
covers Spring 3.0

THIRD EDITION

Craig Walls

M A N N I N G

Praise for Spring in Action

This is an excellent book. It is very well written. Examples are very concise and
easy to follow.

 —Sunil Parikh, DZone

5 out of 5 stars ... a great instructive book.
 —Nicola Pedot, Java User Group Trento

You will learn how to use Spring to write simpler, easier-to-maintain code so
that you can focus on what really matters—your critical business needs.

—Springframework.org

Encyclopedic and eminently readable. Five stars all around!
 —JavaLobby.org

Superbly organized and fluently written.
 —Internet Bookwatch

Easy to read … with just enough humor mixed in.
 —Books-On-Line

A rare book.
 —Computing Reviews

Best overall introduction to Spring.
 —Taruvai Subramaniam, Amazon reader

“Really pushes Spring into Action.”
 —Patrick Steger, Zühlke Engineering

“Tremendous focus and fun to read ... zooms in on things developers need
to know.”
 —Doug Warren, Java Web Services
Licensed to Christian Cederquist <chrisman@kaus.dk>

http:JavaLobby.org
http:Springframework.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

Spring in Action
THIRD EDITION

CRAIG WALLS

M A N N I N G

SHELTER ISLAND

Licensed to Christian Cederquist <chrisman@kaus.dk>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Sebastian Stirling
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

ISBN 9781935182351
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Licensed to Christian Cederquist <chrisman@kaus.dk>

www.manning.com
mailto:orders@manning.com

brief contents
PART 1 CORE SPRING ...1

1 ■ Springing into action 3

2 ■ Wiring beans 30

3 ■ Minimizing XML configuration in Spring 64

4 ■ Aspect-oriented Spring 84

PART 2 SPRING APPLICATION ESSENTIALS111
5 ■ Hitting the database 113

6 ■ Managing transactions 146

7 ■ Building web applications with Spring MVC 164

8 ■ Working with Spring Web Flow 199

9 ■ Securing Spring 224

PART 3 INTEGRATING SPRING ...253
10 ■ Working with remote services 255

11 ■ Giving Spring some REST 277

12 ■ Messaging in Spring 310

13 ■ Managing Spring beans with JMX 333
v

14 ■ Odds and ends 350

Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 CORE SPRING..1

1 Springing into action 3
1.1 Simplifying Java development 4

Unleashing the power of POJOs 5 ■ Injecting dependencies 6
Applying aspects 10 ■ Eliminating boilerplate code with
templates 15

1.2 Containing your beans 17
Working with an application context 18 ■ A bean’s life 19

1.3 Surveying the Spring landscape 20
Spring modules 20 ■ The Spring portfolio 23

1.4 What’s new in Spring 27
What’s new in Spring 2.5? 27 ■ What’s new in Spring 3.0? 28
What’s new in the Spring portfolio? 28

1.5 Summary 29
vii

Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTSviii

2 Wiring beans 30
2.1 Declaring beans 31

Setting up Spring configuration 32 ■ Declaring a simple
bean 33 ■ Injecting through constructors 34 ■ Bean
scoping 38 ■ Initializing and destroying beans 39

2.2 Injecting into bean properties 41
Injecting simple values 42 ■ Referencing other beans 43
Wiring properties with Spring’s p namespace 46 ■ Wiring
collections 47 ■ Wiring nothing (null) 52

2.3 Wiring with expressions 52
Expressing SpEL fundamentals 53 ■ Performing operations
on SpEL values 56 ■ Sifting through collections in SpEL 59

2.4 Summary 63

3 Minimizing XML configuration in Spring 64
3.1 Automatically wiring bean properties 65

The four kinds of autowiring 65 ■ Default autowiring 68
Mixing auto with explicit wiring 69

3.2 Wiring with annotations 70
Using @Autowired 71 ■ Applying standards-based autowiring
with @Inject 74 ■ Using expressions with annotation
injection 76

3.3 Automatically discovering beans 77
Annotating beans for autodiscovery 78
Filtering component-scans 79

3.4 Using Spring’s Java-based configuration 80
Setting up for Java-based configuration 80 ■ Defining a
configuration class 81 ■ Declaring a simple bean 81
Injecting with Spring’s Java-based configuration 82

3.5 Summary 83

4 Aspect-oriented Spring 84
4.1 What’s aspect-oriented programming? 85

Defining AOP terminology 86 ■ Spring’s AOP support 88

4.2 Selecting join points with pointcuts 91
Writing pointcuts 92 ■ Using Spring’s bean() designator 93
Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTS ix

4.3 Declaring aspects in XML 93
Declaring before and after advice 95 ■ Declaring around
advice 97 ■ Passing parameters to advice 98 ■ Introducing
new functionality with aspects 100

4.4 Annotating aspects 102
Annotating around advice 104 ■ Passing arguments to
annotated advice 105 ■ Annotating introductions 106

4.5 Injecting AspectJ aspects 107
4.6 Summary 110

PART 2 SPRING APPLICATION ESSENTIALS...................111

5 Hitting the database 113
5.1 Learning Spring’s data access philosophy 114

Getting to know Spring’s data access exception hierarchy 115
Templating data access 117 ■ Using DAO support
classes 119

5.2 Configuring a data source 121
Using JNDI data sources 121 ■ Using a pooled data
source 122 ■ JDBC driver-based data source 123

5.3 Using JDBC with Spring 124
Tackling runaway JDBC code 124 ■ Working with JDBC
templates 127

5.4 Integrating Hibernate with Spring 132
A Hibernate overview 134 ■ Declaring a Hibernate session
factory 134 ■ Building Spring-free Hibernate 137

5.5 Spring and the Java Persistence API 138
Configuring an entity manager factory 139 ■ Writing a
JPA-based DAO 143

5.6 Summary 144

6 Managing transactions 146
6.1 Understanding transactions 147

Explaining transactions in only four words 148
Understanding Spring’s transaction management support 149
Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTSx

6.2 Choosing a transaction manager 150
JDBC transactions 151 ■ Hibernate transactions 151 ■ Java
Persistence API transactions 152 ■ Java transaction API
transactions 153

6.3 Programming transactions in Spring 153
6.4 Declaring transactions 155

Defining transaction attributes 156 ■ Declaring transactions in
XML 160 ■ Defining annotation-driven transactions 162

6.5 Summary 163

7 Building web applications with Spring MVC 164
7.1 Getting started with Spring MVC 165

Following a request through Spring MVC 165 ■ Setting up
Spring MVC 167

7.2 Writing a basic controller 169
Configuring an annotation-driven Spring MVC 170 ■ Defining the
home page controller 170 ■ Resolving views 173 ■ Defining the home
page view 177 ■ Rounding out the Spring application context 179

7.3 Handling controller input 181
Writing a controller that processes input 181 ■ Rendering
the view 183

7.4 Processing forms 185
Displaying the registration form 185 ■ Processing form
input 187 ■ Validating input 189

7.5 Handling file uploads 193
Adding a file upload field to the form 193 ■ Receiving uploaded
files 194 ■ Configuring Spring for file uploads 197

7.6 Summary 197

8 Working with Spring Web Flow 199
8.1 Installing Spring Web Flow 200

Configuring Web Flow in Spring 200

8.2 The components of a flow 203
States 203 ■ Transitions 206 ■ Flow data 207

8.3 Putting it all together: the pizza flow 209
Defining the base flow 209 ■ Collecting customer
information 213 ■ Building an order 218 ■ Taking

payment 221

Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTS xi

8.4 Securing web flows 222
8.5 Summary 223

9 Securing Spring 224
9.1 Introducing Spring Security 225

Getting started with Spring Security 226 ■ Using the
Spring Security configuration namespace 226

9.2 Securing web requests 227
Proxying servlet filters 228 ■ Configuring minimal web
security 228 ■ Intercepting requests 232

9.3 Securing view-level elements 235
Accessing authentication details 235 ■ Rendering with
authorities 236

9.4 Authenticating users 238
Configuring an in-memory user repository 239
Authenticating against a database 240 ■ Authenticating
against LDAP 241 ■ Enabling remember-me functionality 245

9.5 Securing methods 246
Securing methods with @Secured 246 ■ Using JSR-250’s
@RolesAllowed 247 ■ Pre-/Post-invocation security with
SpEL 247 ■ Declaring method-level security pointcuts 252

9.6 Summary 252

PART 3 INTEGRATING SPRING....................................253

10 Working with remote services 255
10.1 An overview of Spring remoting 256
10.2 Working with RMI 258

Exporting an RMI service 259 ■ Wiring an RMI
service 261

10.3 Exposing remote services with Hessian and Burlap 263
Exposing bean functionality with Hessian/Burlap 264
Accessing Hessian/Burlap services 266

10.4 Using Spring’s HttpInvoker 268
Exposing beans as HTTP services 268 ■ Accessing
services via HTTP 269
Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTSxii

10.5 Publishing and consuming web services 270
Creating Spring-enabled JAX-WS endpoints 271
Proxying JAX-WS services on the client side 274

10.6 Summary 276

11 Giving Spring some REST 277
11.1 Getting REST 278

The fundamentals of REST 278 ■ How Spring supports
REST 279

11.2 Writing resource-oriented controllers 279
Dissecting a RESTless controller 280 ■ Handling RESTful
URLs 281 ■ Performing the REST verbs 284

11.3 Representing resources 287
Negotiating resource representation 288 ■ Working with
HTTP message converters 291

11.4 Writing REST clients 294
Exploring RestTemplate’s operations 295 ■ GETting
resources 296 ■ PUTting resources 299 ■ DELETE-ing
resources 301 ■ POSTing resource data 301 ■ Exchanging
resources 304

11.5 Submitting RESTful forms 306
Rendering hidden method fields in JSP 306 ■ Unmasking the real
request 307

11.6 Summary 309

12 Messaging in Spring 310
12.1 A brief introduction to JMS 311

Architecting JMS 312 ■ Assessing the benefits of JMS 314

12.2 Setting up a message broker in Spring 316
Creating a connection factory 316 ■ Declaring an ActiveMQ
message destination 317

12.3 Using Spring’s JMS template 318
Tackling runaway JMS code 318 ■ Working with JMS
templates 319

12.4 Creating message-driven POJOs 325
Creating a message listener 326 ■ Configuring message
listeners 327
Licensed to Christian Cederquist <chrisman@kaus.dk>

CONTENTS xiii

12.5 Using message-based RPC 327
Working with Spring message-based RPC 328 ■ Asynchronous
RPC with Lingo 330

12.6 Summary 332

13 Managing Spring beans with JMX 333
13.1 Exporting Spring beans as MBeans 334

Exposing methods by name 337 ■ Using interfaces to define
MBean operations and attributes 339 ■ Working with
annotation-driven MBeans 340 ■ Handing MBean
collisions 342

13.2 Remoting MBeans 343
Exposing remote MBeans 343 ■ Accessing remote MBeans 344
Proxying MBeans 345

13.3 Handling notifications 346
Listening for notifications 348

13.4 Summary 349

14 Odds and ends 350
14.1 Externalizing configuration 351

Replacing property placeholders 352 ■ Overriding
properties 354 ■ Encrypting external properties 355

14.2 Wiring JNDI objects 357
Working with conventional JNDI 357 ■ Injecting JNDI
objects 359 ■ Wiring EJBs in Spring 362

14.3 Sending email 363
Configuring a mail sender 363 ■ Constructing the email 365

14.4 Scheduling and background tasks 370
Declaring scheduled methods 371 ■ Declaring asynchronous
methods 373

14.5 Summary 374
14.6 The end...? 374

index 377
Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

preface
Wow! As I write this, it’s been almost seven years since Spring 1.0 was released and
Ryan Breidenbach and I started work on the first edition of Spring in Action. Back
then, who would have guessed that Spring would transform Java development as
much as it has?

 In that first edition, Ryan and I tried to cover every corner of the Spring Frame-
work. For the most part, we were successful. Back then the entire Spring story could
easily be told in 11 chapters with dependency injection, AOP, persistence, transactions,
Spring MVC, and Acegi Security as the main characters. Of course, back then that
story had to be told with a lot of XML. (Does anybody remember what it was like
declaring transactions with TransactionProxyFactoryBean?)

 By the time I got around to writing the second edition, Spring had grown quite a
bit. Again, I tried to squeeze everything I could into a single book. I found out it
wasn’t possible. Spring had expanded well beyond what could be discussed in a 700- to
800-page book. In fact, entire, completely written chapters were cut out of the second
edition because there wasn’t room.

 More than three years and two major versions of Spring have passed since the sec-
ond edition was printed. Spring covers more ground than ever before and it would
take several volumes to comprehensively cover the entire Spring portfolio. It’s not
possible to cram everything there is to know about Spring into a single book.

 So I’m not going to even try.
 Often books get thicker with each successive edition. But you’ve probably noticed

by now that this third edition of Spring in Action has fewer pages than the second edi-
tion. That’s possible for a couple of reasons.
xv

Licensed to Christian Cederquist <chrisman@kaus.dk>

PREFACExvi

 Since I couldn’t fit everything into one volume, I was choosy about what topics
made it into this edition. I decided to focus on what I believe are the core Spring top-
ics that most Spring developers should know. That’s not to say that the other topics
aren’t important, but these are the essentials of Spring development.

 The other reason this edition is smaller is due to the fact that while Spring’s reach
has continued to expand, it has continued to become simpler with each release.
Spring’s rich set of configuration namespaces, adoption of annotation-driven pro-
gramming models, and application of sensible conventions and defaults have
reduced Spring configuration from page upon page of XML down to only a handful
of elements.

 But make no mistake: though there are fewer pages, I’ve still managed to pack a lot
of new Spring goodness into them. Along with the dependency injection, AOP, and
declarative transactions Spring has long provided, here’s a sampling of the stuff you’ll
learn in this edition that’s new or changed since the second edition:

■ Annotation-based bean wiring that dramatically reduces the amount of Spring
XML configuration

■ A new expression language for evaluating values wired into bean properties
dynamically at runtime

■ Spring’s all-new annotation-driven Spring MVC framework, which is far more
flexible than the former hierarchical controller framework

■ Securing Spring applications with Spring Security, much simpler now with a
new configuration namespace, convenient defaults, and support for expression-
oriented security rules

■ First-class support for building and consuming REST resources, based on
Spring MVC

Whether you’re new to Spring or a Spring veteran, I hope that you’ll find this book to
be an indispensable guide as you use Spring in your projects.
Licensed to Christian Cederquist <chrisman@kaus.dk>

acknowledgments
Before you put your hands on this book, it was touched by many other hands—hands
that edited it, reviewed it, proofread it, and managed the whole publishing process.
You wouldn’t be reading this book if it weren’t for all those hands.

 First, I’d like to thank everyone at Manning for working hard, pressuring me to get
this darn thing done, and for doing their part to make sure that this book is the best it
could be: Marjan Bace, Michael Stephens, Christina Rudloff, Karen Tegtmeyer,
Maureen Spencer, Mary Piergies, Sebastian Stirling, Benjamin Berg, Katie Tennant,
Janet Vail, and Dottie Marsico.

 Along the way, a handful of other people were given the opportunity to read the
manuscript in its roughest form and provide feedback, telling me what I got right and
(gasp) where I missed the mark. Many thanks to all of those reviewers for their valu-
able feedback: Valentin Crettaz, Jeff Addison, John Ryan, Olivier Nouguier, Joshua
White, Deiveehan Nallazhagappan, Adam Taft, Peter Pavlovich, Mykel Alvis, Rick
Wagner, Patrick Steger, Josh Devins, Dan Alford, Alberto Lagna, Dan Dobrin, Robert
Hanson, Chad Davis, Carol McDonald, Deepak Vohra, and Robert O’Connor. And a
special thanks to Doug Warren for taking on the role of technical reviewer and going
over the technical details of the book with a fine-toothed comb.

 My gratitude is also due to those who played no direct part in producing the book,
but were there providing support, friendship, good conversation, and making sure
that I had adequate breaks from writing to do other things.

 First and foremost, thanks to my wife Raymie. You’re my best friend, the love of my
life, and the reason for everything I do. I love you very much. Thank you for putting
up with another writing project and for supporting me.
xvii

Licensed to Christian Cederquist <chrisman@kaus.dk>

ACKNOWLEDGMENTSxviii

 To Maisy and Madi, my little princesses, thank you for your hugs, laughs, imagina-
tion, and the occasional Mario Kart breaks.

 To my colleagues at SpringSource, thank you for continuing to revolutionize how
we develop software and for giving me the opportunity to be a part of what you do.
Special thanks to the two SpringSourcers I work with every day, Keith Donald and Roy
Clarkson—we’ve done some awesome stuff in the past year and I look forward to the
amazing things that lie ahead.

 Many thanks to my No Fluff/Just Stuff cohorts for reminding me every few week-
ends that I’m not nearly as smart as you guys: Ted Neward, Venkat Subramaniam, Tim
Berglund, Matthew McCullough, Matt Stine, Brian Goetz, Jeff Brown, Dave Klein, Ken
Sipe, Nathaniel Schutta, Neal Ford, Pratik Patel, Rohit Bhardwaj, Scott Davis, Mark
Richards, and of course, Jay Zimmerman.

 Finally, there are many other folks out there that I’d like to send a shout out to for
their part in shaping me, my career, and this book: Ryan Breidenbach, Ben Rady,
Mike Nash, Matt Smith, John Woodward, Greg Vaughn, Barry Rogers, Paul Holser,
Derek Lane, Erik Weibust, and Andrew Rubalcaba.
Licensed to Christian Cederquist <chrisman@kaus.dk>

about this book
The Spring Framework was created with a very specific goal in mind—to make devel-
oping Java EE applications easier. Along the same lines, Spring in Action, Third Edition
was written to make learning how to use Spring easier. My goal is not to give you a
blow-by-blow listing of Spring APIs. Instead, I hope to present the Spring Framework
in a way that is most relevant to a Java EE developer by providing practical code exam-
ples from real-world experiences. Since Spring is a modular framework, this book was
written in the same way. I recognize that not all developers have the same needs. Some
may want to learn the Spring Framework from the ground up, while others may want
to pick and choose different topics and go at their own pace. That way, the book can
act as a tool for learning Spring for the first time as well as a guide and reference for
those wanting to dig deeper into specific features.

Who should read this book

Spring in Action, Third Edition, is for all Java developers, but enterprise Java developers
will find it particularly useful. While I will guide you along gently through code exam-
ples that build in complexity throughout each chapter, the true power of Spring lies
in its ability to make enterprise applications easier to develop. Therefore, enterprise
developers will most fully appreciate the examples presented in this book.

 Because a vast portion of Spring is devoted to providing enterprise services, many
parallels can be drawn between Spring and EJB. Therefore, any experience you have
will be useful in making comparisons between these two frameworks. A portion of this
book is dedicated to this topic. In fact, the final five chapters demonstrate how Spring
xix

Licensed to Christian Cederquist <chrisman@kaus.dk>

ABOUT THIS BOOKxx

can support enterprise integration of web applications. If you are an enterprise appli-
cation developer, you will find the last part of this book especially valuable.

Roadmap

Spring in Action, Third Edition, is divided into three parts. The first part introduces you
to the essentials of the Spring Framework. Part 2 goes beyond that by delving into the
common elements of a Spring application. The final part shows how Spring can be
used to integrate with other applications and services.

 In part 1, you’ll explore dependency injection (DI) and aspect-oriented program-
ming (AOP), two essential features of the Spring Framework. This will give you a good
understanding of Spring’s fundamentals that will be utilized throughout the book.

 In chapter 1, you’ll be introduced to DI and AOP and how they lend themselves to
developing loosely coupled Java applications.

 Chapter 2 takes a more detailed look at how to configure and associate your appli-
cation objects using dependency injection. You’ll learn how to write loosely coupled
components and wire their dependencies and properties within the Spring container
using XML.

 Once you have the basics of Spring XML configuration down, chapter 3 will pres-
ent annotation-oriented alternatives to XML configuration.

 Chapter 4 explores how to use Spring’s AOP to decouple cross-cutting concerns
from the objects that they service. This chapter also sets the stage for later chapters,
where you’ll use Spring AOP to provide declarative services such as transactions, secu-
rity, and caching.

 Part 2 builds on the DI and AOP features introduced in part 1, and shows you how
to apply these concepts to build the common elements of an application.

 Chapter 5 covers Spring’s support for data persistence. You’ll be introduced to
Spring’s JDBC support, which helps you remove much of the boilerplate code associ-
ated with JDBC. You’ll also see how Spring integrates with persistence frameworks such
as Hibernate and the Java Persistence API (JPA).

 Chapter 6 complements chapter 5, showing you how to ensure integrity in your
database using Spring’s transaction support. You’ll see how Spring uses AOP to give
simple application objects the power of declarative transactions.

 Chapter 7 introduces you to Spring’s MVC web framework. You’ll discover how
Spring can transparently bind web parameters to your business objects and provide
validation and error handling at the same time. You’ll also see how easy it is to add
functionality to your web applications using Spring MVC controllers.

 Chapter 8 explores Spring Web Flow, an extension to Spring MVC that enables
development of conversational web applications. In this chapter you’ll learn how to
build web applications that guide the user through a specific flow.

 In chapter 9 you’ll learn how to apply security to your application using Spring
Security. You’ll see how Spring Security secures applications both at the web request
level using servlet filters and at the method level using Spring AOP.
Licensed to Christian Cederquist <chrisman@kaus.dk>

ABOUT THIS BOOK xxi

 After building an application with what you’ve learned from part 2, you may want
to integrate it with other applications or services. In part 3 you’ll learn how to do that.

 Chapter 10 explores how to expose your application objects as remote services.
You’ll also learn how to seamlessly access remote services as though they were any
other object in your application. Remoting technologies explored will include RMI,
Hessian/Burlap, SOAP-based web services, and Spring’s own HttpInvoker.

 Chapter 11 revisits Spring MVC, showing how to use it to expose your application
data as RESTful resources. In addition, you’ll learn how to develop REST clients with
Spring’s RestTemplate.

 Chapter 12 looks at using Spring to send and receive asynchronous messages with
JMS. In addition to basic JMS operations with Spring, you’ll also learn how to use the
open source Lingo project to expose and consume asynchronous remote services
over JMS.

 Chapter 13 will show you how to use Spring to schedule jobs, send emails, access
JNDI-configured resources, and manage your application objects with JMX.

 Wrapping up our exploration of Spring, chapter 14 will show you how to use
Spring to schedule jobs, send emails, and access JNDI-configured resources.

Code conventions

There are many code examples throughout this book. These examples will always
appear in a fixed-width code font. If there is a part of an example I want you to pay
extra attention to, it will appear in a bolded code font. Any class name, method name
or XML fragment within the normal text of the book will appear in code font as well.

 Many of Spring’s classes and packages have exceptionally long (but expressive)
names. Because of this, line-continuation markers (➥) may be included when necessary.

 Not all code examples in this book will be complete. Often I only show a method
or two from a class to focus on a particular topic. Complete source code for the appli-
cations found throughout the book can be downloaded from the publisher’s website
at www.manning.com/SpringinActionThirdEdition.

About the author

Craig Walls is a software developer with more than 13 years of experience and is the
coauthor of XDoclet in Action (Manning, 2003) and two earlier editions of Spring in
Action (Manning, 2005 and 2007). He’s a zealous promoter of the Spring Framework,
speaking frequently at local user groups and conferences and writing about Spring on
his blog. When he’s not slinging code, Craig spends as much time as he can with his
wife, two daughters, six birds, four dogs, two cats, and an ever-fluctuating number of
tropical fish. Craig lives in Plano, Texas.

Author Online

Purchase of Spring in Action, Third Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
Licensed to Christian Cederquist <chrisman@kaus.dk>

www.manning.com/SpringinActionThirdEdition

ABOUT THIS BOOKxxii

technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
SpringinActionThirdEdition. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the book’s forum remains voluntary (and unpaid).
We suggest you try asking the author some challenging questions, lest his interest
stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or to solve a problem. They need books that allow
them to jump in and jump out easily and learn just what they want just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.
Licensed to Christian Cederquist <chrisman@kaus.dk>

www.manning.com/SpringinActionThirdEdition
www.manning.com/SpringinActionThirdEdition

about the cover illustration
The figure on the cover of Spring in Action, Third Edition, is a “Le Caraco,” or an inhab-
itant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak,
which boasts an ancient hilltop castle with magnificent views of the Dead Sea and sur-
rounding plains.

 The illustration is taken from a French travel book, Encyclopédie des Voyages by J. G.
St. Sauveur, published in 1796. Travel for pleasure was a relatively new phenomenon
at the time and travel guides such as this one were popular, introducing both the tour-
ist as well as the armchair traveler to the inhabitants of other regions of France and
abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period and of every other historic
period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.
xxiii

Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

Part 1

Core Spring

Spring does a lot of things. But when you break it down to its core parts,
Spring’s primary features are dependency injection (DI) and aspect-oriented
programming (AOP). Starting in chapter 1, “Springing into action,” I’ll give you
a quick overview of DI and AOP in Spring and see how they can help you decou-
ple application objects.

 In chapter 2, “Wiring beans,” we’ll dive deeper into how to use Spring’s XML-
based configuration to keep application objects loosely coupled with depen-
dency injection. You’ll learn how to define application objects and then wire
them with their dependencies.

 XML isn’t the only way that Spring can be configured. Picking up where the
previous chapter left off, chapter 3, “Minimizing XML configuration in Spring,”
explores some new features in Spring that make it possible to wire application
objects with minimal or (in some cases, no) XML.

 Chapter 4, “Aspect-oriented Spring,” explores how to use Spring’s AOP fea-
tures to decouple systemwide services (such as security and auditing) from the
objects they service. This chapter sets the stage for chapters 6 and 9, where you’ll
learn how to use Spring AOP to provide declarative transaction and security.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

Springing into action
It all started with a bean.
 In 1996, the Java programming language was still a young, exciting, up-and-

coming platform. Many developers flocked to the language because they’d seen
how to create rich and dynamic web applications using applets. They soon learned
that there was more to this strange new language than animated juggling cartoon
characters. Unlike any language before it, Java made it possible to write complex
applications made up of discrete parts. They came for the applets, but they stayed
for the components.

 In December of that year, Sun Microsystems published the JavaBeans 1.00-A spec-
ification. JavaBeans defined a software component model for Java. This specification
defined a set of coding policies that enabled simple Java objects to be reusable and
easily composed into more complex applications. Although JavaBeans were
intended as a general-purpose means of defining reusable application components,

This chapter covers
 Exploring Spring’s core modules

 Decoupling application objects

 Managing cross-cutting concerns with AOP

 Spring’s bean container
3

Licensed to Christian Cederquist <chrisman@kaus.dk>

4 CHAPTER 1 Springing into action

they were primarily used as a model for building user interface widgets. They seemed
too simple to be capable of any “real” work. Enterprise developers wanted more.

 Sophisticated applications often require services such as transaction support, secu-
rity, and distributed computing—services not directly provided by the JavaBeans spec-
ification. So in March 1998, Sun published version 1.0 of the Enterprise JavaBeans
(EJB) specification. This specification extended the notion of Java components to the
server side, providing much-needed enterprise services, but failed to continue the
simplicity of the original JavaBeans specification. Except in name, EJB bears little
resemblance to the original JavaBeans specification.

 Despite the fact that many successful applications have been built based on EJB,
EJB never achieved its intended purpose: to simplify enterprise application develop-
ment. It’s true that EJB’s declarative programming model simplifies many infrastruc-
tural aspects of development, such as transactions and security. But in a different way,
EJBs complicate development by mandating deployment descriptors and plumbing
code (home and remote/local interfaces). Over time, many developers became disen-
chanted with EJB. As a result, its popularity has waned in recent years, leaving many
developers looking for an easier way.

 Today, Java component development has returned to its roots. New programming
techniques, including aspect-oriented programming (AOP) and dependency injection
(DI), are giving JavaBeans much of the power previously reserved for EJBs. These tech-
niques furnish plain-old Java objects (POJOs) with a declarative programming model
reminiscent of EJB, but without all of EJB’s complexity. No longer must you resort to
writing an unwieldy EJB component when a simple JavaBean will suffice.

 In fairness, even EJBs have evolved to promote a POJO-based programming model.
Employing ideas such as DI and AOP, the latest EJB specification is significantly sim-
pler than its predecessors. But for many developers, this move is too little, too late. By
the time the EJB 3 specification had entered the scene, other POJO-based develop-
ment frameworks had already established themselves as de facto standards in the Java
community.

 Leading the charge for lightweight POJO-based development is the Spring Frame-
work, which we’ll explore throughout this book. In this chapter, we’ll explore the
Spring Framework at a high level, giving you a taste of what Spring is about. This chap-
ter will give you a good idea of the types of problems Spring solves, and will set the
stage for the rest of the book. First things first—let’s find out what Spring is all about.

1.1 Simplifying Java development
Spring is an open source framework, originally created by Rod Johnson and described
in his book Expert One-on-One: J2EE Design and Development. Spring was created to
address the complexity of enterprise application development, and makes it possible
to use plain-vanilla JavaBeans to achieve things that were previously only possible with
EJBs. But Spring’s usefulness isn’t limited to server-side development. Any Java applica-
tion can benefit from Spring in terms of simplicity, testability, and loose coupling.
Licensed to Christian Cederquist <chrisman@kaus.dk>

5Simplifying Java development

A BEAN BY ANY OTHER NAME... Although Spring uses the words bean and
JavaBean liberally when referring to application components, this doesn’t
mean that a Spring component must follow the JavaBeans specification to
the letter. A Spring component can be any type of POJO. In this book, I
assume the loose definition of JavaBean, which is synonymous with POJO.

As you’ll see throughout this book, Spring does many things. But at the root of almost
everything Spring provides are a few foundational ideas, all focused on Spring’s fun-
damental mission: Spring simplifies Java development.

 That’s a bold statement! A lot of frameworks claim to simplify something or other.
But Spring aims to simplify the broad subject of Java development. This begs for more
explanation. How does Spring simplify Java development?

 To back up its attack on Java complexity, Spring employs four key strategies:

 Lightweight and minimally invasive development with plain old Java objects
(POJOs)

 Loose coupling through dependency injection and interface orientation
 Declarative programming through aspects and common conventions
 Boilerplate reduction through aspects and templates

Almost everything Spring does can be traced back to one or more of these four strate-
gies. Throughout the rest of this chapter, I’ll expand on each of these ideas, showing
concrete examples of how Spring makes good on its promise to simplify Java develop-
ment. Let’s start with seeing how Spring remains minimally invasive by encouraging
POJO-oriented development.

1.1.1 Unleashing the power of POJOs

If you’ve been doing Java development for long, you’ve probably seen (and may have
even worked with) frameworks that lock you in by forcing you to extend one of their
classes or implement one of their interfaces. The classic example is that of an EJB 2–era
stateless session bean. As you can see from this trivial HelloWorldBean, the EJB 2 spec-
ification made some rather heavy demands:

package com.habuma.ejb.session;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class HelloWorldBean implements SessionBean {
public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

Listing 1.1 EJB 2.1 forced you to implement methods that weren’t needed.

Why are these
methods needed?
Licensed to Christian Cederquist <chrisman@kaus.dk>

6 CHAPTER 1 Springing into action

public void setSessionContext(SessionContext ctx) {
}

public String sayHello() {
return "Hello World";

}

public void ejbCreate() {
}

}

The SessionBean interface would let you hook into the EJB’s lifecycle by implement-
ing several lifecycle callback methods (those methods that start with ejb). Or I should
rephrase that to say that the SessionBean interface would force you to hook into the
EJB’s lifecycle, even if you didn’t need to. The bulk of the code in HelloWorldBean is
there solely for the sake of the framework. This raises the question: who’s working
for whom?

 EJB 2 wasn’t alone when it came to being invasive. Other popular frameworks such
as the earlier versions of Struts, WebWork, and Tapestry imposed themselves upon
otherwise simple Java classes. These heavyweight frameworks forced developers to
write classes that were littered with unnecessary code, locked into their framework,
and were often difficult to write tests against.

 Spring avoids (as much as possible) littering your application code with its API.
Spring almost never forces you to implement a Spring-specific interface or extend a
Spring-specific class. Instead, the classes in a Spring-based application often have no
indication that they’re being used by Spring. At worst, a class may be annotated with
one of Spring’s annotations, but is otherwise a POJO.

 To illustrate, if the HelloWorldBean class shown in listing 1.1 were to be rewritten
to function as a Spring managed bean, it might look like this.

package com.habuma.spring;

public class HelloWorldBean {
public String sayHello() {

return "Hello World";
}

}

Isn’t that better? Gone are all of those noisy lifecycle methods. HelloWorldBean
doesn’t implement, extend, or even import anything from the Spring API. Hello-
WorldBean is lean, mean, and in every sense of the phrase, a plain-old Java object.

 Despite their simple form, POJOs can be powerful. One of the ways Spring empow-
ers POJOs is by assembling them using dependency injection. Let’s see how depen-
dency injection can help keep application objects decoupled from each other.

1.1.2 Injecting dependencies

The phrase dependency injection may sound intimidating, conjuring up notions of a

Listing 1.2 Spring doesn’t make any unreasonable demands on HelloWorldBean.

EJB core
business logic

This is all you
needed
complex programming technique or design pattern. But as it turns out, DI isn’t nearly

Licensed to Christian Cederquist <chrisman@kaus.dk>

7Simplifying Java development

as complex as it sounds. By applying DI in your projects, you’ll find that your code will
become significantly simpler, easier to understand, and easier to test.

 Any nontrivial application (pretty much anything more complex than a Hello
World example) is made up of two or more classes that collaborate with each other to
perform some business logic. Traditionally, each object is responsible for obtaining its
own references to the objects it collaborates with (its dependencies). This can lead to
highly coupled and hard-to-test code.

 For example, consider the Knight class shown next.

package com.springinaction.knights;

public class DamselRescuingKnight implements Knight {
private RescueDamselQuest quest;

public DamselRescuingKnight() {
quest = new RescueDamselQuest();

}

public void embarkOnQuest() throws QuestException {
quest.embark();

}
}

As you can see, DamselRescuingKnight creates its own quest, a RescueDamselQuest,
within the constructor. This makes a DamselRescuingKnight tightly coupled to a
RescueDamselQuest and severely limits the knight’s quest-embarking repertoire. If a
damsel needs rescuing, this knight’s there. But if a dragon needs slaying or a round
table needs… well…rounding, then this knight’s going to have to sit it out.

 What’s more, it’d be terribly difficult to write a unit test for DamselRescuing-
Knight. In such a test, you’d like to be able to assert that the quest’s embark() method
is called when the knight’s embarkOnQuest() is called. But there’s no clear way to
accomplish that here. Unfortunately, DamselRescuingKnight will remain untested.

 Coupling is a two-headed beast. On one hand, tightly coupled code is difficult to
test, difficult to reuse, difficult to understand, and typically exhibits “whack-a-mole”
bug behavior (fixing one bug results in the creation of one or more new bugs). On
the other hand, a certain amount of coupling is necessary—completely uncoupled
code doesn’t do anything. In order to do anything useful, classes need to know about
each other somehow. Coupling is necessary, but should be carefully managed.

 With DI, on the other hand, objects are given their dependencies at creation time
by some third party that coordinates each object in the system. Objects aren’t
expected to create or obtain their dependencies—dependencies are injected into the
objects that need them.

 To illustrate this point, let’s look at BraveKnight in the following listing, a knight
that’s not only brave, but is capable of embarking on any kind of quest that comes
along.

Listing 1.3 A DamselRescuingKnight can only embark on RescueDamselQuests.

Tightly coupled to
RescueDamselQuest
Licensed to Christian Cederquist <chrisman@kaus.dk>

8 CHAPTER 1 Springing into action

package com.springinaction.knights;

public class BraveKnight implements Knight {
private Quest quest;

public BraveKnight(Quest quest) {
this.quest = quest;

}

public void embarkOnQuest() throws QuestException {
quest.embark();

}
}

As you can see, unlike DamselRescuingKnight, BraveKnight doesn’t create his own
quest. Instead, he’s given a quest at construction time as a constructor argument. This
is a type of dependency injection known as constructor injection.

 What’s more, the quest he’s given is typed as Quest, an interface that all quests
implement. So BraveKnight could embark on a RescueDamselQuest, a SlayDragon-
Quest, a MakeRoundTableRounderQuest, or any other Quest implementation he’s
given.

 The point here is that BraveKnight isn’t coupled to any specific implementation of
Quest. It doesn’t matter to him what kind of quest he’s asked to embark upon, so long
as it implements the Quest interface. That’s the key benefit of DI—loose coupling. If
an object only knows about its dependencies by their interface (not by their implemen-
tation or how they’re instantiated), then the dependency can be swapped out with a
different implementation without the depending object knowing the difference.

 One of the most common ways that a dependency will be swapped out is with a
mock implementation during testing. You were unable to adequately test Damsel-
RescuingKnight due to tight coupling, but you can easily test BraveKnight by giving it
a mock implementation of Quest, as shown next.

package com.springinaction.knights;

import static org.mockito.Mockito.*;

import org.junit.Test;

public class BraveKnightTest {
@Test
public void knightShouldEmbarkOnQuest() throws QuestException {

Quest mockQuest = mock(Quest.class);

BraveKnight knight = new BraveKnight(mockQuest);
knight.embarkOnQuest();

verify(mockQuest, times(1)).embark();
}

Listing 1.4 A BraveKnight is flexible enough to take on any Quest he’s given

Listing 1.5 To test BraveKnight, you’ll inject it with a mock Quest.

Quest is injected

Create mock Quest

Inject mock Quest
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

9Simplifying Java development

Here you’re using a mock object framework known
as Mockito to create a mock implementation of the
Quest interface. With the mock object in hand, you
create a new instance of BraveKnight, injecting the
mock Quest via the constructor. After calling the
embarkOnQuest() method, you ask Mockito to ver-
ify that the mock Quest’s embark() method was
called exactly once.

INJECTING A QUEST INTO A KNIGHT

Now that your BraveKnight class is written in such
a way that you can give him any quest you want,
how can you specify which Quest to give him?

 The act of creating associations between appli-
cation components is commonly referred to as wir-
ing. In Spring, there are many ways to wire components together, but a common
approach has always been via XML. The following listing shows a simple Spring config-
uration file, knights.xml, that gives a BraveKnight a SlayDragonQuest.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="knight" class="com.springinaction.knights.BraveKnight">
<constructor-arg ref="quest" />

</bean>

<bean id="quest"
class="com.springinaction.knights.SlayDragonQuest" />

</beans>

This is a simple approach to wiring beans in Spring. Don’t concern yourself too much
with the details right now. We’ll dig more into Spring configuration and see what’s
going on when we get to chapter 2. We’ll also look at other ways that we can wire
beans in Spring.

 Now that you’ve declared the relationship between BraveKnight and a Quest, you
need to load up the XML configuration file and kick off the application.

SEEING IT WORK

In a Spring application, an application context loads bean definitions and wires them
together. The Spring application context is fully responsible for the creation of and
wiring of the objects that make up the application. Spring comes with several imple-
mentations of its application context, each primarily differing only in how they load
their configuration.

Listing 1.6 Injecting a SlayDragonQuest into a BraveKnight with Spring

Inject quest bean

Create SlayDragonQuest

Figure 1.1 Dependency injection
involves giving an object its
dependencies as opposed to an object
having to acquire those dependencies
on its own.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

10 CHAPTER 1 Springing into action

 Because the beans in knights.xml are declared in an XML file, an appropriate
choice for application context might be ClassPathXmlApplicationContext. This
Spring context implementation loads the Spring context from one or more XML files
located in the application’s classpath. The main() method in the following listing uses
ClassPathXmlApplicationContext to load knights.xml and to get a reference to the
Knight object.

package com.springinaction.knights;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class KnightMain {
public static void main(String[] args) {

ApplicationContext context =
new ClassPathXmlApplicationContext("knights.xml");

Knight knight = (Knight) context.getBean("knight");

knight.embarkOnQuest();
}

}

Here the main() method creates the Spring application context based on the
knights.xml file. Then it uses the application context as a factory to retrieve the bean
whose ID is knight. With a reference to the Knight object, it calls the embarkOnQuest()
method to have the knight embark on the quest that it was given. Note that this class
knows nothing about which type of Quest our hero has. For that matter, it’s blissfully
unaware of the fact that it’s dealing with BraveKnight. Only the knights.xml file
knows for sure what the implementations are.

 And with that you have a quick introduction to dependency injection. You’ll see a
lot more DI throughout this book. But if you want even more dependency injection, I
encourage you to have a look at Dhanji R. Prasanna’s Dependency Injection, which cov-
ers DI in fine detail.

 But now let’s have a look at another of Spring’s Java-simplifying strategies: declara-
tive programming through aspects.

1.1.3 Applying aspects

Although DI makes it possible to tie software components together loosely, aspect-
oriented programming enables you to capture functionality that’s used throughout
your application in reusable components.

 Aspect-oriented programming is often defined as a technique that promotes sepa-
ration of concerns within a software system. Systems are composed of several compo-
nents, each responsible for a specific piece of functionality. Often these components
also carry additional responsibility beyond their core functionality. System services
such as logging, transaction management, and security often find their way into

Listing 1.7 KnightMain.java loads the Spring context containing a knight.

Load Spring
context

Get knight
beanUse knight
Licensed to Christian Cederquist <chrisman@kaus.dk>

11Simplifying Java development

components whose core responsibility is something else. These system services are
commonly referred to as cross-cutting concerns because they tend to cut across multiple
components in a system.

 By spreading these concerns across multiple components, you introduce two levels
of complexity to your code:

 The code that implements the systemwide concerns is duplicated across multi-
ple components. This means that if you need to change how those concerns
work, you’ll need to visit multiple components. Even if you’ve abstracted the
concern to a separate module so that the impact to your components is a single
method call, that method call is duplicated in multiple places.

 Your components are littered with code that isn’t aligned with their core func-
tionality. A method to add an entry to an address book should only be con-
cerned with how to add the address and not with whether it’s secure or
transactional.

Figure 1.2 illustrates this complexity. The business objects on the left are too inti-
mately involved with the system services. Not only does each object know that it’s
being logged, secured, and involved in a transactional context, but also each object is
responsible for performing those services for itself.

 AOP makes it possible to modularize these services and then apply them declaratively
to the components that they should affect. This results in components that are more
cohesive and that focus on their own specific concerns, completely ignorant of any sys-
tem services that may be involved. In short, aspects ensure that POJOs remain plain.

 It may help to think of aspects as blankets that cover many components of an appli-
cation, as illustrated in figure 1.3. At its core, an application consists of modules that
implement business functionality. With AOP, you can then cover your core application
with layers of functionality. These layers can be applied declaratively throughout your
application in a flexible manner without your core application even knowing they

Course
service

Billing service

Student
service

Instructor
service

Content
service

Logging
module

Security
module

Transaction
manager

Figure 1.2 Calls to systemwide concerns such as logging and security are often

scattered about in modules where those concerns are not their primary concern.

Licensed to Christian Cederquist <chrisman@kaus.dk>

12 CHAPTER 1 Springing into action

exist. This is a powerful concept, as it keeps the security, transaction, and logging con-
cerns from littering the application’s core business logic.

 To demonstrate how aspects can be applied in Spring, let’s revisit the knight exam-
ple, adding a basic Spring aspect to the mix.

AOP IN ACTION

Anyone who knows anything about knights only knows about them because their
deeds were chronicled in song by the musically inclined storytellers known as min-
strels. Let’s suppose that you want to record the comings and goings of your Brave-
Knight using the services of a minstrel. The following shows the Minstrel class you
might use.

package com.springinaction.knights;

public class Minstrel {
public void singBeforeQuest() {

System.out.println("Fa la la; The knight is so brave!");
}

public void singAfterQuest() {
System.out.println(

"Tee hee he; The brave knight did embark on a quest!");
}

}

As you can see, Minstrel is a simple class with two methods. The singBeforeQuest()
method is intended to be invoked before a knight embarks on a quest, and the sing-
AfterQuest() method should be invoked after the knight has completed a quest. It
should be simple to work this into your code, so let’s make the appropriate tweaks to
BraveKnight to use the Minstrel. The following listing shows a first attempt.

Listing 1.8 A Minstrel is a musically inclined logging system of medieval times

Transaction manager

Course
service

Student
service

Instructor
service

Billing service Content
service

Logging m
odule

Se
cu

rit
y

m
od

ul
e

Figure 1.3 Using AOP,
systemwide concerns blanket the
components that they impact.
This leaves the application
components to focus on their
specific business functionality.

Called before quest

Called after quest
Licensed to Christian Cederquist <chrisman@kaus.dk>

13Simplifying Java development

package com.springinaction.knights;

public class BraveKnight implements Knight {
private Quest quest;
private Minstrel minstrel;

public BraveKnight(Quest quest, Minstrel minstrel) {
this.quest = quest;
this.minstrel = minstrel;

}

public void embarkOnQuest() throws QuestException {
minstrel.singBeforeQuest();
quest.embark();
minstrel.singAfterQuest();

}
}

That should do the trick. But something doesn’t seem right here. Is it really within the
knight’s range of concern to manage his minstrel? It seems to me that a minstrel
should just do his job without the knight asking him to do so. After all, that’s the min-
strel’s job—to sing about the knight’s endeavors. Why should the knight have to keep
reminding the minstrel to do his job?

 Furthermore, because the knight needs to know about the minstrel, you’re forced
to inject the Minstrel into the BraveKnight. This not only complicates the Brave-
Knight’s code, but also makes me wonder if you’d ever want a knight who didn’t have
a minstrel. What if the Minstrel is null? Should we introduce some null-checking
logic to cover that case?

 Your simple BraveKnight class is starting to get more complicated and would
become more so if you were to handle the nullMinstrel scenario. But using AOP, you
can declare that the minstrel should sing about a knight’s quests and free the knight
from having to deal with the Minstrel methods directly.

 To turn Minstrel into an aspect, all you need to do is declare it as one in the
Spring configuration file. Here’s the updated knights.xml file, revised to declare
Minstrel as an aspect.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

<bean id="knight" class="com.springinaction.knights.BraveKnight">
<constructor-arg ref="quest" />

Listing 1.9 A BraveKnight that must call Minstrel methods

Listing 1.10 Declaring the Minstrel as an aspect

Should knight
manage its own
Minstrel?
</bean>

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/aop/spring-aop-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

14 CHAPTER 1 Springing into action

<bean id="quest"
class="com.springinaction.knights.SlayDragonQuest" />

<bean id="minstrel"
class="com.springinaction.knights.Minstrel" />

<aop:config>
<aop:aspect ref="minstrel">

<aop:pointcut id="embark"
expression="execution(* *.embarkOnQuest(..))" />

<aop:before pointcut-ref="embark"
method="singBeforeQuest"/>

<aop:after pointcut-ref="embark"
method="singAfterQuest"/>

</aop:aspect>
</aop:config>

</beans>

Here you’re using Spring’s aop configuration namespace to declare that the Minstrel
bean is an aspect. First, you had to declare the Minstrel as a bean. Then you refer to
that bean in the <aop:aspect> element. Defining the aspect further, you declare
(using <aop:before>) that before the embarkOnQuest() method is executed, the Min-
strel’s singBeforeQuest() should be called. This is called before advice. And you
(using <aop:after>) declare that the singAfterQuest() method should be called
after embarkOnQuest() has executed. This is known as after advice.

 In both cases, the pointcut-ref attribute refers to a pointcut named embark. This
pointcut is defined in the preceding <pointcut> element with an expression attri-
bute set to select where the advice should be applied. The expression syntax is
AspectJ’s pointcut expression language.

 Don’t worry if you don’t know AspectJ or the details of how AspectJ pointcut
expressions are written. We’ll talk more about Spring AOP later in chapter 4. For now
it’s enough to know that you’ve asked Spring to call the Minstrel’s singBefore-
Quest() and singAfterQuest() methods before and after the BraveKnight embarks
on a quest.

 That’s all there is to it! With a tiny bit of XML, you’ve just turned Minstrel into a
Spring aspect. Don’t worry if this doesn’t make complete sense yet—you’ll see plenty
more examples of Spring AOP in chapter 4 that should help clear this up. For now,
there are two important points to take away from this example.

 First, Minstrel is still a POJO—nothing about it indicates that it’s to be used as an
aspect. Instead Minstrel became an aspect when we declared it as such in the Spring
context.

 Second, and most important, Minstrel can be applied to the BraveKnight without
the BraveKnight needing to explicitly call on it. In fact, BraveKnight remains com-
pletely unaware of the Minstrel’s existence.

 I should also point out that although you used some Spring magic to turn Min-

Declare
Minstrel
bean

Define
pointcut

Declare before advice

Declare after advice
strel into an aspect, it was declared as a Spring <bean> first. The point here is that

Licensed to Christian Cederquist <chrisman@kaus.dk>

15Simplifying Java development

you can do anything with Spring aspects that you can do with other Spring beans, such
as injecting them with dependencies.

 Using aspects to sing about knights can be fun. But Spring’s AOP can be used for
even more practical things. As you’ll see later, Spring AOP can be employed to provide
services such as declarative transactions (chapter 6) and security (chapter 9).

 But for now, let’s look at one more way that Spring simplifies Java development.

1.1.4 Eliminating boilerplate code with templates

Have you ever written some code and then felt like you’d already written the same
code before? That’s not déjà vu, my friend. That’s boilerplate code—the code that you
often have to write over and over again to accomplish common and otherwise simple
tasks.

 Unfortunately, there are a lot of places where Java APIs involve a bunch of boiler-
plate code. A common example of boilerplate code can be seen when working with
JDBC to query data from a database. For example, if you’ve ever worked with JDBC
before, then you’ve probably written something similar to the following.

public Employee getEmployeeById(long id) {
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try {

conn = dataSource.getConnection();
stmt = conn.prepareStatement(

"select id, firstname, lastname, salary from " +
"employee where id=?");

stmt.setLong(1, id);
rs = stmt.executeQuery();
Employee employee = null;
if (rs.next()) {

employee = new Employee();
employee.setId(rs.getLong("id"));
employee.setFirstName(rs.getString("firstname"));
employee.setLastName(rs.getString("lastname"));
employee.setSalary(rs.getBigDecimal("salary"));

}
return employee;

} catch (SQLException e) {

} finally {
if(rs != null) {

try {
rs.close();

} catch(SQLException e) {}
}

if(stmt != null) {
try {

Listing 1.11 Many Java APIs, such as JDBC, involve writing a lot of boilerplate code.

Select employee

Create object
from data

What should
be done here?

Clean up mess
stmt.close();

Licensed to Christian Cederquist <chrisman@kaus.dk>

16 CHAPTER 1 Springing into action

} catch(SQLException e) {}
}

if(conn != null) {
try {

conn.close();
} catch(SQLException e) {}

}
}

return null;
}

As you can see, this JDBC code queries the database for an employee’s name and sal-
ary. But I’ll bet you had to look hard to see that. That’s because the small bit of code
that’s specific to querying for an employee is buried in a heap of JDBC ceremony. You
first have to create a connection, then a statement, and then finally you can query for
the results. And, to appease JDBC’s anger, you must catch SQLException, a checked
exception, even though there’s not a lot you can do if it’s thrown.

 Finally, after all is said and done, you have to clean up the mess, closing down the
connection, statement, and result set. This could also stir JDBC’s anger. Therefore you
must catch SQLException here as well.

 What’s most notable about listing 1.11 is that much of it is the exact same code that
you’d write for pretty much any JDBC operation. Little of it has anything to do with
querying for an employee, and much of it is JDBC boilerplate.

 JDBC’s not alone in the boilerplate code business. Many activities often require
similar boilerplate code. JMS, JNDI, and the consumption of REST services often
involve a lot of commonly repeated code.

 Spring seeks to eliminate boilerplate code by encapsulating it in templates.
Spring’s JdbcTemplate makes it possible to perform database operations without all of
the ceremony required by traditional JDBC.

 For example, using Spring’s SimpleJdbcTemplate (a specialization of Jdbc-
Template that takes advantage of Java 5 features), the getEmployeeById() method
can be rewritten so that its focus is on the task of retrieving employee data and not
catering to the demands of the JDBC API. The following shows what such an updated
getEmployeeById() method might look like.

public Employee getEmployeeById(long id) {
return jdbcTemplate.queryForObject(

"select id, firstname, lastname, salary " +
"from employee where id=?",
new RowMapper<Employee>() {

public Employee mapRow(ResultSet rs,
int rowNum) throws SQLException {

Employee employee = new Employee();
employee.setId(rs.getLong("id"));
employee.setFirstName(rs.getString("firstname"));

Listing 1.12 Templates let your code focus on the task at hand.

SQL query

Map results
to object
Licensed to Christian Cederquist <chrisman@kaus.dk>

17Containing your beans

employee.setLastName(rs.getString("lastname"));
employee.setSalary(rs.getBigDecimal("salary"));
return employee;

}
},
id);

}

As you can see, this new version of getEmployeeById() is much simpler and acutely
focused on selecting an employee from the database. The template’s queryFor-
Object() method is given the SQL query, a RowMapper (for mapping result set data to
a domain object), and zero or more query parameters. What you don’t see in get-
EmployeeById() is any of the JDBC boilerplate from before. It’s all handled internal to
the template.

 I’ve shown you how Spring attacks complexity in Java development using POJO-
oriented development, dependency injection, AOP, and templates. Along the way I
showed you how to configure beans and aspects in XML-based configuration files. But
how do those files get loaded? And what are they loaded into? Let’s look at the Spring
container, the place where your application’s beans will reside.

1.2 Containing your beans
In a Spring-based application, your application objects will live within the Spring con-
tainer. As illustrated in figure 1.4, the container will create the objects, wire them
together, configure them, and manage their complete lifecycle from cradle to grave
(or new to finalize(), as the case may be).

 In the next chapter, you’ll see how to configure Spring to know what objects it
should create, configure, and wire together. First, it’s important to get to know the
container where your objects will be hanging out. Understanding the container helps
you grasp how your objects will be managed.

 The container is at the core of the Spring Framework. Spring’s container uses
dependency injection (DI) to manage the components that make up an application.
This includes creating associations between collaborating components. As such, these
objects are cleaner and easier to understand, support reuse, and are easy to unit test.

Specify query
parameter

Spring container

Figure 1.4 In a Spring application,
objects are created, wired together,
and live within the Spring container.
Licensed to Christian Cederquist <chrisman@kaus.dk>

18 CHAPTER 1 Springing into action

There’s no single Spring container. Spring comes with several container implementa-
tions that can be categorized into two distinct types. Bean factories (defined by the
org.springframework.beans.factory.BeanFactory interface) are the simplest of
containers, providing basic support for DI. Application contexts (defined by the
org.springframework.context.ApplicationContext interface) build on the notion
of a bean factory by providing application framework services, such as the ability to
resolve textual messages from a properties file and the ability to publish application
events to interested event listeners.

 Although it’s possible to work with Spring using either bean factories or application
contexts, bean factories are often too low-level for most applications. Therefore, appli-
cation contexts are preferred over bean factories. We’ll focus on working with applica-
tion contexts and not spend any more time talking about bean factories.

1.2.1 Working with an application context

Spring comes with several flavors of application context. The three that you’ll most
likely encounter are

 ClassPathXmlApplicationContext—Loads a context definition from an XML
file located in the classpath, treating context definition files as classpath
resources.

 FileSystemXmlApplicationContext—Loads a context definition from an XML
file in the file system.

 XmlWebApplicationContext—Loads context definitions from an XML file con-
tained within a web application.

We’ll talk more about XmlWebApplicationContext in chapter 7 when we discuss web-
based Spring applications. For now, let’s simply load the application context from the
file system using FileSystemXmlApplicationContext or from the classpath using
ClassPathXmlApplicationContext.

 Loading an application context from the file system or from the classpath is similar
to how you load beans into a bean factory. For example, here’s how you’d load a File-
SystemXmlApplicationContext:

ApplicationContext context = new
FileSystemXmlApplicationContext("c:/foo.xml");

Similarly, you can load an application context from within the application’s classpath
using ClassPathXmlApplicationContext:

ApplicationContext context = new
ClassPathXmlApplicationContext("foo.xml");

The difference between using FileSystemXmlApplicationContext and ClassPath-
XmlApplicationContext is that FileSystemXmlApplicationContext will look for
foo.xml in a specific location within the file system, whereas ClassPathXml-
ApplicationContext will look for foo.xml anywhere in the classpath (including JAR

files).

Licensed to Christian Cederquist <chrisman@kaus.dk>

19Containing your beans

With an application context in hand, you can retrieve beans from the Spring con-
tainer by calling the context’s getBean() method.

 Now that you know the basics of how to create a Spring container, let’s take a closer
look at the lifecycle of a bean in the bean container.

1.2.2 A bean’s life

In a traditional Java application, the lifecycle of a bean is simple. Java’s new keyword is
used to instantiate the bean (or perhaps it’s deserialized) and it’s ready to use. Once
the bean is no longer in use, it’s eligible for garbage collection and eventually goes to
the big bit bucket in the sky.

 In contrast, the lifecycle of a bean within a Spring container is more elaborate. It’s
important to understand the lifecycle of a Spring bean, because you may want to take
advantage of some of the opportunities that Spring offers to customize how a bean is
created. Figure 1.5 shows the startup lifecycle of a typical bean as it’s loaded into a
Spring application context.

 As you can see, a bean factory performs several setup steps before a bean is ready
to use. Breaking down figure 1.5 in more detail:

1 Spring instantiates the bean.
2 Spring injects values and bean references into the bean’s properties.
3 If the bean implements BeanNameAware, Spring passes the bean’s ID to the set-

BeanName() method.
4 If the bean implements BeanFactoryAware, Spring calls the setBeanFactory()

method, passing in the bean factory itself.

DisposableBean’s
destroy()

Call custom
destroy-method

Bean is
ready to use

Container is
shut down

Figure 1.5 A bean goes through several steps between creation and destruction in the Spring
container. Each step is an opportunity to customize how the bean is managed in Spring.
Licensed to Christian Cederquist <chrisman@kaus.dk>

20 CHAPTER 1 Springing into action

5 If the bean implements ApplicationContextAware, Spring will call the set-
ApplicationContext() method, passing in a reference to the enclosing appli-
cation context.

6 If any of the beans implement the BeanPostProcessor interface, Spring calls
their postProcessBeforeInitialization() method.

7 If any beans implement the InitializingBean interface, Spring calls their
afterPropertiesSet() method. Similarly, if the bean was declared with an
init-method, then the specified initialization method will be called.

8 If there are any beans that implement BeanPostProcessor, Spring will call their
postProcessAfterInitialization() method.

9 At this point, the bean is ready to be used by the application and will remain in
the application context until the application context is destroyed.

10 If any beans implement the DisposableBean interface, then Spring will call
their destroy() methods. Likewise, if any bean was declared with a destroy-
method, then the specified method will be called.

Now you know how to create and load a Spring container. But an empty container
isn’t much good by itself; it doesn’t contain anything unless you put something in it.
To achieve the benefits of Spring DI, we must wire our application objects into the
Spring container. We’ll go into bean wiring in more detail in chapter 2.

 But first, let’s survey the modern Spring landscape to see what the Spring Frame-
work is made up of and to see what the latest versions of Spring have to offer.

1.3 Surveying the Spring landscape
As you’ve seen, the Spring Framework is focused on simplifying enterprise Java devel-
opment through dependency injection, aspect-oriented programming, and boiler-
plate reduction. Even if that were all that Spring did, it’d be worth using. But there’s
more to Spring than meets the eye.

 Within the Spring Framework proper, you’ll find several ways that Spring can ease
Java development. But beyond the Spring Framework itself is a greater ecosystem of
projects that build upon the core framework, extending Spring into areas such as web
services, OSGi, Flash, and even .NET.

 Let’s first break down the core Spring Framework to see what it brings to the
table. Then we’ll expand our sights to review the other members of the greater
Spring portfolio.

1.3.1 Spring modules

The Spring Framework is composed of several distinct modules. When you download
and unzip the Spring Framework distribution, you’ll find 20 different JAR files in the
dist directory, as shown in figure 1.6.

 The 20 JAR files that make up Spring can be arranged in one of six different cate-
gories of functionality, as illustrated in figure 1.7.
Licensed to Christian Cederquist <chrisman@kaus.dk>

21Surveying the Spring landscape

When taken as a whole, these modules give you everything you need to develop
enterprise-ready applications. But you don’t have to base your application fully on the
Spring Framework. You’re free to choose the modules that suit your application and

Figure 1.6 The JAR files that come with the Spring Framework distribution

Data access & integration Web and remoting

Core Spring container

support

Figure 1.7 The Spring Framework is made up of six well-defined modules.
Licensed to Christian Cederquist <chrisman@kaus.dk>

22 CHAPTER 1 Springing into action

look to other options when Spring doesn’t fit the bill. Spring even offers integration
points with several other frameworks and libraries so that you won’t have to write
them yourself.

 Let’s take a look at each of Spring’s modules, one at a time, to see how each fits in
the overall Spring picture.

CORE SPRING CONTAINER

The centerpiece of the Spring Framework is a container that manages how the beans
in a Spring-enabled application are created, configured, and managed. Within this
module you’ll find the Spring bean factory, which is the portion of Spring that pro-
vides dependency injection. Building upon the bean factory, you’ll find several imple-
mentations of Spring’s application context, each of which provides a different way to
configure Spring.

 In addition to the bean factory and application context, this module also supplies
many enterprise services such as email, JNDI access, EJB integration, and scheduling.

 As you can see, all of Spring’s modules are built on top of the core container. You’ll
implicitly use these classes when you configure your application. We’ll discuss the core
module throughout this book, starting in chapter 2 where we dig deep into Spring
dependency injection.

SPRING’S AOP MODULE

Spring provides rich support for aspect-oriented programming in its AOP module.
This module serves as the basis for developing your own aspects for your Spring-
enabled application. Like DI, AOP supports loose coupling of application objects. But
with AOP, application-wide concerns (such as transactions and security) are decoupled
from the objects to which they’re applied.

 We’ll dig into Spring’s AOP support in chapter 4.

DATA ACCESS AND INTEGRATION

Working with JDBC often results in a lot of boilerplate code that gets a connection,
creates a statement, processes a result set, and then closes the connection. Spring’s
JDBC and data access objects (DAO) module abstracts away the boilerplate code so that
you can keep your database code clean and simple, and prevents problems that result
from a failure to close database resources. This module also builds a layer of meaning-
ful exceptions on top of the error messages given by several database servers. No more
trying to decipher cryptic and proprietary SQL error messages!

 For those who prefer using an object-relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring’s ORM support builds on the DAO sup-
port, providing a convenient way to build DAOs for several ORM solutions. Spring
doesn’t attempt to implement its own ORM solution, but does provide hooks into sev-
eral popular ORM frameworks, including Hibernate, Java Persistence API, Java Data
Objects, and iBATIS SQL Maps. Spring’s transaction management supports each of
these ORM frameworks as well as JDBC.

 We’ll see how Spring’s template-based JDBC abstraction can greatly simplify JDBC

code when we look at Spring data access in chapter 5.

Licensed to Christian Cederquist <chrisman@kaus.dk>

23Surveying the Spring landscape

 This module also includes a Spring abstraction over the Java Message Service (JMS)
for asynchronous integration with other applications through messaging. And, as of
Spring 3.0, this module includes the object-to-XML mapping features that were origi-
nally part of the Spring Web Services project.

 In addition, this module uses Spring’s AOP module to provide transaction manage-
ment services for objects in a Spring application. We’ll look at Spring’s transaction
support in detail in chapter 6.

WEB AND REMOTING

The Model-View-Controller (MVC) paradigm is a commonly accepted approach to build-
ing web applications such that the user interface is separate from the application
logic. Java has no shortage of MVC frameworks, with Apache Struts, JSF, WebWork, and
Tapestry among the most popular MVC choices.

 Even though Spring integrates with several popular MVC frameworks, its web and
remoting module comes with a capable MVC framework that promotes Spring’s
loosely coupled techniques in the web layer of an application. This framework comes
in two forms: a servlet-based framework for conventional web applications and a
portlet-based application for developing against the Java portlet API.

 In addition to user-facing web applications, this module also provides several
remoting options for building applications that interact with other applications.
Spring’s remoting capabilities include Remote Method Invocation (RMI), Hessian, Burlap,
JAX-WS, and Spring’s own HTTP invoker.

 We’ll look at Spring’s MVC framework in chapter 7. Then, in chapter 10, we’ll
check out Spring remoting.

TESTING

Recognizing the importance of developer-written tests, Spring provides a module ded-
icated to testing Spring applications.

 Within this module you’ll find a collection of mock object implementations for
writing unit tests against code that works with JNDI, servlets, and portlets. For integra-
tion-level testing, this module provides support for loading a collection of beans in a
Spring application context and working with the beans in that context.

 We’ll get our first taste of Spring’s testing module in chapter 4. Then in chapters 5
and 6, we’ll expand on what we’ve learned by seeing how to test Spring data access
and transactions.

1.3.2 The Spring portfolio

When it comes to Spring, there’s more than meets the eye. In fact, there’s more than
what comes in the Spring Framework download. If we stopped at just the core Spring
Framework, we’d miss out on a wealth of potential afforded by the larger Spring port-
folio. The whole Spring portfolio includes several frameworks and libraries that build
upon the core Spring Framework and upon each other. All together, the entire
Spring portfolio brings the Spring programming model to almost every facet of Java

development.

Licensed to Christian Cederquist <chrisman@kaus.dk>

24 CHAPTER 1 Springing into action

 It would take several volumes to cover everything that the Spring portfolio has to
offer, and much of it’s outside the scope of this book. But we’ll look at some of the ele-
ments of the Spring portfolio. Meanwhile, here’s a taste of what lies beyond the core
Spring Framework.

SPRING WEB FLOW

Spring Web Flow builds upon Spring’s core MVC framework to provide support for
building conversational, flow-based web applications that guide users toward a goal
(think wizards or shopping carts). We’ll talk more about Spring Web Flow in
chapter 8, and you can learn more about Spring Web Flow from its home page at
http://www.springsource.org/webflow.

SPRING WEB SERVICES

Although the core Spring Framework provides for declaratively publishing Spring
beans as web services, those services are based on an arguably architecturally inferior
contract-last model. The contract for the service is determined from the bean’s inter-
face. Spring Web Services offers a contract-first web services model where service
implementations are written to satisfy the service contract.

 I won’t be talking about Spring-WS in this book, but you can read more about it
from its home page at http://static.springsource.org/spring-ws/sites/2.0.

SPRING SECURITY

Security is a critical aspect of many applications. Implemented using Spring AOP,
Spring Security offers a declarative security mechanism for Spring-based applications.
We’ll see how add Spring Security to applications in chapter 9. For further explora-
tion, Spring Security’s home page is at http://static.springsource.org/spring-security/
site.

SPRING INTEGRATION

Many enterprise applications must interact with other enterprise applications. Spring
Integration offers implementations of several common integration patterns in
Spring’s declarative style.

 We won’t cover Spring Integration in this book. But if you want more information
on Spring Integration, have a look at Spring Integration in Action by Mark Fisher, Jonas
Partner, Marius Bogoevici, and Iwein Fuld. Or you can visit the Spring Integration
home page at http://www.springsource.org/spring-integration.

SPRING BATCH

When it’s necessary to perform bulk operations on data, nothing beats batch process-
ing. If you’re going to be developing a batch application, you can leverage Spring’s
robust, POJO-oriented development model to do it using Spring Batch.

 Spring Batch is outside of the scope of this book. But Thierry Templier and
Arnaud Cogoluègnes will enlighten you in their book, Spring Batch in Action. You can
also learn about Spring Batch from its home page at http://static.springsource.org/
spring-batch.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://static.springsource.org/spring-ws/sites/2.0
http://www.springsource.org/webflow
http://static.springsource.org/spring-security/site
http://static.springsource.org/spring-security/site
http://www.springsource.org/spring-integration
http://static.springsource.org/spring-batch
http://static.springsource.org/spring-batch

25Surveying the Spring landscape

SPRING SOCIAL

Social networking is a rising trend on the internet, and more and more applications
are being outfitted with integration into social networking sites such as Facebook and
Twitter. If this is the kind of thing that interests you, then you’ll want to look at Spring
Social, a social networking extension to Spring.

 Spring Social is relatively new and didn’t make it into this book. But you can find
out more about it at http://www.springsource.org/spring-social.

SPRING MOBILE

Mobile applications are another significant area of software development. Smart-
phones and tablet devices are taking over as the preferred client for many users.
Spring Mobile is a new extension to Spring to support development of mobile web
applications.

 Related to Spring Mobile is the Spring Android project. This new project, less than
a month old as I write this, aims to bring some of the simplicity afforded by the Spring
Framework to development of native applications for Android-based devices. Initially,
this project is offering a version of Spring’s RestTemplate (see chapter 11 to learn
about RestTemplate) that can be used within an Android application.

 Again, these projects are new and are outside of the scope of Spring in Action. But
you can learn more about them at http://www.springsource.org/spring-mobile and
http://www.springsource.org/spring-android.

SPRING DYNAMIC MODULES

Spring Dynamic Modules (Spring-DM) blends Spring’s declarative dependency injec-
tion with OSGi’s dynamic modularity. Using Spring-DM, you can build applications
that are composed of several distinct, highly cohesive, loosely coupled modules that
publish and consume services declaratively within the OSGi framework.

 It should be noted that due to its tremendous impact in the world of OSGi, the
Spring-DM model for declarative OSGi services has been formalized into the OSGi
specification itself as the OSGi Blueprint Container. In addition, SpringSource has transi-
tioned Spring-DM to the Eclipse project as a part of the Gemini family of OSGi projects
and is now known as Gemini Blueprint.

SPRING LDAP

In addition to dependency injection and AOP, another common technique applied
throughout the Spring Framework is to create template-based abstractions around
unnecessarily complex operations such as JDBC queries or JMS messaging. Spring
LDAP brings Spring-style template-based access to LDAP, eliminating the boilerplate
code that’s commonly involved in LDAP operations.

 More information on Spring LDAP can be found at http://www.springsource.org/
ldap.

SPRING RICH CLIENT

Web-based applications seem to have stolen the spotlight from traditional desktop
applications. But if you’re one of the few still developing Swing applications, you’ll
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springsource.org/spring-social
http://www.springsource.org/spring-mobile
http://www.springsource.org/spring-android
http://www.springsource.org/ldap
http://www.springsource.org/ldap

26 CHAPTER 1 Springing into action

want to check out Spring Rich Client, a rich application toolkit that brings the power
of Spring to Swing.

SPRING.NET

You don’t have to abandon dependency injection and AOP if you’re put on a .NET
project. Spring.NET offers the same loose-coupling and aspect-oriented features of
Spring, but for the .NET platform.

 In addition to the core DI and AOP functionality, Spring.NET comes with several
modules for simplifying .NET development, including modules for working with
ADO.NET, NHibernate, ASP.NET, and MSMQ.

 To learn more about Spring .NET, visit http://www.springframework.net.

SPRING-FLEX

Adobe’s Flex and AIR offer one of the most powerful options for rich internet applica-
tion development. When those rich user interfaces need to interact with Java code on
the server side, they can use a remoting and messaging technology known as BlazeDS.
The Spring-Flex integration package enables Flex and AIR applications to communi-
cate with server-side Spring beans using BlazeDS. It also includes an addon for Spring
Roo to enable rapid application development of Flex applications.

 You may begin your exploration of Spring Flex at http://www.springsource.org/
spring-flex. You may also want to check out Spring ActionScript at http://
www.springactionscript.org, which offers many benefits of the Spring Framework in
ActionScript.

SPRING ROO

As more and more developers are basing their work on Spring, a set of common idi-
oms and best practices has emerged around Spring and its related frameworks. At the
same time, frameworks such as Ruby on Rails and Grails have arisen with a script-
driven development model that makes simple work of building applications.

 Spring Roo provides an interactive tooling environment that enables rapid devel-
opment of Spring applications, pulling together the best practices that have been
identified over the past few years.

 What differentiates Roo from these other rapid application development frame-
works is that it produces Java code using the Spring Framework. The outcome is an
honest-to-goodness Spring application, not a separate framework coded in a language
that’s foreign to many corporate development organizations.

 More information about Spring Roo can be found at http://www.springsource
.org/roo.

SPRING EXTENSIONS

In addition to all of the projects described up to this point, there’s also a community-
driven collection of Spring extensions at http://www.springsource.org/extensions. A
few of the goodies you’ll find there include

 An implementation of Spring for the Python language

 Blob storage

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.net
http://www.springsource.org/spring-flex
http://www.springsource.org/spring-flex
http://www.springactionscript.org
http://www.springactionscript.org
http://www.springsource.org/roo
http://www.springsource.org/roo
http://www.springsource.org/extensions
http:Spring.NET
http:Spring.NET
http:SPRING.NET

27What’s new in Spring

 db4o and CouchDB persistence
 A Spring-based workflow management library
 Kerberos and SAML extensions for Spring Security

1.4 What’s new in Spring
It’s been almost three years since I wrote the second edition of this book, and a lot has
happened in the intervening time. The Spring Framework has seen two significant
releases, each bringing new features and improvements to ease application develop-
ment. And several of the other members of the Spring portfolio have undergone
major changes.

 We’ll cover many of these changes throughout this book. But for now, let’s briefly
size up what’s new in Spring.

1.4.1 What’s new in Spring 2.5?

In November 2007, the Spring team released version 2.5 of the Spring Framework.
The significance of Spring 2.5 was that it marked Spring’s embrace of annotation-
driven development. Prior to Spring 2.5, XML-based configuration was the norm. But
Spring 2.5 introduced several ways of using annotations to greatly reduce the amount
of XML needed to configure Spring:

 Annotation-driven dependency injection through the @Autowired annotation
and fine-grained auto-wiring control with @Qualifier.

 Support for JSR-250 annotations, including @Resource for dependency injec-
tion of a named resource, as well as @PostConstruct and @PreDestroy for life-
cycle methods.

 Auto-detection of Spring components that are annotated with @Component (or
one of several stereotype annotations).

 An all-new annotation-driven Spring MVC programming model that greatly sim-
plifies Spring web development.

 A new integration test framework that’s based on JUnit 4 and annotations.

Even though annotations were the big story of Spring 2.5, there’s more:

 Full Java 6 and Java EE 5 support, including JDBC 4.0, JTA 1.1, JavaMail 1.4, and
JAX-WS 2.0.

 A new bean-name pointcut expression for weaving aspects into Spring beans by
their name.

 Built-in support for AspectJ load-time weaving.
 New XML configuration namespaces, including the context namespace for

configuring application context details and a jms namespace for configuring
message-driven beans.

 Support for named parameters in SqlJdbcTemplate.

We’ll explore many of these new Spring features as we progress through this book.
Licensed to Christian Cederquist <chrisman@kaus.dk>

28 CHAPTER 1 Springing into action

1.4.2 What’s new in Spring 3.0?

With all of the good stuff in Spring 2.5, it’s hard to imagine what could possibly follow
in Spring 3.0. But with the 3.0 release, Spring one-upped itself with the continuation
of the annotation-driven theme and several new features:

 Full-scale REST support in Spring MVC, including Spring MVC controllers that
respond to REST-style URLs with XML, JSON, RSS, or any other appropriate
response. We’ll look into Spring 3’s new REST support in chapter 11.

 A new expression language that brings Spring dependency injection to a new
level by enabling injection of values from a variety of sources, including other
beans and system properties. We’ll dig into Spring’s expression language in the
next chapter.

 New annotations for Spring MVC, including @CookieValue and @Request-
Header, to pull values from cookies and request headers, respectively. We’ll see
how to use these annotations as we look at Spring MVC in chapter 7.

 A new XML namespace for easing configuration of Spring MVC.
 Support for declarative validation with JSR-303 (Bean Validation) annotations.
 Support for the new JSR-330 dependency injection specification.
 Annotation-oriented declaration of asynchronous and scheduled methods.
 A new annotation-based configuration model that allows for nearly XML-free

Spring configuration. We’ll see this new configuration style in the next chapter.
 The Object-to-XML (OXM) mapping functionality from the Spring Web Ser-

vices project has been moved into the core Spring Framework.

Just as important as what’s new in Spring 3.0 is what’s not in Spring 3.0. Specifically,
starting with Spring 3.0, Java 5 is now required, as Java 1.4 has reached end-of-life and
will no longer be supported in Spring.

1.4.3 What’s new in the Spring portfolio?

Aside from the core Spring Framework, there’s also been exciting new activity in
the projects that are based on Spring. I don’t have enough space to cover every
detail of what’s changed, but there are a few items that I think are significant
enough to mention:

 Spring Web Flow 2.0 was released with a simplified flow definition schema, mak-
ing it even easier to create conversational web applications.

 With Spring Web Flow 2.0 came Spring JavaScript and Spring Faces. Spring
JavaScript is a JavaScript library that enables progressive enhancement of web
pages with dynamic behavior. Spring Faces allows use of JSF as a view technology
within Spring MVC and Spring Web Flow.

 The old Acegi Security framework was completely overhauled and released as
Spring Security 2.0. In this new incarnation, Spring Security offers a new configu-
ration schema that dramatically reduces the amount of XML required to config-

ure application security.

Licensed to Christian Cederquist <chrisman@kaus.dk>

29Summary

Even as I was writing this book, Spring Security continued to evolve. Spring Security
3.0 was recently released, further simplifying declarative security by taking advantage
of Spring’s new expression language to declare security constraints.

 As you can see, Spring is an active, continuously evolving project. There’s always
something new that aims to make developing enterprise Java applications easier.

1.5 Summary
You should now have a good idea of what Spring brings to the table. Spring aims to
make enterprise Java development easier and to promote loosely coupled code. Vital
to this is dependency injection and AOP.

 In this chapter, we got a taste of dependency injection in Spring. DI is a way of asso-
ciating application objects such that the objects don’t need to know where their
dependencies come from or how they’re implemented. Rather than acquiring depen-
dencies on their own, dependent objects are given the objects that they depend on.
Because dependent objects often only know about their injected objects through
interfaces, coupling is kept low.

 In addition to dependency injection, we also saw a glimpse of Spring’s AOP sup-
port. AOP enables you to centralize logic that would normally be scattered throughout
an application in one place—an aspect. When Spring wires your beans together, these
aspects can be woven in at runtime, effectively giving the beans new behavior.

 Dependency injection and AOP are central to everything in Spring. Thus you must
understand how to use these principal functions of Spring to be able to use the rest of
the framework. In this chapter, we’ve just scratched the surface of Spring’s DI and AOP
features. Over the next few chapters, we’ll dig deeper into DI and AOP. Without fur-
ther ado, let’s move on to chapter 2 to learn how to wire objects together in Spring
using dependency injection.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Wiring beans
Have you ever stuck around after a movie long enough to watch the credits? It’s
incredible how many different people it takes to pull together a major motion pic-
ture. In addition to the obvious participants—the actors, scriptwriters, directors,
and producers—there are the not-so-obvious—the musicians, special effects crew,
and art directors. And that’s not to mention the key grip, sound mixer, costumers,
makeup artists, stunt coordinators, publicists, first assistant to the cameraperson,
second assistant to the cameraperson, set designers, gaffer, and (perhaps most
importantly) the caterers.

 Now imagine what your favorite movie would’ve been like had none of these
people talked to one another. Let’s say that they all showed up at the studio and
started doing their own thing without any coordination of any kind. If the director
keeps to himself and doesn’t say “roll ’em,” then the cameraperson won’t start
shooting. It probably wouldn’t matter anyway, because the lead actress would still

This chapter covers
 Declaring beans

 Injecting constructors and setters

 Wiring beans

 Controlling bean creation and destruction
30

Licensed to Christian Cederquist <chrisman@kaus.dk>

31Declaring beans

be in her trailer and the lighting wouldn’t work because the gaffer wouldn’t have been
hired. Maybe you’ve seen a movie where it looks like this is what happened. But most
movies (the good ones anyway) are the product of thousands of people working
together toward the common goal of making a blockbuster movie.

 In this respect, a great piece of software isn’t much different. Any nontrivial appli-
cation is made up of several objects that must work together to meet some business
goal. These objects must be aware of one another and communicate with one another
to get their jobs done. In an online shopping application, for instance, an order man-
ager component may need to work with a product manager component and a credit
card authorization component. All of these will likely need to work with a data access
component to read from and write to a database.

 But as we saw in chapter 1, the traditional approach to creating associations
between application objects (via construction or lookup) leads to complicated code
that’s difficult to reuse and unit test. At best, these objects do more work than they
should. At worst, they’re highly coupled to one another, making them hard to reuse
and hard to test.

 In Spring, objects aren’t responsible for finding or creating the other objects that
they need to do their jobs. Instead, they’re given references to the objects that they
collaborate with by the container. An order manager component, for example, may
need a credit card authorizer—but it doesn’t need to create the credit card autho-
rizer. It just needs to show up empty-handed and it’ll be given a credit card authorizer
to work with.

 The act of creating these associations between application objects is the essence of
dependency injection (DI) and is commonly referred to as wiring. In this chapter we’ll
explore the basics of bean wiring using Spring. As DI is the most elemental thing
Spring does, these are techniques you’ll use almost every time you develop Spring-
based applications.

2.1 Declaring beans
At this point, I’d like to welcome you to the first (and likely the last) annual JavaBean
talent competition. I’ve searched the nation (actually, just our IDE’s workspace) for
the most talented JavaBeans to perform and in the next few chapters, we’ll set up the
competition and our judges will weigh in. Spring programmers, this is your Spring Idol.

 In our competition, we’re going to need some performers, which are defined by
the Performer interface:

package com.springinaction.springidol;

public interface Performer {
void perform() throws PerformanceException;

}

In the Spring Idol talent competition, you’ll meet several contestants, all of which
implement the Performer interface. To get started, let’s set the stage for the competi-

tion by looking at the essentials of a Spring configuration.

Licensed to Christian Cederquist <chrisman@kaus.dk>

32 CHAPTER 2 Wiring beans

2.1.1 Setting up Spring configuration

As has been said already, Spring is a container-based framework. But if you don’t con-
figure Spring, then it’s an empty container and doesn’t serve much purpose. We need
to configure Spring to tell it what beans it should contain and how to wire those beans
so that they can work together.

 As of Spring 3.0, there are two ways to configure beans in the Spring container.
Traditionally, Spring configuration is defined in one or more XML files. But Spring 3.0
also offers a Java-based configuration option. We’ll focus on the traditional XML
option for now, but we’ll look at Spring’s Java-based configuration later in section 3.4.

 When declaring beans in XML, the root element of the Spring configuration file is
the <beans> element from Spring’s beans schema. A typical Spring configuration XML
file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Bean declarations go here -->

</beans>

Within the <beans> you can place all of your Spring configuration, including <bean>
declarations. But the beans namespace isn’t the only Spring namespace you’ll
encounter. All together, the core Spring Framework comes with ten configuration
namespaces, as described in table 2.1.

Table 2.1 Spring comes with several XML namespaces through which you can configure the Spring
container

Namespace Purpose

aop Provides elements for declaring aspects and for automatically proxying @AspectJ-
annotated classes as Spring aspects.

beans The core primitive Spring namespace, enabling declaration of beans and how they
should be wired.

context Comes with elements for configuring the Spring application context, including the abil-
ity to autodetect and autowire beans and injection of objects not directly managed by
Spring.

jee Offers integration with Java EE APIs such as JNDI and EJB.

jms Provides configuration elements for declaring message-driven POJOs.

lang Enables declaration of beans that are implemented as Groovy, JRuby, or BeanShell
scripts.

mvc Enables Spring MVC capabilities such as annotation-oriented controllers, view control-
lers, and interceptors.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

33Declaring beans

In addition to the namespaces that come with the Spring Framework, many of the
members of the Spring portfolio, such as Spring Security, Spring Web Flow, and
Spring Dynamic Modules, also provide their own Spring configuration namespace.

 We’ll see more of Spring’s namespaces as this book progresses. But for now, let’s
fill in that conspicuously empty space in the middle of the XML configuration by add-
ing some <bean> elements within <beans>.

2.1.2 Declaring a simple bean

Unlike some similarly named talent competitions that you may have heard of, Spring
Idol doesn’t cater to only singers. Many of the performers can’t carry a tune at all. For
example, one of the performers is a Juggler.

package com.springinaction.springidol;

public class Juggler implements Performer {
private int beanBags = 3;

public Juggler() {
}

public Juggler(int beanBags) {
this.beanBags = beanBags;

}

public void perform() throws PerformanceException {
System.out.println("JUGGLING " + beanBags + " BEANBAGS");

}
}

As you can see, this Juggler class does little more than implement the Performer inter-
face to report that it’s juggling some beanbags. By default, the Juggler juggles three
beanbags, but can be given some other number of beanbags through its constructor.

 With the Juggler class defined, please welcome our first performer, Duke, to the
stage. Duke is defined as a Spring bean. Here’s how Duke is declared in the Spring
configuration file (spring-idol.xml):

<bean id="duke"
class="com.springinaction.springidol.Juggler" />

oxm Supports configuration of Spring’s object-to-XML mapping facilities.

tx Provides for declarative transaction configuration.

util A miscellaneous selection of utility elements. Includes the ability to declare collec-
tions as beans and support for property placeholder elements.

Listing 2.1 A juggling bean

Table 2.1 Spring comes with several XML namespaces through which you can configure the Spring
container (continued)

Namespace Purpose
Licensed to Christian Cederquist <chrisman@kaus.dk>

34 CHAPTER 2 Wiring beans

The <bean> element is the most basic configuration unit in Spring. It tells Spring to
create an object for you. Here you’ve declared Duke as a Spring-managed bean using
what’s nearly the simplest <bean> declaration possible. The id attribute gives the bean
a name by which it’ll be referred to in the Spring container. This bean will be known
as duke. And, as you can see from the class attribute, Duke is a Juggler.

 When the Spring container loads its beans, it’ll instantiate the duke bean using the
default constructor. In essence, duke will be created using the following Java code:1

new com.springinaction.springidol.Juggler();

To give Duke a try, you can load the Spring application context using the following
code:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
"com/springinaction/springidol/spring-idol.xml");

Performer performer = (Performer) ctx.getBean("duke");
performer.perform();

Although this isn’t the real competition, the previous code gives Duke a chance to
practice. When run, this code prints the following:

JUGGLING 3 BEANBAGS

By default, Duke juggles only three beanbags at once. But juggling three beanbags
isn’t all that impressive—anybody can do that. If Duke is to have any hope of winning
the talent competition, he’s going to need to juggle many more beanbags at once.
Let’s see how to configure Duke to be a champion juggler.

2.1.3 Injecting through constructors

To really impress the judges, Duke has decided to break the world record by juggling
as many as 15 beanbags at once.2

 Recall from listing 2.1 that the Juggler class can be constructed in two different
ways:

 Using the default constructor
 Using a constructor that takes an int argument which indicates the number of

beanbags that the Juggler will attempt to keep in the air

Although the declaration of the duke bean in section 2.1.2 is valid, it uses the Juggler’s
default constructor, which limits Duke to juggling only three beanbags at once. To
make Duke a world-record juggler, we’ll need to use the other constructor. The follow-
ing XML redeclares Duke as a 15-beanbag juggler:

1 Emphasis on “in essence.” Actually, Spring creates its beans using reflection.
2 Juggling trivia: Who holds the actual world record for juggling beanbags depends on how many beanbags are

juggled and for how long. Bruce Sarafian holds several records, including juggling 12 beanbags for 12 catches.
Another record-holding juggler is Anthony Gatto, who juggled 7 balls for 10 minutes and 12 seconds in 2005.
Another juggler, Peter Bone, claims to have juggled as many as 13 beanbags for 13 catches—but there’s no

video evidence of the feat.

Licensed to Christian Cederquist <chrisman@kaus.dk>

35Declaring beans

<bean id="duke"
class="com.springinaction.springidol.Juggler">

<constructor-arg value="15" />
</bean>

The <constructor-arg> element is used to give Spring additional information to use
when constructing a bean. If no <constructor-arg>s are given, as in section 2.1.2, the
default constructor is used. But here you’ve given a <constructor-arg> with a value
attribute set to 15, so the Juggler’s other constructor will be used instead.

 Now when Duke performs, the following is printed:

JUGGLING 15 BEANBAGS

Juggling 15 beanbags at once is mighty impressive. But there’s something we didn’t
tell you about Duke. Not only is Duke a good juggler, but he’s also skilled at reciting
poetry. Juggling while reciting poetry takes a lot of mental discipline. If Duke can jug-
gle while reciting a Shakespearean sonnet then he should be able to establish himself
as the clear winner of the competition. (I told you this wouldn’t be like those other tal-
ent shows!)

INJECTING OBJECT REFERENCES WITH CONSTRUCTORS

Because Duke is more than just an average juggler—he’s a poetic juggler—we need to
define a new type of juggler for him to be. PoeticJuggler is a class more descriptive
of Duke’s talent.

package com.springinaction.springidol;

public class PoeticJuggler extends Juggler {
private Poem poem;

public PoeticJuggler(Poem poem) {
super();
this.poem = poem;

}

public PoeticJuggler(int beanBags, Poem poem) {
super(beanBags);
this.poem = poem;

}

public void perform() throws PerformanceException {
super.perform();
System.out.println("While reciting...");
poem.recite();

}
}

This new type of juggler does everything a regular juggler does, but it also has a refer-
ence to a poem to be recited. Speaking of the poem, here’s an interface that generi-
cally defines what a poem looks like:

Listing 2.2 A juggler who waxes poetic

Inject poem

Inject beanbag
count and poem
Licensed to Christian Cederquist <chrisman@kaus.dk>

36 CHAPTER 2 Wiring beans

package com.springinaction.springidol;

public interface Poem {
void recite();

}

One of Duke’s favorite Shakespearean sonnets is “When in disgrace with fortune and
men’s eyes.” Sonnet29 is an implementation of the Poem interface that defines this
sonnet.

package com.springinaction.springidol;

public class Sonnet29 implements Poem {
private static String[] LINES = {

"When, in disgrace with fortune and men's eyes,",
"I all alone beweep my outcast state",
"And trouble deaf heaven with my bootless cries",
"And look upon myself and curse my fate,",
"Wishing me like to one more rich in hope,",
"Featured like him, like him with friends possess'd,",
"Desiring this man's art and that man's scope,",
"With what I most enjoy contented least;",
"Yet in these thoughts myself almost despising,",
"Haply I think on thee, and then my state,",
"Like to the lark at break of day arising",
"From sullen earth, sings hymns at heaven's gate;",
"For thy sweet love remember'd such wealth brings",
"That then I scorn to change my state with kings." };

public Sonnet29() {
}

public void recite() {
for (int i = 0; i < LINES.length; i++) {

System.out.println(LINES[i]);
}

}
}

Sonnet29 can be declared as a Spring <bean> with the following XML:

<bean id="sonnet29"
class="com.springinaction.springidol.Sonnet29" />

With the poem chosen, all you need to do is give it to Duke. Now that Duke is a
PoeticJuggler, his <bean> declaration will need to change slightly:

<bean id="poeticDuke"
class="com.springinaction.springidol.PoeticJuggler">

<constructor-arg value="15" />
<constructor-arg ref="sonnet29" />

</bean>

As you can see from listing 2.2, there’s no default constructor. The only way to con-

Listing 2.3 A class that represents a great work of the Bard
struct a PoeticJuggler is to use a constructor that takes arguments. In this listing,

Licensed to Christian Cederquist <chrisman@kaus.dk>

37Declaring beans

you’re using the constructor that takes an int and a Poem as arguments. The duke
bean declaration configures the number of beanbags as 15 through the int argument
using <constructor-arg>’s value attribute.

 But you can’t use value to set the second constructor argument because a Poem
isn’t a simple type. Instead, the ref attribute is used to indicate that the value passed
to the constructor should be a reference to the bean whose ID is sonnet29. Although
the Spring container does much more than just construct beans, you may imagine
that when Spring encounters the sonnet29 and duke <bean>s, it performs some logic
that’s essentially the same as the following lines of Java:

Poem sonnet29 = new Sonnet29();
Performer duke = new PoeticJuggler(15, sonnet29);

Now when Duke performs, he not only juggles but will also recite Shakespeare, result-
ing in the following being printed to the standard output stream:

JUGGLING 15 BEANBAGS WHILE RECITING... When, in
disgrace with fortune and men's eyes, I all alone beweep my outcast
state And trouble deaf heaven with my bootless cries And look upon
myself and curse my fate, Wishing me like to one more rich in hope,
Featured like him, like him with friends possess'd, Desiring this
man's art and that man's scope, With what I most enjoy contented
least; Yet in these thoughts myself almost despising, Haply I think
on thee, and then my state, Like to the lark at break of day arising
From sullen earth, sings hymns at heaven's gate; For thy sweet love
remember'd such wealth brings That then I scorn to change my state
with kings.

Creating beans through constructor injection is great, but what if the bean you want
to declare doesn’t have a public constructor? Let’s see how to wire in beans that are
created through factory methods.

CREATING BEANS THROUGH FACTORY METHODS

Sometimes the only way to instantiate an object is through a static factory method.
Spring is ready-made to wire factory-created beans through the <bean> element’s
factory-method attribute.

 To illustrate, consider the case of configuring a singleton3 class as a bean in Spring.
Singleton classes generally ensure that only one instance is created by only allowing
creation through a static factory method. The Stage class in the following listing is a
basic example of a singleton class.

package com.springinaction.springidol;

public class Stage {
private Stage() {
}

Listing 2.4 The Stage singleton class
3 I’m talking about the Gang of Four Singleton pattern here, not the Spring notion of singleton bean definitions.

Licensed to Christian Cederquist <chrisman@kaus.dk>

38 CHAPTER 2 Wiring beans

private static class StageSingletonHolder {
static Stage instance = new Stage();

}

public static Stage getInstance() {
return StageSingletonHolder.instance;

}
}

In the Spring Idol competition, we want to ensure that there’s only one stage for the
performers to show their stuff. Stage has been implemented as a singleton to ensure
that there’s no way to create more than one instance of Stage.

 But note that Stage doesn’t have a public constructor. Instead, the static get-
Instance() method returns the same instance every time it’s called. (For thread
safety, getInstance() employs a technique known as “initialization on demand
holder” to create the singleton instance.4) How can we configure Stage as a bean in
Spring without a public constructor?

 Fortunately, the <bean> element has a factory-method attribute that lets you spec-
ify a static method to be invoked instead of the constructor to create an instance of a
class. To configure Stage as a bean in the Spring context, you simply use factory-
method as follows:

<bean id="theStage"
class="com.springinaction.springidol.Stage"
factory-method="getInstance" />

Here I’ve shown you how to use factory-method to configure a singleton as a bean in
Spring, but it’s perfectly suitable for any occasion where you need to wire an object pro-
duced by a static method. You’ll see more of factory-method in chapter 4 when we use
it to get references to AspectJ aspects so that they can be injected with dependencies.

2.1.4 Bean scoping

By default, all Spring beans are singletons. When the container dispenses a bean
(either through wiring or as the result of a call to the container’s getBean() method)
it’ll always hand out the exact same instance of the bean. But there may be times when
you need a unique instance of a bean each time it’s asked for. How can you override
Spring’s default singleton nature?

 When declaring a <bean> in Spring, you have the option of declaring a scope for
that bean. To force Spring to produce a new bean instance each time one is needed,
you should declare the bean’s scope attribute to be prototype. For example, suppose
that tickets for a performance are declared as a bean in Spring:

<bean id="ticket"
class="com.springinaction.springidol.Ticket" scope="prototype" />

Lazily loads
instance

Return
instance
4 For information on the “initialization on demand holder” idiom, see http://mng.bz/IGYx.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://mng.bz/IGYx

39Declaring beans

It’s important that everyone attending the performance be given a distinct ticket. If
the ticket bean were a singleton, everyone would receive the same ticket. This would
work out fine for the first person to arrive, but everyone else would be accused of
ticket counterfeiting!

 By setting the scope attribute to prototype, we can be assured that a distinct
instance will be given out to everyone who the ticket bean is wired into.

 In addition to prototype, Spring offers a handful of other scoping options out of
the box, as listed in table 2.2.

For the most part, you’ll probably want to leave scoping to the default singleton, but
prototype scope may be useful in situations where you want to use Spring as a factory
for new instances of domain objects. If domain objects are configured as prototype
beans, you can easily configure them in Spring, just like any other bean. But Spring is
guaranteed to always dispense a unique instance each time a prototype bean is asked
for.

 The astute reader will recognize that Spring’s notion of singletons is limited to the
scope of the Spring context. Unlike true singletons, which guarantee only a single
instance of a class per classloader, Spring’s singleton beans only guarantee a single
instance of the bean definition per the application context—nothing is stopping you
from instantiating that same class in a more conventional way or even defining several
<bean> declarations that instantiate the same class.

2.1.5 Initializing and destroying beans

When a bean is instantiated, it may be necessary to perform some initialization to get
it into a usable state. Likewise, when the bean is no longer needed and is removed
from the container, some cleanup may be in order. To accommodate setup and tear-
down of beans, Spring provides hooks into the bean lifecycle.

Table 2.2 Spring’s bean scopes let you declare the scope under which beans are created without hard-
coding the scoping rules in the bean class itself.

Scope What it does

singleton Scopes the bean definition to a single instance per Spring container
(default).

prototype Allows a bean to be instantiated any number of times (once per use).

request Scopes a bean definition to an HTTP request. Only valid when used with a
web-capable Spring context (such as with Spring MVC).

session Scopes a bean definition to an HTTP session. Only valid when used with a
web-capable Spring context (such as with Spring MVC).

global-session Scopes a bean definition to a global HTTP session. Only valid when used in a
portlet context.
Licensed to Christian Cederquist <chrisman@kaus.dk>

40 CHAPTER 2 Wiring beans

 To define setup and teardown for a bean, simply declare the <bean> with init-
method and/or destroy-method parameters. The init-method attribute specifies a
method that is to be called on the bean immediately upon instantiation. Similarly,
destroy-method specifies a method that is called just before a bean is removed from
the container.

 To illustrate, imagine that we have a Java class called Auditorium which represents
the performance hall where the talent competition will take place. Auditorium will
likely do a lot of things, but for now let’s focus on two things that are important at the
beginning and the end of the show: turning on the lights and then turning them
back off.

 To support these essential activities, the Auditorium class might have turnOn-
Lights() and turnOffLights() methods:

public class Auditorium {
public void turnOnLights() {

...
}

public void turnOffLights() {
...

}
}

The details of what takes place within the turnOnLights() and turnOffLights()
methods isn’t terribly important. What’s important is that the turnOnLights()
method be called at the start and turnOffLights() be called at the end. For that, let’s
use the init-method and destroy-method attributes when declaring the auditorium
bean:

<bean id="auditorium"
class="com.springinaction.springidol.Auditorium"
init-method="turnOnLights"

 destroy-method="turnOffLights"/>

When declared this way, the turnOnLights() method will be called soon after the
auditorium bean is instantiated, allowing it the opportunity to light up the perfor-
mance venue. And, just before the bean is removed from the container and discarded,
turnOffLights() will be called to turn the lights off.

InitializingBean and DisposableBean
An optional way to define init and destroy methods for a bean is to write the bean
class to implement Spring’s InitializingBean and DisposableBean interfaces.
The Spring container treats beans that implement these interfaces in a special way
by allowing them to hook into the bean lifecycle. InitializingBean declares an
afterPropertiesSet() method that serves as the init method. As for Disposable-
Bean, it declares a destroy() method that gets called when a bean is removed from
the application context.
Licensed to Christian Cederquist <chrisman@kaus.dk>

41Injecting into bean properties

DEFAULTING INIT-METHOD AND DESTROY-METHOD

If many of the beans in a context definition file will have initialization or destroy
methods with the same name, you don’t have to declare init-method or destroy-
method on each individual bean. Instead you can take advantage of the default-
init-method and default-destroy-method attributes on the <beans> element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"
 default-init-method="turnOnLights"
 default-destroy-method="turnOffLights"> ...
</beans>

The default-init-method attribute sets an initialization method across all beans in
a given context definition. Likewise, default-destroy-method sets a common
destroy method for all beans in the context definition. In this case, we’re asking
Spring to initialize all beans in the context definition file by calling turnOnLights()
and to tear them down with turnOffLights() (if those methods exist—otherwise
nothing happens).

2.2 Injecting into bean properties
Typically, a JavaBean’s properties are private and will have a pair of accessor methods
in the form of setXXX() and getXXX(). Spring can take advantage of a property’s set-
ter method to configure the property’s value through setter injection.

 To demonstrate Spring’s other form of DI, let’s welcome our next performer to
the stage. Kenny is a talented instrumentalist, as defined by the Instrumentalist
class.

package com.springinaction.springidol;

public class Instrumentalist implements Performer {
public Instrumentalist() {
}

Listing 2.5 Defining a performer who is talented with musical instruments

(continued)
The chief benefit of using these lifecycle interfaces is that the Spring container can
automatically detect beans that implement them without any external configuration.
The disadvantage of implementing these interfaces is that you couple your applica-
tion’s beans to Spring’s API. For this reason alone, I recommend that you rely on the
init-method and destroy-method attributes to initialize and destroy your beans.
The only scenario where you might favor Spring’s lifecycle interfaces is if you’re devel-
oping a framework bean that’s to be used specifically within Spring’s container.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

42 CHAPTER 2 Wiring beans

public void perform() throws PerformanceException {
System.out.print("Playing " + song + " : ");
instrument.play();

}

private String song;

public void setSong(String song) {
this.song = song;

}

public String getSong() {
return song;

}

public String screamSong() {
return song;

}

private Instrument instrument;

public void setInstrument(Instrument instrument) {
this.instrument = instrument;

}
}

From listing 2.5, we can see that an Instrumentalist has two properties: song and
instrument. The song property holds the name of the song that the instrumentalist
will play and is used in the perform() method. The instrument property holds a ref-
erence to an Instrument that the instrumentalist will play. An Instrument is defined
by the following interface:

package com.springinaction.springidol;

public interface Instrument {
public void play();

}

Because the Instrumentalist class has a default constructor, Kenny could be
declared as a <bean> in Spring with the following XML:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist" />

Although Spring will have no problem instantiating kenny as an Instrumentalist,
Kenny will have a hard time performing without a song or an instrument. Let’s look
at how to give Kenny his song and instrument by using setter injection.

2.2.1 Injecting simple values

Bean properties can be configured in Spring using the <property> element.
<property> is similar to <constructor-arg> in many ways, except that instead of
injecting values through a constructor argument, <property> injects by calling a
property’s setter method.

Inject song

Inject
instrument
Licensed to Christian Cederquist <chrisman@kaus.dk>

43Injecting into bean properties

 To illustrate, let’s give Kenny a song to perform using setter injection. The follow-
ing XML shows an updated declaration of the kenny bean:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
</bean>

Once the Instrumentalist has been instantiated, Spring will use property setter
methods to inject values into the properties specified by <property> elements. The
<property> element in this XML instructs Spring to call setSong() to set a value of
"Jingle Bells" for the song property.

 In this case, the value attribute of the <property> element is used to inject a
String value into a property. But <property> isn’t limited to injecting String values.
The value attribute can also specify numeric (int, float, java.lang.Double, and so
on) values as well as boolean values.

 For example, let’s pretend that the Instrumentalist class has an age property of
type int to indicate the age of the instrumentalist. You could set Kenny’s age using the
following XML:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
<property name="age" value="37" />

</bean>

Note that the value attribute is used exactly the same when setting a numeric value as
it is when setting a String value. Spring will determine the correct type for the value
based on the property’s type. Since the age property is an int, Spring knows to con-
vert 37 to an int value before calling setAge().

 Using <property> to configure simple properties of a bean is great, but there’s
more to DI than just wiring hardcoded values. The real value of DI is found in wiring
an application’s collaborating objects together so that they don’t have to wire them-
selves together. To that aim, let’s see how to give Kenny an instrument that he can
play.

2.2.2 Referencing other beans

Kenny’s a talented instrumentalist and can play virtually any instrument given to him.
As long as it implements the Instrument interface, he can make music with it. Natu-
rally, Kenny does have a favorite instrument. His instrument of choice is the saxo-
phone, which is defined by the Saxophone class.

package com.springinaction.springidol;

public class Saxophone implements Instrument {
public Saxophone() {

Listing 2.6 A saxophone implementation of Instrument
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

44 CHAPTER 2 Wiring beans

public void play() {
System.out.println("TOOT TOOT TOOT");

}
}

Before you can give Kenny a saxophone to play, you must declare it as a bean in the
Spring container. The following XML should do:

<bean id="saxophone"
class="com.springinaction.springidol.Saxophone" />

Note that the Saxophone class has no properties that need to be set. Consequently,
there’s no need for <property> declarations in the saxophone bean.

 With the saxophone declared, we’re ready to give it to Kenny to play. The following
modification to the kenny bean uses setter injection to set the instrument property:

<bean id="kenny2"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
<property name="instrument" ref="saxophone" />

</bean>

Now the kenny bean has been injected with all of its properties and Kenny is ready to
perform. As with Duke, you can prompt Kenny to perform by executing the following
Java code (perhaps in a main() method):

ApplicationContext ctx = new ClassPathXmlApplicationContext(
"com/springinaction/springidol/spring-idol.xml");

Performer performer = (Performer) ctx.getBean("kenny");
performer.perform();

This isn’t the exact code that will run the Spring Idol competition, but it does give
Kenny a chance to practice. When it’s run, the following will be printed:

Playing Jingle Bells : TOOT TOOT TOOT

At the same time, it illustrates an important concept. If you compare this code with
the code that instructed Duke to perform, you’ll find that it isn’t much different. In
fact, the only difference is the name of the bean retrieved from Spring. The code is
the same, even though one causes a juggler to perform and the other causes an instru-
mentalist to perform.

 This isn’t a feature of Spring as much as it’s a benefit of coding to interfaces. By
referring to a performer through the Performer interface, we can blindly cause any
type of performer to perform, whether it’s a poetic juggler or a saxophonist. Spring
encourages the use of interfaces for this reason. And, as you’re about to see, interfaces
work hand in hand with DI to provide loose coupling.

 As mentioned, Kenny can play virtually any instrument that’s given to him as long
as it implements the Instrument interface. Although he favors the saxophone, we
could also ask Kenny to play piano. For example, consider the Piano class.
Licensed to Christian Cederquist <chrisman@kaus.dk>

45Injecting into bean properties

package com.springinaction.springidol;

public class Piano implements Instrument {
public Piano() {
}

public void play() {
System.out.println("PLINK PLINK PLINK");

}
}

The Piano class can be declared as a <bean> in Spring using the following XML:

<bean id="piano"
class="com.springinaction.springidol.Piano" />

Now that a piano is available, changing Kenny’s instrument is as simple as changing
the kenny bean declaration as follows:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
<property name="instrument" ref="piano" />

</bean>

With this change, Kenny will play a piano instead of a saxophone. But because the
Instrumentalist class only knows about its instrument property through the
Instrument interface, nothing about the Instrumentalist class needed to change to
support a new implementation of Instrument. Although an Instrumentalist can play
either a Saxophone or Piano, it’s decoupled from both. If Kenny decides to take up the
hammered dulcimer, the only change required will be to create a HammeredDulcimer
class and to change the instrument property on the kenny bean declaration.

INJECTING INNER BEANS

We’ve seen that Kenny can play saxophone, piano, or any instrument that implements
the Instrument interface. But it’s also true that the saxophone and piano beans could
also be shared with any other bean by injecting them into an instrument property. So,
not only can Kenny play any Instrument, any Instrumentalist can play the
saxophone bean. In fact, it’s common for beans to be shared among other beans in an
application.

 The problem is that Kenny’s concerned with the hygienic implications of sharing
his saxophone with others. He’d rather keep his saxophone to himself. To help Kenny
avoid germs, we’ll use a handy Spring technique known as inner beans.

 As a Java developer, you’re probably already familiar with the concept of inner
classes—classes that are defined within the scope of other classes. Similarly, inner
beans are beans that are defined within the scope of another bean. To illustrate, con-
sider this new configuration of the kenny bean where his saxophone is declared as an
inner bean:

Listing 2.7 A piano implementation of Instrument
Licensed to Christian Cederquist <chrisman@kaus.dk>

46 CHAPTER 2 Wiring beans

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
<property name="instrument">

<bean class="org.springinaction.springidol.Saxophone" />
</property>

</bean>

As you can see, an inner bean is defined by declaring a <bean> element directly as a
child of the <property> element to which it’ll be injected. In this case, a Saxophone
will be created and wired into Kenny’s instrument property.

 Inner beans aren’t limited to setter injection. You may also wire inner beans into
constructor arguments, as shown in this new declaration of the duke bean:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler">
<constructor-arg value="15" />
<constructor-arg>

<bean class="com.springinaction.springidol.Sonnet29" />
</constructor-arg>

</bean>

Here, a Sonnet29 instance will be created as an inner bean and sent as an argument to
the PoeticJuggler’s constructor.

 Note that the inner beans don’t have an id attribute set. Though it’s perfectly legal
to declare an ID for an inner bean, it’s not necessary because you’ll never refer to the
inner bean by name. This highlights the main drawback of using inner beans: they
can’t be reused. Inner beans are only useful for injection once and can’t be referred
to by other beans.

 You may also find that using inner-bean definitions has a negative impact on the
readability of the XML in the Spring context files.

2.2.3 Wiring properties with Spring’s p namespace

Wiring values and references into bean properties using the <property> element isn’t
that daunting. Nevertheless, Spring’s p namespace offers a way to wire bean properties
that doesn’t require so many angle brackets.

 The p namespace has a schema URI of http://www.springframework.org/
schema/p. To use it, simply add a declaration for it in the Spring XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

With it declared, you can now use p:-prefixed attributes of the <bean> element to wire
properties. An an example, look at the following declaration of the kenny bean:

<bean id="kenny" class="com.springinaction.springidol.Instrumentalist"
 p:song = "Jingle Bells"

 p:instrument-ref = "saxophone" />

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/p
http://www.springframework.org/schema/p
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

47Injecting into bean properties

The p:song attribute is set to "Jingle Bells", wiring the song property with that
value. Meanwhile, the p:instrument-ref attribute is set to "saxophone", effectively
wiring the instrument property with a reference to the bean whose ID is saxophone.
The -ref suffix serves as a clue to Spring that a reference should be wired instead of a
literal value.

 The choice between <property> and the p namespace is up to you. They work
equally well. The primary benefit of the p namespace is that it’s more terse. That
works well when trying to write examples for a book with fixed margins. Therefore,
you’re likely to see me use the p namespace from time to time throughout this book—
especially when horizontal space is tight.

 At this point, Kenny’s talent extends to virtually any instrument. Nevertheless, he
does have one limitation: he can play only one instrument at a time. Next to take the
stage in the Spring Idol competition is Hank, a performer who can simultaneously play
multiple instruments.

2.2.4 Wiring collections

Up to now, you’ve seen how to use Spring to configure both simple property values
(using the value attribute) and properties with references to other beans (using the
ref attribute). But value and ref are only useful when your bean’s properties are sin-
gular. How can Spring help you when your bean has properties that are plural—what
if a property is a collection of values?

 Spring offers four types of collection configuration elements that come in handy
when configuring collections of values. Table 2.3 lists these elements and what they’re
good for.

 The <list> and <set> elements are useful when configuring properties that are
either arrays or some implementation of java.util.Collection. As you’ll soon see,
the actual implementation of the collection used to define the property has little cor-
relation to the choice of <list> or <set>. Both elements can be used almost inter-
changeably with properties of any type of java.util.Collection.

 As for <map> and <props>, these two elements correspond to collections that are
java.util.Map and java.util.Properties, respectively. These types of collections

Table 2.3 Just as Java has several kinds of collections, Spring allows for injecting
several kinds of collections

Collection element Useful for...

<list> Wiring a list of values, allowing duplicates

<set> Wiring a set of values, ensuring no duplicates

<map> Wiring a collection of name-value pairs where name and value
can be of any type

<props> Wiring a collection of name-value pairs where the name and
value are both Strings
Licensed to Christian Cederquist <chrisman@kaus.dk>

48 CHAPTER 2 Wiring beans

are useful when you need a collection that’s made up of a collection of key-value pairs.
The key difference between the two is that when using <props>, both the keys and val-
ues are Strings, whereas <map> allows keys and values of any type.

 To illustrate collection wiring in Spring, please welcome Hank to the Spring Idol
stage. Hank’s special talent is that he’s a one-man band. Like Kenny, Hank’s talent is
playing several instruments, but Hank can play several instruments at the same time.
Hank is defined by the OneManBand class.

package com.springinaction.springidol;

import java.util.Collection;

public class OneManBand implements Performer {
public OneManBand() {
}

public void perform() throws PerformanceException {
for (Instrument instrument : instruments) {

instrument.play();
}

}

private Collection<Instrument> instruments;

public void setInstruments(Collection<Instrument> instruments) {
this.instruments = instruments;

}
}

As you can see, a OneManBand iterates over a collection of instruments when it per-
forms. What’s most important here is that the collection of instruments is injected
through the setInstruments() method. Let’s see how Spring can provide Hank with
his collection of instruments.

WIRING LISTS, SETS, AND ARRAYS

To give Hank a collection of instruments to perform with, let’s use the <list> config-
uration element:

<bean id="hank"
 class="com.springinaction.springidol.OneManBand">

<property name="instruments">
<list>

<ref bean="guitar" />
<ref bean="cymbal" />
<ref bean="harmonica" />

</list>
</property>

</bean>

The <list> element contains one or more values. Here <ref> elements are used to
define the values as references to other beans in the Spring context, configuring

Listing 2.8 A performer that’s a one-man-band

Inject
instrument collection
Hank to play a guitar, cymbal, and harmonica. But it’s also possible to use other

Licensed to Christian Cederquist <chrisman@kaus.dk>

49Injecting into bean properties

value-setting Spring elements as the members of a <list>, including <value>, <bean>,
and <null/>. In fact, a <list> may contain another <list> as a member for multidi-
mensional lists.

 In listing 2.8, OneManBand’s instruments property is a java.util.Collection
using Java 5 generics to constrain the collection to Instrument values. But <list> may
be used with properties that are of any implementation of java.util.Collection or
an array. In other words, the <list> element we just used would still work, even if the
instruments property were to be declared as

java.util.List<Instrument> instruments;

or even if it were to be declared as

Instrument[] instruments;

Likewise, you could also use <set> to wire a collection or array property:

<bean id="hank"
 class="com.springinaction.springidol.OneManBand">
<property name="instruments">

<set>
<ref bean="guitar" />
<ref bean="cymbal" />
<ref bean="harmonica" />
<ref bean="harmonica" />

</set>
</property>

</bean>

Again, either <list> or <set> can be used to wire any implementation of
java.util.Collection or an array. Just because a property is a java.util.Set, that
doesn’t mean that you must use <set> to do the wiring. Even though it may seem odd
to configure a java.util.List property using <set>, it’s certainly possible. In doing
so, you’ll be guaranteed that all members of the List will be unique.

WIRING MAP COLLECTIONS

When a OneManBand performs, each instrument’s sound is printed as the perform()
method iterates over the collection of instruments. But suppose that you also want to
see which instrument is producing each sound. To accommodate this, consider the
following changes to the OneManBand class.

package com.springinaction.springidol;

import java.util.Map;
import com.springinaction.springidol.Instrument;
import com.springinaction.springidol.PerformanceException;
import com.springinaction.springidol.Performer;

public class OneManBand implements Performer {
public OneManBand() {

Listing 2.9 Changing OneManBand’s instrument collection to a Map
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

50 CHAPTER 2 Wiring beans

public void perform() throws PerformanceException {
for (String key : instruments.keySet()) {

System.out.print(key + " : ");
Instrument instrument = instruments.get(key);
instrument.play();

}
}

private Map<String, Instrument> instruments;

public void setInstruments(Map<String, Instrument> instruments) {
this.instruments = instruments;

}
}

In the new version of OneManBand, the instruments property is a java.util.Map
where each member has a String as its key and an Instrument as its value. Because a
Map’s members are made up of key-value pairs, a simple <list> or <set> configura-
tion element won’t suffice when wiring the property.

 Instead, the following declaration of the hank bean uses the <map> element to con-
figure the instruments property:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
<property name="instruments">

<map>
<entry key="GUITAR" value-ref="guitar" />
<entry key="CYMBAL" value-ref="cymbal" />
<entry key="HARMONICA" value-ref="harmonica" />

</map>
</property>

</bean>

The <map> element declares a value of type java.util.Map. Each <entry> element
defines a member of the Map. In the previous example, the key attribute specifies the
key of the entry whereas the value-ref attribute defines the value of the entry as a ref-
erence to another bean within the Spring context.

 Although our example uses the key attribute to specify a String key and value-
ref to specify a reference value, the <entry> element actually has two attributes each
for specifying the key and value of the entry. Table 2.4 lists those attributes.

 <map> is only one way to inject key-value pairs into bean properties when either of
the objects isn’t a String. Let’s see how to use Spring’s <props> element to configure
String-to-String mappings.

Table 2.4 An <entry> in a <map> is made up of a key and a value, either of which can be a primitive
value or a reference to another bean. These attributes help specify the keys and values of an <entry>.

Attribute Purpose

key Specifies the key of the map entry as a String

key-ref Specifies the key of the map entry as a reference to a bean in the Spring context

value Specifies the value of the map entry as a String

Inject
instrument as map
value-ref Specifies the value of the map entry as a reference to a bean in the Spring context

Licensed to Christian Cederquist <chrisman@kaus.dk>

51Injecting into bean properties

WIRING PROPERTIES COLLECTIONS

When declaring a Map of values for OneManBand’s instrument property, it was neces-
sary to specify the value of each entry using value-ref. That’s because each entry is
ultimately another bean in the Spring context.

 But if you find yourself configuring a Map whose entries have both String keys and
String values, you may want to consider using java.util.Properties instead of a
Map. The Properties class serves roughly the same purpose as Map, but limits the keys
and values to Strings.

 To illustrate, imagine that instead of being wired with a map of Strings and bean
references, OneManBand is wired with a String-to-String java.util.Properties col-
lection. The new instruments property might be changed to look like this:

private Properties instruments;
public void setInstruments(Properties instruments) {

this.instruments = instruments;
}

To wire the instrument sounds into the instruments property, we use the <props> ele-
ment in the following declaration of the hank bean:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
<property name="instruments">

<props>
<prop key="GUITAR">STRUM STRUM STRUM</prop>
<prop key="CYMBAL">CRASH CRASH CRASH</prop>
<prop key="HARMONICA">HUM HUM HUM</prop>

</props>
</property>

</bean>

The <props> element constructs a java.util.Properties value where each member
is defined by a <prop> element. Each <prop> element has a key attribute that defines
the key of each Properties member, while the value is defined by the contents of the
<prop> element. In our example, the element whose key is “GUITAR” has a value of
“STRUM STRUM STRUM”.

 This may be the most difficult Spring configuration element to talk about. That’s
because the term property is highly overloaded. It’s important to keep the following
straight:

 <property> is the element used to inject a value or bean reference into a prop-
erty of a bean class.

 <props> is the element used to define a collection value of type java.util
.Properties.

 <prop> is the element used to define a member of a <props> collection.

Up to this point, we’ve seen how to wire several things into bean properties and con-
structor arguments. We’ve wired simple values, references to other beans, and collec-
tions. Now, let’s see how to wire nothing.
Licensed to Christian Cederquist <chrisman@kaus.dk>

52 CHAPTER 2 Wiring beans

2.2.5 Wiring nothing (null)

You read that right. In addition to all of the other things Spring can wire into a bean
property or constructor argument, it can also wire nothing. Or more accurately,
Spring can wire a null.

 You’re probably rolling your eyes and thinking, “What’s this guy talking about?
Why would I ever want to wire null into a property? Aren’t all properties null until
they’re set? What’s the point?”

 Though it’s often true that properties start out null and will remain that way until
set, some beans may themselves set a property to a non-null default value. What if, for
some twisted reason, you want to force that property to be null? If that’s the case, it’s
not sufficient to just assume that the property will be null—you must explicitly wire
null into the property.

 To set a property to null, you simply use the <null/> element. For example:

<property name="someNonNullProperty"><null/></property>

Another reason for explicitly wiring null into a property is to override an autowired
property value. What’s autowiring, you ask? Keep reading—we’re going to explore
autowiring in the next chapter.

 For now, you’ll want to hold on to your seats. We’ll wrap up this chapter by looking
at one of the coolest new features in Spring: the Spring Expression Language.

2.3 Wiring with expressions
So far all of the stuff we’ve wired into bean properties and constructor arguments has
been statically defined in the Spring configuration XML. When we wired the name of
a song into the Instrumentalist bean, that value was determined at development
time. And when we wired references to other beans, those references were also stati-
cally determined while we wrote the Spring configuration.

 What if we want to wire properties with values that aren’t known until runtime?
 Spring 3 introduced the Spring Expression Language (SpEL), a powerful yet succinct

way of wiring values into a bean’s properties or constructor arguments using expres-
sions that are evaluated at runtime. Using SpEL, you can pull off amazing feats of bean
wiring that would be much more difficult (or even impossible) using Spring’s tradi-
tional wiring style.

 SpEL has a lot of tricks up its sleeves, including

 The ability to reference beans by their ID
 Invoking methods and accessing properties on objects
 Mathematical, relational, and logical operations on values
 Regular expression matching
 Collection manipulation

Writing a SpEL expression involves piecing together the various elements of the SpEL
syntax. Even the most interesting SpEL expressions are often composed of simpler
Licensed to Christian Cederquist <chrisman@kaus.dk>

53Wiring with expressions

expressions. So before we can start running with SpEL, let’s take our first steps with
some of the most basic ingredients of a SpEL expression.

2.3.1 Expressing SpEL fundamentals

The ultimate goal of a SpEL expression is to arrive at some value after evaluation. In
the course of calculating that value, other values are considered and operated upon.
The simplest kinds of values that SpEL can evaluate may be literal values, references to
a bean’s properties, or perhaps a constant on some class.

LITERAL VALUES

The simplest possible SpEL expression is one that contains only a literal value. For
example, the following is a perfectly valid SpEL expression:

5

Not surprisingly, this expression evaluates to an integer value of 5. We could wire this
value into a bean’s property by using #{} markers in a <property> element’s value
attribute like this:

<property name="count" value="#{5}"/>

The #{} markers are a clue to Spring that the content that they contain is a SpEL
expression. They could be mixed with non-SpEL values as well:

<property name="message" value="The value is #{5}"/>

Floating-point numbers can also be expressed in SpEL. For example:

<property name="frequency" value="#{89.7}"/>

Numbers can even be expressed in scientific notation. As an example, the following
snippet of code sets a capacity property to 10000.0 using scientific notation:

<property name="capacity" value="#{1e4}"/>

Literal String values can also be expressed in SpEL with either single or double quote
marks. For example, to wire a literal String value into a bean property, we could
express it like this:

<property name="name" value="#{'Chuck'}"/>

Or if you were using single quote marks for XML attribute values, then you’d want to
use double quotes in the SpEL expression:

<property name='name' value='#{"Chuck"}'/>

A couple of other literal values you may use are the Boolean true and false values.
For example, you could express a false like this:

<property name="enabled" value="#{false}"/>

Working with literal values in SpEL expressions is mundane. After all, we don’t need
SpEL to set an integer property to 5 or a Boolean property to false. I admit that
Licensed to Christian Cederquist <chrisman@kaus.dk>

54 CHAPTER 2 Wiring beans

there’s not much use to SpEL expressions that only contain literal values. But remem-
ber that more interesting SpEL expressions are composed of simpler expressions. So
it’s good to know how to work with literal values in SpEL. We’ll eventually need them
as our expressions get more complex.

REFERENCING BEANS, PROPERTIES, AND METHODS

Another basic thing that a SpEL expression can do is to reference another bean by its
ID. For example, you could use SpEL to wire one bean into another bean’s property by
using the bean ID as the SpEL expression:

<property name="instrument" value="#{saxophone}"/>

As you can see, we’re using SpEL to wire the bean whose ID is "saxophone" into an
instrument property. But wait… can’t we do that without SpEL by using the ref attri-
bute as follows?

<property name="instrument" ref="saxophone"/>

Yes, the outcome is the same. And yes, we didn’t need SpEL to do that. But it’s interest-
ing that we can do that, and in a moment I’ll show you a few tricks that take advantage
of being able to wire bean references with SpEL. Right now I want to show how you
can use a bean reference to access the properties of the bean in a SpEL expression.

 Let’s say that you want to configure a new Instrumentalist bean whose ID is carl.
The funny thing about Carl is that he’s a copycat performer. Instead of performing his
own song, he’s going to be wired to perform whatever song Kenny plays. When you
configure the carl bean, you can use SpEL to copy Kenny’s song into the song prop-
erty like this:

<bean id="carl"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="#{kenny.song}" />
</bean>

As illustrated in figure 2.1, the expression passed into Carl’s song property is made up
of two parts.

 The first part (the part before the period delimiter) refers to the kenny bean by its
ID. The second part refers to the song attribute of the kenny bean. By wiring the carl
bean’s song property this way, it’s effectively as if you programmatically performed the
following Java code:

Instrumentalist carl = new Instrumentalist();
carl.setSong(kenny.getSong());

Ah! We’re finally doing something slightly interesting with SpEL. It’s a humble expres-
sion, but I can’t imagine an easier way to pull off the same thing without SpEL.

 Trust me… we’re just getting started.
 Referencing a bean’s properties isn’t the

only thing you can do with a bean. You could
also invoke a method. For example, imagine

Figure 2.1 Referring to
another bean's property
using the Spring
Expression Language
Licensed to Christian Cederquist <chrisman@kaus.dk>

55Wiring with expressions

that you have a songSelector bean which has a selectSong() method on it that
returns a song to be sung. In that case, Carl could quit copycatting and start singing
whatever song the songSelector bean suggests:

<property name="song" value="#{songSelector.selectSong()}"/>

Now suppose that (for whatever reason), Carl wants the song given to him in all
uppercase. No problem… all you need to do is invoke the toUpperCase() method on
the String value you’re given:

<property name="song" value="#{songSelector.selectSong().toUpperCase()}"/>

That’ll do the trick every time… as long as the selectSong() method doesn’t return a
null. If selectSong() were to return null, then you’d get a NullPointerException
as the SpEL expression is being evaluated.

 The way to avoid the dreaded NullPointerException in SpEL is to use the null-
safe accessor:

<property name="song" value="#{songSelector.selectSong()?.toUpperCase()}"/>

Instead of a lonely dot (.) to access the toUpperCase() method, now you’re using ?.
operator. This operator makes sure that the item to its left isn’t null before accessing
the thing to its right. So, if selectSong() were to return a null, then SpEL wouldn’t
even try to invoke toUpperCase() on it.

 Writing expressions that work with other beans is a good start. But what if you need
to invoke a static method or reference a constant? For that we’ll need to see how to
work with types in SpEL.

WORKING WITH TYPES

The key to working with class-scoped methods and constants in SpEL is to use the T()
operator. For example, to express Java’s Math class in SpEL, you’d need to use the T()
operator like this:

T(java.lang.Math)

The result of the T() operator, as shown here, is a Class object that represents
java.lang.Math. You could even wire it into a bean property of type Class if you want
to. But the real value of the T() operator is that it gives us access to static methods and
constants on a given class.

 For example, suppose that you need to wire the value of pi into a bean property. In
that case, simply reference the Math class’s PI constant like this:

<property name="multiplier" value="#{T(java.lang.Math).PI}"/>

Similarly, static methods can also be invoked on the result of the T() operator. For
instance, here’s how to wire a random number (between 0 and 1) into a bean property:

<property name="randomNumber" value="#{T(java.lang.Math).random()}"/>

When the application is starting up and Spring is wiring the randomNumber property,
it’ll use the Math.random() method to determine a value for that property. This is
Licensed to Christian Cederquist <chrisman@kaus.dk>

http:value="#{T(java.lang.Math).PI

56 CHAPTER 2 Wiring beans

another example of a SpEL expression that I can’t think of a simpler way to do with-
out SpEL.

 Now that we’ve added a few of the most basic SpEL expressions to our bag of tricks,
let’s step things up a bit by looking at the types of operations we can perform on those
simpler expressions.

2.3.2 Performing operations on SpEL values

SpEL offers several operations that you can
apply on values in a SpEL expression. These
operations are summarized in table 2.5.

 The first kind of operations we’ll play
with are the ones that let us perform basic
math on values in a SpEL expression.

DOING MATH WITH SPEL

SpEL supports all of the basic arithmetic
operators that Java supports, plus the carat
(^) operator for performing a power of
operation.

 For example, to add two numbers
together, the + operator can be used like this:

<property name="adjustedAmount" value="#{counter.total + 42}"/>

Here we’re adding 42 to the value of the counter bean’s total property. Note that
although both sides of the + operator are numeric, they don’t have to be literal values.
In this case, the left side is a SpEL expression in its own right.

 The other arithmetic operators work in SpEL just as you’d expect them to in Java.
The - operator, for instance, performs subtraction:

<property name="adjustedAmount" value="#{counter.total - 20}"/>

The * operator performs multiplication:

<property name="circumference"

➥ value="#{2 * T(java.lang.Math).PI * circle.radius}"/>

The / operator performs division:

<property name="average" value="#{counter.total / counter.count}"/>

And the % operator performs a modulo operation:

<property name="remainder" value="#{counter.total % counter.count}"/>

Unlike Java, SpEL also offers a power-of operator in the form of the carat:

<property name="area" value="#{T(java.lang.Math).PI * circle.radius ^ 2}"/>

Even though we’re talking about SpEL’s arithmetic operators, it’s worth mentioning
that the + operator is overloaded to perform concatenation on String values. For

Table 2.5 SpEL includes several operators
that you can use to manipulate the values of
an expression.

Operation type Operators

Arithmetic +, -, *, /, %, ^

Relational <, >, ==, <=, >=, lt,
gt, eq, le, ge

Logical and, or, not, |

Conditional ?: (ternary), ?: (Elvis)

Regular expression matches
example:

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:value="#{T(java.lang.Math).PI
http:T(java.lang.Math).PI

57Wiring with expressions

<property name="fullName"
value="#{performer.firstName + ' ' + performer.lastName}"/>

Again, this is consistent Java in that the + operator can be used to concatenate String
values there, too.

COMPARING VALUES

It’s often useful to compare two values to decide whether they’re equal or which is
greater than the other. For that kind of comparison, SpEL offers all of the expected
comparison operators that Java itself also offers.

 As an example, to compare two numbers for equality, you can use the double-equal
(==) operator:

<property name="equal" value="#{counter.total == 100}"/>

In this case, it’s assumed that the equal property is a Boolean and it’ll be wired with a
true if the total property is equal to 100.

 Similarly, the less-than (<) and greater-than (>) operators can be used to compare
different values. Likewise, SpEL also supports the greater-than-or-equals (>=) and the
less-than-or-equals (<=) operators. For example, the following is a perfectly valid SpEL
expression:

counter.total <= 100000

Unfortunately, the less-than and greater-than symbols pose a problem when using
these expressions in Spring’s XML configuration, as they have special meaning in
XML. So, when using SpEL in XML,5 it’s best to use SpEL’s textual alternatives to these
operators. For example:

<property name="hasCapacity" value="#{counter.total le 100000}"/>

Here, the le operator means less than or equals. The other textual comparison opera-
tors are cataloged in table 2.6.

 You’ll notice that even though the symbolic equals operator (==) doesn’t present
any issues in XML, SpEL offers a textual eq operator in the interest of consistency with
the other operators, and because some developers may prefer the textual operators
over the symbolic ones.

Operation Symbolic Textual

Equals == eq

Less than < lt

Less than or equals <= le

Greater than > gt

Greater than or equals >= ge

Table 2.6 SpEL includes several oper-
ators that you can use to manipulate
the values of an expression.
5 We’ll see how to use SpEL outside of Spring XML configuration in the next chapter.

Licensed to Christian Cederquist <chrisman@kaus.dk>

58 CHAPTER 2 Wiring beans

LOGICAL EXPRESSIONS

It’s great that we can evaluate comparisons in SpEL, but what if you need to evaluate
based on two comparisons? Or what if you want to negate some Boolean value?
That’s where the logical operators come into play. Table 2.7 lists all of SpEL’s logical
operators.

As an example, consider the following use of the and operator:

<property name="largeCircle"
value="#{shape.kind == 'circle' and shape.perimeter gt 10000}"/>

In this case, the largeCircle property will be set to true if the kind property of shape
is "circle" and the perimeter property is a number greater than 10000. Otherwise,
it’ll remain false.

 To negate a Boolean expression, you have two operators to choose from: either the
symbolic ! operator or the textual not operator. For example, the following use of the
! operator

<property name="outOfStock" value="#{!product.available}"/>

is equivalent to this use of the not operator:

<property name="outOfStock" value="#{not product.available}"/>

Strangely, SpEL doesn’t offer symbolic equivalents for the and and or operators.

CONDITIONALLY EVALUATING

What if you want a SpEL expression to evaluate to one value if a condition is true and
a different value otherwise? For example, let’s say that Carl (the Instrumentalist
from earlier) wants to play a piano if the song is “Jingle Bells,” but he’ll play a saxo-
phone otherwise. In that case, you can use SpEL’s ternary (?:) operator:

<property name="instrument"
value="#{songSelector.selectSong()=='Jingle Bells'?piano:saxophone}"/>

As you can see, SpEL’s ternary operator works the same as Java’s ternary operator. In
this case, the instrument property will be wired with a reference to the piano bean if
the song selected is “Jingle Bells.” Otherwise, it’ll be wired with the bean whose ID is
saxophone.

 A common use of the ternary operator is to check for a null value and to wire a
default value in the event of a null. For example, suppose we want to configure Carl

Table 2.7 SpEL includes several operators that you can use to manipulate the values of an expression.

Operator Operation

and A logical AND operation; both sides must evaluate true for the expression to be true

or A logical OR operation; either side must evaluate true for the expression to be true

not or ! A logical NOT operation; negates the target of the operation
Licensed to Christian Cederquist <chrisman@kaus.dk>

59Wiring with expressions

to perform the same song as Kenny, unless Kenny doesn’t have a song. In that case,
Carl’s song should default to “Greensleeves.” The ternary operator could be used as
follows to handle this case:

<property name="song"
value="#{kenny.song != null ? kenny.song : 'Greensleeves'}"/>

Although that’ll work, there’s a bit of duplication in that we refer to kenny.song twice.
SpEL offers a variant of the ternary operator that simplifies this expression:

<property name="song" value="#{kenny.song ?: 'Greensleeves'}"/>

As in the previous example, the expression will evaluate to the value of kenny.song or
“Greensleeves” if kenny.song is null. When used this way, ?: is referred to as the Elvis
operator. This strange name comes from using the operator as a type of smiley where
the question mark appears to form the shape of Elvis Presley’s hair. 6

REGULAR EXPRESSIONS IN SPEL

When working with text, it’s sometimes useful to check whether that text matches a cer-
tain pattern. SpEL supports pattern matching in expressions with its matches operator.

 The matches operator attempts to apply a regular expression (given as its right-
side argument) against a String value (given as the left-side argument). The result of
a matches evaluation is a Boolean value: true if the value matches the regular expres-
sion, false otherwise.

 To demonstrate the matches operator, suppose that we want to check whether a
String contains a valid email address. In that case, we could apply the matches opera-
tor like this:

<property name="validEmail" value=
"#{admin.email matches '[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.com'}"/>

Exploring the mysteries of the enigmatic regular expression syntax is outside the
scope of this book. And I realize that the regular expression given here is not robust
enough to cover all scenarios. But for the purposes of showing off the matches opera-
tor, it’ll suffice.

 Now that we’ve seen how to evaluate expressions concerning simple values, let’s
look at the kind of magic that SpEL can perform on collections.

2.3.3 Sifting through collections in SpEL

Some of SpEL’s most amazing tricks involve working with collections. Sure, you can
reference a single member of a collection in SpEL, just like in Java. But SpEL also has
the power to select members of a collection based on the values of their properties. It
can also extract properties out of the collection members into a new collection.

 For demonstration purposes, suppose that you have a City class that’s defined as
follows (with getter/setter methods removed to conserve space):
6 Don’t blame me. I didn’t come up with that name. But it kind of looks like Elvis’s hair, doesn’t it?

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.com

60 CHAPTER 2 Wiring beans

package com.habuma.spel.cities;
public class City {

private String name;
private String state;
private int population;

}

And, let’s suppose that you’ve configured a list of City objects in Spring by using the
<util:list> element as shown next.

<util:list id="cities">
<bean class="com.habuma.spel.cities.City"

p:name="Chicago" p:state="IL" p:population="2853114"/>
<bean class="com.habuma.spel.cities.City"

p:name="Atlanta" p:state="GA" p:population="537958"/>
<bean class="com.habuma.spel.cities.City"

p:name="Dallas" p:state="TX" p:population="1279910"/>
<bean class="com.habuma.spel.cities.City"

p:name="Houston" p:state="TX" p:population="2242193"/>
<bean class="com.habuma.spel.cities.City"

p:name="Odessa" p:state="TX" p:population="90943"/>
<bean class="com.habuma.spel.cities.City"

p:name="El Paso" p:state="TX" p:population="613190"/>
<bean class="com.habuma.spel.cities.City"

p:name="Jal" p:state="NM" p:population="1996"/>
<bean class="com.habuma.spel.cities.City"

p:name="Las Cruces" p:state="NM" p:population="91865"/>
</util:list>

The <util:list> element comes from Spring’s util namespace. It effectively creates
a bean of type java.util.List that contains all of the values or beans that it contains.
In this case, that’s a list of eight City beans.

 SpEL offers a few handy operators for working with collections such as this.

ACCESSING COLLECTION MEMBERS

The most basic thing we could do here is extract a single element out of the list and
wire it into a property:

<property name="chosenCity" value="#{cities[2]}"/>

In this case, I’ve selected the third city out of the zero-based cities list and wired it
into the chosenCity property. To spice up the example, I suppose you could ran-
domly choose a city:

<property name="chosenCity"
value="#{cities[T(java.lang.Math).random() * cities.size()]}"/>

In any event, the square-braces ([]) operator serves to access a member of the collec-
tion by its index.

 The [] operator is also good for retrieving a member of a java.util.Map collec-
tion. For example, suppose the City objects were in a Map with their name as the key.

Listing 2.10 A list of cities, defined using Spring’s <util:list> element
In that case, we could retrieve the entry for Dallas like this:

Licensed to Christian Cederquist <chrisman@kaus.dk>

61Wiring with expressions

<property name="chosenCity" value="#{cities['Dallas']}"/>

Another use of the [] operator is to retrieve a value from a java.util.Properties
collection. For example, suppose that you were to load a properties configuration file
into Spring using the <util:properties> element as follows:

<util:properties id="settings"
location="classpath:settings.properties"/>

Here the settings bean will be a java.util.Properties that contains all of the
entries in the file named settings.properties. With SpEL, you can access a property
from that file in the same way you access a member of a Map. For example, the follow-
ing use of SpEL reads a property whose name is twitter.accessToken from the
settings bean:

<property name="accessToken" value="#{settings['twitter.accessToken']}"/>

In addition to reading properties from a <util:properties>-declared collection,
Spring makes two special selections of properties available to SpEL: system-
Environment and systemProperties.

 systemEnvironment contains all of the environment variables on the machine run-
ning the application. It’s just a java.util.Properties collection, so the square
braces can be used to access its members by their key. For example, on my MacOS X
machine, I can inject the user’s home directory path into a bean property like this:

<property name="homePath" value="#{systemEnvironment['HOME']}"/>

Meanwhile, systemProperties contains all of the properties that were set in Java as
the application started (typically using the -D argument). Therefore, if the JVM were
started with -Dapplication.home=/etc/myapp, then you could wire that value into
the homePath property with the following SpEL incantation:

<property name="homePath" value="#{systemProperties['application.home']}"/>

Although it doesn’t have much to do with working with collections, it’s worth noting
that the [] operator can also be used on String values to retrieve a single character by
its index within the String. For example, the following expression will evaluate to "s":

'This is a test'[3]

Accessing individual members of a collection is handy. But with SpEL, we can also
select members of a collection that meet certain criteria. Let’s give collection selection
a try.

SELECTING COLLECTION MEMBERS

Let’s say that you want to narrow the list of cities down to only those whose population
is greater than 100,000. One way to do this is to wire the entire cities bean into a
property and place the burden of sifting out the smaller cities on the receiving bean.
But with SpEL, it’s a simple matter of using a selection operator (.?[]) when doing
the wiring:
<property name="bigCities" value="#{cities.?[population gt 100000]}"/>

Licensed to Christian Cederquist <chrisman@kaus.dk>

62 CHAPTER 2 Wiring beans

The selection operator will create a new collection whose members include only those
members from the original collection that meet the criteria expressed between the
square braces. In this case, the bigCities property will be wired with a list of City
objects whose population property exceeds 100,000.

 SpEL also offers two other selection operators, .^[] and .$[], for selecting the first
and last matching items (respectively) from a collection. For example, to select the
first big city from cities:

<property name="aBigCity" value="#{cities.^[population gt 100000]}"/>

No ordering is done on the collection prior to selection, so the City representing Chi-
cago would be wired into the aBigCity property. Likewise, the City object represent-
ing El Paso could be selected as follows:

<property name="aBigCity" value="#{cities.$[population gt 100000]}"/>

We’ll revisit collection selection in a moment. But first, let’s see how to project proper-
ties from a collection into a new collection.

PROJECTING COLLECTIONS

Collection projection involves collecting a particular property from each of the mem-
bers of a collection into a new collection. SpEL’s projection operator (.![]) can do
exactly that.

 For example, suppose that instead of a list of City objects, what you want is just a
list of String objects containing the names of the cities. To get a list of just the city
names, you could wire a cityNames property like this:

<property name="cityNames" value="#{cities.![name]}"/>

As a result of this expression, the cityNames property will be given a list of Strings,
including values such as Chicago, Atlanta, Dallas, and so forth. The name property
within the square braces decides what each member of the resulting list will contain.

 But projection isn’t limited to projecting a single property. With a slight change to
the previous example, you can get a list of city and state names:

<property name="cityNames" value="#{cities.![name + ', ' + state]}"/>

Now the cityNames property will be given a list containing values such as “Chicago,
IL”, “Atlanta, GA”, and “Dallas, TX”.

 For my final SpEL trick, let me bring collection selection and projection together.
Here’s how you might wire a list of only big city names into the cityNames property:

<property name="cityNames"
value="#{cities.?[population gt 100000].![name + ', ' + state]}"/>

Since the outcome of the selection operation is a new list of City objects, there’s no
reason why I can’t use projection on that new collection to get the names of all of the
big cities.

 This demonstrates that you can assemble simple SpEL expressions into more inter-

esting (and more complex) expressions. It’s easy to see how that’s a powerful feature.

Licensed to Christian Cederquist <chrisman@kaus.dk>

63Summary

But it doesn’t take much of a stretch to realize that it’s also dangerous. SpEL expres-
sions are ultimately just Strings that are tricky to test and have no IDE support for syn-
tax checking.

 I encourage you to use SpEL wherever it can simplify what would otherwise be dif-
ficult (or even impossible) wirings. But be careful to not get too carried away with
SpEL. Fight the temptation to put too much logic into a SpEL expression.

 We’ll see some more SpEL later on and used in ways other than bean wiring. In the
next chapter we’ll break SpEL out of XML and use it in annotation-driven wiring. And,
as we’ll see in chapter 9, SpEL plays a significant role in the latest version of Spring
Security.

2.4 Summary
At the core of the Spring Framework is the Spring container. Spring comes with
several implementations of its container, but they all fall into one of two categories.
A BeanFactory is the simplest form of container, providing basic DI and bean-wiring
services. But when more advanced framework services are needed, Spring’s
ApplicationContext is the container to use.

 In this chapter, you’ve seen how to wire beans together within the Spring con-
tainer. Wiring is typically performed within a Spring container using an XML file. This
XML file contains configuration information for all of the components of an applica-
tion, along with information that helps the container perform DI to associate beans
with other beans that they depend on.

 Now that you know how to wire beans using XML, I’ll show you how to use less
XML. In the next chapter, we’ll look at how to take advantage of automatic wiring and
annotations to reduce the amount of XML configuration in a Spring application.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Minimizing XML
configuration in Spring
So far, we’ve seen how to declare beans using the <bean> element and inject <bean>
with values using either the <constructor-arg> or <property> element. That’s all
well and good for a small application where you only have a handful of beans. But
as your application grows, so will the amount of XML configuration you’ll write.

 Fortunately, Spring offers a few tricks to help cut down on the amount of XML
configuration required:

 Autowiring helps reduce or even eliminate the need for <property> and
<constructor-arg> elements by letting Spring automatically figure out how
to wire bean dependencies.

 Autodiscovery takes autowiring a step further by letting Spring figure out
which classes should be configured as Spring beans, reducing the need for

This chapter covers
 Automatic bean wiring

 Automatic bean discovery

 Annotation-oriented bean wiring

 Java-based Spring configuration
64

the <bean> element.

Licensed to Christian Cederquist <chrisman@kaus.dk>

65Automatically wiring bean properties

When used together, autowiring and autodiscovery can dramatically reduce the
amount of XML Spring configuration. Often you’ll need only a handful of lines of
XML, regardless of how many beans are in your Spring application context.

 We’ll start this chapter by looking at how to take advantage of Spring autowiring and
autodiscovery to cut down on the amount of XML needed to configure a Spring appli-
cation. Then to wrap up the chapter, we’ll look at Spring’s Java-based configuration,
which relies on good old Java code instead of XML to configure a Spring application.

3.1 Automatically wiring bean properties
If I were to say “The moon is bright tonight,” it’s not likely that you’d respond by ask-
ing “Which moon?” That’s because we both reside on the Earth and in that context it’s
obvious that I’m talking about Luna, the Earth’s moon. If I were to say the same thing
while we were standing on Jupiter, you’d be justified in asking which of the planet’s 63
natural satellites I had in mind. But on Earth, there’s no ambiguity.1 Similarly, when it
comes to wiring bean properties, it’s sometimes quite obvious which bean reference
should be wired into a given property. If your application context only has one bean
of type javax.sql.DataSource, then any bean that needs a DataSource will certainly
need that DataSource. After all, it’s the only DataSource to be had.

 Taking advantage of such obvious wirings, Spring offers autowiring. Rather than
explicitly wiring bean properties, why not let Spring sort out those cases when there’s
no question about which bean reference should be wired?

3.1.1 The four kinds of autowiring

When it comes to automatically wiring beans with their dependencies, Spring has a lot
of clues to work from. As a result, Spring provides four flavors of autowiring:

 byName—Attempts to match all properties of the autowired bean with beans
that have the same name (or ID) as the properties. Properties for which there’s
no matching bean will remain unwired.

 byType—Attempts to match all properties of the autowired bean with beans
whose types are assignable to the properties. Properties for which there’s no
matching bean will remain unwired.

 constructor—Tries to match up a constructor of the autowired bean with
beans whose types are assignable to the constructor arguments.

 autodetect—Attempts to apply constructor autowiring first. If that fails,
byType will be tried.

Each of these options has its pros and cons. Let’s first look at how to have Spring
autowire a bean’s properties using the names of those properties as a guide.

1 Of course, if we were standing on Jupiter, the brightness of any of its moons would be of little concern given

the intense atmospheric pressure and all of the unbreathable methane.

Licensed to Christian Cederquist <chrisman@kaus.dk>

66 CHAPTER 3 Minimizing XML configuration in Spring

AUTOWIRING BY NAME

In Spring, everything is given a name. Thus bean properties are given names, as are
the beans that are wired into those properties. Suppose that the name of a property
happens to match the name of the bean that’s to be wired into that property. That
happy coincidence could serve as a hint to Spring that the bean should be automati-
cally wired into the property.

 For example, let’s revisit the kenny bean from the previous chapter:

<bean id="kenny2"
class="com.springinaction.springidol.Instrumentalist">

<property name="song" value="Jingle Bells" />
<property name="instrument" ref="saxophone" />

</bean>

Here you’ve explicitly configured Kenny’s instrument property using <property>.
For a moment, let’s pretend that you declared the Saxophone as a <bean> with an id of
instrument:

<bean id="instrument"
 class="com.springinaction.springidol.Saxophone" />

If this were the case, the id of the Saxophone bean would be the same as the name of
the instrument property. Spring can take advantage of this to automatically configure
Kenny’s instrument by setting the autowire property:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist"
autowire="byName">

<property name="song" value="Jingle Bells" />
</bean>

byName autowiring establishes a convention where a property will automatically be
wired with a bean of the same name. In setting the autowire property to byName,
you’re telling Spring to consider all properties of kenny and look for beans that are
declared with the same names as the properties. In this case, Spring finds that the
instrument property is eligible for autowiring through setter injection. As illustrated
in figure 3.1, if there’s a bean in the context whose id is instrument, it’ll be autowired
into the instrument property.

 The downside of using byName autowiring is that it assumes that you’ll have a bean
whose name is the same as the name of the property of another bean. In our example,
it would require creating a bean whose name is instrument. If multiple
Instrumentalist beans are configured to be autowired by name, then all of them will
be playing the same instrument. This may not be a problem in all circumstances, but
it’s something to keep in mind.

Figure 3.1
When autowiring by name, a
bean’s name is matched
against properties that have

the same name.

Licensed to Christian Cederquist <chrisman@kaus.dk>

67Automatically wiring bean properties

AUTOWIRING BY TYPE

Autowiring using byType works in a similar way to byName, except that instead of con-
sidering a property’s name, the property’s type is examined. When attempting to
autowire a property by type, Spring will look for beans whose type is assignable to the
property’s type.

 For example, suppose that the kenny bean’s autowire property is set to byType
instead of byName. The container will search itself for a bean whose type is Instrument
and wire that bean into the instrument property. As shown in figure 3.2, the
saxophone bean will be automatically wired into Kenny’s instrument property because
both the instrument property and the saxophone bean are of type Instrument.

 But there’s a limitation to autowiring by type. What happens if Spring finds more
than one bean whose type is assignable to the autowired property? In such a case,
Spring isn’t going to guess which bean to autowire and will instead throw an excep-
tion. Consequently, you’re allowed to have only one bean configured that matches the
autowired property. In the Spring Idol competition, there are likely to be several beans
whose types are subclasses of Instrument.

 To overcome ambiguities with autowiring by type, Spring offers two options: you
can either identify a primary candidate for autowiring or you can eliminate beans
from autowiring candidacy.

 To identify a primary autowire candidate, you’ll work with the <bean> element’s
primary attribute. If only one autowire candidate has the primary attribute set to
true, then that bean will be chosen in favor of the other candidates.

 But here’s the weird side of the primary attribute: it defaults to true. That means
that all autowire candidates will be primary (and thus none will be preferred). So, to
use primary, you’ll need to set it to false for all of the beans that are not the primary
choice. For example, to establish that the saxophone bean isn’t the primary choice
when autowiring Instruments:

<bean id="saxophone"
 class="com.springinaction.springidol.Saxophone"
 primary="false" />

The primary attribute is only useful for identifying a preferred autowire candidate. If
you’d rather eliminate some beans from consideration when autowiring, then you can
set their autowire-candidate attribute to false, as follows:

<bean id="saxophone"
 class="com.springinaction.springidol.Saxophone"
 autowire-candidate="false" />

Figure 3.2 Autowiring by type matches

beans to properties of the same type.

Licensed to Christian Cederquist <chrisman@kaus.dk>

68 CHAPTER 3 Minimizing XML configuration in Spring

Here, we’ve asked Spring to disregard the saxophone bean as a candidate when per-
forming autowiring.

AUTOWIRING CONSTRUCTORS

If your bean is configured using constructor injection, you may choose to put away the
<constructor-arg> elements and let Spring automatically choose constructor argu-
ments from beans in the Spring context.

 For example, consider the following redeclaration of the duke bean:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="constructor" />

In this new declaration of duke, the <constructor-arg> elements are gone and the
autowire attribute has been set to constructor. This tells Spring to look at Poetic-
Juggler’s constructors and try to find beans in the Spring configuration to satisfy the
arguments of one of the constructors. You’ve already declared the sonnet29 bean,
which is a Poem and matches the constructor argument of one of PoeticJuggler’s
constructors. Therefore, Spring will use that constructor, passing in the sonnet29
bean, when constructing the duke bean, as expressed in figure 3.3.

 Autowiring by constructor shares the same limitations as byType. Spring won’t
attempt to guess which bean to autowire when it finds multiple beans that match a con-
structor’s arguments. Furthermore, if a class has multiple constructors, any of which
can be satisfied by autowiring, Spring won’t attempt to guess which constructor to use.

BEST-FIT AUTOWIRING

If you want to autowire your beans, but you can’t decide which type of autowiring to
use, have no fear. You can set the autowire attribute to autodetect to let Spring make
the decision for you. For example:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="autodetect" />

When a bean has been configured to autowire by autodetect, Spring will attempt to
autowire by constructor first. If a suitable constructor-to-bean match can’t be found,
then Spring will attempt to autowire by type.

3.1.2 Default autowiring

If you find yourself putting the same autowire attribute on every bean in your applica-
tion context (or even most of them), you can simplify things by asking Spring to apply
the same autowiring style to all beans that it creates. All you need to do is add a

Figure 3.3 When autowired
by constructor, the
dukePoeticJuggler is
instantiated with the constructor
that takes a Poem argument.
default-autowire attribute to the root <beans> element:

Licensed to Christian Cederquist <chrisman@kaus.dk>

69Automatically wiring bean properties

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"
default-autowire="byType">

</beans>

By default, default-autowire is set to none, indicating that no beans should be
autowired unless they’re individually configured for autowiring with the autowire
attribute. Here we’ve set it to byType to indicate that we want the properties of every
bean to be automatically wired using that style of autowiring. But you can set default-
autowire to any of the valid autowiring types to be applied to all beans in a Spring
configuration file.

 Note that I said that default-autowire would be applied to all beans in a given
Spring configuration file; I didn’t say that it would be applied to all beans in a Spring
application context. You could have multiple configuration files that define a single
application context, each with their own default autowiring setting.

 Also, just because you’ve defined a default autowiring scheme, that doesn’t mean
that you’re stuck with it for all of your beans. You can still override the default on a
bean-by-bean basis using the autowire attribute.

3.1.3 Mixing auto with explicit wiring

Just because you choose to autowire a bean, that doesn’t mean you can’t explicitly wire
some properties. You can still use the <property> element on any property just as if
you hadn’t set autowire.

 For example, to explicitly wire Kenny’s instrument property even though he’s set
to autowire by type, use this code:

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist"
autowire="byType">
<property name="song" value="Jingle Bells" />
<property name="instrument" ref="saxophone" />

</bean>

As illustrated here, mixing automatic and explicit wiring is also a great way to deal
with ambiguous autowiring that might occur when autowiring using byType. There
may be several beans in the Spring context that implement Instrument. To keep
Spring from throwing an exception due to the ambiguity of several Instruments to
choose from, we can explicitly wire the instrument property, effectively overriding
autowiring.

 We mentioned earlier that you could use <null/> to force an autowired property
to be null. This is a special case of mixing autowiring with explicit wiring. For exam-
ple, if you wanted to force Kenny’s instrument to be null, you’d use the following

configuration:

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

70 CHAPTER 3 Minimizing XML configuration in Spring

<bean id="kenny"
class="com.springinaction.springidol.Instrumentalist"
autowire="byType">
<property name="song" value="Jingle Bells" />
<property name="instrument"><null/></property>

</bean>

This is just for illustration’s sake, of course. Wiring null into instrument will result in
a NullPointerException being thrown when the perform() method is invoked.

 One final note on mixed wiring: when using constructor autowiring, you must let
Spring wire all of the constructor arguments—you can’t mix <constructor-arg> ele-
ments with constructor autowiring.

3.2 Wiring with annotations
Since Spring 2.5, one of the most interesting ways of wiring beans in Spring has been
to use annotations to automatically wire bean properties. Autowiring with annotations
isn’t much different than using the autowire attribute in XML. But it does allow for
more fine-grained autowiring, where you can selectively annotate certain properties
for autowiring.

 Annotation wiring isn’t turned on in the Spring container by default. So, before we
can use annotation-based autowiring, we’ll need to enable it in our Spring configura-
tion. The simplest way to do that is with the <context:annotation-config> element
from Spring’s context configuration namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config />

<!-- bean declarations go here -->

</beans>

<context:annotation-config> tells Spring that you intend to use annotation-based
wiring in Spring. Once it’s in place you can start annotating your code to indicate that
Spring should automatically wire values into properties, methods, and constructors.

 Spring 3 supports a few different annotations for autowiring:

 Spring’s own @Autowired annotation
 The @Inject annotation from JSR-330
 The @Resource annotation from JSR-250

We’ll look at how to use Spring’s @Autowired first. Then we’ll try out standards-based
dependency injection with JSR-330’s @Inject and JSR-250’s @Resource.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

71Wiring with annotations

3.2.1 Using @Autowired

Suppose that you want to use @Autowired to have Spring autowire the instrument
property of the Instrumentalist bean. You could annotate the setInstrument()
method like this:

@Autowired
public void setInstrument(Instrument instrument) {

this.instrument = instrument;
}

Now you can get rid of the <property> element that wires the Instrumentalist with
an instrument. When Spring sees that you’ve annotated setInstrument() with
@Autowired it’ll try to perform byType autowiring on the method.

 What’s especially interesting about @Autowired is that you don’t have to use it with
a setter method. You can use it on any method to automatically wire in bean references:

@Autowired
public void heresYourInstrument(Instrument instrument) {

this.instrument = instrument;
}

The @Autowired annotation can even be used on constructors:

@Autowired
public Instrumentalist(Instrument instrument) {

this.instrument = instrument;
}

When used with constructors, @Autowired indicates that the constructor should be
autowired when creating the bean, even if no <constructor-arg> elements are used
to configure the bean in XML.

 What’s more, you can directly annotate properties and do away with the setter
methods altogether:

@Autowired
private Instrument instrument;

As you can see, @Autowired won’t even be thwarted by the private keyword. Even
though the instrument property is private, it’ll still be autowired. Is there no limit to
@Autowired’s reach?

 Actually, there are a couple of circumstances that could keep @Autowired from get-
ting its job done. Specifically, there must be exactly one bean that’s applicable for wir-
ing into the @Autowired property or parameter. If there are no applicable beans or if
multiple beans could be autowired, then @Autowired will run into some trouble.

 Fortunately, there’s a way that we can help @Autowired out in those circumstances.
First, let’s look at how to keep @Autowired from failing when there isn’t a matching
bean.

OPTIONAL AUTOWIRING

By default, @Autowired has a strong contract, requiring that the thing it annotates is

wired. If no bean can be wired into the @Autowired-annotated property or argument,

Licensed to Christian Cederquist <chrisman@kaus.dk>

72 CHAPTER 3 Minimizing XML configuration in Spring

then autowiring fails (with a nasty NoSuchBeanDefinitionException). That may be
what you want—to have Spring fail early when autowiring goes bad rather than later
with a NullPointerException.

 But it’s also possible that the property being wired is truly optional and a null
value is acceptable. In that case, you can configure optional autowiring by setting
@Autowired’s required attribute to false. For example:

@Autowired(required=false)
private Instrument instrument;

Here, Spring will try to wire the instrument property. But if no bean of type
Instrument can be found, then no problem. The property will be left null.

 Note that the required attribute can be used anywhere @Autowired can be used.
But when used with constructors, only one constructor can be annotated with
@Autowired and required set to true. All other @Autowired-annotated constructors
must have required set to false. Moreover, when multiple constructors are anno-
tated with @Autowired, Spring will choose the constructor which has the most argu-
ments that can be satisfied.

QUALIFYING AMBIGUOUS DEPENDENCIES

On the other hand, maybe the problem’s not a lack of beans for Spring autowiring to
choose from. Maybe it’s an abundance of (or at least two) beans, each of which is
equally qualified to be wired into a property or parameter.

 For example, suppose you have two beans that implement Instrument. In that
event, there’s no way for @Autowired to choose which one you really want. So, instead
of guessing, a NoSuchBeanDefinitionException will be thrown and wiring will fail.

 To help @Autowired figure out which bean you want, you can accompany it with
Spring’s @Qualifier annotation.

 For example, to ensure that Spring selects a guitar for the eddie bean to play, even
if there are other beans that could be wired into the instrument property, you can use
@Qualifier to specify a bean named guitar:

@Autowired
@Qualifier("guitar")
private Instrument instrument;

As shown here, the @Qualifier annotation will try to wire in a bean whose ID matches
guitar.

 On the surface, it would seem that using @Qualifier is a means of switching
@Autowired’s by-type autowiring into explicit by-name wiring. And, as used here, that’s
effectively what’s happening. But it’s important to know that @Qualifier is really
about narrowing the selection of autowire candidate beans. It just so happens that
specifying a bean’s ID is one way to narrow the selections down to a single bean.

 In addition to narrowing by a bean’s ID, it’s also possible to narrow by a qualifier
that’s applied to a bean itself. For example, suppose that the guitar bean were
declared in XML as follows:
Licensed to Christian Cederquist <chrisman@kaus.dk>

73Wiring with annotations

<bean class="com.springinaction.springidol.Guitar">
<qualifier value="stringed" />

</bean>

Here the <qualifier> element qualifies the guitar bean as a stringed instrument.
But instead of specifying the qualifier in XML, you could have also annotated the
Guitar class itself with the @Qualifier annotation:

@Qualifier("stringed")
public class Guitar implements Instrument {

...
}

Qualifying autowired beans with String identifiers, whether they’re the bean’s ID or
some other qualifier, is simple enough. But you can take qualifiers so much further. In
fact, you can even create your own custom qualifier annotations.

CREATING CUSTOM QUALIFIERS

To create a custom qualifier annotation, all you need to do is to define an annotation
that’s itself annotated with @Qualifier. For example, let’s create our own @Stringed-
Instrument annotation to serve as a qualifier. The following listing shows the custom
qualifier annotation.

package com.springinaction.springidol.qualifiers;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.springframework.beans.factory.annotation.Qualifier;

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface StringedInstrument {
}

With the @StringedInstrument annotation defined, you can now use it instead of
@Qualifier to annotate Guitar:

@StringedInstrument
public class Guitar implements Instrument {

...
}

Then, you can qualify the @Autowiredinstrument property with @StringedInstrument:

@Autowired
@StringedInstrument
private Instrument instrument;

When Spring tries to autowire the instrument property, it’ll narrow the selection of all
Instrument beans down to just those that are annotated with @StringedInstrument.
As long as only one bean is annotated with @StringedInstrument, it’ll be wired into
the instrument property.

Listing 3.1 Use @Qualifier to create your own qualifier annotation.
Licensed to Christian Cederquist <chrisman@kaus.dk>

74 CHAPTER 3 Minimizing XML configuration in Spring

 If there’s more than one @StringedInstrument-annotated bean, then you’ll need
to provide further qualification to narrow it down. For example, suppose that in addi-
tion to the Guitar bean, you also have a HammeredDulcimer bean which is also anno-
tated with @StringedInstrument. One key difference between a guitar and a
hammered dulcimer is that guitars are strummed whereas hammered dulcimers are
hit with small wooden sticks (called hammers).

 So, to qualify the Guitar class further, you could define another qualifier annota-
tion called @Strummed:

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface Strummed {
}

Now you can annotate the instrument property with @Strummed to narrow the selec-
tion down to strummed string instruments:

@Autowired
@StringedInstrument
@Strummed
private Instrument instrument;

If the Guitar class is the only class annotated with @Strummed and @StringedInstru-
ment, then it’ll be the one injected into instrument.

 I suppose we could discuss the implications of adding a Ukelele or a Mandolin bean
to the mix, but we have to end this somewhere. Suffice it to say that you’d need further
qualification to deal with these additional strummed and stringed instruments.

 Spring’s @Autowired annotation is one way to cut down on the amount of Spring
configuration XML. But it does create a Spring-specific dependency within the classes
that use it (even if that dependency is just an annotation). Fortunately, Spring also
supports a standard Java alternative to @Autowired. Let’s look at how to use @Inject
from the Dependency Injection for Java specification.

3.2.2 Applying standards-based autowiring with @Inject

In an effort to unify the programming model among the various dependency injec-
tion frameworks, the Java Community Process recently published the Dependency
Injection for Java specification. Known in the Java Community Process as JSR-330 or
more commonly as at inject, this specification brings a common dependency injection
model to Java. As of Spring 3, Spring supports the at inject model.2

 The centerpiece of JSR-330 is the @Inject annotation. This annotation is an almost
complete drop-in replacement for Spring’s @Autowired annotation. So, instead of
using the Spring-specific @Autowired annotation, you might choose to use @Inject on
the instrument property:
2 Spring isn’t alone in its support for JSR-330. Google Guice and Picocontainer also support the JSR-330 model.

Licensed to Christian Cederquist <chrisman@kaus.dk>

75Wiring with annotations

@Inject
private Instrument instrument;

Just like @Autowired, @Inject can be used to autowire properties, methods, and con-
structors. Unlike @Autowired, @Inject doesn’t have a required attribute. Therefore,
@Inject-annotated dependencies are expected to be fulfilled, failing with an excep-
tion if they’re not.

 JSR-330 has another trick up its sleeve in addition to the @Inject annotation.
Rather than inject a reference directly, you could ask @Inject to inject a Provider.
The Provider interface enables, among other things, lazy injection of bean refer-
ences and injection of multiple instances of a bean.

 For example, let’s say you have a KnifeJuggler class that needs to be injected with
one or more instances of Knife. Assuming that the Knife bean is declared as having
prototype scope, the following KnifeJuggler constructor will be able to retrieve five
Knife beans:

private Set<Knife> knives;

@Inject
public KnifeJuggler(Provider<Knife> knifeProvider) {

knives = new HashSet<Knife>();
for (int i = 0; i < 5; i++) {

knives.add(knifeProvider.get());
}

}

Instead of receiving a Knife instance at construction, KnifeJuggler will receive a
Provider<Knife>. At this point, only the provider is injected. No actual Knife object
will be injected until the get() method is called on the provider. In this case, the
get() method is called five times. And since the Knife bean is a prototype, we know
that the Set of knives will be given five distinct Knife objects to work it.

QUALIFYING @INJECTED PROPERTIES

As you’ve seen, @Inject and @Autowired have a lot in common. And like @Autowired,
the @Inject annotation is prone to ambiguous bean definitions. @Inject’s answer to
the @Qualifier annotation is the @Named annotation.

 The @Named annotation works much like Spring’s @Qualifier, as you can see here:

@Inject
@Named("guitar")
private Instrument instrument;

The key difference between Spring’s @Qualifier and JSR-330’s @Named is one of
semantics. Whereas @Qualifier helps narrow the selection of matching beans (using
the bean’s ID by default), @Named specifically identifies a selected bean by its ID.

CREATING CUSTOM JSR-330 QUALIFIERS

As it turns out, JSR-330 has its own @Qualifier annotation in the javax.inject pack-
age. Unlike Spring’s @Qualifier, the JSR-330 version isn’t intended to be used on its
Licensed to Christian Cederquist <chrisman@kaus.dk>

76 CHAPTER 3 Minimizing XML configuration in Spring

own. Instead, you’re expected to use it to create custom qualifier annotations, much
as we did with Spring’s @Qualifier.3

 For example, the following listing shows a new @StringedInstrument annotation
that’s created using JSR-330’s @Qualifier instead of Spring’s @Qualifier.

package com.springinaction.springidol;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Qualifier
public @interface StringedInstrument {
}

As you can see, the only real difference between listing 3.2 and 3.1 is the import state-
ment for the @Qualifier annotation. In listing 3.1 we used the one from the
org.springframework.beans.factory.annotation package. But this time, we’re
using the standards-friendly @Qualifier from the javax.inject package. Otherwise,
they’re virtually the same.

 Annotation-based autowiring is great for wiring bean references and reducing
<property> elements in our Spring XML configuration. But can annotations be used
to wire values into String and other primitive values?

3.2.3 Using expressions with annotation injection

As long as you’re using annotations to autowire bean references into your Spring
beans, you may want to also use annotations to wire simpler values. Spring 3.0 intro-
duced @Value, a new wiring annotation that lets you wire primitive values such as int,
boolean, and String using annotations.

 The @Value annotation is simple to use but, as you’ll soon see, is also powerful. To
use it, annotate a property, method, or method parameter with @Value and pass in a
String expression to be wired into the property. For example:

@Value("Eruption")
private String song;

Here we’re wiring a String value into a String property. But the String parameter
passed into @Value is just an expression—it can evaluate down to any type and thus
@Value can be applied to just about any kind of property.

 Wiring hardcoded values using @Value is interesting, but not all that necessary. If
you’re hardcoding the values in Java code, then why not disregard @Value altogether

Listing 3.2 Creating a custom qualifier using JSR-330’s @Qualifier
3 In fact, the @Named annotation is just an annotation that’s itself annotated with @Qualifier.

Licensed to Christian Cederquist <chrisman@kaus.dk>

77Automatically discovering beans

and just hardcode the value directly on the property? @Value seems like extra baggage
in that case.

 As it turns out, simple values aren’t where @Value shines. Instead, @Value finds its
power with SpEL expressions. Recall that SpEL lets you dynamically evaluate complex
expressions, at runtime, into values to be wired into bean properties. That makes
@Value a powerful wiring option.

 For example, rather than hardcoding a static value into the song property, let’s use
SpEL to pull a value from a system property:

@Value("#{systemProperties.myFavoriteSong}")
private String song;

Now @Value shows its stuff. It’s not just a courier of static values—it’s an effective,
annotation-driven method of wiring dynamically evaluated SpEL expressions.

 As you can see, autowiring is a powerful technique. Letting Spring automatically
figure out how to wire beans together can help you reduce the amount of XML config-
uration in your application. What’s more, autowiring can take decoupling to a whole
new level by decoupling bean declarations from each other.

 Speaking of rising to new levels, let’s now look at bean autodiscovery to see how we
can rely on Spring to not only wire beans together, but also automatically figure out
which beans should be registered in a Spring context in the first place.

3.3 Automatically discovering beans
When you added <context:annotation-config> to your Spring configuration, you
told Spring that you wanted it to honor a certain set of annotations in the beans that
you declared and to use those beans to guide bean wiring. Even though <context:
annotation-config> can go a long way toward eliminating most uses of <property>
and <constructor-arg> elements from your Spring configuration, you still must
explicitly declare beans using <bean>.

 But Spring has another trick up its sleeve. The <context:component-scan> ele-
ment does everything that <context:annotation-config> does, plus it configures
Spring to automatically discover beans and declare them for you. What this means is
that most (or all) of the beans in your Spring application can be declared and wired
without using <bean>.

 To configure Spring for autodiscovery, use <context:component-scan> instead of
<context:annotation-config>:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

78 CHAPTER 3 Minimizing XML configuration in Spring

<context:component-scan
base-package="com.springinaction.springidol">

</context:component-scan>

</beans>

The <context:component-scan> element works by scanning a package and all of its
subpackages, looking for classes that could be automatically registered as beans in the
Spring container. The base-package attribute tells <context:component-scan> the
package to start its scan from.

 So, how does <context:component-scan> know which classes to register as Spring
beans?

3.3.1 Annotating beans for autodiscovery

By default, <context:component-scan> looks for classes that are annotated with one
of a handful of special stereotype annotations:

 @Component—A general-purpose stereotype annotation indicating that the class
is a Spring component

 @Controller—Indicates that the class defines a Spring MVC controller
 @Repository—Indicates that the class defines a data repository
 @Service—Indicates that the class defines a service
 Any custom annotation that is itself annotated with @Component

For example, suppose that our application context only has the eddie and guitar
beans in it. We can eliminate the explicit <bean> declarations from the XML configu-
ration by using <context:component-scan> and annotating the Instrumentalist
and Guitar classes with @Component.

 First, let’s annotate the Guitar class with @Component:

package com.springinaction.springidol;

import org.springframework.stereotype.Component;

@Component
public class Guitar implements Instrument {

public void play() {
System.out.println("Strum strum strum");

}
}

When Spring scans the com.springinaction.springidol package, it’ll find that
Guitar is annotated with @Component and will automatically register it in Spring. By
default, the bean’s ID will be generated by camel-casing the class name. In the case of
Guitar that means that the bean ID will be guitar.

 Now let’s annotate the Instrumentalist class:

package com.springinaction.springidol;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

Licensed to Christian Cederquist <chrisman@kaus.dk>

79Automatically discovering beans

@Component("eddie")
public class Instrumentalist implements Performer {

// ...
}

In this case, we’ve specified a bean ID as a parameter to @Component. The bean ID
would’ve been “instrumentalist,” but to keep it consistent with the previous examples,
we’ve explicitly named it eddie.

 Annotation-based autodiscovery is just one option available when using <context:
component-scan>. Let’s see how to configure <context:component-scan> to look for
bean candidates using other means.

3.3.2 Filtering component-scans

As it turns out, <context:component-scan> is flexible with regard to how it scans for
bean candidates. By adding <context:include-filter> and/or <context:exclude-
filter> subelements to <context:component-scan>, you can tweak component-
scanning behavior to your heart’s content.

 To demonstrate component-scan filtering, consider what it would take to have
<context:component-scan> automatically register all classes that are implementations
of Instrument using the annotation-based strategy. We’d have to visit the source code
for each of the Instrument implementations and annotate them with @Component (or
one of the other stereotype annotations). At the least, that’d be inconvenient. And if
we were working with a third-party implementation of Instrument we may not even
have access to the source code to be able to add that annotation.

 So, instead of relying on annotation-based component scanning, you can ask
<context:component-scan> to automatically register all classes that are assignable to
Instrument by adding an include filter, as follows:

<context:component-scan
base-package="com.springinaction.springidol">

<context:include-filter type="assignable"
expression="com.springinaction.springidol.Instrument"/>

</context:component-scan>

The type and the expression attributes of <context:include-filter> work
together to define a component-scanning strategy. In this case, we’re asking for all
classes that are assignable to Instrument to be automatically registered as Spring
beans. But you can choose from other kinds of filtering, as cataloged in table 3.1.

Table 3.1 Component scanning can be customized using any of five kinds of filters.

Filter type Description

annotation Filters scan classes looking for those annotated with a given annotation at the type
level. The annotation to scan for is specified in the expression attribute.

assignable Filters scan classes looking for those that are assignable to the type specified in
the expression attribute.
Licensed to Christian Cederquist <chrisman@kaus.dk>

80 CHAPTER 3 Minimizing XML configuration in Spring

Just as <context:include-filter> can be used to tell <context:component-scan>
what it should register as beans, you can use <context:exclude-filter> to tell it
what not to register. For example, to register all Instrument implementations except
for those annotated with a custom @SkipIt annotation:

<context:component-scan
base-package="com.springinaction.springidol">

<context:include-filter type="assignable"
expression="com.springinaction.springidol.Instrument"/>

<context:exclude-filter type="annotation"
expression="com.springinaction.springidol.SkipIt"/>

</context:component-scan>

When it comes to filtering <context:component-scan>, the possibilities are virtually
endless. But you’ll find that the default annotation-based strategy is the most com-
monly used. And it’ll be the one you’ll see most often throughout this book.

3.4 Using Spring’s Java-based configuration
Believe it or not, not all developers are fans of XML. In fact, some are card-carrying
members of the He-Man XML Haters Club. They’d love nothing more than to rid the
world of the dreaded angle bracket. Spring’s long history of using XML in its configu-
ration has turned off a few of those who oppose XML.

 If you’re one who abhors XML, then Spring 3 has something special for you. Now
you have the option of configuring a Spring application with almost no XML, using
pure Java. And even if you don’t hate XML, you may want to try out Spring’s Java-based
configuration because, as you’ll soon see, the Java-based configuration knows a few
tricks that its XML counterpart doesn’t.

3.4.1 Setting up for Java-based configuration

Even though Spring’s Java configuration option enables you to write most of your
Spring configuration without XML, you’ll still need a minimal amount of XML to boot-
strap the Java configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

aspectj Filters scan classes looking for those that match the AspectJ type expression spec-
ified in the expression attribute.

custom Uses a custom implementation of org.springframework.core.type
.TypeFilter, as specified in the expression attribute.

regex Filters scan classes looking for those whose class names match the regular expres-
sion specified in the expression attribute.

Table 3.1 Component scanning can be customized using any of five kinds of filters. (continued)

Filter type Description
xmlns:context="http://www.springframework.org/schema/context"

Licensed to Christian Cederquist <chrisman@kaus.dk>

81Using Spring’s Java-based configuration

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:component-scan
base-package="com.springinaction.springidol" />

</beans>

We’ve already seen how <context:component-scan> automatically registers beans
that are annotated with certain stereotype annotations. But it also automatically loads
in Java-based configuration classes that are annotated with @Configuration. In this
case, the base-package attribute tells Spring to look in com.springinaction.spring-
idol to find classes that are annotated with @Configuration.

3.4.2 Defining a configuration class

When we first started looking at Spring’s XML-based configuration, I showed you a
snippet of XML with the <beans> element from Spring’s beans namespace at its root.
The Java-based equivalent to that XML is a Java class annotated with @Configuration.
For example:

package com.springinaction.springidol;
import org.springframework.context.annotation.Configuration;

@Configuration
public class SpringIdolConfig {

// Bean declaration methods go here

}

The @Configuration annotation serves as a clue to Spring that this class will contain
one or more Spring bean declarations. Those bean declarations are just methods that
are annotated with @Bean. Let’s see how to use @Bean to wire beans using Spring’s Java-
based configuration.

3.4.3 Declaring a simple bean

In the previous chapter, we used Spring’s <bean> element to declare a Juggler bean
whose ID was duke. Had we chosen Java-based configuration to wire up the Spring Idol
beans, the duke bean would be defined in a method that’s annotated with @Bean:

@Bean
public Performer duke() {

return new Juggler();
}

This simple method is the Java configuration equivalent of the <bean> element we cre-
ated earlier. The @Bean tells Spring that this method will return an object that should
be registered as a bean in the Spring application context. The bean will get its ID from
the method name. Everything that happens in the method ultimately leads to the cre-

ation of the bean.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

82 CHAPTER 3 Minimizing XML configuration in Spring

 In this case, the bean declaration is simple. The method creates and returns an
instance of Juggler. That object will be registered in the Spring application context
with an ID of duke.

 Although this bean declaration method is largely equivalent to the XML version, it
illustrates one strength that Spring’s Java configuration has over its XML counterpart.
In the XML version, both the bean’s type and its ID were identified by String attri-
butes. The downside of String identifiers is that they don’t lend themselves to
compile-time checking. If we were to rename the Juggler class, we may forget to
change the XML configuration to match.

 In Spring’s Java-based configuration, there are no String attributes. Both the
bean’s ID and its type are expressed as part of a method signature. The actual creation
of the bean is defined in the method body. Because it’s all Java, you gain some benefit
in terms of compile-time checking to ensure that your bean’s type is a real type and
that its ID is unique.

3.4.4 Injecting with Spring’s Java-based configuration

If declaring beans with Spring’s Java-based configuration is nothing more than writing
a method that returns an instance of a class, then how does dependency injection
work in Java-based configuration? It’s actually simple, following common Java idioms.

 For example, let’s first look at how to inject values into a bean. Earlier, we saw how
to create a Juggler bean that juggles 15 beanbags by using the <constructor-arg>
element in XML configuration. In the Java-based configuration, we can just pass the
number directly into the constructor:

@Bean
public Performer duke15() {

return new Juggler(15);
}

As you can see, the Spring Java–based configuration feels natural, as it lets you define
your beans using Java the way you always have. Setter injection is also natural Java:

@Bean
public Performer kenny() {

Instrumentalist kenny = new Instrumentalist();
kenny.setSong("Jingle Bells");
return kenny;

}

Wiring simple values is straightforward enough. What about wiring in references to
other beans? It’s just as easy.

 To illustrate, let’s first set things up by declaring a sonnet29 bean in Java:

@Bean
private Poem sonnet29() {

return new Sonnet29();
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

83Summary

This is another simple Java-based bean declaration, not much different than what
we’ve already done with the duke bean. Now, let’s create a PoeticJuggler bean, wir-
ing the sonnet29 bean in through its constructor:

@Bean
public Performer poeticDuke() {

return new PoeticJuggler(sonnet29());
}

Wiring in another bean is a simple matter of referring to that bean’s method. But
don’t let the simplicity fool you. More is going on here than meets the eye.

 In Spring Java Configuration, referring to a bean through its declaration method
isn’t the same as calling the method. If it were, then each time we call sonnet29(),
we’d get a new instance of that bean. Spring is more clever than that.

 By annotating the sonnet29() method with @Bean, we’re telling Spring that we
want that method to define a bean to be registered in the Spring application context.
Then, whenever we refer to that method in another bean declaration method, Spring
will intercept the call to the method and try to find the bean in its context instead of
letting the method create a new instance.

3.5 Summary
Over the years, Spring has taken a lot of flak for XML verbosity. Despite the great
strides in simplicity that Spring has brought to enterprise Java, a lot of developers
haven’t been able to look past all those angle brackets.

 To answer the critics, Spring offers several ways of reducing and even eliminating
Spring configuration XML. In this chapter we’ve seen how <property> and
<constructor-arg> elements can be replaced with autowiring. Entire <bean> config-
uration elements can be handled automatically by Spring using component scanning.
We’ve also seen how Spring configuration can be expressed in Java instead of XML,
eliminating XML from Spring applications altogether.

 At this point we’ve seen several ways to declare beans in Spring and wire their
dependencies. In the next chapter, we’ll take a look at how Spring supports aspect-
oriented programming and see how AOP can be used to embellish beans with behav-
ior that, although important to the functionality of an application, isn’t a core con-
cern of the beans that the aspects affect.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Aspect-oriented Spring
As I’m writing this chapter, Texas (where I reside) is going through several days of
record-high temperatures. It’s hot. In weather like this, air conditioning is a must.
But the downside of air conditioning is that it uses electricity, and electricity costs
money. There’s little we can do to avoid paying for a cool and comfortable home.
That’s because every home has a meter that measures every kilowatt, and once a
month someone comes by to read that meter so that the electric company accu-
rately knows how much to bill us.

 Now imagine what would happen if the meter went away and nobody came by to
measure our electricity usage. Suppose that it were up to each homeowner to con-
tact the electric company and report their electricity usage. Although it’s possible
that some obsessive homeowners would keep careful record of their lights, televi-
sions, and air conditioning, most wouldn’t bother. Most would estimate their usage
and others wouldn’t bother reporting it at all. It’s too much trouble to monitor

This chapter covers
 Basics of aspect-oriented programming

 Creating aspects from POJOs

 Using @AspectJ annotations

 Injecting dependencies into AspectJ aspects
84

electrical usage and the temptation to not pay is too great.

Licensed to Christian Cederquist <chrisman@kaus.dk>

85What’s aspect-oriented programming?

 Electricity on the honor system might be great for consumers, but it would be less
than ideal for the electric companies. That’s why we all have electric meters on our
homes and why a meter reader drops by once per month to report the consumption
to the electric company.

 Some functions of software systems are like the electric meters on our homes. The
functions need to be applied at multiple points within the application, but it’s unde-
sirable to explicitly call them at every point.

 Monitoring electricity consumption is an important function, but it isn’t foremost
in most homeowners’ minds. Mowing the lawn, vacuuming the carpet, and cleaning
the bathroom are the kinds of things that homeowners are actively involved in. Moni-
toring the amount of electricity used by their house is a passive event from the home-
owner’s point of view. (Although it’d be great if mowing the lawn were also a passive
event—especially on these hot days.)

 In software, several activities are common to most applications. Logging, security,
and transaction management are important, but should they be activities that your
application objects are actively participating in? Or would it be better for your applica-
tion objects to focus on the business domain problems they’re designed for and leave
certain aspects to be handled by someone else?

 In software development, functions that span multiple points of an application are
called cross-cutting concerns. Typically, these cross-cutting concerns are conceptually
separate from (but often embedded directly within) the application’s business logic.
Separating these cross-cutting concerns from the business logic is where aspect-
oriented programming (AOP) goes to work.

 In chapter 2, you learned how to use dependency injection (DI) to manage and
configure your application objects. Whereas DI helps you decouple your application
objects from each other, AOP helps you decouple cross-cutting concerns from the
objects that they affect.

 Logging is a common example of the application of aspects. But it’s not the only
thing aspects are good for. Throughout this book, you’ll see several practical applica-
tions of aspects, including declarative transactions, security, and caching.

 This chapter explores Spring’s support for aspects, including how to declare regu-
lar classes to be aspects and how to use annotations to create aspects. In addition,
you’ll see how AspectJ—another popular AOP implementation—can complement
Spring’s AOP framework. But first, before we get carried away with transactions, secu-
rity, and caching, let’s see how aspects are implemented in Spring, starting with a
primer on a few of AOP’s fundamentals.

4.1 What’s aspect-oriented programming?
As stated earlier, aspects help to modularize cross-cutting concerns. In short, a cross-
cutting concern can be described as any functionality that affects multiple points of an
application. Security, for example, is a cross-cutting concern, in that many methods in
an application can have security rules applied to them. Figure 4.1 gives a visual depic-

tion of cross-cutting concerns.

Licensed to Christian Cederquist <chrisman@kaus.dk>

86 CHAPTER 4 Aspect-oriented Spring

Figure 4.1 represents a typical application
that’s broken down into modules. Each mod-
ule’s main concern is to provide services for its
particular domain. But each module also
requires similar ancillary functionalities, such
as security and transaction management.

 A common object-oriented technique for
reusing common functionality is to apply
inheritance or delegation. But inheritance can
lead to a brittle object hierarchy if the same
base class is used throughout an application,
and delegation can be cumbersome because
complicated calls to the delegate object may be required.

 Aspects offer an alternative to inheritance and delegation that can be cleaner in
many circumstances. With AOP, you still define the common functionality in one
place, but you can declaratively define how and where this functionality is applied
without having to modify the class to which you’re applying the new feature. Cross-
cutting concerns can now be modularized into special classes called aspects. This has
two benefits. First, the logic for each concern is now in one place, as opposed to being
scattered all over the code base. Second, our service modules are now cleaner since
they only contain code for their primary concern (or core functionality) and second-
ary concerns have been moved to aspects.

4.1.1 Defining AOP terminology

Like most technologies, AOP has formed its own jargon. Aspects are often described
in terms of advice, pointcuts, and join points. Figure 4.2 illustrates how these concepts
are tied together.

 Unfortunately, many of the terms used to describe AOP features aren’t intuitive.
Nevertheless, they’re now part of the AOP idiom, and in order to understand AOP, you
must know these terms. Before you walk the walk, you have to learn to talk the talk.

ADVICE

When a meter reader shows up at your
house, his purpose is to report the num-
ber of kilowatt hours back to the electric
company. Sure, he has a list of houses
that he must visit and the information
that he reports is important. But the
actual act of recording electricity usage
is the meter reader’s main job.

 Likewise, aspects have a purpose—a
job they’re meant to do. In AOP terms,

Figure 4.1 Aspects modularize cross-
cutting concerns, applying logic that spans
multiple application objects.

Join points

Program execution

Figure 4.2 An aspect’s functionality (advice) is
woven into a program’s execution at one or more
the job of an aspect is called advice. join points.

Licensed to Christian Cederquist <chrisman@kaus.dk>

87What’s aspect-oriented programming?

 Advice defines both the what and the when of an aspect. In addition to describing
the job that an aspect will perform, advice addresses the question of when to perform
the job. Should it be applied before a method is invoked? After the method is
invoked? Both before and after method invocation? Or should it only be applied if a
method throws an exception?

 Spring aspects can work with five kinds of advice:

 Before—The advice functionality takes place before the advised method is
invoked.

 After—The advice functionality takes place after the advised method completes,
regardless of the outcome.

 After-returning—The advice functionality takes place after the advised method
successfully completes.

 After-throwing—The advice functionality takes place after the advised method
throws an exception.

 Around—The advice wraps the advised method, providing some functionality
before and after the advised method is invoked.

JOIN POINTS

An electric company services several houses, perhaps even an entire city. Each house
will have an electric meter that needs to be read and thus each house is a potential tar-
get for the meter reader. The meter reader could potentially read all kinds of devices,
but to do his job, he needs to target electric meters that are attached to houses.

 In the same way, your application may have thousands of opportunities for advice
to be applied. These opportunities are known as join points. A join point is a point in
the execution of the application where an aspect can be plugged in. This point could
be a method being called, an exception being thrown, or even a field being modified.
These are the points where your aspect’s code can be inserted into the normal flow of
your application to add new behavior.

POINTCUTS

It’s not possible for any one meter reader to visit all houses serviced by the electric
company. Instead, each one is assigned a subset of all of the houses to visit. Likewise,
an aspect doesn’t necessarily advise all join points in an application. Pointcuts help nar-
row down the join points advised by an aspect.

 If advice defines the what and when of aspects, then pointcuts define the where. A
pointcut definition matches one or more join points at which advice should be woven.
Often you specify these pointcuts using explicit class and method names or through
regular expressions that define matching class and method name patterns. Some AOP
frameworks allow you to create dynamic pointcuts that determine whether to apply
advice based on runtime decisions, such as the value of method parameters.

ASPECTS

When a meter reader starts his day, he knows both what he’s supposed to do (report
electricity usage) and which houses to collect that information from. Thus he knows

everything he needs to know to get his job done.

Licensed to Christian Cederquist <chrisman@kaus.dk>

88 CHAPTER 4 Aspect-oriented Spring

 An aspect is the merger of advice and pointcuts. Taken together, advice and point-
cuts define everything there is to know about an aspect—what it does and where and
when it does it.

INTRODUCTIONS

An introduction allows you to add new methods or attributes to existing classes. For
example, you could create an Auditable advice class that keeps the state of when an
object was last modified. This could be as simple as having one method, setLast-
Modified(Date), and an instance variable to hold this state. The new method and
instance variable can then be introduced to existing classes without having to change
them, giving them new behavior and state.

WEAVING

Weaving is the process of applying aspects to a target object to create a new proxied
object. The aspects are woven into the target object at the specified join points. The
weaving can take place at several points in the target object’s lifetime:

 Compile time—Aspects are woven in when the target class is compiled. This
requires a special compiler. AspectJ’s weaving compiler weaves aspects this way.

 Classload time—Aspects are woven in when the target class is loaded into the
JVM. This requires a special ClassLoader that enhances that target class’s byte-
code before the class is introduced into the application. AspectJ 5’s load-time
weaving (LTW) support weaves aspects in this way.

 Runtime—Aspects are woven in sometime during the execution of the applica-
tion. Typically, an AOP container will dynamically generate a proxy object that
will delegate to the target object while weaving in the aspects. This is how
Spring AOP aspects are woven.

That’s a lot of new terms to get to know. Revisiting figure 4.2, you can now see how
advice contains the cross-cutting behavior that needs to be applied to an application’s
objects. The join points are all the points within the execution flow of the application
that are candidates to have advice applied. The pointcut defines where (at what join
points) that advice is applied. The key concept you should take from this is that point-
cuts define which join points get advised.

 Now that you’re familiar with some basic AOP terminology, let’s see how these core
AOP concepts are implemented in Spring.

4.1.2 Spring’s AOP support

Not all AOP frameworks are created equal. They may differ in how rich their join
point models are. Some allow you to apply advice at the field modification level,
whereas others only expose the join points related to method invocations. They may
also differ in how and when they weave the aspects. Whatever the case, the ability to
create pointcuts that define the join points at which aspects should be woven is what
makes it an AOP framework.
Licensed to Christian Cederquist <chrisman@kaus.dk>

89What’s aspect-oriented programming?

 Much has changed in the AOP framework landscape in the past few years. There
has been some housecleaning among the AOP frameworks, resulting in some frame-
works merging and others going extinct. In 2005, the AspectWerkz project merged
with AspectJ, marking the last significant activity in the AOP world and leaving us with
three dominant AOP frameworks:

 AspectJ (http://eclipse.org/aspectj)
 JBoss AOP (http://www.jboss.org/jbossaop)
 Spring AOP (http://www.springframework.org)

Since this is a Spring book, we’ll focus on Spring AOP. Even so, there’s a lot of synergy
between the Spring and AspectJ projects, and the AOP support in Spring borrows a lot
from the AspectJ project.

 Spring’s support for AOP comes in four flavors:

 Classic Spring proxy-based AOP

 @AspectJ annotation-driven aspects
 Pure-POJO aspects
 Injected AspectJ aspects (available in all versions of Spring)

The first three items are all variations on Spring’s proxy-based AOP. Consequently,
Spring’s AOP support is limited to method interception. If your AOP needs exceed
simple method interception (constructor or property interception, for example),
you’ll want to consider implementing aspects in AspectJ, perhaps taking advantage of
Spring DI to inject Spring beans into AspectJ aspects.

We’ll explore more of these Spring AOP techniques in this chapter. But before we get
started, it’s important to understand a few key points of Spring’s AOP framework.

SPRING ADVICE IS WRITTEN IN JAVA

All of the advice you create within Spring is written in a standard Java class. That way,

What? No classic Spring AOP?
The term classic usually carries a good connotation. Classic cars, classic golf tourna-
ments, and classic Coca-Cola are all good things.

But Spring’s classic AOP programming model isn’t so great. Oh, it was good in its
day. But now Spring supports much cleaner and easier ways to work with aspects.
When held up against simple declarative AOP and annotation-based AOP, Spring’s
classic AOP seems bulky and overcomplicated. Working directly with ProxyFactory-
Bean can be wearying.

So I’ve chosen to not include any discussion of classic Spring AOP in this edition. If
you’re really curious about how it works, then you may look at the first two editions
of this book. But I think you’ll find that the new Spring AOP models are much easier
to work with.
you get the benefit of developing your aspects in the same integrated development

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://eclipse.org/aspectj
http://www.jboss.org/jbossaop
http://www.springframework.org

90 CHAPTER 4 Aspect-oriented Spring

environment (IDE) you’d use for your normal Java development. What’s more, the
pointcuts that define where advice should be applied are typically written in XML in
your Spring configuration file. This means both the aspect’s code and configuration
syntax will be familiar to Java developers.

 Contrast this with AspectJ. Although AspectJ now supports annotation-based
aspects, AspectJ also comes as a language extension to Java. This approach has bene-
fits and drawbacks. By having an AOP-specific language, you get more power and fine-
grained control, as well as a richer AOP toolset. But you’re required to learn a new
tool and syntax to accomplish this.

SPRING ADVISES OBJECTS AT RUNTIME

In Spring, aspects are woven into Spring-managed beans at runtime by wrapping them
with a proxy class. As illustrated in figure 4.3, the proxy class poses as the target bean,
intercepting advised method calls and forwarding those calls to the target bean.

 Between the time when the proxy intercepts the method call and the time when it
invokes the target bean’s method, the proxy performs the aspect logic.

 Spring doesn’t create a proxied object until that proxied bean is needed by the
application. If you’re using an ApplicationContext, the proxied objects will be cre-
ated when it loads all of the beans from the BeanFactory. Because Spring creates prox-
ies at runtime, you don’t need a special compiler to weave aspects in Spring’s AOP.

SPRING ONLY SUPPORTS METHOD JOIN POINTS

As mentioned earlier, multiple join point models are available through various AOP
implementations. Because it’s based on dynamic proxies, Spring only supports
method join points. This is in contrast to some other AOP frameworks, such as AspectJ
and JBoss, which provide field and constructor join points in addition to method
pointcuts. Spring’s lack of field pointcuts prevents you from creating very fine-grained
advice, such as intercepting updates to an object’s field. And without constructor
pointcuts, there’s no way to apply advice when a bean is instantiated.

Figure 4.3 Spring aspects are implemented as proxies that wrap the target
object. The proxy handles method calls, performs additional aspect logic, and

then invokes the target method.

Licensed to Christian Cederquist <chrisman@kaus.dk>

91Selecting join points with pointcuts

But method interception should suit most, if not all, of your needs. If you find yourself
in need of more than method interception, you’ll want to complement Spring AOP
with AspectJ.

 Now you have a general idea of what AOP does and how it’s supported by Spring.
It’s time to get our hands dirty creating aspects in Spring. Let’s start with Spring’s
declarative AOP model.

4.2 Selecting join points with pointcuts
As mentioned before, pointcuts are used to pinpoint where an aspect’s advice should
be applied. Along with an aspect’s advice, pointcuts are among the most fundamental
elements of an aspect. Therefore, it’s important to know how to write pointcuts.

 In Spring AOP, pointcuts are defined using AspectJ’s pointcut expression language.
If you’re already familiar with AspectJ, then defining pointcuts in Spring should feel
natural. But in case you’re new to AspectJ, this section will serve as a quick lesson on
writing AspectJ-style pointcuts. For a more detailed discussion on AspectJ and
AspectJ’s pointcut expression language, I strongly recommend Ramnivas Laddad’s
AspectJ in Action, Second Edition.

 The most important thing to know about AspectJ pointcuts as they pertain to
Spring AOP is that Spring only supports a subset of the pointcut designators available
in AspectJ. Recall that Spring AOP is proxy-based and certain pointcut expressions
aren’t relevant to proxy-based AOP. Table 4.1 lists the AspectJ pointcut designators
that are supported in Spring AOP.

Table 4.1 Spring leverages AspectJ’s pointcut expression language for defining Spring aspects.

AspectJ designator Description

args() Limits join point matches to the execution of methods whose arguments are
instances of the given types

@args() Limits join point matches to the execution of methods whose arguments are
annotated with the given annotation types

execution() Matches join points that are method executions

this() Limits join point matches to those where the bean reference of the AOP proxy is
of a given type

target() Limits join point matches to those where the target object is of a given type

@target() Limits matching to join points where the class of the executing object has an
annotation of the given type

within() Limits matching to join points within certain types

@within() Limits matching to join points within types that have the given annotation (the
execution of methods declared in types with the given annotation when using
Spring AOP)

@annotation Limits join point matches to those where the subject of the join point has the

given annotation

Licensed to Christian Cederquist <chrisman@kaus.dk>

92 CHAPTER 4 Aspect-oriented Spring

Attempting to use any of AspectJ’s other designators will result in an IllegalArgument-
Exception being thrown.

 As you browse through the supported designators, note that the execution desig-
nator is the only one that actually performs matches. The other designators are used
to limit those matches. This means that execution is the primary designator you’ll use
in every pointcut definition you write. You’ll use the other designators to constrain the
pointcut’s reach.

4.2.1 Writing pointcuts

For example, the pointcut expression shown in figure 4.4 can be used to apply advice
whenever an Instrument’s play() method is executed:

We used the execution() designator to select the Instrument’s play() method. The
method specification starts with an asterisk, which indicates that we don’t care what
type the method returns. Then we specify the fully qualified class name and the name
of the method we want to select. For the method’s parameter list, we use the double-
dot (..), indicating that the pointcut should select any play() method, no matter
what the argument list is.

 Now let’s suppose that we want to confine the reach of that pointcut to only the
com.springinaction.springidol package. In that case, we could limit the match by
tacking on a within() designator, as shown in figure 4.5.

 Note that we used the && operator to combine the execution() and within() des-
ignators in an “and” relationship (where both designators must match for the point-
cut to match). Similarly, we could’ve used the || operator to indicate an “or”
relationship. And the ! operator can be used to negate the effect of a designator.

Figure 4.4 Selecting the Instrument’s play() method with an AspectJ pointcut expression

Figure 4.5 Limiting a pointcut’s reach using the within() designator
Licensed to Christian Cederquist <chrisman@kaus.dk>

93Declaring aspects in XML

Since ampersands have special meaning in XML, you’re free to use and in place of &&
when specifying pointcuts in a Spring XML-based configuration. Likewise, or and not
can be used in place of || and ! (respectively).

4.2.2 Using Spring’s bean() designator

In addition to the designators listed in table 4.1, Spring 2.5 introduced a new bean()
designator that lets you identify beans by their ID within a pointcut expression. bean()
takes a bean ID or name as an argument and limits the pointcut’s effect to that specific
bean.

 For example, consider the following pointcut:

execution(* com.springinaction.springidol.Instrument.play())
and bean(eddie)

Here we’re saying that we want to apply aspect advice to the execution of an
Instruments play() method, but limited to the bean whose ID is eddie.

 Narrowing a pointcut to a specific bean may be valuable in some cases, but we can
also use negation to apply an aspect to all beans that don’t have a specific ID:

execution(* com.springinaction.springidol.Instrument.play())
and !bean(eddie)

In this case, the aspect’s advice will be woven into all beans whose ID isn’t eddie.
 Now that we’ve covered the basics of writing pointcuts, let’s see how to write the

advice and declare the aspects that use those pointcuts.

4.3 Declaring aspects in XML
If you’re familiar with Spring’s classic AOP model, you’ll know that working with
ProxyFactoryBean is clumsy. The Spring development team recognized this and set
out to provide a better way of declaring aspects in Spring. The outcome of this effort is
found in Spring’s aop configuration namespace. The AOP configuration elements are
summarized in table 4.2.

Table 4.2 Spring’s AOP configuration elements simplify declaration of POJO-based aspects.

AOP configuration element Purpose

<aop:advisor> Defines an AOP advisor.

<aop:after> Defines an AOP after advice (regardless of whether the advised
method returns successfully).

<aop:after-returning> Defines an AOP after-returning advice.

<aop:after-throwing> Defines an AOP after-throwing advice.

<aop:around> Defines an AOP around advice.

<aop:aspect> Defines an aspect.

<aop:aspectj-autoproxy> Enables annotation-driven aspects using @AspectJ.
Licensed to Christian Cederquist <chrisman@kaus.dk>

94 CHAPTER 4 Aspect-oriented Spring

In chapter 2, we demonstrated dependency injection by putting on a talent show
called Spring Idol. In that example, we wired up several performers as Spring <bean>s
to show their stuff. It was all greatly amusing. but a show like that needs an audience
or else there’s little point.

 Therefore, to illustrate Spring AOP, let’s create an Audience class for our talent
show. The following class defines the functions of an audience.

package com.springinaction.springidol;

public class Audience {
public void takeSeats() {

System.out.println("The audience is taking their seats.");
}

public void turnOffCellPhones() {
System.out.println("The audience is turning off their cellphones");

}

public void applaud() {
System.out.println("CLAP CLAP CLAP CLAP CLAP");

}

public void demandRefund() {
System.out.println("Boo! We want our money back!");

}
}

As you can see, there’s nothing remarkable about the Audience class. It’s a basic Java
class with a handful of methods. And we can register it as a bean in the Spring applica-
tion context like any other class:

<bean id="audience"
class="com.springinaction.springidol.Audience" />

Despite its unassuming appearance, what’s remarkable about Audience is that it has
all the makings of an aspect. It just needs a little of Spring’s special AOP magic.

<aop:before> Defines an AOP before advice.

<aop:config> The top-level AOP element. Most <aop:*> elements must be con-
tained within <aop:config>.

<aop:declare-parents> Introduces additional interfaces to advised objects that are trans-
parently implemented.

<aop:pointcut> Defines a pointcut.

Listing 4.1 The Audience class for our talent competition

Table 4.2 Spring’s AOP configuration elements simplify declaration of POJO-based aspects. (continued)

AOP configuration element Purpose

Before
performance

Before
performance

After
performance

After bad
performance
Licensed to Christian Cederquist <chrisman@kaus.dk>

95Declaring aspects in XML

4.3.1 Declaring before and after advice

Using Spring’s AOP configuration elements, as shown in the following listing, you can
turn the audience bean into an aspect.

<aop:config>
<aop:aspect ref="audience">

<aop:before pointcut=
"execution(* com.springinaction.springidol.Performer.perform(..))"

method="takeSeats" />

<aop:before pointcut=
"execution(* com.springinaction.springidol.Performer.perform(..))"

method="turnOffCellPhones" />

<aop:after-returning pointcut=
"execution(* com.springinaction.springidol.Performer.perform(..))"

method="applaud" />

<aop:after-throwing pointcut=
"execution(* com.springinaction.springidol.Performer.perform(..))"

method="demandRefund" />

</aop:aspect>
</aop:config>

The first thing to notice about the Spring AOP configuration elements is that most of
them must be used within the context of the <aop:config> element. There are a few
exceptions to this rule, but when it comes to declaring beans as aspects you’ll always
start with the <aop:config> element.

 Within <aop:config> you may declare one or more advisors, aspects, or pointcuts.
In listing 4.2, we declared a single aspect using the <aop:aspect> element. The ref
attribute references the POJO bean that will be used to supply the functionality of the
aspect—in this case, audience. The bean that’s referenced by the ref attribute will
supply the methods called by any advice in the aspect.

 The aspect has four different bits of advice. The two <aop:before> elements
define method before advice that will call the takeSeats() and turnOffCellPhones()
methods (declared by the method attribute) of the Audience bean before any methods
matching the pointcut are executed. The <aop:after-returning> element defines
an after-returning advice to call the applaud() method after the pointcut. Meanwhile,
the <aop:after-throwing> element defines an after-throwing advice to call the demand-
Refund() method if any exceptions are thrown. Figure 4.6 shows how the advice logic
is woven into the business logic.

 In all advice elements, the pointcut attribute defines the pointcut where the
advice will be applied. The value given to the pointcut attribute is a pointcut defined
in AspectJ’s pointcut expression syntax.

 You’ll notice that the value of the pointcut attribute is the same for all of the

Listing 4.2 Defining an audience aspect using Spring’s AOP configuration elements

Reference
audience bean

Before performance

Before performance

After performance

After bad performance
advice elements. That’s because all of the advice is being applied to the same pointcut.

Licensed to Christian Cederquist <chrisman@kaus.dk>

96 CHAPTER 4 Aspect-oriented Spring

This presents a DRY (don’t repeat yourself) principle violation. If you decide later to
change the pointcut, you must change it in four different places.

 To avoid duplication of the pointcut definition, you may choose to define a named
pointcut using the <aop:pointcut> element. The following XML shows how the
<aop:pointcut> element is used within the <aop:aspect> element to define a named
pointcut that can be used by all of the advice elements.

<aop:config>
<aop:aspect ref="audience">

<aop:pointcut id="performance" expression=
"execution(* com.springinaction.springidol.Performer.perform(..))"
/>

<aop:before
pointcut-ref="performance"
method="takeSeats" />

<aop:before
pointcut-ref="performance"
method="turnOffCellPhones" />

<aop:after-returning
pointcut-ref="performance"
method="applaud" />

<aop:after-throwing
pointcut-ref="performance"
method="demandRefund" />

</aop:aspect>

Listing 4.3 Defining a named pointcut to eliminate redundant pointcut definitions

Business logic Audience aspect Advice logic

Figure 4.6 The Audience aspect includes four bits of advice which weave advice logic around
methods that match the aspect’s pointcut.

Define pointcut

Reference
pointcut
</aop:config>

Licensed to Christian Cederquist <chrisman@kaus.dk>

97Declaring aspects in XML

Now the pointcut is defined in a single location and is referenced across multiple
advice elements. The <aop:pointcut> element defines the pointcut to have an id of
performance. Meanwhile, all of the advice elements have been changed to reference
the named pointcut with the pointcut-ref attribute.

 As used in listing 4.3, the <aop:pointcut> element defines a pointcut that can be
referenced by all advices within the same <aop:aspect> element. But you can also
define pointcuts that can be used across multiple aspects by placing the <aop:point-
cut> elements within the scope of the <aop:config> element.

4.3.2 Declaring around advice

The current implementation of Audience works great. But basic before and after
advice have some limitations. Specifically, it’s tricky to share information between
before advice and after advice without resorting to storing that information in mem-
ber variables.

 For example, suppose that in addition to putting away cell phones and applauding
at the end, you also want the audience to keep their eyes on their watches and report
how long the performance takes. The only way to accomplish this with before and
after advice is to note the start time in before advice and report the length of time in
some after advice. But you’d have to store the start time in a member variable. Since
Audience is a singleton, it wouldn’t be thread safe to retain state like that.

 Around advice has an advantage over before and after advice in this regard. With
around advice, you can accomplish the same thing as you can with distinct before and
after advice, but do it in a single method. Since the entire set of advice takes place in a
single method, there’s no need to retain state in a member variable.

 For example, consider the new watchPerformance() method.

public void watchPerformance(ProceedingJoinPoint joinpoint) {
try {

System.out.println("The audience is taking their seats.");
System.out.println("The audience is turning off their cellphones");
long start = System.currentTimeMillis();

joinpoint.proceed();

long end = System.currentTimeMillis();
System.out.println("CLAP CLAP CLAP CLAP CLAP");
System.out.println("The performance took " + (end - start)

+ " milliseconds.");
} catch (Throwable t) {

System.out.println("Boo! We want our money back!");
}

}

The first thing you’ll notice about this new advice method is that it’s given a
ProceedingJoinPoint as a parameter. This object is necessary, as it’s how we’ll be able

Listing 4.4 The watchPerformance() method provides AOP around advice.

Before
performance

Proceed to
advised method

After
performance

After bad
performance
to invoke the advised method from within our advice. The advice method will do

Licensed to Christian Cederquist <chrisman@kaus.dk>

98 CHAPTER 4 Aspect-oriented Spring

everything it needs to do and, when it’s ready to pass control to the advised method,
it’ll call ProceedingJoinPoint’s proceed() method.

 Note that it’s crucial that you remember to include a call to the proceed()
method. If you don’t, then your advice will effectively block access to the advised
method. Maybe that’s what you want, but chances are good that you do want the
advised method to be executed at some point.

 What’s also interesting is that just as you can omit a call to the proceed() method
to block access to the advised method, you can also invoke it multiple times from
within the advice. One reason for doing this may be to implement retry logic to per-
form repeated attempts on the advised method should it fail.

 In the case of the audience aspect, the watchPerformance() method contains all
of the functionality of the previous four advice methods, but all of it’s contained in
this single method, and this method is responsible for its own exception handling.
You’ll also note that just before the join point’s proceed() method is called, the cur-
rent time is recorded in a local variable. Just after the method returns, the elapsed
time is reported.

 Declaring around advice isn’t dramatically different from declaring other types of
advice. All you need to do is use the <aop:around> element.

<aop:config>
<aop:aspect ref="audience">

<aop:pointcut id="performance2" expression=
"execution(* com.springinaction.springidol.Performer.perform(..))"
/>

<aop:around
pointcut-ref="performance2"
method="watchPerformance()" />

</aop:aspect>
</aop:config>

As with the other advice XML elements, <aop:around> is given a pointcut and the
name of an advice method. Here we’re using the same pointcut as before, but have set
the method attribute to point to the new watchPerformance() method.

4.3.3 Passing parameters to advice

So far, our aspects have been simple, taking no parameters. The only exception is
that the watchPerformance() method that we wrote for the around advice example
took a ProceedingJoinPoint as a parameter. Other than that, the advice we’ve writ-
ten hasn’t bothered to look at any parameters passed to the advised methods. That’s
been okay, though, because the perform() method that we were advising didn’t take
any parameters.

 Nevertheless, there are times when it may be useful for advice to not only wrap a
method, but also inspect the values of the parameters passed to that method.

Listing 4.5 Defining a named pointcut to eliminate redundant pointcut definitions

Declare
around advice
Licensed to Christian Cederquist <chrisman@kaus.dk>

99Declaring aspects in XML

 To see how this works, imagine a new type of contestant in the Spring Idol competi-
tion. This new contestant is a mind reader, as defined by the MindReader interface:

package com.springinaction.springidol;

public interface MindReader {
void interceptThoughts(String thoughts);

String getThoughts();
}

A MindReader does two basic things: it intercepts a volunteer’s thoughts and reports
those thoughts. A simple implementation of MindReader is the Magician class:

package com.springinaction.springidol;

public class Magician implements MindReader {
private String thoughts;

public void interceptThoughts(String thoughts) {
System.out.println("Intercepting volunteer's thoughts");
this.thoughts = thoughts;

}

public String getThoughts() {
return thoughts;

}
}

Now you need to give your mind reader someone whose mind he can read. For that,
here’s the Thinker interface:

package com.springinaction.springidol;

public interface Thinker {
void thinkOfSomething(String thoughts);

}

The Volunteer class provides a basic implementation of Thinker:

package com.springinaction.springidol;

public class Volunteer implements Thinker {
private String thoughts;

public void thinkOfSomething(String thoughts) {
this.thoughts = thoughts;

}

public String getThoughts() {
return thoughts;

}
}

The details of Volunteer aren’t terribly interesting or important. What’s interesting is
how the Magician will intercept the Volunteer’s thoughts using Spring AOP.

 To pull off this feat of telepathy, you’re going to use the same <aop:aspect> and
<aop:before> elements as before. But this time you’re going to configure them to

pass the advised method’s parameters to the advice.

Licensed to Christian Cederquist <chrisman@kaus.dk>

100 CHAPTER 4 Aspect-oriented Spring

<aop:config>
<aop:aspect ref="magician">

<aop:pointcut id="thinking"
expression="execution(*
com.springinaction.springidol.Thinker.thinkOfSomething(String))

and args(thoughts)" />

<aop:before
pointcut-ref="thinking"
method="interceptThoughts"
arg-names="thoughts" />

</aop:aspect>
</aop:config>

The key to the Magician’s ESP is found in the pointcut definition and in the
<aop:before>’s arg-names attribute. The pointcut identifies the Thinker’s thinkOf-
Something() method, specifying a String argument. And it follows up with an args
parameter to identify the argument as thoughts.

 Meanwhile, the <aop:before> advice declaration refers to the thoughts argument,
indicating that it should be passed into the Magician’s interceptThoughts()
method.

 Now, whenever the thinkOfSomething() method is invoked on the volunteer
bean, the Magician will intercept those thoughts. To prove it, here’s a simple test class
with the following method:

@Test
public void magicianShouldReadVolunteersMind() {

volunteer.thinkOfSomething("Queen of Hearts");

assertEquals("Queen of Hearts", magician.getThoughts());
}

We’ll talk more about writing unit tests and integration tests in Spring in the next
chapter. For now, just note that the test will pass because the Magician will always
know whatever the Volunteer is thinking.

 Now let’s see how to use Spring AOP to add new functionality to existing objects
through the power of introduction.

4.3.4 Introducing new functionality with aspects

Some languages, such as Ruby and Groovy, have the notion of open classes. They make
it possible to add new methods to an object or class without directly changing the def-
inition of those objects/classes. Unfortunately, Java isn’t quite that dynamic. Once a
class has been compiled, there’s little you can do to append new functionality to it.

 But if you think about it, isn’t that what we’ve been doing in this chapter with
aspects? Sure, we haven’t added any new methods to objects, but we’re adding new
functionality around the methods that the objects already have. If an aspect can wrap
existing methods with additional functionality, why not add new methods to the
object? In fact, using an AOP concept known as introduction, aspects can attach all new

methods to Spring beans.

Licensed to Christian Cederquist <chrisman@kaus.dk>

101Declaring aspects in XML

Recall that in Spring, aspects are just proxies that implement the same interface(s) as
the beans that they wrap. What if, in addition to implementing those interfaces, the
proxy were to also be exposed through some new interface? Then any bean that’s
advised by the aspect will appear to implement the new interface, even if its underly-
ing implementation class doesn’t. Figure 4.7 illustrates how this works.

 What you’ll notice from figure 4.7 is that when a method on the introduced inter-
face is called, the proxy delegates the call to some other object that provides the
implementation of the new interface. Effectively this gives us one bean whose imple-
mentation is split across multiple classes.

 Putting this idea to work, let’s say that you want to introduce the following
Contestant interface to all of the performers in our example:

package com.springinaction.springidol;

public interface Contestant {
void receiveAward();

}

I suppose that we could visit all implementations of Performer and change them so
that they also implement Contestant. But, from a design standpoint, that may not be
the most prudent move (because Contestants and Performers aren’t necessarily
mutually inclusive concepts). Moreover, it may not even be possible to change all of
the implementations of Performer, especially if we’re working with third-party imple-
mentations and don’t have the source code.

 Thankfully, AOP introductions can help us out here without compromising design
choices or requiring invasive changes to the existing implementations. To pull it off,
you must use the <aop:declare-parents> element:

<aop:aspect>
<aop:declare-parents

types-matching="com.springinaction.springidol.Performer+"
implement-interface="com.springinaction.springidol.Contestant"
default-impl="com.springinaction.springidol.GraciousContestant"
/>

</aop:aspect>

Existing method

Introduced method
Introduction

delegate

Advised
bean

Figure 4.7 With Spring
AOP, you can introduce
new methods to a bean. A
proxy intercepts the calls
and delegates to a
different object that
implements the method.
Licensed to Christian Cederquist <chrisman@kaus.dk>

102 CHAPTER 4 Aspect-oriented Spring

As its name implies, <aop:declare-parents> declares that the beans it advises will
have new parents in its object hierarchy. Specifically, in this case we’re saying that the
beans whose type matches the Performer interface (per the types-matching attri-
bute) should have Contestant in their parentage (per the implement-interface
attribute). The final matter to settle is where the implementation of the Contestant’s
methods will come from.

 There are two ways to identify the implementation of the introduced interface. In
this case, we’re using the default-impl attribute to explicitly identify the implementa-
tion by its fully-qualified class name. Alternatively, we could’ve identified it using the
delegate-ref attribute:

<aop:declare-parents
types-matching="com.springinaction.springidol.Performer+"
implement-interface="com.springinaction.springidol.Contestant"
delegate-ref="contestantDelegate"
/>

The delegate-ref attribute refers to a Spring bean as the introduction delegate. This
assumes that a bean with an ID of contestantDelegate exists in the Spring context:

<bean id="contestantDelegate"
 class="com.springinaction.springidol.GraciousContestant" />

The difference between directly identifying the delegate using default-impl and
indirectly using delegate-ref is that the latter will be a Spring bean that itself may be
injected, advised, or otherwise configured through Spring.

4.4 Annotating aspects
A key feature introduced in AspectJ 5 is the ability to use annotations to create aspects.
Prior to AspectJ 5, writing AspectJ aspects involved learning a Java language extension.
But AspectJ’s annotation-oriented model makes it simple to turn any class into an
aspect by sprinkling a few annotations around. This new feature is commonly referred
to as @AspectJ.

 Looking back at our Audience class, we see that Audience contained all of the
functionality needed for an audience, but none of the details to make it an aspect.
That left us having to declare advice and pointcuts in XML.

 But with @AspectJ annotations, we can revisit our Audience class and turn it into
an aspect without the need for any additional classes or bean declarations. The follow-
ing shows the new Audience class, now annotated to be an aspect.

package com.springinaction.springidol;

import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;

Listing 4.6 Annotating Audience to be an aspect
import org.aspectj.lang.annotation.Pointcut;

Licensed to Christian Cederquist <chrisman@kaus.dk>

103Annotating aspects

@Aspect
public class Audience {

@Pointcut(
"execution(* com.springinaction.springidol.Performer.perform(..))")

public void performance() {
}

@Before("performance()")
public void takeSeats() {

System.out.println("The audience is taking their seats.");
}

@Before("performance()")
public void turnOffCellPhones() {

System.out.println("The audience is turning off their cellphones");
}

@AfterReturning("performance()")
public void applaud() {

System.out.println("CLAP CLAP CLAP CLAP CLAP");
}

@AfterThrowing("performance()")
public void demandRefund() {

System.out.println("Boo! We want our money back!");
}

}

The new Audience class is now annotated with @Aspect. This annotation indicates that
Audience isn’t just any POJO but is an aspect.

 The @Pointcut annotation is used to define a reusable pointcut within an
@AspectJ aspect. The value given to the @Pointcut annotation is an AspectJ pointcut
expression—here indicating that the pointcut should match the perform() method
of a Performer. The name of the pointcut is derived from the name of the method to
which the annotation is applied. Therefore, the name of this pointcut is
performance(). The actual body of the performance() method is irrelevant and in
fact should be empty. The method itself is just a marker, giving the @Pointcut annota-
tion something to attach itself to.

 Each of the audience’s methods has been annotated with advice annotations. The
@Before annotation has been applied to both takeSeats() and turnOffCell-
Phones() to indicate that these two methods are before advice. The @AfterReturning
annotation indicates that the applaud() method is an after-returning advice method.
And the @AfterThrowing annotation is placed on demandRefund() so that it’ll be
called if any exceptions are thrown during the performance.

 The name of the performance() pointcut is given as the value parameter to all of
the advice annotations. This tells each advice method where it should be applied.

 Note that aside from the annotations and the no-op performance() method, the
Audience class is functionally unchanged. This means that it’s still a simple Java object
and can be used as such. It can also still be wired in Spring as follows:

<bean id="audience"

Define
pointcut

Before
performance

Before
performance

After
performance

After bad
performance
class="com.springinaction.springidol.Audience" />

Licensed to Christian Cederquist <chrisman@kaus.dk>

104 CHAPTER 4 Aspect-oriented Spring

Because the Audience class contains everything that’s needed to define its own point-
cuts and advice, there’s no more need for pointcut and advice declarations in the XML
configuration. There’s one last thing to do to make Spring apply Audience as an
aspect. You must declare an autoproxy bean in the Spring context that knows how to
turn @AspectJ-annotated beans into proxy advice.

 For that purpose, Spring comes with an autoproxy creator class called Annotation-
AwareAspectJAutoProxyCreator. You could register an AnnotationAware-

AspectJAutoProxyCreator as a <bean> in the Spring context, but that would require a
lot of typing (believe me… I’ve typed it a few times before). Instead, to simplify that
rather long name, Spring also provides a custom configuration element in the aop
namespace that’s much easier to remember:

<aop:aspectj-autoproxy />

<aop:aspectj-autoproxy/> will create an AnnotationAwareAspectJAutoProxy-

Creator in the Spring context and will automatically proxy beans whose methods
match the pointcuts defined with @Pointcut annotations in @Aspect-annotated beans.

 To use the <aop:aspectj-autoproxy> configuration element, you’ll need to
remember to include the aop namespace in your Spring configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

You should be aware that <aop:aspectj-autoproxy> only uses @AspectJ’s annotations
as a guide for creating proxy-based aspects. Under the covers, it’s still Spring-style
aspects. This is significant because it means that although you’re using @AspectJ’s
annotations, you’re still limited to proxying method invocations. If you want to be
able to exploit the full power of AspectJ, you’ll have to use the AspectJ runtime and
not rely on Spring to create proxy-based aspects.

 It’s also worth mentioning at this point that both the <aop:aspect> element and
the @AspectJ annotations are effective ways to turn a POJO into an aspect. But
<aop:aspect> has one distinct advantage over @AspectJ in that you don’t need the
source code of the class that’s to provide the aspect’s functionality. With @AspectJ, you
must annotate the class and methods, which requires having the source code. But
<aop:aspect> can reference any bean.

 Now let’s see how to create around advice using @AspectJ annotations.

4.4.1 Annotating around advice

Just as with Spring’s XML-based AOP, you’re not limited to before and after advice
types when using @AspectJ annotations. You may also choose to create around advice.
For that, you must use the @Around annotation, as in the following example:
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/aop/spring-aop-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

105Annotating aspects

@Around("performance()")
public void watchPerformance(ProceedingJoinPoint joinpoint) {

try {
System.out.println("The audience is taking their seats.");
System.out.println("The audience is turning off their cellphones");

long start = System.currentTimeMillis();
joinpoint.proceed();
long end = System.currentTimeMillis();

System.out.println("CLAP CLAP CLAP CLAP CLAP");

System.out.println("The performance took " + (end - start)
+ " milliseconds.");

} catch (Throwable t) {
System.out.println("Boo! We want our money back!");

}
}

Here the @Around annotation indicates that the watchPerformance() method is to be
applied as around advice to the performance() pointcut. This should look oddly
familiar, as it’s the same watchPerformance() method that we saw before. The only
difference is that it’s now annotated with @Around.

 As you may recall from before, around advice methods must remember to explic-
itly invoke proceed() so that the proxied method will be invoked. But simply annotat-
ing a method with @Around isn’t enough to provide a proceed() method to call.
Therefore, methods that are to be around advice must take a ProceedingJoinPoint
object as an argument and then call the proceed() method on that object.

4.4.2 Passing arguments to annotated advice

Supplying parameters to advice using @AspectJ annotation isn’t much different than
how we did it with Spring’s XML-based aspect declaration. In fact, for the most part,
the XML elements we used earlier translate almost straight into equivalent @AspectJ
annotations, as you can see in the new Magician class.

package com.springinaction.springidol;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class Magician implements MindReader {

private String thoughts;

@Pointcut("execution(* com.springinaction.springidol."
+ "Thinker.thinkOfSomething(String)) && args(thoughts)")

public void thinking(String thoughts) {
}

@Before("thinking(thoughts)")

Listing 4.7 Using @AspectJ annotations to turn a Magician into an aspect

Declare
parameterized
pointcut

Pass
parameters
into advice
public void interceptThoughts(String thoughts) {

Licensed to Christian Cederquist <chrisman@kaus.dk>

106 CHAPTER 4 Aspect-oriented Spring

System.out.println("Intercepting volunteer's thoughts : " + thoughts);
this.thoughts = thoughts;

}

public String getThoughts() {
return thoughts;

}
}
/

The <aop:pointcut> element has become the @Pointcut annotation and the
<aop:before> element has become the @Before annotation. The only significant
change here is that @AspectJ can lean on Java syntax to determine the details of the
parameters passed into the advice. Therefore, there’s no need for an annotation-
based equivalent to the <aop:before> element’s arg-names.

4.4.3 Annotating introductions

Earlier, I showed you how to use <aop:declare-parents> to introduce an interface
onto an existing bean without changing the bean’s source code. Now let’s have
another look at that example, but this time using annotation-based AOP.

 The annotation equivalent of <aop:declare-parents> is @AspectJ’s @Declare-
Parents. @DeclareParents works almost exactly like its XML counterpart when used
inside of an @Aspect-annotated class. The following shows how to use @Declare-
Parents.

package com.springinaction.springidol;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.DeclareParents;

@Aspect
public class ContestantIntroducer {

@DeclareParents(
value = "com.springinaction.springidol.Performer+",
defaultImpl = GraciousContestant.class)

public static Contestant contestant;
}

As you can see, ContestantIntroducer is an aspect. But unlike the aspects we’ve cre-
ated so far, it doesn’t provide before, after, or around advice. Instead, it introduces the
Contestant interface onto Performer beans. Like <aop:declare-parents>,
@DeclareParents annotation is made up of three parts:

 The value attribute is equivalent to <aop:declare-parents>’s types-matching
attribute. It identifies the kinds of beans that should be introduced with the
interface.

Listing 4.8 Introducing the Contestant interface using @AspectJ annotations

Mix in
Contestant
interface
Licensed to Christian Cederquist <chrisman@kaus.dk>

107Injecting AspectJ aspects

 The defaultImpl attribute is equivalent to <aop:declare-parents>’s default-
impl attribute. It identifies the class that will provide the implementation for
the introduction.

 The static property that is annotated by @DeclareParents specifies the inter-
face that is to be introduced.

As with any aspect, you’ll need to declare ContestantIntroducer as a bean in the
Spring application context:

<bean class="com.springinaction.springidol.ContestantIntroducer" />

<aop:aspectj-autoproxy> will take it from there. When it discovers a bean annotated
with @Aspect, it’ll automatically create a proxy that delegates calls to either the prox-
ied bean or to the introduction implementation, depending on whether the method
called belongs to the proxied bean or to the introduced interface.

 One thing you’ll notice is that @DeclareParents doesn’t have an equivalent to
<aop:declare-parents>’s delegate-ref attribute. That’s because @DeclareParents
is an @AspectJ annotation. @AspectJ is a project that’s separate from Spring and thus
its annotations aren’t bean-aware. The implications here are that if you want to dele-
gate to a bean that’s configured with Spring, then @DeclareParents may not fit the
bill and you’ll have to resort to using <aop:declare-parents>.

 Spring AOP enables separation of cross-cutting concerns from an application’s
business logic. But as we’ve seen, Spring aspects are still proxy-based and are limited
to advising method invocations. If you need more than just method proxy support,
you’ll want to consider using AspectJ. In the next section, you’ll see how traditional
AspectJ aspects can be used within a Spring application.

4.5 Injecting AspectJ aspects
Although Spring AOP is sufficient for many applications of aspects, it’s a weak AOP
solution when contrasted with AspectJ. AspectJ offers many types of pointcuts that
aren’t possible with Spring AOP.

 Constructor pointcuts, for example, are convenient when you need to apply advice
upon the creation of an object. Unlike constructors in some other object-oriented lan-
guages, Java constructors are different from normal methods. This makes Spring’s
proxy-based AOP woefully inadequate for advising creation of an object.

 For the most part, AspectJ aspects are independent of Spring. Although they can
be woven into any Java-based application, including Spring applications, there’s little
involvement on Spring’s part in applying AspectJ aspects.

 But any well-designed and meaningful aspect will likely depend on other classes to
assist in its work. If an aspect depends on one or more classes when executing its
advice, you can instantiate those collaborating objects with the aspect itself. Or, better
yet, you can use Spring’s dependency injection to inject beans into AspectJ aspects.

 To illustrate, let’s create a new aspect for the Spring Idol competition. A talent com-
petition needs a judge. So, let’s create a judge aspect in AspectJ. JudgeAspect is such

an aspect.

Licensed to Christian Cederquist <chrisman@kaus.dk>

108 CHAPTER 4 Aspect-oriented Spring

package com.springinaction.springidol;

public aspect JudgeAspect {
public JudgeAspect() {}

pointcut performance() : execution(* perform(..));

after() returning() : performance() {
System.out.println(criticismEngine.getCriticism());

}

// injected
private CriticismEngine criticismEngine;
public void setCriticismEngine(CriticismEngine criticismEngine) {

this.criticismEngine = criticismEngine;
}

}

The chief responsibility for JudgeAspect is to make commentary on a performance
after the performance has completed. The performance() pointcut in listing 4.9
matches the perform() method. When it’s married with the after()returning()
advice, you get an aspect that reacts to the completion of a performance.

 What makes listing 4.9 interesting is that the judge doesn’t make commentary on
its own. Instead, JudgeAspect collaborates with a CriticismEngine object, calling its
getCriticism() method, to produce critical commentary after a performance. To
avoid unnecessary coupling between JudgeAspect and the CriticismEngine, the
JudgeAspect is given a reference to a CriticismEngine through setter injection. This
relationship is illustrated in figure 4.8.

 CriticismEngine itself is an interface that declares a simple getCriticism()
method. Here’s the implementation of CriticismEngine.

package com.springinaction.springidol;

public class CriticismEngineImpl implements CriticismEngine {
public CriticismEngineImpl() {}

Listing 4.9 An AspectJ implementation of a talent competition judge

Listing 4.10 An implementation of the CriticismEngine used by JudgeAspect

Figure 4.8 Aspects need injection, too. Spring
can inject AspectJ aspects with dependencies
just as if they were another bean.
Licensed to Christian Cederquist <chrisman@kaus.dk>

109Injecting AspectJ aspects

public String getCriticism() {
int i = (int) (Math.random() * criticismPool.length);

return criticismPool[i];
}

// injected
private String[] criticismPool;
public void setCriticismPool(String[] criticismPool) {

this.criticismPool = criticismPool;
}

}

CriticismEngineImpl implements the CriticismEngine interface by randomly
choosing a critical comment from a pool of injected criticisms. This class can be
declared as a Spring <bean> using the following XML:

<bean id="criticismEngine"
class="com.springinaction.springidol.CriticismEngineImpl">

<property name="criticisms">
<list>

<value>I'm not being rude, but that was appalling.</value>
<value>You may be the least talented

person in this show.</value>
<value>Do everyone a favor and keep your day job.</value>

</list>
</property>

</bean>

So far, so good. You now have a CriticismEngine implementation to give to Judge-
Aspect. All that’s left is to wire CriticismEngineImpl into JudgeAspect.

 Before I show you how to do the injection, you should know that AspectJ aspects
can be woven into your application without involving Spring at all. But if you want to
use Spring’s dependency injection to inject collaborators into an AspectJ aspect, you’ll
need to declare the aspect as a <bean> in Spring’s configuration. The following
<bean> declaration injects the criticismEngine bean into JudgeAspect:

<bean class="com.springinaction.springidol.JudgeAspect"
factory-method="aspectOf">

<property name="criticismEngine" ref="criticismEngine" />
</bean>

For the most part, this <bean> declaration isn’t much different from any other <bean>
you may find in Spring. But the big difference is the use of the factory-method attri-
bute. Normally Spring beans are instantiated by the Spring container, but AspectJ
aspects are created by the AspectJ runtime. By the time Spring gets a chance to inject
the CriticismEngine into JudgeAspect, JudgeAspect has already been instantiated.

 Since Spring isn’t responsible for the creation of JudgeAspect, it isn’t possible to
simply declare JudgeAspect as a bean in Spring. Instead, we need a way for Spring to
get a handle to the JudgeAspect instance that has already been created by AspectJ so
that we can inject it with a CriticismEngine. Conveniently, all AspectJ aspects provide
Licensed to Christian Cederquist <chrisman@kaus.dk>

110 CHAPTER 4 Aspect-oriented Spring

a static aspectOf() method that returns the singleton instance of the aspect. So to get
an instance of the aspect, you must use factory-method to invoke the aspectOf()
method instead of trying to call JudgeAspect’s constructor.

 In short, Spring doesn’t use the <bean> declaration from earlier to create an
instance of the JudgeAspect—it has already been created by the AspectJ runtime.
Instead, Spring retrieves a reference to the aspect through the aspectOf() factory
method and then performs dependency injection on it as prescribed by the <bean>
element.

4.6 Summary
AOP is a powerful complement to object-oriented programming. With aspects, you
can now group application behavior that was once spread throughout your applica-
tions into reusable modules. You can then declare exactly where and how this behav-
ior is applied. This reduces code duplication and lets your classes focus on their main
functionality.

 Spring provides an AOP framework that lets you insert aspects around method exe-
cutions. You’ve learned how you can weave advice before, after, and around a method
invocation, as well as add custom behavior for handling exceptions.

 You have several choices in how you can use aspects in your Spring applications.
Wiring advice and pointcuts in Spring is much easier with the addition of @AspectJ
annotation support and a simplified configuration schema.

 Finally, there are times when Spring AOP isn’t powerful enough and you must turn
to AspectJ for more powerful aspects. For those situations, we looked at how to use
Spring to inject dependencies into AspectJ aspects.

 At this point, we’ve covered the basics of the Spring Framework. You’ve seen how
to configure the Spring container and how to apply aspects to Spring-managed
objects. As you’ve seen, these core techniques offer great opportunity to create appli-
cations composed of loosely coupled objects. In the next chapter, we’ll look at how
loose coupling through DI and AOP foster developer-driven testing and see how to
keep your Spring code covered by tests.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Part 2

Spring application
essentials

In part 1, you learned about Spring’s core container and its support for
dependency injection (DI) and aspect-oriented programming (AOP). With that
foundation set, part 2 will explore the framework features that Spring provides
for building enterprise applications.

 Most applications ultimately persist business information in a relational data-
base. Chapter 5, “Hitting the database,” will guide you in using Spring’s support
for data persistence. You’ll be introduced to Spring’s JDBC support, which helps
you remove much of the boilerplate code associated with JDBC. You’ll also see
how Spring integrates with the object-relational mapping persistence options,
Hibernate and JPA.

 Once you’re persisting your data, you’ll want to ensure that its integrity is
preserved. In chapter 6, “Managing transactions,” you’ll learn how to declara-
tively apply transactional policies to your application objects using AOP.

 In chapter 7, “Building web applications with Spring MVC,” you’ll learn the
basics of using Spring MVC, a web framework built on the principles of the Spring
Framework. You’ll discover Spring MVC’s vast selection of controllers for han-
dling web requests and see how to transparently bind request parameters to your
business objects while providing validation and error handling at the same time.

 Chapter 8, “Working with Spring Web Flow,” will show you how to build con-
versational, flow-based web applications using the Spring Web Flow framework.

 As security is an important aspect of many applications, chapter 9, “Securing
Spring,” will show you how to use Spring Security to protect the information

your application contains.

Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

Hitting the database
With the core of the Spring container now under your belt, it’s time to put it to
work in real applications. A perfect place to start is with a requirement of nearly
any enterprise application: persisting data. Every one of us has probably dealt with
database access in an application in the past. In practice, we know that data access
has many pitfalls. We have to initialize our data access framework, open connec-
tions, handle various exceptions, and close connections. If we get any of this wrong,
we could potentially corrupt or delete valuable company data. In case you haven’t
experienced the consequences of mishandled data access, it’s a Bad Thing.

 Since we strive for Good Things, we turn to Spring. Spring comes with a family of
data access frameworks that integrate with a variety of data access technologies.
Whether you’re persisting your data via direct JDBC, iBATIS, or an object relational
mapping (ORM) framework such as Hibernate, Spring removes the tedium of data
access from your persistence code. Instead, you can lean on Spring to handle the

This chapter covers
 Defining Spring’s data access support

 Configuring database resources

 Working with Spring’s JDBC templates

 Using Spring with Hibernate and JPA
113

Licensed to Christian Cederquist <chrisman@kaus.dk>

114 CHAPTER 5 Hitting the database

low-level data access work for you so that you can turn your attention to managing
your application’s data.

 Starting in this chapter, we’ll build a Twitter-like application based on Spring
called Spitter. This application will be the primary example for the rest of this book.
The first order of business is to develop Spitter’s persistence layer.

 As we develop the persistence layer, we’re faced with some choices. We could use
JDBC, Hibernate, the Java Persistence API (JPA), or any of a number of persistence
frameworks. Fortunately, Spring supports all of those persistence mechanisms. We’ll
take each of them for a spin in this chapter.

 But first, let’s lay some groundwork by getting familiar with Spring’s persistence
philosophy.

5.1 Learning Spring’s data access philosophy
From the previous chapters, you know that one of Spring’s goals is to allow you to
develop applications following the sound object-oriented (OO) principle of coding to
interfaces. Spring’s data access support is no exception.

 DAO1 stands for data access object, which perfectly describes a DAO’s role in an appli-
cation. DAOs exist to provide a means to read and write data to the database. They
should expose this functionality through an interface by which the rest of the applica-
tion will access them. Figure 5.1 shows the proper approach to designing your data
access tier.

 As you can see, the service objects are accessing the DAOs through interfaces. This
has a couple of positive consequences. First, it makes your service objects easily test-
able, since they’re not coupled to a specific data access implementation. In fact, you
could create mock implementations of these data access interfaces. That would allow
you to test your service object without ever having to connect to the database, which
would significantly speed up your unit tests and rule out the chance of a test failure
due to inconsistent data.

 In addition, the data access tier is accessed in a persistence technology-agnostic
manner. The chosen persistence approach is isolated to the DAO while only the

1 Many developers, including Martin Fowler, refer to the persistence objects of an application as repositories.
Though I appreciate the thinking that leads to the repository moniker, I believe that the word repository is
already overloaded, even without adding this additional meaning. So forgive me, but I’m going to buck the

Service

object

DAO

interface

DAO

implementation

Figure 5.1 Service objects don’t handle
their own data access. Instead, they
delegate data access to DAOs. The
DAO’s interface keeps it loosely coupled
to the service object.
popular trend—I’ll continue referring to these objects as DAOs.

Licensed to Christian Cederquist <chrisman@kaus.dk>

115Learning Spring’s data access philosophy

relevant data access methods are exposed through the interface. This makes for a flex-
ible application design and allows the chosen persistence framework to be swapped out
with minimal impact to the rest of the application. If the implementation details of the
data access tier were to leak into other parts of the application, the entire application
would become coupled with the data access tier, leading to a rigid application design.

NOTE If after reading the last couple of paragraphs, you feel that I have
a strong bias toward hiding the persistence layer behind interfaces, then
I’m happy that I was able to get that point across. I believe that interfaces
are key to writing loosely coupled code and that they should be used at
all layers of an application, not just at the data access layer. That said, it’s
also important to note that though Spring encourages the use of inter-
faces, Spring doesn’t require them—you’re welcome to use Spring to
wire a bean (DAO or otherwise) directly into a property of another bean
without an interface between them.

One way Spring helps you insulate your data access tier from the rest of your applica-
tion is by providing a consistent exception hierarchy that’s used across all of its DAO
frameworks.

5.1.1 Getting to know Spring’s data access exception hierarchy

There’s an old joke about a skydiver who’s blown off course and ends up landing in a
tree, dangling above the ground. After awhile someone walks by and the skydiver asks
where he is.

 The passerby answers, “You’re about 20 feet off the ground.”
 The skydiver replies “You must be a software analyst.”
 “You’re right. How did you know?” asks the passerby.
 “Because what you told me was 100 percent accurate, but completely worthless.”

That story has been told several times, with the profession or nationality of the pass-
erby different each time. But the story reminds me of JDBC’s SQLException. If you’ve
ever written JDBC code (without Spring), you’re probably keenly aware that you can’t
do anything with JDBC without being forced to catch SQLException. SQLException
means that something went wrong while trying to access a database. But there’s little
about that exception that tells you what went wrong or how to deal with it.

 Some common problems that might cause an SQLException to be thrown include

 The application is unable to connect to the database.
 The query being performed has errors in its syntax.
 The tables and/or columns referred to in the query don’t exist.
 An attempt was made to insert or update values that violate a database

constraint.

The big question surrounding SQLException is how it should be handled when it’s
caught. As it turns out, many of the problems that trigger an SQLException can’t be

remedied within a catch block. Most SQLExceptions that are thrown indicate a fatal

Licensed to Christian Cederquist <chrisman@kaus.dk>

116 CHAPTER 5 Hitting the database

condition. If the application can’t connect to the database, that usually means that the
application will be unable to continue. Likewise, if there are errors in the query, little
can be done about it at runtime.

 If there’s nothing that can be done to recover from an SQLException, why are we
forced to catch it?

 Even if you have a plan for dealing with some SQLExceptions, you’ll have to catch
the SQLException and dig around in its properties for more information on the
nature of the problem. That’s because SQLException is treated as a one-size-fits-all
exception for problems related to data access. Rather than have a different exception
type for each possible problem, SQLException is the exception that’s thrown for all
data access problems.

 Some persistence frameworks offer a richer hierarchy of exceptions. Hibernate,
for example, offers almost two dozen different exceptions, each targeting a specific
data access problem. This makes it possible to write catch blocks for the exceptions
that you want to deal with.

 Even so, Hibernate’s exceptions are specific to Hibernate. As stated before, we’d
like to isolate the specifics of the persistence mechanism to the data access layer. If
Hibernate-specific exceptions are being thrown, then the fact that we’re dealing
with Hibernate will leak into the rest of the application. Either that, or you’ll be
forced to catch persistence platform exceptions and rethrow them as platform-
agnostic exceptions.

 On one hand, JDBC’s exception hierarchy is too generic—it’s not really much of a
hierarchy at all. On the other hand, Hibernate’s exception hierarchy is proprietary to
Hibernate. What we need is a hierarchy of data access exceptions that are descriptive
but not directly associated with a specific persistence framework.

SPRING’S PERSISTENCE PLATFORM-AGNOSTIC EXCEPTIONS

Spring JDBC provides a hierarchy of data access exceptions that solve both problems.
In contrast to JDBC, Spring provides several data access exceptions, each descriptive of
the problem that they’re thrown for. Table 5.1 shows some of Spring’s data access
exceptions lined up against the exceptions offered by JDBC.

 As you can see, Spring has an exception for virtually anything that could go wrong
when reading or writing to a database. And the list of Spring’s data access exceptions
is more vast than what’s shown in table 5.1. (I would’ve listed them all, but I didn’t
want JDBC to get an inferiority complex.)

 Even though Spring’s exception hierarchy is far richer than JDBC’s simple SQL-
Exception, it isn’t associated with any particular persistence solution. This means that
you can count on Spring to throw a consistent set of exceptions, regardless of which
persistence provider you choose. This helps to keep your persistence choice confined
to the data access layer.

Licensed to Christian Cederquist <chrisman@kaus.dk>

117Learning Spring’s data access philosophy

LOOK, MA! NO CATCH BLOCKS!

What isn’t evident from table 5.1 is that all of those exceptions are rooted with
DataAccessException. What makes DataAccessException special is that it’s an
unchecked exception. In other words, you don’t have to catch any of the data access
exceptions thrown from Spring (although you’re perfectly welcome to if you’d like).

 DataAccessException is just one example of Spring’s across-the-board philosophy
of checked versus unchecked exceptions. Spring takes the stance that many excep-
tions are the result of problems that can’t be addressed in a catch block. Instead of
forcing developers to write catch blocks (which are often left empty), Spring pro-
motes the use of unchecked exceptions. This leaves the decision of whether to catch
an exception in the developer’s hands.

 To take advantage of Spring’s data access exceptions, you must use one of Spring’s
supported data access templates. Let’s look at how Spring templates can greatly sim-
plify data access.

5.1.2 Templating data access

You’ve probably traveled by plane before. If so, you’ll surely agree that one of the most
important parts of traveling is getting your luggage from point A to point B. There are
many steps to this process. When you arrive at the terminal, your first stop will be at
the counter to check your luggage. Next, security will scan it to ensure the safety of
the flight. Then it takes a ride on the “luggage train” on its way to being placed on the
plane. If you need to catch a connecting flight, your luggage needs to be moved as
well. When you arrive at your final destination, the luggage has to be removed from

Table 5.1 JDBC’s exception hierarchy versus Spring’s data access exceptions

JDBC’s exceptions Spring’s data access exceptions

BatchUpdateException
DataTruncation
SQLException
SQLWarning

CannotAcquireLockException
CannotSerializeTransactionException
CleanupFailureDataAccessException
ConcurrencyFailureException
DataAccessException
DataAccessResourceFailureException
DataIntegrityViolationException
DataRetrievalFailureException
DeadlockLoserDataAccessException
EmptyResultDataAccessException
IncorrectResultSizeDataAccessException
IncorrectUpdateSemanticsDataAccessException
InvalidDataAccessApiUsageException
InvalidDataAccessResourceUsageException
OptimisticLockingFailureException
PermissionDeniedDataAccessException
PessimisticLockingFailureException
TypeMismatchDataAccessException
UncategorizedDataAccessException
Licensed to Christian Cederquist <chrisman@kaus.dk>

118 CHAPTER 5 Hitting the database

the plane and placed on the carousel. Finally, you go down to the baggage claim area
and pick it up.

 Even though there are many steps to this process, you’re only actively involved in a
couple of those steps. The carrier itself is responsible for driving the process. You’re
only involved when you need to be; the rest is taken care of. This mirrors a powerful
design pattern: the Template Method pattern.

 A template method defines the skeleton of a process. In our example, the process
is moving luggage from departure city to arrival city. The process itself is fixed; it never
changes. The overall sequence of events for handling luggage occurs the same way
every time: luggage is checked in, luggage is loaded onto the plane, and so forth.
Some steps of the process are fixed as well—some steps happen the same every time.
When the plane arrives at its destination, every piece of luggage is unloaded one at a
time and placed on a carousel to be taken to baggage claim.

 At certain points, the process delegates its work to a subclass to fill in some
implementation-specific details. This is the variable part of the process. For example,
the handling of luggage starts with a passenger checking in the luggage at the coun-
ter. This part of the process always has to happen at the beginning, so its sequence in
the process is fixed. Because each passenger’s luggage check-in is different, the imple-
mentation of this part of the process is determined by the passenger. In software
terms, a template method delegates the implementation-specific portions of the pro-
cess to an interface. Different implementations of this interface define specific imple-
mentations of this portion of the process.

 This is the same pattern that Spring applies to data access. No matter what technol-
ogy we’re using, certain data access steps are required. For example, we always need to
obtain a connection to our data store and clean up resources when we’re done. These
are the fixed steps in a data access process. But each data access method we write is
slightly different. We query for different objects and update the data in different ways.
These are the variable steps in the data access process.

 Spring separates the fixed and variable parts of the data access process into two dis-
tinct classes: templates and callbacks. Templates manage the fixed part of the process,
whereas your custom data access code is handled in the callbacks. Figure 5.2 shows the
responsibilities of both of these classes.

 As you can see in figure 5.2, Spring’s template classes handle the fixed parts of data
access—controlling transactions, managing resources, and handling exceptions.

1. Prepare resources
2. Start transaction

3. Execute in
 transaction

5. Commit/Rollback
 transaction
6. Close resources
 and handle errors

4. Return data

DAO template DAO callback

Figure 5.2 Spring’s DAO template
classes take responsibility for the
common data access duties. For the
application-specific tasks, it calls back

into a custom DAO callback object.

Licensed to Christian Cederquist <chrisman@kaus.dk>

119Learning Spring’s data access philosophy

Meanwhile, the specifics of data access as they pertain to your application—creating
statements, binding parameters, and marshaling result sets—are handled in the call-
back implementation. In practice, this makes for an elegant framework because all
you have to worry about is your data access logic.

 Spring comes with several templates to choose from, depending on your persis-
tence platform choice. If you’re using straight JDBC, then you’ll want to use Jdbc-
Template. But if you favor one of the object-relational mapping frameworks, then
perhaps HibernateTemplate or JpaTemplate is more suitable. Table 5.2 lists all of
Spring’s data access templates and their purposes.

As you’ll see, using a data access template simply involves configuring it as a bean in
the Spring context and then wiring it into your application DAO. Or you can take
advantage of Spring’s DAO support classes to further simplify configuration of your
application DAOs. Direct wiring of the templates is fine, but Spring also provides a set
of convenient DAO base classes that can manage templates for you. Let’s see how these
template-based DAO classes work.

5.1.3 Using DAO support classes

The data access templates aren’t all there is to Spring’s data access framework. Each
template also provides convenience methods that simplify data access without the
need to create an explicit callback implementation. Furthermore, on top of the
template-callback design, Spring provides DAO support classes that are meant to be
subclassed by your own DAO classes. Figure 5.3 illustrates the relationship between a

Table 5.2 Spring comes with several data access templates, each suitable for a different persistence
mechanism.

Template class (org.springframework.*) Used to template. . .

jca.cci.core.CciTemplate JCA CCI connections

jdbc.core.JdbcTemplate JDBC connections

jdbc.core.namedparam.NamedParameterJdbcTemplate JDBC connections with support for
named parameters

jdbc.core.simple.SimpleJdbcTemplate JDBC connections, simplified with
Java 5 constructs

orm.hibernate.HibernateTemplate Hibernate 2.x sessions

orm.hibernate3.HibernateTemplate Hibernate 3.x sessions

orm.ibatis.SqlMapClientTemplate iBATIS SqlMap clients

orm.jdo.JdoTemplate Java Data Object implementations

orm.jpa.JpaTemplate Java Persistence API entity
managers
template class, a DAO support class, and your own custom DAO implementation.

Licensed to Christian Cederquist <chrisman@kaus.dk>

120 CHAPTER 5 Hitting the database

Later, as we examine Spring’s individual data access support options, we’ll see how the
DAO support classes provide convenient access to the template class that they support.
When writing your application DAO implementation, you can subclass a DAO support
class and call a template retrieval method to have direct access to the underlying data
access template. For example, if your application DAO subclasses JdbcDaoSupport,
then you only need to call getJdbcTemplate() to get a JdbcTemplate to work with.

 Plus, if you need access to the underlying persistence platform, each of the DAO
support classes provides access to whatever class it uses to communicate with the data-
base. For instance, the JdbcDaoSupport class contains a getConnection() method for
dealing directly with the JDBC connection.

 Just as Spring provides several data access template implementations, it also pro-
vides several DAO support classes—one for each template. Table 5.3 lists the DAO sup-
port classes that come with Spring.

Even though Spring provides support for several persistence frameworks, there
isn’t enough space to cover them all in this chapter. Therefore, we’re going to focus
on what I believe are the most beneficial persistence options and the ones that you’ll
most likely be using.

Table 5.3 Spring's DAO support classes provide convenient access to their corresponding data access
template.

DAO support class (org.springframework.*) Provides DAO support for. . .

jca.cci.support.CciDaoSupport JCA CCI connections

jdbc.core.support.JdbcDaoSupport JDBC connections

jdbc.core.namedparam.NamedParameterJdbcDaoSupport JDBC connections with sup-
port for named parameters

jdbc.core.simple.SimpleJdbcDaoSupport JDBC connections, simplified
with Java 5 constructs

orm.hibernate.support.HibernateDaoSupport Hibernate 2.x sessions

orm.hibernate3.support.HibernateDaoSupport Hibernate 3.x sessions

orm.ibatis.support.SqlMapClientDaoSupport iBATIS SqlMap clients

orm.jdo.support.JdoDaoSupport Java Data Object
implementations

orm.jpa.support.JpaDaoSupport Java Persistence API entity

DAO
support

Data access
template

Persistence
framework

Application
DAO

Database

Figure 5.3 The relationship
between an application DAO
and Spring’s DAO support and
template classes
managers

Licensed to Christian Cederquist <chrisman@kaus.dk>

121Configuring a data source

We’ll start with basic JDBC access, as it’s the most basic way to read and write data from
a database. Then we’ll look at Hibernate and JPA, two of the most popular POJO-based
ORM solutions.

 But first things first—most of Spring’s persistence support options will depend on
a data source. So, before we can get started with creating templates and DAOs, we
need to configure Spring with a data source for the DAOs to access the database.

5.2 Configuring a data source
Regardless of which form of Spring DAO support you use, you’ll likely need to config-
ure a reference to a data source. Spring offers several options for configuring data
source beans in your Spring application, including

 Data sources that are defined by a JDBC driver
 Data sources that are looked up by JNDI

 Data sources that pool connections

For production-ready applications, I recommend using a data source that draws its
connections from a connection pool. When possible, I prefer to retrieve the pooled
data source from an application server via JNDI. With that preference in mind, let’s
start by looking at how to configure Spring to retrieve a data source from JNDI.

5.2.1 Using JNDI data sources

Spring applications will often be deployed to run within a Java EE application server
such as WebSphere, JBoss, or even a web container like Tomcat. These servers allow
you to configure data sources to be retrieved via JNDI. The benefit of configuring data
sources in this way is that they can be managed completely external to the application,
allowing the application to ask for a data source when it’s ready to access the database.
Moreover, data sources managed in an application server are often pooled for greater
performance and can be hot-swapped by system administrators.

 With Spring, we can configure a reference to a data source that’s kept in JNDI and
wire it into the classes that need it as if it were just another Spring bean. The
<jee:jndi-lookup> element from Spring’s jee namespace makes it possible to
retrieve any object, including data sources, from JNDI and make it available as a
Spring bean. For example, if our application’s data source were configured in JNDI,
we might use <jee:jndi-lookup> like this to wire it into Spring:

<jee:jndi-lookup id="dataSource"
jndi-name="/jdbc/SpitterDS"
resource-ref="true" />

The jndi-name attribute is used to specify the name of the resource in JNDI. If only
the jndi-name property is set, then the data source will be looked up using the name
given as is. But if the application is running within a Java application server, then
you’ll want to set the resource-ref property to true so that the value given in jndi-
name will be prepended with java:comp/env/.
Licensed to Christian Cederquist <chrisman@kaus.dk>

122 CHAPTER 5 Hitting the database

5.2.2 Using a pooled data source

If you're unable to retrieve a data source from JNDI, the next best thing is to configure
a pooled data source directly in Spring. Although Spring doesn’t provide a pooled
data source, there’s a suitable one available in the Jakarta Commons Database Con-
nection Pooling (DBCP) project (http://jakarta.apache.org/commons/dbcp).

 DBCP includes several data sources that provide pooling, but the BasicDataSource
is one that’s often used because it’s simple to configure in Spring and because it
resembles Spring’s own DriverManagerDataSource (which we’ll talk about next).

 For the Spitter application, we’ll configure a BasicDataSource bean as follows:

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource">

<property name="driverClassName" value="org.hsqldb.jdbcDriver" />
<property name="url"

 value="jdbc:hsqldb:hsql://localhost/spitter/spitter" />
<property name="username" value="sa" />
<property name="password" value="" />
<property name="initialSize" value="5" />
<property name="maxActive" value="10" />

</bean>

The first four properties are elemental to configuring a BasicDataSource. The
driverClassName property specifies the fully qualified name of the JDBC driver class.
Here we’ve configured it with the JDBC driver for the Hypersonic database. The url
property is where we set the complete JDBC URL for the database. Finally, the
username and password properties are used to authenticate when we’re connecting
to the database.

 Those four basic properties define connection information for BasicData-
Source. In addition, several properties can be used to configure the data source
pool itself. Table 5.4 lists a few of the most useful pool-configuration properties of
BasicDataSource.

Table 5.4 BasicDataSource’s pool-configuration properties

Pool-configuration property What it specifies

initialSize The number of connections created when the pool is started.

maxActive The maximum number of connections that can be allocated
from the pool at the same time. If zero, there’s no limit.

maxIdle The maximum number of connections that can be idle in the
pool without extras being released. If zero, there’s no limit.

maxOpenPreparedStatements The maximum number of prepared statements that can be allo-
cated from the statement pool at the same time. If zero,
there’s no limit.

maxWait How long the pool will wait for a connection to be returned to
the pool (when there are no available connections) before an

exception is thrown. If -1, wait indefinitely.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://jakarta.apache.org/commons/dbcp

123Configuring a data source

For our purposes, we’ve configured the pool to start with five connections. Should
more connections be needed, BasicDataSource is allowed to create them, up to a
maximum of ten active connections.

5.2.3 JDBC driver-based data source

The simplest data source you can configure in Spring is one that’s defined through a
JDBC driver. Spring offers two such data source classes to choose from (both in the
org.springframework.jdbc.datasource package):

 DriverManagerDataSource—Returns a new connection every time that a con-
nection is requested. Unlike DBCP’s BasicDataSource, the connections pro-
vided by DriverManagerDataSource aren’t pooled.

 SingleConnectionDataSource—Returns the same connection every time a
connection is requested. Although SingleConnectionDataSource isn’t exactly
a pooled data source, you can think of it as a data source with a pool of exactly
one connection.

Configuring either of these data sources is similar to how we configured DBCP’s
BasicDataSource:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.

DriverManagerDataSource">
<property name="driverClassName"

 value="org.hsqldb.jdbcDriver" />
<property name="url"

 value="jdbc:hsqldb:hsql://localhost/spitter/spitter" />
<property name="username" value="sa" />
<property name="password" value="" />

</bean>

The only difference is that since neither DriverManagerDataSource nor Single-
ConnectionDataSource provides a connection pool, there are no pool configuration
properties to set.

 Although SingleConnectionDataSource and DriverManagerDataSource are great
for small applications and running in development, you should seriously consider the
implications of using either in a production application. Because SingleConnection-

minEvictableIdleTimeMillis How long a connection can remain idle in the pool before it’s
eligible for eviction.

minIdle The minimum number of connections that can remain idle in
the pool without new connections being created.

poolPreparedStatements Whether or not to pool prepared statements (Boolean).

Table 5.4 BasicDataSource’s pool-configuration properties (continued)

Pool-configuration property What it specifies
DataSource has one and only one database connection to work with, it doesn’t work

Licensed to Christian Cederquist <chrisman@kaus.dk>

124 CHAPTER 5 Hitting the database

well in a multithreaded application. At the same time, even though DriverManager-
DataSource is capable of supporting multiple threads, it incurs a performance cost for
creating a new connection each time a connection is requested. Because of these limi-
tations, I strongly recommend using pooled data sources.

 Now that we’ve established a connection to the database through a data source,
we’re ready to actually access the database. As I’ve already mentioned, Spring affords
us several options for working with databases, including JDBC, Hibernate, and the Java
Persistence API (JPA). In the next section we’ll see how to build the persistence layer
of a Spring application using Spring’s support for JDBC. But if Hibernate or JPA are
more your style, then feel free to jump ahead to sections 5.4 and 5.5.

5.3 Using JDBC with Spring
There are many persistence technologies out there. Hibernate, iBATIS, and JPA are
just a few. Despite this, a good number of applications are writing Java objects to a
database the old-fashioned way: they earn it. No, wait—that’s how people make
money. The tried-and-true method for persisting data is with good old JDBC.

 And why not? JDBC doesn’t require mastering another framework’s query lan-
guage. It’s built on top of SQL, which is the data access language. Plus, you can more
finely tune the performance of your data access when you use JDBC than with practi-
cally any other technology. And JDBC allows you to take advantage of your database’s
proprietary features, where other frameworks may discourage or flat-out prohibit this.

 What’s more, JDBC lets you work with data at a much lower level than the persis-
tence frameworks, allowing you to access and manipulate individual columns in a
database. This fine-grained approach to data access comes in handy in applications,
such as reporting applications, where it doesn’t make sense to organize the data into
objects, just to then unwind it back into raw data.

 But all is not sunny in the world of JDBC. With its power, flexibility, and other nice-
ties also come some not-so-niceties.

5.3.1 Tackling runaway JDBC code

Though JDBC gives you an API that works closely with your database, you’re responsi-
ble for handling everything related to accessing the database. This includes managing
database resources and handling exceptions.

 If you’ve ever written JDBC that inserts data into the database, the following
shouldn’t be too alien to you.

private static final String SQL_INSERT_SPITTER =
"insert into spitter (username, password, fullname) values (?, ?, ?)";

private DataSource dataSource;
public void addSpitter(Spitter spitter) {

Connection conn = null;
PreparedStatement stmt = null;

Listing 5.1 Using JDBC to insert a row into a database
Licensed to Christian Cederquist <chrisman@kaus.dk>

125Using JDBC with Spring

try {
conn = dataSource.getConnection();

stmt = conn.prepareStatement(SQL_INSERT_SPITTER);

stmt.setString(1, spitter.getUsername());
stmt.setString(2, spitter.getPassword());
stmt.setString(3, spitter.getFullName());

stmt.execute();

} catch (SQLException e) {
// do something...not sure what, though

} finally {
try {

if (stmt != null) {
stmt.close();

}
if (conn != null) {

conn.close();
}

} catch (SQLException e) {
// I'm even less sure about what to do here

}
}

}

Holy runaway code, Batman! That’s more than 20 lines of code to insert a simple
object into a database. As far as JDBC operations go, this is about as simple as it gets.
So why does it take this many lines to do something so simple? Actually, it doesn’t.
Only a handful of lines actually do the insert. But JDBC requires that you properly
manage connections and statements and somehow handle the SQLException that
may be thrown.

 Speaking of that SQLException: not only is it not clear how you should handle it
(because it’s not clear what went wrong), but you’re forced to catch it twice! You must
catch it if something goes wrong while inserting a record, and you have to catch it
again if something goes wrong when closing the statement and connection. Seems
like a lot of work to handle something that usually can’t be handled programmatically.

 Now look at the following listing, where we use traditional JDBC to update a row in
the Spitter table in the database.

private static final String SQL_UPDATE_SPITTER =
"update spitter set username = ?, password = ?, fullname = ?"
+ "where id = ?";

public void saveSpitter(Spitter spitter) {
Connection conn = null;
PreparedStatement stmt = null;
try {

conn = dataSource.getConnection();

Listing 5.2 Using JDBC to update a row in a database

Get
connection

Create
statement

Bind
parameters

Execute
statement

Handle exceptions
(somehow)

Clean up

Get
connection
Licensed to Christian Cederquist <chrisman@kaus.dk>

126 CHAPTER 5 Hitting the database

stmt = conn.prepareStatement(SQL_UPDATE_SPITTER);

stmt.setString(1, spitter.getUsername());
stmt.setString(2, spitter.getPassword());
stmt.setString(3, spitter.getFullName());
stmt.setLong(4, spitter.getId());

stmt.execute();
} catch (SQLException e) {

// Still not sure what I'm supposed to do here
} finally {

try {
if (stmt != null) {

stmt.close();
}
if (conn != null) {

conn.close();
}

} catch (SQLException e) {
// or here

}
}

}

At first glance, listing 5.2 may appear to be identical to listing 5.1. In fact, disregarding
the SQL String and the line where the statement is created, they’re identical. Again,
that’s a lot of code to do something as simple as update a single row in a database.
What’s more, that’s a lot of repeated code. Ideally, we’d only have to write the lines
that are specific to the task at hand. After all, those are the only lines that distinguish
listing 5.2 from listing 5.1. The rest is just boilerplate code.

 To round out our tour of conventional JDBC, let’s see how you might retrieve data
out of the database. As you can see in the following, that’s not pretty, either.

private static final String SQL_SELECT_SPITTER =
"select id, username, fullname from spitter where id = ?";

public Spitter getSpitterById(long id) {
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;
try {

conn = dataSource.getConnection();

stmt = conn.prepareStatement(SQL_SELECT_SPITTER);

stmt.setLong(1, id);

rs = stmt.executeQuery();

Spitter spitter = null;
if (rs.next()) {

spitter = new Spitter();
spitter.setId(rs.getLong("id"));
spitter.setUsername(rs.getString("username"));

Listing 5.3 Using JDBC to query a row from a database

Create
statement

Bind
parameters

Execute statement

Handle exceptions
(somehow)

Clean up

Get
connection

Create
statement

Bind
parameter

Execute
query

Process
results
Licensed to Christian Cederquist <chrisman@kaus.dk>

127Using JDBC with Spring

spitter.setPassword(rs.getString("password"));
spitter.setFullName(rs.getString("fullname"));

}
return spitter;

} catch (SQLException e) {

} finally {
if(rs != null) {

try {
rs.close();

} catch(SQLException e) {}
}

if(stmt != null) {
try {
stmt.close();
} catch(SQLException e) {}

}

if(conn != null) {
try {

conn.close();
} catch(SQLException e) {}

}
}

return null;
}

That’s about as verbose as the insert and update examples—maybe more. It’s like the
Pareto principle2 flipped on its head: 20 percent of the code is needed to actually
query a row whereas 80 percent is boilerplate code.

 By now you should see that much of JDBC code is boilerplate code for creating
connections and statements and exception handling. With my point made, I’ll end
the torture here and not make you look at any more of this nasty code.

 But the fact is that this boilerplate code is important. Cleaning up resources and
handling errors is what makes data access robust. Without it, errors would go unde-
tected and resources would be left open, leading to unpredictable code and resource
leaks. So not only do we need this code, we also need to make sure that it’s correct.
This is all the more reason to let a framework deal with the boilerplate code so that we
know that it’s written once and written right.

5.3.2 Working with JDBC templates

Spring’s JDBC framework will clean up your JDBC code by shouldering the burden of
resource management and exception handling. This leaves you free to write only the
code necessary to move data to and from the database.

Handle exceptions
(somehow)

Clean up
2 http://en.wikipedia.org/wiki/Pareto%27s_principle

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://en.wikipedia.org/wiki/Pareto%27s_principle

128 CHAPTER 5 Hitting the database

 As I explained in section 5.3.1, Spring abstracts away the boilerplate data access
code behind template classes. For JDBC, Spring comes with three template classes to
choose from:

 JdbcTemplate—The most basic of Spring’s JDBC templates, this class provides
simple access to a database through JDBC and simple indexed-parameter queries.

 NamedParameterJdbcTemplate—This JDBC template class enables you to per-
form queries where values are bound to named parameters in SQL, rather than
indexed parameters.

 SimpleJdbcTemplate—This version of the JDBC template takes advantage of
Java 5 features such as autoboxing, generics, and variable parameter lists to sim-
plify how a JDBC template is used.

At one time, you had to weigh your choice of JDBC template carefully. But as of the
most recent versions of Spring, the decision is much easier. In Spring 2.5, the named
parameter features of NamedParameterJdbcTemplate were merged into Simple-
JdbcTemplate. And as of Spring 3.0, support for older versions of Java (prior to Java 5)
has been dropped—so there’s almost no reason to choose the plain JdbcTemplate
over SimpleJdbcTemplate. In light of these changes, we’ll focus solely on Simple-
JdbcTemplate in this chapter.

ACCESSING DATA USING SIMPLEJDBCTEMPLATE

All that a SimpleJdbcTemplate needs to do its work is a DataSource. This makes it easy
enough to configure a SimpleJdbcTemplate bean in Spring with the following XML:

<bean id="jdbcTemplate"
 class="org.springframework.jdbc.core.simple.SimpleJdbcTemplate">

<constructor-arg ref="dataSource" />
</bean>

The actual DataSource being referred to by the dataSource property can be any
implementation of javax.sql.DataSource, including those we created in section 5.2.

 Now we can wire the jdbcTemplate bean into our DAO and use it to access the data-
base. For example, suppose that the Spitter DAO is written to use SimpleJdbcTemplate:

public class JdbcSpitterDAO implements SpitterDAO {
...

private SimpleJdbcTemplate jdbcTemplate;
public void setJdbcTemplate(SimpleJdbcTemplate jdbcTemplate) {

this.jdbcTemplate = jdbcTemplate;
}

}

You’d then wire the jdbcTemplate property of JdbcSpitterDAO as follows:

<bean id="spitterDao"
class="com.habuma.spitter.persistence.SimpleJdbcTemplateSpitterDao">

<property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>
Licensed to Christian Cederquist <chrisman@kaus.dk>

129Using JDBC with Spring

With a SimpleJdbcTemplate at our DAO’s disposal, we can greatly simplify the
addSpitter() method from listing 5.1. The new SimpleJdbcTemplate-based
addSpitter() method is shown next.

public void addSpitter(Spitter spitter) {
jdbcTemplate.update(SQL_INSERT_SPITTER,

spitter.getUsername(),
spitter.getPassword(),
spitter.getFullName(),
spitter.getEmail(),
spitter.isUpdateByEmail());

spitter.setId(queryForIdentity());
}

I think you’ll agree that this version of addSpitter() is significantly simpler. There’s
no more connection or statement creation code—and no more exception-handling
code. There’s nothing but pure data insertion code.

 Just because you don’t see a lot of boilerplate code, that doesn’t mean it’s not
there. It’s cleverly hidden inside of the JDBC template class. When the update()
method is called, SimpleJdbcTemplate will get a connection, create a statement, and
execute the insert SQL.

 What you also don’t see is how the SQLException is handled. Internally, Simple-
JdbcTemplate will catch any SQLExceptions that are thrown. It’ll then translate the
generic SQLException into one of the more specific data access exceptions from
table 5.1 and rethrow it. Because Spring’s data access exceptions are all runtime
exceptions, we didn’t have to catch it in the addSpitter() method.

 Reading data is also simplified with JdbcTemplate. The following shows a new ver-
sion of getSpitterById() that uses SimpleJdbcTemplate callbacks to map a result set
to domain objects.

public Spitter getSpitterById(long id) {
return jdbcTemplate.queryForObject(

SQL_SELECT_SPITTER_BY_ID,
new ParameterizedRowMapper<Spitter>() {

public Spitter mapRow(ResultSet rs, int rowNum)
throws SQLException {

Spitter spitter = new Spitter();
spitter.setId(rs.getLong(1));
spitter.setUsername(rs.getString(2));
spitter.setPassword(rs.getString(3));
spitter.setFullName(rs.getString(4));
return spitter;

}
},
id
);

Listing 5.4 A SimpleJdbcTemplate-based addSpitter() method

Listing 5.5 Querying for a Spitter using SimpleJdbcTemplate

Update
Spitter

Queries
for Spitter

Maps results
to object

Binds
}
parameters

Licensed to Christian Cederquist <chrisman@kaus.dk>

130 CHAPTER 5 Hitting the database

This getSpitterById() method uses SimpleJdbcTemplate’s queryForObject()

method to query for a Spitter from the database. The queryForObject() method
takes three parameters:

 A String containing the SQL to be used to select the data from the database
 A ParameterizedRowMapper object that extracts values from a ResultSet and

constructs a domain object (in this case a Spitter)
 A variable argument list of values to be bound to indexed parameters of the

query

The real magic happens in the ParameterizedRowMapper object. For every row that
results from the query, JdbcTemplate will call the mapRow() method of the RowMapper.
Within ParameterizedRowMapper, we’ve written the code that creates a Spitter object
and populates it with values from the ResultSet.

 Just like addSpitter(), the getSpitterById() method is free from JDBC boiler-
plate code. Unlike traditional JDBC, there’s no resource management or exception-
handling code. Methods that use SimpleJdbcTemplate are laser-focused on retrieving
a Spitter object from the database.

USING NAMED PARAMETERS

The addSpitter() method in listing 5.4 used indexed parameters. This meant that we
had to take notice of the order of the parameters in the query and list the values in
the correct order when passing them to the update() method. If we were to ever
change the SQL in such a way that the order of the parameters would change, we’d
also need to change the order of the values.

 Optionally, we could use named parameters. Named parameters let us give each
parameter in the SQL an explicit name and to refer to the parameter by that name
when binding values to the statement. For example, suppose that the SQL_INSERT_
SPITTER query were defined as follows:

private static final String SQL_INSERT_SPITTER =
"insert into spitter (username, password, fullname) " +
"values (:username, :password, :fullname)";

With named parameter queries, the order of the bound values isn’t important. We can
bind each value by name. If the query changes and the order of the parameters is no
longer the same, we won’t have to change the binding code.

 In Spring 2.0 you’d have to rely on a special JDBC template class called Named-
ParameterJdbcTemplate to use named parameter queries. Prior to Spring 2.0, it
wasn’t even possible. But starting with Spring 2.5, the named parameter features of
NamedParameterJdbcTemplate have been merged into SimpleJdbcTemplate, so
you’re already set to update your addSpitter() method to use named parameters.
The following listing shows the new named-parameter version of addSpitter().
Licensed to Christian Cederquist <chrisman@kaus.dk>

131Using JDBC with Spring

public void addSpitter(Spitter spitter) {
Map<String, Object> params = new HashMap<String, Object>();
params.put("username", spitter.getUsername());
params.put("password", spitter.getPassword());
params.put("fullname", spitter.getFullName());

jdbcTemplate.update(SQL_INSERT_SPITTER, params);
spitter.setId(queryForIdentity());

}

The first thing you’ll notice is that this version of addSpitter() is a bit longer than
the previous version. That’s because named parameters are bound through a
java.util.Map. Nevertheless, every line is focused on the goal of inserting a Spitter
object into the database. There’s still no resource management or exception-handling
code cluttering up the chief purpose of the method.

USING SPRING’S DAO SUPPORT CLASSES FOR JDBC

For each of our application’s JDBC-backed DAO classes, we’ll need to be sure to add a
SimpleJdbcTemplate property and setter method. And we’ll need to be sure to wire
the SimpleJdbcTemplate bean into the SimpleJdbcTemplate property of each DAO.
That’s not a big deal if the application only has one DAO, but if you have multiple
DAOs, that’s a lot of repeated code.

 One solution would be for you to create a common parent class for all your DAO
objects where the SimpleJdbcTemplate property resides. Then all of your DAO classes
would extend that class and use the parent class’s SimpleJdbcTemplate for its data
access. Figure 5.4 shows the proposed relationship between an application DAO and
the base DAO class.

 The idea of creating a base DAO class that holds
the JDBC template is such a good idea that Spring
comes with just such a base class out of the box.
Actually, it comes with three such classes—Jdbc-

DaoSupport, SimpleJdbcDaoSupport, and NamedPa-
rameterJdbcDaoSupport—one to mirror each of
Spring’s JDBC templates. To use one of these DAO
support classes, start by changing your DAO class to
extend it. For example:

public class JdbcSpitterDao extends SimpleJdbcDaoSupport
implements SpitterDao {

...
}

The SimpleJdbcDaoSupport provides convenient access to the SimpleJdbcTemplate
through the getSimpleJdbcTemplate() method. For example, the addSpitter()
method may be written like this:

Listing 5.6 Using named parameters with Spring JDBC templates

Bind
parameters

Perform
insert

Figure 5.4 Spring’s DAO support
classes define a placeholder for the
JDBC template objects so that
subclasses won’t have to manage
their own JDBC templates.
Licensed to Christian Cederquist <chrisman@kaus.dk>

132 CHAPTER 5 Hitting the database

public void addSpitter(Spitter spitter) {
getSimpleJdbcTemplate().update(SQL_INSERT_SPITTER,

spitter.getUsername(),
spitter.getPassword(),
spitter.getFullName(),
spitter.getEmail(),
spitter.isUpdateByEmail());

spitter.setId(queryForIdentity());
}

When configuring your DAO class in Spring, you could directly wire a SimpleJdbc-
Template bean into its jdbcTemplate property as follows:

<bean id="spitterDao"
 class="com.habuma.spitter.persistence.JdbcSpitterDao">

<property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>

This will work, but it isn’t much different from how you configured the DAO that
didn’t extend SimpleJdbcDaoSupport. Alternatively, you can skip the middleman (or
middle bean, as the case may be) and wire a data source directly into the dataSource
property that JdbcSpitterDao inherits from SimpleJdbcDaoSupport:

<bean id="spitterDao"
 class="com.habuma.spitter.persistence.JdbcSpitterDao">

<property name="dataSource" ref="dataSource" />
</bean>

When JdbcSpitterDao has its dataSource property configured, it’ll internally create a
SimpleJdbcTemplate instance for you. This eliminates the need to explicitly declare a
SimpleJdbcTemplate bean in Spring.

 JDBC is the most basic way to access data in a relational database. Spring’s JDBC
templates save you the hassle of dealing with the boilerplate code that handles con-
nection resources and exception handling, leaving you to focus on the actual work of
querying and updating data.

 Even though Spring takes much of the pain out of working with JDBC, it can still
become cumbersome as applications grow larger and more complex. To help manage
the persistence challenges of large applications, you may want to graduate to a
persistence framework such as Hibernate. Let’s see how to plug Hibernate in the per-
sistence layer of a Spring application.

5.4 Integrating Hibernate with Spring
When we were kids, riding a bike was fun, wasn’t it? We’d ride to school in the morn-
ings. When school let out, we’d cruise to our best friend’s house. When it got late and
our parents were yelling at us for staying out past dark, we’d peddle home for the
night. Gee, those days were fun.

 Then we grew up, and now we need more than a bike. Sometimes we have to travel
a long distance to work. Groceries have to be hauled, and ours kids need to get to soc-
cer practice. And if you live in Texas, air conditioning is a must! Our needs have sim-

ply outgrown our bikes.

Licensed to Christian Cederquist <chrisman@kaus.dk>

133Integrating Hibernate with Spring

 JDBC is the bike of the persistence world. It’s great for what it does, and for some
jobs it works fine. But as our applications become more complex, so do our persis-
tence requirements. We need to be able to map object properties to database columns
and have our statements and queries created for us, freeing us from typing an endless
string of question marks. We also need features that are more sophisticated:

 Lazy loading—As our object graphs become more complex, we sometimes don’t
want to fetch entire relationships immediately. To use a typical example, sup-
pose we’re selecting a collection of PurchaseOrder objects, and each of these
objects contains a collection of LineItem objects. If we’re only interested in
PurchaseOrder attributes, it makes no sense to grab the LineItem data. This
could be expensive. Lazy loading allows us to grab data only as it’s needed.

 Eager fetching—This is the opposite of lazy loading. Eager fetching allows you to
grab an entire object graph in one query. In the cases where we know that we
need a PurchaseOrder object and its associated LineItems, eager fetching lets
us get this from the database in one operation, saving us from costly round-
trips.

 Cascading—Sometimes changes to a database table should result in changes to
other tables as well. Going back to our purchase order example, when an
Order object is deleted, we also want to delete the associated LineItems from
the database.

Several frameworks are available that provide these services. The general name for
these services is object-relational mapping (ORM). Using an ORM tool for your persistence
layer can save you literally thousands of lines of code and hours of development time.
This lets you switch your focus from writing error-prone SQL code to addressing your
application requirements.

 Spring provides support for several persistence frameworks, including Hibernate,
iBATIS, Java Data Objects (JDO), and the Java Persistence API (JPA).

 As with Spring’s JDBC support, Spring's support for ORM frameworks provides inte-
gration points to the frameworks as well as some additional services:

 Integrated support for Spring declarative transactions
 Transparent exception handling
 Thread-safe, lightweight template classes
 DAO support classes
 Resource management

I don’t have enough space in this chapter to cover all of the ORM frameworks that are
supported by Spring. That’s okay, because Spring’s support for one ORM solution is
similar to the next. Once you get the hang of using one ORM framework with Spring,
you’ll find it easy to switch to another one.

 Let’s get started by looking at how Spring integrates with what’s perhaps the most
popular ORM framework in use—Hibernate. Later in this chapter, we’ll also look at

how Spring integrates with JPA (in section 5.5).

Licensed to Christian Cederquist <chrisman@kaus.dk>

134 CHAPTER 5 Hitting the database

 Hibernate is an open source persistence framework that has gained significant
popularity in the developer community. It provides not only basic object-relational
mapping but also all the other sophisticated features you’d expect from a full-featured
ORM tool, such as caching, lazy loading, eager fetching, and distributed caching.

 In this section, we’ll focus on how Spring integrates with Hibernate, without dwell-
ing too much on the intricate details of using Hibernate. If you need to learn more
about working with Hibernate, I recommend either Java Persistence with Hibernate
(Manning, 2006) or the Hibernate website at http://www.hibernate.org.

5.4.1 A Hibernate overview

In the previous section we looked at how to work with JDBC through Spring’s JDBC
templates. As it turns out, Spring’s support for Hibernate offers a similar template
class to abstract Hibernate persistence. Historically, HibernateTemplate was the way
to work with Hibernate in a Spring application. Like its JDBC counterpart, Hibernate-
Template took care of the intricacies of working with Hibernate by catching Hiber-
nate-specific exceptions and rethrowing them as one of Spring’s unchecked data
access exceptions.

 One of the responsibilities of HibernateTemplate is to manage Hibernate
Sessions. This involves opening and closing sessions as well as ensuring one session
per transaction. Without HibernateTemplate, you’d have no choice but to clutter
your DAOs with boilerplate session management code.

 The downside of HibernateTemplate is that it’s somewhat intrusive. When we use
Spring’s HibernateTemplate in a DAO (whether directly or through HibernateDao-
Support), the DAO class is coupled to the Spring API. Although this may not be of
much concern to some developers, others may find Spring’s intrusion into their DAO
code undesirable.

 Even though HibernateTemplate is still around, it’s no longer considered the best
way of working with Hibernate. Contextual sessions, introduced in Hibernate 3, are a
way in which Hibernate itself manages one Session per transaction. There’s no need
for HibernateTemplate to ensure this behavior. This keeps your DAO classes free of
Spring-specific code.

 Since contextual sessions are the accepted best practice for working with Hiber-
nate, we’ll focus on them and not spend any more time on HibernateTemplate. If
you’re still curious about HibernateTemplate and want to see how it works, I refer you
to the second edition of this book or to the example code that can be downloaded
from http://www.manning.com/walls4/, where I include a HibernateTemplate

example.
 Before we dive into working with Hibernate’s contextual sessions, we need to set

the stage for Hibernate by configuring a Hibernate session factory in Spring.

5.4.2 Declaring a Hibernate session factory

Natively, the main interface for working with Hibernate is org.hibernate.Session.

The Session interface provides basic data access functionality such as the ability to

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.manning.com/walls4/
http://www.hibernate.org

135Integrating Hibernate with Spring

save, update, delete, and load objects from the database. Through the Hibernate
Session, an application’s DAO will perform all of its persistence needs.

 The standard way to get a reference to a Hibernate Session object is through an
implementation of Hibernate’s SessionFactory interface. Among other things,
SessionFactory is responsible for opening, closing, and managing Hibernate
Sessions.

 In Spring, the way to get a Hibernate SessionFactory is through one of Spring’s
Hibernate session factory beans. These session factory beans are implementations of
Spring’s FactoryBean interface that produce a Hibernate SessionFactory when
wired into any property of type SessionFactory. This makes it possible to configure
your Hibernate session factory alongside the other beans in your application’s Spring
context.

 When it comes to configuring a Hibernate session factory bean, you have a choice
to make. The decision hinges on whether you want to configure your persistent
domain objects using Hibernate’s XML mapping files or with annotations. If you
choose to define your object-to-database mapping in XML, you’ll need to configure
LocalSessionFactoryBean in Spring :

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="mappingResources">
 <list>
 <value>Spitter.hbm.xml </value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="dialect">org.hibernate.dialect.HSQLDialect</prop>
 </props>
 </property>
</bean>

LocalSessionFactoryBean is configured here with three properties. The dataSource
property is wired with a reference to a DataSource bean. The mappingResources
property lists one or more Hibernate mapping files that define the persistence strat-
egy for the application. Finally, hibernateProperties is where we configure the
minutia of how Hibernate should operate. In this case, we’re saying that Hibernate
will be working with a Hypersonic database and should use the HSQLDialect to con-
struct SQL accordingly.

 If annotation-oriented persistence is more your style, then you’ll need to use
AnnotationSessionFactoryBean instead of LocalSessionFactoryBean:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.annotation.

 ➥AnnotationSessionFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="packagesToScan"
Licensed to Christian Cederquist <chrisman@kaus.dk>

136 CHAPTER 5 Hitting the database

value="com.habuma.spitter.domain" />
<property name="hibernateProperties">
<props>
<prop key="dialect">org.hibernate.dialect.HSQLDialect</prop>

</props>
</property>

</bean>

As with LocalSessionFactoryBean, the dataSource and hibernateProperties prop-
erties tell where to find a database connection and what kind of database we’ll be deal-
ing with.

 But instead of listing Hibernate mapping files, we can use the packagesToScan
property to tell Spring to scan one or more packages looking for domain classes that
are annotated for persistence with Hibernate. This includes classes that are annotated
with JPA’s @Entity or @MappedSuperclass and Hibernate’s own @Entity annotation.

If you’d prefer, you may also explicitly list out all of your application's persistent classes
by specifying a list of fully qualified class names in the annotatedClasses property:

<property name="annotatedClasses">
<list>

<value>com.habuma.spitter.domain.Spitter</value>
<value>com.habuma.spitter.domain.Spittle</value>

</list>
</property>

The annotatedClasses property is fine for hand-picking a few domain classes. But
packagesToScan is more appropriate if you have a lot of domain classes and don’t
want to list them all or if you want the freedom to add or remove domain classes with-
out revisiting the Spring configuration.

 With a Hibernate session factory bean declared in the Spring application context,
we’re ready to start creating our DAO classes.

A list of one
AnnotationSessionFactoryBean’s packagesToScan property takes an array of
Strings specifying the packages to look for persistent classes in. Normally, I might
specify such a list as follows:
<property name="packagesToScan">

<list>
<value>com.habuma.spitter.domain</value>

</list>
</property>

But since I’m only asking it to scan a single package, I’m taking advantage of a
built-in property editor that automatically converts a single String value into a
String array.
Licensed to Christian Cederquist <chrisman@kaus.dk>

137Integrating Hibernate with Spring

5.4.3 Building Spring-free Hibernate

As mentioned before, without contextual sessions, Spring’s Hibernate templates
would handle the task of ensuring one session per transaction. But now that Hiber-
nate manages this, there’s no need for a template class. That means that you can wire
a Hibernate session directly into your DAO classes.

package com.habuma.spitter.persistence;
import java.util.List;
import org.hibernate.SessionFactory;
import org.hibernate.classic.Session;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;
import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.domain.Spittle;

@Repository
public class HibernateSpitterDao implements SpitterDao {

private SessionFactory sessionFactory;

@Autowired
public HibernateSpitterDao(SessionFactory sessionFactory) {

this.sessionFactory = sessionFactory;
}

private Session currentSession() {
return sessionFactory.getCurrentSession();

}

public void addSpitter(Spitter spitter) {
currentSession().save(spitter);

}

public Spitter getSpitterById(long id) {
return (Spitter) currentSession().get(Spitter.class, id);

}

public void saveSpitter(Spitter spitter) {
currentSession().update(spitter);

}
...
}

There are several things to take note of in listing 5.7. First, note that we’re using Spring’s
@Autowired annotation to have Spring automatically inject a SessionFactory into
HibernateSpitterDao's sessionFactory property. Then, in the currentSession()
method, we use that SessionFactory to get the current transaction’s session.

 Also note that we’ve annotated the class with @Repository. This accomplishes two
things for us. First, @Repository is another one of Spring’s stereotype annotations
that, among other things, are scanned by Spring’s <context:component-scan>. This
means that we won’t have to explicitly declare a HibernateSpitterDao bean, as long

Listing 5.7 Hibernate’s contextual sessions enable Spring-free Hibernate DAOs.

Construct
DAO

Retrieve current
Session from
SessionFactory

Use current
Session
as we configure <context:component-scan> like so:

Licensed to Christian Cederquist <chrisman@kaus.dk>

138 CHAPTER 5 Hitting the database

<context:component-scan
base-package="com.habuma.spitter.persistence" />

In addition to helping to reduce XML-based configuration, @Repository serves
another purpose. Recall that one of the jobs of a template class is to catch platform-
specific exceptions and rethrow them as one of Spring’s unified unchecked excep-
tions. But if we’re using Hibernate contextual sessions and not a Hibernate template,
then how can the exception translation take place?

 To add exception translation to a template-less Hibernate DAO, we just need to
add a PersistenceExceptionTranslationPostProcessor bean to the Spring applica-
tion context:

<bean class="org.springframework.dao.annotation.
 ➥PersistenceExceptionTranslationPostProcessor"/>

PersistenceExceptionTranslationPostProcessor is a bean post processor which
adds an advisor to any bean that’s annotated with @Repository so that any platform-
specific exceptions are caught and then rethrown as one of Spring’s unchecked data
access exceptions.

 And now the Hibernate version of our DAO is complete. And we were about to
develop it without directly depending on any Spring-specific classes (aside from the
@Repository annotation). That same template-less approach can also be applied
when developing a pure JPA-based DAO. So, let’s take one more stab at developing a
SpitterDao implementation, this time using JPA.

5.5 Spring and the Java Persistence API
From its beginning, the EJB specification has included the concept of entity beans. In
EJB, entity beans are a type of EJB that describes business objects that are persisted in a
relational database. Entity beans have undergone several tweaks over the years, includ-
ing bean-managed persistence (BMP) entity beans and container-managed persistence (CMP)
entity beans.

 Entity beans both enjoyed the rise and suffered the fall of EJB’s popularity. In
recent years, developers have traded in their heavyweight EJBs for simpler POJO-based
development. This presented a challenge to the Java Community Process to shape the
new EJB specification around POJOs. The result is JSR-220—also known as EJB 3.

 The Java Persistence API (JPA) emerged out of the rubble of EJB 2’s entity beans as
the next-generation Java persistence standard. JPA is a POJO-based persistence mecha-
nism that draws ideas from both Hibernate and Java Data Objects (JDO), and mixes
Java 5 annotations in for good measure.

 With the Spring 2.0 release came the premiere of Spring integration with JPA. The
irony is that many blame (or credit) Spring with the demise of EJB. But now that
Spring provides support for JPA, many developers are recommending JPA for persis-
tence in Spring-based applications. In fact, some say that Spring-JPA is the dream team
for POJO development.

 The first step toward using JPA with Spring is to configure an entity manager fac-
tory as a bean in the Spring application context.
Licensed to Christian Cederquist <chrisman@kaus.dk>

139Spring and the Java Persistence API

5.5.1 Configuring an entity manager factory

In a nutshell, JPA-based applications use an implementation of EntityManager-
Factory to get an instance of an EntityManager. The JPA specification defines two
kinds of entity managers:

 Application-managed—Entity managers are created when an application directly
requests one from an entity manager factory. With application-managed entity
managers, the application is responsible for opening or closing entity managers
and involving the entity manager in transactions. This type of entity manager is
most appropriate for use in standalone applications that don’t run within a
Java EE container.

 Container-managed—Entity managers are created and managed by a Java EE con-
tainer. The application doesn’t interact with the entity manager factory at all.
Instead, entity managers are obtained directly through injection or from JNDI.
The container is responsible for configuring the entity manager factories. This
type of entity manager is most appropriate for use by a Java EE container that
wants to maintain some control over JPA configuration beyond what’s specified
in persistence.xml.

Both kinds of entity manager implement the same EntityManager interface. The key
difference isn’t in the EntityManager itself, but rather in how the EntityManager is cre-
ated and managed. Application-managed EntityManagers are created by an Entity-
ManagerFactory obtained by calling the createEntityManagerFactory() method of
the PersistenceProvider. Meanwhile, container-managed EntityManagerFactorys
are obtained through PersistenceProvider’s createContainerEntityManager-

Factory() method.
 So what does this all mean for Spring developers wanting to use JPA? Not much.

Regardless of which variety of EntityManagerFactory you want to use, Spring will
take responsibility for managing EntityManagers for you. If using an application-
managed entity manager, Spring plays the role of an application and transparently
deals with the EntityManager on your behalf. In the container-managed scenario,
Spring plays the role of the container.

 Each flavor of entity manager factory is produced by a corresponding Spring fac-
tory bean:

 LocalEntityManagerFactoryBean produces an application-managed Entity-
ManagerFactory.

 LocalContainerEntityManagerFactoryBean produces a container-managed
EntityManagerFactory.

It’s important to point out that the choice made between an application-managed
EntityManagerFactory and a container-managed EntityManagerFactory is com-
pletely transparent to a Spring-based application. Spring’s JpaTemplate hides the
intricate details of dealing with either form of EntityManagerFactory, leaving your

data access code to focus on its true purpose: data access.

Licensed to Christian Cederquist <chrisman@kaus.dk>

140 CHAPTER 5 Hitting the database

 The only real difference between application-managed and container-managed
entity manager factories, as far as Spring is concerned, is how each is configured
within the Spring application context. Let’s start by looking at how to configure the
application-managed LocalEntityManagerFactoryBean in Spring. Then we’ll see how
to configure a container-managed LocalContainerEntityManagerFactoryBean.

CONFIGURING APPLICATION-MANAGED JPA

Application-managed entity manager factories derive most of their configuration
information from a configuration file called persistence.xml. This file must appear in
the META-INF directory within the classpath.

 The purpose of the persistence.xml file is to define one or more persistence units.
A persistence unit is a grouping of one or more persistent classes that correspond to a
single data source. In simple terms, persistence.xml enumerates one or more persis-
tent classes along with any additional configuration such as data sources and XML-
based mapping files. Here’s a typical example of a persistence.xml file as it pertains to
the Spitter application:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
version="1.0">

<persistence-unit name="spitterPU">
<class>com.habuma.spitter.domain.Spitter</class>
<class>com.habuma.spitter.domain.Spittle</class>
<properties>

<property name="toplink.jdbc.driver"
value="org.hsqldb.jdbcDriver" />

<property name="toplink.jdbc.url" value=
"jdbc:hsqldb:hsql://localhost/spitter/spitter" />

<property name="toplink.jdbc.user"
value="sa" />

<property name="toplink.jdbc.password"
value="" />

</properties>
</persistence-unit>

</persistence>

Because so much configuration goes into a persistence.xml file, little configuration is
required (or even possible) in Spring. The following <bean> declares a LocalEntity-
ManagerFactoryBean in Spring:

<bean id="emf"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<property name="persistenceUnitName" value="spitterPU" />
</bean>

The value given to the persistenceUnitName property refers to the persistence unit
name as it appears in persistence.xml.

 The reason why much of what goes into creating an application-managed Entity-
ManagerFactory is contained in persistence.xml has everything to do with what it
means to be application managed. In the application-managed scenario (not involv-
ing Spring), an application is entirely responsible for obtaining an EntityManager-

Factory through the JPA implementation’s PersistenceProvider. The application

Licensed to Christian Cederquist <chrisman@kaus.dk>

141Spring and the Java Persistence API

code would become incredibly bloated if it had to define the persistence unit every
time it requested an EntityManagerFactory. By specifying it in persistence.xml, JPA
can look in this well-known location for persistence unit definitions.

 But with Spring’s support for JPA, we’ll never deal directly with the Persistence-
Provider. Therefore, it seems silly to extract configuration information into persis-
tence.xml. In fact, doing so prevents us from configuring the EntityManagerFactory
in Spring (so that, for example, we can provide a Spring-configured data source).

 For that reason, we should turn our attention to container-managed JPA.

CONFIGURING CONTAINER-MANAGED JPA

Container-managed JPA takes a different approach. When running within a container,
an EntityManagerFactory can be produced using information provided by the con-
tainer—Spring, in our case.

 Instead of configuring data source details in persistence.xml, you can configure
this information in the Spring application context. For example, the following <bean>
declaration shows how to configure container-managed JPA in Spring using
LocalContainerEntityManagerFactoryBean.

<bean id="emf" class=
"org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

<property name="dataSource" ref="dataSource" />
<property name="jpaVendorAdapter" ref="jpaVendorAdapter" />

</bean>

Here we’ve configured the dataSource property with a Spring-configured data
source. Any implementation of javax.sql.DataSource is appropriate, such as those
that we configured in section 5.2. Although a data source may still be configured in
persistence.xml, the data source specified through this property takes precedence.

 The jpaVendorAdapter property can be used to provide specifics about the partic-
ular JPA implementation to use. Spring comes with a handful of JPA vendor adaptors
to choose from:

 EclipseLinkJpaVendorAdapter

 HibernateJpaVendorAdapter

 OpenJpaVendorAdapter

 TopLinkJpaVendorAdapter

In this case, we’re using Hibernate as a JPA implementation, so we’ve configured it
with a HibernateJpaVendorAdapter:

<bean id="jpaVendorAdapter"
class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">

<property name="database" value="HSQL" />
<property name="showSql" value="true"/>
<property name="generateDdl" value="false"/>
<property name="databasePlatform"

value="org.hibernate.dialect.HSQLDialect" />
</bean>
Licensed to Christian Cederquist <chrisman@kaus.dk>

142 CHAPTER 5 Hitting the database

Several properties are set on the vendor adapter, but the most important one is the
database property, where we’ve specified the Hypersonic database as the database we’ll
be using. Other values supported for this property include those listed in table 5.5.

 Certain dynamic persistence features require that the class of persistent objects be
modified with instrumentation to support the feature. Objects whose properties are
lazily loaded (they won’t be retrieved from the database until they’re accessed) must
have their class instrumented with code that knows to retrieve unloaded data upon
access. Some frameworks use dynamic proxies to implement lazy loading. Others,
such as JDO, perform class instrumentation at compile time.

 Which entity manager factory bean you choose will depend primarily on how
you’ll use it. For simple applications, LocalEntityManagerFactoryBean may be suffi-
cient. But because LocalContainerEntityManagerFactoryBean enables us to config-
ure more of JPA in Spring, it’s an attractive choice and likely the one that you’ll choose
for production use.

PULLING AN ENTITYMANAGERFACTORY FROM JNDI

It’s also worth noting that if you’re deploying your Spring application in some applica-
tion servers, an EntityManagerFactory may have already been created for you and
may be waiting in JNDI to be retrieved. In that case, you can use the <jee:jndi-
lookup> element from Spring’s jee namespace to nab a reference to the Entity-
ManagerFactory:

<jee:jndi-lookup id="emf" jndi-name="persistence/spitterPU" />

Regardless of how you get your hands on an EntityManagerFactory, once you have
one, you’re ready to start writing a DAO. Let’s do that now.

Database platform Value for database property

IBM DB2 DB2

Apache Derby DERBY

H2 H2

Hypersonic HSQL

Informix INFORMIX

MySQL MYSQL

Oracle ORACLE

PostgresQL POSTGRESQL

Microsoft SQL Server SQLSERVER

Sybase SYBASE

Table 5.5 The Hibernate JPA
vendor adapter supports several
databases. You can specify which
database to use by setting its
property.
Licensed to Christian Cederquist <chrisman@kaus.dk>

143Spring and the Java Persistence API

5.5.2 Writing a JPA-based DAO

Just like all of Spring’s other persistence integration options, Spring-JPA integration
comes in template form with JpaTemplate and a corresponding JpaDaoSupport class.
Nevertheless, template-based JPA has been set aside in favor of a pure JPA approach.
This is analogous to the Hibernate contextual sessions that we used in section 5.4.3.

 Since pure JPA is favored over template-based JPA, we’ll focus on building Spring-
free JPA DAOs in this section. Specifically, JpaSpitterDao in the following listing
shows how to develop a JPA DAO without resorting to using Spring’s JpaTemplate.

package com.habuma.spitter.persistence;
import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

import org.springframework.dao.DataAccessException;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.domain.Spittle;

@Repository("spitterDao")
@Transactional
public class JpaSpitterDao implements SpitterDao {

private static final String RECENT_SPITTLES =
"SELECT s FROM Spittle s";

private static final String ALL_SPITTERS =
"SELECT s FROM Spitter s";

private static final String SPITTER_FOR_USERNAME =
"SELECT s FROM Spitter s WHERE s.username = :username";

private static final String SPITTLES_BY_USERNAME =
"SELECT s FROM Spittle s WHERE s.spitter.username = :username";

@PersistenceContext
private EntityManager em;

public void addSpitter(Spitter spitter) {
em.persist(spitter);

}

public Spitter getSpitterById(long id) {
return em.find(Spitter.class, id);

}

public void saveSpitter(Spitter spitter) {
em.merge(spitter);

}
...
}

Listing 5.8 A pure JPA DAO doesn't use any Spring templates.

Inject
EntityManager

Use
EntityManager
Licensed to Christian Cederquist <chrisman@kaus.dk>

144 CHAPTER 5 Hitting the database

JpaSpitterDao uses a EntityManager to handle persistence. By working with a
EntityManager, the DAO remains pure and resembles how a similar DAO may appear
in a non-Spring application. But where does it get the EntityManager?

 Note that the em property is annotated with @PersistentContext. Put plainly, that
annotation indicates that an instance of EntityManager should be injected into em. To
enable EntityManager injection in Spring, we’ll need to configure a Persistence-
AnnotationBeanPostProcessor in Spring’s application context:

<bean class="org.springframework.orm.jpa.support.
 ➥PersistenceAnnotationBeanPostProcessor"/>

You may have also noticed that JpaSpitterDao is annotated with @Repository and
@Transactional. @Transactional indicates that the persistence methods in this DAO
will be involved in a transactional context. We’ll talk more about @Transactional in
the next chapter when we cover Spring’s support for declarative transactions.

 As for @Repository, it serves the same purpose here as it did when we developed
the Hibernate contextual session version of the DAO. Without a template to handle
exception translation, we need to annotate our DAO with @Repository so that
PersistenceExceptionTranslationPostProcessor will know that this is one of those
beans for whom exceptions should be translated into one of Spring’s unified data
access exceptions.

 Speaking of PersistenceExceptionTranslationPostProcessor, we’ll need to
remember to wire it up as a bean in Spring just as we did for the Hibernate example:

<bean class="org.springframework.dao.annotation.
 ➥PersistenceExceptionTranslationPostProcessor"/>

Note that exception translation, whether it be with JPA or Hibernate, isn’t mandatory.
If you’d prefer that your DAO throw JPA-specific or Hibernate-specific exceptions,
then you’re welcome to forgo PersistenceExceptionTranslationPostProcessor
and let the native exceptions flow freely. But if you do use Spring’s exception transla-
tion, you’ll be unifying all of your data access exceptions under Spring’s exception
hierarchy, which will make it easier to swap out persistence mechanisms later.

5.6 Summary
Data is the life blood of an application. Some of the data-centric among us may even
contend that data is the application. With such significance being placed on data, it’s
important that we develop the data access portion of our applications in a way that’s
robust, simple, and clear.

 Spring’s support for JDBC and ORM frameworks takes the drudgery out of data
access by handling common boilerplate code that exists in all persistence mechanisms,
leaving you to focus on the specifics of data access as they pertain to your application.

 One way that Spring simplifies data access is by managing the lifecycle of database
connections and ORM framework sessions, ensuring that they’re opened and closed as
Licensed to Christian Cederquist <chrisman@kaus.dk>

145Summary

necessary. In this way, management of persistence mechanisms is virtually transparent
to your application code.

 Also, Spring can catch framework-specific exceptions (some of which are checked
exceptions) and convert them to one of a hierarchy of unchecked exceptions that are
consistent among all persistence frameworks supported by Spring. This includes con-
verting nebulous SQLExceptions thrown by JDBC into meaningful exceptions that
describe the actual problem that led to the exception being thrown.

 In this chapter, we saw how to build the persistence layer of a Spring application
using JDBC, Hibernate, or JPA. Which you choose is largely a matter of taste, but
because we developed our persistence layer behind a common Java interface, the rest
of our application can remain unaware of how data is ferried to and from the database.

 Transaction management is another aspect of data access that Spring can make
simple and transparent. In the next chapter, we’ll explore how to use Spring AOP for
declarative transaction management.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Managing transactions
Take a moment to recall your younger days. If you were like many children, you
spent more than a few carefree moments on the playground swinging on the
swings, traversing the monkey bars, getting dizzy while spinning on the merry-go-
round, and going up and down on the teeter-totter.

 The problem with the teeter-totter is that it’s practically impossible to enjoy on
your own. To truly enjoy a teeter-totter, you need another person: you and a friend
both have to agree to play on the teeter-totter. This agreement is an all-or-nothing
proposition. Either both of you will teeter-totter or you won’t. If either of you fails
to take your respective seat on each end of the teeter-totter, then there will be no
teeter-tottering—just a sad kid sitting motionless on the end of a slanted board.1

This chapter covers
 Integrating with transaction managers

 Managing transactions programmatically

 Using declarative transactions

 Describing transactions using annotations

1 Since the first edition of this book, I’ve confirmed that this qualifies as the most uses of the word teeter-totter
146

in a technical book. That’s a bit of trivia to challenge your friends with.

Licensed to Christian Cederquist <chrisman@kaus.dk>

147Understanding transactions

 In software, all-or-nothing operations are called transactions. Transactions allow you
to group several operations into a single unit of work that either fully happens or fully
doesn’t happen. If everything goes well, then the transaction is a success. But if any-
thing goes wrong, the slate is wiped clean and it’s as if nothing ever happened.

 Probably the most common example of a real-world transaction is a money trans-
fer. Imagine that you were to transfer $100 from your savings account to your check-
ing account. The transfer involves two operations: $100 is deducted from the savings
account and $100 is added to the checking account. The money transfer must be per-
formed completely or not at all. If the deduction from the savings account works but
the deposit into the checking account fails, you’ll be out $100 (good for the bank, bad
for you). On the other hand, if the deduction fails but the deposit succeeds, you’ll be
ahead $100 (good for you, bad for the bank). It’s best for both parties involved if the
entire transfer is rolled back if either operation fails.

 In the previous chapter, we examined Spring’s data access support and saw several
ways to read from and write data to the database. When writing to a database, we must
ensure that the integrity of the data is maintained by performing the updates within a
transaction. Spring has rich support for transaction management, both programmatic
and declarative. In this chapter, we’ll see how to apply transactions to your application
code so that when things go right, they’re made permanent. And when things go
wrong… nobody needs to know. (Almost nobody. You may still want to log the prob-
lem for the sake of auditing.)

6.1 Understanding transactions
To illustrate transactions, consider the purchase of a movie ticket. Purchasing a ticket
typically involves the following actions:

 The number of available seats will be examined to verify that enough seats are
available for your purchase.

 The number of available seats is decremented by one for each ticket purchased.
 You provide payment for the ticket.
 The ticket is issued to you.

If everything goes well, you’ll be enjoying a blockbuster movie and the theater will be
a few dollars richer. But what if something goes wrong? For instance, what if you paid
with a credit card that had reached its limit? Certainly, you wouldn’t receive a ticket
and the theater wouldn’t receive payment. If the number of seats isn’t reset to its value
before the purchase, the movie may artificially run out of seats (and thus lose sales).
Or consider what would happen if everything else works fine but the ticket issue fails.
You’d be short a few dollars and be stuck at home watching reruns on cable TV.

 To ensure that neither you nor the theater loses out, these actions should be
wrapped in a transaction. As a transaction, they’re all treated as a single action, guar-
anteeing that either they’ll all fully succeed or all be rolled back as if these steps never
happened. Figure 6.1 illustrates how this transaction plays out.
Licensed to Christian Cederquist <chrisman@kaus.dk>

148 CHAPTER 6 Managing transactions

Transactions play an important role in software, ensuring that data and resources are
never left in an inconsistent state. Without them, there’s potential for data to be cor-
rupted or inconsistent with the business rules of the application.

 Before we get too carried away with Spring’s transaction support, it’s important
to understand the key ingredients of a transaction. Let’s take a quick look at the four
factors that guide transactions and how they work.

6.1.1 Explaining transactions in only four words

In the grand tradition of software development, an acronym has been created to
describe transactions: ACID. In short, ACID stands for

 Atomic—Transactions are made up of one or more activities bundled together
as a single unit of work. Atomicity ensures that all the operations in the transac-
tion happen or that none of them happen. If all the activities succeed, the trans-
action is a success. If any of the activities fails, the entire transaction fails and is
rolled back.

 Consistent—Once a transaction ends (whether successful or not), the system is
left in a state consistent with the business that it models. The data shouldn’t be
corrupted with respect to reality.

 Isolated—Transactions should allow multiple users to work with the same data,
without each user’s work getting tangled up with the others. Therefore, transac-
tions should be isolated from each other, preventing concurrent reads and
writes to the same data from occurring. (Note that isolation typically involves
locking rows and/or tables in a database.)

 Durable—Once the transaction has completed, the results of the transaction
should be made permanent so that they’ll survive any sort of system crash. This
typically involves storing the results in a database or some other form of persis-
tent storage.

1. Verify seats

2. Reserve seat

3. Receive payment

4. Issue ticket

Purchase ticket

Transaction committed

Everything goes well

Something goes wrong

Transaction rolled back

Figure 6.1 The steps involved when purchasing a movie ticket should be all
or nothing. If every step is successful, then the entire transaction is successful.
Otherwise, the steps should be rolled back—as if they never happened.
Licensed to Christian Cederquist <chrisman@kaus.dk>

149Understanding transactions

In the movie ticket example, a transaction could ensure atomicity by undoing the
result of all the steps if any step fails. Atomicity supports consistency by ensuring that
the system’s data is never left in an inconsistent, partially done state. Isolation also sup-
ports consistency by preventing another concurrent transaction from stealing seats
out from under you while you’re still in the process of purchasing them.

 Finally, the effects are durable because they’ll have been committed to some persis-
tent storage. In the event of a system crash or other catastrophic event, you shouldn’t
have to worry about results of the transaction being lost.

 For a more detailed explanation of transactions, I suggest that you read Martin
Fowler’s Patterns of Enterprise Application Architecture (Addison-Wesley Professional,
2002). Specifically, chapter 5 discusses concurrency and transactions.

 Now that you know the makings of a transaction, let’s see the transaction capabili-
ties available to a Spring application.

6.1.2 Understanding Spring’s transaction management support

Spring, like EJB, provides support for both programmatic and declarative transaction
management. But Spring’s transaction management capabilities exceed those of EJB.

 Spring’s support for programmatic transaction management differs greatly from
that of EJB. Unlike EJB, which is coupled with a Java Transaction API (JTA) implemen-
tation, Spring employs a callback mechanism that abstracts away the actual transac-
tion implementation from the transactional code. In fact, Spring’s transaction
management support doesn’t even require a JTA implementation. If your application
uses only a single persistent resource, Spring can use the transactional support
offered by the persistence mechanism. This includes JDBC, Hibernate, and the Java
Persistence API (JPA). But if your application has transaction requirements that span
multiple resources, Spring can support distributed (XA) transactions using a third-
party JTA implementation. We’ll discuss Spring’s support for programmatic transac-
tions in section 6.3.

 Where programmatic transaction management affords you flexibility in precisely
defining transaction boundaries in your code, declarative transactions (which are
based on Spring AOP) help you decouple an operation from its transaction rules.
Spring’s support for declarative transactions is reminiscent of EJB’s container-managed
transactions (CMTs). Both allow you to define transaction boundaries declaratively. But
Spring’s declarative transactions go beyond CMTs by allowing you to declare addi-
tional attributes such as isolation level and timeouts. We’ll begin working with
Spring’s declarative transaction support in section 6.4.

 Choosing between programmatic and declarative transaction management is
largely a decision of fine-grained control versus convenience. When you program
transactions into your code, you gain precise control over transaction boundaries,
beginning and ending them precisely where you want. Typically, you won’t require the
fine-grained control offered by programmatic transactions and will choose to declare
your transactions in the context definition file.
Licensed to Christian Cederquist <chrisman@kaus.dk>

150 CHAPTER 6 Managing transactions

 Regardless of whether you choose to program transactions into your beans or to
declare them as aspects, you’ll be using a Spring transaction manager to interface
with a platform-specific transaction implementation. Let’s see how Spring’s transac-
tion managers free you from dealing directly with platform-specific transaction
implementations.

6.2 Choosing a transaction manager
Spring doesn’t directly manage transactions. Instead, it comes with a selection of
transaction managers that delegate responsibility for transaction management to a
platform-specific transaction implementation provided by either JTA or the persis-
tence mechanism. Spring’s transaction managers are listed in table 6.1.

 Each of these transaction managers acts as a facade to a platform-specific transac-
tion implementation. (Figure 6.2 illustrates the relationship between transaction man-
agers and the underlying platform implementations for a few of the transaction
managers.) This makes it possible for you to work with a transaction in Spring with lit-
tle regard to what the actual transaction implementation is.

Table 6.1 Spring has transaction managers for every occasion.

Transaction manager
(org.springframework.*)

Use it when...

jca.cci.connection.
CciLocalTransactionManager

Using Spring’s support for Java EE Connector Architec-
ture (JCA) and the Common Client Interface (CCI).

jdbc.datasource.
DataSourceTransactionManager

Working with Spring’s JDBC abstraction support. Also
useful when using iBATIS for persistence.

jms.connection.
JmsTransactionManager

Using JMS 1.1+.

jms.connection.
JmsTransactionManager102

Using JMS 1.0.2.

orm.hibernate3.
HibernateTransactionManager

Using Hibernate 3 for persistence.

orm.jdo.JdoTransactionManager Using JDO for persistence.

orm.jpa.JpaTransactionManager Using the Java Persistence API (JPA) for persistence.

transaction.jta.
JtaTransactionManager

You need distributed transactions or when no other
transaction manager fits the need.

transaction.jta.
OC4JJtaTransactionManager

Using Oracle’s OC4J JEE container.

transaction.jta.
WebLogicJtaTransactionManager

You need distributed transactions and your application is
running within WebLogic.

transaction.jta.
WebSphereUowTransactionManager

You need transactions managed by a UOWManager in
WebSphere.
Licensed to Christian Cederquist <chrisman@kaus.dk>

151Choosing a transaction manager

To use a transaction manager, you’ll need to declare it in your application context. In
this section, you’ll learn how to configure a few of Spring’s most commonly used
transaction managers, starting with DataSourceTransactionManager, which provides
transaction support for plain JDBC and iBATIS.

6.2.1 JDBC transactions

If you’re using straight JDBC for your application’s persistence, DataSource-

TransactionManager will handle transactional boundaries for you. To use Data-
SourceTransactionManager, wire it into your application’s context definition using
the following XML:

<bean id="transactionManager" class="org.springframework.jdbc.

➥datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>

</bean>

Note that the dataSource property is set with a reference to a bean named data-
Source. Presumably, the dataSource bean is a javax.sql.DataSource bean defined
elsewhere in your context definition file.

 Behind the scenes, DataSourceTransactionManager manages transactions by mak-
ing calls on the java.sql.Connection object retrieved from the DataSource. For
instance, a successful transaction is committed by calling the commit() method on the
connection. Likewise, a failed transaction is rolled back by calling the rollback()
method.

6.2.2 Hibernate transactions

If your application’s persistence is handled by Hibernate then you’ll want to use
HibernateTransactionManager. For Hibernate 3, you’ll need to add the following

Spring’s transaction managers

DataSource
transaction

manager

Hibernate
transaction

manager

Jpa
transaction

manager

Jta
transaction

manager

JDBC Hibernate JPA JTA

Platform-specific transaction implementations

g g

Platform
transaction

manager

Figure 6.2 Spring’s transaction managers delegate transaction-management
responsibility to platform-specific transaction implementations.
<bean> declaration to the Spring context definition:

Licensed to Christian Cederquist <chrisman@kaus.dk>

152 CHAPTER 6 Managing transactions

<bean id="transactionManager" class="org.springframework.
 ➥orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

The sessionFactory property should be wired with a Hibernate SessionFactory,
here cleverly named sessionFactory. See the previous chapter for details on setting
up a Hibernate session factory.

HibernateTransactionManager delegates responsibility for transaction management
to an org.hibernate.Transaction object that it retrieves from the Hibernate session.
When a transaction successfully completes, HibernateTransactionManager will call
the commit() method on the Transaction object. Similarly, when a transaction fails,
the rollback() method will be called on the Transaction object.

6.2.3 Java Persistence API transactions

Hibernate has been Java’s de facto persistence standard for a few years, but now the Java
Persistence API (JPA) has entered the scene as the true standard for Java persistence. If
you’re ready to move up to JPA then you’ll want to use Spring’s JpaTransaction-
Manager to coordinate transactions. Here’s how you might configure JpaTransaction-
Manager in Spring:

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">

<property name="entityManagerFactory" ref="entityManagerFactory" />
</bean>

JpaTransactionManager only needs to be wired with a JPA entity manager factory (any
implementation of javax.persistence.EntityManagerFactory). JpaTransaction-
Manager will collaborate with the JPA EntityManager produced by the factory to con-
duct transactions.

 In addition to applying transactions to JPA operations, JpaTransactionManager
also supports transactions on simple JDBC operations on the same DataSource used by
EntityManagerFactory. For this to work, JpaTransactionManager must also be wired
with an implementation of JpaDialect. For example, suppose that you’ve configured

What if I’m using Hibernate 2?
If you’re using the older Hibernate 2 for persistence, you won’t be able to use the
HibernateTransactionManager in Spring 3.0 or even Spring 2.5. Those versions of
Spring don’t include support for Hibernate 2. You’ll have to go back to using Spring
2.0 if you insist on using an older version of Hibernate.

But, if you roll back to using an older version of Spring with your older version of Hiber-
nate, you should realize that you’ll be giving up a lot of Spring features that we’ll be
talking about in this book. So, rather than roll back to an older version of Spring, I
recommend upgrading to Hibernate 3.
EclipseLinkJpaDialect as follows:

Licensed to Christian Cederquist <chrisman@kaus.dk>

153Programming transactions in Spring

<bean id="jpaDialect"
class="org.springframework.orm.jpa.vendor.EclipseLinkJpaDialect" />

Then you must wire the jpaDialect bean into the JpaTransactionManager like this:

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="entityManagerFactory" />
<property name="jpaDialect" ref="jpaDialect" />

</bean>

It’s important to note that the JpaDialect implementation must support mixed JPA/
JDBC access for this to work. All of Spring’s vendor-specific implementations of Jpa-
Dialect (EclipseLinkJpaDialect, HibernateJpaDialect, OpenJpaDialect, and Top-
LinkJpaDialect) provide support for mixing JPA with JDBC. DefaultJpaDialect
doesn’t.

6.2.4 Java transaction API transactions

If none of the aforementioned transaction managers meet your needs or if your trans-
actions span multiple transaction sources (for example, two or more different data-
bases), you’ll need to use JtaTransactionManager:

<bean id="transactionManager" class="org.springframework.

➥transaction.jta.JtaTransactionManager">
<property name="transactionManagerName"

value="java:/TransactionManager" />
</bean>

JtaTransactionManager delegates transaction management responsibility to a JTA
implementation. JTA specifies a standard API to coordinate transactions between an
application and one or more data sources. The transactionManagerName property
specifies a JTA transaction manager to be looked up via JNDI.

 JtaTransactionManager works with javax.transaction.UserTransaction and
javax.transaction.TransactionManager objects, delegating responsibility for trans-
action management to those objects. A successful transaction will be committed with a
call to the UserTransaction.commit() method. Likewise, if the transaction fails, the
UserTransaction’s rollback() method will be called.

 By now, it should be clear which of Spring’s transaction managers is a best fit for
the Spitter application—insomuch as we’ve chosen a persistence mechanism. Now it’s
time to put that transaction manager to work. We’ll start by using it to program trans-
actions manually.

6.3 Programming transactions in Spring
There are two kinds of people: those who are control freaks and those who aren’t.
Control freaks like complete control over everything that happens and don’t take any-
thing for granted. If you’re a developer and a control freak, you’re probably the kind
of person who prefers the command line and would rather write your own getter and

setter methods than to delegate that work to an IDE.

Licensed to Christian Cederquist <chrisman@kaus.dk>

154 CHAPTER 6 Managing transactions

 Control freaks also like to know exactly what’s going on in their code. When it
comes to transactions, they want full control over where a transaction starts, where it
commits, and where it ends. Declarative transactions aren’t precise enough for them.

 This isn’t a bad thing, though. The control freaks are at least partially right. As
you’ll see later in this chapter, you’re limited to declaring transaction boundaries at
the method level. If you need more fine-grained control over transactional boundar-
ies, programmatic transactions are the only way to go.

 Consider the saveSpittle() method of SpitterServiceImpl as an example of a
transactional method.

public void saveSpittle(Spittle spittle) {
spitterDao.saveSpittle(spittle);

}

Although this method appears rather simple, there may be more than meets the eye.
As the Spittle is saved, the underlying persistence mechanism may have a lot to do.
Even if it ends up being a simple matter of inserting a row into a database table, it’s
important to make sure that whatever happens takes place within the confines of a
transaction. If it succeeds, the work should be committed. If it fails, then it should be
rolled back.

 One approach to adding transactions is to programmatically add transactional
boundaries directly within the saveSpittle() method using Spring’s Transaction-
Template. Like other template classes in Spring (such as JdbcTemplate, discussed in
the previous chapter), TransactionTemplate utilizes a callback mechanism. Here’s an
updated saveSpittle() method to show how to add a transactional context using a
TransactionTemplate.

public void saveSpittle(final Spittle spittle) {
txTemplate.execute(new TransactionCallback<Void>() {

public Void doInTransaction(TransactionStatus txStatus) {
try {
spitterDao.saveSpittle(spittle);
} catch (RuntimeException e) {

txStatus.setRollbackOnly();
throw e;

}
return null;

}
});

}

To use the TransactionTemplate, you start by implementing the Transaction-
Callback interface. Because TransactionCallback has only one method to imple-
ment, it’s often easiest to implement it as an anonymous inner class, as shown in

Listing 6.1 saveSpittle() saves a Spittle

Listing 6.2 Programmatically adding transactions to saveSpittle()
Licensed to Christian Cederquist <chrisman@kaus.dk>

155Declaring transactions

listing 6.2. As for the code that needs to be transactional, place it within the doIn-
Transaction() method.

 Calling the execute() method on the TransactionTemplate instance will execute
the code contained within the TransactionCallback instance. If your code encoun-
ters a problem, calling setRollbackOnly() on the TransactionStatus object will roll
back the transaction. Otherwise, if the doInTransaction() method returns success-
fully, the transaction will be committed.

 Where does the TransactionTemplate instance come from? Good question. It
should be injected into SpitterServiceImpl, as follows:

<bean id="spitterService"
 class="com.habuma.spitter.service.SpitterServiceImpl">
...
<property name="transactionTemplate ">

<bean class="org.springframework.transaction.support.
TransactionTemplate">

<property name="transactionManager"
ref="transactionManager" />

</bean>
</property>

</bean>

Note that the TransactionTemplate is injected with a transactionManager. Under
the hood, TransactionTemplate uses an implementation of PlatformTransaction-
Manager to handle the platform-specific details of transaction management. Here
we’ve wired in a reference to a bean named transactionManager, which could be any
of the transaction managers listed in table 6.1.

 Programmatic transactions are good when you want complete control over transac-
tional boundaries. But, as you can see from the code in listing 6.1, they’re intrusive.
You had to alter the implementation of saveSpittle()—using Spring-specific
classes—to employ Spring’s programmatic transaction support.

 Usually your transactional needs won’t require such precise control over transac-
tional boundaries. That’s why you’ll typically choose to declare your transactions out-
side your application code (in the Spring configuration file, for instance). The rest of
this chapter will cover Spring’s declarative transaction management.

6.4 Declaring transactions
Not long ago, declarative transaction management was only available in EJB contain-
ers. But now Spring offers support for declarative transactions to POJOs. This is a sig-
nificant feature of Spring because you now have an alternative to EJB for declaring
atomic operations.

 Spring’s support for declarative transaction management is implemented through
Spring’s AOP framework. This is a natural fit because transactions are a system-level
service above an application’s primary functionality. You can think of a Spring transac-
tion as an aspect that “wraps” a method with transactional boundaries.
Licensed to Christian Cederquist <chrisman@kaus.dk>

156 CHAPTER 6 Managing transactions

 Spring provides three ways to declare transactional boundaries. Historically,
Spring has always supported declarative transactions by proxying beans using Spring
AOP and TransactionProxyFactoryBean. But since Spring 2.0, the preferred ways to
declare transactions are to use Spring’s tx configuration namespace and to use the
@Transactional annotation.

 Although the legacy TransactionProxyFactoryBean is still available in modern
versions of Spring, it’s effectively obsolete and so we won’t look at it in any detail.
Instead, we’ll focus on the tx namespace and annotation-oriented declarative transac-
tions later in this section. But first let’s examine the attributes that define transactions.

6.4.1 Defining transaction attributes

In Spring, declarative transactions are defined with
transaction attributes. A transaction attribute is a
description of how transaction policies should be
applied to a method. There are five facets of a trans-
action attribute, as illustrated in figure 6.3.

 Although Spring provides several mechanisms
for declaring transactions, all of them rely on these
five parameters to govern how transaction policies
are administered. Therefore, it’s essential to under-
stand these parameters in order to declare transac-
tion policies in Spring.

 Regardless of which declarative transaction
mechanism you use, you’ll have the opportunity to
define these attributes. Let’s examine each attribute to understand how it shapes a
transaction.

PROPAGATION BEHAVIOR

The first facet of a transaction is propagation behavior. Propagation behavior defines the
boundaries of the transaction with respect to the client and to the method being
called. Spring defines seven distinct propagation behaviors, as described in table 6.2.

PROPAGATION CONSTANTS The propagation behaviors described in table 6.2
are defined as constants in the org.springframework.transaction
.TransactionDefinition interface.

The propagation behaviors in table 6.2 may look familiar. That’s because they mirror
the propagation rules available in EJB’s container-managed transactions (CMTs). For
instance, Spring’s PROPAGATION_REQUIRES_NEW is equivalent to CMT’s RequiresNew.
Spring adds an additional propagation behavior not available in CMT,
PROPAGATION_NESTED, to support nested transactions.

 Propagation rules answer the question of whether a new transaction should be
started or suspended, or if a method should even be executed within a transactional
context at all.

Declarative
transaction

Read-only?

Timeout

Propagation Isolation

Ro
llb

ac
k

ru
le

s

Figure 6.3 Declarative transactions
are defined in terms of propagation
behavior, isolation level, read-only
hints, timeout, and rollback rules.
Licensed to Christian Cederquist <chrisman@kaus.dk>

157Declaring transactions

For example, if a method is declared to be transactional with PROPAGATION_
REQUIRES_NEW behavior, it means that the transactional boundaries are the same as
the method’s own boundaries: a new transaction is started when the method begins
and the transaction ends when the method returns or throws an exception. If the
method has PROPAGATION_REQUIRED behavior, the transactional boundaries depend
on whether a transaction is already under way.

ISOLATION LEVELS

The second dimension of a declared transaction is the isolation level. An isolation level
defines how much a transaction may be impacted by the activities of other concurrent
transactions. Another way to look at a transaction’s isolation level is to think of it as
how selfish the transaction is with the transactional data.

Table 6.2 Propagation rules define when a transaction is created or when an existing transaction can
be used. Spring provides several propagation rules to choose from.

Propagation behavior What it means

PROPAGATION_MANDATORY Indicates that the method must run within a transaction. If no
existing transaction is in progress, an exception will be thrown.

PROPAGATION_NESTED Indicates that the method should be run within a nested transac-
tion if an existing transaction is in progress. The nested transac-
tion can be committed and rolled back individually from the
enclosing transaction. If no enclosing transaction exists, behaves
like PROPAGATION_REQUIRED. Vendor support for this propaga-
tion behavior is spotty at best. Consult the documentation for
your resource manager to determine if nested transactions are
supported.

PROPAGATION_NEVER Indicates that the current method shouldn’t run within a transac-
tional context. If an existing transaction is in progress, an excep-
tion will be thrown.

PROPAGATION_NOT_SUPPORTED Indicates that the method shouldn’t run within a transaction. If
an existing transaction is in progress, it’ll be suspended for the
duration of the method. If using JTATransactionManager,
access to TransactionManager is required.

PROPAGATION_REQUIRED Indicates that the current method must run within a transaction.
If an existing transaction is in progress, the method will run
within that transaction. Otherwise, a new transaction will be
started.

PROPAGATION_REQUIRES_NEW Indicates that the current method must run within its own trans-
action. A new transaction is started and if an existing transaction
is in progress, it’ll be suspended for the duration of the method.
If using JTATransactionManager, access to
TransactionManager is required.

PROPAGATION_SUPPORTS Indicates that the current method doesn’t require a transactional
context, but may run within a transaction if one is already in
progress.
Licensed to Christian Cederquist <chrisman@kaus.dk>

158 CHAPTER 6 Managing transactions

 In a typical application, multiple transactions run concurrently, often working with
the same data to get their jobs done. Concurrency, while necessary, can lead to the fol-
lowing problems:

 Dirty reads occur when one transaction reads data that has been written but not
yet committed by another transaction. If the changes are later rolled back, the
data obtained by the first transaction will be invalid.

 Nonrepeatable reads happen when a transaction performs the same query two or
more times and each time the data is different. This is usually due to another
concurrent transaction updating the data between the queries.

 Phantom reads are similar to nonrepeatable reads. These occur when a transac-
tion (T1) reads several rows, and then a concurrent transaction (T2) inserts
rows. Upon subsequent queries, the first transaction (T1) finds additional rows
that weren’t there before.

In an ideal situation, transactions would be completely isolated from each other, thus
avoiding these problems. But perfect isolation can affect performance because it
often involves locking rows (and sometimes complete tables) in the data store. Aggres-
sive locking can hinder concurrency, requiring transactions to wait on each other to
do their work.

 Realizing that perfect isolation can impact performance and because not all appli-
cations will require perfect isolation, sometimes it’s desirable to be flexible with
regard to transaction isolation. Therefore, several levels of isolation are possible, as
described in table 6.3.

Table 6.3 Isolation levels determine to what degree a transaction may be impacted by other
transactions being performed in parallel.

Isolation level What it means

ISOLATION_DEFAULT Use the default isolation level of the underlying data store.

ISOLATION_READ_UNCOMMITTED Allows you to read changes that haven’t yet been committed.
May result in dirty reads, phantom reads, and nonrepeatable
reads.

ISOLATION_READ_COMMITTED Allows reads from concurrent transactions that have been com-
mitted. Dirty reads are prevented, but phantom and nonrepeat-
able reads may still occur.

ISOLATION_REPEATABLE_READ Multiple reads of the same field will yield the same results,
unless changed by the transaction itself. Dirty reads and nonre-
peatable reads are prevented, but phantom reads may still
occur.

ISOLATION_SERIALIZABLE This fully ACID-compliant isolation level ensures that dirty
reads, nonrepeatable reads, and phantom reads are all pre-
vented. This is the slowest of all isolation levels because it’s
typically accomplished by doing full table locks on the tables
involved in the transaction.
Licensed to Christian Cederquist <chrisman@kaus.dk>

159Declaring transactions

ISOLATION LEVEL CONSTANTS The isolation levels described in table 6.3
are defined as constants in the org.springframework.transaction
.TransactionDefinition interface.

ISOLATION_READ_UNCOMMITTED is the most efficient isolation level, but isolates the
transaction the least, leaving the transaction open to dirty, nonrepeatable, and phan-
tom reads. At the other extreme, ISOLATION_SERIALIZABLE prevents all forms of isola-
tion problems but is the least efficient.

 Be aware that not all data sources support all the isolation levels listed in table 6.3.
Consult the documentation for your resource manager to determine what isolation
levels are available.

READ-ONLY

The third characteristic of a declared transaction is whether it’s a read-only transac-
tion. If a transaction performs only read operations against the underlying data store,
the data store may be able to apply certain optimizations that take advantage of the
read-only nature of the transaction. By declaring a transaction as read-only, you give
the underlying data store the opportunity to apply those optimizations as it sees fit.

 Because read-only optimizations are applied by the underlying data store when a
transaction begins, it only makes sense to declare a transaction as read-only on meth-
ods with propagation behaviors that may start a new transaction (PROPAGATION_
REQUIRED, PROPAGATION_REQUIRES_NEW, and PROPAGATION_NESTED).

 Furthermore, if you’re using Hibernate as your persistence mechanism, declaring
a transaction as read-only will result in Hibernate’s flush mode being set to
FLUSH_NEVER. This tells Hibernate to avoid unnecessary synchronization of objects
with the database, thus delaying all updates until the end of the transaction.

TRANSACTION TIMEOUT

For an application to perform well, its transactions can’t carry on for a long time.
Therefore, the next trait of a declared transaction is its timeout.

 Suppose that your transaction becomes unexpectedly long-running. Because trans-
actions may involve locks on the underlying data store, long-running transactions can
tie up database resources unnecessarily. Instead of waiting it out, you can declare a
transaction to automatically roll back after a certain number of seconds.

 Because the timeout clock begins ticking when a transaction starts, it only makes
sense to declare a transaction timeout on methods with propagation behaviors that
may start a new transaction (PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW,
and PROPAGATION_NESTED).

ROLLBACK RULES

The final facet of the transaction pentagon is a set of rules that define which excep-
tions prompt a rollback and which ones don’t. By default, transactions are rolled back
only on runtime exceptions and not on checked exceptions. (This behavior is consis-
tent with rollback behavior in EJBs.)
Licensed to Christian Cederquist <chrisman@kaus.dk>

160 CHAPTER 6 Managing transactions

 But you can declare that a transaction be rolled back on specific checked excep-
tions as well as runtime exceptions. Likewise, you can declare that a transaction not
roll back on specified exceptions, even if those exceptions are runtime exceptions.

 Now that you’ve had an overview of how transaction attributes shape the behavior
of a transaction, let’s see how to use these attributes when declaring transactions in
Spring.

6.4.2 Declaring transactions in XML

In early version of Spring, declaring transactions involved wiring a special bean called
TransactionProxyFactoryBean. The problem with TransactionProxyFactoryBean
was that using it resulted in extremely verbose Spring configuration files. Fortunately,
those days are gone and Spring now offers a tx configuration namespace that greatly
simplifies declarative transactions in Spring.

 Using the tx namespace involves adding it to your Spring configuration XML file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-3.0.xsd

http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

Note that the aop namespace should also be included. This is important, because
some of the declarative transaction configuration elements rely on a few of Spring’s
AOP configuration elements (as discussed in chapter 4).

 The tx namespace provides a handful of new XML configuration elements, most
notably the <tx:advice> element. The following XML snippet shows how
<tx:advice> can be used to declare transactional policies similar to those we defined
for the Spitter service in listing 6.2:

<tx:advice id="txAdvice">
<tx:attributes>

<tx:method name="add*" propagation="REQUIRED" />
<tx:method name="*" propagation="SUPPORTS"

read-only="true"/>
</tx:attributes>

</tx:advice>

With <tx:advice>, the transaction attributes are defined in a <tx:attributes> ele-
ment, which contains one or more <tx:method> elements. The <tx:method> element
defines the transaction attributes for a given method (or methods) as defined by the
name attribute (using wildcards).

 <tx:method> has several attributes that help define the transaction policies for the

method(s), as defined in table 6.4.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/tx/spring-tx-3.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/aop/spring-aop-3.0.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/beans

161Declaring transactions

As defined in the txAdvice transaction advice, the transactional methods configured
are divided into two categories: those whose names begin with add and everything
else. The saveSpittle() method falls into the first category and is declared to require
a transaction. The other methods are declared with propagation="supports"—
they’ll run in a transaction if one already exists, but they don’t need to run within a
transaction.

 When declaring a transaction using <tx:advice>, you’ll still need a transaction
manager just like you did when using TransactionProxyFactoryBean. Choosing con-
vention over configuration, <tx:advice> assumes that the transaction manager will
be declared as a bean whose id is transactionManager. If you happen to give your
transaction manager a different id (txManager, for instance), you’ll need to specify
the id of the transaction manager in the transactionmanager attribute:

<tx:advice id="txAdvice"
transaction-manager="txManager">

...
</tx:advice>

On its own, <tx:advice> only defines an AOP advice for advising methods with trans-
action boundaries. But this is only transaction advice, not a complete transactional
aspect. Nowhere in <tx:advice> did we indicate which beans should be advised—we
need a pointcut for that. To completely define the transaction aspect, we must define
an advisor. This is where the aop namespace gets involved. The following XML defines
an advisor that uses the txAdvice advice to advise any beans that implement the
SpitterService interface:

<aop:config>
<aop:advisor

pointcut="execution(* *..SpitterService.*(..))"
advice-ref="txAdvice"/>

</aop:config>

Table 6.4 The five facets of the transaction pentagon (see figure 6.3) are specified in the
attributes of the <tx:method> element.

Attribute Purpose

isolation Specifies the transaction isolation level.

propagation Defines the transaction’s propagation rule.

read-only Specifies that a transaction be read-only.

Rollback rules:
rollback-for
no-rollback-for

rollback-for specifies checked exceptions for which a transaction
should be rolled back and not committed.
no-rollback-for specifies exceptions for which the transaction
should continue and not be rolled back.

timeout Defines a timeout for a long-running transaction.
Licensed to Christian Cederquist <chrisman@kaus.dk>

162 CHAPTER 6 Managing transactions

The pointcut attribute uses an AspectJ pointcut expression to indicate that this advi-
sor should advise all methods of the SpitterService interface. The transaction
advice, which is referenced with the advice-ref attribute to be the advice named
txAdvice, defines which methods are actually run within a transaction as well as the
transactional attributes for those methods.

 Although the <tx:advice> element goes a long way toward making declarative
transactions more palatable for Spring developers, Spring 2.0 has one more feature
that makes it even nicer for those working in a Java 5 environment. Let’s look at how
Spring transactions can be annotation driven.

6.4.3 Defining annotation-driven transactions

The <tx:advice> configuration element greatly simplifies the XML required for
declarative transactions in Spring. What if I told you that it could be simplified even
further? What if I told you that you only need to add a single line of XML to your
Spring context in order to declare transactions?

 In addition to the <tx:advice> element, the tx namespace provides the
<tx:annotation-driven> element. Using <tx:annotation-driven> is often as simple
as the following line of XML:

<tx:annotation-driven />

That’s it! If you were expecting more, I apologize. I could make it slightly more inter-
esting by specifying a specific transaction manager bean with the transactionmanager
attribute (which defaults to transactionManager):

<tx:annotation-driven transaction-manager="txManager" />

Otherwise, there’s not much more to it. That single line of XML packs a powerful
punch that lets you define transaction rules where they make the most sense: on the
methods that are to be transactional.

 Annotations are one of the biggest and most debated new features of Java 5. Anno-
tations let you define metadata directly in your code rather than in external configu-
ration files. I think they’re a perfect fit for declaring transactions.

 The <tx:annotation-driven> configuration element tells Spring to examine all
beans in the application context and to look for beans that are annotated with
@Transactional, either at the class level or at the method level. For every bean that is
@Transactional, <tx:annotation-driven> will automatically advise it with transac-
tion advice. The transaction attributes of the advice will be defined by parameters of
the @Transactional annotation.

 For example, the following shows SpitterServiceImpl, updated to include the
@Transactional annotations.
Licensed to Christian Cederquist <chrisman@kaus.dk>

163Summary

@Transactional(propagation=Propagation.SUPPORTS, readOnly=true)
public class SpitterServiceImpl implements SpitterService {
...

@Transactional(propagation=Propagation.REQUIRED, readOnly=false)
public void addSpitter(Spitter spitter) {

...
}

...
}

At the class level, SpitterServiceImpl has been annotated with an @Transactional
annotation that says that all methods will support transaction and be read-only. At the
method level, the saveSpittle() method has been annotated to indicate that this
method requires a transactional context.

6.5 Summary
Transactions are an important part of enterprise application development that leads
to more robust software. They ensure an all-or-nothing behavior, preventing data from
being inconsistent should the unexpected occur. They also support concurrency by
preventing concurrent application threads from getting in each other’s way as they
work with the same data.

 Spring supports both programmatic and declarative transaction management. In
either case, Spring shields you from having to work directly with a specific transaction
management implementation by abstracting the transaction management platform
behind a common API.

 Spring employs its own AOP framework to support declarative transaction manage-
ment. Spring’s declarative transaction support rivals that of EJB’s CMT, enabling you to
declare more than just propagation behavior on POJOs, including isolation levels,
read-only optimizations, and rollback rules for specific exceptions.

 This chapter showed you how to bring declarative transactions into the Java 5 pro-
gramming model using annotations. With the introduction of Java 5 annotations,
making a method transactional is simply a matter of tagging it with the appropriate
transaction annotation.

 As you’ve seen, Spring extends the power of declarative transactions to POJOs. This
is an exciting development—declarative transactions were previously only available to
EJBs. But declarative transactions are only the beginning of what Spring has to offer to
POJOs. In the next chapter, you’ll see how Spring extends declarative security to
POJOs.

Listing 6.3 Annotating the spitter service to be transactional
Licensed to Christian Cederquist <chrisman@kaus.dk>

Building web applications
with Spring MVC
As an enterprise Java developer, you’ve likely developed a web-based application or
two. For many Java developers, web-based applications are their primary focus. If
you do have this type of experience, you’re well aware of the challenges that come
with these systems. Specifically, state management, workflow, and validation are all
important features that need to be addressed. None of these is made any easier
given the HTTP protocol’s stateless nature.

 Spring’s web framework is designed to help you address these concerns. Based
on the Model-View-Controller (MVC) pattern, Spring MVC helps you build web-
based applications that are as flexible and as loosely coupled as the Spring Frame-
work itself.

This chapter covers
 Mapping requests to Spring controllers

 Transparently binding form parameters

 Validating form submissions

 Uploading files
164

Licensed to Christian Cederquist <chrisman@kaus.dk>

165Getting started with Spring MVC

 In this chapter we’ll explore the Spring MVC web framework. We’ll build control-
lers using the new Spring MVC annotations to handle web requests. As we do, we’ll
strive to design our web layer in a RESTful way. Finally, we’ll wrap up by looking at how
to use Spring’s JSP tags in views to send a response back to the user.

 Before we go too deep with the specifics of Spring MVC controllers and handler
mappings, let’s start with a high-level view of Spring MVC and set up the basic plumb-
ing needed to make Spring MVC work.

7.1 Getting started with Spring MVC
Have you ever seen the children’s game Mousetrap? It’s crazy. The goal is to send a
small steel ball over a series of wacky contraptions in order to trigger a mousetrap.
The ball goes over all kinds of intricate gadgets, from rolling down a curvy ramp to
springing off a teeter-totter to spinning on a miniature Ferris wheel to being kicked
out of a bucket by a rubber boot. It goes through all of this to spring a trap on a poor,
unsuspecting plastic mouse.

 At first glance, you may think that Spring’s MVC framework is a lot like Mousetrap.
Instead of moving a ball around through various ramps, teeter-totters, and wheels,
Spring moves requests around between a dispatcher servlet, handler mappings, con-
trollers, and view resolvers.

 But don’t draw too strong of a comparison between Spring MVC and the Rube
Goldbergesque game of Mousetrap. Each of the components in Spring MVC performs
a specific purpose. Let’s start our exploration of Spring MVC by examining the lifecy-
cle of a typical request.

7.1.1 Following a request through Spring MVC

Every time a user clicks a link or submits a form in their web browser, a request goes to
work. A request’s job description is that of a courier. Just like a postal carrier or a
FedEx delivery person, a request lives to carry information from one place to another.

 The request is a busy fellow. From the time it leaves the browser until it returns
with a response, it’ll make several stops, each time dropping off a bit of information
and picking up some more. Figure 7.1 shows all the stops that the request makes.

Handler
mapping

Dispatcher
servlet

Request Controller

ViewResolver

View

Model and logical
view name

Figure 7.1 The web layer
of the Spitter application
includes two resource-oriented
controllers along with a couple
of utility controllers.
Licensed to Christian Cederquist <chrisman@kaus.dk>

166 CHAPTER 7 Building web applications with Spring MVC

When the request leaves the browser, it carries information about what the user is ask-
ing for. At least, the request will be carrying the requested URL. But it may also carry
additional data such as the information submitted in a form by the user.

 The first stop in the request’s travels is at Spring’s DispatcherServlet. Like most
Java-based web frameworks, Spring MVC funnels requests through a single front con-
troller servlet. A front controller is a common web application pattern where a single
servlet delegates responsibility for a request to other components of an application to
perform actual processing. In the case of Spring MVC, DispatcherServlet is the front
controller.

 The DispatcherServlet’s job is to send the request on to a Spring MVC controller.
A controller is a Spring component that processes the request. But a typical applica-
tion may have several controllers and DispatcherServlet needs some help deciding
which controller to send the request to. So the DispatcherServlet consults one or
more handler mappings to figure out where the request’s next stop will be. The han-
dler mapping will pay particular attention to the URL carried by the request when
making its decision.

 Once an appropriate controller has been chosen, DispatcherServlet sends the
request on its merry way to the chosen controller. At the controller, the request will
drop off its payload (the information submitted by the user) and patiently wait while
the controller processes that information. (Actually, a well-designed controller per-
forms little or no processing itself and instead delegates responsibility for the business
logic to one or more service objects.)

 The logic performed by a controller often results in some information that needs
to be carried back to the user and displayed in the browser. This information is
referred to as the model. But sending raw information back to the user isn’t suffi-
cient—it needs to be formatted in a user-friendly format, typically HTML. For that the
information needs to be given to a view, typically a JSP.

 One of the last things that a controller does is package up the model data and
identify the name of a view that should render the output. It then sends the request,
along with the model and view name, back to the DispatcherServlet.

 So that the controller doesn’t get coupled to a particular view, the view name
passed back to DispatcherServlet doesn’t directly identify a specific JSP. In fact, it
doesn’t even necessarily suggest that the view is a JSP at all. Instead, it only carries a
logical name which will be used to look up the actual view that will produce the result.
The DispatcherServlet will consult a view resolver to map the logical view name to a
specific view implementation, which may or may not be a JSP.

 Now that DispatcherServlet knows which view will render the result, the
request’s job is almost over. Its final stop is at the view implementation (probably a
JSP) where it delivers the model data. The request’s job is finally done. The view will
use the model data to render output that will be carried back to the client by the (not-
so-hardworking) response object.
Licensed to Christian Cederquist <chrisman@kaus.dk>

167Getting started with Spring MVC

 We’ll dive into each of these steps in more detail throughout this chapter. But first
things first—we need to set up Spring MVC and DispatcherServlet in the Spitter
application.

7.1.2 Setting up Spring MVC

At the heart of Spring MVC is DispatcherServlet, a servlet that functions as Spring
MVC’s front controller. Like any servlet, DispatcherServlet must be configured in
the web application’s web.xml file. So the first thing we must do to use Spring MVC in
our application is to place the following <servlet> declaration in the web.xml file:

<servlet>
<servlet-name>spitter</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>

<load-on-startup>1</load-on-startup>
</servlet>

The <servlet-name> given to the servlet is significant. By default, when Dispatcher-
Servlet is loaded, it’ll load the Spring application context from an XML file whose
name is based on the name of the servlet. In this case, because the servlet is named
spitter, DispatcherServlet will try to load the application context from a file
named spitter-servlet.xml (located in the application’s WEB-INF directory).

 Next we must indicate what URLs will be handled by the DispatcherServlet. It’s
common to find DispatcherServlet mapped to URL patterns such as *.htm, /*, or
/app. But these URL patterns have a few problems:

 The *.htm pattern implies that the response will always be in HTML form
(which, as we’ll learn in chapter 11, isn’t necessarily the case).

 Mapping it to /* doesn’t imply any specify type of response, but indicates that
DispatcherServlet will serve all requests. That makes serving static content
such as images and stylesheets more difficult than necessary.

 The /app pattern (or something similar) helps us distinguish Dispatcher-
Servlet-served content from other types of content. But then we have an
implementation detail (specifically, the /app path) exposed in our URLs. That
leads to complicated URL rewriting tactics to hide the /app path.

Rather than use any of those flawed servlet-mapping schemes, I prefer mapping
DispatcherServlet like this:

<servlet-mapping>
<servlet-name>spitter</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

By mapping DispatcherServlet to /, I’m saying that it’s the default servlet and that
it’ll be responsible for handling all requests, including requests for static content.
Licensed to Christian Cederquist <chrisman@kaus.dk>

168 CHAPTER 7 Building web applications with Spring MVC

 If it concerns you that DispatcherServlet will be handling those kinds of
requests, then hold on for a bit. A handy configuration trick frees you, the developer,
from having to worry about that detail much. Spring’s mvc namespace includes a new
<mvc:resources> element that handles requests for static content for you. All you
must do is configure it in the Spring configuration.

 That means that it’s now time to create the spitter-servlet.xml file that Dispatcher-
Servlet will use to create an application context. The following listing shows the
beginnings of the spitter-servlet.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mvc="http://www.springframework.org/schema/mvc"
xsi:schemaLocation="http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<mvc:resources mapping="/resources/**"
location="/resources/" />

</beans>

As I said earlier, all requests that go through DispatcherServlet must be handled in
some way, commonly via controllers. Since requests for static content are also being
handled by DispatcherServlet, we’re going to need some way to tell Dispatcher-
Servlet how to serve those resources. But writing and maintaining a controller for
that purpose seems too involved. Fortunately, the <mvc:resources> element is on the
job.1

 <mvc:resources> sets up a handler for serving static content. The mapping attribute
is set to /resources/**, which includes an Ant-style wildcard to indicate that the path
must begin with /resources, but may include any subpath thereof. The location attri-
bute indicates the location of the files to be served. As configured here, any requests
whose paths begin with /resources will be automatically served from the /resources
folder at the root of the application. Therefore, all of our images, stylesheets,
JavaScript, and other static content needs to be kept in the application’s /resources
folder.

 Now that we’ve settled the issue of how static content will be served, we can start
thinking about how our application’s functionality can be served. Since we’re just get-
ting started, we’ll start simple by developing the Spitter application’s home page.

Listing 7.1 <mvc:resources> sets up a handler for serving static resources.

1 The <mvc:resources> element was added in Spring 3.0.4. If you’re using an older version of Spring, this

Handle requests for
static resources
facility won’t be available.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd

169Writing a basic controller

7.2 Writing a basic controller
As we develop the web functionality for the Spitter application, we’re going to develop
resource-oriented controllers. Rather than write one controller for each use case in
our application, we’re going to write a single controller for each kind of resource that
our application serves.

 The Spitter application, being rather simple, has only two primary resource types:
Spitters who are the users of the application and the spittles that they use to communi-
cate their thoughts. Therefore, you’ll need to write a spitter-oriented controller and a
spittle-oriented controller. Figure 7.2 shows where these controllers fit into the overall
application.

 In addition to controllers for each of the application’s core concepts, we also have
two other utility controllers in 7.2. These controllers handle a few requests that are
necessary, but don’t directly map to a specific concept.

 One of those controllers, HomeController, performs the necessary job of display-
ing the home page—a page that isn’t directly associated with either Spitters or
Spittles. That will be the first controller we write. But first, since we’re developing
annotation-driven controllers, there’s a bit more setup to do.

Persistence

Service Domain

Data
store

Web

Home
controller

Spitter
controller

Spittle
controller

Forwarding
controller

Web browser Misc clients

Figure 7.2 The web layer of the Spittle application
includes two resource-oriented controllers along
with a couple of utility controllers.
Licensed to Christian Cederquist <chrisman@kaus.dk>

170 CHAPTER 7 Building web applications with Spring MVC

7.2.1 Configuring an annotation-driven Spring MVC

As I mentioned earlier, DispatcherServlet consults one or more handler mappings
in order to know which controller to dispatch a request to. Spring comes with a hand-
ful of handler mapping implementations to choose from, including

 BeanNameUrlHandlerMapping—Maps controllers to URLs that are based on the
controllers’ bean names.

 ControllerBeanNameHandlerMapping—Similar to BeanNameUrlHandlerMapping,
maps controllers to URLs that are based on the controllers’ bean names. In this
case, the bean names aren’t required to follow URL conventions.

 ControllerClassNameHandlerMapping—Maps controllers to URLs by using the
controllers’ class names as the basis for their URLs.

 DefaultAnnotationHandlerMapping—Maps request to controller and control-
ler methods that are annotated with @RequestMapping.

 SimpleUrlHandlerMapping—Maps controllers to URLs using a property collec-
tion defined in the Spring application context.

Using one of these handler mappings is usually just a matter of configuring it as a
bean in Spring. But if no handler mapping beans are found, then DispatcherServlet
creates and uses BeanNameUrlHandlerMapping and DefaultAnnotationHandler-
Mapping. Fortunately, we’ll be working primarily with annotated controller classes, so
the DefaultAnnotationHandlerMapping that DispatcherServlet gives us will do fine.

 DefaultAnnotationHandlerMapping maps requests to controller methods that are
annotated with @RequestMapping (which we’ll see in the next section). But there’s
more to annotation-driven Spring MVC than just mapping requests to methods. As we
build our controllers, we’ll also use annotations to bind request parameters to handler
method parameters, perform validation, and perform message conversion. There-
fore, DefaultAnnotationHandlerMapping isn’t enough.

 Fortunately, you only need to add a single line of configuration to spitter-servlet.xml
to flip on all of the annotation-driven features you’ll need from Spring MVC:

<mvc:annotation-driven/>

Although small, the <mvc:annotation-driven> tag packs a punch. It registers several
features, including JSR-303 validation support, message conversion, and support for
field formatting.

 We’ll talk more about those features as we need them. For now, we have a home
page controller to write.

7.2.2 Defining the home page controller

The home page is usually the first thing that visitors to a website will see. It’s the front
door to the rest of the site’s functionality. In the case of the Spitter application, the
home page’s main job is to welcome visitors and to display a handful of recent spittles,
hopefully enticing the visitors to join in on the conversation.
Licensed to Christian Cederquist <chrisman@kaus.dk>

171Writing a basic controller

 HomeController is a basic Spring MVC controller that handles requests for the
home page.

package com.habuma.spitter.mvc;
import javax.inject.Inject;
import java.util.Map;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import com.habuma.spitter.service.SpitterService;

@Controller
public class HomeController {

public static final int DEFAULT_SPITTLES_PER_PAGE = 25;

private SpitterService spitterService;

@Inject
public HomeController(SpitterService spitterService) {

this.spitterService = spitterService;
}

@RequestMapping({"/","/home"})

public String showHomePage(Map<String, Object> model) {

model.put("spittles", spitterService.getRecentSpittles(
DEFAULT_SPITTLES_PER_PAGE));

return "home";
}

}

Although HomeController is simple, there’s a lot to talk about here. First, the
@Controller annotation indicates that this class is a controller class. This annotation
is a specialization of the @Component annotation, which means that <context:
component-scan> will pick up and register @Controller-annotated classes as beans,
just as if they were annotated with @Component.

 That means that we need to configure a <context:component-scan> in spitter-
servlet.xml so that the HomeController class (and all of the other controllers we’ll
write) will be automatically discovered and registered as beans. Here’s the relevant
snippet of XML:

<context:component-scan base-package="com.habuma.spitter.mvc" />

Going back to the HomeController class, we know that it’ll need to retrieve a list of the
most recent spittles via a SpitterService. Therefore, we’ve written the constructor to
take a SpitterService as an argument and have annotated it with @Inject annota-
tion so that it’ll automatically be injected when the controller is instantiated.

 The real work takes place in the showHomePage() method. As you can see, it’s anno-
tated with @RequestMapping. This annotation serves two purposes. First, it identifies

Listing 7.2 HomeController welcomes the user to the Spitter application.

Declare as
controller

Inject
SpitterService

Handle requests
for home page

Place spittles
into model

Return
view name
Licensed to Christian Cederquist <chrisman@kaus.dk>

172 CHAPTER 7 Building web applications with Spring MVC

showHomePage() as a request-handling method. And, more specifically, it specifies that
this method should handle requests whose path is either / or /home.

 As a request-handling method, showHomePage() takes a Map of String-to-Object as
a parameter. This Map represents the model—the data that’s passed between the con-
troller and a view. After retrieving a list of recent Spittles from the SpitterService’s
getRecentSpittles() method, that list is placed into the model Map so that it can be
displayed when the view is rendered.

 As we write more controllers we’ll see that the signature of a request-handling
method can include almost anything as an argument. Even though showHomePage()
only needed the model Map, we could’ve added HttpServletRequest, HttpServlet-
Response, String, or numeric parameters that correspond to query parameters in the
request, cookie values, HTTP request header values, or a number of other possibilities.
For now, though, the model Map is all we need.

 The last thing that showHomePage() does is return a String value that’s the logical
name of the view that should render the results. A controller class shouldn’t play a
direct part in rendering the results to the client, but should only identify a view imple-
mentation that’ll render the data to the client. After the controller has finished its
work, DispatcherServlet will use this name to look up the actual view implementa-
tion by consulting a view resolver.

 We’ll configure a view resolver soon. But first let’s write a quick unit test to assert
that HomeController is doing what we expect it to do.

TESTING THE CONTROLLER

What’s most remarkable about HomeController (and most Spring MVC controllers) is
that there’s little that’s Spring-specific about it. In fact, if you were to strip away the
three annotations, this would be a POJO.

 From a unit testing perspective, this is significant because it means that Home-
Controller can be tested easily without having to mock anything or create any
Spring-specific objects. HomeControllerTest demonstrates how you might test
HomeController.

package com.habuma.spitter.mvc;

import static com.habuma.spitter.mvc.HomeController.*;
import static java.util.Arrays.*;
import static org.junit.Assert.*;
import static org.mockito.Mockito.*;

import java.util.HashMap;
import java.util.List;

import org.junit.Test;

import com.habuma.spitter.domain.Spittle;
import com.habuma.spitter.service.SpitterService;

public class HomeControllerTest {

Listing 7.3 A test to assert that the HomeController does its job correctly
@Test

Licensed to Christian Cederquist <chrisman@kaus.dk>

173Writing a basic controller

public void shouldDisplayRecentSpittles() {
List<Spittle> expectedSpittles =

asList(new Spittle(), new Spittle(), new Spittle());

SpitterService spitterService = mock(SpitterService.class);

when(spitterService.getRecentSpittles(DEFAULT_SPITTLES_PER_PAGE)).
thenReturn(expectedSpittles);

HomeController controller =
new HomeController(spitterService);

HashMap<String, Object> model = new HashMap<String, Object>();
String viewName = controller.showHomePage(model);

assertEquals("home", viewName);

assertSame(expectedSpittles, model.get("spittles"));
verify(spitterService).getRecentSpittles(DEFAULT_SPITTLES_PER_PAGE);

}
}

The only thing that HomeController needs to do its job is an instance of Spitter-
Service, which Mockito2 graciously provides as a mock implementation. Once the
mock SpitterService is ready, you just need to create a new instance of Home-
Controller and then call the showHomePage() method. Finally, you assert that the list
of spittles returned from the mock SpitterService ends up in the model Map under
the spittles key and that the method returns a logical view name of home.

 As you can see, testing a Spring MVC controller is like testing any other POJO in
your Spring application. Even though it’ll ultimately be used to serve a web page, we
didn’t have to do anything special or web-specific to test it.

 At this point we’ve developed a controller to handle requests for the home page.
And we’ve written a test to ensure that the controller does what we think it should.
One question is still unanswered, though. The showHomePage() method returned a
logical view name. But how does that view name end up being used to render output
to the user?

7.2.3 Resolving views

The last thing that must be done in the course of handling a request is rendering out-
put to the user. This job falls to some view implementation—typically JavaServer Pages
(JSP), but other view technologies such as Velocity or FreeMarker may be used. In
order to figure out which view should handle a given request, DispatcherServlet
consults a view resolver to exchange the logical view name returned by a controller for
an actual view that should render the results.

 In reality, a view resolver’s job is to map a logical view name to some implementa-
tion of org.springframework.web.servlet.View. But it’s sufficient for now to think
of a view resolver as something that maps a view name to a JSP, as that’s effectively
what it does.

Mock
SpitterService

Create
controller

Call handler
method

Assert
results
2 http://mockito.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://mockito.org

174 CHAPTER 7 Building web applications with Spring MVC

 Spring comes with several view resolver implementations to choose from, as
described in table 7.1.

Table 7.1 When it’s time to present information to a user, Spring MVC can select an appropriate view
using one of several view resolvers.

View resolver Description

BeanNameViewResolver Finds an implementation of View that’s registered as a
<bean> whose ID is the same as the logical view name.

ContentNegotiatingViewResolver Delegates to one or more other view resolvers, the choice
of which is based on the content type being requested.
(We’ll talk more about this view resolver in chapter 11.)

FreeMarkerViewResolver Finds a FreeMarker-based template whose path is deter-
mined by prefixing and suffixing the logical view name.

InternalResourceViewResolver Finds a view template contained within the web applica-
tion’s WAR file. The path to the view template is derived by
prefixing and suffixing the logical view name.

JasperReportsViewResolver Finds a view defined as a Jasper Reports report file whose
path is derived by prefixing and suffixing the logical view
name.

ResourceBundleViewResolver Looks up View implementations from a properties file.

TilesViewResolver Looks up a view that is defined as a Tiles template. The
name of the template is the same as the logical view
name.

UrlBasedViewResolver This is the base class for some of the other view resolv-
ers, such as InternalResourceViewResolver. It can
be used on its own, but it’s not as powerful as its sub-
classes. For example, UrlBasedViewResolver is
unable to resolve views based on the current locale.

VelocityLayoutViewResolver This is a subclass of VelocityViewResolver that sup-
ports page composition via Spring’s VelocityLayout-
View (a view implementation that emulates Velocity’s
VelocityLayoutServlet).

VelocityViewResolver Resolves a Velocity-based view where the path of a Velocity
template is derived by prefixing and suffixing the logical
view name.

XmlViewResolver Finds an implementation of View that’s declared as a
<bean> in an XML file (/WEB-INF/views.xml). This view
resolver is a lot like BeanNameViewResolver except
that the view <bean>s are declared separately from those
for the application’s Spring context.

XsltViewResolver Resolves an XSLT-based view where the path of the XSLT
stylesheet is derived by prefixing and suffixing the logical
view name.
Licensed to Christian Cederquist <chrisman@kaus.dk>

175Writing a basic controller

There’s neither time nor space enough for me to cover all of these view resolvers. But
a few of them are quite useful and worth a closer look. We’ll start by looking at
InternalResolverViewResolver.

RESOLVING INTERNAL VIEWS

A lot of Spring MVC embraces a convention-over-configuration approach to develop-
ment. InternalResourceViewResolver is one such convention-oriented element. It
resolves a logical view name into a View object
that delegates rendering responsibility to a tem-
plate (usually a JSP) located in the web applica-
tion’s context. As illustrated in figure 7.3, it does
this by taking the logical view name and sur-
rounding it with a prefix and a suffix to arrive at
the path of a template that’s a resource within
the web application.

 Let’s say that we’ve placed all of the JSPs for
the Spitter application in the /WEB-INF/views/
directory. Given that arrangement, we’ll need to
configure an InternalResourceViewResolver

bean in spitter-servlet.xml as follows:

<bean class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/views/"/>
<property name="suffix" value=".jsp"/>

</bean>

When DispatcherServlet asks InternalResourceViewResolver to resolve a view, it
takes the logical view name, prefixes it with /WEB-INF/views/ and suffixes it with .jsp.
The result is the path of a JSP that will render the output. Internally, Internal-
ResourceViewResolver then hands that path over to a View object that dispatches the
request to the JSP. So, when HomeController returns home as the logical view name,
it’ll end up being resolved to the path /WEB-INF/views/home.jsp.

 By default the View object that InternalResourceViewResolver creates is an
instance of InternalResourceView, which simply dispatches the request to the JSP
for rendering. But since home.jsp uses some JSTL tags, we may choose to replace
InternalResourceView with JstlView by setting the viewClass property as follows:

<bean class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="viewClass"
value="org.springframework.web.servlet.view.JstlView" />

<property name="prefix" value="/WEB-INF/views/"/>
<property name="suffix" value=".jsp"/>

</bean>

JstlView dispatches the request to JSP, just like InternalResourceView. But it also
exposes JSTL-specific request attributes so that you can take advantage of JSTL’s inter-

Logical view name

Prefix Suffix

Figure 7.3 InternalResourceView-
Resolver resolves a view template’s
path by attaching a specified prefix and
suffix to the logical view name.
nationalization support.

Licensed to Christian Cederquist <chrisman@kaus.dk>

176 CHAPTER 7 Building web applications with Spring MVC

 Although we won’t delve into the details of FreeMarkerViewResolver, Jasper-
ReportsViewResolver, VelocityViewResolver, VelocityLayoutViewResolver, or
XsltViewResolver, they’re all similar to InternalResourceViewResolver in that they
resolve views by adding a prefix and a suffix to the logical view name to find a view
template. Once you know how to use InternalResourceViewResolver, working with
those other view resolvers should feel natural.

 Using InternalResourceViewResolver to resolve to JSP views is fine for a simple
web application with an uncomplicated look and feel. But websites often have interest-
ing user interfaces with some common elements shared between pages. For those
kinds of sites, a layout manager such as Apache Tiles is in order. Let’s see how to con-
figure Spring MVC to resolve Tiles layout views.

RESOLVING TILES VIEWS

Apache Tiles3 is a templating framework for laying out pieces of a page as fragments
that are assembled into a full page at runtime. Although it was originally created as
part of the Struts framework, Tiles proved to be useful with other web frameworks. In
fact, we’ll use it with Spring MVC to lay out the look and feel of the Spitter application.

 To use Tiles views in Spring MVC, the first thing to do is to register Spring’s Tiles-
ViewResolver as a <bean> in spitter-servlet.xml:

<bean class=
"org.springframework.web.servlet.view.tiles2.TilesViewResolver"/>

This modest <bean> declaration sets up a view resolver that attempts to find views that
are Tiles template definitions where the logical view name is the same as the Tiles def-
inition name.

 What’s missing here is how Spring knows about Tiles definitions. By itself, Tiles-
ViewResolver doesn’t know anything about any Tiles definitions, but instead relies on
a TilesConfigurer to keep track of that information. So we’ll need to add a Tiles-
Configurer bean to spitter-servlet.xml:

<bean class=
"org.springframework.web.servlet.view.tiles2.TilesConfigurer">

<property name="definitions">
<list>

<value>/WEB-INF/viewsviews.xml</value>
</list>

</property>
</bean>

TilesConfigurer loads one or more Tiles definition files and make them available for
TilesViewResolver to resolve views from. For the Spitter application we’re going to
have a few Tiles definition files, all named views.xml, spread around under the /WEB-
INF/views folder. So we wire /WEB-INF/views/**/views.xml into the definitions
property. The Ant-style ** pattern indicates that the entire directory hierarchy under
/WEB-INF/views should be searched for files named views.xml.
3 http://tiles.apache.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://tiles.apache.org

177Writing a basic controller

 As for the contents of views.xml files, we’ll build them up throughout this chapter,
starting with just enough to render the home page. The following views.xml file
defines the home tile definition as well as a common template definition to be used by
other tile definitions.

<!DOCTYPE tiles-definitions PUBLIC
"-//Apache Software Foundation//DTD Tiles Configuration 2.1//EN"
"http://tiles.apache.org/dtds/tiles-config_2_1.dtd">

<tiles-definitions>
<definition name="template"

template="/WEB-INF/views/main_template.jsp">
<put-attribute name="top"

value="/WEB-INF/views/tiles/spittleForm.jsp" />
<put-attribute name="side"

value="/WEB-INF/views/tiles/signinsignup.jsp" />
</definition>

<definition name="home" extends="template">

<put-attribute name="content" value="/WEB-INF/views/home.jsp" />
</definition>

</tiles-definitions>

The home definition extends the template definition, using home.jsp as the JSP that
renders the main content of the page, but relying on template for all of the common
features of the page.

 It’s the home template that TilesViewResolver will find when it tries to resolve
the logical view name returned by HomeController’s showHomePage() methods.
DispatcherServlet will send the request to Tiles to render the results using the
home definition.

7.2.4 Defining the home page view

As you can see from listing 7.4, the home page is made up of several distinct pieces.
The main_template.jsp file describes the common layout for all pages in the Spitter
application, while home.jsp displays the main content for the home page. Plus, spittle-
Form.jsp and signinsignup.jsp provide some additional common elements.

 For now we’ll focus on home.jsp, as it’s most pertinent to our discussion of display-
ing the home page. This JSP is where the home page request finishes its journey. It
picks up the list of Spittles that HomeController placed into the model and renders
them to be displayed in the user’s browser. The following shows what home.jsp is
made of.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="s" uri="http://www.springframework.org/tags"%>

Listing 7.4 Tiles defined

Listing 7.5 The home page <div> element will be inserted into the template.

Define
common
layout

Define
home tile
<%@ taglib prefix="t" uri="http://tiles.apache.org/tags-tiles"%>

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://tiles.apache.org/dtds/tiles-config_2_1.dtd

178 CHAPTER 7 Building web applications with Spring MVC

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>

<div>
<h2>A global community of friends and strangers spitting out their
inner-most and personal thoughts on the web for everyone else to
see.</h2>
<h3>Look at what these people are spitting right now...</h3>

<ol class="spittle-list">
<c:forEach var="spittle" items="${spittles}">

<s:url value="/spitters/{spitterName}"
var="spitter_url" >

<s:param name="spitterName"
value="${spittle.spitter.username}" />

</s:url>

 <img src=
 "http://s3.amazonaws.com/spitterImages/${spittle.spitter.id}.jpg"

width="48"
border="0"
align="middle"
onError=

"this.src='<s:url value="/resources/images"/>/spitter_avatar.png';"/>

<c:out value="${spittle.spitter.username}" />
- <c:out value="${spittle.text}" />

<small><fmt:formatDate value="${spittle.when}"
pattern="hh:mma MMM d, yyyy" /></small>

</c:forEach>

</div>

Aside from a few friendly messages at the beginning, the crux of home.jsp is con-
tained in the <c:forEach> tag, which cycles through the list of Spittles, rendering
the details of each one as it goes. Since the Spittles were placed into the model with
the key spittles, the list is referenced in the JSP using ${spittles}.

THE MODEL AND REQUEST ATTRIBUTES: THE INSIDE STORY It’s not obvious,
but ${spittles} in home.jsp refers to a servlet request attribute named
spittles. After HomeController finished its work and before home.jsp
was called into action, DispatcherServlet copied all of the members of
the model into request attributes with the same name.

Take notice of the <s:url> tag near the middle. We use this tag to create a servlet
context–relative URL to the Spitter that authored each Spittle. The <s:url> tag is
new to Spring 3.0 and works much like JSTL’s <c:url> tag.

Iterate over
list of Spittles

Construct context-
relative Spitter URL

Display
Spitter properties
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://s3.amazonaws.com/spitterImages/${spittle.spitter.id}.jpg

179Writing a basic controller

The main difference between Spring’s <s:url> and JSTL’s <c:url> is that <s:url>
supports parameterized URL paths. In this case, the path is parameterized with the
Spitter’s username. For example, if the Spitter’s username is habuma and the serv-
let context name is Spitter, then the resulting path will be /Spitter/spitters/habuma.

 When rendered, this JSP along with the other JSPs in the same Tiles definition will
display the Spitter application’s home page, as shown in figure 7.4.

At this point, we’ve written our first Spring MVC controller, configured a view
resolver, and defined a basic JSP view to display the results of invoking the controller.
There’s one tiny problem, though. An exception is waiting to happen in Home-
Controller because DispatcherServlet’s Spring application context won’t know
where to find a SpitterService bean. Fortunately, it’s an easy fix.

7.2.5 Rounding out the Spring application context

As I mentioned earlier, DispatcherServlet loads its Spring application context from
a single XML file whose name is based on its <servlet-name>. But what about the
other beans we’ve declared in previous chapters, such as the SpitterService bean? If
DispatcherServlet is going to load its beans from a file named spitter-servlet.xml,
then won’t we need to declare those other beans in spitter-servlet.xml?

 In the earlier chapters we’ve split our Spring configuration across multiple XML
files: one for the service layer, one for the persistence layer, and another for the data

Figure 7.4 The Spitter application’s home page displays a welcome message along with a
list of recent spittles.
source configuration. Although not strictly required, it’s a good idea to organize our

Licensed to Christian Cederquist <chrisman@kaus.dk>

180 CHAPTER 7 Building web applications with Spring MVC

Spring configuration across multiple files. With that in mind, it makes sense to put all
of the web layer configuration in spitter-servlet.xml, the file loaded by Dispatcher-
Servlet. But we still need a way to load the other configuration files.

 That’s where ContextLoaderListener comes into play. ContextLoaderListener is
a servlet listener that loads additional configuration into a Spring application context
alongside the application context created by DispatcherServlet. To use Context-
LoaderListener, add the following <listener> declaration to the web.xml file:

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

We also need to tell ContextLoaderListener which Spring configuration file(s) it
should load. If not specified otherwise, the context loader will look for a Spring con-
figuration file at /WEB-INF/applicationContext.xml. But this single file doesn’t lend
itself to breaking up the application context into several pieces. So we’ll need to over-
ride this default.

 To specify one or more Spring configuration files for ContextLoaderListener to
load, set the contextConfigLocation parameter in the servlet context:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spitter-security.xml
classpath:service-context.xml
classpath:persistence-context.xml
classpath:dataSource-context.xml

</param-value>
</context-param>

The contextConfigLocation parameter is specified as a list of paths. Unless specified
otherwise, the paths are relative to the application root. But since our Spring configu-
ration is split across multiple XML files that are scattered across several JAR files in the
web application, we’ve prefixed some of them with classpath: to load them as
resources from the application classpath and others with a path local to the web
application.

 You’ll recognize that we’ve included the Spring configuration files that we created
in previous chapters. You may also notice a few extra configuration files that we’ve not
covered yet. Don’t worry...we’ll get to those in later chapters.

 Now we have our first controller written and ready to serve requests for the Spitter
application’s home page. If all we needed is a home page, we’d be done. But there’s
more to Spitter than just the home page, so let’s continue building out the applica-
tion. The next thing we’ll try is to write a controller that can handle input.
Licensed to Christian Cederquist <chrisman@kaus.dk>

181Handling controller input

7.3 Handling controller input
HomeController had it easy. It didn’t have to deal with user input or any parameters.
It just handled a basic request and populated the model for the view to render. It
couldn’t have been much simpler.

 But not all controllers live such simple lives. Controllers are often asked to per-
form some logic against one or more pieces of information that are passed in as URL
parameters or as form data. Such is the case for both SpitterController and
SpittleController. These two controllers will handle several kinds of requests, many
of which take input of some kind.

 One example of how SpitterController will handle input is in how it supports
displaying a list of Spittles for a given Spitter. Let’s drive out that functionality now
to see how to write controllers that process input.

7.3.1 Writing a controller that processes input

One way that we could implement SpitterController is to have it respond to a URL
with the Spitter’s username as a request query parameter. For example,
http://localhost:8080/spitter/spitters/spittles?spitter=habuma could be the URL for
displaying all of the Spittles for a Spitter whose username is habuma.

 The following shows an implementation of SpitterController that can respond
to this kind of request.

package com.habuma.spitter.mvc;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RequestMapping;
import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.service.SpitterService;
import static org.springframework.web.bind.annotation.RequestMethod.*;

@Controller
@RequestMapping("/spitter")
public class SpitterController {

private final SpitterService spitterService;

@Inject
public SpitterController(SpitterService spitterService) {

this.spitterService = spitterService;
}

@RequestMapping(value="/spittles", method=GET)
public String listSpittlesForSpitter(

@RequestParam("spitter") String username, Model model) {
Spitter spitter = spitterService.getSpitter(username);
model.addAttribute(spitter);

Listing 7.6 A conventional approach to handling requests for a Spitter’s spittles

Root URL path

Handle GET requests
for /spitter/spittles

Fill model

model.addAttribute(spitterService.getSpittlesForSpitter(username));

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/spitter/spitters/spittles?spitter=habuma

182 CHAPTER 7 Building web applications with Spring MVC

return "spittles/list";
}

}

As you can see, we’ve annotated SpitterController with @Controller and @Request-
Mapping at the class level. As we’ve already discussed, @Controller is a clue to
<context:component-scan> that this class should be automatically discovered and reg-
istered as a bean in the Spring application context.

 You’ll also notice that SpitterController is annotated with @RequestMapping at
the class level. In HomeController we used @RequestMapping on the showHomePage()
handler method, but this class-level use of @RequestMapping is different.

 As used here, the class-level @RequestMapping defines the root URL path that this
controller will handle. We’ll ultimately have several handler methods in Spitter-
Controller, each handling different types of requests. But here @RequestMapping is
saying that all of those requests will have paths that start with /spitters.

 Within SpitterController we currently have a single method: listSpittlesFor-
Spitter(). Like any good handler method, this method is annotated with @Request-
Mapping. It’s not dramatically different from the one we used in HomeController. But
there’s more to this @RequestMapping than meets the eye.

 Method-level @RequestMappings narrow the mapping defined by any class-level
@RequestMapping. Here, Spitter-

Controller is mapped to /spitters at
the class level and to /spittles at the
method level. Taken together, that
means that listSpittlesForSpit-

ter() handles requests for /spit-
ters/spittles. Moreover, the method
attribute is set to GET indicating that
this method will only handle HTTP
GET requests for /spitters/spittles.

 The listSpittlesForSpitter()
method takes a Stringusername and
a Model object as parameters.

 The username parameter is anno-
tated with @RequestParam("spit-

ter") to indicate that it should be
given the value of the spitter query
parameter in the request. listSpit-
tlesForSpitter() will use that
parameter to look up the Spitter
object and its list of Spittles.

 You’re probably scratching your
head over the second parameter to

Do I really need @RequestParam?
The @RequestParam annotation isn’t
strictly required. @RequestParam is useful
for binding query parameters to method
parameters where the names don’t
match. As a matter of convention, any
parameters of a handler method that
aren’t annotated otherwise will be bound
to the query parameter of the same name.
In the case of listSpittlesForSpit-
ter(), if the parameter were named spit-
ter or if the query parameter were called
username, then we could leave the
@RequestParam annotation off.

@RequestParam also comes in handy
when you compile your Java code without
debugging information compiled in. In that
circumstance, the name of the method
parameter is lost and so there’s no way to
bind the query parameter to the method
parameter by convention. For that reason,
it’s probably best to always use
@RequestParam and not rely too heavily
on the convention.
Licensed to Christian Cederquist <chrisman@kaus.dk>

183Handling controller input

the listSpittlesForSpitter() method. When we wrote HomeController, we passed
in a Map<String, Object> to represent the model. But here we’re using a new Model
parameter.

 The truth be known, the object passed in as a Model likely is a Map<String,
Object> under the covers. But Model provides a few convenient methods for populat-
ing the model, such as addAttribute(). The addAttribute() method does pretty
much the same thing as Map’s put() method, except that it figures out the key portion
of the map on its own.

 When adding a Spitter object to the model, addAttribute() gives it the name
spitter, a name it arrives at by applying JavaBeans property naming rules to the
object’s class name. When adding a List of Spittles, it tacks List to the end the mem-
ber type of the List, naming the attribute spittleList.

 We’re almost ready to call listSpittlesForSpitter() done. We’ve written the
SpitterController and a handler method. All that’s left is to write the view that will
display that list of Spittles.

7.3.2 Rendering the view

When the list of Spittles is displayed to the user, we don’t need much different than
what we did for the home page. We just need to show the name of the Spitter (so
that it’s clear whom the list of Spittles belongs to) and then list each Spittle

 To enable that, we first need to create a new Tiles definition. listSpittlesFor-
Spitter() returns spittles/list as its logical view name, so the following Tile defi-
nition should do the trick:

<definition name="spittles/list" extends="template">
<put-attribute name="content"

value="/WEB-INF/views/spittles/list.jsp" />
</definition>

Just like the home Tile, this one adds another JSP page to the content attribute to be
rendered within main_template.jsp. The list.jsp file used to display the list of Spittles
is shown next.

<%@ taglib prefix="s" uri="http://www.springframework.org/tags"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<div>
<h2>Spittles for ${spitter.username}</h2>

<table cellspacing="15">
<c:forEach items="${spittleList}" var="spittle">

<tr>
<td>

<img src="<s:url value="/resources/images/spitter_avatar.png"/>"
width="48" height="48" /></td>

Listing 7.7 The list.jsp file is a JSP that’s used to display a list of Spittle objects.

Display username

List Spittles
Licensed to Christian Cederquist <chrisman@kaus.dk>

184 CHAPTER 7 Building web applications with Spring MVC

<td>
<a href="<s:url value="/spitters/${spittle.spitter.username}"/>">

${spittle.spitter.username}
<c:out value="${spittle.text}" />

<c:out value="${spittle.when}" />

</td>
</tr>
</c:forEach>

</table>
</div>

Aesthetics aside, this JSP does what we need. Near the top, it displays a header indicat-
ing who the list of Spittles belongs to. This header references the username property
of the Spitter object that listSpittlesForSpitter() placed into the model with
${spitter.username}.

 The better part of this JSP iterates through the list of Spittles, displaying their
details. The JSTL <c:forEach> tag’s items attribute references the list with ${spittle-
List}—the name that Model’s addAttribute() gave it.

 One minor thing to take note of is that we’re using a hardcoded reference to
spitter_avatar.png as the user’s profile image. In section 7.5 we’ll see how to let the
user upload an image to their profile.

 The result of list.jsp, as rendered in the context of the spittles/list view, is shown in
figure 7.5.

Figure 7.5 When taken together with other Tiles elements, list.jsp shows a list of spittles for a given user.
Licensed to Christian Cederquist <chrisman@kaus.dk>

185Processing forms

But first, we need to create a way for users to register to the application. In doing so,
we’ll get a chance to write a controller that handles form submissions.

7.4 Processing forms
Working with forms in a web application involves two operations: displaying the form
and processing the form submission. Therefore, in order to register a new Spitter in
our application, we’re going to need to add two handler methods to Spitter-
Controller to handle each of the operations. Since we’re going to need the form in
the browser before we can submit it, we’ll start by writing the handler method that dis-
plays the registration form.

7.4.1 Displaying the registration form

When the form is displayed, it’ll need a Spitter object to bind to the form fields.
Since this is a new Spitter that we’re creating, a newly constructed, uninitialized
Spitter object will be perfect. The following createSpitterProfile() handler
method will create a Spitter object and place it in the model.

@RequestMapping(method=RequestMethod.GET, params="new")
public String createSpitterProfile(Model model) {

model.addAttribute(new Spitter());
return "spitters/edit";

}

As with other handler methods, createSpitterProfile() is annotated with
@RequestMapping. But, unlike previous handler methods, this one doesn’t specify a
path. Therefore, this method handles requests for the path specified in the class-level
@RequestMapping—/spitters in the case of SpitterController.

 What the method’s @RequestMapping does specify is that this method will handle
HTTP GET requests only. What’s more, note the params attribute, which is set to new.
This means that this method will only handle HTTP GET requests for /spitters if the
request includes a new query parameter. Figure 7.6 illustrates the kind of URL that
createSpitterProfile will handle.

 As for the inner workings of createSpitterProfile(), it simply creates a new
instance of a Spitter and adds it to the model. It then wraps up by returning spit-
ters/edit as the logical name of the view that will render the form.

 Speaking of the view, let’s create it next.

Listing 7.8 Displaying the form for registering a spitter

Servlet
context

“new”
query parameter

Handled by

Figure 7.6 @RequestMapping’s params
attribute can limit a handler method to only
SpitterController handling requests with certain parameters.

Licensed to Christian Cederquist <chrisman@kaus.dk>

186 CHAPTER 7 Building web applications with Spring MVC

DEFINING THE FORM VIEW

As before, the logical view name returned from createSpitterProfile() will ulti-
mately be mapped to a Tiles definition for rendering the form to the user. So we need
to add a tile definition named spitters/edit to the Tiles configuration file. The fol-
lowing <definition> entry should do the trick.

<definition name="spitters/edit" extends="template">
<put-attribute name="content"

value="/WEB-INF/views/spitters/edit.jsp" />
</definition>

As before, the content attribute is where the main content of the page will go. In this
case, it’s the JSP file at /WEB-INF/views/spitters/edit.jsp, as shown next.

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form"%>

<div>
<h2>Create a free Spitter account</h2>

<sf:form method="POST" modelAttribute="spitter">
<fieldset>
<table cellspacing="0">

<tr>
<th><label for="user_full_name">Full name:</label></th>
<td><sf:input path="fullName" size="15" id="user_full_name"/></td>

</tr>
<tr>

<th><label for="user_screen_name">Username:</label></th>
<td><sf:input path="username" size="15" maxlength="15"

id="user_screen_name"/>
<small id="username_msg">No spaces, please.</small>

</td>
</tr>
<tr>

<th><label for="user_password">Password:</label></th>
<td><sf:password path="password" size="30"

showPassword="true"
id="user_password"/>

<small>6 characters or more (be tricky!)</small>
</td>

</tr>

<tr>
<th><label for="user_email">Email Address:</label></th>

<td><sf:input path="email" size="30"
id="user_email"/>

<small>In case you forget something</small>
</td>

</tr>

Listing 7.9 Rendering a form to capture user registration information

Bind form to
model attribute

Username field

Password field

Email field
<tr>

Licensed to Christian Cederquist <chrisman@kaus.dk>

187Processing forms

<th></th>
<td>

<sf:checkbox path="updateByEmail"
id="user_send_email_newsletter"/>

<label for="user_send_email_newsletter"
>Send me email updates!</label>

</td>
</tr>

</table>
</fieldset>
</sf:form>
</div>

What makes this JSP file different than the others we’ve created so far is that it uses
Spring’s form binding library. The <sf:form> tag binds the Spitter object (identified
by the modelAttribute attribute) that createSpitterProfile() placed into the
model to the various fields in the form.

 The <sf:input>, <sf:password>, and <sf:checkbox> tags each have a path attri-
bute that references the property of the Spitter object that the form is bound to.
When the form is submitted, whatever values these fields contain will be placed into a
Spitter object and submitted to the server for processing.

 Note that the <sf:form> specifies that it’ll be submitted as an HTTP POST request.
What it doesn’t specify is the URL. With no URL specified, it’ll be submitted back to
/spitters, the same URL path that displayed the form. That means that the next thing
to do is to write another handler method that accepts POST requests for /spitters.

7.4.2 Processing form input

After the form is submitted, we’ll need a handler method that takes a Spitter object
(populated with data from the form) and saves it. Then, the last thing it should do is
redirect to the user’s profile page. The following listing shows addSpitterFrom-
Form(), a method that processes the form submission.

@RequestMapping(method=RequestMethod.POST)
public String addSpitterFromForm(@Valid Spitter spitter,

BindingResult bindingResult) {
if(bindingResult.hasErrors()) {

return "spitters/edit";
}

spitterService.saveSpitter(spitter);

return "redirect:/spitters/" + spitter.getUsername();
}

Note that the addSpitterFromForm() method is annotated with an @RequestMapping
annotation that isn’t much different than the @RequestMapping that adorns the

Listing 7.10 The addSpitter method processes input from the spitter form.

Update-by-email
checkbox

Check for errors

Save Spitter Redirect
after
POST
createSpitterProfile() method. Neither specify a URL path, meaning that both

Licensed to Christian Cederquist <chrisman@kaus.dk>

188 CHAPTER 7 Building web applications with Spring MVC

handle requests for /spitters. The difference is that where createSpitterProfile()
handles GET requests, addSpitterFromForm() handles POST requests. That’s perfect,
since that’s how the form will be submitted.

 And when that form is submitted, the fields in the request will be bound to the
Spitter object that’s passed in as an argument to addSpitterFromForm(). From
there, it’s sent to the SpitterService’s saveSpitter() method to be stored away in
the database.

 You may have also noticed that the Spitter parameter is annotated with @Valid.
This indicates that the Spitter should pass validation before being passed in. We’ll
talk about validation in the next section.

 Like the handler methods we’ve written before, this one ends by returning a
String to indicate where the request should be sent next. This time, instead of speci-
fying a logical view name, we’re returning a special redirect view. The redirect: pre-
fix signals that the request should be redirected to the path that it precedes. By
redirecting to another page, we can avoid duplicate submission of the form if the user
clicks the Refresh button in their browser.

 As for the path that it’s redirecting to, it’ll take the form of /spitters/{username}
where {username} represents the username of the Spitter that was just submitted. For
example, if the user registered under the name habuma, then they’d be redirected to
/spitters/habuma after the form submission.

HANDLING REQUESTS WITH PATH VARIABLES

The big question is what will respond to requests for /spitters/{username}? Actually,
that’s another handler method that we’ll add to SpitterController:

@RequestMapping(value="/{username}", method=RequestMethod.GET)
public String showSpitterProfile(@PathVariable String username,

Model model) {
model.addAttribute(spitterService.getSpitter(username));
return "spitters/view";

}

The showSpitterProfile() method isn’t too dissimilar from the other handler meth-
ods we’ve seen. It’s given a String parameter containing a username and uses it to
retrieve a Spitter object. It then places that Spitter into the model and wraps up by
returning the logical name of the view that will render the output.

 But by now you’ve probably noticed a few things that make showSpitterProfile()
different. First, the value attribute in the @RequestMapping contains some strange-
looking curly braces. And the username parameter is annotated with @PathVariable.

 Those two things work together to enable the showSpitterProfile() method to
handle requests whose URLs have parameters embedded in their path. The {user-
name} portion of the path is actually a placeholder that corresponds to the username
method parameter that’s annotated with @PathVariable. Whatever value is in that
location in a request’s path will be passed in as the value of username.

 For example, if the request path is /username/habuma, then habuma will be passed

in to showSpitterProfile() for the username.

Licensed to Christian Cederquist <chrisman@kaus.dk>

189Processing forms

 We’ll talk more about @PathVariable and how it helps us write handler methods
that respond to RESTful URLs when we get to chapter 11.

 But we still have some unfinished business with regard to addSpitterFromForm().
You’ve probably noticed that addSpitterFromForm()’s Spitter parameter is anno-
tated with @Valid. Let’s see how this annotation can be used to keep bad data from
being submitted in a form.

7.4.3 Validating input

When a user registers with the Spitter application, there are certain requirements that
we’d like to place on that registration. Specifically, a new user must give us their full
name, email address, a username, and a password. Not only that, but the email
address can’t be just freeform text—it must look like an email address. Moreover, the
password should be at least six characters long.

 The @Valid annotation is the first line of defense against faulty form input. @Valid
is actually a part of the JavaBean validation specification.4 Spring 3 includes support
for JSR-303, and we’re using @Valid here to tell Spring that the Spitter object should
be validated as it’s bound to the form input.

 Should anything go wrong while validating the Spitter object, the validation error
will be carried to the addSpitterFromForm() method via the BindingResult that’s
passed in on the second parameter. If the BindingResult’s hasErrors() method
returns true, then that means that validation failed. In that case, the method will
return spitters/edit as the view name to display the form again so that the user can
correct any validation errors.

 But how will Spring know the difference between a valid Spitter and an invalid
Spitter?

DECLARING VALIDATION RULES

Among other things, JSR-303 defines a handful of annotations that can be placed on
properties to specify validation rules. We can use these annotations to define what
“valid” means with regard to a Spitter object. The following shows the properties of
the Spitter class that are annotated with validation annotations.

@Size(min=3, max=20, message=
"Username must be between 3 and 20 characters long.")

@Pattern(regexp="^[a-zA-Z0-9]+$",
message="Username must be alphanumeric with no spaces")

private String username;

@Size(min=6, max=20,
message="The password must be at least 6 characters long.")

private String password;

Listing 7.11 Annotating a Spitter for validation

Enforce size

Ensure no spaces
4 Also known as JSR-303 (http://jcp.org/en/jsr/summary?id=303)

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://jcp.org/en/jsr/summary?id=303

190 CHAPTER 7 Building web applications with Spring MVC

@Size(min=3, max=50, message=
"Your full name must be between 3 and 50 characters long.")

private String fullName;

@Pattern(regexp="[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}",
message="Invalid email address.")

private String email;

The first three properties in listing 7.11 are annotated with JSR-303’s @Size annotation
to validate that those fields meet certain expectations on their length. The username
property must be at least 3 and at most 20 characters long, whereas the fullName
property must be between 3 and 50 characters in length. As for the password prop-
erty, it must be at least 6 characters long and not exceed 20 characters.

 To make sure that the value given to the email property fits the format of an email
address, we’ve annotated it with @Pattern and specified a regular expression to
match it against in the regexp attribute.5 Similarly, we’ve used @Pattern on the user-
name property to ensure that the username is only made up of alphanumeric charac-
ters with no spaces.

 In all of the validation annotations, we’ve set the message attribute with the mes-
sage to be displayed in the form when validation fails so that the user knows what
needs to be corrected.

 With these annotations in place, when a user submits a registration form to
SpitterController’s addSpitterFromForm() method, the values in the Spitter
object’s fields will be weighed against the validation annotations. If any of those rules
are broken, then the handler method will send the user back to the form to fix the
problem.

 When they arrive back at the form, we’ll need a way to tell them what the problem
was. So we’re going to have to go back to the form JSP and add some code to display
the validation messages.

DISPLAYING VALIDATION ERRORS

Recall that the BindingResult passed in as a parameter to addSpitterFromForm()
knew whether the form had any validation errors. And we were able to ask if there
were any errors by calling its hasErrors() method. But what we didn’t see was that the
actual error messages are also in there, associated with the fields that failed validation.

 One way of displaying those errors to the users is to access those field errors
through BindingResult’s getFieldError() method. But a much better way is to use
Spring’s form binding JSP tag library to display the errors. More specifically, the
<sf:errors> tag can render field validation errors. All we need to do is sprinkle a few
<sf:errors> tags around our form JSP.

Enforce
size

Match email pattern
5 Trust me...that gobbledygook will validate an email address.

Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:Pattern(regexp="[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4

191Processing forms

<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/form"%>

<div>
<h2>Create a free Spitter account</h2>

<sf:form method="POST" modelAttribute="spitter"
enctype="multipart/form-data">

<fieldset>
<table cellspacing="0">

<tr>
<th><sf:label path="fullName">Full name:</sf:label></th>
<td><sf:input path="fullName" size="15" />

<sf:errors path="fullName" cssClass="error" />
</td>

</tr>
<tr>

<th><sf:label path="username">Username:</sf:label></th>
<td><sf:input path="username" size="15" maxlength="15" />

<small id="username_msg">No spaces, please.</small>

<sf:errors path="username" cssClass="error" />

</td>
</tr>
<tr>

<th><sf:label path="password">Password:</sf:label></th>
<td><sf:password path="password" size="30"

showPassword="true"/>
<small>6 characters or more (be tricky!)</small>

<sf:errors path="password" cssClass="error" />

</td>
</tr>
<tr>

<th><sf:label path="email">Email Address:</sf:label></th>
<td><sf:input path="email" size="30"/>

<small>In case you forget something</small>

<sf:errors path="email" cssClass="error" />

</td>
</tr>
<tr>

<th></th>
<td>

<sf:checkbox path="updateByEmail"/>
<sf:label path="updateByEmail"
>Send me email updates!</sf:label>

</td>
</tr>
<tr>

<th><label for="image">Profile image:</label></th>
<td><input name="image" type="file"/>

</tr>
<tr>

<th></th>
<td><input name="commit" type="submit"

Listing 7.12 The <sf:errors> JSP tag can be used to display form validation errors.

Display
fullName
errors

Display
username
errors

Display
password
errors

Display
email
errors
Licensed to Christian Cederquist <chrisman@kaus.dk>

192 CHAPTER 7 Building web applications with Spring MVC

value="I accept. Create my account." /></td>
</tr>

</table>
</fieldset>
</sf:form>
</div>

The <sf:errors> tag’s path attribute specifies the form field for which errors should
be displayed. For example, the following <sf:errors> displays errors (if there are
any) for the field whose name is fullName:

<sf:errors path="fullName" cssClass="error" />

If there are multiple errors for a single field, they’ll all be displayed, separated by an
HTML
 tag. If you’d rather have them separated some other way, then you can
use the delimiter attribute. The following <sf:errors> snippet uses delimiter to
separate errors with a comma and a space:

<sf:errors path="fullName" delimiter=", "
cssClass="error" />

Note that there are four <sf:errors> tags in this JSP, one on each of the fields for
which we declared validation rules. The cssClass attribute refers to a class that’s
declared in CSS to display in red so that it catches the user’s attention.

 With these in place, errors will be displayed on the page if any validation errors
occur. For example, figure 7.7 shows what the form would look like if the user were to
submit the form without filling in any of the fields.

Figure 7.7 With the <sf:errors> JSP tag on the registration page, validation problems
will be shown to the user for them to fix and try again.
Licensed to Christian Cederquist <chrisman@kaus.dk>

193Handling file uploads

As you can see, validation errors are displayed on a per-field basis. But if you’d prefer
to display all of the errors in one place (perhaps at the top of the form), you’ll only
need a single <sf:errors> tag, with its path attribute set to *:

<sf:errors path="*" cssClass="error" />

Now you know how to write controller handler methods that process form data. The
one thing that’s common about all of the form fields we’ve seen thus far is that they’re
textual data and were probably entered into the form by the user typing on a key-
board. But what if the thing that the user needs to submit in a form can’t be banged
out on a keyboard? What if the user needs to submit an image or some other kind of
file?

7.5 Handling file uploads
Earlier, in section 7.2.4, I punted on how the user’s profile picture would be displayed,
simply displaying a default spitter_avatar.png for all users. But real Spitter users will
want more identity than some generic icon. To grant them more individuality, we’ll let
them upload their profile photos as part of registration.

 To enable file uploads in the Spitter application, we’ll need to do three things:

 Add a file upload field to the registration form
 Tweak SpitterController’s addSpitterFromForm() to receive the uploaded

file
 Configure a multipart file resolver in Spring

Let’s start at the top of the list and prepare the registration form JSP to take a file
upload.

7.5.1 Adding a file upload field to the form

Most form fields are textual and can easily be submitted to the server as a set of name-
value pairs. In fact, a typical form submission has a content type of application/x-www-
form-urlencoded and takes the form of name-value pairs separated by ampersands.

 But I think you’ll agree that files are a different kind of thing than most other field
values that will be submitted in a form. Uploaded files are typically binary files and
don’t fit well into the name-value pair paradigm. Therefore, if we’re going to let users
upload images to be associated with their profile, we’ll need to encode the form sub-
mission in some other way.

 When it comes to submitting forms with files in tow, multipart/form-data is the
content type of choice. We’ll need to configure the form to submit as multipart/form-
data content type by setting the <sf:form>’s enctype attribute as follows:

<sf:form method="POST"
modelAttribute="spitter"
enctype="multipart/form-data">
Licensed to Christian Cederquist <chrisman@kaus.dk>

194 CHAPTER 7 Building web applications with Spring MVC

With enctype set to multipart/form-data, each field will be submitted as a distinct
part of the POST request and not as just another name-value pair. This makes it possi-
ble for one of those parts to contain uploaded image file data.

 Now we can add a new field to the form. A standard HTML <input> field with type
set to file will do the trick:

<tr>
<th><label for="image">Profile image:</label></th>
<td><input name="image" type="file"/>

</tr>

This bit of HTML will render a basic file selection field on the form. Most browsers dis-
play this as a text field with a button to the side. Figure 7.8 shows what it looks like
when rendered in the Safari browser on Mac OS X.

 All of the parts of the form are in place for
our users to submit a profile photo. When the
form is submitted, it’ll be posted as a multipart
form where one of the parts contains the
image file’s binary data. Now we need to ready
the server side of our application to be able to
receive that data.

7.5.2 Receiving uploaded files

As before, the addSpitterFromForm() method will handle the registration form sub-
missions. But we’ll need to tweak that method to be able to accept an image upload.
The following shows the new upload-ready addSpitterFromForm() method.

@RequestMapping(method=RequestMethod.POST)
public String addSpitterFromForm(@Valid Spitter spitter,

BindingResult bindingResult,
@RequestParam(value="image", required=false)

MultipartFile image) {
if(bindingResult.hasErrors()) {

return "spitters/edit";
}

spitterService.saveSpitter(spitter);

try {
if(!image.isEmpty()) {

validateImage(image);

saveImage(spitter.getId() + ".jpg", image); //
}

} catch (ImageUploadException e) {
bindingResult.reject(e.getMessage());
return "spitters/edit";

}

return "redirect:/spitters/" + spitter.getUsername();
}

Listing 7.13 addSpitterFromForm() takes a MultipartFile as a parameter.

Accept file upload

Validate image

Save image file

Figure 7.8 A file selection field in the
Spitter registration form will enable users
to put a face on their profile.
Licensed to Christian Cederquist <chrisman@kaus.dk>

195Handling file uploads

The first change made to addSpitterFromForm() is the addition of a new parameter.
The image parameter is given as a MultipartFile and is annotated with @Request-
Param to indicate that it’s not required (so that a user can still register, even without a
profile picture).

 A little further down in the method, we check to make sure that the image isn’t
empty and, if it’s not, then it’s passed in to a validateImage() method and a save-
Image() method. The validateImage(), as shown here, makes sure that the
uploaded file meets our needs:

private void validateImage(MultipartFile image) {
if(!image.getContentType().equals("image/jpeg")) {

throw new ImageUploadException("Only JPG images accepted");
}

}

We don’t want to let users try to pass off zip or exe files as images. So validate-
Image() ensures that the uploaded file is a JPEG image. If this validation fails, an
ImageUploadException (a simple extension of RuntimeException) will be thrown.

 Once we’re assured that the uploaded file is an image, we’re ready to save it by call-
ing the saveImage() method. The actual implementation of saveImage() could save
the file almost anywhere, so long as it’s available to the user’s browser so that it can be
rendered in the browser. Keeping it simple, let’s start by writing an implementation of
saveImage() that saves the image to the local file system.

SAVING FILES TO THE FILE SYSTEM

Even though our application will be accessible over the web, its resources ultimately
reside in a file system on the host server. So it would seem natural to write the user
profile pictures to a path on the local file system that the web server can serve the
images from. The following implementation of saveImage does just that:

private void saveImage(String filename, MultipartFile image)
throws ImageUploadException {

try {
File file = new File(webRootPath + "/resources/" + filename);
FileUtils.writeByteArrayToFile(file, image.getBytes());

} catch (IOException e) {
throw new ImageUploadException("Unable to save image", e);

}
}

Here, the first thing that saveImage() does is construct a java.io.File object whose
path is based at the value of the webRootPath. We’ve purposefully left the value of that
variable a mystery, as it depends on the server where the application is hosted. Suffice
it to say that it could be configured by value injection, either through a setWebRoot-
Path() method or perhaps using SpEL and an @Value annotation to read the value
from a configuration file.
Licensed to Christian Cederquist <chrisman@kaus.dk>

196 CHAPTER 7 Building web applications with Spring MVC

 Once the File object is ready, we use FileUtils from Apache Commons IO6 to
write the image data to a file. If anything goes wrong, an ImageUploadException will
be thrown.

 Saving a file to the local file system like this works great, but leaves the manage-
ment of the file system up to you. You’ll be responsible for ensuring that there’s plenty
of space. It’ll be up to you to make sure that it’s backed up in case of a hardware fail-
ure. And it’s your job to deal with synchronizing the image files across multiple servers
in a cluster.

 Another option is to let someone else take that hassle away from you. With a bit
more code, we can save our images out on the cloud. Let’s free ourselves from the
burden of managing our own files by rewriting the saveFile() method to write to an
Amazon S3 bucket.

SAVING FILES TO AMAZON S3

Amazon’s Simple Storage Service, or S3 as it’s commonly referred to, is an inexpensive
way to offload storage of files to Amazon’s infrastructure. With S3, we can just write
the files and let Amazon’s system administrators do all of the grunt work.

 The easiest way to use S3 in Java is with the JetS3t library.7 JetS3t is an open source
library for saving and reading files in the S3 cloud. We can use JetS3t to save user pro-
file pictures. The following listing shows the new saveImage() method.

private void saveImage(String filename, MultipartFile image)
throws ImageUploadException {

try {
AWSCredentials awsCredentials =

new AWSCredentials(s3AccessKey, s3SecretKey);
S3Service s3 = new RestS3Service(awsCredentials);

S3Bucket imageBucket = s3.getBucket("spitterImages");
S3Object imageObject = new S3Object(filename);

imageObject.setDataInputStream(
new ByteArrayInputStream(image.getBytes()));

imageObject.setContentLength(image.getBytes().length);
imageObject.setContentType("image/jpeg");

AccessControlList acl = new AccessControlList();
acl.setOwner(imageBucket.getOwner());
acl.grantPermission(GroupGrantee.ALL_USERS,

Permission.PERMISSION_READ);
imageObject.setAcl(acl);

s3.putObject(imageBucket, imageObject);
} catch (Exception e) {

throw new ImageUploadException("Unable to save image", e);
}

}

6 http://commons.apache.org/io/

Listing 7.14 This saveImage() method posts a user’s image to the Amazon S3 cloud

Set up S3 service

Create S3 bucket
and object

Set image data

Set
permissions

Save image
7 http://bitbucket.org/jmurty/jets3t/wiki/Home

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://commons.apache.org/io/
http://bitbucket.org/jmurty/jets3t/wiki/Home

197Summary

The first thing that saveImage() does is set up Amazon Web Service credentials. For
this, you’ll need an S3 access key and an S3 secret access key. These will be given to
you by Amazon when you sign up for S3 service. They’ll be given to Spitter-
Controller via value injection.

 With the AWS credentials in hand, saveImage() creates an instance of JetS3t’s
RestS3Service through which it’ll operate on the S3 file system. It gets a reference to
the spitterImages bucket, creates an S3Object to contain the image, then fills that
S3Object with image data.

 Just before calling the putObject() method to write the image data to S3, save-
Image() sets the permissions on the S3Object to allow all users to view it. This is
important—without it, the images wouldn’t be visible to our application’s users.

 As with the previous version of saveImage(), if anything goes wrong, a Image-
UploadException will be thrown.

 We’re almost set for uploading profile pictures into the Spitter application. But
there’s one final bit of Spring configuration to tie it all together.

7.5.3 Configuring Spring for file uploads

On its own, DispatcherServlet doesn’t know how to deal with multipart form data.
We need a multipart resolver to extract the multipart data out of the POST request so
that DispatcherServlet can give it to our controller.

 To register a multipart resolver in Spring, we need to declare a bean that imple-
ments the MultipartResolver interface. Our choice of multipart resolvers is made
easy by the fact that Spring only comes with one: CommonsMultipartResolver. It’s con-
figured in Spring as follows:

<bean id="multipartResolver" class=
 "org.springframework.web.multipart.commons.CommonsMultipartResolver"

p:maxUploadSize="500000" />

Note that the multipart resolver’s bean ID is significant. When DispatcherServlet
looks for a multipart resolver, it’ll look for it as a bean whose ID is multipartResolver.
If the bean has any other ID, DispatcherServlet will overlook it.

7.6 Summary
In this chapter, we’ve built much of the web layer of the Spitter application. As we’ve
seen, Spring comes with a powerful and flexible web framework. Employing annota-
tions, Spring MVC offers a near-POJO development model, making simple work of
developing controllers that handle requests and are simple to test. These controllers
typically don’t directly process requests, but instead delegate to other beans in the
Spring application context that are injected into the controllers using Spring’s depen-
dency injection.

 By employing handler mappings that choose controllers to handle requests and
view resolvers to choose how results are rendered, Spring MVC maintains a loose cou-

pling between how a controller is chosen to handle a request and how its view is

Licensed to Christian Cederquist <chrisman@kaus.dk>

198 CHAPTER 7 Building web applications with Spring MVC

chosen to display output. This sets Spring apart from many other MVC web frame-
works, where choices are limited to one or two options.

 Although the views developed in this chapter were written in JSP to produce HTML
output, there’s no reason why the model data produced by the controllers couldn’t be
rendered in some other form, including machine-readable XML or JSON. We’ll see
how to turn the Spitter application’s web layer into a powerful web-based API in chap-
ter 11 when we explore Spring’s REST support further.

 But for now, we’ll continue looking at how to build user-facing web applications
with Spring by exploring Spring Web Flow, an extension to Spring MVC that enables
conversation-oriented web development in Spring.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Working with
Spring Web Flow
One of the strangely wonderful things about the internet is that it’s so easy to get
lost. There are so many things to see and read. The hyperlink is at the core of the
internet’s power. But at the same time it’s no wonder they call it the web. Just like
webs built by spiders, it traps anyone who happens to crawl across it.

 I’ll confess: one reason why it took me so long to write this book is because I
once got lost in an endless path of Wikipedia links.

 There are times when a web application must take control of a web surfer’s voy-
age, leading the user step by step through the application. The quintessential exam-
ple of such an application is the checkout process on an e-commerce site. Starting
with the shopping cart, the application leads you through a process of entering ship-
ping details, billing information, and ultimately an order confirmation.

 Spring Web Flow is a web framework that enables development of elements fol-
lowing a prescribed flow. In this chapter, we’re going to explore Spring Web Flow

This chapter covers
 Creating conversational web applications

 Defining flow states and actions

 Securing web flows
199

and see how it fits into the Spring web framework landscape.

Licensed to Christian Cederquist <chrisman@kaus.dk>

200 CHAPTER 8 Working with Spring Web Flow

 It’s possible to write a flowed application with any web framework. I’ve even seen a
Struts application that had a certain flow built into it. But without a way to separate
the flow from the implementation, you’ll find that the definition of the flow is scat-
tered across the various elements that make up the flow. There’s no one place to go to
fully understand the flow.

 Spring Web Flow is an extension to Spring MVC that enables development of flow-
based web applications. It does this by separating the definition of an application’s
flow from the classes and views that implement the flow’s behavior.

 As we get to know Spring Web Flow, we’re going to take a break from the Spitter
example and work on a new web application for taking pizza orders. We’ll use Spring
Web Flow to define the order process.

 The first step to working with Spring Web Flow is to install it within your project.
Let’s start there.

8.1 Installing Spring Web Flow
Although Spring Web Flow is a subproject of the Spring Framework, it isn’t part of the
Spring Framework proper. Therefore, before we can get started building flow-based
applications, we’ll need to add Spring Web Flow to our project’s classpath.

 You can download Spring Web Flow from the project’s website (http://www
.springframework.org/webflow). Be sure to get the latest version (as I write this, that’s
version 2.2.1). Once you’ve downloaded and unzipped the distribution zip file, you’ll
find the following Spring Web Flow JAR files in the dist directory:

 org.springframework.binding-2.2.1.RELEASE.jar
 org.springframework.faces-2.2.1.RELEASE.jar
 org.springframework.js-2.2.1.RELEASE.jar
 org.springframework.js.resources-2.2.1.RELEASE.jar
 org.springframework.webflow-2.2.1.RELEASE.jar

For our example, we’ll only need the binding and webflow JAR files. The others are for
using Spring Web Flow with JSF and JavaScript.

8.1.1 Configuring Web Flow in Spring

Spring Web Flow is built upon a foundation of Spring MVC. That means that all
requests to a flow first go through Spring MVC’s DispatcherServlet. From there, a
handful of special beans in the Spring application context must be configured to han-
dle the flow request and execute the flow.

 Several of the web flow beans are declared using elements from Spring Web Flow’s
Spring configuration XML namespace. Therefore, we’ll need to add the namespace
declaration to the context definition XML file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:flow="http://www.springframework.org/schema/webflow-config"

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/webflow
http://www.springframework.org/webflow

201Installing Spring Web Flow

xsi:schemaLocation="http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/

 ➥spring-webflow-config-2.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

With the namespace declaration in place, we’re now ready to start wiring up web flow
beans, starting with the flow executor.

WIRING A FLOW EXECUTOR

As its name implies, the flow executor drives the execution of a flow. When a user enters
a flow, the flow executor creates and launches an instance of the flow execution for
that user. When the flow pauses (such as when a view is presented to the user), the
flow executor also resumes the flow once the user has taken some action.

 The <flow:flow-executor> element creates a flow executor in Spring:

<flow:flow-executor id="flowExecutor"
flow-registry="flowRegistry" />

Although the flow executor is responsible for creating and executing flows, it’s not
responsible for loading flow definitions. That responsibility falls to a flow registry,
which we’ll create next. Here, the flow registry is referred to by its ID: flowRegistry.1

CONFIGURING A FLOW REGISTRY

A flow registry’s job is to load flow definitions and make them available to the flow exec-
utor. We can configure a flow registry in the Spring configuration with the
<flow:flow-registry> element like this:

<flow:flow-registry id="flowRegistry"
base-path="/WEB-INF/flows">

<flow:flow-location-pattern value="*-flow.xml" />
</flow:flow-registry>

As declared here, the flow registry will look for flow
definitions under the /WEB-INF/flows directory, as
specified in the base-path attribute. Per the
<flow:flow-location-pattern> element, any XML
file whose name ends with -flow.xml will be consid-
ered a flow definition.

 All flows are referred to by their IDs. Using the
<flow:flow-location-pattern> as we have, the
flow ID will be the directory path relative to the
base-path—or the part of the path represented
with the double asterisk. Figure 8.1 shows how the
flow ID is calculated in this scenario.

1 The flow-registry attribute is explicitly set here, but it wasn’t necessary to do so. If it’s not set, then it

Flow registry
base path

Flow definition

Flow ID

Figure 8.1 When using a flow
location pattern, the path to the flow
definition file relative to the base
path will be used as the flow’s ID.
defaults to flowRegistry.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/webflow-config

202 CHAPTER 8 Working with Spring Web Flow

 Alternatively, you could leave the base-path attribute off and explicitly identify the
flow definition file’s location:

<flow:flow-registry id="flowRegistry">
<flow:flow-location path="/WEB-INF/flows/springpizza.xml" />

</flow:flow-registry>

Here, the <flow:flow-location> element is used instead of <flow:flow-location-
pattern>. The path attribute directly points at the /WEB-INF/flows/springpizza.xml
file as the flow definition. When configured this way, the flow’s ID is derived from the
base name of the flow definition file; springpizza in this case.

 If you’d like to be even more explicit about the flow’s ID, then you can set it with
the id attribute of the <flow:flow-location> element. For example, to specify pizza
as the flow’s ID, configure the <flow:flow-location> like this:

<flow:flow-registry id="flowRegistry">
<flow:flow-location id="pizza"

path="/WEB-INF/flows/springpizza.xml" />
</flow:flow-registry>

HANDLING FLOW REQUESTS

As we saw in the previous chapter, DispatcherServlet typically dispatches requests to
controllers. But for flows, we’ll need a FlowHandlerMapping to help Dispatcher-
Servlet know that it should send flow requests to Spring Web Flow. The Flow-
HandlerMapping is configured in the Spring application context like this:

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">
<property name="flowRegistry" ref="flowRegistry" />

</bean>

As you can see, the FlowHandlerMapping is wired with a reference to the flow registry
so it knows when a request’s URL maps to a flow. For example, if we have a flow whose
ID is pizza, then FlowHandlerMapping will know to map a request to that flow if the
request’s URL pattern (relative to the application context path) is /pizza.

 Whereas the FlowHandlerMapping’s job is to direct flow requests to Spring Web
Flow, it’s the job of a FlowHandlerAdapter to answer that call. A FlowHandlerAdapter
is equivalent to a Spring MVC controller in that it handles requests coming in for a
flow and processes those requests. The FlowHandlerAdapter is wired as a Spring bean
like this:

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">
<property name="flowExecutor" ref="flowExecutor" />

</bean>

This handler adapter is the bridge between DispatcherServlet and Spring Web Flow.
It handles flow requests and manipulates the flow based on those requests. Here, it’s
wired with a reference to the flow executor to execute the flows that it handles
requests for.
Licensed to Christian Cederquist <chrisman@kaus.dk>

203The components of a flow

 We’ve configured all of the beans and components that are needed for Spring Web
Flow to work. What’s left is to actually define a flow. We’ll do that soon enough. But
first, let’s get to know the elements that are put together to make up a flow.

8.2 The components of a flow
In Spring Web Flow, a flow is defined by three primary elements: states, transitions,
and flow data.

 States are points in a flow where something happens. If you imagine a flow as being
like a road trip, then states are the towns, truck stops, and scenic stops along the way.
Instead of picking up a bag of Doritos and a Diet Coke, a state in a flow is where some
logic is performed, some decision is made, or some page is presented to the user.

 If flow states are like the points on a map where you might stop during a road trip,
then transitions are the roads that connect those points. In a flow, you get from one
state to another by way of a transition.

 As you travel from town to town, you may pick up some souvenirs, memories, and
empty snack bags along the way. Similarly, as a flow progresses, it collects some data:
the current condition of the flow. I’m tempted to refer to it as the state of the flow, but
the word state already has another meaning when talking about flows.

 Let’s take a closer look at how these three elements are defined in Spring Web
Flow.

8.2.1 States

Spring Web Flow defines five different kinds of state, as shown in table 8.1.
 The selection of states provided by Spring Web Flow makes it possible to construct

virtually any arrangement of functionality into a conversational web application.
Though not all flows will require all of the states described in table 8.1, you’ll probably
end up using most of them at one time or another.

Table 8.1 Spring Web Flow’s selections of states

State type What it’s for

Action Action states are where the logic of a flow takes place.

Decision Decision states branch the flow in two directions, routing the flow based on
the outcome of evaluation flow data.

End The end state is the last stop for a flow. Once a flow has reached its end
state, the flow is terminated.

Subflow A subflow state starts a new flow within the context of a flow that is already
underway.

View A view state pauses the flow and invites the user to participate in the flow.
Licensed to Christian Cederquist <chrisman@kaus.dk>

204 CHAPTER 8 Working with Spring Web Flow

In a moment we’ll see how to piece these different kinds of states together to form a
complete flow. But first, let’s get to know how each of these flow elements are mani-
fested in a Spring Web Flow definition.

VIEW STATES

View states are used to display information to the user and to offer the user an oppor-
tunity to play an active role in the flow. The actual view implementation could be any
of the views supported by Spring MVC, but is often implemented in JSP.

 Within the flow definition XML file, the <view-state> element is used to define a
view state:

<view-state id="welcome" />

In this simple example, the id attribute serves a dual purpose. It identifies the state
within the flow. Also, because no view has been specified otherwise, it specifies welcome
as the logical name of the view to be rendered when the flow reaches this state.

 If you’d rather explicitly identify another view name, then you can do so with the
view attribute:

<view-state id="welcome" view="greeting" />

If a flow presents a form to the user, you may want to specify the object to which the
form will be bound. To do that, set the model attribute:

<view-state id="takePayment" model="flowScope.paymentDetails"/>

Here we’ve specified that the form in the takePayment view will be bound to the flow-
scoped paymentDetails object. (We’ll talk more about flow scopes and data in a
moment.)

ACTION STATES

Whereas view states involve the users of the application in the flow, action states are
where the application itself goes to work. Action states typically invoke some method
on a Spring-managed bean and then transition to another state depending on the out-
come of the method call.

 In the flow definition XML, action states are expressed with the <action-state>
element. Here’s an example:

<action-state id="saveOrder">
<evaluate expression="pizzaFlowActions.saveOrder(order)" />
<transition to="thankYou" />

</action-state>

Although it’s not strictly required, <action-state> elements usually have an
<evaluate> element as a child. The <evaluate> element gives an action state some-
thing to do. The expression attribute is given an expression that’s evaluated when
the state is entered. In this case, expression is given a SpEL2 expression which

2 Starting with version 2.1.0, Spring Web Flow uses the Spring Expression Language, but can optionally use

OGNL or the Unified EL if you’d prefer.

Licensed to Christian Cederquist <chrisman@kaus.dk>

205The components of a flow

indicates that the saveOrder() method should be called on a bean whose ID is
pizzaFlowActions.

DECISION STATES

It’s possible for a flow to be purely linear, stepping from one state to another without
taking any alternate routes. But more often a flow branches at one point or another,
depending on the flow’s current circumstances.

 Decision states enable a binary branch in a flow execution. A decision state will
evaluate a Boolean expression and will take one of two transitions, depending on
whether the expression evaluates to true or false. Within the XML flow definition,
decision states are defined by the <decision-state> element. A typical example of a
decision state might look like this:

<decision-state id="checkDeliveryArea">
<if test="pizzaFlowActions.checkDeliveryArea(customer.zipCode)"

then="addCustomer"
else="deliveryWarning" />

</decision-state>

As you can see, the <decision-state> element doesn’t work alone. The <if> ele-
ment is the heart of a decision state. It’s where the expression is evaluated. If the
expression evaluates to true, then the flow will transition to the state identified by
the then attribute. But if it’s false, then the flow will transition to the state named in
the else attribute.

SUBFLOW STATES

You probably wouldn’t write all of your application’s logic in a single method. Instead,
you’d probably break it up into multiple classes, methods, and other structures.

 In the same way, it’s a good idea to break flows down into discrete parts. The
<subflow-state> element lets you call another flow from within an executing flow.
It’s analogous to calling a method from within another method.

 A <subflow-state> might be declared as follows:

<subflow-state id="order" subflow="pizza/order">
<input name="order" value="order"/>
<transition on="orderCreated" to="payment" />

</subflow-state>

Here, the <input> element is used to pass the order object as input to the subflow.
And, if the subflow ends with an <end-state> whose ID is orderCreated, then the
flow will transition to the state whose ID is payment.

 But I’m getting ahead of myself. We haven’t talked about the <end-state> element
or transitions yet. But we’ll look at transitions soon in section 8.2.2. As for end states,
that’s what we’ll look at next.

END STATES

Eventually all flows must come to an end. And that’s what they’ll do when they transi-
tion to an end state. The <end-state> element designates the end of a flow and typi-

cally appears like this:

Licensed to Christian Cederquist <chrisman@kaus.dk>

206 CHAPTER 8 Working with Spring Web Flow

<end-state id="customerReady" />

When the flow reaches an <end-state>, the flow ends. What happens next depends
on a few factors:

 If the flow that’s ending is a subflow, then the calling flow will proceed from the
<subflow-state>. The <end-state>’s ID will be used as an event to trigger the
transition away from the <subflow-state>.

 If the <end-state> has its view attribute set, the specified view will be rendered.
The view may be a flow-relative path to a view template, prefixed with
externalRedirect: to redirect to some page external to the flow, or prefixed
with flowRedirect: to redirect to another flow.

 If the ending flow isn’t a subflow and no view is specified, then the flow simply
ends. The browser ends up landing on the flow’s base URL, and with no current
flow active, a new instance of the flow begins.

It’s important to realize that a flow may have more than one end state. Since the end
state’s ID determines the event fired from a subflow, you may want to end the flow
through multiple end states to trigger different events in the calling flow. Even in
flows that aren’t subflows, there may be several landing pages that follow the comple-
tion of a flow, depending on the course that the flow took.

 Now that we’ve looked at the various kinds of states in a flow, we should take a
moment to look at how the flow travels between states. Let’s see how to pave some
roads in a flow by defining transitions.

8.2.2 Transitions

As I’ve already mentioned, transitions connect the states within a flow. Every state in a
flow, with the exception of end states, should have at least one transition so that the
flow will know where to go once that state has completed. A state may have multiple
transitions, each one representing a different path that could be taken upon comple-
tion of the state.

 A transition is defined by the <transition> element, a child of the various state
elements (<action-state>, <view-state>, and <subflow-state>). In its simplest
form, the <transition> element identifies the next state in the flow:

<transition to="customerReady" />

The to attribute is used to specify the next state in the flow. When <transition> is
declared with only a to attribute, the transition is the default transition for that state
and will be taken if no other transitions are applicable.

 More commonly transitions are defined to take place upon some event being
fired. In a view state, the event is usually some action taken by the user. In an action
state, the event is the result of evaluating an expression. In the case of a subflow state,
the event is determined by the ID of the subflow’s end state. In any event (no pun
intended), you can specify the event to trigger the transition by specifying it in the on

attribute:

Licensed to Christian Cederquist <chrisman@kaus.dk>

207The components of a flow

<transition on="phoneEntered" to="lookupCustomer"/>

In this example, the flow will transition to the state whose ID is lookupCustomer if a
phoneEntered event is fired.

 The flow can also transition to another state in response to some exception being
thrown. For example, if a customer record can’t be found, you may want the flow to
transition to a view state that presents a registration form. The following snippet shows
that kind of transition:

<transition
on-exception=

"com.springinaction.pizza.service.CustomerNotFoundException"
to="registrationForm" />

The on-exception attribute is much like the on attribute, except that it specifies an
exception to transition on instead of an event. In this case, a CustomerNotFound-
Exception will cause the flow to transition to the registrationForm state.

GLOBAL TRANSITIONS

After you’ve created a flow, you may find that there are several states that share some
common transitions. For example, I wouldn’t be surprised to find the following
<transition> sprinkled all over a flow:

<transition on="cancel" to="endState" />

Rather than repeat common transitions in multiple states, you can define them as
global transitions by placing the <transition> element as a child of a <global-
transitions> element. For example:

<global-transitions>
<transition on="cancel" to="endState" />

</global-transitions>

With this global transition in place, all states within the flow will have an implicit
cancel transition.

 We’ve talked about states and transitions. Before we get busy writing flows, let’s
look at flow data, the remaining member of the web flow triad.

8.2.3 Flow data

If you’ve ever played one of those old text-based adventure games, you know that as
you move from location to location, you occasionally find objects laying around that
you can pick up and carry with you. Sometimes you need an object right away. Other
times, you may carry an object around through the entire game not knowing what it’s
for—until you get to that final puzzle and find that it’s useful after all.

 In many ways, flows are like those adventure games. As the flow progresses from one
state to another, it picks up some data. Sometimes that data is only needed for a little
while (maybe just long enough to display a page to the user). Other times, that data is
carried around through the entire flow and is ultimately used as the flow completes.
Licensed to Christian Cederquist <chrisman@kaus.dk>

208 CHAPTER 8 Working with Spring Web Flow

DECLARING VARIABLES

Flow data is stored away in variables that can be referenced at various points in the
flow. It can be created and accumulated in several ways. The simplest way to create a
variable in a flow is by using the <var> element:

<var name="customer" class="com.springinaction.pizza.domain.Customer"/>

Here, a new instance of a Customer object is created and placed into the variable
whose name is customer. This variable will be available to all states in a flow.

 As part of an action state or upon entry to a view state, you may also create vari-
ables using the <evaluate> element. For example:

<evaluate result="viewScope.toppingsList"
expression="T(com.springinaction.pizza.domain.Topping).asList()" />

In this case, the <evaluate> element evaluates an expression (a SpEL expression) and
places the result in a variable named toppingsList that’s view-scoped. (We’ll talk
more about scopes in a moment.)

 Similarly, the <set> element can set a variable’s value:

<set name="flowScope.pizza"
value="new com.springinaction.pizza.domain.Pizza()" />

The <set> element works much the same as the <evaluate> element, setting a vari-
able to the resulting value from an evaluated expression. Here, we’re setting a flow-
scoped pizza variable to a new instance of a Pizza object.

 You’ll see more specifics on how these elements are used in an actual flow when we
get to section 8.3 and start building a real working web flow. But first, let’s see what it
means for a variable to be flow-scoped, view-scoped, or use some other scope.

SCOPING FLOW DATA

The data carried about in a flow will have varying lifespans and visibility, depending
on the scope of the variable it’s kept in. Spring Web Flow defines five scopes, as
described in table 8.2.

Table 8.2 Spring Web Flow’s selections of states

Scope Lifespan and visibility

Conversation Created when a top-level flow starts and destroyed when the top-level flow ends.
Shared by a top-level flow and all of its subflows.

Flow Created when a flow starts and destroyed when the flow ends. Only visible within
the flow it was created by.

Request Created when a request is made into a flow and destroyed when the flow returns.

Flash Created when a flow starts and destroyed when the flow ends. It’s also cleared out
after a view state renders.

View Created when a view state is entered and destroyed when the state exits. Visible
only within the view state.
Licensed to Christian Cederquist <chrisman@kaus.dk>

209Putting it all together: the pizza flow

When declaring a variable using the <var> element, the variable is always flow-scoped
within the flow defining the variable. When using <set> or <evaluate>, the scope is
specified as a prefix for the name or result attribute. For example, to assign a value to
a flow-scoped variable named theAnswer:

<set name="flowScope.theAnswer" value="42"/>

Now that we’ve seen all of the raw materials of a web flow, it’s time to piece them
together into a full-blown, fully functional web flow. As we do, keep your eyes peeled
for examples of how to store data away in scoped variables.

8.3 Putting it all together: the pizza flow
As I mentioned earlier in this chapter, we’re taking a break from the Spitter applica-
tion. Instead, we’ve been asked to build out an online pizza ordering application
where hungry web visitors can order their favorite Italian pie.3

 As it turns out, the process of ordering a pizza can be defined nicely in a flow. We’ll
start by building a high-level flow that defines the overall process of ordering a pizza.
Then we’ll break that flow down into subflows that define the details at a lower level.

8.3.1 Defining the base flow

A new pizza chain, Spizza,4 has decided to relieve the load on their stores’ telephones
by allowing customers to place orders online. When the customer visits the Spizza
website, they’ll identify themselves, select one or more pizzas to add to their order,
provide payment information, and then submit the order and wait for the pizza to
arrive, hot and fresh. Figure 8.2 illustrates this flow.

3 In truth, I couldn’t think of any good way of working a flow into the Spitter application. So rather than shoe-
horn a Spring Web Flow example into Spitter, we’re going to go with the pizza example.

Figure 8.2 The process of ordering
a pizza boils down to a simple flow.
4 Yes, I know...there’s a real Spizza pizza place in Singapore. This isn’t that one.

Licensed to Christian Cederquist <chrisman@kaus.dk>

210 CHAPTER 8 Working with Spring Web Flow

The boxes in the diagram represent states and the arrows represent transitions. As you
can see, the overall pizza flow is simple and linear. It should be easy to express this
flow in Spring Web Flow. The only thing that makes it interesting is that the first three
states can be more involved than suggested by a simple box.

 The following shows the high-level pizza order flow as defined using Spring Web
Flow’s XML-based flow definition.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<var name="order"
class="com.springinaction.pizza.domain.Order"/>

<subflow-
state id="identifyCustomer" subflow="pizza/customer">

<output name="customer" value="order.customer"/>
<transition on="customerReady" to="buildOrder" />

</subflow-state>

<subflow-state id="buildOrder" subflow="pizza/order">
<input name="order" value="order"/>
<transition on="orderCreated" to="takePayment" />

</subflow-state>

<subflow-state id="takePayment" subflow="pizza/payment">
<input name="order" value="order"/>
<transition on="paymentTaken" to="saveOrder"/>

</subflow-state>

<action-state id="saveOrder">
<evaluate expression="pizzaFlowActions.saveOrder(order)" />
<transition to="thankCustomer" />

</action-state>

<view-state id="thankCustomer">
<transition to="endState" />

</view-state>

<end-state id="endState" />

<global-transitions>
<transition on="cancel" to="endState" />

</global-transitions>
</flow>

The first thing you see in the flow definition is the declaration of the order variable.
Each time the flow starts, a new instance of Order is created. The Order class, as shown
next, has properties for carrying all of the information about an order, including the
customer information, the list of pizzas ordered, and the payment details.

Listing 8.1 The pizza order flow, defined as a Spring Web Flow

Call customer
subflow

Call order
subflow

Call
payment
subflow

Save order

Thank
customer

Global cancel
transition
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd

211Putting it all together: the pizza flow

package com.springinaction.pizza.domain;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class Order implements Serializable {
private static final long serialVersionUID = 1L;

private Customer customer;
private List<Pizza> pizzas;
private Payment payment;

public Order() {
pizzas = new ArrayList<Pizza>();
customer = new Customer();

}

public Customer getCustomer() {
return customer;

}

public void setCustomer(Customer customer) {
this.customer = customer;

}

public List<Pizza> getPizzas() {
return pizzas;

}

public void setPizzas(List<Pizza> pizzas) {
this.pizzas = pizzas;

}

public void addPizza(Pizza pizza) {
pizzas.add(pizza);

}

public float getTotal() {
return 0.0f;

}

public Payment getPayment() {
return payment;

}

public void setPayment(Payment payment) {
this.payment = payment;

}
}

The main portion of the flow definition is made up of the flow states. By default, the
first state in the flow definition file is also the first state that will be visited in the flow.
In this case, that’s the identifyCustomer state (a subflow state). But if you’d like, you
can explicitly identify any state as the starting state by setting the start-state attri-
bute in the <flow> element:

Listing 8.2 An Order carries all of the details pertaining to a pizza order
Licensed to Christian Cederquist <chrisman@kaus.dk>

212 CHAPTER 8 Working with Spring Web Flow

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd"
start-state="identifyCustomer">

...
</flow>

Identifying a customer, building a pizza order, and taking payment are activities that
are too complex to be crammed into a single state. That’s why we’ll define them later
in more detail as flows in their own right. But for the purposes of the high-level pizza
flow, these activities are expressed with the <subflow-state> element.

 The order flow variable will be populated by the first three states and then saved in
the fourth state. The identifyCustomer subflow state uses the <output> element to
populate the order’s customer property, setting it to the output received from calling
the customer subflow. The buildOrder and takePayment states take a different
approach, using <input> to pass the order flow variable as input so that those sub-
flows can populate the order internally.

 After the order has been given a customer, some pizzas, and payment details, it’s
time to save it. The saveOrder state is an action state that handles that task. It uses
<evaluate> to make a call to the saveOrder() method on the bean whose ID is
pizzaFlowActions, passing in the order to be saved. When it’s finished saving the
order, it transitions to thankCustomer.

 The thankCustomer state is a simple view state, backed by the JSP file at /WEB-
INF/flows/pizza/thankCustomer.jsp, as shown next.

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<head><title>Spizza</title></head>

<body>
<h2>Thank you for your order!</h2>

<![CDATA[
Finish

]]>
</body>

</html>

The “thank you” page thanks the customer for their order and gives a link for the cus-
tomer to finish the flow. This link is the most interesting thing on the page because it
shows one way that a user can interact with the flow.

 Spring Web Flow provides a flowExecutionUrl variable, which contains the URL
for the flow, for use in the view. The Finish link attaches an _eventId parameter to the
URL to fire a finished event back to the web flow. That event sends the flow to the

Listing 8.3 A JSP view that thanks the customer for their order

Fire
finished
event
end state.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd

213Putting it all together: the pizza flow

 At the end state, the flow ends. Since there are no further details on where to go
after the flow ends, the flow will start over again at the identifyCustomer state, ready
to take another pizza order.

 That covers the general flow for ordering a pizza. But there’s more to the flow than
what we see in listing 8.1. We still need to define the subflows for the identify-
Customer, buildOrder, and takePayment states. Let’s build those flows next, starting
with the one that identifies the customer.

8.3.2 Collecting customer information

If you’ve ordered a pizza before, you probably know the drill. The first thing they ask
for is your phone number. Aside from giving them a way to call you if the delivery
driver can’t find your house, the phone number also serves as your identification to
the pizza shop. If you’re a repeat customer, they can use that phone number to look
up your address so that they’ll know where to deliver your order.

 For a new customer, the phone number won’t turn up any results. So the next
information that they’ll ask for is your address. At this point the pizzeria knows who
you are and where to deliver your pizzas. But before they ask you what kind of pizza
you want, they need to check to make sure that your address falls within their delivery
area. If not, then you’ll have to come in and pick up the pizza yourself.

 The initial question and answer period that begins every pizza order can be illus-
trated with the flow diagram in figure 8.3.
Figure 8.3 The flow for identifying a customer has a few more twists than the pizza flow.

Licensed to Christian Cederquist <chrisman@kaus.dk>

214 CHAPTER 8 Working with Spring Web Flow

This flow is more interesting than the top-level pizza flow. This flow isn’t linear and
branches in a couple of places depending on different conditions. For example, after
looking up the customer, the flow could either end (if the customer was found) or
transition to a registration form (if the customer was not found). Also, at the check-
DeliveryArea state, the customer may or may not be warned that their address isn’t in
the delivery area.

 The following shows the flow definition for identifying the customer.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<var name="customer" class="com.springinaction.pizza.domain.Customer"/>

<view-state id="welcome">
<transition on="phoneEntered" to="lookupCustomer"/>

</view-state>

<action-state id="lookupCustomer">
<evaluate result="customer" expression=

"pizzaFlowActions.lookupCustomer(requestParameters.phoneNumber)" />
<transition to="registrationForm" on-exception=

"com.springinaction.pizza.service.CustomerNotFoundException" />
<transition to="customerReady" />

</action-state>

<view-state id="registrationForm" model="customer">
<on-entry>

<evaluate expression=
"customer.phoneNumber = requestParameters.phoneNumber" />

</on-entry>
<transition on="submit" to="checkDeliveryArea" />

</view-state>

<decision-state id="checkDeliveryArea">
<if test="pizzaFlowActions.checkDeliveryArea(customer.zipCode)"

then="addCustomer"
else="deliveryWarning"/>

</decision-state>

<view-state id="deliveryWarning">
<transition on="accept" to="addCustomer" />

</view-state>

<action-state id="addCustomer">
<evaluate expression="pizzaFlowActions.addCustomer(customer)" />
<transition to="customerReady" />

</action-state>

<end-state id="cancel" />
<end-state id="customerReady">

<output name="customer" />

Listing 8.4 Identifying the hungry pizza customer with a web flow

Welcome customer

Look up customer

Register new
customer

Check
delivery area

Show delivery
warning

Add customer
</end-state>

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd

215Putting it all together: the pizza flow

<global-transitions>
<transition on="cancel" to="cancel" />

</global-transitions>
</flow>

This flow introduces a few new tricks, including our first use of the <decision-state>
element. Also, since it’s a subflow of the pizza flow, it expects to receive an Order
object as input.

 As before, let’s break down this flow definition state by state, starting with the
welcome state.

ASKING FOR A PHONE NUMBER

The welcome state is a fairly straightforward view state that welcomes the customer to
the Spizza website and asks them to enter their phone number. The state itself isn’t
particularly interesting. It has two transitions: one that directs the flow to the lookup-
Customer state if a phoneEntered event is fired from the view, and another cancel
transition, defined as a global transition, that reacts to a cancel event.

 Where the welcome state gets interesting is in the view itself. The welcome view is
defined in /WEB-INF/flows/pizza/customer/welcome.jspx, as shown next.

<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:form="http://www.springframework.org/tags/form">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<head><title>Spizza</title></head>

<body>
<h2>Welcome to Spizza!!!</h2>

<form:form>
<input type="hidden" name="_flowExecutionKey"

value="${flowExecutionKey}"/>

<input type="text" name="phoneNumber"/>

<input type="submit" name="_eventId_phoneEntered"
value="Lookup Customer" />

</form:form>
</body>

</html>

This simple form prompts the user to enter their phone number. But the form has two
special ingredients that enable it to drive the flow.

 First note the hidden _flowExecutionKey field. When a view state is entered, the
flow pauses and waits for the user to take some action. The flow execution key is given
to the view as a sort of “claim ticket” for the flow. When the user submits the form, the
flow execution key is sent along with it in the _flowExecutionKey field and the flow
resumes where it left off.

 Also pay special attention to the submit button’s name. The _eventId_ portion of

Listing 8.5 Welcoming the customer and asking for their phone number

Flow
execution key

Fire
phoneEntered
event
the button’s name is a clue to Spring Web Flow that what follows is an event that

Licensed to Christian Cederquist <chrisman@kaus.dk>

216 CHAPTER 8 Working with Spring Web Flow

should be fired. When the form is submitted by clicking that button, a phoneEntered
event will be fired, triggering a transition to lookupCustomer.

LOOKING UP THE CUSTOMER

After the welcome form has been submitted, the customer’s phone number is among
the request parameters and is ready to be used to look up a customer. The lookup-
Customer state’s <evaluate> element is where that happens. It pulls the phone num-
ber off of the request parameters and passes it to the lookupCustomer() method on
the pizzaFlowActions bean.

 The implementation of lookupCustomer() is not important right now. It’s suffi-
cient to know that it will either return a Customer object or throw a CustomerNot-
FoundException.

 In the former case, the Customer object is assigned to the customer variable (per
the result attribute) and the default transition takes the flow to the customerReady
state. But if the customer can’t be found, then a CustomerNotFoundException will be
thrown and the flow will transition to the registrationForm state.

REGISTERING A NEW CUSTOMER

The registrationForm state is where the user is asked for their delivery address. Like
other view states we’ve seen, it’ll render a JSP view. The JSP file is shown next.

<html xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:spring="http://www.springframework.org/tags"
xmlns:form="http://www.springframework.org/tags/form">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<head><title>Spizza</title></head>

<body>
<h2>Customer Registration</h2>

<form:form commandName="customer">
<input type="hidden" name="_flowExecutionKey"

value="${flowExecutionKey}"/>
Phone number: <form:input path="phoneNumber"/>

Name: <form:input path="name"/>

Address: <form:input path="address"/>

City: <form:input path="city"/>

State: <form:input path="state"/>

Zip Code: <form:input path="zipCode"/>

<input type="submit" name="_eventId_submit"

value="Submit" />
<input type="submit" name="_eventId_cancel"

value="Cancel" />
</form:form>
</body>

</html>

Listing 8.6 Registering a new customer
Licensed to Christian Cederquist <chrisman@kaus.dk>

217Putting it all together: the pizza flow

This isn’t the first form we’ve seen in our flow. The welcome view state also displayed a
form to the customer. That form was simple and had only a single field. It was easy
enough to pull that field’s value from the request parameters. The registration form,
on the other hand, is more involved.

 Instead of dealing with the fields one at a time through the request parameters, it
makes more sense to bind the form to a Customer object—let the framework do all of
the hard work.

CHECKING THE DELIVERY AREA

After the customer has given their address, we need to be sure that they live within the
delivery area. If Spizza can’t deliver to them, then we should let them know and advise
them that they’ll need to come in and pick up the pizzas themselves.

 To make that decision, we use a decision state. The checkDeliveryArea decision
state has an <if> element that passes the customer’s Zip code into the checkDelivery-
Area() method on the pizzaFlowActions bean. That method will return a Boolean
value: true if the customer is in the delivery area, false otherwise.

 If the customer is in the delivery area, then the flow transitions to the addCustomer
state. If not, then the customer is taken to the deliveryWarning view state. The view
behind the deliveryWarning is /WEB-INF/flows/pizza/customer/deliveryWarning
.jspx and is shown next.

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<head><title>Spizza</title></head>

<body>
<h2>Delivery Unavailable</h2>

<p>The address is outside of our delivery area. You may
still place the order, but you will need to pick it up
yourself.</p>

<![CDATA[

Continue, I'll pick up the order |
Never mind
]]>

</body>
</html>

The key flow-related items in deliveryWarning.jspx are the two links that offer the cus-
tomer a chance to continue with the order or to cancel. Using the same flow-
ExecurtionUrl variable that we used in the welcome state, these links will trigger
either an accept event or a cancel event in the flow. If an accept event is sent, then
the flow will transition to the addCustomer state. Otherwise, the global cancel transi-
tion will be followed and the subflow will transition to the cancel end state.

Listing 8.7 Warning a customer that pizza can’t be delivered to their address
Licensed to Christian Cederquist <chrisman@kaus.dk>

218 CHAPTER 8 Working with Spring Web Flow

 We’ll talk about the end states in a moment. First, let’s take a quick look at the
addCustomer state.

STORING THE CUSTOMER DATA

By the time the flow arrives at the addCustomer state, the customer has entered their
address. For future reference, that address needs to be stored away (probably in a
database). The addCustomer state has an <evaluate> element that calls the add-
Customer() method on the pizzaFlowActions bean, passing in the customer flow
variable.

 Once the evaluation is complete, the default transition will be taken and the flow
will transition to the end state whose ID is customerReady.

ENDING THE FLOW

Normally a flow’s end state isn’t that interesting. But in this flow, there’s not just one
end state, but two. When a subflow ends, it fires a flow event that’s equivalent to its
end state’s ID. If the flow only has one end state, then it’ll always fire the same event.
But with two or more end states, a flow can influence the direction of the calling flow.

 When the customer flow goes down any of the normal paths, it’ll ultimately land
on the end state whose ID is customerReady. When the calling pizza flow resumes, it’ll
receive a customerReady event, which will result in a transition to the buildOrder
state.

 Note that the customerReady end state includes an <output> element. This ele-
ment is a flow’s equivalent of Java’s return statement. It passes back some data from a
subflow to the calling flow. In this case, the <output> is returning the customer flow
variable so that the identifyCustomer subflow state in the pizza flow can assign it to
the order.

 On the other hand, if a cancel event is triggered at any time during the customer
flow, it’ll exit the flow through the end state whose ID is cancel. That will trigger a
cancel event in the pizza flow and result in a transition (via the global transition) to
the pizza flow’s end state.

8.3.3 Building an order

After the customer has been identified, the next
step in the main flow is to figure out what kind of
pizzas they want. The order subflow, as illustrated
in figure 8.4, is where the user is prompted to cre-
ate pizzas and add them to the order.

 As you can see, the showOrder state is the cen-
terpiece of the order subflow. It’s the first state
that the user sees upon entering the flow and it’s
the state that the user is sent to after adding a
new pizza to the order. It displays the current
state of the order and offers the user a chance to

Figure 8.4 Pizzas are added via the
add another pizza to the order.
order subflow.

Licensed to Christian Cederquist <chrisman@kaus.dk>

219Putting it all together: the pizza flow

 Upon choosing to add a pizza to the order, the flow transitions to the createPizza
state. This is another view state that gives the user a selection of pizza sizes and top-
pings to build a pizza with. From here the user may add a pizza or cancel. In either
event the flow transitions back to the showOrder state.

 From the showOrder state, the user may choose to either submit the order or can-
cel the order. Either choice will end the order subflow, but the main flow will go down
different paths depending on which choice is made.

 The following shows how the diagram translates into a Spring Web Flow definition.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="order" required="true" />

<view-state id="showOrder">
<transition on="createPizza" to="createPizza" />
<transition on="checkout" to="orderCreated" />
<transition on="cancel" to="cancel" />

</view-state>

<view-state id="createPizza" model="flowScope.pizza">
<on-entry>

<set name="flowScope.pizza"
value="new com.springinaction.pizza.domain.Pizza()" />

<evaluate result="viewScope.toppingsList" expression=
"T(com.springinaction.pizza.domain.Topping).asList()" />

</on-entry>
<transition on="addPizza" to="showOrder">

<evaluate expression="order.addPizza(flowScope.pizza)" />
</transition>
<transition on="cancel" to="showOrder" />

</view-state>

<end-state id="cancel" />
<end-state id="orderCreated" />

</flow>

This subflow will actually operate on the Order object created in the main flow. There-
fore, we need a way of passing the Order from the main flow to the subflow. As you’ll
recall from listing 8.1, we used the <input> element there to pass the Order into the
flow. Here we’re using it to accept that Order object. If you think of this subflow as
being analogous to a method in Java, the <input> element used here is effectively
defining the subflow’s signature. This flow requires a single parameter called order.

 Next we find the showOrder state, a basic view state with three different transitions:
one for creating a pizza, one for submitting the order, and another to cancel the
order.

Listing 8.8 The order subflow view states to display the order and to create a pizza
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd

220 CHAPTER 8 Working with Spring Web Flow

 The createPizza state is more interesting. Its view is a form that submits a new
Pizza object to be added to the order. The <on-entry> element adds a new Pizza
object to flow scope to be populated when the form is submitted. Note that the model
of this view state references the same flow-scoped Pizza object. That Pizza object will
be bound to the create pizza form, shown next.

<div xmlns:form="http://www.springframework.org/tags/form"
xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:output omit-xml-declaration="yes"/>
<jsp:directive.page contentType="text/html;charset=UTF-8" />

<h2>Create Pizza</h2>
<form:form commandName="pizza">

<input type="hidden" name="_flowExecutionKey"
value="${flowExecutionKey}"/>

Size:

<form:radiobutton path="size"

label="Small (12-inch)" value="SMALL"/>

<form:radiobutton path="size"

label="Medium (14-inch)" value="MEDIUM"/>

<form:radiobutton path="size"

label="Large (16-inch)" value="LARGE"/>

<form:radiobutton path="size"

label="Ginormous (20-inch)" value="GINORMOUS"/>

Toppings:

<form:checkboxes path="toppings" items="${toppingsList}"

delimiter="
"/>

<input type="submit" class="button"
name="_eventId_addPizza" value="Continue"/>

<input type="submit" class="button"
name="_eventId_cancel" value="Cancel"/>

</form:form>
</div>

When the form is submitted via the Continue button, the size and topping selections
will be bound to the Pizza object and the addPizza transition will be taken. The
<evaluate> element associated with that transition indicates that the flow-scoped
Pizza object should be passed in a call to the order’s addPizza() method before tran-
sitioning to the showOrder state.

 There are two ways to end the flow. The user can either click the Cancel button on
the showOrder view or they can click the Checkout button. Either way, the flow transi-
tions to an <end-state>. But the id of the end state chosen determines the event trig-
gered on the way out of this flow, and ultimately determines the next step in the main
flow. The main flow will either transition on cancel or will transition on orderCreated.

Listing 8.9 Adding pizzas to an order with an HTML form bound to a flow-scoped object
Licensed to Christian Cederquist <chrisman@kaus.dk>

221Putting it all together: the pizza flow

In the former case, the outer flow ends; in the
latter case, it transitions to the takePayment
subflow, which we’ll look at next.

8.3.4 Taking payment

It’s not common to get a free pizza, and the
Spizza pizzeria wouldn’t stay in business long
if they let their customers order pizzas with-
out providing some form of payment. As the
pizza flow nears an end, the final subflow
prompts the user to enter payment details.
This simple flow is illustrated in figure 8.5.

 Like the order subflow, the payment sub-
flow also accepts an Order object as input
using the <input> element.

 As you can see, upon entering the payment subflow, the user arrives at the take-
Payment state. This is a view state where the user can indicate that they’ll pay by credit
card, check, or cash. Upon submitting their payment information, they’re taken to
the verifyPayment state, an action state that verifies that their payment information is
acceptable.

 The payment subflow is defined in XML as shown.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow
http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="order" required="true"/>

<view-state id="takePayment" model="flowScope.paymentDetails">
<on-entry>

<set name="flowScope.paymentDetails"
value="new com.springinaction.pizza.domain.PaymentDetails()" />

<evaluate result="viewScope.paymentTypeList" expression=
"T(com.springinaction.pizza.domain.PaymentType).asList()" />

</on-entry>
<transition on="paymentSubmitted" to="verifyPayment" />
<transition on="cancel" to="cancel" />

</view-state>

<action-state id="verifyPayment">
<evaluate result="order.payment" expression=

"pizzaFlowActions.verifyPayment(flowScope.paymentDetails)" />
<transition to="paymentTaken" />

</action-state>

Listing 8.10 The payment subflow has one view state and one action state.

Figure 8.5 The final step in placing a pizza
order is to take payment from the customer
through the payment subflow.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd

222 CHAPTER 8 Working with Spring Web Flow

<end-state id="cancel" />
<end-state id="paymentTaken" />

</flow>

As the flow enters the takePayment view state, the <on-entry> element sets up the
payment form by first using a SpEL expression to create a new PaymentDetails
instance in flow scope. This will effectively be the backing object for the form. It also
sets the view-scoped paymentTypeList variable to a list containing the values of the
PaymentTypeenum (shown in listing 8.11). Here, SpEL’s T() operator is used to get the
PaymentType class so that the static toList() method can be invoked.

package com.springinaction.pizza.domain;

import static org.apache.commons.lang.WordUtils.*;

import java.util.Arrays;
import java.util.List;

public enum PaymentType {
CASH, CHECK, CREDIT_CARD;

public static List<PaymentType> asList() {
PaymentType[] all = PaymentType.values();
return Arrays.asList(all);

}

@Override
public String toString() {

return capitalizeFully(name().replace('_', ' '));
}

}

Upon being presented with the payment form, the user may either submit a payment
or cancel. Depending on the choice made, the payment subflow either ends through
the paymentTaken<end-state> or the cancel<end-state>. As with other subflows,
either <end-state> will end the subflow and return control to the main flow. But the
id of the <end-state> taken will determine the transition taken next in the main flow.

 Now we’ve stepped all of the way through the pizza flow and its subflows. We’ve
seen a lot of what Spring Web Flow is capable of. Before we move past the Web Flow
topic, let’s take a quick look at what’s involved with securing access to a flow or any of
its states.

8.4 Securing web flows
In the next chapter, we’ll see how to secure Spring applications using Spring Security.
But while we’re on the subject of Spring Web Flow, let’s quickly look at how Spring
Web Flow supports flow-level security when used along with Spring Security.

 States, transitions, and even entire flows can be secured in Spring Web Flow by
using the <secured> element as a child of those elements. For example, to secure

Listing 8.11 The PaymentType enumeration defines customer’s choices for payment.
access to a view state, you might use <secured> like this:

Licensed to Christian Cederquist <chrisman@kaus.dk>

223Summary

<view-state id="restricted">
<secured attributes="ROLE_ADMIN" match="all"/>

</view-state>

As configured here, access to the view state will be restricted to only users who are
granted ROLE_ADMIN access (per the attributes attribute). The attributes attri-
bute takes a comma-separated list of authorities that the user must have to gain access
to the state, transition, or flow. The match attribute can be set to either any or all. If it’s
set to any, then the user must be granted at least one of the authorities listed in attri-
butes. If it’s set to all, then the user must have been granted all of the authorities.

 You may be wondering how a user is granted the authorities checked for by the
<secured> element. For that matter, how does the user even log in to the application
in the first place? The answers to those questions will be addressed in the next chapter.

8.5 Summary
Not all web applications are freely navigable. Sometimes, a user must be guided along,
asked appropriate questions, and led to specific pages based on their responses. In
these situations, an application feels less like a menu of options and more like a con-
versation between the application and the user.

 In this chapter, we’ve explored Spring Web Flow, a web framework that enables
development of conversational applications. Along the way, we built a flow-based
application to take pizza orders. We started by defining the overall path that the appli-
cation should take, starting with gathering customer information and concluding with
the order being saved in the system.

 A flow is made up of several states and transitions that define how the conversation
will traverse from state to state. As for the states themselves, they come in one of sev-
eral varieties: action states that perform some business logic, view states that involve
the user in the flow, decision states that dynamically direct the flow, and end states
that signify the end of a flow. In addition, there are subflow states, which are them-
selves defined by a flow.

 Finally, we saw hints of how access to a flow, state, or transition can be restricted to
users who are granted specific authorities. But we deferred conversation of how the
user authenticates to the application and how the user is granted those authorities.
That’s where Spring Security comes in, and Spring Security is what we’ll explore in the
next chapter.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Securing Spring
Have you ever noticed that most people in television sitcoms don’t lock their
doors? It happens all the time. On Seinfeld, Kramer frequently let himself into
Jerry’s apartment to help himself to the goodies in Jerry’s refrigerator. On Friends,
the various characters often entered one another’s apartments without warning or
hesitation. Once, while in London, Ross even burst into Chandler’s hotel room,
narrowly missing Chandler in a compromising situation with Ross’s sister.

 In the days of Leave it to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that in a day when we’re concerned with privacy
and security we see television characters enabling unhindered access to their apart-
ments and homes.

 It’s a sad reality that there are villainous individuals roaming around seeking to
steal our money, riches, cars, and other valuables. And it should be no surprise that
as information is probably the most valuable item we have, crooks are looking for

This chapter covers
 Introducing Spring Security

 Securing web applications using servlet filters

 Authentication against databases and LDAP

 Transparently securing method invocations
224

ways to steal our data and identity by sneaking into unsecured applications.

Licensed to Christian Cederquist <chrisman@kaus.dk>

225Introducing Spring Security

 As software developers, we must take steps to protect the information that resides
in our applications. Whether it’s an email account protected with a username/pass-
word pair or a brokerage account protected with a trading PIN, security is a crucial
aspect of most applications.

 It’s no accident that I chose to describe application security with the word “aspect.”
Security is a concern that transcends an application’s functionality. For the most part,
an application should play no part in securing itself. Although you could write security
functionality directly into your application’s code (and that’s not uncommon), it’s bet-
ter to keep security concerns separate from application concerns.

 If you’re thinking that it’s starting to sound as if security is accomplished using
aspect-oriented techniques, you’re right. In this chapter we’re going to explore ways
to secure your applications with aspects. But we won’t have to develop those aspects
ourselves—we’re going to look at Spring Security, a security framework implemented
with Spring AOP and servlet filters.1

9.1 Introducing Spring Security
Spring Security is a security framework that provides declarative security for your
Spring-based applications. Spring Security provides a comprehensive security solu-
tion, handling authentication and authorization at both the web request level and at
the method invocation level. Based on the Spring Framework, Spring Security takes
full advantage of dependency injection (DI) and aspect-oriented techniques.

 Spring Security got its start as Acegi Security. Acegi was a powerful security frame-
work, but it had one big turn-off: it required a lot of XML configuration. I’ll spare you
the intricate details of what such a configuration may have looked like. Suffice it to say
that it was common for a typical Acegi configuration to grow to several hundred lines
of XML.

 With version 2.0, Acegi Security became Spring Security. But the 2.0 release
brought more than just a superficial name change. Spring Security 2.0 introduced a
new security-specific XML namespace for configuring security in Spring. The new
namespace, along with annotations and reasonable defaults, slimmed typical security
configuration from hundreds of lines to only a dozen or so lines of XML. Spring Secu-
rity 3.0, the most recent release, added SpEL to the mix, simplifying security configu-
ration even more.

 Spring Security tackles security from two angles. To secure web requests and
restrict access at the URL level, Spring Security uses servlet filters. Spring Security can
also secure method invocations using Spring AOP—proxying objects and applying
advice that ensures that the user has proper authority to invoke secured methods.

1 I’m probably going to get a lot of emails about this, but I have to say it anyway: servlet filters are a primitive
form of AOP, with URL patterns as a kind of pointcut expression language. There… I’ve said it… I feel better

now.

Licensed to Christian Cederquist <chrisman@kaus.dk>

226 CHAPTER 9 Securing Spring

9.1.1 Getting started with Spring Security

No matter what kind of application you want to secure using Spring Security, the first
thing to do is to add the Spring Security modules to the application’s classpath. Spring
Security 3.0 is divided into eight modules, as listed in table 9.1.

At the least, you’ll want to include the Core and Configuration modules in your appli-
cation’s classpath. Spring Security is often used to secure web applications. That’s cer-
tainly the case with the Spitter application, so we’ll also need to add the web module.
We’ll also be taking advantage of Spring Security’s JSP tag library, so we’ll need to add
that module to the mix.

 Now we’re ready to start declaring security configuration in Spring Security. Let’s
see how to get started with Spring Security’s XML configuration namespace.

9.1.2 Using the Spring Security configuration namespace

When Spring Security was known as Acegi Security, all of the security elements were
configured as <bean>s in the Spring application context. A common Acegi configura-
tion scenario would contain dozens of <bean> declarations and span multiple pages.
The long and short of it was that Acegi configuration was often longer than it was
short.

 Spring Security comes with a security-specific namespace that greatly simplifies
security configuration in Spring. This new namespace, along with some sensible
default behavior, reduces a typical security configuration from over 100 lines of XML
to a dozen or so.

 The only thing to do in preparation for using the security namespace is to include
it in the XML file by adding the namespace declaration:

Table 9.1 Spring Security is partitioned into eight modules.

Module Description

ACL Provides support for domain object security through access control lists
(ACLs)

CAS Client Provides integration with JA-SIG’s Central Authentication Service (CAS)

Configuration Contains support for Spring Security’s XML namespace

Core Provides the essential Spring Security library

LDAP Provides support for authentication using the Lightweight Directory Access
Protocol (LDAP)

OpenID Provides integration with the decentralized OpenID standard

Tag Library Includes a set of JSP tags for view-level security

Web Provides Spring Security’s filter-based web security support
Licensed to Christian Cederquist <chrisman@kaus.dk>

227Securing web requests

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:security="http://www.springframework.org/schema/security"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.0.xsd">

</beans>

For the Spitter application, we’ve separated all of the security-specific configuration
into a separate Spring configuration file called spitter-security.xml. Since all of the
configuration in this file will be from the security namespace, we’ve changed the secu-
rity namespace to be the primary namespace for that file.

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns="http://www.springframework.org/schema/security"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.0.xsd">

</beans:beans>

With the security namespace as the primary namespace, we can avoid adding those
pesky security: prefixes on all of the elements.

 All of the Spring Security pieces are falling into place nicely. Now we’re ready to
add web-level security to the Spitter application.

9.2 Securing web requests
Everything you do with a Java web application starts with an HttpServletRequest.
And if the request is the access point to a web application, then that’s where security
for a web application should begin.

 The most basic form of request-level security involves declaring one or more URL
patterns as requiring some level of granted authority and preventing users without
that authority from accessing the content behind those URLs. Taking it a step further,
you may want to require that certain URLs can only be accessed over HTTPS.

 Before you can restrict access to users with certain privileges, there must be a way
to know who’s using the application. Therefore, the application will need to authenti-
cate the user, prompting them to log in and identify themselves.

 Spring Security supports these and many other forms of request-level security. To
get started with web security in Spring, we must set up the servlet filters that provide
the various security features.

Listing 9.1 Adding the Spring Security namespace to a Spring configuration XML file

Listing 9.2 Using the security namespace as the default namespace

security:-prefixed elements go here

Non-prefixed security elements go here
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/security/spring-security-3.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/security/spring-security-3.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

228 CHAPTER 9 Securing Spring

9.2.1 Proxying servlet filters

Spring Security employs several servlet filters to provide various aspects of security. As
you might imagine, this could mean several <filter> declarations in your applica-
tion’s web.xml file. But rest easy—thanks to a little Spring magic, we’ll only need to
configure one filter in the application’s web.xml file. Specifically, we’ll need to add
the following <filter>:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>

org.springframework.web.filter.DelegatingFilterProxy
</filter-class>

</filter>

DelegatingFilterProxy is a special servlet filter that, by itself, doesn’t do much.
Instead, it delegates to an implementation of javax.servlet.Filter that’s registered
as a <bean> in the Spring application context, as illustrated in figure 9.1.

 In order to do their job, Spring Security’s filters must be injected with some other
beans. It’s not possible to inject beans into servlet filters registered in web.xml. But by
using DelegatingFilterProxy, we can configure the actual filter in Spring, taking full
advantage of Spring’s support for dependency injection.

 The value given as DelegatingFilterProxy’s <filter-name> is significant. This is
the name used to look up the filter bean from the Spring application context. Spring
Security will automatically create a filter bean whose ID is springSecurityFilter-
Chain, so that’s the name we’ve given to DelegatingFilterProxy in web.xml.

 As for the springSecurityFilterChain bean itself, it’s another special filter
known as FilterChainProxy. It’s a single filter that chains together one or more addi-
tional filters. Spring Security relies on several servlet filters to provide different secu-
rity features. But you should almost never need to know these details, as you likely
won’t need to explicitly declare the springSecurityFilterChain bean or any of the
filters it chains together. Spring Security will automatically create those beans for us
when we configure the <http> element, which we’ll do next.

9.2.2 Configuring minimal web security

Early versions of Spring Security required a seemingly endless amount of XML config-
uration to set up basic security features. In contrast, using recent versions of Spring
Security, the following snippet of XML packs a lot of punch:

Figure 9.1 DelegatingFilterProxy proxies filter handling to a
delegate filter bean in the Spring application context.
Licensed to Christian Cederquist <chrisman@kaus.dk>

229Securing web requests

<http auto-config="true">
<intercept-url pattern="/**" access="ROLE_SPITTER" />

</http>

These humble three lines of XML configure Spring security to intercept requests for
all URLs (as specified by the Ant-style path in the pattern attribute of <intercept-
url>) and restrict access to only authenticated users who have the ROLE_SPITTER role.
The <http> element automatically sets up a FilterChainProxy (which is delegated to
by the DelegatingFilterProxy we configured in web.xml) and all of the filter beans
in the chain.

 In addition to those filter beans, we also get a few more freebies by setting the
auto-config attribute to true. Autoconfiguration gives our application a free login
page, support for HTTP Basic authentication, and support for logging out. In fact, set-
ting auto-config to true is equivalent to explicitly asking for those features like this:

<http>
<form-login />
<http-basic />
<logout />

<intercept-url pattern="/**" access="ROLE_SPITTER" />
</http>

Let’s dig deeper into what these features give us and see how to use them.

LOGGING IN VIA A FORM

One of the benefits of setting auto-config to true is that Spring Security will auto-
matically generate a login page for you. Here’s the HTML for that form.

<html>
<head><title>Login Page</title></head>
<body onload='document.f.j_username.focus();'>

<h3>Login with Username and Password</h3>
<form name='f' method='POST'

action='/Spitter/j_spring_security_check'>
<table>

<tr><td>User:</td><td>
<input type='text' name='j_username' value=''>

</td></tr>
<tr><td>Password:</td><td>

<input type='password' name='j_password'/>
</td></tr>

<tr><td colspan='2'><input name="submit" type="submit"/></td></tr>
<tr><td colspan='2'><input name="reset" type="reset"/></td></tr>

</table>
</form>

</body>
</html>

You can get to the automatically generated login form via the path
/spring_security_login relative to the application’s context URL. For example,

Listing 9.3 Spring Security can automatically generate a simple login form for you.

Authentication
filter path

Username
field

Password
field
Licensed to Christian Cederquist <chrisman@kaus.dk>

230 CHAPTER 9 Securing Spring

when accessing the Spitter application on localhost, that URL is http://localhost:
8080/Spitter/spring_security_login.

 At first it may seem like a great deal that Spring Security gives you a login form
for free. But as you can see, the form is simple and not a lot should be said about its
aesthetics. It’s plain and we’ll probably want to replace it with a login page of our
own design.

 To put our own login page in place, we’ll need to configure a <form-login> ele-
ment to override the default behavior:

<http auto-config="true" use-expressions="false">
<form-login login-processing-url="/static/j_spring_security_check"

login-page="/login"
authentication-failure-url="/login?login_error=t"/>

</http>

The login attribute specifies a new context-relative URL for the login page. In this
case we state that the login page will reside at /login which is ultimately handled by a
Spring MVC controller. Likewise, if authentication fails, the authentication-

failure-url attribute is set to send the user back to the same login page.
 Note that we’ve set the login-processing-url to /static/j_spring_security_

check. This is the URL that the login form will submit back to to authenticate the
user.

 Even though we may not want to keep the user-generated login form, we can learn
a lot from it. For starters, we know that Spring Security will process the login request
at the path /Spitter/j_spring_security_check. And it’s clear that the username
and password should be submitted in the request as fields named j_username and
j_password. Armed with that information, we can create our own custom login page.

 For the Spitter application the new login page is a JSP that’s served up by a Spring
MVC controller. The JSP itself is shown next.

<%@ taglib prefix="s" uri="http://www.springframework.org/tags"%>
<div>

<h2>Sign in to Spitter</h2>

<p>
If you've been using Spitter from your phone,
then that's amazing...we don't support IM yet.

</p>

<spring:url var="authUrl"
value="/static/j_spring_security_check" />

<form method="post" class="signin" action="${authUrl}">

<fieldset>
<table cellspacing="0">
<tr>
<th><label for="username_or_email">Username or Email</label></th>
<td><input id="username_or_email"

Listing 9.4 The Spitter application uses a custom login page defined as JSP.

Authentication
filter path
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spring_security_login
http://localhost:8080/Spitter/spring_security_login

231Securing web requests

name="j_username"
type="text" />

</td>
</tr>
<tr>
<th><label for="password">Password</label></th>

<td><input id="password"
name="j_password"
type="password" />

<small>Forgot?</small>
</td>

</tr>
<tr>
<th></th>
<td><input id="remember_me"

name="_spring_security_remember_me"
type="checkbox"/>
<label for="remember_me"

class="inline">Remember me</label></td>
</tr>
<tr>
<th></th>
<td><input name="commit" type="submit" value="Sign In" /></td>
</tr>
</table>
</fieldset>

</form>

<script type="text/javascript">
document.getElementById('username_or_email').focus();

</script>
</div>

Although our login page is different than the one that Spring Security gives us out of
the box, the key thing is that the form submits j_username and j_password parame-
ters with the user’s credentials. Everything else is decoration.

 Also note that listing 9.4 includes a “remember me” checkbox. We’ll discuss the
details of how that works later in section 9.4.4. But for now, let’s see Spring Security’s
support for HTTP Basic authentication.

HANDLING BASIC AUTHENTICATION

Form-based authentication is ideal for human users of an application. But in
chapter 11, we’ll see how to turn some of our web application’s pages into a RESTful
API. When the user of the application is another application, prompting for login with
a form just won’t do.

 HTTP Basic authentication is a way to authenticate a user to an application directly
in the HTTP request itself. You may have seen HTTP Basic authentication before.
When encountered by a web browser, it prompts the user with a plain modal dialog
box.

 But that’s just how it’s manifested in a web browser. In reality, it’s an HTTP 401
response, indicating that a username and password must be presented with the

Username field

Password
field

Remember-me box
Licensed to Christian Cederquist <chrisman@kaus.dk>

232 CHAPTER 9 Securing Spring

request. This makes it suitable as a means for REST clients to authenticate against the
services that they’re consuming.

 Not much customization is available with <http-basic>. HTTP Basic authentica-
tion is either turned on or it’s not. So rather than dwell on the topic any further, let’s
move on to see what the <logout> element gives us.

LOGGING OUT

The <logout> element sets up a Spring Security filter that will invalidate a user ses-
sion. When used as is, the filter set up by <logout> is mapped to /j_spring_security_
logout. But so that this doesn’t collide with how we’ve set up DispatcherServlet, we
need to override the filter’s URL much as we did for the login form. To do that, we
need to set the logout-url attribute:

<logout logout-url="/static/j_spring_security_logout"/>

That wraps up our discussion of what autoconfiguration gives us. But there’s more to
explore in Spring Security. Let’s take a closer look at the <intercept-url> element
and see how it controls access at the request level.

9.2.3 Intercepting requests

In the previous section, we saw a simple example of the <intercept-url> element.
But we didn’t dig into it much… until now.

 The <intercept-url> element is the first line of defense in the request-level secu-
rity game. Its pattern attribute is given a URL pattern that will be matched against
incoming requests. If any requests match the pattern, then that <intercept-url>’s
security rules will be applied.

 Let’s revisit the <intercept-url> element from before:

<intercept-url pattern="/**" access="ROLE_SPITTER" />

The pattern attribute takes an Ant-style path by default. But if you’d prefer, setting
the <http> element’s path-type attribute to regex will change the pattern to taking
regular expressions.

 In this case, we’ve set the pattern attribute to /**, indicating that we want all
requests, regardless of the URL, to require ROLE_SPITTER access. The /** has a broad
reach, but you can be more specific.

 Suppose that some special areas of the Spitter application are restricted to admin-
istrative users. For that, we can insert the following <intercept-url> just before the
one we already have:

<intercept-url pattern="/admin/**" access="ROLE_ADMIN" />

Where our first <intercept-url> entry makes sure that the user has ROLE_SPITTER
authority for most of the application, this <intercept-url> restricts access to the
/admin branch of the site’s hierarchy to users with ROLE_ADMIN authority.

 You can use as many <intercept-url> entries as you like to secure various paths in

your web application. But it’s important to know that the <intercept-url> rules are

Licensed to Christian Cederquist <chrisman@kaus.dk>

233Securing web requests

applied top to bottom. Therefore, this new <intercept-url> should be placed before
the original one or else it’ll be eclipsed by the broad scope of the /** path.

SECURING WITH SPRING EXPRESSIONS

Listing required authorities is simple enough, but it’s somewhat one-dimensional.
What if you wanted to express security constraints that are based on more than just
granted privileges?

 In chapter 2, we saw how to use the Spring Expression Language (SpEL) as an
advanced technique for wiring bean properties. As of version 3.0, Spring Security also
supports SpEL as a means for declaring access requirements. To enable it, we must set
the use-expressions attribute of <http> to true:

<http auto-config="true" use-expressions="true">
...
</http>

Now we can start using SpEL expressions in the access attribute. Here’s how to use a
SpEL expression to require ROLE_ADMIN access for the /admin/** URL pattern:

<intercept-url pattern="/admin/**" access="hasRole('ROLE_ADMIN')"/>

This <intercept-url> is effectively the same as the one we started with, except that it
uses SpEL. The hasRole() expression evaluates to true if the current user has been
granted the given authority. But hasRole() is only one of several security-specific
expressions supported. Table 9.2 lists all of the SpEL expressions added by Spring
Security 3.0.

Table 9.2 Spring Security extends the Spring Expression Language with a several security-specific
expressions.

Security expression What it evaluates to

authentication The user’s authentication object

denyAll Always evaluates to false

hasAnyRole(list of roles) true if the user has been granted any of the roles specified

hasRole(role) true if the user has been granted the specified role

hasIpAddress(IP Address) The user’s IP address (only available in web security)

isAnonymous() true if the current user is an anonymous user

isAuthenticated() true if the current user is not anonymous

isFullyAuthenticated() true if the current user is neither an anonymous nor a remember-
me user

isRememberMe() true if the current user was automatically authenticated via
remember-me

permitAll Always evaluates to true
principal The user’s principal object

Licensed to Christian Cederquist <chrisman@kaus.dk>

234 CHAPTER 9 Securing Spring

With Spring Security’s SpEL expressions at our disposal, we can do more than just
limit access based on a user’s granted authorities. For example, if you wanted to lock
down the /admin/** URLs to not only require ROLE_ADMIN, but to also only be
allowed from a given IP address, you might declare an <intercept-url> like this:

<intercept-url pattern="/admin/**"
access="hasRole('ROLE_ADMIN') and hasIpAddress('192.168.1.2')"/>

With SpEL-based security constraints, the possibilities are virtually endless. I’ll bet that
you’re already dreaming up interesting security constraints based on SpEL.

 But for now, let’s look at another one of <intercept-url>’s tricks: enforcing chan-
nel security.

FORCING REQUESTS TO HTTPS

Submitting data across HTTP can be a risky proposition. It may not be a big deal to
send a spittle message in the clear over HTTP. But if you’re passing sensitive informa-
tion such as passwords and credit card numbers across HTTP, then you’re asking for
trouble. That’s why sensitive information should be sent encrypted over HTTPS.

 Working with HTTPS seems simple enough. All you have to do is add an s after the
http in a URL and you’re set. Right?

 That’s true, but it places responsibility for using the HTTPS channel in the wrong
place. If you have dozens or hundreds of links and form actions that should be going
to an HTTPS URL, it’s too easy to forget to add that S. Chances are good that you’ll
miss one or two of them. Or you may overcorrect and use HTTPS in places where it’s
unnecessary.

 The <intercept-url> element’s requires-channel attribute shifts the responsi-
bility for channel enforcement into the Spring Security configuration.

 As an example, consider the Spitter application’s registration form. Although Spit-
ter doesn’t ask for credit card numbers or social security numbers or anything terribly
sensitive, the users may want that information to be kept private. In that case, we
should configure an <intercept-url> element for the /spitter/form like this:

<intercept-url pattern="/spitter/form" requires-channel="https"/>

Anytime a request comes in for /spitter/form, Spring Security will see that it requires
the https channel and automatically redirect the request to go over HTTPS. Likewise,
the home page doesn’t require HTTPS, so we can declare that it always should be sent
over HTTP:

<intercept-url pattern="/home" requires-channel="http"/>

So far we’ve seen how to secure web applications as requests are made. The assump-
tion has been that security would involve stopping a user from accessing a URL that
they’re not authorized to use. But it’s also a good idea to never show links that a user
won’t be able to follow. Let’s see how Spring Security offers security in the view.
Licensed to Christian Cederquist <chrisman@kaus.dk>

235Securing view-level elements

9.3 Securing view-level elements
To support security in the view layer, Spring Security comes with a JSP tag library.2 This
tag library is small and includes only three tags, as listed in table 9.3.

To use the JSP tag library, we’ll need to declare it in the JSP files where it’s used:

<%@ taglib prefix="security"
uri="http://www.springframework.org/security/tags" %>

Once the tag library has been declared in the JSP file, we’re ready to use it. Let’s look
at each of the three JSP tags that come with Spring Security and see how they work.

9.3.1 Accessing authentication details

One of the simplest things that the Spring Security JSP tag library can do for us is pro-
vide convenient access to the user’s authentication information. For example, it’s
common for websites to display a “welcome” or “hello” message in the page header,
identifying the user by their username. That’s precisely the kind of thing that the
<security:authentication> can do for us. For example:

Hello <security:authentication property="principal.username" />!

The property attribute identifies a property of the user’s authentication object. The
properties available will vary depending on how the user was authenticated. But you can
count on a few common properties to be available, including those listed in table 9.4.

 In our example, the property being rendered is actually the nested username prop-
erty of the principal property.

 When used as shown in the previous example, <security:authentication> will
render the property’s value in the view. But if you’d rather assign it to a variable, then
simply specify the name of the variable in the var attribute:

<security:authentication property="principal.username"
var="loginId"/>

2 If you prefer Velocity over JSP for rendering views, Spring Security also comes with a set of Velocity macros

Table 9.3 Spring Security supports security in the view layer with a JSP tag library.

JSP tag What it does

<security:accesscontrollist> Allows the body of the tag to be rendered if the currently
authenticated user has one of the stipulated permissions in
the specified domain object

<security:authentication> Accesses properties of the current user’s authentication
object

<security:authorize> Allows the body of the tag to be rendered if a specified
security constraint has been met
that are similar to its JSP tags.

Licensed to Christian Cederquist <chrisman@kaus.dk>

236 CHAPTER 9 Securing Spring

The variable is created in page scope by default. But if you’d rather create it in some
other scope such as request or session (or any of the scopes available from
javax.servlet.jsp.PageContext), you can specify it via the scope attribute. For
example, to create the variable in request scope, use the <security:authentication>
tag like this:

<security:authentication property="principal.username"
var="loginId" scope="request" />

The <security:authentication> tag is useful, but it’s just the start of what Spring
Security’s JSP tag library can do. Let’s see how to conditionally render content
depending on the user’s privileges.

9.3.2 Rendering with authorities

Sometimes portions of the view should or shouldn’t be rendered, depending on what
the user is privileged to do. There’s no point in showing a login form to a user who’s
already logged in or in showing a personalized greeting to a user who’s not logged in.

 Spring Security’s <security:authorize> JSP tag conditionally renders a portion of
the view depending on the user’s granted authorities. For example, in the Spitter
application we don’t want to show the form for adding a new spittle unless the user
has the ROLE_SPITTER role. The following listing shows how to use the <security:
authorize> tag to display the spittle form if the user has ROLE_SPITTER authority.

<sec:authorize access="hasRole('ROLE_SPITTER')">

<s:url value="/spittles" var="spittle_url" />
<sf:form modelAttribute="spittle"

action="${spittle_url}">
<sf:label path="text"><s:message code="label.spittle"

text="Enter spittle:"/></sf:label>
<sf:textarea path="text" rows="2" cols="40" />

<sf:errors path="text" />

Table 9.4 You can access several of the user’s authentication details using the
<security:authentication> JSP tag.

Authentication property Description

authorities A collection of GrantedAuthority objects that represent the privi-
leges granted to the user

credentials The credentials that were used to verify the principal (commonly, this is
the user’s password)

details Additional information about the authentication (IP address, certificate
serial number, session ID, and so on)

principal The user’s principal

Listing 9.5 Conditional rendering with the <security:authorize> tag

Only with
ROLE_SPITTER
authority
Licensed to Christian Cederquist <chrisman@kaus.dk>

237Securing view-level elements

<div class="spitItSubmitIt">

<input type="submit" value="Spit it!"
class="status-btn round-btn disabled" />

</div>
</sf:form>

</sec:authorize>

The access attribute is given a SpEL expression whose result determines whether
<security:authorize>’s body is rendered. Here we’re using the hasRole

('ROLE_SPITTER') expression to ensure that the user has the ROLE_SPITTER role. But
you have the full power of SpEL at your disposal when setting the access attribute,
including the Spring Security-provided expressions listed in table 9.2.

 With these expressions available, you can cook up some interesting security con-
straints. For example, imagine that the application has some administrative functions
that are only available to the user whose username is habuma. Maybe you’d use the
isAuthenticated() and principal expressions like this:

<security:authorize
access="isAuthenticated() and principal.username=='habuma'">

Administration
</security:authorize>

I’m sure you can dream up even more interesting expressions than that. I’ll leave it up
to your imagination to concoct more security constraints. The options are virtually
limitless with SpEL.

 But one thing about the example that I dreamt up still bugs me. Though I might
want to restrict the administrative functions to habuma, perhaps doing it with a SpEL
expression isn’t ideal. Sure, it’ll keep the link from being rendered in the view. But
nothing’s stopping anyone from manually entering the /admin URL in the browser’s
address line.

 Drawing on what we learned earlier in this chapter, that should be an easy thing to
fix. Adding a new <intercept-url> in the security configuration will tighten security
around the /admin URL:

<intercept-url pattern="/admin/**"
access="hasRole('ROLE_ADMIN') and hasIpAddress('192.168.1.2')"/>

Now the admin functionality is locked down. The URL is secured and the link to the
URL won’t appear unless the user is authorized to use it. But to do that we had to
declare the SpEL expression in two places—in <intercept-url> and in the
<security:authorize> tag’s access attribute. Wouldn’t it make more sense to only
show the URL if the URL’s security constraint was met?

 That’s what the <security:authorize> tag’s url attribute is for. Unlike the access
attribute where the security constraint is explicitly declared, the url attribute indi-
rectly refers to the security constraints for a given URL pattern. Since we’ve already
declared security constraints for /admin in the Spring Security configuration, we can

use the url attribute like this:

Licensed to Christian Cederquist <chrisman@kaus.dk>

238 CHAPTER 9 Securing Spring

<security:authorize url="/admin/**">
<spring:url value="/admin" var="admin_url" />

Admin

</security:authorize>

Since the /admin URL is restricted to only authenticated users who have
ROLE_ADMIN authority and to requests coming from a specific IP address, the body of
the <security:authorize> tag will only be rendered if those conditions are met.

We’ve now seen how to declare various forms of security at the web layer. One ques-
tion remains: where is user information kept? In other words, when someone tries to
log in to the application, what repository of user information does Spring Security use
to authenticate against?

 Put simply, Spring Security is flexible enough to authenticate against virtually any
kind of user repository. Let’s look at a few of the authentication options Spring Secu-
rity offers.

9.4 Authenticating users
Every application’s a little different. That truth is evident in how every application
stores user information. Sometimes it’s kept in a relational database. Other times it
might be in an LDAP-enabled directory. Some applications rely on a decentralized
user identity system. And some may employ more than one strategy.

 Fortunately, Spring Security is flexible and can handle almost any authentication
strategy you need. Spring Security is prepared to cover many common authentication
scenarios, including authenticating users against

 In-memory (Spring-configured) user repositories
 JDBC-based user repositories
 LDAP-based user repositories
 OpenID decentralized user identity systems
 Central Authentication System (CAS)
 X.509 certificates
 JAAS-based providers

What about <security:authorize>’s other attributes?
In addition to the access and url attributes, <security:authorize> has three
other attributes: ifAllGranted, ifAnyGranted, and ifNotGranted. These attri-
butes make <security:authorize> conditionally render depending on what author-
ities have or haven’t been granted to the user.

Prior to Spring Security 3.0, these were the only attributes available for <security:
authorize>. But with the introduction of SpEL and the access attribute, they
become obsolete. They’re still available, but the access attribute can do the same
things and much more.
Licensed to Christian Cederquist <chrisman@kaus.dk>

239Authenticating users

If none of the out-of-the-box options suit you, then you can easily implement your
own authentication strategy and wire it in.

 Let’s have a deeper look at a few of the most commonly used authentication
options that Spring Security offers.

9.4.1 Configuring an in-memory user repository

One of the easiest authentication options available is to declare the user details
directly in the Spring configuration. This is done by creating a user service using the
<user-service> element from Spring Security’s XML namespace:

<user-service id="userService">
<user name="habuma" password="letmein"

authorities="ROLE_SPITTER,ROLE_ADMIN"/>
<user name="twoqubed" password="longhorns"

authorities="ROLE_SPITTER"/>
<user name="admin" password="admin"

authorities="ROLE_ADMIN"/>
</user-service>

A user service is effectively a data access object that looks up user details when given a
user’s login ID. In the case of <user-service>, those user details are declared within
<user-service>. There’s one <user> element for each user that can log in to the
application. The name and password attributes respectively specify the login name and
password. Meanwhile, the authorities attribute is set to a comma-separated list of
authorities—the things that the user is allowed to do.

 Recall that earlier (in section 9.2.3) we configured Spring Security to restrict
access to all URLs to only users with ROLE_SPITTER authority. In this case, the habuma
and twoqubed users would be granted access, but the admin user would be denied.

 The user service is now ready and waiting to look up user details for authentica-
tion. All that’s left is to wire it into Spring Security’s authentication manager:

<authentication-manager>
<authentication-provider user-service-ref="userService" />

</authentication-manager>

The <authentication-manager> element registers an authentication manager. More
specifically, it registers an instance of ProviderManager, an authentication manager
that delegates authentication responsibility to one or more authentication providers.
In this case, it’s an authentication provider that relies on a user service to provide user
details. We happen to have a user service handy. So all we have to do is wire it in
through the user-service-ref attribute of <authentication-provider>.

 Here we’ve declared the authentication provider and the user service indepen-
dently and wired them together. Optionally, if it suits you better, you could also embed
the user service within the authentication provider:

<authentication-provider>
<user-service id="userService">
<user name="habuma" password="letmein"

Licensed to Christian Cederquist <chrisman@kaus.dk>

240 CHAPTER 9 Securing Spring

authorities="ROLE_SPITTER,ROLE_ADMIN"/>
...

</user-service>
</authentication-provider>

There’s no significant benefit in embedding the <user-service> within
<authentication-provider>, but if it helps you organize your Spring XML configu-
ration, then that option is available.

 Defining user details in the Spring application context is convenient for testing or
when you’re first starting to add security to your application. But it’s not a very realis-
tic way of managing users in a production application. More often user details are
kept in a database or a directory server. Let’s see how to register a user service that
looks for user details in a relational database.

9.4.2 Authenticating against a database

Many applications store user information, including the username and password, in a
relational database. If that’s how your application keeps user information, Spring
Security’s <jdbc-user-service> is a good choice for your application.

 The <jdbc-user-service> is used the same way that <user-service> is used. This
includes wiring it into <authentication-provider>’s user-service-ref attribute or
embedding it within <authentication-provider>. Here we’re configuring a basic
<jdbc-user-service> with an id so that it can be declared independently and wired
into the <authentication-provider>:

<jdbc-user-service id="userService"
data-source-ref="dataSource" />

The <jdbc-user-service> element uses a JDBC data source—wired in through its
data-source-ref attribute—to query a database for user details. Without any further
configuration, the user service queries for user information using the following SQL:

select username,password,enabled
from users

where username = ?

And, although we’re talking about user authentication right now, part of the authenti-
cation involves looking up the user’s granted authorities. By default, the basic <jdbc-
user-service> configuration will use the following SQL to look up authorities given a
username:

select username,authority
from authorities

where username = ?

This is great if your application’s database happens to store user details and authori-
ties in tables that match those queries. But I’ll bet that’s not the case for most applica-
tions. In fact, in the case of the Spitter application, user details are kept in the
spitter table. Clearly the default behavior isn’t going to work.

Licensed to Christian Cederquist <chrisman@kaus.dk>

241Authenticating users

Fortunately, <jdbc-user-service> can easily be configured to use whatever queries
best fit your application. Table 9.5 describes the attributes that can be used to tweak
<jdbc-user-service>’s behavior.

 For the Spitter application, we’ll set the users-by-username-query and
authorities-by-username-query attributes as follows:

<jdbc-user-service id="userService"
data-source-ref="dataSource"
users-by-username-query=

"select username, password, true from spitter where username=?"
authorities-by-username-query=

"select username,'ROLE_SPITTER' from spitter where username=?" />

In the Spitter application, the username and password are stored in the spitter table
in the username and password properties, respectively. But we haven’t really consid-
ered the idea of a user being enabled or disabled and have been assuming that all
users are enabled. So we’ve written the SQL to always return true for all users.

 We also haven’t given much thought to giving Spitter users different levels of
authority. All Spitter users have the same authorities. In fact, the Spitter database
schema doesn’t have a table for storing user authorities. Therefore, we’ve set
authorities-by-username-query with a concocted query that gives all users
ROLE_SPITTER authority.

 While relational databases are commonly where an application’s user details are
kept, just as often (or perhaps more often) you’ll find applications that need to
authenticate against a directory server using LDAP. Let’s see how to configure Spring
Security to use LDAP as a user repository.

9.4.3 Authenticating against LDAP

We’ve all seen an organizational chart or two before. Most organizations are struc-
tured hierarchically. Employees report to supervisors, supervisors to directors, direc-
tors to vice presidents, and so forth. Within that hierarchy you’ll often find a similarly
hierarchical set of security rules. Human resources personnel are probably granted
different privileges than accounting personnel. Supervisors probably have more open

Table 9.5 The attributes of <jdbc-user-service> that can change the SQL used to query for user
details

Attribute What it does

users-by-username-query Queries for a user’s username, password, and
enabled status given the username

authorities-by-username-query Queries for a user’s granted authorities given the
username

group-authorities-by-username-query Queries for a user’s group authorities given the
username
access than those that report to them.

Licensed to Christian Cederquist <chrisman@kaus.dk>

242 CHAPTER 9 Securing Spring

 As useful as relational databases can be, they don’t do well representing hierarchical
data. LDAP directories, on the other hand, excel at storing information hierarchically.
For that reason, it’s common to find a company’s organizational structure represented
in an LDAP directory. Alongside, you’ll often find the company’s security constraints
mapped to the entries in the directory.

 To use LDAP-based authentication, we’ll first need to use Spring Security’s LDAP
module and configure LDAP authentication within the Spring application context.
When it comes to configuring LDAP authentication, we have two choices:

 With an LDAP-oriented authentication provider
 With an LDAP-oriented user service

For the most part, it’s an even choice on which you should use. But there are some
small considerations to make when choosing one over the other.

DECLARING AN LDAP AUTHENTICATION PROVIDER

For the in-memory and JDBC-based user services, we declared an <authentication-
provider> and wired in the user service. We can do the same thing for an LDAP-
oriented user service (and I’ll show you how in a moment). But a more direct way is
to use a special LDAP-oriented authentication provider by declaring an <ldap-
authentication-provider> within the <authentication-manager>:

<authentication-manager alias="authenticationManager">
<ldap-authentication-provider

user-search-filter="(uid={0})"
group-search-filter="member={0}"/>

</authentication-manager>

The user-search-filter and group-search-filter attributes are used to provide a
filter for the base LDAP queries, which are used to search for users and groups. By
default, the base queries for both users and groups are empty, indicating that the
search will be done from the root of the LDAP hierarchy. But we can change that by
specifying a query base:

<ldap-user-service id="userService"
user-search-base="ou=people"
user-search-filter="(uid={0})"
group-search-base="ou=groups"
group-search-filter="member={0}" />

The user-search-base attribute provides a base query for finding users. Likewise, the
group-search-base specifies the base query for finding groups. Rather than search
from the root, we’ve specified that users be searched for where the organization unit
is people. And groups should be searched for where the organizational unit is groups.

CONFIGURING PASSWORD COMPARISON

The default strategy to authenticate against LDAP is to perform a bind operation,
authenticating the user directly to the LDAP server. Another option is to perform a
comparison operation. This involves sending the entered password to the LDAP direc-

tory and asking the server to compare the password against a user’s password

Licensed to Christian Cederquist <chrisman@kaus.dk>

243Authenticating users

attribute. Because the comparison is done within the LDAP server, the actual password
remains secret.

 If you’d rather authenticate by doing a password comparison, you can do so by
declaring so with the <password-compare> element:

<ldap-authentication-provider
user-search-filter="(uid={0})"
group-search-filter="member={0}">

<password-compare />
</ldap-authentication-provider>

As declared here, the password given in the login form will be compared with the
value of the userPassword attribute in the user’s LDAP entry. If the password is kept in
a different attribute, then specify the password attribute’s name with password-
attribute:

<password-compare hash="md5"
password-attribute="passcode" />

It’s nice that the actual password is kept secret on the server when doing server-side
password comparison. But the attempted password is still passed across the wire to the
LDAP server and could be intercepted by a hacker. To prevent that, you can specify an
encryption strategy by setting the hash attribute to one of the following values:

 {sha}
 {ssha}
 md4
 md5
 plaintext
 sha
 sha-256

In the example, we’ve encrypted passwords using MD5 by setting hash to md5.

REFERRING TO A REMOTE LDAP SERVER

The one thing I’ve left out up until now is where the LDAP server and data actually
reside. We’ve happily been configuring Spring to authenticate against an LDAP server,
but where’s that server?

 By default, Spring Security’s LDAP authentication assumes that the LDAP server is
listening on port 33389 on localhost. But if your LDAP server is on another machine,
then you can use the <ldap-server> element to configure the location:

<ldap-server url="ldap://habuma.com:389/dc=habuma,dc=com" />

Here we use the url attribute to specify the location of the LDAP server.3
3 Don’t even try to use this LDAP URL. It’s just an example. No LDAP server is actually listening there.

Licensed to Christian Cederquist <chrisman@kaus.dk>

244 CHAPTER 9 Securing Spring

CONFIGURING AN EMBEDDED LDAP SERVER

If you don’t happen to have an LDAP server laying around waiting to be authenticated
against, then the <ldap-server> can also be used to configure an embedded LDAP
server. Just leave off the url parameter. For example:

<ldap-server root="dc=habuma,dc=com" />

The root attribute is optional. But it defaults to dc=springframework,dc=org, which I
suspect isn’t what you’ll want to use as the root for your LDAP server.

 When the LDAP server starts, it will attempt to load data from any LDIF files that it
can find in the classpath. LDIF (LDAP Data Interchange Format) is a standard way of
representing LDAP data in a plain text file. Each record is comprised of one or more
lines, each containing a name:value pair. Records are separated from each other by
blank lines.4

 If you’d rather be more explicit about which LDIF file gets loaded, you can use the
ldif attribute:

<ldap-server root="dc=habuma,dc=com"
ldif="classpath:users.ldif" />

Here we specifically ask the LDAP server to load its content from the users.ldif file at
the root of the classpath. In case you’re curious, the following listing shows the LDIF
file that we’ve been using.

dn: ou=groups,dc=habuma,dc=com
objectclass: top
objectclass: organizationalUnit
ou: groups

dn: ou=people,dc=habuma,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people

dn: uid=habuma,ou=people,dc=habuma,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Craig Walls
sn: Walls
uid: habuma
userPassword: password

dn: uid=jsmith,ou=people,dc=habuma,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

Listing 9.6 A sample LDIF file used to load user details into LDAP
4 See http://tools.ietf.org/html/rfc2849 for more details on the LDIF specification.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://tools.ietf.org/html/rfc2849

245Authenticating users

cn: John Smith
sn: Smith
uid: jsmith
userPassword: password

dn: cn=spitter,ou=groups,dc=habuma,dc=com
objectclass: top
objectclass: groupOfNames
cn: spitter
member: uid=habuma,ou=people,dc=habuma,dc=com

Whether your user authenticates against a database or an LDAP directory, it’s always
more convenient for them not to have to directly authenticate at all. Let’s see how to
configure Spring Security to remember a user so that they don’t have to log in every
time they visit an application.

9.4.4 Enabling remember-me functionality

It’s important for an application to be able to authenticate users. But from the user’s
perspective, it’d be nice if the application didn’t always prompt them with a login
every time they use it. That’s why many websites offer remember-me functionality so
that you can log in once and then be remembered by the application when you come
back to it later.

 Spring Security makes it easy to add remember-me functionality to an application.
To turn on remember-me support, all we need to do is add a <remember-me> element
within the <http> element:

<http auto-config="true" use-expressions="true">
...
<remember-me

key="spitterKey"
token-validity-seconds="2419200" />

</http>

Here, we’ve turned on remember-me functionality along with a bit of special configu-
ration. If you use the <remember-me> element with no attributes, this feature is accom-
plished by storing a token in a cookie that’s valid for up to two weeks. But here we’ve
specified that the token should stay valid for up to four weeks (2,419,200 seconds).

 The token that’s stored in the cookie is made up of the username, password, an
expiration date, and a private key—all encoded in an MD5 hash before being written
to the cookie. By default, the private key is SpringSecured, but we’ve set it to spit-
terKey to make it specific to the Spitter application.

 Simple enough. Now that remember-me functionality is enabled, we’ll need to
make a way for users to indicate that they’d like the application to remember them.
For that, the login request will need to include a _spring_security_remember_me
parameter. A simple checkbox in the login form ought to do the job:

<input id="remember_me" name="_spring_security_remember_me"
type="checkbox"/>
<label for="remember_me" class="inline">Remember me</label>

Licensed to Christian Cederquist <chrisman@kaus.dk>

246 CHAPTER 9 Securing Spring

Up until now we’ve been mostly focused on securing web requests. Since Spring Secu-
rity is often used to secure web applications, it tends to be forgotten that it can also be
used to secure method invocations. Let’s look at Spring Security’s support for method-
level security.

9.5 Securing methods
As I’ve hinted at before, security is an aspect-oriented concept. And Spring AOP is the
basis for method-level security in Spring Security. But for the most part you’ll never
need to deal with Spring Security’s aspects directly. All of the AOP involved in securing
methods is packed into a single element: <global-method-security>. Here’s a com-
mon way of using <global-method-security>.

<global-method-security secured-annotations="enabled" />

This sets up Spring Security for securing methods that are annotated with Spring
Security’s own @Secured annotation. This is just one of four ways that Spring Security
supports method-level security:

 Methods annotated with @Secured
 Methods annotated with JSR-250’s @RolesAllowed
 Methods annotated with Spring’s pre- and post-invocation annotations
 Methods matching one or more explicitly declared pointcuts

Let’s look at each style of method security.

9.5.1 Securing methods with @Secured

When <global-method-security> is configured with its secured-annotations attri-
bute set to enabled, a pointcut is created such that the Spring Security aspects will
wrap bean methods that are annotated with @Secured. For example:

@Secured("ROLE_SPITTER")
public void addSpittle(Spittle spittle) {

// ...
}

The @Secured annotation takes an array of String as an argument. Each String value
is a authorization, one of which is required to invoke the method. By passing in
ROLE_SPITTER, we tell Spring Security to not allow the saveSpittle() method to be
invoked unless the authenticated user has ROLE_SPITTER as one of their granted
authorities.

 If more than one value is passed into @Secured, then the authenticated user must
be granted at least one of those authorities to gain access to the method. For example,
the following use of @Secured indicates that the user must have ROLE_SPITTER or
ROLE_ADMIN privilege to invoke the method:

@Secured({"ROLE_SPITTER", "ROLE_ADMIN"})
public void addSpittle(Spittle spittle) {

// ...

}

Licensed to Christian Cederquist <chrisman@kaus.dk>

247Securing methods

When the method is invoked by an unauthenticated user or by a user not possessing
the required privileges, the aspect wrapping the method will throw one of Spring
Security’s exceptions (probably a subclass of AuthenticationException or Access-
DeniedException). Ultimately the exception will need to be caught. If the secured
method is invoked in the course of a web request, the exception will be automatically
handled by Spring Security’s filters. Otherwise, you’ll need to write the code to handle
the exception.

 The one drawback of the @Secured annotation is that it’s a Spring-specific annota-
tion. If you’re more comfortable using standard annotations, then perhaps you
should consider using @RolesAllowed instead.

9.5.2 Using JSR-250’s @RolesAllowed

The @RolesAllowed annotation is equivalent to @Secured in almost every way. The
only substantial difference is that @RolesAllowed is one of Java’s standard annotations
as defined in JSR-250.5

 This difference carries more political consequence than technical. But using the
standard @RolesAllowed annotation may have implications when used in the context
of other frameworks or APIs that process that annotation.

 Regardless, if you choose to use @RolesAllowed, you’ll need to turn it on by setting
<global-method-security>’s jsr250-annotations attribute to enabled:

<global-method-security jsr250-annotations="enabled" />

Although here we’ve only enabled jsr250-annotations, it’s good to note that it’s not
mutually exclusive with secured-annotations. These two annotation styles can both
be enabled at the same time. And they may even be used side by side with Spring’s pre-
/post-invocation security annotations, which is what we’ll look at next.

9.5.3 Pre-/Post-invocation security with SpEL

Although @Secured and @RolesAllowed seem to do the trick when it comes to keep-
ing unauthorized users out, that’s about all that they can do. Sometimes security con-
straints are more interesting than just whether a user has privileges or not.

 Spring Security 3.0 introduced a handful of new annotations that use SpEL to
enable even more interesting security constraints on methods. These new annotations
are described in table 9.6.

 We’ll look at specific examples of each of these in a moment. But first, it’s impor-
tant to know that if you want to use any of these annotations, you’ll need to enable
them by setting <global-method-security>’s pre-post-annotations to enabled:

<global-method-security pre-post-annotations="enabled" />

With the annotations enabled, you can start annotating methods to be secured. Let’s
start by looking at @PreAuthorize.
5 http://jcp.org/en/jsr/summary?id=250

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://jcp.org/en/jsr/summary?id=250

248 CHAPTER 9 Securing Spring

PRE-AUTHORIZING METHODS

At first glance, @PreAuthorize may appear to be nothing more than a SpEL-enabled
equivalent to @Secured and @RolesAllowed. In fact, you could use @PreAuthorize to
limit access based on the roles given to the authenticated user:

@PreAuthorize("hasRole('ROLE_SPITTER')")
public void addSpittle(Spittle spittle) {

// ...
}

The String argument to @PreAuthorize is a SpEL expression. Here it uses the Spring
Security-provided hasRole() function to authorize access to the method if the user
has the ROLE_SPITTER role.

 With SpEL expressions guiding access decisions, far more advanced security con-
straints can be written. For example, suppose that the average Spitter user can only
write spittles of 140 characters or less, but premium users are allowed unlimited spittle
lengths. Though @Secured and @RolesAllowed would be of no help here, @Pre-
Authorize is on the case:

@PreAuthorize("(hasRole('ROLE_SPITTER') and #spittle.text.length() <= 140)
or hasRole('ROLE_PREMIUM')")

public void addSpittle(Spittle spittle) {
// ...

}

The #spittle portion of the expression refers directly to the method parameter of
the same name. This enables Spring Security to examine the parameters passed to the
method and use those parameters in its authorization decision making. Here, we dig
into the Spitter’s text to make sure it doesn’t exceed the length allowed for standard
Spitter users. Or if the user is a premium user, then the length doesn’t matter.

POST-AUTHORIZING METHODS

A slightly less obvious way to authorize a method is to post-authorize the method. Post-
authorization typically involves making security decisions based on the object
returned from the secured method. This of course means that the method must be

Table 9.6 Spring Security 3.0 offers four new annotations that can be used to secure methods with
SpEL expressions.

Annotations Description

@PreAuthorize Restricts access to a method before invocation based on the result of evaluat-
ing an expression

@PostAuthorize Allows a method to be invoked, but throws a security exception if the expres-
sion evaluates to false

@PostFilter Allows a method to be invoked, but filters the results of that method per an
expression

@PreFilter Allows a method to be invoked, but filters input prior to entering the method
invoked and given a chance to produce a return value.

Licensed to Christian Cederquist <chrisman@kaus.dk>

249Securing methods

 Aside from the timing of the authorization, @PostAuthorize works much the
same as @PreAuthorize. For example, suppose that we want to secure the
getSpittleById() method to only authorize access if the Spittle object returned
belongs to the authenticated user. For that we could annotate getSpittleById()
with @PostAuthorize like this:

@PostAuthorize("returnObject.spitter.username == principal.username")
public Spittle getSpittleById(long id) {

// ...
}

For easy access to the object returned from the secured method, Spring Security pro-
vides the returnObject name in SpEL. Here we know that the returned object is a
Spittle, so the expression digs into its spitter property and pulls the username
property from that.

 On the other side of the double-equal comparison, the expression digs into the
built-in principal object to get its username property. principal is another one of
Spring Security’s special built-in names that represents the principal of the currently
authenticated user.

 If the Spittle object has a Spitter whose username property is the same as the
principal’s username, the Spittle will be returned to the caller. Otherwise, an
AccessDeniedException will be thrown and the caller won’t get to see the Spittle.

 It’s important to keep in mind that, unlike methods annotated with @Pre-
Authorize, @PostAuthorize-annotated methods will be executed first and inter-
cepted afterward. That means that care should be taken to make sure that the method
doesn’t have any side effects that would be undesired if authorization fails.

POST-FILTERING METHODS

Sometimes it’s not the method that’s being secured, but rather the data being
returned from that method. For example, suppose that you wanted to present a list of
Spittles to the user, but limit that list to only those Spittles that the user is allowed
to delete. In that case, you might annotate the method like this:

@PreAuthorize("hasRole('ROLE_SPITTER)")
@PostFilter("filterObject.spitter.username == principal.name")
public List<Spittle> getABunchOfSpittles() {

...
}

Here, the @PreAuthorize annotation only allows users with ROLE_SPITTER authority
to execute the method. If the user makes it through that checkpoint, the method will
execute and a List of Spittles will be returned. But the @PostFilter annotation will
filter that list, ensuring that the user only sees those Spittle objects that belong to the
user.

 The filterObject referenced in the expression refers to an individual element
(which we know to be a Spittle) in the List returned from the method. If that
Spittle’s Spitter has a username that’s the same as the authenticated user (the
Licensed to Christian Cederquist <chrisman@kaus.dk>

250 CHAPTER 9 Securing Spring

principal.name in the expression), then the element will end up in the filtered list.
Otherwise, it’ll be left out.

 I know what you’re thinking. You could write your query such that it only returns
Spittle objects belonging to our user. That’d be fine if the security rules were such
that a user may only delete Spittles that belong to them.

 To make things more interesting, let’s suppose that in addition to being able to
delete a Spittle that they own, a user is empowered to delete any Spittle that con-
tains profanity. For that, you’ll rewrite the @PostFilter expression as follows:

@PreAuthorize("hasRole('ROLE_SPITTER)")
@PostFilter("hasPermission(filterObject, 'delete')")
public List<Spittle> getSpittlesToDelete() {

...
}

As used here, the hasPermission() operation should evaluate to true if the user has
delete permission for the Spittle identified by filterObject. I say that it should
evaluate to true in that case, but the reality is that by default hasPermission() will
always return false.

 If hasPermission() always returns false by default, then what use is it? Well, the
nice thing about a default behavior is that it can be overridden. Overriding the behav-
ior of hasPermission() involves creating and registering a permission evaluator.
That’s what SpittlePermissionEvaluator in the following listing is for.

package com.habuma.spitter.security;
import java.io.Serializable;
import org.springframework.security.access.PermissionEvaluator;
import org.springframework.security.core.Authentication;
import com.habuma.spitter.domain.Spittle;

public class SpittlePermissionEvaluator implements PermissionEvaluator {
public boolean hasPermission(Authentication authentication,

Object target, Object permission) {
if (target instanceof Spittle) {

Spittle spittle = (Spittle) target;
if ("delete".equals(permission)) {

return spittle.getSpitter().getUsername().equals(
authentication.getName()) || hasProfanity(spittle);

}
}
throw new UnsupportedOperationException(

"hasPermission not supported for object <" + target
+ "> and permission <" + permission + ">");

}

public boolean hasPermission(Authentication authentication,
Serializable targetId, String targetType, Object permission) {

throw new UnsupportedOperationException();
}

Listing 9.7 A permission evaluator provides the logic behind hasPermission()
Licensed to Christian Cederquist <chrisman@kaus.dk>

251Securing methods

private boolean hasProfanity(Spittle spittle) {
...
return false;

}
}

SpittlePermissionEvaluator implements Spring Security’s PermissionEvaluator
interface, which demands that two different hasPermission() methods be imple-
mented. One of the hasPermission() methods takes an Object as the object to evalu-
ate against in the second parameter. The other hasPermission() is useful when only
the ID of the target object is available, and takes that ID as a Serializable in its sec-
ond parameter.

 For our purposes, we assume that we’ll always have the Spittle object to evaluate
permissions against, so the other method simply throws UnsupportedOperation-
Exception.

 As for the other hasPermission() method, it checks to see that the object being
evaluated is a Spittle and that we’re checking for delete permission. If so, then it
compares the Spitter’s username against the authenticated user’s name. It also
checks whether the Spittle contains profanity by passing it into the hasProfanity()
method.6

 With the permission evaluator ready, you need to register it with Spring Security
for it to back the hasPermission() operation in the expression given to @PostFilter.
To do that, you’ll need to create an expression handler bean and register it with
<global-method-security>.

 For the expression evaluator, you’ll create a bean of type DefaultMethodSecurity-
ExpressionHandler and inject its permissionEvaluator property with an instance of
our SpittlePermissionEvaluator:

<beans:bean id="expressionHandler" class=
"org.springframework.security.access.expression.method.
 ➥DefaultMethodSecurityExpressionHandler">

<beans:property name="permissionEvaluator">
<beans:bean class=

"com.habuma.spitter.security.SpittlePermissionEvaluator" />
</beans:property>

</beans:bean>

Then we can configure that expressionHandler bean with <global-method-

security> like this:

<global-method-security pre-post-annotations="enabled">
<expression-handler ref="expressionHandler"/>

</global-method-security>

Before, we configured a <global-method-security> without specifying an expression
handler. But here we have replaced the default expression handler with one that
knows about our permission evaluator.
6 I’ve conveniently left the implementation of hasProfanity() as an exercise for the reader.

Licensed to Christian Cederquist <chrisman@kaus.dk>

252 CHAPTER 9 Securing Spring

9.5.4 Declaring method-level security pointcuts

Method-level security constraints often vary from method to method. Annotating each
method with the constraints that best serve that method makes a lot of sense. But
sometimes it may make sense to apply the same authorization checks to several meth-
ods—cross-cutting authorization, so to speak.

 To restrict access to multiple methods, we can use the <protect-pointcut> ele-
ment as a child of the <global-method-security> element. For example:

<global-method-security>
<protect-pointcut access="ROLE_SPITTER"

expression=
"execution(@com.habuma.spitter.Sensitive * *.*(String))"/>

</global-method-security>

The expression attribute is given an AspectJ pointcut expression. In this case, it iden-
tifies any methods that are annotated with a custom @Sensitive annotation. Mean-
while, the access attribute indicates which authorities the authenticated user must
have to access the methods that are identified by the expression attribute.

9.6 Summary
Security is a crucial aspect of many applications. Spring Security provides a mecha-
nism for securing your application that’s simple, flexible, and powerful.

 Using a series of servlet filters, Spring Security can control access to web resources,
including Spring MVC controllers. And by employing aspects, you can also secure
method invocations with Spring Security. But thanks to Spring Security’s configura-
tion namespace, you don’t need to deal with the filters or aspects directly. Security can
be declared concisely.

 When it comes to authenticating users, Spring Security offers several options. We
saw how to configure authentication against an in-memory user repository, a relational-
database, and LDAP directory servers.

 Next, we’ll look at ways to integrate Spring applications with other applications.
Starting in the next chapter, we’ll look at how Spring supports several remoting
options including RMI and web services.
Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:execution(@com.habuma.spitter.Sensitive

Part 3

Integrating Spring

 In parts 1 and 2, you learned the basics of working with Spring and the essen-
tials of application development using Spring’s persistence and transaction sup-
port and web framework. In part 3, you’ll learn how to take your application
further by integrating it with other applications and enterprise services.

 In chapter 10, “Working with remote services,” you’ll learn how to expose
your application objects as remote services. You’ll also learn how to transpar-
ently access remote services as though they’re any other object in your applica-
tion. We’ll explore remoting technologies including RMI, Hessian/Burlap,
Spring’s own HTTP invoker, and web services with JAX-RPC and JAX-WS.

 In contrast to RPC-style remote services presented in chapter 10, chapter 11
explores building resource-oriented REST integration with Spring MVC.

 Chapter 12, “Messaging in Spring,” explores a different approach to applica-
tion integration by showing how Spring can be used with JMS to asynchronously
send and receive messages between applications.

 Management and monitoring of Spring beans is the subject of chapter 13,
“Managing Spring beans with JMX.” In this chapter, you’ll learn how Spring can
automatically expose beans configured in Spring as JMX MBeans.

 Wrapping up the book, chapter 14, “Odds and ends,” covers a few topics that
were important enough to discuss, but too small to warrant their own chapter. In
this chapter you’ll learn how to externalize configuration, wire JNDI resources as
Spring beans, send email, schedules tasks, and declare methods to run asynchro-
nously as background jobs.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Licensed to Christian Cederquist <chrisman@kaus.dk>

Working with
remote services
Imagine for a moment that you’re stranded on a deserted island. This may sound
like a dream come true. After all, who wouldn’t want to get some solitude on a
beach, blissfully ignorant of the goings-on of the outside world?

 But on a deserted island, it’s not pina coladas and sunbathing all the time. Even
if you enjoy the peaceful seclusion, it won’t be long before you’ll get hungry, bored,
and lonely. You can only live on coconuts and spear-caught fish for so long. You’ll
eventually need food, fresh clothing, and other supplies. And if you don’t get in
contact with another human soon, you may end up talking to a volleyball!

 Many applications that you’ll develop are like island castaways. On the surface
they might seem self-sufficient, but in reality, they probably collaborate with other
systems, both within your organization and externally.

This chapter covers
 Accessing and exposing RMI services

 Using Hessian and Burlap services

 Working with Spring’s HTTP invoker

 Using Spring with web services
255

Licensed to Christian Cederquist <chrisman@kaus.dk>

256 CHAPTER 10 Working with remote services

 For example, consider a procurement system that needs to communicate with a
vendor’s supply chain system. Maybe your company’s human resources system needs
to integrate with the payroll system. Or the payroll system may need to communicate
with an external system that prints and mails paychecks. No matter the circumstance,
your application will need to communicate with other systems to access services
remotely.

 Several remoting technologies are available to you, as a Java developer, including

 Remote Method Invocation (RMI)
 Caucho’s Hessian and Burlap
 Spring’s own HTTP-based remoting
 Web services with JAX-RPC and JAX-WS

Regardless of which remoting technology you choose, Spring provides broad support
for accessing and creating remote services with several different technologies. In this
chapter, you’ll learn how Spring both simplifies and complements these remoting ser-
vices. But first, let’s set the stage for this chapter with an overview of how remoting
works in Spring.

10.1 An overview of Spring remoting
Remoting is a conversation between a client application and a service. On the client
side, some functionality is required that isn’t within the scope of the application. So
the application reaches out to another system that can provide the functionality. The
remote application exposes the functionality through a remote service.

 Suppose that we’d like to make some of the Spitter application’s functionality avail-
able as remote services for other applications to use. Perhaps in addition to the exist-
ing browser-based user interface, we’d like to make a desktop or mobile front end for
Spitter, as illustrated in figure 10.1. To support that, we’ll need to expose the basic
functions of the SpitterService interface as a remote service.

The conversation between the other applications and Spitter begins with a remote
procedure call (RPC) from the client applications. On the surface, an RPC is similar to a
call to a method on a local object. Both are synchronous operations, blocking execu-
tion in the calling code until the called procedure is complete.

 The difference is a matter of proximity, with an analogy to human communication.
If you’re at the proverbial watercooler at work discussing the outcome of the week-
end’s football game, you’re conducting a local conversation—the conversation takes
place between two people in the same room. Likewise, a local method call is one where
execution flow is exchanged between two blocks of code within the same application.

Third-party client

get spittles

Spitter

Client
object

Spitter
service

Figure 10.1 A third-party client can
interact with the Spitter application by
making remote calls to a service

exposed by Spitter.

Licensed to Christian Cederquist <chrisman@kaus.dk>

257An overview of Spring remoting

On the other hand, if you were to pick up the phone to call a client in another city,
your conversation would be conducted remotely over the telephone network. Simi-
larly, RPC is when execution flow is handed off from one application to another appli-
cation, theoretically on a different machine in a remote location over the network.

 Spring supports remoting for several different RPC models, including Remote
Method Invocation (RMI), Caucho’s Hessian and Burlap, and Spring’s own HTTP
invoker. Table 10.1 outlines each of these models and briefly discusses their usefulness
in various situations.

Regardless of which remoting model you choose, you’ll find that a common theme
runs through Spring’s support for each model. This means that once you understand
how to configure Spring to work with one of the models, you’ll have a modest learn-
ing curve if you decide to use a different model.

 In all models, services can be configured into your application as Spring-managed
beans. This is accomplished using a proxy factory bean that enables you to wire
remote services into properties of your other beans as if they were local objects.
Figure 10.2 illustrates how this works.

 The client makes calls to the proxy as if the proxy were providing the service func-
tionality. The proxy communicates with the remote service on behalf of the client. It
handles the details of connecting and making remote calls to the remote service.

Table 10.1 Spring supports RPC via several remoting technologies.

RPC model Useful when...

Remote Method Invocation (RMI) Accessing/exposing Java-based services when network con-
straints such as firewalls aren’t a factor

Hessian or Burlap Accessing/exposing Java-based services over HTTP when net-
work constraints are a factor

HTTP invoker Accessing/exposing Spring-based services when network con-
straints are a factor and you desire Java serialization over XML
or proprietary serialization

JAX-RPC and JAX-WS Accessing/exposing platform-neutral, SOAP-based web services

Figure 10.2 In Spring, remote services are
proxied so that they can be wired into client

code as if they were any other Spring bean.

Licensed to Christian Cederquist <chrisman@kaus.dk>

258 CHAPTER 10 Working with remote services

What’s more, if the call to the remote service results in a java.rmi.RemoteException,
the proxy handles that exception and rethrows it as an unchecked RemoteAccess-
Exception. Remote exceptions usually signal problems such as network or configura-
tion issues that can’t be gracefully recovered from. Since a client can usually do little
to gracefully recover from a remote exception, rethrowing a RemoteAccessException
makes it optional for the client to handle the exception.

 On the service side, you’re able to expose the functionality of any Spring-managed
bean as a remote service using any of the models listed in table 10.1. Figure 10.3 illus-
trates how remote exporters expose bean methods as remote services.

Whether you’ll be developing code that consumes remote services, implementing
those services, or both, working with remote services in Spring is purely a matter of con-
figuration. You won’t have to write any Java code to support remoting. Your service
beans don’t have to be aware that they’re involved in an RPC (although any beans passed
to or returned from remote calls may need to implement java.io.Serializable).

 Let’s start our exploration of Spring’s remoting support by looking at RMI, the
original remoting technology for Java.

10.2 Working with RMI
If you’ve been working in Java for any length of time, you’ve no doubt heard of (and
probably used) Remote Method Invocation (RMI). RMI—first introduced into the Java
platform in JDK 1.1—gives Java programmers a powerful way to communicate between
Java programs. Before RMI, the only remoting options available to Java programmers
were CORBA (which at the time required the purchase of a third-party Object Request
Broker, or ORB) or handwritten socket programming.

 But developing and accessing RMI services is tedious, involving several steps, both
programmatic and manual. Spring simplifies the RMI model by providing a proxy fac-
tory bean that enables you to wire RMI services into your Spring application is if they
were local JavaBeans. Spring also provides a remote exporter that makes short work of
converting your Spring-managed beans into RMI services.

 For the Spitter application, I’ll show you how to wire an RMI service into a client
application’s Spring application context. But first, let’s see how to use the RMI

Service interface

Service implementation

bean
Remote exporter Client

Remote
communication

Has a

Handles marshaling
and unmarshaling of
remote method calls

Figure 10.3 Spring-managed beans
can be exported as remote services
using remote exporters.
exporter to publish the SpitterService implementation as an RMI service.

Licensed to Christian Cederquist <chrisman@kaus.dk>

259Working with RMI

10.2.1 Exporting an RMI service

If you’ve ever created an RMI service before, you know that it involves the following
steps:

1 Write the service implementation class with methods that throw java.rmi
.RemoteException.

2 Create the service interface to extend java.rmi.Remote.
3 Run the RMI compiler (rmic) to produce client stub and server skeleton classes.
4 Start an RMI registry to host the services.
5 Register the service in the RMI registry.

Wow! That’s a lot of work just to publish a simple RMI service. What’s perhaps worse
than all the steps required, you may have noticed that RemoteExceptions and
MalformedURLExceptions are thrown around a lot. These exceptions usually indicate
a fatal error that can’t be recovered from in a catch block, but you’re still expected to
write boilerplate code that catches and handles those exceptions—even if there’s not
much you can do to fix them.

 Clearly a lot of code and manual work is involved to publish an RMI service. Is
there anything Spring can do to make this situation less knotty?

CONFIGURING AN RMI SERVICE IN SPRING

Fortunately, Spring provides an easier way to publish RMI services. Instead of writing
RMI-specific classes with methods that throw RemoteException, you simply write a
POJO that performs the functionality of your service. Spring handles the rest.

 The RMI service that we’ll create exposes the methods from the SpitterService
interface. As a reminder, the following shows what that interface looks like.

package com.habuma.spitter.service;

import java.util.List;

import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.domain.Spittle;

public interface SpitterService {
List<Spittle> getRecentSpittles(int count);
void saveSpittle(Spittle spittle);

void saveSpitter(Spitter spitter);
Spitter getSpitter(long id);
void startFollowing(Spitter follower, Spitter followee);

List<Spittle> getSpittlesForSpitter(Spitter spitter);
List<Spittle> getSpittlesForSpitter(String username);
Spitter getSpitter(String username);

Spittle getSpittleById(long id);
void deleteSpittle(long id);

List<Spitter> getAllSpitters();

Listing 10.1 SpitterService defines the service layer of the Spitter application.
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

260 CHAPTER 10 Working with remote services

If we were using traditional RMI to expose this service, all of those methods in
SpitterService and in SpitterServiceImpl would need to throw java.rmi.Remote-
Exception. But we’re going to turn it into an RMI service using Spring’s RmiService-
Exporter, so the existing implementations will do fine.

 RmiServiceExporter exports any Spring-managed bean as an RMI service. As
depicted in figure 10.4, RmiServiceExporter works by wrapping the bean in an
adapter class. The adapter class is then bound to the RMI registry and proxies requests
to the service class—SpitterServiceImpl in this case.

 The simplest way to use RmiServiceExporter to expose SpitterServiceImpl as an
RMI service is to configure it in Spring with the following XML:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter"
 p:service-ref="spitterService"
 p:serviceName="SpitterService"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Here the spitterService bean is wired into the service property to indicate that the
RmiServiceExporter is to export the bean as an RMI service. The serviceName prop-
erty names the RMI service. And the serviceInterface property specifies the inter-
face that the service implements.

 By default RmiServiceExporter attempts to bind to an RMI registry on port 1099
of the local machine. If no RMI registry is found at that port, RmiServiceExporter will
start one. If you’d rather bind to an RMI registry at a different port or host, you can
specify so with the registryPort and registryHost properties. For example, the fol-
lowing RmiServiceExporter will attempt to bind to an RMI registry on port 1199 on
the host rmi.spitter.com:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter"
 p:service-ref="spitterService"
 p:serviceName="SpitterService"
 p:serviceInterface="com.habuma.spitter.service.SpitterService"
 p:registryHost="rmi.spitter.com"
 p:registryPort="1199"/>

That’s all you need to do to have Spring turn a bean into an RMI service. Now that the
Spitter service has been exposed as an RMI service, we may create alternative user
interfaces or invite third parties to create new clients for Spitter that use the RMI ser-
vice. The developers of those clients will have an easy time connecting to the Spitter

Figure 10.4 RmiServiceExporter turns
POJOs into RMI services by wrapping them in
a service adapter and binding the service

adapter to the RMI registry.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:p:registryHost="rmi.spitter.com
http:rmi.spitter.com

261Working with RMI

RMI service if they’re using Spring. Let’s switch gears and see how to write a client of
the Spitter RMI service.

10.2.2 Wiring an RMI service

Traditionally, RMI clients must use the RMI API’s Naming class to look up a service from
the RMI registry. For example, the following snippet of code might be used to retrieve
the RMI Spitter service:

try {
String serviceUrl = "rmi:/spitter/SpitterService";
SpitterService spitterService =

(SpitterService) Naming.lookup(serviceUrl);
...

}
catch (RemoteException e) { ... }
catch (NotBoundException e) { ... }
catch (MalformedURLException e) { ... }

Though this snippet of code would certainly retrieve a reference to the RMI spitter ser-
vice, it presents two problems:

 Conventional RMI lookups could result in any one of three checked exceptions
(RemoteException, NotBoundException, and MalformedURLException) that
must be caught or rethrown.

 Any code that needs the spitter service is responsible for retrieving the service
itself. That’s plumbing code and is probably not directly cohesive with the cli-
ent’s functionality.

The exceptions thrown in the course of an RMI lookup are the kinds that typically sig-
nal a fatal and unrecoverable condition in the application. MalformedURLException,
for instance, indicates that the address given for the service isn’t valid. To recover
from this exception, the application will at a minimum need to be reconfigured and
may have to be recompiled. No try/catch block will be able to recover gracefully, so
why should your code be forced to catch and handle it?

 But perhaps more sinister is the fact that this code is in direct opposition to the
principles of dependency injection. Because the client code is responsible for looking
up the Spitter service and that the service is an RMI service, there’s no opportunity to
provide a different implementation of SpitterService from some other source. Ide-
ally, you should be able to inject a SpitterService object into any bean that needs
one instead of having the bean look up the service itself. Using DI, any client of
SpitterService can be ignorant of where that service comes from.

 Spring’s RmiProxyFactoryBean is a factory bean that creates a proxy to an RMI ser-
vice. Using RmiProxyFactoryBean to reference an RMI SpitterService is as simple as
adding the following <bean> to the client’s Spring configuration file:

<bean id="spitterService"
class="org.springframework.remoting.rmi.RmiProxyFactoryBean"

 p:serviceUrl="rmi://localhost/SpitterService"

 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Licensed to Christian Cederquist <chrisman@kaus.dk>

262 CHAPTER 10 Working with remote services

The URL of the service is set through RmiProxyFactoryBean’s serviceUrl property.
Here, the service is named SpitterService and is hosted on the local machine.
Meanwhile, the interface that the service provides is specified with the service-
Interface property. The interaction between the client and the RMI proxy is illus-
trated in figure 10.5.

 Now that we’ve declared the RMI service as a Spring-managed bean, we can wire it
as a dependency into another bean just as you would a regular non-remote bean. For
example, suppose the client needs to use the Spitter service to retrieve a list of
Spittles for a given user. You might use @Autowired to wire the service proxy into
the client:

@Autowired
SpitterService spitterService;

Then you can invoke methods on it as if it were a local bean:

public List<Spittle> getSpittles(String userName) {
Spitter spitter = spitterService.getSpitter(userName);
return spitterService.getSpittlesForSpitter(spitter);

}

What’s great about accessing an RMI service in this way is that the client code doesn’t
even know that it’s dealing with an RMI service. It’s given a SpitterService object via
injection, without any concern for where it comes from.

 Furthermore, the proxy catches any RemoteExceptions that may be thrown by
the service and rethrows them as unchecked exceptions that you may safely ignore.
This makes it possible to easily swap out the remote service bean with another imple-
mentation of the service—perhaps a different remote service or maybe a mock
implementation used when unit testing the client code.

 Even though the client code isn’t aware that the SpitterService that it was given
is a remote service, you may want to take care designing the service’s interface. Note

RmiProxy
FactoryBean

produces

Client
Method call

JRMP
message

JRMP
message Spitter

service
RMI

proxy

Sp
itt

er
Se

rv
ic

e

Figure 10.5 RmiProxyFactoryBean produces a proxy object that talks to remote RMI
services on behalf of the client. The client talks to the proxy through the service’s interface

as if the remote service were just a local POJO.

Licensed to Christian Cederquist <chrisman@kaus.dk>

263Exposing remote services with Hessian and Burlap

that the client had to make two calls to the service: one to look up the Spitter by
their username and another to retrieve the list of Spittle objects. That’s two remote
calls that are affected by network latency and will impact the performance of the cli-
ent. Knowing that this is how the service will be used, it may be worthwhile to revisit
the service’s interface to consolidate those two calls into a single method. But for now
we’ll accept the service as is.

 RMI is an excellent way to communicate with remote services, but it has some limi-
tations. First, RMI has difficulty working across firewalls. That’s because RMI uses arbi-
trary ports for communication—something that firewalls typically won’t allow. In an
intranet environment, this usually isn’t a concern. But if you’re working on the “evil
internet,” you’ll probably run into trouble with RMI. Even through RMI has support
for tunneling over HTTP (which is usually allowed by firewalls), setting up RMI tunnel-
ing can be tricky.

 Another thing to consider is that RMI is Java-based. That means that both the client
and the service must be written in Java. And since RMI uses Java serialization, the types
of the objects being sent across the network must have the exact same version on both
sides of the call. These may or may not be issues for your application, but bear them in
mind when choosing RMI for remoting.

 Caucho Technology (the same people behind the Resin application server) has
developed a remoting solution that addresses the limitations of RMI. Actually, they’ve
come up with two solutions: Hessian and Burlap. Let’s see how to use Hessian and
Burlap to work with remote services in Spring.

10.3 Exposing remote services with Hessian and Burlap
Hessian and Burlap are two solutions provided by Caucho Technology1 that enable
lightweight remote services over HTTP. They each aim to simplify web services by
keeping both their API and their communication protocols as simple as possible.

 You may be wondering why Caucho has two solutions to the same problem. Hes-
sian and Burlap are two sides of the same coin, but each serves slightly different pur-
poses. Hessian, like RMI, uses binary messages to communicate between client and
service. But unlike other binary remoting technologies (such as RMI), the binary mes-
sage is portable to languages other than Java, including PHP, Python, C++, and C#.

 Burlap is an XML-based remoting technology, which automatically makes it porta-
ble to any language that can parse XML. And because it’s XML, it’s more easily human-
readable than Hessian’s binary format. Unlike other XML-based remoting technolo-
gies (such as SOAP or XML-RPC), Burlap’s message structure is as simple as possible
and doesn’t require an external definition language (such as WSDL or IDL).

 You may be wondering how to choose between Hessian and Burlap. For the most
part, they’re identical. The only difference is that Hessian messages are binary and
Burlap messages are XML. Because Hessian messages are binary, they’re more
1 http://www.caucho.com

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.caucho.com

264 CHAPTER 10 Working with remote services

bandwidth friendly. If human readability is important to you (for debugging pur-
poses) or if your application will be communicating with a language for which there’s
no Hessian implementation, Burlap’s XML messages may be preferable.

 To demonstrate Hessian and Burlap services in Spring, let’s revisit the Spitter ser-
vice example that we addressed with RMI in the previous section. But this time we’ll
look at how to solve the problem using Hessian and Burlap as the remoting models.

10.3.1 Exposing bean functionality with Hessian/Burlap

As before, suppose that we want to expose the functionality of the SpitterService-
Impl class as a service—a Hessian service this time around. Even without Spring, this
would be fairly trivial. You’d write a service class that extends com.caucho.hessian
.server.HessianServlet and make sure that all of the service methods are public
(all public methods are considered service methods to Hessian).

 Because Hessian services are already easy to implement, Spring doesn’t do much
to simplify the Hessian model any further. But when used with Spring, a Hessian ser-
vice can take full advantage of the Spring Framework in ways that a pure Hessian
service can’t. This includes using Spring AOP to advise a Hessian service with system-
wide services such as declarative transactions.

EXPORTING A HESSIAN SERVICE

Exporting a Hessian service in Spring is remarkably similar to implementing an RMI
service in Spring. To expose the Spitter service bean as an RMI service, we had to con-
figure an RmiServiceExporter bean in the Spring configuration file. In a similar way,
to expose the Spitter service as a Hessian service, we’ll need to configure another
exporter bean. This time it’ll be a HessianServiceExporter.

 HessianServiceExporter performs the same function for a Hessian service as
RmiServiceExporter does for an RMI service: it exposes the public methods of a POJO
as methods of a Hessian service. But, as shown in figure 10.6, how it pulls off this feat
is different from how RmiServiceExporter exports POJOs as RMI services.

 HessianServiceExporter is a Spring MVC controller (more on that in a moment)
that receives Hessian requests and translates them into method calls on the exported
POJO.

Dispatcher
servlet

HessianService
Exporterdispatches toRequest

SpitterServiceImpl

Figure 10.6 HessianService-
Exporter is a Spring MVC
controller that exports a POJO as a
Hessian service by receiving
Hessian requests and translating
them into calls to the POJO.
Licensed to Christian Cederquist <chrisman@kaus.dk>

265Exposing remote services with Hessian and Burlap

The following declaration of HessianServiceExporter in Spring exports the spit-
terService bean as a Hessian service:

<bean id="hessianSpitterService"
class="org.springframework.remoting.caucho.HessianServiceExporter"

 p:service-ref="spitterService"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Just as with RmiServiceExporter, the service property is wired with a reference to
the bean that implements the service. Here, that’s a reference to the spitterService
bean. The serviceInterface is set to indicate that SpitterService is the interface
that the service implements.

 Unlike RmiServiceExporter, we don’t need to get a serviceName property. With
RMI, the serviceName property is used to register a service in the RMI registry. Hessian
doesn’t have a registry and, therefore, there’s no need to name a Hessian service.

CONFIGURING THE HESSIAN CONTROLLER

Another major difference between RmiServiceExporter and HessianService-

Exporter is that because Hessian is HTTP-based, HessianServiceExporter is imple-
mented as a Spring MVC Controller. This means that in order to use exported Hessian
services, you’ll need to perform two additional configuration steps:

 Configure a Spring DispatcherServlet in web.xml and deploy your applica-
tion as a web application.

 Configure a URL handler in your Spring configuration file to dispatch Hessian
service URLs to the appropriate Hessian service bean.

We saw how to configure Spring’s DispatcherServlet and URL handlers in chapter 7.
So these steps should be somewhat familiar by now. First, you’ll need a Dispatcher-
Servlet. Fortunately, you have one already configured in the Spitter application’s
web.xml file. But for the purposes of handling Hessian services, that Dispatcher-
Servlet will need a servlet mapping that catches *.service URLs:

<servlet-mapping>
<servlet-name>spitter</servlet-name>
<url-pattern>*.service</url-pattern>

</servlet-mapping>

Configured this way, any request whose URL ends with .service will be given to
DispatcherServlet, which will in turn hand off the request to the Controller that’s
mapped to the URL. Thus requests to /spitter.service will ultimately be handled by
the hessianSpitterService bean (which is just a proxy to SpitterServiceImpl).

 How do I know that the request will go to hessianSpitterService? Because we’re
also going to configure a URL mapping to have DispatcherServlet send it to hessian-
SpitterService. The following SimpleUrlHandlerMapping will make that happen:

<bean id="urlMapping" class=
"org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">

<value>

Licensed to Christian Cederquist <chrisman@kaus.dk>

266 CHAPTER 10 Working with remote services

/spitter.service=hessianSpitterService
</value>

</property>
</bean>

An alternative to Hessian’s binary protocol is Burlap’s XML-based protocol. Let’s see
how to export a service as a Burlap service.

EXPORTING A BURLAP SERVICE

BurlapServiceExorter is virtually identical to HessianServiceExporter in every way,
except that it uses an XML-based protocol instead of a binary protocol. The following
bean definition shows how to expose the Spitter service as a Burlap service using
BurlapServiceExporter:

<bean id="burlapSpitterService"
class="org.springframework.remoting.caucho.BurlapServiceExporter"

 p:service-ref="spitterService"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

As you can see, the only thing different between this bean and its Hessian counterpart
are the bean’s ID and its class. Configuring a Burlap service is otherwise the same as
configuring a Hessian service. This includes the need to set up a URL handler and a
DispatcherServlet.

 Now let’s look at the other side of the conversation and consume the service that
we published using Hessian (or Burlap).

10.3.2 Accessing Hessian/Burlap services

As you’ll recall from section 10.2.2, client code that consumed the Spitter service
using RmiProxyFactoryBean had no idea that the service was an RMI service. In fact, it
had no clue that it was a remote service at all. It only dealt with the SpitterService
interface—all of the RMI details were completely contained in the configuration of
the beans in Spring’s configuration file. The good news is that because of the client’s
ignorance of the service’s implementation, switching from an RMI client to a Hessian
client is extremely easy, requiring no changes to the client’s Java code.

 The bad news is that if you love writing Java code, this section may be a letdown.
That’s because the only difference between wiring the client side of an RMI-based ser-
vice and wiring the client side of a Hessian-based service is that you’ll use Spring’s
HessianProxyFactoryBean instead of RmiProxyFactoryBean. A Hessian-based spitter
service can be declared in the client code like this:

<bean id="spitterService"
class="org.springframework.remoting.caucho.HessianProxyFactoryBean"

 p:serviceUrl="http://localhost:8080/Spitter/spitter.service"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Just as with an RMI-based service, the serviceInterface property specifies the inter-
face that the service implements. And, as with RmiProxyFactoryBean, serviceUrl
indicates the URL of the service. Since Hessian is HTTP-based, it’s been set to an HTTP
Licensed to Christian Cederquist <chrisman@kaus.dk>

267Exposing remote services with Hessian and Burlap

URL here (determined in part by the URL mapping we defined earlier). Figure 10.7
shows the interaction between a client and the proxy produced by HessianProxy-
FactoryBean.

 As it turns out, wiring a Burlap service into the client is equally uninteresting. The
only difference is that you’ll use BurlapProxyFactoryBean instead of HessianProxy-
FactoryBean:

<bean id="spitterService"
class="org.springframework.remoting.caucho.BurlapProxyFactoryBean"

 p:serviceUrl="http://localhost:8080/Spitter/spitter.service"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Although I’ve made light of how uninteresting the configuration differences are
among RMI, Hessian, and Burlap, this tedium is a benefit. It demonstrates that you
can switch effortlessly between the various remoting technologies supported by Spring
without having to learn a completely new model. Once you’ve configured a reference
to an RMI service, it’s short work to reconfigure it as a Hessian or Burlap service.

 Because both Hessian and Burlap are based on HTTP, they don’t suffer from the
same firewall issues as RMI. But RMI has both Hessian and Burlap beat when it comes
to serializing objects that are sent in RPC messages. Whereas Hessian and Burlap both
use a proprietary serialization mechanism, RMI uses Java’s own serialization mecha-
nism. If your data model is complex, the Hessian/Burlap serialization model may not
be sufficient.

 There is a best-of-both-worlds solution. Let’s look at Spring’s HTTP invoker, which
offers RPC over HTTP (like Hessian/Burlap) while at the same time using Java serial-
ization of objects (like RMI).

Hessian/Burlap
FactoryBean

produces

Client
Method call

Sp
itt

er
Se

rv
ic

e

Hessian/Burlap
proxy

HTTP HTTP
Network Spitter

service

Figure 10.7 HessianProxyFactoryBean and BurlapProxyFactoryBean produce
proxy objects that talk to a remote service over HTTP (Hessian in binary, Burlap in XML).
Licensed to Christian Cederquist <chrisman@kaus.dk>

268 CHAPTER 10 Working with remote services

10.4 Using Spring’s HttpInvoker
The Spring team recognized a void between RMI services and HTTP-based services
such as Hessian and Burlap. On one side, RMI uses Java’s standard object serialization
but is difficult to use across firewalls. On the other side, Hessian and Burlap work well
across firewalls but use a proprietary object serialization mechanism.

 Thus Spring’s HTTP invoker was born. The HTTP invoker is a new remoting model
created as part of the Spring Framework to perform remoting across HTTP (to make
the firewalls happy) and using Java’s serialization (to make programmers happy).

 Working with HTTP invoker-based services is similar to working with
Hessian/Burlap-based services. To get started with the HTTP invoker, let’s take another
look at the Spitter service—this time implemented as an HTTP invoker service.

10.4.1 Exposing beans as HTTP services

To export a bean as an RMI service, we used RmiServiceExporter. To export it as a
Hessian service, we used HessianServiceExporter. And to export it as a Burlap ser-
vice, we used BurlapServiceExporter. Continuing this monotony over to Spring’s
HTTP invoker, it shouldn’t surprise you that to export an HTTP invoker service, we’ll
need to use HttpInvokerServiceExporter.

 To export the Spitter service as an HTTP invoker–based service, you need to config-
ure an HttpInvokerServiceExporter bean like this:

<bean class=
"org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter"

 p:service-ref="spitterService"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Feeling a sense of déjà vu? You may have a hard time spotting the difference between
this bean declaration and the ones in section 10.3.2. The only material difference is
the class name: HttpInvokerServiceExporter. Otherwise, this exporter isn’t much
different from the other remote service exporters.

 As illustrated in figure 10.8, HttpInvokerServiceExporter works much like
HessianServiceExporter and BurlapServiceExporter. It’s a Spring MVC controller
that receives requests from a client through DispatcherServlet and translates those
requests into method calls on the service implementation POJO.

dispatches to

SpitterServiceImpl

HttpInvoker
ExporterRequest

Dispatcher
servlet

Figure 10.8 HttpInvokerServiceE
xporter works much like its Hessian
and Burlap cousins, receiving requests
from a Spring MVC Dispatcher-
Servlet and translating them into
method calls on a Spring-managed bean.
Licensed to Christian Cederquist <chrisman@kaus.dk>

269Using Spring’s HttpInvoker

Because HttpInvokerServiceExporter is a Spring MVC controller, you’ll need to set
up a URL handler to map an HTTP URL to the service, just like with the Hessian and
Burlap exporters:

<bean id="urlMapping" class=
"org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">
<value>

/spitter.service=httpInvokerSpitterService
</value>

</property>
</bean>

Also, as before, you’ll need to make sure you have a DispatcherServlet declared in
web.xml with the following <servlet-mapping>:

<servlet-mapping>
<servlet-name>spitter</servlet-name>
<url-pattern>*.service</url-pattern>

</servlet-mapping>

Configured this way, the Spitter service will be available at /spitter.service, the same
URL you used to expose the service through Hessian and Burlap.

 We’ve already seen how to consume services made remote through RMI, Hessian,
and Burlap. Now let’s rework the Spitter client to use the service that you just exposed
with HTTP invoker.

10.4.2 Accessing services via HTTP

At the risk of sounding like a broken record, I must tell you that consuming an HTTP
invoker-based service is much like what we’ve already seen with the other remote ser-
vice proxies. It’s virtually identical. As you can see from figure 10.9, HttpInvoker-
ProxyFactoryBean fills the same hole as the other remote service proxy factory beans
that we’ve seen in this chapter.

produces

Method call HTTPHTTP
Network

HttpInvoker
proxy

Sp
itt

er
Se

rv
ic

e

M
Client Spitter

service

HttpInvokerProxy
FactoryBean

Figure 10.9 HttpInvokerProxyFactoryBean is a proxy factory bean that produces a
proxy for remoting with a Spring-specific HTTP-based protocol.
Licensed to Christian Cederquist <chrisman@kaus.dk>

270 CHAPTER 10 Working with remote services

To wire the HTTP invoker–based service into our client’s Spring application context, we
must configure a bean that proxies it using HttpInvokerProxyFactoryBean as follows:

<bean id="spitterService" class=
"org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean"

 p:serviceUrl="http://localhost:8080/Spitter/spitter.service"
 p:serviceInterface="com.habuma.spitter.service.SpitterService" />

Comparing this bean definition to those in sections 10.2.2 and 10.3.2, you’ll find that
little has changed. The serviceInterface property is still used to indicate the inter-
face implemented by the Spitter service. And the serviceUrl property is still used to
indicate the location of the remote service. Because HTTP invoker is HTTP-based like
Hessian and Burlap, the serviceUrl can contain the same URL as with the Hessian
and Burlap versions of the bean.

 Don’t you love the symmetry?
 Spring’s HTTP invoker presents a best-of-both-worlds remoting solution combining

the simplicity of HTTP communication with Java’s built-in object serialization. This
makes HTTP invoker services an appealing alternative to either RMI or Hessian/Burlap.

 HttpInvoker has one significant limitation that you should keep in mind: it’s a
remoting solution offered by the Spring Framework only. This means that both the
client and the service must be Spring-enabled applications. This also implies, at least
for now, that both the client and the service must be Java-based. And because Java
serialization is being used, both sides must have the same version of the classes
(much like RMI).

 RMI, Hessian, Burlap, and HTTP invoker are great remoting options. But when it
comes to ubiquitous remoting, none hold a candle to web services. Next up, we’ll look
at how Spring supports remoting through SOAP-based web services.

10.5 Publishing and consuming web services
One of the most hyped TLAs (three-letter acronyms) in recent years is SOA (which
stands for service-oriented architecture). SOA means many things to different people. But
at the center of SOA is the idea that applications can and should be designed to lean
on a common set of core services instead of reimplementing the same functionality
for each application.

 For example, a financial institution may have several applications, many of which
need access to borrower account information. Rather than build account access logic
into each application (much of which would be duplicated), the applications could all
rely on a common service to retrieve the account information.

 Java and web services have a long history together and several options are available
for working with web services in Java. Many of those options integrate with Spring in
some way. Though it’d be impossible for me to cover every Spring-enabled web service
framework and toolkit in this book, Spring itself comes with some capable support for
publishing and consuming SOAP web services using the Java API for XML Web Ser-
vices, or JAX-WS as it’s commonly known.
Licensed to Christian Cederquist <chrisman@kaus.dk>

271Publishing and consuming web services

In this section, we’ll revisit the Spitter service example one more time. This time, we’ll
expose and consume the Spitter service as a web service using Spring’s JAX-WS sup-
port. Let’s start by seeing what it takes to create a JAX-WS web service in Spring.

10.5.1 Creating Spring-enabled JAX-WS endpoints

Earlier in this chapter, we created remote services using Spring’s service exporters.
These service exporters magically turn Spring-configured POJOs into remote services.
We saw how to create RMI services using RmiServiceExporter, Hessian services using
HessianServiceExporter, Burlap services using BurlapServiceExporter, and HTTP
invoker services using HttpInvokerServiceExporter. Now you probably expect me to
show you how to create web services using a JAX-WS service exporter in this section.

 Spring does provide a JAX-WS service exporter, SimpleJaxWsServiceExporter, and
we’ll see it soon enough. But before we get there, you should know that it may not be
the best choice in all situations. You see, SimpleJaxWsServiceExporter requires that
the JAX-WS runtime support publishing of endpoints to a specified address.2 The JAX-
WS runtime that ships with Sun’s JDK 1.6 fits the bill, but other JAX-WS implementa-
tions, including the reference implementation of JAX-WS, may not.

 If you’ll be deploying to a JAX-WS runtime that doesn’t support publishing to a
specified address, then you’ll have write your JAX-WS endpoints in a more conven-
tional way. That means that the lifecycle of the endpoints will be managed by the JAX-

2 More specifically, this means that the JAX-WS provider must come with its own HTTP server that it can use to

What about JAX-RPC and XFire?
In previous editions of this book, I wrote about developing web services using XFire
(http://xfire.codehaus.org) and Spring’s support for JAX-RPC. Those were great top-
ics back then, but both are fading technologies.

JAX-RPC was supplanted by JAX-WS as the web service standard for Java. Spring fol-
lowed suit and has now deprecated its support for JAX-RPC in favor of the new JAX-
WS support. Fortunately, the JAX-WS support in Spring closely mirrors the JAX-RPC
support. Spring’s JaxWsPortProxyFactoryBean, for instance, works much like the
old JaxRpcPortProxyFactoryBean.

XFire was my favorite way of working with web services in Spring. But development of
XFire stopped with the 1.2.6 release. The Apache CXF (http://cxf.apache.org) project
is considered by many to be XFire 2; so if you liked XFire, then you should check out
Apache CXF. Apache CXF is far more ambitious than XFire and to cover it adequately
would be well outside of the scope of this book.

Since one of my objectives for this edition was to remain as current as possible, I
chose to leave JAX-RPC and XFire behind. If either of those topics interest you, I
encourage you to find a copy of Spring in Action, Second Edition. Both topics are cov-
ered there and little has changed with regard to JAX-RPC or XFire since that time.
build up the necessary infrastructure for publishing the service to a requested address.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:http://cxf.apache.org
http:http://xfire.codehaus.org

272 CHAPTER 10 Working with remote services

WS runtime and not by Spring. But that doesn’t mean that they can’t be wired with
beans from a Spring application context.

AUTOWIRING JAX-WS ENDPOINTS IN SPRING

The JAX-WS programming model involves using annotations to declare a class and its
methods as web service operations. A class that’s annotated with @WebService is con-
sidered a web service endpoint and its methods, annotated with @WebMethod, are the
operations.

 Just as with any other object in a sizable application, a JAX-WS endpoint will likely
depend on other objects to do its work. That means that JAX-WS endpoints could ben-
efit from dependency injection. But if the endpoint’s lifecycle is managed by the JAX-
WS runtime and not by Spring, it would seem to be impossible to wire Spring-
managed beans into a JAX-WS managed endpoint instance.

 The secret to wiring JAX-WS endpoints is to extend SpringBeanAutowiring-
Support. By extending SpringBeanAutowiringSupport, you can annotate an end-
point’s properties with @Autowired and its dependencies will be met.3 Spitter-
ServiceEndpoint shows how this works.

package com.habuma.spitter.remoting.jaxws;
import java.util.List;

import javax.jws.WebMethod;
import javax.jws.WebService;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.context.support.SpringBeanAutowiringSupport;

import com.habuma.spitter.domain.Spitter;
import com.habuma.spitter.domain.Spittle;
import com.habuma.spitter.service.SpitterService;

@WebService(serviceName="SpitterService")
public class SpitterServiceEndpoint

extends SpringBeanAutowiringSupport {

@Autowired
SpitterService spitterService;

@WebMethod
public void addSpittle(Spittle spittle) {

spitterService.saveSpittle(spittle);
}

@WebMethod
public void deleteSpittle(long spittleId) {

spitterService.deleteSpittle(spittleId);

3 Although we’re using SpringBeanAutowiringSupport to enable autowiring for JAX-WS endpoints, it’s use-
ful to enable autowiring support anywhere an object’s lifecycle is managed outside of Spring. The only
requirement is that the Spring application context and the non-Spring runtime reside in the same web

Listing 10.2 SpringBeanAutowiringSupport on JAX-WS endpoints

Enable
autowiring

Autowire
SpitterService

Delegate to
SpitterService
application.

Licensed to Christian Cederquist <chrisman@kaus.dk>

273Publishing and consuming web services

}

@WebMethod
public List<Spittle> getRecentSpittles(int spittleCount) {

return spitterService.getRecentSpittles(spittleCount);
}

@WebMethod
public List<Spittle> getSpittlesForSpitter(Spitter spitter) {

return spitterService.getSpittlesForSpitter(spitter);
}

}

We’ve annotated the spitterService property with @Autowired to indicate that it
should be automatically injected with a bean from the Spring application context.
From there, this endpoint delegates to the injected SpitterService to do the real
work.

EXPORTING STANDALONE JAX-WS ENDPOINTS

As I said, SpringBeanAutowiringSupport is useful when the object whose properties
are being injected doesn’t have its lifecycle managed by Spring. But under the right
circumstances, it’s possible to export a Spring-managed bean as a JAX-WS endpoint.

 Spring’s SimpleJaxWsServiceExporter works in a way similar to the other service
exporters that we saw earlier in this chapter, in that it publishes Spring-managed
beans as service endpoints in a JAX-WS runtime. Unlike those other service exporters,
SimpleJaxWsServiceExporter doesn’t need to be given a reference to the bean it’s
supposed to export. Instead, it publishes all beans that are annotated with JAX-WS
annotations as JAX-WS services.

 SimpleJaxWsServiceExporter can be configured using the following <bean>
declaration:

<bean class=
"org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter"/>

As you can see, SimpleJaxWsServiceExporter needs nothing else to do its job. When
it gets started, it’ll dig through the Spring application context looking for beans that
are annotated with @WebService. When it finds one, it’ll publish it as a JAX-WS end-
point with a base address of http://localhost:8080/.

 One such bean that it may find is SpitterServiceEndpoint.

package com.habuma.spitter.remoting.jaxws;
import java.util.List;

import javax.jws.WebMethod;
import javax.jws.WebService;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import com.habuma.spitter.domain.Spitter;

Listing 10.3 SimpleJaxWsServiceExporter turns beans into JAX-WS endpoints.

Delegate to
SpitterService
import com.habuma.spitter.domain.Spittle;

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080

274 CHAPTER 10 Working with remote services

import com.habuma.spitter.service.SpitterService;

@Component
@WebService(serviceName="SpitterService")
public class SpitterServiceEndpoint {

@Autowired
SpitterService spitterService;

@WebMethod
public void addSpittle(Spittle spittle) {

spitterService.saveSpittle(spittle);
}

@WebMethod
public void deleteSpittle(long spittleId) {

spitterService.deleteSpittle(spittleId);
}

@WebMethod
public List<Spittle> getRecentSpittles(int spittleCount) {

return spitterService.getRecentSpittles(spittleCount);
}

@WebMethod
public List<Spittle> getSpittlesForSpitter(Spitter spitter) {

return spitterService.getSpittlesForSpitter(spitter);
}

}

You’ll notice that this new implementation of SpitterServiceEndpoint no longer
extends SpringBeanAutowiringSupport. As a full-fledged Spring bean, it’ll qualify for
autowiring without extending any special support class.

 Since SimpleJaxWsServiceEndpoint’s base address defaults to http://
localhost:8080/ and since SpitterServiceEndpoint is annotated with @WebService
(serviceName="SpitterService"), the matchup of these two beans will result in a
web service at http://localhost:8080/SpitterService. But you’re in total control of the
service URL, so if you’d like, you can set the base address to something else. For exam-
ple, the following configuration of SimpleJaxWsServiceEndpoint publishes the same
service endpoint to http://localhost:8888/services/SpitterService.

<bean class=
"org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter"

 p:baseAddress="http://localhost:8888/services/"/>

As simple as SimpleJaxWsServiceEndpoint seems, you should be aware that it only
works with a JAX-WS runtime that supports publication of endpoints with an address.
That includes the JAX-WS runtime that comes with Sun’s 1.6 JDK. Other JAX-WS run-
times, such as the JAX-WS 2.1 reference implementation, don’t support this type of
endpoint publication and thus can’t be used with SimpleJaxWsServiceEndpoint.

10.5.2 Proxying JAX-WS services on the client side

Publishing web services with Spring turned out to be quite different from how we pub-

Autowire
SpitterService

Delegate to
SpitterService
lished services in RMI, Hessian, Burlap, and Http invoker. But as you’ll soon see,

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8888/services/SpitterService
http://localhost:8080/SpitterService

275Publishing and consuming web services

consuming web services with Spring involves client-side proxies in much the same way
that Spring-based clients consume those other remoting technologies.

 Using JaxWsPortProxyFactoryBean, we can wire the Spitter web service in Spring
as if it were any other bean. JaxWsPortProxyFactoryBean is a Spring FactoryBean that
produces a proxy that knows how to talk to a SOAP web service. The proxy itself is cre-
ated to implement the service’s interface (see figure 10.10). Consequently, Jax-
WsPortProxyFactoryBean makes it possible to wire and use a remote web service as if
it were just any other local POJO.

 We’ll configure JaxWsPortProxyFactoryBean to reference the Spitter service web
service like this:

<bean id="spitterService"
class="org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean"

 p:wsdlDocumentUrl="http://localhost:8080/services/SpitterService?wsdl"
 p:serviceName="spitterService"
 p:portName="spitterServiceHttpPort"
 p:serviceInterface="com.habuma.spitter.service.SpitterService"
 p:namespaceUri="http://spitter.com"/>

As you can see, several properties must be set for JaxWsPortProxyFactoryBean to
work. The wsdlDocumentUrl property identifies the location of the remote web ser-
vice’s definition file. JaxWsPortProxyFactoryBean will use the WSDL available at that
URL to construct a proxy to the service. The proxy that’s produced by JaxWsPort-
ProxyFactoryBean will implement the SpitterService interface, as specified by the
serviceInterface property.

 The values for the remaining three properties can usually be determined by look-
ing at the service’s WSDL. For illustration’s sake, suppose that the WSDL for the Spitter
service looked like this:

<wsdl:definitions targetNamespace="http://spitter.com">
...

produces

Client
Method call

SOAP
message

SOAP
message

Network Spitter
service

JAX-WS
proxy

Sp
itt

er
Se

rv
ic

e

JaxWsPortProxy
FactoryBean

Figure 10.10 JaxWsPortProxyFactoryBean produces proxies that talk to remote web
services. These proxies can then be wired into other beans as if they were local POJOs.
<wsdl:service name="spitterService">

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:targetNamespace="http://spitter.com
http:p:namespaceUri="http://spitter.com

276 CHAPTER 10 Working with remote services

<wsdl:port name="spitterServiceHttpPort"
binding="tns:spitterServiceHttpBinding">

...
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

Though not likely, it’s possible for multiple services and/or ports to be defined in the
service’s WSDL. For that reason, JaxWsPortProxyFactoryBean requires that we specify
the port and service names in the portName and serviceName properties. A quick
glance at the name attributes of the <wsdl:port> and <wsdl:service> elements in the
WSDL will help you figure out what these properties should be set to.

 Finally, the namespaceUri property specifies the namespace of the service. Among
other things, the namespace will help JaxWsPortProxyFactoryBean locate the service
definition in the WSDL. As with the port and service names, you can find the correct
value for this property by looking in the WSDL. It’s usually available in the
targetNamespace attribute of the <wsdl:definitions> element.

10.6 Summary
Working with remote services is usually a tedious chore. But Spring provides remoting
support that makes working with remote services as simple as working with any regu-
lar JavaBeans.

 On the client side, Spring provides proxy factory beans that enable you to config-
ure remote services in your Spring application. Regardless of whether you’re using
RMI, Hessian, Burlap, Spring’s own HTTP invoker, or web services for remoting, you
can wire remote services into your application as if they were POJOs. Spring even
catches any RemoteExceptions that are thrown and rethrows runtime RemoteAccess-
Exceptions in their place, freeing your code from having to deal with an exception
that it probably can’t recover from.

 Even though Spring hides many of the details of remote services, making them
appear as though they’re local JavaBeans, you should bear in mind the consequences
of remote services. Remote services, by their nature, are typically less efficient than
local services. You should consider this when writing code that accesses remote ser-
vices, limiting remote calls to avoid performance bottlenecks.

 In this chapter, you saw how Spring can be used to expose and consume services
based on some basic remoting technologies. Although these remoting options are
useful in distributing applications, this was just a taste of what’s involved in working
within a service-oriented architecture (SOA).

 We also looked at how to export beans as SOAP-based web services. Though this is
an easy way to develop web services, it may not be the best choice from an architec-
tural standpoint. In the next chapter, we’ll look at a different approach to building
distributed applications by exposing portions of the application as RESTful resources.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Giving Spring
some REST
Data is king.
 As developers, we’re often focused on building great software to solve business

problems. Data is just the raw materials that our software processes need to get
their job done. But if you were to ask most business people which is most valuable
to them, data or software, they’re likely to choose data. Data is the life’s blood of
many businesses. Software is often replaceable. But the data gathered over the
years can never be replaced.1

This chapter covers
 Writing controllers that serve REST resources

 Representing resources in XML, JSON, and other formats

 Writing REST clients

 Submitting RESTful forms

1 That’s not to say that software has no value. Most businesses would be severely handicapped without their
277

software. But they’d be dead without their data.

Licensed to Christian Cederquist <chrisman@kaus.dk>

278 CHAPTER 11 Giving Spring some REST

 Don’t you think it’s odd that, given the importance of data, the way we develop
software often treats data as an afterthought? Take the remote services from the previ-
ous chapter as an example. Those services were centered on actions and processes,
not information and resources.

 In recent years, Representational State Transfer (REST) has emerged as a popular
information-centric alternative to traditional SOAP-based web services. To help Spring
developers take advantage of the REST architectural model, Spring 3.0 came packed
with first-class support for working with REST.

 The good news is that Spring’s REST support builds upon Spring MVC, so we’ve
already covered much of what we’ll need for working with REST in Spring. In this
chapter, we’ll build upon what we already know about Spring MVC to develop control-
lers that handle requests for RESTful resources. We’ll also see what Spring has to offer
on the client side of a REST conversation.

 But before we get too carried away, let’s examine what working with REST is all
about.

11.1 Getting REST
I’ll wager that this isn’t the first time you’ve heard or read about REST. There’s been a
lot of talk about REST in recent years and you’ll find that it’s fashionable in software
development to speak ill of SOAP-based web services while promoting REST as an
alternative.

 Certainly, SOAP can be overkill for many applications and REST brings a simpler
alternative. The problem is that not everybody has a solid grasp of what REST really is.
As a result, a lot of misinformation is floating about. Before we can talk about how
Spring supports REST, we need to establish a common understanding of what REST is
all about.

11.1.1 The fundamentals of REST

A mistake that’s often made when approaching REST is to think of it as “web services
with URLs”—to think of REST as another remote procedure call (RPC) mechanism,
like SOAP, but invoked through plain HTTP URLs and without SOAP’s hefty XML
namespaces.

 On the contrary, REST has little to do with RPC. Whereas RPC is service-oriented
and focused on actions and verbs, REST is resource-oriented, emphasizing the things
and nouns that describe an application.

 Also, although URLs play a key role in REST, they’re only a part of the story.
 To understand what REST is all about, it helps to break down the acronym into its

constituent parts:

 Representational—REST resources can be represented in virtually any form,
including XML, JavaScript Object Notation (JSON), or even HTML—whatever
form best suits the consumer of those resources.
Licensed to Christian Cederquist <chrisman@kaus.dk>

279Writing resource-oriented controllers

 State—When working with REST, we’re more concerned with the state of a
resource than with the actions we can take against resources.

 Transfer—REST involves transferring resource data, in some representational
form, from one application to another.

Put more succinctly, REST is about transferring the state of resources—in whatever
form is most appropriate—from a server to a client (or vice versa).

 Given this view of REST, I try to avoid terms such as REST service, or RESTful web ser-
vice, or any similar term that incorrectly gives prominence to actions. Instead, I prefer
to emphasize the resource-oriented nature of REST and speak of RESTful resources.

11.1.2 How Spring supports REST

Spring has long had some of the ingredients needed for exposing REST resources. But
with Spring 3 came several enhancements to Spring MVC providing first-class REST
support. Now Spring supports development of REST resources in the following ways:

 Controllers can handle requests for all HTTP methods, including the four pri-
mary REST methods: GET, PUT, DELETE, and POST.

 The new @PathVariable annotation enables controllers to handle requests for
parameterized URLs (URLs that have variable input as part of their path).

 The <form:form> JSP tag from Spring’s form-binding JSP tag library, along with
the new HiddenHttpMethodFilter, make it possible to submit PUT and DELETE
requests from HTML forms, even in browsers that don’t support those HTTP
methods.

 Resources can be represented in a variety of ways using Spring’s view and view
resolvers, including new view implementations for rendering model data as
XML, JSON, Atom, and RSS.

 The representation best suited for the client can be chosen using the new
ContentNegotiatingViewResolver.

 View-based rendering can be bypassed altogether using the new @ResponseBody
annotation and various HttpMethodConverter implementations.

 Similarly, the new @RequestBody annotation, along with HttpMethodConverter
implementations, can convert inbound HTTP data into Java objects passed into
a controller’s handler methods.

 RestTemplate simplifies client-side consumption of REST resources.

Throughout this chapter we’re going to explore all of these features that make Spring
more RESTful and see how to both produce and consume REST resources. We’ll start
by looking at what goes into a resource-oriented Spring MVC controller.

11.2 Writing resource-oriented controllers
As we saw in chapter 7, Spring MVC’s model for writing controller classes is extremely
flexible. Almost any method with almost any signature can be annotated to handle a

web request. But a side effect of such flexibility is that Spring MVC allows you to

Licensed to Christian Cederquist <chrisman@kaus.dk>

280 CHAPTER 11 Giving Spring some REST

develop controllers that aren’t ideal in terms of RESTful resources. It’s too easy to
write RESTless controllers.

11.2.1 Dissecting a RESTless controller

To help understand what a RESTful controller looks like, it helps to first know what a
RESTless controller looks like. DisplaySpittleController is an example of a REST-
less controller.

package com.habuma.spitter.mvc.restless;

import javax.inject.Inject;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;

import com.habuma.spitter.service.SpitterService;

@Controller
@RequestMapping("/displaySpittle.htm")
public class DisplaySpittleController {

private final SpitterService spitterService;

@Inject
public DisplaySpittleController(SpitterService spitterService) {

this.spitterService = spitterService;
}

@RequestMapping(method=RequestMethod.GET)
public String showSpittle(@RequestParam("id") long id, Model model) {

model.addAttribute(spitterService.getSpittleById(id));
return "spittles/view";

}
}

The first thing to notice about the controller in listing 11.1 is its name. Sure, it’s just a
name. But it accurately describes what the controller does. The first word is Display—a
verb. This is indicative of the fact that this controller is action-oriented, not resource-
oriented.

 Take note of the @RequestMapping annotation at the class level. It says that this
controller will handle requests for /displaySpittle.htm. That seems to imply that this
controller is focused on the specific use case of displaying spittles (which is corrobo-
rated by the name of the class). What’s more, the extension implies that it’s only capa-
ble of displaying that list in HTML form.

 Nothing is terribly wrong with how DisplaySpittleController is written. But it
isn’t a RESTful controller. It’s action-oriented and focused on a specific use case: dis-
playing a Spittle object’s details in HTML form. Even the controller’s class name

Listing 11.1 DisplaySpittleController is a RESTless Spring MVC controller.

RESTless URL
mapping
agrees.

Licensed to Christian Cederquist <chrisman@kaus.dk>

281Writing resource-oriented controllers

 Now that you know what a RESTless controller looks like, let’s see what goes into
writing a RESTful controller. We’ll start by looking at how to handle requests for
resource-oriented URLs.

11.2.2 Handling RESTful URLs

URLs are one of the first things that most people think about when starting to work
with REST. After all, everything that’s done in REST is done through a URL. The funny
thing about many URLs is that they usually don’t do what a URL is supposed to do.

 URL is an acronym that stands for uniform resource locator. Given that name, it seems
that a URL is intended to locate a resource. What’s more, all URLs are also URIs, or
uniform resource identifiers. If that’s true, then we should expect that any given URL
would not only locate a resource, but should also serve to identify a resource.

 The fact that a URL locates a resource should seem natural. After all, for years
we’ve been typing URLs into our web browser’s address field to find content on the
internet. But it’s not a stretch to think of that URL as a means of uniquely identifying a
resource. No two resources could share the same URL, so the URL could also be a
means of identifying a resource.2

 Many URLs don’t locate or identify anything—they make demands. Rather than
identify a thing, they insist that some action be taken. For instance, figure 11.1 illus-
trates the kind of URL handled by the DisplaySpittleController’s display-
Spittle() method.

As you can see, this URL doesn’t locate or identify a resource. It demands that the
server display a Spittle. The only part of the URL that identifies anything is the id
query parameter. The base portion of the URL is verb-oriented. That is to say that it’s a
RESTless URL.

 If we’re going to write controllers that properly handle RESTful URLs, we should
first get to know what a RESTful URL looks like.

CHARACTERISTICS OF A RESTFUL URL

In contrast to their RESTless cousins, RESTful URLs fully acknowledge that HTTP is all
about resources. For example, figure 11.2 shows how we might restructure the REST-
less URL to be more resource-oriented.

2 Although outside of the scope of this book, the semantic web takes advantage of the identifying nature of

Figure 11.1 A RESTless URL is
action-oriented and doesn’t identify
or locate a resource.
URLs in creating a linked web of resources.

Licensed to Christian Cederquist <chrisman@kaus.dk>

282 CHAPTER 11 Giving Spring some REST

One thing that’s not clear about this URL is what
it does. That’s because the URL doesn’t do any-
thing. Rather, it identifies a resource. Specifi-
cally, it locates the resource that represents a
Spittle object. What will be done with that
resource is a separate matter—one for HTTP
methods to decide (which we’ll look at in sec-
tion 11.2.3).

 This URL not only locates a resource, but it
also uniquely identifies that resource—it serves
equally well as a URI as it does as a URL. Instead
of using a query parameter to identify the resource, the entire base URL identifies the
resource.

 In fact, the new URL has no query parameters at all. Although query parameters
are still a legitimate way to send information to the server, they’re intended to provide
guidance to the server in producing the resource. They shouldn’t be used to help
identify a resource.

 One final observation should be made about RESTful URLs: they tend to be hierar-
chical. As you read them from left to right, you move from a broad concept to some-
thing more precise. In our example, the URL has several levels, any of which could
identify a resource:

 http://localhost:8080 identifies a domain and port. Although our application
won’t associate a resource with this URL, there’s no reason why it couldn’t.

 http://localhost:8080/Spitter identifies the application’s servlet context. This URL
is more specific in that it has identified an application running on the server.

 http://localhost:8080/Spitter/spittles identifies a resource that represents a list of
Spittle objects within the Spitter application.

 http://localhost:8080/Spitter/spittles/123 is the most precise URL, identifying a spe-
cific Spittle resource.

What makes the RESTful URL interesting is that its path is parameterized. Whereas the
RESTless URL took its input from query parameters, the RESTful URL’s input is part of
the URL’s path. To be able to handle requests for that kind of URL, we’ll need a way to
write a controller’s handler method so that it can take input from the URL’s path.

EMBEDDING PARAMETERS IN URLS

To enable parameterized URL paths, Spring 3 introduced a new @PathVariable anno-
tation. To see how this works, look at SpittleController, a new Spring MVC control-
ler that takes a resource-oriented approach to handling requests for Spittles.

package com.habuma.spitter.mvc;
import javax.inject.Inject;

Listing 11.2 SpittleController is a RESTful Spring MVC controller.

Figure 11.2 A RESTful URL is resource-
oriented, both identifying and locating a
resource.
import javax.validation.Valid;

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080
http://localhost:8080/Spitter
http://localhost:8080/Spitter/spittles
http://localhost:8080/Spitter/spittles/123

283Writing resource-oriented controllers

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import com.habuma.spitter.domain.Spittle;
import com.habuma.spitter.service.SpitterService;

@Controller
@RequestMapping("/spittles")
public class SpittleController {

private SpitterService spitterService;

@Inject
public SpittleController(SpitterService spitterService) {

this.spitterService = spitterService;
}

@RequestMapping(value="/{id}",
method=RequestMethod.GET)

public String getSpittle(@PathVariable("id") long id,
Model model) {

model.addAttribute(spitterService.getSpittleById(id));
return "spittles/view";

}
}

We’ve annotated SpittleController with @RequestMapping at the class level to indi-
cate that this controller will handle requests for Spittle resources—requests whose
URLs start with /spittles.

 For now, there’s only one handler method—the getSpittle() method. When
this method’s @RequestMapping annotation is coupled with the class-level @Request-
Mapping, this method is set to handle GET requests for URLs that take the form
/spittles/{id}.

 You’re probably wondering about those weird curly-braces in the URL pattern. The
part that says {id} is a placeholder through which variable data will be pass into the
method. It corresponds to the @PathVariable annotation on the id method parameter.

 So, if a GET request comes in for http://localhost:8080/Spitter/spittles/123, then
the getSpittle() method will be called with 123 passed in for the id parameter. The
method then uses that value to look up the requested Spittle object and place it into
the model.

 At this point you may have noticed that the phrase id is used three times in this
method’s signature. Not only is it used as the URL path placeholder and as the value of
the @PathVariable annotation, it’s also used as the actual name of the method param-
eter. That’s only a coincidence in this case. But if the method parameter name hap-
pens to be the same as the path variable name (and I can think of no reason why it
shouldn’t be), then you can take advantage of a simple convention and leave out
@PathVariable’s value. For example:

@RequestMapping(value="/{id}", method=RequestMethod.GET)

Handle requests
for /spittles

Use placeholder
variable in path
public String getSpittle(@PathVariable long id, Model model) {

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spittles/123

284 CHAPTER 11 Giving Spring some REST

model.addAttribute(spitterService.getSpittleById(id));
return "spittles/view";

}

With no value given to @PathVariable, the method parameter name serves as the
name of the path variable.3

 Regardless of whether you explicitly identify the path variable by name, @Path-
Variable makes it possible to write controller handler methods that handle requests
for URLs that identify a resource instead of describing some action to be taken. The
other side of RESTful requests are the HTTP methods that will be applied to the URLs.
Let’s see how HTTP methods provide the verbs in a REST request.

11.2.3 Performing the REST verbs

As I mentioned before, REST is about the transfer of resource state. Therefore, we
really only need a handful of verbs to be able to act upon those resources—verbs to
transfer the state of a resource. For any given resource, the most common operations
will be to create a resource on the server, retrieve it from the server, update it on the
server, or delete it from the server.

 The verbs we’re interested in (post, get, put, and delete) correspond directly to four
of the methods as defined by the HTTP specification and as summarized in table 11.1.4

 Each of the HTTP methods is characterized by two traits: safety and idempotency. A
method is considered safe if it doesn’t change the state of the resource. Idempotent
methods may or may not change state, but repeated requests should have no further
side effects after the first request. By definition, all safe methods are also idempotent,
but not all idempotent methods are safe.

3 This assumes that you’ve compiled your controller classes with debugging information compiled into the class
files. Otherwise, the method parameter names won’t be available at runtime to match against path variable
names.

4 The HTTP specification defines four other methods: TRACE, OPTIONS, HEAD, and CONNECT. But we’ll

Table 11.1 HTTP offers several methods for manipulating resources.

Method Description Safe? Idempotent?

GET Retrieves resource data from the server. The resource
is identified by the request’s URL.

Yes Yes

POST Posts data to the server to be handled by a processor
listening at the request’s URL.

No No

PUT Puts resource data to the server, at the URL of the
request.

No Yes

DELETE Deletes the resource on the server identified by the
request’s URL.

No Yes

OPTIONS Requests available options for communication with the
server.

Yes Yes
focus on the four core methods.

Licensed to Christian Cederquist <chrisman@kaus.dk>

285Writing resource-oriented controllers

It’s important to realize that although Spring supports all of HTTP’s methods, it’s still
up to you, the developer, to be sure that the implementation of those methods follows
the semantics of those methods. In other words, a GET-handling method should only
return a resource—it shouldn’t update or delete a resource.

 The four HTTP methods described in table 11.1 are often mapped to CRUD (cre-
ate/read/update/delete) operations. Certainly the GET method performs a read
operation and the DELETE method performs a delete operation. And, even though
PUT and POST can be used in ways other than update and create operations, that’s
commonly how they’re used.

 We’ve already seen an example of how to handle GET requests. The Spittle-
Controller’s getSpittle() method is annotated with @RequestMapping, with the
method attribute set to handle GET requests. The method attribute is the key to detail-
ing the HTTP method that will be handled by a controller method.

UPDATING RESOURCES WITH PUT

When it comes to understanding the PUT method’s purpose, it helps to know that it’s
the semantic opposite of GET. Whereas a GET request transfers the state of a resource
from the server to the client, PUT transfers the resource state from the client to the
server.

 For example, the following putSpittle() method is annotated to receive a Spittle
object from a PUT request:

@RequestMapping(value="/{id}", method=RequestMethod.PUT)
@ResponseStatus(HttpStatus.NO_CONTENT)
public void putSpittle(@PathVariable("id") long id,

@Valid Spittle spittle) {
spitterService.saveSpittle(spittle);

}

The putSpittle() method is annotated with @RequestMapping, like any other han-
dler method. In fact, the @RequestMapping annotation here is almost the same as the
one used with the getSpittle() method. The only difference is that the method attri-
bute is set to handle HTTP PUT requests instead of GET requests.

 If that’s the only difference, then that must mean that the putSpittle() method
will handle requests with URLs that take the form /spittles/{id}—the same URLs that
are handled by the getSpittle() method. Again, the URL identifies a resource, not
what’ll be done with it. So the URL that identifies a Spittle will be the same whether

HEAD Like GET, except that only the headers should be
returned—no content should be returned in the
response body.

Yes Yes

TRACE Echoes the request body back to the client. Yes Yes

Table 11.1 HTTP offers several methods for manipulating resources. (continued)

Method Description Safe? Idempotent?
we’re GETting it or PUTting it.

Licensed to Christian Cederquist <chrisman@kaus.dk>

286 CHAPTER 11 Giving Spring some REST

 The putSpittle() method is also tagged with an annotation we haven’t seen
before. The @ResponseStatus annotation defines the HTTP status that should be set
on the response to the client. In this case, HttpStatus.NO_CONTENT indicates that the
response status should be set to the HTTP status code 204. That status code means that
the request was processed successfully, but nothing is returned in the body of the
response.

HANDLING DELETE REQUESTS

Rather than simply update a resource, we may want to get rid of it altogether. In the
case of the Spitter application, for example, we may want to enable clients to delete an
embarrassing Spittle that was written in haste or while the user was impaired. When
you don’t want a resource around anymore, that’s what the HTTP DELETE method is for.

 As a sample of handling a DELETE request in Spring MVC, let’s add a new handler
method to SpittleController that answers DELETE requests to remove a Spittle
resource:

@RequestMapping(value="/{id}", method=RequestMethod.DELETE)
@ResponseStatus(HttpStatus.NO_CONTENT)
public void deleteSpittle(@PathVariable("id") long id) {

spitterService.deleteSpittle(id);
}

Once again, the @RequestMapping annotation looks a lot like the ones we used on
getSpittle() and putSpittle(). It only varies in that this method’s @Request-
Mapping has its method attribute set to handle DELETE requests. The URL pattern that
identifies a Spittle resource remains the same.

 Just like putSpittle(), deleteSpittle() is also annotated with @ResponseStatus
to let the client know that the request was processed successfully, but that no content
will be returned in the response.

CREATING RESOURCES WITH POST

There’s one in every bunch: a free spirit… a dissident… a rebel. Among the HTTP
methods, POST is that rebel. It doesn’t obey the rules. It’s unsafe and it is certainly not
idempotent. This nonconformist HTTP method seems to break all of the rules, but in
doing so it can handle the jobs that other HTTP methods can’t.

 To see this rebel in action, watch POST as it performs a job that it is often called on
to do—creating new resources. The createSpittle() method is a POST-handling con-
troller method that creates new Spittle resources.

@RequestMapping(method=RequestMethod.POST)

@ResponseStatus(HttpStatus.CREATED)
public @ResponseBody Spittle createSpittle(@Valid Spittle spittle,

BindingResult result, HttpServletResponse response)
throws BindException {

if(result.hasErrors()) {

Listing 11.3 Creating new Spittles with POST

Handle POST
Response with
HTTP 201
Licensed to Christian Cederquist <chrisman@kaus.dk>

287Representing resources

throw new BindException(result);
}

spitterService.saveSpittle(spittle);

response.setHeader("Location", "/spittles/" + spittle.getId());
return spittle;

}

The first thing you may notice is that this method’s @RequestMapping is different from
the ones we’ve seen so far. Unlike the others, this one doesn’t have its value attribute
set. That means that the controller’s class-level @RequestMapping is solely responsible
for determining the URL pattern handled by createSpittle(). More specifically,
createSpittle() will handle requests whose URL pattern matches /spittles.

 Typically, the server determines a resource’s identity. Since we’re creating a new
resource here, there’s no way that we could know the URL for that resource. So,
whereas GET, PUT, and DELETE requests operate directly on the resource identified by
their URL, POST has to operate against a URL that isn’t the same as the resource it’s
creating (because that URL won’t exist until the resource is created).

 Once again, this method is annotated with @ResponseStatus to set the HTTP status
code in the request. This time, the status will be set to 201 (Created) to indicate that a
resource was successfully created. When an HTTP 201 response is returned to the cli-
ent, the URL of the new resource should be sent along with it. So one of the last things
that createSpittle() does is set the Location header to contain the resource’s URL.

 Although it’s not strictly required with an HTTP 201 response, it’s possible to
return the full entity representation in the body of the response. So, much like the
GET-handling getSpittle() method from before, this method concludes by returning
the new Spittle object. This object will be transformed into some representation that
the client can use.

 What’s not clear yet is how that transformation will take place. Or what the repre-
sentation will look like. Let’s have a look at the R in the REST acronym: representation.

11.3 Representing resources
Representation is an important facet of REST. It’s how a client and a server communi-
cate about a resource. Any given resource could be represented in virtually any form.
If the consumer of the resource prefers JSON, then the resource could be presented in
JSON format. Or if the consumer has a fondness for angle brackets, then the same
resource could be presented in XML. Meanwhile, a human user viewing the resource in
a web browser will likely prefer seeing it in HTML (or possibly PDF, Excel, or some other
human-readable form). The resource doesn’t change—only how it’s represented.

 It’s important to know that controllers usually don’t concern themselves with how
resources will be represented. Controllers will deal with resources in terms of the Java
objects that define them. But it’s not until after the controller has finished its works
that the resource will be transformed into a form that best suits the client.

Set resource
location

Return Spittle resource
Licensed to Christian Cederquist <chrisman@kaus.dk>

288 CHAPTER 11 Giving Spring some REST

 Spring provides two ways to transform a resource’s Java representation into the
representation that will be shipped to the client:

 Negotiated view-based rendering
 HTTP message converters

Since we discussed view resolvers in chapter 7 and are already familiar with view-based
rendering (also from chapter 7), we’ll start by looking at how to use content negotia-
tion to select a view or view resolver that can render a resource into a form that’s
acceptable to the client.

11.3.1 Negotiating resource representation

As you’ll recall from chapter 7, when a controller’s handler method finishes, a logical
view name is usually returned. Even if the method doesn’t directly return a logical
view name (if the method returns void, for example), then the logical view name is
derived from the request’s URL. DispatcherServlet then passes the view name to a
view resolver, asking it to help determine which view should render the results of the
request.

 In a human-facing web application, the view chosen is almost always rendered as
HTML. View resolution is a one-dimensional activity. If the view name matches a view,
then that’s the view we’ll go with.

 When it comes to resolving view names into views that can produce resource repre-
sentations, there’s an additional dimension to consider. Not only does the view need
to match the view name, but also the view needs to be chosen to suit the client. If the
client wants XML, then an HTML-rendering view won’t do—even if the view name
matches.

 Spring’s ContentNegotiatingViewResolver is a special view resolver that takes the
content type that the client wants into consideration. Just like any other view resolver,
it’s configured as a <bean> in the Spring application context, as shown next.

<bean class="org.springframework.web.servlet.view.
 ➥ContentNegotiatingViewResolver">

<property name="mediaTypes">
<map>

<entry key="json" value="application/json" />
<entry key="xml" value="text/xml" />
<entry key="htm" value="text/html" />

</map>
</property>
<property name="defaultContentType" value="text/html" />

</bean>

Understanding how ContentNegotiatingViewResolver works involves getting to
know the content-negotiation two-step:

1 Determine the requested media type(s)

Listing 11.4 ContentNegotiatingViewResolver chooses the best view.
2 Find the best view for the requested media type(s)

Licensed to Christian Cederquist <chrisman@kaus.dk>

289Representing resources

Let’s dig deeper into each of these steps to see what makes ContentNegotiatingView-
Resolver tick. We’ll start by figuring out what kind of content the client wants.

DETERMINING THE REQUESTED MEDIA TYPES

The first step in the content-negotiation two-step is determining what kind of resource
representation the client wants. On the surface, that seems like a simple job.
Shouldn’t the request’s Accept header give a clear indication of what representation
should be sent to the client?

 Unfortunately, the Accept header can’t always be deemed reliable. If the client in
question is a web browser, there’s no guarantee that what the client wants is what the
browser sends in the Accept header. Web browsers typically only accept human-
friendly content types (such as text/html) and there’s no way (short of developer-
oriented browser plug-ins) to specify a different content type.

 ContentNegotiatingViewResolver will consider the Accept header and use what-
ever media types it asks for; but only after it first looks at the URL’s file extension. If
the URL has a file extension on the end, it’ll match that extension against the entries
in the mediaTypes property. mediaTypes is a Map whose keys are file extensions and
whose values are media types. If a match is found, then the media type will be used. In
this way, the file extension can override any media types in the Accept header.

 If the file extension doesn’t produce any media types to work with, then the
Accept header in the request will be considered. But if the request header doesn’t
have an Accept header, then it’ll fall back to the media type set in the default-
ContentType property.

 As an example of how this might play out, suppose that ContentNegotiatingView-
Resolver configured in listing 11.4 is asked to figure out what the desired media types
are for a request whose extension is .json. In that case, the file extension matches the
json entry in the mediaTypes property. Therefore, the chosen media type will be
application/json.

 But suppose that a request comes along whose extension is .huh. That extension
doesn’t match any of the entries in the mediaTypes property. In the absence of a
matching extension in the mediaTypes property, ContentNegotiatingViewResolver
will look to the request’s Accept header for the media types. If the request came from
Firefox, then the media types are text/html, application/xhtml+xml, application
/xml, and */*. If the request doesn’t have an Accept header, then text/html will be
chosen from defaultContentType.

INFLUENCING HOW MEDIA TYPES ARE CHOSEN

The media type selection process, as described so far, outlines the default strategy for
determining the requested media types. But there are several options that can influ-
ence that behavior:

 Setting the favorPathExtension property to false will cause Content-
NegotiatingViewResolver to ignore the URL’s path extension.

 Adding the Java Activation Framework (JAF) to the classpath will cause

ContentNegotiatingViewResolver to ask JAF for help in determining the

Licensed to Christian Cederquist <chrisman@kaus.dk>

290 CHAPTER 11 Giving Spring some REST

media type for the path extension in addition to entries in the mediaTypes
property.

 If you set the favorParameter property to true and if the request has a format
parameter, then the value of the format parameter will be matched against the
mediaTypes property. (Additionally, the name of the parameter can be chosen
by setting the parameterName property.)

 Setting the ignoreAcceptHeader to true will remove the Accept from
consideration.

For example, suppose that you set the favorParameter property to true:

<property name="favorParameter" value="true" />

Now a request whose URL doesn’t have a file extension could still be matched up with
the application/json media type as long as the request’s format parameter is set to
json.

 Once ContentNegotiatingViewResolver knows what media types the client wants,
it’s time to find a view that can render that kind of content.

FINDING A VIEW

Unlike other view resolvers, ContentNegotiatingViewResolver doesn’t directly
resolve views. Instead, it delegates to other view resolvers to find a view that best suits
the client. Unless otherwise specified, it’ll use any view resolver in the application con-
text. But you can explicitly list the view resolvers it should delegate to by setting the
viewResolvers property.

 ContentNegotiatingViewResolver asks all of its view resolvers to resolve the logi-
cal view name into a view. Every view that’s resolved is added to a list of candidate
views. In addition, if a view is specified in the defaultView property, it’ll be added to
the end of the candidate view list.

 With the candidate view list assembled, ContentNegotiatingViewResolver cycles
through all of the requested media types, trying to find a view from among the candi-
date views that produces a matching content type. The first match found is the one
that’s used.

 In the end, if ContentNegotiatingViewResolver fails to find a suitable view, then
it returns a null view. Or, if useNotAcceptableStatusCode is set to true, then a view
with an HTTP status code of 406 (Not Acceptable) will be returned.

 Content negotiation is a way of rendering resource representations to a client that
fits right in with how we developed the web front end of our application in chapter 7.
It’s perfect for adding additional representations on top of the HTML representations
that a Spring MVC web application already provides.

 When defining machine-consumed RESTful resources, it may make more sense to
develop the controller in a way that acknowledges that the data it produces will be rep-
resented as a resource consumed by another application. That’s where Spring’s HTTP
message converters and the @ResponseBody annotation come into play.
Licensed to Christian Cederquist <chrisman@kaus.dk>

291Representing resources

11.3.2 Working with HTTP message converters

As we’ve seen in chapter 7 and in the previous section, a typical Spring MVC controller
method ends by placing one or more pieces of information into the model and desig-
nating a view to render that data to the user. Although there are several ways of popu-
lating the model with data and many ways of identifying the view, every controller
handler method we’ve seen up until now has followed that basic pattern.

 But when a controller’s job is to produce a representation of some resource,
another more direct option is available that bypasses the model and view. In this style
of handler method, the object returned from the controller is automatically con-
verted into a representation appropriate for the client.

 Employing this new technique starts with applying the @ResponseBody annotation
to a controller’s handler method.

RETURNING RESOURCE STATE IN THE RESPONSE BODY

Normally when a handler method returns a Java object (anything other than String),
that object ends up in the model for rendering in the view. But if that handler method
is annotated with @ResponseBody, then it indicates that the HTTP message converter
mechanism should take over and transform the returned object into whatever form
the client needs.

 For example, consider the following getSpitter() method from Spitter-
Controller:

@RequestMapping(value = "/{username}", method = RequestMethod.GET,
headers = {"Accept=text/xml, application/json"})

public @ResponseBody
Spitter getSpitter(@PathVariable String username) {

return spitterService.getSpitter(username);
}

The @ResponseBody annotation tells Spring that we want to send the returned object
as a resource to the client, converted into some representational form that the client
can accept. More specifically, the resource should take a form that satisfies the
request’s Accept header. If the request has no Accept header, then it’s assumed that
the client can accept any representation form.

 Speaking of the Accept header, take note of getSpitter()’s @RequestMapping.
The headers attribute indicates that this method will only handle requests whose
Accept header includes text/xml or application/json. Any other kind of request,
even if it’s a GET request whose URL matches the path specified, won’t be handled by
this method. It’ll either be handled by some other handler method (if an appropriate
one exists) or the client will be sent an HTTP 406 (Not Acceptable) response.

 Taking an arbitrary Java object returned from a handler method and converting it
into a client-pleasing representation is a job for one of Spring’s HTTP message con-
verters. Spring comes with a variety of message converters, as listed in table 11.2, to
handle the most common object-to-representation conversion needs.
Licensed to Christian Cederquist <chrisman@kaus.dk>

292 CHAPTER 11 Giving Spring some REST

Table 11.2 Spring provides several HTTP message converters that marshal resource representations to and from
various Java types.

Message converter Description

AtomFeedHttpMessageConverter Converts Romea Feed objects to/from Atom feeds (media
type application/atom+xml).

Registered if Rome library is present on the classpath.

BufferedImageHttpMessageConverter Converts BufferedImages to/from image binary data.

ByteArrayHttpMessageConverter Reads/writes byte arrays. Reads from all media types (*/*)
and writes as application/octet-stream.

Registered by default.

FormHttpMessageConverter Reads content as
application/x-www-form-urlencoded into a
MultiValueMap<String, String>. Also writes
MultiValueMap<String, String> as
application/x-www-form-urlencoded and
MultiValueMap<String, Object> as
multipart/form-data.

Jaxb2RootElementHttpMessageConverter Reads and writes XML (text/xml or application/xml)
from/to JAXB2-annotated objects.

Registered if JAXB v2 libraries are present on the classpath.

MappingJacksonHttpMessageConverter Reads and writes JSON from/to typed objects or untyped
HashMaps.

Registered if Jackson JSON library is present on the classpath.

MarshallingHttpMessageConverter Reads and writes XML using an injected marshaller and
unmarshaller. Supported (un)marshallers include Castor,
JAXB2, JIBX, XMLBeans, and XStream.

ResourceHttpMessageConverter Reads and writes Resources.

Registered by default.

RssChannelHttpMessageConverter Reads and writes RSS feeds from/to Rome Channel
objects.

Registered if Rome library is present on the classpath.

SourceHttpMessageConverter Reads and writes XML from/to
javax.xml.transform.Source objects.

Registered by default.

StringHttpMessageConverter Reads all media types (*/*) into a String. Writes Strings to
text/plain.

Registered by default.

XmlAwareFormHttpMessageConverter An extension of FormHttpMessageConverter that adds
support for XML-based parts using a
SourceHttpMessageConverter.

Registered by default.

a. https://rome.dev.java.net
Licensed to Christian Cederquist <chrisman@kaus.dk>

https://rome.dev.java.net

293Representing resources

For example, suppose the client has indicated via the request’s Accept header that it
can accept application/json. Assuming that the Jackson JSON library is in the appli-
cation’s classpath, the object returned from the handler method will be given to the
MappingJacksonHttpMessageConverter for conversion into a JSON representation to
be returned to the client. On the other hand, if the request header indicates that the
client prefers text/xml, then Jaxb2RootElementHttpMessageConverter will be
tasked with producing an XML response to the client.

 Note that all but three of the HTTP message converters in table 11.2 are registered
by default, so no Spring configuration is required to use them. But you may need to
add additional libraries to your application’s classpath to support them. For instance,
if you want to use the MappingJacksonHttpMessageConverter to convert JSON mes-
sages to and from Java objects, you’ll need to add the Jackson JSON Processor5 library
to the classpath.

RECEIVING RESOURCE STATE IN THE REQUEST BODY

On the other side of a RESTful conversation, a client may send us an object in the
form of JSON, XML, or some other content type. It’d be inconvenient for our control-
ler’s handler methods to receive those objects in their raw form and convert them our-
selves. Fortunately, the @RequestBody annotation does the same thing for objects sent
from the client as @ResponseBody does for objects returned to the client.

 Let’s say that the client submits a PUT request with the data for a Spitter object
represented as JSON in the request’s body. To receive that message as a Spitter
object, we only need to annotate a handler method’s Spitter parameter with
@RequestBody:

@RequestMapping(value = "/{username}", method = RequestMethod.PUT,
headers = "Content-Type=application/json")

@ResponseStatus(HttpStatus.NO_CONTENT)
public void updateSpitter(@PathVariable String username,

@RequestBody Spitter spitter) {
spitterService.saveSpitter(spitter);

}

When the request arrives, Spring MVC will see that the updateSpitter() is able to
handle the request. But the message arrives as an XML document, and this method
asks for a Spitter object. In this case, the MappingJacksonHttpMessageConverter
may be chosen to convert the JSON message into a Spitter object. For that to work,
the following criteria must be met:

 The request’s Content-Type header must be set to application/json.
 The Jackson JSON library must be available on the application’s classpath.

You may have also noticed that the updateSpitter() method is annotated with
@ResponseStatus. After a PUT request, there’s not much to do and no need to return
5 http://jackson.codehaus.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

http:http://jackson.codehaus.org

294 CHAPTER 11 Giving Spring some REST

anything to the client. By annotating updateSpitter() this way, we’re saying that HTTP
response to the client should have a status code of 204, also known as No Content.

 At this point, we’ve written some Spring MVC controllers with handler methods to
handle requests for resources. There are a few more things to talk about with regard
to defining a RESTful API using Spring MVC—and we’ll get back to that part of the dis-
cussion in section 11.5. But first, let’s switch gears and see how to use Spring’s Rest-
Template to write client code that consumes those resources.

11.4 Writing REST clients
When we build web applications, we often think of them as having a user interface
that resides in a web browser. But with web applications that are made up of RESTful
resources, there’s no reason that has to be the case. Just because a resource’s data is
transmitted across the web, that doesn’t mean that it’ll necessarily be rendered in a
web browser. You may even find yourself writing a web application that interacts with
another web application through a RESTful API.

 Writing code that interacts with a REST resource as a client can involve some
tedium and boilerplate. For example, let’s say that we need to write some client-side
code to consume the Spittles-for-Spitter REST API we developed earlier. The following
listing shows one way of getting the job done.

public Spittle[] retrieveSpittlesForSpitter(String username) {
try {

HttpClient httpClient = new DefaultHttpClient();

String spittleUrl = "http://localhost:8080/Spitter/spitters/" +
username + "/spittles";

HttpGet getRequest = new HttpGet(spittleUrl);

getRequest.setHeader(
new BasicHeader("Accept", "application/json"));

HttpResponse response = httpClient.execute(getRequest);

HttpEntity entity = response.getEntity();
ObjectMapper mapper = new ObjectMapper();
return mapper.readValue(entity.getContent(), Spittle[].class);

} catch (IOException e) {
throw new SpitterClientException("Unable to retrieve Spittles", e);

}
}

As you can see, a lot goes into consuming a REST resource. And I’m even cheating by
using Jakarta Commons HTTP Client6 to make the request and the Jackson JSON pro-
cessor7 to parse the response.

Listing 11.5 REST clients can involve boilerplate code and exception handling.

6 http://hc.apache.org/httpcomponents-client/index.html

Create
HttpClient

Assemble URL

Create
request
from URL

Execute
requestParse result
7 http://jackson.codehaus.org/

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://hc.apache.org/httpcomponents-client/index.html
http://jackson.codehaus.org/
http://localhost:8080/Spitter/spitters

295Writing REST clients

 Looking closely at the retrieveSpittlesForSpitter() method, you’ll realize that
little in that method is directly associated with this specific bit of functionality. If you
were to write another method that consumed some other REST resource, it’d probably
look a lot like this one, with only a few minor differences.

 What’s more, there are a few places along the way where an IOException could’ve
been thrown. Since IOException is a checked exception, I’m forced to either catch it
or throw it. In this case, I’ve chosen to catch it and throw an unchecked Spitter-
ClientException in its place.

 With so much boilerplate involved in resource consumption, you’d think it’d be
wise to encapsulate the common code and parameterize the variations. That’s pre-
cisely what Spring’s RestTemplate does. Just as JdbcTemplate handles the ugly parts
of working with JDBC data access, RestTemplate frees us from the tedium of consum-
ing RESTful resources.

 In a moment, we’ll see how we can rewrite the retrieveSpittlesForSpitter()
method, using RestTemplate to dramatically simplify it and eliminate the boilerplate.
But first, let’s take a high-level survey of all of the REST operations that RestTemplate
offers.

11.4.1 Exploring RestTemplate’s operations

You’ll recall from table 11.1 that the HTTP specification defines seven method types
for interacting with RESTful resources. These method types provide the verbs in a
RESTful conversation.

 RestTemplate defines 33 methods for interacting with REST resources using all of
HTTP’s verbs in a variety of ways. Unfortunately, I don’t have enough space to go over
all 33 methods in this chapter. As it turns out, there are really only 11 unique opera-
tions, each of which is overloaded into three method variants. Table 11.3 describes the
11 unique operations provided by RestTemplate.

Table 11.3 RestTemplate defines 11 unique operations, each of which is overloaded to a total of 33
methods.

Method Description

delete() Performs an HTTP DELETE on a resource at a specified URL.

exchange() Executes a specified HTTP method against the URL, returning a
ResponseEntity containing an object mapped from the response body.

execute() Executes a specified HTTP method against the URL, returning an object
mapped from the response body.

getForEntity() Sends an HTTP GET request, returning a ResponseEntity containing the
response body as mapped to an object.

getForObject() GETs a resource, returning the response body as mapped to an object.

headForHeaders() Sends an HTTP HEAD request, returning the HTTP headers for the specified
resource URL.
Licensed to Christian Cederquist <chrisman@kaus.dk>

296 CHAPTER 11 Giving Spring some REST

With the exception of TRACE, RestTemplate covers all of the HTTP verbs. In addition,
execute() and exchange() offer lower-level general-purpose methods for using any
of the HTTP methods.

 Each of the operations in table 11.3 is overloaded into three method forms:

 One that takes a java.net.URI as the URL specification with no support for
parameterized URLs

 One that takes a String URL specification with URL parameters specified as a
Map

 One that takes a String URL specification with URL parameters specified as a
variable argument list

Once you get to know the 11 operations provided by RestTemplate and how each of
the variant forms work, you’ll be well on your way to writing resource-consuming REST
clients. Let’s survey RestTemplate’s operations by looking at those that support the
four primary HTTP methods: GET, PUT, DELETE, and POST. We’ll start with getFor-
Object() and getForEntity(), the GET methods.

11.4.2 GETting resources

You may have noticed that table 11.3 lists two kinds of methods for performing GET
requests: getForObject() and getForEntity(). As described earlier, each of these
methods are overloaded into three forms. The signatures of the three getFor-
Object() methods look like this:

<T> T getForObject(URI url, Class<T> responseType)
throws RestClientException;

<T> T getForObject(String url, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> T getForObject(String url, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

Similarly, the signatures of the getForEntity() methods are as follows:

optionsForAllow() Sends an HTTP OPTIONS request, returning the Allow header for the speci-
fied URL.

postForEntity() POSTs data, returning a ResponseEntity that contains an object mapped
from the response body.

postForLocation() POSTs data, returning the URL of the new resource.

postForObject() POSTs data, returning the response body as mapped to an object.

put() PUTs a resource to the specified URL.

Table 11.3 RestTemplate defines 11 unique operations, each of which is overloaded to a total of 33
methods. (continued)

Method Description
Licensed to Christian Cederquist <chrisman@kaus.dk>

297Writing REST clients

<T> ResponseEntity<T> getForEntity(URI url, Class<T> responseType)
throws RestClientException;

<T> ResponseEntity<T> getForEntity(String url, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> ResponseEntity<T> getForEntity(String url, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

Except for the return type, the getForObject() methods are mirror images of the
getForEntity() methods. And, in fact, they work much the same way. They both per-
form a GET request, retrieving a resource given a URL. And they both map that
resource to some type specified by the responseType parameter. The only difference
is that getForObject() simply returns an object of the type requested, whereas get-
ForEntity() returns that object along with extra information about the response.

 Let’s first have a look at the simpler getForObject() method. Then we’ll see how
to get more information from a GET response by using the getForEntity() method.

RETRIEVING RESOURCES

The getForObject() method is a no-nonsense option for retrieving a resource. You
ask for a resource and you shall receive that resource mapped to a Java type of your
choosing. As a simple example of what getForObject() can do, let’s take another stab
at implementing the retrieveSpittlesForSpitter():

public Spittle[] retrieveSpittlesForSpitter(String username) {
return new RestTemplate().getForObject(

"http://localhost:8080/Spitter/spitters/{spitter}/spittles",
Spittle[].class, username);

}

Back in listing 11.5, retrieveSpittlesForSpitter() involved more than a dozen
lines of code. Using RestTemplate, it’s now reduced to a handful of lines (and could
be even less if I didn’t have to wrap lines to fit within the margins of this book).

 retrieveSpittlesForSpitter() starts by constructing an instance of Rest-
Template (an alternate implementation might’ve used an injected instance instead).
Then it invokes the getForObject() method to retrieve the list of Spittles. In doing
so, it asks for the results as an array of Spittle objects. Upon receiving that array, it
returns it to the caller.

 Note that in this new version of retrieveSpittlesForSpitter() we don’t use
String concatenation to produce the URL. Instead, we take advantage of the fact that
RestTemplate accepts parameterized URLs. The {spitter} placeholder in the URL will
ultimately be filled by the username parameter of the method. The last argument of
getForObject() is a variable-sized list of arguments, where each argument is inserted
into a placeholder in the specified URL in the order it appears.

 Alternatively, we could’ve placed the username parameter into a Map with a key of
spitter and passed that Map in as the last parameter to getForObject():

public Spittle[] retrieveSpittlesForSpitter(String username) {
Map<String, String> urlVariables = new HashMap<String, String();
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters/{spitter}/spittles

298 CHAPTER 11 Giving Spring some REST

urlVariables.put("spitter", username);
return new RestTemplate().getForObject(

"http://localhost:8080/Spitter/spitters/{spitter}/spittles",
Spittle[].class, urlVariables);

}

One thing that’s absent here is any sort of JSON parsing or object mapping. Under the
covers, getForObject() converts the response body into an object for us. It does this
by relying on the same set of HTTP message converters from table 11.2 that Spring
MVC uses for handler methods that are annotated with @ResponseBody.

 What’s also missing from this method is any sort of exception handling. That’s not
because getForObject() couldn’t throw an exception, but because any exception it
throws is unchecked. If anything goes wrong in getForObject(), an unchecked Rest-
ClientException will be thrown. You can catch it if you’d like—but you’re not forced
by the compiler to catch it.

EXTRACTING RESPONSE METADATA

As an alternative to getForObject(), RestTemplate also offers getForEntity(). The
getForEntity() methods work much the same as the getForObject() methods. But
where getForObject() returns only the resource (converted into a Java object by an
HTTP message converter), getForEntity() returns that same object carried within a
ResponseEntity. The ResponseEntity also carries extra information about the
response, such as the HTTP status code and response headers.

 One thing you might want to do with a ResponseEntity is to retrieve the value of
one of the response headers. For example, suppose that in addition to retrieving the
resource, you want to know when that resource was last modified. Assuming that the
server provides that information in the Last-Modified header, you can use the get-
Headers() method like this:

Date lastModified = new Date(response.getHeaders().getLastModified());

The getHeaders() method returns an HttpHeaders object that provides several con-
venience methods for retrieving response headers, including getLastModified(),
which returns the number of milliseconds since January 1, 1970.

 In addition to getLastModified(), HttpHeaders includes the following methods
for retrieving header information:

public List<MediaType> getAccept() { ... }
public List<Charset> getAcceptCharset() { ... }
public Set<HttpMethod> getAllow() { ... }
public String getCacheControl() { ... }
public long getContentLength() { ... }
public MediaType getContentType() { ... }
public long getDate() { ... }
public String getETag() { ... }
public long getExpires() { ... }
public long getIfNotModifiedSince() { ... }
public List<String> getIfNoneMatch() { ... }
public long getLastModified() { ... }
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters/{spitter}/spittles

299Writing REST clients

public URI getLocation() { ... }
public String getPragma() { ... }

For more general-purpose HTTP header access, HttpHeaders includes a get()
method and the getFirst() method. Both take a String argument that identifies the
header. The get() method returns a list of String values, one for each value assigned
to the header. The getFirst() method returns only the first header value.

 If you’re interested in the response’s HTTP status code, then you’ll want to call the
getStatusCode() method. For example, look at the implementation of
retrieveSpittlesForSpitter().

public Spittle[] retrieveSpittlesForSpitter(String username) {
ResponseEntity<Spittle[]> response = new RestTemplate().getForEntity(

"http://localhost:8080/Spitter/spitters/{spitter}/spittles",
Spittle[].class, username);

if(response.getStatusCode() == HttpStatus.NOT_MODIFIED) {
throw new NotModifiedException();

}

return response.getBody();
}

Here, if the server responds with a status of 304, it indicates that the content on the
server hasn’t been modified since the client previously requested it. In that event, a
custom NotModifiedException is thrown to indicate that the client should check its
cache for the resource data.

11.4.3 PUTting resources

For performing PUT operations on a resource, RestTemplate offers a simple set of
three put() methods. As with all of RestTemplate’s methods, the put() method
comes in three forms:

void put(URI url, Object request) throws RestClientException;

void put(String url, Object request, Object... uriVariables)
throws RestClientException;

void put(String url, Object request, Map<String, ?> uriVariables)
throws RestClientException;

In its simplest form, the put() method takes a java.net.URI that identifies (and
locates) the resource being sent to the server and an object that’s the Java representa-
tion of that resource.

 For example, here’s how you might use the URI-based version of put() to update a
Spittle resource on the server:

public void updateSpittle(Spittle spittle) throws SpitterException {
try {

String url = "http://localhost:8080/Spitter/spittles/" + spittle.getId();
new RestTemplate().put(new URI(url), spittle);

Listing 11.6 A ResponseEntity includes the HTTP status code.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spittles
http://localhost:8080/Spitter/spitters/{spitter}/spittles

300 CHAPTER 11 Giving Spring some REST

} catch (URISyntaxException e) {
throw new SpitterUpdateException("Unable to update Spittle", e);

}
}

Here, although the method signature was simple, the implication of using a
java.net.URI argument is evident. First, in order to create the URL for the Spittle
object to be updated, we had to do String concatenation. Then, because it’s possible
for a non-URI to be given to the constructor of URI, we’re forced to catch a URI-
SyntaxException (even if we’re pretty sure that the given URI is legitimate).

 Using one of the other String-based put() methods alleviates most of the discom-
fort associated with creating a URI, including the need to handle any exceptions.
What’s more, these methods enable us to specify the URI as a template, plugging in
values for the variable parts. Here’s a new updateSpittle() method rewritten to use
one of the String-based put() methods:

public void updateSpittle(Spittle spittle) throws SpitterException {
restTemplate.put("http://localhost:8080/Spitter/spittles/{id}",

spittle, spittle.getId());
}

The URI is now expressed as a simple String template. When RestTemplate sends the
PUT request, the URI template will be expanded to replace the {id} portion with the
value returned from spittle.getId(). Just like getForObject() and getFor-
Entity(), the last argument to this version of put() is a variable-sized list of argu-
ments, each of which is assigned to the placeholder variables in the order they appear.

 Optionally, you could’ve passed in the template variables as a Map:

public void updateSpittle(Spittle spittle) throws SpitterException {
Map<String, String> params = new HashMap<String, String>();
params.put("id", spittle.getId());
restTemplate.put("http://localhost:8080/Spitter/spittles/{id}",

spittle, params);
}

When using a Map to send the template variables, the key of each entry in the Map cor-
responds to the placeholder variable of the same name in the URI template.

 In all versions of put(), the second argument is the Java object that represents the
resource being PUT to the server at the given URI. In this case, it’s a Spittle object.
RestTemplate will use one of the message converters from table 11.2 to convert the
Spittle into a representation to send to the server in the request body.

 The content type that the object will be converted into depends largely on the type
being passed into put(). If given a String value, the StringHttpMessageConverter
kicks in: the value is written directly to the body of the request and the content type is
set to text/plain. When given a MultiValueMap<String,String>, the values in the
map will be written to the request body in application/x-www-form-urlencoded
form by the FormHttpMessageConverter.
Licensed to Christian Cederquist <chrisman@kaus.dk>

301Writing REST clients

 Since we’re passing in a Spittle object, we’ll need a message converter that can
work with arbitrary objects. If the Jackson JSON library is in the classpath, then the
MappingJacksonHttpMessageConverter will write the Spittle to the request as
application/json. Optionally, if the Spittle class were annotated for JAXB serializa-
tion and if a JAXB library were on the classpath, then the Spittle would be sent as
application/xml and be written to the request body in XML format.

11.4.4 DELETE-ing resources

When you don’t want a resource to be kept around on the server anymore, then
you’ll want to call RestTemplate’s delete() methods. Much like the put() methods,
the delete() methods keep it simple with only three versions, whose signatures are
as follows:

void delete(String url, Object... uriVariables)
throws RestClientException;

void delete(String url, Map<String, ?> uriVariables)
throws RestClientException;

void delete(URI url) throws RestClientException;

Hands down, the delete() methods are the simplest of all of the RestTemplate meth-
ods. The only thing you need to supply them with is the URI of the resource to be
deleted. For example, to get rid of a Spittle whose ID is given, you might call
delete() like this:

public void deleteSpittle(long id) {
try {

restTemplate.delete(
new URI("http://localhost:8080/Spitter/spittles/" + id));

} catch (URISyntaxException wontHappen) { }
}

That’s simple enough, but here again we’ve relied on String concatenation to create
a URI object that defensively throws a checked URISyntaxException, which we’re
forced to catch. So let’s turn to one of the simpler versions of delete() to get out of
that mess:

public void deleteSpittle(long id) {
restTemplate.delete("http://localhost:8080/Spitter/spittles/{id}", id));

}

There. I feel better about that. Don’t you?
 Now that I’ve shown you the simplest set of RestTemplate methods, let’s look at

RestTemplate’s most diverse set of methods—those that support HTTP POST requests.

11.4.5 POSTing resource data

Looking back at table 11.3, you see that RestTemplate comes with three different
kinds of methods for sending POST requests. When you multiply that by the three
Licensed to Christian Cederquist <chrisman@kaus.dk>

302 CHAPTER 11 Giving Spring some REST

variants that each is overridden into, that’s a total of nine methods for POSTing data
to the server.

 Two of those methods have names that look familiar. The postForObject() and
postForEntity() methods work with POST requests in a way that’s similar to how get-
ForObject() and getForEntity() work for sending GET requests. The other method,
getForLocation(), is unique for POST requests.

RECEIVING OBJECT RESPONSES FROM POST REQUESTS

Let’s say that you’re using RestTemplate to POST a new Spitter object to the Spitter
application’s REST API. Since it’s a brand-new Spitter, the server doesn’t know about
it (yet). Therefore, it’s not officially a REST resource yet and doesn’t have a URL. Also,
the client won’t know the ID of the Spitter until it’s created on the server.

 One way of POSTing a resource to the server is to use RestTemplate’s post-
ForObject() method. The three varieties of postForObject() have the following
signatures:

<T> T postForObject(URI url, Object request, Class<T> responseType)
throws RestClientException;

<T> T postForObject(String url, Object request, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> T postForObject(String url, Object request, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

In all cases, the first parameter is the URL to which the resource should be POSTed, the
second parameter is the object to post, and the third parameter is the Java type
expected to be given in return. In the case of the two versions that take the URL as a
String, a fourth parameter identifies the URL variables (as either a variable argu-
ments list or a Map).

 When POSTing new Spitter resources to the Spitter REST API, they should be
posted to http://localhost:8080/Spitter/spitters, where a POST-handling controller
handler method is waiting to save the object. Since this URL requires no URL vari-
ables, we could use any version of postForObject(). But, in the interest of keeping it
simple and to avoid catching any exceptions that may be thrown while constructing a
new URI, we’ll make the call like this:

public Spitter postSpitterForObject(Spitter spitter) {
RestTemplate rest = new RestTemplate();
return rest.postForObject("http://localhost:8080/Spitter/spitters",

spitter, Spitter.class);
}

The postSpitterForObject() method is given a newly created Spitter object and
uses postForObject() to send it to the server. In response, it receives a Spitter object
and returns it to the caller.

 As with the getForObject() methods, we may want to examine some of the meta-
data that comes back with the request. In that case, postForEntity() is the preferred
method. postForEntity() comes with a set of signatures that mirror those of post-

ForObject():

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters

303Writing REST clients

<T> ResponseEntity<T> postForEntity(URI url, Object request,
Class<T> responseType) throws RestClientException;

<T> ResponseEntity<T> postForEntity(String url, Object request,
Class<T> responseType, Object... uriVariables)
throws RestClientException;

<T> ResponseEntity<T> postForEntity(String url, Object request,
Class<T> responseType, Map<String, ?> uriVariables)
throws RestClientException;

So let’s say that, in addition to receiving the Spitter resource in return, you’d also
like to see the value of the Location header in the response. In that case you can call
postForEntity() like this:

RestTemplate rest = new RestTemplate();
ResponseEntity<Spitter> response = rest.postForEntity(

"http://localhost:8080/Spitter/spitters", spitter, Spitter.class);

Spitter spitter = response.getBody();
URI url = response.getHeaders().getLocation();

Just like the getForEntity() method, postForEntity() returns a Response-

Entity<T> object. From that object you can call getBody() to get the resource object
(a Spitter in this case). And the getHeaders() method gives you an HttpHeaders
from which you can access the various HTTP headers returned in the response. Here,
we’re calling the getLocation() to retrieve the Location header as a java.net.URI.

RECEIVING A RESOURCE LOCATION AFTER A POST REQUEST

The postForEntity() method is handy for receiving both the resource posted and
any response headers. But often you don’t need the resource to be sent back to you
(after all, you sent it to the server in the first place). If the value of the Location
header is all you really need to know, then it’s even easier to use RestTemplate’s post-
ForLocation() method.

 Like the other POST methods, postForLocation() sends a resource to the server in
the body of a POST request. But, instead of responding with that same resource object,
postForLocation() responds with the location of the newly created resource. It has
the following three method signatures:

URI postForLocation(String url, Object request, Object... uriVariables)
throws RestClientException;

URI postForLocation(
String url, Object request, Map<String, ?> uriVariables)
throws RestClientException;

URI postForLocation(URI url, Object request) throws RestClientException;

To demonstrate postForLocation(), let’s try POSTing a Spitter again. This time, we
want the resource’s URL in return:

public String postSpitter(Spitter spitter) {
RestTemplate rest = new RestTemplate();
return rest.postForLocation("http://localhost:8080/Spitter/spitters",

spitter).toString();

}

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters

304 CHAPTER 11 Giving Spring some REST

Here, we’re passing in the target URL as a String, along with the Spitter object to be
POSTed (there are no URL variables in this case). If, after creating the resource, the
server responds with the new resource URL in the response’s Location header, then
postForLocation() will return that URL as a String.

11.4.6 Exchanging resources

Up to this point, we’ve seen all manner of RestTemplate methods for GETting, PUT-
ting, DELETE-ing, and POSTing resources. Among those we saw two special methods,
getForEntity() and postForEntity(), that gave us the resulting resource wrapped
in a RequestEntity from which we could retrieve response headers and status codes.

 Being able to read headers from the response is useful. But what if we want to set
headers on the request sent to the server? That’s what RestTemplate’s exchange()
methods are good for.

 Like all of the other methods in RestTemplate, exchange() is overloaded into
three signature forms as shown here:

<T> ResponseEntity<T> exchange(URI url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType)
throws RestClientException;

<T> ResponseEntity<T> exchange(String url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType,
Object... uriVariables) throws RestClientException;

<T> ResponseEntity<T> exchange(String url, HttpMethod method,
HttpEntity<?> requestEntity, Class<T> responseType,
Map<String, ?> uriVariables) throws RestClientException;

As you can see, the three exchange() signatures are overloaded to match the same
pattern as the other RestTemplate methods. One takes a java.net.URI to identify the
target URL, whereas the other two take the URL in String form with URL variables.

 The exchange() method also takes an HttpMethod parameter to indicate the HTTP
verb that should be used. Depending on the value given to this parameter, the
exchange() method can perform the same jobs as any of the other RestTemplate
methods.

 For example, one way to retrieve a Spitter resource from the server is to use
RestTemplate’s getForEntity() method like this:

ResponseEntity<Spitter> response = rest.getForEntity(
"http://localhost:8080/Spitter/spitters/{spitter}",
Spitter.class, spitterId);

Spitter spitter = response.getBody();

As you can see here, exchange() is also up to the task:

ResponseEntity<Spitter> response = rest.exchange(
"http://localhost:8080/Spitter/spitters/{spitter}",
HttpMethod.GET, null, Spitter.class, spitterId);

Spitter spitter = response.getBody();
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters/{spitter
http://localhost:8080/Spitter/spitters/{spitter

305Writing REST clients

By passing in HttpMethod.GET as the HTTP verb, we’re asking exchange() to send a
GET request. The third argument is for sending a resource on the request, but since
this is a GET request, it can be null. The next argument indicates that we want the
response converted into a Spitter object. And the final argument is the value to place
into the {spitter} placeholder in the specified URL template.

 Used this way, the exchange() method is virtually identical to the previously used
getForEntity(). But unlike getForEntity()—or getForObject()—exchange() will
let us set headers on the request sent. Instead of passing null to exchange(), we’ll
pass in an HttpEntity created with the request headers we want.

 Without specifying the headers, exchange() will send the GET request for a Spitter
with the following headers:

GET /Spitter/spitters/habuma HTTP/1.1
Accept: application/xml, text/xml, application/*+xml, application/json
Content-Length: 0
User-Agent: Java/1.6.0_20
Host: localhost:8080
Connection: keep-alive

Take a look at the Accept header. It says that it can accept several different XML content
types as well as application/json. The leaves a lot of room for the server to decide
which format to send the resource back as. Suppose that we want to demand that the
server send the response back as JSON. In that case, we need to specify application
/json as the only value in the Accept header.

 Setting request headers is a simple matter of constructing the HttpEntity sent to
exchange() with a MultiValueMap loaded with the desired headers:

MultiValueMap<String, String> headers =
new LinkedMultiValueMap<String, String>();

headers.add("Accept", "application/json");
HttpEntity<Object> requestEntity = new HttpEntity<Object>(headers);

Here, we create a LinkedMultiValueMap and add an Accept header set to application
/json. Then we construct an HttpEntity (with a generic type of Object), passing the
MultiValueMap as a constructor argument. If this were a PUT or a POST request, we
would’ve also given the HttpEntity an object to send in the body of the request—for
a GET request, this isn’t necessary.

 Now we can call exchange() passing in the HttpEntity:

ResponseEntity<Spitter> response = rest.exchange(
"http://localhost:8080/Spitter/spitters/{spitter}",
HttpMethod.GET, requestEntity, Spitter.class, spitterId);

Spitter spitter = response.getBody();

On the surface, the results should be the same. We should receive the Spitter object
that we asked for. Under the surface, the request will be sent with the following headers:

GET /Spitter/spitters/habuma HTTP/1.1
Accept: application/json

Content-Length: 0

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://localhost:8080/Spitter/spitters/{spitter

306 CHAPTER 11 Giving Spring some REST

User-Agent: Java/1.6.0_20
Host: localhost:8080
Connection: keep-alive

And, assuming that the server can serialize the Spitter response into JSON, the
response body should be represented in JSON format.

 In this section we’ve seen how using the various methods that RestTemplate pro-
vides, you can write Java-based clients that interact with RESTful resources on the
server. But what if the client is browser-based? When a web browser is calling on REST
resources, there are some limitations to be accounted for—specifically the range of
HTTP methods supported in the browser. To wrap up this chapter, let’s see how Spring
can help overcome those limitations.

11.5 Submitting RESTful forms
We’ve seen how the four primary HTTP methods—GET, POST, PUT, and DELETE—define
the basic operations that can be performed on a resource. And by setting the method
attribute of the @RequestMapping annotation appropriately, we can cause
DispatcherServlet to direct requests for those HTTP verbs to specific controller
methods. Spring MVC can handle requests for any of the HTTP methods—assuming
the client sends the requests in the form of the desired HTTP method.

 The gotchas in that plan are HTML and the web browser. Non-browser clients, such
as those that use RestTemplate, should have no trouble sending requests to perform
any of the HTTP verbs. But HTML 4 only officially supports GET and POST in forms,
leaving PUT, DELETE, and all other HTTP methods in the cold. Even though HTML 5
and newer browsers will support all of the HTTP methods, you probably can’t count
on the users of your application to be using a modern browser.

 A common trick used to get around the shortcomings of HTML 4 and older brows-
ers is to masquerade a PUT or DELETE request in the form of a POST request. The way it
works is to submit a browser-pleasing POST request with a hidden field that carries the
name of the actual HTTP method. When the request arrives at the server, it’s rewritten
to be whatever type of request was specified in the hidden field.

 Spring supports POST masquerading through two features:

 Request transformation with HiddenHttpMethodFilter
 Hidden field rendering with the <sf:form> JSP tag

Let’s first look at how Spring’s <sf:form> tag can help render a hidden field for POST
masquerading.

11.5.1 Rendering hidden method fields in JSP

In section 7.4.1, we saw how to use Spring’s form-binding library to render HTML
forms. The core element of that JSP tag library is the <sf:form> tag. As you’ll recall,
that tag sets the content for the other form-binding tags, associating the rendered
form and its fields with a model attribute.
Licensed to Christian Cederquist <chrisman@kaus.dk>

307Submitting RESTful forms

 At that time, we used <sf:form> to define a form that was used to create a new
Spitter object. In that case, a POST request was appropriate, as POST is often used to
create new resources. But what if we wanted to update or delete a resource? In those
situations, a PUT or DELETE request seems more fitting.

 But as I’ve already mentioned, HTML’s <form> tag can’t be trusted to send any-
thing other than a GET or POST request. Though some newer browsers won’t have any
trouble with a <form> tag whose method attribute is set to PUT or DELETE, accounting
for older browsers will require sneaking the request to the server as a POST.

 Within an HTML form, the key to masquerading a PUT or DELETE request as a POST
is to create a form whose method is POST, along with a hidden field. For example, the
following snippet of HTML shows how you might create a form that submits a DELETE
request:

<form method="post">
<input type="hidden" name="_method" value="delete"/>

...

</form>

As you can see, it’s not a big deal to create a form with the hidden field that specifies
the real HTTP method. All you need to do is to add a hidden field with a name that
the form and the server can agree upon, and set that field to the desired HTTP
method name. When this form is submitted, a POST request will be sent to the server.
Presumably, the server will interpret the _method field to be the actual type of method
to process (we’ll see how to configure the server to do that in a moment).

 When using Spring’s form-binding library the <sf:form> can make this even eas-
ier. You set the method attribute to the desired HTTP method and <sf:form> will take
care of the hidden field for you:

<sf:form method="delete" modelAttribute="spitter">
...

</sf:form>

When <sf:form> is rendered into HTML, the result will be quite similar to the HTML
<form> shown before. Using <sf:form> frees you from having to deal with the hidden
field, letting you work with PUT and DELETE forms in a more natural way, as if they were
supported by the browser.

 The <sf:form> tag only tells the browser’s side of the POST-masquerade story. How
does the server know what to do with those POST requests that should be handled as
PUT and DELETE requests?

11.5.2 Unmasking the real request

When the browser submits a PUT or DELETE request from a form rendered by
<sf:form>, it’s in every way a POST request. It travels across the network as a POST
request, arrives at the server as a POST request, and unless something on the server
bothers to look at the hidden _method field, it’ll be processed as a POST request.
Licensed to Christian Cederquist <chrisman@kaus.dk>

308 CHAPTER 11 Giving Spring some REST

 Meanwhile, our controller’s handler methods are annotated with @Request-
Mapping, ready to process PUT and DELETE requests. Somehow, this HTTP method mis-
match must be resolved before DispatcherServlet tries to find a controller handler
method to route them to. That’s the job that Spring’s HiddenHttpMethodFilter was
born to do.

 HiddenHttpMethodFilter is a servlet filter and is configured in web.xml:

<filter>
<filter-name>httpMethodFilter</filter-name>
<filter-class>

org.springframework.web.filter.HiddenHttpMethodFilter
</filter-class>

</filter>
...
<filter-mapping>

<filter-name>httpMethodFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Here, we’ve mapped HiddenHttpMethodFilter to the /* URL pattern. This is so
requests for all URLs can pass through HiddenHttpMethodFilter on their way to
DispatcherServlet.

 As illustrated in figure 11.3, HiddenHttpMethodFilter transforms PUT and DELETE
requests that are masquerading as POST requests into their true form. When a POST
request arrives at the server, HiddenHttpMethodFilter sees that the _hidden field pre-
scribes a different request type and rewrites it in its destined HTTP method type.

 By the time DispatcherServlet and your controller methods see the request, it’ll
have been transformed. Nobody will be the wiser that the request actually started its
life as a POST request. Between <sf:form>’s automatic rendering of the hidden field
and HiddenHttpMethodFilter’s ability to transform requests based on the value of
that hidden field, your JSP forms and your Spring MVC controllers needn’t concern
themselves with how the browser-unsupported HTTP methods are handled.

 Before we leave the topic of POST-masquerading requests, I should remind you that
this technique exists only as a workaround for lack of support for PUT and DELETE
requests in HTML 4 and older browsers. Requests sent from non-browser clients,

POST
_method=DELETE

DELETE DELETE

H
id

de
nH

tt
pM

et
ho

dF
ilt

er

Dispatcher
servlet

Spittle
controller

Figure 11.3 HiddenHttpMethodFilter
transforms POST-masquerading PUT and
DELETE requests into their true form.
Licensed to Christian Cederquist <chrisman@kaus.dk>

309Summary

including those sent from RestTemplate, can be sent as whatever HTTP verb is appro-
priate and don’t need to be carried along in a POST request. Thus, if you won’t be han-
dling any PUT and DELETE requests from a browser form, then you won’t need the
services of HiddenHttpMethodFilter.

11.6 Summary
RESTful architecture leverages web standards to integrate applications, keeping the
interactions simple and natural. Resources in a system are identified by URLs, manipu-
lated with HTTP methods, and represented in one or more forms suitable for the client.

 In this chapter, we’ve seen how to write Spring MVC controllers that respond to
requests to manipulate RESTful resources. By utilizing parameterized URL patterns
and associating controller handler methods with specific HTTP methods, controllers
can respond to GET, POST, PUT, and DELETE requests for the resources in an application.

 In response to those requests, Spring can represent the data behind those
resources in a format that’s best for the client. For view-based responses, Content-
NegotiatingViewResolver can select the best view produced from several view resolv-
ers to satisfy the client’s desired content type. Or a controller handler method can be
annotated with @ResponseBody to completely bypass view resolution and have one of
several message converters convert the returned value into a response for the client.

 On the client side of REST conversations, Spring provides RestTemplate, a
template-based approach to consuming RESTful resources from Java. And when the
client is browser-based, Spring’s HiddenHttpMethodFilter can make up for the lack of
support for PUT and DELETE methods in web browsers.

 Although the RESTful interactions we’ve seen in this chapter and the RPC conver-
sations that we covered in the previous chapter are quite different, they share a com-
mon trait: they’re synchronous in nature. When the client sends a message, the server
is expected to be ready to answer immediately. In contrast, asynchronous communica-
tion allows the server to react to a message as opportunity allows and not necessarily
right away. In the next chapter, we’re going to see how to use Spring to integrate
applications asynchronously.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Messaging in Spring
It’s 4:55 p.m. on Friday. You’re minutes away from starting a much-anticipated vaca-
tion. You have just enough time to drive to the airport and catch your flight. But
before you pack up and head out, you need to be sure that your boss and col-
leagues know the status of the work you’ve been doing so that they can pick up
where you left off on Monday. Unfortunately, some of your colleagues have already
skipped out for an early weekend departure… and your boss is tied up in a meet-
ing. What do you do?

 You could call your boss’s cell phone… but it’s not necessary to interrupt his
meeting for a mere status report. Maybe you could stick around and wait until he
returns from the meeting. But it’s anyone’s guess how long the meeting will last
and you have a plane to catch. Perhaps you could leave a sticky note on his moni-
tor… right next to 100 other sticky notes that it’ll blend in with.

 The most practical way to communicate your status and still catch your plane is
to send a quick email to your boss and your colleagues, detailing your progress and

This chapter covers
 Introduction to the Java Message Service (JMS)

 Sending and receiving asynchronous messages

 Message-driven POJOs
310

promising to send a postcard. You don’t know where they are or when they’ll read

Licensed to Christian Cederquist <chrisman@kaus.dk>

311A brief introduction to JMS

the email, but you do know that they’ll eventually return to their desks and read it.
Meanwhile, you’re on your way to the airport.

 Sometimes it’s necessary to talk to someone directly. If you injure yourself and
need an ambulance, you’re probably going to pick up the phone—emailing the hospi-
tal just won’t do. But often, sending a message is sufficient and offers some advantages
over direct communication, such as letting you get on with your vacation.

 A couple of chapters back, you saw how to use RMI, Hessian, Burlap, HTTP invoker,
and web services to enable communication between applications. All of these commu-
nication mechanisms employ synchronous communication in which a client applica-
tion directly contacts a remote service and waits for the remote procedure to
complete before continuing.

 Synchronous communication has its place, but it’s not the only style of inter-
application communication available to developers. Asynchronous messaging is a way
of indirectly sending messages from one application to another without waiting for a
response. Asynchronous messaging has several advantages over synchronous messag-
ing, as you’ll soon see.

 The Java Message Service (JMS) is a standard API for asynchronous messaging. In
this chapter, we’ll look at how Spring simplifies sending and receiving messages with
JMS. In addition to basic sending and receiving of messages, we’ll look at Spring’s sup-
port for message-driven POJOs, a way to receive messages that resembles EJB’s
message-driven beans (MDBs).

12.1 A brief introduction to JMS
Much like the remoting mechanisms and REST interfaces we’ve covered so far in this
part of the book, JMS is all about applications communicating with one another. JMS dif-
fers from those other mechanisms in how information is transferred between systems.

 Remoting options such as RMI and Hessian/Burlap are synchronous. As illustrated
in figure 12.1, when the client invokes a remote method, the client must wait for the
method to complete before moving on.
Even if the remote method doesn’t return
anything back to the client, the client will
be put on hold until the service is done.

 JMS, on the other hand, provides
asynchronous communication between
applications. When messages are sent
asynchronously, as shown in figure 12.2,
the client doesn’t have to wait for the
service to process the message or even
for the message to be delivered. The cli-
ent sends its message and then moves
along with the assumption that the ser-
vice will eventually receive and process
the message.

Program
flow

call

return

The client
waits

Cl
ie

nt

Se
rv

ic
e

Figure 12.1 When communicating
synchronously, the client must wait for the
operation to complete.
Licensed to Christian Cederquist <chrisman@kaus.dk>

312 CHAPTER 12 Messaging in Spring

Asynchronous communication through
JMS offers several advantages over syn-
chronous communication. We’ll take a
closer look at these advantages in a
moment. But first, let’s see how messages
are sent using JMS.

12.1.1 Architecting JMS

Most of us take the postal service for
granted. Millions of times every day, peo-
ple place letters, cards, and packages in
the hands of postal workers, trusting that
they’ll get to the desired destination. The
world’s too big of a place for us to hand-
deliver these things ourselves, so we rely
on the postal system to handle it for us. We address them, place the necessary postage
on them, and then drop them in the mail to be delivered without giving a second
thought to how they might get there.

 The key to the postal service is indirection. When Grandma’s birthday comes
around, it’d be inconvenient if we had to deliver a card directly to her. Depending on
where she lives, we’d have to set aside anywhere from a few hours to a few days to
deliver a birthday card. Fortunately, the postal service will deliver the card to her while
we go about our lives.

 Similarly, indirection is the key to JMS. When one application sends information to
another through JMS, there’s no direct link between the two applications. Instead, the
sending application places the message in the hands of a service that will ensure deliv-
ery to the receiving application.

 There are two main actors in JMS: message brokers and destinations.
 When an application sends a message, it hands it off to a message broker. A mes-

sage broker is JMS’s analog of the post office. The message broker will ensure that the
message is delivered to the specified destination, leaving the sender free to go about
other business.

 When you send a letter through the mail, it’s important to address it so that the
postal service knows where it should be delivered. Likewise, in JMS, messages are
addressed with a destination. Destinations are like mailboxes where the messages are
placed until someone comes to pick them up.

 But unlike mail addresses, which may indicate a specific person or street address,
destinations are less specific. Destinations are only concerned about where the message
will be picked up—not who will pick them up. In this way, destinations are like sending
a letter addressed, “To current resident.”

 In JMS, there are two types of destination: queues and topics. Each of these is asso-
ciated with a specific messaging model, either point-to-point (for queues) or publish-

Program
flow

The client
doesn’t have

to wait

Cl
ie

nt

Se
rv

ic
e

Figure 12.2 Asynchronous communication is a
no-wait form of communication.
subscribe (for topics).

Licensed to Christian Cederquist <chrisman@kaus.dk>

313A brief introduction to JMS

POINT-TO-POINT MESSAGING

In the point-to-point model, each message has exactly one sender and one receiver, as
illustrated in figure 12.3. When the message broker is given a message, it places the
message in a queue. When a receiver comes along and asks for the next message in
the queue, the message is pulled from the queue and delivered to the receiver.
Because the message is removed from the queue as it’s delivered, it’s guaranteed that
the message will be delivered to only one receiver.

 Although each message in a message queue is delivered to only one receiver, this
doesn’t imply that only one receiver is pulling messages from the queue. In fact, it’s
likely that several receivers are processing messages from the queue. But they’ll each
be given their own messages to process.

 This is analogous to waiting in line at the bank. As you wait, you may notice that
multiple tellers are available to help you with your financial transaction. After each
customer is helped and a teller is freed up, she will call for the next person in line.
When it’s your turn at the front of the line, you’ll be called to the counter and helped
by one teller. The other tellers will help other banking customers.

 Another observation to be made at the bank is that when you get in line, you prob-
ably won’t know which teller will eventually help you. You could count how many peo-
ple are in line, match that up with the number of available tellers, note which teller is
fastest, and then come up with a guess as to which teller will call you to their window.
But chances are you’ll be wrong and end up at a different teller’s window.

 Likewise, in JMS, if multiple receivers are listening to a queue, there’s no way of
knowing which one will actually process a specific message. This uncertainty is a good
thing because it enables an application to scale up message processing by simply add-
ing another listener to the queue.

PUBLISH-SUBSCRIBE MESSAGING

In the publish-subscribe messaging model, messages are sent to a topic. As with
queues, many receivers may be listening to a topic. But unlike queues, where a mes-
sage is delivered to exactly one receiver, all subscribers to a topic will receive a copy of
the message, as shown in figure 12.4.

 As you may have guessed from its name, the publish-subscribe message model is
much like the model of a magazine publisher and its subscribers. The magazine (a
message) is published, sent to the postal service, and then all subscribers receive their
own copy.

Receiver
Message
sender Queue

Figure 12.3 A message queue decouples a message sender from the message
receiver. Though a queue may have several receivers, each message is picked
up by exactly one receiver.
Licensed to Christian Cederquist <chrisman@kaus.dk>

314 CHAPTER 12 Messaging in Spring

The magazine analogy breaks down when you realize that in JMS, the publisher has no
idea of who its subscribers are. The publisher only knows that its message will be pub-
lished to a particular topic—not who’s listening to that topic. This also implies that
the publisher has no idea of how the message will be processed.

 Now that we’ve covered the basics of JMS, let’s see how JMS messaging compares to
synchronous RPC.

12.1.2 Assessing the benefits of JMS

Even though it’s intuitive and simple to set up, synchronous communication imposes
several limitations on the client of a remote service. Most significantly:

 Synchronous communication implies waiting. When a client invokes a method
on a remote service, it must wait for the remote method to complete before the
client can continue. If the client communicates frequently with the remote ser-
vice and/or the remote service is slow to respond, this could negatively impact
performance of the client application.

 The client is coupled to the service through the service’s interface. If the inter-
face of the service changes, all of the service’s clients will also need to change
accordingly.

 The client is coupled to the service’s location. A client must be configured with
the service’s network location so that it knows how to contact the service. If the
network topology changes, the client will need to be reconfigured with the new
location.

 The client is coupled to the service’s availability. If the service becomes unavail-
able, the client is effectively crippled.

Though synchronous communication has its place, these shortcomings should be
taken into account when deciding what communication mechanism is a best fit for
your application’s needs. If these constraints are a concern for you, you may want to

Message
publisher Topic

Subscriber

Subscriber

Subscriber

Figure 12.4 Like queues, topics decouple message senders from message receivers.
Unlike queues, a topic message could be delivered to many topic subscribers.
consider how asynchronous communication with JMS addresses these issues.

Licensed to Christian Cederquist <chrisman@kaus.dk>

315A brief introduction to JMS

NO WAITING

When a message is sent with JMS, the client doesn’t need to wait around for it to be pro-
cessed or even delivered. The client drops the message off with the message broker and
moves along with faith that the message will make it to the appropriate destination.

 Since it doesn’t have to wait, the client will be freed up to perform other activities.
With all of this free time, the client’s performance can be dramatically improved.

MESSAGE ORIENTATION AND DECOUPLING

Unlike RPC communication that’s typically oriented around a method call, messages
sent with JMS are data-centric. This means that the client isn’t fixed to a specific
method signature. Any queue or topic subscriber that can process the data sent by
the client can process the message. The client doesn’t need to be aware of any service
specifics.

LOCATION INDEPENDENCE

Synchronous RPC services are typically located by their network address. The implica-
tion of this is that clients aren’t resilient to changes in network topology. If a service’s
IP address changes or if it’s configured to listen on a different port, the client must be
changed accordingly or the client will be unable to access the service.

 In contrast, JMS clients have no idea who will process their messages or where the
service is located. The client only knows the queue or topic through which the mes-
sages will be sent. As a result, it doesn’t matter where the service is located, as long as
it can retrieve messages from the queue or topic.

 In the point-to-point model, it’s possible to take advantage of location indepen-
dence to create a cluster of services. If the client is unaware of the service’s location
and if the service’s only requirement is that it must be able to access the message bro-
ker, there’s no reason why multiple services can’t be configured to pull messages from
the same queue. If the service is being overburdened and falling behind in its process-
ing, all we need to do is turn up a few more instances of the service to listen to the
same queue.

 Location independence takes on another interesting side effect in the publish-
subscribe model. Multiple services could all subscribe to a single topic, receiving
duplicate copies of the same message. But each service could process that message dif-
ferently. For example, let’s say you have a set of services which together process a mes-
sage that details the new hire of an employee. One service might add the employee to
the payroll system, another to the HR portal, and yet another makes sure that the
employee is given access to the systems they’ll need to do their job. Each service works
independently on the same data that they each received from a topic.

GUARANTEED DELIVERY

In order for a client to communicate with a synchronous service, the service must be
listening at the IP address and port specified. If the service were to go down or other-
wise become unavailable, the client wouldn’t be able to proceed.

 But when sending messages with JMS, the client can rest assured that its messages
will be delivered. Even if the service is unavailable when a message is sent, it’ll be

stored until the service is available again.

Licensed to Christian Cederquist <chrisman@kaus.dk>

316 CHAPTER 12 Messaging in Spring

 Now that you have a feel for the basics of JMS and asynchronous messaging, let’s set
up a JMS message broker that we’ll use in our examples. Although you’re free to use
any JMS message broker you’d like, we’ll use the popular ActiveMQ message broker.

12.2 Setting up a message broker in Spring
ActiveMQ is a great open source message broker and a wonderful option for asynchro-
nous messaging with JMS. As I’m writing this, the current version of ActiveMQ is 5.4.2.
To get started with ActiveMQ, you’ll need to download the binary distribution from
http://activemq.apache.org. Once you’ve downloaded ActiveMQ, unzip it to your
local hard drive. In the lib directory of the unzipped distribution, you’ll find activemq-
core-5.4.2.jar. This is the JAR file you’ll need to add to the application’s classpath to be
able to use ActiveMQ’s API.

 Under the bin directory, you’ll find several subdirectories for various operating sys-
tems. Within those, you’ll find scripts that you can use to start ActiveMQ. For example,
to start ActiveMQ on Mac OS X, run activemq start from the bin/macosx directory.
Within moments ActiveMQ will be ready and waiting to broker your messages.

12.2.1 Creating a connection factory

Throughout this chapter, we’re going to see different ways that Spring can be used to
both send and receive messages through JMS. In all cases, we’ll need a JMS connection
factory to be able to send messages through the message broker. Since we’re using
ActiveMQ as our message broker, we’ll have to configure the JMS connection factory so
that it knows how to connect to ActiveMQ. ActiveMQConnectionFactory is the JMS
connection factory that comes with ActiveMQ, and it’s configured in Spring like this:

<bean id="connectionFactory"
class="org.apache.activemq.spring.ActiveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Optionally, since we know that we’re dealing with ActiveMQ, we can use ActiveMQ’s
own Spring configuration namespace (available with all versions of ActiveMQ since
version 4.1) to declare the connection factory. First, be sure to declare the amq
namespace in the Spring configuration XML file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:amq="http://activemq.apache.org/schema/core"
xsi:schemaLocation="http://activemq.apache.org/schema/core

http://activemq.apache.org/schema/core/activemq-core-5.5.0.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

...
</beans>
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/jms/spring-jms-3.0.xsd
http://www.springframework.org/schema/jms
http://activemq.apache.org/schema/core/activemq-core-5.5.0.xsd
http:http://activemq.apache.org

317Setting up a message broker in Spring

Then we can use the <amq:connectionFactory> element to declare the connection
factory:

<amq:connectionFactory id="connectionFactory"
brokerURL="tcp://localhost:61616"/>

Note that the <amq:connectionFactory> element is clearly specific to ActiveMQ. If
you’re using a different message broker implementation, there may or may not be a
Spring configuration namespace available. If not, then you’ll need to wire the connec-
tion factory as a <bean>.

 Later in this chapter we’ll use this connectionFactory bean a lot. But for now, suf-
fice it to say that the brokerURL tells the connection factory where the message broker
is located. In this case, the URL given to brokerURL tells the connection factory to con-
nect to ActiveMQ on the local machine at port 61616 (which is the port that ActiveMQ
listens to by default).

12.2.2 Declaring an ActiveMQ message destination

In addition to a connection factory, we’ll need a destination for the messages to be
passed along to. The destination can be either a queue or a topic, depending on the
needs of the application.

 Regardless of whether you’re using a queue or a topic, you must configure the des-
tination bean in Spring using a message broker–specific implementation class. For
example, the following <bean> declaration declares an ActiveMQ queue:

<bean id="queue" class="org.apache.activemq.command.ActiveMQQueue">
<constructor-arg value="spitter.queue"/>

</bean>

Similarly, the following <bean> declares a topic for ActiveMQ:

<bean id="topic" class="org.apache.activemq.command.ActiveMQTopic">
<constructor-arg value="spitter.topic"/>

</bean>

In either case, the <constructor-arg> specifies the name of the queue, as it’s known
to the message broker—spitter.topic in this case.

 As with the connection factory, the ActiveMQ namespace offers an alternative way
to declare queues and topics. For queues, we could also use the <amq:queue> element:

<amq:queue id="queue" physicalName="spitter.queue" />

Or, if it’s a JMS topic that’s in order, use the <amq:topic>:

<amq:topic id="topic" physicalName="spitter.topic" />

Either way, the physicalName attribute sets the name of the message channel.
 At this point we’ve seen how to declare the essential components of working with

JMS, whether you’re sending or receiving messages. Now we’re ready to start sending
and receiving messages. For that, we’ll use Spring’s JmsTemplate, the centerpiece of
Spring’s JMS support. But first, let’s gain an appreciation for what JmsTemplate pro-

vides by looking at what JMS is like without JmsTemplate.

Licensed to Christian Cederquist <chrisman@kaus.dk>

318 CHAPTER 12 Messaging in Spring

12.3 Using Spring’s JMS template
As you’ve seen, JMS gives Java developers a standard API for interacting with message
brokers and for sending and receiving messages. Furthermore, virtually every message
broker implementation out there supports JMS. So there’s no reason to learn a propri-
etary messaging API for every message broker you deal with.

 But though JMS offers a universal interface to all message brokers, its convenience
comes at a cost. Sending and receiving messages with JMS isn’t a simple matter of lick-
ing a stamp and placing it on an envelope. As you’ll see, JMS demands that you also
(figuratively) fuel up the mail carrier’s truck.

12.3.1 Tackling runaway JMS code

In section 5.3.1 I showed you how conventional JDBC code can be an unwieldy mess of
code to handle connections, statements, result sets, and exceptions. Unfortunately,
conventional JMS follows a similar model, as you’ll observe in the following listing.

ConnectionFactory cf =
new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection conn = null;
Session session = null;
try {

conn = cf.createConnection();
session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination destination = new ActiveMQQueue("spitter.queue");
MessageProducer producer = session.createProducer(destination);
TextMessage message = session.createTextMessage();

message.setText("Hello world!");
producer.send(message);

} catch (JMSException e) {
// handle exception?

} finally {
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch (JMSException ex) {
}

}

At the risk of sounding repetitive—holy runaway code, Batman! As with the JDBC
example, there are almost 20 lines of code here just to send a simple “Hello world!”
message. Only a few of those actually send the message; the rest are merely setting the
stage for sending the message.

 It isn’t much better on the receiving end, as you can see in the following listing.

Listing 12.1 Sending a message using conventional (non-Spring) JMS

Send message
Licensed to Christian Cederquist <chrisman@kaus.dk>

319Using Spring’s JMS template

ConnectionFactory cf =
new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection conn = null;
Session session = null;
try {

conn = cf.createConnection();
conn.start();

 session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
Destination destination =

new ActiveMQQueue("spitter.queue");
MessageConsumer consumer = session.createConsumer(destination);
Message message = consumer.receive();
TextMessage textMessage = (TextMessage) message;
System.out.println("GOT A MESSAGE: " + textMessage.getText());
conn.start();

} catch (JMSException e) {
// handle exception?

} finally {
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch (JMSException ex) {
}

}

Again, just as in listing 12.1, that’s a lot of code to do something so darn simple. If you
take a line-by-line comparison, you’ll find that they’re almost identical. And if you
were to look at a thousand other JMS examples, you’d find them all to be strikingly
similar. Some may retrieve their connection factories from JNDI and some may use a
topic instead of a queue. Nevertheless, they all follow roughly the same pattern.

 A consequence of all of this boilerplate code is that you’ll find that you repeat
yourself every time you work with JMS. Worse still, you’ll find yourself repeating other
developers’ JMS code.

 We’ve already seen in chapter 5 how Spring’s JdbcTemplate handles runaway JDBC
boilerplate. Now let’s look at how Spring’s JmsTemplate can do the same thing for JMS
boilerplate code.

12.3.2 Working with JMS templates

JmsTemplate is Spring’s answer to verbose and repetitive JMS code. JmsTemplate takes
care of creating a connection, obtaining a session, and ultimately sending or receiving
messages. This leaves you to focus your development efforts on constructing the mes-
sage to send or processing the messages that are received.

 What’s more, JmsTemplate can handle any clumsy JMSException that may be

Listing 12.2 Receiving a message using conventional (non-Spring) JMS
thrown along the way. If a JMSException is thrown in the course of working with

Licensed to Christian Cederquist <chrisman@kaus.dk>

320 CHAPTER 12 Messaging in Spring

JmsTemplate, JmsTemplate will catch it and rethrow it as one of the unchecked sub-
classes of Spring’s own JmsException.

 Table 12.1 shows how Spring maps standard JMSExceptions to Spring’s unchecked
JmsExceptions.

 In fairness to the JMS API, JMSException does come with a rich and descriptive set
of subclasses that give you a better sense of what went wrong. Nevertheless, all of these
subclasses of JMSException are checked exceptions and thus must be caught. Jms-
Template will attend to that for you by catching those exceptions and rethrowing an
appropriate unchecked subclass of JmsException.

Table 12.1 Spring’s JmsTemplate catches standard JMSExceptions and rethrows them as
unchecked subclasses of Spring’s own JmsException.

Spring (org.springframework.jms.*) Standard JMS (javax.jms.*)

DestinationResolutionException Spring-specific—thrown when Spring can’t
resolve a destination name

IllegalStateException IllegalStateException

InvalidClientIDException InvalidClientIDException

InvalidDestinationException InvalidDestinationException

InvalidSelectorException InvalidSelectorException

JmsSecurityException JmsSecurityException

ListenerExecutionFailedException Spring-specific—thrown when execution of a
listener method fails

MessageConversionException Spring-specific—thrown when message con-
version fails

MessageEOFException MessageEOFException

MessageFormatException MessageFormatException

MessageNotReadableException MessageNotReadableException

MessageNotWriteableException MessageNotWriteableException

ResourceAllocationException ResourceAllocationException

SynchedLocalTransactionFailedException Spring-specific—thrown when a synchronized
local transaction fails to complete

TransactionInProgressException TransactionInProgressException

TransactionRolledBackException TransactionRolledBackException

UncategorizedJmsException Spring-specific—thrown when no other excep-
tion applies
Licensed to Christian Cederquist <chrisman@kaus.dk>

321Using Spring’s JMS template

WIRING A JMS TEMPLATE

To use JmsTemplate, we’ll need to declare it as a bean in the Spring configuration file.
The following XML should do the trick:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate">

<property name="connectionFactory" ref="connectionFactory" />
</bean>

Because JmsTemplate needs to know how to get connections to the message broker,
we must set the connectionFactory property with a reference to the bean that imple-
ments JMS’s ConnectionFactory interface. Here, we’ve wired it with a reference to the
connectionFactory bean that we declared earlier in section 12.2.1.

 That’s all you need to do to configure JmsTemplate—it’s now ready to go. Let’s
start sending messages!

SENDING MESSAGES

One of the features we’d like to build into the Spitter application is the option of alert-
ing (perhaps by email) other users whenever a spittle has been created. We could build
that feature directly into the application at the point where a spittle is added. But fig-
uring out who to send alerts to and actually sending those alerts may take a while and
it could hurt the perceived performance of the application. When a new spittle is
added, we want the application to be snappy and respond quickly with a response.

 Rather than taking the time to send those messages at the moment when the spit-
tle is added, it makes more sense to queue up that work and deal with it later, after the
response has gone back to the user. The time it takes to send a message to a message
queue or a topic is negligible, especially compared to the time it may take to send the
alerts to other users.

 To support sending spittle alerts asynchronously with the creation of spittles, let’s
introduce AlertService to the Spittle application:

package com.habuma.spitter.alerts;
import com.habuma.spitter.domain.Spittle;

public interface AlertService {
void sendSpittleAlert(Spittle spittle);

A tale of two JmsTemplates
Spring actually comes with two JMS template classes: JmsTemplate and
JmsTemplate102. JmsTemplate102 is a special version of JmsTemplate for JMS
1.0.2 providers. In JMS 1.0.2, topics and queues are treated as completely different
concepts known as domains. In JMS 1.1+, topics and queues are unified under a
domain-independent API. Because topics and queues are treated so differently in
JMS 1.0.2, there has to be a special JmsTemplate102 for interacting with older JMS
implementations. In this chapter, we’ll assume a modern JMS provider and therefore
will focus our attention on JmsTemplate.
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

322 CHAPTER 12 Messaging in Spring

As you can see, AlertService is a interface that defines a single operation, send-
SpittleAlert(). AlertServiceImpl is an implementation of the AlertService inter-
face that uses JmsTemplate to send Spittle objects to a message queue to be
processed at some later time.

package com.habuma.spitter.alerts;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;

import com.habuma.spitter.domain.Spittle;

public class AlertServiceImpl implements AlertService {
public void sendSpittleAlert(final Spittle spittle) {

jmsTemplate.send(
"spittle.alert.queue",
new MessageCreator() {

public Message createMessage(Session session)
throws JMSException {

return session.createObjectMessage(spittle);
}

}
);

}

@Autowired
JmsTemplate jmsTemplate;

}

The first parameter to the JmsTemplate’s send() method is the name of the JMS desti-
nation that the message will be sent to. When the send() method is called, Jms-
Template will deal with obtaining a JMS connection and session and will send the
message on behalf of the sender (see figure 12.5).

 As for the message itself, it’s constructed using a MessageCreator, implemented
here as an anonymous inner class. In MessageCreator’s createMessage() method, we
simply ask for an object message from the session, giving it the Spittle object to build
the object message from.

Listing 12.3 Sending a Spittle using JmsTemplate

Sends message
Specifies destination

Creates message

Inject JMS
template

Message
sender Queue/Topic

send()
JmsTemplate

Figure 12.5 JmsTemplate deals with the complexities of sending a message on
behalf of the sender.
Licensed to Christian Cederquist <chrisman@kaus.dk>

323Using Spring’s JMS template

And that’s it! Note that the sendSpittleAlert() method is focused entirely on assem-
bling and sending a message. There’s no connection or session management code;
JmsTemplate handles all of that for us. And there’s no need to catch JMSException;
JmsTemplate will catch any JMSException that’s thrown and then rethrow it as one of
Spring’s unchecked exceptions from table 12.1.

SETTING A DEFAULT DESTINATION

In listing 12.3, we explicitly specified a specific destination that the spittle message
would be sent to in the send() method. That form of send() method comes in handy
when we want to programmatically choose a destination. But in the case of Alert-
ServiceImpl, we’ll always be sending the spittle message to the same destination, so
the benefits of that form of send() aren’t as clear.

 Instead of explicitly specifying a destination each time we send a message, we
could opt for wiring a default destination into JmsTemplate:

<bean id="jmsTemplate"
class="org.springframework.jms.core.JmsTemplate">

<property name="connectionFactory" ref="connectionFactory" />
<property name="defaultDestinationName"

value="spittle.alert.queue"/>
</bean>

Now the call to JmsTemplate’s send() method can be simplified slightly by removing
the first parameter:

jmsTemplate.send(
new MessageCreator() {
...
}

);

This form of the send() method only takes a MessageCreator. There’s no need to
specify a destination because the default destination is the one we want to send mes-
sages to.

CONSUMING MESSAGES

Now you’ve seen how to send a message using JmsTemplate. But what if you’re on the
receiving end? Can JmsTemplate be used to receive messages too?

 Yes, it can. In fact, it’s even easier to receive messages with JmsTemplate. All you
need to do is call JmsTemplate’s receive() method, as shown.

public Spittle getAlert() {
try {

ObjectMessage receivedMessage =
(ObjectMessage) jmsTemplate.receive();

return (Spittle) receivedMessage.getObject();

Listing 12.4 Receiving a message using JmsTemplate

Receive message

Get object

} catch (JMSException jmsException) {

Licensed to Christian Cederquist <chrisman@kaus.dk>

324 CHAPTER 12 Messaging in Spring

throw JmsUtils.convertJmsAccessException(jmsException);
}

}

When the JmsTemplate’s receive() method is called, it’ll attempt to retrieve a mes-
sage from the message broker. If no message is available, the receive() method will
wait until a message becomes available. This interaction is illustrated in figure 12.6.

 Since we know that the spittle message was sent as an object message, it can be cast
to ObjectMessage upon arrival. After that, we call getObject() to extract the Spittle
object from the ObjectMessage and return it.

 The one gotcha here is that we have to do something about the JMSException that
may be thrown. As I already mentioned, JmsTemplate is good about handling any
checked JMSExceptions that are thrown and then rethrowing them as one of Spring’s
unchecked JmsExceptions. But that’s only applicable when calling one of Jms-
Template’s methods. JmsTemplate can’t do much about the JMSException that may
be thrown by the call to ObjectMessage’s getObject() method.

 Therefore, we must either catch that JMSException or declare that the method
throws it. In keeping with Spring’s philosophy of avoiding checked exceptions, we
don’t want to let the JMSException escape this method, so we’ll catch it instead. In the
catch block, we can use the convertJmsAccessException() method from Spring’s
JmsUtils class to convert the checked JMSException to an unchecked JmsException.
This is effectively the same thing that JmsTemplate does for us in other cases.

 The big downside of consuming messages with JmsTemplate is that the receive()
method is synchronous. This means that the receiver must wait patiently for the mes-
sage to arrive, as the receive() message will block until a message is available (or
until a timeout condition occurs). Doesn’t it seem odd to synchronously consume a
message that was asynchronously sent?

 That’s where message-driven POJOs come in handy. Let’s see how to receive mes-
sages asynchronously using components that react to messages rather than waiting on
them.

 The big downside of consuming messages with JmsTemplate is that the receive()
method is synchronous. This means that the receiver must wait patiently for the mes-
sage to arrive, as the receive() method will block until a message is available (or until
a timeout condition occurs). Doesn’t it seem odd to synchronously consume a mes-
sage that was asynchronously sent?

Throw converted exception

Queue/Topic JmsTemplate
receive() Message

receiver

Figure 12.6 Receiving messages from a topic or queue using JmsTemplate is as
simple as calling the receive() method. JmsTemplate takes care of the rest.
Licensed to Christian Cederquist <chrisman@kaus.dk>

325Creating message-driven POJOs

12.4 Creating message-driven POJOs
During one summer in college, I had the privilege of working in Yellowstone National
Park. The job wasn’t one of the high-profile jobs like park ranger or the guy who turns
Old Faithful on and off. Instead, I held a position in housekeeping at Old Faithful
Inn, changing sheets, cleaning bathrooms, and vacuuming floors. Not glamorous, but
at least I was working in one of the most beautiful places on Earth.

 Every day after work, I’d head over to the local post office to see if I had any mail. I
was away from home for several weeks, so it was nice to receive a letter or card from
my friends back at school. I didn’t have my own post box, so I’d walk up and ask the
man sitting on the stool behind the counter if I had received any mail. That’s when
the wait would begin.

 You see, the man behind the counter was approximately 195 years old. And like
most people that age he had a difficult time getting around. He’d drag his keister off
the stool, slowly scoot his feet across the floor, and then disappear behind a partition.
After a few moments, he’d emerge, shuffle his way back to the counter, and lift himself
back up onto the stool. Then he’d look at me and say, “No mail today.”

 JmsTemplate’s receive() method is a lot like that aged postal employee. When
you call receive(), it goes away and looks for a message in the queue or topic and
doesn’t return until a message arrives or until the timeout has passed. Meanwhile,
your application is sitting there doing nothing, waiting to see if there’s a message.
Wouldn’t it be better if your application could go about its business and be notified
when a message arrives?

 One of the highlights of the EJB 2 specification was the inclusion of the message-
driven bean (MDB). MDBs are EJBs that process messages asynchronously. In other
words, MDBs react to messages in a JMS destination as events and respond to those
events. This is in contrast to synchronous message receivers, which block until a mes-
sage is available.

 MDBs were a bright spot in the EJB landscape. Even many of EJB’s most rabid
detractors would concede that MDBs were an elegant way of handling messages. The
only blemish to be found in EJB 2 MDBs was that they had to implement javax
.ejb.MessageDrivenBean. In doing so, they also had to implement a few EJB lifecycle
callback methods. Put simply, EJB 2 MDBs were very un-POJO.

 With the EJB 3 specification, MDBs were cleaned up to have a slightly more POJO
feel to them. No longer must you implement the MessageDrivenBean interface.
Instead, you implement the more generic javax.jms.MessageListener interface and
annotate MDBs with @MessageDriven.

 Spring 2.0 addresses the need for asynchronous consumption of messages by pro-
viding its own form of message-driven bean that’s quite similar to EJB 3’s MDBs. In this
section, you’ll learn how Spring supports asynchronous message consumption using
message-driven POJOs (we’ll call them MDPs, for short).
Licensed to Christian Cederquist <chrisman@kaus.dk>

326 CHAPTER 12 Messaging in Spring

12.4.1 Creating a message listener

If we were to build our spittle alert handler using EJB’s message-driven model, it’d
need to be annotated with @MessageDriven. And, although it’s not strictly required,
it’s recommended that the MDB implement the MessageListener interface. The
result would look something like this:

@MessageDriven(mappedName="jms/spittle.alert.queue")
public class SpittleAlertHandler implements MessageListener {

@Resource
private MessageDrivenContext mdc;

public void onMessage(Message message) {
...

}
}

For a moment, try to imagine a simpler world where message-driven components
don’t have to implement the MessageListener interface. In such a happy place, the
sky would be the brightest of blues, the birds would always whistle your favorite song,
and you wouldn’t have to implement the onMessage() method or have a Message-
DrivenContext injected.

 Okay, maybe the demands placed on an MDB by the EJB 3 specification aren’t that
arduous. But the fact is that the EJB 3 implementation of SpittleAlertHandler is too
tied to EJB’s message-driven APIs and isn’t as POJO-ish as we’d like. Ideally, we’d like
the alert handler to be capable of handling messages, but not coded as if it knows
that’s what it’ll be doing.

 Spring offers the ability for a method on a POJO to handle messages from a JMS
queue or topic. For example, the following POJO implementation of Spittle-
AlertHandler is perfectly sufficient.

package com.habuma.spitter.alerts;
import com.habuma.spitter.domain.Spittle;

public class SpittleAlertHandler {

public void processSpittle(Spittle spittle) {
// ... implementation goes here...

}

}

Although the color of the sky and training birds to sing are out of scope for Spring,
listing 12.5 shows that the dream world I described is much closer to reality. We’ll fill
in the details of the processSpittle() method later. For now, consider that nothing
in SpittleAlertHandler shows any hint of JMS. It’s a POJO in every sense of the term.
It can nevertheless handle messages just like its EJB cousin. All it needs is some special
Spring configuration.

Listing 12.5 A Spring MDP asynchronously receives and processes messages.

Handler method
Licensed to Christian Cederquist <chrisman@kaus.dk>

327Using message-based RPC

12.4.2 Configuring message listeners

The trick to empowering a POJO with message-receiving abilities is to configure it as a
message listener in Spring. Spring’s jms namespace provides everything we need to do
that. First, we must declare the handler as a <bean>:

<bean id="spittleHandler"
class="com.habuma.spitter.alerts.SpittleAlertHandler" />

Then, to turn SpittleAlertHandler into a message-driven POJO, we can declare the
bean to be a message listener:

<jms:listener-container connection-factory="connectionFactory">
<jms:listener destination="spitter.alert.queue"

ref="spittleHandler" method="processSpittle" />
</jms:listener-container>

Here we have a message listener that’s contained within a message listener container.
A message listener container is a special bean that watches a JMS destination, waiting for a
message to arrive. Once a message arrives, it retrieves the message and then passes it
on to any message listeners that are interested. Figure 12.7 illustrates this interaction.

 To configure the message listener container and message listener in Spring, we’re
using two elements from Spring’s jms namespace. The <jms:listener-container> is
used to contain <jms:listener> elements. Here its connectionFactory attribute is
configured with a reference to the connectionFactory that’s to be used by each of the
child <jms:listener>s as they listen for messages. In this case, the connection-
Factory attribute could’ve been left off because it defaults to connectionFactory.

 Regarding the <jms:listener> element, it’s used to identify a bean and a method
that should handle incoming messages. For the purposes of handling spittle alert mes-
sages, the ref element refers to our spittleHandler bean. When a message arrives on
spitter.alert.queue (as designated by the destination attribute), the spittleHandler
bean’s processSpittle() method gets the call (per the method attribute).

12.5 Using message-based RPC
In chapter 10, we explored several of Spring’s options for exposing bean methods as
remote services and for making calls on those services from clients. In this chapter,
we’ve seen how to send messages between applications over message queues and top-
ics. Now we’re going to bring those two concepts together and see how to make
remote calls that use JMS as a transport.

Queue/Topic
Message
listener

container

Message
listener
(MDP)

Figure 12.7 A message listener container listens to a queue/topic. When a message
arrives, it’s forwarded to a message listener (such as a message-driven POJO).
Licensed to Christian Cederquist <chrisman@kaus.dk>

328 CHAPTER 12 Messaging in Spring

 There are two options for message-based RPC in Spring:

 Spring itself offers JmsInvokerServiceExporter for exporting beans as mes-
sage-based services and JmsInvokerProxyFactoryBean for clients to consume
those services.

 Lingo provides a similar approach to message-based remoting with its Jms-
ServiceExporter and JmsProxyFactoryBean.

As you’ll see, these two options are very similar to each other, but each has advantages
and disadvantages. I’ll show you both approaches and let you decide which works best
for you. Let’s start by looking at how to work with Spring’s own support for JMS-backed
services.

12.5.1 Working with Spring message-based RPC

As you’ll recall from chapter 10, Spring provides several options for exporting beans
as remote services. We used RmiServiceExporter to export beans as RMI services over
JRMP, HessianExporter and BurlapExporter for Hessian and Burlap services over
HTTP, and HttpInvokerServiceExporter to create HTTP invoker services over HTTP.
But Spring has one more service exporter that we didn’t talk about in chapter 10.

CONSUMING JMS-BASED SERVICES

JmsInvokerServiceExporter is much like those other service exporters. In fact, note
that there’s some symmetry in the names of JmsInvokerServiceExporter and Http-
InvokerServiceExporter. If HttpInvokerServiceExporter exports services that
communicate over HTTP, then JmsInvokerServiceExporter must export services that
converse over JMS.

 To demonstrate how JmsInvokerServiceExporter works, consider Alert-

ServiceImpl.

package com.habuma.spitter.alerts;

import org.springframework.mail.SimpleMailMessage;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.stereotype.Component;

import com.habuma.spitter.domain.Spittle;

@Component("alertService")
public class AlertServiceImpl implements AlertService {

private JavaMailSender mailSender;
private String alertEmailAddress;
public AlertServiceImpl(JavaMailSender mailSender,

String alertEmailAddress) {
this.mailSender = mailSender;
this.alertEmailAddress = alertEmailAddress;

}

public void sendSpittleAlert(final Spittle spittle) {
SimpleMailMessage message = new SimpleMailMessage();

Listing 12.6 AlertServiceImpl is a JMS-free POJO that will handle JMS messages.

Send
Spittle
alert
String spitterName = spittle.getSpitter().getFullName();

Licensed to Christian Cederquist <chrisman@kaus.dk>

329Using message-based RPC

message.setFrom("noreply@spitter.com");
message.setTo(alertEmailAddress);
message.setSubject("New spittle from " + spitterName);
message.setText(spitterName + " says: " + spittle.getText());
mailSender.send(message);

}
}

Don’t concern yourself too much with the inner details of the sendSpittleAlert()
method at this point. We’ll talk more about how to send emails with Spring later, in
section 14.3. The important thing to notice is that AlertServiceImpl is a simple POJO
and has nothing that indicates that it’ll be used to handle JMS messages. It does imple-
ment the simple AlertService interface, as shown here:

package com.habuma.spitter.alerts;
import com.habuma.spitter.domain.Spittle;

public interface AlertService {
void sendSpittleAlert(Spittle spittle);

}

As you can see, AlertServiceImpl is annotated with @Component so that it’ll be auto-
matically discovered and registered as a bean in the Spring application context with
an ID of alertService. We’ll refer to this bean as we configure a JmsInvokerService-
Exporter:

<bean id="alertServiceExporter"
class="org.springframework.jms.remoting.JmsInvokerServiceExporter"

 p:service-ref="alertService"
 p:serviceInterface="com.habuma.spitter.alerts.AlertService" />

This bean’s properties describe what the exported service should look like. The
service property is wired to refer to the alertService bean, which is the implemen-
tation of the remote service. Meanwhile, the serviceInterface property is set to the
fully-qualified class name of the interface that the service provides.

 The exporter’s properties don’t describe the specifics of how the service will be
carried over JMS. But the good news is that JmsInvokerServiceExporter qualifies as a
JMS listener. Therefore, we can configure it as such within a <jms:listener-
container> element:

<jms:listener-container connection-factory="connectionFactory">
<jms:listener destination="spitter.alert.queue"

ref="alertServiceExporter" />
</jms:listener-container>

The JMS listener container is given the connection factory so that it can know how to
connect to the message broker. Meanwhile, the <jms:listener> declaration is given
the destination that the remote message will be carried on.

CONSUMING JMS-BASED SERVICES

At this point, the JMS-based alert service should be ready and waiting for RPC messages
to arrive on the queue whose name is spitter.alert.queue. On the client side, Jms-

InvokerProxyFactoryBean will be used to access the service.

Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:message.setFrom("noreply@spitter.com

330 CHAPTER 12 Messaging in Spring

 JmsInvokerProxyFactoryBean is a lot like the other remoting proxy factory beans
that we looked at in chapter 10. It hides the details of accessing a remote service
behind a convenient interface, through which the client interacts with the service.
The big difference is that instead of proxying RMI- or HTTP-based services, Jms-
InvokerProxyFactoryBean proxies a JMS-based service that was exported by
JmsInvokerServiceExporter.

 To consume the alert service, we can wire the JmsInvokerProxyFactoryBean like
this:

<bean id="alertService"
class="org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">

<property name="connectionFactory" ref="connectionFactory" />
<property name="queueName" value="spitter.alert.queue" />
<property name="serviceInterface"

value="com.habuma.spitter.alerts.AlertService" />
</bean>

The connectionFactory and queueName properties specify how RPC messages should
be delivered—here, on the queue named spitter.alert.queue at the message broker
configured in the given connection factory. As for the serviceInterface, this speci-
fies that the proxy should be exposed through the AlertService interface.

 JmsInvokerServiceExporter and JmsInvokerProxyFactoryBean offer an JMS-
based alternative to Spring’s other remoting options. But it’s not the only way to
export beans and consume JMS-based services. It may not even be the best way. Let’s
look at Lingo and see how it offers something that the JMS invoker doesn’t.

12.5.2 Asynchronous RPC with Lingo

Lingo1 is a Spring-based remoting option that’s similar to Spring’s own JMS invoker
support. In fact, the Javadoc for Spring’s JMS invoker classes even indirectly gives
credit to Lingo as their inspiration.2

 What makes Lingo different is that, unlike the JMS invoker, it can truly take advan-
tage of the asynchronous nature of JMS to invoke services asynchronously. That
means that the server doesn’t have to even be available when the client makes the
call. Furthermore, if the service is long-running, then the client won’t have to wait for
it to finish.

 Unlike the other remoting option we discussed in chapter 10 or even Spring’s
own JMS invoker classes, Lingo isn’t part of the Spring Framework. It’s a separate
project that builds upon Spring Remoting, offering a JMS-based service exporter and
client proxy.

 We’ll start our exploration of Lingo by seeing how to export services with Lingo’s
JmsServiceExporter. Then we’ll consume that service using Lingo’s JmsServiceProxy.

1 http://lingo.codehaus.org

2 The Javadoc doesn’t mention Lingo, but it does give credit to James Strachan, Lingo’s creator.

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://lingo.codehaus.org

331Using message-based RPC

EXPORTING THE ASYNCHRONOUS SERVICE

As you can see from the following <bean> declaration, JmsServiceExporter and
JmsInvokerServiceExporter are configured in much the same way:

<bean id="alertServiceExporter"
class="org.logicblaze.lingo.jms.JmsServiceExporter"
p:connectionFactory-ref="connectionFactory"
p:destination-ref="alertServiceQueue"
p:service-ref="alertService"
p:serviceInterface="com.habuma.spitter.alerts.AlertService" />

The service and serviceInterface properties are exactly the same as with Jms-
InvokerServiceExporter. But a new property is injected on the JmsServiceExporter
bean. JmsServiceExporter can’t be used as a message listener in a Spring listener
container, so we must tell it about the JMS connection factory and the message desti-
nation in the connectionFactory and destination properties so that it knows how to
send the message.

 Note that the destination property is of javax.jms.Destination. So we’ll need
to wire in a reference to a destination bean. The following alertServiceQueue bean
will make sure that JMS RPC messages are transported over the queue named spittle
.alert.queue:

<amq:queue id="alertServiceQueue"
physicalName="spitter.alert.queue" />

At this point, Lingo hasn’t given us anything that Spring’s own JMS invoker didn’t pro-
vide. So you may be wondering why I’d bother telling you about Lingo if Spring’s own
JMS RPC mechanism provides effectively the same capabilities.

 As you’re about to see, the client side of Lingo offers something that the JMS
invoker doesn’t: asynchronous invocation.

PROXYING ASYNCHRONOUS SERVICES

When we called methods on a proxy created by Spring’s JmsInvokerServiceProxy, we
had to wait. Even though the underlying transport was JMS, the proxy would wait until
it received a response.

 Lingo’s JmsProxyFactoryBean, on the other hand, can be configured to treat void
methods as one-way asynchronous methods. For example, the client side of a Lingo-
based alert service, might be configured something like this:

<bean id="alertService"
class="org.logicblaze.lingo.jms.JmsProxyFactoryBean"

p:connectionFactory-ref="connectionFactory"
p:destination-ref="queue"
p:serviceInterface="com.habuma.spitter.alerts.AlertService">
<property name="metadataStrategy">

<bean id="metadataStrategy"
class="org.logicblaze.lingo.SimpleMetadataStrategy">

<constructor-arg value="true"/>
</bean>

</property>

</bean>

Licensed to Christian Cederquist <chrisman@kaus.dk>

332 CHAPTER 12 Messaging in Spring

The connectionFactory, destination, and serviceInterface properties serve the
same purpose as in previous examples. What’s new here is the metadataStrategy
property, which we’ve set using an inner-bean declaration of type Simple-

MetadataStrategy.
 Among other things, a metadata strategy is Lingo’s way of determining which

methods should be asynchronous one-way operations. The only implementation avail-
able is SimpleMetadataStrategy, whose constructor can take a single argument Bool-
ean value to indicate whether void methods should be asynchronous. Here, we’ve
declared the constructor argument as true, indicating that any void methods on the
service should be considered one-way methods and thus should be asynchronous and
immediately return.

 Had we declared the constructor argument as false or not injected JmsProxy-
FactoryBean’s metadataStrategy property at all, all service methods would be treated
synchronously and JmsProxyFactoryBean would be roughly equivalent in power to
Spring’s JmsInvokerServiceProxy.

12.6 Summary
Asynchronous messaging presents several advantages over synchronous RPC. Indi-
rect communication results in applications that are loosely coupled with respect to
one another, and thus reduces the impact of any one system going down. Addition-
ally, because messages are forwarded to their recipients, there’s no need for a
sender to wait for a response. In many circumstances, this can be a boost to applica-
tion performance.

 Although JMS provides a standard API for all Java applications wishing to partici-
pate in asynchronous communication, it can be cumbersome to use. Spring elimi-
nates the need for JMS boilerplate code and exception-handling code and makes
asynchronous messaging easier to use.

 In this chapter, we’ve seen several ways that Spring can help establish asynchro-
nous communication between two applications by way of message brokers and JMS.
Spring’s JMS template eliminates the boilerplate that’s commonly required by the tra-
ditional JMS programming model. And Spring-enabled message-driven beans make it
possible to declare bean methods which react to messages that arrive in a queue or
topic.

 We also looked at using Spring’s JMS invoker as well as Lingo to provide message-
based RPC with Spring beans. Although Spring’s JMS invoker drew inspiration from
Lingo and may be considered its replacement, it only offers synchronous communica-
tion. Meanwhile Lingo offers something that Spring’s JMS invoker doesn’t: the ability
to invoke remote methods asynchronously.

 Now that we’ve seen how Spring simplifies JMS, let’s look at how Spring works with
a similarly named Java standard. In the next chapter, we’ll explore Spring’s ability to
export beans as managed beans using JMX.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Managing Spring beans
with JMX
Spring’s support for DI is a great way to configure bean properties in an applica-
tion. But once the application has been deployed and is running, DI alone can’t do
much to help you change that configuration. Suppose that you want to dig into a
running application and change its configuration on the fly. That’s where Java
Management Extensions (JMX) comes in.

 JMX is a technology that enables you to instrument applications for manage-
ment, monitoring, and configuration. Originally available as a separate extension
to Java, JMX is now a standard part of the Java 5 distribution.

 The key component of an application that’s instrumented for management with
JMX is the MBean (managed bean). An MBean is a JavaBean that exposes certain
methods which define the management interface. The JMX specification defines
four types of MBeans:

This chapter covers
 Exposing Spring beans as managed beans

 Remotely managing Spring beans

 Handling JMX notifications
333

Licensed to Christian Cederquist <chrisman@kaus.dk>

334 CHAPTER 13 Managing Spring beans with JMX

 Standard MBeans—Standard MBeans are MBeans whose management interface
is determined by reflection on a fixed Java interface that’s implemented by the
bean class.

 Dynamic MBeans—Dynamic MBeans are MBeans whose management interface
is determined at runtime by invoking methods of the DynamicMBean interface.
Because the management interface isn’t defined by a static interface, it can vary
at runtime.

 Open MBeans—Open MBeans are a special kind of dynamic MBean whose
attributes and operations are limited to primitive types, class wrappers for
primitive types, and any type that can be decomposed into primitives or primi-
tive wrappers.

 Model MBeans—A model MBean is a special kind of dynamic MBean that
bridges a management interface to the managed resource. Model MBeans
aren’t written as much as they are declared. They’re typically produced by a fac-
tory that uses some metainformation to assemble the management interface.

Spring’s JMX module enables you to export Spring beans as Model MBeans so that you
can see inside your application and tweak the configuration—even while the applica-
tion is running. Let’s see how to JMX-enable our Spring application so that we can
manage the beans in the Spring application context.

13.1 Exporting Spring beans as MBeans
There are several ways that we could use JMX to manage the beans within the Spitter
application. In the interest of keeping things simple, let’s start with a modest change
to the HomeController to add a new spittlesPerPage property:

public static final int DEFAULT_SPITTLES_PER_PAGE = 25;

private int spittlesPerPage = DEFAULT_SPITTLES_PER_PAGE;

public void setSpittlesPerPage(int spittlesPerPage) {
this.spittlesPerPage = spittlesPerPage;

}

public int getSpittlesPerPage() {
return spittlesPerPage;

}

Previously, when HomeController called getRecentSpittles() on the Spitter-
Service, it passed in DEFAULT_SPITTLES_PER_PAGE, which would result in at most 25
spittles being displayed on the home page. Now, rather than commit to that decision
at build time, we’re going to use JMX to leave that decision open to change at run-
time. The new spittlesPerPage property is the first step to enabling that.

 But on its own, the spittlesPerPage property can’t enable external configuration
of the number of spittles displayed on the home page. It’s just a property on a bean,
like any other property. What we’ll need to do next is to expose the HomeController
Licensed to Christian Cederquist <chrisman@kaus.dk>

335Exporting Spring beans as MBeans

bean as an MBean. Then, the spittlesPerPage property will be exposed as the
MBean’s managed attribute and we’ll be able to change its value at runtime.

 Spring’s MBeanExporter is the key to JMX-ifying beans in Spring. MBeanExporter is
a bean that exports one or more Spring-managed beans as Model MBeans in an
MBean server. An MBean server (sometimes called an MBean agent) is a container
where MBeans live and through which the MBeans are accessed.

 As illustrated in figure 13.1, exporting Spring beans as JMX MBeans makes it possi-
ble for a JMX-based management tool such as JConsole or VisualVM to peer inside a
running application to view the beans’ properties and invoke their methods.

 The following <bean> declares an MBeanExporter in Spring to export the home-
Controller bean as a Model MBean:

<bean id="mbeanExporter"
class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="spitter:name=HomeController"

value-ref="homeController"/>
</map>

</property>
</bean>

In its most straightforward form, MBeanExporter can be configured through its beans
property by injecting a Map of one or more beans that you’d like to expose as model
MBeans in JMX. The key of each <entry> is the name to be given to the MBean (com-
posed of a management domain name and a key-value pair—spitter:name=Home-

Controller in the case of the HomeController MBean). The value of the entry is a

MBean
server

Spring application context

MBean
exporter Bean A

Bean BMBean
exporter

Figure 13.1 Spring’s MBeanExporter exports the properties and methods of Spring beans as JMX
attributes and operations in an MBean server. From there, a JMX management tool such as JConsole can

look inside the running application.

Licensed to Christian Cederquist <chrisman@kaus.dk>

336 CHAPTER 13 Managing Spring beans with JMX

reference to the Spring-managed bean that’s to be exported. Here, we’re exporting the
homeController bean so that its properties can be managed at runtime through JMX.

 With the MBeanExporter in place, the homeController bean will be exported as a
Model MBean to the MBean server for management under the name Home-
Controller. Figure 13.2 shows how the homeController MBean appears when viewed
through JConsole.

 As you can see on the left side of figure 13.2, all public members of the home-
Controller bean are exported as MBean operations and attributes. This is probably
not what we want. All we really want to do is configure the spittlesPerPage property.
We don’t need to invoke the showHomePage() method or muck about with any other
part of HomeController. Thus, we need a way to select which attributes and operations
are available.

 To gain finer control on an MBean’s attributes and operations, Spring offers a few
options, including

 Declaring bean methods to expose/ignore by name
 Fronting the bean with an interface to select the exposed methods
 Annotating the bean to designate managed attributes and operations

Let’s try out each of these options to see which best suits our HomeController MBean.
We’ll start with selecting the bean methods to expose by name.

From whence the MBean server?
As configured, MBeanExporter assumes that it’s running within an application server
(such as Tomcat) or some other context that provides an MBean server. But if your
Spring application will be running standalone or in a container that doesn’t provide
an MBean server, you’ll want to configure an MBean server in the Spring context. The
<context:mbean-server> element can handle that for you:
<context:mbean-server />

<context:mbean-server> will create an MBean server as a bean within the Spring
application context. By default, that bean’s ID is mbeanServer. Knowing this, you can
then wire it into MBeanExporter’s server property to specify which MBean server an
MBean should be exposed through:
<bean id="mbeanExporter"

class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="spitter:name=HomeController"

value-ref="homeController"/>
</map>

</property>

<property name="server" ref="mbeanServer" />
</bean>
Licensed to Christian Cederquist <chrisman@kaus.dk>

337Exporting Spring beans as MBeans

13.1.1 Exposing methods by name

An MBean info assembler is the key to constraining which operations and attributes are
exported in an MBean. One such MBean info assembler is MethodNameBasedMBean-
InfoAssembler. This assembler is given a list of names of methods to export as MBean
operations. For the HomeController bean, what we want to do is export spittlesPer-
Page as a managed attribute. How can a method name–based assembler help us
export a managed attribute?

 Recall that per JavaBean rules (not necessarily Spring bean rules), what makes
spittlesPerPage a property is that it has corresponding accessor methods names
setSpittlesPerPage() and getSpittlesPerPage(). To limit our MBean’s exposure,
we’ll need to tell MethodNameBasedMBeanInfoAssembler to only include those meth-
ods in the MBean’s interface. The following declaration of a MethodNameBasedMBean-
InfoAssembler bean singles out those methods:

<bean id="assembler"
class="org.springframework.jmx.export.assembler.

 ➥MethodNameBasedMBeanInfoAssembler"
p:managedMethods="getSpittlesPerPage,setSpittlesPerPage" />

Figure 13.2 HomeController exported as an MBean and seen through the eyes of JConsole
Licensed to Christian Cederquist <chrisman@kaus.dk>

338 CHAPTER 13 Managing Spring beans with JMX

The managedMethods property takes a list of method names. Those are the methods
that will be exposed as the MBean’s managed operations. Since those are property
accessor methods, they’ll also result in a spittlesPerPage managed attribute on the
MBean.

 To put the assembler into action, we’ll need to wire it into the MBeanExporter:

<bean id="mbeanExporter"
class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="spitter:name=HomeController"

value-ref="homeController"/>
</map>

</property>
<property name="server" ref="mbeanServer" />

<property name="assembler" ref="assembler"/>
</bean>

Now if we fire up the application, the HomeController’s spittlesPerPage will be
available as a managed attribute, but the showHomePage() method won’t be exposed
as a managed operation. Figure 13.3 shows what this looks like in JConsole.

 Another method name–based assembler to consider is MethodExclusionMBean-
InfoAssembler. This MBean info assembler is the inverse of MethodNameBasedMBean-

Figure 13.3 After specifying which methods are exported in the HomeController MBean,

the showHomePage() method is no longer a managed operation.

Licensed to Christian Cederquist <chrisman@kaus.dk>

339Exporting Spring beans as MBeans

InfoAssembler. Rather than specifying which methods to expose as managed
operations, MethodExclusionMBeanInfoAssembler is given a list of methods to not
reveal as managed operations. For example, here’s how to use MethodExclusion-
MBeanInfoAssembler to keep showHomePage() out of consideration as a managed
operation:

<bean id="assembler"
class="org.springframework.jmx.export.assembler.

 ➥MethodExclusionMBeanInfoAssembler"
p:ignoredMethods="showHomePage" />

Method name–based assemblers are straightforward and easy to use. But can you
imagine what would happen if we were to export several Spring beans as MBeans?
After a while the list of method names given to the assembler would be huge. And
there’s also a possibility that we may want to export a method from one bean while
another bean has a same-named method that we don’t want to export.

 Clearly, in terms of Spring configuration, the method name approach doesn’t
scale well when exporting multiple MBeans. Let’s see if using interfaces to expose
MBean operations and attributes would be any better.

13.1.2 Using interfaces to define MBean operations and attributes

Spring’s InterfaceBasedMBeanInfoAssembler is another MBean info assembler that
lets you use interfaces to pick and choose which methods on a bean get exported as
MBean-managed operations. It’s similar to the method name–based assemblers,
except that instead of listing method names to be exported, you list interfaces that
define the methods to be exported.

 For example, suppose that you were to define an interface named HomeController-
ManagedOperations like this:

package com.habuma.spitter.jmx;

public interface HomeControllerManagedOperations {
int getSpittlesPerPage();
void setSpittlesPerPage(int spittlesPerPage);

}

Here you’ve selected the setSpittlesPerPage() and getSpittlesPerPage methods
as the operations that you want to export. Again, these accessor methods will indi-
rectly export the spittlesPerPage property as a managed attribute. To use this assem-
bler, you just need to use the following assembler bean instead of the method name–
based assemblers from before:

<bean id="assembler"
class="org.springframework.jmx.export.assembler.

 ➥InterfaceBasedMBeanInfoAssembler"
p:managedInterfaces=

"com.habuma.spitter.jmx.HomeControllerManagedOperations"
/>
Licensed to Christian Cederquist <chrisman@kaus.dk>

340 CHAPTER 13 Managing Spring beans with JMX

The managedInterfaces property takes a list of one or more interfaces that serve as
the MBean-managed operation interfaces—in this case, the HomeControllerManaged-
Operations interface.

 What may not be apparent, but is certainly interesting, is that HomeController
doesn’t have to explicitly implement HomeControllerManagedOperations. The inter-
face is there for the sake of the exporter, but we don’t need to implement it directly in
any of our code.

 The nice thing about using interfaces to select managed operations is that we
could collect dozens of methods into a few interfaces and keep the configuration of
InterfaceBasedMBeanInfoAssembler clean. This goes a long way toward keeping the
Spring configuration tidy even when exporting multiple MBeans.

 Ultimately, those managed operations must be declared somewhere, whether in
Spring configuration or in some interface. Moreover, the declaration of the managed
operations represents a duplication in code—method names declared in an interface
or Spring context and method names in the implementation. This duplication exists
for no other reason than to satisfy the MBeanExporter.

 One of the things that Java annotations are good at is helping to eliminate such
duplication. Let’s see how to annotate a Spring-managed bean so that it can be
exported as an MBean.

13.1.3 Working with annotation-driven MBeans

In addition to the MBean info assemblers I’ve shown you thus far, Spring provides
another assembler known as MetadataMBeanInfoAssembler that can be configured to
use annotations to appoint bean methods as managed operations and attributes. I
could show you how to use that assembler, but I won’t. That’s because wiring it up
manually is burdensome and not worth the trouble just to be able to use annotations.

 Instead, I’m going to show you how to use the <context:mbean-export> element
from Spring’s context configuration namespace. This handy element wires up an
MBean exporter and all of the appropriate assemblers to turn on annotation-driven
MBeans in Spring. All you have to do is use it instead of the MBeanExporter bean that
we’ve been using:

<context:mbean-export server="mbeanServer" />

Now, to turn any Spring bean into an MBean, all we must do is annotate it with
@ManagedResource and annotate its methods with @ManagedOperation or @Managed-
Attribute. For example, here’s how to alter HomeController to be exported as an
MBean using annotations.

package com.habuma.spitter.mvc;
import java.util.Map;
import org.springframework.beans.factory.annotation.Autowired;

Listing 13.1 Annotating HomeController to be an MBean
import org.springframework.jmx.export.annotation.ManagedAttribute;

Licensed to Christian Cederquist <chrisman@kaus.dk>

341Exporting Spring beans as MBeans

import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import com.habuma.spitter.service.SpitterService;

@Controller
@ManagedResource(objectName="spitter:name=HomeController") //

public class HomeController {

...

@ManagedAttribute //

public void setSpittlesPerPage(int spittlesPerPage) {
this.spittlesPerPage = spittlesPerPage;

}

@ManagedAttribute //

public int getSpittlesPerPage() {
return spittlesPerPage;

}
}

The @ManagedResource annotation is applied at the class level to indicate that this
bean should be exported as an MBean. The objectName attribute indicates the
domain (spitter) and name (HomeController) of the MBean.

 The accessor methods for the spittlesPerPage property are both annotated with
@ManagedAttribute to indicate that it should be exposed as a managed attribute.
Note that it’s not strictly necessary to annotate both accessor methods. If you choose
to only annotate the setSpittlesPerPage() method, then you’ll still be able to set
the property through JMX, but you won’t be able to see what its value is. Conversely,
annotating getSpittlesPerPage() will enable the property’s value to be viewed as
read-only via JMX.

 Also note that it’s possible to annotate the accessor methods with @Managed-
Operation instead of @ManagedAttribute. For example:

@ManagedOperation
public void setSpittlesPerPage(int spittlesPerPage) {

this.spittlesPerPage = spittlesPerPage;
}

@ManagedOperation
public int getSpittlesPerPage() {

return spittlesPerPage;
}

This will expose those methods through JMX, but it won’t expose the spittlesPer-
Page property as a managed attribute. That’s because methods annotated with
@ManagedOperation are treated strictly as methods and not as JavaBean accessors
when it comes to exposing MBean functionality. Thus, @ManagedOperation should be
reserved for exposing methods as MBean operations and @ManagedAttribute should

Export HomeController
as MBean

Expose spittlesPerPage
as managed attribute
be used when exposing managed attributes.

Licensed to Christian Cederquist <chrisman@kaus.dk>

342 CHAPTER 13 Managing Spring beans with JMX

13.1.4 Handing MBean collisions

So far you’ve seen how to publish an MBean into an MBean server using several
approaches. In all cases, we’ve given the MBean an object name that’s made up of a
management domain name and a key-value pair. Assuming that there’s not already an
MBean published with the name we’ve given our MBean, we should have no trouble
publishing our MBean. But what happens if there’s a name collision?

 By default, MBeanExporter will throw an InstanceAlreadyExistsException
should you try to export an MBean that’s named the same as an MBean that’s already
in the MBean server. But you can change that behavior by specifying how the collision
should be handled via the MBeanExporter’s registrationBehaviorName property or
through <context:mbean-export>’s registration attribute.

 There are three ways that an MBean name collision can be handled:

 Fail if an existing MBean has the same name (this is the default behavior)
 Ignore the collision and don’t register the new MBean
 Replace the existing MBean with the new MBean

For example, if you’re using MBeanExporter, you can configure it to ignore collisions
by setting the registrationBehaviorName property to REGISTRATION_IGNORE_

EXISTING like this:

<bean id="mbeanExporter"
class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">

<map>
<entry key="spitter:name=HomeController"

value-ref="homeController"/>
</map>

</property>
<property name="server" ref="mbeanServer" />

<property name="assembler" ref="assembler"/>
<property name="registrationBehaviorName"

value="REGISTRATION_IGNORE_EXISTING" />
</bean>

The registrationBehaviorName property accepts REGISTRATION_FAIL_ON_EXISTING,
REGISTRATION_IGNORE_EXISTING, or REGISTRATION_REPLACING_EXISTING, each rep-
resenting one of the three collision-handling behaviors available.

 If you’re using <context:mbean-export> to export annotated MBeans, then you’ll
use the registration attribute to specify collision-handling behavior. For example:

<context:mbean-export server="mbeanServer"
registration="replaceExisting"/>

The registration attribute accepts failOnExisting, ignoreExisting, or replace-
Existing.

 Now that we’ve registered our MBeans using MBeanExporter, we’ll need a way to

access them for management. As you’ve seen already, we can use tools like JConsole to

Licensed to Christian Cederquist <chrisman@kaus.dk>

343Remoting MBeans

access a local MBean server to view and manipulate MBeans. But a tool such as JCon-
sole doesn’t lend itself to programmatic management of MBeans. How can we manip-
ulate MBeans in one application from within another application? Fortunately, there’s
another way to access MBeans as remote objects. Let’s explore how Spring’s support
for remote MBeans will enable us to access our MBeans in a standard way through a
remote interface.

13.2 Remoting MBeans
Although the original JMX specification referred to remote management of applica-
tions through MBeans, it didn’t define the actual remoting protocol or API. Conse-
quently, it fell to JMX vendors to define their own, often proprietary, remoting
solutions for JMX.

 In response to the need for a standard for remote JMX, the Java Community Pro-
cess produced JSR-160, the Java Management Extensions Remote API Specification.
This specification defines a standard for JMX remoting, which at a minimum requires
an RMI binding and optionally the JMX Messaging Protocol (JMXMP).

 In this section, we’ll see how Spring enables remote MBeans. We’ll start by config-
uring Spring to export our HomeController MBean as a remote MBean. Then we’ll
see how to use Spring to manipulate that MBean remotely.

13.2.1 Exposing remote MBeans

The simplest thing we can do to make our MBeans available as remote objects is to
configure Spring’s ConnectorServerFactoryBean:

<bean class=
"org.springframework.jmx.support.ConnectorServerFactoryBean" />

ConnectorServerFactoryBean creates and starts a JSR-160 JMXConnectorServer. By
default, the server listens for the JMXMP protocol on port 9875—thus, it’s bound to
service:jmx:jmxmp://localhost:9875. But we’re not limited to exporting MBeans
using only JMXMP.

 Depending on the JMX implementation, you may have several remoting protocol
options to choose from, including RMI, SOAP, Hessian/Burlap, and even IIOP. To spec-
ify a different remote binding for our MBeans, we just need to set the serviceUrl
property of ConnectorServerFactoryBean. For example, if we wanted to use RMI for
MBean remoting, we’d set serviceUrl like this:

<bean class="org.springframework.jmx.support.ConnectorServerFactoryBean"
p:serviceUrl=

"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/spitter" />

Here, we’re binding it to an RMI registry listening on port 1099 of the localhost. That
means that we’ll also need an RMI registry running and listening at that port. As you’ll
recall from chapter 10, RmiServiceExporter can start an RMI registry automatically
for you. But in this case we’re not using RmiServiceExporter, so we’ll need to start an
Licensed to Christian Cederquist <chrisman@kaus.dk>

344 CHAPTER 13 Managing Spring beans with JMX

RMI registry by declaring an RmiRegistryFactoryBean in Spring with the following
<bean> declaration:

<bean class="org.springframework.remoting.rmi.RmiRegistryFactoryBean"
p:port="1099" />

And that’s it! Now our MBeans are available through RMI. But there’s little point to
doing this if nobody will ever access the MBeans over RMI. So let’s now turn our atten-
tion to the client side of JMX remoting and see how to wire up a remote MBean in
Spring.

13.2.2 Accessing remote MBeans

Accessing a remote MBean server involves configuring an MBeanServerConnection-
FactoryBean in the Spring context. The following bean declaration sets up an MBean-
ServerConnectionFactoryBean that can be used to access the RMI-based remote
server we created in the previous section:

<bean id="mBeanServerClient"
class=

"org.springframework.jmx.support.MBeanServerConnectionFactoryBean"
p:serviceUrl=

"service:jmx:rmi://localhost/jndi/rmi://localhost:1099/spitter"/>

As its name implies, MBeanServerConnectionFactoryBean is a factory bean that cre-
ates an MBeanServerConnection. The MBeanServerConnection produced by MBean-
ServerConnectionFactoryBean acts as a local proxy to the remote MBean server. It
can be wired into a bean property just as if it were any other bean:

<bean id="jmxClient" class="com.springinaction.jmx.JmxClient">
<property name="mbeanServerConnection" ref="mBeanServerClient" />

</bean>

MBeanServerConnection provides several methods that let us query the remote
MBean server and invoke methods on the MBeans contained therein. For example,
say that we’d like to know how many MBeans are registered in the remote MBean
server. The following code snippet will print that information:

int mbeanCount = mbeanServerConnection.getMBeanCount();
System.out.println("There are " + mbeanCount + " MBeans");

And we may also query the remote server for the names of all of the MBeans using the
queryNames() method:

java.util.Set mbeanNames = mbeanServerConnection.queryNames(null, null);

The two parameters passed to queryNames() are used to refine the results. Passing in
null for both parameters indicates that we’re asking for the names of all of the regis-
tered MBeans.
Licensed to Christian Cederquist <chrisman@kaus.dk>

345Remoting MBeans

 Querying the remote MBean server for bean counts and names is fun, but doesn’t
get much work done. The real value of accessing an MBean server remotely is found
in accessing attributes and invoking operations on the MBeans that are registered in
the remote server.

 For accessing MBean attributes, you’ll want to use the getAttribute() and set-
Attribute() methods. For example, to retrieve the value of an MBean attribute,
you’d call the getAttribute() method like so:

String cronExpression = mbeanServerConnection.getAttribute(
new ObjectName("spitter:name=HomeController"), "spittlesPerPage");

Similarly, changing the value of an MBean attribute can be done using the set-
Attribute() method:

mbeanServerConnection.setAttribute(
new ObjectName("spitter:name=HomeController"),
new Attribute("spittlesPerPage", 10));

If you’d like to invoke an MBean’s operation, then the invoke() method is what
you’re looking for. Here’s how you might invoke the setSpittlesPerPage() method
on the HomeController MBean:

mbeanServerConnection.invoke(
new ObjectName("spitter:name=HomeController"),
"setSpittlesPerPage",
new Object[] { 100 },
new String[] {"int"});

And you can do dozens of other things with remote MBeans by using the methods avail-
able through MBeanServerConnection. I’ll leave it to you to explore the possibilities.

 But invoking methods and setting attributes on remote MBeans is awkward when
done through MBeanServerConnection. Doing something as simple as calling the
setSpittlesPerPage() method involves creating an ObjectName instance and passing
several other parameters to the invoke() method. This isn’t nearly as intuitive as a
normal method invocation would be. For a more direct approach, we’ll need to proxy
the remote MBean.

13.2.3 Proxying MBeans

Spring’s MBeanProxyFactoryBean is a proxy factory bean in the same vein as the
remoting proxy factory beans we examined in chapter 10. But instead of providing
proxy-based access to remote Spring-managed beans, MBeanProxyFactoryBean lets
you access remote MBeans directly (as if they were any other locally configured bean).
Figure 13.4 illustrates how this works.

Licensed to Christian Cederquist <chrisman@kaus.dk>

346 CHAPTER 13 Managing Spring beans with JMX

For example, consider the following declaration of MBeanProxyFactoryBean:

<bean id="remoteHomeControllerMBean"
 class="org.springframework.jmx.access.MBeanProxyFactoryBean"
 p:objectName="spitter:name=HomeController"
 p:server-ref="mBeanServerClient"
 p:proxyInterface=

"com.habuma.spitter.jmx.HomeControllerManagedOperations" />

The objectName property specifies the object name of the remote MBean that’s to be
proxied locally. Here it’s referring to the HomeController MBean that we exported
earlier.

 The server property refers to an MBeanServerConnection through which all com-
munication with the MBean is routed. Here we’ve wired in the MBeanServer-
ConnectionFactoryBean that we configured earlier.

 Finally, the proxyInterface property specifies the interface that will be imple-
mented by the proxy. In this case, we’re using the same HomeControllerManaged-
Operations interface that we defined in section 13.1.2.

 With the remoteHomeControllerMBean bean declared, we can now wire it into any
bean property whose type is HomeControllerManagedOperations and use it to access
the remote MBean. From there, we’ll be able to invoke the setSpittlesPerPage()
and getSpittlesPerPage() methods.

 We’ve now seen several ways that we can communicate with MBeans, and can now
view and tweak our Spring bean configuration while the application is running. But
thus far it’s been a one-sided conversation. We’ve talked to the MBeans, but the
MBeans haven’t been able to get a word in edgewise. It’s now time for us to hear what
they have to say by listening for notifications.

13.3 Handling notifications
Querying an MBean for information is only one way of keeping an eye on the state of
an application. But it’s not the most efficient way to be informed of significant events

produces

MBean
proxy

MBean server

MBeanNetwork

MBeanProxy
FactoryBean

Client

Figure 13.4 MBeanProxyFactoryBean produces a proxy to a remote MBean. The proxy’s
client can then interact with the remote MBean as if it were a locally configured POJO.
within the application.

Licensed to Christian Cederquist <chrisman@kaus.dk>

347Handling notifications

For example, suppose that the Spitter application were to keep a count of how many
spittles have been posted. And suppose that you want to know every time the count has
increased by one million spittles (for the 1,000,000th, 2,000,000th, 3,000,000th spittle,
and so on). One way to handle this is to write some code that periodically queries the
database, counting the number of spittles. But the process that performs that query
would keep itself and the database busy as it constantly checks for the spittle count.

 Instead of repeatedly querying the database to get that information, a better
approach may be to have an MBean notify you when the momentous occasion takes
place. JMX notifications, as illustrated in figure 13.5, are a way that MBeans can com-
municate with the outside world proactively, instead of waiting for some external
application to query them for information.

 Spring’s support for sending notifications comes in the form of the Notification-
PublisherAware interface. Any bean-turned-MBean that wishes to send notifications
should implement this interface. For example, consider SpittleNotifierImpl.

package com.habuma.spitter.jmx;

import javax.management.Notification;
import org.springframework.jmx.export.annotation.ManagedNotification;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.jmx.export.notification.NotificationPublisher;
import org.springframework.jmx.export.notification.NotificationPublisherAware;
import org.springframework.stereotype.Component;

@Component
@ManagedResource("spitter:name=SpitterNotifier")
@ManagedNotification(

notificationTypes="SpittleNotifier.OneMillionSpittles",
name="TODO")

public class SpittleNotifierImpl
implements NotificationPublisherAware, SpittleNotifier {

private NotificationPublisher notificationPublisher;

public void setNotificationPublisher(

Listing 13.2 Using a NotificationPublisher to send JMX notifications

MBean
listener

MBean
listener

MBean
listener

MBean server

MBean

Figure 13.5 JMX notifications
enable MBeans to communicate
proactively with the outside world.

Implement
NotificationPublisherAware

Inject notification
publisher
NotificationPublisher notificationPublisher) {

Licensed to Christian Cederquist <chrisman@kaus.dk>

348 CHAPTER 13 Managing Spring beans with JMX

this.notificationPublisher = notificationPublisher;
}

public void millionthSpittlePosted() {
notificationPublisher.sendNotification(

new Notification(
"SpittleNotifier.OneMillionSpittles", this, 0));

}

}

As you can see, SpittleNotifierImpl implements NotificationPublisherAware.
This isn’t a demanding interface. It requires only that a single method be imple-
mented: setNotificationPublisher.

 SpittleNotifierImpl also implements a single method from the SpittleNotifier
interface,1 millionthSpittlePosted(). This method uses the Notification-

Publisher that’s automatically injected via the setNotificationPublisher() method
to send a notification that another million spittles have been posted.

 Once the sendNotification() method has been called, the notification is on its
way to… hmm… it seems that we haven’t decided who’ll receive the notification yet.
Let’s set up a notification listener to listen to and react to the notification.

13.3.1 Listening for notifications

The standard way to receive MBean notifications is to implement the javax
.management.NotificationListener interface. For example, consider Paging-

NotificationListener:

package com.habuma.spitter.jmx;
import javax.management.Notification;
import javax.management.NotificationListener;

public class PagingNotificationListener implements NotificationListener {
public void handleNotification(Notification notification,

Object handback) {
// ...

}
}

PagingNotificationListener is a typical JMX notification listener. When a notifica-
tion is received, its handleNotification() method will be invoked to react to the
notification. Presumably, PagingNotificationListener’s handleNotification()

method will send a message to a pager or cell phone about the fact that another mil-
lion spittles have been posted. (I’ve left the actual implementation to the reader’s
imagination.)

 The only thing left to do is register PagingNotificationListener with the MBean-
Exporter:

1 For brevity’s sake, I’m not showing the SpittleNotifier interface. But as you can imagine, its only method

Send notification
is millionthSpittlePosted.

Licensed to Christian Cederquist <chrisman@kaus.dk>

349Summary

<bean class="org.springframework.jmx.export.MBeanExporter">
...
<property name="notificationListenerMappings">

<map>
<entry key="Spitter:name=PagingNotificationListener">

<bean class="com.habuma.spitter.jmx.PagingNotificationListener" />
</entry>

</map>
</property>

</bean>

MBeanExporter’s notificationListenerMappings property is used to map notifica-
tion listeners to the MBeans that they’ll be listening to. In this case, we’ve set up
PagingNotificationListener to listen to any notifications published by the Spittle-
Notifier MBean.

13.4 Summary
With JMX, you can open a window into the inner workings of your application. In this
chapter, we saw how to configure Spring to automatically export Spring beans as JMX
MBeans so that their details could be viewed and manipulated through JMX-ready
management tools. We also saw how to create and use remote MBeans for times when
those MBeans and tools are distant from each other. Finally, we saw how to use Spring
to publish and listen for JMX notifications.

 By now you’ve probably noticed that the number of remaining pages in this book
is dwindling fast. Our journey through Spring is almost complete. But before we con-
clude, we have a few more quick stops to make along the way. In the next chapter,
we’ll explore a handful of Spring features that, although useful, haven’t appeared in
any chapter up until now, including how to use Spring to access objects in JNDI, send
email, and schedule tasks.
Licensed to Christian Cederquist <chrisman@kaus.dk>

Odds and ends
I don’t know about your house, but many houses (including mine) have a so-called
junk drawer. Despite its name, the contents of a junk drawer are often handy or
even necessary. Things such as screwdrivers, ballpoint pens, paper clips, and extra
keys often call the junk drawer their home. It’s not that they’re truly junk and have
no value—it’s that they don’t have a place otherwise.

 We’ve covered a lot of ground so far in this book and have explored several cor-
ners of working with Spring. Each topic has had a chapter of its own. But there are
a few more Spring tricks that I’d like to show you, and none of them were big
enough to justify a chapter of their own.

 This is the junk drawer of the book. But don’t think that the topics here are use-
less. You’ll find valuable techniques here. We’ll see how to externalize Spring

This chapter covers
 Externalizing configuration

 Wiring JNDI resources in Spring

 Sending email messages

 Scheduling tasks

 Asynchronous methods
350

Licensed to Christian Cederquist <chrisman@kaus.dk>

351Externalizing configuration

configuration, encrypt property values, work with JNDI objects, send emails, and con-
figure methods to run in the background—all using Spring.

 First up, let’s look at how to move property value configuration out of Spring con-
figuration and into external properties files that can be managed without repackaging
and redeploying your applications.

14.1 Externalizing configuration
For the most part, it’s possible to configure your entire application in a single bean-
wiring file. But sometimes you may find it beneficial to extract certain pieces of that
configuration into a separate property file. For example, a configuration concern
that’s common to many applications is configuring a data source. In Spring, you could
configure a data source with the following XML in the bean-wiring file:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="org.hsqldb.jdbcDriver"
 p:url="jdbc:hsqldb:hsql://localhost/spitter/spitter"
 p:username="spitterAdmin"
 p:password="t0ps3cr3t" />

As you can see, everything you need to do to connect to the database is available in
this bean declaration. This has two implications:

 If you need to change the database URL or the username and password, you’ll
have to edit the Spring configuration file; then recompile and redeploy the
application.

 The username and password are sensitive details that you wouldn’t want to fall
into the wrong hands.

In situations like this, it might be better to not directly configure these details in the
Spring application context. Spring comes with a couple of options for externalizing
Spring configuration details into property files that can be managed outside of the
deployed application:

 Property placeholder configurers replace placeholder variables placed in property
values with values from an external properties file.

 Property overriders override bean property values with values from an external
properties file.

In addition, the open source Jasypt project1 offers alternative implementations of
Spring’s property placeholder configurer and overrider that can pull those values
from encrypted properties files.

 We’ll look at all of these options, starting with the basic property placeholder con-
figurer that comes with Spring.
1 http://www.jasypt.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://www.jasypt.org

352 CHAPTER 14 Odds and ends

14.1.1 Replacing property placeholders

In versions of Spring prior to version 2.5, configuring a property placeholder config-
urer in Spring involved declaring PropertyPlaceholderConfigurer as a <bean> in
the Spring context definition. Although that wasn’t terribly complex, Spring 2.5 made
it even easier with a new <context:property-placeholder> element in the context
configuration namespace. Now a placeholder configurer can be configured like this:

<context:property-placeholder
location="classpath:/db.properties" />

Here, the placeholder configurer is configured to pull property values from a file
named db.properties that resides at the root of the classpath. But it could just as easily
pull configuration data from a properties file on the file system:

<context:property-placeholder
location="file:///etc/db.properties" />

As for the contents of the db.properties file, it would contain (at a minimum) the
properties needed by the DriverManagerDataSource:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://localhost/spitter/spitter
jdbc.username=spitterAdmin
jdbc.password=t0ps3cr3t

Now we can replace the hardcoded values in the Spring configuration with place-
holder variables based on the properties in db.properties:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}"
 p:username="${jdbc.username}"
 p:password="${jdbc.password}" />

For what it’s worth, a property placeholder configurer’s power isn’t limited to bean
property configuration in XML. You can also use it to configure @Value-annotated
properties. For example, if you have a bean that needs the JDBC URL, you can use the
${jdbc.url} placeholder with @Value like this:

@Value("${jdbc.url}")
String databaseUrl;

What’s more, you can even use placeholder variables in the properties file itself. For
example, you could define the jdbc.url property using placeholder variables to
break its configuration into multiple parts:

jdbc.protocol=hsqldb:hsql
db.server=localhost
db.name=spitter
jdbc.url=jdbc:${jdbc.protocol}://${db.server}/${db.name}/${db.name}
Licensed to Christian Cederquist <chrisman@kaus.dk>

353Externalizing configuration

Here I’ve defined three properties, jdbc.protocol, db.server, and db.name. And
I’ve also defined a fourth property that uses the other properties to construct the
database URL.

 That describes the essentials of property placeholder replacement in Spring. But
we can do a few more things with a property placeholder configurer. First, let’s see
how to cope with property placeholder variables for which no property is defined.

REPLACING MISSING PROPERTIES

What would happen if a property placeholder variable referred to a property that
hasn’t been defined? Or worse, what if the location attribute pointed to a properties
file that doesn’t exist?

 Well, what happens by default is that an exception will be thrown as the Spring
context is being loaded and the beans are being created. But you can configure it to
fail silently, without incident, by setting the <context:property-placeholder>’s
ignore-resource-not-found and ignore-unresolvable attributes:

<context:property-placeholder
location="file:///etc/myconfig.properties"
ignore-resource-not-found="true"
ignore-unresolvable="true"
properties-ref="defaultConfiguration"/>

By setting these properties to true, the property placeholder configurer will withhold
exceptions when the placeholder variable can’t be resolved or if the properties file
doesn’t exist. Instead, the placeholders will remain unresolved.

 Okay, but if the placeholders are unresolved, isn’t that a bad thing? After all,
${jdbc.url} can’t be used to access a database. It’s not a valid JDBC URL.

 Instead of wiring useless placeholder variables, it’d be better to wire in default val-
ues. That’s where the properties-ref attribute comes in handy. This attribute is set
to the ID of a java.util.Properties bean that contains the properties to use by
default. For our database properties, the following <util:properties> will hold the
default database configuration values:

<util:properties id="defaultConfiguration">
<prop key="jdbc.url">jdbc:hsqldb:hsql://localhost/spitter/spitter</prop>
<prop key="jdbc.driverClassName">org.hsqldb.jdbcDriver</prop>
<prop key="jdbc.username">spitterAdmin</prop>
<prop key="jdbc.password">t0ps3cr3t</prop>

</util:properties>

Now, if any of the placeholder variables can’t be found in the db.properties file, then
the default values in the defaultConfiguration bean will be used.

RESOLVING PLACEHOLDER VARIABLES FROM SYSTEM PROPERTIES

At this point, we’ve seen how to resolve placeholder variables from a properties file
and from a <util:properties> definition. But it’s also possible to resolve them from
system properties. All we must do is set the system-properties-mode attribute of
<component:property-placeholder>. For example:
Licensed to Christian Cederquist <chrisman@kaus.dk>

354 CHAPTER 14 Odds and ends

<context:property-placeholder
location="file:///etc/myconfig.properties"
ignore-resource-not-found="true"
ignore-unresolvable="true"
properties-ref="defaultConfiguration"
system-properties-mode="OVERRIDE"/>

Here, the system-properties-mode has been set to OVERRIDE to indicate that
<component:property-placeholder> should prefer system properties over those in
db.properties or in the defaultConfiguration bean. OVERRIDE is just one of three val-
ues that the system-properties-mode attribute accepts:

 FALLBACK—Resolve placeholder variables from system properties if they can’t
be resolved from the properties file.

 NEVER—Never resolve placeholder variables from system properties.
 OVERRIDE—Prefer system properties over those in a properties file.

The default behavior of <component:property-placeholder> is to try to resolve
placeholder variables from a properties file, but to fall back to system properties, if
available—using the FALLBACK value of the system-properties-mode attribute.

14.1.2 Overriding properties

Another approach to external configuration in Spring is to override bean properties
with those from a property file. In this case, no placeholders are required. Instead, the
bean properties are either wired with default values or are left unwired altogether. If
an external property matches a bean property, then the external value will be used
instead of the one explicitly wired in Spring.

 For example, consider the dataSource bean as it was before we learned about prop-
erty placeholders. As a reminder, this is what it looked like with hardcoded values:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="org.hsqldb.jdbcDriver"
 p:url="jdbc:hsqldb:hsql://localhost/spitter/spitter"
 p:username="spitterAdmin"
 p:password="t0ps3cr3t" />

In the previous section, I showed you how to declare default values using <util
:properties> along with a property placeholder configurer. But with a property over-
rider, you can leave the default values in the bean properties—the overrider will take
care of the rest.

 Configuring a property overrider is much the same as configuring a property
placeholder configurer. The difference is that instead of using <component

:property-placeholder>, we’ll use <component:property-override>:

<context:property-override
location="classpath:/db.properties" />
Licensed to Christian Cederquist <chrisman@kaus.dk>

355Externalizing configuration

In order for a property overrider to know which
property in db.properties goes to which bean
property in the Spring application context, you
must map the bean and property name to the
property name in the properties file. Figure 14.1
breaks down how this works.

 As you can see, the property key in the external
properties file is made up of a bean ID and a prop-
erty name, separate by a period. If you flip back to
the beginning of section 14.1, you’ll see that the
properties defined in db.properties were close, but
not quite right. The properties all began with jdbc..
which would only work if our data source bean were given an ID of jdbc. But its ID is
dataSource, so we’ll need to make some adjustments to the db.properties file:

dataSource.driverClassName=org.hsqldb.jdbcDriver
dataSource.url=jdbc:hsqldb:hsql://localhost/spitter/spitter
dataSource.username=spitterAdmin
dataSource.password=t0ps3cr3t

Now the keys in db.properties match up with the dataSource bean and its properties.
In the absence of the db.properties file, the explicitly wired values in the Spring con-
figuration will be in play. But if the db.properties file exists and contains the proper-
ties we just defined, those properties will take precedence over those in the Spring
XML configuration.

 You may be interested to know that <context:property-override> can be config-
ured with the same set of attributes as <context:property-placeholder>. You can set
it up to resolve properties from a <util:properties> or from system properties.

 At this point we’ve seen two options for externalizing property values. It should be
easy to change the database URL or password without having to rebuild and redeploy
the application. But one thing still isn’t quite right. Even though the database pass-
word is no longer in the Spring context definition, it’s still laying out in the open in
some properties file somewhere. Let’s see how to use Jasypt’s property placeholder
configurer and overrider to be able to encrypt the password stored in the external
properties file.

14.1.3 Encrypting external properties

The Jasypt project is a wonderful library that simplifies encryption in Java. It does many
things that are beyond the scope of this book. But germane to the topic of externaliz-
ing bean property configuration, Jasypt comes with special implementations of
Spring’s property placeholder configurer and property overrider that can read prop-
erties that are encrypted in the external property file.

 As I mentioned earlier, Spring 2.5 introduced the context namespace and, in doing
so, the <context:property-placeholder> and <context:property-overrider>

Bean ID Value

Bean Property
name

Figure 14.1 A property overrider
determines which bean properties to
override by mapping keys from a
properties file to a bean ID and a
property name.
Licensed to Christian Cederquist <chrisman@kaus.dk>

356 CHAPTER 14 Odds and ends

elements. Prior to that, you would have to configure PropertyPlaceholderConfigurer
and PropertyOverrideConfigurer as <bean>s to get the same functionality.

 Jasypt’s implementations of the property placeholder configurer and property
overrider don’t currently have a special configuration namespace. Therefore, much
like their pre-2.5 Spring counterparts, Jasypt’s placeholder configurer and overrider
must be configured as <bean> elements.

 For example, the following <bean> configures a Jasypt property placeholder
configurer:

<bean class=
"org.jasypt.spring.properties.EncryptablePropertyPlaceholderConfigurer"
p:location="file:///etc/db.properties">

<constructor-arg ref="stringEncrypter" />
</bean>

Or, if a property overrider suits you better, then this <bean> will do the trick:

<bean class=
"org.jasypt.spring.properties.EncryptablePropertyOverrideConfigurer"

p:location="file:///etc/db.properties">
<constructor-arg ref="stringEncrypter" />

</bean>

Whichever you choose, either will need to be configured with the location of the
properties file through its location property. And both require a string encryptor
object as a constructor argument.

 In Jasypt, a string encryptor is a strategy class that handles the chore of encrypting
String values. The placeholder configurer/overrider will use the string encryptor to
decrypt any encrypted values it finds in the external properties file. For our purposes,
the StandardPBEStringEncryptor that comes with Jasypt is perfectly sufficient:

<bean id="stringEncrypter"
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor"

 p:config-ref="environmentConfig" />

The only things that StandardPBEStringEncryptor really needs to do its job are the
algorithm and the password used to encrypt the data. If you look at the Javadoc for
StandardPBEStringEncryptor, you’ll see that it has algorithm and password proper-
ties—so we could configure those directly in the stringEncryptor bean.

 But if we leave the encryption password in the Spring configuration, then have we
really secured access to the database? Figuratively speaking, we’d be locking the keys
to the database in a box and leaving the keys to the box on the table next to it. At best
we’ve made it slightly more inconvenient, but certainly not secure.

 Instead of configuring the password directly in Spring, I’ve configured Standard-
PBEStringEncryptor’s config property with an EnvironmentStringPBEConfig.
EnvironmentStringPBEConfig will let us configure encryption details, such as the
encryption password, in environment variables. The EnvironmentStringPBEConfig is
just another bean declared like this:
Licensed to Christian Cederquist <chrisman@kaus.dk>

357Wiring JNDI objects

<bean id="environmentConfig" class=
"org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig"

 p:algorithm="PBEWithMD5AndDES"
 p:passwordEnvName="DB_ENCRYPTION_PWD" />

I didn’t mind configuring the algorithm in the Spring configuration—I’ve configured
it as PBEWithMD5AndDES. The encryption password is what I want stored outside of
Spring in an environment variable. Here, that environment variable is named
DB_ENCRYPTION_PWD.

 So you may be wondering how moving the encryption password to an environment
variable makes this arrangement any more secure. Can’t a hacker read an environ-
ment variable just as easily as they can read a Spring configuration file? The answer to
that question is, yes. But the idea here is that the environment variable would be set by
a system administrator just before the application is started and then unset once the
application is underway. By then the data source properties will have been set and the
environment variable will no longer be needed.

 Externalizing bean property values is one way to manage configuration details that
are sensitive and/or may need to be changed after the application has been deployed.
Another way to cope with those situations is to externalize entire objects in JNDI and
configure Spring to retrieve those objects into the Spring context. That’s what we’ll
look at next.

14.2 Wiring JNDI objects
The Java Naming and Directory Interface, or JNDI as it’s known to its friends, is a Java API
that enables lookup of objects by name in a directory (often but not necessarily an
LDAP directory). JNDI provides Java applications with access to a central repository for
storing and retrieving applications objects. JNDI is typically used in Java EE applica-
tions to store and retrieve JDBC data sources and JTA transaction managers. You’ll also
find that EJB 3 session beans frequently find their home in JNDI.

 But if some of our application objects are configured in JNDI, external to Spring,
how can we inject them into the Spring-managed objects that need them?

 In this section, we’ll look at how Spring supports JNDI by providing a simplified
abstraction layer above the standard JNDI API. Spring’s JNDI abstraction makes it possi-
ble to declare JNDI lookup information in your Spring context definition file. Then
you can wire a JNDI-managed object into the properties of other Spring beans as
though the JNDI object were just another bean in the Spring application context.

 To gain a deeper appreciation of what Spring’s JNDI abstraction provides, let’s
look up an object from JNDI without Spring.

14.2.1 Working with conventional JNDI

Looking up objects in JNDI can be a tedious chore. For example, suppose you need to
perform the common task of retrieving a javax.sql.DataSource from JNDI. Using
the conventional JNDI APIs, you might write some code that looks like this:
Licensed to Christian Cederquist <chrisman@kaus.dk>

358 CHAPTER 14 Odds and ends

InitialContext ctx = null;
try {

ctx = new InitialContext();

DataSource ds =
(DataSource) ctx.lookup("java:comp/env/jdbc/SpitterDatasource");

} catch (NamingException ne) {
// handle naming exception ...

} finally {
if(ctx != null) {

try {
ctx.close();

} catch (NamingException ne) {}
}

}

If you’ve ever written JNDI lookup code before, you’re probably familiar with what’s
going on in this code snippet. You may have written a similar incantation dozens of
times before to raise an object out of JNDI. Before you repeat it again, take a closer
look at what is going on:

 You must create and close an initial context for no other reason than to look up
a DataSource. This may not seem like a lot of extra code, but it’s extra plumb-
ing that’s not directly in line with the goal of retrieving a data source.

 You must catch or, at the least, rethrow a javax.naming.NamingException. If
you choose to catch it, you must also deal with it appropriately. If you choose to
rethrow it, the calling code will be forced to deal with it. Ultimately, someone
somewhere will have to handle this exception.

 Your code is tightly coupled with a JNDI lookup. All your code needs is a Data-
Source. It doesn’t matter whether it comes from JNDI or somewhere else. But if
your code contains code like this, then you’re stuck retrieving the DataSource
from JNDI.

 Your code is tightly coupled with a specific JNDI name—in this case
java:comp/env/jdbc/SpitterDatasource. Sure, you could extract that name
into a properties file, but then you’ll have to add even more plumbing code to
look up the JNDI name from the properties file.

Upon closer inspection we find that most of the code is boilerplate JNDI lookup that
looks much the same for all JNDI lookups. Only one line is directly responsible for
retrieving the data source:

DataSource ds =
(DataSource) ctx.lookup("java:comp/env/jdbc/SpitterDatasource");

Even more disquieting than boilerplate JNDI code is the fact that the application
knows where the data source comes from. It’s coded to always retrieve a data source
from JNDI. As illustrated in figure 14.2, the DAO that uses the data source will be cou-
pled to JNDI. This makes it almost impossible to use this code in a setting where JNDI
isn’t available or desirable.
Licensed to Christian Cederquist <chrisman@kaus.dk>

359Wiring JNDI objects

For instance, imagine that the data source lookup code is embedded in a class that’s
being unit tested. In an ideal unit test, we’re testing an object in isolation without any
direct dependence on specific objects. Although the class is decoupled from the data
source through JNDI, it’s coupled to JNDI itself. Therefore, our unit test has a direct
dependence on JNDI and a JNDI server must be available for the unit test to run.

 Regardless, this doesn’t change the fact that sometimes you need to be able to look
up objects in JNDI. DataSources are often configured in an application server to take
advantage of the application server’s connection pooling and then retrieved by the
application code to access the database. How can your code get an object from JNDI
without being dependent on JNDI?

 The answer is found in dependency injection. Instead of asking for a data source
from JNDI, you should write your code to accept a data source from anywhere—your
code should have a DataSource property that’s injected. Where the object comes from
is of no concern to the class that needs it.

 The data source object still lives in JNDI. So how can we configure Spring to inject
an object that’s stored in JNDI?

14.2.2 Injecting JNDI objects

Spring’s jee configuration namespace holds the answer to working with JNDI in a
loosely coupled manner. Within that namespace you’ll find the <jee:jndi-lookup>
element, which makes simple work of wiring a JNDI object into Spring.

 To illustrate how this works, let’s revisit an example from chapter 5. There, we used
<jee:jndi-lookup> to retrieve a DataSource from JNDI:

<jee:jndi-lookup id="dataSource"
 jndi-name="/jdbc/SpitterDS"

 resource-ref="true" />

The jndi-name attribute specifies the name of the object in JNDI. By default, this is the
name used to look up the object in JNDI. But if the lookup is occurring in a Java EE
container, then a java:comp/env/ prefix may need to be added. You could manually
add the prefix when specifying the value in jndi-name. But setting resource-ref to
true will tell <jee:jndi-lookup> to do it for you.

 With the dataSource bean declared, you may now wire it into a dataSource prop-
erty. For instance, you may use it to configure a Hibernate session factory:

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation.

look up data source

JNDI repository

Data
source

DAO

Figure 14.2
Using conventional JNDI to
retrieve dependencies means
that an object is coupled to
JNDI, making it difficult to
use the object anywhere that
JNDI isn’t available.
 ➥ AnnotationSessionFactoryBean">

Licensed to Christian Cederquist <chrisman@kaus.dk>

360 CHAPTER 14 Odds and ends

<property name="dataSource" ref="dataSource" />
...

</bean>

As shown in figure 14.3, when Spring wires the sessionFactory bean, it’ll inject the
DataSource object retrieved from JNDI into the session factory’s dataSource property.

 The great thing about using <jee:jndi-lookup> to look up an object in JNDI is
that the only part of the code that knows that the DataSource is retrieved from JNDI is
the XML declaration of the dataSource bean. The sessionFactory bean doesn’t
know (or care) where the DataSource came from. This means that if you decide that
you’d rather get your DataSource from a JDBC driver manager, all you need to do is
redefine the dataSource bean to be a DriverManagerDataSource.

 Now our data source is retrieved from JNDI and then injected into the session fac-
tory. No more explicit JNDI lookup code! Whenever we need it, the data source is
always handy in the Spring application context as the dataSource bean.

 As you’ve seen, wiring a JNDI-managed bean in Spring is fairly simple. Now let’s
explore a few ways that we can influence when and how the object is retrieved from
JNDI, starting with caching.

CACHING JNDI OBJECTS

Often, the objects retrieved from JNDI will be used more than once. A data source, for
example, will be needed every time you access the database. It’d be inefficient to
repeatedly retrieve the data source from JNDI every time that it’s needed. For that rea-
son, <jee:jndi-lookup> caches the object that it retrieves from JNDI by default.

 Caching is good in most circumstances. But it precludes hot redeployment of
objects in JNDI. If you were to change the object in JNDI, the Spring application would
need to be restarted so that the new object can be retrieved.

 If your application is retrieving an object from JNDI that will change frequently,
you’ll want to turn caching off for <jee:jndi-lookup>. To turn caching off, you’ll
need to set the cache attribute to false:

<jee:jndi-lookup id="dataSource"
jndi-name="/jdbc/SpitterDS"
resource-ref="true"
cache="false"
proxy-interface="javax.sql.DataSource" />

look up data source

JNDI repository

Data
source

Annotation
Session

FactoryBean

Injected into

<jee:jndi-lookup/>

Figure 14.3 <jee:jndi-lookup> looks up an object from JNDI,
making it available as a bean in the Spring application context. From

there, it can be wired into any other object that depends on it.

Licensed to Christian Cederquist <chrisman@kaus.dk>

361Wiring JNDI objects

Setting the cache attribute to false tells <jee:jndi-lookup> to always fetch the
object from JNDI. Note that the proxy-interface attribute has also been set. Since
the JNDI object can be changed at any time, there’s no way for <jee:jndi-lookup> to
know the actual type of the object. The proxy-interface attribute specifies a type
that’s expected for the object retrieved from JNDI.

LAZILY LOADING JNDI OBJECTS

Sometimes your application won’t need to retrieve the JNDI object right away. For
instance, suppose that a JNDI object is only used in an obscure branch of your applica-
tion’s code. In that situation, it may not be desirable to load the object until it’s actu-
ally needed.

 By default, <jee:jndi-lookup> fetches objects from JNDI when the application
context is started. Nevertheless, you can configure it to wait to retrieve the object until
it’s needed by setting the lookup-on-startup attribute to false:

<jee:jndi-lookup id="dataSource"
jndi-name="/jdbc/SpitterDS"
resource-ref="true"
lookup-on-startup="false"
proxy-interface="javax.sql.DataSource" />

As with the cache attribute, you’ll need to set the lookup-on-startup attribute when
setting lookup-on-startup to false. That’s because <jee:jndi-lookup> won’t know
the type of the object being retrieved until it’s actually retrieved. The proxy-
interface attribute tells it what type to expect from the fetched object.

FALLBACK OBJECTS

You now know how to wire JNDI objects in Spring and have a JNDI-loaded data source
to show for it. Life is good. But what if the object can’t be found in JNDI?

 For instance, maybe your application can count on a data source being available in
JNDI when running in a production environment. But that arrangement may not be
practical in a development environment. If Spring is configured to retrieve its data
source from JNDI for production, the lookup will fail in development. How can we
make sure that a data source bean is always available from JNDI in production and
explicitly configured in development?

 As you’ve seen, <jee:jndi-lookup> is great for retrieving objects from JNDI and
wiring them in a Spring application context. But it also has a fallback mechanism that
can account for situations where the requested object can’t be found in JNDI. All you
must do is configure its default-ref attribute.

 For example, suppose that you’ve declared a data source in Spring using Driver-
ManagerDataSource as follows:

<bean id="devDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 lazy-init="true">

<property name="driverClassName"
value="org.hsqldb.jdbcDriver" />
<property name="url"

Licensed to Christian Cederquist <chrisman@kaus.dk>

362 CHAPTER 14 Odds and ends

value="jdbc:hsqldb:hsql://localhost/spitter/spitter" />
<property name="username" value="sa" />
<property name="password" value="" />

</bean>

This is the data source that you’ll use in development. But in production, you’d rather
use a data source configured in JNDI by the system administrators. If that’s the case,
you’ll configure the <jee:jndi-lookup> element like this:

<jee:jndi-lookup id="dataSource"
jndi-name="/jdbc/SpitterDS"
resource-ref="true"
default-ref="devDataSource" />

Here, we’ve wired the default-ref attribute with a reference to the devDataSource
bean. If <jee:jndi-lookup> can’t find an object in JNDI at jdbc/SpitterDS, it’ll use
the devDataSource bean as its object. And because the fallback datasource bean has
lazy-init set to true, it won’t be created unless it’s needed.

 As you can see, it’s reasonably simple to use <jee:jndi-lookup> to wire JNDI-
managed objects into a Spring application context. As it turns out, <jee:jndi-
lookup> can also be used to wire EJB session beans into a Spring application context.
Let’s see how to do that.

14.2.3 Wiring EJBs in Spring

In EJB 3, session beans are just objects stored away in JNDI, much like any other object
in JNDI. Therefore, <jee:jndi-lookup> is perfectly sufficient for retrieving EJB 3 ses-
sion beans. But what if you want to wire an EJB 2 session bean into the Spring applica-
tion context?

 To access an EJB 2 stateless session bean, you start by retrieving an object from
JNDI. But that object is an implementation of the EJB’s home interface, not the EJB
itself. To get a handle to the EJB, you have to call the create() method on the home
interface.

 Fortunately, you don’t need to deal with those details when using Spring to access
EJB 2 session beans. Instead of using <jee:jndi-lookup>, Spring offers two other ele-
ments in the jee namespace that are expressly for accessing EJBs:

 <jee:local-slsb> to access local stateless session beans
 <jee:remote-slsb> to access remote stateless session beans

Both of these elements work in a way very similar to <jee:jndi-lookup>. For exam-
ple, to declare a reference to a remote stateless session bean in Spring, use
<jee:remote-slsb> like this:

<jee:remote-slsb id="myEJB"
jndi-name="my.ejb"
business-interface="com.habuma.ejb.MyEJB" />

The jndi-name attribute is the JNDI name used to lookup the EJB’s home interface.

Meanwhile, the business-interface specifies the business interface the EJB

Licensed to Christian Cederquist <chrisman@kaus.dk>

363Sending email

implements. With an EJB reference declared like this, the myEJB bean can then be
wired into any other bean’s property that is of the type com.habuma.ejb.MyEJB.

 Similarly, a reference to a local stateless session bean can be declared with the
<jee:local-slsb> element like this:

<jee:local-slsb id="myEJB"
jndi-name="my.ejb"
business-interface="com.habuma.ejb.MyEJB" />

Here, we’ve discussed using the <jee:local-slsb> and <jee:remote-slsb> elements
to declare EJB 2 session beans in Spring. But what’s especially interesting about these
elements is that they can also be used to wire EJB 3 session beans. They’re smart
enough to retrieve the object requested from JNDI and determine whether they’re
dealing with an EJB 2 home interface or an EJB 3 session bean. If it’s an EJB 2 home
interface, they’ll call create() for you. Otherwise, they’ll assume that they’re dealing
with an EJB 3 bean and make that object available in the Spring context.

 Looking up objects in JNDI comes in handy when you need access to objects that
are configured external to Spring. As you’ve seen, data sources may be configured
through an application server and accessed through JNDI. And as you’ll see next,
Spring’s JNDI lookup capability can be useful when sending email. Let’s take a look at
Spring’s email abstraction layer next.

14.3 Sending email
In chapter 12, we used Spring messaging support to asynchronously queue up jobs to
send spittle alerts to other Spitter application users. Now we’re ready to use Spring’s
email support to send the emails.

 Spring comes with an email abstraction API that makes simple work of sending
emails.

14.3.1 Configuring a mail sender

At the heart of Spring’s email abstraction is
the MailSender interface. As its name implies
and as illustrated in figure 14.4, a MailSender
implementation sends email. Spring comes
with one implementation of the MailSender
interface, JavaMailSenderImpl.

WHAT ABOUT COSMAILSENDERIMPL? Older versions of Spring, up to and
including Spring 2.0, included another implementation of MailSender
called CosMailSenderImpl. That implementation was removed in
Spring 2.5. If you’re still using it, you’ll need to switch to JavaMailSender-
Impl before moving up to Spring 2.5 or Spring 3.0.

Mail
Sender

Email
server

Figure 14.4 Spring’s MailSender interface
is the primary component of Spring’s email
abstraction API. It sends an email to a mail
server for delivery.
Licensed to Christian Cederquist <chrisman@kaus.dk>

364 CHAPTER 14 Odds and ends

To use JavaMailSenderImpl, we’ll declare it as a <bean> in the Spring application
context:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:host="${mailserver.host}" />

The host property specifies the hostname for the mail server that we’ll use to send the
email. Here it’s configured with a placeholder variable so that we can manage the mail
server configuration outside of Spring. By default, JavaMailSenderImpl assumes that
the mail server is listening on port 25 (the standard SMTP port). If your mail server is
listening on a different port, specify the correct port number using the port property.
For example:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:host="${mailserver.host}"
 p:port="${mailserver.port}"/>

Likewise, if the mail server requires authentication, you’ll also want to set values for
the username and password properties:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:host="${mailserver.host}"
 p:port="${mailserver.port}"
 p:username="${mailserver.username}"
 p:password="${mailserver.password}" />

This shows how to fully configure the mail sender in Spring with all of the details it’ll
need to access the mail server. Optionally, you may prefer to use an existing mail ses-
sion configured in JNDI. Let’s see how to configure JavaMailSenderImpl to use a mail
session that’s resident in JNDI.

USING A JNDI MAIL SESSION

You may already have a javax.mail.MailSession configured in JNDI (or perhaps one
was placed there by your application server). If so then Spring’s JavaMailSenderImpl
offers you an option to use the MailSender that you already have ready to use from
JNDI.

 We’ve seen how to retrieve objects from JNDI using Spring’s <jee:jndi-lookup>
element. So let’s use that to reference a mail session from JNDI:

<jee:jndi-lookup id="mailSession"
jndi-name="mail/Session" resource-ref="true" />

With the mail sender in hand, we can now wire it into the mailSender bean like this:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl"
 p:session-ref="mailSession" />
Licensed to Christian Cederquist <chrisman@kaus.dk>

365Sending email

By wiring the mail session into the session property of JavaMailSenderImpl, we’ve
completely replaced the explicit server (and username/password) configuration from
before. Now the mail session is completely configured and managed in JNDI. Java-
MailSenderImpl can focus on sending emails and not dealing with the mail server itself.

WIRING THE MAIL SENDER INTO A SERVICE BEAN

Now that the mail sender has been configured, it’s time to wire it into the bean that
will use it. In the Spitter application, the SpitterEmailServiceImpl class is the most
appropriate place to send the email from. This class has a mailSender property that’s
annotated with @Autowired:

@Autowired
JavaMailSender mailSender;

When Spring creates SpitterEmailServiceImpl as a bean, it’ll try to find a bean that
implements MailSender that it can wire into the mailSender property. It should find
our mailSender bean and use that. With the mailSender bean wired in, we’re ready to
construct and send emails.

14.3.2 Constructing the email

Since we want to send an email to a Spitter user to alert them of new spittles that their
friends may have written, we’ll need a method that, given an email address and a
Spittle object, will send that email. The sendSimpleSpittleEmail() method uses
the mail sender to do just that.

public void sendSimpleSpittleEmail(String to, Spittle spittle) {
SimpleMailMessage message = new SimpleMailMessage();

String spitterName = spittle.getSpitter().getFullName();
message.setFrom("noreply@spitter.com");
message.setTo(to);
message.setSubject("New spittle from " + spitterName);

message.setText(spitterName + " says: " +

spittle.getText());

mailSender.send(message);
}

The first thing that sendSimpleSpittleEmail() does is construct an instance of a
SimpleMailMessage. This mail message object, as its name implies, is perfect for send-
ing no-nonsense email messages.

 Next, the details of the message are set. The sender and recipient of the email are
specified via the setFrom() and setTo() methods on the mail message. After setting
the subject with setSubject(), the virtual “envelope” has been addressed. All that’s
left is to call setText() to set the message’s content.

Listing 14.1 Sending an email with Spring using a MailSender

Construct
message

Address
email

Set message text

Send email
Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:message.setFrom("noreply@spitter.com

366 CHAPTER 14 Odds and ends

 The last step is to pass the message to the mail sender’s send() method and the
email is on its way.

 Simple emails are a fine start. But what if you want to add an attachment? Or what
if you want the body of the email to have a polished look? Let’s see how to dress up
our emails sent by Spring, starting with simply adding an attachment.

ADDING ATTACHMENTS

The trick to sending emails with attachments is to create multipart messages—emails
composed of multiple parts, one of which is the body of the email and the other parts
being the attachments.

 The SimpleMailMessage class is too… well… simple for sending attachments. To
send multipart emails, you need to create a MIME (Multipurpose Internet Mail Extensions)
message. The mail sender object’s createMimeMessage() method can get you started:

MimeMessage message = mailSender.createMimeMessage();

There you go. We now have a MIME message to work with. It seems that all we need to
do is give it to and from addresses, a subject, some text, and an attachment. Though
that’s true, it’s not as straightforward as you might think. The javax.mail.internet
.MimeMessage class has an API that’s too cumbersome to use on its own. Fortunately,
Spring provides MimeMessageHelper to lend a hand.

 To use MimeMessageHelper, instantiate an instance of it, passing in the Mime-
Message to its constructor:

MimeMessageHelper helper = new MimeMessageHelper(message, true);

The second parameter to the constructor, a Boolean true as shown here, indicates
that this message is to be a multipart message.

 From the MimeMessageHelper instance, we’re ready to assemble our email mes-
sage. The only major difference here is that you’ll provide the email specifics through
methods on the helper instead of on the message itself:

String spitterName = spittle.getSpitter().getFullName();
helper.setFrom("noreply@spitter.com");
helper.setTo(to);
helper.setSubject("New spittle from " + spitterName);
helper.setText(spitterName + " says: " + spittle.getText());

The only thing needed before you can send the email is to attach the coupon image.
To do that, you’ll need to load the image as a resource and then pass that resource in
as you call the helper’s addAttachment() method:

FileSystemResource couponImage =
new FileSystemResource("/collateral/coupon.png");

helper.addAttachment("Coupon.png", couponImage);

Here, you’re using Spring’s FileSystemResource to load coupon.png from within the
application’s classpath. From there, you call addAttachment(). The first parameter is
the name to be given to the attachment in the email. The second parameter is the

image’s resource.

Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:helper.setFrom("noreply@spitter.com

367Sending email

 The multipart email has been constructed. Now you’re ready to send it. The com-
plete sendSpittleEmailWithAttachment() method is shown next.

public void sendSpittleEmailWithAttachment(
String to, Spittle spittle) throws MessagingException {

MimeMessage message = mailSender.createMimeMessage();
MimeMessageHelper helper =

new MimeMessageHelper(message, true);

String spitterName = spittle.getSpitter().getFullName();
helper.setFrom("noreply@spitter.com");
helper.setTo(to);
helper.setSubject("New spittle from " + spitterName);

helper.setText(spitterName + " says: " + spittle.getText());

FileSystemResource couponImage =
new FileSystemResource("/collateral/coupon.png");

helper.addAttachment("Coupon.png", couponImage);

mailSender.send(message);
}

Adding attachments to an email is only one thing you can do with multipart emails. In
addition, by specifying that the body of the email is HTML, you can produce polished
emails that look much nicer than flat text. Let’s see how to send attractive-looking
emails using Spring’s MimeMessageHelper.

SENDING EMAILS WITH RICH CONTENT

Sending a rich email isn’t much different than sending plain-text emails. The key is to
set the message’s text as HTML. Doing that is as simple as passing in an HTML string to
the helper’s setText() method and true as the second parameter:

helper.setText("<html><body>" +
"<h4>" + spittle.getSpitter().getFullName() + " says...</h4>" +
"<i>" + spittle.getText() + "</i>" +

"</body></html>", true);

The second parameter indicates that the text passed into the first parameter is HTML,
so that the message part’s content type will be set accordingly.

 Note that the HTML passed in has an tag to display the Spitter application’s
logo as part of the email. The src attribute could be set to a standard http: URL to
pull the Spitter logo from the web. But here, we've embedded the logo image in the
email itself. The value cid:spitterLogo indicates that there will be an image in one
of the message’s parts identified as spitterLogo.

 Adding the embedded image to the message is much like adding an attachment.
Instead of calling the helper’s addAttachment() method, you must call the add-
Inline() method:

ClassPathResource image = new ClassPathResource("spitter_logo_50.png");

Listing 14.2 MimeMessageHelper simplifies sending emails with attachments.

Construct
message
helper

Add
attachment
helper.addInline("spitterLogo", image);

Licensed to Christian Cederquist <chrisman@kaus.dk>

mailto:helper.setFrom("noreply@spitter.com

368 CHAPTER 14 Odds and ends

The first parameter to addInline specifies the identity of the inline image—which is
the same as was specified by the ’s src attribute. The second parameter is the
resource reference for the image, created here using Spring’s ClassPathResource to
retrieve the image from the application’s classpath.

 Aside from the slightly different call to setText() and the use of the addInline()
method, sending an email with rich content is much like how you sent a plain-text
message with attachments. For sake of comparison, here’s the new sendRichSpitter-
Email() method.

public void sendRichSpitterEmail(String to, Spittle spittle) throws Messaging
 Exception {

MimeMessage message = mailSender.createMimeMessage();
MimeMessageHelper helper = new MimeMessageHelper(message, true);
helper.setFrom("noreply@spitter.com");
helper.setTo("craig@habuma.com");
helper.setSubject("New spittle from " +

spittle.getSpitter().getFullName());

helper.setText("<html><body>" +

"<h4>" + spittle.getSpitter().getFullName() + " says...</h4>" +
"<i>" + spittle.getText() + "</i>" +

"</body></html>", true);

ClassPathResource image = new ClassPathResource("spitter_logo_50.png");
helper.addInline("spitterLogo", image);
mailSender.send(message);

}

And now you’re sending emails with rich content and embedded images! You could
stop here and call your email code complete. But it bugs me that the email’s body was
created by using string concatenation to construct an HTML message. Before we put
the email topic to rest, let’s see how to replace that string-concatenated message with a
template.

CREATING EMAIL TEMPLATES

The problem with constructing an email message using string concatenation is that
it’s not clear what the resulting email will look like. It’s hard enough to mentally parse
HTML markup to imagine how it might appear when rendered. But mixing that HTML
up within Java code compounds the issue. Moreover, it might be nice to extract the
email layout into a template that a graphic designer (who has an aversion to Java
code) can produce.

 What we need is a way to express the email layout in something close to what the
resulting HTML will look like and then transform that template into a String to be
passed into the setText() method on the message helper. When it comes to trans-
forming templates into strings, Apache Velocity2 is one of the best options available.

Set
HTML body

Add
inline image
2 http://velocity.apache.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

http://velocity.apache.org
mailto:helper.setTo("craig@habuma.com
mailto:helper.setFrom("noreply@spitter.com

369Sending email

 To use Velocity to lay out our email messages, we’ll first need to wire a Velocity-
Engine into SpitterEmailServiceImpl. Spring provides a handy factory bean called
VelocityEngineFactoryBean that will produce a VelocityEngine in the Spring appli-
cation context. The declaration for VelocityEngineFactoryBean looks like this:

<bean id="velocityEngine"
class="org.springframework.ui.velocity.VelocityEngineFactoryBean">

<property name="velocityProperties">
<value>

resource.loader=class
class.resource.loader.class=org.apache.velocity.runtime.resource.loader.Class

pathResourceLoader
</value>

</property>
</bean>

The only property that needs to be set on VelocityEngineFactoryBean is velocity-
Properties. In this case, we’re configuring it to load Velocity templates from the class-
path (see the Velocity documentation for more details on how to configure Velocity).

 Now we can wire the Velocity engine into SpitterEmailServiceImpl. Since
SpitterEmailServiceImpl is automatically registered with the component scanner,
we can use @Autowired to automatically wire a velocityEngine property:

@Autowired
VelocityEngine velocityEngine;

Now that the velocityEngine property is available, we can use it to transform a Veloc-
ity template into a String to send as our email text. To help out with that, Spring
comes with VelocityEngineUtils to make simple work of merging a Velocity tem-
plate and some model data into a String. Here’s how we might use it:

Map<String, String> model = new HashMap<String, String>();
model.put("spitterName", spitterName);
model.put("spittleText", spittle.getText());
String emailText = VelocityEngineUtils.mergeTemplateIntoString(

velocityEngine, "emailTemplate.vm", model);

In preparation for processing the template, we start by creating a Map to hold the
model data used by the template. In our previous string-concatenated code, we
needed the full name of the spitter and the text of their spittle, so we’ll need that here
as well. To produce the merged email text, we then just need to call Velocity-
EngineUtils’s mergeTemplateIntoString() method, passing in the Velocity engine,
the path to the template (relative to the root of the classpath), and the model map.

 All that’s left to be done in the Java code is to hand off the merged email text to
the message helper’s setText() method:

helper.setText(emailText, true);

As for the template itself, that’s sitting at the root of the classpath in a file called email-
Template.vm, which looks like this:
Licensed to Christian Cederquist <chrisman@kaus.dk>

http:Template.vm
http:emailTemplate.vm

370 CHAPTER 14 Odds and ends

<html>
<body>

<h4>${spitterName} says...</h4>
<i>${spittleText}</i>

</body>
</html>

As you can see, the template file is a lot easier to read than the string-concatenated
version from before. Consequently, it’s also easier to maintain and edit. Figure 14.5
gives a sample of the kind of email it might produce.

 After looking at figure 14.5, I see a lot of opportunity left to dress up the template
so that the email appears much nicer. But, as they say, I’ll leave that as an exercise for
the reader.

 But for now, we have one more Spring attraction to look at. And I’ve saved one of
the best for last! Let’s see how to make short work of running jobs in the background
using Spring.

14.4 Scheduling and background tasks
The better part of the functionality in most applications happens in response to some-
thing that the application’s users have done. A user fills in a form and then clicks a
button, and the application reacts by processing the data, persisting it to a database,
and producing some output.

 But sometimes applications have work of their own to do, without the user being
involved. While the users click the buttons, the application can be handling back-
ground jobs that don’t involve user interaction.

Figure 14.5 A Velocity template and some embedded images can dress up
an otherwise ho-hum email.
Licensed to Christian Cederquist <chrisman@kaus.dk>

371Scheduling and background tasks

 There are two kinds of background jobs to choose from:

 Scheduled jobs
 Asynchronous methods

Scheduled jobs involve functionality that takes place every so often, either at some
specified period or at some specific time. Asynchronous methods, on the other hand,
are methods that are called, but that return immediately so that the caller can pro-
ceed—while the asynchronous method continues running in the background.

 Regardless of which kind of background job you need, you’ll need to add a single
line of configuration to the Spring application context:

<task:annotation-driven/>

The <task:annotation-driven/> element sets Spring up to automatically support
scheduled and asynchronous methods. These methods are identified with the
@Scheduled and @Async methods, respectively.

 Let’s see how to use these annotations, starting with using the @Scheduled annota-
tion to fire off methods on a schedule.

14.4.1 Declaring scheduled methods

If you’ve been working with Spring for awhile, then you know that Spring has sup-
ported scheduling of method invocations for a long time. But until recently, the
Spring configuration required to schedule methods was involved. In the second edi-
tion of this book, I spent 10 pages showing how to invoke methods periodically.

 Spring 3 changes that with the new @Scheduled annotation. What used to take sev-
eral lines of XML and a handful of beans now can be done with the <task
:annotation-driven> element and a single annotation. I definitely won’t need 10
pages to show you how it works.

 To schedule a method, all you have to do is to annotate it with @Scheduled. For
example, to have Spring automatically invoke a method every 24 hours (86,400,000
milliseconds):

@Scheduled(fixedRate=86400000)
public void archiveOldSpittles() {

// ...
}

The fixedRate attribute indicates that the method should be invoked periodically,
every so many milliseconds. In this case, 86,400,000 milliseconds will pass between the
start of each invocation. If you’d rather specify the time that passes in between invoca-
tions (between the completion of one invocation and the start of the next), then use
the fixedDelay attribute instead:

@Scheduled(fixedDelay=86400000)
public void archiveOldSpittles() {

// ...
}

Licensed to Christian Cederquist <chrisman@kaus.dk>

372 CHAPTER 14 Odds and ends

Running a task at a given interval can be handy. But you may want more precise con-
trol over when a method is invoked. With fixedRate and fixedDelay, you can only
control how often a method is invoked, but not when it happens. To be specific about
the times a method should be called, use the cron attribute:

@Scheduled(cron="0 0 0 * * SAT")
public void archiveOldSpittles() {

// ...
}

The value given to the cron attribute is a Cron expression. For those who aren’t so
well-versed in Cron expressions, let’s break down the cron attribute. The Cron expres-
sion is made up of six (or possibly seven) time elements, separated by spaces. In order
from left to right, the elements are defined as follows:

1 Seconds (0-59)
2 Minutes (0-59)
3 Hours (0-23)
4 Day of month (1-31)
5 Month (1-12 or JAN-DEC)
6 Day of week (1-7 or SUN-SAT)
7 Year (1970-2099)

Each of these elements can be specified with an explicit value (6), a range (9-12), a
list (9,11,13), or a wildcard (for example, *). The day of the month and day of the
week elements are mutually exclusive, so you should also indicate which one of the
fields you don’t want to set by specifying it with a question mark (?). Table 14.1 shows
some example Cron expressions that could be used with the cron attribute.

 In the example, I’ve specified that old Spittles should be archived every Satur-
day at midnight. But since this method is scheduled using a Cron expression, the
scheduling options are virtually limitless. Where fixedRate and fixedDelay are lim-
ited to fixed time periods, a Cron-scheduled method could be scheduled to run at
odd times. I’m sure you can dream up some interesting Cron expressions to schedule
methods with.

Table 14.1 Some sample Cron expressions

Cron expression What it means

0 0 10,14,16 * * ? Every day at 10 a.m., 2 p.m., and 4 p.m.

0 0,15,30,45 * 1-30 * ? Every 15 minutes on the first 30 days of the month

30 0 0 1 1 ? 2012 30 seconds after midnight on January 1, 2012

0 0 8-17 ? * MON-FRI Every working hour of every business day
Licensed to Christian Cederquist <chrisman@kaus.dk>

373Scheduling and background tasks

14.4.2 Declaring asynchronous methods

When it comes to dealing with the human users of an application, there are two kinds
of application performance: actual and perceived. The actual performance of an appli-
cation (the discrete measurement of how long it takes to perform an operation) is cer-
tainly important. But even if the actual performance is less than ideal, its effect on the
users can be mitigated with the perceived performance.

 Perceived performance is exactly what it sounds like. Who cares how long it takes to do
something, as long as the user sees something happening immediately? For example,
let’s suppose that the act of adding a Spittle is a costly operation. If handled synchro-
nously, the perceived performance would be a function of the actual performance.
The user would have to wait while the Spittle is saved.

 But if there were only some way for the SpitterService’s saveSpittle() method
to be handled asynchronously, then the application could be presenting a new page to
the user while the persistence logic is handled in the background. That’s what the
@Async annotation is for.

 @Async is a simple annotation and has no attributes to set. All you need to do is use
it to annotate a bean method and that method becomes asynchronous. It couldn’t be
any simpler than that.

 For example, here’s roughly what the SpittleServiceImpl’s saveSpittle()
method might look like as an asynchronous method:

@Async
public void addSpittle(Spittle spittle) {

...
}

That’s really all there is to it. When the saveSpittle() method is called, control will
return to the caller immediately. Meanwhile, the saveSpittle() method will con-
tinue running in the background.

 You might be wondering what would happen if an asynchronous method needs to
return something to the caller. If the method returns immediately, then how can it
possibly pass results back to the caller?

 Since Spring asynchronous methods are based on Java’s concurrency API, they can
return an object that implements java.util.concurrent.Future. This interface rep-
resents a holder for some value that will eventually be available at some point after the
method returns, but not necessarily at the point that the method returns. Spring
comes with a convenient implementation of Future called AsyncResult that makes it
easy to work with future values.

 For example, suppose that you have an asynchronous method that attempts to per-
form some complex and long-running calculation. You want the method to run in the
background, but once it’s finished you want to be able to see what the results were. In
that case, you might write the method something like this:

Licensed to Christian Cederquist <chrisman@kaus.dk>

374 CHAPTER 14 Odds and ends

@Async
public Future<Long> performSomeReallyHairyMath(long input) {

// ...

return new AsyncResult<Long>(result);
}

This method can take as long as it needs to produce the result, while the caller can go
about any other business that needs to be done. The caller will receive a Future object
(actually, an AsyncResult) to hold on to while the result is calculated.

 Once the result is ready, the caller can retrieve it by calling the get() method on
the Future object. Until then, the caller can check in on the status of the result by call-
ing isDone() and isCancelled().

14.5 Summary
In this chapter, we’ve covered a mixed bag of topics—Spring features that, by them-
selves, didn’t have a home in any other chapter.

 We started by looking at how to externalize bean property values using property
placeholder configurers and overriders. We also learned how to not only externalize
properties, but to encrypt them so that prying eyes won’t gain access to the sensitive
configuration details of our application.

 We then took externalization up a notch by pushing entire objects into JNDI and
then configuring Spring to pull those objects into the Spring context where they can
be wired into other beans as if they were beans themselves.

 Then we looked at sending emails with Spring. Although Spring’s email abstrac-
tion is hardly the most exciting thing that Spring can do, it beats writing code to send
email without Spring. We saw how to send simple emails, HTML-based emails, and
emails with attachments and embedded content.

 Finally, we tinkered with background jobs in Spring. We started by annotating
methods to run on a specific schedule. Then we annotated methods to run asynchro-
nously with our application so that the perceived performance of the application
could be improved.

14.6 The end...?
I hate to admit it, but we’ve come to the end of the book. That’s not to say that there’s
nothing else to learn about Spring. As I stated in the preface, I could literally write vol-
umes about Spring. But if I did that, this book would never have made it into your
hands and I’d never know the satisfaction of a full night’s sleep.

 Although some tough decisions had to be made with regard to the scope of this
book, I think we’ve covered the most important topics that you’ll need to build
applications with Spring. And now you’re equipped to explore those other topics on
your own.

 So, although this chapter ends Spring in Action, your journey in Spring is just begin-
ning. I encourage you to leverage what you’ve learned here to dig more into the other
Licensed to Christian Cederquist <chrisman@kaus.dk>

375The end...?

areas of Spring such as Spring Integration, Spring Batch, Spring Dynamic Modules,
and (my personal favorite) Spring Roo. Fortunately, Manning has in Action books on
each of these topics to help you explore further:

 Spring Integration in Action by Mark Fisher, Jonas Partner, Marius Bogoevici, and
Iwein Fuld

 Spring Batch in Action by Thierry Templier and Arnaud Cogoluègnes
 Spring Dynamic Modules in Action by Arnaud Cogoluègnes, Thierry Templier, and

Andy Piper
 Roo in Action by Gordon Dickens and Ken Rimple

And you can always hang out at the Spring forums—http://forum.springframework
.org—to learn about these and other Spring-related projects.

 It’s been fun for me. I hope it’s been fun for you.
Licensed to Christian Cederquist <chrisman@kaus.dk>

http://forum.springframework.org
http://forum.springframework.org

Licensed to Christian Cederquist <chrisman@kaus.dk>

index
Symbols

^ operator 56
- operator 56
! operator 58
?: operator 58
* operator 56
/ operator 56
&& operator 92
% operator 56
+ operator 56
== operator 57
> and < operators 57
>= and <= operators 57
|| operator 92

A

Accept header 289, 291, 305
access attribute 233, 237
Acegi Security. See Spring Security
ACID, defined 148
action states 203–204
<action-state> element 204
ActiveMQ 316–317
actual performance 373
addAttachment() method 366
addInline() method 367
ADO.NET 26
Adobe AIR 26
Adobe Flex 26
advice 86–87

after advice 87
after-returning advice 87, 95
after-throwing 87

around advice 87
before advice 87
method before advice 95
passing parameters to 98, 100
<tx:advice> element 160
written in Java 89

after advice 14, 87
<aop:after> element 93
declaring 95, 97

afterPropertiesSet() method
20, 40

after-returning advice 87, 93, 95, 108
after-throwing advice 87, 93, 95
algorithm property 356
Amazon S3 196–197
Amazon Simple Storage. See Amazon S3
ambiguous dependencies 72–73
<amq:queue> element 317
<amq:topic> element 317
and operator 58
annotatedClasses property 136
@annotation pointcut designator 91
AnnotationAwareAspectJAutoProxyCreator

class 104
annotations

and autodiscovery 78–79
and introduction 106–107
and Spring Expression Language 76–77
and Spring MVC 170
annotation-driven MBeans 340–341
annotation-driven transactions 162–163
AnnotationSessionFactoryBean 135
@Around 104
@AspectJ 32, 102, 107
@Async 373–374
377

<aop:advisor> element 93 @Autowired 27, 71, 74, 137, 262, 272, 365

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX378

annotations (continued)
@Bean 81
@Before 103
@Component 27, 78, 171, 329
@Configuration 81
@Controller 78, 171, 182
@CookieValue 28
@DeclareParents 106
enabling autowiring with 70
@Entity 136
@Inject 74, 76, 171
JSR-303 28
@ManagedAttribute 340
@ManagedOperation 340
@ManagedResource 340
@MappedSuperclass 136
@MessageDriven 326
@Named 75
@PathVariable 188, 282, 284
@Pattern 190
@Pointcut 103
@PostAuthorize 248
@PostConstruct 27
@PostFilter 248–249, 251
@PreAuthorize 248
@PreFilter 248
@Qualifier 27, 72
@Repository 78, 137, 144
@RequestBody 293–294
@RequestHeader 28
@RequestMapping 170, 185, 280, 283, 285, 291
@RequestParam 182, 195
@Resource 27
@ResponseBody 291, 293
@ResponseStatus 286–287
@RolesAllowed 247
@Scheduled 371–372
@Secured 246
@Service 78
@Size 190
@Transactional 144, 156, 162
@Valid 189, 195
@Validation 188
@Value 76, 352
wiring with 70, 77

AnnotationSessionFactoryBean class 135
aop namespace 14, 32, 104, 160
<aop:advisor> element 93
<aop:after> element 14, 93
<aop:after-returning> element 93, 95
<aop:after-throwing> element 93, 95
<aop:around> element 93, 98

<aop:aspectj-autoproxy> element 93, 104, 107
<aop:before> element 14, 94–95
<aop:config> element 94–95
<aop:declare-parents> element 94, 101
<aop:pointcut> element 94, 96
AOP. See aspect-oriented programming
Apache CXF 271
Apache Struts 23
Apache Tiles 176–177, 183

<definition> element 186
tile definitions 177

Apache Velocity 369
application context 9–10, 18–19, 22
ApplicationContext interface 18, 90
ApplicationContextAware interface 20
application-managed entity managers 139–141
arg-names attribute 100
@args() pointcut designator 91
args() pointcut designator 91
arithmetic operators 56–57
around advice 87

advantages over before and after advice 97
<aop:around> element 93, 98
@Around annotation 104
declaring 97–98

@Around annotation 104
ASP.NET 26
@AspectJ 102, 107

<aop:aspectj-autoproxy> element 93
compared to <aop:aspect> 104
parameters 105

AspectJ 14, 27, 89, 107, 110
aop namespace 32
@AspectJ 102, 107
compared to Spring AOP 90, 107
filtering 80
writing pointcuts 91

@AspectJ annotation 32
aspect-oriented programming 10, 15

advice 86–87
and Spring Security 225
AspectJ 107, 110
aspects 87
declaring aspects 93, 102
defined 85
example 12, 15
frameworks 89
introductions 88
join points 87
method join points 90
pointcuts 87
securing methods 246, 252
Spring AOP module 22
support in Spring 88, 91
<aop:aspect> element 14, 93, 96, 104 weaving 88

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 379

aspects 10, 15, 87
advice 86
after advice 14
<aop:advisor> element 93
<aop:after> element 93
<aop:after-returning> element 93
<aop:after-throwing> element 93
<aop:around> element 93
<aop:aspect> element 93, 96
<aop:aspectj-autoproxy> element 93, 104, 107
<aop:before> element 94
<aop:config> element 94–95
<aop:declare-parents> element 94, 101
<aop:pointcut> element 94
as blankets 11
AspectJ 107, 110
before advice 14
compared to inheritance and delegation 86
cross-cutting concerns 11
declaring in XML 93, 102
defined 86
example 12, 15
introduction 100, 102
join points 87
pointcuts 87
proxy class 90
weaving 88

@Async annotation 373–374
asynchronous communication 311

benefits of 314, 316
decoupling 315
guaranteed delivery 315
JmsProxyFactoryBean 331–332
Lingo 330, 332
location independence 315
no waiting 315

asynchronous methods 371, 373–374
AsyncResult class 373
at inject. See @Inject annotation
AtomFeedHttpMessageConverter 292
atomicity. See transactions
attachments 366–367
attributes

access 233, 237
arg-names 100
attributes 223
authentication-failure-url 230
authorities 239
authorities-by-username-query 241
auto-config 229, 231
base-package 78, 81
base-path 201
business-interface 363
cache 361

connectionFactory 327
content 186
cron 372
cssClass 192
data-source-ref 240
defaultImpl 107
default-impl 102
default-init-method 41
default-ref 361
defining with interfaces 339–340
delegate-ref 102
destroy-method 40
else 205
expression 79, 204
factory-method 37, 109
fixedDelay 371
fixedRate 371
flow-registry 201
group-authorities-by-username-query 241
group-search-base 242
group-search-filter 242
hash 243
header 291
id 34, 46
ignore-resource-not-found 353
ignore-unresolvable 353
implement-interface 102
init-method 40
jndi-name 121, 359, 362
jsr250-annotations attribute 247
key 50, 335
key-ref 50
lazy-init 362
ldif 244
login 230
login-processing-url 230
logout-url 232
lookup-on-startup 361
managed 335
mapping 168
model 204
name 160, 239
objectName 341
on 206
on-attribute 207
params 185
password 239, 243
path 192, 202
path-type 232
pattern 229, 232
physicalName 317
pointcut 95
pointcut-ref 97
pre-post-annotations 247
class 34 primary 67

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX380

attributes (continued)
properties-ref 353
property 235
proxy-interface 361
ref 37, 95
registration 342
required 72
requires-channel 234
resource-ref 121, 359
scope 38, 236
secured-annotations 246
start-state 211
String attributes 82
system-properties-mode 353
targetNamespace 276
then 205
to 206
transactionmanager 162
<tx:attributes> element 160
type 79
types-matching 102
url 237
use-expressions 233
userPassword 243
users-by-username-query 241
user-search-base 242
user-search-filter 242
user-service-ref 239–240
value 37, 43, 50, 53, 106, 287
value-ref 50
view 204, 206

audience example 94, 98, 102, 105
authentication 235–236, 238, 246

LDAP authentication providers 242
Lightweight Directory Access Protocol 241, 245
remember-me feature 245–246
with database 240–241
with in-memory user repository 239–240

authentication providers 242
authentication-failure-url attribute 230
<authentication-manager> element 239, 242
<authentication-provider> element 240, 242
authorities 236, 238
authorities attribute 239
authorities property 236
authorities-by-username-query attribute 241
auto-config attribute 229, 231
autodetect autowiring 65, 68
autodiscovery 77–80
autowire property 65, 70

autodetect 65, 68
byName 65–66
byType 65, 67–68

@Autowired annotation 27, 71, 74, 137, 262,
272, 365

ambiguous dependencies 72–73
and constructors 71
and private keyword 71
and setter methods 71
annotating properties with 71
custom qualifiers 73–74
@Inject 74
optional autowiring with 71
@Qualifier annotation 72
required attribute 72

autowiring
ambiguous dependencies 72–73
autodetect 65, 68
@Autowired annotation 71, 74
best-fit 65, 68
by constructor 65, 68
by name 65–66
byType 65, 67–68
default-autowire property 68
enabling with annotations 70
@Inject annotation 74, 76
JAX-WS endpoints 272–273
mixing with explicit wiring 69–70
null 69
optional 71
@Qualifier annotation 72
standards-based 74, 76
with annotations 70, 77

B

background tasks 370, 374
base-package attribute 78, 81
base-path attribute 201
Basic authentication 231
BasicDataSource

driverClassName property 122
initialSize property 122
maxActive property 122
maxIdle property 122
maxOpenPreparedStatements property 122
maxWait property 122
minEvictableIdleTimeMillis property 123
minIdle property 123
password property 122
pool-configuration properties 122
poolPreparedStatements property 123
url property 122
username property 122

@Bean annotation 81
<bean> element

ActiveMQ configuring 317

constructor 65, 68 and AspectJ injection 109

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 381

<bean> element (continued)
class attribute 34
dataSource property 151
destroy-method attribute 40
entityManagerFactory property 152
factory-method attribute 37, 109
id attribute 34
init-method attribute 40
inner beans 46
inside <list> 49
and Jasypt encryption 356
LocalContainerEntityManagerFactoryBean 141
LocalEntityManagerFactoryBean 140
and MBeans 335
p namespace 46
primary attribute 67
scope attribute 38
sessionFactory property 151
and SimpleJaxWsServiceExporter 273
TilesViewResolver 176
transactionManagerName property 153

bean factories 18, 22, 90
bean scoping 38–39
bean() pointcut designator 93
BeanFactory interface 18
BeanFactoryAware interface 19
bean-managed persistence 138
BeanNameAware interface 19
BeanNameUrlHandlerMapping 170
BeanNameViewResolver 174
BeanPostProcessor interface 20
beans

autodiscovery 77, 80
autowiring 65, 70
bean-managed persistence 138
<constructor-arg> element 35
creating through factory methods 37–38
declaring 31, 41
entity beans 138
exporting as HTTP services 268–269
exporting as JAX-WS endpoints 273–274
exporting as MBeans 334, 343
exposing functionality with Hessian and

Burlap 264, 266
Hibernate session factories 135
initializing and destroying 39, 41
injecting inner beans 45–46
injecting into properties 41, 52
injecting through constructors 34, 38
lifecycle 19–20
LocalContainerEntityManagerFactoryBean

139–140
LocalEntityManagerFactoryBean 139
referencing by ID 54–55

retrieving from application contexts 18
scoping 38–39
singletons 38
wiring 30, 63
See also JavaBeans

<beans> element 32
default-autowire property 68
default-destroy-method 41
default-init-method attribute 41

beans namespace 32
BeanShell, with lang namespace 32
before advice 14, 87

<aop:before> element 94
declaring 95, 97
method before advice 95

@Before annotation 103
best-fit autowiring 65, 68
BMP. See bean-managed persistence
boilerplate code, eliminating 15, 17
BufferedImageHttpMessageConverter 292
Burlap 23, 257

accessing services 266–267
compared to Hessian 263
exporting services 266
exposing bean functionality 264, 266

BurlapServiceExporter class 266
business-interface attribute 363
byName autowiring 65–66
ByteArrayHttpMessageConverter 292
byType autowiring 65, 67–68

C

<c:forEach> element 184
cache attribute 361
caching, JNDI objects 360
callback methods 6
callbacks 118
cascading 133
catch blocks 115, 117
Caucho. See Hessian
CCI. See Common Client Interface
CciDaoSupport class 120
CciLocalTransactionManager 150
CciTemplate 119
Central Authentication Service, and Spring

Security 226
city example 59
class attribute 34
classes

AnnotationAwareAspectJAutoProxyCreator 104
AnnotationSessionFactoryBean 135
aspect proxy class 90
AsyncResult 373
referencing other beans 43, 46 BurlapServiceExporter 266

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX382

classes (continued)
CciDaoSupport 120
CommonsMultipartResolver 197
configuration class 81
CosMailSenderImpl 363
DAO support classes 119, 121
DefaultMethodSecurityExpressionHandler 251
DelegatingFilterProxy 228
DriverManagerDataSource 123, 361
FileSystemResource 366
FilterChainProxy 228
FlowHandlerAdapter 202
FlowHandlerMapping 202
HessianServiceExporter 264
HibernateDaoSupport 120
HibernateTemplate 134
java.io.File 195
JavaMailSenderImpl 363
JdbcDaoSupport 120, 131
JdbcTemplate 128
JdoDaoSupport 120
JmsUtils class 324
JpaDaoSupport 120
LinkedMultiValueMap 305
LocalSessionFactoryBean 135
Math 55
MBeanExporter 335, 338
MimeMessageHelper 366
MultiValueMap 305
NamedParameterJdbcDaoSupport 120, 131
NamedParameterJdbcTemplate class 128, 130
Naming 261
ParameterizedRowMapper 130
PersistenceAnnotationBeanPostProcessor 144
PersistenceExceptionTranslationPostProcessor

138
ProviderManager 239
RmiProxyFactoryBean 261
RmiServiceExporter 260
SimpleJdbcDaoSupport 120, 131
SimpleJdbcTemplate 128, 130–131
SimpleMetadataStrategy 332
SingleConnectionDataSource 123
SqlMapClientDaoSupport 120
TransactionTemplate 154
VelocityEngineUtils 369

classload-time weaving 88
ClassPathXmlApplicationContext 10, 18
clients, REST 294, 306
cloud storage, Amazon S3 196–197
CMP. See container-managed persistence
CMTs. See container-managed transactions
Cogoluègnes, Arnaud 24
collections

accessing members with SpEL 60–61

<list> element 47
map collections 49–50
<map> element 47
projection 62–63
properties collections 51
<props> element 47
selecting members 61
selection and projection 62
<set> element 47
wiring 47, 51

collisions, MBean collisions 342–343
commit() method 151–153
Common Client Interface 150
CommonsMultipartResolver class 197
comparison operators 56–57
compile-time weaving 88
@Component annotation 27, 78, 171, 329
<component:property-override> element 354
components 10–11, 15
conditional operators 56, 58–59
@Configuration annotation 81
configuration classes 81
configuring

data sources 121, 124
embedded LDAP servers 244
entity manager factories 139, 142
externalizing configuration 351, 357
flow registries 201–202
Hessian controllers 265–266
mail senders 363, 365
message listeners 327
minimal web security 228
property overriders 351, 354–355
property placeholder configurers 351–352, 354
RMI services 259, 261
Spring 32–33
Spring for file uploads 197
Spring Security 226–227
Spring using XML 32
Spring Web Flow 200, 203
Spring with Java 80

connecting to databases 351
connectionFactory attribute 327
connectionFactory property 321, 330–332
ConnectorServerFactoryBean 343–344
consistency. See transactions
constructor autowiring 65, 68
constructor injection 8, 36
constructor pointcuts 107
<constructor-arg> element 35, 317

eliminating with constructor autowiring 68
ref attribute 37
value attribute 37

constructors
autowiring 65, 68
and Spring Expression Language 59, 63 constructor injection 8

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 383

constructors (continued)
constructor pointcuts 107
injecting object references 35, 37
injecting through 34, 38

container-managed entity managers 139, 141–142
container-managed persistence 138
container-managed transactions 149, 156
containers 20, 32

bean lifecycle within 19
container-managed entity managers 139
container-managed persistence 138
core container 22
dependency injection 17

content attribute 186
ContentNegotiatingViewResolver 174, 288–290

finding views 290
influencing media types 289

contestant example 101, 106
context namespace 27, 32, 70, 340

 element 353
<context:property-placeholder> element

352–353
<context:annotation-config> element 70
<context:component-scan> element 77, 137, 171

base-package attribute 78
filtering 79–80

<context:exclude-filter> element 79
<context:include-filter> element 79
<context:mbean-export> element 340, 342
<context:mbean-server> element 336
<context:property-placeholder> element 352–353
contextConfigLocation parameter 180
ContextLoaderListener interface 179–180
contextual sessions 134
@Controller annotation 78, 171, 182
ControllerBeanNameHandlerMapping 170
ControllerClassNameHandlerMapping 170
controllers

@Controller annotation 171
front controller 166
handler mappings 170
handling input 181, 185
Hessian controllers 265–266
message converters 291, 294
RESTful 279, 287
RESTless 280–281
Spitter home page controller 170, 173
testing 172
writing controllers in Spring MVC 169, 180

conversation scope 208
convertJmsAccessException() method 324
@CookieValue annotation 28
core container 22
CosMailSenderImpl class 363
coupling 7

createContainerEntityManagerFactory()
method 139

createEntityManagerFactory() method 139
createMessage() method 322
createMimeMessage() method 366
credentials property 236
cron attribute 372
Cron expressions 372
cross-cutting concerns 11, 85
CRUD operations 285
cssClass attribute 192

D

DAO support classes 119, 121
and JDBC 131–132
CciDaoSupport 120
JdbcDaoSupport 120
JdoDaoSupport 120
JpaDaoSupport 120
NamedParameterJdbcDaoSupport 120
SimpleJdbcDaoSupport 120
SqlMapClientDaoSupport 120

DAO. See data access objects
data access 144–145

callbacks 118
data sources 121, 124
exception hierarchy 115, 117
JDBC 124, 132
JDBC driver-based data source 123–124
overview 113
runaway code 124, 127
templates 118
templating 117, 119
tiers 114, 117
with SimpleJdbcTemplate 128, 130

data access objects 22, 114
JPA-based 143
support classes 119, 121
support classes with JDBC 131–132
wiring Hibernate to DAO classes 137–138

data access tiers 114
data sources

BasicDataSource 122
JDBC driver-based 123–124
JNDI 121
pooled 122–123
with SimpleJdbcTemplate 128

DataAccessException 117
database property 142
databases 113, 145

authentication 240–241
connecting to 351
querying rows with JDBC 126
create() method 363 updating rows with JDBC 125

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX384

DataSource interface 151
dataSource property 132, 135, 141, 151, 359
DataSource, retrieving from JNDI 357, 359
data-source-ref attribute 240
DataSourceTransactionManager 150–151
decision states 203, 205
<decision-state> element 205, 215
@DeclareParents annotation

defaultImpl attribute 107
value attribute 106

declaring
around advice 97–98
aspects 93, 102
beans 31, 41
before and after advice 95, 97
transactions 155, 163
transactions in XML 160, 162
variables in flows 208

DefaultAnnotationHandlerMapping 170
default-autowire property 68
default-destroy-method attribute 41
defaultImpl attribute 107
default-impl attribute 102
DefaultMethodSecurityExpressionHandler

class 251
default-ref attribute 361
defaultView property 290
<definition> element 186
definitions property 176
delegate-ref attribute 102
DelegatingFilterProxy class 228
delegation, compared to aspects 86
DELETE method 284, 286, 307
delete() method 295, 301
dependency injection 6, 10, 17

and AspectJ 107, 110
and JNDI 359, 362
and Spring Security 225
constructor injection 8
@Resource annotation 27
with Java configuration 82

Dependency Injection for Java specification.
See JSR-330;@Inject annotation

design patterns, Template Method 118
destination property 331–332
destinations 312

queues 313
setting a default 323
topics 313–314

destroy() method 20
destroying beans 39, 41
details property 236
dirty reads 158
DispatcherServlet 166, 173

and HessianServlet 265

configuring 167
configuring for file uploads 197
handler mappings 170
HiddenHttpMethodFilter 308
loading application context 179
mapped to URL patterns 167
mapping to / 167
with Spring Web Flow 200

DisposableBean interface 20, 40
doInTransaction() method 155
don't repeat yourself 96
driverClassName property 122
DriverManagerDataSource class 123, 352, 361
DRY principle. See don’t repeat yourself
durability. See transactions
Dynamic MBeans 334

E

eager fetching 133
EclipseLinkJpaVendorAdapter 141
EJB. See Enterprise JavaBeans
else attribute 205
Elvis operator 59
email

attachments 366–367
constructing 365, 370
mail senders 363, 365
mail sessions 364
rich content 367–368
templates 368, 370
wiring mail sender into service bean 365

encryption 243, 355–357
end states 203, 205
endpoints

autowiring JAX-WS endpoints 272–273
exporting standalone JAX-WS endpoints

273–274
JAX-WS 271, 274

<end-state> element 205, 220, 222
Enterprise JavaBeans

and transactions 149
forcing you to use its classes or interfaces 5
jee namespace 32
specification 4
stateless 362
versions 138
wiring 362–363
See also JavaBeans

@Entity annotations 136
entity beans 138
entity managers

application-managed 139–141
container-managed 139, 141–142
and HTTP invoker 268 EntityManagerFactory interface 139, 142, 152

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 385

entityManagerFactory property 152
<entry> element

key attribute 50, 335
key-ref attribute 50
value attribute 50
value-ref attribute 50

EnvironmentStringPBEConfig 356
<evaluate> element 204, 208, 212, 216
examples

audience 94, 98, 102, 105
city example 59
contestant 101, 106
instrumentalist 41, 47, 66–67, 69, 71–73, 78
JDBC 15, 17
judge 107, 110
juggler 33, 38, 81–82
knife juggler 75
knight 7, 10, 12, 15
magician 105
mind reader 99
one-man band 48, 51
pizza ordering 209, 223
poetic juggler 35, 37, 68
Spring Idol 31, 63
stage 37
ticket 39

exceptions 92
catch blocks 115, 117
data access exception hierarchy 115, 117
DataAccessException 117
Hibernate 116
ImageUploadException 195
InstanceAlreadyExistsException 342
JDBC exception hierarchy versus Spring

exception hierarchy 116
JMSException 320
JmsException 320
MalformedURLException 259
NamingException 358
NoSuchBeanDefinitionException 72
NullPointerException 55, 70
platform-agnostic 116
RemoteAccessException 258
RemoteException 258–259
SQLException 16, 115, 125
UnsupportedOperationException 251
URISyntaxException 300

exchange() method 295, 304
execute() method 155, 295
execution() pointcut designator 91
expression attribute 79, 204
expressions 52–54, 63
Extensible Markup Language (XML) 9

aspects 14

declaring aspects in 93, 102
declaring transactions 160, 162
reducing with annotations 71, 74
reducing with Java-based configuration 80, 83
REST-style URLs 28

external properties 355, 357
externalizing configuration 351, 357

F

factory methods, creating beans with 37–38
FactoryBean interface 135
factory-method attribute 37, 109
failOnExisting 342
fallback objects 361–362
favorParameter property 290
favorPathExtension property 289
file system, uploading files to 195
files

configuring Spring for uploads 197
saving to Amazon S3 196–197
saving to file system 195
user uploads 193, 197

FileSystemResource class 366
FileSystemXmlApplicationContext 18
<filter> element 228
Filter interface 228
FilterChainProxy class 228
filtering

<context:component-scan> element 79–80
<context:exclude-filter> element 79
<context:include-filter> element 79

<filter-name> element 228
fixedDelay attribute 371
fixedRate attribute 371
flash scope 208
flow data 207, 209

collecting 213, 218
conversation scope 208
flash scope 208
flow scope 208
request scope 208
scoping 208
view scope 208

<flow> element, start-state attribute 211
flow executors 201
flow registries 201–202
flow requests 202
flow scope 208
flow states 206

action states 203–204
decision states 203, 205
end states 203, 205
subflow states 203, 205
configuring Spring with 32 view states 203–204

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX386

<flow:flow-executor> element 201
<flow:flow-location-pattern> element 201
<flow:flow-registry> element 201
FlowHandlerAdapter class 202
FlowHandlerMapping class 202
flow-registry attribute 201
flows 199, 223

collecting information 213, 218
declaring variables 208
defining a base flow 209
flow data 207, 209
flow executors 201
flow registries 201–202
flow requests 202
scoping data 208
securing 222
states 203, 206
transitions 206–207

<form> element 307
format parameter 290
FormHttpMessageConverter 292, 300
<form-login> element 230
forms

adding file upload field 193
content type 193
defining views 186–187
hidden method fields 306–307
path variables 188
processing 185, 193
processing input 187, 189
RESTful 306, 309
uploading files 193, 197
validating input 189, 193
validation errors 190, 193
validation rules 189–190

Fowler, Martin 149
frameworks, for aspect-oriented programming 89
FreeMarkerViewResolver 174, 176
front controller, DispatcherServlet 166
Future interface 373

G

Gemini Blueprint 25
GET method 284, 296, 299
get() method 299
getAttribute() method 345
getConnection() method 120
getFirst() method 299
getForEntity() method 295, 298–299
getForObject() method 295, 297–298
getHeaders() method 298
getInstance() method 38
getJdbcTemplate() method 120

getObject() method 324
getSimpleJdbcTemplate() method 131
getStatusCode() method 299
global transitions 207
<global-method-security> element 246, 251

jsr250-annotations attribute 247
pre-post-annotations attribute 247
secured-annotations attribute 246

<global-transition> element 207
Grails 26
Groovy, with lang namespace 32
group-authorities-by-username-query 241
group-search-base attribute 242
group-search-filter attribute 242

H

hasAnyRole() expression 233
hash attribute 243
hasIpAddress() expression 233
hasPermission() method 250
hasRole() expression 233, 237
HEAD method 285
headers attribute 291
headers, Accept 289, 291, 305
headForHeaders() method 295
Hessian 23, 257

accessing services 266–267
compared to Burlap 263
configuring controllers 265–266
exporting services 264–265
exposing bean functionality 264, 266

HessianProxyFactoryBean 266
HessianServiceExporter class 264
Hibernate 22

and JNDI 359
and transactions 150–151
cascading 133
contextual sessions 134
declaring a session factory 134, 136
eager fetching 133
eliminating template classes 137–138
@Entity annotation 136
exception hierarchy 116
HibernateTemplate 119
integrating with Spring 132, 138
JPA vendor adapter 142
lazy loading 133
overview 134
wiring directly to DAO classes 137–138

Hibernate JPA vendor adapter 142
HibernateDaoSupport class 120
HibernateJpaVendorAdapter 141
hibernateProperties property 135
getLastModified() method 298 HibernateTemplate class 119, 134

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 387

HibernateTransactionManager 150–151
HiddenHttpMethodFilter 307, 309
host property 364
<http> element 229

path-type attribute 232
use-expressions attribute 233

HTTP invoker 257
accessing services via HTTP 269–270
exporting beans as HTTP services 268–269

<http-basic> element 232
HttpInvoker. See HTTP invoker
HttpInvokerProxyFactoryBean 269
HttpInvokerServiceExporter 268
HttpMethod parameter 304
HTTPS. See Hypertext Transfer Protocol

Secure
HttpServletRequest 227
Hypertext Transfer Protocol

message converters 291, 294
methods 284, 287

Hypertext Transfer Protocol Secure 234

I

iBATIS SQL Maps 22
iBATIS, and transactions 150–151
id attribute 34, 46
idempotency 284
<if> element 205
ignoreAcceptHeader property 290
ignoreExisting 342
ignore-resource-not-found attribute 353
ignore-unresolvable attribute 353
IllegalArgumentException 92
image parameter 195
ImageUploadException 195
implement-interface attribute 102
inheritance, compared to aspects 86
initialization on demand holder 38
initializing beans 39, 41
InitializingBean interface 20, 40
initialSize property 122
init-method 20
@Inject annotations 74–76, 171
injection

injecting inner beans 45–46
injecting values 42–43
into bean properties 41, 52
setter injection 41
through constructors 34–35, 37–38

inner beans 45–46
input

controllers 181, 185
uploading files 193, 197

installing Spring Web Flow 200, 203
InstanceAlreadyExistsException 342
instrumentalist example 41, 47, 66–67, 69,

71–73, 78
<intercept-url> element 237

access attribute 233
pattern attribute 229, 232
requires-channel attribute 234

InterfaceBasedMBeanInfoAssembler 339
interfaces

and loose coupling 44
ApplicationContext 18, 90
ApplicationContextAware 20
BeanFactory 18
BeanFactoryAware 19
BeanNameAware 19
BeanPostProcessor 20
coding to 44
ContextLoaderListener 179–180
DataSource 151
defining MBean operations and attributes

with 339–340
DisposableBean 20, 40
EntityManagerFactory 139, 142, 152
FactoryBean 135
Filter 228
Future 373
hiding persistence layer 115
InitializingBean 20, 40
java.util.Collection 47, 49
java.util.Map 47, 50, 131
java.util.Properties 47, 51, 61
java.util.Set 49
javax.sql.DataSource 128
JpaDialect 152
MailSender 363, 365
MailSession 364
MessageCreator 322
MessageListener 326
MultipartResolver 197
NotificationListener 348
NotificationPublisherAware 347
org.hibernate.Session 134
PersistenceProvider 139
Provider 75
Remote 259
Serializable 258
SessionFactory 137
Transaction 152
TransactionCallback 154
TransactionDefinition 156, 158
TransactionManager 153
UserTransaction 153
<input> element 194, 205, 212, 219, 221 InternalResourceViewResolver 174–176

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX388

introduction 88, 100, 102
and annotations 106–107
<aop:declare-parents> element 101

invoke() method 345
isAnonymous() expression 233
isAuthenticated() expression 233, 237
isCancelled() method 374
isDone() method 374
isFullyAuthenticated() expression 233
isolation levels 157–159, 161
isolation. See transactions
ISOLATION_DEFAULT isolation level 158
ISOLATION_READ_COMMITTED isolation

level 158
ISOLATION_READ_UNCOMMITTED isolation

level 158
ISOLATION_REPEATABLE_READ isolation

level 158
ISOLATION_SERIALIZABLE isolation level 158
isRememberMe() expression 233

J

J2EE Connector Architecture 150
Jakarta Commons Database Connection

Pooling 122–123
Jakarta Commons HTTP Client, REST clients 294
JAR files 20
JasperReportsViewResolver 174, 176
Jasypt 351, 355–357
Java

configuring Spring with 80, 83
dependency injection and Java-based

configuration 82
jee namespace 32
jms namespace 32
Math class 55
POJOs 5–6
simplifying development 4, 17
Spring advice 89

Java APIs, boilerplate code 15
Java Community Process, JSR-330 74
Java Data Objects 22, 138, 150
Java Management Extensions 334, 349

and remoting 343, 346
JMX Messaging Protocol 343
JSR-160 343
notifications 346, 349

Java Message Service 23, 311, 332
and remote procedure calls 327, 332
and transactions 150
architecting 312, 314
benefits of 314, 316
destinations 312
introduction to 311, 316

jms namespace 32
JmsTemplate 318, 324
JmsTemplate102 321
message brokers 312
message-driven POJOs 325, 327
queues 313
runaway code 318–319
topics 313–314

Java Naming and Directory Interface 357, 359,
362–363

caching JNDI objects 360
conventional 357, 359
fallback objects 361–362
lazy loading 361
mail sessions 364
wiring EJBs 362–363

Java Persistence API 22, 138, 144
and transactions 150, 152
application-managed entity managers 140–141
container-managed entity managers 141–142
Hibernate JPA vendor adapter 142
JPA-based data access objects 143

Java Transaction API 149–150, 153
java.io.File class 195
java.util.Collection interface 47, 49
java.util.Map interface 47, 50, 131
java.util.Map namespace 60
java.util.Properties interface 47, 51, 61
java.util.Set interface 49
JavaBeans

and autodiscovery 77, 80
aspects 10, 15
containers 17, 20
declaring 31, 41
dependency injection 6, 10
entity beans 138
lifecycle 19
POJOs 5–6
specification 3
 See also beans

JavaMailSenderImpl class 363
JavaServer Pages 173

and DispatcherServlet 166
and Spring Security 226
rendering hidden method fields 306–307
Standard Tag Library 175
tags for Spring Security 235

JavaServer Pages Standard Tag Library 175
javax.inject package 75
javax.sql.DataSource interface 128
Jaxb2RootElementHttpMessageConverter 292
JAX-RPC 257, 271
JAX-WS 23, 257

autowiring endpoints 272–273

JMS invoker 328, 330 endpoints 271, 274

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 389

JAX-WS (continued)
exporting standalone endpoints 273–274
proxying services on client side 274, 276

JaxWsPortProxyFactoryBean 275
JBoss 121
JBoss AOP 89
JCA. See J2EE Connector Architecture
JConsole, and JMX 335
JDBC 124, 132

and DAO support classes 131–132
and transactions 150–151
boilerplate code 15, 126
driver-based data sources 123–124
JDBC exception hierarchy versus Spring excep-

tion hierarchy 116
JdbcTemplate 119
querying rows from databases 126
runaway code 124, 127
SQLException 115
templates 127
updating rows in databases 125

jdbc.url property 352
JdbcDaoSupport class 120, 131
JdbcTemplate 16, 119, 128
jdbcTemplate property 132
<jdbc-user-service> element 240–241
JDO. See Java Data Objects
JdoDaoSupport class 120
JdoTemplate 119
JdoTransactionManager 150
jee namespace 32, 121
<jee:jndi-lookup> element 121, 142, 359

caching 360
default-ref attribute 361
jndi-name attribute 121
lookup-on-startup attribute 361
resource-ref attribute 121

<jee:local-slsb> element 362
<jee:remote-slsb> element 362
JetS3t library 196
JMS invoker 328, 330
jms namespace 27, 32, 327
<jms:listener> element 327
<jms:listener-container> element 327, 329
JMS. See Java Messaging Service
JMSException 320
JmsException 320–321
JmsInvokerProxyBean 329–330
JmsInvokerProxyFactoryBean 329
JmsInvokerServiceExporter 328–330
JmsServiceExporter 331
JmsTemplate 318, 324

consuming messages 323–324
receive() method 323

sending messages 321, 323
setting a default destination 323
wiring 321

JmsTemplate102 321
JmsTransactionManager 150
JmsUtils class, convertJmsAccessException()

method 324
JMX Messaging Protocol 343
JMX. See Java Management Extensions
JMXConnectorServer 343
JMXMP. See JMX Messaging Protocol
JNDI 357, 363

and EntityManagerFactory 142
data sources 121
<jee:jndi-lookup> element 121

jndi-name attribute 121, 359, 362
Johnson, Rod 4
join points 87

method join points 90
selecting with pointcuts 91, 93

JpaDaoSupport class 120
JpaDialect interface 152
JpaTransactionManager 150, 152
jpaVendorAdapter property 141
JRuby, with lang namespace 32
JSF 23
JSON 28
JSR-160 343
JSR-250, @RolesAllowed annotation 247
jsr250-annotations attribute 247
JSTL. See JavaServer Pages Standard Tag Library
JTA. See Java Transaction API
JtaTransactionManager 150, 153
judge example 107, 110
juggler example 33, 38, 81–82
junk drawers 350

K

key attribute 50, 335
key-ref attribute 50
keywords, new 19
knife juggler example, @Inject 75

L

lang namespace 32
lazy loading 133, 361
lazy-init attribute 362
LDAP. See Lightweight Directory Access Protocol
<ldap-authentication-provider> element 242
<ldap-server> element 243–244
ldif attribute 244
send() method 322–323 le and ge operators 57

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX390

Lightweight Directory Access Protocol
and authentication 241, 245
and Spring Security 226
authentication providers 242
configuring embedded servers 244
password comparison 242
remote servers 243

Lingo 330–332
LinkedMultiValueMap class 305
<list> element 47

inside another <list> 49
values 48

<listener> element 180
listeners, for notifications 348–349
load-time weaving. See classload-time weaving
LocalContainerEntityManagerFactoryBean

139–140
LocalEntityManagerFactoryBean 139
LocalSessionFactoryBean class 135
location property 356
logging out 232
logical operators 56, 58
login attribute 230
login forms 229, 231
login-processing-url attribute 230
<logout> element 232
logout-url attribute 232
lookup-on-startup attribute 361
loose coupling 6, 10, 44
lt and gt operators 57
LTW. See classload-time weaving

M

magician example 105
mail senders 363, 365
mail sessions 364
MailSender interface 363, 365
MailSession interface 364
MalformedURLException 259
managed attributes 335
@ManagedAttribute annotation 340
@ManagedOperation annotation 340
@ManagedResource annotation 340
<map> element 47, 50
@MappedSuperclass annotation 136
mapping attribute 168
MappingJacksonHttpMessageConverter 292
mappingResources property 135
maps 49–50
MarshallingHttpMessageConverter 292
matches operator 59
Math class 55
maxActive property 122

maxOpenPreparedStatements property 122
maxWait property 122
MBean agents. See MBean servers
MBean info assemblers 337, 339

InterfaceBasedMBeanInfoAssembler 339
MetadataMBeanInfoAssembler 340
MethodExclusionMBeanInfoAssembler 338
MethodNameBasedMBeanInfoAssembler 337

MBeanExporter class 335, 338
registrationBehaviorName property 342
server property 336

MBeanProxyFactoryBean 345
MBeans

accessing remote MBeans 344–345
annotation-driven 340–341
defining operations and attributes with

interfaces 339–340
Dynamic MBeans 334
exporting Spring beans as 334, 343
exposing methods by name 337, 339
exposing remote MBeans 343–344
handling collisions 342–343
MBean servers 335
notifications 346, 349
proxying 345–346
remoting 343, 346
Standard MBeans 334

MBeans servers 335
MBeanServerConnection 344
MBeanServerConnectionFactoryBean 344
MDPs. See message-driven POJOs
media types 289
mediaTypes property 289
mergeTemplateIntoString() method 369
message brokers 312

ActiveMQ 316–317
setting up 316–317

message converters 291–292, 294
message listeners

configuring 327
creating 326

message-based POJOs
and remote procedure calls 327, 332
JmsInvokerProxyBean 329
JmsInvokerProxyFactoryBean 329
JmsInvokerServiceExporter 328–330

MessageCreator interface 322
@MessageDriven annotation 326
message-driven POJOs, message listeners 326–327
MessageListener interface 326
messages

consuming with JmsTemplate 323–324
sending with JmsTemplate 321, 323

messaging
ActiveMQ 316–317
maxIdle property 122 asynchronous 311

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 391

messaging (continued)
benefits of Java Message Service 314, 316
destinations 312
message brokers 312
message listeners 326–327
message-driven POJOs 325, 327
point-to-point 313
publish-subscribe 313–314
synchronous 311
with Java Message Service 311, 332

MetadataMBeanInfoAssembler 340
metadataStrategy property 332
method before advice. See before advice
MethodExclusionMBeanInfoAssembler 338
MethodNameBasedMBeanInfoAssembler 337
methods

addAttachment() 366
addInline() 367
afterPropertiesSet() 20, 40
asynchronous 371, 373–374
callback methods 6
commit() 151–153
convertJmsAccessException() 324
create() 363
createContainerEntityManagerFactory() 139
createEntityManagerFactory() 139
createMessage() 322
createMimeMessage() 366
DELETE 284, 286
delete() 295, 301
destroy() 20
doInTransaction() 155
exchange() 295, 304
execute() 155, 295
exposing by name 337, 339
factory methods 37–38
GET 284
get() 299
getAttribute() 345
getConnection() 120
getForEntity() 295, 298–299
getForObject() 295, 297–298
getHeaders() 298
getInstance() 38
getJdbcTemplate() 120
getMethods() 299
getObject() 324
getSimpleJdbcTemplate() 131
getStatusCode 299
hasPermission() 250
HEAD 285
headForHeaders() 295
hidden method fields in forms 306–307
HiddenHttpMethodFilter 307, 309
invoke() 345

isDone() 374
mergeTemplateIntoString() 369
method join points 90
method-level security pointcuts 252
OPTIONS 284
optionsForAllow() 296
POST 284, 286
post-authorizing 248
post-filtering 249, 251
postForEntity() 296, 302
postForLocation() 296, 303
postForObject() 296, 302
postProcessAfterInitialization() 20
postProcessBeforeInitialization() 20
pre-authorizing 248
PUT 284–285
put() 296, 299
queryNames() 344
receive() 323
referencing by ID 54
REST methods 284, 287
rollback() 151–153
scheduling 371–372
securing 246, 252
securing with SpEL 247, 251
send() 322–323
setApplicationContext() 20
setAttribute() 345
setBeanFactory() 19
setBeanName() 19
setRollbackOnly() 155
setter methods 42
setText() 367
toUpperCase() 55
TRACE 285
<tx:methods> element 160

MIME. See Multipurpose Internet Mail Extensions
MimeMessageHelper class 366
mind reader example 99
minEvictableIdleTimeMillis property 123
minIdle property 123
mock implementations 8–9, 23
Mockito 9, 173
model attribute 204
Model MBeans 334
Model parameter 183
Model/View/Controller pattern 166

See also Spring MVC
models 166
Model-View-Controller 23, 32
modules 20, 22–23
MSMQ 26
MultipartResolver interface 197
Multipurpose Internet Mail Extensions 366
isCancelled() 374 MultiValueMap class 305

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX392

mvc namespace 32, 168
<mvc:annotation-driven> element 170
<mvc:resources> element 168
MVC. See Model-View-Controller

N

name attribute 239
@Named annotation 75
named parameters 130–131
NamedParameterJdbcDaoSupport class 120, 131
NamedParameterJdbcTemplate class 119, 128,

130
namespaces

aop 14, 32, 104, 160
beans 32
context 27, 32, 70, 340, 352
java.util.Map 60
jee 32, 121
jms 27, 32, 327
lang 32
mvc 32, 168
oxm 33
p 46–47
Spring Security configuration namespace

226–227
tx 33, 160
util 33, 60

namespaceUrl property 276
Naming class 261
NamingException 358
new keyword 19
NHibernate 26
nonrepeatable reads 158
NoSuchBeanDefinitionException 72
NotificationListener interface 348
NotificationPublisherAware interface 347
notifications 346, 348–349
<null/> element

and autowiring 69
inside <list> 49
wiring 52

NullPointerException 55, 70

O

object references, injecting with constructors
35, 37

Object Request Broker 258
objectName attribute 341
objectName property 346
object-relational mapping 22, 133
object-to-XML mapping 28, 33
OC4J container, and transactions 150

on attribute 206
one-man band example 48, 51
<on-entry> element 220
on-exception attribute 207
Open MBeans 334
OpenID, and Spring Security 226
OpenJpaVendorAdapter 141
operators 60

- 56
^ 56
! 58
?: 58
* 56
/ 56
&& 92
% 56
+ 56
== 57
> and < 57
>= and <= 57
|| 92
and 58
arithmetic 56–57
comparison 56–57
conditional 56, 58–59
Elvis operator 59
le and ge 57
logical 56, 58
lt and gt 57
matches 59
not 58
or 58
regular expressions 56, 59
relational 56–57
T() 55

OPTIONS method 284
optionsForAllow() method 296
or operator 58
ORB. See Object Request Broker
org.hibernate.Session interface 134
org.springframework.jdbc.datasource

package 123
ORM. See object-relational mapping
OSGi Blueprint Container 25
oxm namespace 33
OXM. See object-to-XML mapping

P

p namespace 46–47
packages, javax.inject 75
packagesToScan property 136
ParameterizedRowMapper class 130
parameters

contextConfigLocation 180

OC4JJtaTransactionManager 150 format 290

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 393

parameters (continued)
HttpMethod 304
in @AspectJ 105
Model 183
named 130–131
passing to advice 98, 100
ProceedingJoinPoint 97

params attribute 185
Pareto principle 127
password attribute 239
password property 122, 356, 364
password-attribute attribute 243
<password-compare> element 243
passwords, comparing with LDAP 242
path attribute 192, 202
path-type attribute 232
@PathVariable annotation 188, 282, 284
@Pattern annotation 190
pattern attribute 229, 232
perceived performance 373
performance 373
persistence layer, hiding behind interfaces 115
persistence.xml file 140
PersistenceAnnotationBeanPostProcessor

class 144
PersistenceExceptionTranslationPostProcessor

class 138
PersistenceProvider interface 139
persistenceUnitName property 140
persisting data 113, 144–145

bean-managed persistence 138
container-managed persistence 138
JDBC 124, 132
JDBC templates 127
overview 113
templating 117, 119
with Hibernate 134, 136
with Java Persistence API 138, 144

phantom reads 158
physicalName attribute 317
pizza delivery example

asking for phone number 215
building an order 218
checking delivery area 217
collecting customer information 213
defining base flow 209
ending flow 218
looking up customer 216
registering new customers 216
storing customer data 218
taking payment 221

pizza ordering example 209, 223
placeholder variables 352–354
plain-old Java objects. See POJOs

poetic juggler example 35, 37, 68
@Pointcut annotation 103
pointcut attribute 95
pointcut designators 91, 93
<pointcut> element 14
pointcut-ref attribute 97
pointcuts 14, 87, 91, 93

@annotation 91
<aop:pointcut> element 94, 96
@args() 91
args() 91
AspectJ 91
bean() 93
constructor pointcuts 107
execution() 91
method-level 252
pointcut designators 91
@target() 91
target() 91
this() 91
@within() 91
within() 91
writing 92–93

POJOs 5–6, 325, 327
pooled data sources 122–123
poolPreparedStatements property 123
port property 364
portName property 276
POST method 284, 286, 301, 304

HiddenHttpMethodFilter 307–308
receiving object responses 302–303
receiving resource locations 303–304

@PostAuthorize annotation 248
@PostConstruct annotation 27
@PostFilter annotation 248–249, 251
postForEntity() method 296, 302
postForLocation() method 296, 303
postForObject() method 296, 302
postProcessAfterInitialization() method 20
postProcessBeforeInitialization() method 20
Prasanna, Dhanji R. 10
@PreAuthorize annotation 248
@PreFilter annotation 248
pre-post-annotations attribute 247
primary attribute 67
principal expression 237
principal property 236
private keyword, and @Autowired annotation 71
ProceedingJoinPoint parameter 97
processing forms 185, 193

input 187, 189
path variables 188
uploading files 193, 197
validating input 189, 193
validation errors 190, 193
platform-agnostic exceptions 116 validation rules 189–190

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX394

projection 62–63
<prop> element 51
propagation behavior 156–157, 161
PROPAGATION_MANDATORY behavior 157
PROPAGATION_NESTED behavior 157
PROPAGATION_NEVER behavior 157
PROPAGATION_NOT_SUPPORTED

behavior 157
PROPAGATION_REQUIRED behavior 157
PROPAGATION_REQUIRES_NEW behavior 157
PROPAGATION_SUPPORTS behavior 157
properties

algorithm 356
annotatedClasses 136
annotating with @Autowired 71
autowire 65, 70
collections 47
connectionFactory 321, 330–332
database 142
dataSource 132, 135, 141, 359
default-autowire property 68
defaultView 290
definitions 176
destination 331–332
different meanings of term 51
external 355, 357
favorParameter 290
favorPathExtension 289
hibernateProperties 135
host 364
ignoreAcceptHeader 290
injecting 37
injecting into 41, 52
injecting values 42–43
jdbc.url 352
jdbcTemplate 132
jpaVendorAdapter 141
location 356
mappingResources 135
mediaTypes 289
metadataStrategy 332
missing 353
namespaceUrl 276
objectName 346
p namespace 46–47
packagesToScan 136
password 356
persistenceUnitName 140
port 364
portName 276
properties collections 51
property overriders 351, 354–355
property placeholder configurers 351–352, 354
proxyInterface 346

queueName property 330
referencing by ID 54
registrationBehaviorName 342
registryHost 260
registryPort 260
server 336, 346
service 331
serviceInterface 262, 270, 331–332
serviceName 276
serviceUrl 262, 270, 343
session 365
system properties 353–354
systemEnvironment 61
systemProperties 61
useNotAcceptableStatusCode 290
username 364
velocityProperties 369
wiring null into 52
wsdlDocumentUrl 275

properties-ref attribute 353
property attribute 235
<property> element 69

injecting values 42–43
inner beans 46
ref attribute 54
referencing beans 44
value attribute 43, 53

property overriders 351, 354–355
property placeholder configurers 351–354

missing properties 353
<props> element 47, 51
<protect-pointcut> element 252
Provider interface, and @Inject annotation 75
ProviderManager class 239
proxying, MBeans 345–346
proxy-interface attribute 361
proxyInterface property 346
PUT method 284–285

hidden form fields 307
HiddenHttpMethodFilter 308

put() method 296, 299, 301

Q

@Qualifier annotation 27, 72–74
<qualifier> element 73
qualifiers, custom 73–75
queryNames() method 344
queueName property 330
queues 313

R

read-only transactions 159

qualifying with @Named 75 receive() method 323

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 395

redirect, prefix 188
ref attribute 37, 95
referencing beans 43, 46
registration attribute 342
registration forms 185, 193
registrationBehaviorName property 342
REGISTRATION_FAIL_ON_EXISTING 342
REGISTRATION_IGNORE_EXISTING 342
REGISTRATION_REPLACING_EXISTING 342
registryHost property 260
registryPort property 260
regular expression operators 56, 59
relational operators 56–57
<remember-me> element 245
remember-me functionality 245–246
Remote interface 259
Remote Method Invocation 23, 257–259,

261, 263, 343
remote procedure calls 256

Burlap 257, 263, 267
Hessian 257, 263, 267
HTTP invoker 257, 268, 270
JAX-RPC and JAX-WS 257
JMS invoker 328, 330
JmsInvokerProxyBean 329–330
JmsInvokerProxyFactoryBean 329
JmsInvokerServiceExporter 328–330
JmsProxyFactoryBean 331–332
JmsServiceExporter 331
Lingo 330, 332
message-based 327, 332
models 257
Remote Method Invocation 257–258, 263

remote services 256, 276
Hessian and Burlap 263, 267
HTTP invoker 268, 270
overview 256, 258
Remote Method Invocation 257–258, 263

RemoteAccessException 258
RemoteException 258–259
remoting. See remote services
replaceExisting 342
repositories. See data access objects
@Repository annotation 78, 137, 144
representation 278

negotiating 288, 290
REST resources 287, 294

request scope 208
@RequestBody annotation 293–294
@RequestHeader annotation 28
@RequestMapping annotation 170–171, 182, 185,

280, 283, 285–287, 291
@RequestParam annotation 182, 195
requests

determining media type 289

finding views 290
forcing HTTPS 234
HiddenHttpMethodFilter 307, 309
HttpServletRequest 227
in Spring MVC 165, 167
influencing media types 289
intercepting 232, 234
receiving object responses 302–303
receiving resource locations 303
receiving resource state in request body 293–

294
securing 227, 234

required attribute 72
requires-channel attribute 234
resolving views 173, 176–177
@Resource annotation 27
ResourceBundleViewResolver 174
ResourceHttpMessageConverter 292
resource-ref attribute 121, 359
resources

DELETE requests 301
exchanging 304, 306
GET requests 296, 299
negotiating representation 288, 290
POST requests 301, 304
PUT requests 299, 301
receiving locations 303–304
receiving state in request body 293–294
representing 287, 294
resource-oriented URLs 282
REST 278, 309
REST clients 294, 306
RESTful controllers 279, 287
retrieving 297–298
returning state in response body 291, 293

@ResponseBody annotation 291, 293
ResponseEntity 298
responses

extracting metadata 298–299
returning resource state in response body 291,

293
@ResponseStatus annotation 286–287
REST 28, 278, 309

controllers 279, 287
exchanging resources 304, 306
forms 306, 309
introduction 278
methods 284, 287
negotiating representation 288, 290
representing resources 287, 294
RESTful URLs 281, 284
RESTless controllers 280–281
RestTemplate 295–296
Spring support for 279
verbs 284, 287
extracting response metadata 298 writing clients 294, 306

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX396

REST clients
GET requests 296, 299
PUT requests 299, 301
writing 294, 306

RESTful resources 279
RESTful URLs 281–282, 284
RestTemplate 294–296, 306
-rex suffix 47
rich text email 367–368
RMI 23, 257
RmiProxyFactoryBean class 261
RmiRegistryFactoryBean 343
RmiServiceExporter class 260, 343
@RolesAllowed annotation 247
rollback rules 159, 161
rollback() method 151–153
RPC. See remote procedure calls
RssChannelHttpMessageConverter 292
Ruby on Rails 26
runaway code 124, 127, 318–319
runtime weaving 88

S

<s:url> element 178
safety 284
@Scheduled annotation 371–372
scheduled jobs 371
scheduling 370–372, 374
scope 38–39, 208
scope attribute 38–39, 236
@Secured annotation 246
secured-annotations attribute 246
<security:authentication> element, credentials

property 236
security

minimal 228
securing flows 222
See also Spring Security

<security:accesscontrollist> element 235
<security:authentication> element 235–236
<security:authorize> element 235–238
send() method 322–323
sending email 363, 370
Serializable interface 258
server property 336, 346
<server-name> element 167
servers, MBean servers 335
@Service annotation 78
service property 331
serviceInterface property 262, 270, 331–332
serviceName property 276
service-oriented architecture 270, 276
services

accessing Burlap and Hessian services 266–267

configuring RMI services 259, 261
exporting beans as HTTP services 268–269
exporting Burlap services 266
exporting Hessian services 264–265
exporting RMI services 259, 261
JAX-WS on client side 274, 276
publishing and consuming web services 270,

276
remote 256, 276
wiring RMI services 261, 263

serviceUrl property 262, 270, 343
<servlet> element 167
servlet filters 228
<servlet-mapping> element 269
servlets

DispatcherServlet 166
servlet filters 228

session beans 5
session factories 134, 136
session property 365
SessionFactory interface 137
sessionFactory property 151
<set> element 47, 208
setApplicationContext() method 20
setAttribute() method 345
setBeanFactory() method 19
setBeanName() method 19
setRollbackOnly() method 155
setter injection 41

inner beans 45
versus constructor injection 36

setter methods 42, 71
setText() method 367
<sf:checkbox> element 187
<sf:errors> element 191–192
<sf:form> element 193, 306–307
<sf:input> element 187
<sf:password> element 187
<sf:form> element 187
SimpleJaxWsServiceExporter 271, 273–274
SimpleJdbcDaoSupport class 120, 131
SimpleJdbcTemplate 16, 119, 128, 130–131
SimpleMetadataStrategy class 332
SimpleUrlHandlerMapping 170
SingleConnectionDataSource class 123
singleton beans 18, 38
@Size annotation 190
SOA. See service-oriented architecture
SourceHttpMessageConverter 292
SpEL. See Spring Expression Language
Spitter example 128, 144, 154–155, 160, 163

and email 365
and JmsInvokerServiceExporter 328
and MBeans 334, 349
accessing via HTTP 269–270 and REST 280, 309

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 397

Spitter example (continued)
controllers 181, 185
home page controller 170, 173
home page view 177, 179
messaging with JMS 321
registration form 185, 193
remote services 256, 259, 276
Spring MVC controller 169, 197
uploading files from users 194, 197
with message-driven POJO 326

Spring
and POJOs 5–6
application context 9, 18–19, 179–180
aspect-oriented programming 10, 15
configuring 32–33
configuring for file uploads 197
configuring with Java 80, 83
containers 17, 20
core container 22
data access exception hierarchy 115, 117
data access objects module 22
data access tiers 114
declaring beans 31, 41
declaring transactions 155, 163
dependency injection 6, 10
eliminating boilerplate code 15, 17
exception hierarchy versus JDBC exception

hierarchy 116
flexibility 6
history 3
integrating with Hibernate 132, 138
integration with Java Persistence API 138, 144
JmsTemplate 318, 324
messaging with JMS 311, 332
modules 20, 23
MVC framework 23
ORM module 22
portfolio 23
programming transactions 153, 155
runtime AOP 90
simplifying Java development 4, 17
Spring AOP 89
Spring Batch 24
Spring Dynamic Modules 25
Spring Faces 28
Spring Framework 20, 23
Spring Integration 24
Spring JavaScript 28
Spring LDAP 25
Spring Rich Client 25
Spring Roo 26
Spring Security 24, 225, 252
Spring Social 25
Spring Web Flow 24, 199, 223

Spring.NET 26
Spring-Flex 26
support for aspect-oriented programming

88, 91
support for REST 279
testing module 23
transaction support 149
what's new in Spring 2.5 27
what's new in Spring 3.0 28
wiring beans 30, 63
working with databases 113, 145
XML configuration 32

Spring AOP 89
classic 89
compared to AspectJ 90, 107
method join points 90

Spring Batch 24
Spring Dynamic Modules 25
Spring Expression Language 52, 63, 205

- operator 56
^ operator 56
! operator 58
?: operator 58
* operator 56
/ operator 56
% operator 56
+ operator 56
== operator 57
> and < 57
>= and <= 57
accessing collection members 60–61
and annotations 76–77
and operator 58
and Spring Security 233–234
and types 55
and @Value annotation 77
collections 59, 63
le and ge operators 57
literal values 53–54
lt and gt operators 57
not operator 58
operations on values 59
operators 56
or operator 58
referencing beans by ID 54–55
securing methods 247, 251
security-specific expressions 233
selecting collection members 61
systemEnvironment property 61
systemProperties property 61
T() operator 55

Spring Faces 28
Spring Framework 20, 22–23, 89
Spring Integration 24
Spring Web Services 24 Spring JavaScript 28

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX398

Spring LDAP 25
Spring MVC 164, 198

and annotations 170
basics 165, 168
DispatcherServlet 166
handling controller input 181, 185
processing forms 185, 193
requests 165, 167
REST support 28
setting up 167–168
Spring Web Flow 200
with Apache Tiles 176–177
writing controllers 169, 180

Spring portfolio 23, 28
Spring Rich Client 25
Spring Roo 26
Spring Security 24, 225, 252

Acegi Security 225
and Spring Expression Language 233–234
and view-level elements 235, 238
aspect-oriented programming 225
authentication 235–236, 238–240, 246
authentication with database 240–241
authentication with in-memory user

repository 239–240
authorities 236, 238
Basic authentication 231
configuration namespace 226–227
configuring 226–227
dependency injection 225
encryption 243
forcing HTTPS 234
intercepting requests 232, 234
Lightweight Directory Access Protocol 241, 245
logging out 232
login forms 229, 231
method-level pointcuts 252
methods 246, 252
minimal web security 228
modules 226
password comparison with LDAP 242
remember-me functionality 245–246
securing web requests 227, 234
security-specific expressions 233
servlet filters 228

Spring Security 2.0 28
Spring Security 3.0 29
Spring Security modules 226
Spring Social 25
Spring Web Flow 24, 199–200, 203, 223

See also flows
Spring Web Flow 2.0 28
Spring Web Services 24
Spring.NET 26

Spring-DM 25
Spring-Flex 26
SQLException 16, 125
SqlMapClientDaoSupport class 120
SqlMapClientTemplate 119
stage example 37
Standard MBeans 334
StandardPBEStringEncryptor 356
start-state attribute 211
state 279
String attributes, downside of 82
string encryptors 356
StringHttpMessageConverter 292
Struts 6
subflow states 203, 205
<subflow-state> element 205, 212
synchronous communication 311, 314–315

coupling 315
system properties 353–354
systemEnvironment property 61
systemProperties property 61
system-properties-mode attribute 353

T

T() operator 55
Tapestry 6, 23
@target() pointcut designator 91
target() pointcut designator 91
targetNamespace attribute 276
<task:annotation-driven> element 371
template classes, relationship to DAO support

classes 120
Template Method pattern 118
templates 15, 17, 118

CciTemplate 119
eliminating template classes with

Hibernate 137–138
email templates 368, 370
HibernateTemplate 119
JDBC 127
JdbcTemplate 16, 119
JdoTemplate 119
NamedParameterJdbcTemplate 119
SimpleJdbcTemplate 16, 119
SqlMapClientTemplate 119

templating, data access 117, 119
Templier, Thierry 24
testing

controllers 172
mock implementations 8, 23
testing module 23
unit testing 7

then attribute 205

SpringBeanAutowiringSupport 272 this() pointcut designator 91

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX 399

ticket example 39
tight coupling 7, 358
tile definitions 177
TilesConfigurer 176
TilesViewResolver 174, 176–177
timeout 159, 161
to attribute 206
Tomcat 121
topics 313–314
TopLinkJpaVendorAdapter 141
toUpperCase() method, referencing by ID 55
TRACE method 285
transaction attributes 156, 160

isolation levels 157, 159, 161
propagation behavior 156–157, 161
read-only 159, 161
rollback rules 159, 161
timeout 159, 161

Transaction interface 152
transaction managers 150–153
@Transactional annotation 144, 156, 162
TransactionCallback interface 154
TransactionDefinition interface 156, 158
transactionmanager attribute 162
TransactionManager interface 153
transactionManagerName property 153
TransactionProxyFactoryBean 156, 160
transactions 146

ACID 148
annotation-driven 162–163
atomicity 148
consistency 148
container-managed 149
declaring 155, 163
declaring in XML 160, 162
dirty reads 158
durability 148
explained 147, 150
isolation 148
isolation levels 157, 159, 161
Java Transaction API 149
nonrepeatable reads 158
phantom reads 158
programming in Spring 153, 155
propagation behavior 156–157, 161
read-only 159, 161
rollback rules 159, 161
support in Spring 149
timeout 159, 161
transaction attributes 156, 160
transaction managers 150, 153
tx namespace 33

TransactionTemplate class 154
<transition> element 206

tx namespace 33, 156, 160, 162
<tx:advice> element 160
<tx:annotation-driven> element 162
<tx:attributes> element 160
<tx:method> element 160
type attribute 79
types, with Spring Expression Language 55
types-matching attribute 102

U

uniform resource locators
embedded parameters 282, 284
pattern matching 167
RESTful 281, 284
RESTful URLs explained 281–282

unit testing 7
UnsupportedOperationException 251
URISyntaxException 300
url attribute 237
url property 122
UrlBasedViewResolver 174
URLs. See uniform resource locators
use-expressions attribute 233
useNotAcceptableStatusCode property 290
<user> element 239
username property 122, 364
userPassword attribute 243
users-by-username-query attribute 241
user-search-base attribute 242
user-search-filter attribute 242
<user-service> element 239–240
user-service-ref attribute 239–240
UserTransaction interface 153
util namespace 33, 60
<util:properties> element 61, 353–354
<util-list> element 60

V

@Valid annotation 188–189
validation

errors 190, 193
form input 189, 193
rules 189–190

@Value annotation 76, 195, 352
value attribute 37, 43, 50, 53, 106, 287
<value> element, inside <list> 49
value-ref attribute 50
values

injecting 42–43
literal 53–54
operations on SpEL values 59
transitions 206–207 <var> element 208

Licensed to Christian Cederquist <chrisman@kaus.dk>

INDEX400

variables
declaring in flows 208
placeholder variables 352–354

Velocity, and Spring Security 235
VelocityEngine 369
VelocityEngineFactoryBean 369
VelocityEngineUtils class 369
VelocityLayoutViewResolver 174, 176
velocityProperties property 369
VelocityViewResolver 174, 176
view attribute 204, 206
view resolvers 173

BeanNameViewResolver 174
ContentNegotiatingViewResolver 174, 288, 290
FreeMarkerViewResolver 174, 176
InternalResourceViewResolver 174–176
JasperReportsViewResolver 174, 176
ResourceBundleViewResovler 174
TilesViewResolver 174, 176–177
UrlBasedViewResolver 174
VelocityLayoutViewResolver 174, 176
VelocityViewResolver 174, 176
XmlViewResolver 174
XsltViewResolver 174, 176

view scope 208
view states 203–204
views 166

authorities 236, 238
finding 290
form views 186–187
home page view 177, 179
internal 175–176
rendering 183
resolving 173, 177
securing view-level elements 235, 238
with Apache Tiles 176–177

<view-state> element 204
VisualVM, and JMX 335

W

weaving 88
web services

JAX-WS endpoints 271, 274
JAX-WS on client side 274, 276

publishing and consuming 270, 276
WEB-INF directory 167
WebLogic, and transactions 150
WebLogicJtaTransactionManager 150
WebSphere 121
WebSphereUowTransactionManager 150
WebWork 6, 23
wiring 9

autowiring 65, 70
beans 30, 37, 63
collections 47, 51
defined 30
Enterprise JavaBeans 362–363
Hibernate to DAO classes 137–138
inner beans 46
JmsTemplate 321
JNDI objects 357, 363
mail sender to service bean 365
map collections 49–50
mixing autowiring and explicit wiring 69–70
<null/> element 52
properties 46–47
properties collections 51
-ref suffix 47
referencing by ID 54–55
RMI services 261, 263
with annotations 70, 77
with Spring Expression Language 52, 63

@within() pointcut designator 91
writing pointcuts 92–93
<wsdl:definitions> element, targetNamespace

attribute 276
<wsdl:port> element 276
<wsdl:service> element 276
wsdlDocumentUrl property 275

X

XFire 271
XML. See Extensible Markup Language
XmlAwareHttpMessageConverter 292
XmlViewResolver 174
XmlWebApplicationContext 18
XsltViewResolver 174, 176
Licensed to Christian Cederquist <chrisman@kaus.dk>

JAVA

Spring IN ACTION THIRD EDITION
Craig Walls

S
pring Framework is required knowledge for Java develop­
ers, and Spring 3 introduces powerful new features like
SpEL, the Spring Expression Language, new annotations

for the IoC container, and much-needed support for REST.
Whether you’re just discovering Spring or you want to absorb
the new 3.0 features, there’s no better way to master Spring
than this book.

Spring in Action, Third Edition continues the practical, hands-on
style of the previous bestselling editions. Author Craig Walls
has a special knack for crisp and entertaining examples that
zoom in on the features and techniques you really need. Th is
edition highlights the most important aspects of Spring 3.0
including REST, remote services, messaging, Security, MVC,
Web Flow, and more.

What’s Inside
Using annotations to reduce confi guration
Working with RESTful resources
Spring Expression Language (SpEL)
Security, Web Flow, and more

Nearly 100,000 developers have used this book to learn Spring!

Craig Walls is a software developer at SpringSource. He’s a
popular author and a frequent speaker at user groups and con­
ferences. Craig lives in Plano, Texas.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/SpringinActionThirdEdition

SEE INSERT

“The de facto reference
 guide to Spring.”

—Dan Dobrin, CIBC

“The only book I won’t lend
out—I use it too oft en!” —Josh Devins, Nokia

“Covers both the
 fundamentals and the
 breadth of Spring.” —Chad Davis
 Author of Struts 2 in Action

“Great content from
 a great teacher.”
—Robert Hanson

 Author of GWT in Action

“A perfect mix of humor
 and technical wisdom.”
 —Valentin Crettaz, Goomzee

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

	Spring in Action 3E
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions
	About the author
	Author Online
	About the title

	about the cover illustration
	Part 1 Core Spring
	Chapter 1 Springing into action
	1.1 Simplifying Java development
	1.1.1 Unleashing the power of POJOs
	1.1.2 Injecting dependencies
	1.1.3 Applying aspects
	1.1.4 Eliminating boilerplate code with templates

	1.2 Containing your beans
	1.2.1 Working with an application context
	1.2.2 A bean’s life

	1.3 Surveying the Spring landscape
	1.3.1 Spring modules
	1.3.2 The Spring portfolio

	1.4 What’s new in Spring
	1.4.1 What’s new in Spring 2.5?
	1.4.2 What’s new in Spring 3.0?
	1.4.3 What’s new in the Spring portfolio?

	1.5 Summary

	Chapter 2 Wiring beans
	2.1 Declaring beans
	2.1.1 Setting up Spring configuration
	2.1.2 Declaring a simple bean
	2.1.3 Injecting through constructors
	2.1.4 Bean scoping
	2.1.5 Initializing and destroying beans

	2.2 Injecting into bean properties
	2.2.1 Injecting simple values
	2.2.2 Referencing other beans
	2.2.3 Wiring properties with Spring’s p namespace
	2.2.4 Wiring collections
	2.2.5 Wiring nothing (null)

	2.3 Wiring with expressions
	2.3.1 Expressing SpEL fundamentals
	2.3.2 Performing operations on SpEL values
	2.3.3 Sifting through collections in SpEL

	2.4 Summary

	Chapter 3 Minimizing XML configuration in Spring
	3.1 Automatically wiring bean properties
	3.1.1 The four kinds of autowiring
	3.1.2 Default autowiring
	3.1.3 Mixing auto with explicit wiring

	3.2 Wiring with annotations
	3.2.1 Using @Autowired
	3.2.2 Applying standards-based autowiring with @Inject
	3.2.3 Using expressions with annotation injection

	3.3 Automatically discovering beans
	3.3.1 Annotating beans for autodiscovery
	3.3.2 Filtering component-scans

	3.4 Using Spring’s Java-based configuration
	3.4.1 Setting up for Java-based configuration
	3.4.2 Defining a configuration class
	3.4.3 Declaring a simple bean
	3.4.4 Injecting with Spring’s Java-based configuration

	3.5 Summary

	Chapter 4 Aspect-oriented Spring
	4.1 What’s aspect-oriented programming?
	4.1.1 Defining AOP terminology
	4.1.2 Spring’s AOP support

	4.2 Selecting join points with pointcuts
	4.2.1 Writing pointcuts
	4.2.2 Using Spring’s bean() designator

	4.3 Declaring aspects in XML
	4.3.1 Declaring before and after advice
	4.3.2 Declaring around advice
	4.3.3 Passing parameters to advice
	4.3.4 Introducing new functionality with aspects

	4.4 Annotating aspects
	4.4.1 Annotating around advice
	4.4.2 Passing arguments to annotated advice
	4.4.3 Annotating introductions

	4.5 Injecting AspectJ aspects
	4.6 Summary

	Part 2 Spring application essentials
	Chapter 5 Hitting the database
	5.1 Learning Spring’s data access philosophy
	5.1.1 Getting to know Spring’s data access exception hierarchy
	5.1.2 Templating data access
	5.1.3 Using DAO support classes

	5.2 Configuring a data source
	5.2.1 Using JNDI data sources
	5.2.2 Using a pooled data source
	5.2.3 JDBC driver-based data source

	5.3 Using JDBC with Spring
	5.3.1 Tackling runaway JDBC code
	5.3.2 Working with JDBC templates

	5.4 Integrating Hibernate with Spring
	5.4.1 A Hibernate overview
	5.4.2 Declaring a Hibernate session factory
	5.4.3 Building Spring-free Hibernate

	5.5 Spring and the Java Persistence API
	5.5.1 Configuring an entity manager factory
	5.5.2 Writing a JPA-based DAO

	5.6 Summary

	Chapter 6 Managing transactions
	6.1 Understanding transactions
	6.1.1 Explaining transactions in only four words
	6.1.2 Understanding Spring’s transaction management support

	6.2 Choosing a transaction manager
	6.2.1 JDBC transactions
	6.2.2 Hibernate transactions
	6.2.3 Java Persistence API transactions
	6.2.4 Java transaction API transactions

	6.3 Programming transactions in Spring
	6.4 Declaring transactions
	6.4.1 Defining transaction attributes
	6.4.2 Declaring transactions in XML
	6.4.3 Defining annotation-driven transactions

	6.5 Summary

	Chapter 7 Building web applications with Spring MVC
	7.1 Getting started with Spring MVC
	7.1.1 Following a request through Spring MVC
	7.1.2 Setting up Spring MVC

	7.2 Writing a basic controller
	7.2.1 Configuring an annotation-driven Spring MVC
	7.2.2 Defining the home page controller
	7.2.3 Resolving views
	7.2.4 Defining the home page view
	7.2.5 Rounding out the Spring application context

	7.3 Handling controller input
	7.3.1 Writing a controller that processes input
	7.3.2 Rendering the view

	7.4 Processing forms
	7.4.1 Displaying the registration form
	7.4.2 Processing form input
	7.4.3 Validating input

	7.5 Handling file uploads
	7.5.1 Adding a file upload field to the form
	7.5.2 Receiving uploaded files
	7.5.3 Configuring Spring for file uploads

	7.6 Summary

	Chapter 8 Working with Spring Web Flow
	8.1 Installing Spring Web Flow
	8.1.1 Configuring Web Flow in Spring

	8.2 The components of a flow
	8.2.1 States
	8.2.2 Transitions
	8.2.3 Flow data

	8.3 Putting it all together: the pizza flow
	8.3.1 Defining the base flow
	8.3.2 Collecting customer information
	8.3.3 Building an order
	8.3.4 Taking payment

	8.4 Securing web flows
	8.5 Summary

	Chapter 9 Securing Spring
	9.1 Introducing Spring Security
	9.1.1 Getting started with Spring Security
	9.1.2 Using the Spring Security configuration namespace

	9.2 Securing web requests
	9.2.1 Proxying servlet filters
	9.2.2 Configuring minimal web security
	9.2.3 Intercepting requests

	9.3 Securing view-level elements
	9.3.1 Accessing authentication details
	9.3.2 Rendering with authorities

	9.4 Authenticating users
	9.4.1 Configuring an in-memory user repository
	9.4.2 Authenticating against a database
	9.4.3 Authenticating against LDAP
	9.4.4 Enabling remember-me functionality

	9.5 Securing methods
	9.5.1 Securing methods with @Secured
	9.5.2 Using JSR-250’s @RolesAllowed
	9.5.3 Pre-/Post-invocation security with SpEL
	9.5.4 Declaring method-level security pointcuts

	9.6 Summary

	Part 3 Integrating Spring
	Chapter 10 Working with remote services
	10.1 An overview of Spring remoting
	10.2 Working with RMI
	10.2.1 Exporting an RMI service
	10.2.2 Wiring an RMI service

	10.3 Exposing remote services with Hessian and Burlap
	10.3.1 Exposing bean functionality with Hessian/Burlap
	10.3.2 Accessing Hessian/Burlap services

	10.4 Using Spring’s HttpInvoker
	10.4.1 Exposing beans as HTTP services
	10.4.2 Accessing services via HTTP

	10.5 Publishing and consuming web services
	10.5.1 Creating Spring-enabled JAX-WS endpoints
	10.5.2 Proxying JAX-WS services on the client side

	10.6 Summary

	Chapter 11 Giving Spring some REST
	11.1 Getting REST
	11.1.1 The fundamentals of REST
	11.1.2 How Spring supports REST

	11.2 Writing resource-oriented controllers
	11.2.1 Dissecting a RESTless controller
	11.2.2 Handling RESTful URLs
	11.2.3 Performing the REST verbs

	11.3 Representing resources
	11.3.1 Negotiating resource representation
	11.3.2 Working with HTTP message converters

	11.4 Writing REST clients
	11.4.1 Exploring RestTemplate’s operations
	11.4.2 GETting resources
	11.4.3 PUTting resources
	11.4.4 DELETE-ing resources
	11.4.5 POSTing resource data
	11.4.6 Exchanging resources

	11.5 Submitting RESTful forms
	11.5.1 Rendering hidden method fields in JSP
	11.5.2 Unmasking the real request

	11.6 Summary

	Chapter 12 Messaging in Spring
	12.1 A brief introduction to JMS
	12.1.1 Architecting JMS
	12.1.2 Assessing the benefits of JMS

	12.2 Setting up a message broker in Spring
	12.2.1 Creating a connection factory
	12.2.2 Declaring an ActiveMQ message destination

	12.3 Using Spring’s JMS template
	12.3.1 Tackling runaway JMS code
	12.3.2 Working with JMS templates

	12.4 Creating message-driven POJOs
	12.4.1 Creating a message listener
	12.4.2 Configuring message listeners

	12.5 Using message-based RPC
	12.5.1 Working with Spring message-based RPC
	12.5.2 Asynchronous RPC with Lingo

	12.6 Summary

	Chapter 13 Managing Spring beans with JMX
	13.1 Exporting Spring beans as MBeans
	13.1.1 Exposing methods by name
	13.1.2 Using interfaces to define MBean operations and attributes
	13.1.3 Working with annotation-driven MBeans
	13.1.4 Handing MBean collisions

	13.2 Remoting MBeans
	13.2.1 Exposing remote MBeans
	13.2.2 Accessing remote MBeans
	13.2.3 Proxying MBeans

	13.3 Handling notifications
	13.3.1 Listening for notifications

	13.4 Summary

	Chapter 14 Odds and ends
	14.1 Externalizing configuration
	14.1.1 Replacing property placeholders
	14.1.2 Overriding properties
	14.1.3 Encrypting external properties

	14.2 Wiring JNDI objects
	14.2.1 Working with conventional JNDI
	14.2.2 Injecting JNDI objects
	14.2.3 Wiring EJBs in Spring

	14.3 Sending email
	14.3.1 Configuring a mail sender
	14.3.2 Constructing the email

	14.4 Scheduling and background tasks
	14.4.1 Declaring scheduled methods
	14.4.2 Declaring asynchronous methods

	14.5 Summary
	14.6 The end...?

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

