

[image: Enterprise Angular: Micro Frontends and Moduliths with Angular]

 Enterprise Angular: Micro Frontends and Moduliths with Angular

 Module Federation - Nx - DDD

 Manfred Steyer

 This book is for sale at http://leanpub.com/enterprise-angular

 This version was published on 2022-06-28

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2019 - 2022 Manfred Steyer

 Table of Contents

 	
 Introduction

 	
 Trainings and Consultancy

 	
 Help to Improve this Book!

 	
 Thanks

 	
 Strategic Domain-Driven Design

 	
 What is Domain-Driven Design?

 	
 Finding Domains with Strategic Design

 	
 Domains are Modelled Separately

 	
 Context-Mapping

 	
 Conclusion

 	
 Implementing Strategic Design with Nx Monorepos

 	
 Implementation with Nx

 	
 Categories for Libraries

 	
 Public APIs for Libraries

 	
 Check Accesses Between libraries

 	
 Access Restrictions for a Solid Architecture

 	
 Modular Monolith = Modulith

 	
 Your Architecture by the Push of a Button: The DDD-Plugin

 	
 Conclusion

 	
 From Domains to Microfrontends

 	
 Deployment Monoliths

 	
 Micro Frontends

 	
 UI Composition with Hyperlinks

 	
 UI Composition with a Shell

 	
 The Hero: Module Federation

 	
 Finding a Solution

 	
 Conclusion

 	
 The Microfrontend Revolution: Using Module Federation with Angular

 	
 Example

 	
 Activating Module Federation for Angular Projects

 	
 The Shell (aka Host)

 	
 The Microfrontend (aka Remote)

 	
 Trying it out

 	
 A Further Detail

 	
 More Details: Sharing Dependencies

 	
 More on This

 	
 Conclusion and Evaluation

 	
 Dynamic Module Federation

 	
 A Simple Dynamic Solution

 	
 Going “Dynamic Dynamic”

 	
 Some More Details

 	
 Conclusion

 	
 Plugin Systems with Module Federation: Building An Extensible Workflow Designer

 	
 Building the Plugins

 	
 Loading the Plugins into the Workflow Designer

 	
 Providing Metadata on the Plugins

 	
 Dynamically Creating the Plugin Component

 	
 Wiring Up Everything

 	
 Conclusion

 	
 Using Module Federation with Nx Monorepos and Angular

 	
 Multiple Repos vs. Monorepos

 	
 Multiple Repositories: Micro Frontends by the Book

 	
 Micro Frontends with Monorepos

 	
 Monorepo Example

 	
 The Shared Lib

 	
 The Module Federation Configuration

 	
 Trying it out

 	
 Isolating Micro Frontends

 	
 Incremental Builds

 	
 Deploying

 	
 Conclusion

 	
 Dealing with Version Mismatches in Module Federation

 	
 Example Used Here

 	
 Semantic Versioning by Default

 	
 Fallback Modules for Incompatible Versions

 	
 Differences With Dynamic Module Federation

 	
 Singletons

 	
 Accepting a Version Range

 	
 Conclusion

 	
 Multi-Framework and -Version Micro Frontends with Module Federation

 	
 Pattern or Anti-Pattern?

 	
 Micro Frontends as Web Components?

 	
 Do we also need Module Federation?

 	
 Implementation in 4 steps

 	
 Pitfalls with Module Federation and Angular

 	
 “No required version specified” and Secondary Entry Points

 	
 Unobvious Version Mismatches: Issues with Peer Dependencies

 	
 Issues with Sharing Code and Data

 	
 NullInjectorError: Service expected in Parent Scope (Root Scope)

 	
 Several Root Scopes

 	
 Different Versions of Angular

 	
 Bonus: Multiple Bundles

 	
 Conclusion

 	
 Module Federation with Angular’s Standalone Components

 	
 Router Configs vs. Standalone Components

 	
 Initial Situation: Our Micro Frontend

 	
 Activating Module Federation

 	
 Static Shell

 	
 Alternative: Dynamic Shell

 	
 Bonus: Programmatic Loading

 	
 Bonus Chapter: Automate Your Architectures with Nx Workspace Generators

 	
 Schematics vs Generators

 	
 Workspace Generators

 	
 Templates

 	
 Defining parameters

 	
 Implementing the Generator

 	
 Update Existing Source Code

 	
 Running the Generator

 	
 Additional Hints

 	
 One Step Further: Workspace Plugins

 	
 Conclusion

 	
 Literature

 	
 About the Author

 	
 Trainings and Consulting

 Guide

 	
 Begin Reading

Introduction

Over the last years, I’ve helped numerous companies with implementing large-scale enterprise applications with Angular.

One vital aspect is decomposing the system into smaller libraries to reduce complexity. However, if this results in countless small libraries which are too intermingled, you haven’t exactly made progress. If everything depends on everything else, you can’t easily change or extend your system without breaking other parts.

Domain-driven design, especially strategic design, helps. Also, strategic design can be the foundation for building micro frontends.

This book, which builds on several of my blogposts about Angular, DDD, and micro frontends, explains how to use these ideas.

If you have any questions or feedback, please reach out at manfred.steyer@angulararchitects.io. You also find me on Twitter and on Facebook. Let’s stay in touch for updates about my work on Angular for enterprise-scale applications!

Trainings and Consultancy

If you and your team need support or trainings regarding Angular, we are happy to help with workshops and consultancy (on-site or remote). In addition to several other kinds of workshop, we provide the following ones:

 	Advanced Angular: Enterprise Solutions and Architecture

 	Angular Essentials: Building Blocks and Concepts

 	Angular Architecture Workshop

 	Angular Testing Workshop (Cypress, Jest, etc.)

 	Angular Design Systems Workshop (Figma, Storybook, etc.)

 	Angular: Reactive Architectures (RxJS and NGRX)

 	Angular Review Workshop

 	Angular Upgrade Workshop

Please find the full list of our offers here.

 [image: Advanced Angular Workshop]
 Advanced Angular Workshop

We provide our offer in various forms: remote or on-site; public or as dedicated company workshops; in English or in German.

If you have any questions, reach out to us using office@softwarearchitekt.at.

Help to Improve this Book!

Please let me know if you have any suggestions. Send a pull request to the book’s GitHub repository.

Thanks

I want to thank several people who have helped me write this book:

 	The great people at Nrwl.io who provide the open-source tool Nx used in the case studies here and described in the following chapters.

 	
Thomas Burleson who did an excellent job describing the concept of facades. Thomas contributed to the chapter about tactical design which explores facades.

 	The master minds Zack Jackson and Jack Herrington helped me to understand the API for Dynamic Module Federation.

 	The awesome Tobias Koppers gave me valuable insights into this topic and

 	The one and only Dmitriy Shekhovtsov helped me using the Angular CLI/webpack 5 integration for this.

Strategic Domain-Driven Design

To make enterprise-scale applications maintainable, they need to be sub-divided into small, less complex, and decoupled parts. While this sounds logical, this also leads to two difficult questions: How to identify such parts and how can they communicate with each other?

In this chapter, I present a techniques I use to slice large software systems: Strategic Design – a discipline of the domain driven design (DDD) approach.

What is Domain-Driven Design?

DDD describes an approach that bridges the gap between the requirements for complex software systems and an appropriate application design. Historically, DDD came with two disciplines: tactical design and strategic design. Tactical design proposes concrete concepts and design patterns. Meanwhile most of them are common knowledge. Examples are concepts like layering or patterns like factories, repositories, and entities.

By contrast, strategic design deals with subdividing a huge system into smaller, decoupled, and less complex parts. This is what we need to define an architecture for a huge system that can evolve over time.

Finding Domains with Strategic Design

The goal of strategic design is to identify so-called sub-domains that don’t need to know much about each other. To recognize different sub-domains, it’s worth taking a look at the processes automated by your system. For example, an e-procurement system that handles the procurement of office supplies could support the following two processes:

 [image:]

To use these processes for identifying different domains, we can use several heuristics:

 	
Organizational Structure: Different roles or different divisions that are responsible for several steps of the process are in indicator for the existence of several sub-domains.

 	
Vocabulary: If the same term is used differently or has a significant different importance, we might have different sub-domains.

 	
Pivotal Events: Pivotal Events are locations in the process where a significant (sub)task is completed. After such an event, very often, the process goes on at another time and/or place and/or with other roles. If our process was a movie, we’d have a scene change after such an event. Such events are likely boundaries between sub-domains.

Each of these heuristics gives you candidates for cutting your process into sub-domains. However,it’s your task to decide with which candidates to go. The general goal is to end up with slices that don’t need to know much about each other.

The good message is: You don’t need to do such decisions alone. You should do it together with other stakeholders like, first and foremost, business experts but also other architects, developers and product owners.

A modern approach for brining the knowledge of all these different people together is Event Storming. It’s a workshop format where different groups of stakeholders. For this, they model the processes together with post-its (sticky notes).

Domains are Modelled Separately

Another important aspect of Strategic Design is that each domain is modelled separately. This is the key for decoupling domains from each other. While this might lead to redundancies, very often it doesn’t because each domain has a very unique perspective to its entities.

For instance, a product is not exactly the same in all domains. For example, while a product description is very detailed in the catalogue, the approval process only needs a few key data:

 [image:]

In DDD, we distinguish between these two forms of a product. We create different models that are as concrete and meaningful as possible.

This approach prevents the creation of a single confusing model that attempts to describe the whole world. Such models have too many interdependencies that make decoupling and subdividing impossible.

We can still relate different views on the product entity at a logical level. If we use the same id on both sides, we know which “catalog product” and which “approval product” are different view to the same entity.

Hence, each model is only valid for a specific area. DDD calls this area the bounded context. To put it in another way: The bounded context defines thought borders and only within these borders the model makes sense. Beyond these borders we have a different perspective to the same concepts. Ideally, each domain has its own bounded context.

Within such a bounded context, we use a ubiquitous language. This is mainly the language of the domain experts. That means we try to mirror the real world with our model and also within our implementation. This makes the system more self-describing and reduces the risk for misunderstandings.

Context-Mapping

In our case study, we may find the following domains:

 [image:]

Although these domains should be as self-contained as possible, they still have to interact occasionally. Let’s assume the Ordering domain for placing orders needs to interact with the Catalogue domain and a connected ERP system.

To define how these domains interact, we create a context map:

 [image:]

In principle, Ordering could have full access to Catalog. In this case, however, the domains aren’t decoupled anymore and a change in Catalog could break Ordering.

Strategic design defines several ways for dealing with such situations. For instance, in the context map shown above, Catalog offers an API (DDD calls it an open/host service) that exposes only selected aspects for other domains. This API should be stable and backwards-compatible to prevent breaking other domains. Everything else is hidden behind this API and hence can be changed easily.

Since we cannot control the ERP system, Ordering uses a so-called anti-corruption layer (ACR) to access it. All calls to the ERP system are tunneled by this ACR. Hence, if something changes in the ERP system, we only need to update the ACR. Also, the ACR allows us to translate concepts from the ERP system into entities that make sense within our bounded context.

An existing system, like the shown ERP system, usually does not follow the idea of the bounded context. Instead, it contains several logical and intermingled ones.

Another strategy I want to stress here is Separate Ways. Specific tasks, like calculating VAT, could be separately implemented in several domains:

 [image:]

At first sight, this seems awkward because it leads to code redundancies and hence breaks the DRY principle (don’t repeat yourself). Nevertheless, it can come in handy because it prevents a dependency on a shared library. Although preventing redundant code is important, limiting dependencies is vital because each dependency increases the overall complexity. Also, the more dependencies we have the more likely are braking changes when individual parts of our system evolve. Hence, it’s good first to evaluate whether an additional dependency is truly needed.

Conclusion

Strategic design is about identifying loosely-coupled sub-domains. In each domain, we find ubiquitous language and concepts that only make sense within the domain’s bounded context. A context map shows how those domains interact.

In the next chapter, we’ll see we can implement those domains with Angular using an Nx-based monorepo.

Implementing Strategic Design with Nx Monorepos

In the previous chapter, I presented strategic design which allows to subdivide a software system into loosely coupled (sub-)domains. This chapter explores these domains’ implementation with Angular and an Nx-based monorepo.

The used architecture follows this architecture matrix:

 [image:]

As you see here, this matrix vertically cuts the application into sub domains. Also, it subdivides them horizontally into layers with different types of libraries.

If you want to look at the underlying case study, you can find the source code here

Implementation with Nx

We use an Nx-based workspace to implement the defined architecture. Nx is an extension for Angular CLI, which helps to break down a solution into different applications and libraries.

By default, Nx puts all applications into an apps folder and the libraries into libs:

 [image:]

In our architecture, each domain is represented by a subfolder. For instance, within libs, you see subfolders like catalog or ordering. Everything that is shared across different folders goes into shared. Besides this, we use prefixes to denote the layer a specific library is part of. For instance, the prefix feature- defines that the library is part of the feature layer. Hence, the matrix shown above translates into this folder structure by using subfolders for the columns and prefixes for the rows.

Because such a workspace manages several applications and libraries in a common source code repository, there is also talk of a monorepo. This pattern is used extensively by Google and Facebook, among others, and has been the standard for the development of .NET solutions in the Microsoft ecosystem for about 20 years.

It allows source code sharing between project participants in a particularly simple way and prevents version conflicts by having only one central node_modules folder with dependencies. This arrangement ensures that, e.g., each library uses the same Angular version.

To create a new Nx-based Angular CLI project – a so-called workspace –, you can use the following command:

1 npm init nx-workspace e-proc

This command downloads a script which creates your workspace.

Within this workspace, you can use ng generate to add applications and libraries:

1 cd e-proc
2 ng generate app ui
3 ng generate lib feature-request-product --directory catalog

The --directory switch places the feature-request-product library in a folder catalog representing the sub domain with the same name.

Categories for Libraries

To reduce the cognitive load, the Nx team recommends to categorize libraries as follows:

 	
feature: Implements a use case with smart components

 	
data-access: Implements data accesses, e.g. via HTTP or WebSockets

 	
ui: Provides use case-agnostic and thus reusable components (dumb components)

 	
util: Provides helper functions

Please note the separation between smart and dumb components. Smart components within feature libraries are use case-specific. An example is a component which enables a product search.

On the contrary, dumb components do not know the current use case. They receive data via inputs, display it in a specific way, and issue events. Such presentational components “just” help to implement use cases and hence they are reusable. An example is a date-time picker, which is unaware of which use case it supports. Hence, it is available within all use cases dealing with dates.

In addition to this, I also use the following categories:

 	
shell: For an application that has multiple domains, a shell provides the entry point for a domain

 	
api: Provides functionalities exposed to other domains

 	
domain: Domain logic like calculating additional expenses (not used here), validations or facades for use cases and state management. I will come back to this in the next chapter.

Each category defines a layer in our architecture matrix. Also, each libary gets a prefix telling us to which category and hence layer it belongs to. This helps to maintain an overview.

Public APIs for Libraries

Each library has a public API exposed via a generated index.ts through which it publishes individual components. They hide all other components. These can be changed as desired:

1 export * from './lib/catalog-data-access.module';
2 export * from './lib/catalog-repository.service';

This structure is a fundamental aspect of good software design as it allows splitting into a public and a private part. Other libraries access the public part, so we have to avoid breaking changes as this would affect other parts of the system.

However, the private part can be changed at will, as long as the public part stays the same.

Check Accesses Between libraries

Minimizing the dependencies between individual libraries helps maintainability. This goal can be checked graphically using Nx’ dep-graph script. To make our live easier, first, we install the Nx CLI:

1 npm i -g @nrwl/cli

Then, we can get the dependency graph via the following commend:

1 nx dep-graph

If we concentrate on the Catalog domain in our case study, the result is:

 [image:]

Access Restrictions for a Solid Architecture

Robust architecture requires limits to interactions between libraries. If there were no limits, we would have a heap of intermingled libraries where each change would affect all the other libraries, clearly negatively affecting maintainability.

Based on DDD, we have a few rules for communication between libraries to ensure consistent layering. For example, each library may only access libraries from the same domain or shared libraries.

Access to APIs such as catalog-api must be explicitly granted to individual domains.

We also define access restrictions on top of our layers shown in the matrix above. Each layer is only allowed to access layers below. For instance, a feature library can access ui, domain and util libraries.

To define such restrictions, Nx allows us to assign tags to each library. Based on these tags, we can define linting rules.

Tagging Libraries

In former Nx versions, the file nx.json defined the tags for our libraries:

 1 "projects": {
 2 "ui": {
 3 "tags": ["scope:app"]
 4 },
 5 "ui-e2e": {
 6 "tags": ["scope:e2e"]
 7 },
 8 "catalog-shell": {
 9 "tags": ["scope:catalog", "type:shell"]
10 },
11 "catalog-feature-request-product": {
12 "tags": ["scope:catalog", "type:feature"]
13 },
14 "catalog-feature-browse-products": {
15 "tags": ["scope:catalog", "type:feature"]
16 },
17 "catalog-api": {
18 "tags": ["scope:catalog", "type:api", "name:catalog-api"]
19 },
20 "catalog-data-access": {
21 "tags": ["scope:catalog", "type:data-access"]
22 },
23 "shared-util-auth": {
24 "tags": ["scope:shared", "type:util"]
25 }
26 }

In current versions, Nx puts the same information into the angular.json that already contains a section for each library and application. Alternatively, these tags can be specified when setting up the applications and libraries.

According to a suggestion from the Nx team, the domains get the prefix scope, and the library types receive the prefix type. Prefixes of this type are intended to improve readability and can be freely assigned.

Defining Linting Rules Based Upon Tags

To enforce access restrictions, Nx comes with its own linting rules. As usual, we configure these rules within .eslintrc.json:

 1 "@nrwl/nx/nx-enforce-module-boundaries": [
 2 "error",
 3 {
 4 "allow": [],
 5 "depConstraints": [
 6 { "sourceTag": "scope:app",
 7 "onlyDependOnLibsWithTags": ["type:shell"] },
 8 { "sourceTag": "scope:catalog",
 9 "onlyDependOnLibsWithTags": ["scope:catalog", "scope:shared"] },
10 { "sourceTag": "scope:shared",
11 "onlyDependOnLibsWithTags": ["scope:shared"] },
12 { "sourceTag": "scope:booking",
13 "onlyDependOnLibsWithTags":
14 ["scope:booking", "scope:shared", "name:catalog-api"] },
15
16 { "sourceTag": "type:shell",
17 "onlyDependOnLibsWithTags": ["type:feature", "type:util"] },
18 { "sourceTag": "type:feature",
19 "onlyDependOnLibsWithTags": ["type:data-access", "type:util"] },
20 { "sourceTag": "type:api",
21 "onlyDependOnLibsWithTags": ["type:data-access", "type:util"] },
22 { "sourceTag": "type:util",
23 "onlyDependOnLibsWithTags": ["type:util"] }
24]
25 }
26]

To test these rules, just call ng lint on the command line:

 [image:]

Development environments such as WebStorm/IntelliJ, or Visual Studio Code show such violations while typing. In the latter case, you need a respective eslint plugin.

 Hint: Run the linter before checking in your source code or before merging a pull request against your main branch. If you automate this check you can enforce your architecture matrix and prevent source code that violates your architecture.

Modular Monolith = Modulith

The demo application used here is a so called Monolith. That means, it is just one huge piece. While monoliths are simple to develop in principal, they have several issues. For instance, you cannot deploy individual parts, e. g. business domains. Instead, you have to deploy it as a whole.

Also, if you don’t take care, the individual business domains are coupled to each other. In this case, a modification in one domain might break others. When using Nx with linting rules as shown above, however, we can enforce loosely coupling. Hence, our monolith is modular. In this case, people talk about a modular monolith or as a “Modulith”.

Your Architecture by the Push of a Button: The DDD-Plugin

While the architecture described here already quite often proved to be very in handy, building it by hand includes several repeating tasks like creating libs of various kinds, defining access restrictions, or creating buildings blocks like facades.

To automate these tasks, you can use our Nx plugin @angular-architects/ddd. It provides the following features:

 	Generating domains with domain libraries including facades, models, and data services

 	Generating feature libraries including feature components using facades

 	Adding linting rules for access restrictions between domains as proposed by the Nx team

 	Adding linting rules for access restrictions between layers as proposed by the Nx team (supports tslint and eslint)

 	Optional: Generating a skeleton for using NGRX (--ngrx switch)

You can use ng add for adding it to your Nx workspace:

1 ng add @angular-architects/ddd

Alternatively, you can npm install it and use its init schematic:

1 npm i @angular-architects/ddd
2 ng g @angular-architects/ddd:init

Then, you can easily create domains, features, and libraries of other kinds:

1 ng g @angular-architects/ddd:domain booking --addApp
2 ng g @angular-architects/ddd:domain boarding --addApp
3 ng g @angular-architects/ddd:feature search --domain booking --entity flight
4 ng g @angular-architects/ddd:feature cancel --domain booking
5 ng g @angular-architects/ddd:feature manage --domain boarding

For NGRX support, just add the --ngrx switch:

1 ng g @angular-architects/ddd:domain booking --addApp --ngrx
2 ng g @angular-architects/ddd:feature search --domain booking --entity flight --ngrx
3 [...]

To see that the skeleton works end-to-end, call the generated feature component in your app.component.html:

1 <booking-search></booking-search>

You don’t need any TypeScript or Angular imports. The plugin already took care about that. After running the example, you should see something like this:

 [image: Result proving that the generated skeleton works end-to-end]
 Result proving that the generated skeleton works end-to-end

Conclusion

Strategic design is a proven way to break an application into self-contained domains. These domains have a ubiquitous language which all stakeholders must use consistently.

The CLI extension Nx provides a very elegant way to implement these domains with different domain-grouped libraries. To restrict access by other domains and to reduce dependencies, it allows setting access restrictions to individual libraries.

These access restrictions help ensure a loosely coupled system which is easier to maintain as a sole change only affects a minimum of other parts of the system.

From Domains to Microfrontends

Let’s assume you’ve identified the sub-domains for your system. The next question is how to implement them.

One option is to implement them within a large application – aka a deployment monolith. The second is to provide a separate application for each domain. Such applications are called micro frontends.

Deployment Monoliths

A deployment monolith is an integrated solution comprising different domains:

 [image:]

This approach supports a consistent UI and leads to optimized bundles by compiling everything together.

A team responsible for a specific sub-domain must coordinate with other sub-domain teams. They have to agree on an overall architecture and the leading framework. Also, they need to define a common policy for updating dependencies.

It is tempting to reuse parts of other domains. However, this may lead to higher coupling and – eventually – to breaking changes. To prevent this, we’ve used Nx and access restrictions between libraries in the last chapter.

Micro Frontends

To further decouple your system, you could split it into several smaller applications. If we assume that use cases do not overlap your sub-domains’ boundaries, this can lead to more autarkic teams and applications which are separately deployable.

[image:].

You now have something called micro frontends. Micro Frontends allow for autarkic teams: Each team can choose their architectural style, their technology stack, and they can even decide when to update to newer framework versions. They can use “the best technology” for the requirements given within the current sub-domain.

The option for deciding which frameworks to use per micro frontend is interesting when developing applications over the long term. If, for instance, a new framework appears in five years, we can use it to implement the next domain.

If you seek even more isolation between your sub-domains and the teams responsible for them, you could put each sub-domain into its individual repository:

 [image:]

However, this has costs. Now you have to deal with shipping your shared libraries via npm. This comes with some efforts and forces you to version your libraries. You need to make sure that each micro frontend uses the right version. Otherwise, you end up with version conflicts.

UI Composition with Hyperlinks

Splitting a huge application into several micro frontends is only one side of the coin. Your users want to have one integrated solution. Hence, you have to find ways to integrate the different applications into one large system. Hyperlinks are one simple way to accomplish this:

 [image:]

This approach fits product suites like Google or Office 365 well:

 [image:]

Each domain is a self-contained application here. This structure works well because we don’t need many interactions between the domains. If we needed to share data, we could use the backend. Using this strategy, Word 365 can use an Excel 365 sheet for a series letter.

This approach has several advantages:

 	It is simple

 	It uses SPA frameworks as intended

 	We get optimised bundles per domain

However, there are some disadvantages:

 	We lose our state when switching to another application

 	We have to load another application – which we wanted to prevent with SPAs

 	We have to work to get a standard look and feel (we need a universal design system).

UI Composition with a Shell

Another much-discussed approach is to provide a shell that loads different single-page applications on-demand:

 [image:]

In the screenshot, the shell loads the microfrontend with the red border into its working area. Technically, it simply loads the microfrontend bundles on demand. The shell then creates an element for the microfrontend’s root element:

1 const script = document.createElement('script');
2 script.src = 'assets/external-dashboard-tile.bundle.js';
3 document.body.appendChild(script);
4
5 const clientA = document.createElement('client-a');
6 clientA['visible'] = true;
7 document.body.appendChild(clientA);

Instead of bootstrapping several SPAs, we could also use iframes. While we all know the enormous disadvantages of iframes and have strategies to deal with most of them, they do provide two useful features:

 	Isolation: A microfrontend in one iframe cannot influence or hack another microfrontend in another iframe. Hence, they are handy for plugin systems or when integrating applications from other vendors.

 	They also allow the integration of legacy systems.

You can find a library that compensates most of the disadvantages of iframes for intranet applications here. Even SAP has an iframe-based framework they use for integrating their products. It’s called Luigi and you can find it here.

The shell approach has the following advantages:

 	The user has an integrated solution consisting of different microfrontends.

 	We don’t lose the state when navigating between domains.

The disadvantages are:

 	If we don’t use specific tricks (outlined in the next chapter), each microfrontend comes with its own copy of Angular and the other frameworks, increasing the bundle sizes.

 	We have to implement infrastructure code to load microfrontends and switch between them.

 	We have to work to get a standard look and feel (we need a universal design system).

The Hero: Module Federation

A quite new solution that compensates most of the issues outlined above is Webpack Module Federation. It allows to load code from an separately compiled and deployed application and is very straight forward. IMHO, currently, this is the best way for implementing a shell-based architecture. Hence, the next chapters concentrate on Module Federation.

Finding a Solution

Choosing between a deployment monolith and different approaches for microfrontends is tricky because each option has advantages and disadvantages.

I’ve created the following decision tree, which also sums up the ideas outlined in this chapter:

 [image: Decision tree for Micro Frontends vs. Deployment Monoliths]
 Decision tree for Micro Frontends vs. Deployment Monoliths

As the implementation of a deployment monolith and the hyperlink approach is obvious, the next chapter discusses how to implement a shell.

Conclusion

There are several ways to implement microfrontends. All have advantages and disadvantages. Using a consistent and optimised deployment monolith can be the right choice.

It’s about knowing your architectural goals and about evaluating the consequences of architectural candidates.

The Microfrontend Revolution: Using Module Federation with Angular

In the past, when implementing microfrontends, you had to dig a little into the bag of tricks. One reason is surely that build tools and frameworks did not know this concept. Fortunately, Webpack 5 initiated a change of course here.

Webpack 5 comes with an implementation provided by the webpack contributor Zack Jackson. It’s called Module Federation and allows referencing parts of other applications not known at compile time. These can be microfrontends that have been compiled separately. In addition, the individual program parts can share libraries with each other, so that the individual bundles do not contain any duplicates.

In this chapter, I will show how to use Module Federation using a simple example.

Example

The example used here consists of a shell, which is able to load individual, separately provided microfrontends if required:

 [image: Shell]
 Shell

The loaded microfrontend is shown within the red dashed border. Also, the microfrontend can be used without the shell:

 [image: Microfrontend without Shell]
 Microfrontend without Shell

 Source Code here (see branch static)

 Important: This book is written for Angular and Angular CLI 14 and higher. Make sure you have a fitting version if you try out the examples outlined here! For more details on the differences/ migration to Angular 14 please see this migration guide.

Activating Module Federation for Angular Projects

The case study presented here assumes that both, the shell and the microfrontend are projects in the same Angular workspace. For getting started, we need to tell the CLI to use module federation when building them. However, as the CLI shields webpack from us, we need a custom builder.

The package @angular-architects/module-federation provides such a custom builder. To get started, you can just “ng add” it to your projects:

1 ng add @angular-architects/module-federation
2 --project shell --port 4200 --type host
3
4 ng add @angular-architects/module-federation
5 --project mfe1 --port 4201 --type remote

If you use Nx, you should npm install the library separately. After that, you can use the init schematic:

1 npm i @angular-architects/module-federation -D
2
3 ng g @angular-architects/module-federation:init
4 --project shell --port 4200 --type host
5
6 ng g @angular-architects/module-federation:init
7 --project mfe1 --port 4201 --type remote

 The command line argument --type was added in version 14.3 and makes sure, only the needed configuration is generated.

While it’s obvious that the project shell contains the code for the shell, mfe1 stands for Micro Frontend 1.

The command shown does several things:

 	Generating the skeleton of an webpack.config.js for using module federation

 	Installing a custom builder making webpack within the CLI use the generated webpack.config.js.

 	Assigning a new port for ng serve so that several projects can be served simultaneously.

Please note that the webpack.config.js is only a partial webpack configuration. It only contains stuff to control module federation. The rest is generated by the CLI as usual.

The Shell (aka Host)

Let’s start with the shell which would also be called the host in module federation. It uses the router to lazy load a FlightModule:

 1 export const APP_ROUTES: Routes = [
 2 {
 3 path: '',
 4 component: HomeComponent,
 5 pathMatch: 'full'
 6 },
 7 {
 8 path: 'flights',
 9 loadChildren: () => import('mfe1/Module').then(m => m.FlightsModule)
10 },
11];

However, the path mfe1/Module which is imported here, does not exist within the shell. It’s just a virtual path pointing to another project.

To ease the TypeScript compiler, we need a typing for it:

1 // decl.d.ts
2 declare module 'mfe1/Module';

Also, we need to tell webpack that all paths starting with mfe1 are pointing to an other project. This can be done in the generated webpack.config.js:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require('@angular-architects/module-federation/webpack');
 3
 4 module.exports = withModuleFederationPlugin({
 5
 6 remotes: {
 7 "mfe1": "http://localhost:4201/remoteEntry.js",
 8 },
 9
10 shared: {
11 ...shareAll({
12 singleton: true,
13 strictVersion: true,
14 requiredVersion: 'auto'
15 }),
16 },
17
18 });

The remotes section maps the path mfe1 to the separately compiled microfrontend – or to be more precise: to its remote entry. This is a tiny file generated by webpack when building the remote. Webpack loads it at runtime to get all the information needed for interacting with the microfrontend.

While specifying the remote entry’s URL that way is convenient for development, we need a more dynamic approach for production.
The next chapter provides a solution for this.

The property shared defines the npm packages to be shared between the shell and the microfrontend(s). For this property, The generated configuration uses the helper method shareAll that is basically sharing all the dependencies found in your package.json. While this helps to quickly get a working setup, it might lead to too much shared dependencies. A later section here addresses this.

The combination of singleton: true and strictVersion: true makes webpack emit a runtime error when the shell and the micro frontend(s) need different incompetible versions (e. g. two different major versions). If we skipped strictVersion or set it to false, webpack would only emit a warning at runtime. More information about dealing with version mismatches can be found in one of the subsequent chapters.

The setting requiredVersion: 'auto' is a little extra provided by the @angular-architects/module-federation plugin. It looks up the used version in your package.json. This prevents several issues.

 The helper function share used in this generated configuration replaces the value 'auto' with the version found in your package.json.

The Microfrontend (aka Remote)

The microfrontend – also referred to as a remote with terms of module federation – looks like an ordinary Angular application. It has routes defined within in the AppModule:

1 export const APP_ROUTES: Routes = [
2 { path: '', component: HomeComponent, pathMatch: 'full'}
3];

Also, there is a FlightsModule:

 1 @NgModule({
 2 imports: [
 3 CommonModule,
 4 RouterModule.forChild(FLIGHTS_ROUTES)
 5],
 6 declarations: [
 7 FlightsSearchComponent
 8]
 9 })
10 export class FlightsModule { }

This module has some routes of its own:

1 export const FLIGHTS_ROUTES: Routes = [
2 {
3 path: 'flights-search',
4 component: FlightsSearchComponent
5 }
6];

In order to make it possible to load the FlightsModule into the shell, we also need to expose it via the remote’s webpack configuration:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require('@angular-architects/module-federation/webpack');
 3
 4 module.exports = withModuleFederationPlugin({
 5
 6 name: 'mfe1',
 7
 8 exposes: {
 9 './Module': './projects/mfe1/src/app/flights/flights.module.ts',
10 },
11
12 shared: {
13 ...shareAll({
14 singleton: true,
15 strictVersion: true,
16 requiredVersion: 'auto'
17 }),
18 },
19
20 });

The configuration shown here exposes the FlightsModule under the public name Module. The section shared points to the libraries shared with the shell.

Trying it out

To try everything out, we just need to start the shell and the microfrontend:

1 ng serve shell -o
2 ng serve mfe1 -o

Then, when clicking on Flights in the shell, the micro frontend is loaded:

 [image: Shell]
 Shell

Hint: You can also use the npm script run:all the plugin installs with its ng-add and init schematics:

1 npm run run:all

 [image: run:all script]
 run:all script

To just start a few applications, add their names as command line arguments:

1 npm run run:all shell mfe1

A Further Detail

Ok, that worked quite well. But have you had a look into your main.ts?

It just looks like this:

1 import('./bootstrap')
2 	.catch(err => console.error(err));

The code you normally find in the file main.ts was moved to the bootstrap.ts file loaded here. All of this was done by the @angular-architects/module-federation plugin.

While this doen’t seem to make a lot of sense at first glance, it’s a typical pattern you find in Module Federation-based applications. The reason is that Module Federation needs to decide which version of a shared library to load. If the shell, for instance, is using version 12.0 and one of the micro frontends is already built with version 12.1, it will decide to load the latter one.

To look up the needed meta data for this decision, Module Fedaration squeezes itself into dynamic imports like this one here. Other than the more tradtional static imports, dynamic imports are asynchronous. Hence, Module Federation can decide on the versions to use and actually load them.

More Details: Sharing Dependencies

As mentioned above, the usage of shareAll allows for a quick first setup that “just works”. However, it might lead to too much shared bundles. As shared dependencies cannot be tree shaken and by default end up in separate bundles that need to be loaded, you might want to optimize this behavior by switching over from shareAll to the share helper:

 1 // Import share instead of shareAll:
 2 const { share, withModuleFederationPlugin } =
 3 require('@angular-architects/module-federation/webpack');
 4
 5 module.exports = withModuleFederationPlugin({
 6
 7 // Explicitly share packages:
 8 shared: share({
 9 "@angular/core": {
10 singleton: true,
11 strictVersion: true,
12 requiredVersion: 'auto'
13 },
14 "@angular/common": {
15 singleton: true,
16 strictVersion: true,
17 requiredVersion: 'auto'
18 },
19 "@angular/common/http": {
20 singleton: true,
21 strictVersion: true,
22 requiredVersion: 'auto'
23 },
24 "@angular/router": {
25 singleton: true,
26 strictVersion: true,
27 requiredVersion: 'auto'
28 },
29 }),
30
31 });

More on This

Learn more about this and further architecture topics regarding Angular and huge enterprise as well as industrial solution in our advanced Online Workshop:

 [image: Advanced Angular Workshop]
 Advanced Angular Workshop

Save your ticket for one of our online or on-site workshops now or request a company workshop (online or In-House) for you and your team!

If you like our offer, keep in touch with us so that you don’t miss anything.

For this, you can subscribe to our newsletter and/ or follow the book’s author on Twitter.

Conclusion and Evaluation

The implementation of microfrontends has so far involved numerous tricks and workarounds. Webpack Module Federation finally provides a simple and solid solution for this. To improve performance, libraries can be shared and strategies for dealing with incompatible versions can be configured.

It is also interesting that the microfrontends are loaded by Webpack under the hood. There is no trace of this in the source code of the host or the remote. This simplifies the use of module federation and the resulting source code, which does not require additional microfrontend frameworks.

However, this approach also puts more responsibility on the developers. For example, you have to ensure that the components that are only loaded at runtime and that were not yet known when compiling also interact as desired.

One also has to deal with possible version conflicts. For example, it is likely that components that were compiled with completely different Angular versions will not work together at runtime. Such cases must be avoided with conventions or at least recognized as early as possible with integration tests.

Dynamic Module Federation

In the previous chapter, I’ve shown how to use webpack Module Federation for loading separately compiled Micro Frontends into a shell. As the shell’s webpack configuration describes the Micro Frontends, we already needed to know them when compiling it.

In this chapter, I’m assuming a more dynamic situation where the shell does not know the Micro Frontend upfront. Instead, this information is provided at runtime via a configuration file. While this file is a static JSON file in the examples shown here, it’s content could also come from a Web API.

 Important: This book is written for Angular and Angular CLI 14 or higher. Make sure you have a fitting version if you try out the examples! For more details on the differences/ migration to Angular 14 please see this migration guide.

The following image displays the idea described here:

 [image: The shell loads a Micro Frontend it is informed about on runtime]
 The shell loads a Micro Frontend it is informed about on runtime

For all Micro Frontends the shell gets informed about at runtime, it displays a menu item. When clicking it, the Micro Frontend is loaded and displayed by the shell’s router.

 Source Code (simple version, see branch: simple)

 Source Code (full version)

A Simple Dynamic Solution

Let’s start with a simple approach. For this, we assume that we know the Micro Frontends upfront and just want to switch out their URLs at runtime, e. g. with regards to the current environment. A more advanced approach, where we don’t even need to know the number of Micro Frontends upfront is presented afterwards.

Adding Module Federation

The demo project used contains a shell and two Micro Frontends called mfe1 and mfe2. As in the previous chapter, we add and initialize the Module Federation plugin for the Micro Frontends:

1 npm i -g @angular-architects/module-federation -D
2
3 ng g @angular-architects/module-federation
4 --project mfe1 --port 4201 --type remote
5
6 ng g @angular-architects/module-federation
7 --project mfe2 --port 4202 --type remote

Generating a Manifest

Beginning with the plugin’s version 14.3, we can generate a dynamic host that takes the key data about the Micro Frontend from a JSON file – called the Micro Frontend Manifest – at runtime:

1 ng g @angular-architects/module-federation
2 --project shell --port 4200 --type dynamic-host

This generates:

 	a webpack configuration

 	the manifest and

 	some code in the main.ts loading the manifest.

The manifest can be found here: projects/shell/src/assets/mf.manifest.json. This is what it looks like:

1 {
2 	"mfe1": "http://localhost:4201/remoteEntry.js",
3 	"mfe2": "http://localhost:4202/remoteEntry.js"
4 }

After generating the manifest, make sure the ports match.

Loading the Manifest

The generated main.ts file loads the manifest:

1 import { loadManifest } from '@angular-architects/module-federation';
2
3 loadManifest("/assets/mf.manifest.json")
4 .catch(err => console.error(err))
5 .then(_ => import('./bootstrap'))
6 .catch(err => console.error(err));

By default, loadManifest not just loads the manifest but also the remote entries the manifest points to. Hence, Module Federation gets all the required metadata for fetching the Micro Frontends on demand.

Loading the Micro Frontends

To load the Micro Frontends described by the manifest, we go with the following routes:

 1 import { Routes } from '@angular/router';
 2 import { HomeComponent } from './home/home.component';
 3 import { loadRemoteModule } from '@angular-architects/module-federation';
 4
 5 export const APP_ROUTES: Routes = [
 6 {
 7 path: '',
 8 component: HomeComponent,
 9 pathMatch: 'full'
10 },
11 {
12 path: 'flights',
13 loadChildren: () => loadRemoteModule({
14 type: 'manifest',
15 remoteName: 'mfe1',
16 exposedModule: './Module'
17 })
18 .then(m => m.FlightsModule)
19 },
20 {
21 path: 'bookings',
22 loadChildren: () => loadRemoteModule({
23 type: 'manifest',
24 remoteName: 'mfe2',
25 exposedModule: './Module'
26 })
27 .then(m => m.BookingsModule)
28 },
29];

The option type: 'manifest' makes loadRemoteModule to look up the key data needed in the loaded manifest. The property remoteName points to the key that was used in the manifest.

Configuring the Micro Frontends

We expect both Micro Frontends to provide an NgModule with sub routes via './Module'. The NgModules are exposed via the webpack.config.js in the Micro Frontends:

 1 // projects/mfe1/webpack.config.js
 2
 3 const { shareAll, withModuleFederationPlugin } =
 4 require('@angular-architects/module-federation/webpack');
 5
 6 module.exports = withModuleFederationPlugin({
 7
 8 name: 'mfe1',
 9
10 exposes: {
11 // Adjusted line:
12 './Module': './projects/mfe1/src/app/flights/flights.module.ts'
13 },
14
15 shared: {
16 ...shareAll({
17 singleton: true,
18 strictVersion: true,
19 requiredVersion: 'auto'
20 }),
21 },
22
23 });

 1 // projects/mfe2/webpack.config.js
 2
 3 const { shareAll, withModuleFederationPlugin } =
 4 require('@angular-architects/module-federation/webpack');
 5
 6 module.exports = withModuleFederationPlugin({
 7
 8 name: 'mfe2',
 9
10 exposes: {
11 // Adjusted line:
12 './Module': './projects/mfe2/src/app/bookings/bookings.module.ts'
13 },
14
15 shared: {
16 ...shareAll({
17 singleton: true,
18 strictVersion: true,
19 requiredVersion: 'auto'
20 }),
21 },
22
23 });

Trying it Out

For each route loading a Micro Frontend, the shell’s AppComponent contains a routerLink:

1 <!-- projects/shell/src/app/app.component.html -->
2
3
4 Home
5 Flights
6 Bookings
7
8
9 <router-outlet></router-outlet>

That’s it. Just start all the three projects (e. g. by using npm run run:all). The main difference to the result in the previous chapter is that now the shell informs itself about the Micro Frontends at runtime. If you want to point the shell to different Micro Frontends, just adjust the manifest.

Going “Dynamic Dynamic”

The solution we have so far is suitable in many situations: The usage of the manifest allows to adjust it to different environments without rebuilding the application. Also, if we switch out the manifest for a dynamic REST service, we could implement strategies like A/B testing.

However, in some situation you might not even know about the number of Micro Frontends upfront. This is what we discuss here.

Adding Custom Metadata to The Manifest

For dynamically setting up the routes, we need some additional metadata. For this, you might want to extend the manifest:

 1 {
 2 	"mfe1": {
 3 		"remoteEntry": "http://localhost:4201/remoteEntry.js",
 4
 5 		"exposedModule": "./Module",
 6 		"displayName": "Flights",
 7 		"routePath": "flights",
 8 		"ngModuleName": "FlightsModule"
 9 	},
10 	"mfe2": {
11 		"remoteEntry": "http://localhost:4202/remoteEntry.js",
12
13 		"exposedModule": "./Module",
14 		"displayName": "Bookings",
15 		"routePath": "bookings",
16 		"ngModuleName": "BookingsModule"
17 	}
18 }

Besides remoteEntry, all other properties are custom.

Types for Custom Configuration

To represent our extended configuration, we need some types in the shell’s code:

 1 // projects/shell/src/app/utils/config.ts
 2
 3 import {
 4 Manifest,
 5 RemoteConfig
 6 } from "@angular-architects/module-federation";
 7
 8 export type CustomRemoteConfig = RemoteConfig & {
 9 exposedModule: string;
10 displayName: string;
11 routePath: string;
12 ngModuleName: string;
13 };
14
15 export type CustomManifest = Manifest<CustomRemoteConfig>;

The CustomRemoteConfig type represents the entries in the manifest and the CustomManifest type the whole manifest.

Dynamically Creating Routes

Now, we need an utility function iterating through the whole manifest and creating a route for each Micro Frontend described there:

 1 // projects/shell/src/app/utils/routes.ts
 2
 3 import { loadRemoteModule } from '@angular-architects/module-federation';
 4 import { Routes } from '@angular/router';
 5 import { APP_ROUTES } from '../app.routes';
 6 import { CustomManifest } from './config';
 7
 8 export function buildRoutes(options: CustomManifest): Routes {
 9
10 const lazyRoutes: Routes = Object.keys(options).map(key => {
11 const entry = options[key];
12 return {
13 path: entry.routePath,
14 loadChildren: () =>
15 loadRemoteModule({
16 type: 'manifest',
17 remoteName: key,
18 exposedModule: entry.exposedModule
19 })
20 .then(m => m[entry.ngModuleName])
21 }
22 });
23
24 return [...APP_ROUTES, ...lazyRoutes];
25 }

This gives us the same structure, we directly configured above.

The shell’s AppComponent glues everything together:

 1 @Component({
 2 selector: 'app-root',
 3 templateUrl: './app.component.html'
 4 })
 5 export class AppComponent implements OnInit {
 6
 7 remotes: CustomRemoteConfig[] = [];
 8
 9 constructor(
10 private router: Router) {
11 }
12
13 async ngOnInit(): Promise<void> {
14 const manifest = getManifest<CustomManifest>();
15
16 // Hint: Move this to an APP_INITIALIZER
17 // to avoid issues with deep linking
18 const routes = buildRoutes(manifest);
19 this.router.resetConfig(routes);
20
21 this.remotes = Object.values(manifest);
22 }
23 }

The ngOnInit method retrieves the loaded manifest (it’s still loaded in the main.ts as shown above) and passes it to buildRoutes. The retrieved dynamic routes are passed to the router. Also, the values of the key/value pairs in the manifest, are put into the remotes field. It’s used in the template to dynamically create the menu items:

 1 <!-- projects/shell/src/app/app.component.html -->
 2
 3
 4
 5 Home
 6
 7 <!-- Dynamically create menu items for all Micro Frontends -->
 8 <li *ngFor="let remote of remotes">
 9 <a [routerLink]="remote.routePath">{{remote.displayName}}
10
11
12 Config
13
14
15 <router-outlet></router-outlet>

Trying it Out

Now, let’s try out this “dynamic dynamic” solution by starting the shell and the Micro Frontends (e. g. with npm run run:all).

Some More Details

So far, we used the high-level functions provided by the plugin. However, for cases you need more control, there are also some low-level alternatives:

 	
loadManifest(...): The above used loadManifest function provides a second parameter called skipRemoteEntries. Set it to true to prevent loading the entry points. In this case, only the manifest is loaded:

1 loadManifest("/assets/mf.manifest.json", true)
2 .catch(...)
3 .then(...)
4 .catch(...)

 	
setManifest(...): This function allows to directly set the manifest. It comes in handy if you load the data from somewhere else.

 	
loadRemoteEntry(...): This function allows to directly load the remote entry point. It’s useful if you don’t use the manifest:

 1 Promise.all([
 2 loadRemoteEntry({
 3 type: 'module',
 4 remoteEntry: 'http://localhost:4201/remoteEntry.js'
 5 }),
 6 loadRemoteEntry({
 7 type: 'module',
 8 remoteEntry: 'http://localhost:4202/remoteEntry.js'
 9 })
10])
11 .catch(err => console.error(err))
12 .then(_ => import('./bootstrap'))
13 .catch(err => console.error(err));

 	
loadRemoteModule(...): Also, if you don’t want to use the manifest, you can directly load a Micro Frontend with loadRemoteModule:

1 {
2 path: 'flights',
3 loadChildren: () =>
4 loadRemoteModule({
5 type: 'module',
6 remoteEntry: 'http://localhost:4201/remoteEntry.js',
7 exposedModule: './Module',
8 }).then((m) => m.FlightsModule),
9 },

In general I think most people will use the manifest in the future. Even if one doesn’t want to load it from a JSON file with loadManifest, one can define it via setManifest.

The property type: 'module' defines that you want to load a “real” EcmaScript module instead of “just” a JavaScript file. This is needed since Angular CLI 13. If you load stuff not built by CLI 13 or higher, you very likely have to set this property to script. This can also happen via the manifest:

1 {
2 	"non-cli-13-stuff": {
3 "type": "script",
4 "remoteEntry": "http://localhost:4201/remoteEntry.js"
5 }
6 }

 If an entry in the manifest does not contain a type property, the plugin assumes the value module.

Conclusion

Dynamic Module Federation provides more flexibility as it allows loading Micro Frontends we don’t have to know at compile time. We don’t even have to know their number upfront. This is possible because of the runtime API provided by webpack. To make using it a bit easier, the @angular-architects/module-federation plugin wrap it nicely into some convenience functions.

Plugin Systems with Module Federation: Building An Extensible Workflow Designer

In the previous chapter, I showed how to use Dynamic Module Federation. This allows us to load Micro Frontends – or remotes, which is the more general term in Module Federation – not known at compile time. We don’t even need to know the number of remotes upfront.

While the previous chapter leveraged the router for integrating remotes available, this chapter shows how to load individual components. The example used for this is a simple plugin-based workflow designer.

 [image: The Workflow Designer can load separately compiled and deployed tasks]
 The Workflow Designer can load separately compiled and deployed tasks

The workflow designer acts as a so-called host loading tasks from plugins provided as remotes. Thus, they can be compiled and deployed individually. After starting the workflow designer, it gets a configuration describing the available plugins:

 [image: The configuration informs about where to find the tasks]
 The configuration informs about where to find the tasks

Please note that these plugins are provided via different origins (http://localhost:4201 and http://localhost:4202), and the workflow designer is served from an origin of its own (http://localhost:4200).

 Source Code

 Thanks to Zack Jackson and Jack Herrington, who helped me to understand the rater new API for Dynamic Module Federation.

 Important: This book is written for Angular and Angular CLI 14.x and above. Make sure you have a fitting version if you try out the examples outlined here! For more details on the differences/ migration to Angular 14.x please see this migration guide.

Building the Plugins

The plugins are provided via separate Angular applications. For the sake of simplicity, all applications are part of the same monorepo. Their webpack configuration uses Module Federation for exposing the individual plugins as shown in the previous chapters of this book:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require('@angular-architects/module-federation/webpack');
 3
 4 module.exports = withModuleFederationPlugin({
 5
 6 name: 'mfe1',
 7
 8 exposes: {
 9 './Download': './projects/mfe1/src/app/download.component.ts',
10 './Upload': './projects/mfe1/src/app/upload.component.ts'
11 },
12
13 shared: {
14 ...shareAll({ singleton: true, strictVersion: true, requiredVersion: 'auto' }),
15 },
16
17 });

One difference to the configurations shown in the previous chapter is that here we are directly exposing standalone components. Each component represents a task that can be put into the workflow.

The combination of singleton: true and strictVersion: true makes webpack emit a runtime error when the shell and the micro frontend(s) need different incompatible versions (e. g. two different major versions). If we skipped strictVersion or set it to false, webpack would only emit a warning at runtime.

Loading the Plugins into the Workflow Designer

For loading the plugins into the workflow designer, I’m using the helper function loadRemoteModule provided by the @angular-architects/module-federation plugin. To load the above mentioned Download task, loadRemoteModule can be called this way:

1 import { loadRemoteModule } from '@angular-architects/module-federation';
2
3 [...]
4
5 const component = await loadRemoteModule({
6 type: 'module',
7 remoteEntry: 'http://localhost:4201/remoteEntry.js',
8 exposedModule: './Download'
9 })

Providing Metadata on the Plugins

At runtime, we need to provide the workflow designer with key data about the plugins. The type used for this is called PluginOptions and extends the LoadRemoteModuleOptions shown in the previous section by a displayName and a componentName:

1 export type PluginOptions = LoadRemoteModuleOptions & {
2 displayName: string;
3 componentName: string;
4 };

 An alternative to this is extending the Module Federation Manifest as shown in the previous chapter.

While the displayName is the name presented to the user, the componentName refers to the TypeScript class representing the Angular component in question.

For loading this key data, the workflow designer leverages a LookupService:

 1 @Injectable({ providedIn: 'root' })
 2 export class LookupService {
 3 lookup(): Promise<PluginOptions[]> {
 4 return Promise.resolve([
 5 {
 6 			 type: 'module',
 7 remoteEntry: 'http://localhost:4201/remoteEntry.js',
 8 exposedModule: './Download',
 9
10 displayName: 'Download',
11 componentName: 'DownloadComponent'
12 },
13 [...]
14] as PluginOptions[]);
15 }
16 }

For the sake of simplicity, the LookupService provides some hardcoded entries. In the real world, it would very likely request this data from a respective HTTP endpoint.

Dynamically Creating the Plugin Component

The workflow designer represents the plugins with a PluginProxyComponent. It takes a PluginOptions object via an input, loads the described plugin via Dynamic Module Federation and displays the plugin’s component within a placeholder:

 1 @Component({
 2 standalone: true,
 3 selector: 'plugin-proxy',
 4 template: `
 5 <ng-container #placeHolder></ng-container>
 6 `
 7 })
 8 export class PluginProxyComponent implements OnChanges {
 9 @ViewChild('placeHolder', { read: ViewContainerRef, static: true })
10 viewContainer: ViewContainerRef;
11
12 constructor() { }
13
14 @Input() options: PluginOptions;
15
16 async ngOnChanges() {
17 this.viewContainer.clear();
18
19 const Component = await loadRemoteModule(this.options)
20 .then(m => m[this.options.componentName]);
21
22 this.viewContainer.createComponent(Component);
23 }
24 }

In versions before Angular 13, we needed to use a ComponentFactoryResolver to get the loaded component’s factory:

 1 // Before Angular 13, we needed to retrieve a ComponentFactory
 2 //
 3 // export class PluginProxyComponent implements OnChanges {
 4 // @ViewChild('placeHolder', { read: ViewContainerRef, static: true })
 5 // viewContainer: ViewContainerRef;
 6
 7 // constructor(
 8 // private injector: Injector,
 9 // private cfr: ComponentFactoryResolver) { }
10
11 // @Input() options: PluginOptions;
12
13 // async ngOnChanges() {
14 // this.viewContainer.clear();
15
16 // const component = await loadRemoteModule(this.options)
17 // .then(m => m[this.options.componentName]);
18
19 // const factory = this.cfr.resolveComponentFactory(component);
20
21 // this.viewContainer.createComponent(factory, null, this.injector);
22 // }
23 // }

Wiring Up Everything

Now, it’s time to wire up the parts mentioned above. For this, the workflow designer’s AppComponent gets a plugins and a workflow array. The first one represents the PluginOptions of the available plugins and thus all available tasks while the second one describes the PluginOptions of the selected tasks in the configured sequence:

 1 @Component({ [...] })
 2 export class AppComponent implements OnInit {
 3
 4 plugins: PluginOptions[] = [];
 5 workflow: PluginOptions[] = [];
 6 showConfig = false;
 7
 8 constructor(
 9 private lookupService: LookupService) {
10 }
11
12 async ngOnInit(): Promise<void> {
13 this.plugins = await this.lookupService.lookup();
14 }
15
16 add(plugin: PluginOptions): void {
17 this.workflow.push(plugin);
18 }
19
20 toggle(): void {
21 this.showConfig = !this.showConfig;
22 }
23 }

The AppComponent uses the injected LookupService for populating its plugins array. When a plugin is added to the workflow, the add method puts its PluginOptions object into the workflow array.

For displaying the workflow, the designer just iterates all items in the workflow array and creates a plugin-proxy for them:

1 <ng-container *ngFor="let p of workflow; let last = last">
2 <plugin-proxy [options]="p"></plugin-proxy>
3 <i *ngIf="!last" class="arrow right" style=""></i>
4 </ng-container>

As discussed above, the proxy loads the plugin (at least, if it isn’t already loaded) and displays it.

Also, for rendering the toolbox displayed on the left, it goes through all entries in the plugins array. For each of them it displays a hyperlink calling bound to the add method:

1 <div class="vertical-menu">
2 Tasks
3 <a *ngFor="let p of plugins" (click)="add(p)">Add {{p.displayName}}
4 </div>

Conclusion

While Module Federation comes in handy for implementing Micro Frontends, it can also be used for setting up plugin architectures. This allows us to extend an existing solution by 3rd parties. It also seems to be a good fit for SaaS applications, which needs to be adapted to different customers’ needs.

Using Module Federation with Nx Monorepos and Angular

While it sounds like a contradiction, the combination of Micro Frontends and Monorepos can actually be quite tempting: No version conflicts by design, easy code sharing and optimized bundles are some of the benefits you get. Also, you can still deploy Micro Frontends separately and isolate them from each other.

This chapter compares the consequences of using several repositories (“Micro Frontends by the book”) and one sole monorepo. After that, it shows with an example, how to use Module Federation in an Nx monorepo.

If you want to have a look at the source code used here, you can check out this repository.

 Big thanks to the awesome Tobias Koppers who gave me valuable insights into this topic and to the one and only Dmitriy Shekhovtsov who helped me using the Angular CLI/webpack 5 integration for this.

Important: This book is written for Angular 14.x and higher. Hence, you also need Nx 14.2.x or higher. To find out about the small differences for lower versions of Angular and for the migration from such a lower version, please have a look to our migration guide.

Multiple Repos vs. Monorepos

I know, the discussion about using multiple repos vs. monorepos can be quite emotional. Different people made different experiences with both approaches. However, I can tell you: I’ve seen both working in huge real-world projects. Still, both comes with different consequences, I’m going to discuss in the following two section.

At the end of the day, you need to evaluate these consequences against your very project situation and goals. This is what software architecture is about.

Multiple Repositories: Micro Frontends by the Book

A traditional approach uses a separate repository per Micro Frontend:

 [image: One Repository per Micro Frontend]
 One Repository per Micro Frontend

This is also a quite usual for Micro Services and it provides the following advantages:

 	Micro Frontends – and hence the individual business domains – are isolated from each other. As there are no dependencies between them, different teams can evolve them separately.

 	Each team can concentrate on their Micro Frontend. They only need to focus on their very own repository.

 	Each team has the maximum amount of freedom in their repository. They can go with their very own architectural decisions, tech stacks, and build processes. Also, they decide by themselves when to update to newer versions.

 	Each Micro Frontend can be separately deployed.

As this best fits the original ideas of Micro Frontends, I call this approach “Micro Frontends by the book”. However, there are also some disadvantages:

 	We need to version and distribute shared dependencies via npm. This can become quite an overhead, as after every change we need to assign a new version, publish it, and install it into the respective Micro Frontends.

 	As each team can use its own tech stack, we can end up with different frameworks and different versions of them. This might lead to version conflicts in the browser and to increased bundle sizes.

Of course, there are approaches to compensate for these drawbacks: For instance, we can automate the distribution of shared libraries to minimize the overhead. Also, we can avoid version conflicts by not sharing libraries between different Micro Frontends. Wrapping these Micro Frontends into web components further abstracts away the differences between frameworks.

While this prevents version conflicts, we still have increased bundle sizes. Also, we might need some workarounds here or there as Angular is not designed to work with another version of itself in the same browser window. Needless to say that there is no support by the Angular team for this idea.

If you find out that the advantages of this approach outweigh the disadvantages, you find a solution for mixing and matching different frameworks and versions in one of the next chapters.

However, if you feel that the disadvantages weigh heavier, the next sections show an alternative.

Micro Frontends with Monorepos

Nearly all of the disadvantages outlined above can be prevented by putting all Micro Frontends into one sole monorepo:

 [image: Micro Frontends in a monorepo]
 Micro Frontends in a monorepo

Now, sharing libraries is easy and there is only one version of everything, hence we don’t end up with version conflicts in the browser. We can also keep some advantages outlined above:

 	Micro Frontends can be isolated from each other by using linting rules. They prevent one Micro Frontend from depending upon others. Hence, teams can separately evolve their Micro Frontend.

 	Micro Frontends can still be separately deployed.

Now, the question is, where’s the catch? Well, the thing is, now we are giving up some of the freedom: Teams need to agree on one version of dependencies like Angular and on a common update cycle for them. To put it in another way: We trade in some freedom to prevent version conflicts and increased bundle sizes.

One more time, you need to evaluate all these consequences for your very project. Hence, you need to know your architecture goals and prioritize them. As mentioned, I’ve seen both working in the wild in several projects. It’s all about the different consequences.

Monorepo Example

After discussing the consequences of the approach outlined here, let’s have a look at an implementation. The example used here is a Nx monorepo with a Micro Frontend shell (shell) and a Micro Frontend (mfe1, “micro frontend 1”). Both share a common library for authentication (auth-lib) that is also located in the monorepo. Also, mfe1 uses a library mfe1-domain-logic.

If you haven’t used Nx before, just assume a CLI workspace with tons additional features. You can find more infos on Nx in our tutorial.

To visualize the monorepo’s structure, one can use the Nx CLI to request a dependency graph:

1 nx graph

If you don’t have installed this CLI, you can easily get it via npm (npm i -g nx). The displayed graph looks like this:

 [image: Dependency Graph generated by Nx]
 Dependency Graph generated by Nx

The auth-lib provides two components. One is logging-in users and the other one displays the current user. They are used by both, the shell and mfe1:

 [image: Schema]
 Schema

Also, the auth-lib stores the current user’s name in a service.

As usual in Nx and Angular monorepos, libraries are referenced with path mappings defined in tsconfig.base.json (Nx) or tsconfig.json (Angular CLI):

1 "paths": {
2 "@demo/auth-lib": [
3 "libs/auth-lib/src/index.ts"
4]
5 },

The shell and mfe1 (as well as further Micro Frontends we might add in the future) need to be deployable in separation and loaded at runtime.

However, we don’t want to load the auth-lib twice or several times! Archiving this with an npm package is not that difficult. This is one of the most obvious and easy to use features of Module Federation. The next sections discuss how to do the same with libraries of a monorepo.

The Shared Lib

Before we delve into the solution, let’s have a look at the auth-lib. It contains an AuthService that logs-in the user and remembers them using the property _userName:

 1 @Injectable({
 2 providedIn: 'root'
 3 })
 4 export class AuthService {
 5
 6 // tslint:disable-next-line: variable-name
 7 private _userName: string = null;
 8
 9 public get userName(): string {
10 return this._userName;
11 }
12
13 constructor() { }
14
15 login(userName: string, password: string): void {
16 // Authentication for honest users
17 // (c) Manfred Steyer
18 this._userName = userName;
19 }
20
21 logout(): void {
22 this._userName = null;
23 }
24 }

Besides this service, there is also a AuthComponent with the UI for logging-in the user and a UserComponent displaying the current user’s name. Both components are registered with the library’s NgModule:

 1 @NgModule({
 2 imports: [
 3 CommonModule,
 4 FormsModule
 5],
 6 declarations: [
 7 AuthComponent,
 8 UserComponent
 9],
10 exports: [
11 AuthComponent,
12 UserComponent
13],
14 })
15 export class AuthLibModule {}

As every library, it also has a barrel index.ts (sometimes also called public-api.ts) serving as the entry point. It exports everything consumers can use:

1 export * from './lib/auth-lib.module';
2 export * from './lib/auth.service';
3
4 // Don't forget about your components!
5 export * from './lib/auth/auth.component';
6 export * from './lib/user/user.component';

Please note that index.ts is also exporting the two components although they are already registered with the also exported AuthLibModule. In the scenario discussed here, this is vital in order to make sure it’s detected and compiled by Ivy.

Let’s assume the shell is using the AuthComponent and mfe1 uses the UserComponent. As our goal is to only load the auth-lib once, this also allows for sharing information on the logged-in user.

The Module Federation Configuration

As in the previous chapter, we are using the @angular-architects/module-federation plugin to enable Module Federation for the shell and mfe1. For this, just run the following commands:

1 npm i @angular-architects/module-federation -D
2
3 npm g @angular-architects/module-federation:init
4 --project shell --port 4200 --type host
5
6 npm g @angular-architects/module-federation:init
7 --project mfe1 --port 4201 --type remote

 Meanwhile, Nx also ships with its own support for Module Federation. Beyond the covers, it handles Module Federation in a very similar way as the plugin used here.

This generates a webpack config for Module Federation. Since version 14.3, the withModuleFederationPlugin provides a property sharedMappings. Here, we can register the monorepo internal libs we want to share at runtime:

 1 // apps/shell/webpack.config.js
 2
 3 const { shareAll, withModuleFederationPlugin } =
 4 require('@angular-architects/module-federation/webpack');
 5
 6 module.exports = withModuleFederationPlugin({
 7
 8 remotes: {
 9 'mfe1': "http://localhost:4201/remoteEntry.js"
10 },
11
12 shared: shareAll({
13 singleton: true,
14 strictVersion: true,
15 requiredVersion: 'auto'
16 }),
17
18 sharedMappings: ['@demo/auth-lib'],
19
20 });

As sharing is always an opt-in in Module Federation, we also need the same setting in the Micro Frontend’s configuration:

 1 // apps/mfe1/webpack.config.js
 2
 3 const { shareAll, withModuleFederationPlugin } =
 4 require('@angular-architects/module-federation/webpack');
 5
 6 module.exports = withModuleFederationPlugin({
 7
 8 name: "mfe1",
 9
10 exposes: {
11 './Module': './apps/mfe1/src/app/flights/flights.module.ts',
12 },
13
14 shared: shareAll({
15 singleton: true,
16 strictVersion: true,
17 requiredVersion: 'auto'
18 }),
19
20 sharedMappings: ['@demo/auth-lib'],
21
22 });

 Since version 14.3, the Module Federation plugin shares all libraries in the monorepo by default. To get this default behavior, just skip the sharedMappings property. If you use it, only the mentioned libs are shared.

Trying it out

To try this out, just start the two applications. As we use Nx, this can be done with the following command:

1 nx run-many --target serve --all

The switch --all starts all applications in the monorepo. Instead, you can also go with the switch --projects to just start a subset of them:

1 nx run-many --target serve --projects shell,mfe1

 --project takes a comma-separated list of project names. Spaces are not allowed.

After starting the applications, log-in in the shell and make it to load mfe1. If you see the logged-in user name in mfe1, you have the proof that auth-lib is only loaded once and shared across the applications.

Isolating Micro Frontends

One important goal of a Micro Frontend architecture is to isolate Micro Frontends from each other. Only if they don’t depend on each other, they can be evolved by autarkic teams. For this, Nx provides linting rules. Once in place, they give us errors when we directly reference code belonging to another Micro Frontend and hence another business domain.

In the following example, the shell tries to access a library belonging to mfe1:

 [image: Linting prevents coupling between Micro Frontends]
 Linting prevents coupling between Micro Frontends

To make these error messages appear in your IDE, you need eslint support. For Visual Studio Code, this can be installed via an extension.

Besides checking against linting rules in your IDE, one can also call the linter on the command line:

 [image: Linting on the command line]
 Linting on the command line

The good message: If it works on the command line, it can be automated. For instance, your build process could execute this command and prevent merging a feature into the main branch if these linting rules fail: No broken windows anymore.

For configuring these linting rules, we need to add tags to each app and lib in our monorepo. For this, you can adjust the project.json in the app’s or lib’s folder. For instance, the project.json for the shell can be found here: apps/shell/project.json. At the end, you find a property tag, I’ve set to scope:shell:

1 {
2 [...]
3 "tags": ["scope:shell"]
4 }

The value for the tags are just strings. Hence, you can set any possible value. I’ve repeated this for mfe1 (scope:mfe1) and the auth-lib (scope:auth-lib).

Once the tags are in place, you can use them to define constraints in your global eslint configuration (.eslintrc.json):

 1 "@nrwl/nx/enforce-module-boundaries": [
 2 "error",
 3 {
 4 "enforceBuildableLibDependency": true,
 5 "allow": [],
 6 "depConstraints": [
 7 {
 8 "sourceTag": "scope:shell",
 9 "onlyDependOnLibsWithTags": ["scope:shell", "scope:shared"]
10 },
11 {
12 "sourceTag": "scope:mfe1",
13 "onlyDependOnLibsWithTags": ["scope:mfe1", "scope:shared"]
14 },
15 {
16 "sourceTag": "scope:shared",
17 "onlyDependOnLibsWithTags": ["scope:shared"]
18 }
19]
20 }
21]

After changing global configuration files like the .eslintrc.json, it’s a good idea to restart your IDE (or at least affected services of your IDE). This makes sure the changes are respected.

More on these ideas and their implementation with Nx can be found in the chapters on Strategic Design.

Incremental Builds

To build all apps, you can use Nx’ run-many command:

1 nx run-many --target build --all

However, this does not mean that Nx always rebuilds all the Micro Frontends as well as the shell. Instead, it only rebuilds the changed apps. For instance, in the following case mfe1 was not changed. Hence, only the shell is rebuilt:

 [image: Nx only rebuilds changed apps]
 Nx only rebuilds changed apps

 Using the build cache to only recompile changed apps can dramatically speed up your build times.

This also works for testing, e2e-tests, and linting out of the box. If an application (or library) hasn’t been changed, it’s neither retested nor relinted. Instead, the result is taken from the Nx build cache.

By default, the build cache is located in node_modules/.cache/nx. However, there are several options for configuring how and where to cache.

Deploying

As normally, libraries don’t have versions in a monorepo, we should always redeploy all the changed Micro Frontends together. Fortunately, Nx helps with finding out which applications/ Micro Frontends have been changed or affected by a change:

1 nx print-affected --type app --select projects

You might also want to detect the changed applications as part of your build process.

 Redeploying all applications that have been changed or affected by a (lib) change is vital, if you share libraries at runtime. If you have a release branch, it’s enough to just redeploy all apps that have been changed in this branch.

If you want to have a graphical representation of the changed parts of your monorepo, you can request a dependency graph with the following command:

1 nx affected:graph

Assuming we changed the domain-logic lib used by mfe1, the result would look as follows:

 [image: Dependency graph shows affected projects]
 Dependency graph shows affected projects

By default, the shown commands compare your current working directory with the main branch. However, you can use these commands with the switches --base and --head.

1 nx print-affected --type app --select projects --base branch-or-commit-a --head bran\
2 ch-or-commit-b

These switches take a commit hash or the name of a branch. In the latter case, the last commit of the mentioned branch is used for the comparison.

Conclusion

By using monorepos for Micro Frontends you trade in some freedom for preventing issues. You can still deploy Micro Frontends separately and thanks to linting rules provided by Nx Micro Frontends can be isolated from each other.

However, you need to agree on common versions for the frameworks and libraries used. Therefore, you don’t end up with version conflicts at runtime. This also prevents increased bundles.

Both works, however, both has different consequences. It’s on you to evaluate these consequences for your very project.

Dealing with Version Mismatches in Module Federation

Webpack Module Federation makes it easy to load separately compiled code like micro frontends. It even allows us to share libraries among them. This prevents that the same library has to be loaded several times.

However, there might be situations where several micro frontends and the shell need different versions of a shared library. Also, these versions might not be compatible with each other.

For dealing with such cases, Module Federation provides several options. In this chapter, I present these options by looking at different scenarios. The source code for these scenarios can be found in my GitHub account.

 Big thanks to Tobias Koppers, founder of webpack, for answering several questions about this topic and for proofreading this chapter.

Example Used Here

To demonstrate how Module Federation deals with different versions of shared libraries, I use a simple shell application known from the other parts of this book. It is capable of loading micro frontends into its working area:

 [image: Shell loading microfrontends]
 Shell loading microfrontends

The micro frontend is framed with the red dashed line.

For sharing libraries, both, the shell and the micro frontend use the following setting in their webpack configurations:

1 new ModuleFederationPlugin({
2 [...],
3 shared: ["rxjs", "useless-lib"]
4 })

If you are new to Module Federation, you can find an explanation about it here.

The package useless-lib is a dummy package, I’ve published for this example. It’s available in the versions 1.0.0, 1.0.1, 1.1.0, 2.0.0, 2.0.1, and 2.1.0. In the future, I might add further ones. These versions allow us to simulate different kinds of version mismatches.

To indicate the installed version, useless-lib exports a version constant. As you can see in the screenshot above, the shell and the micro frontend display this constant. In the shown constellation, both use the same version (1.0.0), and hence they can share it. Therefore, useless-lib is only loaded once.

However, in the following sections, we will examine what happens if there are version mismatches between the useless-lib used in the shell and the one used in the microfrontend. This also allows me to explain different concepts Module Federation implements for dealing with such situations.

Semantic Versioning by Default

For our first variation, let’s assume our package.json is pointing to the following versions:

 	
Shell: useless-lib@^1.0.0

 	
MFE1: useless-lib@^1.0.1

This leads to the following result:

 [image:]

Module Federation decides to go with version 1.0.1 as this is the highest version compatible with both applications according to semantic versioning (^1.0.0 means, we can also go with a higher minor and patch versions).

Fallback Modules for Incompatible Versions

Now, let’s assume we’ve adjusted our dependencies in package.json this way:

 	
Shell: useless-lib@~1.0.0

 	
MFE1: useless-lib@1.1.0

Both versions are not compatible with each other (~1.0.0 means, that only a higher patch version but not a higher minor version is acceptable).

This leads to the following result:

 [image: Using Fallback Module]
 Using Fallback Module

This shows that Module Federation uses different versions for both applications. In our case, each application falls back to its own version, which is also called the fallback module.

Differences With Dynamic Module Federation

Interestingly, the behavior is a bit different when we load the micro frontends including their remote entry points just on demand using Dynamic Module Federation. The reason is that dynamic remotes are not known at program start, and hence Module Federation cannot draw their versions into consideration during its initialization phase.

For explaining this difference, let’s assume the shell is loading the micro frontend dynamically and that we have the following versions:

 	
Shell: useless-lib@^1.0.0

 	
MFE1: useless-lib@^1.0.1

While in the case of classic (static) Module Federation, both applications would agree upon using version 1.0.1 during the initialization phase, here in the case of dynamic module federation, the shell does not even know of the micro frontend in this phase. Hence, it can only choose for its own version:

 [image: Dynamic Microfrontend falls back to own version]
 Dynamic Microfrontend falls back to own version

If there were other static remotes (e. g. micro frontends), the shell could also choose for one of their versions according to semantic versioning, as shown above.

Unfortunately, when the dynamic micro frontend is loaded, module federation does not find an already loaded version compatible with 1.0.1. Hence, the micro frontend falls back to its own version 1.0.1.

On the contrary, let’s assume the shell has the highest compatible version:

 	
Shell: useless-lib@^1.1.0

 	
MFE1: useless-lib@^1.0.1

In this case, the micro frontend would decide to use the already loaded one:

 [image: Dynamic Microfrontend uses already loaded version]
 Dynamic Microfrontend uses already loaded version

To put it in a nutshell, in general, it’s a good idea to make sure your shell provides the highest compatible versions when loading dynamic remotes as late as possible.

However, as discussed in the chapter about Dynamic Module Federation, it’s possible to dynamically load just the remote entry point on program start and to load the micro frontend later on demand. By splitting this into two loading processes, the behavior is exactly the same as with static (“classic”) Module Federation. The reason is that in this case the remote entry’s meta data is available early enoght to be considering during the negotation of the versions.

Singletons

Falling back to another version is not always the best solution: Using more than one version can lead to unforeseeable effects when we talk about libraries holding state. This seems to be always the case for your leading application framework/ library like Angular, React or Vue.

For such scenarios, Module Federation allows us to define libraries as singletons. Such a singleton is only loaded once.

If there are only compatible versions, Module Federation will decide for the highest one as shown in the examples above. However, if there is a version mismatch, singletons prevent Module Federation from falling back to a further library version.

For this, let’s consider the following version mismatch:

 	
Shell: useless-lib@^2.0.0

 	
MFE1: useless-lib@^1.1.0

Let’s also consider we’ve configured the useless-lib as a singleton:

1 // Shell
2 shared: {
3 "rxjs": {},
4 "useless-lib": {
5 singleton: true,
6 }
7 },

Here, we use an advanced configuration for defining singletons. Instead of a simple array, we go with an object where each key represents a package.

If one library is used as a singleton, you will very likely set the singleton property in every configuration. Hence, I’m also adjusting the microfrontend’s Module Federation configuration accordingly:

1 // MFE1
2 shared: {
3 "rxjs": {},
4 "useless-lib": {
5 singleton: true
6 }
7 }

To prevent loading several versions of the singleton package, Module Federation decides for only loading the highest available library which it is aware of during the initialization phase. In our case this is version 2.0.0:

 [image: Module Federation only loads the highest version for singletons]
 Module Federation only loads the highest version for singletons

However, as version 2.0.0 is not compatible with version 1.1.0 according to semantic versioning, we get a warning. If we are lucky, the federated application works even though we have this mismatch. However, if version 2.0.0 introduced braking changes we run into, our application might fail.

In the latter case, it might be beneficial to fail fast when detecting the mismatch by throwing an example. To make Module Federation behaving this way, we set strictVersion to true:

1 // MFE1
2 shared: {
3 "rxjs": {},
4 "useless-lib": {
5 singleton: true,
6 strictVersion: true
7 }
8 }

The result of this looks as follows at runtime:

 [image: Version mismatches regarding singletons using strictVersion make the application fail]
 Version mismatches regarding singletons using strictVersion make the application fail

Accepting a Version Range

There might be cases where you know that a higher major version is backward compatible even though it doesn’t need to be with respect to semantic versioning. In these scenarios, you can make Module Federation accepting a defined version range.

To explore this option, let’s one more time assume the following version mismatch:

 	
Shell: useless-lib@^2.0.0

 	
MFE1: useless-lib@^1.1.0

Now, we can use the requiredVersion option for the useless-lib when configuring the microfrontend:

1 // MFE1
2 shared: {
3 "rxjs": {},
4 "useless-lib": {
5 singleton: true,
6 strictVersion: true,
7 requiredVersion: ">=1.1.0 <3.0.0"
8 }
9 }

According to this, we also accept everything having 2 as the major version. Hence, we can use the version 2.0.0 provided by the shell for the micro frontend:

 [image: Accepting incompatible versions by defining a version range]
 Accepting incompatible versions by defining a version range

Conclusion

Module Federation brings several options for dealing with different versions and version mismatches. Most of the time, you don’t need to do anything, as it uses semantic versioning to decide for the highest compatible version. If a remote needs an incompatible version, it falls back to such one by default.

In cases where you need to prevent loading several versions of the same package, you can define a shared package as a singleton. In this case, the highest version known during the initialization phase is used, even though it’s not compatible with all needed versions. If you want to prevent this, you can make Module Federation throw an exception using the strictVersion option.

You can also ease the requirements for a specific version by defining a version range using requestedVersion. You can even define several scopes for advanced scenarios where each of them can get its own version.

Multi-Framework and -Version Micro Frontends with Module Federation

Most articles on Module Federation assume, you have just one version of your major Framework, e. g. Angular. However, what to do if you have to mix and match different versions or different frameworks? No worries, we got you covered. This chapter uses an example to explain how to develop such a scenario in 4 steps.

 [image: Example]
 Example

Please find the live demo and the source code here:

 	Live Example

 	Source Code Shell

 	Source Code for Micro Frontend

 	Source Code for Micro Frontend with Routing

 	Source Code for Micro Frontend with Vue

 	Source Code for Micro Frontend with React

 	Source Code for Micro Frontend with AngularJS

Pattern or Anti-Pattern?

In his recent talk on Micro Frontend Anti Patterns, my friend Luca Mezzalira mentions using several frontend frameworks in one application. He calls this anti pattern the Hydra of Lerna. This name comes from a water monster in Greek and Roman mythology having several heads.

There’s a good reason for considering this an anti pattern: Current frameworks are not prepared to be bootstrapped in the same browser tab together with other frameworks or other versions of themselves. Besides leading to bigger bundles, this also increases the complexity and calls for some workarounds.

However, Luca also explains that there are some situations where such an approach might be needed. He brings up the following examples:

 	Dealing with legacy systems

 	Migration to a new UI framework/ library

 	After merging companies with different tech stacks

This all speaks right from my heart and perfectly correlates with my “story” I’m telling a lot at conferences and at our company workshops: Try to avoid mixing frameworks and versions in the browser. However, if you have a good reason for doing it after ruling out the alternatives, there are ways for making Multi-Framework/ Multi-Version Micro Frontends work.

As always in the area of software architecture – and probably in life as general – it’s all about trade-offs. So if you find out that this approach comes with less drawbacks than alternatives with respect to your very architecture goals, lets go for it.

Micro Frontends as Web Components?

While not 100% necessary, it can be a good idea to wrap your Micro Frontends in Web Components.

 [image: Micro Frontends wrapped in Web Components]
 Micro Frontends wrapped in Web Components

This brings several advantages:

 	Abstracting differences between frameworks

 	Mounting/ Unmounting Web Components is easy

 	Shadow DOM helps with isolating CSS styles

 	Custom Events and Properties allow to communicate

The first two options correlate with each other. We need to display and hide our Micro Frontends on demand, e. g. when activating a specific menu item. As each Micro Frontend is a self-contained frontend, this also means we have to bootstrap it on demand in the middle of our page. For this, different frameworks provide different methods or functions. When wrapped into Web Components, all we need to do is to add or remove the respective HTML element registered with the Web Component.

Isolating CSS styles via Shadow DOM helps to make teams more self-sufficient. However, I’ve seen that quite often teams trade in a bit of independence for some global CSS rules provided by the shell. In this case, the Shadow DOM emulation provided by Angular (with and without Web Components) is a good choice: While it prevents styles from other components bleeding into yours, it allows to share global styles too.

Also, Custom Events and Properties seem to be a good choice for communicating at first glance. However, for the sake of simplicity, meanwhile, I prefer a simple object acting as a mediator or “mini message bus” in the global namespace.

In general, we have to see that such Web Components wrapping whole Micro Frontends are no typical Web Components. I’m stressing this out because sometimes people confuse the idea of a (Web) Component with the idea of a Micro Frontend or use these terms synonymously. This leads to far too fine-grained Micro Frontends causing lots of issues with integration.

Do we also need Module Federation?

Module Federation makes it easy to load parts of other applications into a host. In our case, the host is the Micro Frontend shell. Also, Module Federation allows for sharing libraries between the shell and the micro frontends.

It even comes with several strategies for dealing with versions mismatches. For instance, we could configure it to reuse an existing library if the versions match exactly. Otherwise, we could instruct it to load the version is has been built with.

Loading the discussed Micro Frontends with Module Federation hence gives us the best of both worlds. We can share libraries when possible and load our own when not:

 [image: The Best of Both Worlds]
 The Best of Both Worlds

Implementation in 4 steps

Now, after discussing the implementation strategy, let’s look at the promised 4 steps for building such a solution.

Step 1: Wrap your Micro Frontend in a Web Component

For wrapping Angular-based Micro Frontends in a Web Component, you can go with Angular Elements provided by the Angular team. Install it via npm:

1 npm i @angular/elements

After installing it, adjust your AppModule as follows:

 1 import { createCustomElement } from '@angular/elements';
 2 [...]
 3
 4 @NgModule({
 5 [...]
 6 declarations: [
 7 AppComponent
 8],
 9 bootstrap: [] // No bootstrap components!
10 })
11 export class AppModule implements DoBoostrap {
12 constructor(private injector: Injector) {
13 }
14
15 ngDoBootstrap() {
16 const ce = createCustomElement(AppComponent, {injector: this.injector});
17 customElements.define('angular1-element', ce);
18 }
19
20 }

This does several things:

 	By going with an empty bootstrap array, Angular won’t directly bootstrap any component on startup. However, in such cases, Angular demands us of placing a custom bootstrap logic in the method ngDoBootstrap described by the DoBoostrap interface.

 	
ngDoBootstrap uses Angular Elements’ createCustomElement to wrap your AppComponent in a Web Component. To make it work with DI, you also need to pass the current Injector.

 	The method customElements.define registers the Web Component under the name angular1-element with the browser.

The result of this is that the browser will mount the Application in every angular1-element tag that occurs in your application.

If your framework doesn’t directly support web components, you can also hand-wrap your application. For instance, a React component could be wrapped as follows:

 1 // app.js
 2 import React from 'react'
 3 import ReactDOM from 'react-dom'
 4
 5 class App extends React.Component {
 6
 7 render() {
 8 const reactVersion = require('./package.json').dependencies['react'];
 9
10 return ([
11 <h1>
12 React
13 </h1>,
14 <p>
15 React Version: {reactVersion}
16 </p>
17])
18 }
19 }
20
21 class Mfe4Element extends HTMLElement {
22 connectedCallback() {
23 ReactDOM.render(<App/>, this);
24 }
25 }
26
27 customElements.define('react-element', Mfe4Element);

Step 2: Expose your Web Component via Module Federation

To be able to load the Micro Frontends into the shell, we need to expose the Web Components wrapping them via Module Federation. For this, add the package @angular-architects/module-federation to your Angular-based Micro Frontend:

1 ng add @angular-architects/module-federation

This installs and initializes the package. If you go with Nx and Angular, its more usual to do both steps separately:

1 npm i @angular-architects/module-federation -D
2
3 ng g @angular-architects/module-federation:init

In the case of other frameworks like React or Vue, this all is just about adding the ModuleFederationPlugin to the webpack configuration. Please remember that you need to bootstrap your application asynchronously in most cases. Hence, your entry file will more or less just contain a dynamic import loading the rest of the application.

For this reason, the above discussed React-based Micro Frontend uses the following index.js as the entry point:

1 // index.js
2 import('./app');

Similarly, @angular-architects/module-federation is moving the bootstrap code from main.ts into a newly created bootstrap.ts and imports it:

1 // main.ts
2 import('./bootstrap');

This common pattern gives Module Federation the necessary time for loading the shared dependencies.

After setting up Module Federation, expose the Web Component-based wrapper via the webpack configuration:

 1 // webpack.config.js
 2 [...]
 3 module.exports = {
 4 [...]
 5 plugins: [
 6 new ModuleFederationPlugin({
 7
 8 name: "angular1",
 9 filename: "remoteEntry.js",
10
11 exposes: {
12 './web-components': './src/bootstrap.ts',
13 },
14
15 shared: share({
16 "@angular/core": { requiredVersion: "auto" },
17 "@angular/common": { requiredVersion: "auto" },
18 "@angular/router": { requiredVersion: "auto" },
19 "rxjs": { requiredVersion: "auto" },
20
21 ...sharedMappings.getDescriptors()
22 }),
23 [...]
24 })
25],
26 };

 As the goal is to show how to mix different versions of Angular, this Micro Frontend uses Angular 12 while the shell shown below uses a more recent Angular version. Hence, also an older version of @angular-architects/module-federation and the original more verbose configuration is used. Please find details on different versions here.

The settings in the section shared make sure we can mix several versions of a framework but also reuse an already loaded one if the version numbers fit exactly. For this, requiredVersion should point to the installed version – the one, you also find in your package.json. The helper method share that comes with @angular-architects/module-federation takes care of this when setting requiredVersion to auto.

 While according to semantic versioning an Angular library with a higher minor or patch version is backwards compatible, there are no such guarantees for already compiled code. The reason is that the code emitted by the Angular compiler uses Angular’s internal APIs semantic does not apply for. Hence, you should use an exact version number (without any ^ or ~).

Step 3: Perform Workarounds for Angular

To make several Angular application work together in one browser window, we need some workarounds. The good message is, we’ve implemented them in a very slim add-on to @angular-architects/module-federation called @angular-architects/module-federation-tools.

Just install it (npm i @angular-architects/module-federation-tools -D) into both, your Micro Frontends and your shell. Then, bootstrap your shell and your Micro Frontends with its bootstrap method instead of with Angular’s one:

 1 // main.ts
 2 import { AppModule } from './app/app.module';
 3 import { environment } from './environments/environment';
 4 import { bootstrap } from '@angular-architects/module-federation-tools';
 5
 6 bootstrap(AppModule, {
 7 production: environment.production,
 8 appType: 'microfrontend' // for micro frontend
 9 // appType: 'shell', // for shell
10 });

Step 4: Load Micro Frontends into the Shell

Also, enable Module Federation in your shell. If it is an Angular-based shell, add the @angular-architects/module-federation plugin:

1 ng add @angular-architects/module-federation

As mentioned above, in the case of Nx and Angular, perform the installation and initialization separately:

1 npm i @angular-architects/module-federation -D
2 ng g @angular-architects/module-federation:init --type host

 The switch –type host generates a typical host configuration. It is available since plugin version 14.3 and hence since Angular 14.

For this example, we don’t need to adjust the generated webpack.config.js:

 1 // webpack.config.js
 2 const { shareAll, withModuleFederationPlugin } =
 3 require('@angular-architects/module-federation/webpack');
 4
 5 module.exports = withModuleFederationPlugin({
 6
 7 shared: {
 8 ...shareAll({
 9 singleton: true,
10 strictVersion: true,
11 requiredVersion: 'auto'
12 }),
13 },
14
15 });

Other settings provided by the ModuleFederationPlugin aren’t needed here.

After this, all you need is a lazy route, loading the Micro Frontends in question:

 1 import { WebComponentWrapper, WebComponentWrapperOptions } from '@angular-architects\
 2 /module-federation-tools';
 3
 4 export const APP_ROUTES: Routes = [
 5 [...]
 6 {
 7 path: 'react',
 8 component: WebComponentWrapper,
 9 data: {
10 remoteEntry:
11 'https://witty-wave-0a695f710.azurestaticapps.net/remoteEntry.js',
12 remoteName: 'react',
13 exposedModule: './web-components',
14
15 elementName: 'react-element'
16 } as WebComponentWrapperOptions
17 },
18 [...]
19]

The WebComponentWrapper used here is provided by @angular-architects/module-federation-tools. It just loads the Web Component via Module Federation using the given key data. In the shown case, this react application is deployed as an Azure Static Web App. The values for remoteName and exposedModule can be found in the Micro Frontend’s webpack configuration.

The wrapper component also creates an HTML element with the name react-element the Web Component is mounted in.

If you load a Micro Frontend compiled with Angular 13 or higher, you need to set the property type to module:

 1 export const APP_ROUTES: Routes = [
 2 [...]
 3 {
 4 path: 'angular1',
 5 component: WebComponentWrapper,
 6 data: {
 7 type: 'module',
 8 remoteEntry: 'https://your-path/remoteEntry.js',
 9 exposedModule: './web-components',
10
11 elementName: 'angular1-element'
12 } as WebComponentWrapperOptions
13 },
14 [...]
15 }

Also, in the case of Angular 13+ you don’t need the remoteName property. The reason for these two differences is that Angular CLI 13+ don’t emit “old-style JavaScript” files anymore but JavaScript modules. Their handling in Module Federation is a bit different.

If your Micro Frontend brings its own router, you need to tell your shell that the Micro Frontend will append further segments to the URL. For this, you can go with the startsWith matcher also provided by @angular-architects/module-federation-tools:

 1 import {
 2 startsWith,
 3 WebComponentWrapper,
 4 WebComponentWrapperOptions
 5 }
 6 from '@angular-architects/module-federation-tools';
 7
 8 [...]
 9
10 export const APP_ROUTES: Routes = [
11 [...]
12 {
13 matcher: startsWith('angular3'),
14 component: WebComponentWrapper,
15 data: {
16 [...]
17 } as WebComponentWrapperOptions
18 },
19 [...]
20 }

To make this work, the path prefix angular3 used here needs to be used by the Micro Frontend too. As the routing config is just a data structure, you will find ways to add it dynamically.

Result

The result of this endeavor is an application that consists of different frameworks respective framework-versions:

 [image: Example]
 Example

Whenever possible, the framework is shared. Otherwise, a new framework (version) is loaded by Module Federation. Another advantage of this approach is that it works without any additional meta framework. We just need some thin helper functions.

The drawbacks are increased complexity and bundle sizes. Also, we are leaving the path of the supported use cases: None of the frameworks has been officially tested together with other frameworks or other versions of itself in the same browser tab.

Pitfalls with Module Federation and Angular

In this chapter, I’m going to destroy my Module Federation example! However, you don’t need to worry: It’s for a very good reason. The goal is to show typical pitfalls that come up when using Module Federation together with Angular. Also, I present some strategies for avoiding these pitfalls.

While Module Federation is really a straight and thoroughly thought through solution, using Micro Frontends means in general to make runtime dependencies out of compile time dependencies. As a result, the compiler cannot protect you as well as you are used to.

If you want to try out the examples used here, you can fork this example.

“No required version specified” and Secondary Entry Points

For the first pitfall I want to talk about, let’s have a look to our shell’s webpack.config.js. Also, let’s simplify the shared node as follows:

1 shared: {
2 "@angular/core": { singleton: true, strictVersion: true },
3 "@angular/common": { singleton: true, strictVersion: true },
4 "@angular/router": { singleton: true, strictVersion: true },
5 "@angular/common/http": { singleton: true, strictVersion: true },
6 },

As you see, we don’t specify a requiredVersion anymore. Normally this is not required because webpack Module Federation is very smart with finding out which version you use.

However, now, when compiling the shell (ng build shell), we get the following error:

 shared module @angular/common - Warning: No required version specified and unable to automatically determine one. Unable to find required version for “@angular/common” in description file (C:UsersManfredDocuments\artikelModuleFederation-Pitfalls\example\node_modules@angular\common\package.json). It need to be in dependencies, devDependencies or peerDependencies.

The reason for this is the secondary entry point @angular/common/http which is a bit like an npm package within an npm package. Technically, it’s just another file exposed by the npm package @angular/common.

Unsurprisingly, @angular/common/http uses @angular/common and webpack recognizes this. For this reason, webpack wants to find out which version of @angular/common is used. For this, it looks into the npm package’s package.json (@angular/common/package.json) and browses the dependencies there. However, @angular/common itself is not a dependency of @angular/common and hence, the version cannot be found.

You will have the same challenge with other packages using secondary entry points, e. g. @angular/material.

To avoid this situation, you can assign versions to all shared libraries by hand:

 1 shared: {
 2 "@angular/core": {
 3 singleton: true,
 4 strictVersion: true,
 5 requiredVersion: '12.0.0'
 6 },
 7 "@angular/common": {
 8 singleton: true,
 9 strictVersion: true,
10 requiredVersion: '12.0.0'
11 },
12 "@angular/router": {
13 singleton: true,
14 strictVersion: true,
15 requiredVersion: '12.0.0'
16 },
17 "@angular/common/http": {
18 singleton: true,
19 strictVersion: true,
20 requiredVersion: '12.0.0'
21 },
22 },

Obviously, this is cumbersome and so we came up with another solution. Since version 12.3, @angular-architects/module-federation comes with an unspectacular looking helper function called shared. If your webpack.config.js was generated with this or a newer version, it already uses this helper function.

 1 [...]
 2
 3 const mf = require("@angular-architects/module-federation/webpack");
 4 [...]
 5 const share = mf.share;
 6
 7 [...]
 8
 9 shared: share({
10 "@angular/core": {
11 singleton: true,
12 strictVersion: true,
13 requiredVersion: 'auto'
14 },
15 "@angular/common": {
16 singleton: true,
17 strictVersion: true,
18 requiredVersion: 'auto'
19 },
20 "@angular/router": {
21 singleton: true,
22 strictVersion: true,
23 requiredVersion: 'auto'
24 },
25 "@angular/common/http": {
26 singleton: true,
27 strictVersion: true,
28 requiredVersion: 'auto'
29 },
30 "@angular/material/snack-bar": {
31 singleton: true,
32 strictVersion: true,
33 requiredVersion:'auto'
34 },
35 })

As you see here, the share function wraps the object with the shared libraries. It allows to use requiredVersion: 'auto' and converts the value auto to the value found in your shell’s (or your micro frontend’s) package.json.

Unobvious Version Mismatches: Issues with Peer Dependencies

Have you ever just ignored a peer dependency warning? Honestly, I think we all know such situations. And ignoring them is often okay-ish as we know, at runtime everything will be fine. Unfortunately, such a situation can confuses webpack Module Federation when trying to auto-detect the needed versions of peer dependencies.

To demonstrate this situation, let’s install @angular/material and @angular/cdk in a version that is at least 2 versions behind our Angular version. In this case, we should get a peer dependency warnings.

In my case this is done as follows:

1 npm i @angular/material@10
2 npm i @angular/cdk@10

Now, let’s switch to the Micro Frontend’s (mfe1) FlightModule to import the MatSnackBarModule:

 1 [...]
 2 import { MatSnackBarModule } from '@angular/material/snack-bar';
 3 [...]
 4
 5 @NgModule({
 6 imports: [
 7 [...]
 8 // Add this line
 9 MatSnackBarModule,
10],
11 declarations: [
12 [...]
13]
14 })
15 export class FlightsModule { }

To make use of the snack bar in the FlightsSearchComponent, inject it into its constructor and call its open method:

 1 [...]
 2 import { MatSnackBar } from '@angular/material/snack-bar';
 3
 4 @Component({
 5 selector: 'app-flights-search',
 6 templateUrl: './flights-search.component.html'
 7 })
 8 export class FlightsSearchComponent {
 9 constructor(snackBar: MatSnackBar) {
10 snackBar.open('Hallo Welt!');
11 }
12 }

Also, for this experiment, make sure the webpack.config.js in the project mfe1 does not define the versions of the dependencies shared:

1 shared: {
2 "@angular/core": { singleton: true, strictVersion: true },
3 "@angular/common": { singleton: true, strictVersion: true },
4 "@angular/router": { singleton: true, strictVersion: true },
5 "@angular/common/http": { singleton: true, strictVersion: true },
6 },

Not defining these versions by hand forces Module Federation into trying to detect them automatically. However, the peer dependency conflict gives Module Federation a hard time and so it brings up the following error:

 Unsatisfied version 12.0.0 of shared singleton module @angular/core (required 10.0.0 ||11.0.0-0) ; Zone: <root> ; Task: Promise.then ; Value: Error: Unsatisfied version 12.0.0 of shared singleton module @angular/core (required 10.0.0 ||11.0.0-0)

While @angular/material and @angular/cdk officially need @angular/core 10, the rest of the application already uses @angular/core 12. This shows that webpack looks into the package.json files of all the shared dependencies for determining the needed versions.

In order to resolve this, you can set the versions by hand or by using the helper function share that uses the version found in your project’s package.json:

 1 [...]
 2
 3 const mf = require("@angular-architects/module-federation/webpack");
 4 [...]
 5 const share = mf.share;
 6
 7 [...]
 8
 9 shared: share({
10 "@angular/core": {
11 singleton: true,
12 strictVersion: true,
13 requiredVersion: 'auto'
14 },
15 "@angular/common": {
16 singleton: true,
17 strictVersion: true,
18 requiredVersion: 'auto'
19 },
20 "@angular/router": {
21 singleton: true,
22 strictVersion: true,
23 requiredVersion: 'auto'
24 },
25 "@angular/common/http": {
26 singleton: true,
27 strictVersion: true,
28 requiredVersion: 'auto'
29 },
30 "@angular/material/snack-bar": {
31 singleton: true,
32 strictVersion: true,
33 requiredVersion:'auto'
34 },
35 })

Issues with Sharing Code and Data

In our example, the shell and the micro frontend mfe1 share the auth-lib. Its AuthService stores the current user name. Hence, the shell can set the user name and the lazy loaded mfe1 can access it:

 [image: Sharing User Name]
 Sharing User Name

If auth-lib was a traditional npm package, we could just register it as a shared library with module federation. However, in our case, the auth-lib is just a library in our monorepo. And libraries in that sense are just folders with source code.

To make this folder look like a npm package, there is a path mapping for it in the tsconfig.json:

1 "paths": {
2 "auth-lib": [
3 "projects/auth-lib/src/public-api.ts"
4]
5 }

Please note that we are directly pointing to the src folder of the auth-lib. Nx does this by default. If you go with a traditional CLI project, you need to adjust this by hand.

Fortunately, Module Federation got us covered with such scenarios. To make configuring such cases a bit easier as well as to prevent issues with the Angular compiler, @angular-architects/module-federation provides a configuration property called:

1 module.exports = withModuleFederationPlugin({
2
3 // Shared packages:
4 shared: [...],
5
6 // Explicitly share mono-repo libs:
7 sharedMappings: ['auth-lib'],
8
9 });

 Important: Since Version 14.3, the withModuleFederationPlugin helper automatically shares all mapped paths if you don’t use the property sharedMappings at all. Hence, the issue described here, will not happen.

Obviously, if you don’t opt-in into sharing the library in one of the projects, these project will get their own copy of the auth-lib and hence sharing the user name isn’t possible anymore.

However, there is a constellation with the same underlying issue that is everything but obvious. To construct this situation, let’s add another library to our monorepo:

1 ng g lib other-lib

Also, make sure we have a path mapping for it pointing to its source code:

1 "paths": {
2 "other-lib": [
3 "projects/other-lib/src/public-api.ts"
4],
5 }

Let’s assume we also want to store the current user name in this library:

 1 import { Injectable } from '@angular/core';
 2
 3 @Injectable({
 4 providedIn: 'root'
 5 })
 6 export class OtherLibService {
 7
 8 // Add this:
 9 userName: string;
10
11 constructor() { }
12
13 }

And let’s also assume, the AuthLibService delegates to this property:

 1 import { Injectable } from '@angular/core';
 2 import { OtherLibService } from 'other-lib';
 3
 4 @Injectable({
 5 providedIn: 'root'
 6 })
 7 export class AuthLibService {
 8
 9 private userName: string;
10
11 public get user(): string {
12 return this.userName;
13 }
14
15 public get otherUser(): string {
16 // DELEGATION!
17 return this.otherService.userName;
18 }
19
20 constructor(private otherService: OtherLibService) { }
21
22 public login(userName: string, password: string): void {
23 // Authentication for **honest** users TM. (c) Manfred Steyer
24 this.userName = userName;
25
26 // DELEGATION!
27 this.otherService.userName = userName;
28 }
29
30 }

The shell’s AppComponent is just calling the login method:

 1 import { Component } from '@angular/core';
 2 import { AuthLibService } from 'auth-lib';
 3
 4 @Component({
 5 selector: 'app-root',
 6 templateUrl: './app.component.html'
 7 })
 8 export class AppComponent {
 9 title = 'shell';
10
11 constructor(
12 private service: AuthLibService
13) {
14
15 this.service.login('Max', null);
16 }
17
18 }

However, now the Micro Frontend has three ways of getting the defined user name:

 1 import { HttpClient } from '@angular/common/http';
 2 import {Component} from '@angular/core';
 3 import { AuthLibService } from 'auth-lib';
 4 import { OtherLibService } from 'other-lib';
 5
 6 @Component({
 7 selector: 'app-flights-search',
 8 templateUrl: './flights-search.component.html'
 9 })
10 export class FlightsSearchComponent {
11 constructor(
12 authService: AuthLibService,
13 otherService: OtherLibService) {
14
15 // Three options for getting the user name:
16 console.log('user from authService', authService.user);
17 console.log('otherUser from authService', authService.otherUser);
18 console.log('otherUser from otherService', otherService.userName);
19
20 }
21 }

At first sight, all these three options should bring up the same value. However, if we only share auth-lib but not other-lib, we get the following result:

 [image: Issue with sharing libs]
 Issue with sharing libs

As other-lib is not shared, both, auth-lib but also the micro frontend get their very own version of it. Hence, we have two instances of it in place here. While the first one knows the user name, the second one doesn’t.

What can we learn from this? Well, it would be a good idea to also share the dependencies of our shared libraries (regardless of sharing libraries in a monorepo or traditional npm packages!).

This also holds true for secondary entry points our shared libraries belong to.

Hint: @angular-architects/module-federation comes with a helper function shareAll for sharing all dependencies defined in your project’s package.json:

1 shared: {
2 ...shareAll({
3 singleton: true,
4 strictVersion: true,
5 requiredVersion: 'auto'
6 }),
7 }

This can at least lower the pain in such cases for prototyping. Also, you can make share and shareAll to include all secondary entry points by using the property includeSecondaries:

 1 shared: share({
 2 "@angular/common": {
 3 singleton: true,
 4 strictVersion: true,
 5 requiredVersion: 'auto',
 6 includeSecondaries: {
 7 skip: ['@angular/http/testing']
 8 }
 9 },
10 [...]
11 })

NullInjectorError: Service expected in Parent Scope (Root Scope)

Okay, the last section was a bit difficult. Hence, let’s proceed with an easier one. Perhaps you’ve seen an error like this here:

1 ERROR Error: Uncaught (in promise): NullInjectorError: R3InjectorError(FlightsModule\
2)[HttpClient -> HttpClient -> HttpClient -> HttpClient]:
3 NullInjectorError: No provider for HttpClient!
4 NullInjectorError: R3InjectorError(FlightsModule)[HttpClient -> HttpClient -> HttpCl\
5 ient -> HttpClient]:
6 NullInjectorError: No provider for HttpClient!

It seems like, the loaded Micro Frontend mfe1 cannot get hold of the HttpClient. Perhaps it even works when running mfe1 in standalone mode.

The reason for this is very likely that we are not exposing the whole Micro Frontend via Module Federation but only selected parts, e. g. some Features Modules with Child Routes:

 [image: Feature Modules exposed via Module Federation]
 Feature Modules exposed via Module Federation

Or to put it in another way: DO NOT expose the Micro Frontend’s AppModule. However, if we expect the AppModule to provide some global services like the HttpClient, we also need to do this in the shell’s AppModule:

 1 // Shell's AppModule
 2 @NgModule({
 3 imports: [
 4 [...]
 5 // Provide global services your micro frontends expect:
 6 HttpClientModule,
 7],
 8 [...]
 9 })
10 export class AppModule { }

Several Root Scopes

In a very simple scenario you might try to just expose the Micro Frontend’s AppModule.

 [image: AppModule loads exposed AppModule]
 AppModule loads exposed AppModule

As you see here, now, the shell’s AppModule uses the Micro Frontend’s AppModule. If you use the router, you will get some initial issues because you need to call RouterModule.forRoot for each AppModule (Root Module) on the one side while you are only allowed to call it once on the other side.

But if you just shared components or services, this might work at first sight. However, the actual issue here is that Angular creates a root scope for each root module. Hence, we have two root scopes now. This is something no one expects.

Also, this duplicates all shared services registered for the root scope, e. g. with providedIn: 'root'. Hence, both, the shell and the Micro Frontend have their very own copy of these services and this is something, no one is expecting.

A simple but also non preferable solutions is to put your shared services into the platform scope:

1 // Don't do this at home!
2 @Injectable({
3 providedIn: 'platform'
4 })
5 export class AuthLibService {
6 }

However, normally, this scope is intended to be used by Angular-internal stuff. Hence, the only clean solution here is to not share your AppModule but only lazy feature modules. By using this practice, you assure (more or less) that these feature modules work the same when loaded into the shell as when used in standalone-mode.

Different Versions of Angular

Another, less obvious pitfall you can run into is this one here:

 1 node_modules_angular_core___ivy_ngcc___fesm2015_core_js.js:6850 ERROR Error: Uncaugh\
 2 t (in promise): Error: inject() must be called from an injection context
 3 Error: inject() must be called from an injection context
 4 at pr (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.2fc3951af86e4bae0\
 5 c59.js:1)
 6 at gr (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.2fc3951af86e4bae0\
 7 c59.js:1)
 8 at Object.e.ɵfac [as factory] (node_modules_angular_core___ivy_ngcc___fesm2015_c\
 9 ore_js.2fc3951af86e4bae0c59.js:1)
10 at R3Injector.hydrate (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.j\
11 s:11780)
12 at R3Injector.get (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.js:11\
13 600)
14 at node_modules_angular_core___ivy_ngcc___fesm2015_core_js.js:11637
15 at Set.forEach (<anonymous>)
16 at R3Injector._resolveInjectorDefTypes (node_modules_angular_core___ivy_ngcc___f\
17 esm2015_core_js.js:11637)
18 at new NgModuleRef$1 (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.js\
19 :25462)
20 at NgModuleFactory$1.create (node_modules_angular_core___ivy_ngcc___fesm2015_cor\
21 e_js.js:25516)
22 at resolvePromise (polyfills.js:10658)
23 at resolvePromise (polyfills.js:10610)
24 at polyfills.js:10720
25 at ZoneDelegate.invokeTask (polyfills.js:10247)
26 at Object.onInvokeTask (node_modules_angular_core___ivy_ngcc___fesm2015_core_js.\
27 js:28753)
28 at ZoneDelegate.invokeTask (polyfills.js:10246)
29 at Zone.runTask (polyfills.js:10014)
30 at drainMicroTaskQueue (polyfills.js:10427)

With inject() must be called from an injection context Angular tells us that there are several Angular versions loaded at once.

To provoke this error, adjust your shell’s webpack.config.js as follows:

1 shared: share({
2 "@angular/core": { requiredVersion: 'auto' },
3 "@angular/common": { requiredVersion: 'auto' },
4 "@angular/router": { requiredVersion: 'auto' },
5 "@angular/common/http": { requiredVersion: 'auto' },
6 })

Please note, that these libraries are not configured to be singletons anymore. Hence, Module Federation allows loading several versions of them if there is no highest compatible version.

Also, you have to know that the shell’s package.json points to Angular 12.0.0 without ^ or ~, hence we exactly need this very version.

If we load a Micro Frontend that uses a different Angular version, Module Federation falls back to loading Angular twice, once the version for the shell and once the version for the Micro Frontend. You can try this out by updating the shell’s app.routes.ts as follows:

 1 {
 2 path: 'flights',
 3 loadChildren: () => loadRemoteModule({
 4 remoteEntry:
 5 'https://brave-plant-03ca65b10.azurestaticapps.net/remoteEntry.js',
 6 remoteName: 'mfe1',
 7 exposedModule: './Module'
 8 })
 9 .then(m => m.AppModule)
10 },

To make exploring this a bit easier, I’ve provided this Micro Frontend via a Azure Static Web App found at the shown URL.

If you start your shell and load the Micro Frontend, you will see this error.

What can we learn here? Well, when it comes to your leading, stateful framework – e. g. Angular – it’s a good idea to define it as a singleton. I’ve written down some details on this in the chapter on version mismatches.

If you really want to mix and match different versions of Angular, I’ve got you covered with with another chapter of this book. However, you know what they say: Beware of your wishes.

Bonus: Multiple Bundles

Let’s finish this tour with something, that just looks like an issue but is totally fine. Perhaps you’ve already seen that sometimes Module Federation generated duplicate bundles with slights different names:

 [image: Duplicate Bundles generated by Module Federation]
 Duplicate Bundles generated by Module Federation

The reason for this duplication is that Module Federation generates a bundle per shared library per consumer. The consumer in this sense is the federated project (shell or Micro Frontend) or a shared library. This is done to have a fall back bundle for resolving version conflicts. In general this makes sense while in such a very specific case, it doesn’t bring any advantages.

However, if everything is configured in the right way, only one of these duplicates should be loaded at runtime. As long as this is the case, you don’t need to worry about duplicates.

Conclusion

Module Federation is really clever when it comes to auto-detecting details and compensating for version mismatches. However, it can only be as good as the meta data it gets. To avoid getting off the rails, you should remember the following:

 	
requiredVersion: Assign the requiredVersion by hand, esp. when working with secondary entrypoints and when having peer dependency warnings. The plugin @angular-architects/module-federation get’s you covered with its share helper function allowing the option requiredVersion: 'auto' that takes the version number from your project’s package.json.

 	
Share dependencies of shared libraries too, esp. if they are also used somewhere else. Also think on secondary entry points.

 	Make the shell provide global services the loaded Micro Frontends need, e. g. the HttpClient via the HttpClientModule.

 	Never expose the AppModule via Module Federation. Prefer to expose lazy Feature modules.

 	Use singleton:true for Angular and other stateful framework respective libraries.

 	Don’t worry about duplicated bundles as long as only one of them is loaded at runtime.

Module Federation with Angular’s Standalone Components

Most tutorials on Module Federation and Angular expose Micro Frontends in the form of NgModules. However, with the introduction of Standalone Components we will have lightweight Angular solutions not leveraging NgModules anymore. This leads to the question: How to use Module Federation in a world without NgModules?

In this chapter, I give answers. We see both, how to expose a bunch of routes pointing to Standalone Components and how to load an individual Standalone Component. For this, I’ve updated my example to fully work without NgModules:

 [image: The example was updated to fully use Standalone Components]
 The example was updated to fully use Standalone Components

 Source code (branch: standalone-solution).

Router Configs vs. Standalone Components

In general, we could directly load Standalone Components via Module Federation. While such a fine-grained integration seems to be fine for plugin-systems, Micro Frontends are normally more coarse-grained. It’s usual that they represent a whole business domain which in general contains several use cases belonging together.

Interestingly, Standalone Components belonging together can be grouped using a router config. Hence, we can expose and lazy load such router configurations.

Initial Situation: Our Micro Frontend

The Micro Frontend used here is a simple Angular application bootstrapping a Standalone Component:

 1 // projects/mfe1/src/main.ts
 2
 3 import { environment } from './environments/environment';
 4 import { enableProdMode, importProvidersFrom } from '@angular/core';
 5 import { bootstrapApplication } from '@angular/platform-browser';
 6 import { AppComponent } from './app/app.component';
 7 import { RouterModule } from '@angular/router';
 8 import { MFE1_ROUTES } from './app/mfe1.routes';
 9
10
11 if (environment.production) {
12 enableProdMode();
13 }
14
15 bootstrapApplication(AppComponent, {
16 providers: [
17 importProvidersFrom(RouterModule.forRoot(MFE1_ROUTES))
18]
19 });

When bootstrapping, the application registers its router config MFE1_ROUTES via services providers. This router config points to several Standalone Components:

 1 // projects/mfe1/src/app/mfe1.routes.ts
 2
 3 import { Routes } from '@angular/router';
 4 import { FlightSearchComponent }
 5 from './booking/flight-search/flight-search.component';
 6 import { PassengerSearchComponent }
 7 from './booking/passenger-search/passenger-search.component';
 8 import { HomeComponent } from './home/home.component';
 9
10 export const MFE1_ROUTES: Routes = [
11 {
12 path: '',
13 component: HomeComponent,
14 pathMatch: 'full'
15 },
16 {
17 path: 'flight-search',
18 component: FlightSearchComponent
19 },
20 {
21 path: 'passenger-search',
22 component: PassengerSearchComponent
23 }
24];

Here, importProvidersFrom bridges the gap between the existing RouterModule and the world of Standalone Components. As a replacement for this, future versions of the router will expose a function for setting up the router’s providers. According to the underlying CFP, this function will be called configureRouter.

The shell used here is just an ordinary Angular application. Using lazy loading, we are going to make it reference the Micro Frontend at runtime.

Activating Module Federation

To get started, let’s install the Module Federation plugin and activate Module Federation for the Micro Frontend:

1 npm i @angular-architects/module-federation
2
3 ng g @angular-architects/module-federation:init
4 --project mfe1 --port 4201 --type remote

This command generates a webpack.config.js. For our purpose, we have to modify the exposes section as follows:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require("@angular-architects/module-federation/webpack");
 3
 4 module.exports = withModuleFederationPlugin({
 5 name: "mfe1",
 6
 7 exposes: {
 8 // Preferred way: expose corse-grained routes
 9 "./routes": "./projects/mfe1/src/app/mfe1.routes.ts",
10
11 // Technically possible, but not preferred for Micro Frontends:
12 // Exposing fine-grained components
13 "./Component":
14 "./projects/mfe1/src/app/my-tickets/my-tickets.component.ts",
15 },
16
17 shared: {
18 ...shareAll({
19 singleton: true,
20 strictVersion: true,
21 requiredVersion: "auto"
22 }),
23 }
24
25 });

This configuration exposes both, the Micro Frontend’s router configuration (pointing to Standalone Components) and a Standalone Component.

Static Shell

Now, let’s also activate Module Federation for the shell. In this section, I focus on Static Federation. This means, we are going to map the paths pointing to our Micro Frontends in the webpack.config.js.

 The next section shows how to switch to Dynamic Federation, where we can define the key data for loading a Micro Frontend at runtime.

To enable Module Federation for the shell, let’s execute this command:

1 ng g @angular-architects/module-federation:init
2 --project shell --port 4200 --type host

The webpack.config.js generated for the shell needs to point to the Micro Frontend:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require("@angular-architects/module-federation/webpack");
 3
 4 module.exports = withModuleFederationPlugin({
 5
 6 remotes: {
 7 "mfe1": "http://localhost:4201/remoteEntry.js",
 8 },
 9
10 shared: {
11 ...shareAll({
12 singleton: true,
13 strictVersion: true,
14 requiredVersion: "auto"
15 }),
16 }
17
18 });

As we are going with static federation, we also need typings for all configured paths (EcmaScript modules) referencing Micro Frontends:

1 // projects/shell/src/decl.d.ts
2
3 declare module 'mfe1/*';

Now, all it takes is a lazy route in the shell, pointing to the routes and the Standalone Component exposed by the Micro Frontend:

 1 // projects/shell/src/app/app.routes.ts
 2
 3 import { Routes } from '@angular/router';
 4 import { HomeComponent }
 5 from './home/home.component';
 6 import { NotFoundComponent }
 7 from './not-found/not-found.component';
 8 import { ProgrammaticLoadingComponent }
 9 from './programmatic-loading/programmatic-loading.component';
10
11 export const APP_ROUTES: Routes = [
12 {
13 path: '',
14 component: HomeComponent,
15 pathMatch: 'full'
16 },
17
18 {
19 path: 'booking',
20 loadChildren: () => import('mfe1/routes').then(m => m.BOOKING_ROUTES)
21 },
22
23 {
24 path: 'my-tickets',
25 loadComponent: () =>
26 import('mfe1/Component').then(m => m.MyTicketsComponent)
27 },
28
29 [...]
30
31 {
32 path: '**',
33 component: NotFoundComponent
34 }
35];

Alternative: Dynamic Shell

Now, let’s move to dynamic federation. Dynamic Federation means, we don’t want to define our remote upfront in the shell’s webpack.config.js. Hence, let’s comment out the remote section there:

 1 const { shareAll, withModuleFederationPlugin } =
 2 require("@angular-architects/module-federation/webpack");
 3
 4 module.exports = withModuleFederationPlugin({
 5
 6 // remotes: {
 7 // "mfe1": "http://localhost:4201/remoteEntry.js",
 8 // },
 9
10 shared: {
11 ...shareAll({
12 singleton: true,
13 strictVersion: true,
14 requiredVersion: "auto"
15 }),
16 }
17
18 });

Also, in the shell’s router config, we need to switch out the dynamic imports used before by calls to loadRemoteModule:

 1 // projects/shell/src/app/app.routes.ts
 2
 3 import { Routes } from '@angular/router';
 4 import { HomeComponent } from './home/home.component';
 5 import { NotFoundComponent } from './not-found/not-found.component';
 6 import { ProgrammaticLoadingComponent }
 7 from './programmatic-loading/programmatic-loading.component';
 8 import { loadRemoteModule } from '@angular-architects/module-federation';
 9
10 export const APP_ROUTES: Routes = [
11 {
12 path: '',
13 component: HomeComponent,
14 pathMatch: 'full'
15 },
16 {
17 path: 'booking',
18 loadChildren: () =>
19 loadRemoteModule({
20 type: 'module',
21 remoteEntry: 'http://localhost:4201/remoteEntry.js',
22 exposedModule: './routes'
23 })
24 .then(m => m.MFE1_ROUTES)
25 },
26 {
27 path: 'my-tickets',
28 loadComponent: () =>
29 loadRemoteModule({
30 type: 'module',
31 remoteEntry: 'http://localhost:4201/remoteEntry.js',
32 exposedModule: './Component'
33 })
34 .then(m => m.MyTicketsComponent)
35 },
36 [...]
37 {
38 path: '**',
39 component: NotFoundComponent
40 }
41];

The loadRemoteModule function takes all the key data, Module Federation needs for loading the remote. This key data is just several strings, hence you can load it from literally everywhere.

Bonus: Programmatic Loading

While most of the times, we will load Micro Frontends (remotes) via the router, we can also load exposed components programmatically. For this, we need a placeholder marked with a template variable for the component in question:

1 <h1>Programmatic Loading</h1>
2
3 <div>
4 <button (click)="load()">Load!</button>
5 </div>
6
7 <div #placeHolder></div>

We get hold of this placeholder’s ViewContainer via the ViewChild decorator:

 1 // projects/shell/src/app/programmatic-loading/programmatic-loading.component.ts
 2
 3 import {
 4 Component,
 5 OnInit,
 6 ViewChild,
 7 ViewContainerRef
 8 } from '@angular/core';
 9
10 @Component({
11 selector: 'app-programmatic-loading',
12 standalone: true,
13 templateUrl: './programmatic-loading.component.html',
14 styleUrls: ['./programmatic-loading.component.css']
15 })
16 export class ProgrammaticLoadingComponent implements OnInit {
17
18 @ViewChild('placeHolder', { read: ViewContainerRef })
19 viewContainer!: ViewContainerRef;
20
21 constructor() { }
22
23 ngOnInit(): void {
24 }
25
26 async load(): Promise<void> {
27
28 const m = await import('mfe1/Component');
29 const ref = this.viewContainer.createComponent(m.MyTicketsComponent);
30 // const compInstance = ref.instance;
31 // compInstance.ngOnInit()
32 }
33
34 }

This example shows a solution for Static Federation. Hence a dynamic import is used for getting hold of the Micro Frontend.

After importing the remote component, we can instantiate it using the ViewContainer’s createComponent method. The returned reference (ref) points to the component instance with it’s instance property. The instance allows to interact with the component, e. g. to call methods, set property, or setup event handlers.

If we wanted to switch to Dynamic Federation, we would again use loadRemoteModule instead of the dynamic import:

 1 async load(): Promise<void> {
 2
 3 const m = await loadRemoteModule({
 4 type: 'module',
 5 remoteEntry: 'http://localhost:4201/remoteEntry.js',
 6 exposedModule: './Component'
 7 });
 8
 9 const ref = this.viewContainer.createComponent(m.MyTicketsComponent);
10 // const compInstance = ref.instance;
11 }

Bonus Chapter: Automate Your Architectures with Nx Workspace Generators

In the first part of the book, I’ve used the @angular-architects/ddd plugin for automating the creation of domains and layers. I really want to encourage you to check this plugin out as it makes dealing with huge applications easier. However, sometimes you need your own tasks to be automated. Hence, this chapter shows how to do this with Nx Generators.

Schematics vs Generators

Both, Angular beginners and experts appreciate the CLI command ng generate. It generates recurring structures, such as the basic structure of components or modules, and thus automates monotonous tasks. Behind this instruction are code generators called schematics. Everyone can leverage the CLI’s Schematics API to automate their own tasks. Unfortunately, this API is not always intuitive and often uses unneeded indirections.

Exactly this impassability is solved by Nx which provides a simplified version of the Schematics API called Generators. In this chapter, I’ll cover the Generators API. The source code can be found here.

Workspace Generators

The easiest way to try out the Generator API are so-called workspace generators. These are generators that are not distributed via npm, but are placed directly in an Nx workspace (monorepo). Such a workspace generator can be created with the following command:

1 ng generate @nrwl/workspace: workspace-generator entity

The generator created here has the task of setting up an entity and data access service within a data access library. The example is deliberately chosen so that it contains as many generator concepts as possible.

The command places some boilerplate code for the generator in the file tools/generators/entity/index.ts. Even if we are going to replace this boilerplate with our own code, it is worth taking a look to get to know generators:

 1 export default async function (host: Tree, schema: any) {
 2
 3 await libraryGenerator(host, { name: schema.name });
 4
 5 await formatFiles (host);
 6
 7 return () => {
 8 installPackagesTask (host);
 9 };
10
11 }

The generator itself is just a function that takes two parameters. The first parameter of type Tree represents the file system that the generator changes. Strictly speaking, this is just a staging environment: the generator only writes the changes made to the disk at the end, when everything has worked. This prevents a generator that crashes in the middle of execution from leaving an inconsistent state.

If you want to initiate further commands after writing them back to the disk, you can place them within an anonymous function and return this function. An example of this is the call to installPackagesTask, which triggers commands like npm install, yarn, etc. For these instructions to make sense, the generator must first write the desired package names into the package.json file.

The second parameter with the name schema is an object with the command line parameters used when calling the generator. We’ll take a closer look at it below.

Calling libraryGenerator to generate a new library is also interesting here . It is actually a further generator - the one that is used with ng generate library. With the classic Schematics API, calling other Schematics was a lot more complicated.

To be fully honest, the call to libraryGenerator found in the generated boiler plate only does a subset of ng generate library when calling it in an Angular project. It’s taken from the package @nrwl/workspace/generators that works in a framework-agnostic way. To also perform the tasks specific for Angular, take the libraryGenerator function from the @nrwl/angular/generators package. This package also contains other Angular-specific generators you very likely use on a regular basis. Examples are generators for generating an angular application (ng generate application) but also for generating components or services (ng generate component, ng generate service).

The instruction formatFiles which formats the entire source code, is useful at the end of generators to bring the generated code segments into shape. Nx uses the popular open source project Prettier for this.

Templates

In general, you could create new files using the passed Tree object’s write method. However, using templates are in most cases more fitting. These are source code files with placeholders which the generator replaces with concrete values. While templates can be placed everywhere, it has become common practice to put them in a subfolder called files:

 [image: Generator with templates]
 Generator with templates

The file names themselves can have placeholders. For example, the generator replaces the expression entity in the file name with the content of a variable entity. Also, our generator replaces the templ attached to the file with an empty string. With this trick, the template file does not end with .ts but in .ts__templ__. Thus the TypeScript compiler ignores them. That is a good thing, especially since it does not know the placeholders and would report them as errors.

The templates themselves are similar to classic ASP, PHP, or JSP files:

1 export class <%=classify(entity)%> {
2 id: number;
3 title: string;
4 description: string;
5 }

Expressions within <% and %> evaluate generators and the combination of <%= and %> results in an output. This way, the example shown here outputs the name of the entity. The classify function formats this name so that it conforms to the rules and conventions of names for TypeScript classes.

 The helper function names from @nrwl/devkit provides similar possibilities as the strings object. The expression names('someName').className, for instance, returns a class name like string.classifiy does.

Defining parameters

Generators can be controlled via command line parameters. You define the permitted parameters in the schema.json file that is generated in the same folder as the above shown index.ts:

 1 {
 2 "cli": "nx" ,
 3 "id": "entity" ,
 4 "type": "object" ,
 5 "properties": {
 6 "entity": {
 7 "type": "string" ,
 8 "description": "Entity name" ,
 9 "x-prompt": "Entity name" ,
10 "$default": {
11 "$source": "argv" ,
12 "index": 0
13 }
14 },
15 "project": {
16 "type": "string" ,
17 "description": "Project name"
18 }
19 },
20 "required": ["entity"]
21 }

It is a JSON scheme with the names, data types and descriptions of the parameters. Generators also use extensions introduced by Schematics. For example, the $default property defines that the value for the entity parameter can be found in the first command line argument ("index": 0) if the caller does not explicitly define it using --entity.

With x-prompt, the example specifies a question to be asked to the caller if there is no value for entity. The generator uses the response received for this parameter.

In order to be able to use these parameters in a type-safe manner in the generator, it is recommended to provide a corresponding interface:

1 export interface EntitySchema {
2 entity : string;
3 project?: string;
4 }

This interface is normally put into a schema.ts file. To avoid inconsistencies, it can be generated from the schema file using tools such as json-schema-to-typescript.

Implementing the Generator

Now we can turn to the implementation of the generator. For getting the command line parameters in a types way, the second parameter called schema is typed with the EntitySchema interface we’ve just been introduced:

 1 import {
 2 Tree,
 3 formatFiles,
 4 readProjectConfiguration,
 5 generateFiles,
 6 joinPathFragments
 7 } from '@nrwl/devkit';
 8 import { EntitySchema } from './schema';
 9 import { strings } from '@angular-devkit/core';
10 [...]
11
12 export default async function (host: Tree , schema: EntitySchema) {
13
14 const workspaceConf = readWorkspaceConfiguration(host);
15
16 if (!schema.project) {
17 schema.project = workspaceConf.defaultProject;
18 }
19
20 [...]
21
22 const projConf = readProjectConfiguration(host, schema.project);
23
24 [...]
25
26 await libraryGenerator(host, { name: schema.name });
27
28 generateFiles(
29 host,
30 path.join(__dirname , 'files'),
31 path.join(projConf.SourceRoot, 'lib'),
32 {
33 entity: strings.dasherize(schema.entity),
34 templ: '' ,
35 ... strings
36 });
37
38 addLibExport(host, projConf, schema.entity);
39
40 await formatFiles (host);
41 }

The readWorkspaceConfiguration helper function reads the workspace configuration that can be found in files like nx.json or angular.json. It contains the name of the default project to use if a specific project has not been specified or the npm scope used by the monorepo like @my-project.

The readProjectConfiguration helper function, however, reads a project configuration. For Angular projects, this data can be found in the angular.json file in the main project directory. Both functions can be found in the @nrwl/devkit namespace.

The generateFiles function, which comes from @nrwl/devkit too, takes care of generating files based on the stored templates. In addition to the Tree object (host), which grants access to the staging environment, this function accepts the source directory with the templates as well as the target directory in which the generated files are to be placed.

The last parameter is an object with variables. In this way the desired entity name gets into the templates. The dasherize function transforms this name into a form that corresponds to the custom of filenames. The empty variable templ is necessary for the trick mentioned above and the object strings from the territory of the CLI (@angular-devkit/core) contains the classify function discussed above.

The function addLibExport is a self-written utility function. The next section goes into this in more detail.

Update Existing Source Code

So that the generated entity and the data access service are not only visible in their own libraries, they must be exported via their library’s index.ts. This means that our generator has to expand these files. The addLibExport function takes care of this:

 1 import { Tree, ProjectConfiguration } from '@nrwl/devkit';
 2 import * as path from 'path';
 3 import { strings } from '@angular-devkit/core';
 4
 5 export function addLibExport(
 6 host: Tree,
 7 projConfig: ProjectConfiguration,
 8 entity: string): void {
 9 const indexTsPath = path.join(projConfig.sourceRoot, 'index.ts');
10 const indexTs = host.read(indexTsPath).toString();
11
12 const entityFileName = `./lib/${strings.dasherize(entity)}`;
13 const entityName = strings.classify(entity);
14 const dataServiceFileName =
15 `./lib/${strings.dasherize(entity)}.data-service`;
16 const dataServiceName = strings.classify(entity) + 'DataService';
17
18 const updatedIndexTs = indexTs + `
19 export { ${entityName} } from '${entityFileName}';
20 export { ${dataServiceName} } from '${dataServiceFileName}';
21 `;
22
23 host.write(indexTsPath, updatedIndexTs);
24 }

This implementation just reads the index.ts file, adds some export statements and write it back. In very simple cases this straightforward approach is fine. For more advanced scenarios, one can leverage the applyChangesToString helper function:

 1 import {
 2 Tree,
 3 ProjectConfiguration,
 4 applyChangesToString,
 5 ChangeType
 6 } from '@nrwl/devkit';
 7 import * as path from 'path';
 8 import { strings } from '@angular-devkit/core';
 9
10 export function addLibExport(
11 host: Tree,
12 projConfig: ProjectConfiguration,
13 entity: string): void {
14 const indexTsPath = path.join(projConfig.sourceRoot, 'index.ts');
15 const indexTs = host.read(indexTsPath).toString();
16
17 const entityFileName = `./lib/${strings.dasherize(entity)}`;
18 const entityName = strings.classify(entity);
19 const dataServiceFileName =
20 `./lib/${strings.dasherize(entity)}.data-service`;
21 const dataServiceName = strings.classify(entity) + 'DataService';
22
23 const updatedIndexTs = applyChangesToString(
24 indexTs,
25 [
26 {
27 type: ChangeType.Insert,
28 index: indexTs.length,
29 text:
30 `export { ${entityName} } from '${entityFileName}';\n`
31 },
32 {
33 type: ChangeType.Insert,
34 index: indexTs.length,
35 text:
36 `export { ${dataServiceName} } from '${dataServiceFileName}';\n`
37 },
38 // Just for demonstration:
39 // {
40 // type: ChangeType.Delete,
41 // start: 0,
42 // length: indexTs.indexOf('\n') + 1
43 // }
44]
45)
46
47 host.write(indexTsPath, updatedIndexTs);
48 }

The function applyChangesToString takes care of modifying existing source code. In addition to the current content, it receives an array with objects that describe the desired changes. These objects contain the index positions at which new code is to be inserted or deleted.

Any modification naturally changes the index positions of subsequent lines. Fortunately, we don’t have to worry about that – applyChangesToString takes this into account.

In this specific case, determining the index positions is very simple: We add the additional export instructions at the end of the file. In more complex cases, the TypeScript API can be used to parse existing source code files.

 The project ts-query helps to make the usage of the TypeScript API easier by providing a query language for searching for specific constructs in existing code files.

Running the Generator

As our Generator is part of our monorepo, we can directly call it via the Nx CLI:

1 nx workspace-generator entity pumpkin-seed-oil --project my-dal

This call assumes that the new entity shall be created within a my-dal library in your monorepo.

 [image: Calling the Generator]
 Calling the Generator

Additional Hints

While the example shown here contains most concepts provided by Generators, here I want to give you some additional hints out of my project experience.

Finding Helper Functions

The @nrwl/devkit package used above turns out to be a pure gold mine. It contains lots of helper functions that come in handy for your generators. For instance, they allow to read configuration files, read and write json files, or to add dependencies to your package.json. Hence, taking some time to investigate functions exported by this package will be worth it.

Besides them, the generators provided by Nx have some additional ones. Hence, you can benefit from looking up their implementations at GitHub. Here, I want to present some of them that helped me in my projects.

For instance, the package @nrwl/workspace/src/utilities/ast-utils contains helper functions for dealing with TypeScript code like adding methods or checking for imports. The following example shows a function using this package for adding another import statement to a typescript file:

 1 import { Tree } from '@nrwl/devkit';
 2 import * as ts from 'typescript';
 3 import { insertImport } from '@nrwl/workspace/src/utilities/ast-utils';
 4
 5 export function addImportToTsModule(
 6 tree: Tree,
 7 filePath: string,
 8 importClassName: string,
 9 importPath: string) {
10
11 const moduleSource = tree.read(filePath, 'utf-8');
12
13 let sourceFile = ts.createSourceFile(
14 filePath,
15 moduleSource,
16 ts.ScriptTarget.Latest,
17 true
18);
19
20 // Adds sth like: import { importClassName } from 'importPath'
21 insertImport(
22 tree,
23 sourceFile,
24 filePath,
25 importClassName,
26 importPath);
27 }

The sourceFile variable represents the source code file with a type provided by the TypeScript API. It’s expected by insertImport, hence we need to do this little detour.

Another convenient helper function can be found in the @nrwl/angular/src/generators/utils namespace. Its called insertNgModuleProperty and allows adding metadata like imports or declarations to an NgModule:

1 import { Tree } from '@nrwl/devkit';
2 import { insertNgModuleProperty } from '@nrwl/angular/src/generators/utils';
3
4 [...]
5 const filePath = '[...]/app.module.ts';
6 const importClassName = 'MyOtherModule';
7
8 insertNgModuleProperty(tree, filePath, importClassName, 'imports');

Using Existing Schematics

Sometimes, you need to reuse an Schematic provided by another package. Fortunately, the simplified Generators API is quite similar to the Schematic API and hence it’s possible to create bridges for converting between these two worlds. For instance, the wrapAngularDevkitSchematic helper wraps a Schematic into a Generator at runtime:

 1 import { wrapAngularDevkitSchematic } from '@nrwl/devkit/ngcli-adapter';
 2
 3 const generateStore = wrapAngularDevkitSchematic('@ngrx/schematics', 'store');
 4
 5 await generateStore(tree, {
 6 project: appNameAndDirectoryDasherized,
 7 root: true,
 8 minimal: true,
 9 module: 'app.module.ts',
10 name: 'state',
11 });

In this case, the store schematic from the @ngrx/schematics package is wrapped and invoked. Of course, to make this work, you also need to install the @ngrx/schematics package.

Using Existing Generators

Unlike schematics, existing generators are just functions that can be directly called within your generators. We already saw this when we looked at the generated boilerplate for our generator. It contained a call to libraryGenerator that was the implementation of ng g lib.

Let’s assume you already have installed the @angular-architects/ddd plugin that automates some of the stuff described in the first chapters of this book. Let’s further assume, you need a bit more to be automated like referencing your design system or creating some default components. In this case, your generator could directly call this plugin’s generators:

 1 import { Tree } from '@nrwl/devkit';
 2 import generateFeature from '@angular-architects/ddd/src/generators/feature';
 3
 4 export default async function (tree: Tree, schema: any) {
 5
 6 generateFeature(tree, { name:'my-feature', domain: 'my-domain' });
 7
 8 // Do additional stuff with generated feature
 9
10 }

One Step Further: Workspace Plugins

Since Nx 13.10, there is also a concept called workspace plugins. Such a workspace plugin is a library in your monorepo that can also contains generators. While these generators look like the generators presented here, plugins also provide boilerplate code for testing generators. Also, they can be exported via npm.

This is how you create a workspace plugin:

1 npm i @nrwl/nx-plugin
2
3 nx generate @nrwl/nx-plugin:plugin my-plugin

To execute a generator placed in such a plugin, you can use the following command:

1 ng g @my-workspace/my-plugin:my-plugin my-lib

Here, @my-workspace is the name of your monorepo/ Nx workspace.

If you want to publish the plugin, just build and npm publish it:

1 ng build my-plugin
2
3 npm publish dist/libs/my-plugin --registry http://localhost:4873

Conclusion

Even if Nx Generators look like classic Schematics at first glance, they simplify development enormously. They get by with fewer indirections and are therefore more straightforward. An example of this is the possibility of using other generators directly as functions.

In addition, the Nrwl DevKit offers some auxiliary functions that make working with generators much easier. This includes functions for reading the project configuration or for updating existing source code files. Further helper functions can be found in the Generators Nx ships with.

Literature

 	
Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software

 	Wlaschin, Domain Modeling Made Functional

 	Ghosh, Functional and Reactive Domain Modeling

 	Nrwl, Monorepo-style Angular development

 	Jackson, Micro Frontends

 	Burleson, Push-based Architectures using RxJS + Facades

 	Burleson, NgRx + Facades: Better State Management

 	Steyer, Web Components with Angular Elements (article series, 5 parts)

About the Author

 [image: Manfred Steyer]
 Manfred Steyer

Manfred Steyer is a trainer, consultant, and programming architect with focus on Angular.

For his community work, Google recognizes him as a Google Developer Expert (GDE). Also, Manfred is a Trusted Collaborator in the Angular team. In this role he implemented differential loading for the Angular CLI.

Manfred wrote several books, e. g. for O’Reilly, as well as several articles, e. g. for the German Java Magazine, windows.developer, and Heise.

He regularly speaks at conferences and blogs about Angular.

Before, he was in charge of a project team in the area of web-based business applications for many years. Also, he taught several topics regarding software engineering at a university of applied sciences.

Manfred has earned a Diploma in IT- and IT-Marketing as well as a Master’s degree in Computer Science by conducting part-time and distance studies parallel to full-time employments.

You can follow him on Twitter and Facebook and find his blog here.

Trainings and Consulting

Learn more about this and further architecture topics regarding Angular and huge enterprise as well as industrial solution in our advanced Online Workshop:

 [image: Advanced Angular Workshop]
 Advanced Angular Workshop

Save your ticket for one of our remote or on-site workshops now or request a company workshop (online or In-House) for you and your team!

Besides this, we provide the following topics as part of our training or consultancy workshops:

 	Angular Essentials: Building Blocks and Concepts

 	Advanced Angular: Enterprise Solutions and Architecture

 	Angular Testing Workshop (Cypress, Just, etc.)

 	Reactive Architectures with Angular (RxJS and NGRX)

 	Angular Review Workshop

 	Angular Upgrade Workshop

Please find the full list with our offers here.

If you like our offer, keep in touch with us so that you don’t miss anything.

For this, you can subscribe to our newsletter and/ or follow the book’s author on Twitter.

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/linting.png
TS home.component.ts 2, U X

apps > shell > src > app > home > TS home.component.ts > ...

1

W 00 N O UV A WN

N R R R RRRBRRRR
©® L O NGOV A WNERO

// apps/khell/src/app/home/home.component.ts

import { Component, OnInit } from '@angular/core’;
import { AuthService } from '@demo/auth-lib’;
import mfelDomainLogic } from '@demo/mfel/domain-logic’;

(alias) function mfelDomainLogic(): string
import mfelDomainLogic

‘mfelDomainLogic’' is declared but its value is never read. ts(6133)

A project tagged with "scope:shell" can only depend on libs tagged
with "scope:shell"”, "scope:shared" eslint(@nrwl/nx/enforce-module-
boundaries)

‘mfelDomainLogic’ is defined but never used. eslint(@typescript-
eslint/no-unused-vars)

View Problem Quick Fix... (Ctrl+.)

}

OEBPS/images/multi.png
Booking

Booking App

Boarding App

Publish shared libs
seperately via npm

Feature J ‘ Feature

‘ Feature H FeatureJ

|

J
- (=)

-)-)

Repository 1

|-

Repository 2

Repository n

OEBPS/images/mono.png
Booking App Boarding App

‘ Feature J‘ Feature

) | |
-))) - JJ

Monorepo

Feature J‘ FeatureJ

OEBPS/images/graph.png
@ Nx Workspace Project Graph X +

¢ C © 1270014211
a
Nx\\ Project Graph &

@ Analyse and visualize your workspace.

v

Include related libraries

auth-lib mfe1-domain-logic

@ Show all projects

& Hide all projects

OEBPS/images/schema.png
i
|
i
|
i
1
i
x4

o e = B R o snel x4 g B X
I 1
<« C O htp/flocaostso00) o B & * @ € > C O htp/flocahosts000/light.. & %t % @
'
N ———. i

| Current User: John Doe

LA
Flights

—

Search Torms.

1
P .
|
|
|

OEBPS/images/run-all.png
> mf-demo@0.0.0 run:all
> node node_modules/@angular-architects/module-federation/src/server/mf-dev-server.js

DEVSVR
DEVSVR
mfel
shell
shell
mfel
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell
shell

shell 5000

mfel 3000

- Generating browser application bundles (phase: setup)...
- Generating browser application bundles (phase: setup)...
Vv Browser application bundle generation complete.

Vv Browser application bundle generation complete.

Initial Chunk Files
polyfills.js
styles.css, styles.js
vendor.js

main.js

| Initial Total | 893.06 kB

Lazy Chunk Files

node_modules_angular_core_fesm2020_core_mjs.js
node_modules_angular_core_fesm2020_testing _mjs-_d65d0.js
node_modules_angular_core_fesm2020_testing _mjs-_d65d1.js
node_modules_angular_compiler_fesm2020_compiler_mjs.js
node_modules_rxjs__esm2015_operators_index_js.js
node_modules_angular_forms_fesm2020_forms_mjs-_2e340.js
node_modules_angular_forms_fesm2020_forms_mjs-_2e341.js
node_modules_angular_router_fesm2020_router_mjs-_6f000.js
node_modules_angular_router_fesm2020_router_mjs-_6f001.js

| - | 256.33 kB |
node_modules_angular_common_fesm2020_common_mjs-_ec490.js
node_modules_angular_common_fesm2020_common_mjs-_ec491.js
node_modules_rxjs__esm2015_index_js.js
node_modules_angular_animations_fesm2020_browser_mjs-_54670.js
node_modules_angular_animations_fesm2020_browser_mjs-_54671.js
node_modules_angular_platform-browser_fesm2020_platform-browser_mjs-_18080.]js
node_modules_angular_platform-browser_fesm2020_platform-browser_mjs-_18081.]js
node_modules_angular_common_fesm2020_http_mjs-_68760.]s
node_modules_angular_common_fesm2020_http_mjs-_68761.]s
node_modules_angular_animations_fesm2020_animations_mjs.js
node_modules_angular_animations_fesm2020_browser_testing_mjs.js

node_modules_angular-architects_module-federation-tools_fesm2015_angular-architects-module-fe-3c905cl.js

node_modules_angular_platform-browser_fesm2020_animations_mjs.js
node_modules_angular_common_fesm2020_testing_mjs-_e7c50.]js

\ETIE
polyfills
styles
vendor
main

Raw Size
383.09 kB
243.44 kB
226.36 kB

40.17 kB

Raw Size

1.12 MB
1023.40 kB
1023.40 kB
829.10 kB
353.26 kB
286.13 kB
286.13 kB
256.33 kB

231.89 kB
231.89 kB
195.46 kB
172.77 kB
172.77 kB
89.53 kB
89.53 kB
86.80 kB
86.80 kB
40.49 kB
35.51 kB
EYVEN
22.64 kB
18.92 kB

OEBPS/images/overview-cli14.png
she x4

C O banot

" x4

Config

"mfe1": {
. — i "remoteEntry”: "http://localhost:4201/remoteEntry.js”,
Flights exposediiodule™ ™ /Module",
“displayName”: “Flights”,
“routepath”: "flights",
“ngModuleName™: “Flightshodule”,

From
“type": “module”

b

"mfe2": {
“remoteEntry”: "http://localhost:4202/remote€ntry.js”,
“exposedtodule”: "./Module",

"Bookings”,

ookings”,

“ngModuleName”: “BookingsModule”,

“type": "module”

To

search

OEBPS/images/workflow-result.png
Q@ Shell X o+
< C @ localhost:5000

A Plugin-based Workflow Designer ~ Toggle Config

Add Download
Add Upload
Add Analyze Enrich

Add Enrich

OEBPS/images/workflow-config.png
@ Shell x +

< C O localhost:5000

Plugin-based Workflow Designer Toggle Config

“remoteEntry”: "http://localhost:3000/remoteEntry.js",
“remoteName”: "mfel”,

“exposedModule’ ./Download”,

“displayName": “"Download”,

“componentName”: “DownloadComponent”

"remoteEntry http://localhost:3000/remoteEntry.js",
“remoteName” 55

“exposedModul. ./Upload"”,

“displayName load",

“componentName”: “UploadComponent™

"remoteEntry //localhost:3001/remoteEntry.js”,
“remoteName” 5

“exposedModul. ./Analyze",

“displayName": “"Analyze",

“componentName”: "AnalyzeComponent”

: "http://localhost:3001/remoteEntry.js",
nfern

“remoteNanme”)
"exposediodul ./Enrich”,
"displayName”: "Enrich”,
“componentName”: “EnrichComponent”

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/new-result.png
€ C O locahost4200/fights/fights-search % e x 0Q «

© localost 4201 fighis-sea B

Fligh

From

Flights

To

From

To

Search Terms.

OEBPS/images/title_page.jpg
Enterprise Angular:

Micro Frontends and Moduliths
with Angular

MANFRED STEYER

OEBPS/images/dynamic-1-0-0-vs-1-0-1.png
@ Shell X o+
« C © locahost5000 * *»Q

Home Flights

Shared lib version: 1.0.0

Flights

Shared lib version: 10.1

Search Terms...

OEBPS/images/dynamic-1-1-0-vs-1-0-1.png
@ Shell x o+
« C © locahost5000 * *»Q

Home Flights

Shared lib version: 1.1.0

Flights

Shared lib version: 1.1.0

Search Terms...

OEBPS/images/static-singleton-warning.png
@ shell x +
< C O localhost:5000 Y o H

Home Flights

Shared lib version: 200

Flights

Shared lib version: 200

[x |£| Elements Memory Console ~ » a1 e X

D] © | top ¥ © | Filter Alllevels v &%

A »unsatisfied version 2.0.0 of shared remoteEntry.js:280
singleton module useless-1ib (required ~1.1.0)

OEBPS/images/static-singleton-strict-error.png
@ shell x 4+
< C O localhost:5000 Y e H

Home Flights

Shared lib version: 200

&x Al Elements ~ Memory Console » Q01| & : X
[P © | top Y © | Filter Alllevels v &%

© »Uncaught (in promise) Error: remoteEntry. js:285 B
Unsatisfied version 2.0.0 of shared singleton module
useless-1ib (required ~1.1.0)

at getStrictSingletonVersion (remoteEntry.js:285)

at remoteEntry.js:358

at remoteEntry.js:318

at Object.webpack/sharing/consume/default/useless-
1ib/useless-1ib (remoteEntry.js:363)

at remoteEntry.js:393

at Array.forEach (<anonymous>)

a3t Ohdect wehnack reauire £ concsumes (remoteEntr

OEBPS/images/affected-dep-graph.png
@ Nx Workspace Project Graph X 4

< C ©® 1270014211

N.x\\ Project Graph &

@ Analyse and visualize your workspace.
J mfel

Include related libraries
auth-lib mfe1-domain-logic

@ Show all projects

47 Show affected projects

OEBPS/images/static-all-1-0-0.png
Q@ Shell X o+
« C © locahost5000 * *»Q

Home Flights

Shared lib version: 1.0.0

Flights

Shared lib version: 10.0

Search Terms...

OEBPS/images/static-1-0-0-vs-1-0-1.png
@ Shell x o+
« C @ locahost5000 * *»Q

Home Flights

Shared lib version: 10.1

Flights

Shared lib version: 10.1

Search Terms...

OEBPS/images/static-1-0-0-vs-1-1-0.png
@ Shell x +
« C © locahost5000 * *»Q

Home Flights

Shared lib version: 1.0.0

Flights

Shared lib version: 1.1.0

Search Terms...

OEBPS/images/linting-shell.png
>ng lint shell

> nx run shell:lint

Linting "shell"...
L:\temp\demo—workspace\apps\shell\src\app\home\home.component.ts
58d error A project tagged with "scope:shell” can only depend on libs tagged with "scope:shell", "scope:shared"
nrwl/nx/enforce-module-boundaries
5:10 warning ‘'mfelDomainlLogic' is defined but never used
typescript-eslint/no-unused-vars

@ 2 problems (1 error, 1 warning)
Lint warnings found in the listed files.

Lint errors found in the listed files.

> Ran target lint for project shell (2s)

x 1/1 failed
v 0/1 succeeded [0 read from cache]

OEBPS/images/incremental.png
ows\system32\cmd.exe

>nx run-many --target build --all

| . nx run mfel:build:production [existing outputs match the cache, left as is]
v Nnx run shell:build:production (5s)

> Successfully ran target build for 2 projects (5s)

Nx read the output from the cache instead of running the command for 1 out of 2 tasks.

OEBPS/images/2019-03-04-15-40-36.png
4 apps
> ui
> ui-e2e
> dist
4 libs
4 catalog
b api

> data-access

4

feature-browse-products

4

feature-request-product
> shell

> ordering

4 shared

> util-auth

> node_modules

OEBPS/images/2019-03-04-17-50-00.png
ui-e2e

ui

A
catalog-shell
catalog-feature-browse-products catalog-feature-request-product

catalog-data-access

catalog-api

Y

shared-util-auth

OEBPS/images/tslint.png
>ng lint --project shared-util-auth
Linting "shared-util-auth"...

ERROR: C:/projects/e-proc/libs/shared/util-auth/src/1lib/shared-util-auth.module.ts[3, 1]:
A project tagged with "type:util" can only depend on libs tagged with "type:util"

Lint errors found in the listed files.

OEBPS/images/2019-03-04-14-15-10.png
Catalog Approval

Ordering Specification

OEBPS/images/appmod-appmod.png
[
shell's AppModule MFEI's AppModule - MFEI's Feature Modules

OEBPS/images/2019-03-04-10-26-54.png
Catalog
API

Ordering

OEBPS/images/duplicate-bundles.png
node_modules_angular_core___ivy_ngcc___fesm2015_core_js.js
node_modules_angular_material___ivy_ngcc___fesm2015_snack-bar_js-_36161.js
node_modules_angular_material___ivy_ngcc___fesm2015_snack-bar_js-_36160.js
node_modules_angular_router___ivy_ngcc___fesm2015_router_js—_u8fuU0.js
node_modules_angular_router___ivy_ngcc___fesm2015_router_js—_u8ful.js
node_modules_angular_common___ivy_ngcc___fesm2015_common_js—_57a20.js
node_modules_angular_common___ivy_ngcc___fesm2015_common_js—_57a2l.js
node_modules_angular_common___ivy_ngcc___fesm2015_http_js-_f15b0. js
node_modules_angular_common___ivy_ngcc___fesm2015_http_js-_f15bl. js
projects_mfel_src_bootstrap_ts.js

projects_mfel_src_app_app_module_ts.js
projects_auth-lib_src_public-api_ts-_77680.js
projects_auth-lib_src_public-api_ts-_77681.js
projects_other-lib_src_public-api_ts-_f8920.js
projects_other-lib_src_public-api_ts-_f8921.js

OEBPS/images/2019-03-04-13-59-17.png
Calc VAT Calc VAT

Catalog Approval

OEBPS/images/generator-files.png
v [tools
v [@# generators
Vv [entity
v [files
[_entity_.data-service.ts_ templ__
[_entity_ts_templ__
index.ts
{.} schema,json

schema.ts

OEBPS/images/domains-layer.png
e L e

Feature I- = Feature J‘ Feature Feature J‘ Feature
v Vv
UIJ‘ ul J‘UIJ UIJ‘ ul J‘UI UIJ‘ Ui J‘UI

Domain J Bomain J ‘ Domain Domain

4 z
Util J‘ Util J Ll J‘ Util

util ” util

OEBPS/images/venn.png
AngularX AngularY

OEBPS/images/ad.png
ANGULAR

ARCHITECTS

INSIDE KNOWLEDGE

Manfred Steyer, GDE

OEBPS/images/sharing-via-auth-lib.png
i
|
i
i
|
1
i
x4

o e T o snel x4+ 5 Ha
| 1
€ C O htp/flocaosts000) o & & ¥ @ € > C O htp/flocahostso00/light.. @ %t ¥ @
'
i S i -y
| Current User: John Doe !

1
P P
|
|
|

Fiihite

—

Search Torms.

OEBPS/images/2019-03-04-10-09-15.png
Employee Expert Manager Buying Agent

[4 [4 [4 [4
dh dh dh dh
Request Specify Approve Send
Product Order Order Order

.
W » o
HE .
Product Budget Hierarchy
Request Approve
Budget Budget
[4 [4
dh dh

Manager Manager

OEBPS/images/sharing-issue.png
user from authService Max

otherUser from authService Max

otherUser from otherService

OEBPS/images/2019-03-04-10-15-14.png
Catwlog Spprovel

vzt] VoIE
)) : |
The | e Sulsct
: : Price

Price Pidare] R&A

OEBPS/images/shell-mfe1.png
shell's Appiodule
MFEI's AppModule

MFEl's Feature Modules

OEBPS/images/singleton-requiredversion.png
@ Shell x o+
« C © locahost5000 * *Q

Home Flights

Shared lib version: 200

Flights

Shared lib version: 2.0.0

Search Terms...

OEBPS/images/__multi-example.gif
il C @ https;//red-ocean-0fe4cd610.azurestaticapps.net

Angular 2 Angular

Angular Version: 1200

- Welcomel!

User N:

Login!

OEBPS/images/wrapping-wc.png
Angular App

(uFrontend)

= Corse-grained
Web Component

-

React App

(KFrontend)

OEBPS/images/shell.png
7Y shell x +

< C O localhost:5000/flights/flights-search z &

Home Flights

OEBPS/images/standalone.png
Q@ Mfel x o+

Flights

From

To

OEBPS/images/05.png
R Steyerbach nach 31595 Steyerbe X +

< C @ hitps//www.google.com/maps/dir/Steyerbach/31595 +Steyerberg/@51.2301025,9.3241983 7z/data... ¥t

3\ R é\é
eyerberg
BV NIAV

SYe A : Google-Konto Suche
(- &

o »>

YouTube Play

W MO

=) 4 Std. 46 Min.

Gmail Kontakte

B

Kalender Ubersetzer

c4

Shopping

{ —~—
2 (PRI a2y e <
7 Kartendaten © 2019 GeoBasis-DE/BKG (©2009),Google Deutschland

OEBPS/images/word.png
ol HelloWorld.docx X +

& > C @ softwarearchitektat-my.sharepoint.com/:w:/r/personal/manfred_steyer_softwarearchitektat_onmicrosoft_co...

Office 365 = HelloWorld - Gespeichert @ Vercinfachtes Meniband

erweise Uberpriifen Ansicht v In Desktop-App &ffnen Q Suche

Apps JA A F K U 2v Ay =

B outiook Z@ OneDrive
@ word Excel
B

@ rowerpoint [OneNote
O3 Admin

Alle Apps >

- 100% + Feedback an Microsoft senden

OEBPS/images/case-study-01.png
/ \
/1Y shell N\
¢« < \@ 127.0.0.1:8080/#/client-a/page \ﬂ & 0

g FLIGHT42 Flight42 [Stats L15Notifications~ {8Settings

Page 1 | Page 2

ECIient A - Page 1

PASSENGERS

SEND STATE

OEBPS/images/decision-tree.png
little .
Hyperlinks

Shared state,

navigation b/w

apps Legacy Apps or Bootstrap several
very very strong SPAs
much isolation? Separate
no Deployment/ mix

Technologies?

Monolith w/ Libs
and Monorepo

OEBPS/images/ddd-plugin-result.png
Ne FlightApp x

<«

C O localhost:4200

B

booking-search

1 | Lorem ipsum

Lorem ipsum dolor sit amet

2 | Atvero eos

At vero eos et accusam et justo duo dolores

3 | Duis autem

Duis autem vel eum iriure dolor in hendrerit

OEBPS/images/02.png

OEBPS/images/03.png
| 1 1 J
\ Feature ‘ Feature J‘ Feature] ‘ Feature J\Feature]
- - =) -]

OEBPS/images/04.png
_——

\ v

Ordering App

‘ Feature J‘ Feature

Publish shared libs
seperately via npm

\ Feature
-)

‘ Feature J‘ Feature

bV,

S)

bV,

)=

OEBPS/images/generator-exec.png
@ Eingabeaufforderung

>nx workspace-generator entity Brombeere --project my-dal
‘CREATE libs/my-dal/src/lib/brombeere.data-service.ts
CREATE libs/my-dal/src/lib/brombeere.ts

UPDATE libs/my-dal/src/index.ts

g

OEBPS/images/Steyer_HiRes.png

