands of
other commentators, is irrelevant. Your ability to form an objective and
logical opinion and use it to choose the right answer, or most appropriate
implementation, is what counts.

52

ptg

Prerequisite Review

You are not expected to learn the EJB specification by rote (in total,
the three parts add up to over 1,000 pages), but you are expected to
know the major characteristics of EJB and why you would or would not
use them to solve a given business problem and be able to justify and
defend your decision.

As in previous and future chapters, it is not our place to describe
subject matter material in detail because this would simply duplicate the
resources listed in this section. However, we note the most important
components and characteristics of EJBs to act as a quick cheat sheet
for you.

Enterprise Java Bean

An Enterprise Java Bean (referred to as EJB from now on) is a server-
side component used in JEE architectures to encapsulate a specific
piece of business logic. As detailed next, there are multiple different
types of EJBs in the JEE platform; however, regardless of type, there are
some common characteristics common to all EJBs, as follows:

■ They are distributed components—that is, they represent a unit
of logically related work in an Enterprise Java application that can
be accessed either locally or remotely.

■ A common contract with EJB clients and EJBs is enforced by a
set of well-defined interfaces.

■ They are implemented as Java classes.
■ They are managed at runtime by the EJB container, with the con-

tainer providing important services such as transaction manage-
ment, security, and concurrency control to the EJBs under its
management.

■ They do not explicitly manage either inbound or outbound data—
the container manages all client access.

■ They are configured using a combination of metadata annota-
tions, deployment descriptors, and container-supplied variables.

■ If written to use only those services defined by the EJB specifica-
tion, they can be ported with minimal effort to run on other EJB
containers.

53

ptg

Chapter 4 Business Tier Technologies

In early versions of the JEE platform and in their interpretation by
architects, the overall importance of EJBs was overstated, resulting in
applications that were over-complex and over-engineered for the busi-
ness requirement. Since then, the onus has been on architects to stipu-
late the use of EJBs only when a specific requirement demands it.

Although different annotations are used to define the major types of
EJB, the overall EJB component model allows the following high-level
characteristics:

■ A stateless service, including the ability to act as a web service end
point.

■ A stateful service.
■ A service invoked asynchronously by a separate component.
■ An entity object—that is, a component that interfaces with a data

store to persist an object representation of a domain object.

We now move on to consider the major types of EJB that exist in the JEE
platform.

Session Bean

Session beans are EJBs that contain business logic—specifically, busi-
ness logic relating to the implementation of a workflow or process. They
can be considered as server-side proxies for the client. There are two
specific types of session bean: stateless and stateful.

Stateless Session Bean

As their name implies, stateless session beans maintain no internal
client-specific state across separate client invocations. Although this sim-
plified programming model means that an application using stateless
session beans must implement state elsewhere, there is a significant
upside in that the application’s scalability is improved significantly. A
small (relative to the size of the number of concurrent requests) pool of
stateless session beans can be used to service a significantly larger num-
ber of concurrent requests. Finally, stateless session beans register once
with the EJB Timer Service to receive event notifications by adding an
@Timeout annotation. Stateless session beans are the simplest of all the
EJB types, as Figure 4-1 illustrates.

54

ptg

Prerequisite Review

Figure 4-1 As illustrated here, the basic lifecycle of a stateless session bean is
quite simple.

Stateful Session Bean

Although many behavior and lifecycle differences exist between state-
less and stateful session beans, there is one crucial distinction: the ability
of stateful session beans to maintain internal conversational state across
multiple invocations from the same client. The advantages and disadvan-
tages of stateful session beans are exactly opposite to those of stateless
session beans—the programming model is less restrictive and more nat-
ural. However, applications that use stateful session beans are not as
scalable as an equivalent application that uses stateless session beans.
Stateful session beans can be activated and passivated by the container
as the demand waxes and wanes depending on the number of concur-
rent requests, as illustrated in the lifecycle diagram shown in Figure 4-2.
Stateful session beans can also optionally implement the javax.ejb.
SessionSynchronization interface, which enables a stateful session
bean to participate in a well-defined transaction, and either commit as
part of the wider transaction or roll back—because of an error encoun-
tered directly, or in response to a rollback directive from the container.
Finally, unlike stateless session beans, stateful session beans cannot be
registered with the EJB Timer Service.

We now move on to consider the next major type of EJB: entity
beans. We do note that Java Persistence API (JPA) entities are addressed
here when they are not technically EJBs; however, this treatment is cho-
sen in order to remain consistent with the exam objectives.

55

If coded, PreDestroy
hooks will be executed

before the EJB is
removed from service.

Serves stateless
requests from many

clients perpetually, or unit
destroyed

by the container.

Dependency injection;
post-construction

callbacks.

EJB class definition and
configuration

exists, is valid, and
can be accessed by

container, but EJB not
in service.

Does not exist In service
Preparation by

container
Destroyed by
the container

ptg

Chapter 4 Business Tier Technologies

Figure 4-2 Compared to the stateless session bean lifecycle, the stateful session
bean’s lifecycle is more complex, but still relatively simple.

Entity Beans

Entity beans persist data. The persistence model in the latest revision of
the EJB specification under scrutiny in this book (3.0) has undergone
significant revision—so much so, in fact, that it has been extracted into
its own mini-specification: Chapter 6 of the “ejbcore” specification now
simply points the reader to the Java Persistence API reference instead.
Nonetheless, entity beans as they existed in the EJB 2.1 specification
must be supported by EJB 3.0-compliant containers/application servers,
and they will also remain current for a long time due to their widespread
usage. Therefore, they are in scope for the exam and are described here.
But moving forward, it is clear that entity beans have been replaced by
Java Persistence API entities (often called entity classes), and this fact
should be reflected in your Part II solution—that is, there needs to be a
very good reason why you would choose to use anything except entity
classes in your submission. We suggest that no such reason exists.

CMP Entity Bean

Container Managed Persistence (CMP) entity beans delegate the per-
sistence of their internal state to the container. This approach has the

56

Lifecycle callback methods
(PrePassivate and PostActivate)

are invoked where coded to
ensure an orderly transition into
and out of the passivated state.

EJB class definition and
configuration

exists, is valid, and
can be accessed by

container, but EJB not
in service.

Does not exist

Serves stateful requests
from many clients
perpetually, or unit

destroyed by the container.

In service

If coded, PreDestroy
hooks will be executed

before the EJB is
removed from service.

Destroyed by
the container

Dependency injection,
invocation of the

PostConstruct lifecycle
method were coded.

Preparation by
container

Passivated

ptg

Prerequisite Review

advantage of improving developer productivity, but control of the gener-
ated code is lost to the container; therefore, the architect must ensure
that the CMP implementation of the vendor’s EJB container is at least as
good as the SQL code that would be generated by hand. Contrary to
opinion, adopting CMP does not insulate the developers or architect
from needing to know SQL or the database schema used to persist appli-
cation data—these skills are still required, if only to troubleshoot the
CMP implementation itself from time to time and during specific proj-
ect phases (for example, performance tuning).

BMP Entity Bean

Bean Managed Persistence (BMP) entity beans require developers to
explicitly code how their internal state (such as data contained in
instance variables) is updated to a persistent store—typically using SQL
code. Although this is the most straightforward and often the most effi-
cient method of persisting data, it does require that the developer hand-
code every single aspect of data persistence. Thus, BMP entity beans are
best suited to those specific scenarios where a CMP implementation is
simply not capable of delivering the performance needed, or no CMP
implementation exists for the persistent store being used (a home-grown
pseudo-relational database, for example).

Entity Class

The entity class is a new development in the EJB 3.0 specification. An
entity class is a plain old Java object (POJO) with annotations that pro-
vide a Java Persistence API (JPA) implementation information on how to
update the persistent store with the values stored in the instance vari-
ables of the entity class. One of the key design goals behind the JPA (and,
by extension, entity classes) is to simplify the task of persistence. (The
term “lightweight” is often used with JPA, and this is intended to convey
the fact that it is easy to use and develop with, not that it is lacking in fea-
tures.) The design intent has borne fruit—JPA is a much simpler method
of persistence than either CMP or BMP entity beans. In the lifecycle
diagram shown in Figure 4-3, the EntityManager essentially plays the
role of container for the entity instance, although in a less complete way.
(For example, entities can exist even when completely detached from an
EntityManager—something not possible in the world of session beans.)

57

ptg

Chapter 4 Business Tier Technologies

Figure 4-3 The four main lifecycle states in which an entity instance can exist (new,
managed, detached, and removed) are shown here.

Persistence Strategies

In general, there are two major persistence strategies—either delegate
the actual persistence to the EJB container or an Object-Relational
Mapping (ORM) tool, or retain the responsibility of writing that code in
return for increased control over the code and, in some cases, to gener-
ate code that is more optimal than its auto-generated equivalent. Within
these two approaches, individual frameworks and design patterns have
matured over time, but the high-level decision is simple: Do you want to
explicitly code a persistence tier, or do you want to delegate the code to a
third-party tool, providing only direction on what you want generated?

Message-Driven Bean

A message-driven bean (MDB) receives and processes messages from a
JMS destination (that is, a queue or topic; see Chapter 5 for more
details), thus providing the JEE platform with the capability to process
messages asynchronously. MDBs are probably the simplest type of EJB
(even simpler than stateless session beans) because only one method
needs to be implemented: the onMessage method. More widely, MDBs
can actually be used to consume messages from any Connector 1.5
resource adaptor.

58

Associated with a
persistence context;

scheduled for removal
from the persistent store.

Merging resynchronizes
detached entities.

Entity class definition
exists and is valid;
no instance has
been created.

Not instantiated

Not associated with a
persistence context.

Detached

New operation called;
instance not yet

managed (i.e., not associated
with a persistence context).

New

Associated with a
persistence context

(EntityManager).

Managed

Removed

ptg

Discussion

Discussion

In this section, we examine the common topics of discussion that are
raised when EJBs come into the frame: How much value do they really
add in an architecture, how best to persist data, how to implement web
services using EJBs and consume web services from EJBs, and finally,
what value EJB 3 brings to the platform, compared with previous itera-
tions of the EJB specification.

EJB Advantages and Disadvantages

The decision-making process to use or not use EJB is similar to that
when considering whether or not to use a framework—you know that
using the framework will impose intrinsic overheads, either at design,
development, or runtime. The question is: Do the benefits of the frame-
work outweigh the overheads for the application under consideration
(System under Development [SuD])? For many application architects,
the answer when evaluating EJB 1.1, 20 and 2.1 has been “no.” Using
EJB results in an application that takes too long to develop and runs too
slowly when compared against its non-EJB counterpart. For architects
practicing in some industries, however (especially financial services), the
transaction management and security capabilities of the EJB container
have made it mandatory since the earliest release of the platform. The
advantages and disadvantages of EJB must be measured against the spe-
cific SuD.

Scalability

Using EJBs provides scalability through one key characteristic: the abil-
ity of the EJB container to manage the pool of EJBs, taking into account
the number, frequency, and duration of incoming client requests (that is,
the developer delegates concurrency control to the container instead of
explicitly managing it). It is important to note, however, that in general,
stateless session beans are far more scalable than their stateful equiva-
lent. If the container must maintain a one-to-one relationship for M
clients in the pool, then M EJBs can only ever service M concurrent
clients. However, if the container can re-use stateless session beans after
every method invocation, then a small number of stateless session beans
in a container-managed pool can service the requirements of a signifi-
cantly larger number of concurrent clients. (This is often denoted as M x
N in texts.)

59

ptg

Chapter 4 Business Tier Technologies

Security

Security is one of the core services offered to the EJB developer by the
container. Along with transaction management and concurrency control,
the built-in security capabilities of EJBs are one of the primary reasons
for choosing to implement an architecture as EJB-centric rather than
web or framework-centric. In the past, systems with a heavy and
corporate-led focus on security (in particular, financial institutions) have
eschewed lightweight web-centric frameworks in favor of EJB-centric
architectures that provide a more fully-featured security framework. In
the JEE 5 platform, however, these two things are no longer mutually
exclusive, and developing with EJB 3 is now as efficient as using com-
monly available web frameworks.

Contrasting Persistence Strategies

Choosing how your SuD will persist data to a persistent store is another
important decision, which requires multiple items to be considered and
evaluated. We detail the most important of these considerations here.

Ease of Development

Approaches that abstract the developer away from explicitly coding data
access and update logic are, in general, easier to develop with (as long as
the tool/framework itself generates correct and efficient persistence
logic). Examples of this approach include JPA and other ORM tools and
CMP entity beans. By contrast, persistence approaches that require the
developer to explicitly code SQL code tend to require longer develop-
ment durations.

Performance

In general, the trade-off of using ORM, JPA, or CMP is that there is a
runtime penalty to be paid for the productivity gains realized in the
development phase. By contrast, explicit persistence strategies such as
raw SQL executed via a JDBC connection take longer to develop and are
more arduous to maintain, but because the developer retains full
control, also represent the theoretical best-performing method of gen-
eral data access and persistence. This is an esoteric point, however. A

60

ptg

Discussion

container-based persistence strategy may quite feasibly outperform a
hand-crafted SQL—for example, by reducing the number of database
round-trips by pre-fetching fields of related entities. Only careful, appli-
cation-specific prototyping and benchmarking can recommend the right
solution.

Extensibility

No data persistence approach has a clear advantage over the alternatives
as far as extensibility goes. As new columns are added to tables or new
business rules need to be encoded into the persistence tier, additional
effort must be expended to upgrade the persistence tier to meet these
new requirements. The JEE 5 specification does not explicitly address
how JPA or container providers should address this requirement, so the
ease of extensibility varies widely by implementation.

EJB and Web Services

We now consider how EJBs support web services to act as end points,
and also how EJBs can consume data from web services to fulfill a busi-
ness function.

EJBs as Web Service End Points

JEE 5 reduces the developer effort needed to expose an EJB as a web
service. (This is a common theme across this release of the platform.) A
developer can export all public methods on a Java class (including an
EJB) simply by placing the @WebService annotation on the class defini-
tion. The platform automatically publishes the public methods of the
class as web service operations, using parts of the JEE 5 platform, such
as JAXB 2.0, to map the arguments for each operation into an XML
schema.

EJBs Consuming Web Services

EJBs, and indeed any Java class, can access web services using the JAX-
WS API (JSR 224), which forms part of the JEE 5 platform. JAX-WS
replaces JAX-RPC as the primary API used to access web services in
JEE applications.

61

ptg

Chapter 4 Business Tier Technologies

Advantages and Disadvantages

The advent of JAX-WS and annotations in the JEE platform makes it
trivially easy to both export EJBs as web services and to consume web
services from EJBs. In general, these capabilities have the following
advantages and disadvantages:

Advantages

■ Developer productivity.
■ Rapidly consume web services to meet new business require-

ments.
■ Rapidly expose business logic as web services for external applica-

tions to meet new business requirements.

Disadvantages

■ Potential for a disordered application architecture—Archi-
tects should strive for a well-defined integration layer in the archi-
tecture.

■ Potential for security concerns—Data and information previ-
ously accessible only to authenticated users of the application is
now available to external users and applications.

■ Potential for data validation to be broken or circumvented—
A previously robust component may integrate a new web service,
and not check the data returned and damage the referential
integrity of a database or break a business rule by using unvali-
dated data.

EJB 3

Since the release of the first EJB specification, there has been a vocal
and growing segment of Java developers and architects who believe that
it is an unproductive and bloated element of the JEE platform. Count-
less applications have been built using only the web technologies that
make up the JEE platform (see Chapter 3, “Web Tier Technologies”),
and they perform well and meet the business requirements exactly.
However, stung by the criticisms leveled at earlier revisions, the EJB 3.0
expert group have revisited almost every aspect of how EJBs (of all
types) are designed and developed to make them quicker, simpler, and

62

ptg

Discussion

easier to develop while still retaining all the advantages that EJBs bring
to a JEE application. Let’s now examine the major changes made.

Ease of Development

It is fair to say that the single biggest driver for the EJB 3.0 specification
was to improve developer productivity and simplify the process of devel-
oping EJBs of all types. EJB 3.0 has succeeded in reducing the over-
heads traditionally associated with EJBs—a proliferation of interfaces
for one component, a restrictive inheritance mechanism for the core
EJB implementation class, boilerplate XML that becomes hard to keep
in sync with the source code that it configures, and so on. 3.0 EJBs
remove many if not all of these tiresome restrictions, giving EJBs a new
lease of life in the Enterprise Java space. Whether or not these changes
will encourage developers to increase their use of EJBs is a question that
can only be answered in time. What we can accurately state is that previ-
ous generations of EJB specifications and implementations required a
lot of extra work from the developer in return for the benefits of EJB—
transaction management, concurrency control, security, and so on. The
3.0 specification and implementations of that specification reduce signif-
icantly that overhead, while still retaining all of the advantages of EJBs.

Container in EJB 3

The container in EJB 3 has not changed significantly from an archi-
tect/developer perspective. It still provides a base set of plumbing or
infrastructure services, designed to allow the developer to focus on
implementing the business logic for a specific application.

JPA in EJB 3

The Java Persistence API (JPA) is a significant and important step for-
ward in the overall EJB 3.0 specification, addressing in a simpler way the
core task of business data persistence that has been so complicated in
previous revisions of the specification. In general, it is clear that the
creators of the EJB specification believe that JPA surpasses all other
methods of persistence in the JEE platform, since they have learned
from existing ORM frameworks and tools, as well as mistakes made in
earlier revisions of the specification. However, it is important to note

63

ptg

Chapter 4 Business Tier Technologies

that there are certain cases where JPA is not a silver bullet or panacea,
specifically the following:

■ When raw performance is necessary—That is, SQL state-
ments need to be explicitly tuned by hand to eke out the last per-
centage of speed.

■ When minor modifications are being made to a persistence
tier already implemented—In this case, the benefits in rewrit-
ing the entire tier to use JPA are outweighed by the cost and risk
in doing so.

■ When the underlying datastore is not well supported by
mainstream JPA implementations—For example, if the appli-
cation does not persist to a relational database.

Essential Points

■ The EJB component model remains a major element of the JEE
5 platform and is a significant source of exam content for all sec-
tions—I, II, and III.

■ The EJB 3 specification is a major advancement on previous itera-
tions of the EJB specification, using annotations, resource injec-
tion, and applying logical default values over configuration to
improve the speed and ease of development.

■ The core EJB elements are tested in the exam—why use stateless
over stateful session beans, pros and cons of the available persist-
ence strategies, commonly-applied and proven design patterns to
improve EJB performance and scalability, and so on.

■ In general, an architect specifies EJBs to leverage three major
benefits from the EJB container: transaction management, con-
currency control, and the enforcement of security, both declara-
tive and programmatic.

■ The JPA element of EJB 3.0 specifically addresses how JEE appli-
cations should address data persistence and is intended to replace
classic CMP and BMP entity beans over time. However, for inter-
operability and backwards compatibility, an EJB 3.0-compliant
container must support both JPA and EJB 2.1 entity beans.

64

ptg

Review Your Progress

■ The JEE 5 platform makes it trivial to expose EJBs as web service
end points using annotations and also for EJBs to consume web
services using JAX-WS.

Review Your Progress

These questions test your understanding of EJBs and their most appro-
priate use to solve a given business problem:

1. You have been asked to recommend a general approach to busi-
ness logic for a complex, transactional system with a 99.999%
uptime requirement. What do you recommend?

A. Use a web-centric architecture.
B. Implement all business logic as stateful session beans.
C. Use JPA.
D. Use session beans with JPA as necessary to implement the

business logic.

Answer: D. Only session beans with JPA provide a transactional
framework to build the application. Answer A does not apply
because a web-centric approach does not intrinsically provide
transactional support. The question does not specify the need
for a stateful architecture; therefore, B is incorrect. Answer C
does not satisfy the requirement, as JPA on its own does not pro-
vide transactional support.

2. Your application needs to read messages from a JMS queue,
invoke a web service, and store the resulting response in a rela-
tional database. What type of EJB will you use as the core of the
application?

A. A stateless session bean.
B. A stateful session bean.
C. A message-driven bean.
D. A CMP entity bean.

Answer: C. All the other options may be invoked by a message-
driven bean (MDB) to execute the work needed, but as the data

65

ptg

Chapter 4 Business Tier Technologies

that initiates the work arrives as a JMS message on a queue, an
MDB is the only logical choice.

3. Your application will be used in a B2C high-volume environ-
ment. In general, what type of EJB do you try to avoid unless
deemed absolutely necessary?

A. Stateless session beans.
B. Stateful session beans.
C. Entity beans.
D. Message-driven beans.

Answer: B. All the other bean types have well-defined uses in
multiple architectures; however, it is a widely accepted rule of
thumb in the JEE architecture space to avoid the use of stateful
session beans unless they are absolutely necessary because of
the need to service concurrent clients in a 1..1 fashion.

4. An existing application uses EJB 2.0 CMP entity beans heavily.
The application has no major issues in production, and little
future development is planned. You have been asked to recom-
mend a methodology to adopt when making minor modifications
to the application. What do you recommend?

A. JPA.
B. BMP.
C. CMP.
D. Use DAO accessing JDBC directly.

Answer: C (that is, continuing as before with no change). This
question is more of a test on your pragmatic skills as an architect
as opposed to your technical skills. To choose any of the other
options (A, B, or D) would introduce a significant amount of new
development that would need to be fully regression tested, for
an application that is stable in production and has little new
development planned. Note that this question deliberately engi-
neers a situation where JPA is not the right answer!

5. XYZ Investment Bank has recently started development of a
new trading system that enables users to buy and sell stocks on
behalf of clients during opening hours on multiple stock
exchanges worldwide. XYZ has to ensure that all system users

66

ptg

Review Your Progress

are treated absolutely fairly in all respects and is happy to spend
whatever is needed on hardware and software to achieve that
goal. What do you recommend as the best way to guarantee that
each user will have his or her own dedicated resources and can-
not impact each other?

A. Use CMP instead of CMP entity beans to access all
resources needed by a user.

B. Use JPA instead of entity beans to access all resources
needed by a user.

C. Use a JMS-based architecture with MDBs processing data
to access all resources needed by a user.

D. Use stateful session beans to access and retain all resources
needed by a user.

Answer: D. Only stateful session beans allow a JEE application
to dedicate resources to a user for the lifetime of their session.
Answers A, B, and C do not solve the core issue of ensuring that
a user is treated both fairly and also has access to all resources
needed. The usual argument against stateful session beans, lim-
ited system resources, is negated by the statement “…and is
happy to spend whatever is needed on hardware and software to
achieve that goal.”

6. ABC Corp is a small B2C reverse-auctioneering online busi-
ness. You have been asked to recommend a persistence strategy
for their new platform, which is a green field (that is, no exist-
ing code or database schemas) project. Top priorities are ease
of development and integration with EJB 3. What do you
recommend?

A. JDBC.
B. CMP entity beans.
C. BMP entity beans.
D. JPA.

Answer: D. Answers A, B, and C are certainly viable and are not
incorrect per se, but JPA offers the best integration with EJB 3
and has been designed with ease of development in mind. It is
important to note that this question engineers a situation
whereby JPA is the best option of all the options provided,
despite the other options being viable in their own right, as

67

ptg

Chapter 4 Business Tier Technologies

opposed to questions that provide one clearly correct answer,
surrounded with clearly incorrect answers.

7. In choosing how to model server-side components in a system
design as session and entity beans, what best describes the rela-
tionship between the two EJB types?

A. Inheritance.
B. Separation of concerns.
C. Common re-use principle.
D. Scalability.

Answer: B. Answers A, C, and D simply quote terms that apply
to EJBs, but do not speak directly to the primary difference
between them. Session beans act as server-side proxies for
clients, and entity beans serve as components that persist state in
a long-term fashion—a clear separation of concerns.

68

ptg

C H A P T E R 5

Integration and
Messaging

■ Explain possible approaches for communicating with an external
system from a Java EE-based system given an outline description
of those systems and outline the benefits and drawbacks of each
approach.

■ Explain typical uses of web services and XML over HTTP as
mechanisms to integrate distinct software components.

■ Explain how JCA and JMS are used to integrate distinct software
components as part of an overall JEE application.

■ Given a scenario, explain the appropriate messaging strategy to
satisfy the requirements.

Introduction

In this chapter, we address an aspect that is core to almost every Java EE
application in existence: how to send data to, and receive data from,
another system or application. In the real world of designing, building,
and managing Java EE applications, this is often a task of overriding
importance, especially for large businesses with pre-existing systems.
However, like all exam sections, it is no more or less important than its
peers as far as the SCEA exam goes; therefore, it merits only one chapter
in this book.

69

ptg

Chapter 5 Integration and Messaging

We review the seminal topics and specifications that you must know
in order to pass the exam, before moving on to consider each in turn.
Finally, we examine some sample scenarios to illustrate when one inte-
gration or messaging mechanism is more appropriate than another
before providing some searching questions to test your knowledge of
this particular topic.

Prerequisite Review

In order to get the most out of this chapter, you must be familiar with the
following topics and resources listed here. As we state multiple times in
the book, you are not required to know all the material here by rote or
memorization, but equally, you cannot claim to be a proficient architect
unless you understand clearly the purpose of each constituent part of the
JEE 5 platform. We also cannot attempt to provide you with a structure
to understand what the exam requires you to know unless you are famil-
iar and comfortable with the subject matter. In this chapter in particular,
a lot of the base material is Java and indeed JEE independent—the
problem of integration and messaging has been around long before Java
and affects all software architectures and programming languages. In
fact, by its very nature, a significant amount of the material you will
revise for this section of the exam is independent of the Java platform
because it absolutely needs to be. The relevant topics and specifications
(with relevant Java Specification Request, or JSR, numbers) are as fol-
lows:

■ Web services, using SOAP as the messaging protocol—
Independent of any Java implementations

■ RESTful (Representational State Transfer) web services—Again,
independent of any Java implementations or preconceptions

■ Web services for Java EE 1.2 Requirements—JSR 109
■ Java API for XML Web Services (JAX-WS) 2.0—JSR 224
■ Java Architecture for XML Binding (JAXB) 2.0—JSR 222
■ SOAP with Attachments API for Java (SAAJ) 1.3—JSR 67
■ Java API for XML-based RPC (JAX-RPC) 1.1—JSR 101

70

ptg

Prerequisite Review

■ Java API for XML Registries (JAXR) 1.0—JSR 93
■ Java Messaging Service (JMS) 1.1—JSR not applicable
■ The Java Connector Architecture (JCA) version 1.5

We do not cover these topics/specifications in complete detail here (that
would easily take up a book in its own right). However, we will cover the
most seminal aspects and use cases for each, with a focus on what mat-
ters for the exam.

Web Services

A web service is a piece of software designed to allow system-to-system
communication over a network. The vast majority of web services in
existence today communicate using SOAP or XML over the HTTP or
HTTPS protocols; however, the more general concept of a web service,
as defined by the W3C, allows for multiple transport and data protocols.
Web services started out as a simple concept but have since grown to
encompass all the characteristics that any mature integration technology
must, addressing the issues of security, reliability, and transactions
through the WS-Security, WS-ReliableMessaging, WS-Coordination,
and WS-AtomicTransactions specifications. As an architect, you must
decide whether your application needs these additional capabilities
above and beyond the WS-I Basic Profile. From an exam perspective,
you must understand at a high level what each of these specifications
does and how it is or is not addressed in the JEE platform.

SOAP

Simple Object Access Protocol (SOAP) is an XML-based extensible
method of representing data. Web services can be written to consume
and emit SOAP-based messages or XML messages. SOAP has the bene-
fit of adding more information (via the envelope, encoding rules, and
data representation conventions) over “raw XML,” but the drawback of
being more complex and introduces more overhead—both in terms of
on-the-wire transmission size and message parsing resources. There is
an ongoing battle in the web community between adherents of SOAP-
centric and XML-centric messaging. You need to know both approaches
and appreciate where each is more appropriate for the exam, although
the exam itself has no bias toward one or the other.

71

ptg

Chapter 5 Integration and Messaging

WSDL

Web Services Description Language (WSDL) is a descriptor for web
services, defining the information needed to access and consume a web
service. Integrated development environments (IDEs) and tools from
Netbeans to Eclipse to Visual Studio focus on making developer’s lives
easier by generating as much client/access code as possible from WSDL.

JAX-RPC

In this acronym, the JAX stem stands for Java API for XML-based,
whereas the RPC stem stands for Remote Procedure Call. This API
stems from an earlier revision of the Java EE specification and was cre-
ated quickly to add web services support to the platform. Web services
semantics were based on an older integration model known as RPC.
JAX-RPC is destined for eventual deprecation and removal from the
Java EE standard and has already been effectively replaced by JAX-WS.
Your study of this API for the exam should focus on why JAX-WS is a
better replacement for it.

JAX-WS

JAX-WS is the primary Java API for XML-based web services, both
SOAP based and RESTful. As outlined previously, this API now repre-
sents the preferred way to access web services in the Java EE 5 platform
and, as such, is a very important API to focus on in your revision studies.
In fact, the JAX-WS specification itself states that “JAX-WS 2.0 (this
specification) is a follow-on to JAX-RPC 1.1, extending it as described in
the following sections.” Simply using annotations such as @ WebService
and @WebMethod enable developers to expose functionality as Service
Endpoint Interfaces or SEIs easily. The JAX-WS API uses lower-level
APIs such as JAXB, SAAJ (Soap with Attachments API for Java), JAXP
(Java API for XML Parsing), and StAX (Streaming API for XML) to pro-
vide core support for basic web services to the Java EE platform—that
is, the WS-I Basic Profile.

JAXB

JAXB stands for Java API for XML Binding. This API enables develop-
ers to create mappings from Java object representations to their XML
equivalents (both schemas and data) and vice versa. Before JAXB, a

72

ptg

Prerequisite Review

significant percentage of integration code was devoted to the task of
marshaling and un-marshaling XML data into their Java object equiva-
lents, which was a time-consuming and error-prone development task.
JAXB assumes that workload, and tries to minimize the runtime over-
head of doing this over hand-crafted code. JAXB is used heavily by the
main web services specification in the JEE platform: JAX-WS.

JAXR

JAXR stands for Java API for XML Registries. Like the registries them-
selves, this API has seen little adoption since its inception and is not an
important part of the platform to focus on. Historically (going back to
2000), the vision for web services was that architects would access cen-
tral repositories like UDDI using JAXR to somehow create system archi-
tectures on the fly that would meet business requirements. In fact, IBM
ran an ad showing a business man switching his company’s preferred
widget supplier on the fly based on a web search! Time has moved on,
and we know that people do business with people, not with web services.
JAXR will be put out to pasture—if not in JEE 6, then certainly in JEE 7.
By all means, know what it does and what its purpose is (was), but it’s
presence in the exam is very small.

JMS

We now move on to cover the non-web services integration elements of
the Java EE platform. The Java Messaging Service (JMS) is the core
messaging infrastructure used within the JEE platform to allow asyn-
chronous Java to Java integration via queues or topics. It is technically
possible to have a .NET application placing messages on a JMS queue,
but most architects would favor using web services in that scenario, for
reasons we will cover later in this chapter. Another way to look at JMS is
as the preferred mechanism for intra-company integrations, where the
architect can control both the message producer and consumer. In that
scenario, JMS can provide a better solution than the main competing
alternative: web services.

JMS is a very simple concept. Any Java class (the JMS client) can
create a message (there are multiple types), look up via JNDI or have a
reference to a JMS queue or topic (the JMS Provider) injected by the
container, and then send a message, which is delivered to another JMS
client that has registered with the JMS Provider. In a JEE application,

73

ptg

Chapter 5 Integration and Messaging

message-driven beans or MDBs (see Chapter 4, “Business Tier Tech-
nologies,” for more details on enterprise beans in general) are the most
logical way to consume messages from a JMS Provider. Figure 5-1 illus-
trates the lifecycle for an MDB as managed by the container. JMS is a
very important part of the exam, and you should devote serious time to
it, along with web services support, when revising for Part I.

74

The MDB class definition
and configuration is

valid and accessible by
the container, but has not

yet been instantiated.

Does not exist

Before removing the
MDB from service,

the PreDestroy method
is invoked if coded.

Destroyed by
the container

Any dependencies are
injected, and if coded

 the PostConstruct
method is invoked.

Prepared by
the container

The MDB serves onMessage()
calls triggered by

messages
arriving to the bound

Queue or Topic.

In service

Figure 5-1 The basic lifecycle of a message-driven bean is quite simple—its sole
raison d’etre is to process messages sent to its bound JMS queue or topic.

JCA

Java Connector Architecture (JCA) provides a standardized access
mechanism to Enterprise Information Sources or EISs from the Java
EE platform. It is fair to say that JCA is used less heavily in the real
world than either web services or JMS; nevertheless, it still has its place,
especially in wrapping legacy applications that still have business value
and exposing their functionality as a well-formed API for consumption
by Java EE applications. The need for JCA varies widely by industry; for
example, Web 2.0 companies building social network applications have
no need for JCA whatsoever. Financial services companies, with a sub-
stantial investment in legacy systems that still meet business require-
ments, use JCA widely to expose these EISs to a Java EE application
server and thus lend the EIS a new lease of life.

ptg

Discussion

Discussion

Integration and messaging is a wide-ranging topic, but we must attempt
to impose some structure on it in order to define the problem space. We
define integration as follows:

Integration is the process by which information is passed between
two or more distinct software entities.

That’s the simplest definition we can provide. We now expand that defi-
nition by asking the following series of questions:

■ Is the transfer of information synchronous or asynchronous?
■ Is the transfer of information acknowledged?
■ Is the transfer of information transactional?
■ Does the transfer of information occur in batches composed of

multiple messages or one message at a time?
■ Does the transfer of information require message-level or

transport-level encryption?
■ Does the transfer of information occur between systems built

using the same technology or different technologies?
■ Does the transfer of information use a technology-specific mes-

saging/transport protocol or a technology-independent protocol?

Asking these questions and considering the answers holistically leads the
architect to select the most appropriate messaging implementation that
meets the immediate business requirements. The comprehensive sup-
port for integration present in the Java EE platform (and other equiva-
lent platforms) is a reflection of the fact that the size of the integration
problem space is large—even when described simplistically using the
approach adopted previously. In general, however, we can boil down a
myriad of integration and messaging scenarios into a set of major scenar-
ios that warrant further analysis.

Java to Java Integration

A substantial class of integration projects require two systems imple-
mented on the Java platform to pass information between each other.
For these projects, adopting a solution that introduces overhead in the

75

ptg

Chapter 5 Integration and Messaging

form of a more verbose data representation or that is Java-independent
is, on the face of it, only warranted if a non-Java system can be expected
to also integrate with the systems currently under consideration. Never-
theless, many real-world projects use web services to integrate Java sys-
tems together, especially if the development team already has the
necessary skill set. Nonetheless, there is one major component of the
Java EE 5 platform that deals precisely with the Java to Java require-
ment: Java Messaging Service (JMS), which is discussed next.

Java Messaging Service (JMS)

By design, JMS is intrinsically asynchronous. Although synchronous
semantics can be emulated, this goes against the design intent of JMS.
JMS supports the following:

■ Publish-subscribe and point-to-point messaging models.
■ Message delivery acknowledgments.
■ Message-level encryption.
■ Distributed transactions via integration with the Java Transaction

API (JTA), using the XAConnectionFactory, XAConnection, and
XASession objects/interfaces.

In short, JMS is a mature and significant element of the overall platform
and is treated as such in the exam.

Java to Non-Java Integration

When integrating a Java system to an external system not owned or con-
trolled by the architect, web services are typically needed and used; JMS
is not appropriate (although technically it can, and indeed has, been
done) for this family of scenarios. In fact, there are two options open to
the software architect using JEE: web services using SOAP or RESTful
semantics and the Java Connector Architecture (JCA).

Web Services

Web services are more suitable because:

■ Web services were intrinsically designed to facilitate the integra-
tion of heterogeneous systems; JMS wasn’t.

76

ptg

Discussion

■ JMS is optimized for Java producers and consumers of messages.
■ Using web services ensures that if the underlying implementation

of the other system changes, as long as the web services contract
as described in the WSDL is maintained, the other system(s) will
not be impacted.

■ Using web services is truly technology independent, admitting
non-Java implementations as both producers and consumers of
messages.

Within web services, the architect faces another decision: whether to
embrace SOAP messages or to use a simpler, but less self-describing
message format such as simple XML. The decision on which to use
depends on the specifics of the problem at hand. Proponents of XML-
RPC are proponents because of its simpler programming model, on-the-
wire representation of data, and lower runtime overhead. Adherents of
SOAP, on the other hand, value its total commitment to self-describing
interoperability, at the expense of a steeper learning curve, more ver-
bose representation, and higher runtime overhead to construct and
parse SOAP messages than a leaner alternative. Both models are cov-
ered in the exam, as each is appropriate and valid in certain circum-
stances.

Java Connector Architecture (JCA)

JCA is used to provide standardized access to an existing enterprise
information system (EIS) from the JEE platform. Frequently, but not
necessarily, these EISs are mainframe systems (green screen scraping
and so on). A complete JCA system will have three main components:
the EIS itself, the resource adaptor that implements the connector spec-
ification, and the Java EE-compliant application server, which uses the
resource adaptor to access the EIS. The JCA focuses on the non-func-
tional characteristics you would expect for a part of the JEE platform
targeted squarely at large, established systems—for example, full sup-
port for transaction context propagation to preserve Atomicity, Consis-
tency, Isolation, and Durability (ACID) semantics across application
boundaries, scalability, and correct recovery from failed/interrupted
operations.

77

ptg

Chapter 5 Integration and Messaging

Essential Points

■ The Java EE 5 platform supports multiple methods to support
application integration and messaging, both between Java-based
systems and between Java and non-Java systems. The choice of
which mechanism to use should always be driven by the business
requirements and existing architecture.

■ We have proposed a set of questions that when answered, should
point toward the most appropriate solution to any given scenario.
Key requirements to identify and take into account are synchro-
nous vs. asynchronous, security, transactions, guaranteed delivery,
the nature of the sending and receiving system and the need for
interoperability. Put together, these topics provide you with a
general framework to select the right approach for a given inte-
gration scenario every time.

■ The Java EE 5 platform provides comprehensive support for web
services, through multiple specifications. Of these specifications,
JAX-WS 2.0, along with JAXB, is the most important to revise.

■ The core asynchronous messaging technology used in the JEE 5
platform between Java systems is JMS, or the Java Message Ser-
vice.

■ The Java Connector Architecture, or JCA, is used to integrate the
JEE 5 platform with Enterprise Information Systems (EISs).
These are typically mainframe-based, legacy systems that need to
be exposed via a resource adaptor as a service that can be invoked
by code running within a Java EE application server.

Review Your Progress

These questions test your level of accomplishment in analyzing the inte-
gration requirements for a given scenario:

1. You have been asked to recommend an asynchronous integra-
tion mechanism between two systems, A and B, both written in
Java. What do you recommend?

78

ptg

Review Your Progress

A. Web services
B. Java Connector Architecture (JCA)
C. JMS
D. Session beans

Answer: C. For the stated problem domain (an asynchronous
connector between two Java-based systems), JMS is the only
appropriate choice. The other three options are viable mecha-
nisms, but far less efficient options.

2. You have been asked to recommend an integration mechanism
for two systems, A and B, but only A is written in Java. What do
you recommend?

A. Web services
B. Java Connector Architecture (JCA)
C. JMS
D. Session beans

Answer: A. A logical continuation of the first question, in this
question, we remove the fact that both system A and B are Java-
based. We also remove the fact that an asynchronous connector
is required. This removes JMS. Answer B is not warranted
because neither system is an Enterprise Information Source
(EIS). Answer D does not address the non-Java component.
Because of the interoperability features of web services, Answer
A is the correct option.

3. What are two web service support features in Java EE? (Select
all that apply.)

A. Generating a web service from an entity class
B. Generating a Java class from a WSDL file
C. Generating a web service from a stateful session bean
D. Associating a JMS queue with a WSDL file
E. Generating a web service from a stateless session bean

Answers: B and E. Answer A is not possible, nor is answer C—
only stateless session beans can act as web service end point
implementations. Answer D attempts to combine two concepts
that make no sense: a delivery mechanism for asynchronous

79

ptg

Chapter 5 Integration and Messaging

Java, and Java messaging with a descriptor for a web service.
Answers B and E are core elements of the JEE support for web
services.

4. Merchant bank XYZ has an existing Enterprise Information
Source (EIS) that is to be used on a new online banking project.
You have been tasked with recommending how this should be
achieved. (Select the most appropriate solution.)

A. Expose the EIS using JSPs, Servlets, and EJBs.
B. Expose the EIS as a JCA-compliant resource adaptor.
C. Expose the EIS as an entity bean using JPA.
D. Expose the EIS using JMS.

Answer: B. When it’s an EIS that needs integrating, JCA is
always top of the list. The other answers could be made to work
eventually, but are clearly sub-optimal when compared to B.

5. ABC is a commodity marketplace, accepting millions of bids on
items from wheat to pork bellies every day. Bids are queued and
processed offline. You have been asked to recommend the inter-
face to use between the Java application server that hosts the
presentation tier and the Java application server that hosts the
marketplace itself. What do you recommend?

A. A Java Connector Architecture-compliant resource adaptor
B. A JMS queue with message-driven beans to process incom-

ing messages
C. Entity beans built using JPA
D. A web service

Answer: B. The cues in the question to select B are the Java-to-
Java nature of the integration and the fact that bids are not
processed immediately. They are processed offline (that is, asyn-
chronously), which is a key indicator that a JMS solution is the
right answer. None of the other answers—A, C, and D—meet
the dual requirements of asynchronousity and Java–Java inte-
gration.

80

ptg

Review Your Progress

6. ACME Corporation has just acquired ABC Corp—its biggest
competitor. ACME uses Java technology extensively, while ABC
Corp uses the Microsoft .NET platform. You have been tasked
with recommending an interim integration solution that will
allow ACME to leverage ABC resources from the outset, while
minimizing the time, cost, and risk of doing this. What do you
recommend?

A. A JMS queue, with MDBs consuming messages sent from
ABC Corp systems

B. A JCA-compliant resource adaptor between ACME and
ABC

C. A web services layer between ACME and ABC
D. Re-implement ABC’s business logic using JSF, stateless ses-

sion beans, and JPA

Answer: D. Given the business problem description, web serv-
ices is the most appropriate manner to integrate code written on
the .NET platform into ACME’s systems, while minimizing
time, cost, and risk to the company. Answer A is not appropriate
given the heterogeneous nature of ACME and ABC systems, B
is not appropriate because ABC’s systems are not legacy, and D,
although potentially a longer-term solution or roadmap, does not
minimize time, cost, or risk.

7. From the following list, select the most relevant characteristics
of a service-oriented architecture (SOA)-based system. (Select
all that apply.)

A. Entity classes performance
B. Loose coupling
C. XML web services
D. Stateful session handling in a load-balanced cluster
E. Well-defined contracts between message producers and

consumers

Answers: B and E. Answer A is a red herring, as are answers C
and D. Although all are valid concerns, none of these options
will be directly improved or degraded through the adoption of
SOA. However, answers B and E are directly impacted by the
adoption of SOA in a system architecture.

81

ptg

Chapter 5 Integration and Messaging

8. ACME bank is launching a new SMS notification service to
notify (informational messages only) customers via their mobile
phones of transactions and account changes. ACME bank oper-
ates world-wide and has over 500 million named customers, and
expected message volumes are high. What is the most scalable
way for ACME bank to send messages to the mobile device noti-
fication channel for onward transmission as SMS text messages?
(Select the best answer.)

A. Guaranteed messaging using message-driven beans (MDBs)
consuming messages from a JMS queue populated by the
systems of record

B. Web services retrieving records of interest directly from the
core systems

C. Unguaranteed messaging using message-driven beans
(MDBs) consuming messages from a JMS queue populated
by the systems of record

D. Stateless session beans retrieving records of interest directly
from the core systems using XML messaging

Answer: C. Answers B and D tightly couple the systems
together, reducing scalability. Answer A requires guaranteed
messaging when the messages are informational only. Answer C
fulfills the business requirements in the best and most complete
fashion.

82

ptg

C H A P T E R 6

Security

■ Explain the client-side security model for the Java SE environ-
ment, including the Web Start and applet deployment modes.

■ Given an architectural system specification, select appropriate
locations for implementation of specified security features, and
select suitable technologies for implementation of those features.

■ Identify and classify potential threats to a system and describe
how a given architecture will address the threats.

■ Describe the commonly used declarative and programmatic
methods used to secure applications built on the Java EE plat-
form—for example, use of deployment descriptors and JAAS.

Introduction

Security is quite possibly the most overlooked aspect of many JEE-based
systems, yet failure to ensure that a system is properly secured possesses
the most potential to inflict serious damage to the underlying business.
As a JEE architect, you must understand the Java security model not just
on the server, but on the client as well—thus the inclusion of the first
item in the previous objectives list for this section. The primary security-
related objectives of any JEE system are as follows:

■ Confidentiality—Ensure that the system data and functions are
protected from unauthorized access.

■ Integrity—Ensure (provably) that system data has not been
modified or interfered with by a third party (malicious or not).

■ Authentication—Ensure that the identity of a user or a remote
system accessing the system is valid and correct and has not been
impersonated or compromised in any way.

83

ptg

Chapter 6 Security

■ Authorization—Ensure that a valid, authenticated user or
remote system has the appropriate rights to access system data or
execute system functions.

■ Non-Repudiation—Ensure that all actions, once performed,
cannot be denied by the user or the system itself.

Depending on the industry setting, the use cases you have to solve, and
the nature of the business itself, the importance attached to each of
these characteristics varies. (For example, anyone can visit www.google.
com and execute a search; far fewer people can access a search engine
for classified military matters run by a defense company.) In this chapter,
we address security as it is addressed by the JEE platform, honing in
where appropriate on topics that we believe are especially relevant to
the exam situation.

Prerequisite Review

You must be familiar with the following topics and resources relating to
security listed here. You are not required to know all of the material here
by rote or memorization, but equally, you cannot claim to be a proficient
architect unless you understand clearly the underpinnings of the Java
security model and how it is then extended and leveraged in higher
architecture tiers in the JEE environment. The relevant topics and spec-
ifications (with relevant Java Specification Request, or JSR, numbers)
are as follows:

■ The Java Language Specification (JLS), version 3.0.
■ The JAAS API: http://java.sun.com/j2se/1.5.0/docs/guide/

security/jaas/JAASRefGuide.html (Note: The official link is
http://java.sun.com/products/jaas, but this link simply redirects to
the Java SE Security home page.)

■ The WS-Security home page (purely for background reading):
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss#technical.

■ Chapter 3 of the Java EE 5 specification.

84

ptg

Prerequisite Review

We examine the seminal aspects and use cases of security in more detail.
First, we run through some of the most important security-related con-
cepts in the JEE.

JRE

The sandbox of the Java Runtime Environment (JRE) is a fundamental
property of the Java runtime environment and is the basis for all other
security layers in the Java programming model. Simply put, the design-
ers of the Java programming language and runtime gave careful consid-
eration to security at design time as well as implementation time, and
this has provided higher-level security APIs and abstractions a firm foun-
dation to build on. Basics provided by the JRE/Java programming lan-
guage include: automatic memory management, strong typing, bytecode
verification, and secure class loading. For exam purposes, take all of this
as a given, and focus your revision and study efforts on the security APIs
and capabilities built on top of these basic capabilities in the JEE plat-
form, including the difference between sandboxed applets and regular
Java applications.

JAAS

JAAS, or the Java Authentication and Authorization Service, is the
general mechanism supplied by the Java Virtual Machine (JVM), allowing
Java code to identify users and roles before allowing or denying access to
resources or functionality controlled by the JVM. JAAS was originally a
modular install for the JVM but is now built into the JVM and is required
by the JEE 5 specification. JAAS supports pluggable authentication and
authorization modules, making it possible for architects to integrate exist-
ing security services into JAAS. Moreover, the standard JAAS implemen-
tation ships with connectors that implement authentication protocols—
for example, the Kerberos module.

Credential

A credential is a container of information used to authenticate a princi-
pal (discussed next) to the System under Development (SuD). Creden-
tials vary significantly depending on the authentication protocol or
system used (that is, they are mechanism specific). However, the core

85

ptg

Chapter 6 Security

purpose is the same—a credential is a structured set of information that
an authentication module uses to either allow or deny access to the SuD.

Principal

A principal is an entity (a person or system that can be uniquely identi-
fied) that can be authenticated by a JEE security module before SuD
system access is allowed or denied.

Authentication

Authentication is the process by which the SuD examines the creden-
tials of a named principal in order to recognize that principal as a named
user of the SuD. An end user can authenticate to a JEE application using
either a web client (that is, a JSP/JSF presentation tier), or an application
client (a client-side Java application or applet). The JEE 5 platform
requires that all application servers support three specific authentication
methods: HTTP basic authentication, SSL mutual authentication, and
form-based login.

Authorization

Authorization is the process by which a named principal (who is
already authenticated to the SuD) is allowed or disallowed access to a
protected SuD named resource based on the permissions granted either
directly to them or indirectly through group or role membership. The
JEE security model employs a role-based access control mechanism that
abstract principals from permissions by the introduction of roles. A prin-
cipal may belong to one or more roles, and those roles may have zero or
more permissions assigned to them.

Discussion

Security is the perennial hot topic in the enterprise application space.
Often overlooked in development and under-tested in QA, the security
aspects of all applications, including JEE applications, undergo greater
scrutiny as corporations of all shapes and sizes realize their potential
exposure if data is compromised. Despite its unwieldiness in some

86

ptg

Discussion

scenarios, the JEE platform has robust support for ensuring that a JEE
application can do the following:

■ Control access to application data as necessary with fine
granularity

■ Control access to application business logic as necessary with
fine granularity

■ Encrypt and decrypt data as necessary to provide secure
messaging

■ Co-operate with existing enterprise resource systems (ERSs) to
control access to data and business logic contained within those
ERSs as necessary

These capabilities are not accidental. From its inception, the JEE plat-
form has been designed and enhanced to meet the needs of applications
that need a strong and comprehensive security model end to end. We
now consider the most important features of the JEE platform.

Client-Side Security

In this section, we need to consider applets run by the browser via the
Java plug-in and applications deployed via Java Web Start or installed
directly on the machine.

Both Web Start applications and applets run inside a sandbox envi-
ronment, which allows the end user to control what client-side resources
the code can and cannot access or modify. Compiled Java bytecode must
be signed before it can request access to these resources—all code
attempting to access client-side resources, such as the local file system,
or to open a socket to another server will prompt the end user with a
modal dialog to permit or deny the operation.

Java applications installed directly onto a client machine do not run
inside a sandbox, and no permissions are checked before an operation is
executed.

Regardless of how an application has been deployed to a remote
machine, once there the architect’s job is to ensure that sensitive data
passed between the server and the client is encrypted and impenetrable
to malicious entities. The easiest way to achieve this is to encrypt all data
using Secure Sockets Layer (SSL). Java supports this both to encrypt
RMI traffic (RMI over SSL) and to encrypt HTTP traffic (HTTP over
SSL, or HTTPS).

87

ptg

Chapter 6 Security

Server-Side Security

Here we need to consider the EJB and web containers, JMS, and access
to Enterprise Information Stores (EISs), which are discussed next.

EJB Container

The EJB container provides two methods on the EJBContext interface
to allow developers to programmatically check a user’s permission
before invoking a method containing potentially sensitive business logic.
These methods are as follows:

■ isCallerInRole

■ getCallerPrincipal

Looking beyond these methods, developers also control code running in
the EJB container using declarations—specifying at design time what
users and roles can access specific EJB methods. The method-permission
element contains a list of methods that can be accessed by a named role.
Finally, the EJB container enables the developer to define a “run as”
capability, whereby the original identity of the caller is substituted in
favor of an identity defined declaratively.

Web Container

Like the EJB container, Servlets and JSPs running in the web container
also have access to security information at runtime to decide whether to
allow or deny access to incoming requests. These methods are part of
the HttpServletRequest interface and are as follows:

■ isUserInRole

■ getUserPrincipal

From a security perspective, the web container typically has to do more
work than the EJB container as it is the external face of the application.
Many JEE applications are designed around the premise that the web
layer does most, if not all, of the security work (authentication and
authorization). If a request makes it through the web layer, many sys-
tems allow that request unquestioned access to the SuD resources. The

88

ptg

Discussion

primary mechanism used to allow or deny a named user access to SuD
functionality is simply to use URL authorization. In this mechanism, the
URLs of the application are defined to have a specific security meaning
that can be ascertained using regular expressions—for example, “all
URLs of the form /admin/* should only be accessible to users that have
been assigned the Administrator role.” At design time, these rules are
captured in the web.xml for the web application, and the web server
uses these rules at runtime to enforce access—that is, the web server’s
security policy is derived from the deployment descriptor.

We can capture the sequence of events that occur when a user
attempts to access a secured resource via a URL, as follows:

■ On the first attempt to access a secured resource, the user is redi-
rected to a login page by the web server, which detects that the
user in question has not been authenticated or authorized.

■ The user fills in a form that collects the required authentication
data (usually a username and password, but this can vary).

■ This form is posted back to the web server where the user is vali-
dated by the web server.

■ The web server sets a credential for the user for the duration of
the session to determine what resources can and cannot be
accessed or invoked by the user in question.

Figure 6-1 depicts the sequence of steps in diagrammatic form.

Putting the EJB Container and Web Container Together

The EJB container and web container maintain separate security con-
texts, each derived at runtime from information contained in the EJB
and web deployment descriptors. Therefore, when a web resource (for
example, a JSP page) attempts to invoke an EJB resource to complete a
business action, the EJB container first uses the security context/creden-
tial associated with the JSP call to authorize (or reject) the request. If the
request is authorized, the web container passes control of the request to
the EJB container and, when completed, the result of the operation is
returned to the web container for further processing, and ultimately to
be displayed to the end user.

89

ptg

Chapter 6 Security

Figure 6-1 The set of steps involved in authenticating and authorizing access to a
controlled resource by a JEE web server.

Web Service Security

The standardization of all aspects of web services is a moving feast,
because of its main use case—to allow heterogeneous systems to inter-
operate. The security aspects of web services are no different. Web serv-
ices security is defined in the WS-Security standards controlled by
OASIS. Broadly speaking, WS-Security addresses the topic of web serv-
ices security as follows:

� Authentication and authorization—Using credentials.
� Message-level data integrity—Using XML signatures.
� Message-level and transport confidentiality—Using

encryption.

As far as the JEE 5 platform goes, support for web services security is
not as complete as desired, and it is likely that this aspect of the platform
will be tightened up in the JEE 6 release, via initiatives such as Project

90

Additional security checks
possible using programmatic
security

Behavior defined
declaratively

Separate security context

A
uthorization

C
redential

JSP /
servlet

Access request
for a protected
resource

Web client

Web server

Separate security context

A
uthorization

EJB

EJB container

ptg

Discussion

Metro (https://metro.dev.java.net/) and the XML and Web Services
Security Project XWSS (https://xwss.dev.java.net/).

As far as this discussion goes, we simply relate what is set in stone in
section 11.3.2 of JSR 224 (the JSR describing JAX-WS; see Chapter 5,
“Integration and Messaging,” for more details on JAX-WS), namely that
all JEE 5-compliant servers with an implementation of the XML/HTTP
binding must support HTTP basic authentication using two properties
to configure authentication information (javax.xml.ws.security.
auth.username and javax.xml.ws.security.auth.password).

In addition to this authentication support, transport-level encryption
is also supported. However, message-level encryption is not supported
or required in a standard implementation, although multiple mecha-
nisms do exist to support message-level encryption if required.

How Security Behavior Is Defined

In this section, we examine how the JEE application serves is instructed
on how to enforce a desired security policy for a JEE application. In
short, there are two distinct ways for a programmer/application assem-
bler to express how an application should perform security tasks, such as
user authentication and authorization, declaratively and programmati-
cally. We now examine each in turn.

Declarative Security

In the declarative security model, the JVM is instructed on the valid
users and roles for the system under consideration via a well-formed
XML file (the deployment descriptor) and the specific resources and
operations that those users and roles can access and execute in the JVM.
This method of security definition is especially pervasive in the JEE
environment, and is implemented in the EJB and Servlet containers.
The programmer or architect expresses his or her intent with regard to
security by providing details on security roles, access control, and
authentication requirements in the deployment descriptor, which is then
transformed by the container at run-time into its internal representation
or security policy dictating how to govern the application’s security. This
method has a number of advantages over programmatic security:

■ The security configuration is obvious, self-evident, and contained
in one place.

91

ptg

Chapter 6 Security

■ The security configuration can be modified at deployment time
without needing to recompile source code, making the applica-
tion more configurable.

Finally, a new addition to the JEE 5 platform is the addition of annota-
tions, in sympathy with the overall design intent of striving to make the
JEE 5 platform as easy to program as possible. Instead of needing to
compose a large and often-complex EJB or web deployment descriptor,
the programmer can simply use annotations such as javax.annota-
tion.security.RolesAllowed to instruct the relevant container
directly in the source code. This is not the same as programmatic secu-
rity (discussed next), where the programmer calls specific methods in
order to decide how to service a business request; annotations are a
more programmer-friendly way of defining security in a declarative fash-
ion. If desired, the application assembler can choose to override the val-
ues embedded in the source code of the application at deployment time
if the default values do not suffice for the intended use.

Programmatic Security

In addition to or instead of declarative security, the JVM can also execute
security checks that are not defined in an external deployment descrip-
tor, but defined in the running code itself. Programmatic security refers
to security intents expressed directly within the code of a JEE applica-
tion—that is, not externalized to a separate dedicated section of the
deployment descriptor. The four methods listed next allow server-side
components to service incoming requests taking into account the iden-
tity (including role and permissions) of the caller. In practice, most
applications use a combination of both declarative and programmatic
security checks to provide a higher level of security than either approach
alone. The key methods to be aware of that provide access to security
information are the following:

■ isCallerInRole (EJBContext)
■ getCallerPrincipal (EJBContext)
■ isUserInRole (HttpServletRequest)
■ getUserPrincipal (HttpServletRequest)

92

ptg

Discussion

Commonly Encountered Security Threats

In this section, we touch on the most commonly encountered security
threats and how they are typically addressed in JEE applications. No
security threat list can ever be truly exhaustive or up to date, however,
and the reader is encouraged to augment this section with online
research. Here are some of these security threats:

■ Man in the middle attacks—An attack where the malicious
party intercepts messages sent between the client and server as
part of a valid conversation or transaction, either to gain access to
unauthorized information or to achieve an outcome favorable to
the malicious party. Encrypting all network traffic using strong
SSL guards effectively against this attack.

■ Session hijacking (replaying data)—An attack related to man
in the middle where the malicious party inspects the SuD and
identifies how the server recognizes connected clients. The mali-
cious party then steals the identity of a real client and uses that to
interact with the server—again, typically either to gain unautho-
rized access to data or to achieve an outcome desirable to the
malicious party and undesirable to the trusted party. Strong data
encryption helps here, but architects must also ensure that no
sensitive information is used in the application URL that would
help a hacker to hijack a session.

■ Password cracking—An attack where brute force is used to
repeatedly attempt to login as a valid user by guessing their pass-
word. This attack can be easily countered using business logic that
places minimum complexity rules on passwords selected by users
and also shuts the user out of the system if more than a specified
number of login attempts fail.

■ Phishing—An attack where users are misdirected to a false or
hoax version of the SuD and tricked into releasing sensitive infor-
mation. The valid information is then used by the malicious party
to gain access to the SuD. Phishing is as much about educating
users as it is an engineering problem, but server-side approaches
include monitoring for unusual SuD activity on the part of users.

93

ptg

Chapter 6 Security

■ Social hacking—An attack where social engineering often
involving members of the opposite sex are used to gain unautho-
rized access to the SuD. At the time of writing, no Java API or
library existed to counter this insidious, yet exciting, attack vector.

■ Network sniffing—One of the simplest and oldest attacks;
unencrypted data is simply read from the network using a sniffing
tool. Typically, man in the middle, session hijack attacks, and so on
are built on top of a sniffing attack. Strong data encryption is an
effective and easy response to this threat.

■ For web applications that use JavaScript or XSS (cross-site
scripting, Type 0, 1, and 2) attacks—In general, the advent of
rich internet applications (RIAs) introduce security risks that a
JEE architect must be aware of and resolve.

Defining a Security Model

The scope of security is wide-ranging, with serious implications if any
compromise occurs. Therefore, the JEE architect is well advised to cre-
ate and maintain a security model—effectively, a roadmap or blueprint
that explains how their JEE application enforces security, across all of
the topics and threats covered in this chapter. The model itself will not
guarantee a secure application, but it will serve to ensure that the archi-
tect considers the threats faced and the measures employed to counter-
act them. At a minimum, the model should cover the following:

■ Underlying system infrastructure (hardware, including the net-
working layer and components)

■ User authentication
■ User authorization
■ Auditing
■ Data encryption
■ System hardening against specific attacks, as detailed in the previ-

ous “Commonly Encountered Security Threats” section

94

ptg

Review Your Progress

Essential Points

• Security is a cross-cutting concern across all layers of a JEE appli-
cation—from the client to the persistence tier.

• JEE’s approach to security is robust. The underlying Java plat-
form possesses basic capabilities that eliminate memory buffer
attacks and so on. JEE augments that capability with the tools that
allow a JEE architect to both programmatically and declaratively
define who should have access and to what in the SuD.

Review Your Progress

These questions test your level of accomplishment in analyzing the inte-
gration requirements for a given scenario:

1. You are the architect for a social networking application that
allows users to leave comments for other users. Recently, a spate
of hacker attacks have disrupted the site, reducing revenue from
site partners and advertising. Of the attack types listed next,
which two can be addressed by ensuring that all special charac-
ters/word sequences are removed from all free text inputs on the
web site?

A. Buffer overflow
B. Cross-site scripting
C. SQL injection
D. Permission errors

Answers: C and D. Patrolling and validating the free text ele-
ments of a web application is directly relevant and essential to
ensuring that XSS attacks and malicious SQL commands cannot
be executed. Answer A is a misnomer, as is D.

95

ptg

Chapter 6 Security

2. Which two checks are made possible in the byte-code veri-
fication?

A. Memory usage is controlled.
B. Access to some files is checked.
C. Digital signatures are verified.
D. Data type conversions are checked/controlled.
E. The language access restrictions (for example, private or

protected) are respected.

Answers: C and E. A, D, and B are not checked by the process
of byte code verification, as evidenced by the fact that Java appli-
cations can run out of memory, access to a given file can be
denied at runtime, and casting exceptions can also occur at run-
time.

3. You are architecting a DVD rental application that accepts cus-
tomer feedback. Users can rank movies from one to five by click-
ing on buttons, as well as input comments about the movie into a
text box. Which two can be addressed by filtering special charac-
ters from text boxes on JSP forms? (Select all that apply.)

A. SQL injection
B. Buffer overflow
C. Authorization errors
D. Cross-site scripting
E. Rootkit attacks

Answers: A and D. Answer B cannot occur in a Java runtime
environment, whereas C and E are general security issues, and
not directly related to the issue of validating free text entry by
end users (malicious or otherwise).

4. The web pages in a system are carefully designed so that links to
security-sensitive URLs are not available in pages offered to
untrusted users. Which statement is true? (Select the best
answer.)

A. The system security is adequately protected by this
approach.

B. Every security-sensitive target must be additionally pro-
tected using the declarative security model.

96

ptg

Review Your Progress

C. The system security is adequately protected by this
approach, provided only POST requests are accepted by the
server.

D. The system security is adequately protected by this
approach, provided only GET requests are accepted by the
server.

Answer: B. Answers A, C, and D all represent a lax or incom-
plete attitude toward the risk of an untrusted user using basic
techniques to identify the fully qualified names of the security-
sensitive URLs. Only choosing to use the declarative security
model (answer B), which forces authentication and authoriza-
tion, is a true reflection of the security needed.

5. Security restrictions in a use-case require that the behavior of an
EJB business method vary according to the role of the user. How
should this be achieved? (Select the best answer.)

A. The deployment descriptor is written using the roles deter-
mined by the programmer.

B. The programmer determines a role reference and uses it in
the code. This is mapped to a role in the deployment
descriptor.

C. The business method determines the role of the user using
JNDI and configuration information in the deployment
descriptor.

D. The business method determines the role of the user using
JAAS and configuration information in the deployment
descriptor.

Answer: D. Answer D uses the JAAS framework in the manner
in which it was intended—to ascertain at runtime the role of the
current principal and to match it to the roles authorized to exe-
cute the EJB method in question. Answers A and B do not
address how the runtime check takes place. Answer C selects
JNDI (Java Naming and Directory Interface) when JAAS is the
security framework.

97

ptg

Chapter 6 Security

6. A malicious hacker is trying to crash your web site by using vari-
ous denial of service attacks. Which two flaws should you protect
against for this specific threat?

A. XSS attacks
B. Authentication failures
C. Man in the middle attacks
D. Session hijacking
E. Weak password exploits
F. Authorization failures

Answers: C and D. Answers A and E, although both are secu-
rity issues, are not related directly to DoS attacks. B and F are
normal occurrences in an application lifecycle (although they
should be logged to identify attempts to gain unauthorized
access to the SuD). C and D are well-known mechanisms
through which to launch DoS attacks on a system.

98

ptg

C H A P T E R 7

Applying Patterns

■ From a list, select the most appropriate pattern for a given sce-
nario. Patterns are limited to those documented in this book—
Core J2EE Patterns: Best Practices and Design Strategies, 2nd
Edition; Alur, Crupi, and Malks (2003 Edition)—and named
using the names given in that book.

■ From a list, select the most appropriate pattern for a given sce-
nario. Patterns are limited to those documented in this book—
Design Patterns: Elements of Reusable Object-Oriented Software;
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides
(1995 Edition)—and are named using the names given in that
book.

■ Select from a list the benefits and drawbacks of a pattern drawn
from the book—Design Patterns: Elements of Reusable Object-
Oriented Software; Gamma, Erich, Richard Helm, Ralph John-
son, and John Vlissides (1995 Edition).

■ Select from a list the benefits and drawbacks of a specified Core
J2EE pattern drawn from the book—Core J2EE Patterns: Best
Practices and Design Strategies, 2nd Edition; Alur, Crupi, and
Malks (2003 Edition).

Introduction

Christopher Alexander, a building architect, introduced the notion of
patterns in the 1970s. He realized that there were certain solutions that
you could apply over and over again to the same or similar problems. He
also combined these existing solutions to create new solutions to a new

99

ptg

Chapter 7 Applying Patterns

problem. In 1987, Ward Cunningham and Kent Beck developed five
patterns to use in interface design. But it wasn’t until 1994 that Erich
Gamma, Richard Helm, John Vlissides, and Ralph Johnson published
the now-famous book Design Patterns: Elements of Reusable Object-
Oriented Software, which described a way of documenting patterns that
has become the industry standard. These men are often referred to as
the Gang of Four (GoF).

In 1999, Sun Microsystems introduced Java2 Enterprise Edition.
The Sun Java Center, the Java consulting practice in Sun Professional
Services, noticed that companies were not using the technology cor-
rectly and architecting solutions that would not scale. John Crupi,
Deepak Alur, and Danny Malks embarked on a mission to document the
appropriate patterns to successfully architect a J2EE solution cor-
rectly—thus, Core J2EE Patterns: Best Practices and Design Strategies
was created.

This chapter describes how you can use patterns to help you create
an architecture. These patterns are usually at the object and class level,
but they can also be abstracted to a higher level.

Prerequisite Review

This chapter will focus on the Gang of Four (GoF) patterns, as described
in Design Patterns: Elements of Reusable Object-Oriented Software and
Core J2EE patterns, as described in Core J2EE Patterns, Crupi, et al.
The following assumptions about your knowledge of patterns will be
applied to this chapter:

■ Able to describe each of the Gang of Four design patterns
■ Able to describe each of the Core J2EE patterns
■ Categorize a pattern as either Core J2EE pattern or GoF design

pattern based on the name
■ Understand the basics of applying patterns

100

ptg

Discussion

Discussion

The GoF patterns are categorized into three categories, as follows:

■ Creational—Support the creation of objects
■ Structural—Deal with relationships between portions of your

application
■ Behavioral—Influence how state and behavior flow through the

system

Creational Patterns

Creational patterns support the creation of objects in a system. Cre-
ational patterns allow objects to be created in a system without having to
identify a specific class type in the code, so you do not have to write
large, complex code to instantiate an object. It does this by having the
subclass of the class create the objects. However, this can limit the type
or number of objects that can be created within a system. The Creational
patterns are Abstract Factory, Builder, Factory Method, Prototype, and
Singleton.

Abstract Factory Pattern

This pattern provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

Given a set of related abstract classes, the Abstract Factory pattern
provides a way to create instances of those abstract classes from a
matched set of concrete subclasses. Figure 7-1 illustrates the Abstract
Factory pattern.

The Abstract Factory pattern provides an abstract class that deter-
mines the appropriate concrete class to instantiate to create a set of con-
crete products that implement a standard interface. The client interacts
only with the product interfaces and the Abstract Factory class. The
client never knows about the concrete construction classes provided by
this pattern.

The Abstract Factory pattern is similar to the Factory Method pat-
tern, except it creates families of related objects.

101

ptg

Chapter 7 Applying Patterns102

Figure 7-1 Abstract Factory pattern diagram

Benefits

The following lists the benefits of using the Abstract Factory pattern:

■ Isolates the concrete classes from client
■ Allows for exchanging product families easy
■ Promotes consistency among products by implementing the com-

mon interface

When to Use

You should use the Abstract Factory pattern when:

■ The system should be independent of how its products are cre-
ated, composed, and represented.

■ The system should be configured with one of multiple families of
products—for example, Microsoft Windows or Apple OSX
classes.

■ The family of related product objects is designed to be used
together, and you must enforce this constraint. This is the key
point of the pattern; otherwise, you could use a Factory Method.

■ You want to provide a class library of products, and reveal only
their interfaces, not their implementations.

ptg

Discussion

Builder Pattern

The Builder pattern separates the construction of a complex object
from its representation so the same construction process can create dif-
ferent objects. The Builder pattern allows a client object to construct a
complex object by specifying only its type and content. The client is
shielded from the details of the object’s construction. This simplifies the
creation of complex objects by defining a class that builds instances of
another class. The Builder pattern produces one main product, and
there might be more than one class in the product, but there is always
one main class. Figure 7-2 illustrates the Builder pattern.

103

Figure 7-2 Builder pattern diagram

When you use the Builder pattern, you create the complex objects one
step at a time. Other patterns build the object in a single step.

Benefits

The following lists the benefits of using the Builder pattern:

■ Lets you vary a product’s internal representation
■ Isolates code for construction and representation
■ Gives you greater control over the construction process

When to Use

You should use the Builder pattern when

■ The algorithm for creating a complex object should be independ-
ent of both the parts that make up the object and how these parts
are assembled.

ptg

Chapter 7 Applying Patterns

■ The construction process must allow different representations of
the constructed object.

Factory Method Pattern

The Factory Method pattern defines an interface for creating an
object, but lets the subclasses decide which class to instantiate. The Fac-
tory Method lets a class defer instantiation to subclasses, which is useful
for constructing individual objects for a specific purpose without the
requestor knowing the specific class being instantiated. This enables you
to introduce new classes without modifying the code because the new
class implements only the interface so it can be used by the client. You
create a new factory class to create the new class, and the factory class
implements the factory interface. Figure 7-3 illustrates the Factory
Method pattern.

104

Figure 7-3 Factory Method pattern diagram

Benefits

The following lists the benefits of using the Factory Method pattern:

■ Eliminates the need to bind application classes into your code.
The code deals only with the interface, so you can work with any
classes that implement that interface.

■ Enables the subclasses to provide an extended version of an
object, because creating an object inside a class is more flexible
than creating the object directly in the client.

ptg

Discussion

When to Use

You should use the Factory Method pattern when:

■ A class cannot anticipate the class of objects it must create.
■ A class wants its subclasses to specify the objects it creates.
■ Classes delegate responsibility to one of several helper subclasses,

and you want to localize the knowledge of which helper subclass
is the delegate.

Prototype Pattern

The Prototype pattern allows an object to create customized objects
without knowing their exact class or the details of how to create them. It
specifies the kinds of objects to create using a prototypical instance and
creates new objects by copying this prototype. The Prototype pattern
works by giving prototypical objects to an object and then initiates the
creation of objects. The creation-initiating object then creates objects by
asking the prototypical objects to make copies of themselves. The Proto-
type pattern makes creating objects dynamically easier by defining
classes whose objects can duplicate themselves. Figure 7-4 illustrates
the Prototype pattern.

105

Figure 7-4 Prototype pattern diagram

Benefits

The following lists the benefits of using the Prototype pattern:

■ Adding and removing products at run time
■ Specifying new objects by varying values

ptg

Chapter 7 Applying Patterns

■ Specifying new objects by varying structure
■ Reducing subclasses
■ Configuring an application with classes dynamically

When to Use

You should use the Prototype pattern when:

■ The classes to instantiate are specified at run time—for example,
by dynamic loading

■ To avoid building a class hierarchy of factories that parallels the
class hierarchy of products

■ When instances of a class can have one of only a few different
combinations of state

Singleton Pattern

The Singleton pattern ensures that a class has only one instance and
provides a global point of access to that class. It ensures that all objects
that use an instance of this class use the same instance. Figure 7-5 illus-
trates the Singleton pattern.

106

Figure 7-5 Singleton pattern diagram

Benefits

The following lists the benefits of using the Singleton pattern:

■ Controlled access to sole instance
■ Reduced name space
■ Permits refinement of operations and representation

ptg

Discussion

■ Permits a variable number of instances
■ More flexible than class operations

When to Use

You should use the Singleton pattern when:

■ There must be exactly one instance of a class.

Structural Patterns

Structural patterns control the relationships between large portions of
your applications. Structural patterns affect applications in a variety of
ways—for example, the Adapter pattern enables two incompatible sys-
tems to communicate, whereas the Façade pattern enables you to pres-
ent a simplified interface to a user without removing all the options
available in the system.

Structural patterns enable you to create systems without rewriting or
customizing the code. This provides the system with enhanced reusabil-
ity and robust functionality.

The structural patterns are Adapter, Bridge, Composite, Decorator,
Façade, Flyweight, and Proxy.

Adapter Pattern

The Adapter pattern acts as an intermediary between two classes,
converting the interface of one class so that it can be used with the other.
This enables classes with incompatible interfaces to work together. The
Adapter pattern implements an interface known to its clients and pro-
vides access to an instance of a class not known to its clients. An adapter
object provides the functionality of an interface without having to know
the class used to implement that interface. Figure 7-6 illustrates the
Adapter pattern.

Benefits

The following lists the benefits of using the Adapter pattern:

■ Allows two or more incompatible objects to communicate and
interact

■ Improves reusability of older functionality

107

ptg

Chapter 7 Applying Patterns

Figure 7-6 Adapter pattern diagram

When to Use

You should use the Adapter pattern when:

■ You want to use an existing class, and its interface does not match
the interface you need.

■ You want to create a reusable class that cooperates with unrelated
or unforeseen classes—that is, classes that don’t necessarily have
compatible interfaces.

■ You want to use an object in an environment that expects an inter-
face that is different from the object’s interface.

■ Interface translation among multiple sources must occur.

Bridge Pattern

The Bridge pattern divides a complex component into two separate
but related inheritance hierarchies: the functional abstraction and the
internal implementation. This makes it easier to change either aspect of
the component so that the two can vary independently.

The Bridge pattern is useful when there is a hierarchy of abstrac-
tions and a corresponding hierarchy of implementations. Rather than
combining the abstractions and implementations into many distinct
classes, the Bridge pattern implements the abstractions and implemen-
tations as independent classes that can be combined dynamically. Figure
7-7 illustrates the Bridge pattern.

108

ptg

Discussion

Figure 7-7 Bridge pattern diagram

Benefits

The following lists the benefits of using the Bridge pattern:

■ Enables you to separate the interface from the implementation
■ Improves extensibility
■ Hides implementation details from clients

When to Use

You should use the Bridge pattern when:

■ You want to avoid a permanent binding between an abstraction
and its implementation.

■ Both the abstractions and their implementations should be exten-
sible using subclasses.

■ Changes in the implementation of an abstraction should have no
impact on clients; that is, you should not have to recompile their
code.

Composite Pattern

The Composite pattern enables you to create hierarchical tree struc-
tures of varying complexity, while allowing every element in the struc-
ture to operate with a uniform interface. The Composite pattern
combines objects into tree structures to represent either the whole hier-
archy or a part of the hierarchy. This means the Composite pattern

109

ptg

Chapter 7 Applying Patterns

allows clients to treat individual objects and compositions of objects uni-
formly. Figure 7-8 illustrates the Composite pattern.

110

Figure 7-8 Composite pattern diagram

Benefits

The following lists the benefits of using the Composite pattern:

■ Defines class hierarchies consisting of primitive objects and com-
posite objects

■ Makes it easier to add new kinds of components
■ Provides flexibility of structure and a manageable interface

When to Use

You should use the Composite pattern when:

■ You want to represent the whole hierarchy or a part of the hierar-
chy of objects.

■ You want clients to be able to ignore the difference between com-
positions of objects and individual objects.

■ The structure can have any level of complexity and is dynamic.

ptg

Discussion

Decorator Pattern

The Decorator pattern enables you to add or remove object func-
tionality without changing the external appearance or function of the
object. It changes the functionality of an object in a way that is transpar-
ent to its clients by using an instance of a subclass of the original class
that delegates operations to the original object. The Decorator pattern
attaches additional responsibilities to an object dynamically to provide a
flexible alternative to changing object functionality without using static
inheritance. Figure 7-9 shows the decorator pattern.

111

Figure 7-9 Decorator pattern diagram

Benefits

The following lists the benefits of using the Decorator pattern:

■ More flexibility than static inheritance
■ Avoids feature-laden classes high up in the hierarchy
■ Simplifies coding because you write a series of classes, each tar-

geted at a specific part of the functionality, rather than coding all
behavior into the object

■ Enhances the object’s extensibility because you make changes by
coding new classes

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Decorator pattern when:

■ You want to add responsibilities to individual objects dynamically
and transparently—that is, without affecting other objects.

■ You want to add responsibilities to the object that you might want
to change in the future.

■ Extension by static subclassing is impractical.

Façade Pattern

The Façade pattern provides a unified interface to a group of inter-
faces in a subsystem. The Façade pattern defines a higher-level interface
that makes the subsystem easier to use because you have only one inter-
face. This unified interface enables an object to access the subsystem
using the interface to communicate with the subsystem. Figure 7-10
illustrates the Façade pattern.

112

Figure 7-10 Façade pattern diagram

Benefits

The following lists the benefits of using the Façade pattern:

■ Provides a simple interface to a complex system without reducing
the options provided by the system

ptg

Discussion

■ Shields clients from subsystem components
■ Promotes weak coupling between the subsystem and its clients
■ Reduces coupling between subsystems if every subsystem uses its

own Façade pattern and other parts of the system use the Façade
pattern to communicate with the subsystem

■ Translates the client requests to the subsystems that can fulfill
those requests

When to Use

You should use the Façade pattern when:

■ You want to provide a simple interface to a complex subsystem.
■ There are many dependencies between clients and the imple-

mentation classes of an abstraction.
■ You want to layer your subsystems.

Flyweight Pattern

The Flyweight pattern reduces the number of low-level, detailed
objects within a system by sharing objects. If instances of a class that
contain the same information can be used interchangeably, the Fly-
weight pattern allows a program to avoid the expense of multiple
instances that contain the same information by sharing one instance.
Figure 7-11 illustrates the Flyweight pattern.

Benefits

The following lists the benefits of using the Flyweight pattern:

■ Reduction in the number of objects to handle
■ Reduction in memory and on storage devices, if the objects are

persisted

113

ptg

Chapter 7 Applying Patterns

Figure 7-11 Flyweight pattern diagram

When to Use

You should use the Flyweight pattern when all of the following are
true:

■ The application uses a large number of objects.
■ Storage costs are high because of the quantity of objects.
■ The application doesn’t depend on object identity.

Proxy Pattern

The Proxy pattern provides a surrogate or placeholder object to con-
trol access to the original object. There are several types of implementa-
tions of the Proxy pattern, with the Remote proxy and Virtual proxy
being the most common. Figure 7-12 illustrates the Proxy pattern.

Benefits

The following lists the benefits of using the Proxy pattern:

■ A remote proxy can hide the fact that an object resides in a differ-
ent address space.

■ A virtual proxy can perform optimizations, such as creating an
object on demand.

114

ptg

Discussion

Figure 7-12 Proxy pattern diagram

When to Use

You should use the Proxy pattern when:

■ You need a more versatile or sophisticated reference to an object
than a simple pointer.

Behavioral Patterns

Behavioral patterns influence how state and behavior flow through a
system. By optimizing how state and behavior are transferred and modi-
fied, you can simplify, optimize, and increase the maintainability of an
application.

The Behavioral patterns are Chain of Responsibility, Command,
Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy,
Template Method, and Visitor

Chain of Responsibility Pattern

The Chain of Responsibility pattern establishes a chain within a system,
so that a message can either be handled at the level where it is first
received, or be directed to an object that can handle it. Figure 7-13 illus-
trates Chain of Responsibility pattern.

115

ptg

Chapter 7 Applying Patterns

Figure 7-13 Chain of Responsibility pattern diagram

Benefits

The following lists the benefits of using the Chain of Responsibility
pattern:

■ Reduced coupling
■ Added flexibility in assigning responsibilities to objects
■ Allows a set of classes to behave as a whole, because events pro-

duced in one class can be sent on to other handler classes within
the composite

When to Use

You should use the Chain of Responsibility pattern when:

■ More than one object can handle a request, and the handler isn’t
known.

■ You want to issue a request to one of several objects without spec-
ifying the receiver explicitly.

■ The set of objects that can handle a request should be specified
dynamically.

Command Pattern

The Command pattern encapsulates a request in an object, which
enables you to store the command, pass the command to a method, and
return the command like any other object. Figure 7-14 illustrates the
Command pattern.

116

ptg

Discussion

Figure 7-14 Command pattern diagram

Benefits

The following lists the benefits of using the Command pattern:

■ It separates the object that invokes the operation from the one
that knows how to perform it.

■ It’s easy to add new commands, because you don’t have to change
existing classes.

When to Use

You should use the Command pattern when:

■ You want to parameterize objects by an action to perform.
■ You specify, queue, and execute requests at different times.
■ You must support undo, logging, or transactions.

Interpreter Pattern

The Interpreter pattern interprets a language to define a representa-
tion for its grammar along with an interpreter that uses the representa-
tion to interpret sentences in the language. Figure 7-15 illustrates the
Interpreter pattern.

117

ptg

Chapter 7 Applying Patterns

Figure 7-15 Interpreter pattern diagram

Benefits

The following lists the benefits of using the Interpreter pattern:

■ It’s easy to change and extend the grammar.
■ Implementing the grammar is easy.

When to Use

You should use the Interpreter pattern when:

■ The grammar of the language is simple.
■ Efficiency is not a critical concern.

Iterator Pattern

The Iterator pattern provides a consistent way to sequentially access
items in a collection that is independent of and separate from the under-
lying collection. Figure 7-16 illustrates the Iterator pattern.

Benefits

The following lists the benefits of using the Iterator pattern:

■ Supports variations in the traversal of a collection
■ Simplifies the interface of the collection

118

ptg

Discussion

Figure 7-16 Iterator pattern diagram

When to Use

You should use the Iterator pattern to:

■ Access collection object’s contents without exposing its internal
representation

■ Support multiple traversals of objects in a collection
■ Provide a uniform interface for traversing different structures in a

collection

Mediator Pattern

The Mediator pattern simplifies communication among objects in a
system by introducing a single object that manages message distribution
among other objects. The Mediator pattern promotes loose coupling by
keeping objects from referring to each other explicitly, and it lets you
vary their interaction independently. Figure 7-17 illustrates the Media-
tor pattern.

Benefits

The following lists the benefits of using the Mediator pattern:

■ Decouples colleagues
■ Simplifies object protocols
■ Centralizes control

119

ptg

Chapter 7 Applying Patterns

Figure 7-17 Mediator pattern diagram

When to Use

You should use the Mediator pattern when:

■ A set of objects communicate in well-defined but complex ways.
■ You want to customize a behavior that’s distributed between sev-

eral objects without using subclasses.

Memento Pattern

The Memento pattern preserves a “snapshot” of an object’s state, so
that the object can return to its original state without having to reveal its
content to the rest of the world. Figure 7-18 illustrates the Memento
pattern.

Benefits

The following lists the benefits of using the Memento pattern:

■ Preserves encapsulation boundaries
■ Simplifies the originator

120

■ The individual components become simpler and easier to deal
with, because they no longer need to directly pass messages to
each other.

■ Components are more generic, because they no longer need to
contain logic to deal with their communication with other compo-
nents.

ptg

Discussion

Figure 7-18 Memento pattern diagram

When to Use

You should use the Memento pattern when:

■ A snapshot of an object’s state must be saved so that it can be
restored to that state later.

■ Using a direct interface to obtain the state would expose imple-
mentation details and break the object’s encapsulation.

Observer Pattern

The Observer pattern provides a way for a component to flexibly
broadcast messages to interested receivers. It defines a one-to-many
dependency between objects so that when one object changes state, all
its dependents are notified and updated automatically. Figure 7-19 illus-
trates the Observer pattern.

121

Figure 7-19 Observer pattern diagram

ptg

Chapter 7 Applying Patterns

Benefits

The following lists the benefits of using the Observer pattern:

■ Abstract coupling between subject and observer
■ Support for broadcast communication

When to Use

You should use the Observer pattern when:

■ A change to one object requires changing the other object, and
you don’t know how many objects need to change.

■ An object should be able to notify other objects without making
assumptions about the identity of those objects.

State Pattern

The State pattern allows an object to alter its behavior when its internal
state changes. The object appears to change its class. Figure 7-20 illus-
trates the State pattern.

122

Figure 7-20 State pattern diagram

Benefits

The following lists the benefits of using the State pattern:

■ Localizes state-specific behavior and partitions behavior for dif-
ferent states

■ Makes state transitions explicit

ptg

Discussion

When to Use

You should use the State pattern when:

■ An object’s behavior depends on its state, and it must change its
behavior at run-time depending on that state.

■ Operations have large, multipart conditional statements that
depend on the object’s state.

Strategy Pattern

The Strategy pattern defines a group of classes that represent a set of
possible behaviors. These behaviors can then be used in an application
to change its functionality. Figure 7-21 illustrates the Strategy pattern.

123

Figure 7-21 Strategy pattern diagram

Benefits

The following lists the benefits of using the Strategy pattern:

■ An alternative to subclassing
■ Defines each behavior in its own class, which eliminates condi-

tional statements
■ Easier to extend a model to incorporate new behaviors without

recoding the application

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Strategy pattern when:

■ Many related classes differ only in their behavior.
■ You need different variants of an algorithm.
■ An algorithm uses data unknown to clients.

Template Method Pattern

The Template Method pattern provides a method that allows subclasses
to override parts of the method without rewriting it. Define the skeleton
of an algorithm in an operation, deferring some steps to subclasses. The
Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure. Figure 7-22 illustrates the
Template Method pattern.

124

Figure 7-22 Template Method pattern diagram

Benefits

The following is a benefit of using the Template Method pattern:

■ Fundamental technique for reusing code

When to Use

You should use the Template Method pattern when:

ptg

Discussion

■ You want to implement the invariant parts of an algorithm once
and use subclasses to implement the behavior that can vary.

■ When common behavior among subclasses should be factored
and localized in a common class to avoid code duplication.

Visitor Pattern

The Visitor pattern provides a maintainable, easy way to represent an
operation to be performed on the elements of an object structure. The
Visitor pattern lets you define a new operation without changing the
classes of the elements on which it operates. Figure 7-23 illustrates the
Visitor pattern.

125

Figure 7-23 Visitor pattern diagram

Benefits

The following lists the benefits of using the Visitor pattern:

■ Makes adding new operations easy
■ Gathers related operations and separates unrelated ones

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Visitor pattern when:

■ An object structure contains many classes of objects with differing
interfaces, and you want to perform operations on these objects
that depend on their concrete classes.

■ Classes defining the object structure rarely change, but you often
want to define new operations over the structure.

Core Java EE Patterns

The Core J2EE patterns have been very successful in helping organiza-
tions architect Java EE systems. A new set of patterns were added when
Java EE provided coverage for web services. Some patterns have
become obsolete with new technologies introduced in Java EE 5.

Presentation Tier

Presentation tier patterns help organize the components to improve
code re-use when presenting data to the client tier. Not all patterns need
to be applied in the presentation tier, and some provide the same solu-
tion to a common problem.

Intercepting Filter

The Intercepting Filter pattern provides the ability to manipulate a
request prior to processing or to manipulate the response before send-
ing the results of the request. Figure 7-24 illustrates the Intercepting
Filter pattern.

126

Figure 7-24 Intercepting Filter pattern diagram

ptg

Discussion

Benefits

The following lists the benefits of using the Intercepting Filter pattern:

■ Centralizes pre-processing of requests
■ Centralizes post-processing of responses

When to Use

You should use the Intercepting Filter pattern when:

■ You need to pre-process a request or response.
■ You need to post-process a request or response.

Context Object

The Context Object pattern is used to encapsulate the specifics of proto-
col implementation to be shared. Figure 7-25 illustrates the Context
Object pattern.

127

Figure 7-25 Context Object pattern diagram

Benefits

The following lists the benefits of using the Context Object pattern:

■ Improves reusability and maintainability
■ Allows code to be portable across operating systems

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Context Object pattern when:

■ Components need access to system information
■ Decouple application from underlining protocols and system

interfaces

Front Controller

The Front Controller pattern creates central control logic for presenta-
tion request handling. The Front Controller is different from the Inter-
cepting Filter in that the Front Controller is determining processing
based on the request and an Intercepting Filter is modifying the request.
Figure 7-26 illustrates the Front Controller pattern.

128

Figure 7-26 Front Controller pattern diagram

Benefits

The following lists the benefits of using the Front Controller pattern:

■ Centralizes control logic
■ Improves reusability
■ Improves separation of concerns

When to Use

You should use the Front Controller pattern to:

■ Apply common logic to multiple requests
■ Separate processing logic from view

ptg

Discussion

Application Controller

The Application Controller pattern is used to centralize retrieval and
invocation of request-processing components, such as commands and
views. Figure 7-27 illustrates the Application Controller.

129

Figure 7-27 Application Controller pattern diagram

Benefits

The following lists the benefits of using the Application Controller pat-
tern:

■ Improves extensibility
■ Improves separation of concerns

When to Use

You should use the Application Controller pattern to:

■ Apply common control logic
■ Have centralized view management

View Helper

The View Helper pattern separates the processing logic from the view.
Figure 7-28 illustrates the View Helper pattern.

ptg

Chapter 7 Applying Patterns

Figure 7-28 View Helper pattern diagram

Benefits

The following is a benefit of using the View Helper pattern:

■ Separates logic from the view

When to Use

You should use the View Helper pattern to:

■ Encapsulate view-processing logic

Composite View

The Composite View pattern combines simple views into a more com-
plex view without handling the content or layout. Figure 7-29 illustrates
the Composite View pattern.

130

Figure 7-29 Composite View pattern diagram

ptg

Discussion

Benefits

The following lists the benefits of using the Composite View pattern:

■ Code duplication is reduced because you can create common
headers, footers, and other components.

■ Views can be changed based on access authorization.

When to Use

You should use the Composite View pattern when:

■ You want common view components.
■ You view component changes based on authorization.

Dispatcher View

The Dispatcher View pattern handles the request and generates a
response while managing limited business processing. Figure 7-30 illus-
trates the Dispatcher View pattern.

131

Figure 7-30 Dispatcher View pattern diagram

Benefits

The following lists the benefits of using the Dispatcher View pattern:

■ Separates processing logic from view
■ Improves reusability

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Dispatcher View pattern when:

■ You have static views.
■ You have limited business processing.

Service to Worker

The Service to Worker pattern performs request handling and invokes
business logic before control is passed to the view. Figure 7-31 illustrates
the Service to Worker pattern.

132

Figure 7-31 Service to Worker pattern diagram

Benefits

The following is a benefit of using the Service to Worker pattern:

■ Improves separation of concerns

When to Use

You should use the Service to Worker pattern to:

■ Centralize business logic for requests

Business Tier

Business tier patterns create a loose coupling among the business logic,
presentation, and resources.

ptg

Discussion

Business Delegate

The Business Delegate pattern hides the complexity of remote commu-
nication with business components from the client. Figure 7-32 illus-
trates the Business Delegate pattern.

133

Figure 7-32 Business Delegate pattern diagram

Benefits

The following lists the benefits of using the Business Delegate pattern:

■ Minimizes coupling of clients to business services
■ Hides remoteness
■ Improves performance

When to Use

You should use the Business Delegate pattern when you:

■ Want to encapsulate access to business services from multiple
client types

■ Translate exceptions into application exceptions
■ Hide details of service creation

Service Locator

The Service Locator pattern uses a consistent approach to locating busi-
ness components regardless of the type of components. Figure 7-33
illustrates the Service Locator pattern.

ptg

Chapter 7 Applying Patterns

Figure 7-33 Service Locator pattern diagram

Benefits

The following is a benefit of using the Service Locator pattern:

■ Standardized approach to retrieving business components

When to Use

You should use the Service Locator pattern when:

■ You have many different business services that are located in dif-
ferent ways.

Session Façade

The Session Façade pattern provides a coarse-grained service of busi-
ness components to remote clients. This is the same as a Façade pattern,
but just provides an interface to a service instead of code. Figure 7-34
illustrates the Session Façade pattern.

134

Figure 7-34 Session Façade pattern diagram

ptg

Discussion

Benefits

The following lists the benefits of using the Session Facade pattern:

■ Reduces the number of calls to the business component from the
client

■ Reduces coupling between the tiers
■ Improves performance by reducing fine-grained calls from client
■ Provides a cleaner API to the client

When to Use

You should use the Session Facade pattern when:

■ You have a series of calls to make to business components from
the client.

Application Service

The Application Service pattern centralizes and aggregates business
components. An application service could be thought of as a helper to
the Session Façade that takes care of all the business logic and workflow.
Figure 7-35 illustrates the Application Service pattern.

135

Figure 7-35 Application Service pattern diagram

Benefits

The following lists the benefits of using the Application Service pattern:
■ Centralizes and improves reusability of business logic
■ Simplifies the Session Façade by eliminating the business logic

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Application Service pattern when you:

■ Start to see duplicated business logic in the Session Façade

Business Object

The Business Object pattern separates business data from logic. Figure
7-36 illustrates the Business Object pattern.

136

Figure 7-36 Business Object pattern diagram

Benefits

The following is a benefit of using the Business Object pattern:
■ Separates persistence from business logic.

When to Use

You should use the Business Object pattern when you:

■ Want to increase reusability of business logic.

Composite Entity

The Composite Entity pattern aggregates business entities into a coarse-
grained entity. Figure 7-37 illustrates the Composite Entity pattern.

Benefits

The following lists the benefits of using the Composite Entity pattern:

■ Increases maintainability
■ Improves network performance

ptg

Discussion

Figure 7-37 Composite Entity pattern diagram

When to Use

You should use the Composite Entity pattern to:

■ Avoid remote entity beans
■ Leverage bean managed persistence (BMP) with custom persist-

ence implementation
■ Encapsulate POJO business objects

Transfer Object

The Transfer Object pattern uses an object to carry data across tiers.
Figure 7-38 illustrates the Transfer Object pattern.

137

Figure 7-38 Transfer Object pattern diagram

Benefits

The following lists the benefits of using the Transfer Object pattern:

■ Reduces network traffic
■ Reduces code duplication

ptg

Chapter 7 Applying Patterns

When to Use

You should use the Transfer Object pattern when:

■ You need to send objects between tiers.

Transfer Object Assembler

The Transfer Object Assembler pattern builds a composite transfer
object and returns to the client. Figure 7-39 illustrates the Transfer
Object Assembler.

138

Figure 7-39 Transfer Object Assembler pattern diagram

Benefits

The following is a benefit of using the Transfer Object Assembler
pattern:

■ Improves network performance

When to Use

You should use the Transfer Object Assembler pattern when:

■ You have several transfer objects that are sent between tiers.

ptg

Discussion

Value List Handler

The Value List Handler pattern caches results and allows the client to
traverse and select from the results. Figure 7-40 illustrates the Value List
Handler pattern.

139

Figure 7-40 Value List Handler pattern diagram

Benefits

The following lists the benefits of using the Value List Handler pattern:

■ Caches search results
■ Improves network performance
■ Improves separation of concerns

When to Use

You should use the Value List Handler pattern when you:

■ Want to iterate through a set of objects.
■ Implement read-only lists without transactions.

Integration Tier

Integration tier patterns are used to isolate the core business logic of the
system from the external systems or data stores.

ptg

Chapter 7 Applying Patterns

Data Access Object

The Data Access Object pattern encapsulates access to a persistent store
by managing the connection with the data store. Figure 7-41 illustrates
the Data Access Object pattern.

140

Figure 7-41 Data Access Object pattern diagram

Benefits

The following lists the benefits of using the Data Access Object pattern:

■ Reduces code complexity in client
■ Improves code reuse
■ Provides easier migration to new data store

When to Use

You should use the Data Access Object pattern to:

■ Decouple data access from the business logic
■ Provide all data access from in a separate layer

Service Activator

The Service Activator pattern handles asynchronous requests to busi-
ness components. Figure 7-42 illustrates the Service Activator pattern.

Benefits

The following lists the benefits of using the Service Activator pattern:

■ Allows the client to continue processing
■ Integrates JMS into application

ptg

Discussion

Figure 7-42 Service Activator pattern diagram

When to Use

You should use the Service Activator pattern when:

■ You need to invoke a business service in an asynchronous manner.

Domain Store

The Domain Store pattern separates the persistence of an object from
the object model. This pattern really became relevant with the advent of
object relational model frameworks and products. You would use the
domain store and data access object at the same time. Figure 7-43 illus-
trates the Domain Store pattern.

141

Figure 7-43 Domain Store pattern diagram

ptg

Chapter 7 Applying Patterns

Benefits

The following is a benefit of using the Domain Store pattern:

■ Decouples business logic from persistence logic

When to Use

You should use the Domain Store pattern when:

■ You do not want to use entity beans.
■ Object model uses are complex.

Web Service Broker

The Web Service Broker pattern exposes and brokers services using
XML and web protocols. Figure 7-44 illustrates the Web Service Broker
pattern.

142

Figure 7-44 Web Service Broker pattern diagram

Benefits

The following is a benefit of using the Web Service Broker pattern:

■ Exposes existing services to web

When to Use

You should use the Web Service Broker pattern when you:

■ Need to expose services as web services

ptg

Essential Points

Essential Points

The following summarizes the most important points described in this
chapter:

■ Creational patterns allow objects to be created in a system with-
out having to identify a specific class type in the code, so you do
not have to write large, complex code to instantiate an object.

■ The Abstract Factory pattern provides an interface for creating
families of related or dependent objects without specifying their
concrete classes.

■ The Builder pattern separates the construction of a complex
object from its representation so the same construction process
can create different objects.

■ The Factory Method pattern defines an interface for creating an
object, but lets the subclasses decide which class to instantiate.

■ The Prototype pattern allows an object to create customized
objects without knowing their exact class or the details of how to
create them.

■ The Singleton pattern ensures that a class has only one instance,
and provides a global point of access to that class.

■ Structural patterns control the relationships between large por-
tions of your applications.

■ The Adapter pattern acts as an intermediary between two classes,
converting the interface of one class so that it can be used with the
other.

■ The Bridge pattern divides a complex component into two sepa-
rate but related inheritance hierarchies: the functional abstrac-
tion and the internal implementation.

■ The Composite pattern enables you to create hierarchical tree
structures of varying complexity, while allowing every element in
the structure to operate with a uniform interface.

■ The Decorator pattern enables you to add or remove object func-
tionality without changing the external appearance or function of
the object.

■ The Façade pattern provides a unified interface to a group of
interfaces in a subsystem.

143

ptg

Chapter 7 Applying Patterns

■ The Flyweight pattern reduces the number of low-level, detailed
objects within a system by sharing objects.

■ The Proxy pattern provides a surrogate or placeholder object to
control access to the original object.

■ Behavioral patterns influence how state and behavior flow
through a system.

■ The Chain of Responsibility pattern establishes a chain within a
system, so that a message can either be handled at the level where
it is first received, or be directed to an object that can handle it.

■ The Command pattern encapsulates a request in an object, which
enables you to store the command, pass the command to a
method, and return the command like any other object.

■ The Interpreter pattern interprets a language to define a repre-
sentation for its grammar along with an interpreter that uses the
representation to interpret sentences in the language.

■ The Iterator pattern provides a consistent way to sequentially
access items in a collection that is independent of and separate
from the underlying collection.

■ The Mediator pattern simplifies communication among objects in
a system by introducing a single object that manages message dis-
tribution among other objects.

■ The Memento pattern preserves a “snapshot” of an object’s state,
so that the object can return to its original state without having to
reveal its content to the rest of the world

■ The Observer pattern provides a way for a component to flexibly
broadcast messages to interested receivers.

■ The State pattern allows an object to alter its behavior when its
internal state changes.

■ The Strategy pattern defines a group of classes that represent a
set of possible behaviors.

■ The Template Method pattern provides a method that allows sub-
classes to override parts of the method without rewriting it.

■ The Visitor pattern provides a maintainable, easy way to represent
an operation to be performed on the elements of an object struc-
ture.

144

ptg

Essential Points

■ The Intercepting Filter pattern provides the ability to manipulate
a request prior to processing or to manipulate the response before
sending the results of the request.

■ The Context Object pattern is used to encapsulate the specifics of
protocol implementation to be shared.

■ The Front Controller pattern creates central control logic for
presentation request handling. The Front Controller is different
from the Intercepting Filter in that the Front Controller is deter-
mining processing based on the request and an Intercepting Fil-
ter is modifying the request.

■ The Application Controller pattern is used to centralize retrieval
and invocation of request-processing components, such as com-
mands and views.

■ The View Helper pattern separates the processing logic from the
view.

■ The Composite View pattern combines simple views into a more
complex view without handling the content or layout.

■ The Dispatcher View pattern handles the request and generates a
response while managing limited business processing.

■ The Service to Worker pattern performs request handling and
invokes business logic before control is passed to the view.

■ The Business Delegate pattern hides the complexity of remote
communication with business components from the client.

■ The Service Locator pattern uses a consistent approach to locat-
ing business components regardless of the type of components.

■ The Session Façade patterns provides a coarse-grained service of
business components to remote clients. This is the same as a
Façade pattern, but just provides an interface to a service instead
of code.

■ The Application Service pattern centralizes and aggregates busi-
ness components. An application service could be thought of as a
helper to the Session Façade that takes care of all the business
logic and workflow.

■ The Business Object pattern separates business data from logic.
■ The Composite Entity pattern aggregates business entities into a

coarse-grained entity.

145

ptg

Chapter 7 Applying Patterns

■ The Transfer Object pattern uses an object to carry data across
tiers.

■ The Transfer Object Assembler pattern builds a composite trans-
fer object and returns to the client.

■ The Value List Handler pattern caches results and allows the
client to traverse and select from the results.

■ The Data Access Object pattern encapsulates access to a persist-
ent store by managing the connection with the data store.

■ The Service Activator pattern handles asynchronous requests to
business components.

■ The Domain Store pattern separates the persistence of an object
from the object model. This pattern really became relevant with
the advent of object relational model frameworks and products.
You would use the domain store and data access object at the
same time.

■ The Web Service Broker pattern exposes and brokers services
using XML and web protocols.

Review Your Progress

This section reviews the objectives described in the chapter and pro-
vides review questions to ensure that you understand the chapter’s
important points:

1. Which pattern would you use to create a complex object and
have the assembly and parts independent?

A. Prototype
B. Singleton
C. Builder
D. Abstract Factory

Answer: C. The Builder pattern enables you to create complex
objects and keep the parts and the assembling of those parts sep-
arate and independent.

146

ptg

Review Your Progress

2. You are asked to interface with a class in an existing system, but
the interface does not match the interface you need. Which pat-
tern would you use?

A. Decorator
B. Abstract Factory
C. Command
D. Adapter

Answer: D. The Adapter pattern enables you to adapt the inter-
face of a class or component to meet your needs.

3. What are two benefits of the Façade pattern? (Choose two.)

A. It hides complex subsystems from clients.
B. It allows objects to masquerade as different objects.
C. It decouples the object interface from the implementation.
D. It encourages weak coupling between the client and the

subsystem.

Answers: A and D. The Façade pattern hides complex subsys-
tems from clients and encourages weak coupling between the
client and the subsystem.

4. What are two benefits of the Singleton pattern? (Choose two.)

A. It encourages use of global variables.
B. It controls access to a single instance.
C. It permits a variable number of instances.
D. It allows a collection of objects to be manipulated as a single

object.

Answers: B and C. The Singleton pattern controls access to a
single instance or a variable number of instances.

5. A company created its own MVC-like framework in the years
before Struts and JSF. Unfortunately, the company Front Con-
troller has become bloated with too many features, including
fine-grained authorization, view dispatching, and business logic
invocation.

147

ptg

Chapter 7 Applying Patterns

Which three patterns could be applied to reduce the complexity
of this Front Controller? (Choose three.)

A. Mediator
B. Command
C. View Helper
D. Intercepting Filter
E. Composite View
F. Application Controller

Answers: B, C, and F. Application Controller will help with
view management and dispatching. Intercepting Filter can han-
dle the authorization. The Command pattern will encapsulate
the business logic.

148

ptg

C H A P T E R 8

Documenting an
Architecture

■ Document a given system architecture by creating UML
diagrams for it.

■ Create a logical and physical model of a system infrastructure
architecture.

Introduction

There are many ways to communicate the architecture to the develop-
ment team. The de-facto industry standard is a set of UML diagrams.
We will explain the different UML diagrams that can be used to commu-
nicate the architecture and discuss when it is appropriate to use each
diagram. Remember that the key focus of an architect is to communicate
the architecture to the developers.

This chapter will introduce material that is relevant to the assign-
ment portion of the exam. There are no multiple choice questions in this
chapter. If you are already familiar with UML notation and documenting
an architecture, feel free to move to the next chapter.

Prerequisite Review

It is expected that you already have a general understanding of the dif-
ferent diagrams in UML. We will quickly review the different UML dia-
grams and then discuss which diagrams are pertinent to documenting an

149

ptg

Chapter 8 Documenting an Architecture

architecture. We will not be covering the specific notation of the dia-
grams.

If you do not meet the prerequisites, review the following resources
to gain the appropriate level of knowledge before proceeding:

■ http://en.wikipedia.org/wiki/Unified_Modeling_Language
■ UML Distilled: A Brief Guide to the Standard Object Modeling

Language by Martin Fowler
■ Learning UML 2.0 by Russ Miles and Kim Hamilton

Discussion

The purpose of creating an architecture is to communicate the overall
system structure to the development team so they can build the system
within the constraints and guidelines provided. Most of the communica-
tion of the architecture can be accomplished with UML diagrams.

What is a model? A model is a simplification of reality. You build
models using UML diagrams to better understand the system you are
developing. The models you build will help you do the following:

■ Visualize the system as it is or as you want it to be
■ Specify the structure or behavior of a system
■ Provide a template to guide the construction of the system
■ Document the decisions made about the system

To start modeling with the UML, you need to learn the three major ele-
ments of the UML: building blocks, rules for combining building blocks,
and common mechanisms. Once you have mastered the three elements,
you can read and create UML diagrams.

Building Blocks of UML

There are three types of building blocks: elements, relationships, and
diagrams. Elements are the abstractions that are first-class citizens in a
model; relationships tie these elements together; and diagrams group
collections of related elements by means of relationships.

150

ptg

Discussion

Elements

There are four kinds of elements in UML, as follows:

■ Structural—Used to create the static parts of a model by repre-
senting elements that are conceptual or physical

■ Behavioral—Enables you to model the behavior of the system
■ Grouping—Enables you to organize the structural and behav-

ioral elements in your model
■ Annotational—Explanatory parts of the model

These elements are the basic elements used in creating models.

Structural Elements

There are seven structural elements: class, interface, collaboration, use
case, active class, component, and node. The four that are most perti-
nent to documenting an architecture, as follows:

■ A class is a set of objects that share the same attributes, opera-
tions, relationships, and semantics. The class is represented by a
rectangle with three areas. The first area contains the name of the
class, the second area contains the attributes of the class, and the
third contains the operations of the class. Figure 8-1 illustrates a
class.

151

Figure 8-1 Example of a class

■ The interface is a collection of operations that specify a service
of a class or component. The interface is represented by a rectan-
gle with the same three areas as the class. An interface has the

ptg

Chapter 8 Documenting an Architecture

addition of the word “interface” above the interface name to iden-
tify it as an interface. Figure 8-2 illustrates an interface.

152

Figure 8-2 Example of an interface

■ A component is a physical and replaceable part of a system that
conforms to and provides the realization of a set of interfaces.
Visually, the component is a rectangle with two prongs so that it
appears that it could be plugged into something. Figure 8-3 illus-
trates a component.

Figure 8-3 Example of a component

■ A node is a physical element that exists at run time and repre-
sents a computational resource, generally having at least some
memory and often processing capability. Visually, the node looks
like a cube with a name on the front side of the cube. Figure 8-4
illustrates a node.

Figure 8-4 Example of a node

Behavioral Elements

Behavioral elements are used to model the behavior of a system. There
are two types of behaviors as follows:

ptg

Discussion

■ Interaction is a type of behavior element that comprises a set of
messages exchanged among a set of objects within a particular
context to accomplish a specific purpose. An interaction is repre-
sented by a solid arrow line. Figure 8-5 illustrates an arrow.

153

Figure 8-5 Example of an interaction

■ A state machine is a type of behavior that specifies the sequence
of states an object or an interaction goes through during its life-
time in response to events, together with its responses to those
events. Figure 8-6 illustrates a state machine.

Figure 8-6 Example of a state

Grouping Element

There is only one type of grouping element—a package. A package is a
general-purpose mechanism for organizing elements into groups. Fig-
ure 8-7 illustrates a package.

Figure 8-7 Example of a package

Annotational Elements

There is only one type of annotational element, called a note. A note is a
symbol for rendering comments that you want attached to other ele-
ments or collections of elements. Visually, the note is represented by a
rectangle with the upper-right corner folded in. Figure 8-8 illustrates
a note.

ptg

Chapter 8 Documenting an Architecture

Figure 8-8 Example of a note

Relationships

There are four standard relationships in UML: dependency, association,
generalization, and realization. We will not cover realization here
because it is more of a analysis relationship. You use the relationships to
create links between the elements in your model, as follows:

■ A dependency is a semantic relationship between two elements
in which a change to one thing (the independent thing) can affect
the semantics of the other thing (the dependent thing). The
dependency is represented as a dashed-line with an arrow on the
end. The arrow indicates the direction of the dependency. Using
the following diagram, Class1 has a reference to Class2, either
passed as a method parameter or defined as a method variable in
some method. Figure 8-9 illustrates a dependency relationship.

154

Figure 8-9 Example of a dependency

■ Aggregation is a special kind of association, representing a
structural relationship between a whole and its parts. The Aggre-
gation association is a diagram with an open diamond on the side
of the whole. Using Figure 8-9, we can see that a Company as the
whole is comprised of its parts, which is the Employees. Figure
8-10 illustrates an aggregation.

Figure 8-10 Example of aggregation

ptg

Discussion

■ Generalization is a specialization/generalization relationship in
which objects of the specialized element (child) are substitutable
for objects of the generalized element (parent). Generalization
is visually represented as a line with an open arrow on the end.
The arrow points from the child/subclass to the parent/superclass.
Figure 8-11 illustrates a generalization.

155

Figure 8-11 Example of generalization

Common Mechanisms

There are four common mechanisms that apply consistently throughout
UML: specifications, adornments, common division, and extensibility.

Specifications

UML is more than just a graphical language. Behind every part of its
graphical notation, there is a specification that provides a textual state-
ment of the syntax and the semantics of that building block. For exam-
ple, a class icon has a specification that provides the full set of attributes,
operations, and behaviors embodied by that class. Visually, a class icon
might show only a small part of the specification, or it might show the
entire class specification. With this in mind, you could create diagrams
with only icons and build up the specification, or you could create the
specification by reverse engineering and then build up the diagrams.
Figure 8-12 contains the -attribute1:int and +operation1():void,
which are the specifications of the class name.

Adornments

The adornments mechanism indicates whether an element is public, pri-
vate, or protected, and represented by +, -, and #, respectively. In the
previous example, attribute1 is private and operation1 is public.

ptg

Chapter 8 Documenting an Architecture

Common Divisions

The common division mechanism designates instances of an element.
For example, if the element name is underlined, it is an instance of an
element. You can precede an element name with a : and have an anony-
mous instance. You can place a name in front of the : and have a named
instance of an element. Figure 8-12 contains the :name, which means
that you have an anonymous instance of class name.

156

Figure 8-12 Example of Anonymous class with specifications and adornments

Extensibility Mechanisms

Extensibility mechanisms enable you to shape and grow UML to meet
your project’s requirements. In addition, these mechanisms enable
UML to adapt quickly to new technologies by creating new building
blocks from the existing UML building blocks:

■ Stereotypes—Extends the vocabulary of UML, enabling you to
create new kinds of building blocks. These building blocks are
derived from existing building blocks but are specific to your
problem.

■ Tagged values—Extends the properties of a UML building
block, enabling you to create new information in that element’s
specification.

■ Constraints—Extends the semantics of a UML building block,
enabling you to add new rules or modify existing ones.

ptg

Discussion

UML Diagrams

UML has two main categories of diagrams: structure and behavior.
Behavior diagrams have a subcategory called interaction diagrams.
Structure diagrams describe the components that make up the sys-
tem. Behavior diagrams describe the processing of the system, and
interaction diagrams describe the flow of control and data among the
system components.

Structure Diagrams

Structure diagrams are used to communicate the overall structure of the
system to the developers.

Class Diagram

A class diagram shows a set of classes, interfaces, and collaborations
and their relationships. These diagrams are the most common diagrams
found in modeling object-oriented systems. Class diagrams address the
static design view of a system. Class diagrams that include active classes
address the static process view of a system.

Figure 8-13 shows nine classes. Two of the classes, Buy and Sell, are
subclasses of the superclass Transaction. This diagram tells us that a cus-
tomer can have one cash account and many portfolios. A portfolio has
many accounts, an account has many holdings, and a holding has one
stock and can be accessed by many transactions. The holding does not
know which transactions are associated to it, because of the navigability.
Each transaction can have only one holding and one cash account. The
transaction can be of type Buy or Sell.

A domain-level class diagram can be useful in showing the develop-
ers the domain objects and their relationships, thus providing con-
straints and system boundaries. Class diagrams can also show the classes
of a component and how those classes are related.

Component Diagram

A component diagram shows the organizations and dependencies
among a set of components. Component diagrams address the static
implementation view of a system. They are related to class diagrams in
that a component diagram typically maps to one or more classes, inter-
faces, or collaborations.

157

ptg

Chapter 8 Documenting an Architecture

Figure 8-13 Example class diagram

Figure 8-14 uses stereotypes to create new J2EE-specific components of
JSP, Servlet, and SessionBean. The Search component sends requests to
the SearchController component, which makes a request to the
SearchEngine and sends the results to the SearchResults JSP. The
SearchEngine component uses the ICatalog interface to retrieve infor-
mation from the Catalog subsystem.

158

Figure 8-14 Example component diagram

Component diagrams are used to communicate the overall pattern for
the system. Each system has a basic pattern that developers should fol-
low, such as MVC or DAO for all database access.

ptg

Discussion

Deployment Diagram

A deployment diagram shows the configuration of run-time process-
ing nodes and the components that live on these nodes. Deployment
diagrams address the static deployment view of an architecture. They
are related to component diagrams in that a node typically encloses one
or more components.

Figure 8-15 shows a four-node system configuration. The browser
uses HTTP to communicate with the web server, which runs the Search-
Controller Servlet, Search JSP, and SearchResults JSP. The web server
uses RMI to communicate with the application server, which runs the
search engine session bean. The application server uses IIOP to commu-
nicate with the Catalog System node.

159

Figure 8-15 Example deployment diagram

Deployment diagrams help the developers to understand the bound-
aries of the system components and what protocol they will use to com-
municate with dependent components.

Package Diagram

A package diagram is a special kind of class diagram. Package dia-
grams represent the organization of the system in groups. You could use
a package diagram to show the physical packages you expect within the
system.

ptg

Chapter 8 Documenting an Architecture

Figure 8-16 uses the stereotype <<subsystem>> to define the pack-
age to be a subsystem. This package diagram is really a subsystem dia-
gram that shows the subsystems of the system and the dependencies
between the subsystems. For example, the CustomerProfile subsystem
needs the Security subsystem and is used by the OrderEntry and Mar-
keting subsystems.

160

Figure 8-16 Example package diagram

Package diagrams are used to communicate the packaging of the soft-
ware for build and deployment.

Behavior Diagrams

Behavior diagrams are used to communicate the detailed processing of
the system and interaction of components.

Activity Diagram

An activity diagram is a special kind of a statechart diagram that shows
the flow from activity to activity within a system. An activity diagram
addresses the dynamic view of a system. This type of diagram is impor-
tant in modeling the function of a system and emphasizing the flow of
control among objects.

ptg

Discussion

Figure 8-17 starts with Activity1 and then creates parallel execution
to Activity2 and Activity3. Activity2 has two possible outcomes. If Activ-
ity2 fails, proceed to Activity4 and exit. If Activity2 succeeds, proceed to
Activity5 and join with the parallel execution from Activity3. After Activ-
ity3 and Activity5 are joined, execution continues with Activity6 and
then completes.

161

Figure 8-17 Example activity diagram

Statechart Diagram

A statechart diagram shows a state machine consisting of states, transi-
tions, events, and activities. Statechart diagrams address the dynamic
view of a system. They are important in modeling the behavior of an
interface, class, or collaboration, and emphasize the event-ordered
behavior of an object, which is useful in modeling reactive systems.

Figure 8-18 represents the state of a reservation. Initially, the reser-
vation is on hold and proceeds to a booking state. If successful, the state
of the reservation is booked; if the booking fails, the reservation is can-
celled.

ptg

Chapter 8 Documenting an Architecture162

Figure 8-18 Example statechart diagram

Use-Case Diagram

A use-case diagram shows a set of use cases and actors and their rela-
tionships. Use-case diagrams address the static use-case view of a sys-
tem. These diagrams are especially important in organizing and
modeling the behaviors of a system.

Figure 8-19 has actors Customer, Catalog System, Service Rep, and
Warehouse. The Customer and Service Rep actors interact with the use-
cases Browse Catalog, Search for Product, Create Customer Account,
and Checkout. The Browse Catalog and Search for Product use cases
retrieve or send information to the Catalog System actor. The Checkout
use case retrieves or sends information to the Warehouse actor.

Figure 8-19 Example use-case diagram

ptg

Discussion

Interaction Diagrams

Both sequence and collaboration diagrams are kinds of interaction dia-
grams. An interaction diagram shows an interaction, consisting of a set
of objects and their relationships, including the messages that can be dis-
patched among them. Interaction diagrams address the dynamic view of
a system. A sequence diagram is an interaction diagram that empha-
sizes the time ordering of messages; a collaboration diagram is an
interaction diagram that emphasizes the structural organization of the
objects that send and receive messages. Sequence and collaboration dia-
grams are isomorphic, meaning that you can take one and transform it
into the other.

All interaction diagrams start with an actor. Figures 8-20 and 8-21
show the Actor sending a start message to the Start Object, which sends
a Create to Object1, which sends a Create to Object2. Object2 sends a
loadData message to itself, which is a recursive message. Object2 then
returns to Object1, which returns to Start Object. There are no return
arrows, as returns in interaction diagrams are implicit. The two diagrams
are modeling the same flow of events. To understand the flow of events
on a collaboration diagram, the messages are numbered, making it easier
to follow.

163

Figure 8-20 Communication diagram (also known as a collaboration diagram)

ptg

Chapter 8 Documenting an Architecture

Figure 8-21 Sequence diagram

Interaction diagrams are useful to communicate flow of events between
objects. This can be very useful with complex interactions.

Essential Points

■ UML diagrams are used to communicate the system architecture
to the developers. As an architect, you will need to understand the
different types of diagrams and make a determination as to which
diagram will communicate the knowledge to the developers.

■ Structure diagrams, such as class, component, deployment, and
package diagrams, are useful when communicating the overall
structure of the system.

■ Behavior diagrams, such as activity, statechart, use-case, commu-
nication, and sequence diagrams, are used to communicate the
unusual processing of the system.

Review Your Progress

Because this chapter is only pertinent to the assignment, there are no
review questions. Your assignment submission will be graded on how
clearly you communicate your architecture to the assessors and how

164

ptg

Review Your Progress

clear and easy the diagrams are to read. The assignment requests the fol-
lowing diagrams be created for your submission: class diagram, compo-
nent diagram, deployment diagram, and interaction diagrams. Chapter
9, “Tackling Parts II and III,” provides a documented example of the
assignment.

165

ptg

This page intentionally left blank

ptg

C H A P T E R 9

Tackling Parts II and III

There are no specific exam objectives to quote for this chapter—all the
exam objectives already covered apply equally to the material addressed
here.

Introduction

This chapter is distinct from the other chapters in that it deals with the
exam itself—specifically, how to prepare for and answer Parts II and III.

Simply put, Part II of the exam requires you, the candidate, to pro-
pose a JEE-based solution to a given business problem scenario. Once
you have completed and submitted this assignment, Part III poses a
series of questions to you designed to probe the strengths and weak-
nesses of your solution to basic application functional and non-
functional characteristics.

Therefore, in this chapter, we present a specific scenario similar in
complexity to that you can expect to receive in the exam itself, and then
present our own solution to it. Having completed that, we then move on
to consider the obvious functional and non-functional questions that can
be asked of that assignment.

Prerequisite Review

There are no specific prerequisites for this chapter.

167

ptg

Chapter 9 Tackling Parts II and III

Discussion

In this section, we present a scenario on a par with the complexity that
you can expect to receive in the actual exam and then our own proposed
solution to that scenario.

Scenario

You are the architect for JustBuildIt Corporation, an international, verti-
cally integrated construction company with significant operations in the
U.S. and Canada, Europe, and the Pacific Rim. JustBuildIt operates its
own forests, quarries, and steel foundries to supply its own building sites
with wood, concrete, and steel. This end-to-end style of operation has
helped JustBuildIt to keep down its costs of raw material in an era of
soaring commodity prices, but equally has forced it to build and main-
tain a complex back office and distribution network—eroding a signifi-
cant portion of those cost savings. The management team has recently
concluded a business-wide review, from leaves to roots, of the entire
company, and one fact is apparent—JustBuildIt pays a lot of money
moving raw materials to construction sites, even when there are materi-
als just as suitable nearby.

JustBuildIt has decided to build a building commodities exchange to
allow both it and some of its competitors to effectively pool excess capac-
ity in a co-opetition model. In the future, raw materials for a given con-
struction job will be sourced through the exchange, rather than
exclusively from JustBuildIt inventory. (Although, of course, excess Just-
BuildIt inventory will be prioritized for use over another company’s
inventory.) Based on the management’s report and also interviews with
key senior staff, you know the following:

■ JustBuildIt has recently invested in an inventory and order man-
agement system, which tracks both capacity of their production
facilities and also individual orders coming in from construction
sites around the world. This system is accessed via a JMS queue.

■ JustBuildIt has decided to expose the interface to their exchange
as a web services API.

■ In order to counter accusations of unfairness, JustBuildIt has
agreed with all participants that 95% of all transactions to and
from the exchange will execute in 5 seconds or less, with the
remaining 5% executing in 20 seconds or less.

168

ptg

Discussion

■ The system has an uptime requirement during core working
hours (GMT -8 to GMT +8) of 99.99%.

■ The actual placement of orders into the exchange is a manual
process—inventory managers place excess product capacity into
the system manually, allowing site managers to place bids for the
product they want, with the most competitive bid winning the
auction process.

The domain model shown in Figure 9-1 details the main business
objects that describe the overall system. This model, along with the use-
case diagram, represents the pictorial description of the business prob-
lem to which you must provide a solution for Parts II and III of the
exam.

169

Figure 9-1 Business domain model for the JustBuildIt scenario

ptg

Chapter 9 Tackling Parts II and III

The use cases for the business scenario (detailed in Figure 9-2) describe
the specific business operations that must be supported in your pro-
posed solution. Although they can be thought of as influencing just the
sequence diagram deliverable directly, the use cases should also be used
to evaluate the class and component diagrams to ensure that your solu-
tion as a whole supports each use case. Some of the exam scenarios con-
tain more than the three use cases described here; however, the
complexity is equivalent.

170

Post Product (Wood, Concrete, Steel) for Sale

Bid on Availability Notice

Select Winning Bid, Notify Winner

Buyer
JustBuildIt Inventory Manager

Pricing System

Figure 9-2 The three use cases for the JustBuildIt scenario that must be addressed
in your solution

Worked Solution

In this section, we will detail exactly the same thought processes that you
should apply to your own solution and apply them in turn to the Just-
BuildIt scenario.

Class Diagram

This may sound obvious, but ensure that all the objects detailed in the
domain model are present in your class diagram. You may spot a more

ptg

Worked Solution

efficient or elegant representation of relationships, attributes, or behav-
ior, and within reason feel free to express your superior design, but
remember: This is a contrived exam scenario, not a workshop where you
can win client buy-in to your improved approach. You cannot influence
the examiner when he or she is correcting your assignment—therefore,
missing information means missing marks. Another common mistake (in
all diagrams, not just the class diagram) is to focus on the “how” and not
the “what.” Simply put: Yes, you should select and commit to a method
or framework that describes how you plan to build the System under
Development (SuD) at the web/presentation, business logic, persist-
ence, and integration tiers, but this focus on the “how” must not be at the
expense of the “what.” Here is a simple test to ensure that your class dia-
gram captures the business IPR of JustBuildIt—explain it to yourself out
loud: Name every class starting with the most important and traverse the
entire class diagram using the relationships, explaining the cardinality as
you go. This simple procedure will simultaneously ensure that you stay
on track and focus on the solution and also make you annoying to people
near you—a win-win situation. Figure 9-3 takes the domain model and
develops it into the associated class diagram. There are some important
points to note on the class diagram, as follows:

■ The class diagram remains web framework agnostic. Any web
framework (within reason) is an acceptable choice—we merely
assume a standard MVC separation of concerns.

■ Just as importantly, the web framework and persistence plumbing
is not allowed to detract from the domain model classes them-
selves. The relationships and interplays are important and should
not be ignored, but equally the primary purpose of the class dia-
gram is to show your conversion of the domain model into a func-
tioning class diagram that solves the business problem.

■ Colors have not been used to impart information—but if you
choose to use colors in your class diagram (or any of the exam
deliverables), you must provide a color key explaining clearly
what the colors stand for.

■ Annotations have been used to show the examiner how specific
items in the domain model have been mapped onto JEE compo-
nents—specifically, session beans and Entity classes.

171

ptg

Chapter 9 Tackling Parts II and III

Fi
gu

re
 9

-3
Th

e
cl

as
s

di
ag

ra
m

 is
 d

ev
el

op
ed

 fr
om

 t
he

 d
om

ai
n

m
od

el
 a

nd
 m

od
el

s
el

em
en

ts
 a

s
en

tit
ie

s
or

 s
es

si
on

be
an

s,
as

 w
el

l a
s

re
or

ga
ni

zi
ng

 t
he

 e
le

m
en

ts
 in

to
 a

 c
la

ss
ic

 n
-ti

er
 la

ye
re

d
ar

ch
ite

ct
ur

e.

172

ptg

Worked Solution

Component Diagram

The component diagram is another view of the system, at a higher level
than the class diagram. In this view, you are expected to demonstrate the
ability to visualize the system at a higher level and understand (and illus-
trate clearly) all of the moving parts in your solution. If you have proposed
an innovative use of MDBs to solve a particularly thorny integration
issue, here is where you need to depict and justify that decision. Figure 9-
4 depicts the component diagram for the JustBuildIt solution.

173

Figure 9-4 The component diagram builds further on the class diagram, grouping
logically related classes together into components that carry out a distinct business
operation. Moreover, the component diagram is laid out so as to make the layered
nature of the architecture clear to the examiner.

ptg

Chapter 9 Tackling Parts II and III

Deployment Diagram

The deployment diagram captures information about how you intend
that the system operate in production—both logically and physically.
There is little point in naming specific machines, vendors, or routers, as
these decisions change so quickly. However, do indicate in a
vendor/machine-agnostic way the resources you expect to be deployed
in order to support your architecture—CPUs, RAM, network require-
ments, disk configuration, and so on—and then provide concrete
examples of a specific vendor/machine combination that satisfies your
theoretical capacity prediction. Significant marks are not allocated to
this information (although marks are indeed allocated), but it does
impress upon the examiner that you have considered the hardware and
software needed in a production environment to make your solution a
reality. Figure 9-5 lays out a deployment diagram for the JustBuildIt sys-
tem. In this diagram, we have adopted the convention of specifying two
hardware profiles (A and B) to call out the fact that we expect the com-
bined web/application servers to require different system resources to
the database tier. Although the resources deemed necessary will vary
from one exam scenario to the next, the fundamental resources them-
selves will not. These are as follows:

■ CPUs (number of cores, clock speed)
■ RAM (quantity in GB)
■ Network (minimum interface speed)
■ Storage (disk/SAN configuration)

Finally, at the time of writing (third quarter of 2009), a brief word on
cloud computing. Feel free to specify that your application will run in
the cloud and explicitly design for that deployment. But the exam deliv-
erables must not be compromised in any way. For example, cloud com-
puting does not give free scalability (despite marketing propaganda to
the contrary). Neither is cloud computing free. You must devote the
same care and attention to addressing that your hardware and software
solution is adequate and that you can articulate why your solution will
scale and perform, whether you choose to adopt cloud computing or not.

174

ptg

Worked Solution

Fi
gu

re
 9

-5
Th

e
de

pl
oy

m
en

t
di

ag
ra

m
 d

ep
ic

ts
 h

ow
 t
he

 p
ro

po
se

d
so

lu
tio

n
w

ill
 e

xe
cu

te
 a

t
ru

nt
im

e,
in

cl
ud

in
g

su
gg

es
tin

g
th

e
lik

el
y

ha
rd

w
ar

e
an

d
co

nfi
gu

ra
tio

n
th

at
 w

ill
 b

e
ne

ed
ed

 t
o

su
pp

or
t
th

e
so

ft
w

ar
e

so
lu

tio
n.

175

ptg

Chapter 9 Tackling Parts II and III

Sequence Diagrams

There’s not much to say about sequence diagrams. They are pretty bor-
ing and tedious to draw, they are often the first diagram that gets out of
sync with the concrete implementation of the design, and they are a nec-
essary part of the exam. You must supply a sequence or collaboration
diagram for each specified use case. Do not roll one or more use cases
together into a single diagram for brevity or to save time—you will lose
marks. There is also a clear area of disconnect in the exam that is
exposed here. You are not required to supply method signatures for any
of the classes you define, yet you are expected to supply sequence dia-
grams. Because of this, the examiner is not going to submit your
sequence/collaboration diagrams to a rigorous compiler-level of correct-
ness and syntax checking. What you are expected to deliver and will be
examined for are sequence diagrams that are clear and broadly map to
the complexity of the use case being described. The classes and compo-
nents you created in the class and component diagram should be repre-
sented, along with the calls between them necessary to implement the
use case being documented. Trivially simple sequence diagrams will lose
marks. Figure 9-6 shows the sequence diagram mapping onto the first
use case: post product for sale.

176

Figure 9-6 The sequence diagram for the “Post Product for Sale” use case

Following on from the first sequence diagram, Figure 9-7 shows the
sequence diagram mapping onto the second use case: bid on product.

ptg

Worked Solution

Figure 9-7 The sequence diagram for the “Bid on Product” use case

Finally, Figure 9-8 completes the three sequence diagrams necessary to
provide complete coverage of the use cases detailed in Figure 9-2. In
general, regardless of the level of detail or complexity that you choose to
depict in your sequence diagrams, take care to ensure that the examiner
can see exactly which sequence diagrams map onto the specific use cases
provided.

177

Figure 9-8 The sequence diagram for the “Select winning Bid, notify winner”
use case

ptg

Chapter 9 Tackling Parts II and III

Comments on Diagrams

From a marking perspective, this may be the single most important sen-
tence you will read in this entire book: Make it easy for the examiner
to find the information necessary to pass your assignment. Specifi-
cally, do the following:

■ Make all of your diagrams legible.
■ Do not use tools that make “innovative” use of JavaScript to zoom

in and out of—ensure that your tool outputs static images only, in
line with the explicit instructions provided on acceptable file and
image formats.

■ From the advice given previously, you now know that the exam is
all about solving a business problem using JEE—make sure that
the examiner can find that business solution in your diagrams. If
your class diagram is 80% frameworks and 20% business logic, it’s
a candidate for failure.

■ By all means, augment diagrams with English text, but ensure
that your diagrams hold water on their own. In an exam where
UML diagrams are listed as deliverables, a clear, accurate, and
easy-to-understand picture is truly worth a thousand words.

The diagrams provided in this chapter satisfy the criteria listed in the
preceding bulleted list, but it is also important to remember that the dia-
grams provided represent only one way of documenting the information.
As long as you follow the criteria listed here, feel free to provide your
own unique UML diagrams that showcase your unique solution to your
assigned business problem scenario.

Identified Risks and Mitigations

The new version of the exam was ostensibly re-written simply to test
candidates on the JEE 5 platform. (The exam it replaced was seven years
old.) However, the new exam goes further than that. Sun took the oppor-
tunity to review where the old exam format and deliverables could be
improved. This section was born out of that review. In this segment of
the exam, you are tested on a fundamental architect skill—the ability to
recognize the top technical risks present in your allotted business sce-
nario and to address them in your business solution.

178

ptg

Part III—Defending Your Architecture

Be strategic and objective in your assessment of risk. Many candi-
dates in the beta lost marks by favoring low-level, avoidable risks over
high-level, systemic risks that would be nightmare scenarios if they
occurred. To be blunt, in an online marketplace, a security compromise
in any form would be a major risk; worrying about whether or not the
application could run in multiple browsers is not. (This example is taken
from a beta candidate’s solution.) In this section, it is reasonable to say
that the major risks that candidates should identify across all potential
scenarios will be remarkably similar. Their mitigation, and hopefully
complete removal, will be more specific to the individual scenario.

Part III—Defending Your Architecture

In Part III of the exam, you are asked to substantiate and justify specific
decisions you made in your solution design. Remember that you are not
being asked to prove that your solution is bulletproof; rather you are
being asked to show that you understood the business requirements,
used the JEE platform in the optimal way to meet those requirements,
and that it is likely that your proposed solution will meet those require-
ments. You are also expected to have a clear view on the alternatives you
considered and why you rejected them.

You should have a clear view on the following non-functional charac-
teristics of the application and why your solution meets and or exceeds
the requirements for all:

■ Performance
■ Scalability
■ Reliability
■ Security
■ Availability
■ Maintainability

You should also understand and appreciate the main technical risks
inherent in both the scenario and your proposed solution and prepare
mitigations for each.

179

ptg

Chapter 9 Tackling Parts II and III

Essential Points

■ Clarity is essential—make it easy for the examiner to quickly and
concisely understand your proposed solution.

■ As you develop and document your solution, ask yourself these
questions to keep your solution on track:

• Am I providing a solution to the business problem posed, or
am I solving what I want to solve?

• Is my solution clearly documented—when I read my solution,
does it reflect my intent?

• Is my solution as simple as it can be, while clearly solving the
business problem as presented to me in the scenario?

■ A good test is to give your UML diagrams to a friend or co-worker
(without showing them the scenario) and ask them what they
think you are working on. If they can explain it back to you, great;
if not, it is likely that your solution, or at least how it is docu-
mented, is not good enough and needs further work and clarifica-
tion on your part.

■ Remember that Sun Microsystems use a bank of exam scenarios
to ensure fairness across the candidate population and that old
scenarios are retired and new ones are added to the bank on a reg-
ular basis. It is possible that you will receive a scenario relating to
an industry vertical that you know well. In fact, you may feel the
urge to provide a solution taking into account your a priori knowl-
edge. Resist this temptation! The exam is not testing your knowl-
edge of financial derivatives or the oil and gas transportation
industry; rather, these are simplified of their real-world equiva-
lents designed to test just one thing—can you architect a good
solution to a given problem? That’s all. There are no points for a
solution to the real-world problem; in fact, candidates who adopt
this approach tend to either fail or achieve just a low-scoring pass
mark because they are not answering the questions posed in the
assignment.

■ Ensure that your solution is delivered in a vendor-neutral format.
The exam instructions are clear on this point—your solution must
be readable in any browser and must not use vendor-specific
extensions or file formats. This is basic stuff, but some candidates
make this error every year.

180

ptg

Index

A
Abstract Factory pattern, 101-102
active replication, 29
activity diagrams, 160
Adapter pattern, 107-108
adornments, 155
aggregation, 154
AJAX (Asynchronous JavaScript and

XML), 46
Alexander, Christopher, 99
algorithms, load balancing, 25
Alur, Deepak, 100
annotational elements (UML), 153
annotations for web services, 61
APIs

JAXB, 72
JAXR, 73

Application Controller pattern, 129
application infrastructure layer, 19
Application Service pattern, 135-136
architects, characteristics of, 5-6
architecture

creating, 4-6
decomposition, 13-14

availability improvements, 28-29
dimensions, 23-24
extensibility improvements, 29
layers, 18-20
performance improvements,

27-28

redundancy improvements, 24-27
scalability improvements, 30
service-level requirements, 20-22
strategies, 14-17
tiers, 17-18, 30-32

defending, 179
defined, 2-4, 32
mechanisms, 3
patterns, 99
versus design, 4

asymmetric clusters, 27
Asynchronous JavaScript and XML

(AJAX), 46
authentication, 86
authorization, 86-87
availability, 21

defined, 33
improvements, 28-29

B
Bean Managed Persistence (BMP)

entity beans, 57
beans. See EJBs
Beck, Kent, 100
behavior diagrams

activity diagrams, 160
interaction diagrams, 163

behavioral elements (UML), 152-153

181

ptg

behavioral patterns
Chain of Responsibility pattern,

115-116
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern, 124-125
Visitor pattern, 125-126

blocked time, 28
BMP entity beans, 57
Bridge pattern, 108-109
Builder pattern, 103-104
Business Delegate pattern, 132-133
Business Object pattern, 136
Business tier patterns

Application Service pattern,
135-136

Business Delegate pattern, 132-133
Business Object pattern, 136
Composite Entity pattern, 136
Service Locator pattern, 133
Session Facade pattern, 134-135
Transfer Object Assembler

pattern, 138
Transfer Object pattern, 137-138
Value List Handler pattern, 139

business tiers, 18. See also EJBs

C
capacity, 23, 26
Chain of Responsibility pattern,

115-116
characteristics of architects, 5-6
class diagrams, 157, 170

classes, 151
client tiers, 17
client-server communication, future

of, 46
client/server systems, 31
client-side security, 87
clustered pairs, 27
clusters, 27
CMP entity beans, 56
Command pattern, 116-117
common divisions, 156
common UML mechanisms

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

component APIs, 19
component diagrams, 157-158, 173
components, 152
Composite Entity pattern, 136
Composite pattern, 109-110
Composite View pattern, 130-131
compute and storage layer, 19
Configuration (decomposition

strategy), 16
constraints, 156
Container Managed Persistence

(CMP) entity beans, 56
containers, EJB 3.0, 63. See also

application infrastructure
layer, 19

Context Object pattern, 127-128
Core J2EE Patterns: Best Practices and

Design Strategies, 100
Core Java EE patterns, 126

Business tier patterns
Application Service pattern,

135-136
Business Delegate pattern,

132-133

182 Index

ptg

Business Object pattern, 136
Composite Entity pattern, 136
Service Locator pattern, 133
Session Facade pattern, 134-135
Transfer Object Assembler

pattern, 138
Transfer Object pattern, 137-138
Value List Handler pattern, 139

Integration tier patterns, 139
Data Access Object pattern, 140
Domain Store pattern, 141
Service Activator pattern,

140-141
Web Service Broker pattern, 142

Presentation tier patterns, 126
Application Controller

pattern, 129
Composite View pattern, 130-131
Context Object pattern, 127-128
Dispatcher View pattern, 131-132
Front Controller pattern, 128
Intercepting Filter pattern,

126-127
Service to Worker pattern, 132
View Helper pattern, 129

Coupling and Cohesion
(decomposition strategy), 16

creating architecture, 4-6
creational patterns, 101

Abstract Factory pattern, 101-102
Builder pattern, 103-104
Factory Method pattern, 104
Prototype pattern, 105
Singleton pattern, 106

credentials, 85-86
Crupi, John, 100
Cunningham, Ward, 100

D
Data Access Object pattern, 140
data tiers. See resource tiers, 18
declarative security, 91-92
decomposition, 13-14

availability improvements, 28-29
dimensions, 23-24
extensibility improvements, 29
layers, 18-20
performance improvements, 27-28
redundancy improvements, 24-27
scalability improvements, 30
service-level requirements, 20-22
strategies, 14-17
tiers, 17-18, 30-32

Decorator pattern, 111-112
dependencies, 154

ordering, 17
deployment diagrams, 159, 174
design versus architecture, 4
design patterns

behavioral
Chain of Responsibility

pattern, 115
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern,

124-125
Visitor pattern, 125-126

Core Java EE patterns
Business tier patterns, 132-139

Index 183

ptg

Integration tier patterns, 139-142
Presentation tier patterns,

126-132
creational

Abstract Factory pattern, 101-102
Builder pattern, 103-104
Factory Method pattern, 104-105
Prototype pattern, 105
Singleton pattern, 106

structural
Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

Design Patterns: Elements of Reusable
Object-Oriented Software, 100

diagrams, 150, 157, 178
behavior diagrams

activity diagrams, 160
interaction diagrams, 163

sequence diagrams, 176
structure diagrams, 157

class diagrams, 157, 170
component diagrams,

157-158, 173
deployment diagrams, 159, 174
package diagrams, 159-160

dimensions, 23-24
capacity, 23
heterogeneity, 24
modularity, 23
redundancy, 23
tolerance, 24
workload, 24

Dispatcher View pattern, 131-132

Distribution (decomposition
strategy), 15

domain model, 169
Domain Store pattern, 141

E
ease of development

in EJB 3.0, 63
of persistence strategies, 60

EIS (Enterprise Information
Source), 74

EJB containers, 88-89
EJB-centric implementations, 44

selecting versus web-centric, 45-46
EJBs (Enterprise Java Beans), 51

advantages/disadvantages, 59-60
characteristics of, 53-54
entity beans, 56

BMP entity beans, 57
CMP entity beans, 56

entity classes, 57-58
MDBs (message-driven beans), 58
opinions on, 52-53
persistence strategies, 58
session beans, 54

stateful session beans, 55-56
stateless session beans, 54-55

specifications for, 52
version 3.0 changes, 62-64
web services and, 61-62

EL (Unified Expression Language), 40
elements (UML), 150-151

annotational elements, 153
behavioral elements, 152-153
grouping elements, 153
structural elements, 151-152

Enterprise Java Beans. See EJBs
enterprise services layer, 19

184 Index

ptg

entity beans
BMP entity beans, 57
CMP entity beans, 56

entity classes, 56-58
exam

Part I, 7-8
preparing for, 10

Part II, 8-9
preparing for, 11, 168-179

Part III, 9-10
preparing for, 11, 168-179

Exposure (decomposition strategy), 16
extensibility, 22

defined, 33
improvements, 29
of persistence strategies, 61

extensibility mechanisms, 156

F
Facade pattern, 112-113
Factory Method pattern

benefits of, 104
when to use, 105

failover, 26
filters, 38
Flyweight pattern, 113-114
frameworks

templating frameworks, 41
web frameworks, 42

Front Controller pattern, 128
Functionality (decomposition

strategy), 16

G
Gamma, Erich, 100
Generality (decomposition

strategy), 16
generalization, 155

GoF (Gang of Four), 100
GoF design patterns

behavioral patterns
Chain of Responsibility pattern,

115-116
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern,

124-125
Visitor pattern, 125-126

creational patterns
Abstract Factory pattern, 101-10
Builder pattern, 103-104
Prototype pattern, 105
Singleton pattern, 106

creational Factory Method pattern
benefits of, 104
when to use, 105

structural patterns
Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

grouping, decomposition strategies,
14-15

grouping elements (UML), 153

Index 185

ptg

H
Helm, Richard, 100
heterogeneity, 24
horizontal scalability, 30
horizontal scaling, 21

I
integrating
integration, 16, 75

Java to non-Java, 76
JCA, 77

Java to Java, 75-76
Java to non-Java, web services, 76
web and EJB containers, 89

Integration tier patterns, 139
Data Access Object pattern, 140
Domain Store pattern, 141
Service Activator pattern, 140-141
Web Service Broker pattern, 142

integration tiers, 18
interaction diagrams, 163
interactions, 153
Intercepting Filter pattern, 126-127
interfaces, 151
Interpreter pattern, 117
Iterator pattern, 118

J
JAAS (Java Authentication and

Authorization Service), 85
Java Persistence API (JPA) in EJB 3.0,

56, 63-64
Java Standard Tag Library (JSTL), 40
Java to non-Java integration, JCA, 77
JavaServer Faces (JSF), 41

standard usage, 43
JavaServer Pages (JSP), 39

standard usage, 42

JAX-RPC, 72
JAX-WS API, 61, 72
JAXB (Java API for XML Binding), 72
JAXR (Java API for XML

Registries), 73
JCA (Java Connector Architecture),

74, 77
JMS (Java Messaging Service), 73-76
Johnson, Ralph, 100
JPA (Java Persistence API) in EJB 3.0,

63-64
JRE (Java Runtime Environment), 85
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39-42
JSTL (Java Standard Tag Library), 40
JustBuildIt Corporation scenario,

preparing for exam parts II
and III, 168-179

K–L
Layering (decomposition strategy), 15
layers, 18

application infrastructure layer, 19
application layer, 19
compute and storage layer, 19
enterprise services layer, 19
networking infrastructure layer, 20
virtual platform layer, 19

listeners, 39
load balancing, 25-26
logic, 16
logical tiers versus physical tiers, 30

M
maintainability, 22, 33
Malks, Danny, 100
man-in-the-middle attacks, 93
manageability, 22, 33

186 Index

ptg

MDBs (message-driven beans), 58
mechanisms, 3

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

Mediator pattern, 119-120
Memento pattern, 120-121
message-driven beans (MDBs), 58
messaging

JMS, 73-74
SOAP, 71

middleware. See integration tiers, 18
Model View Controller (MVC) model,

36-37
modeling, UML, 150

diagrams, 157-160, 163
mechanisms, 155-156
relationships, 154-155

modularity, 23
multi-tier systems, 31-32
MVC (Model View Controller) model,

36-37

N
N+1 clusters, 27
N-to-N clusters, 27
network sniffing, 94
networking infrastructure layer, 20
nodes, 152
non-functional requirements. See

service-level requirements
notes, 153

O–P
Observer pattern, 121-122
operating systems. See enterprise

services layer, 19
ordering dependencies, 17

package diagrams, 159-160
packages, 153
Part I of exam, 7-8

preparing for, 10
Part II of exam, 8-9

preparing for, 11, 168-179
Part III of exam, 9-10

preparing for, 11, 168-179
passive replication, 29
password cracking, 93
patterns, 99
performance, 20

improvements, 27-28
of persistence strategies, 60

persistence, 3
comparing strategies for, 60-61
entity beans

BMP entity beans, 57
CMP entity beans, 56

strategies, 58
phishing, 93
physical layer. See networking

infrastructure layer, 20
physical tiers versus logical tiers, 30
Planning and Tracking (decomposition

strategy), 17
preparing for exam

Part I, 7-10
Part II, 8-11, 168-179
Part III, 9-11, 168-179

Index 187

ptg

Presentation tier patterns, 126
Application Controller pattern, 129
Composite View pattern, 130-131
Context Object pattern, 127-128
Dispatcher View pattern, 131-132
Front Controller pattern, 128
Intercepting Filter pattern, 126-127
Service to Worker pattern, 132
View Helper pattern, 129

presentation tiers. See web tiers
principals, 86
processing time, 27
programmatic security, 92
Prototype pattern, 105
Proxy pattern, 114-115

Q–R
QoS (quality of service) requirements.

See service-level requirements

redundancy, 23-27
clusters, 27
failover, 26
load balancing, 25-26

relationships (UML), 150, 154-155
reliability, 21, 33
resource tiers, 18
response time, 28
ring clusters, 27
risks, 6
role of architects, 5-6
RPC (remote procedure call), 72

S
scalability, 20-21

defined, 33
improvements, 30
of EJBs, 59

scalable clusters, 27
scenarios, preparing for exam parts II

and III, 168-179
security, 22

authentication, 86
authorization, 86-87
client-side, 87
credentials, 85-86
declarative, 91-92
defined, 33
JAAS, 85
JRE, 85
of EJBs, 60
principals, 86
programmatic, 92
server-side EJB containers, 88
threats to, 93-94
web service security, 90-91

security models, 94
selecting EJB-centric versus

web-centric implementations,
45-46

sequence diagrams, 176
server-side security

EJB containers, 88
web containers, 88-89

Service Activator pattern, 140-141
Service Locator pattern, 133
Service to Worker pattern, 132
service-level requirements, 20-22

availability, 21
improvements, 28-29

dimensions, impact of, 23-24
extensibility, 22

improvements, 29
maintainability, 22
manageability, 22
performance, 20

improvements, 27-28

188 Index

ptg

redundancy improvements, 24-27
clusters, 27
failover, 26
load balancing, 25-26

reliability, 21
scalability, 20-21

improvements, 30
security, 22

services, 16
Servlets, 37-38
session beans, 54

stateful session beans, 55-56
stateless session beans, 54-55

Session Facade pattern, 134-135
session hijacking, 93
session management, 40
Singleton pattern, 106
sizing, 17
SOAP (Simple Object Access

Protocol), 71
social hacking, 93
specifications, 155
stand-by servers, failover and, 26
star clusters, 27
state machines, 153
State pattern, 122
stateful session beans, 55-56
stateless session beans, 54-55
stereotypes, 156
Strategy pattern, 123-124
structural elements (UML), 151-152
structural patterns

Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

structure diagrams, 157
class diagrams, 157, 170
component diagrams, 157-158, 173
deployment diagrams, 159, 174
package diagrams, 159-160

Sun Java Center, 100
symmetric clusters, 27
system downtime, 28

T
tagged values, 156
technical risks, 6
Template Method pattern, 124-125
templating frameworks, 41
threats to security, 93-94
three-tier systems, 31-32
tiers, 17-18, 30-32

business tiers, 18
client tiers, 17
integration tiers, 18
multi-tier systems, 31-32
physical versus logical, 30
resource tiers, 18
service-level requirements, impact

on, 32
three-tier systems, 31-32
two-tier systems, 31
web tiers, 18

EJB-centric implementations, 44
EL (Unified Expression

Language), 40
filters, 38
future of client-server

communication, 46
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39, 42
JSTL (Java Standard Tag

Library), 40
listeners, 39

Index 189

ptg

MVC model, 36-37
Servlets, 37-38
session management, 40
specifications for, 36
templating frameworks, 41
web container, 36-37
web frameworks, 42
web-centric implementations,

43-46
tolerance, 24
Transfer Object Assember pattern, 138
Transfer Object pattern, 137-138
two-node clusters, 27
two-tier systems, 31

U
UML (Unified Modeling

Language), 150
common mechanisms

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

diagrams, 157
behavior diagrams, 160, 163
structure diagrams, 157-160

elements, 151, 153
annotational elements, 153
behavioral, 152
grouping elements, 153
structural, 151-152

relationships, 154-155
Unified Expression Language (EL), 40

V
Value List Handler pattern, 139
vertical scaling, 21, 30
View helper pattern, 129
virtual platform layer, 19
virtualization, tiers and, 30
Visitor pattern, 125-126
Vitruvius, 5
Vlissedes, John, 100
Volatility (decomposition strategy), 16

W–Z
web containers, 36-37, 88-89
web frameworks, 42
Web Service Broker pattern, 142
web service security, 90-91
web services, 71

EJBs and, 61-62
Java to non-Java integration, 76
WSDL, 72

web tiers, 18
EJB-centric implementations, 44
EL (Unified Expression

Language), 40
filters, 38
future of client-server

communication, 46
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39, 42
JSTL (Java Standard Tag

Library), 40
listeners, 39
MVC model, 36-37

190 Index

ptg

Servlets, 37-38
session management, 40
specifications for, 36
templating frameworks, 41
web container, 36-37
web frameworks, 42
web-centric implementations, 43-46

web-centric implementations, 43-46
Work Assignment (decomposition

strategy), 17
workload, 24
WSDL (Web Design Services

Description Language), 72

Index 191

ptg

This page intentionally left blank

ptg

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

ptg

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

ptg

Your purchase of Sun Certified Enterprise Architect for Java™ EE Study Guide includes
access to a free online edition for 45 days through the Safari Books Online subscription
service. Nearly every Prentice Hall book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly, Que,
and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: PSQUQGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

	Sun Certified Enterprise Architect for Java EE Study Guide, 2nd Edition (2010) (ATTiCA)
	Contents
	Acknowledgments
	About the Authors
	Chapter 1 What Is Architecture?
	Introduction
	Prerequisite Review
	Discussion
	Understanding Architecture
	Role of the Architect

	More Detail on the Exam Itself
	Part I: Multiple Choice
	Part II: Solving the Business Problem
	Part III: Defending Your Solution

	Preparing for the Exam
	Preparing for Part I
	Preparing for Part II
	Preparing for Part III

	Essential Points
	Review Your Progress

	Chapter 2 Architecture Decomposition
	Introduction
	Prerequisite Review
	Discussion
	Decomposition Strategies
	Tiers
	Layers
	Service-Level Requirements
	Impact of Dimensions on Service-Level Requirements
	Common Practices for Improving Service-Level Requirements

	Tiers in Architecture
	Two-Tier Systems
	Three- and Multi-Tier Systems

	Essential Points
	Review Your Progress

	Chapter 3 Web Tier Technologies
	Introduction
	Prerequisite Review
	Model View Controller (MVC)
	Web Container
	Servlets
	Filters
	Listeners
	JavaServer Pages (JSP)
	Java Standard Tag Library (JSTL)
	Unified Expression Language (EL)
	Managing Sessions
	JavaServer Faces (JSF)
	Templating Frameworks
	Web Frameworks

	Discussion
	JSPs and Servlets—Standard Uses
	JSF—Standard Uses
	Web-Centric Implementations
	EJB-Centric Implementations
	Rationale for Choosing Between EJB-Centric and Web-Centric Implementations
	The Future of Client-Server Communication

	Essential Points
	Review Your Progress

	Chapter 4 Business Tier Technologies
	Introduction
	Prerequisite Review
	Enterprise Java Bean
	Session Bean
	Entity Beans
	CMP Entity Bean
	BMP Entity Bean
	Entity Class
	Persistence Strategies
	Message-Driven Bean

	Discussion
	EJB Advantages and Disadvantages
	Contrasting Persistence Strategies
	EJB and Web Services
	EJB 3

	Essential Points
	Review Your Progress

	Chapter 5 Integration and Messaging
	Introduction
	Prerequisite Review
	Web Services
	SOAP
	WSDL
	JAX-RPC
	JAX-WS
	JAXB
	JAXR
	JMS
	JCA

	Discussion
	Java to Java Integration
	Java to Non-Java Integration

	Essential Points
	Review Your Progress

	Chapter 6 Security
	Introduction
	Prerequisite Review
	JRE
	JAAS
	Credential
	Principal
	Authentication
	Authorization

	Discussion
	Client-Side Security
	Server-Side Security
	How Security Behavior Is Defined
	Commonly Encountered Security Threats
	Defining a Security Model

	Essential Points
	Review Your Progress

	Chapter 7 Applying Patterns
	Introduction
	Prerequisite Review
	Discussion
	Creational Patterns
	Structural Patterns
	Behavioral Patterns
	Core Java EE Patterns
	Presentation Tier
	Business Tier
	Integration Tier

	Essential Points
	Review Your Progress

	Chapter 8 Documenting an Architecture
	Introduction
	Prerequisite Review
	Discussion
	Building Blocks of UML
	Common Mechanisms
	UML Diagrams
	Structure Diagrams
	Behavior Diagrams
	Interaction Diagrams

	Essential Points
	Review Your Progress

	Chapter 9 Tackling Parts II and III
	Introduction
	Prerequisite Review
	Discussion
	Scenario

	Worked Solution
	Class Diagram
	Component Diagram
	Deployment Diagram
	Sequence Diagrams
	Comments on Diagrams
	Identified Risks and Mitigations

	Part III—Defending Your Architecture
	Essential Points

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O–P
	Q–R
	S
	T
	U
	V
	W–Z

